

**SUN VALLEY NURSERY FILLING STATION SITE
WESTCHESTER COUNTY
OSSINING, NEW YORK**

**SITE MANAGEMENT PLAN
NYSDEC Site Number: C360207**

Prepared for:

136-140 Croton Avenue LLC
& Crescent Manor Owner LLC
435 Fifth Avenue, Suite 100
Pelham, NY 10803

Prepared by:

**SESI Consulting Engineers, DPC
959 Route 46E, Floor 3, Suite 300
Parsippany, NJ 07054
(973) 808-9050**

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date

December 2025

CERTIFICATION STATEMENT

I, Fuad Dahan, certify that I am currently a NYS registered professional engineer as in defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and Green Remediation (DER-31).

P.E.

12/22/2025 DATE

TABLE OF CONTENTS

LIST OF ACRONYMS	i
EXECUTIVE SUMMARY	1
1.0 INTRODUCTION.....	3
1.1. GENERAL	3
1.2. REVISIONS AND ALTERATIONS	4
1.3. NOTIFICATIONS	4
2.0 SUMMARY OF PREVIOUS INVESTIGATION AND REMEDIAL ACTIONS	7
2.1. SITE LOCATION AND DESCRIPTION.....	7
2.2. PHYSICAL SETTING	7
2.2.1. LAND USE.....	7
2.2.2. GEOLOGY.....	7
2.2.3. HYDROGEOLOGY	8
2.3. INVESTIGATION AND REMEDIAL HISTORY	8
2.4. REMEDIAL ACTION OBJECTIVES.....	10
2.5. REMAINING CONTAMINATION.....	11
2.5.1. SOIL	11
2.5.2. GROUNDWATER.....	11
2.5.3. SOIL VAPOR.....	13
3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN.....	13
3.1. GENERAL	13
3.2. INSTITUTIONAL CONTROLS	13
3.3. ENGINEERING CONTROLS.....	14
3.3.1. SUB-SLAB DEPRESSURIZATION SYSTEM.....	14
3.3.2. MONITORING WELLS	15
3.3.3. CRITERIA FOR COMPLETION OF REMEDIATION/TERMINATION OF REMEDIAL SYSTEM.....	15
3.3.3.1. SUB-SLAB DEPRESSURIZATION SYSTEMS	16
3.3.3.2. MONITORING WELLS ASSOCIATED WITH MONITORED NATURAL ATTENUATION	16
4.0 MONITORING AND SAMPLING PLAN	17
4.1 GENERAL	17
4.2 SITE WIDE INSPECTION.....	17

4.3	GROUNDWATER SAMPLING.....	19
4.4	SOIL VAPOR INTRUSION SAMPLING	21
4.5	MONITORING AND SAMPLING PROTOCOL.....	22
5.0	OPERATION AND MAINTENANCE PLAN.....	23
5.1	GENERAL	23
6.0	PERIODIC ASSESSMENT/EVALUATIONS	24
6.1	CLIMATE CHANGE VULNERABILITY ASSESSMENT	24
6.2	GREEN REMEDIATION EVALUATION.....	25
6.2.1	BEST MANAGEMENT PRACTICES.....	25
6.2.2	TIMING OF GREEN REMEDIATION EVALUATION.....	26
6.2.3	FREQUENCY OF SYSTEM CHECKS, SAMPLING, AND OTHER PERIODIC ACTIVITIES	26
6.2.4	METRICS AND REPORTING	26
6.2.5	REMEDIAL SYSTEM OPTIMIZATION.....	27
7.0	REPORTING REQUIREMENTS.....	29
7.1	SITE MANAGEMENT REPORTS	29
7.2	PERIODIC REVIEW REPORT.....	30
7.2.1	CERTIFICATION OF INSTITUTIONAL AND ENGINEERING CONTROLS	32
7.3	CORRECTIVE MEASURES WORK PLAN	34
8.0	REFERENCES.....	35

TABLES

TABLE 1.1	SOIL ANALYTICAL RESULTS SUMMARY
TABLE 1.2	NOTIFICATIONS
TABLE 2.1	REMAINING GROUNDWATER EXCEEDANCES
TABLE 2.2	REMAINING SOIL VAPOR EXCEEDANCES
TABLE 4.1	MONITORING WELL CONSTRUCTION DETAILS
TABLE 4.2	MONITORING WELL SAMPLING DETAILS
TABLE 4.3	AIR SAMPLING DETAILS
TABLE 7.1	SCHEDULE OF INTERIM MONITORING/INSPECTION REPORTS

FIGURES

FIGURE 1.1	SITE LOCATION MAP
FIGURE 1.2	SITE LAYOUT MAP

- FIGURE 2.1 GROUNDWATER CONTOUR MAP
- FIGURE 2.2 REMAINING GROUNDWATER SAMPLE EXCEEDANCES
- FIGURE 2.3 REMAINING SOIL VAPOR SAMPLE DETECTIONS
- FIGURE 2.4 SOIL EXCAVATION AND ANALYTICAL RESULTS MAP
- FIGURE 2.5 PROPOSED VAPOR SAMPLE LOCATIONS
- FIGURE 3.1 INSTITUTIONAL CONTROL BOUNDARY MAP

APPENDICES

- APPENDIX A ENVIRONMENTAL EASEMENT
- APPENDIX B LIST OF SITE CONTACTS
- APPENDIX C BORING AND MONITORING WELL LOGS
- APPENDIX D EXCAVATION WORK PLAN
- APPENDIX E SUB-SLAB DEPRESSURIZATION SYSTEM (SSDS) AND DETAILS
- APPENDIX F HEALTH AND SAFETY PLAN
- APPENDIX G QUALITY ASSURANCE PROJECT PLAN
- APPENDIX H SITE MANAGEMENT FORMS
- APPENDIX I FIELD SAMPLING PLAN

LIST OF ACRONYMS

Acronym	Definition
AWQS	Ambient Water Quality Standards
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
BMPs	Best Management Practices
COC	Certificate of Completion
CVA	Climate Vulnerability Assessment
CVOC	Chlorinated Volatile Organic Compound
DER	Division of Environmental Remediation
DER-10	NYSDEC Technical Guidance for Site Investigation & Remediation
EE	Environmental Easement
EFA	Environmental Footprint Analysis
ft-bgs	feet below ground surface
HASP	Health and Safety Plan
MW	Monitoring Well
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
PAH	Polycyclic Aromatic Hydrocarbons
PCB	Polychlorinated Biphenyls
PE	Professional Engineer
PHC	Petroleum Hydrocarbon
PRR	Periodic Review Report
RAO	Remedial Action Objective
RI	Remedial Investigation
RRSCO	Restricted Residential Soil Cleanup Objective
SCG	Standards, Criteria, and Guidance
SCO	Soil Cleanup Objectives
SGS	SGS North America
SESI	SESI Consulting Engineers, DPC
SMP	Site Management Plan
SSDS	Sub-slab Depressurization System
SVOCs	Semi-Volatile Organic Compounds
TOGS	Technical and Operations Guidance Series

Acronym	Definition
USCO	Unrestricted Use Soil Cleanup Objectives
VOCs	Volatile Organic Compounds

EXECUTIVE SUMMARY

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Site Management Plan (SMP):

Site Identification: C360207 Sun Valley Nursery Filling Station Site, 136-140 Croton Avenue, Ossining, NY

Institutional Controls:	<ol style="list-style-type: none"> 1. The property may be used for commercial, industrial and residential use; 2. The Brownfield Cleanup Program (BCP) Site has achieved a conditional Track 1 unrestricted use remedy with remaining contamination present in groundwater and potentially in soil vapor. 3. An Environmental Easement (EE) has been established to document existing contamination remaining on-Site. If continued monitoring of groundwater provides data that indicates compliance of groundwater with applicable regulatory criteria, this SMP will be updated to propose terminating ongoing monitoring of groundwater. 4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the New York State Department of Health (NYSDOH) to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department. 5. All ECs must be inspected at a frequency and in a manner defined in the SMP. Residual groundwater contaminants will be remediated via Monitored Natural Attenuation and will be managed pursuant to the SMP. Proposed buildings will require a soil vapor intrusion evaluation once the construction of the enclosed spaces is completed and prior to occupancy.
Engineering Controls:	<ol style="list-style-type: none"> 1. A network of groundwater wells to monitor residual groundwater contaminants for Monitored Natural Attenuation. If continued monitoring of groundwater provides data that indicates compliances of groundwater with applicable regulatory criteria, this SMP will be updated to propose terminating ongoing monitoring of groundwater. 2. Sub-slab depressurization system (SSDS) beneath future building will be installed and a Soil Vapor Intrusion Evaluation will be completed. The SSDS will remain passive unless sampling determines otherwise.

Inspections:	Frequency
1. Well Inspections	During Sampling Events
Monitoring:	
1. Groundwater Monitoring Wells RI-MW-01, -02, -03 and -06	Quarterly
2. Soil Vapor Intrusion Evaluation for New Buildings	As needed
Reporting:	
1. Periodic Review Report	Annually

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

1.0 INTRODUCTION

1.1. GENERAL

This Site Management Plan (SMP) is a required element of the remedial program for the Sun Valley Nursery Filling Station Site located in Ossining, New York (hereinafter referred to as the "Site"). See **Figure 1.1**. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP), Site No. C360207, which is administered by New York State Department of Environmental Conservation (NYSDEC or Department).

136-140 Croton Avenue LLC and Crescent Manor Owner LLC entered into a Brownfield Cleanup Agreement (BCA) on March 8, 2022 with the NYSDEC to remediate the site. The BCA was amended on September 26, 2024 to add Crescent Manor Owner LLC as an additional volunteer. A figure showing the site location and boundaries of this site is provided in **Figure 1.2**. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in **Appendix A**.

After completion of the remedial work, some contamination was left at this site as part of Track 1, which is hereafter referred to as "remaining contamination." Institutional and Engineering Controls (ICs and ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and to be recorded with the Westchester County Clerk, requires compliance with this SMP and all ECs and ICs placed on the site.

All soil exhibiting contaminant concentrations exceeding NYSDEC Unrestricted Use Soil Cleanup Standards (UUSCOs) were excavated and removed from the Site for off-site disposal during the remedial action. The soil excavation extents and post-excavation soil sample locations are depicted on the Remedial Excavation and Soil Sample Location Plan included as **Figure 2.4**. A summary of the post-excavation soil sample analytical results is included as **Table 1.1**. Following soil removal, one (1) round of groundwater sampling was performed. **Figure 2.2** depicts remaining groundwater sample exceedances at the Site.

This SMP was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC); and

- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6 NYCRR Part 375 and the BCA Index #C360207-03-22; Site #C360207) for the site, and thereby subject to applicable penalties.

This SMP has been revised since submission of the July 2025 version and has addressed all NYSDEC comments in the comment letter dated October 9, 2025. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the site is provided in **Appendix B**.

This SMP was prepared by SESI Consulting Engineers, DPC, on behalf of 136-140 Croton Avenue LLC and Crescent Manor Owner LLC, in accordance with the requirements of the NYSDEC's DER- 10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs and/or ECs that are required by the Environmental Easement for the site.

1.2. REVISIONS AND ALTERATIONS

Revisions and alterations to this plan will be proposed in writing to the NYSDEC's project manager. The NYSDEC can also make changes to the SMP or request revisions from the remedial party. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shutdown of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. All approved alterations must conform with Article 145 Section 7209 of the Education Law regarding the application of professional seals and alterations. For example, any changes to as-built drawings must be stamped by a New York State Professional Engineer. In accordance with the Environmental Easement for the site, the NYSDEC project manager will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3. NOTIFICATIONS

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER – 10 for the following reasons:

1. 60-day advance notice of any proposed changes in site use that are required under the terms of the BCA, 6 NYCRR Part 375 and/or Environmental Conservation Law.
2. 7-day advance notice of any field activity associated with the remedial program.
3. 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan. If the ground-intrusive

activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.

4. Notice within 48 hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
5. Notice within 48 hours of any non-routine maintenance activities.
6. Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
7. Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

8. At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the BCA, and all approved work plans and reports, including this SMP.
9. Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1.2 includes contact information for the above notifications. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in **Appendix B**.

Table 1.2: Notifications*

<u>Name</u>	<u>Contact Information</u>	<u>Required Notification**</u>
Michael Squire, NYSDEC Project Manager	518-402-9546 michael.squire@dec.ny.gov	All Notifications
NYSDEC Supervisor	To Be Determined	All Notifications
NYSDEC Site Control	DERSiteControl@dec.ny.gov	Notifications 1 and 8
Jim Sullivan, NYSDOH Project Manager	518-402-5584 jim.sullivan@health.ny.gov	Notifications 4, 6, and 7

* Note: Notifications are subject to change and will be updated as necessary.

** Note: Numbers in this column reference the numbered bullets in the notification list in this section.

2.0 SUMMARY OF PREVIOUS INVESTIGATION AND REMEDIAL ACTIONS

2.1. SITE LOCATION AND DESCRIPTION

The site is located in Ossining, Westchester County, New York and was originally identified as Section 89.16 Block 7 and Lots 79 and 80 on the Westchester County Tax Map when it entered the BCA. The BCA was amended for a second time on September 23, 2025 to reflect the fact that the two lots were merged into a new single lot 89.16-7-80.1, title to the site was transferred to Crescent Manor Senior Housing Development Fund Corporation ("HDFC") and Crescent Manor Owner LLC became the beneficial owner. The HDFC did not become a party to the BCA (see **Figure 1.2**). The site is an approximately 0.8-acre area and is bounded by Croton Avenue to the north, residences to the south, Watson Avenue to the east, and Prospect Avenue to the west (see **Figure 1.2**). The boundaries of the site are more fully described in **Appendix A**.

The owner(s) of the site parcel(s) at the time of issuance of this SMP is/are:

136-140 Croton Avenue LLC and Crescent Manor Owner LLC

2.2. PHYSICAL SETTING

2.2.1. LAND USE

The Site consists of the following: The former greenhouse structures related to the nursery operations were reportedly demolished in February 2020. Prior to redevelopment, the Site was vacant with only concrete pad remnants of the former structures. The Site is zoned commercial and currently supports a future residential apartment building currently under construction.

The properties adjoining the Site and in the neighborhood surrounding the Site primarily include residential and commercial properties. The properties immediately south of the Site include residential dwellings; the properties immediately north of the Site include apartments and commercial buildings; the properties immediately east of the Site include residences and commercial buildings; and the properties to the west of the Site include residences.

2.2.2. GEOLOGY

Based on SESI's 2023 Geotechnical Investigation and previous environmental investigations (circa 2021), the stratigraphy of the Site consists of brown uncontrolled fill below the asphalt millings and topsoil to approximately four (4) feet below ground surface (ft-bgs). The uncontrolled fill generally consists of coarse to fine sand with varying amounts of coarse to fine gravel, silts, clays and debris such as asphalt, concrete and brick. Beneath the uncontrolled fill, glacial till soils were encountered. The glacial till soil typically consists of coarse to fine sands with varying amounts of coarse to fine gravel, silts and clays. Boulders were encountered at depths ranging from about eight (8) to 36 feet bgs. The glacial till extended to weathered/decomposed bedrock in majority of the geotechnical boring locations at depths ranging from about eight (8) to approximately 52 feet bgs. Remedial investigation (RI) soil borings were installed to refusal, which varied throughout the Site due to the presence of boulders, weathered rock and/or bedrock. The deepest RI

boring was RI-SB-08, which was located in the western portion of the property and installed to 38.5 feet bgs before encountering refusal. Bedrock composed of Inwood Marble was encountered in geotechnical boring B-8 at a depth of 36 feet bgs. Based on the observations from the geotechnical investigation and RI, SESI believes bedrock to be at approximately 40 ft (+/- 10 ft) at the Site.

Site specific boring logs are provided in **Appendix C**.

2.2.3. HYDROGEOLOGY

Groundwater was encountered between approximately 20 to 30 feet bgs in the RI soil borings performed at the Site. Groundwater was encountered between approximately 9.5 and 29.4 feet bgs during RI groundwater sampling conducted in October and November 2023. Based on survey measurements, groundwater elevation across the Site is between 265 and 285 ft-amsl. Groundwater flows across the Site in a southwesterly direction toward Kill Brook, which discharges into the Hudson River.

A groundwater contour map is shown in **Figure 2.1**. Groundwater monitoring well construction logs are provided in **Appendix C**.

2.3. INVESTIGATION AND REMEDIAL HISTORY

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 – References. Below is a summary of the contamination of the Site that warranted remediation:

- Volatile organic compound (VOC) impacts in soil exceeding Unrestricted Use Soil Cleanup Objectives (USCOs) and Restricted Residential Soil Cleanup Objectives (RRSCOs) were identified to be isolated to the northern, northwestern and northeastern portions of the Site at depths between one (1) to 10 feet bgs. Naphthalene impacted soils exceeding the USCO were identified in soils from 2.5 to 10 feet bgs in the northwestern portion of the Site. Metals contaminated soils exceeding the USCOs were identified in shallow soils from one (1) to 1.5 feet bgs in the northeastern portion of the Site and from 2.0 to 2.5 feet bgs in the northwestern portion of the Site. A single silver exceedance over the USCO was reported from 7 to 7.5 feet bgs in the northwestern portion of the Site, and a single copper exceedance over the USCO was reported from 9.5 to 10 feet bgs in the eastern portion of the Site.
- Site groundwater has been impacted with VOCs, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and metals. VOCs were detected above their respective Ambient Water Quality Standards (AWQS) across all onsite wells. Monitoring wells RI-MW-01 and RI-MW-02 (northwestern and northeastern portion of the Site) reported the greatest concentrations and distribution of VOCs. PAHs were detected in monitoring wells RI-MW-02, RI-MW-03 and RI-MW-06. The greatest concentrations and distribution of metals above their respective AWQS were detected in well RI-MW-03, which is centrally located. PCBs were also

detected in RI-MW-03. Select metal compounds (i.e., iron, chromium, sodium and magnesium) were reported above their respective AWQS in monitoring wells RI-MW-01, RI-MW-02 and RI-MW-05.

- Although New York State does not have standards for soil vapor, for discussion purposes SESI has used the NYSDOH matrices lower threshold to evaluate the Matrix A, B, C, D, E and F listed compounds. Petroleum hydrocarbon (PHC) VOCs and chlorinated volatile organic compounds (CVOCs) were still detected in soil vapor.

Below is a remedial summary post RI:

- Removed concrete slab remnants and asphalt pavement as required.
- Installed SOE system around the entire site to facilitate the removal of impacted soils. The SOE extended to varying depths based on the requirements to excavate for remediation and construction. All required permits were obtained prior to the start of work.
- Excavated all Site soils to achieve an unrestricted Track 1 cleanup by removing the complete extents of contaminated fill/soil.
- Documented off-site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal.
- Collected end point/documentation samples to confirm Track 1 was achieved at a rate of one sample per 900 square feet of excavation base and one sample per linear foot of excavation sidewall (where feasible given presence of SOE).
- Backfilled the remedial excavation to specified redevelopment construction design grades following acceptance of documentation samples.
- Backfill materials imported during redevelopment construction activities were sampled in accordance with Section 5.4(e) of the DER-10 and approved by the NYSDEC Project Manager.
- Installed a sub-slab vapor barrier to assist in mitigating against the potential for soil vapor intrusion into the Site building.
- Installed elements of an SSDS under the subgrade of the Site building. The design for the SSDS piping was approved by NYSDEC and NYSDOH prior to installation.
- Repaired and replaced monitoring wells for future groundwater monitoring. Installed a deep well (RI-MW-01D) adjacent to RI-MW-01 to vertically delineate trimethylbenzene into weathered bedrock / bedrock. The monitoring well network is considered an engineering control as long as it is required to monitoring the groundwater conditions.
- Recorded an Environmental Easement (EE) for the Site to document engineering and institutional controls. The EE will remain effective until the EC and ICs are removed if Track 1 is accomplished within five (5) years. If the Track 1 remedy is not achieved in this timeframe as a result of any remaining on-Site conditions, the EE will continue under a Track 2 remedy for any residual groundwater and soil vapor contamination.
- Prepared a Site Management Plan, for short-term management of residual groundwater contamination as required by the EE, including plans for: (1) ICs, (2) groundwater monitoring, and (3) reporting.

- Monitoring of groundwater quality for VOCs, SVOCs and metals for a maximum of a five-year period with a potential for remedial amendment injections within the 5-year period to accelerate the reduction in VOC concentrations, if determined to be necessary.

2.4. REMEDIAL ACTION OBJECTIVES

The Remedial Action Objectives (RAOs) for the Site as listed in the Decision Document dated October 2, 2024 are as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Prevent the discharge of contaminants to surface water.
- Remove the source of ground or surface water contamination.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

Soil Vapor

RAOs for Public Health Protection

- Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site

2.5. REMAINING CONTAMINATION

The Site has achieved a conditional Track 1 remedy. The following sections discuss the residual contamination on Site.

2.5.1. SOIL

A conditional Track 1 remedy was achieved across the Site. Soil contamination no longer remains on-Site above the USCOs. **Figure 2.4** depicts remedial excavation extents and post-excavation soil sample locations indicating achievement of the Track 1 remedy. A summary of the post-excavation soil sample analytical results is included as **Table 1.1**.

2.5.2. GROUNDWATER

The Site's groundwater has been impacted with VOCs, PAHs, PCBs and metals above the AWQS, which may be the result of historical land use. **Table 2.1** below and **Figure 2.2** summarize the results of all samples of groundwater that exceed the Standards, Criteria, and Guidance (SCGs) after completion of the remedial action.

Table 2.1: Remaining Groundwater Exceedances

Client Sample ID:		NYSDEC AWQS	RI-MW-01	RI-MW-01D	RI-MW-02	RI-MW-03	
Lab Sample ID:			JE18042-1	JE18042-2	JE18042-3	JE18042-4	
Date Sampled:			8/27/2025	8/27/2025	8/27/2025	8/27/2025	
Matrix:			Ground Water	Ground Water	Ground Water	Ground Water	
Screened Interval (ft bgs):			25-40'	50-60'	25-40'	25-40'	
Analyte	Unit						
(MS Semi-volatiles (SW846 8270E))							
Acenaphthene	ug/l	20	20.7	-	ND (1.0)	ND (1.0)	
Benzo(a)anthracene	ug/l	0.002	16.6	-	ND (1.0)	2.2	
Benzo(a)pyrene	ug/l	0.002	13.3	-	ND (1.0)	3.3	
Benzo(b)fluoranthene	ug/l	0.002	9.1	-	ND (1.0)	2.6	
Benzo(g,h,i)perylene	ug/l	0.002	8.6	-	ND (1.0)	2.1	
Benzo(k)fluoranthene	ug/l	0.002	3.6	-	ND (1.0)	0.83 J	
Chrysene	ug/l	0.002	13.2	-	ND (1.0)	2.1	
Dibenzo(a,h)anthracene	ug/l	0.002	1.6	-	ND (1.0)	ND (1.0)	
Indeno(1,2,3-cd)pyrene	ug/l	0.002	5.3	-	ND (1.0)	1.2	
(MS Volatiles (SW846 8260D))							
Chloroform	ug/l	7	5.8	-	18.9	9.4	

Client Sample ID:		NYSDEC AWQS	RI-MW-06	DUP20252708	FB20252708	TB20252708	
Lab Sample ID:			JE18042-5	JE18042-6	JE18042-7	JE18042-8	
Date Sampled:			8/27/2025	8/27/2025	8/27/2025	8/27/2025	
Matrix:			Ground Water	Ground Water	Field Blank Water	Trip Blank Water	
Screened Interval (ft bgs):			25-40'	-	-	-	
Analyte	Unit						
(MS Semi-volatiles (SW846 8270E))							
Acenaphthene	ug/l	20	ND (1.0)	ND (1.0)	ND (1.0)	-	
Benzo(a)anthracene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Benzo(a)pyrene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Benzo(b)fluoranthene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Benzo(g,h,i)perylene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Benzo(k)fluoranthene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Chrysene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Indeno(1,2,3-cd)pyrene	ug/l	0.002	ND (1.0)	ND (1.0)	ND (1.0)	-	
Analyte	Unit						
(MS Semi-volatiles (SW846 8270E))							
Chloroform	ug/l	7	14	18.6	ND (1.0)	ND (1.0)	

Notes:

ug/l - micrograms per liter

ND - Not detected

Exceedance of the AWQS

Sample DUP20252708 is a duplicate of sample RI-MW-02.

a - Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

b - Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

c - Associated CCV outside of control limits high, sample was ND.

d - Outside control limits due to matrix interference as per prep log description.

2.5.3. SOIL VAPOR

Soil vapor samples indicated elevated levels of petroleum hydrocarbon VOCs and chlorinated VOCs which pose potential vapor intrusion risks. A vapor barrier and sub-slab depressurization system (SSDS) components are currently under construction beneath the future residential building and will be installed beneath all future buildings to mitigate potential vapor intrusion. A vapor intrusion assessment will also be conducted during the first heating season after the building is closed. The vapor barrier is considered as a green remediation element for potential vapor intrusion. The SSDS will be made active if results of the vapor intrusion assessment suggest vapor intrusion is occurring. Soil vapor data collected during the RI is presented on **Figure 2.3**.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1. GENERAL

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC project manager.

This plan provides:

- A description of all IC/ECs on the site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the Excavation Work Plan (EWP) (as provided in **Appendix E**) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC project manager.

3.2. INSTITUTIONAL CONTROLS

A series of ICs is required by the RAWP and Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to residential, commercial and industrial uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the

Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on **Figure 3.1**. These ICs are:

- The property may be used for: residential; commercial and industrial use;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Westchester County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on **Figure 3.1**, and any potential impacts that are identified must be monitored or mitigated; and
- Vegetable gardens and farming on the site are prohibited.

3.3. ENGINEERING CONTROLS

3.3.1. SUB-SLAB DEPRESSURIZATION SYSTEM

A soil vapor evaluation is required for the proposed buildings on Site. The elements of the SSDS are currently under construction under the proposed residential building as

possible engineering control for the vapor intrusion if necessary. The SSDS consists of a 15-mil liner underlain by 4-inch perforated PVC pipe (or J-Drain or HDPE pipe) placed in 6-inches of venting stone meeting ASTM C33 size no. 5, 56, 57 or 6. The perforated pipes or J-drains will be horizontally manifolded to solid PVC piping and vent risers that extend to the exterior of the building. Vapor Pins™ or ports are currently being installed through the concrete slab for sub-slab vapor sampling. The SSDS may be turned active if the vapor evaluation as discussed in Section 4.5 requires it. The SSDS system designs are presented in **Appendix E**.

If based on the results of the VI evaluation the SSDS is required to function as an EC, the SMP will be updated to include the requirement of the installation of an active soil vapor mitigation system. If a soil vapor mitigation system is warranted based on future soil vapor sampling events, a design document will be submitted for evaluation and approval by the NYSDEC prior to installation.

Procedures for operating and maintaining the SSDS for any future buildings will be documented in the Operation and Maintenance Plan upon the submittal of the updated SMP. As built drawings, signed and sealed by a professional engineer, will be included as an additional appendix in the updated SMP if the requirement for the installation of an active SSDS is warranted.

3.3.2. MONITORING WELLS

Groundwater monitoring activities associated with source removal will continue, as determined by the NYSDEC project manager in consultation with NYSDOH project manager, until residual VOC, PAHs, PCBs and metals groundwater concentrations are found to be consistently below AWQS, concentrations have become asymptotic at an acceptable level over an extended period, or are indicative of a wholly off-site source. If monitoring data indicates that monitoring may no longer be required, a proposal to discontinue the monitoring will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC project manager. If groundwater contaminant levels remain at a level that is not acceptable to the NYSDEC treatment and/or control measures will be evaluated.

3.3.3. CRITERIA FOR COMPLETION OF REMEDIATION/TERMINATION OF REMEDIAL SYSTEM

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10. Unless waived by the NYSDEC, confirmation samples of applicable environmental media are required before terminating any remedial actions at the site. Confirmation samples require Category B deliverables and a Data Usability Summary Report.

As discussed below, the NYSDEC may approve termination of a groundwater monitoring program. When a remedial party receives this approval, the remedial party will

decommission all site-related monitoring, injection and recovery wells as per the NYSDEC CP-43 policy.

The remedial party will also conduct any needed site restoration activities, such as asphalt patching and decommissioning treatment system equipment. In addition, the remedial party will conduct any necessary restoration of vegetation coverage, trees and wetlands, and will comply with NYSDEC and United States Army Corps of Engineers regulations and guidance. Also, the remedial party will ensure that no ongoing erosion is occurring on the site.

3.3.3.1. SUB-SLAB DEPRESSURIZATION SYSTEMS

The installed or any planned SSD system will not be discontinued unless prior written approval is granted by the NYSDEC and the NYSDOH. In the event that monitoring data indicates that the SSDS may no longer be required, a proposal to discontinue the SSDS will be submitted by the remedial party to the NYSDEC and NYSDOH.

3.3.3.2. MONITORING WELLS ASSOCIATED WITH MONITORED NATURAL ATTENUATION

Groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC project manager in consultation with NYSDOH project manager, until residual groundwater concentrations are found to be consistently below Ambient Water Quality Standards, the site SCGs, or have become asymptotic at an acceptable level over an extended period. In the event that monitoring data indicates that monitoring for natural attenuation may no longer be required, a proposal to discontinue the monitoring will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC project manager. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

4.0 MONITORING AND SAMPLING PLAN

4.1 GENERAL

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC project manager. The Health and Safety Plan (HASP) is provided as **Appendix F**. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the site are included in the Quality Assurance Project Plan provided in **Appendix G**.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly groundwater standards and Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment;

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 SITE WIDE INSPECTION

Site-wide inspections will be performed quarterly during groundwater monitoring events or at a minimum of once per year. These periodic inspections must be conducted when the ground surface is visible (i.e. no snow cover). Site-wide inspections will be performed by a qualified environmental professional as defined in 6 NYCRR Part 375, a Professional Engineer (PE) who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State. Modification to the frequency or duration of the inspections will require approval from the NYSDEC

project manager. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed as provided in **Appendix H** – Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- Whether stormwater management systems, such as basins and outfalls, are working as designed;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that site records are up to date.

Inspections of all remedial components installed at the site will be conducted. A comprehensive site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If site records are complete and up to date.

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the site, verbal notice to the NYSDEC project manager must be given by noon of the following day. In addition, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the site by a qualified environmental professional, as defined in 6 NYCCR Part 375. Written confirmation must be provided to the NYSDEC project manager within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public. The remedial party will submit follow-up status reports to the NYSDEC within 45 days of the event on actions

taken to respond to any emergency event requiring ongoing responsive action, describing and documenting actions taken to restore the effectiveness of the ECs.

The remedial party will conduct exterior inspections of all sub-slab depressurization (SSD) systems [fill in frequency] and perform comprehensive inspections as needed. Exterior inspections will include: confirming that the fan is running correctly, determining whether there is damage to the stack or other exterior system components, and determining whether there have been structural changes, such as an addition to the structure. Comprehensive inspections include all of the activities required in the exterior inspection and an interior inspection, which includes: confirming a pressure differential on the manometer, inspecting the interior components for damage, recording vacuum readings from sub-slab vacuum monitoring points (if installed), and inspecting the basement area for cracks in the basement floors and walls that may have developed since the SSD system was installed. The remedial party will notify the DEC project manager about any problems within three days of inspections. Inspection reports will be emailed to the DEC Project Manager and included in the next PRR.

4.3 GROUNDWATER SAMPLING

Groundwater monitoring will be performed quarterly to assess the performance of the remedy. Modification to the frequency or sampling requirements will require approval from the NYSDEC project manager.

The network of monitoring wells has been installed to monitor upgradient, on-site and downgradient groundwater conditions at the site. The network of on-site wells has been designed based on the following criteria.

Table 4.1 summarizes the wells' identification numbers, as well as the purpose, location, depths, diameter and screened intervals of the wells. As part of the groundwater monitoring, two (2) upgradient wells, one (1) central well and one (1) downgradient well are sampled to evaluate the effectiveness of the remedial system. The remedial party will measure depth to the water table for each monitoring well in the network before sampling.

Table 4.1 – Monitoring Well Construction Details

Monitoring Well ID	Well Location	Coordinates (longitude/latitude) ¹	Well Diameter (inches)	Elevation (above mean sea level) ¹			
				Casing	Surface	Screen Top	Screen Bottom
RI-MW-01	Side Gradient	850719/670382	2	293	288	263	248
RI-MW-1D	Side Gradient	850725/670567	2	293	288	238	228
RI-MW-02	Upgradient	850730/670565	2	293	288	263	248
RI-MW-03	Central	850701/670480	2	294	290	265	250
RI-MW-04	Downgradient	850662/670380	2	293	290	265	250
RI-MW-05	Side Gradient	850661/670571	2	294	290	260	245
RI-MW-06	Upgradient	850703/670563	2	293	288	263	248

Monitoring well construction logs are included in **Appendix C** of this document.

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC project manager will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report.

¹ Horizontal coordinates and vertical elevations of the monitoring wells are estimated and will be updated once building construction is complete.

Well decommissioning without replacement will be done only with the prior approval of the NYSDEC project manager. Well abandonment will be performed in accordance with NYSDEC's guidance entitled "CP-43: Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by the NYSDEC project manager.

The sampling of monitoring wells is as follows:

Table 4.2 – Monitoring Well Sampling Details

Monitoring Well ID	Location	Analytical Parameters	Schedule
RI-MW-04	Downgradient	VOCs, 1,4-dioxane, PAHs, PCBs, Metals	Quarterly groundwater monitoring until the results for all parameters show bulk reduction in groundwater contamination to asymptotic levels to the Department's satisfaction per 6 NYCRR Part 375-3.8(e)(1)(iii)(b) for Track 1 cleanup
RI-MW-06	Upgradient		
RI-MW-03	Central		
RI-MW-02	Upgradient		

The sampling frequency may only be modified with the approval of the NYSDEC project manager. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC project manager.

Deliverables for the groundwater monitoring program are specified in Section 7.0 – Reporting Requirements.

The Site Management Forms are provided in **Appendix H**.

4.4 SOIL VAPOR INTRUSION SAMPLING

Soil vapor intrusion sampling will be performed once the building envelope is completed and the heating and ventilation system are installed and active to assess the performance of the remedy. The sampling will be conducted during the heating season. Modification to the frequency or sampling requirements will require approval from the NYSDEC project manager.

The network of on-site sub-slab soil vapor intrusion sample locations will be provided to NYSDEC and NYSDOH for approval in a separate work plan once building construction is finalized. Sampling procedures for sub-slab vapor and indoor air sampling are included in the Field Sampling Plan in **Appendix I**. If the results of the soil vapor intrusion sampling indicate exceedances of the NYSDOH Soil Vapor/Indoor Air Decision Matrices (Updated

2024), an updated SMP will be submitted to NYSDEC which will include engineering controls for vapor mitigation.

The following samples will be collected as described:

Table 4.3 – Air Sampling Details

Sub-Slab Vapor Point ID	Location	Analytical Parameters	Schedule
VP-1	Soil Vapor	VOCs by TO-15	Will be sampled once during the heating season and prior to building occupancy
VP-2	Soil Vapor		
VP-3	Soil Vapor		
IA-1	Indoor Air		
IA-2	Indoor Air		
IA-3	Indoor Air		
AA-1	Ambient Air		

The sampling frequency may only be modified with the approval of the NYSDEC project manager. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC project manager.

Deliverables for the soil vapor intrusion sampling program are specified in Section 7.0 – Reporting Requirements.

4.5 MONITORING AND SAMPLING PROTOCOL

All sampling activities will be recorded in a field book and associated sampling log as provided in **Appendix H**. Other observations (e.g., groundwater monitoring well integrity) will be noted on the sampling log. The sampling log will serve as the inspection form for the monitoring network. Additional details regarding monitoring and sampling protocols are provided in the site-specific Field Activities Plan provided as **Appendix I** of this document.

5.0 OPERATION AND MAINTENANCE PLAN

5.1 GENERAL

The site remedy does not rely on any mechanical systems, such as groundwater treatment systems, active sub-slab depressurization systems or air sparge/soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

6.0 PERIODIC ASSESSMENT/EVALUATIONS

6.1 CLIMATE CHANGE VULNERABILITY ASSESSMENT

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a current vulnerability assessment that evaluates the vulnerability of the site and/or engineering controls to severe storms/weather events and associated flooding. This section also identifies vulnerability assessment updates that will be conducted for the site in Periodic Review Reports.

The vulnerability of the site and engineering controls to severe storms/weather events and associated flooding is summarized as follows:

1. The Site is not located within a floodplain.
2. During severe rain events low lying areas of the Site may experience brief flooding limiting access to monitoring wells.
3. High winds are not expected to damage the groundwater wells or vapor points.
4. The wells and vapor points are not vulnerable to the loss of electric power.
5. No spill or containment areas exist on the Site that would cause a release during severe weather events.
6. The Site and immediately surrounding areas are mostly paved with hardscape surfaces or contain buildings or a gravel cap, and therefore erosion is not expected to present a major issue for the Site.
7. The area of the site is generally of artificial grade with no exposed soils and therefore landslides are not considered a potential hazard.
8. The location of the Site is not considered to be susceptible to droughts or wildfires.

Any updates/changes in the above conditions will be reported in the periodic review report. Based upon the above, a climate vulnerability assessment (CVA) is not considered to be necessary for the Site at this time.

The Climate Screening process and results will be documented in the form of a completed checklist and brief letter report. If the Climate Screening results indicate that a CVA is necessary in the future, a complete CVA Report will be developed. The CVA Report will be included as an Appendix or Attachment in relevant documents and/or submitted as a standalone report. If a CVA is not required, the Climate Screening must be updated during each PRR or after any changes in remedy or site conditions to determine if the site is still resilient.

6.2 GREEN REMEDIATION EVALUATION

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section provides an environmental footprint analysis of the remedy, as implemented at the time of this SMP. This section of the SMP also provides a summary of green remediation evaluations to be completed for the site during site management and reported in Periodic Review Reports (PRRs).

A preliminary green remediation evaluation for the proposed site monitoring activities is presented below:

- There is no mechanical equipment required and therefore no electrical energy usage associated with the Site monitoring.
- Any waste generated as a result of site monitoring activities is expected to be negligible.
- There is no mechanical equipment required and therefore no emissions are associated with the Site monitoring, other than vehicular usage to and from the Site.
- The Site will not disturb the land and/or ecosystems.

Green Remediation concepts and techniques that will be considered during activities will include:

- Eliminate idling vehicles and equipment when possible; reducing emission of CO₂, N₂O, CH₄, and other greenhouse gases contributing to climate change;
- Operation of particulate detectors during ground intrusive activities to monitor and minimize dust export of contaminants;
- Operation of volatile organic compound (VOC) detectors to monitor and minimize VOC exposures; and
- Conducting sampling events planned simultaneously to maximize level of efforts while traveling to/from the Site (economy of scale implementing multiple sampling events).

6.2.1 BEST MANAGEMENT PRACTICES

In accordance with the USEPA *Green Remediation Best Management Practices* and DER-31, SESI will consider the below best management practices for field, laboratory, and office activities associated with ongoing site management. The following practices have been selected based on their relevance to the specifics of the Site:

- Select service providers, product suppliers and analytical laboratories from the local area and consolidate the service and delivery schedules
- Establish electronic networks for data transfers, team decisions and document preparation
- Reduce travel through increased teleconferencing

- Soil gas surveys involving instruments such as Summa canisters to determine the presence, composition and distribution of VOCs in the vadose zone and water table (if necessary)
- Treat potentially contaminated purge water through use of technologies such as activated carbon filtration prior to discharge to storm drains or waterways
- Choose groundwater monitoring equipment made of noncorrosive material
- Compress the number of days needed for a given round of sampling
- Minimize the need for disposable single-use items such as plastic bags
- Choose fixed laboratories demonstrating a strong commitment to environmental performance, such as routine use of management practices identified by the International Institute for Sustainable Laboratories

6.2.2 TIMING OF GREEN REMEDIATION EVALUATION

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken as part of a formal Remedial System Optimization (RSO), or at any time that the NYSDEC project manager feels appropriate, (e.g. during significant maintenance events or in conjunction with storm recovery activities).

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities after approval from the NYSDEC project manager. Reporting of these modifications will be presented in the PRR.

6.2.3 FREQUENCY OF SYSTEM CHECKS, SAMPLING, AND OTHER PERIODIC ACTIVITIES

Transportation to and from the Site, use of consumables in relation to visiting the Site in order to conduct system checks and/or collect samples, and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

6.2.4 METRICS AND REPORTING

As discussed in Section 7.0 and as shown in **Appendix H – Site Management Forms**, information on energy usage, solid waste generation, transportation and shipping, water usage and land use and ecosystems will be recorded to facilitate and document consistent implementation of green remediation during site management and to identify corresponding benefits. A set of metrics has been developed and will be evaluated over time to ensure that green remediation actions are achieving the desired results. As a requirement of DER-31, an environmental footprint analysis (EFA) was performed for the Site remedy and included in the FER. A summary of the EFA for the operations associated with this SMP is as follows:

- Green House Gas (GHG) emissions are mainly from residual handling and equipment use and miscellaneous. The energy used by the project is similarly mostly from residual handling and equipment use and miscellaneous. Onsite NO_x, SO_x, and PM₁₀ emissions are primarily attributed to equipment use and miscellaneous. Total NO_x, SO_x, PM₁₀ emissions are from consumables and equipment use and miscellaneous. Accident Risk is primarily attributed to transportation of personnel and equipment use and miscellaneous.
- The results indicate that residual handling and equipment use and miscellaneous have the biggest environmental footprint on the project (GHG, energy used, NO_x, SO_x, PM₁₀).
- Groundwater monitoring activities to assess the effect of remedial excavation on groundwater contamination mitigation will continue, as determined by the NYSDEC project manager in consultation with the NYSDOH project manager, until residual groundwater concentrations are found to be consistently below ambient water quality standards, the site SCGs, or have become asymptotic at an acceptable level over an extended period. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, treatment and/or control measures will be evaluated and further groundwater remedial measures of the residual contamination may be considered. Therefore, an EFA of the additional groundwater remedial alternatives may be conducted once the evaluation of the attenuation of groundwater contamination is completed. The environmental footprint of the remedial alternatives would also be evaluated to explore opportunities to further optimize the environmental footprint of the project and integrate sustainable remediation best practices in the operation of the additional remedial actions.

6.2.5 REMEDIAL SYSTEM OPTIMIZATION

A Remedial System Optimization (RSO) study will be conducted any time that the NYSDEC project manager or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. An RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet RAOs in the time frame estimated in the Decision Document;
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the site management to another remedial party or agency; and
- A new and applicable remedial technology becomes available.

An RSO will provide a critique of a site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the site's cleanup goals, gather additional performance or media specific data and information and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

7.0 REPORTING REQUIREMENTS

7.1 SITE MANAGEMENT REPORTS

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in **Appendix H**. These forms are subject to NYSDEC revision. All site management inspection, maintenance, and monitoring events will be conducted by a qualified environmental professional as defined in 6 NYCRR Part 375, a Professional Engineer (PE) who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State.

All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of **Table 7.1** and summarized in the Periodic Review Report.

Table 7.1: Schedule of Interim Monitoring/Inspection Reports

Task/Report	Reporting Frequency*
Periodic Review Report	Annually, or as otherwise determined by the NYSDEC project manager.

* The frequency of events will be conducted as specified until otherwise approved by the NYSDEC project manager.

All interim monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);

- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQulS™ database in accordance with the requirements found at this link <http://www.dec.ny.gov/chemical/62440.html>.

7.2 PERIODIC REVIEW REPORT

Periodic Review Report (PRR) will be submitted to the NYSDEC project manager beginning sixteen (16) months after the Certificate of Completion is issued. After submittal of the initial Periodic Review Report, the next PRR shall be submitted annually to the NYSDEC project manager or at another frequency as may be required by the NYSDEC project manager. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in **Appendix A**. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the site.
- Results of the required annual site inspections, fire inspections and severe condition inspections, if applicable.
- Description of any change of use, import of materials, or excavation that occurred during the certifying period.
- All applicable site management forms and other records generated for the site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- Identification of any wastes generated during the reporting period, along with waste characterization data, manifests, and disposal documentation.
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These tables and figures will include a presentation of past data as part of an evaluation of contaminant concentration trends, including but not limited to:
 - Trend monitoring graphs that present groundwater contaminant levels from before the start of the remedy implementation to the most current sampling data;
 - Trend monitoring graphs depicting system influent analytical data on a per event and cumulative basis;
 - O&M data summary tables;
 - A current plume map for sites with remaining groundwater contamination; and
 - A groundwater elevation contour map for each gauging event.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuIS™ database in accordance with the requirements found at this link: <http://www.dec.ny.gov/chemical/62440.html>.
- A site evaluation, which includes the following:

- The compliance of the remedy with the requirements of the site-specific Remedial Action Work Plan (RAWP), ROD or Decision Document;
- The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
- Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan;
- An update to the climate screening to determine if the remedy remains resilient to projected changes in climate hazards.
- An update to the CVA if site or external conditions have changed since the previous assessment or if the Climate Screening determines one is now required, and recommendations to address vulnerabilities.
- A summary of the Green Remediation evaluation, including a quantitative and qualitative overview of a site's environmental impacts and recommendations to improve the remedy's environmental footprint. The PRR will include the completed Summary of Green Remediation Metrics form provided in **Appendix H**.
- An evaluation of trends in contaminant levels in the affected media to determine if the remedy continues to be effective in achieving remedial goals as specified by the RAWP, ROD or Decision Document; and
- The overall performance and effectiveness of the remedy.

7.2.1 CERTIFICATION OF INSTITUTIONAL AND ENGINEERING CONTROLS

Following the last inspection of the reporting period, a qualified environmental professional as defined in 6 NYCRR Part 375 or Professional Engineer licensed to practice and registered in New York State will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

“For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- *The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;*
- *The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;*

- *Nothing has occurred that would impair the ability of the control to protect the public health and environment;*
- *Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;*
- *Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;*
- *If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;*
- *Use of the site is compliant with the environmental easement;*
- *The engineering control systems are performing as designed and are effective;*
- *To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices;*
- *No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and*
- *The information presented in this report is accurate and complete.*

(Every 5 years, the following will be included:

- *The assumptions made in the qualitative exposure assessment remain valid.)*

"I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, _____, of SESI Consulting Engineers, am certifying as Owner's/Remedial Party's Designated Site Representative for the site."

"I certify that the New York State Education Department has granted a Certificate of Authorization to provide Professional Engineering services to the firm that prepared this Periodic Review Report."

The signed certification will be included in the Periodic Review Report.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager. The Periodic Review Report may also need to be submitted in hard-copy format if requested by the NYSDEC project manager.

7.3 CORRECTIVE MEASURES WORK PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control or failure to conduct site management activities, a Corrective Measures Work Plan will be submitted to the NYSDEC project manager for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC project manager.

8.0 REFERENCES

6 NYCRR Part 375, Environmental Remediation Programs. December 14, 2006. NYSDEC DER-10 – “Technical Guidance for Site Investigation and Remediation”.

NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).

Geotechnical Investigation Report, 136-140 Croton Avenue, Ossining, New York, prepared by SESI Consulting Engineers, October 10, 2023

Interim Remedial Measures Work Plan, Sun Valley Nursery Filling Station (NYSCEC BCP Site No. C360207), prepared by SESI Consulting Engineers, August 2022/Revised December 2022

Phase I Environmental Site Assessment Report, 136-140 Croton Avenue, Ossining, New York, prepared by SESI Consulting Engineers, November 2021

Phase I Environmental Site Assessment Report, 136-140 Croton Avenue, Ossining, New York, prepared by SESI Consulting Engineers, Revised May 2024

Phase II Environmental Site Assessment Report, Sun Valley Nursery Filling Station Site, prepared by SESI Consulting Engineers, November 2021

Remedial Action Work Plan, Sun Valley Nursery Filling Station Site, prepared by SESI Consulting Engineers, December 2023/Revised December 2024

Remedial Investigation Report, Sun Valley Nursery Filling Station Site, prepared by SESI Consulting Engineers, November 2023/Revised May 2024/Revised October 2024

Remedial Investigation Work Plan, Sun Valley Nursery Filling Station Site, prepared by SESI Consulting Engineers, May 2022/Revised August 2022

Tables

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:		RSCO	RRSCO	USCO	EP-A2	EP-B2	EP-C2	EP-C2 DUP	EP-A3	EP-B3	EP-A10	EP-B10	EP-B9	EP-A9	EP-A8
Lab Sample ID:					JE15615-8	JE15615-9	JE15615-10	JE15615-13	JE15615-11	JE15615-12	JE15682-1	JE15682-2	JE15682-3	JE15682-4	JE15682-5
Sample Depth (ft bgs):					11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	8.0-8.5	8.0-8.5	13.0-13.5	13.0-13.5	13.0-13.5	
Date Sampled:					7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte	Unit														
Volatile Organic Compounds (VOCs)															
1,1,1-Trichloroethane	ug/kg	100000	100000	680	ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
1,1,2,2-Tetrachloroethane	ug/kg	35000			ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
1,1,2-Trichloroethane	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
1,1-Dichloroethane	ug/kg	19000	26000	270	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
1,1-Dichloroethene	ug/kg	100000	100000	330	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
1,2,3-Trichlorobenzene	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
1,2,4-Trichlorobenzene	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
2-Dibromo-3-chloropropene	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
1,2-Dibromoethane	ug/kg				ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
1,2-Dichlorobenzene	ug/kg	100000	100000	1100	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
1,2-Dichloroethane	ug/kg	2300	3100	20	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
1,2-Dichloropropane	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
1,3-Dichlorobenzene	ug/kg	17000	49000	2400	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
1,4-Dichlorobenzene	ug/kg	9800	13000	1800	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
2-Butanone (MEK)	ug/kg	100000	100000	120	ND (11)	ND (12)	ND (11)	ND (10)	ND (11)	ND (10)	ND (11)	ND (8.9)	ND (9.3)	ND (12)	ND (13)
2-Hexanone	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Methyl-2-pentanone(MIB)	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Acetone	ug/kg	100000	100000	50	ND (11)	6.7 J	ND (11)	4.8 J	ND (11)	ND (10)	ND (11)	ND (8.9)	ND (9.3)	ND (12)	ND (13)
Benzene	ug/kg	2900	4800	60	ND (0.53)	ND (0.61)	ND (0.55)	ND (0.51)	ND (0.55)	ND (0.51)	ND (0.56)	ND (0.45)	ND (0.46)	ND (0.58)	ND (0.64)
Bromochloromethane	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Bromodichloromethane	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Bromoform	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Bromomethane	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Carbon disulfide	ug/kg	100000		760	ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Carbon tetrachloride	ug/kg	1400	2400		ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Chlorobenzene	ug/kg	100000	100000	1100	ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Chloroethane	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Chloroform	ug/kg	10000	49000	370	ND (2.1) ^a	ND (2.4) ^a	ND (2.2) ^a	ND (2.0) ^a	ND (2.2) ^a	ND (2.0) ^a	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Chloromethane	ug/kg				ND (5.3) ^a	ND (6.1) ^a	ND (5.5) ^a	ND (5.1) ^a	ND (5.5) ^a	ND (5.1) ^a	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
cis-1,2-Dichloroethene	ug/kg	59000	100000	250	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
cis-1,3-Dichloropropene	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Cyclohexane	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Dibromochloromethane	ug/kg				ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
Dichlorodifluoromethane	ug/kg				ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Ethylbenzene	ug/kg	30000	41000	1000	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
Freon 113	ug/kg	100000			ND (5.3)	ND (6.1)	ND (5.5)	ND (5.1)	ND (5.5)	ND (5.1)	ND (5.6)	ND (4.5)	ND (4.6)	ND (5.8)	ND (6.4)
Isopropylbenzene	ug/kg	100000			ND (2.1)	ND (2.4)	ND (2.2)	ND (2.0)	ND (2.2)	ND (2.0)	ND (2.2)	ND (1.8)	ND (1.9)	ND (2.3)	ND (2.5)
m,p-Xylene	ug/kg	100000	100000	260	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.0)	ND (1.1)	ND (1.0)	ND (1.1)	ND (0.89)	ND (0.93)	ND (1.2)	ND (1.3)
Methyl Acetate	ug/kg				ND (5.3										

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:	RSCO	RRSCO	USCO	EP-A2	EP-B2	EP-C2	EP-C2 DUP	EP-A3	EP-B3	EP-A10	EP-B10	EP-B9	EP-A9	EP-A8
Lab Sample ID:				JE15615-8	JE15615-9	JE15615-10	JE15615-13	JE15615-11	JE15615-12	JE15682-1	JE15682-2	JE15682-3	JE15682-4	JE15682-5
Sample Depth (ft bgs):	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0
Date Sampled:	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025
Matrix:				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte	Unit													
Butyl benzyl phthalate	ug/kg	100000		ND (72) ^b	ND (71) ^b	ND (71) ^b	ND (73) ^b	ND (72)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)	
1,1'-Biphenyl	ug/kg			ND (72)	ND (71)	ND (71)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)	
Benzaldehyde	ug/kg			ND (180)	ND (180)	ND (170)	ND (180)	ND (180)	ND (180)					
2-Chloronaphthalene	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
4-Chloraniline	ug/kg	100000		ND (180)	ND (180)	ND (170)	ND (180)	ND (180)	ND (180)					
Carbazole	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
Caprolactam	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
Chrysene	ug/kg	1000	3900	1000	12.6 J	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
(2-Chloroethoxy)methane	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
bis(2-Chloroethyl)ether	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
2-Oxybis(1-chloropropan)	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
Chlorophenyl phenyl eth	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
2,4-Dinitrotoluene	ug/kg			ND (36) ^b	ND (35) ^b	ND (36) ^b	ND (36) ^b	ND (36) ^b	ND (37) ^b	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
2,6-Dinitrotoluene	ug/kg	1030		ND (36) ^b	ND (35) ^b	ND (36) ^b	ND (36) ^b	ND (36) ^b	ND (37) ^b	ND (34) ^b	ND (37) ^b	ND (36) ^b	ND (35) ^b	ND (35) ^b
3,3'-Dichlorobenzidine	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
1,4-Dioxane	ug/kg	9800	13000	100	ND (36)	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Dibenz(a,h)anthracene	ug/kg	330	330	330	ND (36)	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Dibenzofuran	ug/kg	14000	59000	7000	ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)
Di-n-butyl phthalate	ug/kg	100000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
Di-n-octyl phthalate	ug/kg	100000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69) ^b	ND (73) ^b	ND (72) ^b	ND (71) ^b	ND (70) ^b
Diethyl phthalate	ug/kg	100000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
Dimethyl phthalate	ug/kg	100000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
bis(2-Ethylhexyl)phthalate	ug/kg	50000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69) ^b	ND (73) ^b	ND (72) ^b	ND (71) ^b	ND (70) ^b
Fluoranthene	ug/kg	100000	100000	100000	38.8	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Fluorene	ug/kg	100000	100000	30000	ND (36)	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Hexachlorobenzene	ug/kg	410	1200	330	ND (72) ^b	ND (71) ^b	ND (71) ^b	ND (73)	ND (72) ^b	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)
Hexachlorobutadiene	ug/kg			ND (36)	ND (35)	ND (36)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Exachlorocyclopentadien	ug/kg			ND (360)	ND (350)	ND (360)	ND (360)	ND (360)	ND (370)	ND (340) ^a	ND (370) ^a	ND (360) ^a	ND (350) ^a	ND (350) ^a
Hexachloroethane	ug/kg			ND (180)	ND (180)	ND (170)	ND (180)	ND (180)	ND (180)	ND (180)				
Indeno[1,2,3-cd]pyrene	ug/kg	500	500	500	ND (36)	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Isophorone	ug/kg	100000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
2-Methylnaphthalene	ug/kg	410		ND (36)	ND (35)	ND (36)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
2-Nitroaniline	ug/kg			ND (180) ^b	ND (170)	ND (180) ^b								
3-Nitroaniline	ug/kg			ND (180)	ND (180)	ND (170)	ND (180) ^b	ND (180) ^b	ND (180) ^b	ND (180) ^b				
4-Nitroaniline	ug/kg			ND (180)	ND (180)	ND (170)	ND (180) ^b	ND (180) ^b	ND (180) ^b	ND (180) ^b				
Naphthalene	ug/kg	100000	100000	12000	ND (36)	ND (35)	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)	ND (35)
Nitrobenzene	ug/kg	3700	15000		ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)
o-Nitroso-di-n-propylamine	ug/kg			ND (72)	ND (71)	ND (71)	ND (73)	ND (72)	ND (74)	ND (69)	ND (73)	ND (72)	ND (71)	ND (70)
N-Nitrosodiphenylamine	ug/kg			ND (180)	ND (180)	ND (170)	ND (180)	ND (180)	ND (180)	ND (180)				
Phenanthrene	ug/kg	100000	100000	100000	39.9 J	ND (35)	16.5 J	ND (36)	ND (36)	ND (37)	ND (34)	ND (37)	ND (36)	ND (35)
Pyrene	ug/kg	100000	100000	100000	29.9 J	ND (35)	ND (36)	ND (36)	ND (36)	ND (37)	ND (34)	ND (36)	ND (35)	ND (35)
2,4,5-Tetrachlorobenzene	ug/kg			ND (180)	ND (180)	ND (170)	ND (180)	ND (180)	ND (180)	ND (180)				
2-Fluorophenol	%			50										

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:	RSCO	RRSCO	USCO	EP-A2	EP-B2	EP-C2	EP-C2 DUP	EP-A3	EP-B3	EP-A10	EP-B10	EP-B9	EP-A9	EP-A8
Lab Sample ID:				JE15615-8	JE15615-9	JE15615-10	JE15615-13	JE15615-11	JE15615-12	JE15682-1	JE15682-2	JE15682-3	JE15682-4	JE15682-5
Sample Depth (ft bgs):	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	8.0-8.5	8.0-8.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5
Date Sampled:	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025
Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte	Unit													
Perfluoroundecanoic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorododecanoic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorotridecanoic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorotetradecanoic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorobutanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluoropentanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorohexanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluoroheptanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluoroctanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorononanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
Perfluorodecanesulfonic acid	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)				
2 Fluorotelomer sulfonate	ug/kg													
2 Fluorotelomer sulfonate	ug/kg			ND (0.87)	ND (0.85)	ND (0.86)	ND (0.87)	ND (0.86)	ND (0.81)	ND (0.85)	ND (0.86)	ND (0.83)	ND (0.84)	
2 Fluorotelomer sulfonate	ug/kg			ND (0.87)	ND (0.85)	ND (0.86)	ND (0.87)	ND (0.86)	ND (0.81)	ND (0.85)	ND (0.86)	ND (0.83)	ND (0.84)	
PFOSA	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	
MeFOSA	ug/kg													
MeFOSAA	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	
EtFOSA	ug/kg			ND (0.22)	ND (0.21)	ND (0.22)	ND (0.22)	ND (0.21)	ND (0.20)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	
MeFOSE	ug/kg													
EtFOSE	ug/kg													
HFPO-DA (GenX)	ug/kg													
ADONA	ug/kg													
PFMPA	ug/kg													
PFMBA	ug/kg													
NFDHA	ug/kg													
Cl-PF3ONS (F-53B Major)	ug/kg													
Cl-PF3OUdS (F-53B Minor)	ug/kg													
PFEESA	ug/kg													
3 Fluorotelomer carboxylate	ug/kg													
3 Fluorotelomer carboxylate	ug/kg													
3 Fluorotelomer carboxylate	ug/kg													
13C4-PFBA	%			75	79	84	87	86	82	84	70	84	82	83
13C5-PFPeA	%			73	81	85	89	86	82	86	69	86	83	81
13C5-PFHxA	%			74	83	85	94	90	82	88	71	91	82	84
13C4-PFHpA	%			72	82	85	88	86	80	86	74	85	81	81
13C8-PFOA	%			74	80	83	85	90	80	79	69	82	79	83
13C9-PFNA	%			77	79	84	89	84	88	83	72	87	83	88
13C6-PFDA	%			77	76	89	89	100	78	81	71	85	78	81
13C7-PFUdA	%			77	84	86	90	96	83	90	73	94	77	86
13C2-PFDdDA	%			82	83	89	90	95	83	88	71	91	81	92
13C2-PFTeDA	%			84	83	88	87	97	82	85	75	88	78	92
13C3-PFBS	%			80	88	87	87	79	82	88	64	85	85	79
13C3-PFHxA	%			79	92	80	82	78	79	92	68	85	87	92
13C8-PFOS	%			85	78	99	93	88	84	83	71	84	83	77
13C8-FOSA	%			73	78	96	90	95	86	84	73	88	82	91
d3-MeFOSA	%													
d5-EtFOSA	%													
d3-MeFOSAA	%			78	76	84	79	83	78	78	66	82	76	82
d5-EtFOSAA	%			73	74	83	83	85	77	79	66	81	73	78
d7-MeFOSE	%													
d9-EtFOSE	%													
13C2-4.2FTS	%													
13C2-6.2FTS	%			78	110	95	89	95	79	76	86	120	87	87
13C2-8.2FTS	%			91	93	96	87	93	78	88	78	100	93	110
13C3-HFPO-DA	%													
Pesticides														
Aldrin	ug/kg	19	97	5										

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:		RSCO	RRSCO	USCO	EP-A2	EP-B2	EP-C2	EP-C2 DUP	EP-A3	EP-B3	EP-A10	EP-B10	EP-B9	EP-A9	EP-A8
Lab Sample ID:					JE15615-8	JE15615-9	JE15615-10	JE15615-13	JE15615-11	JE15615-12	JE15682-1	JE15682-2	JE15682-3	JE15682-4	JE15682-5
Sample Depth (ft bgs):					11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	11.5-12.0	8.0-8.5	8.0-8.5	13.0-13.5	13.0-13.5	13.0-13.5
Date Sampled:					7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/22/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte	Unit														
Decachlorobiphenyl (3)	%														
Polychlorinated Biphenyls (PCBs)															
Aroclor 1016	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (36)	ND (34)	ND (35)	ND (35)	ND (32)
Aroclor 1221	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1232	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1242	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1248	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1254	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1260	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1268	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Aroclor 1262	ug/kg	1000	1000	100	ND (36)	ND (35)	ND (32)	ND (34)	ND (34)	ND (36)	ND (34)	ND (36)	ND (35)	ND (35)	ND (32)
Tetrachloro-m-xylene	%														
Tetrachloro-m-xylene (1)	%														
Tetrachloro-m-xylene (2)	%				71	88	73	78	57	65	56	76	91	63	77
Tetrachloro-m-xylene (3)	%				88	116	97	102	74	88	80	109	128	90	108
Decachlorobiphenyl	%														
Decachlorobiphenyl (1)	%														
Decachlorobiphenyl (2)	%				75	99	75	77	58	75	61	88	103	70	85
Decachlorobiphenyl (3)	%				93	123	92	95	71	93	78	112	134	91	110
Metals															
Aluminum	mg/kg				13000	10600	10700	14100	12200	12400	11600	10400	11700	11900	10700
Antimony	mg/kg				ND (2.3)	ND (2.2)	ND (2.2)	ND (2.3)	ND (2.2)	ND (2.2)	ND (2.1)	ND (2.2)	ND (2.1)	ND (2.2)	ND (2.1)
Arsenic	mg/kg	16	16	13	ND (2.3)	2.4	ND (2.2)	ND (2.3)	ND (2.2)	ND (2.2)	ND (2.1)	ND (2.2)	ND (2.1)	ND (2.2)	ND (2.1)
Barium	mg/kg	350	400	350	136	107	133	176	133	144	148	125	144	151	134
Beryllium	mg/kg	14	72	7.2	0.49	0.46	0.43	0.51	0.45	0.48	0.34	0.33	0.39	0.37	0.34
Cadmium	mg/kg	2.5	4.3	2.5	ND (0.56)	ND (0.55)	ND (0.56)	ND (0.58)	ND (0.55)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.55)	ND (0.52)
Calcium	mg/kg				7020	7620	6940	8650	9100	8530	9100	7370	7670	10200	6300
Chromium	mg/kg				21	18	18.9	24.7	20.7	21.9	20	19.3	21	21.1	20.7
Cobalt	mg/kg	30			10.3	8.8	8.5	10.8	9.8	9.3	9.4	8.3	9.5	9.7	9.3
Copper	mg/kg	270	270	50	17.6	18.6	14.1	18.7	18.2	19.3	13.5	14.2	16.7 ^c	16 ^c	14.7 ^c
Iron	mg/kg	2000			25200	18500	17700	22800	19800	21400	20600	18500	22400	22700	20000
Lead	mg/kg	400	400	63	8.9 ^c	4.6	3.8	4.4	5.1	5.5	3.4	4.3	3.5	3.9	3.3
Magnesium	mg/kg				6870	6850	6770	8510	7140	7270	7450	6330	6930	8250	6560
Manganese	mg/kg	2000	2000	1600	367	274	303	395	379	302	223	230	242	242	218
Mercury	mg/kg	0.81	0.81	0.18	ND (0.036)	ND (0.031)	ND (0.034)	ND (0.032)	ND (0.034)	ND (0.032)	ND (0.032)	ND (0.031)	ND (0.033)	ND (0.033)	0.052
Nickel	mg/kg	140	310	30	17.9	17.5	16.3	21.2	18.3	17.3	15.6	14.8	16.3	18.3	16.5
Potassium	mg/kg				5120	4170	4990	6530	5260	5620	5970	5140	6010	6080	5110
Selenium	mg/kg	36	180	3.9	ND (4.5) ^c	ND (2.2)	ND (2.2)	ND (2.3)	ND (2.2)	ND (2.2)	ND (2.1)	ND (4.3) ^c	ND (4.4) ^c	ND (4.2) ^c	
Silver	mg/kg	36	180	2	ND (0.56)	ND (0.55)	ND (0.56)	ND (0.58)	ND (0.55)	ND (0.54)	ND (1.1) ^c	ND (1.1) ^c	ND (1.1) ^c	ND (1.1) ^c	ND (1.0) ^c
Sodium	mg/kg				ND (1100)	ND (1100)	ND (1100)	ND (1200)	ND (1100)	ND (1000)					
Thallium	mg/kg				ND (2.3) ^c	ND (2.2) ^c	ND (5.6)	ND (2.3) ^c	ND (2.2) ^c	ND (2.2) ^c	ND (1.1)	ND (1.1)	ND (2.1) ^c	ND (2.1) ^c	
Vanadium	mg/kg	100			31.7	25	27.3	35.2	32.1	32.3	28.2	26.5	30.4	29.5	25.6
Zinc	mg/kg	2200	10000	109	62.5	51.3	46	58.4	53.4	53.9	ND (54)	ND (54)	ND (54)	ND (55)	ND (52)
General Chemistry															
Cyanide	mg/kg	27	27	27	ND (0.31)	ND (0.29)	ND (0.27)	ND (0.33)	ND (0.28)	ND (0.31)	ND (0.23)	ND (0.29)	ND (0.28)	ND (0.23)	ND (0.25)
Solids, Percent	%				88.7	93.3	91.2	90.9	89.6	89.2	96.7	90.2	92.8	93.9	93.4

Footnote	Comments

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

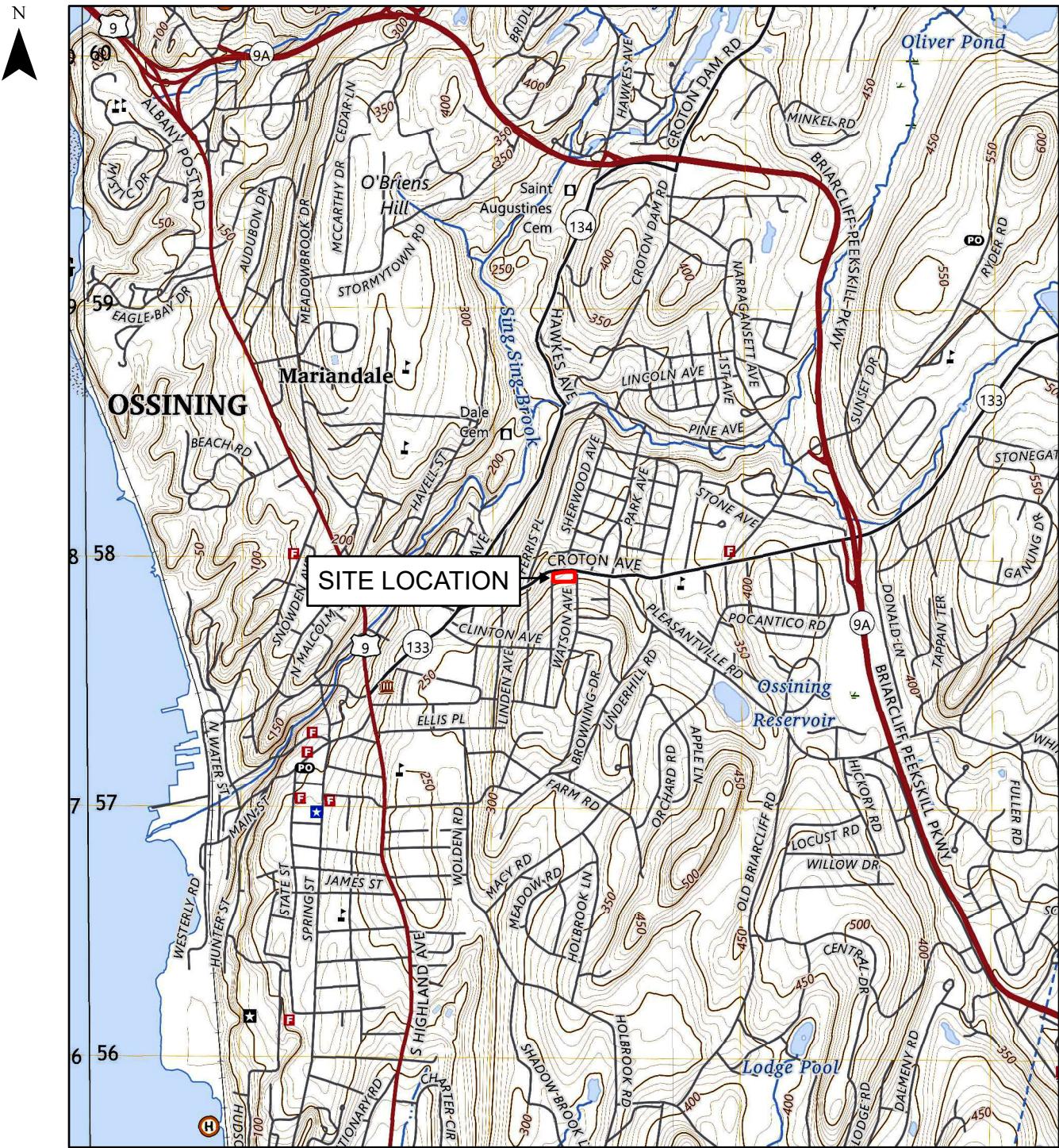
Client Sample ID:	Lab Sample ID:	RSCO	RRSCO	USCO	EP-B8	EP-C8	EP-B7	EP-B7 DUP	EP-A7	EP-A6	EP-B11	EP-3.5	EP-A4	EP-A4 DUP
Sample Depth (ft bgs):	JE15682-6				JE15682-7	JE15682-8	JE15682-11	JE15682-9	JE15682-10	JE15682-11	JE16023-1	JE16023-2	JE16023-3	
Date Sampled:					7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/24/2025	7/28/2025	7/28/2025	7/28/2025	
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyte	Unit													
Volatile Organic Compounds (VOCs)														
1,1,1-Trichloroethane	ug/kg	100000	100000	680	ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
1,1,2,2-Tetrachloroethane	ug/kg	35000			ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
1,1,2-Trichloroethane	ug/kg				ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
1,1-Dichloroethane	ug/kg	19000	26000	270	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
1,1-Dichloroethene	ug/kg	100000	100000	330	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
1,2,3-Trichlorobenzene	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.8)	ND (4.5)
1,2,4-Trichlorobenzene	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.8)	ND (4.5)
2-Dibromo-3-chloropropene	ug/kg				ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
1,2-Dibromoethane	ug/kg				ND (0.91)	ND (0.94)	ND (0.91)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
1,2-Dichlorobenzene	ug/kg	100000	100000	1100	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
1,2-Dichloroethane	ug/kg	2300	3100	20	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
1,2-Dichloropropane	ug/kg				ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
1,3-Dichlorobenzene	ug/kg	17000	49000	2400	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
1,4-Dichlorobenzene	ug/kg	9800	13000	1800	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
2-Butanone (MEK)	ug/kg	100000	100000	120	ND (9.1)	ND (9.4)	ND (10)	ND (10)	ND (9.3)	ND (8.5)	ND (8.0)	ND (9.6)	ND (9.1)	
2-Hexanone	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Methyl-2-pantanone(MIB)	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Acetone	ug/kg	100000	100000	50	ND (9.1)	ND (9.4)	ND (9.1)	ND (10)	ND (10)	ND (9.3)	ND (8.5)	ND (8.0)	ND (9.6)	ND (9.1)
Benzene	ug/kg	2900	4800	60	ND (0.45)	ND (0.47)	ND (0.46)	ND (0.51)	ND (0.50)	ND (0.47)	ND (0.42)	ND (0.40)	ND (0.48)	ND (0.45)
Bromochloromethane	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Bromodichloromethane	ug/kg				ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
Bromoform	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Bromomethane	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Carbon disulfide	ug/kg	100000	2400	760	ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
Carbon tetrachloride	ug/kg	1400			ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
Chlorobenzene	ug/kg	100000	100000	1100	ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
Chloroethane	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Chloroform	ug/kg	10000	49000	370	ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
Chloromethane	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
cis-1,2-Dichloroethene	ug/kg	59000	100000	250	ND (0.91)	ND (0.94)	ND (0.91)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)
cis-1,3-Dichloropropene	ug/kg				ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
Cyclohexane	ug/kg				ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
Dibromochloromethane	ug/kg				ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
Dichlorodifluoromethane	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Ethylbenzene	ug/kg	30000	41000	1000	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
Freon 113	ug/kg	100000			ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Isopropylbenzene	ug/kg	100000			ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)
m,p-Xylene	ug/kg	100000	100000	260	ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
Methyl Acetate	ug/kg				ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
Methyl Tert Butyl Ether	ug/kg	62000			ND (0.91)	ND (0.94)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)	
Methylcyclohexane	ug/kg				ND (1.8)	ND (1.9)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)	
Methylene chloride	ug/kg	51000	100000	50	ND (4.5)	ND (4.7)	ND (4.6)	ND (5.1)	ND (5.0)	ND (4.7)	ND (4.2)	ND (4.0)	ND (4.5)	
o-Xylene	ug/kg	100000	100000	260	ND (0.91)	ND (0.94)	ND (0.91)	ND (1.0)	ND (1.0)	ND (0.93)	ND (0.85)	ND (0.80)	ND (0.96)	ND (0.91)
Styrene	ug/kg				ND (1.8)	ND (1.9)	ND (1.8)	ND (2.1)	ND (2.0)	ND (1.9)	ND (1.7)	ND (1.6)	ND (1.9)	ND (1.8)

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:	RSCO	RRSCO	USCO	EP-B8	EP-C8	EP-B7	EP-B7 DUP	EP-A7	EP-A6	EP-B11	EP-3.5	EP-A4	EP-A4 DUP
Lab Sample ID:				JE15682-6	JE15682-7	JE15682-8	JE15682-11	JE15682-9	JE15682-10	JE15821-1	JE16023-1	JE16023-2	JE16023-3
Sample Depth (ft bgs):				13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	8.0-8.5	11.5-12.0	11.5-12.0	11.5-12.0
Date Sampled:				7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/24/2025	7/28/2025	7/28/2025	7/28/2025
Matrix:	Analyte	Unit		Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Butyl benzyl phthalate	ug/kg	100000		ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75) ^b
1,1'-Biphenyl	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
Benzaldehyde	ug/kg			ND (180)	ND (180)	ND (180)	ND (180)	ND (180)	ND (170)	ND (190)	ND (190)	ND (200)	ND (190)
2-Chloronaphthalene	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
4-Chloroaniline	ug/kg	100000		ND (180)	ND (180)	ND (180)	ND (180)	ND (180)	ND (170)	ND (190)	ND (190)	ND (200)	ND (190)
Carbazole	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
Caprolactam	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74) ^a	ND (75)	ND (80)	ND (75)
Chrysene	ug/kg	1000	3900	1000	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
is(2-Chloroethoxy)methane	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
bis(2-Chloroethyl)ether	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
2-Oxybis(1-chloropropan)	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
Chlorophenyl phenyl eth	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
2,4-Dinitrotoluene	ug/kg			ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (40)	ND (37)
2,6-Dinitrotoluene	ug/kg	1030		ND (36) ^b	ND (37) ^b	ND (35) ^b	ND (36) ^b	ND (35) ^b	ND (35) ^b	ND (37)	ND (40)	ND (40)	ND (37)
3,3'-Dichlorobenzidine	ug/kg			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)	ND (75)
1,4-Dioxane	ug/kg	9800	13000	100	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
Dibenzo(a,h)anthracene	ug/kg	330	330	330	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
Dibenzofuran	ug/kg	14000	59000	7000	ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
Di-n-butyl phthalate	ug/kg	100000			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
Di-n-octyl phthalate	ug/kg	100000			ND (71) ^b	ND (73) ^b	ND (70) ^b	ND (71) ^b	ND (70) ^b	ND (70) ^b	ND (74)	ND (75) ^b	ND (80) ^b
Diethyl phthalate	ug/kg	100000			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
Dimethyl phthalate	ug/kg	100000			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
bis(2-Ethylhexyl)phthalate	ug/kg	50000			ND (71) ^b	ND (73) ^b	ND (70) ^b	ND (71) ^b	ND (70) ^b	ND (70) ^b	ND (74)	ND (75)	ND (80)
Fluoranthene	ug/kg	100000	100000	100000	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
Fluorene	ug/kg	100000	100000	30000	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
Hexachlorobenzene	ug/kg	410	1200	330	ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
Hexachlorobutadiene	ug/kg				ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
hexachlorocyclopentadien	ug/kg				ND (360) ^a	ND (370) ^a	ND (350) ^a	ND (360) ^a	ND (350) ^a	ND (350) ^a	ND (370)	ND (400)	ND (370)
Hexachloroethane	ug/kg				ND (180)	ND (190)	ND (200)	ND (190)					
Indeno(1,2,3-cd)pyrene	ug/kg	500	500	500	ND (36) ^b	ND (37) ^b	ND (35) ^b	ND (36) ^b	ND (35) ^b	ND (35) ^b	ND (37)	ND (40)	ND (37)
Isophorone	ug/kg	100000			ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
2-Methylnaphthalene	ug/kg	410			ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
2-Nitroaniline	ug/kg				ND (180) ^b	ND (170) ^b	ND (190)	ND (200)	ND (190)				
3-Nitroaniline	ug/kg				ND (180) ^b	ND (170) ^b	ND (190)	ND (200) ^a	ND (190)				
4-Nitroaniline	ug/kg				ND (180) ^b	ND (170) ^b	ND (190)	ND (200)	ND (190) ^b				
Naphthalene	ug/kg	100000	100000	12000	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
Nitrobenzene	ug/kg	3700	15000		ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
4-Nitroso-di-n-propylamin	ug/kg				ND (71)	ND (73)	ND (70)	ND (71)	ND (70)	ND (70)	ND (74)	ND (75)	ND (80)
N-Nitrosodiphenylamine	ug/kg				ND (180)	ND (170)	ND (190)	ND (200)	ND (190)				
Phenanthrene	ug/kg	100000	100000	100000	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
Pyrene	ug/kg	100000	100000	100000	ND (36)	ND (37)	ND (35)	ND (36)	ND (35)	ND (35)	ND (37)	ND (40)	ND (37)
2,4,5-Tetrachlorobenzen	ug/kg				ND (180)	ND (170)	ND (190)	ND (200)	ND (190)				
2-Fluorophenol	%				32	30	28	34	52	43	36	48	62
Phenol-d5	%				38	34	30	36	53	46	36	48	60
2,4,6-Tribromophenol	%				52	43	31	39	52	32	42	52	64
Nitrobenzene-d5	%				32	31	28	34	53	48	34	45	58
2-Fluorobiphenyl	%				46	44	36	42	58	51	39	48	63
Terphenyl-d14	%				63	60	47	59	65	56	41	57	74
SVOC via SIM													
1,4-Dioxane (1)	ug/kg				0	0	0	0	0	0	0	0	0
Nitrobenzene-d5 (1)	%												
2-Fluorobiphenyl (1)	%												
Terphenyl-d14 (1)	%												
SVOC TICs													
Cyclic octaatomic sulfur	ug/kg												
Dibenzopyrene	ug/kg												
al standard added for SIM	ug/kg												
Unknown	ug/kg												
unknown	ug/kg												
Unknown	ug/kg										290 J		360 J
Dibenzopyrene (1)	ug/kg												
I standard added for SIM	ug/kg												
Unknown (1)	ug/kg										280 J		210 J
Dibenzopyrene (2)	ug/kg												
I standard added for SIM	ug/kg												
Unknown (2)	ug/kg												
Unknown (4)	ug/kg												
Dibenzopyrene (3)	ug/kg												
I standard added for SIM	ug/kg												
Unknown (3)	ug/kg												
Unknown (5)	ug/kg												
Dibenzopyrene (4)	ug/kg												
Unknown (6)	ug/kg												
Unknown (7)	ug/kg												
Unknown (8)	ug/kg												
Unknown (9)	ug/kg												
Unknown (10)	ug/kg												
Total TIC, Semi-Volatile	ug/kg				0	0	0	0	0	0	570 J	0	0
Per- and Polyfluoroalkyl Substances (PFAS)													
Perfluorobutanoic acid	ug/kg				ND (0.83)	ND (0.87)	ND (0.82)	ND (0.84)	ND (0.83)	ND (0.86)	ND (0.91)	ND (0.96)	ND (0.88)
Perfluoropentanoic acid	ug/kg				ND (0.41)	ND (0.44)	ND (0.41)	ND (0.42)	ND (0.41)	ND (0.42)	ND (0.43)	ND (0.45)	ND (0.48)
Perfluorohexanoic acid	ug/kg				ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)
Perfluorooctanoic acid	ug/kg				ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.22)
Perfluorooctanotanoic acid	ug/kg				ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)
Perfluorononanoic acid	ug/kg				ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.22)
Perfluorodecanoic acid	ug/kg				ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.22)

Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:	RSCO	RRSCO	USCO	EP-B8	EP-C8	EP-B7	EP-B7 DUP	EP-A7	EP-A6	EP-B11	EP-3.5	EP-A4	EP-A4 DUP	
Lab Sample ID:				JE15682-6	JE15682-7	JE15682-8	JE15682-11	JE15682-9	JE15682-10	JE15682-1	JE16023-1	JE16023-2	JE16023-3	
Sample Depth (ft bgs):				13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	8.0-8.5	11.5-12.0	11.5-12.0	11.5-12.0	
Date Sampled:				7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/24/2025	7/28/2025	7/28/2025	7/28/2025	
Matrix:				Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
Analyte	Unit													
Perfluoroundecanoic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluorododecanoic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluorotridecanoic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluorotetradecanoic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluorobutanesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluoropentanesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluorohexanesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluoroheptanesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluoroctanesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluoronananesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
Perfluorodecanesulfonic acid	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)		
PFOSA	ug/kg													
MeFOSA	ug/kg													
EtFOSA	ug/kg													
MeFOSAA	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)	
EtFOSAA	ug/kg			ND (0.21)	ND (0.22)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.23)	ND (0.24)	ND (0.22)	
MeFOSE	ug/kg													
EtFOSE	ug/kg													
HFPO-DA (GenX)	ug/kg													
ADONA	ug/kg													
PFMPA	ug/kg													
PFMBA	ug/kg													
NFDHA	ug/kg													
Cl-PF3ONS (F-53B Major)	ug/kg													
Cl-PF30UDs (F-53B Minor)	ug/kg													
PFEESA	ug/kg													
³ Fluorotelomer carboxylate	ug/kg													
³ Fluorotelomer carboxylate	ug/kg													
³ Fluorotelomer carboxylate	ug/kg													
13C4-PFBA	%			78	82	73	82	85	83	87	75	72	75	
13C5-PFPeA	%			76	81	72	83	85	84	87	75	73	73	
13C5-PFhxA	%			82	84	73	82	88	87	88	75	70	72	
13C4-PFHpa	%			76	83	74	85	86	83	86	75	73	73	
13C8-PFOA	%			77	82	72	83	85	85	84	75	71	75	
13C9-PFNA	%			87	85	76	77	84	83	85	74	72	75	
13C6-PFDA	%			76	83	74	88	81	84	90	72	72	72	
13C7-PFUuDA	%			85	81	73	90	92	92	97	75	73	79	
13C2-PFDuDA	%			83	84	73	90	86	92	94	75	75	75	
13C2-PFTeDA	%			87	87	73	83	86	92	95	80	76	78	
13C3-PFBS	%			84	85	80	87	84	79	87	77	73	72	
13C3-PFHxS	%			87	81	73	83	87	83	91	73	77	72	
13C8-PFOS	%			82	85	73	90	86	93	96	77	71	71	
13C8-FOSA	%			85	87	74	88	81	91	97	72	66	69	
d3-MeFOSA	%													
d5-EtFOSA	%													
d3-MeFOSAA	%			78	86	70	82	77	86	90	74	74	71	
d5-EtFOSAA	%			78	84	66	82	74	85	91	75	75	73	
d7-MeFOSE	%													
d9-EtFOSE	%													
13C2-4.2FTS	%													
13C2-6.2FTS	%			97	96	83	100	86	98	110	80	78	80	
13C2-8.2FTS	%			100	100	95	100	80	100	100	181	150	170	
13C3-HFPO-DA	%													
Pesticides														
Aldrin	ug/kg	19	97	5	ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.63)	ND (0.44)	ND (0.72)	ND (0.80)	ND (0.71)
alpha-BHC	ug/kg	97	480	20	ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.63)	ND (0.44)	ND (0.72)	ND (0.80)	ND (0.71)
beta-BHC	ug/kg	72	360	36	ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.63)	ND (0.44)	ND (0.72)	ND (0.80)	ND (0.71)
delta-BHC	ug/kg	100000	100000	40	ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.63)	ND (0.44)	ND (0.72)	ND (0.80)	ND (0.71)
gamma-BHC (Lindane)	ug/kg	280	1300	100	ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.63)	ND (0.44)	ND (0.72)	ND (0.80)	ND (0.71)
alpha-Chlordane	ug/kg	910	4200	94	ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (0.63)	ND (0.44)	ND (0.72)	ND (0.80)	ND (0.71)
gamma-Chlordane	ug/kg	540			ND (0.66)	ND (0.70)	ND (0.63)	ND (0.67)	ND (0.64)	ND (


Table 1.1
Soil Analytical Results Summary
Site Management Plan
Sun Valley Nursery Filling Station Site

Client Sample ID:		RSCO	RRSCO	USCO	EP-B8	EP-C8	EP-B7	EP-B7 DUP	EP-A7	EP-A6	EP-B11	EP-3.5	EP-A4	EP-A4 DUP
Lab Sample ID:					JE15682-6	JE15682-7	JE15682-8	JE15682-11	JE15682-9	JE15682-10	JE15682-1	JE16023-1	JE16023-2	JE16023-3
Sample Depth (ft bgs):					13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	13.0-13.5	8.0-8.5	11.5-12.0	11.5-12.0	11.5-12.0
Date Sampled:					7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/23/2025	7/24/2025	7/28/2025	7/28/2025	7/28/2025
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Analyst	Unit													
Decachlorobiphenyl (3)	%											97		
Polychlorinated Biphenyls (PCBs)														
Aroclor 1016	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1221	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1232	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1242	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1248	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1254	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1260	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1266	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Aroclor 1262	ug/kg	1000	1000	100	ND (33)	ND (35)	ND (31)	ND (33)	ND (32)	ND (32)	ND (22)	ND (36)	ND (40)	ND (35)
Tetrachloro-m-xylene	%											68		
Tetrachloro-m-xylene (1)	%											46		
Tetrachloro-m-xylene (2)	%				82	71	69	58	101	52		87	75	95
Tetrachloro-m-xylene (3)	%				116	102	97	80	107	70		77	71	93
Decachlorobiphenyl	%											84		
Decachlorobiphenyl (1)	%											132		
Decachlorobiphenyl (2)	%				90	81	76	56	99	44		57	52	75
Decachlorobiphenyl (3)	%				115	105	95	66	140	57		54	43	61
Metals														
Aluminum	mg/kg				11100	12500	13000	12900	12000	13500	10900	12300	12900	12500
Antimony	mg/kg				ND (2.1)	ND (2.3)	ND (4.2)	ND (4.3) ^c	ND (2.2)	ND (4.3) ^c	ND (2.2)	ND (2.2)	ND (2.5)	ND (2.2)
Arsenic	mg/kg	16	16	13	ND (2.1)	ND (2.3)	ND (2.1)	ND (2.2)	ND (2.2)	ND (2.2)	ND (2.2)	ND (2.2)	ND (2.5)	ND (2.2)
Barium	mg/kg	350	400	350	132	149	152	154	140	161	143	152	159	155
Beryllium	mg/kg	14	72	7.2	0.36	0.41	0.47	0.47	0.38	0.44	0.37	0.46	0.44	0.46
Cadmium	mg/kg	2.5	4.3	2.5	ND (0.52)	ND (0.57)	ND (0.53)	ND (0.54)	ND (0.54)	ND (0.54)	ND (0.56)	ND (0.56)	ND (0.61)	ND (0.56)
Calcium	mg/kg				12200	8440	8470	7160	6120	8180	4660	8760	10400	9660
Chromium	mg/kg				19.6	24.5	21.8	22.3	20.6	25	19	21.5	23.4	22.2
Cobalt	mg/kg	30			9	9.5	9.9	9.8	9.1	10.4	9.1	10.7	13.1	9.9
Copper	mg/kg	270	270	50	16.4 ^e	17.1 ^e	17.5	24.2 ^e	18.5 ^c	17.7 ^c	13.6	17.7	19.3	17.8
Iron	mg/kg	2000			20400	22600	24400	26200	21900	23600	19600	21500	24000	21700
Lead	mg/kg	400	400	63	3.3	8.9	4.3	4.7	3.6	4.3	3	3.9	7.5	3.9
Magnesium	mg/kg				8510	7890	8570	7530	6800	8140	5580	8390	7740	8720
Manganese	mg/kg	2000	2000	1600	251	288	265	264	237	267	275	345	307	267
Mercury	mg/kg	0.81	0.81	0.18	ND (0.029)	ND (0.032)	ND (0.028)	ND (0.029)	ND (0.030)	ND (0.032)	ND (0.032)	ND (0.032)	ND (0.035)	ND (0.030)
Nickel	mg/kg	140	310	30	15	17.3	18.5	17.9	16	18.4	15	20.8	21.8	18.5
Potassium	mg/kg				5400	6190	6250	6260	5730	6500	5470	6350	6230	6400
Selenium	mg/kg	36	180	3.9	ND (4.2) ^c	ND (4.6) ^c	ND (4.2)	ND (4.3) ^c	ND (4.4) ^c	ND (4.3) ^c	ND (2.2)	ND (2.2)	ND (2.5)	ND (2.2)
Silver	mg/kg	36	180	2	ND (1.0) ^c	ND (1.1) ^c	ND (1.1)	ND (1.1) ^c	ND (1.1) ^c	ND (1.1) ^c	ND (0.56)	ND (0.56)	ND (0.61)	ND (0.56)
Sodium	mg/kg				ND (1000)	ND (1100)	ND (1100)	ND (1100)	ND (1100)	ND (1100)	ND (1100)	ND (1100)	ND (1200)	ND (1100)
Thallium	mg/kg				ND (2.1) ^c	ND (2.3) ^c	ND (2.1)	ND (2.2) ^c	ND (2.2) ^c	ND (2.2) ^c	ND (1.1)	ND (1.2)	ND (1.1)	ND (1.1)
Vanadium	mg/kg	100			28.2	33.3	30.9	32.4	28.8	34.6	28.9	31.8	33.1	32.3
Zinc	mg/kg	2200	10000	109	ND (52)	ND (57)	56	<45.8	ND (54)	ND (54)	46.1	54.8	55.3	53.7
General Chemistry														
Cyanide	mg/kg	27	27	27	ND (0.29)	ND (0.28)	ND (0.28)	ND (0.29)	ND (0.23)	ND (0.27)	ND (0.24)	ND (0.23)	ND (0.28)	ND (0.22)
Solids, Percent	%				93.2	90.5	94.7	93.4	94.6	94.3	89.5	88.3	82.7	89

Figures

REFERENCE:

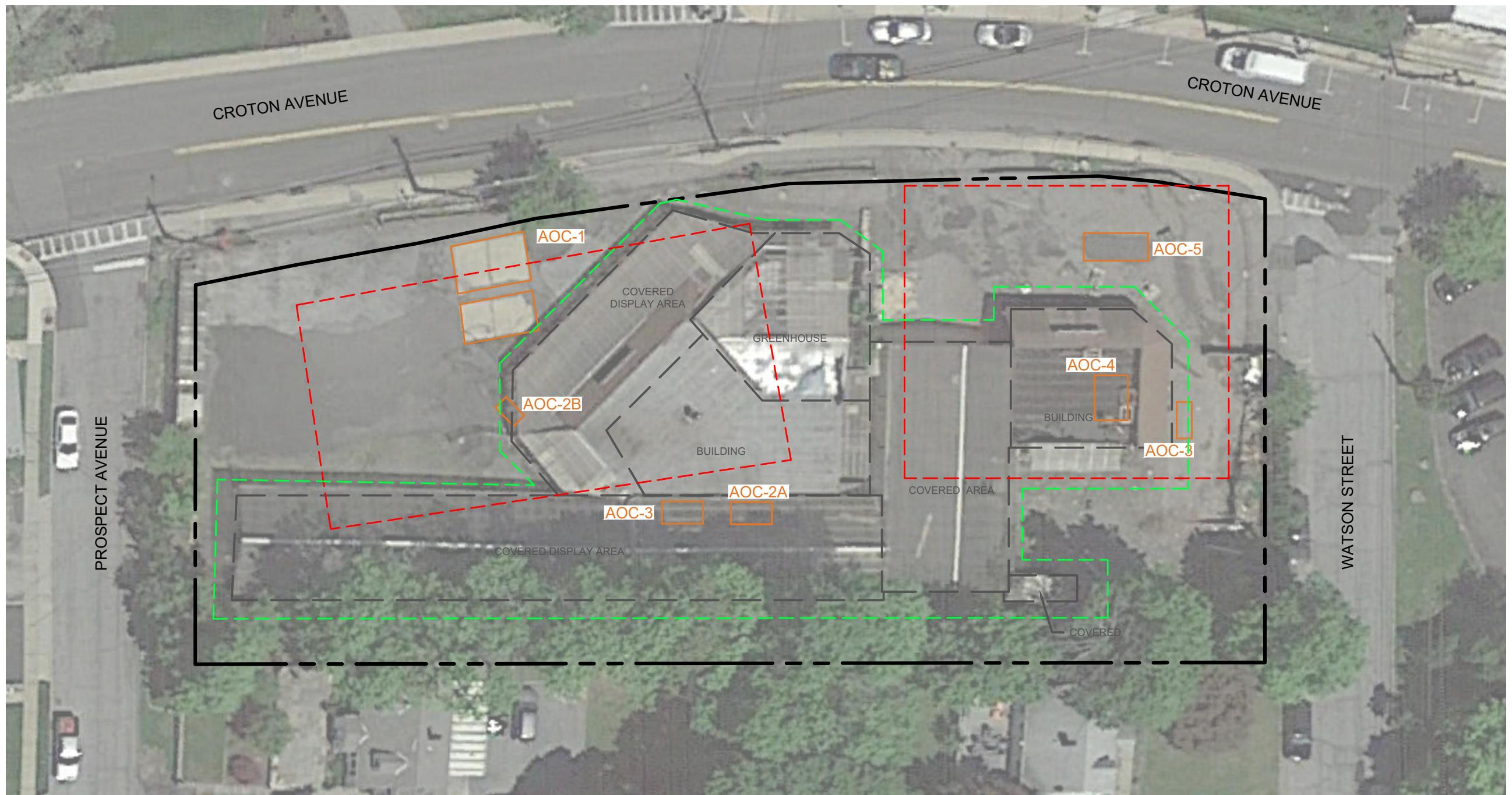
UNITED STATES GEOLOGICAL SURVEY (USGS)
 OSSINING, NY USGS QUADRANGLE - 2023

LEGEND:

SITE LOCATION

SCALE: 1" = 2,000'

0 1,000 2,000 4,000 FEET


136-140 CROTON AVENUE
 OSSINING, NEW YORK, 10652

SITE LOCATION MAP

SESI CONSULTING
ENGINEERS
GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050

FIG-1.1

DRAWN BY: KBV
CHECKED BY: CM
SCALE: AS NOTED
DATE: 7/16/2025
JOB NO: 12060

NOTE:

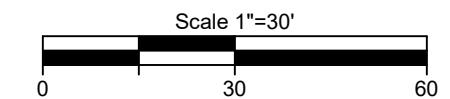
1. BUILDING LINES DEPICT FORMER FEATURES. SITE CURRENTLY VACANT.
2. AREAS OF CONCERN (AOC's) ARE NOTED BASED ON BORINGS COLLECTED IN THE BERKSHIRE ENVIRONMENTAL SERVICES TECHNOLOGY LLC PHASE II INVESTIGATION IN 2017.
3. AOC's ARE APPROXIMATE LOCATIONS AND NOT CLEARLY IDENTIFIED IN 2017.

LEGEND:

- - - - - SITE BOUNDARY
- - - - - FORMER BUILDING OUTLINE
- - APPROX. LOCATION OF AOC
- - APPROXIMATE LOCATION OF REC-1
- - APPROXIMATE LOCATION OF REC-2

AREA OF CONCERN (AOC) LEGEND:

- AOC-1 - HISTORIC FILLING STATION PADS AND UNDERGROUND STORAGE TANK (UST) REMOVAL AREA
- AOC-2A - POTENTIAL UST GPR ANOMOLY 1
- AOC-2B - POTENTIAL UST GPR ANOMOLY 2
- AOC-3 - HISTORIC ABOVEGROUND STORAGE TANK (AST)
- AOC-4 - HISTORIC HYDRAULIC LIFT AREA
- AOC-5 - HISTORIC UST REMOVAL AREA


RECOGNIZED ENVIRONMENTAL CONDITIONS (REC) LEGEND:

- REC-1 - FORMER GASOLINE STATION AND AUTOMOBILE REPAIR GARAGE
- REC-2 - FORMER NURSERY OPERATIONS
- REC-3 - FORMER POTENTIAL UST's AND/OR AST's (SITE-WIDE)
- REC-4 - HISTORICAL SPILL #9613901 (NOT DEPICTED)

© SESI CONSULTING ENGINEERS 2025
This drawing and all information contained hereon is proprietary information of SESI CONSULTING ENGINEERS and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS.

REFERENCE

AERIAL IMAGE TAKEN FROM GOOGLE MAPS, IMAGE DATED 2019.

dwg by: aas
chk by: CM
scale: AS NOTED
date: 07/16/2025

SESI CONSULTING ENGINEERS
GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050

project: 136-140 CROTON AVENUE
OSSINING, NEW YORK 10652

title: SITE LAYOUT MAP
title:

job no: 12060
drawing no:

FIG-1.2

NOTE:

1. THIS PLAN IS FOR LOCATING SOIL BORINGS, MONITORING WELLS, SOIL VAPOR BORINGS AND AMBIENT AIR LOCATIONS ONLY. OTHER SITE WORK SHOWN HERE IS NOT INTENDED FOR CONSTRUCTION.
2. BUILDING LINES DEPICT FORMER FEATURES. SITE CURRENTLY VACANT.

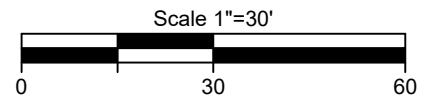
REFERENCE

AERIAL IMAGE TAKEN FROM GOOGLE MAPS, IMAGE DATED 2019.

© SESI CONSULTING ENGINEERS 2025

This drawing and all information contained hereon is proprietary information of SESI CONSULTING ENGINEERS and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS.

LEGEND:


- - - - - SITE BOUNDARY
- - - - - FORMER BUILDING OUTLINE
- RI-MW-04 (285) - RI MONITORING WELL NUMBER AND APPROX. LOCATION
- - - - - APPROXIMATE LOCATION OF AOC
- - - - - APPROXIMATE LOCATION OF REC-1
- - - - - APPROXIMATE LOCATION OF REC-2
- - - - - GROUNDWATER ELEVATION
- - - - - GROUNDWATER CONTOUR
- - - - - INFERRRED GROUNDWATER DIRECTION

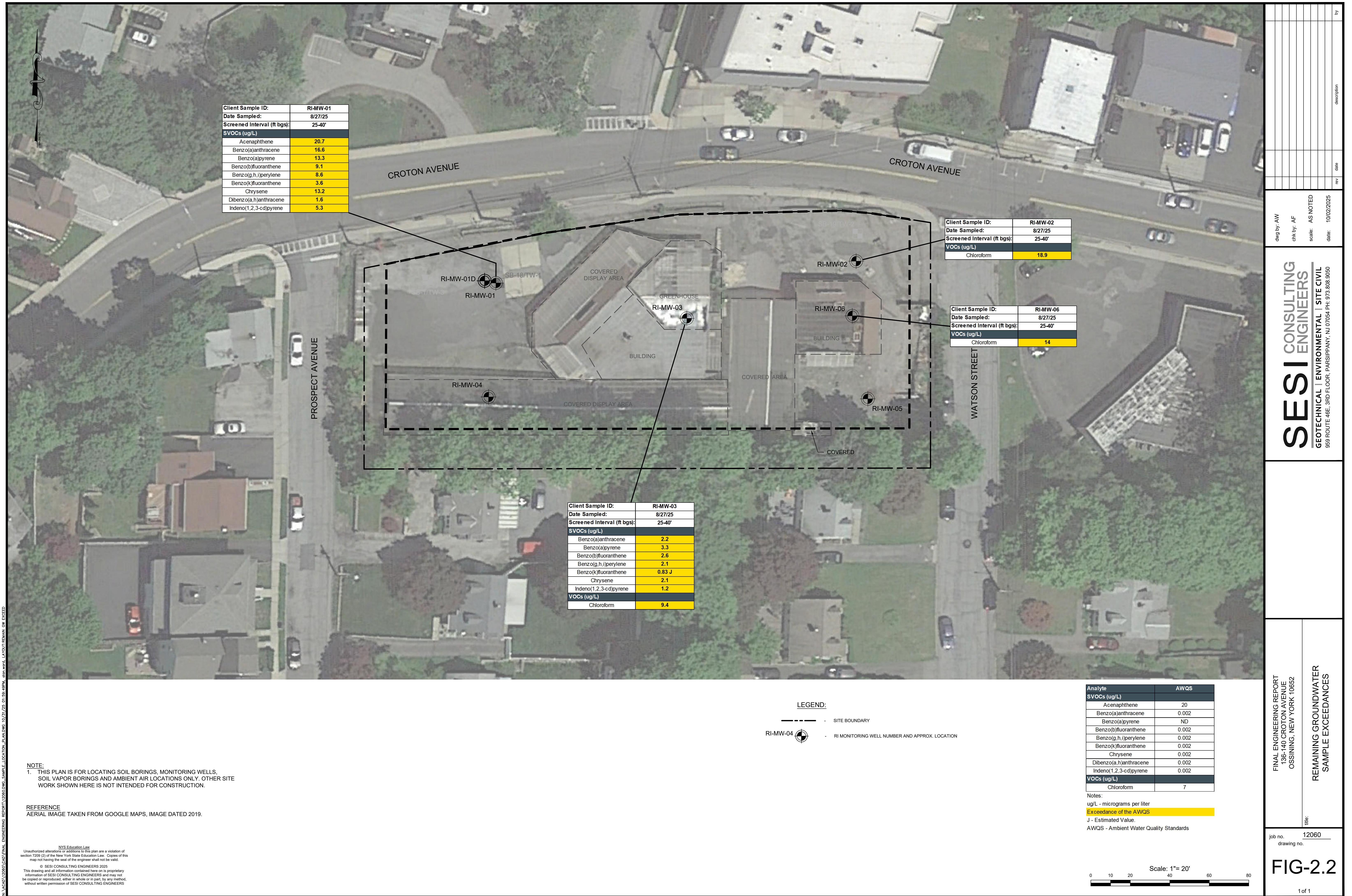
AREA OF CONCERN (AOC) LEGEND:

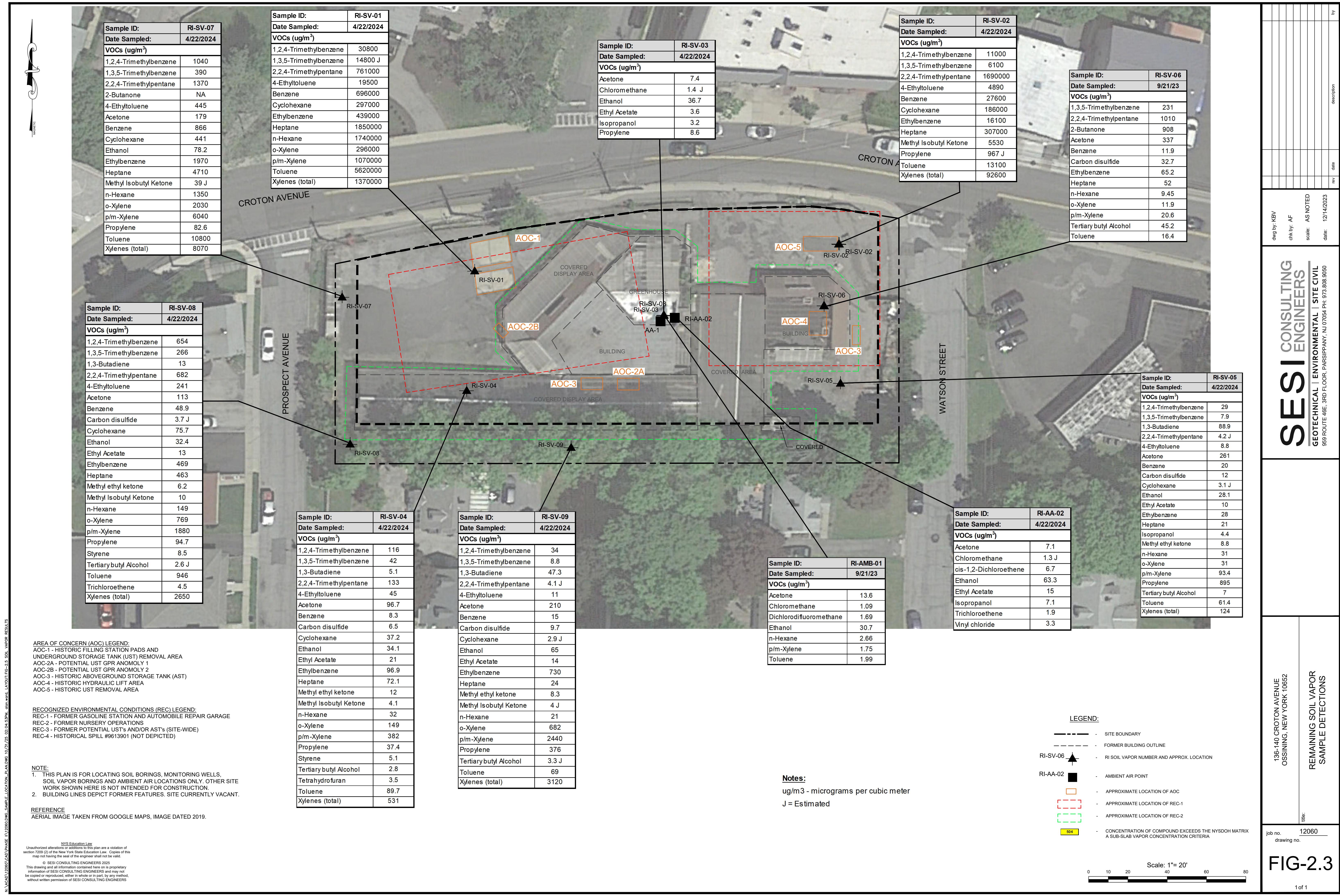
- AOC-1 - HISTORIC FILLING STATION PADS AND UNDERGROUND STORAGE TANK (UST) REMOVAL AREA
- AOC-2A - POTENTIAL UST GPR ANOMOLY 1
- AOC-2B - POTENTIAL UST GPR ANOMOLY 2
- AOC-3 - HISTORIC ABOVEGROUND STORAGE TANK (AST)
- AOC-4 - HISTORIC HYDRAULIC LIFT AREA
- AOC-5 - HISTORIC UST REMOVAL AREA

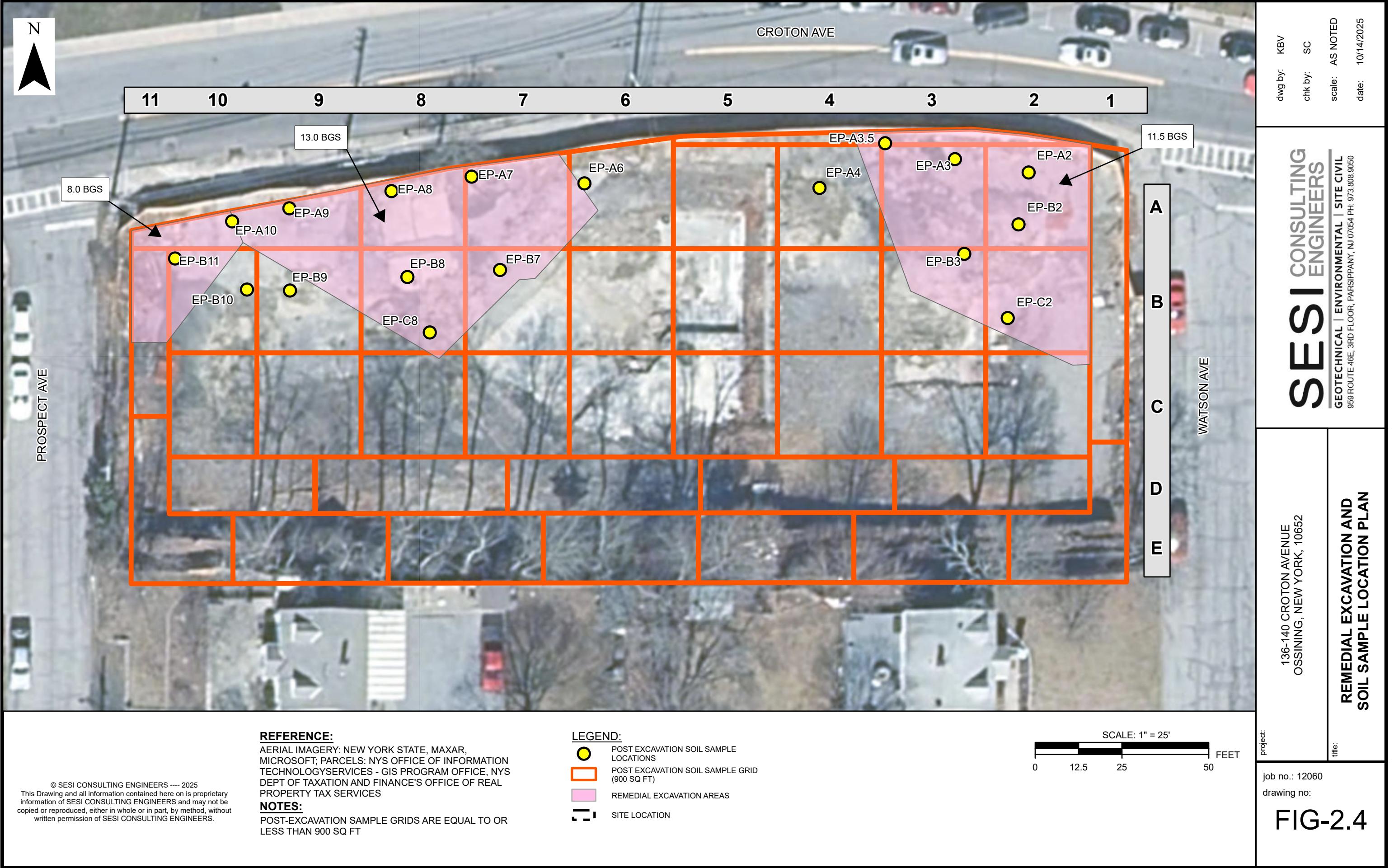
RECOGNIZED ENVIRONMENTAL CONDITIONS (REC) LEGEND:

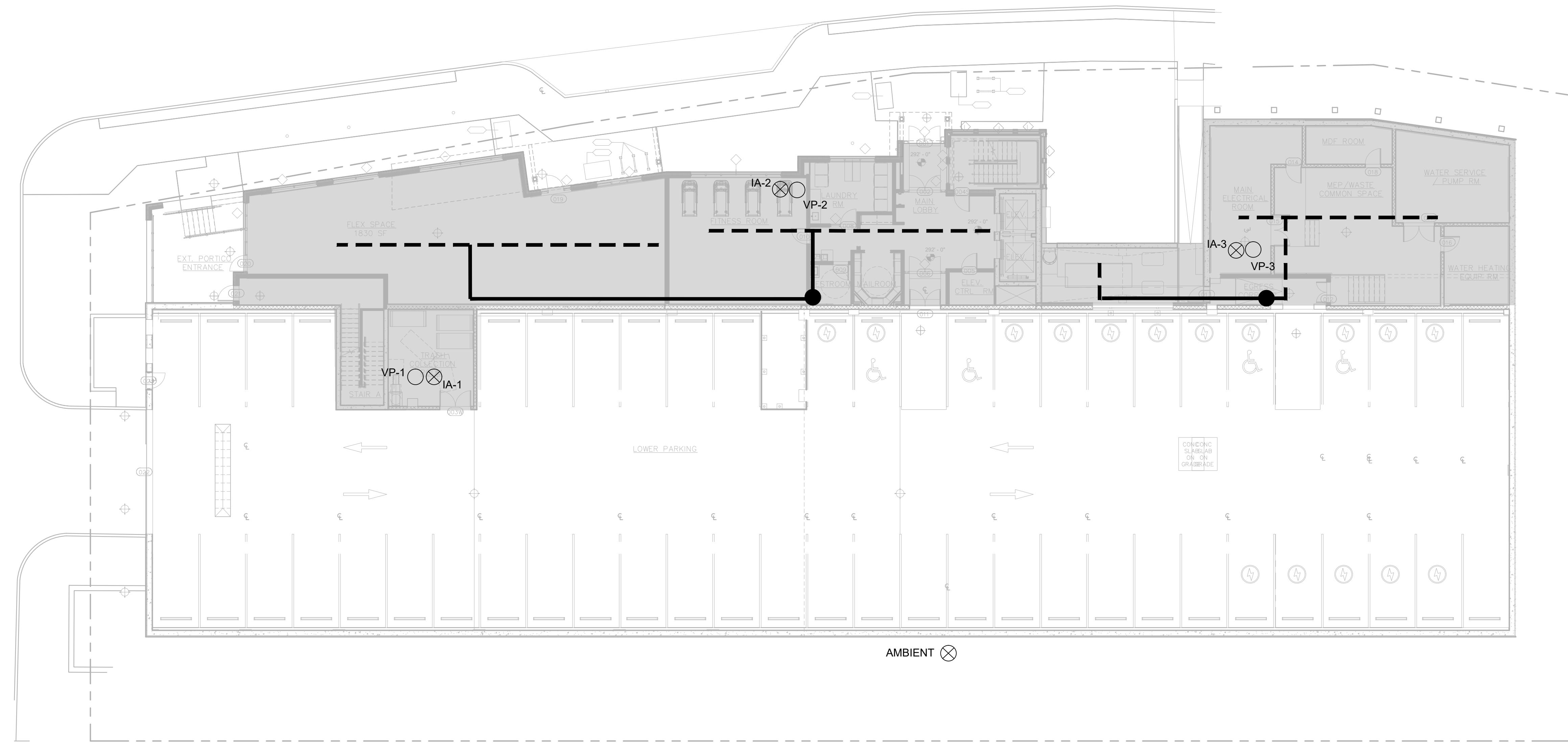
- REC-1 - FORMER GASOLINE STATION AND AUTOMOBILE REPAIR GARAGE
- REC-2 - FORMER NURSERY OPERATIONS
- REC-3 - FORMER POTENTIAL UST's AND/OR AST's (SITE-WIDE)
- REC-4 - HISTORICAL SPILL #9613901 (NOT DEPICTED)

project: 136-140 CROTON AVENUE
OSSINING, NEW YORK 10652


title: GROUNDWATER CONTOUR MAP
job no: 12060
drawing no:


FIG-2.1


1 of 1


dwg by: AW
chk by: CM
scale: AS NOTED
date: 07/16/2025

SESI CONSULTING ENGINEERS
GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050

REFERENCE:

EXISTING CONDITIONS & BOUNDARY ARE TAKEN FROM "FLOOR PLAN - LOWER LEVEL - A-105" OF EMERSON POINT ESTATES PREPARED BY NEXUS CREATIVE ARCHITECTURE PLANNING AND DESIGN, DATED 10/23/23.

NYS Education Law

NOTE:

1. SAMPLE LOCATIONS ARE APPROXIMATE.
2. AMBIENT AIR SAMPLE LOCATION IS APPROXIMATE AND WILL BE DETERMINED BASED ON FIELD CONDITIONS.

LEGEND:

- 4" SOLID PVC HEADER
- 4" PVC GOOSENECK VENT
- VAPOR PIN
- INDOOR/AMBIENT AIR
- 4" PERFORATED PVC VENT
OR APPROVED EQUAL
- VAPOR BARRIER

project:
**SENIOR HOUSING/MIXED
USE DEVELOPMENT
BCP #C360207**
136-140 CROTON AVENUE
VILLAGE OF OSSINING
WESTCHESTER COUNTY, NEW YORK

PROPOSED VAPOR SAMPLE LOCATIONS

A W	job no. <u>12060</u>
A R	drawing no.
AS NOTED	FIG-2.5
/10/2025	2 of 3

2 of 3

NOTE:

1. BUILDING LINES DEPICT FORMER FEATURES. SITE CURRENTLY VACANT.

LEGEND:

- - - SITE BOUNDARY
- - - INSTITUTIONAL CONTROL BOUNDARY

© SESI CONSULTING ENGINEERS 2025
This drawing and all information contained here on is proprietary
information of SESI CONSULTING ENGINEERS and may not be copied or
reproduced, either in whole or in part, by any method, without written
permission of SESI CONSULTING ENGINEERS.

REFERENCE

AERIAL IMAGE TAKEN FROM GOOGLE MAPS, IMAGE DATED 2019.

job no: 12060

drawing no:

FIG-3.1

1 of 1

dwg by: aas
chk by: AR
scale: AS NOTED
date: 10/10/2025

SESI CONSULTING ENGINEERS
GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050