

# **Sun Valley Nursery Filling Station Site**

**WESTCHESTER, NEW YORK**

---

## **Final Engineering Report**

**NYSDEC Site Number: C360207**

**Prepared for:**

136-140 Croton Avenue LLC & Crescent Manor Owner LLC  
4335 Fifth Avenue, Suite 100  
Pelham, New York 10803

**Prepared by:**

SESI Consulting Engineers, DPC  
959 Route 46E, Floor 3, Suite 300  
Parsippany, New Jersey 07054  
(973) 808-9050

---

**DECEMBER 2025**

## CERTIFICATIONS

I, Fuad Dahan, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by the Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Fuad Dahan, of 959 Route 46E, Parsippany, New Jersey, am certifying as Owner's Designated Site Representative for the site.



12/22/2025

NYS Professional Engineer # 090531

Date

Signature

A handwritten signature in blue ink that appears to read "Fuad Dahan".

## TABLE OF CONTENTS

|                                                                                  |           |
|----------------------------------------------------------------------------------|-----------|
| <b>1.0 BACKGROUND AND SITE DESCRIPTION .....</b>                                 | <b>1</b>  |
| <b>2.0 SUMMARY OF SITE REMEDY .....</b>                                          | <b>2</b>  |
| <b>2.1 REMEDIAL ACTION OBJECTIVES.....</b>                                       | <b>2</b>  |
| 2.1.1 GROUNDWATER RAOs.....                                                      | 2         |
| 2.1.2 SOIL RAOs .....                                                            | 2         |
| 2.1.3 SOIL VAPOR RAOs.....                                                       | 2         |
| 2.1.4 GREEN SUSTAINABLE REMEDIATION .....                                        | 3         |
| <b>2.2 DESCRIPTION OF SELECTED REMEDY .....</b>                                  | <b>4</b>  |
| <b>3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS.....</b> | <b>13</b> |
| <b>4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED .....</b>                       | <b>14</b> |
| <b>4.1 GOVERNING DOCUMENTS.....</b>                                              | <b>14</b> |
| 4.1.1 SITE SPECIFIC HEALTH & SAFETY PLAN (HASP) .....                            | 14        |
| 4.1.2 QUALITY ASSURANCE PROJECT PLAN (QAPP).....                                 | 14        |
| 4.1.3 STORMWATER POLLUTION PREVENTION PLAN (SWPPP).....                          | 14        |
| 4.1.4 COMMUNITY AIR MONITORING PLAN (CAMP) .....                                 | 14        |
| 4.1.5 CONTRACTORS SITE OPERATIONS PLANS (SOPS).....                              | 15        |
| 4.1.6 COMMUNITY PARTICIPATION PLAN .....                                         | 15        |
| <b>4.2 REMEDIAL PROGRAM ELEMENTS .....</b>                                       | <b>15</b> |
| 4.2.1 CONTRACTORS AND CONSULTANTS .....                                          | 15        |
| 4.2.2 SITE PREPARATION .....                                                     | 16        |
| 4.2.3 GENERAL SITE CONTROLS & STORMWATER REMEDIATION .....                       | 17        |
| 4.2.4 NUISANCE CONTROLS.....                                                     | 19        |
| 4.2.5 CAMP RESULTS .....                                                         | 20        |
| 4.2.6 BEST MANAGEMENT PRACTICES CAMP RESULTS .....                               | 22        |
| 4.2.7 REPORTING .....                                                            | 23        |
| <b>4.3 CONTAMINATED MATERIALS REMOVAL .....</b>                                  | <b>23</b> |
| 4.3.1 PETROLEUM TANKS.....                                                       | 24        |
| 4.3.2 CONTAMINATED SOIL .....                                                    | 26        |
| 4.3.2.1 ON-SITE REUSE .....                                                      | 27        |
| 4.3.3 CONTAMINATED WATER .....                                                   | 28        |
| <b>4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING .....</b>                     | <b>28</b> |
| <b>4.5 IMPORTED BACKFILL.....</b>                                                | <b>29</b> |
| <b>4.6 CONTAMINATION REMAINING AT THE SITE .....</b>                             | <b>30</b> |
| 4.6.1 REMAINING SOIL CONTAMINATION.....                                          | 30        |
| 4.6.2 REMAINING GROUNDWATER CONTAMINATION .....                                  | 30        |
| <b>4.8 ENGINEERING CONTROLS.....</b>                                             | <b>33</b> |
| 4.8.1 SUB-SLAB DEPRESSURIZATION SYSTEM.....                                      | 33        |
| 4.8.2 GROUNDWATER MONITORING .....                                               | 34        |
| 4.8.3 CRITERIA FOR COMPLETION OF REMEDIATION .....                               | 34        |
| <b>4.9 INSTITUTIONAL CONTROLS .....</b>                                          | <b>34</b> |

**4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN.....35**

**Tables**

- TABLE 4.1 LIST OF CONTRACTORS AND CONSULTANTS (EMBEDDED)
- TABLE 4.2 CAMP EXCEEDANCE TABLE (EMBEDDED)
- TABLE 4.3 SUMMARY OF CONTAMINATED MATERIALS REMOVED (EMBEDDED)
- TABLE 4.4 PETROLEUM TANK SUMMARY (EMBEDDED)
- TABLE 4.5 SOIL ANALYTICAL RESULTS SUMMARY
- TABLE 4.6 SUMMARY OF IMPORTED MATERIALS (EMBEDDED)
- TABLE 4.7 MONITORING WELL CONSTRUCTION DETAILS (EMBEDDED)
- TABLE 4.8 SUMMARY OF BASELINE GROUNDWATER SAMPLING EXCEEDANCES (EMBEDDED)
- TABLE 4.9 GROUNDWATER ANALYTICAL RESULTS SUMMARY

**Figures**

- FIGURE 1.1 SITE LOCATION MAP
- FIGURE 4.1 UNDERGROUND STORAGE TANK AND SOIL SAMPLE LOCATION PLAN
- FIGURE 4.2 REMEDIATION EXCAVATION AND SOIL SAMPLE LOCATION PLAN
- FIGURE 4.3 GROUNDWATER SAMPLING LOCATION PLAN AND RESULTS

**Appendices**

- APPENDIX A METES AND BOUNDS SURVEY
- APPENDIX B ENVIRONMENTAL EASEMENT
- APPENDIX C RAWP APPROVALS
- APPENDIX D ENVIRONMENTAL FOOTPRINT ASSESSMENT (EFA)
- APPENDIX E CAMP DATA
- APPENDIX F AGENCY APPROVALS AND PERMITS
- APPENDIX G DISPOSAL MANIFESTS
- APPENDIX H WEEKLY REPORTS
- APPENDIX I PHOTO LOG
- APPENDIX J FACILITY APPROVALS
- APPENDIX K SOIL REUSE
- APPENDIX L DEWATERING DESIGN
- APPENDIX M DEWATERING DATA
- APPENDIX N DEVIATION APPROVALS

APPENDIX O DUSRs

APPENDIX P LAB REPORTS

APPENDIX Q IMPORT REQUESTS AND APPROVALS

APPENDIX R MONITORING WELL CONSTRUCTION LOGS

APPENDIX S GROUNDWATER PURGE LOGS

APPENDIX T SUPPORT OF EXCAVATION DESIGN

APPENDIX U VAPOR INTRUSION SYSTEM DRAWINGS

## LIST OF ACRONYMS

| Acronym | Definition                                                     |
|---------|----------------------------------------------------------------|
| amsl    | above mean sea level                                           |
| AWQS    | Ambient Water Quality Standards                                |
| BCA     | Brownfield Cleanup Agreement                                   |
| BCP     | Brownfield Cleanup Program                                     |
| BMP     | Best Management Practices                                      |
| CAMP    | Community Air Monitoring Plan                                  |
| CPP     | Community Participation Plan                                   |
| CVOC    | Chlorinated Volatile Organic Compound                          |
| cy      | Cubic yard                                                     |
| DER     | Division of Environmental Remediation                          |
| DER-10  | NYSDEC Technical Guidance for Site Investigation & Remediation |
| DPT     | Direct Push Technology                                         |
| ECs     | Engineering Controls                                           |
| EE      | Environmental Easement                                         |
| EFA     | Environmental Footprint Analysis                               |
| FER     | Final Engineering Report                                       |
| ft-bgs  | feet below ground surface                                      |
| HASP    | Health and Safety Plan                                         |
| HGP     | Horizontal Grout Plug                                          |
| ISCR    | In Situ Chemical Reduction                                     |
| ICs     | Institutional Controls                                         |
| MCL     | Maximum Contaminant Level                                      |
| MW      | Monitoring Well                                                |
| NYSDEC  | New York State Department of Environmental Conservation        |
| NYSDOH  | New York State Department of Health                            |
| O&M     | Operation and Maintenance                                      |
| PCB     | Polychlorinated Biphenyls                                      |
| PCE     | Tetrachloroethene                                              |
| PDI     | Pre-Design Investigation                                       |
| PFAS    | Per and Polyfluoroalkyl Substances                             |
| PFOA    | Perfluorooctanoic Acid                                         |
| PFOS    | Perfluorooctanesulfonic Acid                                   |
| PID     | Photoionization Detector                                       |
| ppt     | parts per trillion                                             |
| PRB     | Permeable Reactive Barrier                                     |
| QAPP    | Quality Assurance Project Plan                                 |

| <b>Acronym</b> | <b>Definition</b>                        |
|----------------|------------------------------------------|
| RAO            | Remedial Action Objective                |
| RAWP           | Remedial Action Work Plan                |
| SECS           | Soil Erosion and Sediment Control Plan   |
| SCO            | Soil Cleanup Objectives                  |
| SESI           | SESI Consulting Engineers, DPC           |
| SMP            | Site Management Plan                     |
| SOE            | Support of Excavation                    |
| SoMP           | Soil/Materials Management Plan           |
| SVI            | Soil Vapor Intrusion                     |
| SVOCs          | Semi-Volatile Organic Compounds          |
| TAL            | Target Analyte List                      |
| TCL            | Target Compound List                     |
| TOGS           | Technical and Operations Guidance Series |
| USCO           | Unrestricted Use Soil Cleanup Objectives |
| VOCs           | Volatile Organic Compounds               |
| ZVI            | Zerovalent iron                          |

# Final Engineering Report

## 1.0 BACKGROUND AND SITE DESCRIPTION

136-140 Croton Avenue LLC, Crescent Manor Owner LLC (the “Volunteer”) entered into a Brownfield Cleanup Agreement (BCA) Index No. C360207-03-22 with the New York State Department of Environmental Conservation (NYSDEC) on March 8, 2022, to investigate and remediate a 0.80-acre property located in the Village of Ossining, Westchester County, New York named the Sun Valley Nursery Filling Station BCA Site No. C360207. The property was remediated to unrestricted use and will be used for residential uses. The BCA was amended on September 26, 2024 to add Crescent Manor Owner LLC as an additional volunteer.

The site is located in the County of Westchester, New York and was originally identified as Section 89.16, Block 7, Lots 79 and 80 on the Westchester County Tax Map when it entered the BCA. The BCA was amended for a second time on September 23, 2025 to reflect the fact that the two lots were merged into a new single lot 89.16-7-80.1, title to the site was transferred to Crescent Manor Senior Housing Development Fund Corporation (“HDFC”) and Crescent Manor Owner LLC became the beneficial owner. The HDFC did not become a party to the BCA.

The site is situated on an approximately 0.80-acre area bounded by Croton Avenue to the north, residences to the south, Watson Avenue to the east, and Prospect Avenue to the west (see Figure 1.1). The boundaries of the site are fully described in Appendix A: the Survey Map, Metes and Bounds and Appendix B: Environmental Easement.

An electronic copy of this FER with all supporting documentation will be provided to NYSDEC via file transfer service.

## **2.0 SUMMARY OF SITE REMEDY**

### **2.1 REMEDIAL ACTION OBJECTIVES**

Based on the results of the Remedial Investigation, the following Remedial Action Objectives (RAOs) were identified for this site.

#### **2.1.1 GROUNDWATER RAOs**

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer, to the extent practicable, to pre-disposal/pre-release conditions.
- Remove the source of ground or surface water contamination.

#### **2.1.2 SOIL RAOs**

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.

#### **2.1.3 SOIL VAPOR RAOs**

RAOs for Public Health Protection

- Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.”

#### **2.1.4 GREEN SUSTAINABLE REMEDIATION**

During the course of the remedial action field activities, SESI considered NYSDEC DER-31 “Green Remediation” implementation objectives. The NYSDEC DER’s approach to remediating sites in the context of the larger environment is a concept known as “Green Remediation”. Green Remediation is defined in NYSDEC DER-31 as “the practice of considering all environmental effects of remedy implementation and incorporating options to minimize the environmental footprint of cleanup actions.” The approach is intended to improve the overall sustainability of the remediation by promoting the use of more sustainable practices and technologies. Green Remediation practices and technologies are less disruptive to the environment, generate less waste, increase reuse and recycling, and emit fewer pollutants, including greenhouse gases, to the atmosphere. Green Remediation concepts and techniques considered during the remediation included:

- Eliminated idling vehicles and equipment when possible; reducing emission of CO<sub>2</sub>, N<sub>2</sub>O, CH<sub>4</sub>, and other greenhouse gases contributing to climate change;
- Operation of particulate detectors to monitor and minimize dust export of contaminants;
- Operation of volatile organic compound (VOC) detectors to monitor and minimize VOC exposures; and
- Conducting sampling events planned simultaneously to maximize level of efforts while traveling to/from the Site (economy of scale implementing multiple sampling events).
- Integrating the remedy with the Site’s end use for a green and sustainable redevelopment (i.e. Track 1 soil excavation). The Environmental Footprint Analysis (EFA) is included as **Appendix D**.

## 2.2 DESCRIPTION OF SELECTED REMEDY

The site was remediated in accordance with the remedy selected by the NYSDEC in the approved Remedial Action Work Plan (RAWP) dated December 2023 and revised October 2024, Decision Document dated October 2024, and RAWP - Addendum (Groundwater) dated September 2025 (RAWP approval in **Appendix C**).

The factors considered during the selection of the remedy are those listed in 6 NYCRR 375-1.8. The following are the components of the selected remedy:

1. A remedial program was implemented to provide the details necessary for the construction, operation, optimization, maintenance, and monitoring of the remedial program. Green remediation principles and techniques were implemented to the extent feasible in the design, implementation, and site management of the remedy as per DER-31.

The major green remediation components are as follows:

- Considering the environmental impacts of treatment technologies and remedy stewardship over the long term;
- Reducing direct and indirect greenhouse gases and other emissions;
- Increasing energy efficiency and minimizing use of non-renewable energy;
- Conserving and efficiently managing resources and materials;
- Reducing waste, increasing recycling and increasing reuse of materials which would otherwise be considered a waste;
- Maximizing habitat value and creating habitat when possible;
- Fostering green and healthy communities and working landscapes which balance ecological, economic and social goals;
- Integrating the remedy with the end use where possible and encouraging green and sustainable re-development; and
- Additionally, to incorporate green remediation principles and techniques to the extent feasible in the future development at this

site, any future on-site buildings shall be constructed, at a minimum, to meet the 2020 Energy Conservation Construction Code of New York (or most recent edition) to improve energy efficiency as an element of construction.

As part of the remedial program, to evaluate the remedy with respect to green and sustainable remediation principles, an environmental footprint analysis was completed. The environmental footprint analysis was completed using an accepted environmental footprint analysis calculator such as SEFA (Spreadsheets for Environmental Footprint Analysis, USEPA), SiteWise<sup>TM</sup> (available in the Sustainable Remediation Forum [SURF] library) or similar Department accepted tool. Water consumption, greenhouse gas emissions, renewable and non-renewable energy use, waste reduction and material use will be estimated, and goals for the project related to these green and sustainable remediation metrics, as well as for minimizing community impacts, protecting habitats and natural and cultural resources, and promoting environmental justice, was incorporated into the remedial program, as appropriate. The project included detailed requirements to achieve the green and sustainable remediation goals. Further, progress with respect to green and sustainable remediation metrics were tracked during implementation of the remedial action and reported in this Final Engineering Report (FER), including a comparison to the goals established during the remedial program. The EFA is included in **Appendix D**.

Additionally, the remedial program included a climate change vulnerability assessment, that evaluated the impact of climate change on the project site and the proposed remedy. Potential vulnerabilities associated with extreme weather events (e.g., hurricanes, lightning, heat stress and drought), flooding, and sea level rise were identified, and the remedial program incorporated measures to minimize the impact of climate change on potential identified vulnerabilities.

## 2. Soil Excavation and Required Support of Excavation

To remediate the contaminated soil, the installation of piles and lagging along the side walls was performed for structural stability of the excavation

pit and to prevent impact to off-site structures. Excavation and off-site disposal of contaminant source areas include:

- grossly contaminated soil, as defined in 6 NYCRR Part 375-1.2(u);
- soil exceeding the 6 NYCRR Part 371 hazardous criteria for lead;
- concentrated solid or semi-solid hazardous substances per 6 NYCRR Part 375-1.2(au)(1);
- non-aqueous phase liquids;
- soil with visible waste material or non-aqueous phase liquid;
- soil containing total SVOCs exceeding 500 ppm;
- soils which exceed the protection of groundwater soil cleanup objectives (PGWSCOs), as defined by 6 NYCRR Part 375-6.8 for those contaminants found in site groundwater above standards; and
- soils that created a nuisance condition, as defined in Commissioner Policy CP-51 Section G.

Excavation and off-site disposal of all on-site soils which exceeded unrestricted SCOs, as defined by 6 NYCRR Part 375-6.8, down to between 8 and 13 feet below ground surface (bgs), or weathered bedrock if encountered first. Since a conditional Track 1 cleanup was achieved, a Cover System will not be a required component of the remedy.

Approximately 6,023.17 tons of contaminated soil was removed from the site. Collection and analysis of confirmation samples at the remedial excavation depth was used to verify that SCOs for the site have been achieved. To the extent required, further excavation for development proceeded after confirmation samples demonstrated that SCOs for the site were achieved.

To ensure proper handling and disposal of excavated material, waste characterization sampling was completed for all identified contaminated

site material. Waste characterization sampling was performed exclusively for the purposes of off-site disposal in a manner suitable to receiving facilities and in conformance with applicable federal, state and local laws, rules, and regulations and facility-specific permits.

On-site soil which did not exceed the above excavation criteria for any constituent was allowed to be used anywhere on-site, including below the water table, to backfill the excavation or re-grade the site.

Clean fill meeting the requirements of the 6 NYCRR Part 375-6.7(d) was brought in to replace the excavated soil and establish the designed grades at the site to the extent required.

### 3. Dewatering

Even though groundwater was not encountered during the implementation of the soil remedial action, excessive volumes of stormwater pooling within the remedial excavation necessitated the design and implementation of a construction dewatering system. All stormwater encountered was treated as contaminated stormwater and discharged to the sanitary sewer or disposed of off-Site at a regulated facility. On May 13 and 15, 2025, minor quantities of stormwater left the Site through the four-layer erosion control system consisting of hay bales, silt fence, inlet filters, and filter fabric between the inlet and Site boundary installed per the approved Soil and Sediment Erosion Control Plan. To prevent further stormwater from further leaving the Site, a retention pond was installed at the lower end of the Site to contain the stormwater and prevent runoff. On May 16, 2025 and June 3, 2025, 4,400 gallons of oily water contained within the USTs and excessive untreated ponded stormwater was disposed of at the Luzon facility located at 1246 Glen Wild Road, Woodridge, New York. On May 21, 2025, one (1) 8,000-gallon frac tank and one (1) 20,000-gallon frac tank were delivered to the Site to facilitate temporary stormwater management. On May 21, 2025, transfer of accumulated stormwater from the retention pond to the frac tanks began. On June 18, 2025, the

remainder of the dewatering treatment system was installed which included bag filtration units, transfer pumps, and an effluent flow meter connected in series with the frac tanks. On June 18, 2025, 2,397.8 gallons of treated stormwater were discharged to the storm sewer when facilitating effluent sample collection, however, discharge to the storm sewer was discontinued the same day. On June 10, 27 and 30, 2025, 73,547 gallons of contained untreated ponded stormwater was evacuated from the retention pond and frac-tanks and disposed of at Clean Water of New York, Inc., a permitted disposal facility located at 3249 Richmond Terrace, Staten Island, New York. On July 8, 2025, the dewatering system was connected to the sanitary sewer via subsurface piping beneath Croton Avenue leading to a Westchester County sewer manhole and discharge of treated stormwater to the sanitary sewer began. Approximately 23,970.2 gallons of stormwater were removed, treated and discharged from the Site to the Westchester County sanitary sewer throughout the duration of the RA for dewatering purposes from July 8, 2025, to August 28, 2025.

Appropriate discharge permits were obtained from the County of Westchester Department of Environmental Facilities and are provided in **Appendix F**. Stormwater disposal bills of lading are provided in **Appendix G**.

#### 4. Underground Storage Tank (UST) Removal

A total of three (3) USTs were discovered and removed from the Site during the excavation of contaminated soils. UST-1, UST-2, and UST-3 were discovered on May 13th, 28th, and 30th, 2025, respectively. Endpoint soil sampling was completed as reported in Section 4.3.1. Disposal documentation associated with the USTs are included in **Appendix G**. **Table 4.4** below summarizes the size and capacity of the tanks removed from the Site.

#### 5. Monitored Natural Attenuation

Any groundwater contamination remaining after active remediation will be addressed with monitored natural attenuation (MNA) through a network of monitoring wells. Groundwater will be monitored for site related contamination and also for MNA indicators which will provide an understanding for the (biological activity) breaking down the contamination. It is anticipated that contamination will decrease by an order of magnitude within an estimated period of less than 5 years. Select monitoring wells will be sampled and analyzed annually. A report containing cumulative monitoring data will be provided at the end of a 5-year monitoring report for review, and active remediation will be proposed if it appears that natural processes alone will not address the contamination.

## 6. Enhanced Bioremediation

The contingency remedial action for MNA will depend on the information collected, but it is currently anticipated that injection of oxygen release compound would be the expected contingency remedial action.

## 7. Vapor Intrusion

The sub-slab depressurization system (SSDS) beneath the Site building was partially installed in November 2025 as reported in **Appendix U**, Vapor Intrusion Plan As-Built Up To Date December 5, 2025. Additionally, a vapor barrier and sub-slab ventilation piping will be installed in the northeastern portion of the building and a Soil Vapor Intrusion Evaluation will be completed at a future date. The originally proposed Vapor Intrusion Plan and Details for the entire vapor intrusion system, including the portion of the system to be installed in the northeastern portion of the building at a future date, are also included in **Appendix U**. The SSDS will remain passive unless sampling determines otherwise. As part of the Conditional Track 1 remedy, a soil vapor intrusion evaluation will be completed prior to occupancy of the building. The evaluation will include a provision for

implementing actions recommended to address exposures related to soil vapor intrusion.

## 8. Engineering and Institutional Controls

An environmental easement and site management plan are required and are anticipated to be in place for less than 5 years. The pre-occupancy soil vapor intrusion (SVI) will be performed to determine if SVI engineering controls are needed. If a mitigation or monitoring action is needed, a Track 1 cleanup can only be achieved if the mitigation system or other required action is no longer needed within 5 years of the date of the Certificate of Completion.

The environmental easement for the controlled property will:

- require the remedial party or site owner to complete and submit to the NYSDEC a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- allow the use and development of the controlled property for unrestricted, restricted residential, commercial, or industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and
- require compliance with the NYSDEC approved Site Management Plan.

## 9. Site Management Plan

The Site Management Plan includes the following:

- 1) An Institutional and Engineering Control Plan that identifies all use restrictions and engineering controls for the site and details the

steps and media-specific requirements necessary to ensure the following institutional and/or engineering controls remain in place and effective:

Institutional Controls: the Environmental Easement discussed in Remedial Element 6 above.

Engineering Controls: passive components of a SSDS discussed in Remedial Element 6 above.

This plan includes, but may not be limited to:

- provisions for the management and inspection of the identified engineering controls;
- descriptions of the provisions of the environmental easement including any land use and groundwater use restrictions;
- a provision for SVI evaluation for any occupied buildings on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion;
- maintaining site access controls and NYSDEC notification; and
- the steps necessary for the periodic reviews and certification of the institutional and/or engineering controls.

2) A Monitoring Plan to assess the performance and effectiveness of the remedy. The plan includes, but may not be limited to:

- monitoring of groundwater to assess the performance and effectiveness of the remedy;
- a schedule of monitoring and frequency of submittals to the NYSDEC;

- monitoring for potential vapor intrusion for any building on the site, as may be required by the Institutional and Engineering Control Plan discussed above.

### **3.0 INTERIM REMEDIAL MEASURES, OPERABLE UNITS AND REMEDIAL CONTRACTS**

The remedy for this site was performed as a single project, and no interim remedial measures, operable units or separate construction contracts were performed.

SESI prepared an Interim Remedial Measures Workplan (IRMWP) for the Site in August 2022, later revised in December 2022, that was approved by NYSDEC on January 10, 2023. The IRMWP outlined planned IRM activities at the Site that were proposed with the objective of preparing the Site for construction and the removal of all Site soil exceeding the NYSDEC Unrestricted Use Soil Cleanup Objectives (USCOs). Additionally, the IRMWP describes the soil management/removal procedures and provides further detail with regard to the support of excavation (SOE), quantities of soil and fill to be removed, and work sequencing. The IRMWP was ultimately not implemented due to the development and acceptance of the RAWP prior to the commencement of work described below.

## **4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED**

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved RAWP for the Sun Valley Nursery Filling Station site dated December 2023 and revised October 2024, the Decision Document dated October 2024, and RAWP – Addendum (Groundwater) dated September 2025. All deviations from the RAWP are noted in Section 4.9 below.

### **4.1 GOVERNING DOCUMENTS**

#### **4.1.1 SITE SPECIFIC HEALTH & SAFETY PLAN (HASP)**

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including Site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was included as Appendix B of the RAWP. The HASP was complied with for all remedial and invasive work performed at the Site.

#### **4.1.2 QUALITY ASSURANCE PROJECT PLAN (QAPP)**

The QAPP was included as Appendix C of the RAWP approved by the NYSDEC. The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives.

#### **4.1.3 STORMWATER POLLUTION PREVENTION PLAN (SWPPP)**

The erosion and sediment controls for all remedial construction were performed in conformance with requirements presented in the New York State Guidelines for Urban Erosion and Sediment Control and the site-specific Storm Water Pollution Prevention Plan dated February 2024.

#### **4.1.4 COMMUNITY AIR MONITORING PLAN (CAMP)**

The CAMP for the Site is included in Appendix D of the RAWP. The CAMP was implemented during on-Site intrusive activities to monitor the property boundaries in each cardinal direction. The implementation of the CAMP included the monitoring of particulates (dust) with a Dustrak, and VOCs using a

photoionization detector. CAMP results are discussed in Section 4.2.5. The CAMP data is provided in **Appendix E**. See Section 4.2.5 for an explanation of the CAMP exceedances.

On May 7, 2025, one of the two upwind monitors was not transmitting data to SESI, however, was functional in detecting dust level.

#### **4.1.5 CONTRACTORS SITE OPERATIONS PLANS (SOPs)**

The Remediation Engineer reviewed all plans and submittals for this remedial project (i.e. those listed above plus contractor and subcontractor submittals) and confirmed that they were in compliance with the RAWP. All remedial documents were submitted to NYSDEC and NYSDOH in a timely manner and prior to the start of work.

#### **4.1.6 COMMUNITY PARTICIPATION PLAN**

The approved Community Participation Plan (CPP) for this project was included as Appendix A of the Remedial Investigation Work Plan. A document repository has been established at the following location and contains all applicable project documents:

Ossining Public Library  
53 Croton Avenue  
Ossining, NY 10562  
Ms. Karen LaRocca-Fels, Library Director  
Phone: (914) 941-2416

The CPP provides members of the affected and interested public with information about how NYSDEC will inform and involve them during the investigation and remediation of the Site. To date, community participation procedures have been implemented in accordance with the attached CPP.

### **4.2 REMEDIAL PROGRAM ELEMENTS**

#### **4.2.1 CONTRACTORS AND CONSULTANTS**

**Table 4.1 – List of Contractors and Consultants**

| <b>Contractors/Consultants</b> | <b>Role</b>                                        | <b>Project Contact</b>           |
|--------------------------------|----------------------------------------------------|----------------------------------|
| SESI Consulting Engineers      | Environmental Consultant and Engineer of Record    | Fuad Dahan (Engineer of Record)  |
| SESI Consulting Engineers      | Environmental Consultant and Project Manager       | Anthony Raposo (Project Manager) |
| Knauf Shaw LLP                 | Environmental Counsel                              | Linda Shaw, Esq.                 |
| Verdi Design-Build             | Site Construction Manager                          | Doug Verdi                       |
| Sandyston Construction         | Support of Excavation, Excavation and Soil Loadout | Peter Batraniec                  |
| Earth Efficient                | Soil Disposal                                      | Cory Weissglass                  |
| Luzon Environmental Services   | UST Closure and Water Disposal                     | Robert Halprin                   |
| PG Environmental Services      | Monitoring Well installation                       | Carlos Quiñonez                  |
| SGS North America              | Analytical Laboratory                              | Louie DeVletter                  |
| Pace Analytical Services       | Analytical Laboratory                              | Nicole Galamb                    |
| AMXconsult, LLC                | DUSR and EDD Processing                            | M. Amine Dahmani                 |

#### **4.2.2 SITE PREPARATION**

- Mobilization.
- Set-up of temporary facilities.
- Set-up of construction equipment and facilities.
- Construction of fencing and barriers.
- Construction of decontamination and materials staging areas.
- Establishment of erosion and sedimentation controls.
- Importation of clean fill and aggregate.
- Identification of underground utilities.
- Installation of SOE along the perimeter of the Site.
- Establishment of equipment and material staging areas.
- Establishment of equipment decontamination and truck wash stations.
- Establishment of dewatering system and sanitary sewer tie-in.

A pre-construction meeting was held with NYSDEC and all contractors on April 21, 2025.

Documentation of agency approvals required by the RAWP is included in **Appendix F**. Other non-agency permits relating to the remediation project are provided in **Appendix F**.

All SEQRA requirements and all substantive compliance requirements for attainment of applicable natural resource or other permits were achieved during this Remedial Action.

A NYSDEC-approved project sign was erected at the project entrance and remained in place during all phases of the Remedial Action.

#### **4.2.3 GENERAL SITE CONTROLS & STORMWATER REMEDIATION**

- The Site was a closed site accessible only to site contractors, owners, and authorized entrants. The BCP Site was protected with an 8-foot chain-link fence with gates on Watson Avenue and Prospect Avenue.
- The entrances to the BCP Site were locked when construction personnel were not present.
- Silt fencing was installed around the Site boundaries within the construction fence, and stormwater drain filters were installed in stormwater basins.
- Visual, olfactory and photoionization detector (PID) soil screening and assessment was performed by a qualified environmental professional during ancillary activities, including support of excavation installation, UST closure and remedial excavations as per the CAMP.
- Soil segregation was performed based on observed field evidence of contamination and waste classification analysis. All stockpiled soil was covered with polyethylene sheeting beginning on April 30, 2025. Remedial excavation began on April 28, 2025, with the excavation of a ten (10) foot wide by two (2) foot deep trench along the northern boundary of the Site to facilitate installation of erosion controls and SOE. The soil stockpiles generated during this excavation were first covered at the end of the day

at approximately 4:00 PM on April 30, 2025. Silt fencing was installed around the Site as erosion and sediment control measures.

Even though groundwater was not encountered during the implementation of the soil remedial action, excessive volumes of stormwater pooling within the remedial excavation necessitated the design and implementation of a construction dewatering system. All stormwater encountered was treated as contaminated stormwater and discharged to the sanitary sewer or disposed of off-Site at a regulated facility. On May 13 and 15, 2025, minor quantities of stormwater left the Site through the four-layer erosion control system consisting of hay bales, silt fence, inlet filters, and filter fabric between the inlet and Site boundary installed per the approved Soil and Sediment Erosion Control Plan. To prevent further stormwater from further leaving the Site, a retention pond was installed at the lower end of the Site to contain the stormwater and prevent runoff. On May 16, 2025 and June 3, 2025, 4,400 gallons of oily water contained within the USTs and excessive untreated ponded stormwater was disposed of at the Luzon facility located at 1246 Glen Wild Road, Woodridge, New York. On May 21, 2025, one (1) 8,000-gallon frac tank and one (1) 20,000-gallon frac tank were delivered to the Site to facilitate temporary stormwater management. On May 21, 2025, transfer of accumulated stormwater from the retention pond to the frac tanks began. On June 18, 2025, the remainder of the dewatering treatment system was installed which included bag filtration units, transfer pumps, and an effluent flow meter connected in series with the frac tanks. On June 28, 2025, 2,397.8 gallons of treated stormwater were discharge to the storm sewer when facilitating effluent sample collection, however, discharge to the storm sewer was discontinued the same day. On June 10, 27 and 30, 2025, 73,547 gallons of contained untreated ponded stormwater was evacuated from the retention pond and frac-tanks and disposed of at Clean Water of New York, Inc., a permitted disposal facility located at

3249 Richmond Terrace, Staten Island, New York. On July 8, 2025, the dewatering system was connected to the sanitary sewer via subsurface piping beneath Crotn Avenue leading to a Westchester County sewer manhole and discharge of treated stormwater to the sanitary sewer began. Approximately 23,970.2 gallons of stormwater were removed, treated and discharged from the Site to the Westchester County sanitary sewer throughout the duration of the RA for dewatering purposes from July 8, 2025, to August 28, 2025. Appropriate discharge permits were obtained from the County of Westchester Department of Environmental Facilities and are provided in **Appendix F**. Stormwater disposal bills of lading are provided in **Appendix G**.

#### **4.2.4 NUISANCE CONTROLS**

- Truck wash and egress housekeeping: a rip-rap truck-tire wash station was installed at the entrances to the construction areas on Watson Avenue and Prospect Avenue.
- Dust control: Truck work was slowed down to allow water to be applied, when needed, to minimize dust generation particularly during fill off loads from the trucks. See also FER Section 4.2.5.
- Odor control: Odor control measures included: (a) limiting the area of open excavations; (b) shrouding open excavations with tarps and other covers; and (c) using BioSolve foams to cover exposed odorous soils. Biosolve was provided to and used at the Site beginning on May 5, 2025.
- Prior to loading, trucks were staged at an off-Site facility away from the residential area surrounding the Site to avoid traffic issues. The inbound and outbound truck routes were designed to (a) limit transport through residential areas and past sensitive sites; (b) follow city mapped truck routes; (c) prohibit off-site queuing of trucks entering the facility; (d) limit total distance to major highways; (e) promote safety in access to highways;

(f) create overall safety in transport; and (g) follow community input, which was sought and obtained during the CPP process. On May 13, 2025, a member of the public alerted NYSDEC to the suspected queuing of trucks adjacent to the Site. The Volunteer continued to stage trucks at an off-Site facility away from the residential area surrounding the Site to avoid traffic issues.

#### 4.2.5 CAMP RESULTS

Generally, a total of four (4) air monitoring stations were set up daily with one (1) station at the boundary of the Site in each cardinal direction. Air monitoring data for dust control and VOCs was recorded by SESI. Readings were recorded in real time (continuous monitoring), and the data was monitored by field personnel. If exceedances occurred, field personnel took appropriate actions as described below.

**Table 4.2 – CAMP Exceedance Table**

| Date      | Time                                                                      | Location | Type of Exceedance | Cause      | Remedy                                            |
|-----------|---------------------------------------------------------------------------|----------|--------------------|------------|---------------------------------------------------|
| 5/1/2025  | 08:47 – 09:00                                                             | Upwind   | Particulate        | Moisture   | Spray water                                       |
| 5/5/2025  | 10:54 – 13:20                                                             | Downwind | VOCs               | Excavation | Pause work, deploy odor control, cover stockpiles |
|           | 15:05 – 15:20                                                             | Downwind | Particulate        | Excavation | Pause work and spray water                        |
| 5/9/2025  | 10:10 – 10:15                                                             | Downwind | Particulate        | Drilling   | Spray water and reroute exhaust                   |
| 5/12/2025 | 12:05 – 12:10                                                             | Downwind | Particulate        | Drilling   | Spray water                                       |
| 5/13/2025 | 08:55 – 09:00                                                             | Downwind | Particulate        | Drilling   | Spray water                                       |
| 5/16/2025 | 09:50 – 10:00                                                             | Upwind   | Particulate        | Drilling   | Spray water                                       |
| 6/5/2025  | 14:40 – 15:40                                                             | Downwind | Particulate        | Excavation | Spray water and terminate work                    |
| 6/6/2025  | 12:30 – 12:40, 14:30 – 14:45, 15:35 – 15:45                               | Downwind | Particulate        | Excavation | Spray water                                       |
| 6/11/2025 | 14:10 – 14:30                                                             | Sidewind | Particulate        | Drilling   | Spray water and pause work                        |
| 6/16/2025 | 08:20 – 08:50, 11:10 – 11:25, 13:50 – 14:10, 14:50 – 15:30, 15:50 – 15:55 | Upwind   | Particulate        | Drilling   | Spray water                                       |

| Date      | Time                                                                                                                                                  | Location | Type of Exceedance | Cause                                                         | Remedy                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|---------------------------------------------------------------|--------------------------------------|
| 6/17/2025 | 09:05 – 09:10                                                                                                                                         | Upwind   | Particulate        | Drilling                                                      | Spray water                          |
| 7/15/2025 | 07:58 – 09:10                                                                                                                                         | Sidewind | VOC                | Moisture trapped in unit                                      | Dry unit                             |
| 7/23/2025 | 08:40 – 09:10                                                                                                                                         | Downwind | VOC                | Moisture trapped in unit                                      | Dry unit                             |
| 7/26/2025 | 10:25 – 11:49,<br>12:22 – 12:25,<br>12:39 – 12:54,<br>12:57 – 13:04,<br>14:17 – 14:18,<br>14:46 (less than 1 minute)<br>15:03-15:04,<br>15:17 – 15:22 | Upwind   | Particulate        | Equipment malfunction                                         | Recalibrate unit                     |
| 7/28/2025 | 08:00 – 09:30                                                                                                                                         | Sidewind | VOC & Particulate  | Moisture trapped in unit                                      | Dry unit                             |
| 7/29/2025 | 08:00 – 09:30                                                                                                                                         | Downwind | VOC                | Moisture trapped in unit                                      | Dry unit                             |
|           | 08:55 – 09:10                                                                                                                                         | Upwind   | Particulate        | Excavation                                                    | Spray water                          |
| 7/30/2025 | 11:25 – 11:35                                                                                                                                         | Sidewind | Particulate        | Excavation                                                    | Spray water                          |
| 8/4/2025  | 08:20 – 09:10                                                                                                                                         | Sidewind | VOC                | Moisture trapped in unit                                      | Dry unit                             |
|           | 14:05 – 14:10                                                                                                                                         | Upwind   | Particulate        | Excavation                                                    | Spray water                          |
| 8/5/2025  | 11:05 – 14:52                                                                                                                                         | Sidewind | Particulate        | Surrounding wildfires resulting in NYSDEC air quality warning | Spray water if visible dust observed |
| 8/6/2025  | 10:45 – 13:15                                                                                                                                         | Sidewind | Particulate        | Surrounding wildfires resulting in NYSDEC air quality warning | Spray water if visible dust observed |
| 8/11/2025 | 11:09 – 11:13                                                                                                                                         | Sidewind | Particulate        | Excavation                                                    | Spray water                          |
| 8/12/2025 | 08:32 – 09:42                                                                                                                                         | Sidewind | VOC                | Moisture trapped in unit                                      | Dry unit                             |
|           | 11:09 – 11:14                                                                                                                                         | Sidewind | Particulate        | Excavation                                                    | Spray water                          |

Additionally, there were instances where minor exceedances (less than 15 minutes) were recorded for dust due to drilling operations, excavation, and equipment exhaust. Dust suppression measures were taken including spraying water and pausing work as needed until readings taken post exceedances

returned to background levels. Moisture trapped in the units caused occasional measurement spikes at the beginning of the workday. Copies of all field data sheets relating to the CAMP are provided in electronic format in **Appendix E**.

#### **4.2.6 BEST MANAGEMENT PRACTICES CAMP RESULTS**

Best management practices (BMPs) were implemented at the site to reduce the environmental footprint of the remedy. These BMPs included:

- Deploy machinery that is suitably sized to increase efficiencies considerably.
- Use machine models capable of performing assorted tasks, whenever feasible, to avoid field deployment of multiple types of machines (i.e. a single excavator can be equipped with a bucket for digging, a breaker for demolition or a grapple for land clearing).
- Use an automated coupling system rather than a manual pin-on system for changing excavator attachments, to reduce machine operating time.
- Use machines with variable-speed control technology, which automatically reduces engine speed during low workload requirements, or with pump torque control, which allows a machine operator to change a machine's hydraulic pump torque.
- Use machines with repowered or newer engines that are more fuel efficient.
- Implement an engine idle reduction plan to avoid fuel consumption when machinery is not actively engaged. Options include manual shutdown after a specified time such as five minutes, engagement of automatic shutdown devices, or use of auxiliary power units to heat or cool machinery cabs.
- Perform routine, on-time maintenance such as oil changes to assure fuel efficiency.
- Deploy mobile power systems to operate construction equipment or tools such as electricity generators, chainsaws, or temporary lighting fixtures.

- Spray water onto surfaces of vulnerable work areas, in conjunction with water conservation and runoff management techniques.
- Emplace a fabric cover over excavated material that is loaded into open trucks for onsite or offsite hauling.
- Contain and properly dispose of all decontamination fluids to prevent their entrance into storm drains or ground surfaces.
- Reclaim and stockpile uncontaminated soil for use as infill or other purposes

#### **4.2.7 REPORTING**

Weekly reports were prepared and provided to the NYSDEC Project Manager during the course of the soil remediation. These reports presented the following information:

- Activities relative to the Site during the previous reporting period and those anticipated for the next reporting period, including a quantitative presentation of work performed (i.e. tons of material exported and imported, etc.);
- Description of approved activity modifications, including changes of work scope and/or schedule;
- Sampling results received following internal data review and validation, as applicable;
- An update of the remedial schedule including unresolved delays encountered or anticipated that may affect the future schedule and efforts made to mitigate such delays; and
- A description of any CAMP exceedances recorded, and actions taken to remedy any exceedances.

All weekly reports are included in electronic format in **Appendix H**. The digital photo log required by the RAWP is included in electronic format in **Appendix I**.

#### **4.3 CONTAMINATED MATERIALS REMOVAL**

Removal of all contaminated media generated during the remedial actions was implemented in accordance with the RAWP and the Decision Document.

This FER includes a description and identification of the media type (soil, water, construction debris, and USTs), location, volume of contamination removed, date removed and the disposal facility.

A list of the soil cleanup objectives (SCOs) for the contaminants of concern for this project is provided in Appendix E of the RAWP. The SCOs for this Site are Track 1 USCOs. Groundwater cleanup objectives are NYSDEC TOGS AWQS. Soil vapor mitigation objectives are the NYSDOH Guideline Values and Decision Matrices for the specific COCs.

**Table 4.3** shows the total quantities of each category of material removed from the site and the disposal locations.

Letters from Applicants to disposal facility owners and acceptance letters from disposal facility owners are attached in **Appendix J**.

Manifests and bills of lading are included in electronic format in **Appendix G**.

**Table 4.3 - Summary of Contaminated Materials Removed**

| Date                             | Description                | Facility                                 | Quantity                                  |
|----------------------------------|----------------------------|------------------------------------------|-------------------------------------------|
| 5/20/2025 & 6/4/2025             | UST-1, UST-2 & UST-3       | Sims Metal                               | (2) 1,000-gal UST and (1) (1) 550-gal UST |
| 5/16/2025 & 6/3/2025             | Untreated/Oily Water       | Luzon Oil Co., Inc.                      | 4,400 Gallons                             |
| 6/4/2025                         | Tank Contents              | Luzon Oil Co., Inc.                      | (2) 55-Gallon Drums                       |
| 6/10/2025, 6/27/2025 & 6/30/2025 | Untreated Stormwater       | Clean Water of New York, Inc.            | 73,547 Gallons                            |
| 5/5/2025-6/17/2025               | Non-Hazardous Soil         | MCUA                                     | 6,023.71 Tons                             |
| 5/5/2025-7/29/2025               | Demolition Debris          | Earth Efficient MSM                      | 23 Truckloads                             |
| 5/5/2025-7/29/2025               | Non-Hazardous Soil         | Earth Efficient HGQ                      | 274 Truckloads                            |
| 7/8/2025-8/28/2025               | Treated Water              | Westchester County Sanitary Sewer System | 23,970.2 Gallons                          |
| 5/15/2025-7/29/2025              | Boulders                   | Thalle – Elmsford                        | 4 Truckloads                              |
| 6/3/2025                         | Concrete                   | Richmond Recycling                       | 20 CY                                     |
| 9/23/2025                        | Dewatering System Sediment | Richmond Recycling                       | 20 CY                                     |

#### **4.3.1 PETROLEUM TANKS**

A total of three (3) USTs were discovered and removed from the Site during the  
Page 24 of 36

excavation of contaminated soils. UST-1, UST-2, and UST-3 were discovered on May 13<sup>th</sup>, 28<sup>th</sup>, and 30<sup>th</sup>, 2025, respectively. Disposal documentation associated with the USTs are included in **Appendix G**. **Table 4.4** below summarizes the size and capacity of the tanks removed from the Site. **Figure 4.1** depicts the approximate locations of the USTs found.

**Table 4.4 – Petroleum Tank Summary**

| Tank                     | No. of Tanks | Location                 | Capacity (Gal.) | Status  |
|--------------------------|--------------|--------------------------|-----------------|---------|
| Heating/Fuel Oil (UST-1) | 1            | Southern portion of Site | 1,000           | Removed |
| Heating/Fuel Oil (UST-2) | 1            | Western portion of Site  | 550             | Removed |
| Heating/Fuel Oil (UST-3) | 1            | Northern portion of Site | 1,000           | Removed |

On May 16, 2025, Luzon Environmental Services (Luzon) removed UST-1 from the ground and staged the tank on site for future off-site disposal. Approximately 3,000 gallons of oily water contained within UST-1 and excessive untreated ponded stormwater within the remedial excavation on the northwestern portion of the Site was removed via vacuum truck and disposed of at the Luzon facility located at 1246 Glen Wild Road, Woodridge, New York. Following UST removal, post-removal soil samples were collected. SESI collected two (2) centerline soil samples (UST-1 and UST-2) along with QA/QC samples for analysis of Target Compound List (TCL) / CP-51 volatile organic compounds (VOCs) and TCL/CP-51 semi-volatile organic compounds (SVOCs) in accordance with DER-10 from beneath UST-1. Xylene was detected at a concentration above its NYSDEC Unrestricted Soil Cleanup Objective (USCO) in one of the post-removal soil samples (UST-2). On May 20, 2025, UST-2 was removed and disposed of as scrap metal at Sims Metal located at 820 Route 211, Middletown, New York.

On June 16, 2025, the xylene-impacted soil at soil sample UST-2 was subsequently removed resulting in an excavation measuring ten feet long by ten feet wide by two feet deep. One (1) post-excavation soil sample was collected from the base and each sidewall of the excavation. A total of five (5) post-excavation soil samples, along with QA/QC samples, were submitted for analysis

of VOCs. VOCs were not detected at concentrations exceeding NYSDEC USCOs in the post-excavation soil samples.

On June 3, 2025, Luzon removed UST-2 and UST-3 from the ground and staged the tanks on site for future off-site disposal. Approximately 1,400 gallons of oily water contained within the tanks was removed via vacuum truck. On June 4, 2025, Luzon cleaned the tanks, generating two (2) drums of oily debris. The drums, tanks, and oily water were disposed of at the Luzon facility located at 1246 Glen Wild Road, Woodridge, New York. On June 5, 2025, SESI collected two (2) centerline soil samples (UST2-B1 and UST2-B2) from beneath UST-2 and two (2) centerline soil samples (UST3-B1 and UST3-B2) from beneath UST-3 along with QA/QC samples for analysis of TCL/CP-51 VOCs and TCL/CP-51 SVOCs in accordance with DER-10. VOCs and SVOCs were not detected at concentrations exceeding NYSDEC USCOs in the post-excavation soil samples.

#### **4.3.2 CONTAMINATED SOIL**

The contaminated media removed from the Site included all excavated soil which contained VOCs and SVOCs above the unrestricted soil cleanup objectives. To remediate the contaminated soil, the installation of piles and lagging along the side walls was performed for structural stability of the excavation pit and to prevent impact to off-site structures.

For soil disposal and excavation organization purposes, the Site was subdivided in fourteen (14) grids. As part of the Remedial Investigation Report (RIR), waste characterization samples were collected at a frequency of one (1) composite per 750 cubic yards (CY) of soils based on site grid of 50-foot wide by 50-foot long and 7 foot deep. The waste characterization sample results were reported in the RIR. The results of the waste characterization were sent to several waste disposal facilities for pre-approval prior to shipping as indicated in **Table 4.3**.

The contaminated soil was removed from three (3) areas along the northern portion of the Site. The remediation areas are shown on **Figure 4.2**. Contaminated soil was removed to approximately 8.0 feet bgs (274 ft-asml) in the

northwestern corner of the Site, 13.0 feet bgs (274 ft-asml) in the central-northern portion of the Site, and 11.5 feet bgs (286 ft-asml) in the northeastern corner of the Site. In total, approximately 6,023.71 tons of contaminated soil were disposed of off-Site. Additionally, approximately 20 cubic yards of sediment from the dewatering system, 274 truckloads of clean soil, twenty-three (23) truckloads of demolition debris, 20 cubic yards of concrete, and four (4) truckloads of boulders were disposed of off-site in conjunction with development activities. Soil remediation including excavation and off-Site disposal was performed between April 28, 2025 and July 29, 2025. Contaminated soil was disposed of at two (2) facilities: Earth Efficient HQ located at 426 Route 46, Belvidere, New Jersey, and Middlesex County Utilities Authority Landfill (MCUA) located at 53 Edgeboro Road, East Brunswick, New Jersey. Clean soil was disposed of at Earth Efficient HQ located at 426 Route 46, Belvidere, New Jersey. Demolition debris was exported off site to Earth Efficient MSM located at 1080 Sand Hill Road, East Stroudsburg, PA. Concrete and sediment generated from the dewatering system were exported off site to Richmond Recycling located at 1900 South Avenue, Staten Island, NY. Boulders were exported off site to the Thalle Quarry located in Elmsford, NY. Soil disposal manifests and disposal facility approval letters are included in **Appendix G** and **Appendix J**, respectively.

#### **4.3.2.1 ON-SITE REUSE**

A request to reuse up to 4,000 cubic yards of on-Site clean soil generated from the southeastern portion of the site was submitted to NYSDEC on August 1, 2025, and approved on August 4, 2025. The approval was contingent upon the collection of six (6) additional waste characterization samples in the proposed donor area for analysis of VOCs and one (1) additional waste characterization samples in the proposed donor area for analysis of PFAS. SESI collected these samples on July 22, 2025, and included the analytical data in the reuse request to NYSDEC. VOCs and PFAS were not detected at concentrations exceeding USCOs in these samples. The reuse request and approval are included as **Appendix K**.

#### **4.3.3 CONTAMINATED WATER**

As described in Section 4.3.1, Luzon removed approximately 4,400 gallons of oily water contained within the USTs and excessive untreated ponded stormwater during the UST closures. The oily water was disposed of at the Luzon facility located at 1246 Glen Wild Road, Woodridge, New York. An additional 73,547 gallons of untreated ponded stormwater was disposed of at Clean Water of New York, Inc. located at 3249 Richmond Terrace, Staten Island, New York.

Approximately 2,397.8 gallons of treated stormwater were discharged to the storm sewer when facilitating effluent sample collection on June 18, 2025, however, discharge to the storm sewer was discontinued the same day.

Approximately 23,970.2 gallons of stormwater were removed, treated and discharged from the Site to the Westchester County sanitary sewer throughout the duration of the RA for dewatering purposes from July 8, 2025, to August 28, 2025. This dewatering effort was required while removing the contaminated soil since excessive stormwater was pooling with the remedial excavations. The stormwater was pumped into temporary storage frac-tanks, treated on Site via bag filters and discharged to the sanitary sewer.

The Volunteer applied for and obtained permits from the Westchester County Department of Environmental Facilities (DEF) in order to allow for this post-treatment discharge of stormwater into the sanitary sewer system. The groundwater remediation permit is provided in **Appendix F**. The system design details are provided in **Appendix L**. The treatment system effluent was sampled per the DEF requirement. The treatment system analytical data are included in **Appendix M**.

#### **4.4 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING**

Contaminated soil removed to approximately 8.0 feet bgs (274 ft-asml) in the northwestern corner of the Site, 13.0 feet bgs (274 ft-asml) in the central-northern portion of the Site, and 11.5 feet bgs (286 ft-asml) in the northeastern

corner of the Site was disposed off-site at appropriate facilities in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal. This excavation achieved a Track 1 cleanup for soils by removing all contaminated soil at the Site to the respective depths of the remediation areas identified in the RIR and RAWP. Confirmatory samples were collected approximately every 900 square feet at the base of the remediation areas. A total of eighteen (18) end point soil samples were collected, and all achieved the Track 1 USCOs. Additionally, on July 1, 2025, one (1) test soil sample was collected from the base of the remedial excavation for geotechnical considerations. Iron was detected at concentrations exceeding NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives in each of the post-excavation samples. Since iron wasn't considered a contaminant of concern during the RI and isn't in 6 NYCRR Table 375-6.8(a), NYSDEC indicated that there is no need to address it through further excavation via email dated July 14, 2025. The email is included in **Appendix N**. Soil sample locations are shown on **Figure 4.2**. Analytical summary tables of the end point samples compared to USCOs are included as **Table 4.5**.

Data Usability Summary Reports (DUSRs) were prepared for all data generated in this remedial performance evaluation program. These DUSRs are included in **Appendix O**, and associated raw is provided electronically in **Appendix P**.

#### **4.5 IMPORTED BACKFILL**

During Site redevelopment and excavation, imported material was needed to backfill excavations and various other construction related purposes. Importing protocols were followed as provided in the NYSDEC DER-10. Since all material imported to the Site was quarry stone, gabion/rip rap stone or pea gravel from Thalle Industries Inc. Fishkill Quarry (NYSDOT Source Number 8-54R), no chemical analytical testing was performed. The material was used for backfilling the deeper excavations, construction of the tracking pad and other miscellaneous backfilling and grading for Site development. A table of all sources of imported

backfill with quantities for each source is shown in **Table 4.6**. The approved Soil Reuse/Import form and approval emails are included in **Appendix Q**.

**Table 4.6 – Summary of Imported Materials**

| <b>Date</b>           | <b>Product</b>           | <b>Source</b>                          | <b>Quantity (tons)</b> |
|-----------------------|--------------------------|----------------------------------------|------------------------|
| 5/1/2025 – 6/18/2025  | 2"-4" Tracking Pad Stone | Thalle Industries Inc. Fishkill Quarry | 221.66                 |
| 5/19/2025 – 8/6/2025  | ¾" Stone                 | Thalle Industries Inc. Fishkill Quarry | 99.5                   |
| 8/11/2025 – 8/21/2025 | Select Granular Fill     | Thalle Industries Inc. Fishkill Quarry | 1,692.21               |

## **4.6 CONTAMINATION REMAINING AT THE SITE**

### **4.6.1 REMAINING SOIL CONTAMINATION**

There is no contaminated soil remaining on the Site since the Track 1 SCOs were achieved Site-wide. Groundwater will be monitored pursuant to the SMP required to determine if groundwater contamination below the AWQS is achieved or asymptotic levels are achieved.

### **4.6.2 REMAINING GROUNDWATER CONTAMINATION**

A total of seven (7) monitoring wells exist at the Site. The monitoring well locations are shown on **Figure 4.3**. Six (6) of the monitoring wells, RI-MW-01 through RI-MW-06, were installed during the RI. Monitoring wells RI-MW-01, RI-MW-02, RI-MW-03, and RI-MW-06 were destroyed during soil remediation and subsequently reinstalled in August 2025 for post remedial groundwater sampling. Additionally, one vertical delineation well, RI-MW-01D, was installed in August 2025 to delineate the vertical extents of the trimethylbenzene impacts in groundwater. Following installation, the wells were developed until the purge water was free of sediment.

**Table 4.7** summarizes the wells' identification numbers, as well as the purpose, location, depths, diameter and screened intervals of the wells. Monitoring well construction logs are presented in **Appendix R**.

**Table 4.7 – Monitoring Well Construction Details**

| Monitoring Well ID | Well Location | Coordinates (longitude/latitude) <sup>1</sup> | Well Diameter (inches) | Elevation (above mean sea level) <sup>1</sup> |         |            |               |
|--------------------|---------------|-----------------------------------------------|------------------------|-----------------------------------------------|---------|------------|---------------|
|                    |               |                                               |                        | Casing                                        | Surface | Screen Top | Screen Bottom |
| RI-MW-01           | Side Gradient | 850719/670382                                 | 2                      | 293                                           | 288     | 263        | 248           |
| RI-MW-1D           | Side Gradient | 850725/670567                                 | 2                      | 293                                           | 288     | 238        | 228           |
| RI-MW-02           | Upgradient    | 850730/670565                                 | 2                      | 293                                           | 288     | 263        | 248           |
| RI-MW-03           | Central       | 850701/670480                                 | 2                      | 294                                           | 290     | 265        | 250           |
| RI-MW-04           | Downgradient  | 850662/670380                                 | 2                      | 293                                           | 290     | 265        | 250           |
| RI-MW-05           | Side Gradient | 850661/670571                                 | 2                      | 294                                           | 290     | 260        | 245           |
| RI-MW-06           | Upgradient    | 850703/670563                                 | 2                      | 293                                           | 288     | 263        | 248           |

On August 27, 2025, wells RI-MW-01, RI-MW-01D, RI-MW-02, RI-MW-03, and RI-MW-06 were sampled via low-flow sampling techniques. Approximately three (3) well volumes were purged, and the purge water was piped to a “flow cell,” where groundwater parameters including pH, redox potential, specific conductance, dissolved oxygen, salinity and turbidity were measured at five (5) minute intervals. Groundwater samples were collected once these parameters stabilized for three consecutive readings unless poor recharge prevented the stabilization of the parameters prior to sampling. All samples were submitted to a NYSDOH ELAP certified laboratory. The groundwater samples collected from RI-MW-01, RI-MW-

---

<sup>1</sup> Horizontal coordinates and vertical elevations of the monitoring wells are estimated and will be updated once building construction is complete.

02, RI-MW-03, and RI-MW-06 were analyzed for VOCs by USEPA Method 8260 and SVOCs by USEPA Method 8270. The groundwater sample collected from RI-MW-01D was analyzed for petroleum hydrocarbon VOCs by USEPA Method 8260.

As shown on **Figure 4.3**, select polycyclic aromatic hydrocarbons (PAHs) and/or chloroform were detected at concentrations exceeding the AWQS in the groundwater samples collected from RI-MW-01, RI-MW-02, RI-MW-03, and RI-MW-06. PHC VOCs were not detected at concentrations exceeding the AWQS in the groundwater sample collected from RI-MW-01D. A summary of the post-groundwater remediation sampling exceedances are presented on **Table 4.8** below.

**Table 4.8 – Summary of Baseline Groundwater Sampling Exceedances**

| Client Sample ID:                 | NYSDEC AWQS | RI-MW-01     | RI-MW-02     | RI-MW-03     | RI-MW-06     |
|-----------------------------------|-------------|--------------|--------------|--------------|--------------|
| Lab Sample ID:                    |             | JE18042-1    | JE18042-3    | JE18042-4    | JE18042-5    |
| Date Sampled:                     |             | 8/27/2025    | 8/27/2025    | 8/27/2025    | 8/27/2025    |
| Matrix:                           |             | Ground Water | Ground Water | Ground Water | Ground Water |
| Analyte                           | Unit        |              |              |              |              |
| (MS Semi-volatiles (SW846 8270E)) |             |              |              |              |              |
| Acenaphthene                      | ug/l        | 20           | 20.7         | ND (1.0)     | ND (1.0)     |
| Benz(a)anthracene                 | ug/l        | 0.002        | 16.6         | ND (1.0)     | 2.2          |
| Benz(a)pyrene                     | ug/l        | ND           | 13.3         | ND (1.0)     | 3.3          |
| Benz(b)fluoranthene               | ug/l        | 0.002        | 9.1          | ND (1.0)     | 2.6          |
| Benz(g,h,i)perylene               | ug/l        | 0.002        | 8.6          | ND (1.0)     | 2.1          |
| Benz(k)fluoranthene               | ug/l        | 0.002        | 3.6          | ND (1.0)     | 0.83 J       |
| Chrysene                          | ug/l        | 0.002        | 13.2         | ND (1.0)     | 2.1          |
| Dibenz(a,h)anthracene             | ug/l        | 0.002        | 1.6          | ND (1.0)     | ND (1.0)     |
| Indeno(1,2,3-cd)pyrene            | ug/l        | 0.002        | 5.3          | ND (1.0)     | 1.2          |
| (MS Volatiles (SW846 8260D))      |             |              |              |              |              |
| Chloroform                        | ug/l        | 7            | 5.8          | 18.9         | 9.4          |
|                                   |             |              |              |              | 14           |

Notes:

ug/L – micrograms per liter

ND – Not detected

Exceedance of the AWQS

A summary of the sampling data compared to the AWQS is provided as **Table 4.9** (back end of report). The analytical data is provided in **Appendix P**. The monitoring well sampling logs are presented in **Appendix S**. The data had been validated and the DUSRs are provided in **Appendix O**.

Since contaminated groundwater remains beneath the site after completion of the Remedial Action, Institutional and Engineering Controls are

required to protect human health and the environment. These Engineering and Institutional Controls (ECs/ICs) are described in the following sections. Post Certificate of Completion management of these EC/ICs and residual contamination will be performed under the Site Management Plan (SMP) approved by the NYSDEC.

## **4.8 ENGINEERING CONTROLS**

### **4.8.1 SUB-SLAB DEPRESSURIZATION SYSTEM**

A vapor barrier and sub-slab ventilation piping have been installed underneath the northwestern portion of the building to address potential soil vapor contamination. Additionally, a vapor barrier and sub-slab ventilation piping will be installed in the northeastern portion of the building at a future date during building construction. The Vapor Intrusion Plan As-Built Up To Date December 5, 2025 for the currently installed system in the northwestern portion of the building is included in **Appendix U**. The originally proposed Vapor Intrusion Plan and Details for the entire vapor intrusion system, including the portion of the system to be installed in the northeastern portion of the building at a future date, are also included in **Appendix U**. In the event that the results of the soil VI evaluation require piping to be converted into an active SSDS to mitigate the potential for soil vapor intrusion, a supplemental SSDS design work plan will be submitted. The soil vapor barrier under the slab will serve as the required sealing layer for the SSDS, which is underlain by four (4)-inch perforated vent pipe placed in a six (6)-inch layer of 3/4-inch crushed stone. The vent pipes are horizontally manifolded to PVC piping and a vent riser that extends to the second floor. Vapor Pins<sup>TM</sup> will be installed through the concrete slab for sub-slab vapor sampling.

If activation of an SSDS is required based on the results of the SVI evaluation, it will be maintained pursuant to the SMP and not be discontinued unless prior written approval is granted by the NYSDEC and the NYSDOH project managers. If monitoring data indicates that the SSDS may no longer be required, a proposal to discontinue the SSDS will be submitted by the remedial party to the NYSDEC and NYSDOH project managers.

Procedures for monitoring, operating and maintaining the SSDS are provided in the Operation and Maintenance Plan in Section 4 of the Site Management Plan (SMP). The Monitoring Plan also addresses inspection

procedures that must occur after any severe weather condition has taken place that may affect on-site ECs.

#### **4.8.2 GROUNDWATER MONITORING**

Groundwater monitoring activities to assess the effectiveness of the remedial action will continue under the SMP, as determined by the NYSDEC project manager in consultation with NYSDOH project manager, until residual groundwater concentrations are found to be consistently below AWQS or the site SCGs, or have become asymptotic at an acceptable level over an extended period. If monitoring data indicates that monitoring may no longer be required, a proposal to discontinue the remedy will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC project manager. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional injections, source removal, treatment and/or control measures will be evaluated.

#### **4.8.3 CRITERIA FOR COMPLETION OF REMEDIATION**

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10. Unless waived by the NYSDEC, confirmation samples of applicable environmental media are required before terminating any remedial actions at the Site. Confirmation samples require Category B deliverables and a Data Usability Summary Report.

As discussed below, the NYSDEC may approve termination of a groundwater monitoring program. When a remedial party receives this approval, the remedial party will decommission all Site-related monitoring, injection and recovery wells as per the NYSDEC CP-43 policy.

### **4.9 INSTITUTIONAL CONTROLS**

The Conditional Track 1 site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to residential uses only.

The environmental easement for the site was executed by the Department on October 23, 2025, and filed with the Westchester County Clerk on November 7, 2025. The County Recording Identifier number for this filing is 652323409. A copy of the easement and proof of filing is provided in **Appendix B**.

#### **4.10 DEVIATIONS FROM THE REMEDIAL ACTION WORK PLAN**

Deviations from the RAWP approved by NYSDEC in October 2024 included below and included in **Appendix N**. The RAWP approval is included in **Appendix C**.

- Iron was detected at concentrations exceeding NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives in each of the post-excavation samples. Since iron is naturally occurring and was not considered a contaminant of concern during the RI and there are no standards for iron in 6 NYCRR Table 375-6.8(a), NYSDEC indicated that there is no need to address it through further excavation via an email dated July 14, 2025.
- The initial RAWP was submitted to address groundwater remediation through soil excavation and application of oxygen releasing compound (ORC) powder to the open excavation, however, groundwater was not encountered during remedial excavation activities. SESI submitted the September 5, 2025 RAWP – Addendum (Groundwater) for approval to remediate groundwater at the Site through the application of ORC directly via the existing monitoring wells. Ultimately, Groundwater treatment via application of ORC was not performed due to the absence of petroleum-related VOC and SVOC impacts in groundwater during the baseline groundwater sampling event. NYSDEC approved the RAWP Addendum –

Groundwater and the approach to eliminate groundwater treatment was documented in a letter dated September 15, 2025.

---

## Tables

---

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                             |       | RSCO   | RRSCO  | USCO  | UST-1       | UST-2       | UST-2 DUP   | UST-2 DUP (RE RUN) |
|-----------------------------------------------|-------|--------|--------|-------|-------------|-------------|-------------|--------------------|
| Lab Sample ID:                                |       |        |        |       | L2530852-01 | L2530852-02 | L2530852-03 | L2530852-03        |
| Sample Depth (ft bgs):                        |       |        |        |       | 6.0-6.5     | 6.0-6.5     | 6.0-6.5     | 6.0-6.5            |
| Date Sampled:                                 |       |        |        |       | 5/16/2025   | 5/16/2025   | 5/16/2025   | 5/16/2025          |
| Matrix:                                       |       |        |        |       | SOIL        | SOIL        | SOIL        | SOIL               |
| Analyte                                       | Unit  |        |        |       |             |             |             |                    |
| <b>Volatile Organic Compounds (VOCs)</b>      |       |        |        |       |             |             |             |                    |
| 1,1,1,2-Tetrachloroethane                     | ug/kg |        |        |       | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| 1,1,1-Trichloroethane                         | ug/kg | 100000 | 100000 | 680   | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| 1,1,2,2-Tetrachloroethane                     | ug/kg |        |        |       | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| 1,1,2-Trichloroethane                         | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,1-Dichloroethane                            | ug/kg | 19000  | 26000  | 270   | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,1-Dichloroethene                            | ug/kg | 100000 | 100000 | 330   | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,1-Dichloropropene                           | ug/kg |        |        |       | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| 1,2,3-Trichlorobenzene                        | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 1,2,3-Trichloropropane                        | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| ,2,4,5-Tetramethylbenzen                      | ug/kg |        |        |       | 0.46J       | 23          | 400E        | 610                |
| 1,2,4-Trichlorobenzene                        | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 1,2,4-Trimethylbenzene                        | ug/kg | 47000  | 52000  | 3600  | 6.4         | 110         | 1000E       | 1900               |
| 2-Dibromo-3-chloropropan                      | ug/kg |        |        |       | ND (3.3)    | ND (2.9)    | ND (2.8)    | ND (160)           |
| 1,2-Dibromoethane                             | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,2-Dichlorobenzene                           | ug/kg | 100000 | 100000 | 1100  | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 1,2-Dichloroethane                            | ug/kg | 2300   | 3100   | 20    | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,2-Dichloroethene, Total                     | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,2-Dichloropropene                           | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| 1,3,5-Trimethylbenzene                        | ug/kg | 47000  | 52000  | 8400  | 1.5J        | 32          | 650E        | 560                |
| 1,3-Dichlorobenzene                           | ug/kg | 17000  | 49000  | 2400  | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 1,3-Dichloropropene                           | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 1,3-Dichloropropene, Total                    | ug/kg |        |        |       | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| 1,4-Dichlorobenzene                           | ug/kg | 9800   | 13000  | 1800  | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 1,4-Dioxane                                   | ug/kg | 9800   | 13000  | 100   | ND (89)     | ND (78)     | ND (75)     | ND (4400)          |
| 2,2-Dichloropropane                           | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| 2-Butanone                                    | ug/kg | 100000 | 100000 | 120   | 5.5J        | 3J          | ND (9.4)    | ND (550)           |
| 2-Hexanone                                    | ug/kg |        |        |       | ND (11)     | ND (9.8)    | ND (9.4)    | ND (550)           |
| 4-Methyl-2-pentanone                          | ug/kg |        |        |       | ND (11)     | ND (9.8)    | ND (9.4)    | ND (550)           |
| Acetone                                       | ug/kg | 100000 | 100000 | 50    | 14          | 12          | 11          | ND (550)           |
| Acrylonitrile                                 | ug/kg |        |        |       | ND (4.4)    | ND (3.9)    | ND (3.8)    | ND (220)           |
| Benzene                                       | ug/kg | 2900   | 4800   | 60    | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| Bromobenzene                                  | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| Bromochloromethane                            | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| Bromodichloromethane                          | ug/kg |        |        |       | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| Bromoform                                     | ug/kg |        |        |       | ND (4.4)    | ND (3.9)    | ND (3.8)    | ND (220)           |
| Bromomethane                                  | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | 35J                |
| Carbon disulfide                              | ug/kg |        |        |       | ND (11)     | ND (9.8)    | ND (9.4)    | ND (550)           |
| Carbon tetrachloride                          | ug/kg | 1400   | 2400   | 760   | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| Chlorobenzene                                 | ug/kg | 100000 | 100000 | 1100  | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| Chloroethane                                  | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| Chloroform                                    | ug/kg | 10000  | 49000  | 370   | ND (1.7)    | ND (1.5)    | ND (1.4)    | ND (82)            |
| Chloromethane                                 | ug/kg |        |        |       | ND (4.4)    | ND (3.9)    | ND (3.8)    | ND (220)           |
| cis-1,2-Dichloroethene                        | ug/kg | 59000  | 100000 | 250   | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| cis-1,3-Dichloropropene                       | ug/kg |        |        |       | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| Dibromochloromethane                          | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| Dibromomethane                                | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| Dichlorodifluoromethane                       | ug/kg |        |        |       | ND (11)     | ND (9.8)    | ND (9.4)    | ND (550)           |
| Ethyl ether                                   | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| Ethylbenzene                                  | ug/kg | 30000  | 41000  | 1000  | 0.41J       | 2.4         | 60          | 31J                |
| Hexachlorobutadiene                           | ug/kg |        |        |       | ND (4.4)    | ND (3.9)    | ND (3.8)    | ND (220)           |
| Isopropylbenzene                              | ug/kg |        |        |       | 0.15J       | 2.6         | 68          | 43J                |
| Methyl tert butyl ether                       | ug/kg | 62000  | 100000 | 930   | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| Methylene chloride                            | ug/kg | 51000  | 100000 | 50    | ND (5.6)    | ND (4.9)    | ND (4.7)    | ND (270)           |
| n-Butylbenzene                                | ug/kg | 100000 | 100000 | 12000 | ND (1.1)    | 11          | 260         | 270                |
| n-Propylbenzene                               | ug/kg | 100000 | 100000 | 3900  | ND (1.1)    | 5           | 140         | 100                |
| Naphthalene                                   | ug/kg | 100000 | 100000 | 12000 | ND (4.4)    | 8.4         | 110         | 260                |
| o-Chlorotoluene                               | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| o-Xylene                                      | ug/kg |        |        |       | 2.2         | 8.8         | 45          | 28J                |
| p-Chlorotoluene                               | ug/kg |        |        |       | ND (2.2)    | ND (2)      | ND (1.9)    | ND (110)           |
| p-Diethylbenzene                              | ug/kg |        |        |       | 1.2J        | 59          | 1100E       | 1500               |
| p-Ethyltoluene                                | ug/kg |        |        |       | 3.6         | 60          | 930E        | 1000               |
| p-Isopropyltoluene                            | ug/kg |        |        |       | ND (1.1)    | 5.1         | 100         | 110                |
| p/m-Xylene                                    | ug/kg |        |        |       | 8.8         | 42          | 660E        | 310                |
| sec-Butylbenzene                              | ug/kg | 100000 | 100000 | 11000 | ND (1.1)    | 7.1         | 180         | 150                |
| Styrene                                       | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | 0.19J       | ND (55)            |
| tert-Butylbenzene                             | ug/kg | 100000 | 100000 | 5900  | ND (2.2)    | ND (2)      | 4.6         | ND (110)           |
| Tetrachloroethene                             | ug/kg | 5500   | 19000  | 1300  | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| Toluene                                       | ug/kg | 100000 | 100000 | 700   | ND (1.1)    | ND (0.98)   | 0.84J       | ND (55)            |
| trans-1,2-Dichloroethene                      | ug/kg | 100000 | 100000 | 190   | ND (1.7)    | ND (1.5)    | ND (1.4)    | ND (82)            |
| trans-1,3-Dichloropropene                     | ug/kg |        |        |       | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| trans-1,4-Dichloro-2-butene                   | ug/kg |        |        |       | ND (5.6)    | ND (4.9)    | ND (4.7)    | ND (270)           |
| Trichloroethene                               | ug/kg | 10000  | 21000  | 470   | ND (0.56)   | ND (0.49)   | ND (0.47)   | ND (27)            |
| Trichlorofluoromethane                        | ug/kg |        |        |       | ND (4.4)    | ND (3.9)    | ND (3.8)    | ND (220)           |
| Vinyl acetate                                 | ug/kg |        |        |       | ND (11)     | ND (9.8)    | ND (9.4)    | ND (550)           |
| Vinyl chloride                                | ug/kg | 210    | 900    | 20    | ND (1.1)    | ND (0.98)   | ND (0.94)   | ND (55)            |
| Xylenes, Total                                | ug/kg | 100000 | 100000 | 260   | 11          | 51          | 360J        | 340J               |
| <b>Semivolatile Organic Compounds (SVOCs)</b> |       |        |        |       |             |             |             |                    |
| ,2,4,5-Tetrachlorobenzen                      | ug/kg |        |        |       | ND (190)    | ND (190)    | ND (190)    |                    |
| 1,2,4-Trichlorobenzene                        | ug/kg |        |        |       | ND (190)    | ND (190)    | ND (190)    |                    |
| 1,2-Dichlorobenzene                           | ug/kg | 100000 | 100000 | 1100  | ND (190)    | ND (190)    | ND (190)    |                    |
| 1,3-Dichlorobenzene                           | ug/kg | 17000  | 49000  | 2400  | ND (190)    | ND (190)    | ND (190)    |                    |
| 1,4-Dichlorobenzene                           | ug/kg | 9800   | 13000  | 1800  | ND (190)    | ND (190)    | ND (190)    |                    |
| 1,4-Dioxane                                   | ug/kg |        |        |       |             |             |             |                    |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:           |       | RSCO   | RRSCO  | USCO   | UST-1       | UST-2       | UST-2 DUP   | UST-2 DUP (RE RUN) |
|-----------------------------|-------|--------|--------|--------|-------------|-------------|-------------|--------------------|
| Lab Sample ID:              |       |        |        |        | L2530852-01 | L2530852-02 | L2530852-03 | L2530852-03        |
| Sample Depth (ft bgs):      |       |        |        |        | 6.0-6.5     | 6.0-6.5     | 6.0-6.5     | 6.0-6.5            |
| Date Sampled:               |       |        |        |        | 5/16/2025   | 5/16/2025   | 5/16/2025   | 5/16/2025          |
| Matrix:                     |       |        |        |        | SOIL        | SOIL        | SOIL        | SOIL               |
| Analyte                     | Unit  |        |        |        |             |             |             |                    |
| 4-Chloroaniline             | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| -Chlorophenyl phenyl ether  | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| 4-Nitroaniline              | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| 4-Nitrophenol               | ug/kg |        |        |        | ND (260)    | ND (260)    | ND (260)    |                    |
| Acenaphthene                | ug/kg | 100000 | 100000 | 20000  | ND (150)    | ND (150)    | ND (150)    |                    |
| Acenaphthylene              | ug/kg | 100000 | 100000 | 100000 | ND (150)    | ND (150)    | ND (150)    |                    |
| Acetophenone                | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Anthracene                  | ug/kg | 100000 | 100000 | 100000 | ND (110)    | ND (110)    | ND (110)    |                    |
| Benzo(a)anthracene          | ug/kg | 1000   | 1000   | 1000   | ND (110)    | ND (110)    | ND (110)    |                    |
| Benzo(a)pyrene              | ug/kg | 1000   | 1000   | 1000   | ND (150)    | ND (150)    | ND (150)    |                    |
| Benzo(b)fluoranthene        | ug/kg | 1000   | 1000   | 1000   | ND (110)    | ND (110)    | ND (110)    |                    |
| Benzo(ghi)perylene          | ug/kg | 100000 | 100000 | 100000 | 30J         | ND (150)    | 220         |                    |
| Benzo(k)fluoranthene        | ug/kg | 1000   | 3900   | 800    | ND (110)    | ND (110)    | ND (110)    |                    |
| Benzoic Acid                | ug/kg |        |        |        | ND (610)    | ND (610)    | ND (610)    |                    |
| Benzyl Alcohol              | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Biphenyl                    | ug/kg |        |        |        | ND (430)    | ND (430)    | ND (430)    |                    |
| Bis(2-chloroethoxy)methane  | ug/kg |        |        |        | ND (200)    | ND (200)    | ND (200)    |                    |
| Bis(2-chloroethyl)ether     | ug/kg |        |        |        | ND (170)    | ND (170)    | ND (170)    |                    |
| Bis(2-chloroisopropyl)ether | ug/kg |        |        |        | ND (230)    | ND (230)    | ND (230)    |                    |
| Bis(2-ethylhexyl)phthalate  | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Butyl benzyl phthalate      | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Carbazole                   | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Chrysene                    | ug/kg | 1000   | 3900   | 1000   | ND (110)    | ND (110)    | ND (110)    |                    |
| Di-n-butylphthalate         | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Di-n-octylphthalate         | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Dibenzo(a,h)anthracene      | ug/kg | 330    | 330    | 330    | ND (110)    | ND (110)    | 120         |                    |
| Dibenzofuran                | ug/kg | 14000  | 59000  | 7000   | ND (190)    | ND (190)    | ND (190)    |                    |
| Diethyl phthalate           | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Dimethyl phthalate          | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Fluoranthene                | ug/kg | 100000 | 100000 | 100000 | ND (110)    | ND (110)    | ND (110)    |                    |
| Fluorene                    | ug/kg | 100000 | 100000 | 30000  | ND (190)    | ND (190)    | ND (190)    |                    |
| Hexachlorobenzene           | ug/kg | 330    | 1200   | 330    | ND (110)    | ND (110)    | ND (110)    |                    |
| Hexachlorobutadiene         | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Hexachlorocyclopentadien    | ug/kg |        |        |        | ND (540)    | ND (540)    | ND (540)    |                    |
| Hexachloroethane            | ug/kg |        |        |        | ND (150)    | ND (150)    | ND (150)    |                    |
| Indeno(1,2,3-cd)pyrene      | ug/kg | 500    | 500    | 500    | ND (150)    | ND (150)    | 150         |                    |
| Isophorone                  | ug/kg |        |        |        | ND (170)    | ND (170)    | ND (170)    |                    |
| n-Nitrosodi-n-propylamine   | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Naphthalene                 | ug/kg | 100000 | 100000 | 12000  | ND (190)    | ND (190)    | ND (190)    |                    |
| NDPA/DPA                    | ug/kg |        |        |        | ND (150)    | ND (150)    | ND (150)    |                    |
| Nitrobenzene                | ug/kg |        |        |        | ND (170)    | ND (170)    | ND (170)    |                    |
| p-Chloro-m-cresol           | ug/kg |        |        |        | ND (190)    | ND (190)    | ND (190)    |                    |
| Pentachlorophenol           | ug/kg | 2400   | 6700   | 800    | ND (150)    | ND (150)    | ND (150)    |                    |
| Phenanthrene                | ug/kg | 100000 | 100000 | 100000 | ND (110)    | ND (110)    | ND (110)    |                    |
| Phenol                      | ug/kg | 100000 | 100000 | 330    | ND (190)    | ND (190)    | ND (190)    |                    |
| Pyrene                      | ug/kg | 100000 | 100000 | 100000 | ND (110)    | ND (110)    | ND (110)    |                    |
| General Chemistry           |       |        |        |        |             |             |             |                    |
| Total Solids                | %     |        |        |        | 87.6        | 87.3        | 87.1        |                    |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                 |       | RSCO   | RRSCO  | USCO | UST2-B1   | UST2-B2   | UST3-B1   | UST3-B2   | UST3-B1 DUP            | UST-1-PX               | UST-1-PX DUP          | UST-1-PXN             | UST-1-PXE             |  |
|-----------------------------------|-------|--------|--------|------|-----------|-----------|-----------|-----------|------------------------|------------------------|-----------------------|-----------------------|-----------------------|--|
| Lab Sample ID:                    |       |        |        |      | JE12619-1 | JE12619-2 | JE12619-3 | JE12619-4 | JE12619-5              | JE13362-1              | JE13362-2             | JE13362-3             | JE13362-4             |  |
| Sample Depth (ft bgs):            |       |        |        |      | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5                | 8.0-8.5                | 8.0-8.5               | 7.5-8.0               | 7.5-8.0               |  |
| Date Sampled:                     |       |        |        |      | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025               | 6/16/2025              | 6/16/2025             | 6/16/2025             | 6/16/2025             |  |
| Matrix:                           |       |        |        |      | Soil      | Soil      | Soil      | Soil      | Soil                   | Soil                   | Soil                  | Soil                  | Soil                  |  |
| Analyte                           | Unit  |        |        |      |           |           |           |           |                        |                        |                       |                       |                       |  |
| Volatile Organic Compounds (VOCs) |       |        |        |      |           |           |           |           |                        |                        |                       |                       |                       |  |
| 1,1,1-Trichloroethane             | ug/kg | 100000 | 100000 | 680  | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| 1,1,2,2-Tetrachloroethane         | ug/kg | 35000  |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| 1,1,2-Trichloroethane             | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| 1,1-Dichloroethane                | ug/kg | 19000  | 26000  | 270  | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 1,1-Dichloroethene                | ug/kg | 100000 | 100000 | 330  | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 1,2,3-Trichlorobenzene            | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| 1,2,4-Trichlorobenzene            | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| 2-Dibromo-3-chloropropano         | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| 1,2-Dibromoethane                 | ug/kg |        |        |      | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 1,2-Dichlorobenzene               | ug/kg | 100000 | 100000 | 1100 | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 1,2-Dichloroethane                | ug/kg | 2300   | 3100   | 20   | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 1,2-Dichloropropane               | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| 1,3-Dichlorobenzene               | ug/kg | 17000  | 49000  | 2400 | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 1,4-Dichlorobenzene               | ug/kg | 9800   | 13000  | 1800 | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| 2-Butanone (MEK)                  | ug/kg | 100000 | 100000 | 120  | ND (9.9)  | ND (10)   | ND (12)   | ND (10)   | ND (9.4)               | ND (9.5)               | ND (10)               | ND (9.7)              | ND (8.4)              |  |
| 2-Hexanone                        | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| Methyl-2-pentanone(MIB)           | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| Acetone                           | ug/kg | 100000 | 100000 | 50   | 8.5 J     | ND (10)   | 8.6 J     | ND (10)   | 5.7 J                  | ND (9.5)               | ND (10)               | ND (9.7)              | ND (8.4)              |  |
| Benzene                           | ug/kg | 2900   | 4800   | 60   | ND (0.49) | ND (0.51) | ND (0.58) | ND (0.51) | ND (0.47)              | ND (0.48)              | ND (0.50)             | ND (0.49)             | ND (0.42)             |  |
| Bromochloromethane                | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| Bromodichloromethane              | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Bromoform                         | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| Bromomethane                      | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| Carbon disulfide                  | ug/kg | 100000 |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Carbon tetrachloride              | ug/kg | 1400   | 2400   | 760  | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Chlorobenzene                     | ug/kg | 100000 | 100000 | 1100 | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Chloroethane                      | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8) <sup>d</sup>  | ND (5.0) <sup>d</sup> | ND (4.9) <sup>d</sup> | ND (4.2) <sup>d</sup> |  |
| Chloroform                        | ug/kg | 10000  | 49000  | 370  | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9) <sup>d</sup>  | ND (2.0) <sup>d</sup> | ND (1.9) <sup>d</sup> | ND (1.7) <sup>d</sup> |  |
| Chloromethane                     | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8) <sup>b</sup>  | ND (5.0) <sup>b</sup> | ND (4.9) <sup>b</sup> | ND (4.2) <sup>b</sup> |  |
| cis-1,2-Dichloroethene            | ug/kg | 59000  | 100000 | 250  | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| cis-1,3-Dichloropropene           | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Cyclohexane                       | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Dibromochloromethane              | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Dichlorodifluoromethane           | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8) <sup>d</sup>  | ND (5.0) <sup>d</sup> | ND (4.9) <sup>d</sup> | ND (4.2) <sup>d</sup> |  |
| Ethylbenzene                      | ug/kg | 30000  | 41000  | 1000 | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| Freon 113                         | ug/kg | 100000 |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8)               | ND (5.0)              | ND (4.9)              | ND (4.2)              |  |
| Isopropylbenzene                  | ug/kg | 100000 |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| m,p-Xylene                        | ug/kg | 100000 | 100000 | 260  | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| Methyl Acetate                    | ug/kg |        |        |      | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8) <sup>d</sup>  | ND (5.0) <sup>d</sup> | ND (4.9) <sup>d</sup> | ND (4.2) <sup>d</sup> |  |
| Methyl Tert Butyl Ether           | ug/kg | 62000  | 100000 | 930  | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94)              | ND (0.95)              | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| Methylcyclohexane                 | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Methylene chloride                | ug/kg | 51000  | 100000 | 50   | ND (4.9)  | ND (5.1)  | ND (5.8)  | ND (5.1)  | ND (4.7)               | ND (4.8) <sup>d</sup>  | ND (5.0) <sup>d</sup> | ND (4.9) <sup>d</sup> | ND (4.2) <sup>d</sup> |  |
| o-Xylene                          | ug/kg | 100000 | 100000 | 260  | ND (0.99) | ND (1.0)  | ND (1.2)  | ND (1.0)  | ND (0.94) <sup>f</sup> | ND (0.94) <sup>f</sup> | ND (1.0)              | ND (0.97)             | ND (0.84)             |  |
| Styrene                           | ug/kg |        |        |      | ND (2.0)  | ND (2.0)  | ND (2.3)  | ND (2.1)  | ND (1.9)               | ND (1.9)               | ND (2.0)              | ND (1.9)              | ND (1.7)              |  |
| Tetrachloroethene                 | ug/kg | 5500   | 19000  | 1300 | ND (2.0)  |           |           |           |                        |                        |                       |                       |                       |  |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                      |       | RSCO   | RRSCO  | USCO   | UST2-B1               | UST2-B2               | UST3-B1               | UST3-B2                   | UST3-B1 DUP           | UST-1-PX              | UST-1-PX DUP | UST-1-PXN | UST-1-PXE |  |
|----------------------------------------|-------|--------|--------|--------|-----------------------|-----------------------|-----------------------|---------------------------|-----------------------|-----------------------|--------------|-----------|-----------|--|
| Lab Sample ID:                         |       |        |        |        | JE12619-1             | JE12619-2             | JE12619-3             | JE12619-4                 | JE12619-5             | JE13362-1             | JE13362-2    | JE13362-3 | JE13362-4 |  |
| Sample Depth (ft bgs):                 |       |        |        |        | 6.0-6.5               | 6.0-6.5               | 6.0-6.5               | 6.0-6.5                   | 6.0-6.5               | 8.0-8.5               | 8.0-8.5      | 7.5-8.0   | 7.5-8.0   |  |
| Date Sampled:                          |       |        |        |        | 6/5/2025              | 6/5/2025              | 6/5/2025              | 6/5/2025                  | 6/5/2025              | 6/16/2025             | 6/16/2025    | 6/16/2025 | 6/16/2025 |  |
| Matrix:                                |       |        |        |        | Soil                  | Soil                  | Soil                  | Soil                      | Soil                  | Soil                  | Soil         | Soil      | Soil      |  |
| Analyte                                | Unit  |        |        |        |                       |                       |                       |                           |                       |                       |              |           |           |  |
| Semivolatile Organic Compounds (SVOCs) |       |        |        |        |                       |                       |                       |                           |                       |                       |              |           |           |  |
| 2-Chlorophenol                         | ug/kg | 100000 |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 4-Chloro-3-methyl phenol               | ug/kg |        |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              |                       |              |           |           |  |
| 2,4-Dichlorophenol                     | ug/kg | 100000 |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              |                       |              |           |           |  |
| 2,4-Dimethylphenol                     | ug/kg |        |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              | ND (190) <sup>b</sup> |              |           |           |  |
| 2,4-Dinitrophenol                      | ug/kg | 100000 |        |        | ND (190) <sup>b</sup> | ND (200) <sup>b</sup> | ND (190) <sup>b</sup> | ND (190) <sup>b</sup>     | ND (190) <sup>b</sup> | ND (190) <sup>b</sup> |              |           |           |  |
| 4,6-Dinitro-o-cresol                   | ug/kg |        |        |        | ND (190) <sup>b</sup> | ND (200) <sup>b</sup> | ND (190) <sup>b</sup> | ND (190) <sup>b</sup>     | ND (190) <sup>b</sup> | ND (190) <sup>b</sup> |              |           |           |  |
| 2-Methylphenol                         | ug/kg | 100000 | 100000 | 330    | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 3&4-Methylphenol                       | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 2-Nitrophenol                          | ug/kg |        |        |        | ND (190) <sup>b</sup> | ND (200) <sup>b</sup> | ND (190) <sup>b</sup> | ND (190) <sup>b</sup>     | ND (190) <sup>b</sup> | ND (190) <sup>b</sup> |              |           |           |  |
| 4-Nitrophenol                          | ug/kg |        |        |        | ND (380)              | ND (400)              | ND (380)              | ND (380)                  | ND (380)              | ND (380) <sup>a</sup> |              |           |           |  |
| Pentachlorophenol                      | ug/kg | 2400   | 6700   | 800    | ND (150)              | ND (160)              | ND (150)              | ND (150)                  | ND (150)              | ND (150)              |              |           |           |  |
| Phenol                                 | ug/kg | 100000 | 100000 | 330    | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 2,3,4,6-Tetrachlorophenol              | ug/kg |        |        |        | ND (190) <sup>b</sup> | ND (200) <sup>b</sup> | ND (190) <sup>b</sup> | ND (190) <sup>b</sup>     | ND (190) <sup>b</sup> | ND (190) <sup>b</sup> |              |           |           |  |
| 2,4,5-Trichlorophenol                  | ug/kg | 100000 |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              | ND (190)              |              |           |           |  |
| 2,4,6-Trichlorophenol                  | ug/kg |        |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              | ND (190) <sup>b</sup> |              |           |           |  |
| Acenaphthene                           | ug/kg | 100000 | 100000 | 20000  | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Acenaphthylene                         | ug/kg | 100000 | 100000 | 100000 | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Acetophenone                           | ug/kg |        |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              | ND (190)              |              |           |           |  |
| Anthracene                             | ug/kg | 100000 | 100000 | 100000 | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Atrazine                               | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76) <sup>b</sup>  |                       |              |           |           |  |
| Benzo(a)anthracene                     | ug/kg | 1000   | 1000   | 1000   | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Benzo(a)pyrene                         | ug/kg | 1000   | 1000   | 1000   | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Benzo(b)fluoranthene                   | ug/kg | 1000   | 1000   | 1000   | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Benzo(g,h,i)perylene                   | ug/kg | 100000 | 100000 | 100000 | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Benzo(k)fluoranthene                   | ug/kg | 1000   | 3900   | 800    | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| -Bromophenyl phenyl ether              | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Butyl benzyl phthalate                 | ug/kg | 100000 |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76) <sup>b</sup>  |                       |              |           |           |  |
| 1,1'-Biphenyl                          | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Benzaldehyde                           | ug/kg |        |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              | ND (190)              |              |           |           |  |
| 2-Chloronaphthalene                    | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 4-Chloroaniline                        | ug/kg | 100000 |        |        | ND (190)              | ND (200)              | ND (190)              | ND (190)                  | ND (190)              | ND (190)              |              |           |           |  |
| Carbazole                              | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Caprolactam                            | ug/kg |        |        |        | ND (77) <sup>a</sup>  | ND (80) <sup>a</sup>  | ND (75)               | ND (77) <sup>a</sup>      | ND (76)               |                       |              |           |           |  |
| Chrysene                               | ug/kg | 1000   | 3900   | 1000   | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| is(2-Chloroethoxy)methan               | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| bis(2-Chloroethyl)ether                | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 2'-Oxybis(1-chloropropan)              | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| -Chlorophenyl phenyl ether             | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 2,4-Dinitrotoluene                     | ug/kg |        |        |        | ND (38) <sup>b</sup>  | ND (40) <sup>b</sup>  | ND (38) <sup>b</sup>  | ND (38) <sup>b</sup>      | ND (38) <sup>b</sup>  |                       |              |           |           |  |
| 2,6-Dinitrotoluene                     | ug/kg | 1030   |        |        | ND (38) <sup>b</sup>  | ND (40) <sup>b</sup>  | ND (38) <sup>b</sup>  | ND (38) <sup>b</sup>      | ND (38) <sup>b</sup>  |                       |              |           |           |  |
| 3,3'-Dichlorobenzidine                 | ug/kg |        |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| 1,4-Dioxane                            | ug/kg | 9800   | 13000  | 100    | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Dibenzo(a,h)anthracene                 | ug/kg | 330    | 330    | 330    | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Dibenzo furan                          | ug/kg | 14000  | 59000  | 7000   | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Di-n-butyl phthalate                   | ug/kg | 100000 |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Di-n-octyl phthalate                   | ug/kg | 100000 |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Diethyl phthalate                      | ug/kg | 100000 |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Dimethyl phthalate                     | ug/kg | 100000 |        |        | ND (77)               | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| bis(2-Ethylhexyl)phthalate             | ug/kg | 50000  |        |        | 28.7 J                | ND (80)               | ND (75)               | ND (77)                   | ND (76)               |                       |              |           |           |  |
| Fluoranthene                           | ug/kg | 100000 | 100000 | 100000 | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Fluorene                               | ug/kg | 100000 | 100000 | 30000  | ND (38)               | ND (40)               | ND (38)               | ND (38)                   | ND (38)               | ND (38)               |              |           |           |  |
| Hexachlorobenzene                      | ug/kg | 410    | 1200   | 330    | ND (77) <sup>b</sup>  | ND (80) <sup>b</sup>  | ND (75) <sup>b</sup>  | ND (77) <sup>b</sup>      | ND (76)               |                       |              |           |           |  |
| Hexachlorobutadiene                    | ug/kg |        |        |        | ND (38) <sup>b</sup>  | ND (40) <sup>b</sup>  | ND (38) <sup>b</sup>  | ND (38) <sup>b</sup> </td |                       |                       |              |           |           |  |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                          |       | RSCO   | RRSCO  | USCO   | UST2-B1              | UST2-B2              | UST3-B1               | UST3-B2              | UST3-B1 DUP | UST-1-PX  | UST-1-PX DUP | UST-1-PXN | UST-1-PXE |
|--------------------------------------------|-------|--------|--------|--------|----------------------|----------------------|-----------------------|----------------------|-------------|-----------|--------------|-----------|-----------|
| Lab Sample ID:                             |       |        |        |        | JE12619-1            | JE12619-2            | JE12619-3             | JE12619-4            | JE12619-5   | JE13362-1 | JE13362-2    | JE13362-3 | JE13362-4 |
| Sample Depth (ft bgs):                     |       |        |        |        | 6.0-6.5              | 6.0-6.5              | 6.0-6.5               | 6.0-6.5              | 6.0-6.5     | 8.0-8.5   | 8.0-8.5      | 7.5-8.0   | 7.5-8.0   |
| Date Sampled:                              |       |        |        |        | 6/5/2025             | 6/5/2025             | 6/5/2025              | 6/5/2025             | 6/5/2025    | 6/16/2025 | 6/16/2025    | 6/16/2025 | 6/16/2025 |
| Matrix:                                    |       |        |        |        | Soil                 | Soil                 | Soil                  | Soil                 | Soil        | Soil      | Soil         | Soil      | Soil      |
| Analyte                                    | Unit  |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| 2-Nitroaniline                             | ug/kg |        |        |        | ND (190)             | ND (200)             | ND (190)              | ND (190)             | ND (190)    |           |              |           |           |
| 3-Nitroaniline                             | ug/kg |        |        |        | ND (190)             | ND (200)             | ND (190) <sup>b</sup> | ND (190)             | ND (190)    |           |              |           |           |
| 4-Nitroaniline                             | ug/kg |        |        |        | ND (190)             | ND (200)             | ND (190) <sup>b</sup> | ND (190)             | ND (190)    |           |              |           |           |
| Naphthalene                                | ug/kg | 100000 | 100000 | 12000  | ND (38)              | ND (40)              | ND (38)               | ND (38)              | ND (38)     |           |              |           |           |
| Nitrobenzene                               | ug/kg | 3700   | 15000  |        | ND (77)              | ND (80)              | ND (75)               | ND (77)              | ND (76)     |           |              |           |           |
| N-Nitroso-di-n-propylamine                 | ug/kg |        |        |        | ND (77) <sup>a</sup> | ND (80) <sup>a</sup> | ND (75)               | ND (77) <sup>a</sup> | ND (76)     |           |              |           |           |
| N-Nitrosodiphenylamine                     | ug/kg |        |        |        | ND (190)             | ND (200)             | ND (190)              | ND (190)             | ND (190)    |           |              |           |           |
| Phenanthrene                               | ug/kg | 100000 | 100000 | 100000 | ND (38)              | ND (40)              | ND (38)               | 44.1                 | ND (38)     |           |              |           |           |
| Pyrene                                     | ug/kg | 100000 | 100000 | 100000 | ND (38)              | ND (40)              | ND (38)               | 17.3 J               | ND (38)     |           |              |           |           |
| ,2,4,5-Tetrachlorobenzene                  | ug/kg |        |        |        | ND (190)             | ND (200)             | ND (190)              | ND (190)             | ND (190)    |           |              |           |           |
| 2-Fluorophenol                             | %     |        |        |        | 34                   | 51                   | 72                    | 39                   | 36          |           |              |           |           |
| Phenol-d5                                  | %     |        |        |        | 35                   | 49                   | 68                    | 42                   | 35          |           |              |           |           |
| 2,4,6-Tribromophenol                       | %     |        |        |        | 70                   | 89                   | 108                   | 72                   | 69          |           |              |           |           |
| Nitrobenzene-d5                            | %     |        |        |        | 48                   | 67                   | 92                    | 59                   | 37          |           |              |           |           |
| 2-Fluorobiphenyl                           | %     |        |        |        | 49                   | 65                   | 85                    | 61                   | 44          |           |              |           |           |
| Terphenyl-d14                              | %     |        |        |        | 60                   | 74                   | 91                    | 62                   | 61          |           |              |           |           |
| SVOC via SIM                               |       |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| 1,4-Dioxane (1)                            | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Nitrobenzene-d5 (1)                        | %     |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| 2-Fluorobiphenyl (1)                       | %     |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Terphenyl-d14 (1)                          | %     |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| SVOC TICs                                  |       |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Cyclic octaatomic sulfur                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Dibenzopyrene                              | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| hal standard added for SIM                 | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown                                    | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| unknown                                    | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown                                    | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Dibenzopyrene (1)                          | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| l standard added for SIM                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (1)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Dibenzopyrene (2)                          | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| l standard added for SIM                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (2)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (4)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Dibenzopyrene (3)                          | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| l standard added for SIM                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (3)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (5)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Dibenzopyrene (4)                          | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (6)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (7)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (8)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (9)                                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Unknown (10)                               | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Total TIC, Semi-Volatile                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Per- and Polyfluoroalkyl Substances (PFAS) |       |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorobutanoic acid                     | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluoropentanoic acid                    | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorohexanoic acid                     | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluoroheptanoic acid                    | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluoroctanoic acid                      | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluoronanoic acid                       | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorodecanoic acid                     | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluoroundecanoic acid                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorododecanoic acid                   | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorotridecanoic acid                  | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorotetradecanoic acid                | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |
| Perfluorobutanesulfonic acid               | ug/kg |        |        |        |                      |                      |                       |                      |             |           |              |           |           |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                |       | RSCO   | RRSCO  | USCO | UST2-B1   | UST2-B2   | UST3-B1   | UST3-B2   | UST3-B1 DUP | UST-1-PX  | UST-1-PX DUP | UST-1-PXN | UST-1-PXE |  |
|----------------------------------|-------|--------|--------|------|-----------|-----------|-----------|-----------|-------------|-----------|--------------|-----------|-----------|--|
| Lab Sample ID:                   |       |        |        |      | JE12619-1 | JE12619-2 | JE12619-3 | JE12619-4 | JE12619-5   | JE13362-1 | JE13362-2    | JE13362-3 | JE13362-4 |  |
| Sample Depth (ft bgs):           |       |        |        |      | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5     | 8.0-8.5   | 8.0-8.5      | 7.5-8.0   | 7.5-8.0   |  |
| Date Sampled:                    |       |        |        |      | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025    | 6/16/2025 | 6/16/2025    | 6/16/2025 | 6/16/2025 |  |
| Matrix:                          |       |        |        |      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil      | Soil         | Soil      | Soil      |  |
| Analyte                          | Unit  |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluoropentanesulfonic acid    | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluorohexanesulfonic acid     | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluoroheptanesulfonic acid    | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluoroctanesulfonic acid      | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluorononanesulfonic acid     | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluorodecanesulfonic acid     | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| perfluorododecanesulfonic acid   | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| $\geq 2$ Fluorotelomer sulfonate | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| $\geq 2$ Fluorotelomer sulfonate | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| $\geq 2$ Fluorotelomer sulfonate | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| PFOSA                            | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| MeFOSA                           | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| EtFOSA                           | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| MeFOSAA                          | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| EtFOSAA                          | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| MeFOSE                           | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| EtFOSE                           | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| HFPO-DA (GenX)                   | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| ADONA                            | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| PFMPA                            | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| PFMBA                            | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| NFDHA                            | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| Cl-PF3ONS (F-53B Major)          | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| Cl-PF3OUdS (F-53B Minor)         | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| PFEEESA                          | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 3 Fluorotelomer carboxylate      | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 3 Fluorotelomer carboxylate      | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 3 Fluorotelomer carboxylate      | ug/kg |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C4-PFBA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C5-PFPeA                       | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C5-PFHxA                       | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C4-PFHxA                       | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C8-PFOA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C9-PFNA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C6-PFDA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C7-PFUnDA                      | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C2-PFDoDA                      | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C2-PFTeDA                      | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C3-PFBS                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C3-PFHxS                       | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C8-PFOS                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C8-FOSA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| d3-MeFOSA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| d5-EtFOSA                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| d3-MeFOSAA                       | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| d5-EtFOSAA                       | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| d7-MeFOSE                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| d9-EtFOSE                        | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C2-4:2FTS                      | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C2-6:2FTS                      | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C2-8:2FTS                      | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| 13C3-HFPO-DA                     | %     |        |        |      |           |           |           |           |             |           |              |           |           |  |
| <b>Pesticides</b>                |       |        |        |      |           |           |           |           |             |           |              |           |           |  |
| Aldrin                           | ug/kg | 19     | 97     | 5    |           |           |           |           |             |           |              |           |           |  |
| alpha-BHC                        | ug/kg | 97     | 480    | 20   |           |           |           |           |             |           |              |           |           |  |
| beta-BHC                         | ug/kg | 72     | 360    | 36   |           |           |           |           |             |           |              |           |           |  |
| delta-BHC                        | ug/kg | 100000 | 100000 | 40   |           |           |           |           |             |           |              |           |           |  |
| gamma-BHC (Lindane)              | ug/kg | 280    | 1300   | 100  |           |           |           |           |             |           |              |           |           |  |
| alpha-Chlordane                  | ug/kg | 910    | 4200   | 94   |           |           |           |           |             |           |              |           |           |  |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                       |       | RSCO   | RRSCO | USCO | UST2-B1   | UST2-B2   | UST3-B1   | UST3-B2   | UST3-B1 DUP | UST-1-PX  | UST-1-PX DUP | UST-1-PXN | UST-1-PXE |      |
|-----------------------------------------|-------|--------|-------|------|-----------|-----------|-----------|-----------|-------------|-----------|--------------|-----------|-----------|------|
| Lab Sample ID:                          |       |        |       |      | JE12619-1 | JE12619-2 | JE12619-3 | JE12619-4 | JE12619-5   | JE13362-1 | JE13362-2    | JE13362-3 | JE13362-4 |      |
| Sample Depth (ft bgs):                  |       |        |       |      | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5     | 8.0-8.5   | 8.0-8.5      | 7.5-8.0   | 7.5-8.0   |      |
| Date Sampled:                           |       |        |       |      | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025    | 6/16/2025 | 6/16/2025    | 6/16/2025 | 6/16/2025 |      |
| Matrix:                                 |       |        |       |      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil      | Soil         | Soil      | Soil      | Soil |
| Analyte                                 | Unit  |        |       |      |           |           |           |           |             |           |              |           |           |      |
| gamma-Chlordane                         | ug/kg | 540    |       |      |           |           |           |           |             |           |              |           |           |      |
| Dieldrin                                | ug/kg | 39     | 200   | 5    |           |           |           |           |             |           |              |           |           |      |
| 4,4'-DDD                                | ug/kg | 2600   | 13000 | 3.3  |           |           |           |           |             |           |              |           |           |      |
| 4,4'-DDE                                | ug/kg | 1800   | 8900  | 3.3  |           |           |           |           |             |           |              |           |           |      |
| 4,4'-DDT                                | ug/kg | 1700   | 7900  | 3.3  |           |           |           |           |             |           |              |           |           |      |
| Endrin                                  | ug/kg | 2200   | 11000 | 14   |           |           |           |           |             |           |              |           |           |      |
| Endosulfan sulfate                      | ug/kg | 4800   | 24000 | 2400 |           |           |           |           |             |           |              |           |           |      |
| Endrin aldehyde                         | ug/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Endosulfan-I                            | ug/kg | 4800   | 24000 | 2400 |           |           |           |           |             |           |              |           |           |      |
| Endosulfan-II                           | ug/kg | 4800   | 24000 | 2400 |           |           |           |           |             |           |              |           |           |      |
| Heptachlor                              | ug/kg | 420    | 2100  | 42   |           |           |           |           |             |           |              |           |           |      |
| Heptachlor epoxide                      | ug/kg | 77     |       |      |           |           |           |           |             |           |              |           |           |      |
| Methoxychlor                            | ug/kg | 100000 |       |      |           |           |           |           |             |           |              |           |           |      |
| Endrin ketone                           | ug/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Toxaphene                               | ug/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene                    | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene (1)                | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene (2)                | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene (3)                | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl                      | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl (1)                  | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl (2)                  | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl (3)                  | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| <b>Polychlorinated Biphenyls (PCBs)</b> |       |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1016                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1221                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1232                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1242                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1248                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1254                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1260                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1268                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Aroclor 1262                            | ug/kg | 1000   | 1000  | 100  |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene                    | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene (1)                | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene (2)                | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Tetrachloro-m-xylene (3)                | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl                      | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl (1)                  | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl (2)                  | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Decachlorobiphenyl (3)                  | %     |        |       |      |           |           |           |           |             |           |              |           |           |      |
| <b>Metals</b>                           |       |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Aluminum                                | mg/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Antimony                                | mg/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Arsenic                                 | mg/kg | 16     | 16    | 13   |           |           |           |           |             |           |              |           |           |      |
| Barium                                  | mg/kg | 350    | 400   | 350  |           |           |           |           |             |           |              |           |           |      |
| Beryllium                               | mg/kg | 14     | 72    | 7.2  |           |           |           |           |             |           |              |           |           |      |
| Cadmium                                 | mg/kg | 2.5    | 4.3   | 2.5  |           |           |           |           |             |           |              |           |           |      |
| Calcium                                 | mg/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Chromium                                | mg/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Cobalt                                  | mg/kg | 30     |       |      |           |           |           |           |             |           |              |           |           |      |
| Copper                                  | mg/kg | 270    | 270   | 50   |           |           |           |           |             |           |              |           |           |      |
| Iron                                    | mg/kg | 2000   |       |      |           |           |           |           |             |           |              |           |           |      |
| Lead                                    | mg/kg | 400    | 400   | 63   |           |           |           |           |             |           |              |           |           |      |
| Magnesium                               | mg/kg |        |       |      |           |           |           |           |             |           |              |           |           |      |
| Manganese                               | mg/kg | 2000   | 2000  | 1600 |           |           |           |           |             |           |              |           |           |      |
| Mercury                                 | mg/kg | 0.81   | 0.81  | 0.18 |           |           |           |           |             |           |              |           |           |      |
| Nickel                                  | mg/kg | 140    | 310   | 30   |           |           |           |           |             |           |              |           |           |      |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:      |       | RSCO | RRSCO | USCO | UST2-B1   | UST2-B2   | UST3-B1   | UST3-B2   | UST3-B1 DUP | UST-1-PX  | UST-1-PX DUP | UST-1-PXN | UST-1-PXE |
|------------------------|-------|------|-------|------|-----------|-----------|-----------|-----------|-------------|-----------|--------------|-----------|-----------|
| Lab Sample ID:         |       |      |       |      | JE12619-1 | JE12619-2 | JE12619-3 | JE12619-4 | JE12619-5   | JE13362-1 | JE13362-2    | JE13362-3 | JE13362-4 |
| Sample Depth (ft bgs): |       |      |       |      | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5   | 6.0-6.5     | 8.0-8.5   | 8.0-8.5      | 7.5-8.0   | 7.5-8.0   |
| Date Sampled:          |       |      |       |      | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025  | 6/5/2025    | 6/16/2025 | 6/16/2025    | 6/16/2025 | 6/16/2025 |
| Matrix:                |       |      |       |      | Soil      | Soil      | Soil      | Soil      | Soil        | Soil      | Soil         | Soil      | Soil      |
| Analyte                | Unit  |      |       |      |           |           |           |           |             |           |              |           |           |
| Potassium              | mg/kg |      |       |      |           |           |           |           |             |           |              |           |           |
| Selenium               | mg/kg | 36   | 180   | 3.9  |           |           |           |           |             |           |              |           |           |
| Silver                 | mg/kg | 36   | 180   | 2    |           |           |           |           |             |           |              |           |           |
| Sodium                 | mg/kg |      |       |      |           |           |           |           |             |           |              |           |           |
| Thallium               | mg/kg |      |       |      |           |           |           |           |             |           |              |           |           |
| Vanadium               | mg/kg | 100  |       |      |           |           |           |           |             |           |              |           |           |
| Zinc                   | mg/kg | 2200 | 10000 | 109  |           |           |           |           |             |           |              |           |           |
| General Chemistry      |       |      |       |      |           |           |           |           |             |           |              |           |           |
| Cyanide                | mg/kg | 27   | 27    | 27   |           |           |           |           |             |           |              |           |           |
| Solids, Percent        | %     |      |       |      | 84.2      | 83.1      | 86.4      | 85.2      | 87.2        | 89.2      | 90.6         | 87.1      | 88.5      |

| Footnote | Comments                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a        | Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND. |
| b        | Associated CCV outside of control limits high, sample was ND.                                                                                                   |
| c        | Elevated detection limit due to dilution required for high interfering element.                                                                                 |
| d        | Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.     |
| e        | Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.                             |
| f        | This compound in blank spike is outside in house QC limits bias high.                                                                                           |
| g        | Associated CCV outside of control limits low.                                                                                                                   |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                 |       | RSCO   | RRSCO  | USCO | UST-1-PXW             | UST-1-PXS             | RA-B8(13'-13.5') | RA-B8(13'-13.5') | EP-A2                 | EP-B2                 | EP-C2                 | EP-C2 DUP             | EP-A3                 |
|-----------------------------------|-------|--------|--------|------|-----------------------|-----------------------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                    |       |        |        |      | JE13362-5             | JE13362-6             | JE14336-1        | JE14336-1A       | JE15615-8             | JE15615-9             | JE15615-10            | JE15615-13            | JE15615-11            |
| Sample Depth (ft bgs):            |       |        |        |      | 7.5-8.0               | 7.5-8.0               | 13.0-13.5        | 13.0-13.5        | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             |
| Date Sampled:                     |       |        |        |      | 6/16/2025             | 6/16/2025             | 7/1/2025         | 7/1/2025         | 7/22/2025             | 7/22/2025             | 7/22/2025             | 7/22/2025             | 7/22/2025             |
| Matrix:                           |       |        |        |      | Soil                  | Soil                  | Soil             | Soil             | Soil                  | Soil                  | Soil                  | Soil                  | Soil                  |
| Analyte                           | Unit  |        |        |      |                       |                       |                  |                  |                       |                       |                       |                       |                       |
| Volatile Organic Compounds (VOCs) |       |        |        |      |                       |                       |                  |                  |                       |                       |                       |                       |                       |
| 1,1,1-Trichloroethane             | ug/kg | 100000 | 100000 | 680  | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| 1,1,2,2-Tetrachloroethane         | ug/kg | 35000  |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| 1,1,2-Trichloroethane             | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| 1,1-Dichloroethane                | ug/kg | 19000  | 26000  | 270  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 1,1-Dichloroethene                | ug/kg | 100000 | 100000 | 330  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 1,2,3-Trichlorobenzene            | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| 1,2,4-Trichlorobenzene            | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| 2-Dibromo-3-chloropropan          | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| 1,2-Dibromoethane                 | ug/kg |        |        |      | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 1,2-Dichlorobenzene               | ug/kg | 100000 | 100000 | 1100 | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 1,2-Dichloroethane                | ug/kg | 2300   | 3100   | 20   | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 1,2-Dichloropropane               | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| 1,3-Dichlorobenzene               | ug/kg | 17000  | 49000  | 2400 | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 1,4-Dichlorobenzene               | ug/kg | 9800   | 13000  | 1800 | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| 2-Butanone (MEK)                  | ug/kg | 100000 | 100000 | 120  | ND (9.3)              | ND (9.6)              | ND (9.4)         |                  | ND (11)               | ND (12)               | ND (11)               | ND (10)               | ND (11)               |
| 2-Hexanone                        | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Methyl-2-pentanone(MIB)           | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Acetone                           | ug/kg | 100000 | 100000 | 50   | ND (9.3)              | ND (9.6)              | 16.6             |                  | ND (11)               | 6.7 J                 | ND (11)               | 4.8 J                 | ND (11)               |
| Benzene                           | ug/kg | 2900   | 4800   | 60   | ND (0.47)             | ND (0.48)             | ND (0.47)        |                  | ND (0.53)             | ND (0.61)             | ND (0.55)             | ND (0.51)             | ND (0.55)             |
| Bromochloromethane                | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Bromodichloromethane              | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Bromoform                         | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Bromomethane                      | ug/kg |        |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Carbon disulfide                  | ug/kg | 100000 |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Carbon tetrachloride              | ug/kg | 1400   | 2400   | 760  | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Chlorobenzene                     | ug/kg | 100000 | 100000 | 1100 | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Chloroethane                      | ug/kg |        |        |      | ND (4.7) <sup>d</sup> | ND (4.8) <sup>d</sup> | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Chloroform                        | ug/kg | 10000  | 49000  | 370  | ND (1.9) <sup>d</sup> | ND (1.9) <sup>d</sup> | ND (1.9)         |                  | ND (2.1) <sup>d</sup> | ND (2.4) <sup>d</sup> | ND (2.2) <sup>d</sup> | ND (2.0) <sup>d</sup> | ND (2.2) <sup>d</sup> |
| Chloromethane                     | ug/kg |        |        |      | ND (4.7) <sup>b</sup> | ND (4.8) <sup>b</sup> | ND (4.7)         |                  | ND (5.3) <sup>e</sup> | ND (6.1) <sup>e</sup> | ND (5.5) <sup>e</sup> | ND (5.1) <sup>e</sup> | ND (5.5) <sup>e</sup> |
| cis-1,2-Dichloroethene            | ug/kg | 59000  | 100000 | 250  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| cis-1,3-Dichloropropene           | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Cyclohexane                       | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Dibromochloromethane              | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Dichlorodifluoromethane           | ug/kg |        |        |      | ND (4.7) <sup>d</sup> | ND (4.8) <sup>d</sup> | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Ethylbenzene                      | ug/kg | 30000  | 41000  | 1000 | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| Freon 113                         | ug/kg | 100000 |        |      | ND (4.7)              | ND (4.8)              | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| Isopropylbenzene                  | ug/kg | 100000 |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| m,p-Xylene                        | ug/kg | 100000 | 100000 | 260  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| Methyl Acetate                    | ug/kg |        |        |      | ND (4.7) <sup>d</sup> | ND (4.8) <sup>d</sup> | ND (4.7)         |                  | ND (5.3) <sup>d</sup> | ND (6.1) <sup>d</sup> | ND (5.5) <sup>d</sup> | ND (5.1) <sup>d</sup> | ND (5.5) <sup>d</sup> |
| Methyl Tert Butyl Ether           | ug/kg | 62000  | 100000 | 930  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| Methylcyclohexane                 | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Methylene chloride                | ug/kg | 51000  | 100000 | 50   | ND (4.7) <sup>d</sup> | ND (4.8) <sup>d</sup> | ND (4.7)         |                  | ND (5.3)              | ND (6.1)              | ND (5.5)              | ND (5.1)              | ND (5.5)              |
| o-Xylene                          | ug/kg | 100000 | 100000 | 260  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| Styrene                           | ug/kg |        |        |      | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Tetrachloroethene                 | ug/kg | 5500   | 19000  | 1300 | ND (1.9)              | ND (1.9)              | ND (1.9)         |                  | ND (2.1)              | ND (2.4)              | ND (2.2)              | ND (2.0)              | ND (2.2)              |
| Toluene                           | ug/kg | 100000 | 100000 | 700  | ND (0.93)             | ND (0.96)             | ND (0.94)        |                  | ND (1.1)              | ND (1.2)              | ND (1.1)              | ND (1.0)              | ND (1.1)              |
| trans-1,2-Dichloroethene          | ug/kg | 10000  |        |      |                       |                       |                  |                  |                       |                       |                       |                       |                       |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                      |       | RSCO   | RRSCO  | USCO   | UST-1-PXW | UST-1-PXS | RA-B8(13'-13.5')     | RA-B8(13'-13.5') | EP-A2                 | EP-B2                 | EP-C2                 | EP-C2 DUP             | EP-A3                 |
|----------------------------------------|-------|--------|--------|--------|-----------|-----------|----------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                         |       |        |        |        | JE13362-5 | JE13362-6 | JE14336-1            | JE14336-1A       | JE15615-8             | JE15615-9             | JE15615-10            | JE15615-13            | JE15615-11            |
| Sample Depth (ft bgs):                 |       |        |        |        | 7.5-8.0   | 7.5-8.0   | 13.0-13.5            | 13.0-13.5        | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             |
| Date Sampled:                          |       |        |        |        | 6/16/2025 | 6/16/2025 | 7/1/2025             | 7/1/2025         | 7/22/2025             | 7/22/2025             | 7/22/2025             | 7/22/2025             | 7/22/2025             |
| Matrix:                                |       |        |        |        | Soil      | Soil      | Soil                 | Soil             | Soil                  | Soil                  | Soil                  | Soil                  | Soil                  |
| Analyte                                | Unit  |        |        |        |           |           |                      |                  |                       |                       |                       |                       |                       |
| Semivolatile Organic Compounds (SVOCs) |       |        |        |        |           |           |                      |                  |                       |                       |                       |                       |                       |
| 2-Chlorophenol                         | ug/kg | 100000 |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 4-Chloro-3-methyl phenol               | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180)              |
| 2,4-Dichlorophenol                     | ug/kg | 100000 |        |        |           |           | ND (180)             |                  | ND (180)              |
| 2,4-Dimethylphenol                     | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180)              |
| 2,4-Dinitrophenol                      | ug/kg | 100000 |        |        |           |           | ND (180)             |                  | ND (180) <sup>b</sup> |
| 4,6-Dinitro-o-cresol                   | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180) <sup>b</sup> |
| 2-Methylphenol                         | ug/kg | 100000 | 100000 | 330    |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 3&4-Methylphenol                       | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 2-Nitrophenol                          | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180) <sup>b</sup> |
| 4-Nitrophenol                          | ug/kg |        |        |        |           |           | ND (360)             |                  | ND (360)              | ND (350)              | ND (360)              | ND (360)              | ND (360)              |
| Pentachlorophenol                      | ug/kg | 2400   | 6700   | 800    |           |           | ND (140)             |                  | ND (140)              | ND (140)              | ND (140)              | ND (150)              | ND (140)              |
| Phenol                                 | ug/kg | 100000 | 100000 | 330    |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 2,3,4,6-Tetrachlorophenol              | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180) <sup>b</sup> |
| 2,4,5-Trichlorophenol                  | ug/kg | 100000 |        |        |           |           | ND (180)             |                  | ND (180)              |
| 2,4,6-Trichlorophenol                  | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180)              |
| Acenaphthene                           | ug/kg | 100000 | 100000 | 20000  |           |           | ND (36)              |                  | 17.3 J                | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Acenaphthylene                         | ug/kg | 100000 | 100000 | 100000 |           |           | ND (36) <sup>a</sup> |                  | 42.2                  | 22.4 J                | ND (36)               | ND (36)               | ND (36)               |
| Acetophenone                           | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180)              |
| Anthracene                             | ug/kg | 100000 | 100000 | 100000 |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Atrazine                               | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Benzo(a)anthracene                     | ug/kg | 1000   | 1000   | 1000   |           |           | ND (36)              |                  | 21.6 J                | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Benzo(a)pyrene                         | ug/kg | 1000   | 1000   | 1000   |           |           | ND (36)              |                  | 17.2 J                | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Benzo(b)fluoranthene                   | ug/kg | 1000   | 1000   | 1000   |           |           | ND (36)              |                  | 17.2 J                | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Benzo(g,h,i)perylene                   | ug/kg | 100000 | 100000 | 100000 |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Benzo(k)fluoranthene                   | ug/kg | 1000   | 3900   | 800    |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| -Bromophenyl phenyl ether              | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Butyl benzyl phthalate                 | ug/kg | 100000 |        |        |           |           | ND (72)              |                  | ND (72) <sup>b</sup>  | ND (71) <sup>b</sup>  | ND (71) <sup>b</sup>  | ND (73) <sup>b</sup>  | ND (72) <sup>b</sup>  |
| 1,1'-Biphenyl                          | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Benzaldehyde                           | ug/kg |        |        |        |           |           | ND (180)             |                  | ND (180)              |
| 2-Chloronaphthalene                    | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 4-Chloroaniline                        | ug/kg | 100000 |        |        |           |           | ND (180)             |                  | ND (180)              |
| Carbazole                              | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Caprolactam                            | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Chrysene                               | ug/kg | 1000   | 3900   | 1000   |           |           | ND (36)              |                  | 12.6 J                | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| is(2-Chloroethoxy)methan               | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| bis(2-Chloroethyl)ether                | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 2'-Oxybis(1-chloropropan)              | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| -Chlorophenyl phenyl ether             | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 2,4-Dinitrotoluene                     | ug/kg |        |        |        |           |           | ND (36)              |                  | ND (36) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (36) <sup>b</sup>  | ND (36) <sup>b</sup>  | ND (36) <sup>b</sup>  |
| 2,6-Dinitrotoluene                     | ug/kg | 1030   |        |        |           |           | ND (36)              |                  | ND (36) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (36) <sup>b</sup>  | ND (36) <sup>b</sup>  | ND (36) <sup>b</sup>  |
| 3,3'-Dichlorobenzidine                 | ug/kg |        |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| 1,4-Dioxane                            | ug/kg | 9800   | 13000  | 100    |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Dibenzo(a,h)anthracene                 | ug/kg | 330    | 330    | 330    |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Dibenzo furan                          | ug/kg | 14000  | 59000  | 7000   |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Di-n-butyl phthalate                   | ug/kg | 100000 |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Di-n-octyl phthalate                   | ug/kg | 100000 |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Diethyl phthalate                      | ug/kg | 100000 |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Dimethyl phthalate                     | ug/kg | 100000 |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| bis(2-Ethylhexyl)phthalate             | ug/kg | 50000  |        |        |           |           | ND (72)              |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| Fluoranthene                           | ug/kg | 100000 | 100000 | 100000 |           |           | ND (36)              |                  | 38.8                  | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Fluorene                               | ug/kg | 100000 | 100000 | 30000  |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Hexachlorobenzene                      | ug/kg | 410    | 1200   | 330    |           |           | ND (72)              |                  | ND (72) <sup>b</sup>  | ND (71) <sup>b</sup>  | ND (71) <sup>b</sup>  | ND (73) <sup>b</sup>  | ND (72) <sup>b</sup>  |
| Hexachlorobutadiene                    | ug/kg |        |        |        |           |           | ND (36)              |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| hexachlorocyclopentadien               | ug/kg |        |        |        |           |           |                      |                  |                       |                       |                       |                       |                       |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                          |       | RSCO   | RRSCO  | USCO   | UST-1-PXW | UST-1-PXS | RA-B8(13'-13.5') | RA-B8(13'-13.5') | EP-A2                 | EP-B2                 | EP-C2                 | EP-C2 DUP             | EP-A3                 |
|--------------------------------------------|-------|--------|--------|--------|-----------|-----------|------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                             |       |        |        |        | JE13362-5 | JE13362-6 | JE14336-1        | JE14336-1A       | JE15615-8             | JE15615-9             | JE15615-10            | JE15615-13            | JE15615-11            |
| Sample Depth (ft bgs):                     |       |        |        |        | 7.5-8.0   | 7.5-8.0   | 13.0-13.5        | 13.0-13.5        | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             |
| Date Sampled:                              |       |        |        |        | 6/16/2025 | 6/16/2025 | 7/1/2025         | 7/1/2025         | 7/22/2025             | 7/22/2025             | 7/22/2025             | 7/22/2025             | 7/22/2025             |
| Matrix:                                    |       |        |        |        | Soil      | Soil      | Soil             | Soil             | Soil                  | Soil                  | Soil                  | Soil                  | Soil                  |
| Analyte                                    | Unit  |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| 2-Nitroaniline                             | ug/kg |        |        |        |           |           | ND (180)         |                  | ND (180) <sup>b</sup> |
| 3-Nitroaniline                             | ug/kg |        |        |        |           |           | ND (180)         |                  | ND (180)              |
| 4-Nitroaniline                             | ug/kg |        |        |        |           |           | ND (180)         |                  | ND (180)              |
| Naphthalene                                | ug/kg | 100000 | 100000 | 12000  |           |           | ND (36)          |                  | ND (36)               | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| Nitrobenzene                               | ug/kg | 3700   | 15000  |        |           |           | ND (72)          |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| N-Nitroso-di-n-propylamine                 | ug/kg |        |        |        |           |           | ND (72)          |                  | ND (72)               | ND (71)               | ND (71)               | ND (73)               | ND (72)               |
| N-Nitrosodiphenylamine                     | ug/kg |        |        |        |           |           | ND (180)         |                  | ND (180)              |
| Phenanthrene                               | ug/kg | 100000 | 100000 | 100000 |           |           | ND (36)          |                  | 30.9 J                | ND (35)               | 16.5 J                | ND (36)               | ND (36)               |
| Pyrene                                     | ug/kg | 100000 | 100000 | 100000 |           |           | ND (36)          |                  | 29.9 J                | ND (35)               | ND (36)               | ND (36)               | ND (36)               |
| ,2,4,5-Tetrachlorobenzene                  | ug/kg |        |        |        |           |           | ND (180)         |                  | ND (180)              |
| 2-Fluorophenol                             | %     |        |        |        |           |           | 31               |                  | 50                    | 42                    | 63                    | 54                    | 39                    |
| Phenol-d5                                  | %     |        |        |        |           |           | 28               |                  | 46                    | 41                    | 57                    | 51                    | 39                    |
| 2,4,6-Tribromophenol                       | %     |        |        |        |           |           | 32               |                  | 74                    | 72                    | 90                    | 84                    | 72                    |
| Nitrobenzene-d5                            | %     |        |        |        |           |           | 31               |                  | 49                    | 43                    | 61                    | 53                    | 40                    |
| 2-Fluorobiphenyl                           | %     |        |        |        |           |           | 36               |                  | 54                    | 50                    | 64                    | 59                    | 47                    |
| Terphenyl-d14                              | %     |        |        |        |           |           | 40               |                  | 61                    | 61                    | 77                    | 78                    | 65                    |
| SVOC via SIM                               |       |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| 1,4-Dioxane (1)                            | ug/kg |        |        |        |           |           | ND (3.6)         |                  |                       |                       |                       |                       |                       |
| Nitrobenzene-d5 (1)                        | %     |        |        |        |           |           | 46               |                  |                       |                       |                       |                       |                       |
| 2-Fluorobiphenyl (1)                       | %     |        |        |        |           |           | 45               |                  |                       |                       |                       |                       |                       |
| Terphenyl-d14 (1)                          | %     |        |        |        |           |           | 44               |                  |                       |                       |                       |                       |                       |
| SVOC TICs                                  |       |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Cyclic octaatomic sulfur                   | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Dibenzopyrene                              | ug/kg |        |        |        |           |           |                  |                  |                       |                       | 740 J                 |                       |                       |
| hal standard added for SIM                 | ug/kg |        |        |        |           |           | 160 J            |                  |                       |                       |                       |                       |                       |
| Unknown                                    | ug/kg |        |        |        |           |           |                  |                  | 1000 J                |                       |                       |                       | 180 J                 |
| unknown                                    | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Unknown                                    | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Dibenzopyrene (1)                          | ug/kg |        |        |        |           |           |                  |                  |                       |                       | 320 J                 |                       |                       |
| I standard added for SIM                   | ug/kg |        |        |        |           |           | 160 J            |                  |                       |                       |                       |                       |                       |
| Unknown (1)                                | ug/kg |        |        |        |           |           |                  |                  | 270 J                 |                       |                       |                       |                       |
| Dibenzopyrene (2)                          | ug/kg |        |        |        |           |           |                  |                  |                       |                       | 250 J                 |                       |                       |
| I standard added for SIM                   | ug/kg |        |        |        |           |           | 170 J            |                  |                       |                       |                       |                       |                       |
| Unknown (2)                                | ug/kg |        |        |        |           |           |                  |                  | 200 J                 |                       |                       |                       |                       |
| Unknown (4)                                | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Dibenzopyrene (3)                          | ug/kg |        |        |        |           |           |                  |                  |                       |                       | 280 J                 |                       |                       |
| I standard added for SIM                   | ug/kg |        |        |        |           |           | 180 J            |                  |                       |                       |                       |                       |                       |
| Unknown (3)                                | ug/kg |        |        |        |           |           |                  |                  | 160 J                 |                       |                       |                       |                       |
| Unknown (5)                                | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Dibenzopyrene (4)                          | ug/kg |        |        |        |           |           |                  |                  |                       |                       | 180 J                 |                       |                       |
| Unknown (6)                                | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Unknown (7)                                | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Unknown (8)                                | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Unknown (9)                                | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Unknown (10)                               | ug/kg |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Total TIC, Semi-Volatile                   | ug/kg |        |        |        |           |           | 0                |                  | 1630 J                | 0                     | 1770 J                | 0                     | 180 J                 |
| Per- and Polyfluoroalkyl Substances (PFAS) |       |        |        |        |           |           |                  |                  |                       |                       |                       |                       |                       |
| Perfluorobutanoic acid                     | ug/kg |        |        |        |           |           |                  | ND (0.86)        | ND (0.87)             | ND (0.85)             | ND (0.86)             | ND (0.86)             | ND (0.87)             |
| Perfluoropentanoic acid                    | ug/kg |        |        |        |           |           |                  | ND (0.43)        | ND (0.44)             | ND (0.42)             | ND (0.43)             | ND (0.43)             | ND (0.43)             |
| Perfluorohexanoic acid                     | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluoroheptanoic acid                    | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluoroctanoic acid                      | ug/kg |        |        |        |           |           |                  | 0.13 J           | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluorononanoic acid                     | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluorodecanoic acid                     | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluoroundecanoic acid                   | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluorododecanoic acid                   | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluorotridecanoic acid                  | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluorotetradecanoic acid                | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |
| Perfluorobutanesulfonic acid               | ug/kg |        |        |        |           |           |                  | ND (0.22)        | ND (0.22)             | ND (0.21)             | ND (0.22)             | ND (0.22)             | ND (0.22)             |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:             |       | RSCO   | RRSCO  | USCO | UST-1-PXW | UST-1-PXS | RA-B8(13'-13.5') | RA-B8(13'-13.5') | EP-A2     | EP-B2     | EP-C2      | EP-C2 DUP  | EP-A3      |
|-------------------------------|-------|--------|--------|------|-----------|-----------|------------------|------------------|-----------|-----------|------------|------------|------------|
| Lab Sample ID:                |       |        |        |      | JE13362-5 | JE13362-6 | JE14336-1        | JE14336-1A       | JE15615-8 | JE15615-9 | JE15615-10 | JE15615-13 | JE15615-11 |
| Sample Depth (ft bgs):        |       |        |        |      | 7.5-8.0   | 7.5-8.0   | 13.0-13.5        | 13.0-13.5        | 11.5-12.0 | 11.5-12.0 | 11.5-12.0  | 11.5-12.0  | 11.5-12.0  |
| Date Sampled:                 |       |        |        |      | 6/16/2025 | 6/16/2025 | 7/1/2025         | 7/1/2025         | 7/22/2025 | 7/22/2025 | 7/22/2025  | 7/22/2025  | 7/22/2025  |
| Matrix:                       |       |        |        |      | Soil      | Soil      | Soil             | Soil             | Soil      | Soil      | Soil       | Soil       | Soil       |
| Analyte                       | Unit  |        |        |      |           |           |                  |                  |           |           |            |            |            |
| erfluoropentanesulfonic acid  | ug/kg |        |        |      |           |           |                  | ND (0.22)        |           |           |            |            |            |
| erfluorohexanesulfonic acid   | ug/kg |        |        |      |           |           |                  | ND (0.22)        | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| erfluoroheptanesulfonic acid  | ug/kg |        |        |      |           |           |                  | ND (0.22)        | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| erfluoroctanesulfonic acid    | ug/kg |        |        |      |           |           |                  | 0.26             | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| erfluorononanesulfonic acid   | ug/kg |        |        |      |           |           |                  | ND (0.22)        |           |           |            |            |            |
| erfluorodecanesulfonic acid   | ug/kg |        |        |      |           |           |                  | ND (0.22)        | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| erfluorododecanesulfonic acid | ug/kg |        |        |      |           |           |                  | ND (0.22)        |           |           |            |            |            |
| 1:2 Fluorotelomer sulfonate   | ug/kg |        |        |      |           |           |                  | ND (0.86)        |           |           |            |            |            |
| 3:2 Fluorotelomer sulfonate   | ug/kg |        |        |      |           |           |                  | ND (0.86)        | ND (0.87) | ND (0.85) | ND (0.86)  | ND (0.86)  | ND (0.87)  |
| 5:2 Fluorotelomer sulfonate   | ug/kg |        |        |      |           |           |                  | ND (0.86)        | ND (0.87) | ND (0.85) | ND (0.86)  | ND (0.86)  | ND (0.87)  |
| PFOSA                         | ug/kg |        |        |      |           |           |                  | ND (0.22)        | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| MeFOSA                        | ug/kg |        |        |      |           |           |                  | ND (0.22)        |           |           |            |            |            |
| EtFOSA                        | ug/kg |        |        |      |           |           |                  | ND (0.22)        |           |           |            |            |            |
| MeFOSAA                       | ug/kg |        |        |      |           |           |                  | ND (0.22)        | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| EtFOSAA                       | ug/kg |        |        |      |           |           |                  | ND (0.22)        | ND (0.22) | ND (0.21) | ND (0.22)  | ND (0.22)  | ND (0.22)  |
| MeFOSE                        | ug/kg |        |        |      |           |           |                  | ND (2.2)         |           |           |            |            |            |
| EtFOSE                        | ug/kg |        |        |      |           |           |                  | ND (2.2)         |           |           |            |            |            |
| HFPO-DA (GenX)                | ug/kg |        |        |      |           |           |                  | ND (0.86)        |           |           |            |            |            |
| ADONA                         | ug/kg |        |        |      |           |           |                  | ND (0.86)        |           |           |            |            |            |
| PFMPA                         | ug/kg |        |        |      |           |           |                  | ND (0.43)        |           |           |            |            |            |
| PFMBA                         | ug/kg |        |        |      |           |           |                  | ND (0.43)        |           |           |            |            |            |
| NFDHA                         | ug/kg |        |        |      |           |           |                  | ND (0.43)        |           |           |            |            |            |
| Cl-PF3ONS (F-53B Major)       | ug/kg |        |        |      |           |           |                  | ND (0.86)        |           |           |            |            |            |
| Cl-PF3OUdS (F-53B Minor)      | ug/kg |        |        |      |           |           |                  | ND (0.86)        |           |           |            |            |            |
| PFEEESA                       | ug/kg |        |        |      |           |           |                  | ND (0.43)        |           |           |            |            |            |
| 3 Fluorotelomer carboxylate   | ug/kg |        |        |      |           |           |                  | ND (1.1)         |           |           |            |            |            |
| 3 Fluorotelomer carboxylate   | ug/kg |        |        |      |           |           |                  | ND (5.4)         |           |           |            |            |            |
| 3 Fluorotelomer carboxylate   | ug/kg |        |        |      |           |           |                  | ND (5.4)         |           |           |            |            |            |
| 13C4-PFBA                     | %     |        |        |      |           |           |                  | 88               | 75        | 79        | 84         | 87         | 86         |
| 13C5-PFPeA                    | %     |        |        |      |           |           |                  | 89               | 73        | 81        | 85         | 89         | 86         |
| 13C5-PFHxA                    | %     |        |        |      |           |           |                  | 86               | 74        | 83        | 85         | 94         | 90         |
| 13C4-PFHxA                    | %     |        |        |      |           |           |                  | 85               | 72        | 82        | 85         | 88         | 86         |
| 13C8-PFOA                     | %     |        |        |      |           |           |                  | 88               | 74        | 80        | 83         | 85         | 90         |
| 13C9-PFNA                     | %     |        |        |      |           |           |                  | 85               | 77        | 79        | 84         | 89         | 84         |
| 13C6-PFDA                     | %     |        |        |      |           |           |                  | 87               | 77        | 76        | 89         | 89         | 100        |
| 13C7-PFUnDA                   | %     |        |        |      |           |           |                  | 82               | 77        | 84        | 86         | 90         | 96         |
| 13C2-PFDoDA                   | %     |        |        |      |           |           |                  | 84               | 82        | 83        | 89         | 90         | 95         |
| 13C2-PFTeDA                   | %     |        |        |      |           |           |                  | 96               | 84        | 83        | 88         | 87         | 97         |
| 13C3-PFBS                     | %     |        |        |      |           |           |                  | 83               | 80        | 88        | 87         | 87         | 79         |
| 13C3-PFHxS                    | %     |        |        |      |           |           |                  | 88               | 79        | 92        | 80         | 82         | 78         |
| 13C8-PFOS                     | %     |        |        |      |           |           |                  | 89               | 85        | 78        | 99         | 93         | 88         |
| 13C8-FOSA                     | %     |        |        |      |           |           |                  | 90               | 73        | 78        | 96         | 90         | 95         |
| d3-MeFOSA                     | %     |        |        |      |           |           |                  | 65               |           |           |            |            |            |
| d5-EtFOSA                     | %     |        |        |      |           |           |                  | 64               |           |           |            |            |            |
| d3-MeFOSAA                    | %     |        |        |      |           |           |                  | 93               | 78        | 76        | 84         | 79         | 83         |
| d5-EtFOSAA                    | %     |        |        |      |           |           |                  | 93               | 73        | 74        | 83         | 83         | 85         |
| d7-MeFOSE                     | %     |        |        |      |           |           |                  | 88               |           |           |            |            |            |
| d9-EtFOSE                     | %     |        |        |      |           |           |                  | 87               |           |           |            |            |            |
| 13C2-4:2FTS                   | %     |        |        |      |           |           |                  | 95               |           |           |            |            |            |
| 13C2-6:2FTS                   | %     |        |        |      |           |           |                  | 120              | 78        | 110       | 95         | 89         | 95         |
| 13C2-8:2FTS                   | %     |        |        |      |           |           |                  | 120              | 91        | 93        | 96         | 87         | 93         |
| 13C3-HFPO-DA                  | %     |        |        |      |           |           |                  | 90               |           |           |            |            |            |
| Pesticides                    |       |        |        |      |           |           |                  |                  |           |           |            |            |            |
| Aldrin                        | ug/kg | 19     | 97     | 5    |           |           | ND (0.68)        |                  | ND (0.75) | ND (0.65) | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| alpha-BHC                     | ug/kg | 97     | 480    | 20   |           |           | ND (0.68)        |                  | ND (0.75) | ND (0.65) | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| beta-BHC                      | ug/kg | 72     | 360    | 36   |           |           | ND (0.68)        |                  | ND (0.75) | ND (0.65) | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| delta-BHC                     | ug/kg | 100000 | 100000 | 40   |           |           | ND (0.68)        |                  | ND (0.75) | ND (0.65) | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| gamma-BHC (Lindane)           | ug/kg | 280    | 1300   | 100  |           |           | ND (0.68)        |                  | ND (0.75) | ND (0.65) | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| alpha-Chlordane               | ug/kg | 910    | 4200   | 94   |           |           | ND (0.68)        |                  | ND (0.75) | ND (0.65) | ND (0.69)  | ND (0.68)  | ND (0.73)  |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                       |       | RSCO   | RRSCO | USCO | UST-1-PXW | UST-1-PXS | RA-B8(13'-13.5')  | RA-B8(13'-13.5') | EP-A2            | EP-B2      | EP-C2      | EP-C2 DUP  | EP-A3      |
|-----------------------------------------|-------|--------|-------|------|-----------|-----------|-------------------|------------------|------------------|------------|------------|------------|------------|
| Lab Sample ID:                          |       |        |       |      | JE13362-5 | JE13362-6 | JE14336-1         | JE14336-1A       | JE15615-8        | JE15615-9  | JE15615-10 | JE15615-13 | JE15615-11 |
| Sample Depth (ft bgs):                  |       |        |       |      | 7.5-8.0   | 7.5-8.0   | 13.0-13.5         | 13.0-13.5        | 11.5-12.0        | 11.5-12.0  | 11.5-12.0  | 11.5-12.0  | 11.5-12.0  |
| Date Sampled:                           |       |        |       |      | 6/16/2025 | 6/16/2025 | 7/1/2025          | 7/1/2025         | 7/22/2025        | 7/22/2025  | 7/22/2025  | 7/22/2025  | 7/22/2025  |
| Matrix:                                 |       |        |       |      | Soil      | Soil      | Soil              | Soil             | Soil             | Soil       | Soil       | Soil       | Soil       |
| Analyte                                 | Unit  |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| gamma-Chlordane                         | ug/kg | 540    |       |      |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Dieldrin                                | ug/kg | 39     | 200   | 5    |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| 4,4'-DDD                                | ug/kg | 2600   | 13000 | 3.3  |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| 4,4'-DDE                                | ug/kg | 1800   | 8900  | 3.3  |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| 4,4'-DDT                                | ug/kg | 1700   | 7900  | 3.3  |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Endrin                                  | ug/kg | 2200   | 11000 | 14   |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Endosulfan sulfate                      | ug/kg | 4800   | 24000 | 2400 |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Endrin aldehyde                         | ug/kg |        |       |      |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Endosulfan-I                            | ug/kg | 4800   | 24000 | 2400 |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Endosulfan-II                           | ug/kg | 4800   | 24000 | 2400 |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Heptachlor                              | ug/kg | 420    | 2100  | 42   |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Heptachlor epoxide                      | ug/kg | 77     |       |      |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Methoxychlor                            | ug/kg | 100000 |       |      |           |           | ND (1.4)          |                  | ND (1.5)         | ND (1.3)   | ND (1.4)   | ND (1.4)   | ND (1.5)   |
| Endrin ketone                           | ug/kg |        |       |      |           |           | ND (0.68)         |                  | ND (0.75)        | ND (0.65)  | ND (0.69)  | ND (0.68)  | ND (0.73)  |
| Toxaphene                               | ug/kg |        |       |      |           |           | ND (17)           |                  | ND (19)          | ND (16)    | ND (17)    | ND (17)    | ND (18)    |
| Tetrachloro-m-xylene                    | %     |        |       |      |           |           | 64                |                  | 85               | 42         | 44         | 51         | 51         |
| Tetrachloro-m-xylene (1)                | %     |        |       |      |           |           | 62                |                  | 93               | 44         | 46         | 54         | 54         |
| Tetrachloro-m-xylene (2)                | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Tetrachloro-m-xylene (3)                | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Decachlorobiphenyl                      | %     |        |       |      |           |           | 43                |                  | 79               | 49         | 62         | 62         | 66         |
| Decachlorobiphenyl (1)                  | %     |        |       |      |           |           | 57                |                  | 88               | 53         | 64         | 65         | 70         |
| Decachlorobiphenyl (2)                  | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Decachlorobiphenyl (3)                  | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| <b>Polychlorinated Biphenyls (PCBs)</b> |       |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Aroclor 1016                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1221                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1232                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1242                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1248                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1254                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1260                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1268                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Aroclor 1262                            | ug/kg | 1000   | 1000  | 100  |           |           | ND (34)           |                  | ND (36)          | ND (35)    | ND (32)    | ND (34)    | ND (34)    |
| Tetrachloro-m-xylene                    | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Tetrachloro-m-xylene (1)                | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Tetrachloro-m-xylene (2)                | %     |        |       |      |           |           | 66                |                  | 71               | 88         | 73         | 78         | 57         |
| Tetrachloro-m-xylene (3)                | %     |        |       |      |           |           | 74                |                  | 88               | 116        | 97         | 102        | 74         |
| Decachlorobiphenyl                      | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Decachlorobiphenyl (1)                  | %     |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Decachlorobiphenyl (2)                  | %     |        |       |      |           |           | 61                |                  | 75               | 99         | 75         | 77         | 58         |
| Decachlorobiphenyl (3)                  | %     |        |       |      |           |           | 65                |                  | 93               | 123        | 92         | 95         | 71         |
| <b>Metals</b>                           |       |        |       |      |           |           |                   |                  |                  |            |            |            |            |
| Aluminum                                | mg/kg |        |       |      |           |           | 14100             |                  | 13000            | 10600      | 10700      | 14100      | 12200      |
| Antimony                                | mg/kg |        |       |      |           |           | ND (2.3)          |                  | ND (2.3)         | ND (2.2)   | ND (2.2)   | ND (2.3)   | ND (2.2)   |
| Arsenic                                 | mg/kg | 16     | 16    | 13   |           |           | ND (2.3)          |                  | ND (2.3)         | 2.4        | ND (2.2)   | ND (2.3)   | ND (2.2)   |
| Barium                                  | mg/kg | 350    | 400   | 350  |           |           | 172               |                  | 136              | 107        | 133        | 176        | 133        |
| Beryllium                               | mg/kg | 14     | 72    | 7.2  |           |           | 0.49              |                  | 0.49             | 0.46       | 0.43       | 0.51       | 0.45       |
| Cadmium                                 | mg/kg | 2.5    | 4.3   | 2.5  |           |           | ND (0.57)         |                  | ND (0.56)        | ND (0.55)  | ND (0.56)  | ND (0.58)  | ND (0.55)  |
| Calcium                                 | mg/kg |        |       |      |           |           | 7340              |                  | 7020             | 7620       | 6940       | 8650       | 9100       |
| Chromium                                | mg/kg |        |       |      |           |           | 26.2              |                  | 21               | 18         | 18.9       | 24.7       | 20.7       |
| Cobalt                                  | mg/kg | 30     |       |      |           |           | 10                |                  | 10.3             | 8.8        | 8.5        | 10.8       | 9.8        |
| Copper                                  | mg/kg | 270    | 270   | 50   |           |           | 16.5 <sup>c</sup> |                  | 17.6             | 18.6       | 14.1       | 18.7       | 18.2       |
| Iron                                    | mg/kg | 2000   |       |      |           |           | 23200             |                  | 25200            | 18500      | 17700      | 22800      | 19800      |
| Lead                                    | mg/kg | 400    | 400   | 63   |           |           | 5                 |                  | 8.9 <sup>c</sup> | 4.6        | 3.8        | 4.4        | 5.1        |
| Magnesium                               | mg/kg |        |       |      |           |           | 8600              |                  | 6870             | 6850       | 6770       | 8510       | 7140       |
| Manganese                               | mg/kg | 2000   | 2000  | 1600 |           |           | 288               |                  | 367              | 274        | 303        | 395        | 379        |
| Mercury                                 | mg/kg | 0.81   | 0.81  | 0.18 |           |           | ND (0.032)        |                  | ND (0.036)       | ND (0.031) | ND (0.034) | ND (0.032) | ND (0.034) |
| Nickel                                  | mg/kg | 140    | 310   | 30   |           |           | 19.2              |                  | 17.9             | 17.5       | 16.3       | 21.2       | 18.3       |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:      |       | RSCO | RRSCO | USCO | UST-1-PXW | UST-1-PXS | RA-B8(13'-13.5')      | RA-B8(13'-13.5') | EP-A2                 | EP-B2                 | EP-C2      | EP-C2 DUP             | EP-A3                 |
|------------------------|-------|------|-------|------|-----------|-----------|-----------------------|------------------|-----------------------|-----------------------|------------|-----------------------|-----------------------|
| Lab Sample ID:         |       |      |       |      | JE13362-5 | JE13362-6 | JE14336-1             | JE14336-1A       | JE15615-8             | JE15615-9             | JE15615-10 | JE15615-13            | JE15615-11            |
| Sample Depth (ft bgs): |       |      |       |      | 7.5-8.0   | 7.5-8.0   | 13.0-13.5             | 13.0-13.5        | 11.5-12.0             | 11.5-12.0             | 11.5-12.0  | 11.5-12.0             | 11.5-12.0             |
| Date Sampled:          |       |      |       |      | 6/16/2025 | 6/16/2025 | 7/1/2025              | 7/1/2025         | 7/22/2025             | 7/22/2025             | 7/22/2025  | 7/22/2025             | 7/22/2025             |
| Matrix:                |       |      |       |      | Soil      | Soil      | Soil                  | Soil             | Soil                  | Soil                  | Soil       | Soil                  | Soil                  |
| Analyte                | Unit  |      |       |      |           |           |                       |                  |                       |                       |            |                       |                       |
| Potassium              | mg/kg |      |       |      |           |           | 6880                  |                  | 5120                  | 4170                  | 4990       | 6530                  | 5260                  |
| Selenium               | mg/kg | 36   | 180   | 3.9  |           |           | ND (4.5) <sup>c</sup> |                  | ND (4.5) <sup>c</sup> | ND (2.2)              | ND (2.2)   | ND (2.3)              | ND (2.2)              |
| Silver                 | mg/kg | 36   | 180   | 2    |           |           | ND (0.57)             |                  | ND (0.56)             | ND (0.55)             | ND (0.56)  | ND (0.58)             | ND (0.55)             |
| Sodium                 | mg/kg |      |       |      |           |           | ND (1100)             |                  | ND (1100)             | ND (1100)             | ND (1100)  | ND (1200)             | ND (1100)             |
| Thallium               | mg/kg |      |       |      |           |           | ND (2.3) <sup>c</sup> |                  | ND (2.3) <sup>c</sup> | ND (2.2) <sup>c</sup> | ND (5.6)   | ND (2.3) <sup>c</sup> | ND (2.2) <sup>c</sup> |
| Vanadium               | mg/kg | 100  |       |      |           |           | 37.5                  |                  | 31.7                  | 25                    | 27.3       | 35.2                  | 32.1                  |
| Zinc                   | mg/kg | 2200 | 10000 | 109  |           |           | 56.3                  |                  | 62.5                  | 51.3                  | 46         | 58.4                  | 53.4                  |
| General Chemistry      |       |      |       |      |           |           |                       |                  |                       |                       |            |                       |                       |
| Cyanide                | mg/kg | 27   | 27    | 27   |           |           | ND (0.28)             |                  | ND (0.31)             | ND (0.29)             | ND (0.27)  | ND (0.33)             | ND (0.28)             |
| Solids, Percent        | %     |      |       |      | 87.7      | 86.6      | 89.7                  |                  | 88.7                  | 93.3                  | 91.2       | 90.9                  | 89.6                  |

| Footnote | Comments                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a        | Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND. |
| b        | Associated CCV outside of control limits high, sample was ND.                                                                                                   |
| c        | Elevated detection limit due to dilution required for high interfering element.                                                                                 |
| d        | Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.     |
| e        | Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.                             |
| f        | This compound in blank spike is outside in house QC limits bias high.                                                                                           |
| g        | Associated CCV outside of control limits low.                                                                                                                   |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                 |       | RSCO   | RRSCO  | USCO | EP-B3                 | EP-A10    | EP-B10    | EP-B9     | EP-A9     | EP-A8     | EP-B8     | EP-C8     | EP-B7     |  |
|-----------------------------------|-------|--------|--------|------|-----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Lab Sample ID:                    |       |        |        |      | JE15615-12            | JE15682-1 | JE15682-2 | JE15682-3 | JE15682-4 | JE15682-5 | JE15682-6 | JE15682-7 | JE15682-8 |  |
| Sample Depth (ft bgs):            |       |        |        |      | 11.5-12.0             | 8.0-8.5   | 8.0-8.5   | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 |  |
| Date Sampled:                     |       |        |        |      | 7/22/2025             | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 |  |
| Matrix:                           |       |        |        |      | Soil                  | Soil      | Soil      | Soil      | Soil      | Soil      | Soil      | Soil      | Soil      |  |
| Analyte                           | Unit  |        |        |      |                       |           |           |           |           |           |           |           |           |  |
| Volatile Organic Compounds (VOCs) |       |        |        |      |                       |           |           |           |           |           |           |           |           |  |
| 1,1,1-Trichloroethane             | ug/kg | 100000 | 100000 | 680  | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| 1,1,2,2-Tetrachloroethane         | ug/kg | 35000  |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| 1,1,2-Trichloroethane             | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| 1,1-Dichloroethane                | ug/kg | 19000  | 26000  | 270  | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 1,1-Dichloroethene                | ug/kg | 100000 | 100000 | 330  | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 1,2,3-Trichlorobenzene            | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| 1,2,4-Trichlorobenzene            | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| 2-Dibromo-3-chloropropan          | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| 1,2-Dibromoethane                 | ug/kg |        |        |      | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 1,2-Dichlorobenzene               | ug/kg | 100000 | 100000 | 1100 | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 1,2-Dichloroethane                | ug/kg | 2300   | 3100   | 20   | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 1,2-Dichloropropane               | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| 1,3-Dichlorobenzene               | ug/kg | 17000  | 49000  | 2400 | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 1,4-Dichlorobenzene               | ug/kg | 9800   | 13000  | 1800 | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| 2-Butanone (MEK)                  | ug/kg | 100000 | 100000 | 120  | ND (10)               | ND (11)   | ND (8.9)  | ND (9.3)  | ND (12)   | ND (13)   | ND (9.1)  | ND (9.4)  | ND (9.1)  |  |
| 2-Hexanone                        | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Methyl-2-pentanone(MIB)           | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Acetone                           | ug/kg | 100000 | 100000 | 50   | ND (10)               | ND (11)   | ND (8.9)  | ND (9.3)  | ND (12)   | ND (13)   | ND (9.1)  | ND (9.4)  | ND (9.1)  |  |
| Benzene                           | ug/kg | 2900   | 4800   | 60   | ND (0.51)             | ND (0.56) | ND (0.45) | ND (0.46) | ND (0.58) | ND (0.64) | ND (0.45) | ND (0.47) | ND (0.46) |  |
| Bromochloromethane                | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Bromodichloromethane              | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Bromoform                         | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Bromomethane                      | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Carbon disulfide                  | ug/kg | 100000 |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Carbon tetrachloride              | ug/kg | 1400   | 2400   | 760  | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Chlorobenzene                     | ug/kg | 100000 | 100000 | 1100 | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Chloroethane                      | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Chloroform                        | ug/kg | 10000  | 49000  | 370  | ND (2.0) <sup>d</sup> | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Chloromethane                     | ug/kg |        |        |      | ND (5.1) <sup>e</sup> | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| cis-1,2-Dichloroethene            | ug/kg | 59000  | 100000 | 250  | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| cis-1,3-Dichloropropene           | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Cyclohexane                       | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Dibromochloromethane              | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Dichlorodifluoromethane           | ug/kg |        |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Ethylbenzene                      | ug/kg | 30000  | 41000  | 1000 | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| Freon 113                         | ug/kg | 100000 |        |      | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Isopropylbenzene                  | ug/kg | 100000 |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| m,p-Xylene                        | ug/kg | 100000 | 100000 | 260  | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| Methyl Acetate                    | ug/kg |        |        |      | ND (5.1) <sup>d</sup> | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| Methyl Tert Butyl Ether           | ug/kg | 62000  | 100000 | 930  | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| Methylcyclohexane                 | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Methylene chloride                | ug/kg | 51000  | 100000 | 50   | ND (5.1)              | ND (5.6)  | ND (4.5)  | ND (4.6)  | ND (5.8)  | ND (6.4)  | ND (4.5)  | ND (4.7)  | ND (4.6)  |  |
| o-Xylene                          | ug/kg | 100000 | 100000 | 260  | ND (1.0)              | ND (1.1)  | ND (0.89) | ND (0.93) | ND (1.2)  | ND (1.3)  | ND (0.91) | ND (0.94) | ND (0.91) |  |
| Styrene                           | ug/kg |        |        |      | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Tetrachloroethene                 | ug/kg | 5500   | 19000  | 1300 | ND (2.0)              | ND (2.2)  | ND (1.8)  | ND (1.9)  | ND (2.3)  | ND (2.5)  | ND (1.8)  | ND (1.9)  | ND (1.8)  |  |
| Toluene                           | ug/kg | 100000 | 100000 |      |                       |           |           |           |           |           |           |           |           |  |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                      |       | RSCO   | RRSCO  | USCO   | EP-B3                 | EP-A10                | EP-B10                | EP-B9                 | EP-A9                 | EP-A8                 | EP-B8                 | EP-C8                 | EP-B7                 |                       |
|----------------------------------------|-------|--------|--------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                         |       |        |        |        | JE15615-12            | JE15682-1             | JE15682-2             | JE15682-3             | JE15682-4             | JE15682-5             | JE15682-6             | JE15682-7             | JE15682-8             |                       |
| Sample Depth (ft bgs):                 |       |        |        |        | 11.5-12.0             | 8.0-8.5               | 8.0-8.5               | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             |                       |
| Date Sampled:                          |       |        |        |        | 7/22/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             |                       |
| Matrix:                                |       |        |        |        | Soil                  |                       |
| Analyte                                | Unit  |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Semivolatile Organic Compounds (SVOCs) |       |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| 2-Chlorophenol                         | ug/kg | 100000 |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 4-Chloro-3-methyl phenol               | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| 2,4-Dichlorophenol                     | ug/kg | 100000 |        |        | ND (180)              | ND (170)              | ND (180)              |
| 2,4-Dimethylphenol                     | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| 2,4-Dinitrophenol                      | ug/kg | 100000 |        |        | ND (180) <sup>b</sup> | ND (170)              | ND (180)              |
| 4,6-Dinitro-o-cresol                   | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (170) <sup>b</sup> | ND (180) <sup>b</sup> |
| 2-Methylphenol                         | ug/kg | 100000 | 100000 | 330    | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 3&4-Methylphenol                       | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 2-Nitrophenol                          | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (170)              | ND (180)              |
| 4-Nitrophenol                          | ug/kg |        |        |        | ND (370)              | ND (340)              | ND (370)              | ND (360)              | ND (350)              | ND (350)              | ND (360)              | ND (370)              | ND (350)              | ND (350)              |
| Pentachlorophenol                      | ug/kg | 2400   | 6700   | 800    | ND (150)              | ND (140)              | ND (150)              | ND (140)              | ND (140)              | ND (140)              | ND (140)              | ND (150)              | ND (140)              | ND (140)              |
| Phenol                                 | ug/kg | 100000 | 100000 | 330    | ND (74)               | ND (69) <sup>b</sup>  | ND (73) <sup>b</sup>  | ND (72) <sup>b</sup>  | ND (71) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (71) <sup>b</sup>  | ND (73) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (70) <sup>b</sup>  |
| 2,3,4,6-Tetrachlorophenol              | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (170)              | ND (180)              |
| 2,4,5-Trichlorophenol                  | ug/kg | 100000 |        |        | ND (180)              | ND (170)              | ND (180)              |
| 2,4,6-Trichlorophenol                  | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| Acenaphthene                           | ug/kg | 100000 | 100000 | 20000  | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Acenaphthylene                         | ug/kg | 100000 | 100000 | 100000 | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Acetophenone                           | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| Anthracene                             | ug/kg | 100000 | 100000 | 100000 | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Atrazine                               | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| Benzo(a)anthracene                     | ug/kg | 1000   | 1000   | 1000   | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Benzo(a)pyrene                         | ug/kg | 1000   | 1000   | 1000   | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Benzo(b)fluoranthene                   | ug/kg | 1000   | 1000   | 1000   | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Benzo(g,h,i)perylene                   | ug/kg | 100000 | 100000 | 100000 | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Benzo(k)fluoranthene                   | ug/kg | 1000   | 3900   | 800    | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| -Bromophenyl phenyl ether              | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| Butyl benzyl phthalate                 | ug/kg | 100000 |        |        | ND (74) <sup>b</sup>  | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 1,1'-Biphenyl                          | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| Benzaldehyde                           | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| 2-Chloronaphthalene                    | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 4-Chloroaniline                        | ug/kg | 100000 |        |        | ND (180)              | ND (170)              | ND (180)              |
| Carbazole                              | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| Caprolactam                            | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| Chrysene                               | ug/kg | 1000   | 3900   | 1000   | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| is(2-Chloroethoxy)methan               | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| bis(2-Chloroethyl)ether                | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 2'-Oxybis(1-chloropropan)              | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| -Chlorophenyl phenyl ether             | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 2,4-Dinitrotoluene                     | ug/kg |        |        |        | ND (37) <sup>b</sup>  | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| 2,6-Dinitrotoluene                     | ug/kg | 1030   |        |        | ND (37) <sup>b</sup>  | ND (34) <sup>b</sup>  | ND (37) <sup>b</sup>  | ND (36) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (36) <sup>b</sup>  | ND (37) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (35) <sup>b</sup>  |
| 3,3'-Dichlorobenzidine                 | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               | ND (70)               |
| 1,4-Dioxane                            | ug/kg | 9800   | 13000  | 100    | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Dibenzo(a,h)anthracene                 | ug/kg | 330    | 330    | 330    | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               | ND (35)               |
| Dibenzo furan                          | ug/kg | 14000  | 59000  | 7000   | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               |                       |                       |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                          |       | RSCO   | RRSCO  | USCO   | EP-B3                 | EP-A10                | EP-B10                | EP-B9                 | EP-A9                 | EP-A8                 | EP-B8                 | EP-C8                 | EP-B7                 |
|--------------------------------------------|-------|--------|--------|--------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                             |       |        |        |        | JE15615-12            | JE15682-1             | JE15682-2             | JE15682-3             | JE15682-4             | JE15682-5             | JE15682-6             | JE15682-7             | JE15682-8             |
| Sample Depth (ft bgs):                     |       |        |        |        | 11.5-12.0             | 8.0-8.5               | 8.0-8.5               | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             |
| Date Sampled:                              |       |        |        |        | 7/22/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             |
| Matrix:                                    |       |        |        |        | Soil                  |
| Analyte                                    | Unit  |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| 2-Nitroaniline                             | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (170) <sup>b</sup> | ND (180) <sup>b</sup> |
| 3-Nitroaniline                             | ug/kg |        |        |        | ND (180)              | ND (170) <sup>b</sup> | ND (180) <sup>b</sup> |
| 4-Nitroaniline                             | ug/kg |        |        |        | ND (180)              | ND (170) <sup>b</sup> | ND (180) <sup>b</sup> |
| Naphthalene                                | ug/kg | 100000 | 100000 | 12000  | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               |
| Nitrobenzene                               | ug/kg | 3700   | 15000  |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               |
| N-Nitroso-di-n-propylamine                 | ug/kg |        |        |        | ND (74)               | ND (69)               | ND (73)               | ND (72)               | ND (71)               | ND (70)               | ND (71)               | ND (73)               | ND (70)               |
| N-Nitrosodiphenylamine                     | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| Phenanthrene                               | ug/kg | 100000 | 100000 | 100000 | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               |
| Pyrene                                     | ug/kg | 100000 | 100000 | 100000 | ND (37)               | ND (34)               | ND (37)               | ND (36)               | ND (35)               | ND (35)               | ND (36)               | ND (37)               | ND (35)               |
| ,2,4,5-Tetrachlorobenzen                   | ug/kg |        |        |        | ND (180)              | ND (170)              | ND (180)              |
| 2-Fluorophenol                             | %     |        |        |        | 57                    | 30                    | 41                    | 47                    | 39                    | 38                    | 32                    | 30                    | 28                    |
| Phenol-d5                                  | %     |        |        |        | 53                    | 32                    | 46                    | 47                    | 41                    | 37                    | 38                    | 34                    | 30                    |
| 2,4,6-Tribromophenol                       | %     |        |        |        | 85                    | 39                    | 54                    | 45                    | 44                    | 37                    | 52                    | 43                    | 31                    |
| Nitrobenzene-d5                            | %     |        |        |        | 57                    | 30                    | 43                    | 45                    | 38                    | 37                    | 32                    | 31                    | 28                    |
| 2-Fluorobiphenyl                           | %     |        |        |        | 63                    | 36                    | 53                    | 50                    | 44                    | 40                    | 46                    | 44                    | 36                    |
| Terphenyl-d14                              | %     |        |        |        | 74                    | 51                    | 65                    | 60                    | 56                    | 46                    | 63                    | 60                    | 47                    |
| SVOC via SIM                               |       |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| 1,4-Dioxane (1)                            | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Nitrobenzene-d5 (1)                        | %     |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| 2-Fluorobiphenyl (1)                       | %     |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Terphenyl-d14 (1)                          | %     |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| SVOC TICs                                  |       |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Cyclic octaatomic sulfur                   | ug/kg |        |        |        |                       |                       |                       |                       | 160 JN                |                       |                       |                       |                       |
| Dibenzopyrene                              | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| hal standard added for SIM                 | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown                                    | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| unknown                                    | ug/kg |        |        |        |                       | 400 J                 |                       |                       |                       | 160 J                 |                       |                       |                       |
| Unknown                                    | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Dibenzopyrene (1)                          | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| l standard added for SIM                   | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (1)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Dibenzopyrene (2)                          | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| l standard added for SIM                   | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (2)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (4)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Dibenzopyrene (3)                          | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| l standard added for SIM                   | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (3)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (5)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Dibenzopyrene (4)                          | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (6)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (7)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (8)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (9)                                | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Unknown (10)                               | ug/kg |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Total TIC, Semi-Volatile                   | ug/kg |        |        |        | 0                     | 400 J                 | 0                     | 0                     | 160 J                 | 160 J                 | 0                     | 0                     | 0                     |
| Per- and Polyfluoroalkyl Substances (PFAS) |       |        |        |        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Perfluorobutanoic acid                     | ug/kg |        |        |        | ND (0.86)             | ND (0.81)             | ND (0.85)             | ND (0.86)             | ND (0.83)             | ND (0.84)             | ND (0.83)             | ND (0.87)             | ND (0.82)             |
| Perfluoropentanoic acid                    | ug/kg |        |        |        | ND (0.43)             | ND (0.41)             | ND (0.42)             | ND (0.43)             | ND (0.41)             | ND (0.42)             | ND (0.41)             | ND (0.44)             | ND (0.41)             |
| Perfluorohexanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluoroheptanoic acid                    | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluoroctanoic acid                      | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluorononanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluorodecanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluoroundecanoic acid                   | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluorododecanoic acid                   | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluorotridecanoic acid                  | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluorotetradecanoic acid                | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |
| Perfluorobutanesulfonic acid               | ug/kg |        |        |        | ND (0.21)             | ND (0.20)             | ND (0.21)             | ND (0.22)             | ND (0.21)             |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                   |       | RSCO | RRSCO | USCO | EP-B3      | EP-A10    | EP-B10    | EP-B9     | EP-A9     | EP-A8     | EP-B8     | EP-C8     | EP-B7     |      |  |  |
|-------------------------------------|-------|------|-------|------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|--|--|
| Lab Sample ID:                      |       |      |       |      | JE15615-12 | JE15682-1 | JE15682-2 | JE15682-3 | JE15682-4 | JE15682-5 | JE15682-6 | JE15682-7 | JE15682-8 |      |  |  |
| Sample Depth (ft bgs):              |       |      |       |      | 11.5-12.0  | 8.0-8.5   | 8.0-8.5   | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 | 13.0-13.5 |      |  |  |
| Date Sampled:                       |       |      |       |      | 7/22/2025  | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 | 7/23/2025 |      |  |  |
| Matrix:                             |       |      |       |      |            | Soil      | Soil |  |  |
| Analyte                             | Unit  |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| erfluoropentanesulfonic acid        | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| erfluorohexanesulfonic acid         | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| erfluoroheptanesulfonic acid        | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| erfluoroctanesulfonic acid          | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| erfluorononanesulfonic acid         | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| erfluorodecanesulfonic acid         | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| erfluorododecanesulfonic acid       | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| <i>n</i> :2 Fluorotelomer sulfonate | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| <i>n</i> :2 Fluorotelomer sulfonate | ug/kg |      |       |      |            | ND (0.86) | ND (0.81) | ND (0.85) | ND (0.86) | ND (0.84) | ND (0.83) | ND (0.87) | ND (0.82) |      |  |  |
| <i>n</i> :2 Fluorotelomer sulfonate | ug/kg |      |       |      |            | ND (0.86) | ND (0.81) | ND (0.85) | ND (0.86) | ND (0.84) | ND (0.83) | ND (0.87) | ND (0.82) |      |  |  |
| PFOSA                               | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| MeFOSA                              | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| EtFOSA                              | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| MeFOSAA                             | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| EtFOSAA                             | ug/kg |      |       |      |            | ND (0.21) | ND (0.20) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.21) | ND (0.22) | ND (0.21) |      |  |  |
| MeFOSE                              | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| EtFOSE                              | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| HFPO-DA (GenX)                      | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| ADONA                               | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| PFMPA                               | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| PFMBA                               | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| NFDHA                               | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| Cl-PF3ONS (F-53B Major)             | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| Cl-PF3OUdS (F-53B Minor)            | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| PFEEESA                             | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| 3 Fluorotelomer carboxylate         | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| 3 Fluorotelomer carboxylate         | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| 3 Fluorotelomer carboxylate         | ug/kg |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| 13C4-PFBA                           | %     |      |       |      |            | 82        | 84        | 70        | 84        | 82        | 83        | 78        | 82        | 73   |  |  |
| 13C5-PFPeA                          | %     |      |       |      |            | 82        | 86        | 69        | 86        | 83        | 81        | 76        | 81        | 72   |  |  |
| 13C5-PFHxA                          | %     |      |       |      |            | 82        | 88        | 71        | 91        | 82        | 84        | 82        | 84        | 73   |  |  |
| 13C4-PFHxA                          | %     |      |       |      |            | 80        | 86        | 74        | 85        | 81        | 81        | 76        | 83        | 74   |  |  |
| 13C8-PFOA                           | %     |      |       |      |            | 80        | 79        | 69        | 82        | 79        | 83        | 77        | 82        | 72   |  |  |
| 13C9-PFNA                           | %     |      |       |      |            | 88        | 83        | 72        | 87        | 83        | 88        | 87        | 85        | 76   |  |  |
| 13C6-PFDA                           | %     |      |       |      |            | 78        | 81        | 71        | 85        | 78        | 81        | 76        | 83        | 74   |  |  |
| 13C7-PFUnDA                         | %     |      |       |      |            | 83        | 90        | 73        | 94        | 77        | 86        | 85        | 81        | 73   |  |  |
| 13C2-PFDoDA                         | %     |      |       |      |            | 83        | 88        | 71        | 91        | 81        | 92        | 83        | 84        | 73   |  |  |
| 13C2-PFTeDA                         | %     |      |       |      |            | 82        | 85        | 75        | 88        | 78        | 92        | 87        | 87        | 73   |  |  |
| 13C3-PFBS                           | %     |      |       |      |            | 82        | 88        | 64        | 85        | 85        | 79        | 84        | 85        | 80   |  |  |
| 13C3-PFHxS                          | %     |      |       |      |            | 79        | 92        | 68        | 85        | 87        | 92        | 87        | 81        | 73   |  |  |
| 13C8-PFOS                           | %     |      |       |      |            | 84        | 83        | 71        | 84        | 83        | 77        | 82        | 85        | 73   |  |  |
| 13C8-FOSA                           | %     |      |       |      |            | 86        | 84        | 73        | 88        | 82        | 91        | 85        | 87        | 74   |  |  |
| d3-MeFOSA                           | %     |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| d5-EtFOSA                           | %     |      |       |      |            |           |           |           |           |           |           |           |           |      |  |  |
| d3-MeFOSAA                          | %     |      |       |      |            | 78        | 78        | 66        | 82        | 76        | 82        | 78        | 86        | 70   |  |  |
| d5-EtFOSAA                          | %     |      |       |      |            | 77        | 79        | 66        | 81        | 73        | 78        | 78        | 84        | 66</ |  |  |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                       |       | RSCO   | RRSCO | USCO | EP-B3      | EP-A10    | EP-B10    | EP-B9             | EP-A9           | EP-A8             | EP-B8             | EP-C8             | EP-B7     |
|-----------------------------------------|-------|--------|-------|------|------------|-----------|-----------|-------------------|-----------------|-------------------|-------------------|-------------------|-----------|
| Lab Sample ID:                          |       |        |       |      | JE15615-12 | JE15682-1 | JE15682-2 | JE15682-3         | JE15682-4       | JE15682-5         | JE15682-6         | JE15682-7         | JE15682-8 |
| Sample Depth (ft bgs):                  |       |        |       |      | 11.5-12.0  | 8.0-8.5   | 8.0-8.5   | 13.0-13.5         | 13.0-13.5       | 13.0-13.5         | 13.0-13.5         | 13.0-13.5         | 13.0-13.5 |
| Date Sampled:                           |       |        |       |      | 7/22/2025  | 7/23/2025 | 7/23/2025 | 7/23/2025         | 7/23/2025       | 7/23/2025         | 7/23/2025         | 7/23/2025         | 7/23/2025 |
| Matrix:                                 |       |        |       |      | Soil       | Soil      | Soil      | Soil              | Soil            | Soil              | Soil              | Soil              | Soil      |
| Analyte                                 | Unit  |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| gamma-Chlordane                         | ug/kg | 540    |       |      | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Dieldrin                                | ug/kg | 39     | 200   | 5    | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| 4,4'-DDD                                | ug/kg | 2600   | 13000 | 3.3  | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| 4,4'-DDE                                | ug/kg | 1800   | 8900  | 3.3  | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| 4,4'-DDT                                | ug/kg | 1700   | 7900  | 3.3  | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Endrin                                  | ug/kg | 2200   | 11000 | 14   | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Endosulfan sulfate                      | ug/kg | 4800   | 24000 | 2400 | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Endrin aldehyde                         | ug/kg |        |       |      | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Endosulfan-I                            | ug/kg | 4800   | 24000 | 2400 | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Endosulfan-II                           | ug/kg | 4800   | 24000 | 2400 | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Heptachlor                              | ug/kg | 420    | 2100  | 42   | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Heptachlor epoxide                      | ug/kg | 77     |       |      | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Methoxychlor                            | ug/kg | 100000 |       |      | ND (1.4)   | ND (1.4)  | ND (1.5)  | ND (1.4)          | ND (1.4)        | ND (1.3)          | ND (1.3)          | ND (1.4)          | ND (1.3)  |
| Endrin ketone                           | ug/kg |        |       |      | ND (0.72)  | ND (0.68) | ND (0.73) | ND (0.69)         | ND (0.71)       | ND (0.65)         | ND (0.66)         | ND (0.70)         | ND (0.63) |
| Toxaphene                               | ug/kg |        |       |      | ND (18)    | ND (17)   | ND (18)   | ND (17)           | ND (18)         | ND (16)           | ND (16)           | ND (17)           | ND (16)   |
| Tetrachloro-m-xylene                    | %     |        |       |      | 44         | 54        | 80        | 93                | 59              | 69                | 82                | 67                | 66        |
| Tetrachloro-m-xylene (1)                | %     |        |       |      | 46         | 51        | 75        | 90                | 59              | 75                | 77                | 63                | 65        |
| Tetrachloro-m-xylene (2)                | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Tetrachloro-m-xylene (3)                | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Decachlorobiphenyl                      | %     |        |       |      | 57         | 62        | 98        | 105               | 71              | 87                | 96                | 81                | 75        |
| Decachlorobiphenyl (1)                  | %     |        |       |      | 59         | 60        | 90        | 105               | 64              | 84                | 84                | 72                | 71        |
| Decachlorobiphenyl (2)                  | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Decachlorobiphenyl (3)                  | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| <b>Polychlorinated Biphenyls (PCBs)</b> |       |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Aroclor 1016                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1221                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1232                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1242                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1248                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1254                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1260                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1268                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Aroclor 1262                            | ug/kg | 1000   | 1000  | 100  | ND (36)    | ND (34)   | ND (36)   | ND (35)           | ND (35)         | ND (32)           | ND (33)           | ND (35)           | ND (31)   |
| Tetrachloro-m-xylene                    | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Tetrachloro-m-xylene (1)                | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Tetrachloro-m-xylene (2)                | %     |        |       |      | 65         | 56        | 76        | 91                | 63              | 77                | 82                | 71                | 69        |
| Tetrachloro-m-xylene (3)                | %     |        |       |      | 88         | 80        | 109       | 128               | 90              | 108               | 116               | 102               | 97        |
| Decachlorobiphenyl                      | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Decachlorobiphenyl (1)                  | %     |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Decachlorobiphenyl (2)                  | %     |        |       |      | 75         | 61        | 88        | 103               | 70              | 85                | 90                | 81                | 76        |
| Decachlorobiphenyl (3)                  | %     |        |       |      | 93         | 78        | 112       | 134               | 91              | 110               | 115               | 105               | 95        |
| <b>Metals</b>                           |       |        |       |      |            |           |           |                   |                 |                   |                   |                   |           |
| Aluminum                                | mg/kg |        |       |      | 12400      | 11600     | 10400     | 11700             | 11900           | 10700             | 11100             | 12500             | 13000     |
| Antimony                                | mg/kg |        |       |      | ND (2.2)   | ND (2.1)  | ND (2.2)  | ND (2.1)          | ND (2.1)        | ND (2.1)          | ND (2.1)          | ND (2.3)          | ND (4.2)  |
| Arsenic                                 | mg/kg | 16     | 16    | 13   | ND (2.2)   | ND (2.1)  | ND (2.2)  | ND (2.1)          | ND (2.2)        | ND (2.1)          | ND (2.1)          | ND (2.3)          | ND (2.1)  |
| Barium                                  | mg/kg | 350    | 400   | 350  | 144        | 148       | 125       | 144               | 151             | 134               | 132               | 149               | 152       |
| Beryllium                               | mg/kg | 14     | 72    | 7.2  | 0.48       | 0.34      | 0.33      | 0.39              | 0.37            | 0.34              | 0.36              | 0.41              | 0.47      |
| Cadmium                                 | mg/kg | 2.5    | 4.3   | 2.5  | ND (0.54)  | ND (0.54) | ND (0.54) | ND (0.54)         | ND (0.55)       | ND (0.52)         | ND (0.52)         | ND (0.57)         | ND (0.53) |
| Calcium                                 | mg/kg |        |       |      | 8530       | 9100      | 7370      | 7670              | 10200           | 6300              | 12200             | 8440              | 8470      |
| Chromium                                | mg/kg |        |       |      | 21.9       | 20        | 19.3      | 21                | 21.1            | 20.7              | 19.6              | 24.5              | 21.8      |
| Cobalt                                  | mg/kg | 30     |       |      | 9.3        | 9.4       | 8.3       | 9.5               | 9.7             | 9.3               | 9                 | 9.5               | 9.9       |
| Copper                                  | mg/kg | 270    | 270   | 50   | 19.3       | 13.5      | 14.2      | 16.7 <sup>c</sup> | 16 <sup>c</sup> | 14.7 <sup>c</sup> | 16.4 <sup>c</sup> | 17.1 <sup>c</sup> | 17.5      |
| Iron                                    | mg/kg | 2000   |       |      | 21400      | 20600     | 18500     | 22400             | 22700           | 20000             | 20400             | 22600             | 24400     |
| Lead                                    | mg/kg | 400</  |       |      |            |           |           |                   |                 |                   |                   |                   |           |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:      |       | RSCO | RRSCO | USCO | EP-B3                 | EP-A10                | EP-B10                | EP-B9                 | EP-A9                 | EP-A8                 | EP-B8                 | EP-C8                 | EP-B7     |
|------------------------|-------|------|-------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------|
| Lab Sample ID:         |       |      |       |      | JE15615-12            | JE15682-1             | JE15682-2             | JE15682-3             | JE15682-4             | JE15682-5             | JE15682-6             | JE15682-7             | JE15682-8 |
| Sample Depth (ft bgs): |       |      |       |      | 11.5-12.0             | 8.0-8.5               | 8.0-8.5               | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 13.0-13.5 |
| Date Sampled:          |       |      |       |      | 7/22/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/23/2025 |
| Matrix:                |       |      |       |      | Soil                  | Soil      |
| Analyte                | Unit  |      |       |      |                       |                       |                       |                       |                       |                       |                       |                       |           |
| Potassium              | mg/kg |      |       |      | 5620                  | 5970                  | 5140                  | 6010                  | 6080                  | 5110                  | 5400                  | 6190                  | 6250      |
| Selenium               | mg/kg | 36   | 180   | 3.9  | ND (2.2)              | ND (2.1)              | ND (2.2)              | ND (4.3) <sup>c</sup> | ND (4.4) <sup>c</sup> | ND (4.2) <sup>c</sup> | ND (4.2) <sup>c</sup> | ND (4.6) <sup>c</sup> | ND (4.2)  |
| Silver                 | mg/kg | 36   | 180   | 2    | ND (0.54)             | ND (1.1) <sup>c</sup> | ND (1.1) <sup>c</sup> | ND (1.1) <sup>c</sup> | ND (1.1) <sup>c</sup> | ND (1.0) <sup>c</sup> | ND (1.0) <sup>c</sup> | ND (1.1) <sup>c</sup> | ND (1.1)  |
| Sodium                 | mg/kg |      |       |      | ND (1100)             | ND (1000)             | ND (1000)             | ND (1100)             | ND (1100) |
| Thallium               | mg/kg |      |       |      | ND (2.2) <sup>c</sup> | ND (1.1)              | ND (1.1)              | ND (2.1) <sup>c</sup> | ND (2.2) <sup>c</sup> | ND (2.1) <sup>c</sup> | ND (2.1) <sup>c</sup> | ND (2.3) <sup>c</sup> | ND (2.1)  |
| Vanadium               | mg/kg | 100  |       |      | 32.3                  | 28.2                  | 26.5                  | 30.4                  | 29.5                  | 25.6                  | 28.2                  | 33.3                  | 30.9      |
| Zinc                   | mg/kg | 2200 | 10000 | 109  | 53.9                  | ND (54)               | ND (54)               | ND (54)               | ND (55)               | ND (52)               | ND (52)               | ND (57)               | 56        |
| General Chemistry      |       |      |       |      |                       |                       |                       |                       |                       |                       |                       |                       |           |
| Cyanide                | mg/kg | 27   | 27    | 27   | ND (0.31)             | ND (0.23)             | ND (0.29)             | ND (0.28)             | ND (0.23)             | ND (0.25)             | ND (0.29)             | ND (0.28)             | ND (0.28) |
| Solids, Percent        | %     |      |       |      | 89.2                  | 96.7                  | 90.2                  | 92.8                  | 93.9                  | 93.4                  | 93.2                  | 90.5                  | 94.7      |

| Footnote | Comments                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a        | Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND. |
| b        | Associated CCV outside of control limits high, sample was ND.                                                                                                   |
| c        | Elevated detection limit due to dilution required for high interfering element.                                                                                 |
| d        | Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.     |
| e        | Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.                             |
| f        | This compound in blank spike is outside in house QC limits bias high.                                                                                           |
| g        | Associated CCV outside of control limits low.                                                                                                                   |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                 |       | RSCO   | RRSCO  | USCO | EP-B7 DUP  | EP-A7     | EP-A6      | EP-B11                | EP-3.5    | EP-A4     | EP-A4 DUP |
|-----------------------------------|-------|--------|--------|------|------------|-----------|------------|-----------------------|-----------|-----------|-----------|
| Lab Sample ID:                    |       |        |        |      | JE15682-11 | JE15682-9 | JE15682-10 | JE15821-1             | JE16023-1 | JE16023-2 | JE16023-3 |
| Sample Depth (ft bgs):            |       |        |        |      | 13.0-13.5  | 13.0-13.5 | 13.0-13.5  | 8.0-8.5               | 11.5-12.0 | 11.5-12.0 | 11.5-12.0 |
| Date Sampled:                     |       |        |        |      | 7/23/2025  | 7/23/2025 | 7/23/2025  | 7/24/2025             | 7/28/2025 | 7/28/2025 | 7/28/2025 |
| Matrix:                           |       |        |        |      | Soil       | Soil      | Soil       | Soil                  | Soil      | Soil      | Soil      |
| Analyte                           | Unit  |        |        |      |            |           |            |                       |           |           |           |
| Volatile Organic Compounds (VOCs) |       |        |        |      |            |           |            |                       |           |           |           |
| 1,1,1-Trichloroethane             | ug/kg | 100000 | 100000 | 680  | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| 1,1,2,2-Tetrachloroethane         | ug/kg | 35000  |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| 1,1,2-Trichloroethane             | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| 1,1-Dichloroethane                | ug/kg | 19000  | 26000  | 270  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 1,1-Dichloroethene                | ug/kg | 100000 | 100000 | 330  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 1,2,3-Trichlorobenzene            | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| 1,2,4-Trichlorobenzene            | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| 2-Dibromo-3-chloropropan          | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| 1,2-Dibromoethane                 | ug/kg |        |        |      | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 1,2-Dichlorobenzene               | ug/kg | 100000 | 100000 | 1100 | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 1,2-Dichloroethane                | ug/kg | 2300   | 3100   | 20   | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 1,2-Dichloropropane               | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| 1,3-Dichlorobenzene               | ug/kg | 17000  | 49000  | 2400 | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 1,4-Dichlorobenzene               | ug/kg | 9800   | 13000  | 1800 | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| 2-Butanone (MEK)                  | ug/kg | 100000 | 100000 | 120  | ND (10)    | ND (10)   | ND (9.3)   | ND (8.5)              | ND (8.0)  | ND (9.6)  | ND (9.1)  |
| 2-Hexanone                        | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Methyl-2-pentanone(MIB)           | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Acetone                           | ug/kg | 100000 | 100000 | 50   | ND (10)    | ND (10)   | ND (9.3)   | ND (8.5)              | ND (8.0)  | ND (9.6)  | ND (9.1)  |
| Benzene                           | ug/kg | 2900   | 4800   | 60   | ND (0.51)  | ND (0.50) | ND (0.47)  | ND (0.42)             | ND (0.40) | ND (0.48) | ND (0.45) |
| Bromochloromethane                | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Bromodichloromethane              | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Bromoform                         | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Bromomethane                      | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2) <sup>d</sup> | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Carbon disulfide                  | ug/kg | 100000 |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Carbon tetrachloride              | ug/kg | 1400   | 2400   | 760  | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Chlorobenzene                     | ug/kg | 100000 | 100000 | 1100 | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Chloroethane                      | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2) <sup>d</sup> | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Chloroform                        | ug/kg | 10000  | 49000  | 370  | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7) <sup>d</sup> | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Chloromethane                     | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2) <sup>b</sup> | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| cis-1,2-Dichloroethene            | ug/kg | 59000  | 100000 | 250  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| cis-1,3-Dichloropropene           | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Cyclohexane                       | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Dibromochloromethane              | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Dichlorodifluoromethane           | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2) <sup>d</sup> | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Ethylbenzene                      | ug/kg | 30000  | 41000  | 1000 | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| Freon 113                         | ug/kg | 100000 |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Isopropylbenzene                  | ug/kg | 100000 |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| m,p-Xylene                        | ug/kg | 100000 | 100000 | 260  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| Methyl Acetate                    | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2)              | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Methyl Tert Butyl Ether           | ug/kg | 62000  | 100000 | 930  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| Methylcyclohexane                 | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Methylene chloride                | ug/kg | 51000  | 100000 | 50   | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2) <sup>d</sup> | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| o-Xylene                          | ug/kg | 100000 | 100000 | 260  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| Styrene                           | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Tetrachloroethene                 | ug/kg | 5500   | 19000  | 1300 | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Toluene                           | ug/kg | 100000 | 100000 | 700  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| trans-1,2-Dichloroethene          | ug/kg | 100000 | 100000 | 190  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| trans-1,3-Dichloropropene         | ug/kg |        |        |      | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Trichloroethene                   | ug/kg | 10000  | 21000  | 470  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| Trichlorofluoromethane            | ug/kg |        |        |      | ND (5.1)   | ND (5.0)  | ND (4.7)   | ND (4.2) <sup>d</sup> | ND (4.0)  | ND (4.8)  | ND (4.5)  |
| Vinyl chloride                    | ug/kg | 210    | 900    | 20   | ND (2.1)   | ND (2.0)  | ND (1.9)   | ND (1.7)              | ND (1.6)  | ND (1.9)  | ND (1.8)  |
| Xylene (total)                    | ug/kg | 100000 | 100000 | 260  | ND (1.0)   | ND (1.0)  | ND (0.93)  | ND (0.85)             | ND (0.80) | ND (0.96) | ND (0.91) |
| Dibromofluoromethane              | %     |        |        |      | 111        | 110       | 110        | 90                    | 109       | 107       | 110       |
| 1,2-Dichloroethane-D4             | %     |        |        |      | 110        | 109       | 109        | 95                    | 107       | 108       | 113       |
| Toluene-D8                        | %     |        |        |      | 101        | 101       | 100        | 95                    | 105       | 102       | 101       |
| 4-Bromofluorobenzene              | %     |        |        |      | 92         | 91        | 92         |                       |           |           |           |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                       |       | RSCO   | RRSCO  | USCO   | EP-B7 DUP             | EP-A7                 | EP-A6                 | EP-B11               | EP-3.5                | EP-A4                 | EP-A4 DUP             |
|-----------------------------------------|-------|--------|--------|--------|-----------------------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                          |       |        |        |        | JE15682-11            | JE15682-9             | JE15682-10            | JE15821-1            | JE16023-1             | JE16023-2             | JE16023-3             |
| Sample Depth (ft bgs):                  |       |        |        |        | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 8.0-8.5              | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             |
| Date Sampled:                           |       |        |        |        | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/24/2025            | 7/28/2025             | 7/28/2025             | 7/28/2025             |
| Matrix:                                 |       |        |        |        | Soil                  | Soil                  | Soil                  | Soil                 | Soil                  | Soil                  | Soil                  |
| Analyte                                 | Unit  |        |        |        |                       |                       |                       |                      |                       |                       |                       |
| Semi-volatile Organic Compounds (SVOCs) |       |        |        |        |                       |                       |                       |                      |                       |                       |                       |
| 2-Chlorophenol                          | ug/kg | 100000 |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 4-Chloro-3-methyl phenol                | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 2,4-Dichlorophenol                      | ug/kg | 100000 |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 2,4-Dimethylphenol                      | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 2,4-Dinitrophenol                       | ug/kg | 100000 |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190) <sup>a</sup> | ND (200) <sup>a</sup> | ND (190)              |
| 4,6-Dinitro-o-cresol                    | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (180) <sup>b</sup> | ND (170) <sup>b</sup> | ND (190)             | ND (190) <sup>a</sup> | ND (200) <sup>a</sup> | ND (190) <sup>b</sup> |
| 2-Methylphenol                          | ug/kg | 100000 | 100000 | 330    | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 3&4-Methylphenol                        | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 2-Nitrophenol                           | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 4-Nitrophenol                           | ug/kg |        |        |        | ND (360)              | ND (350)              | ND (350)              | ND (370)             | ND (370)              | ND (400)              | ND (370)              |
| Pentachlorophenol                       | ug/kg | 2400   | 6700   | 800    | ND (140)              | ND (140)              | ND (140)              | ND (150)             | ND (150) <sup>a</sup> | ND (160) <sup>a</sup> | ND (150)              |
| Phenol                                  | ug/kg | 100000 | 100000 | 330    | ND (71) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 2,3,4,6-Tetrachlorophenol               | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 2,4,5-Trichlorophenol                   | ug/kg | 100000 |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 2,4,6-Trichlorophenol                   | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| Acenaphthene                            | ug/kg | 100000 | 100000 | 20000  | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Acenaphthylene                          | ug/kg | 100000 | 100000 | 100000 | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Acetophenone                            | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| Anthracene                              | ug/kg | 100000 | 100000 | 100000 | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Atrazine                                | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Benzo(a)anthracene                      | ug/kg | 1000   | 1000   | 1000   | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Benzo(a)pyrene                          | ug/kg | 1000   | 1000   | 1000   | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Benzo(b)fluoranthene                    | ug/kg | 1000   | 1000   | 1000   | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Benzo(g,h,i)perylene                    | ug/kg | 100000 | 100000 | 100000 | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Benzo(k)fluoranthene                    | ug/kg | 1000   | 3900   | 800    | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| -Bromophenyl phenyl ether               | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Butyl benzyl phthalate                  | ug/kg | 100000 |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75) <sup>b</sup>  |
| 1,1'-Biphenyl                           | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Benzaldehyde                            | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| 2-Chloronaphthalene                     | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 4-Chloroaniline                         | ug/kg | 100000 |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| Carbazole                               | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Caprolactam                             | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74) <sup>b</sup> | ND (75)               | ND (80)               | ND (75)               |
| Chrysene                                | ug/kg | 1000   | 3900   | 1000   | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| is(2-Chloroethoxy)methane               | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| bis(2-Chloroethyl)ether                 | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 2'-Oxybis(1-chloropropan)               | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| -Chlorophenyl phenyl ether              | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 2,4-Dinitrotoluene                      | ug/kg |        |        |        | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| 2,6-Dinitrotoluene                      | ug/kg | 1030   |        |        | ND (36) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| 3,3'-Dichlorobenzidine                  | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 1,4-Dioxane                             | ug/kg | 9800   | 13000  | 100    | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Dibenzo(a,h)anthracene                  | ug/kg | 330    | 330    | 330    | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Dibenzofuran                            | ug/kg | 14000  | 59000  | 7000   | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Di-n-butyl phthalate                    | ug/kg | 100000 |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Di-n-octyl phthalate                    | ug/kg | 100000 |        |        | ND (71) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (74)              | ND (75) <sup>b</sup>  | ND (80) <sup>b</sup>  | ND (75) <sup>b</sup>  |
| Diethyl phthalate                       | ug/kg | 100000 |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Dimethyl phthalate                      | ug/kg | 100000 |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| bis(2-Ethylhexyl)phthalate              | ug/kg | 50000  |        |        | ND (71) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (70) <sup>b</sup>  | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Fluoranthene                            | ug/kg | 100000 | 100000 | 100000 | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Fluorene                                | ug/kg | 100000 | 100000 | 30000  | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Hexachlorobenzene                       | ug/kg | 410    | 1200   | 330    | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| Hexachlorobutadiene                     | ug/kg |        |        |        | ND (36)               | ND (35)               | ND (35)               | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Hexachlorocyclopentadien                | ug/kg |        |        |        | ND (360) <sup>a</sup> | ND (350) <sup>a</sup> | ND (350) <sup>a</sup> | ND (370)             | ND (370)              | ND (400)              | ND (370)              |
| Hexachloroethane                        | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)             | ND (190)              | ND (200)              | ND (190)              |
| Indeno(1,2,3-cd)pyrene                  | ug/kg | 500    | 500    | 500    | ND (36) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (35) <sup>b</sup>  | ND (37)              | ND (37)               | ND (40)               | ND (37)               |
| Isophorone                              | ug/kg | 100000 |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)              | ND (75)               | ND (80)               | ND (75)               |
| 2-Methylnaphthalene                     | ug/kg | 410    |        |        | ND (36)               | ND (                  |                       |                      |                       |                       |                       |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                          |       | RSCO   | RRSCO  | USCO   | EP-B7 DUP             | EP-A7                 | EP-A6                 | EP-B11    | EP-3.5                | EP-A4                 | EP-A4 DUP             |
|--------------------------------------------|-------|--------|--------|--------|-----------------------|-----------------------|-----------------------|-----------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:                             |       |        |        |        | JE15682-11            | JE15682-9             | JE15682-10            | JE15821-1 | JE16023-1             | JE16023-2             | JE16023-3             |
| Sample Depth (ft bgs):                     |       |        |        |        | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 8.0-8.5   | 11.5-12.0             | 11.5-12.0             | 11.5-12.0             |
| Date Sampled:                              |       |        |        |        | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/24/2025 | 7/28/2025             | 7/28/2025             | 7/28/2025             |
| Matrix:                                    |       |        |        |        | Soil                  | Soil                  | Soil                  | Soil      | Soil                  | Soil                  | Soil                  |
| Analyte                                    | Unit  |        |        |        |                       |                       |                       |           |                       |                       |                       |
| 2-Nitroaniline                             | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (180) <sup>b</sup> | ND (170) <sup>b</sup> | ND (190)  | ND (190)              | ND (200)              | ND (190)              |
| 3-Nitroaniline                             | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (180) <sup>b</sup> | ND (170) <sup>b</sup> | ND (190)  | ND (190) <sup>a</sup> | ND (200) <sup>a</sup> | ND (190)              |
| 4-Nitroaniline                             | ug/kg |        |        |        | ND (180) <sup>b</sup> | ND (180) <sup>b</sup> | ND (170) <sup>b</sup> | ND (190)  | ND (190)              | ND (200)              | ND (190) <sup>b</sup> |
| Naphthalene                                | ug/kg | 100000 | 100000 | 12000  | ND (36)               | ND (35)               | ND (35)               | 30.7 J    | ND (37)               | ND (40)               | ND (37)               |
| Nitrobenzene                               | ug/kg | 3700   | 15000  |        | ND (71)               | ND (70)               | ND (70)               | ND (74)   | ND (75)               | ND (80)               | ND (75)               |
| N-Nitroso-di-n-propylamine                 | ug/kg |        |        |        | ND (71)               | ND (70)               | ND (70)               | ND (74)   | ND (75)               | ND (80)               | ND (75)               |
| N-Nitrosodiphenylamine                     | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)  | ND (190)              | ND (200)              | ND (190)              |
| Phenanthrene                               | ug/kg | 100000 | 100000 | 100000 | ND (36)               | ND (35)               | ND (35)               | ND (37)   | ND (37)               | ND (40)               | ND (37)               |
| Pyrene                                     | ug/kg | 100000 | 100000 | 100000 | ND (36)               | ND (35)               | ND (35)               | ND (37)   | ND (37)               | ND (40)               | ND (37)               |
| ,2,4,5-Tetrachlorobenzen                   | ug/kg |        |        |        | ND (180)              | ND (180)              | ND (170)              | ND (190)  | ND (190)              | ND (200)              | ND (190)              |
| 2-Fluorophenol                             | %     |        |        |        | 34                    | 52                    | 43                    | 36        | 48                    | 62                    | 60                    |
| Phenol-d5                                  | %     |        |        |        | 36                    | 53                    | 46                    | 36        | 48                    | 62                    | 60                    |
| 2,4,6-Tribromophenol                       | %     |        |        |        | 39                    | 52                    | 32                    | 42        | 52                    | 67                    | 64                    |
| Nitrobenzene-d5                            | %     |        |        |        | 34                    | 53                    | 48                    | 34        | 45                    | 58                    | 58                    |
| 2-Fluorobiphenyl                           | %     |        |        |        | 42                    | 58                    | 51                    | 39        | 48                    | 65                    | 63                    |
| Terphenyl-d14                              | %     |        |        |        | 59                    | 65                    | 56                    | 41        | 57                    | 74                    | 65                    |
| SVOC via SIM                               |       |        |        |        |                       |                       |                       |           |                       |                       |                       |
| 1,4-Dioxane (1)                            | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Nitrobenzene-d5 (1)                        | %     |        |        |        |                       |                       |                       |           |                       |                       |                       |
| 2-Fluorobiphenyl (1)                       | %     |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Terphenyl-d14 (1)                          | %     |        |        |        |                       |                       |                       |           |                       |                       |                       |
| SVOC TICs                                  |       |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Cyclic octaatomic sulfur                   | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Dibenzopyrene                              | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| hal standard added for SIM                 | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Unknown                                    | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| unknown                                    | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Unknown                                    | ug/kg |        |        |        |                       |                       |                       | 290 J     |                       |                       | 360 J                 |
| Dibenzopyrene (1)                          | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| l standard added for SIM                   | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Unknown (1)                                | ug/kg |        |        |        |                       |                       |                       | 280 J     |                       |                       | 210 J                 |
| Dibenzopyrene (2)                          | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| l standard added for SIM                   | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Unknown (2)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 300 J                 |
| Unknown (4)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 300 J                 |
| Dibenzopyrene (3)                          | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| l standard added for SIM                   | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Unknown (3)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 820 J                 |
| Unknown (5)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 160 J                 |
| Dibenzopyrene (4)                          | ug/kg |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Unknown (6)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 160 J                 |
| Unknown (7)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 1300 J                |
| Unknown (8)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 1800 J                |
| Unknown (9)                                | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 510 J                 |
| Unknown (10)                               | ug/kg |        |        |        |                       |                       |                       |           |                       |                       | 150 J                 |
| Total TIC, Semi-Volatile                   | ug/kg |        |        |        | 0                     | 0                     | 0                     | 570 J     | 0                     | 0                     | 6070 J                |
| Per- and Polyfluoroalkyl Substances (PFAS) |       |        |        |        |                       |                       |                       |           |                       |                       |                       |
| Perfluorobutanoic acid                     | ug/kg |        |        |        | ND (0.84)             | ND (0.83)             | ND (0.83)             | ND (0.86) | ND (0.91)             | ND (0.96)             | ND (0.88)             |
| Perfluoropentanoic acid                    | ug/kg |        |        |        | ND (0.42)             | ND (0.41)             | ND (0.42)             | ND (0.43) | ND (0.45)             | ND (0.48)             | ND (0.44)             |
| Perfluorohexanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluoroheptanoic acid                    | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorooctanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorononanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorodecanoic acid                     | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluoroundecanoic acid                   | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorododecanoic acid                   | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorotridecanoic acid                  | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorotetradecanoic acid                | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |
| Perfluorobutanesulfonic acid               | ug/kg |        |        |        | ND (0.21)             | ND (0.21)             | ND (0.21)             | ND (0.21) | ND (0.23)             | ND (0.24)             | ND (0.22)             |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:              |       | RSCO   | RRSCO  | USCO | EP-B7 DUP  | EP-A7     | EP-A6      | EP-B11    | EP-3.5    | EP-A4     | EP-A4 DUP |
|--------------------------------|-------|--------|--------|------|------------|-----------|------------|-----------|-----------|-----------|-----------|
| Lab Sample ID:                 |       |        |        |      | JE15682-11 | JE15682-9 | JE15682-10 | JE15821-1 | JE16023-1 | JE16023-2 | JE16023-3 |
| Sample Depth (ft bgs):         |       |        |        |      | 13.0-13.5  | 13.0-13.5 | 13.0-13.5  | 8.0-8.5   | 11.5-12.0 | 11.5-12.0 | 11.5-12.0 |
| Date Sampled:                  |       |        |        |      | 7/23/2025  | 7/23/2025 | 7/23/2025  | 7/24/2025 | 7/28/2025 | 7/28/2025 | 7/28/2025 |
| Matrix:                        |       |        |        |      | Soil       | Soil      | Soil       | Soil      | Soil      | Soil      | Soil      |
| Analyte                        | Unit  |        |        |      |            |           |            |           |           |           |           |
| perfluoropentanesulfonic acid  | ug/kg |        |        |      |            |           |            |           |           |           |           |
| perfluorohexanesulfonic acid   | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| perfluoroheptanesulfonic acid  | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| perfluoroctanesulfonic acid    | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| perfluorononanesulfonic acid   | ug/kg |        |        |      |            |           |            |           |           |           |           |
| perfluorodecanesulfonic acid   | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| perfluorododecanesulfonic acid | ug/kg |        |        |      |            |           |            |           |           |           |           |
| 1:2 Fluorotelomer sulfonate    | ug/kg |        |        |      |            |           |            |           |           |           |           |
| 3:2 Fluorotelomer sulfonate    | ug/kg |        |        |      | ND (0.84)  | ND (0.83) | ND (0.83)  | ND (0.86) | ND (0.91) | ND (0.96) | ND (0.88) |
| 5:2 Fluorotelomer sulfonate    | ug/kg |        |        |      | ND (0.84)  | ND (0.83) | ND (0.83)  | ND (0.86) | ND (0.91) | ND (0.96) | ND (0.88) |
| PFOSA                          | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| MeFOSA                         | ug/kg |        |        |      |            |           |            |           |           |           |           |
| EtFOSA                         | ug/kg |        |        |      |            |           |            |           |           |           |           |
| MeFOSAA                        | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| EtFOSAA                        | ug/kg |        |        |      | ND (0.21)  | ND (0.21) | ND (0.21)  | ND (0.21) | ND (0.23) | ND (0.24) | ND (0.22) |
| MeFOSE                         | ug/kg |        |        |      |            |           |            |           |           |           |           |
| EtFOSE                         | ug/kg |        |        |      |            |           |            |           |           |           |           |
| HFPO-DA (GenX)                 | ug/kg |        |        |      |            |           |            |           |           |           |           |
| ADONA                          | ug/kg |        |        |      |            |           |            |           |           |           |           |
| PFMPA                          | ug/kg |        |        |      |            |           |            |           |           |           |           |
| PFMBA                          | ug/kg |        |        |      |            |           |            |           |           |           |           |
| NFDHA                          | ug/kg |        |        |      |            |           |            |           |           |           |           |
| Cl-PF3ONS (F-53B Major)        | ug/kg |        |        |      |            |           |            |           |           |           |           |
| Cl-PF3OUdS (F-53B Minor)       | ug/kg |        |        |      |            |           |            |           |           |           |           |
| PFEESA                         | ug/kg |        |        |      |            |           |            |           |           |           |           |
| 3 Fluorotelomer carboxylate    | ug/kg |        |        |      |            |           |            |           |           |           |           |
| 3 Fluorotelomer carboxylate    | ug/kg |        |        |      |            |           |            |           |           |           |           |
| 3 Fluorotelomer carboxylate    | ug/kg |        |        |      |            |           |            |           |           |           |           |
| 13C4-PFBA                      | %     |        |        |      | 82         | 85        | 83         | 87        | 75        | 72        | 75        |
| 13C5-PFPeA                     | %     |        |        |      | 83         | 85        | 84         | 87        | 75        | 73        | 73        |
| 13C5-PFHxA                     | %     |        |        |      | 82         | 88        | 87         | 88        | 75        | 70        | 72        |
| 13C4-PFHxA                     | %     |        |        |      | 85         | 86        | 83         | 86        | 75        | 73        | 73        |
| 13C8-PFOA                      | %     |        |        |      | 83         | 85        | 85         | 84        | 75        | 71        | 75        |
| 13C9-PFNA                      | %     |        |        |      | 77         | 84        | 83         | 85        | 74        | 72        | 75        |
| 13C6-PFDA                      | %     |        |        |      | 88         | 81        | 84         | 90        | 72        | 72        | 72        |
| 13C7-PFUuDA                    | %     |        |        |      | 90         | 92        | 92         | 97        | 75        | 73        | 79        |
| 13C2-PFDuDA                    | %     |        |        |      | 90         | 86        | 92         | 94        | 75        | 75        | 75        |
| 13C2-PFTeDA                    | %     |        |        |      | 83         | 86        | 92         | 95        | 80        | 76        | 78        |
| 13C3-PFBS                      | %     |        |        |      | 87         | 84        | 79         | 87        | 77        | 73        | 72        |
| 13C3-PFHxS                     | %     |        |        |      | 83         | 87        | 83         | 91        | 73        | 77        | 72        |
| 13C8-PFOS                      | %     |        |        |      | 90         | 86        | 93         | 96        | 77        | 71        | 71        |
| 13C8-FOSA                      | %     |        |        |      | 88         | 81        | 91         | 97        | 72        | 66        | 69        |
| d3-MeFOSA                      | %     |        |        |      |            |           |            |           |           |           |           |
| d5-EtFOSA                      | %     |        |        |      |            |           |            |           |           |           |           |
| d3-MeFOSAA                     | %     |        |        |      | 82         | 77        | 86         | 90        | 74        | 74        | 71        |
| d5-EtFOSAA                     | %     |        |        |      | 82         | 74        | 85         | 91        | 75        | 75        | 73        |
| d7-MeFOSE                      | %     |        |        |      |            |           |            |           |           |           |           |
| d9-EtFOSE                      | %     |        |        |      |            |           |            |           |           |           |           |
| 13C2-4:2FTS                    | %     |        |        |      |            |           |            |           |           |           |           |
| 13C2-6:2FTS                    | %     |        |        |      | 100        | 86        | 98         | 110       | 80        | 78        | 80        |
| 13C2-8:2FTS                    | %     |        |        |      | 100        | 80        | 100        | 100       | 181       | 150       | 170       |
| 13C3-HFPO-DA                   | %     |        |        |      |            |           |            |           |           |           |           |
| <b>Pesticides</b>              |       |        |        |      |            |           |            |           |           |           |           |
| Aldrin                         | ug/kg | 19     | 97     | 5    | ND (0.67)  | ND (0.64) | ND (0.63)  | ND (0.44) | ND (0.72) | ND (0.80) | ND (0.71) |
| alpha-BHC                      | ug/kg | 97     | 480    | 20   | ND (0.67)  | ND (0.64) | ND (0.63)  | ND (0.44) | ND (0.72) | ND (0.80) | ND (0.71) |
| beta-BHC                       | ug/kg | 72     | 360    | 36   | ND (0.67)  | ND (0.64) | ND (0.63)  | ND (0.44) | ND (0.72) | ND (0.80) | ND (0.71) |
| delta-BHC                      | ug/kg | 100000 | 100000 | 40   | ND (0.67)  | ND (0.64) | ND (0.63)  | ND (0.44) | ND (0.72) | ND (0.80) | ND (0.71) |
| gamma-BHC (Lindane)            | ug/kg | 280    | 1300   | 100  | ND (0.67)  | ND (0.64) | ND (0.63)  | ND (0.44) | ND (0.72) | ND (0.80) | ND (0.71) |
| alpha-Chlordane                | ug/kg | 910    | 4200   | 94   | ND (0.67)  | ND (0.64) | ND (0.63)  | ND (0.44) | ND (0.72) | ND (0.80) | ND (0.71) |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                       |       | RSCO   | RRSCO | USCO | EP-B7 DUP             | EP-A7             | EP-A6                 | EP-B11     | EP-3.5     | EP-A4      | EP-A4 DUP  |
|-----------------------------------------|-------|--------|-------|------|-----------------------|-------------------|-----------------------|------------|------------|------------|------------|
| Lab Sample ID:                          |       |        |       |      | JE15682-11            | JE15682-9         | JE15682-10            | JE15821-1  | JE16023-1  | JE16023-2  | JE16023-3  |
| Sample Depth (ft bgs):                  |       |        |       |      | 13.0-13.5             | 13.0-13.5         | 13.0-13.5             | 8.0-8.5    | 11.5-12.0  | 11.5-12.0  | 11.5-12.0  |
| Date Sampled:                           |       |        |       |      | 7/23/2025             | 7/23/2025         | 7/23/2025             | 7/24/2025  | 7/28/2025  | 7/28/2025  | 7/28/2025  |
| Matrix:                                 |       |        |       |      | Soil                  | Soil              | Soil                  | Soil       | Soil       | Soil       | Soil       |
| Analyte                                 | Unit  |        |       |      |                       |                   |                       |            |            |            |            |
| gamma-Chlordane                         | ug/kg | 540    |       |      | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Dieldrin                                | ug/kg | 39     | 200   | 5    | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| 4,4'-DDD                                | ug/kg | 2600   | 13000 | 3.3  | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| 4,4'-DDE                                | ug/kg | 1800   | 8900  | 3.3  | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| 4,4'-DDT                                | ug/kg | 1700   | 7900  | 3.3  | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Endrin                                  | ug/kg | 2200   | 11000 | 14   | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Endosulfan sulfate                      | ug/kg | 4800   | 24000 | 2400 | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Endrin aldehyde                         | ug/kg |        |       |      | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Endosulfan-I                            | ug/kg | 4800   | 24000 | 2400 | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Endosulfan-II                           | ug/kg | 4800   | 24000 | 2400 | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Heptachlor                              | ug/kg | 420    | 2100  | 42   | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Heptachlor epoxide                      | ug/kg | 77     |       |      | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Methoxychlor                            | ug/kg | 100000 |       |      | ND (1.3)              | ND (1.3)          | ND (1.3)              | ND (0.44)  | ND (1.4)   | ND (1.6)   | ND (1.4)   |
| Endrin ketone                           | ug/kg |        |       |      | ND (0.67)             | ND (0.64)         | ND (0.63)             | ND (0.44)  | ND (0.72)  | ND (0.80)  | ND (0.71)  |
| Toxaphene                               | ug/kg |        |       |      | ND (17)               | ND (16)           | ND (16)               | ND (5.5)   | ND (18)    | ND (20)    | ND (18)    |
| Tetrachloro-m-xylene                    | %     |        |       |      | 62                    | 74                | 55                    |            | 86         | 76         | 100        |
| Tetrachloro-m-xylene (1)                | %     |        |       |      | 55                    | 68                | 49                    |            | 85         | 74         | 98         |
| Tetrachloro-m-xylene (2)                | %     |        |       |      |                       |                   |                       | 73         |            |            |            |
| Tetrachloro-m-xylene (3)                | %     |        |       |      |                       |                   |                       | 90         |            |            |            |
| Decachlorobiphenyl                      | %     |        |       |      | 71                    | 89                | 65                    |            | 93         | 82         | 113        |
| Decachlorobiphenyl (1)                  | %     |        |       |      | 63                    | 77                | 56                    |            | 93         | 82         | 111        |
| Decachlorobiphenyl (2)                  | %     |        |       |      |                       |                   |                       | 65         |            |            |            |
| Decachlorobiphenyl (3)                  | %     |        |       |      |                       |                   |                       | 97         |            |            |            |
| <b>Polychlorinated Biphenyls (PCBs)</b> |       |        |       |      |                       |                   |                       |            |            |            |            |
| Aroclor 1016                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1221                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1232                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1242                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1248                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1254                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1260                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1268                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | ND (32)           | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Aroclor 1262                            | ug/kg | 1000   | 1000  | 100  | ND (33)               | 68.7              | ND (32)               | ND (22)    | ND (36)    | ND (40)    | ND (35)    |
| Tetrachloro-m-xylene                    | %     |        |       |      |                       |                   |                       | 68         |            |            |            |
| Tetrachloro-m-xylene (1)                | %     |        |       |      |                       |                   |                       | 46         |            |            |            |
| Tetrachloro-m-xylene (2)                | %     |        |       |      | 58                    | 101               | 52                    |            | 87         | 75         | 95         |
| Tetrachloro-m-xylene (3)                | %     |        |       |      | 80                    | 107               | 70                    |            | 77         | 71         | 93         |
| Decachlorobiphenyl                      | %     |        |       |      |                       |                   |                       | 84         |            |            |            |
| Decachlorobiphenyl (1)                  | %     |        |       |      |                       |                   |                       | 132        |            |            |            |
| Decachlorobiphenyl (2)                  | %     |        |       |      | 56                    | 99                | 44                    |            | 57         | 52         | 75         |
| Decachlorobiphenyl (3)                  | %     |        |       |      | 66                    | 140               | 57                    |            | 54         | 43         | 61         |
| <b>Metals</b>                           |       |        |       |      |                       |                   |                       |            |            |            |            |
| Aluminum                                | mg/kg |        |       |      | 12900                 | 12000             | 13500                 | 10900      | 12300      | 12900      | 12500      |
| Antimony                                | mg/kg |        |       |      | ND (4.3) <sup>c</sup> | ND (2.2)          | ND (4.3) <sup>c</sup> | ND (2.2)   | ND (2.2)   | ND (2.5)   | ND (2.2)   |
| Arsenic                                 | mg/kg | 16     | 16    | 13   | ND (2.2)              | ND (2.2)          | ND (2.2)              | ND (2.2)   | ND (2.2)   | ND (2.5)   | ND (2.2)   |
| Barium                                  | mg/kg | 350    | 400   | 350  | 154                   | 140               | 161                   | 143        | 152        | 159        | 155        |
| Beryllium                               | mg/kg | 14     | 72    | 7.2  | 0.47                  | 0.38              | 0.44                  | 0.37       | 0.46       | 0.44       | 0.46       |
| Cadmium                                 | mg/kg | 2.5    | 4.3   | 2.5  | ND (0.54)             | ND (0.54)         | ND (0.54)             | ND (0.56)  | ND (0.56)  | ND (0.61)  | ND (0.56)  |
| Calcium                                 | mg/kg |        |       |      | 7160                  | 6120              | 8180                  | 4660       | 8760       | 10400      | 9660       |
| Chromium                                | mg/kg |        |       |      | 22.3                  | 20.6              | 25                    | 19         | 21.5       | 23.4       | 22.2       |
| Cobalt                                  | mg/kg | 30     |       |      | 9.8                   | 9.1               | 10.4                  | 9.1        | 10.7       | 13.1       | 9.9        |
| Copper                                  | mg/kg | 270    | 270   | 50   | 24.2 <sup>c</sup>     | 18.5 <sup>c</sup> | 17.7 <sup>c</sup>     | 13.6       | 17.7       | 19.3       | 17.8       |
| Iron                                    | mg/kg | 2000   |       |      | 26200                 | 21900             | 23600                 | 19600      | 21500      | 24000      | 21700      |
| Lead                                    | mg/kg | 400    | 400   | 63   | 4.7                   | 3.6               | 4.3                   | 3          | 3.9        | 7.5        | 3.9        |
| Magnesium                               | mg/kg |        |       |      | 7530                  | 6800              | 8140                  | 5580       | 8390       | 7740       | 8720       |
| Manganese                               | mg/kg | 2000   | 2000  | 1600 | 264                   | 237               | 267                   | 275        | 345        | 307        | 267        |
| Mercury                                 | mg/kg | 0.81   | 0.81  | 0.18 | ND (0.029)            | ND (0.030)        | ND (0.032)            | ND (0.032) | ND (0.032) | ND (0.035) | ND (0.030) |
| Nickel                                  | mg/kg | 140    | 310   | 30   | 17.9                  | 16                | 18.4                  | 15         | 20.8       | 21.8       | 18.5       |

**Table 4.5**  
**Soil Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:      |       | RSCO | RRSCO | USCO | EP-B7 DUP             | EP-A7                 | EP-A6                 | EP-B11                | EP-3.5    | EP-A4     | EP-A4 DUP |
|------------------------|-------|------|-------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------|-----------|-----------|
| Lab Sample ID:         |       |      |       |      | JE15682-11            | JE15682-9             | JE15682-10            | JE15821-1             | JE16023-1 | JE16023-2 | JE16023-3 |
| Sample Depth (ft bgs): |       |      |       |      | 13.0-13.5             | 13.0-13.5             | 13.0-13.5             | 8.0-8.5               | 11.5-12.0 | 11.5-12.0 | 11.5-12.0 |
| Date Sampled:          |       |      |       |      | 7/23/2025             | 7/23/2025             | 7/23/2025             | 7/24/2025             | 7/28/2025 | 7/28/2025 | 7/28/2025 |
| Matrix:                |       |      |       |      | Soil                  | Soil                  | Soil                  | Soil                  | Soil      | Soil      | Soil      |
| Analyte                | Unit  |      |       |      |                       |                       |                       |                       |           |           |           |
| Potassium              | mg/kg |      |       |      | 6260                  | 5730                  | 6500                  | 5470                  | 6350      | 6230      | 6400      |
| Selenium               | mg/kg | 36   | 180   | 3.9  | ND (4.3) <sup>c</sup> | ND (4.4) <sup>c</sup> | ND (4.3) <sup>c</sup> | ND (2.2)              | ND (2.2)  | ND (2.5)  | ND (2.2)  |
| Silver                 | mg/kg | 36   | 180   | 2    | ND (1.1) <sup>c</sup> | ND (1.1) <sup>c</sup> | ND (1.1) <sup>c</sup> | ND (0.56)             | ND (0.56) | ND (0.61) | ND (0.56) |
| Sodium                 | mg/kg |      |       |      | ND (1100)             | ND (1100)             | ND (1100)             | ND (1100)             | ND (1100) | ND (1200) | ND (1100) |
| Thallium               | mg/kg |      |       |      | ND (2.2) <sup>c</sup> | ND (2.2) <sup>c</sup> | ND (2.2) <sup>c</sup> | ND (2.2) <sup>c</sup> | ND (1.1)  | ND (1.2)  | ND (1.1)  |
| Vanadium               | mg/kg | 100  |       |      | 32.4                  | 28.8                  | 34.6                  | 28.9                  | 31.8      | 33.1      | 32.3      |
| Zinc                   | mg/kg | 2200 | 10000 | 109  | <54.8                 | ND (54)               | ND (54)               | 46.1                  | 54.8      | 55.3      | 53.7      |
| General Chemistry      |       |      |       |      |                       |                       |                       |                       |           |           |           |
| Cyanide                | mg/kg | 27   | 27    | 27   | ND (0.29)             | ND (0.23)             | ND (0.27)             | ND (0.24)             | ND (0.23) | ND (0.28) | ND (0.22) |
| Solids, Percent        | %     |      |       |      | 93.4                  | 94.6                  | 94.3                  | 89.5                  | 88.3      | 82.7      | 89        |

| Footnote | Comments                                                                                                                                                        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a        | Associated CCV outside of control limits low. Low-level verification was analyzed to demonstrate system suitability to detect affected analytes. Sample was ND. |
| b        | Associated CCV outside of control limits high, sample was ND.                                                                                                   |
| c        | Elevated detection limit due to dilution required for high interfering element.                                                                                 |
| d        | Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.     |
| e        | Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.                             |
| f        | This compound in blank spike is outside in house QC limits bias high.                                                                                           |
| g        | Associated CCV outside of control limits low.                                                                                                                   |

**Table 4.9**  
**Groundwater Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                 | NYSDEC AWQS | RI-MW-01     | RI-MW-01D             | RI-MW-02     | RI-MW-03              | RI-MW-06              | DUP20252708           | FB20252708            | TB20252708       |
|-----------------------------------|-------------|--------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|
| Lab Sample ID:                    |             | JE18042-1    | JE18042-2             | JE18042-3    | JE18042-4             | JE18042-5             | JE18042-6             | JE18042-7             | JE18042-8        |
| Date Sampled:                     |             | 8/27/2025    | 8/27/2025             | 8/27/2025    | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025        |
| Matrix:                           |             | Ground Water | Ground Water          | Ground Water | Ground Water          | Ground Water          | Ground Water          | Field Blank Water     | Trip Blank Water |
| Screened Interval (ft bgs):       | 25-40'      | 50-60'       | 25-40'                | 25-40'       | 25-40'                | 25-40'                | -                     | -                     | -                |
| Analyte                           | Unit        |              |                       |              |                       |                       |                       |                       |                  |
| (MS Semi-volatiles (SW846 8270E)) |             |              |                       |              |                       |                       |                       |                       |                  |
| 2-Chlorophenol                    | ug/l        | 100          | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 4-Chloro-3-methyl phenol          | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 2,4-Dichlorophenol                | ug/l        | 5            | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2,4-Dimethylphenol                | ug/l        | 50           | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 2,4-Dinitrophenol                 | ug/l        | 10           | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 4,6-Dinitro-o-cresol              | ug/l        | 13           | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 2-Methylphenol                    | ug/l        | 200          | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 3&4-Methylphenol                  | ug/l        | 200          | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2-Nitrophenol                     | ug/l        | 60           | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 4-Nitrophenol                     | ug/l        | 60           | ND (8.0)              | -            | ND (8.0)              | ND (8.0)              | ND (8.0)              | ND (8.0)              | -                |
| Pentachlorophenol                 | ug/l        | 1            | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Phenol                            | ug/l        | 3,000        | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2,3,4,6-Tetrachlorophenol         | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 2,4,5-Trichlorophenol             | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 2,4,6-Trichlorophenol             | ug/l        | 10           | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Acenaphthene                      | ug/l        | 20           | 20.7                  | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Acenaphthylene                    | ug/l        |              | 6.2                   | -            | ND (1.0)              | 1.7                   | ND (1.0)              | ND (1.0)              | -                |
| Acetophenone                      | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| Anthracene                        | ug/l        | 50           | 14                    | -            | ND (1.0)              | 0.74 J                | ND (1.0)              | ND (1.0)              | -                |
| Atrazine                          | ug/l        | 7.5          | ND (2.0) <sup>c</sup> | -            | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | -                |
| Benzaldehyde                      | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Benzo(a)anthracene                | ug/l        | 0.002        | 16.6                  | -            | ND (1.0)              | 2.2                   | ND (1.0)              | ND (1.0)              | -                |
| Benzo(a)pyrene                    | ug/l        | ND           | 13.3                  | -            | ND (1.0)              | 3.3                   | ND (1.0)              | ND (1.0)              | -                |
| Benzo(b)fluoranthene              | ug/l        | 0.002        | 9.1                   | -            | ND (1.0)              | 2.6                   | ND (1.0)              | ND (1.0)              | -                |
| Benzo(g,h,i)perylene              | ug/l        | 0.002        | 8.6                   | -            | ND (1.0)              | 2.1                   | ND (1.0)              | ND (1.0)              | -                |
| Benzo(k)fluoranthene              | ug/l        | 0.002        | 3.6                   | -            | ND (1.0)              | 0.83 J                | ND (1.0)              | ND (1.0)              | -                |
| 4-Bromophenyl phenyl ether        | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| Butyl benzyl phthalate            | ug/l        | 50           | ND (2.0) <sup>c</sup> | -            | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | -                |
| 1,1'-Biphenyl                     | ug/l        | 5            | 0.86 J                | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| 2-Chloronaphthalene               | ug/l        | 10           | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 4-Chloroaniline                   | ug/l        | 5            | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Carbazole                         | ug/l        |              | 1.2                   | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Caprolactam                       | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| Chrysene                          | ug/l        | 0.002        | 13.2                  | -            | ND (1.0)              | 2.1                   | ND (1.0)              | ND (1.0)              | -                |
| bis(2-Chloroethoxy)methane        | ug/l        | 5            | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| bis(2-Chloroethyl)ether           | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2,2'-Oxybis(1-chloropropane)      | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 4-Chlorophenyl phenyl ether       | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2,4-Dinitrotoluene                | ug/l        |              | ND (1.0)              | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| 2,6-Dinitrotoluene                | ug/l        |              | ND (1.0)              | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| 3,3'-Dichlorobenzidine            | ug/l        |              | ND (2.0) <sup>c</sup> | -            | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | -                |
| 1,4-Dioxane (1)                   | ug/l        |              | ND (1.0)              | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Dibenzo(a,h)anthracene            | ug/l        | 0.002        | 1.6                   | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Dibenzofuran                      | ug/l        | 10           | 1.7 J                 | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Di-n-butyl phthalate              | ug/l        | 50           | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| Di-n-octyl phthalate              | ug/l        | 50           | ND (2.0) <sup>c</sup> | -            | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | -                |
| Diethyl phthalate                 | ug/l        | 50           | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| Dimethyl phthalate                | ug/l        | 50           | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| bis(2-Ethylhexyl)phthalate        | ug/l        | 6            | ND (2.0) <sup>c</sup> | -            | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | ND (2.0) <sup>c</sup> | -                |
| Fluoranthene                      | ug/l        | 50           | 31.5                  | -            | ND (1.0)              | 2.3                   | ND (1.0)              | ND (1.0)              | -                |
| Fluorene                          | ug/l        | 50           | 7.1                   | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Hexachlorobenzene                 | ug/l        |              | ND (1.0)              | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Hexachlorobutadiene               | ug/l        |              | ND (1.0)              | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Hexachlorocyclopentadiene         | ug/l        |              | ND (8.0)              | -            | ND (8.0)              | ND (8.0)              | ND (8.0)              | ND (8.0)              | -                |
| Hexachloroethane                  | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| Indeno(1,2,3-cd)pyrene            | ug/l        | 0.002        | 5.3                   | -            | ND (1.0)              | 1.2                   | ND (1.0)              | ND (1.0)              | -                |
| Isophorone                        | ug/l        | 50           | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2-Methylnaphthalene               | ug/l        |              | 0.92 J                | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| 2-Nitroaniline                    | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 3-Nitroaniline                    | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| 4-Nitroaniline                    | ug/l        |              | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Naphthalene                       | ug/l        | 10           | 1.7                   | -            | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | -                |
| Nitrobenzene                      | ug/l        | 0.4          | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| N-Nitroso-di-n-propylamine        | ug/l        |              | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| N-Nitrosodiphenylamine            | ug/l        | 50           | ND (4.0)              | -            | ND (4.0)              | ND (4.0)              | ND (4.0)              | ND (4.0)              | -                |
| Phenanthrene                      | ug/l        | 50           | 33.1                  | -            | ND (1.0)              | 0.69 J                | ND (1.0)              | ND (1.0)              | -                |
| Pyrene                            | ug/l        | 50           | 46.7                  | -            | ND (1.0)              | 8.5                   | ND (1.0)              | 0.50 J                | ND (1.0)         |
| 1,2,4,5-Tetrachlorobenzene        | ug/l        | 10           | ND (2.0)              | -            | ND (2.0)              | ND (2.0)              | ND (2.0)              | ND (2.0)              | -                |
| 2-Fluorophenol                    | %           |              | 26                    | -            | 5.0 * <sup>d</sup>    | 28                    | 21                    | 27                    | -                |

**Table 4.9**  
**Groundwater Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:                        |      | NYSDEC AWQS | RI-MW-01              | RI-MW-01D    | RI-MW-02              | RI-MW-03              | RI-MW-06              | DUP20252708           | FB20252708            | TB20252708            |  |
|------------------------------------------|------|-------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| Lab Sample ID:                           |      |             | JE18042-1             | JE18042-2    | JE18042-3             | JE18042-4             | JE18042-5             | JE18042-6             | JE18042-7             | JE18042-8             |  |
| Date Sampled:                            |      |             | 8/27/2025             | 8/27/2025    | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025             |  |
| Matrix:                                  |      |             | Ground Water          | Ground Water | Ground Water          | Ground Water          | Ground Water          | Ground Water          | Field Blank Water     | Trip Blank Water      |  |
| Phenol-d5                                | %    |             | 20                    | -            | 11                    | 21                    | 16                    | 22                    | 19                    | -                     |  |
| 2,4,6-Tribromophenol                     | %    |             | 72                    | -            | 50                    | 72                    | 64                    | 71                    | 62                    | -                     |  |
| Nitrobenzene-d5 (1)                      | %    |             | 35                    | -            | 49                    | 49                    | 42                    | 51                    | 49                    | -                     |  |
| 2-Fluorobiphenyl (1)                     | %    |             | 49                    | -            | 48                    | 51                    | 41                    | 49                    | 48                    | -                     |  |
| Terphenyl-d14 (1)                        | %    |             | 37                    | -            | 51                    | 38                    | 55                    | 54                    | 72                    | -                     |  |
| (MS Semi-volatile TIC ( ))               |      |             |                       |              |                       |                       |                       |                       |                       |                       |  |
| Alkane                                   | ug/l |             | 17 J                  | -            | 5.8 J                 | 4.0 J                 | 4.7 J                 | 3.3 J                 | 3.7 J                 | -                     |  |
| Internal standard added for SIM test     | ug/l |             |                       | -            | 3.5 J                 |                       | 4.0 J                 |                       |                       | -                     |  |
| Internal standard added for SIM test     | ug/l |             |                       | -            |                       | 3.2 J                 |                       | 3.4 J                 | 4.5 J                 | -                     |  |
| Alkane (1)                               | ug/l |             | 32 J                  | -            | 4.2 J                 | 6.0 J                 | 5.0 J                 | 5.2 J                 | 3.7 J                 | -                     |  |
| Alkane (3)                               | ug/l |             |                       | -            | 5.6 J                 | 4.9 J                 | 3.8 J                 | 5.8 J                 |                       | -                     |  |
| Internal standard added for SIM test (1) | ug/l |             |                       | -            |                       |                       | 4.0 J                 |                       |                       | -                     |  |
| n-Hexadecanoic acid                      | ug/l |             |                       | -            |                       |                       |                       |                       | 5.6 JN                | -                     |  |
| 9H-Fluorene, methyl                      | ug/l |             | 15 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Alkane (4)                               | ug/l |             |                       | -            | 9.1 J                 | 5.6 J                 |                       | 3.9 J                 |                       | -                     |  |
| Internal standard added for SIM test (4) | ug/l |             |                       | -            |                       | 3.2 J                 |                       |                       | 3.5 J                 | -                     |  |
| 9H-Fluorene, methyl (1)                  | ug/l |             | 9.8 J                 | -            |                       |                       |                       |                       |                       | -                     |  |
| Alkane (5)                               | ug/l |             |                       | -            | 9.6 J                 | 5.3 J                 |                       | 3.4 J                 |                       | -                     |  |
| Alkane (2)                               | ug/l |             | 23 J                  | -            | 3.2 J                 | 3.4 J                 | 5.1 J                 | 5.6 J                 | 4.0 J                 | -                     |  |
| Alkane (6)                               | ug/l |             |                       | -            | 8.9 J                 |                       |                       |                       |                       | -                     |  |
| Unknown (6)                              | ug/l |             | 15 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Alkane (7)                               | ug/l |             |                       | -            | 7.4 J                 |                       |                       |                       |                       | -                     |  |
| Unknown (7)                              | ug/l |             | 21 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Internal standard added for SIM test (7) | ug/l |             |                       | -            |                       |                       |                       |                       | 3.6 J                 | -                     |  |
| Unknown (8)                              | ug/l |             | 17 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Octadecane                               | ug/l |             |                       | -            |                       | 6.5 J                 |                       |                       |                       | -                     |  |
| Phenanthrene methyl                      | ug/l |             | 32 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Anthracene methyl                        | ug/l |             | 26 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Unknown                                  | ug/l |             | 12 J                  | -            | 8.2 J                 | 4.9 J                 | 4.4 J                 | 4.1 J                 | 3.4 J                 | -                     |  |
| Unknown (1)                              | ug/l |             | 12 J                  | -            | 4.2 J                 | 9.1 J                 |                       |                       |                       | -                     |  |
| Unknown (2)                              | ug/l |             | 28 J                  | -            | 3.2 J                 | 8.0 J                 |                       |                       |                       | -                     |  |
| Anthracenedione                          | ug/l |             | 13 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Phenanthrene dimethyl                    | ug/l |             | 18 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Phenanthrene dimethyl (1)                | ug/l |             | 12 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Phenanthrene dimethyl (2)                | ug/l |             | 21 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Unknown (3)                              | ug/l |             | 19 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Phenanthrene dimethyl (3)                | ug/l |             | 15 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Unknown (4)                              | ug/l |             | 9.8 J                 | -            |                       |                       |                       |                       |                       | -                     |  |
| Unknown PAH substance                    | ug/l |             | 22 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Octadecanoic acid                        | ug/l |             | 25 JN                 | -            |                       | 9.8 JN                | 4.9 JN                | 6.8 JN                |                       | -                     |  |
| Pyrene methyl                            | ug/l |             | 9.5 J                 | -            |                       |                       |                       |                       |                       | -                     |  |
| Pyrene methyl (1)                        | ug/l |             | 16 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Unknown (5)                              | ug/l |             | 14 J                  | -            |                       |                       |                       |                       |                       | -                     |  |
| Total TIC, Semi-Volatile                 | ug/l |             | 454.1 J               | -            | 69.4 J                | 67.5 J                | 27.9 J                | 38.1 J                | 20.4 J                | -                     |  |
| (MS Semi-volatiles (SW846 8270E BY SIM)) |      |             |                       |              |                       |                       |                       |                       |                       |                       |  |
| 1,4-Dioxane                              | ug/l | 0.35        | ND (0.30)             | -            | ND (0.30)             | -                     |  |
| Nitrobenzene-d5                          | %    | 49          | -                     | 70           | 69                    | 53                    | 70                    | 74                    |                       | -                     |  |
| 2-Fluorobiphenyl                         | %    | 70          | -                     | 88           | 80                    | 47                    | 71                    | 69                    |                       | -                     |  |
| Terphenyl-d14                            | %    | 36          | -                     | 47           | 35                    | 52                    | 49                    | 71                    |                       | -                     |  |
| (MS Volatiles (SW846 8260D))             |      |             |                       |              |                       |                       |                       |                       |                       |                       |  |
| Acetone                                  | ug/l | 50          | 16.1                  | -            | 6.9 J                 | 6.8 J                 | 12.5                  | 5.4 J                 | ND (10)               | ND (10)               |  |
| Benzene                                  | ug/l | 1           | 0.61                  | ND (0.50)    | ND (0.50)             | ND (0.50)             | ND (0.50)             | ND (0.50)             | ND (0.50)             | ND (0.50)             |  |
| Bromochloromethane                       | ug/l | 5           | ND (1.0)              | -            | ND (1.0)              |  |
| Bromodichloromethane                     | ug/l | 50          | ND (1.0)              | -            | 6.9                   | 3                     | 4.3                   | 6.1                   | ND (1.0)              | ND (1.0)              |  |
| Bromoform                                | ug/l | 50          | ND (1.0)              | -            | ND (1.0)              |  |
| Bromomethane                             | ug/l | 5           | ND (2.0) <sup>a</sup> | -            | ND (2.0) <sup>a</sup> |  |
| 2-Butanone (MEK)                         | ug/l | 50          | ND (10)               | -            | ND (10)               |  |
| n-Butylbenzene                           | ug/l | 5           | -                     | ND (2.0)     | -                     | -                     | -                     | -                     | -                     | -                     |  |
| sec-Butylbenzene                         | ug/l | 5           | -                     | ND (2.0)     | -                     | -                     | -                     | -                     | -                     | -                     |  |
| tert-Butylbenzene                        | ug/l | 5           | -                     | ND (2.0)     | -                     | -                     | -                     | -                     | -                     | -                     |  |
| Carbon disulfide                         | ug/l | 60          | ND (2.0)              | -            | ND (2.0)              |  |
| Carbon tetrachloride                     | ug/l | 5           | ND (1.0)              | -            | ND (1.0)              |  |
| Chlorobenzene                            | ug/l | 5           | ND (1.0)              | -            | ND (1.0)              |  |
| Chloroethane                             | ug/l | 5           | ND (1.0)              | -            | ND (1.0)              |  |
| Chloroform                               | ug/l | 7           | 5.8                   | -            | 18.9                  | 9.4                   | 14                    | 18.6                  | ND (1.0)              | ND (1.0)              |  |
| Chloromethane                            | ug/l |             | ND (1.0)              | -            | ND (1.0)              |  |
| Cyclohexane                              | ug/l |             | ND (5.0)              | -            | ND (5.0)              |  |
| 1,2-Dibromo-3-chloropropane              | ug/l | 0.04        | ND (2.0)              | -            | ND (2.0)              |  |
| Dibromochloromethane                     | ug/l | 50          | ND (1.0)              | -            | 2                     | 0.79 J                | 1.5                   | 1.8                   | ND (1.0)              | ND (1.0)              |  |
| 1,2-Dibromoethane                        | ug/l |             | ND (1.0)              | -            | ND (1.0)              |  |
| 1,2-Dichlorobenzene                      | ug/l | 3           | ND (1.0)              | -            | ND (1.0)              |  |
| 1,3-Dichlorobenzene                      | ug/l | 3           | ND (1.0)              | -            | ND (1.0)              |  |
| 1,4-Dichlorobenzene                      | ug/l | 3           | ND (1.0)              | -            | ND (1.0)              |  |

**Table 4.9**  
**Groundwater Analytical Results Summary**  
**Final Engineering Report**  
**Sun Valley Nursery Filling Station Site**

| Client Sample ID:          | NYSDEC AWQS | RI-MW-01     | RI-MW-01D             | RI-MW-02     | RI-MW-03              | RI-MW-06              | DUP20252708           | FB20252708            | TB20252708            |
|----------------------------|-------------|--------------|-----------------------|--------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Lab Sample ID:             |             | JE18042-1    | JE18042-2             | JE18042-3    | JE18042-4             | JE18042-5             | JE18042-6             | JE18042-7             | JE18042-8             |
| Date Sampled:              |             | 8/27/2025    | 8/27/2025             | 8/27/2025    | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025             | 8/27/2025             |
| Matrix:                    |             | Ground Water | Ground Water          | Ground Water | Ground Water          | Ground Water          | Ground Water          | Field Blank Water     | Trip Blank Water      |
| Dichlorodifluoromethane    | ug/l        | 5            | ND (2.0)              | -            | ND (2.0)              |
| 1,1-Dichloroethane         | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| 1,2-Dichloroethane         | ug/l        | 0.6          | ND (1.0)              | -            | ND (1.0)              |
| 1,1-Dichloroethene         | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| cis-1,2-Dichloroethene     | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| trans-1,2-Dichloroethene   | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| 1,2-Dichloropropane        | ug/l        | 1            | ND (1.0)              | -            | ND (1.0)              |
| cis-1,3-Dichloropropene    | ug/l        | 0.4          | ND (1.0)              | -            | ND (1.0)              |
| trans-1,3-Dichloropropene  | ug/l        | 0.4          | ND (1.0)              | -            | ND (1.0)              |
| Ethylbenzene               | ug/l        | 5            | 1.5                   | 0.99 J       | ND (1.0)              | ND (1.0)              | 1.1                   | ND (1.0)              | ND (1.0)              |
| Freon 113                  | ug/l        |              | ND (5.0)              | -            | ND (5.0)              |
| 2-Hexanone                 | ug/l        | 50           | ND (5.0)              | -            | ND (5.0)              |
| Isopropylbenzene           | ug/l        | 5            | ND (1.0)              | ND (1.0)     | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              |
| p-Isopropyltoluene         | ug/l        | 5            | -                     | ND (2.0)     | -                     | -                     | -                     | -                     | -                     |
| Methyl Acetate             | ug/l        |              | ND (5.0)              | -            | ND (5.0)              |
| Methylcyclohexane          | ug/l        |              | ND (5.0)              | -            | ND (5.0)              |
| Methyl Teri Butyl Ether    | ug/l        | 10           | ND (1.0)              | ND (1.0)     | ND (1.0)              | 2                     | ND (1.0)              | ND (1.0)              | ND (1.0)              |
| 4-Methyl-2-pentanone(MIBK) | ug/l        |              | ND (5.0)              | -            | ND (5.0)              |
| Methylene chloride         | ug/l        | 5            | ND (2.0)              | -            | ND (2.0)              |
| Naphthalene                | ug/l        | 10           | -                     | ND (5.0)     | -                     | -                     | -                     | -                     | -                     |
| n-Propylbenzene            | ug/l        | 5            | -                     | ND (2.0)     | -                     | -                     | -                     | -                     | -                     |
| Styrene                    | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| 1,1,2,2-Tetrachloroethane  | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| Tetrachloroethene          | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| Toluene                    | ug/l        | 5            | 0.73 J                | ND (1.0)     | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              |
| 1,2,3-Trichlorobenzene     | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| 1,2,4-Trichlorobenzene     | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| 1,1,1-Trichloroethane      | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| 1,1,2-Trichloroethane      | ug/l        | 1            | ND (1.0)              | -            | ND (1.0)              |
| Trichloroethene            | ug/l        | 5            | ND (1.0)              | -            | ND (1.0)              |
| Trichlorofluoromethane     | ug/l        | 5            | ND (2.0) <sup>b</sup> | -            | ND (2.0) <sup>b</sup> |
| 1,2,4-Trimethylbenzene     | ug/l        | 5            | ND (1.0)              | ND (2.0)     | ND (1.0)              |
| 1,3,5-Trimethylbenzene     | ug/l        | 5            | ND (1.0)              | ND (2.0)     | ND (1.0)              |
| Vinyl chloride             | ug/l        | 2            | ND (1.0)              | -            | ND (1.0)              |
| m,p-Xylene                 | ug/l        | 5            | 0.80 J                | ND (1.0)     | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              |
| o-Xylene                   | ug/l        | 5            | 0.79 J                | ND (1.0)     | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              |
| Xylene (total)             | ug/l        | 5            | 1.6                   | ND (1.0)     | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              | ND (1.0)              |
| Dibromofluoromethane       | %           | 95           | 97                    | 98           | 96                    | 95                    | 96                    | 97                    | 93                    |
| 1,2-Dichloroethane-D4      | %           | 104          | 103                   | 105          | 105                   | 105                   | 103                   | 103                   | 103                   |
| Toluene-D8                 | %           | 97           | 97                    | 100          | 98                    | 97                    | 98                    | 100                   | 97                    |
| 4-Bromofluorobenzene       | %           |              | 96                    | 95           | 95                    | 95                    | 92                    | 97                    | 94                    |
| (MS Volatile TIC ( ))      |             |              | 5.9 J                 | -            |                       | 6.9 JN                |                       |                       |                       |
| alkene                     | ug/l        |              |                       |              |                       |                       |                       |                       |                       |
| Ethanol                    | ug/l        |              |                       |              |                       |                       |                       |                       |                       |
| alcohols                   | ug/l        |              | 45 J                  | -            |                       |                       |                       |                       |                       |
| Total TIC, Volatile        | ug/l        |              | 50.9 J                | -            | 0                     | 6.9 J                 | 0                     | 0                     | 0                     |

Notes:

ug/L - micrograms per liter

ND - Not detected

Exceedance of the AWQS

Sample DUP20252708 is a duplicate of sample RI-MW-02.

a - Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

b - Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

c - Associated CCV outside of control limits high, sample was ND.

d - Outside control limits due to matrix interference as per prep log description.

---

## Figures

---



**REFERENCE:**

HISTORICAL TOPOGRAPHICAL MAP TAKEN FROM HALEY ALDRICH, MAP DATED SEPTEMBER 2020.



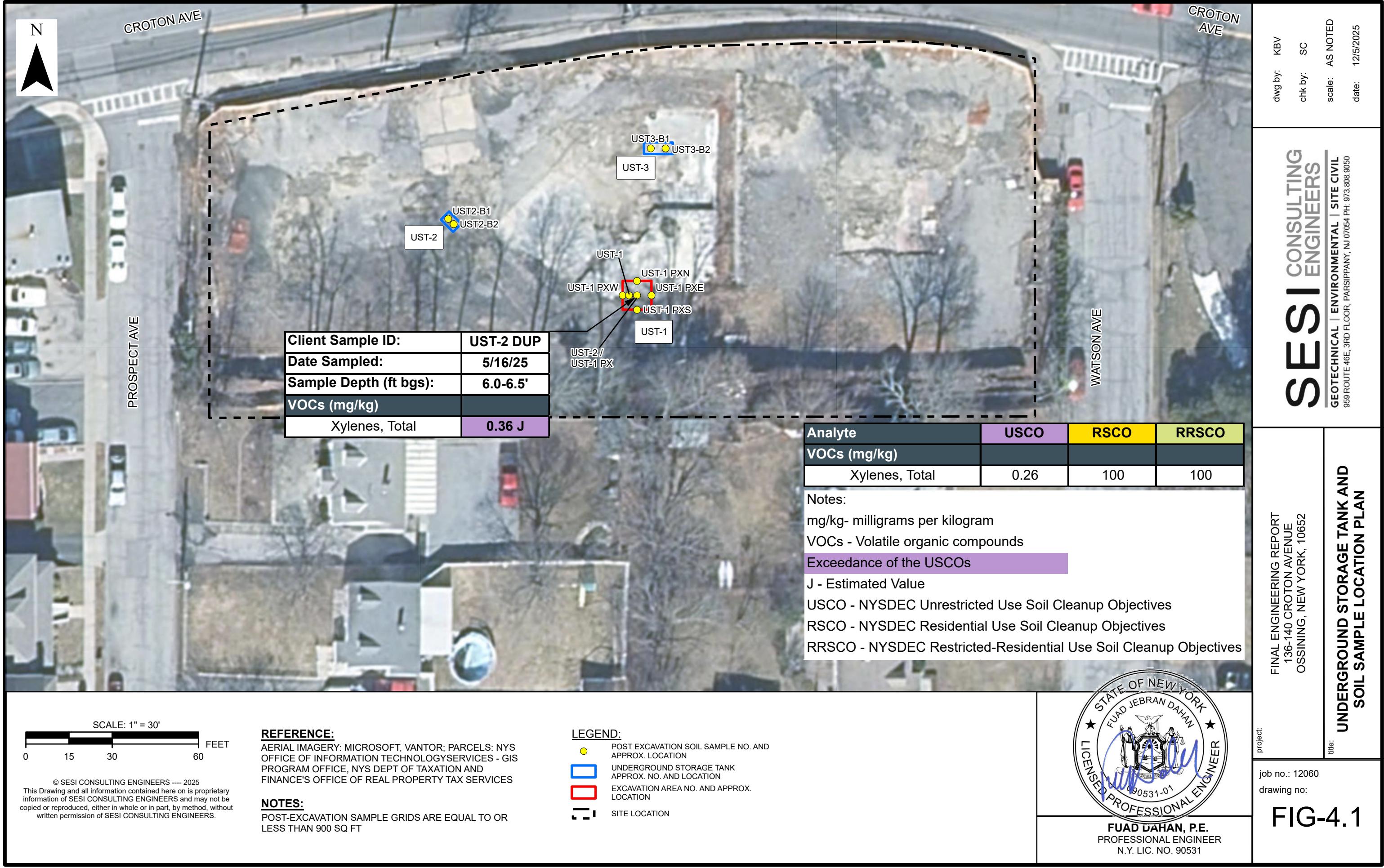
Scale 1"=2000'  
0 2000 4000

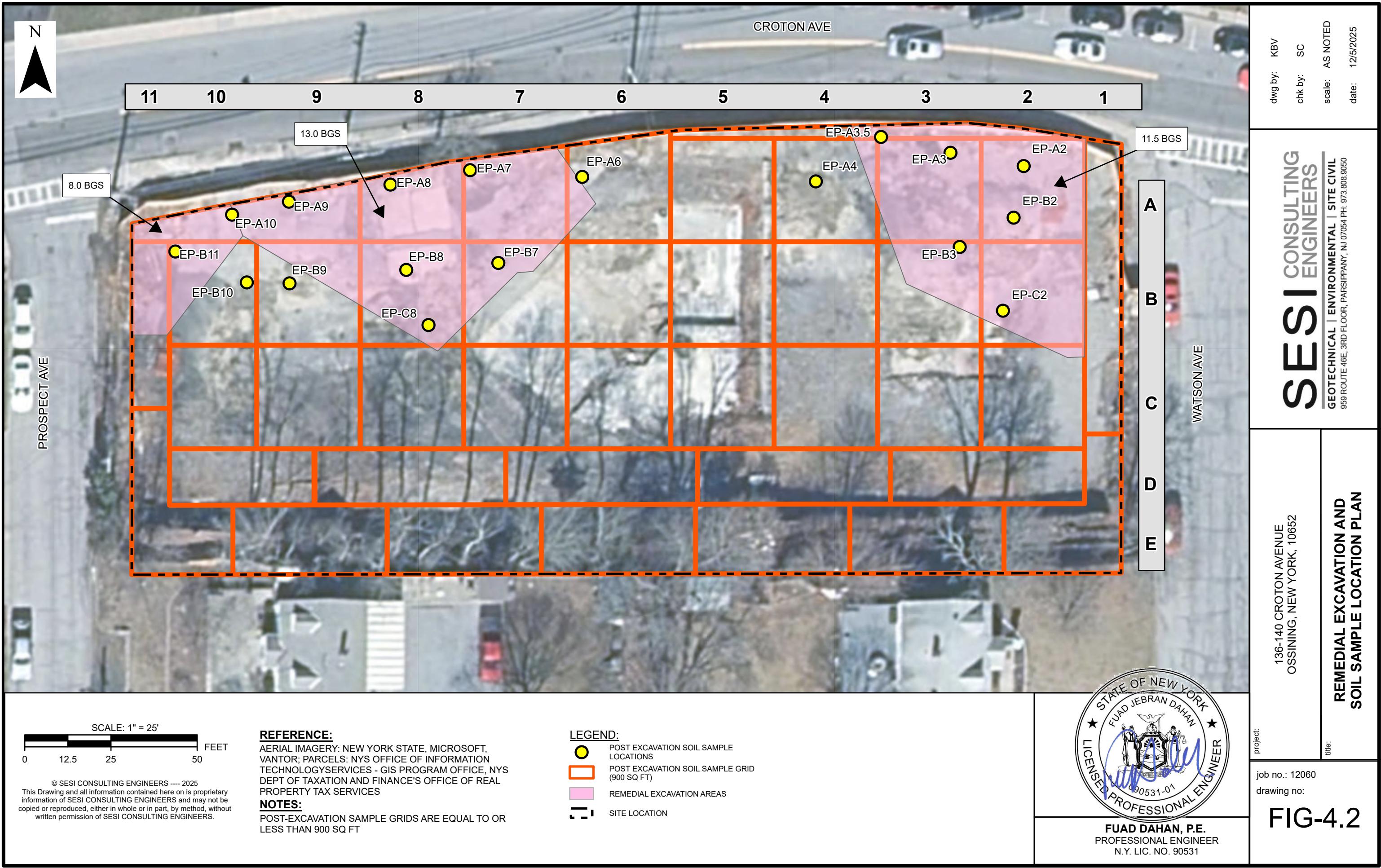
FIG-1.1

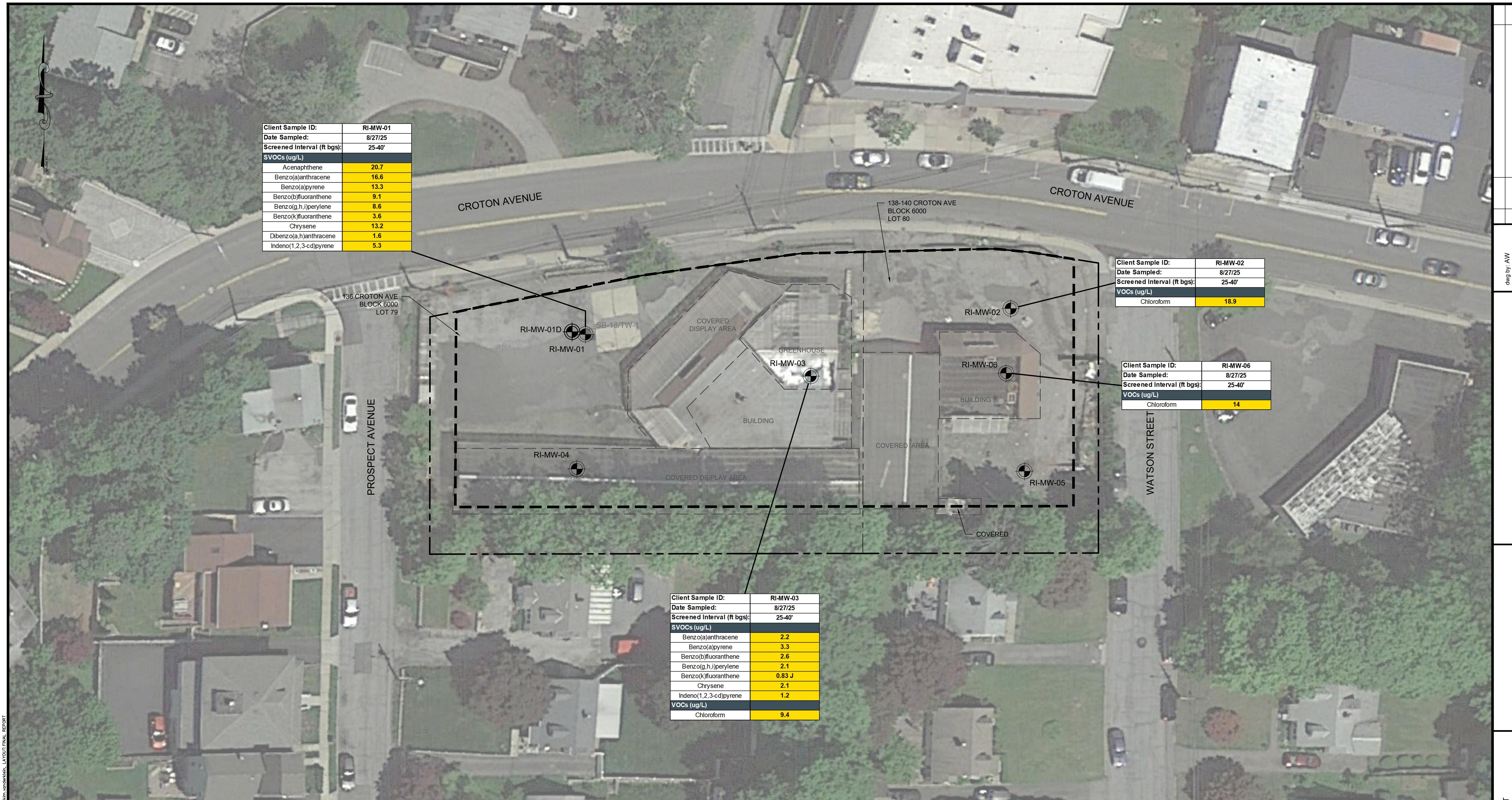
FINAL ENGINEERING REPORT  
136-140 CROTON AVENUE  
OSSINING, NEW YORK 10562

SITE LOCATION MAP

**SESI** CONSULTING  
ENGINEERS  
GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL  
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050


DRAWN BY: APG


CHECKED BY: AR


SCALE: AS NOTED

DATE: 09/26/2025

JOB NO.: 12060







N.Y. GEN. LAW 2005 (ENG. REPORT) 10/27/25 0608:55PM. Unintended, Aerial Final Report.

**NOTE:**  
 1. THIS PLAN IS FOR LOCATING SOIL BORINGS, MONITORING WELLS, SOIL VAPOR BORINGS AND AMBIENT AIR LOCATIONS ONLY. OTHER SITE WORK SHOWN HERE IS NOT INTENDED FOR CONSTRUCTION.

**REFERENCE**  
 AERIAL IMAGE TAKEN FROM GOOGLE MAPS, IMAGE DATED 2019.

N.Y. Education Law  
 Unauthorized alterations or additions to this plan are a violation of section 7209 (2) of the New York State Education Law. Copies of this map may not be distributed or copied without the plan being valid.  
 © SESI CONSULTING ENGINEERS 2025  
 This drawing and all information contained hereon is proprietary information of SESI CONSULTING ENGINEERS and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS.

| Analyte                | AWQS  |
|------------------------|-------|
| SVOCs (ug/L)           |       |
| Acenaphthene           | 20    |
| Benzo(a)anthracene     | 0.002 |
| Benzo(a)pyrene         | ND    |
| Benzo(b)fluoranthene   | 0.002 |
| Benzo(g,h,i)perylene   | 0.002 |
| Benzo(k)fluoranthene   | 0.002 |
| Chrysene               | 0.002 |
| Dibenzo(a,h)anthracene | 0.002 |
| Indeno(1,2,3-cd)pyrene | 0.002 |
| VOCs (ug/L)            |       |
| Chloroform             | 7     |

Notes:  
 ug/L - micrograms per liter  
 Exceedance of the AWQS  
 J - Estimated Value.  
 AWQS - Ambient Water Quality Standards

FINAL ENGINEERING REPORT  
 136-140 CROTON AVENUE  
 OSSINING, NEW YORK 10562  
 title: GROUNDWATER SAMPLING LOCATION PLAN

**SESI CONSULTING ENGINEERS**  
 GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL  
 939 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.308.9050

|                  |  |
|------------------|--|
| dwg by: AW       |  |
| chk by: AF       |  |
| scale: AS NOTED  |  |
| date: 10/02/2025 |  |
| rev: date        |  |
| description      |  |

job no. 12060  
 drawing no.

FIG-4.3

Scale: 1" = 20'

1 of 1