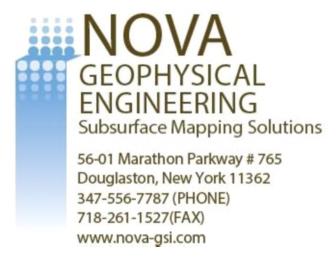
GEOPHYSICAL ENGINEERING SURVEY REPORT

White Plains Mall 200 Hamilton Avenue White Plains, New York 10601

NOVA PROJECT NUMBER

18-0644

DATED


February 12, 2018

PREPARED FOR:

AKRF, INC.

Environmental, Planning, and Engineering Consultants 34 South Broadway, Suite 401 White Plains, NY 10601

PREPARED BY:

NOVAGEOPHYSICALSERVICES

SUBSURFACEMAPPING SOLUTIONS

56-01 Marathon Parkway, #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

February 12, 2018

Timothy McClintock Environmental Scientist AKRF, INC.

34 South Broadway, Suite 401 White Plains, NY 10601 P) 914.922.2374 C) 914.439.1629 F) 914.949.7559

Re: Geophysical Engineering Survey (GES) Report
White Plains Mall
200 Hamilton Avenue
White Plains. New York 10601

Dear Mr. McClintock:

Nova Geophysical Services (NOVA) is pleased to provide findings of the geophysical engineering survey (GES) at the above referenced project site: 200 Hamilton Avenue, White Plains, New York 10601 (the "Site"). Please see attached Site Location and Survey Plan maps for more details.

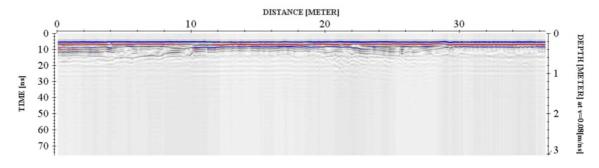
INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

NOVA performed a Geophysical engineering surveys (GES) consisting of a Ground Penetrating Radar (GPR) survey at the site. The purpose of this survey is to locate and identify utilities and other substructures as well as clear boring locations on February 6, 2018.

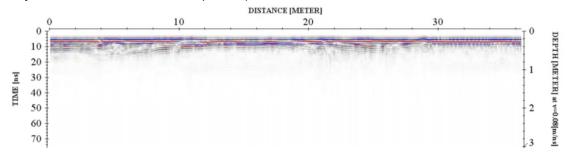
The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) shielded antenna and a Radio Detection RD7100 utility locator.

A GPR system consists of a radar control unit, control cable and a transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transducer via the control cable. The transmitter electronics amplify the trigger pulses into bipolar pulses that are radiated to the surface. The transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

GEOPHYSICAL METHODS

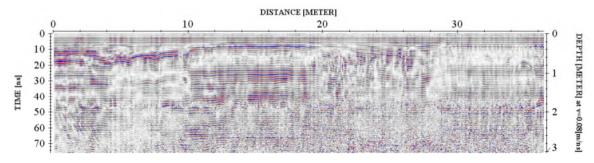

The project site was screened using the GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface.

GPR data profiles were collected for the areas of the Site specified by the client. The surveyed areas consisted of asphalt, concrete, soil.

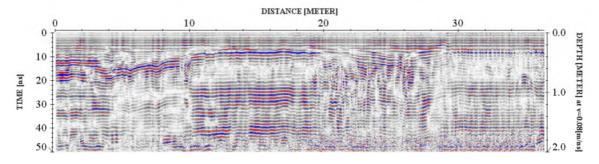

DATA PROCESSING

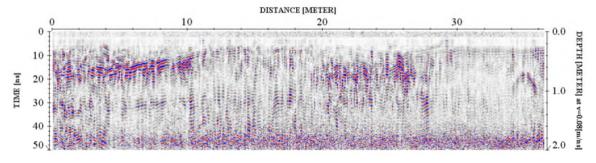
In order to improve the quality of the results and to better identify subsurface anomalies NOVA processed the collected data. The processes flow is briefly described in this section.

Step 1. Import raw RAMAC data to standard processing format



Step 2. Remove instrument noise (dewow)




Step 3. Correct for attenuation losses (energy decay function)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

The above example shows the significance of data processing. The last image (step 5) has higher resolution than the starting image (raw data – step 1) and describes the subsurface anomalies more accurately.

GEOPHYSICAL ENGINEERING SURVEY/GES REPORT

White Plains Mall
200 Hamilton Avenue
White Plains, New York 10601

PHYSICAL SETTINGS

NOVA observed following physical conditions at the time of the survey:

Weather: Cloudy

Temperature: 30 Degrees (F)

Surface: Concrete, asphalt, soil

Geophysical Noise Level (GNL): Geophysical Noise Level (GNL) was high at the site. The noise was the result of being in an urban environment.

RESULTS

The results of the geophysical engineering survey (GES) identified following at the project Site:

- NOVA identified multiple gas, electric, water, sewer and telecom lines within the survey area as shown in the site survey plan.
- NOVA did not identify any anomalies resembling an underground storage tank on the site.
- All detected subsurface anomalies were marked in the onsite mark out.
- All cleared boring locations were shown in the onsite mark out.
- The Survey Plan portrays the subsurface areas investigated during the GES.

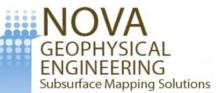
If you have any questions, please do not hesitate to contact the undersigned. Sincerely,

NOVA Geophysical Services

Levent Eskicakit, P.G., E.P.

Sweet Golf

Project Engineer


Attachments:

Site Location Map Survey Plan

Geophysical Images

56-01 Marathon Parkway # 765 Douglaston, New York 11362 347-556-7787 (PHONE) 718-261-1527(FAX) www.nova-gsi.com

SITE LOCATION MAP

SITE: White Plains Mall 200 Hamilton Avenue,

White Plains, New York 10601

AKRF CLIENT:

February 6, 2018 DATE:

Chris Steinley AUTH:

56-01 Marathon Parkway # 765 Douglaston, New York 11362 347-556-7787 (PHONE) 718-261-1527(FAX) www.nova-gsi.com

SURVEY PLAN

SITE: White Plains Mall 200 Hamilton Avenue, White Plains, New York 10601

CLIENT: **AKRF**

DATE: February 6, 2018

AUTH: Chris Steinley

Survey Area

Sewer

Electric

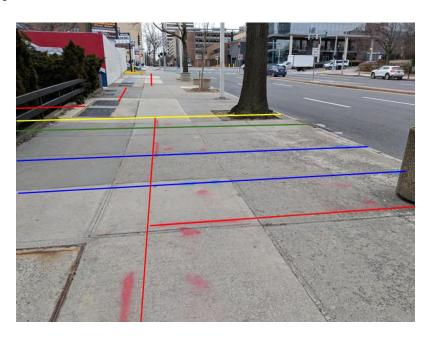
Water

Gas

Telecom

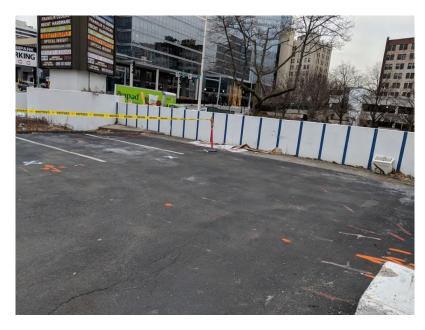
Trench Drain

Floor Drain


Electric Vault

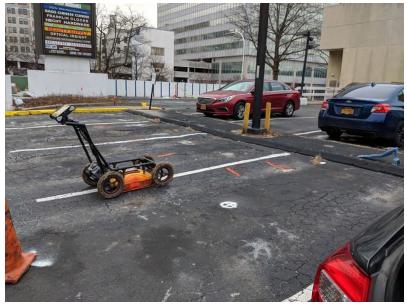
Electric Manhole

GEOPHYSICAL IMAGESWhite Plains Mall 200 Hamilton Avenue White Plains, New York 10601 February 6, 2018

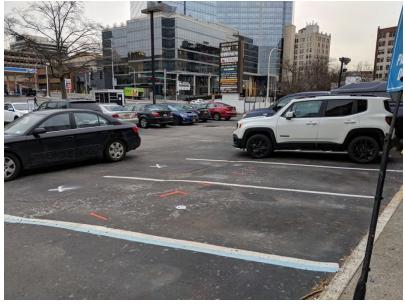


GEOPHYSICAL IMAGES

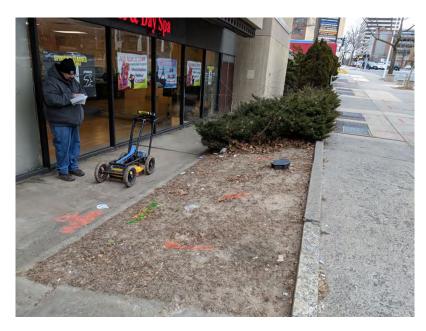
White Plains Mall 200 Hamilton Avenue White Plains, New York 10601 February 6, 2018



GEOPHYSICAL IMAGESWhite Plains Mall 200 Hamilton Avenue White Plains, New York 10601 February 6, 2018


GEOPHYSICAL IMAGES

White Plains Mall 200 Hamilton Avenue White Plains, New York 10601 February 6, 2018



GEOPHYSICAL IMAGESWhite Plains Mall 200 Hamilton Avenue White Plains, New York 10601 February 6, 2018

APPENDIX C

FIELD LOGS

SOIL BORING LOG			200 Ha	milton Avenue	Soil Bo	ring ID:	SB-10			
		J. (1110 200		ect Number: 170029		1 of 2			10	
	$\Delta \Lambda$	K RF	Drilling Method: Sampling Method:	Geoprobe DPP 5' Macrocores	Drilling			I		
			Driller:	Cascade Drilling	Start Time	9: 8:20		Finish Tir	ne: 9:25	
440		enue South, 7 th Floor ork, NY 10016	Weather: Logged By:	30 °F, Cloudy T. McClintock, AKRF	Date: 2/7/2	2018				
Depth (feet)	Recovery (Inches)		urface Condition		Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
_ 12	49	Top 5": ASPHALT	and fine GRAVEL	(FILL).	ND	Dry	ND	ND	SB-10 (3-5)	
3 4 5		Bottom 44": Brown Asphalt (FILL).	sAND, some fine	Gravel, little Silt, trace	ND	Dry	ND	ND	at 9:25	
66		Top 5": SLOUGH.			ND	Dry	ND	ND		
<u>7</u> 8	20	Middle 12": Brown	SAND, some fine	Gravel, little Silt (FILL).	ND	Dry	ND	ND		
9 10		Bottom 3": Fine GF	RAVEL, trace Silt (FILL).	ND	Dry	ND	ND		
11		Top 4": SLOUGH.			ND	Dry	ND	ND		
<u>12</u>	29	Middle 7": Fine GR	RAVEL, trace Silt.		ND	Dry	ND	ND		
<u>14</u> 15		Bottom 18": Brown	SAND, some Silt	little fine Gravel.	ND	Dry	ND	ND		
_16		Top 12": SLOUGH	l.		ND	Dry	ND	ND		
<u>17</u>	49	Middle 9": Brown S	SAND and SILT, tr	ace fine Gravel.	ND	Dry	ND	ND		
19		Bottom 28": Brown	SAND, little Silt, t	race fine Gravel.	ND	Dry	ND	ND		
20 Notes	: Soil s	amples analyzed f	for Commissione	rs Policy (CP-51) VOCs	(EPA 8260)	, CP-51 S\	/OCs (EP	\ 8270), an	d Resource	

Groundwater encountered at approximately 23 feet below grade during soil boring installation.

End of soil boring at 30 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed

for environmental purposes only.

SOIL BORING LOG			200 Ha	milton Avenue	Soil Boring ID:			SB-10		
			AKRF Proj	ect Number: 170029	Sheet	2 of 2		OD-	10	
	$\Delta \Lambda$	NDL	Drilling Method:	Geoprobe DPP	Drilling					
		K RF	Sampling Method: Driller:	5' Macrocores Cascade Drilling	Start Time	e: 8:20		Finish Tir	ne: 9:25	
440) Park Ave	enue South, 7 th Floor	Weather:	30 °F, Cloudy						
		ork, NY 10016	Logged By:	T. McClintock, AKRF	- Date: 2/7/2	2018				
Depth (feet)	Recovery (Inches)	S	urface Condition	: Asphalt	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
21		Top 24": SLOUGH	1		ND	Dry	ND	ND		
22		Top 24 . SLOUGH	l .		ND	Diy	ND	ND		
- -									SB-10 (20-22)	
23	55								at 9:20	
		Bottom 31": Brown	SAND, little Silt,	trace fine Gravel.	Septic-	Wet	0.1	ND		
24					Like at 23'	at 23'	0.1 0.1			
25							0.1			
26		Top 26": SLOUGH	l.		ND	Dry	ND	ND		
27										
28	56	Middle 26": Brown	SAND, little Silt, t	race fine Gravel.	Septic - Like	Wet	0.1 0.3	ND		
29		Bottom 4": Black S	SAND and SILT, s	ome fine Gravel.	Organic - Like at 29'	Wet	0.4 0.2 0.1	ND		
30							0			
31										
32										
33										
34										
35										
36										
37										
38										
39										
Notes	: Soil s	amples analyzed f	for Commission	ers Policy (CP-51) VOC	s (EPA 8260)	, CP-51 S\	/OCs (EP/	A 8270), an	d Resource	

Groundwater encountered at approximately 23 feet below grade during soil boring installation.

End of soil boring at 30 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected
Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed

for environmental purposes only.

SOI	L BO	ORING LOG	200 Ha	Soil Bo	ring ID:	SB-11			
				ect Number: 170029		1 of 2			• •
	A	K RF	Drilling Method: Sampling Method:	Geoprobe DPP 5' Macrocores	Drilling Start Time	. 0.40		Finish Tir	ma: 11:05
		enue South, 7 th Floor	Driller: Weather:	Cascade Drilling	Start Time	9:40		FINISN I II	ne: 11:05
440		ork, NY 10016	Logged By:	30 °F, Cloudy T. McClintock, AKRF	Date: 2/6/2	2018			
Depth (feet)	Recovery (Inches)	Si	urface Condition	: Asphalt	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
_12	42	Top 5": ASPHALT	and fine GRAVEL	_ (FILL).	ND	Dry	ND	ND	
345	42	Bottom 37": Brown roots (FILL).	SAND, little Silt,	fine Gravel, trace wood,	ND	Dry	ND	ND	
66		Top 8": SLOUGH.			ND	Dry	ND	ND	
7 8	53	Middle 40": Brown	SAND, little Silt, f	ine Gravel.	ND	Dry	ND	ND	SB-11 (5-7) at 11:05
<u>9</u> 10		Bottom 5": Gray SA	AND, little Silt, trad	ce fine Gravel.	ND	Dry	ND	ND	
11		Top 13": SLOUGH			ND	Dry	ND	ND	
<u>12</u>	55	Bottom 42": Gray S	SAND, some fine	Gravel, little Silt.	Petro - Like at 12'	Dry	0.5 1.6 6.1 2.5	ND	
14 15							1.8 2.9		
<u>16</u> <u>17</u>		Top 12": SLOUGH			Petro - Like	Dry	0.7 1.7 1.3	ND	
18 19	48	Bottom 36": Gray S	SAND, little fine G	ravel, Silt.	Petro - Like	Dry	1.2 53.2 6 3.6 1.1	ND	SB-11 (17-19) at 11:00
20 Notes:	Soil s	l amples analyzed f	or Commissione	ers Policy (CP-51) VOCs	(EPA 8260)	CP-51 SV	OCs (FP/	8270), an	d Resource

Groundwater was not encountered during soil boring installation.

ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

SO	I BC	ORING LOG	200 Ha	milton Avenue	Soil Bo	ring ID:	SB-11		-11
				ct Number: 170029	Sheet	2 of 2		OD	• •
	$\Delta \Lambda I$	K RF	Drilling Method:	Geoprobe DPP	Drilling				
		N IT	Sampling Method: Driller:	5' Macrocores Cascade Drilling	Start Time	9:40		Finish Ti	me: 11:05
440	Park Ave	enue South, 7 th Floor	Weather:	30 °F, Cloudy	D-1 0/0/0	2040			
		ork, NY 10016	Logged By:	T. McClintock, AKRF	Date: 2/6/2	2018			
Depth (feet)	Recovery (Inches)	Si	urface Condition	: Asphalt	Odor Moisture PID (ppm)				
		Top 15": SLOUGH			Petro -	Dry	5.4	ND	
21	36	Rottom 21": White/	/Red/Rlank SAND	and fine Gravel, trace	Like Petro -	Dry	4.1 2	ND	
22		Silt.	Red/Blank SAND	and fine Oravei, trace	Like	Diy	2.2	IND	
23									
24									
25									
26									
27									
28									
29									
30									
31									
32									
33									
34									
35									
36									
37									
38									
39									
40 Notes	Soil s	amples analvzed f	or Commissione	rs Policy (CP-51) VOC	s (EPA 8260)	, CP-51 S\	OCs (EP)	A 8270). ar	nd Resource

Groundwater was not encountered during soil boring installation.

for environmental purposes only.

SO	II R	ORING LOG	200 Ha	milton Avenue	Soil Boring ID:			SB-	.12
		JAMO LOG		ect Number: 170029		1 of 2		<u> </u>	12
) Park Ave	enue South, 7 th Floor ork, NY 10016	Drilling Method: Sampling Method: Driller: Weather: Logged By:	Geoprobe DPP 5' Macrocores Cascade Drilling 30 °F, Cloudy T. McClintock, AKRF	Drilling Start Time Date: 2/6/2			Finish Tir	ne: 15:50
Depth (feet)	Recovery (Inches)		urface Condition		Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
12345	44	Top 3": ASPHALT Bottom 41": Brown			ND ND	Dry Dry	ND ND	ND ND	SB-12 (2-4) at 15:40
	48	Top 8": SLOUGH. Bottom 40": Brown	SAND, little Silt, f	ine Gravel.	ND ND	Dry Dry	ND ND	ND ND	
	42	Top 12": SLOUGH Bottom 30": Brown		ine Gravel.	ND ND	Dry Dry	ND ND	ND ND	
	37	Top 7": SLOUGH. Bottom 30": Brown		ine Gravel. rs Policy (CP-51) VOCs	ND ND	Dry Wet at 16'	ND ND	ND ND	SB-12 (15-16) at 15:50

Groundwater was encountered at approximately 16 feet below grade during soil boring installation.

End of soil boring at 25 feet below grade.

PID = photoionization detector p

ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed

for environmental purposes only.

SOIL BORING LOG			200 Hai	Soil Bo	ring ID:	SB-12			
				ct Number: 170029		2 of 2			· -
	$\Delta \Lambda$	N DE	Drilling Method:	Geoprobe DPP	Drilling				
		K RF	Sampling Method: Driller:	5' Macrocores Cascade Drilling	Start Time	: 15:05		Finish Tir	ne: 15:50
440) Park Ave	nue South, 7 th Floor	Weather:	30 °F, Cloudy	Date: 2/6/2	2010			
	New Yo	ork, NY 10016	Logged By:	T. McClintock, AKRF	Date: 2/0/2	2016		T	
Depth (feet)	Recovery (Inches)	sı	urface Condition:	Asphalt	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
<u>21</u> 22		Top 3": SLOUGH.			ND	Wet	ND	ND	
23	32	Bottom 29": Gray S	SAND, little Silt, fin	e Gravel.	ND	Wet	ND	ND	
<u>24</u> 25									
26									
27									
29									
30									
31									
33									
34									
35									
36 37									
38									
39									
40 Notes	Soil s	amples analyzed f	or Commissioner	rs Policy (CP-51) VOC	E (EPA 8260)	CP-51 SV	/OCs (ED/	\ 8270\ an	d Pasourca

Groundwater was encountered at approximately 16 feet below grade during soil boring installation.

End of soil boring at 25 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

SOI	I RC	ORING LOG	200 Ha	amilton Avenue	Soil Bo	ring ID:	SB-13			
			AKRF Proj	ect Number: 170029	Sheet	1 of 1		OD-	13	
	$\Delta \Lambda$	NDL	Drilling Method:	Geoprobe DPP	Drilling			ı		
		K RF	Sampling Method: Driller:	5' Macrocores Cascade Drilling	Start Time	: 11:05		Finish Tir	ne: 12:05	
440) Park Ave	enue South, 7 th Floor	Weather:	30 °F, Cloudy	D-1 0/0/0	2040				
		ork, NY 10016	Logged By:	T. McClintock, AKRF	Date: 2/6/2	2018				
Depth (feet)	Recovery (Inches)	S	urface Condition	ı: Asphalt	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
1_1_		_ = =		(- 111)						
2		Top 5": ASPHALT	and fine GRAVE	_ (FILL).	ND	Dry	ND	ND	CD 42 (2.5)	
3	50	Rottom 45": Brown	SAND little Silt	fine Gravel, trace wood,	ND	Dry	ND	ND	SB-13 (3-5) at 12:05	
_4		roots (FILL).	, וווופ סווג,	iiio Giavei, iiace wood,	IND	ыу	IND	IND		
5										
6		Top 7": SLOUGH.			ND	Dry	ND	ND		
7		Middle 46", Brown	CAND little Cit 4	ing Crovel (FILL)	Petro -	Dni	2.4	ND		
_ 8	58	Middle 46": Brown	SAND, IIIIle SIII, I	ine Gravei (FILL).	Like at 8'	Dry	3.1 5.2 9.2	ND		
<u>9</u> 10		Bottom 5": Gray SA	AND, little Silt, tra	ce fine Gravel (FILL).	Petro - Like	Dry	38.3	ND		
10		Top 9": SLOUGH.			Petro -	Dry	282.8	ND		
11_	32				Like	_	881.4		SB-13 (10-12)	
12		Bottom 23": Gray S Concrete (FILL).	SAND, little Silt, tr	ace fine Gravel,	Petro - Like	Dry	306.9 262.4	ND	at 12:00	
		CONTOICE (FILL).			LING		202.7			
13										
14										
15										
16										
17										
18										
19										
20 Notes:	: Soil s	amples analyzed f	for Commission	ers Policy (CP-51) VOCs	(EPA 8260)	, CP-51 S\	OCs (EPA	\ 8270), an	d Resource	

Groundwater was not encountered during soil boring installation.

for environmental purposes only.

	PRING AND WELL ALLATION LOG	AKRF Proj	amilton Avenue		ndwater Monitoring Well ID: Sheet 1 of 2	Soil Boring ID:			SB-14		
γ	AK RF	Drilling Method: Sampling Method:	Geoprobe DPP 5' Macrocores	Drilling				ı			
	JUNIU	Driller:	Cascade Drilling	Start T	ime: 13:20			Finish Tir	ne: 15:10		
440 Park	Avenue South, 7th Floor	Weather:	30 °F, Cloudy	-	10.100.10						
	w York, NY 10016	Logged by:	T. McClintock, AKRF	Date: 2	/6/2018						
Depth (feet)	Well Construction Surface Condition: Asphalt				Soll Borii	ng Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
12 34		Locking Flush		Recovery (Inches	Top 5": ASPHALT and Bottom 46": Brown SAN Gravel, little Silt, trace	ID, some fine	Septic - Like Septic - Like	Dry Dry	0.2 0.6 2.2 4.5 3.6 2.2 1.3	ND ND	SB-14 (2-4) at 15:00
5 6 7 8				43	Top 3": SLOUGH. Middle 8": Brown SANG), some fine	Septic - Like Septic and Petro - Like	Dry Dry	0.3 1.2 6.6 1 6.9	ND ND	
9 10		2" Diameter P	VC Well Riser: 0.5' - 20'		Bottom 32": Green/Gra trace fine Gravel.	y SAND and SILT,	Septic and Petro - Like		68.1 61.7 59.3	ND	
11 12 13				54	Top 12": SLOUGH. Next 12": Gray SAND a Next 18": Gray SAND,		Septic and Petro - Like Septic	Dry Dry Dry	63.7 27.5 36.3 63.2 75.8		
14					Bottom 12": Gray SANI fine Gravel.), little Silt, trace	and Petro - Like	·	629 815 967		
16 17 18				55	Top 3": SLOUGH. Middle 10": Gray SANE fine Gravel.), little Silt, trace	Septic and Petro - Like Petro - Like	Wet at 16' Dry	1370 1264 507 465 1006		SB-14 (15-16) at 15:10
19 20 Notes:	Grundusta	Bentonite Sea	al: 18' - 19'	Soiles	Bottom 42": Gray SANI Gravel. mples analyzed for Cor		Petro - Like	17 - 19' Wet at 19'	1221 1193 421 96.1	-51 SVOC	c (FPA 8270)
Groundwater measured at 23.27 feet below grade in MW-7 on 2/8/17.					source Conservation a dwater encountered at a soil boring at 30 feet b	nd Recovery Act (R	CRA) 8 Me	etals plus a	Zinc.	boring ins	,

SOIL BORING AND WELL INSTALLATION LOG		amilton Avenue ject Number: 170029		ndwater Monitoring Well ID: Sheet 2 of 2	MW-7	,	Soil Boring		SB-14	
≫ VNDL	Drilling Method:	Geoprobe DPP	Drilling				1			
CAK RF	Sampling Method:	5' Macrocores	Start T	ime: 13:20			Finish Tir	ne: 15:10		
440 Park Avenue South, 7 th Floor	Driller:	Cascade Drilling	-							
New York, NY 10016	Weather: Logged by:	30 °F, Cloudy T. McClintock, AKRF	Date: 2	2/6/2018						
(leed) Well Construction		e Condition: Asphalt	Recovery (Inches)	Soil Borii	ng Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
22 23 24 24		d Pack: 19' - 30' 're-Packed PVC Well 30'	33	Top 6": SLOUGH. Middle 10": Gray SANE fine Gravel. Bottom 17": Brown SAN		Petro - Like Petro - Like Petro - Like	Wet Wet	1215 975 457 75.7 62.3 11.8	ND ND	
25			48	Top 6": SLOUGH. Middle 25": Brown SAN Gravel.	ID, little Silt, fine	Petro - Like Petro - Like	Wet Wet	465 529 153 113 152	ND ND	
30				Bottom 17": Brown SAN Gravel.	ND, little Silt, fine	Petro - Like	Wet	40.5 17.4 4.2	ND	
31										
34 35										
36										
37										
38										
40 Groundwate	r Depth Indicator			mples analyzed for Coresource Conservation a					-51 SVOC	s (EPA 8270),
Groundwater measured at 23.2	7 feet below grade	e in MW-7 on 2/8/17.	Ground	dwater encountered at a	approximately 23.27	feet belo	w grade d	uring soil l	boring ins	stallation.
	-									
Groundwater monitoring well in	istalled to 30 feet pionization detecto			soil boring at 30 feet b	ppm = parts per n	nillion	A1	D = not de	tector	
		, NATE - 110	ayucuu:	o priast ligalu	Phin – haire hairi	VII	IN	not de	www	

	RING AND WELL LLATION LOG		lamilton Avenue ject Number: 170029	Grour	ndwater Monitoring Well ID: Sheet 1 of 1	MW-	В	Soil Bo	ring ID:	SB-15	
		Drilling Method:	Geoprobe DPP	Drilling				L			
O(t)	AK RF	Sampling Method:	4' Macrocores	Stort T	ime: 8:20			Finish Tir	no: 0:00		
		Driller:	Cascade Drilling	Start 1	ime: 6.20			Finish Tir	ne: 9.00		
440 Park	Avenue South, 7 th Floor	Weather:	25 °F, Cloudy	Date: 2	/9/2018						
Nev	v York, NY 10016	Logged by:	T. McClintock, AKRF		.0,2010						
Depth (feet)	Well Construction	Surface Condition	on: Terrazzo Tile and Concrete	Recovery (Inches)	Soil Borir	g Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
	$XXX \times XXX$	Locking Flus	h Mount								
2		Concrete Gro	out: 0 - 5'	40.5	Top 5.5": TILE and CO	NCRETE (FILL).	ND	Dry	ND	ND	SB-15 (2-4) at 9:00
<u>3</u>	▓▓	2" Diameter I	PVC Well Riser: 0.5' - 7'		Bottom 35": Brown SAN Gravel (FILL).	ID, little Silt, fine	ND	Dry	ND	ND	
	₩ ₩	1			Top 7": SLOUGH.		ND	Dry	ND	ND	
5 6	XX XX	Bentonite Se	al: 5' - 6'	40	Middle 17": Brown SAN fine Gravel.	D, little Silt, trace	ND	Dry	ND	ND	
<u>7</u> 					Bottom 35": Brown SAN Gravel.	ID, trace Silt, fine	ND	Dry	ND	ND	
		Morie #2 San	d Pack: 6' - 17'		Top 4": SLOUGH.		ND	Dry	ND	ND	
99				37	Middle 23": Brown SAN	D, trace Silt.	Petro - Like	Moist at 10.5	0.5 2.5		SB-15 (10-11)
<u>11</u>		2" Diameter I Screen: 7' - 1	Pre-Packed PVC Well 7'		Bottom 35": Gray SANE), trace Silt.	at 10.5' Petro - Like	Wet at 11.5	3.3 10.2 895 1101		at 8:55
13 14 15 16				43	Top 6": SLOUGH. Bottom 37": Gray SAND), some SILT.	Petro - Like Petro - Like	Wet Wet	806 778 324 42.7 20.5 12.8		
17 18 19 20											
Notes:	Groundwate	r Depth Indicator			mples analyzed for Cor source Conservation a					51 SVOC	s (EPA 8270),
Groundwat	er measured at 10.26	feet below grad	e in MW-8 on 2/9/17.	Ground	dwater encountered at a	pproximately 10.2	6 feet belo	w grade di	uring soil l	ooring ins	stallation.
Groundwat	er monitoring well in	stalled to 17 feet	below grade.	End of	soil boring at 16 feet be	elow grade. Casing	advanced	to 17 feet	below gra	ide.	

SOI	I RC	ORING LOG	200 Ha	Soil Boring ID:			-16		
301	LD	INING LOG	AKRF Proje	ect Number: 170029	Sheet	1 of 1		SD.	-10
	3 -A I	WDT.	Drilling Method:	Geoprobe DPP	Drilling				
		K RF	Sampling Method:	4' Macrocores	Start Time	· 10·10		Finish Tir	ne: 11:10
			Driller:	Cascade Drilling	Start Time	10.10		1 1111311 111	ile. 11.10
440		enue South, 7 th Floor ork, NY 10016	Weather:	25 °F, Clear T. McClintock, AKRF	Date: 2/9/2	2018			
	New 1	JIK, INT TOUTO	Logged By:	1. MICCHILIOCK, ARRE		I		I	
Depth (feet)	Recovery (Inches)	Su	rface Condition:	Concrete	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
_1		Top 4": CONCRET	E and fine GRAV	EL.	ND	Dry	ND	ND	
_ 2	31	Middle 9": Brown S Silt, trace Brick (FI	•	rete, fine Gravel, little	ND	Dry	ND	ND	SB-16 (2-4) at 11:10
<u>3</u> 4		,	,	, trave fine Gravel (FILL).	ND	Dry	ND	ND	
5	20	Top 10": SLOUGH			ND	Dry	ND	ND	
7	38	Bottom 28": Brown	SAND, some Silt	, trace fine Gravel.	ND	Dry	ND	ND	
8									
		Top 12": SLOUGH			ND	Dry	ND	ND	
9		Next 8": Brown SA	ND, little Silt.		ND	Dry	ND	ND	
10	41	Next 7": Brown SIL	T, little Sand.		ND	Moist at 11'	ND	ND	
12		Bottom 14": Brown	SAND, little Silt.		ND	Moist	ND	ND	
13		Top 7": SLOUGH.			Petro - Like	Wet at 13'	5.5 2.8 4.7		
14	46	Middle 30": Gray S	ILT, little Sand.		Petro - Like	Wet	5.8 5.4		SB-16 (12-13) at 11:00
15		Bottom 9": Brown \$	SILT, little Sand.		Petro - Like	Wet	3.7 1.7		
16							1.3		
17		Top 8": SLOUGH.			Petro -	Wet	0.5	ND	
18	39	Middle 18": Brown	SILT, little Sand.		Like Petro - Like	Wet	0.3 0.7 0.1	ND	
19		Bottom 13": Gray S	SAND, some Silt.		Septic - Like	Wet	0.4 0.3	ND	
20 Notes:	: Soil s	amples analyzed f	or Commissione	rs Policy (CP-51) VOCs	(EPA 8260)	. CP-51 SV	2.1	\ 8270). an	d Resource

Groundwater was encountered at approximately 13 feet below grade during soil boring installation.

End of soil boring at 20 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

SOIL BORING LOG			200 Hai	milton Avenue	Soil Boring ID:		SB-17		
		JIMING EGG	AKRF Proje	ct Number: 170029	Sheet	1 of 1		3D-	17
	2 VI	K RF	Drilling Method:	Geoprobe DPP	Drilling			T	
		VIII.	Sampling Method: Driller:	4' Macrocores Cascade Drilling	Start Time	: 11:35		Finish Tir	ne: 12:35
440		enue South, 7 th Floor	Weather:	25 °F, Clear	Date: 2/9/2	2018		ı	
	New Yo	ork, NY 10016	Logged By:	T. McClintock, AKRF	Date: 2/3/2	.010			
Depth (feet)	Recovery (Inches)	Su	rface Condition:	Concrete	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
12	29	Top 4": CONCRET	E and fine GRAVI	≣L.	ND	Dry	ND	ND	
34		Bottom 25": Brown (FILL).	SAND, little Silt, fi	ine Gravel, trace Brick	ND	Dry	ND	ND	
5 6	24	Top 7": SLOUGH.			ND	Dry	ND	ND	SB-17 (5-7) at 12:35
		Bottom 17": Brown Rubber, Asphalt (F		ne Gravel, trace Brick,	ND	Dry	ND	ND	at 12.33
9		Top 6": SLOUGH.			ND	Dry	ND 298	ND	
10	33	Middle 19": Gray S	ILT, some Sand.		Petro - Like at 8.5'	Wet at 9'	24.3 15.7	ND	SB-17 (8-9) at 12:25
<u>11</u>		Bottom 8": Gray SA	AND, trace Silt.				11.4 12.7 10.7	ND	
13		Top 9": SLOUGH.			Petro - Like	Wet	11.1 12.3	ND	
_14	34	Middle 10": Gray S	AND, trace Silt.		Petro - Like	Wet	3.7 4.2	ND	
15		Bottom 15": Gray S	SILT, trace Sand.		Petro - Like	Wet	3.8 2.9	ND	
16							1.8		
<u>17</u>	45	Top 6": SLOUGH.		Petro - Like	Wet	1.9 0.6 0.5	ND		
19		Bottom 39": Gray S	SILT, little Sand.		Petro - Like	Wet	0.8 1.1 0.7	ND	
20 Notes:	: Soil s	amples analyzed f	or Commissione	rs Policy (CP-51) VOCs	(EPA 8260)	, CP-51 S\	0.1 /OCs (EP /	\ 8270), an	d Resource

Groundwater was encountered at approximately 9 feet below grade during soil boring installation.

End of soil boring at 20 feet below grade.

PID = photoionization detector p

ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

AKRF Project Number: 170029 Sheet 1 of 1 Drilling Method: Geoprobe DPP Sampling Method: 5' Macrocores Driller: Cascade Drilling Weather: 30 °F, Cloudy Logged By: T. McClintock, AKRF Surface Condition: Asphalt AKRF Project Number: 170029 Sheet 1 of 1 Finish Time: 13:05 Finish Time: 13:05 Finish Time: 13:05 Surface Condition: Asphalt	SOI	I R	ORING LOG	200 Ha	milton Avenue	Soil Bo	ring ID:		SR.	.18
Sample Section South Property Prop						Sheet	1 of 1		<u> </u>	
Add Park Avenue South, 7" Floor New York, NY 1016 Cascade Drilling Cascade Drilling		$\Delta \Lambda$	N BE			Drilling				
Add Park Avenue South, "I" Floor New York NY 10016 New Yor			L III.			Start Time	: 12:10		Finish Tir	ne: 13:05
New York, NY 100116	440			Weather:	30 °F, Cloudy	Date: 2/6/2	2018		1	
		New Y	ork, NY 10016	Logged By:	T. McClintock, AKRF	Date. 2/0/2	.010	1	F	1
Top 5": ASPHALT and fine GRAVEL (FILL).	Depth (feet)	Recovery (Inches)	Si	urface Condition	: Asphalt	Odor	Moisture	PID (ppm)	NAPL	
2	1_1_									
3	2		Top 5": ASPHALT	and fine GRAVEL	(FILL).	ND	Dry	ND	ND	
	33	45	D-44 40#- D	CAND little City		ND	Desir	ND	ND	
Top 5": SLOUGH.	4			SAND, IITTIE SIIT, I	ine Gravei, trace	טא	Dry	ND	Νυ	
Top 5": SLOUGH. Top 5": SLOUGH. ND Dry ND ND O.5 O.5 O.5 O.5 O.5 O.5 O.5 O.5 O.5 O.	5									
ND	6		Ton 5": SI OLICU			ND	Dny	NID	ND	
S Solution 50": Brown SAND, little Silt, fine Gravel. ND Dry 0.5 ND 1.3 1.7 2 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.3 1.7 2 1.3 1.3 1.3 1.3 1.7 2 1.3	7		1 ор э . эгоовп.			אוט	Diy		טוט	
1.3 1.7 2 1.3 1.7 2 1.3 1.7 2 1.3 1.7 2 1.3 1.7 2 1.3 1.7 2 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 2 1.3 1.3 1.7 1.3 1.7 1.3 1.3 1.7 1.3 1.7 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3 1.3 1.7 1.3	88	55	Bottom 50": Brown	SAND little Silt f	ine Gravel	ND	Dry	0.5	ND	
10	9		Dottom 50 . DIOWII	OAND, IIIIE OIII, I	illo Olavel.	אוט	Diy	1.3	טויו	
11 12 13 15 Middle 24": Brown SAND, little Silt, fine Gravel. Petro - Like at 11' 262 589 ND 13:05	10							2		
12	11		Top 10": SLOUGH			ND	Dry	2.9	ND	
13 55 Bottom 21": Gray SAND, little Silt, fine Gravel. Petro - Like Dry 246 ND 648 619	12		Middle 24": Draw-	CAND limb City to	ing Craval	Dotro	D	752	ND	CD 40 (40 44)
14 Bottom 21": Gray SAND, little Silt, fine Gravel.	13	55	iviluule 24 : Brown	SAND, IIIIIE SIII, TI	ille Glavel.		Dry	262	טא	
Top 9": SLOUGH.	14		Bottom 21": Gray S	SAND, little Silt, fir	ne Gravel.		Dry	246	ND	
16	15							619		
17 53 Middle 15": Gray SAND, little Silt, fine Gravel. Petro - Like Bottom 29": Red/Brown/Black SAND, little Silt, fine Gravel. Petro - Dry 5.8 ND Like 7.2 ND Sandard	16		Top 9": SLOUGH.				Dry	22.5	ND	
Bottom 29": Red/Brown/Black SAND, little Silt, fine Gravel. Petro - Dry 5.8 ND 7.2	17	53	Middle 15": Gray S	AND, little Silt, fin	e Gravel.		Dry	19.2	ND	
19 Like 7.2	_18_		Pottom 20", Bod/D	rown/Plock CAND	little Silt fine Crous!		Dmi	6.7	ND	
20	19		Bottom 29": Red/B	TOWN/BIACK SAND	, little Siit, fine Gravel.		Dry		υυ	
	20									

Notes: Soil samples analyzed for Commissioners Policy (CP-51) VOCs (EPA 8260).

Groundwater was not encountered during soil boring installation.

End of soil boring at 19 feet below grade due to DPP refusal on apparent cobbles.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed

for environmental purposes only.

SOIL BORING AND WELL INSTALLATION LOG		amilton Avenue ect Number: 170029	Grour	ndwater Monitoring Well ID: Sheet 1 of 1)	Soil Boring ID:		SB/MW-9			
	Drilling Method:	Geoprobe DPP	Drilling								
CAKRF	Sampling Method:	5' Macrocores	Start T	ime: 11:35			Finish Ti	me: 12:15			
440 Park Avenue South, 7 th Floor	Driller:	Cascade Drilling	-								
New York, NY 10016	Weather: Logged by:	30 °F, Cloudy T. McClintock, AKRF	Date: 2	2/7/2018							
Well Construction		dition: Topsoil and Grass	Recovery (Inches)	Soll Borir	ng Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
000000	Locking Flush	Mount	Re								
	Concrete Gro			Top 8": Topsoil, trace g	ırass, roots (FILL).	ND	Dry	ND	ND		
··- '		VC Well Riser: 0.5' - 5'	50	Dallace 40" Davies OAA	UD access O'll	ND	Des	ND	. [6		
5	Bentonite Sea	n: 3° - 4°		Bottom 42": Brown SAN fine Gravel, trace Brick		ND	Dry	ND	ND		
7				Top 8": SLOUGH.		ND	Dry	ND	ND		
9	Morie #2 Sand Pack: 6' - 17'		57	Bottom 49": Brown SAN fine Gravel.	ND and SILT, trace	ND	Wet at 9'	ND	ND		
11				Top 7": SLOUGH.		ND	Wet	ND	ND		
12	3" Diameter B	re-Packed PVC Well	30	Middle 5": Brown SILT,	little Sand.	ND	Wet	ND	ND		
14	Screen: 7' - 17			Bottom 18": Gray SILT,	little Sand.	ND	Wet	ND	ND		
16											
17 18											
19											
20 ::: Groundwater	Depth Indicator										
Groundwater measured at 12.27	•	in MW-9 on 2/8/17	Soil samples from SB/MW-9 were not submitted for laboratory analysis.								
	velow grade	Groundwater encountered at approximately 12.27 feet below grade during soil boring installation.									
			_		End of soil boring at 15 feet below grade. Casing advanced to 20 feet below grade.						
Groundwater monitoring well in	stalled to 20 feet onization detecto			soil boring at 15 feet be	elow grade. Casing ppm = parts per n			below gra			

Job No: 1700	29					Client: Street-Wor	ks Developmen	t	Well No:	
Project Locat	tion: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chri	s Puoplo			
Date: 2/16/20	18					Sampling Time: 1	0:25		MW-1	
LEL at surfa	ce: N/A									
PID at surfac	e: ND									
Total Depth:			24.27	ft. below top of	casing	Water Column:	5.89	feet	*= 0.163 * WC for 2" wells	
Depth to Wat				ft. below top of		Well Volume*:		gallons	*= 0.653 * WC for 4" wells	
Depth to Pro	duct:			ft. below top of		Volume Purged:	4	gallons	*= 1.469 * WC for 6" wells	
Depth to top	of screen:		10.6	ft. below top of	casing	Well Diam.:		inches	Target maximum	
	om of screen:			ft. below top of		Purging Device (p			flow rate is	
Approx. Pum				ft. below top of		QE	D Bladder Pumj		100 ml/min	
Time	Depth to Water (Ft.)	Purge Rate (ml/min)	Temp (°C)	Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Comments (problems, odor, sheen)	
8:57	18.38	100	13.88	10.0	1.00	7.49	164	902	(proofenis, odor, siecen)	
9:02	18.38	100	14.20	10.0	0.55	7.50	152	712		
9:07	18.38	100	14.32	9.92	0.38	7.51	144	493	_	
9:12	18.38	100	14.39	9.61	0.30	7.53	139	425		
9:17	18.38	100	14.45	9.23	0.25	7.55	134	304		
9:22	18.38	100	14.48	8.97	0.20	7.56	129	235	_	
9:27	18.38	100	14.47	8.76	0.18	7.57	124	165		
9:32	18.38	100	14.48	8.43	0.12	7.58	115	117	No odor or sheen	
9:37	18.38	100	14.48	8.41	0.11	7.58	114	114		
9:42	18.38	100	14.51	8.35	0.10	7.59	112	117		
9:47	18.38	100	14.52	8.27	0.08	7.59	109	94.4		
9:52	18.38	100	14.53	8.22	0.08	7.59	108	90.8		
9:57	18.38	100	14.53	8.17	0.06	7.59	106	68.4		
10:02	18.38	100	14.54	8.14	0.06	7.59	105	63.8		
10:07	18.38	100	14.55	8.10	0.05	7.59	103	50.4		
	Stabilization Criteria:				+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabi and/or turbidity is greater than 50 NT within two hours, discontinue purging a collect sample.	

Job No: 17002	9					Client: Street-Wor	ks Development	t	Well No:
Project Locati	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chri	s Puoplo		
Date: 2/16/201	.8					Sampling Time: 1	0:25		MW-1
LEL at surfac	e: N/A] IVI VV - I
PID at surface	e: ND								
Total Depth:			24.27	ft. below top of	casing	Water Column:	5.89	feet	*= 0.163 * WC for 2" wells
Depth to Wate	er:		18.38	ft. below top of	casing	Well Volume*:	0.96	gallons	*= 0.653 * WC for 4" wells
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	4	gallons	*= 1.469 * WC for 6" wells
Depth to top o	f screen:		10.6	ft. below top of	casing	Well Diam.:	2	inches	Target maximum
Depth to botto	m of screen:		25.6	ft. below top of	casing	Purging Device (p	oump type):		flow rate is
Approx. Pump	o Intake:		21.3	ft. below top of	casing	QE	D Bladder Pump)	100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO	pН	ORP	Turbidity	Comments
10.12	(Ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	•	(mV)	(NTU)	(problems, odor, sheen)
10:12	18.38	100	14.56	8.07	0.04	7.59	101	38.9	<u> </u>
10:17	18.38	100	14.56	8.07	0.03	7.60	100	39.8	No odor or sheen
10:22	18.38	100	14.57	8.04	0.03	7.59	98	31.0	
10:33	18.38	100	14.35	8.02	0.10	7.60	98	32.3	
									-
									1
									-
									-
	Stabilization Criteria:				+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.

Groundwater samples analyzed for: Commissioners Policy CP-51 Volatile Organic Compounds (VOCs) by EPA 8260

Job No: 17002	.9					Client: Street-Wor	ks Developmen	<u> </u>	Well No:		
-	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Tim		-			
Date: 2/16/201		Trende, will	1 141119, 1 (1			Sampling Time: 1					
LEL at surfac	e: N/A								MW-2		
PID at surface	e: 0.4 ppm										
Total Depth:			22.24	ft. below top of	casing	Water Column:	9.82	feet	*= 0.163 * WC for 2" wells		
Depth to Wate	er:		12.42	ft. below top of	casing	Well Volume*:	1.60	gallons	*= 0.653 * WC for 4" wells		
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	4	gallons	*= 1.469 * WC for 6" wells		
Depth to top o	f screen:		10	ft. below top of	casing	Well Diam.:	2	inches	Target maximum		
Depth to botto	m of screen:		27	ft. below top of	casing	Purging Device (p	oump type):		flow rate is		
Approx. Pump				ft. below top of		QE:	D Bladder Pumj		100 ml/min		
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO	pН	ORP	Turbidity	Comments		
14:20	(Ft.) 12.42	(ml/min) 100	(°C) 15.26	(mS/cm) 4.67	(mg/L) 4.52	6.51	(mV) 41	(NTU) 221	(problems, odor, sheen)		
14:25	12.42	100	15.53	3.87	3.93	6.62	-2	209	•		
									_		
14:30	12.42	100	15.56	5.40	3.69	6.48	-10	196			
14:35	12.42	100	15.57	5.45	3.19	6.48	-19	185			
14:40	12.42	100	15.49	5.46	2.87	6.48	-22	176	_		
14:45	12.42	100	15.44	5.55	2.60	6.45	-24	174	_		
14:50	12.42	100	15.42	5.64	2.21	6.46	-27	166	Petro- & septic- like odor, no		
14:55	12.42	100	15.38	5.68	1.97	6.46	-29	161	sheen.		
15:00	12.42	100	15.35	5.76	1.70	6.46	-32	155			
15:05	12.42	100	15.31	5.74	1.56	6.45	-34	151			
15:10	12.42	100	15.25	5.75	2.35	6.45	-34	148			
15:15	12.42	100	15.16	5.75	2.08	6.46	-36	144			
15:20	12.42	100	15.23	5.78	1.91	6.45	-36	142			
15:25	12.42	100	15.22	5.82	1.69	6.45	-38	139			
15:30	12.42	100	15.17	5.82	1.53	6.46	-39	136			
	Stabilization Criteria:				+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.		

Job No: 17002	9					Client: Street-Wor	ks Developmen	1	Well No:	
Project Locati	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Tim	McClintock			
Date: 2/16/201	8					Sampling Time: 1	6:25		MW-2	
LEL at surfac	e: N/A									
PID at surface	e: 0.4 ppm									
Total Depth:			22.24	ft. below top of	casing	Water Column:	9.82	feet	*= 0.163 * WC for 2" wells	
Depth to Wate	er:		12.42	ft. below top of	casing	Well Volume*:	1.60	gallons	*= 0.653 * WC for 4" wells	
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	4	gallons	*= 1.469 * WC for 6" wells	
Depth to top o	f screen:		10	ft. below top of	casing	Well Diam.:	2	inches	Target maximum	
Depth to botto				ft. below top of		Purging Device (p	oump type):		flow rate is	
Approx. Pump				ft. below top of		QE	D Bladder Pump		100 ml/min	
Time	Depth to Water (Ft.)	Purge Rate (ml/min)	Temp (°C)	Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Comments (problems, odor, sheen)	
15:35	12.42	100	14.59	5.95	1.26	6.41	-36	131	(problems, odor, sheen)	
15:40	12.42	100	14.54	5.94	1.23	6.37	-35	130	_	
15:45	12.42	100	14.48	5.92	1.15	6.39	-36	129	_	
15:50	12.42	100	14.35	5.92	1.03	6.39	-37	127	_	
								-	_	
15:55	12.42	100	14.34	5.94	0.97	6.41	-39	127	Petro- & septic- like odor, no	
16:00	12.42	100	14.36	5.94	0.89	6.43	-41	125	sheen.	
16:05	12.42	100	14.31	5.96	0.78	6.45	-43	115	_	
16:10	12.42	100	14.27	6.00	0.73	6.46	-43	121		
16:15	12.42	100	14.24	6.00	0.60	6.46	-45	119		
16:20	12.42	100	14.23	5.97	0.57	6.47	-45	117		
16:30	12.42	100	14.19	5.96	0.64	6.39	-26	115		
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.	

Groundwater samples analyzed for: Commissioners Policy CP-51 Volatile Organic Compounds (VOCs) by EPA 8260

Job No: 17002	29					Client: Street-Wor	ks Development	t	Well No:	
Project Locati	ion: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Tim	McClintock		N/XX/ 5	
Date: 2/16/201	18					Sampling Time: 1	1:45			
LEL at surfac	e: N/A								MW-5	
PID at surface	e: ND									
Total Depth:			28.22	ft. below top of	casing	Water Column:	6.81	feet	*= 0.163 * WC for 2" wells	
Depth to Wate	er:		21.41	ft. below top of	casing	Well Volume*:	1.11	gallons	*= 0.653 * WC for 4" wells	
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	4	gallons	*= 1.469 * WC for 6" wells	
Depth to top o	f screen:		unknown	ft. below top of	casing	Well Diam.:	2	inches	Target maximum	
Depth to botto				ft. below top of		Purging Device (p	oump type):		flow rate is	
Approx. Pum				ft. below top of		QE	D Bladder Pump		100 ml/min	
Time	Depth to Water (Ft.)	Purge Rate (ml/min)	Temp (°C)	Conductivity (mS/cm)	DO (mg/L)	pН	ORP (mV)	Turbidity (NTU)	Comments (problems, odor, sheen)	
9:40	21.41	100	14.70	12.0	1.68	6.08	268	860	(problems, odor, siecen)	
9:45	21.41	100	14.89	11.5	2.58	6.16	258	375	_	
9:50	21.41	100	14.59	11.6	2.21	6.15	253	291	_	
9:55	21.41	100	14.36	11.9	1.65	6.09	252	203	-	
10:00	21.41	100	14.33	12.0	1.41	6.05	247	150	-	
10:05	21.41	100	14.31	12.0	1.23	6.04	244	126	-	
10:10	21.41	100	14.31	12.1	1.09	6.08	236	118	-	
10:15	21.41	100	14.31	12.1	0.97	6.11	232	106	No odor or sheen	
10:20	21.41	100	14.26	12.1	0.86	6.14	227	123	140 odor or sneem	
10:25	21.41	100	14.05	12.1	0.80	6.13	225	109	_	
10:30	21.41	100	13.58	12.1	0.69	6.05	227	121	_	
10:35	21.41	100	13.41	12.1	0.05	6.02	226	119	_	
10:33	21.41	100	13.40	12.1	0.73	6.00	225	131	-	
10:45	21.41	100	13.40	12.1	0.65	6.00	224	114	+	
10:43	·	100		12.1			224	107	-	
10:50	21.41	100	13.40	12.1	0.59	5.97	224	107		
	Stabilization Criteria:				+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.	

Job No: 17002	9					Client: Street-Wor	ks Developmen	t	Well No:
Project Locati	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Tim	McClintock		
Date: 2/16/201	.8					Sampling Time: 1	1:45		MW-5
LEL at surfac	e: N/A								
PID at surface	e: ND								
Total Depth:			28.22	ft. below top of	casing	Water Column:	6.81	feet	*= 0.163 * WC for 2" wells
Depth to Wate	er:		21.41	ft. below top of	casing	Well Volume*:	1.11	gallons	*= 0.653 * WC for 4" wells
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	4	gallons	*= 1.469 * WC for 6" wells
Depth to top o	f screen:		unknown	ft. below top of	casing	Well Diam.:	2	inches	Target maximum
Depth to botto	m of screen:		unknown	ft. below top of	casing	Purging Device (p	oump type):		flow rate is
Approx. Pump				ft. below top of		QE	D Bladder Pumj		100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO (m //)	pН	ORP	Turbidity	Comments (problems, odor, sheen)
10:55	(Ft.) 21.41	(ml/min) 100	(°C) 13.27	(mS/cm) 12.2	(mg/L) 0.53	5.98	(mV) 221	(NTU) 101	(problems, odor, sileen)
11:00	21.41	100	13.28	12.2	0.33	5.98	218	97.7	
11:05	21.41	100	13.23	12.2	0.45	5.98	217	117	_
11:10	21.41	100	13.23	12.2	0.43	6.02	217	122	_
-									_
11:15	21.41	100	13.59	12.2	0.34	6.02	211	126	
11:20	21.41	100	13.48	12.2	0.30	6.00	210	133	No odor or sheen
11:25	21.41	100	13.68	12.2	0.29	6.02	207	120	
11:30	21.41	100	13.27	12.2	0.27	6.02	201	131	
11:35	21.41	100	13.29	12.2	0.25	6.06	199	121	
11:40	21.41	100	13.33	12.2	0.24	6.06	199	124	
11:50	21.41	100	13.83	12.2	0.19	5.99	209	121	
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.

Groundwater samples analyzed for: Commissioners Policy CP-51 Volatile Organic Compounds (VOCs) by EPA 8260

Job No: 17002	.9					Client: Street-Wor	ks Development	t	Well No:
Project Locati	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Tim	McClintock		
Date: 2/16/201	.8					Sampling Time: 1	3:20		MW-6
LEL at surfac	e: N/A								141 44 -0
PID at surface	e: 0.7 ppm								
Total Depth:			28.94	ft. below top of	casing	Water Column:	5.82	feet	*= 0.163 * WC for 2" wells
Depth to Wate	er:		23.12	ft. below top of	casing	Well Volume*:	0.95	gallons	*= 0.653 * WC for 4" wells
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	2	gallons	*= 1.469 * WC for 6" wells
Depth to top o	f screen:		unknown	ft. below top of	casing	Well Diam.:	2	inches	Target maximum
Depth to botto	m of screen:		unknown	ft. below top of	casing	Purging Device (p	oump type):		flow rate is
Approx. Pump				ft. below top of		QE.	D Bladder Pump		100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO	pН	ORP	Turbidity	Comments (problems, odor, sheen)
12:40	(Ft.) 23.12	(ml/min) 100	(°C) 14.71	(mS/cm) 10.0	(mg/L) 0.28	6.36	(mV) 13	(NTU) 181	(problems, odor, sneen)
							-6		_
12:45	23.12	100	14.89	10.1	0.14	6.32		137	4
12:50	23.12	100	14.94	10.1	0.08	6.31	-14	106	_
12:55	23.12	100	14.97	10.1	0.00	6.29	-21	72.2	_
13:00	23.12	100	14.99	10.1	0.00	6.29	-25	59.5	Petro-like odor, no sheen
13:05	23.12	100	15.01	10.1	0.00	6.29	-29	47.4	
13:10	23.12	100	15.01	10.1	0.00	6.29	-32	39.7	
13:15	23.12	100	14.99	10.1	0.00	6.28	-33	36.6	
13:20	23.12	100	14.99	10.1	0.00	6.28	-34	35.1	
13:30	23.12	100	14.91	10.1	0.00	6.28	-35	33.2	
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.

Groundwater samples analyzed for: Commissioners Policy CP-51 Volatile Organic Compounds (VOCs) by EPA 8260

Job No: 17002	9					Client: Street-Wor	ks Development	<u> </u>	Well No:	
Project Locati	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chri			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Date: 2/16/201						Sampling Time: 1				
LEL at surfac	e: N/A								MW-7	
PID at surface	e: 250.6 ppm]	
Total Depth:			30.35	ft. below top of	casing	Water Column:	6.45	feet	*= 0.163 * WC for 2" wells	
Depth to Wate	er:		23.9	ft. below top of	casing	Well Volume*:	1.05	gallons	*= 0.653 * WC for 4" wells	
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	2.5	gallons	*= 1.469 * WC for 6" wells	
Depth to top o	f screen:		20.35	ft. below top of	casing	Well Diam.:	2	inches	Target maximum	
Depth to botto	m of screen:		30.35	ft. below top of	casing	Purging Device (p	oump type):		flow rate is	
Approx. Pump				ft. below top of		QE	D Bladder Pump		100 ml/min	
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO (m = A)	pН	ORP	Turbidity	Comments (problems, odor, sheen)	
11:54	(Ft.) 23.90	(ml/min) 100	(°C) 14.69	(mS/cm) 4.10	(mg/L) 0.86	7.43	(mV) -174	(NTU) 216	(problems, odor, sheen)	
11:59	23.90	100	14.92	4.05	0.58	7.40	-302	198	_	
12:04	23.90	100	15.13	3.88	0.54	7.40	-363	244		
12:04	23.90	100	15.13	3.70	0.54	7.40	-334	489		
12:14	23.90	100	15.10	3.68	0.57	7.39	-326	467		
-									_	
12:19	23.90	100	15.02	3.72	0.60	7.39	-324	392		
12:24	23.90	100	14.98	3.82	0.54	7.38	-318	339		
12:29	23.90	100	15.05	3.87	0.48	7.38	-332	271	Petro-like odor, no sheen	
12:34	23.90	100	15.03	3.87	0.53	7.38	-334	251	_	
12:39	23.90	100	14.69	3.95	0.50	7.35	-327	180	_	
12:44	23.90	100	14.66	4.10	0.51	7.35	-332	143		
12:49	23.90	100	14.66	4.12	0.53	7.34	-330	128		
12:54	23.90	100	14.77	4.20	0.55	7.34	-325	191		
12:59	23.90	100	14.80	4.15	0.39	7.34	-325	168		
13:04	23.90	100	15.01	4.04	0.34	7.39	-312	122		
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.	

Job No: 17002	9					Client: Street-Wor	ks Development	t	Well No:
Project Locati	on: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chri	s Puoplo		_
Date: 2/16/201	.8					Sampling Time: 1	3:55		MW-7
LEL at surfac	e: N/A								
PID at surface	e: 250.6 ppm								
Total Depth:			30.35	ft. below top of	casing	Water Column:	6.45	feet	*= 0.163 * WC for 2" wells
Depth to Wate	er:		23.9	ft. below top of	casing	Well Volume*:	1.05	gallons	*= 0.653 * WC for 4" wells
Depth to Prod	uct:		ND	ft. below top of	casing	Volume Purged:	2.5	gallons	*= 1.469 * WC for 6" wells
Depth to top o	f screen:		20.35	ft. below top of	casing	Well Diam.:	2	inches	Target maximum
Depth to botto	m of screen:		30.35	ft. below top of	casing	Purging Device (p	oump type):		flow rate is
Approx. Pump				ft. below top of		QE	D Bladder Pump		100 ml/min
Time	Depth to Water	Purge Rate	Temp	Conductivity	DO (m = A)	pН	ORP	Turbidity	Comments (problems, odor, sheen)
13:09	(Ft.) 23.90	(ml/min) 100	(°C) 15.06	(mS/cm) 3.93	(mg/L) 0.36	7.72	(mV) -119	(NTU) 105	(problems, odor, sheen)
13:14	23.90	100	15.10	3.07	0.40	7.42	81	84.5	_
13:19	23.90	100	14.83	5.27	0.40	7.42	-358	260	
13:19	23.90	100	15.36	5.30	0.30	7.35	-338 -449	217	_
								-	-
13:29	23.90	100	15.40	5.02	0.11	7.35	-436	400	
13:34	23.90	100	15.45	4.96	0.16	7.35	-417	571	Petro-like odor, no sheen
13:39	23.90	100	15.39	4.94	0.20	7.35	-416	710	
13:44	23.90	100	15.21	5.05	0.20	7.34	-405	626	
13:49	23.90	100	15.14	5.13	0.20	7.34	-403	606	
13:54	23.90	100	15.09	5.12	0.22	7.34	-403	572	
14:02	23.90	100	15.00	5.14	0.43	7.34	-297	668	
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.

Groundwater samples analyzed for: Commissioners Policy CP-51 Volatile Organic Compounds (VOCs) by EPA 8260

Well Sampling Log

Job No: 1700	29					Client: Street-Wor	ks Developmen	Well No:		
Project Locat	t ion: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chri	s Puoplo			
Date: 2/16/20	18					Sampling Time: 1	8:07		MW-8	
LEL at surfa									141 44 -Q	
PID at surfac	e: 11 ppm									
Total Depth:			16.98	ft. below top of	casing	Water Column:	7.05	feet	*= 0.163 * WC for 2" wells	
Depth to Wat				ft. below top of		Well Volume*:		gallons	*= 0.653 * WC for 4" wells	
Depth to Pro				ft. below top of		Volume Purged:		gallons	*= 1.469 * WC for 6" wells	
Depth to top				ft. below top of		Well Diam.: 2 inches		Target maximum		
	om of screen:			ft. below top of		1 0 0 .	ng Device (pump type):		flow rate is	
Approx. Pum				ft. below top of		QE	D Bladder Pump		100 ml/min	
Time	Depth to Water (Ft.)	Purge Rate (ml/min)	Temp (°C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Comments (problems, odor, sheen)	
17:35	9.93	100	14.78	5.28	0.10	6.59	-61	277	q ···· , ··· ,	
17:40	9.93	100	15.81	5.20	0.06	6.58	-78	201	_	
17:45	9.93	100	16.47	5.17	0.00	6.66	-94	107		
17:50	9.93	100	16.70	5.17	0.00	6.67	-100	63.5		
17:55	9.93	100	16.84	5.17	0.00	6.67	-103	46.2	Petro-like odor, no sheen	
18:00	9.93	100	17.04	5.13	0.00	6.67	-107	27.6	Petro-like odor, no she	
18:05	9.93	100	17.15	5.12	0.00	6.63	-107	19.0		
18:14	9.93	100	17.13	5.09	0.00	6.56	-102	20.0		
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabi and/or turbidity is greater than 50 NTI within two hours, discontinue purging a collect sample.	

Well Sampling Log

						T			T	
Job No: 17002						Client: Street-Wor		•	Well No:	
	ion: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chris Puoplo			-	
Date: 2/16/20						Sampling Time: 1	6:37		MW-9	
LEL at surface										
PID at surfac	e: 0.4 ppm		20.25	6.1.16		W G.	0.42	<u> </u>	* 0.400 * M/O for Oll	
Total Depth:				ft. below top of		Water Column:	8.43		*= 0.163 * WC for 2" wells	
Depth to Water				ft. below top of ft. below top of		Well Volume*: Volume Purged:		gallons	*= 0.653 * WC for 4" wells *= 1.469 * WC for 6" wells	
				•		Well Diam.:		gallons		
Depth to top o				ft. below top of				inches	Target maximum flow rate is	
Depth to botto Approx. Pum				ft. below top of		Purging Device (p	o ump type): D Bladder Pum _l		100 ml/min	
	Depth to Water	Purge Rate	Temp	Conductivity	DO	`	ORP	Turbidity	Comments	
Time	(Ft.)	(ml/min)	(°C)	(mS/cm)	(mg/L)	pН	(mV)	(NTU)	(problems, odor, sheen)	
15:05	11.82	100	14.33	3.55	2.48	7.34	78	487		
15:10	11.82	100	13.63	3.61	3.43	7.33	69	437		
15:15	11.82	100	13.55	3.59	3.46	7.33	64	389		
15:20	11.82	100	13.29	3.58	3.21	7.33	50	300		
15:25	11.82	100	13.26	3.59	3.07	7.33	48	267	-	
15:30	11.82	100	13.17	3.59	2.95	7.33	45	208		
15:35	11.82	100	13.09	3.59	2.78	7.33	43	167		
15:40	11.82	100	12.99	3.61	2.70	7.33	36	134	No odor or sheen	
15:45	11.82	100	12.97	3.61	2.58	7.33	33	108		
15:50	11.82	100	12.96	3.61	2.50	7.33	34	107		
15:55	11.82	100	12.95	3.62	2.52	7.33	31	99		
16:00	11.82	100	12.99	3.63	2.37	7.33	26	83.9	-	
16:05	11.82	100	12.96	3.64	2.28	7.33	26	82.9	-	
16:10	11.82	100	12.92	3.65	2.22	7.33	22	73		
16:15	11.82	100	12.89	3.67	2.10	7.33	13	58.2	-	
	Stabilization			+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, discontinue purging and collect sample.	

Groundwater samples analyzed for: Commissioners Policy CP-51 Volatile Organic Compounds (VOCs) by EPA 8260

Well Sampling Log

Job No: 1700	29					Client: Street-Works Development			Well No:	
Project Locat	t ion: 200 Hamilton	Avenue, White	Plains, NY			Sampled By: Chri	s Puoplo		MW-9	
Date: 2/16/20	18					Sampling Time: 1	6:37			
LEL at surfa									1V1 VV = 9	
PID at surfac	e: 0.4 ppm									
Total Depth:			20.25	ft. below top of	casing	Water Column:	8.43	feet	*= 0.163 * WC for 2" wells	
Depth to Wat	er:			ft. below top of		Well Volume*:	1.36	gallons	*= 0.653 * WC for 4" wells	
Depth to Pro	duct:		ND	ft. below top of	casing	Volume Purged:	2.5	gallons	*= 1.469 * WC for 6" wells	
Depth to top	of screen:		5.25	ft. below top of	casing	Well Diam.: 2 inches		Target maximum		
Depth to bott	om of screen:		20.25	ft. below top of	casing	Purging Device (p	ing Device (pump type):		flow rate is	
Approx. Pum				ft. below top of		QE	O Bladder Pump		100 ml/min	
Time	Depth to Water (Ft.)	Purge Rate (ml/min)	Temp (°C)	Conductivity (mS/cm)	DO (mg/L)	рН	ORP (mV)	Turbidity (NTU)	Comments (problems, odor, sheen)	
16:20	11.82	100	12.88	3.67	2.03	7.33	13	54.4		
16:25	11.82	100	12.86	3.68	1.95	7.33	12	47.6		
16:30	11.82	100	12.81	3.70	1.89	7.33	7	40.8	No odor or sheen	
16:35	11.82	100	12.78	3.71	1.87	7.33	6	42.0	7	
16:47	11.82	100	12.36	3.74	1.72	7.33	5	49.2		
									_	
									-	
									-	
									-	
									-	
	Stabilization	n Criteria:		+/- 3 mS/cm	+/- 0.3 mg/L	+/- 0.1 pH units	+/- 10 mV	<50 NTU	If water quality parameters do not stabi and/or turbidity is greater than 50 NT within two hours, discontinue purging a collect sample.	

APPENDIX D LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L1804131

Client: AKRF, Inc.

34 South Broadway White Plains, NY 10601

ATTN: Becky Kinal Phone: (914) 922-2362

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

 Lab Number:
 L1804131

 Report Date:
 02/13/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1804131-01	SB-11 (17-19)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 11:00	02/06/18
L1804131-02	SB-11 (5-7)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 11:05	02/06/18
L1804131-03	SB-13 (10-12)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 12:00	02/06/18
L1804131-04	SB-13 (3-5)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 12:05	02/06/18
L1804131-05	SB-18 (12-14)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 13:05	02/06/18
L1804131-06	SB-14 (2-4)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 15:00	02/06/18
L1804131-07	SB-14 (15-16)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 15:10	02/06/18
L1804131-08	SB-12 (2-4)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 15:40	02/06/18
L1804131-09	SB-12 (15-16)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/06/18 15:50	02/06/18
L1804131-10	SB-10 (20-22)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/07/18 09:20	02/07/18
L1804131-11	SB-10 (3-5)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/07/18 09:25	02/07/18
L1804131-12	SB-15 (10-11)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/09/18 08:55	02/09/18
L1804131-13	SB-15 (2-4)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/09/18 09:00	02/09/18
L1804131-14	SB-16 (12-13)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/09/18 11:00	02/09/18
L1804131-15	SB-16 (2-4)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/09/18 11:10	02/09/18
L1804131-16	SB-17 (8-9)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/09/18 12:25	02/09/18
L1804131-17	SB-17 (5-7)	SOIL	200 HAMILTON AVE., WHITE PLAINS, NY	02/09/18 12:35	02/09/18

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131
Project Number: 170029 Report Date: 02/13/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1804131-07: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Total Metals

The WG1088167-3 MS recovery, performed on L1804131-13, is outside the acceptance criteria for mercury (0%). A post digestion spike was performed and yielded an unacceptable recovery of 124%. This has been attributed to sample matrix.

The WG1088167-4 Laboratory Duplicate RPD for mercury (46%), performed on L1804131-13, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

Solids, Total

L1804131-12 through -17: A Laboratory Duplicate was prepared with the sample batch, however, the native sample was not available for reporting; therefore, the Laboratory Duplicate results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Nails

ALPHA

Date: 02/13/18

ORGANICS

VOLATILES

L1804131

02/13/18

02/06/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 11:00

Lab Number:

Date Received:

Field Prep:

Report Date:

Lab ID: L1804131-01 D

Client ID: SB-11 (17-19)

200 HAMILTON AVE., WHITE PLAINS, NY Sample Location:

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 02/12/18 10:43

Analyst: MV 88% Percent Solids:

Result	Qualifier	Units	RL	MDL	Dilution Factor		
/olatile Organics by 8260/5035 - Westborough Lab							
ND		ug/kg	550	100	10		
ND		ug/kg	820	110	10		
11000		ug/kg	550	93.	10		
ND		ug/kg	1100	84.	10		
17000		ug/kg	1100	190	10		
1400		ug/kg	1100	180	10		
18000		ug/kg	1100	180	10		
4000		ug/kg	550	120	10		
2300		ug/kg	550	120	10		
ND		ug/kg	2700	140	10		
4100		ug/kg	550	110	10		
1000		ug/kg	550	110	10		
3400		ug/kg	2700	76.	10		
15000		ug/kg	550	120	10		
17000		ug/kg	2700	88.	10		
60000		ug/kg	2700	100	10		
	ND ND 11000 ND 17000 1400 18000 4000 2300 ND 4100 1000 3400 15000 17000	ND ND 11000 ND 17000 1400 18000 4000 2300 ND 4100 1000 3400 15000 17000	ND ug/kg ND ug/kg 11000 ug/kg ND ug/kg 17000 ug/kg 1400 ug/kg 1400 ug/kg 4000 ug/kg 2300 ug/kg ND ug/kg 4100 ug/kg	ND ug/kg 550 ND ug/kg 820 11000 ug/kg 550 ND ug/kg 1100 17000 ug/kg 1100 1400 ug/kg 1100 1400 ug/kg 1100 4000 ug/kg 1100 4000 ug/kg 550 ND ug/kg 550 2300 ug/kg 550 ND ug/kg 550 1000 ug/kg 550 15000 ug/kg 550 17000 ug/kg 550	ND ug/kg 550 100 ND ug/kg 820 110 11000 ug/kg 550 93. ND ug/kg 1100 84. 17000 ug/kg 1100 190 1400 ug/kg 1100 180 18000 ug/kg 1100 180 4000 ug/kg 550 120 2300 ug/kg 550 120 ND ug/kg 550 110 1000 ug/kg 550 110 4100 ug/kg 550 110 3400 ug/kg 550 110 3400 ug/kg 550 110 15000 ug/kg 550 120 17000 ug/kg 550 120		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	97	70-130	

L1804131

02/13/18

02/06/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Date Collected: 02/06/18 11:05

Lab Number:

Report Date:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1804131-02

Client ID: SB-11 (5-7)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 02/10/18 11:35

Analyst: ΑD 89% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - W	estborough Lab					
Benzene	ND		ug/kg	1.1	0.20	1
Toluene	ND		ug/kg	1.6	0.21	1
Ethylbenzene	ND		ug/kg	1.1	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.16	1
p/m-Xylene	ND		ug/kg	2.1	0.37	1
o-Xylene	ND		ug/kg	2.1	0.36	1
Xylenes, Total	ND		ug/kg	2.1	0.36	1
n-Butylbenzene	ND		ug/kg	1.1	0.24	1
sec-Butylbenzene	ND		ug/kg	1.1	0.23	1
tert-Butylbenzene	ND		ug/kg	5.3	0.26	1
Isopropylbenzene	ND		ug/kg	1.1	0.21	1
p-Isopropyltoluene	ND		ug/kg	1.1	0.22	1
Naphthalene	ND		ug/kg	5.3	0.15	1
n-Propylbenzene	ND		ug/kg	1.1	0.23	1
1,3,5-Trimethylbenzene	ND		ug/kg	5.3	0.17	1
1,2,4-Trimethylbenzene	ND		ug/kg	5.3	0.20	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	107	70-130	

L1804131

02/13/18

02/06/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 12:00

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1804131-03 D

Client ID: SB-13 (10-12)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C

Analytical Date: 02/12/18 11:09

Analyst: MV Percent Solids: 92%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035	- Westborough Lab						
Benzene	ND		ug/kg	560	110	10	
Toluene	870		ug/kg	830	110	10	
Ethylbenzene	14000		ug/kg	560	94.	10	
Methyl tert butyl ether	ND		ug/kg	1100	85.	10	
p/m-Xylene	54000		ug/kg	1100	200	10	
o-Xylene	14000		ug/kg	1100	190	10	
Xylenes, Total	68000		ug/kg	1100	190	10	
n-Butylbenzene	4100		ug/kg	560	130	10	
sec-Butylbenzene	2100		ug/kg	560	120	10	
tert-Butylbenzene	ND		ug/kg	2800	140	10	
Isopropylbenzene	3100		ug/kg	560	110	10	
p-Isopropyltoluene	950		ug/kg	560	110	10	
Naphthalene	5800		ug/kg	2800	77.	10	
n-Propylbenzene	12000		ug/kg	560	120	10	
1,3,5-Trimethylbenzene	22000		ug/kg	2800	90.	10	
1,2,4-Trimethylbenzene	69000		ug/kg	2800	100	10	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1804131-04

Client ID: SB-13 (3-5)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 02/10/18 12:03

Analyst: ΑD 87% Percent Solids:

Date Collected: 02/06/18 12:05 Date Received: 02/06/18 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035	- Westborough Lab						
Benzene	ND		ug/kg	0.99	0.19	1	
Toluene	ND		ug/kg	1.5	0.19	1	
Ethylbenzene	ND		ug/kg	0.99	0.17	1	
Methyl tert butyl ether	ND		ug/kg	2.0	0.15	1	
p/m-Xylene	ND		ug/kg	2.0	0.35	1	
o-Xylene	ND		ug/kg	2.0	0.33	1	
Xylenes, Total	ND		ug/kg	2.0	0.33	1	
n-Butylbenzene	ND		ug/kg	0.99	0.22	1	
sec-Butylbenzene	ND		ug/kg	0.99	0.21	1	
tert-Butylbenzene	ND		ug/kg	4.9	0.24	1	
Isopropylbenzene	ND		ug/kg	0.99	0.19	1	
p-Isopropyltoluene	ND		ug/kg	0.99	0.20	1	
Naphthalene	ND		ug/kg	4.9	0.14	1	
n-Propylbenzene	ND		ug/kg	0.99	0.21	1	
1,3,5-Trimethylbenzene	ND		ug/kg	4.9	0.16	1	
1,2,4-Trimethylbenzene	0.32	J	ug/kg	4.9	0.18	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	105	70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 13:05

Lab ID: L1804131-05 D

Client ID: SB-18 (12-14)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/12/18 11:36

Analyst: MV Percent Solids: 94% Date Received: 02/06/18

Field Prep: Not Specified

Lab Number:

Report Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	stborough Lab					
Benzene	ND		ug/kg	940	180	20
Toluene	280	J	ug/kg	1400	180	20
Ethylbenzene	11000		ug/kg	940	160	20
Methyl tert butyl ether	ND		ug/kg	1900	140	20
p/m-Xylene	76000		ug/kg	1900	330	20
o-Xylene	2300		ug/kg	1900	320	20
Xylenes, Total	78000		ug/kg	1900	320	20
n-Butylbenzene	5200		ug/kg	940	210	20
sec-Butylbenzene	2900		ug/kg	940	200	20
tert-Butylbenzene	ND		ug/kg	4700	230	20
Isopropylbenzene	2400		ug/kg	940	180	20
p-Isopropyltoluene	1400		ug/kg	940	190	20
Naphthalene	6600		ug/kg	4700	130	20
n-Propylbenzene	7200		ug/kg	940	200	20
1,3,5-Trimethylbenzene	34000		ug/kg	4700	150	20
1,2,4-Trimethylbenzene	100000		ug/kg	4700	180	20

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	98	70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Lab Number:

Report Date:

OAMII EE KESSE

Lab ID: L1804131-06 Client ID: SB-14 (2-4)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/10/18 12:30

Analyst: AD Percent Solids: 90%

Date Collected:	02/06/18 15:00
Date Received:	02/06/18
Field Prep:	Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035 - Westborough Lab						
ND		ug/kg	0.92	0.18	1	
ND		ug/kg	1.4	0.18	1	
0.18	J	ug/kg	0.92	0.16	1	
ND		ug/kg	1.8	0.14	1	
0.66	J	ug/kg	1.8	0.32	1	
ND		ug/kg	1.8	0.31	1	
0.66	J	ug/kg	1.8	0.31	1	
ND		ug/kg	0.92	0.21	1	
0.22	J	ug/kg	0.92	0.20	1	
0.58	J	ug/kg	4.6	0.23	1	
ND		ug/kg	0.92	0.18	1	
ND		ug/kg	0.92	0.19	1	
0.85	J	ug/kg	4.6	0.13	1	
ND		ug/kg	0.92	0.20	1	
0.30	J	ug/kg	4.6	0.15	1	
0.80	J	ug/kg	4.6	0.17	1	
	ND ND 0.18 ND 0.66 ND 0.66 ND 0.22 0.58 ND ND 0.85 ND 0.30	ND ND ND 0.18 ND 0.66 J ND 0.66 J ND 0.22 J 0.58 J ND ND ND ND ND ND ND ND 0.85 J ND 0.30 J	ND ug/kg ND ug/kg 0.18 J ug/kg ND ug/kg 0.66 J ug/kg ND ug/kg ND ug/kg ND ug/kg 0.22 J ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 0.85 J ug/kg ND ug/kg ND ug/kg 0.30 J ug/kg	ND ug/kg 0.92 ND ug/kg 1.4 0.18 J ug/kg 0.92 ND ug/kg 1.8 0.66 J ug/kg 1.8 ND ug/kg 1.8 ND ug/kg 1.8 ND ug/kg 1.8 ND ug/kg 0.92 0.22 J ug/kg 0.92 0.22 J ug/kg 0.92 0.58 J ug/kg 4.6 ND ug/kg 0.92 0.58 J ug/kg 0.92 0.58 J ug/kg 0.92 0.58 J ug/kg 0.92 0.58 J ug/kg 0.92 0.85 J ug/kg 0.92	ND ug/kg 0.92 0.18 ND ug/kg 1.4 0.18 0.18 J ug/kg 0.92 0.16 ND ug/kg 1.8 0.14 0.66 J ug/kg 1.8 0.32 ND ug/kg 1.8 0.31 0.66 J ug/kg 1.8 0.31 ND ug/kg 0.92 0.21 0.22 J ug/kg 0.92 0.21 0.22 J ug/kg 0.92 0.20 0.58 J ug/kg 4.6 0.23 ND ug/kg 0.92 0.18 ND ug/kg 0.92 0.19 0.85 J ug/kg 0.92 0.20 0.30 J ug/kg 0.92 0.20	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	106	70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Date Collected: 02/06/18 15:10

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L1804131-07 D

Clie

San

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 02/12/18 12:02

Analyst: MV 89% Percent Solids:

ient ID:	SB-14 (15-16)	Date Received:	02/06/18
ample Location:	200 HAMILTON AVE., WHITE PLAINS, NY	Field Prep:	Not Specified
ample Depth:			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035	- Westborough Lab					
Benzene	120	J	ug/kg	610	120	10
Toluene	ND		ug/kg	920	120	10
Ethylbenzene	4900		ug/kg	610	100	10
Methyl tert butyl ether	ND		ug/kg	1200	94.	10
p/m-Xylene	16000		ug/kg	1200	220	10
o-Xylene	540	J	ug/kg	1200	210	10
Xylenes, Total	17000	J	ug/kg	1200	210	10
n-Butylbenzene	1400		ug/kg	610	140	10
sec-Butylbenzene	990		ug/kg	610	130	10
tert-Butylbenzene	190	J	ug/kg	3100	150	10
Isopropylbenzene	2500		ug/kg	610	120	10
p-Isopropyltoluene	1300		ug/kg	610	120	10
Naphthalene	2800	J	ug/kg	3100	84.	10
n-Propylbenzene	4100		ug/kg	610	130	10
1,3,5-Trimethylbenzene	11000		ug/kg	3100	99.	10
1,2,4-Trimethylbenzene	19000		ug/kg	3100	110	10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	111		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	122		70-130	
Dibromofluoromethane	102		70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 15:40

Lab Number:

Report Date:

Lab ID: L1804131-08

Cli Sa

Sa

Ma Analytical Method: 1,8260C

Analytical Date: 02/10/18 12:58

Analyst: ΑD 90% Percent Solids:

Client ID:	SB-12 (2-4)	Date Received:	02/06/18
Sample Location:	200 HAMILTON AVE., WHITE PLAINS, NY	Field Prep:	Not Specified
Sample Depth:			
fatrix:	Soil		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 -	Westborough Lab					
Benzene	ND		ug/kg	1.0	0.20	1
Toluene	ND		ug/kg	1.5	0.20	1
Ethylbenzene	0.19	J	ug/kg	1.0	0.17	1
Methyl tert butyl ether	ND		ug/kg	2.0	0.16	1
p/m-Xylene	0.49	J	ug/kg	2.0	0.36	1
o-Xylene	ND		ug/kg	2.0	0.35	1
Xylenes, Total	0.49	J	ug/kg	2.0	0.35	1
n-Butylbenzene	ND		ug/kg	1.0	0.23	1
sec-Butylbenzene	ND		ug/kg	1.0	0.22	1
tert-Butylbenzene	ND		ug/kg	5.1	0.25	1
Isopropylbenzene	ND		ug/kg	1.0	0.20	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.21	1
Naphthalene	0.32	J	ug/kg	5.1	0.14	1
n-Propylbenzene	ND		ug/kg	1.0	0.22	1
1,3,5-Trimethylbenzene	ND		ug/kg	5.1	0.16	1
1,2,4-Trimethylbenzene	0.31	J	ug/kg	5.1	0.19	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	107	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	104	70-130	

L1804131

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Report Date: 02/13/18

Lab Number:

Lab ID: L1804131-09

Client ID: SB-12 (15-16)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/10/18 13:25

Analyst: AD Percent Solids: 88%

Date Collected: 02/06/18 15:50

Date Received: 02/06/18
Field Prep: Not Specified

Volatile Organics by 8260/5035 - Westborough Lab Benzene ND ug/kg 0.93 0.18 Toluene ND ug/kg 1.4 0.18 Ethylbenzene ND ug/kg 0.93 0.16 Methyl tert butyl ether ND ug/kg 1.9 0.14 p/m-Xylene ND ug/kg 1.9 0.33	1
Toluene ND ug/kg 1.4 0.18 Ethylbenzene ND ug/kg 0.93 0.16 Methyl tert butyl ether ND ug/kg 1.9 0.14	1
Toluene ND ug/kg 1.4 0.18 Ethylbenzene ND ug/kg 0.93 0.16 Methyl tert butyl ether ND ug/kg 1.9 0.14	
Ethylbenzene ND ug/kg 0.93 0.16 Methyl tert butyl ether ND ug/kg 1.9 0.14	1
	1
p/m-Xylene ND ug/kg 1.9 0.33	1
ym xylono ug/kg 1.0 0.00	1
o-Xylene ND ug/kg 1.9 0.31	1
Xylenes, Total ND ug/kg 1.9 0.31	1
n-Butylbenzene ND ug/kg 0.93 0.21	1
sec-Butylbenzene ND ug/kg 0.93 0.20	1
tert-Butylbenzene ND ug/kg 4.6 0.23	1
Isopropylbenzene ND ug/kg 0.93 0.18	1
p-Isopropyltoluene ND ug/kg 0.93 0.19	1
Naphthalene ND ug/kg 4.6 0.13	1
n-Propylbenzene ND ug/kg 0.93 0.20	1
1,3,5-Trimethylbenzene ND ug/kg 4.6 0.15	1
1,2,4-Trimethylbenzene ND ug/kg 4.6 0.17	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	103	70-130	

L1804131

02/13/18

02/07/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Date Collected: 02/07/18 09:20

Lab Number:

Report Date:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1804131-10

Client ID: SB-10 (20-22)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C

Analytical Date: 02/10/18 13:53

Analyst: ΑD 92% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035	- Westborough Lab						
Benzene	ND		ug/kg	0.97	0.19	1	
Toluene	ND		ug/kg	1.5	0.19	1	
Ethylbenzene	ND		ug/kg	0.97	0.16	1	
Methyl tert butyl ether	ND		ug/kg	1.9	0.15	1	
p/m-Xylene	ND		ug/kg	1.9	0.34	1	
o-Xylene	ND		ug/kg	1.9	0.33	1	
Xylenes, Total	ND		ug/kg	1.9	0.33	1	
n-Butylbenzene	ND		ug/kg	0.97	0.22	1	
sec-Butylbenzene	ND		ug/kg	0.97	0.21	1	
tert-Butylbenzene	ND		ug/kg	4.9	0.24	1	
Isopropylbenzene	ND		ug/kg	0.97	0.19	1	
p-Isopropyltoluene	ND		ug/kg	0.97	0.20	1	
Naphthalene	ND		ug/kg	4.9	0.13	1	
n-Propylbenzene	ND		ug/kg	0.97	0.21	1	
1,3,5-Trimethylbenzene	ND		ug/kg	4.9	0.16	1	
1,2,4-Trimethylbenzene	ND		ug/kg	4.9	0.18	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	106	70-130	

L1804131

02/07/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/07/18 09:25

Report Date: 02/13/18

Lab Number:

Date Received:

Field Prep:

Lab ID: L1804131-11 Client ID: SB-10 (3-5)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/10/18 14:21

Analyst: AD Percent Solids: 93%

Result	Qualifier	Units	RL	MDL	Dilution Factor	
borough Lab						
ND		ug/kg	0.93	0.18	1	
ND		ug/kg	1.4	0.18	1	
ND		ug/kg	0.93	0.16	1	
ND		ug/kg	1.9	0.14	1	
ND		ug/kg	1.9	0.33	1	
ND		ug/kg	1.9	0.31	1	
ND		ug/kg	1.9	0.31	1	
ND		ug/kg	0.93	0.21	1	
ND		ug/kg	0.93	0.20	1	
ND		ug/kg	4.6	0.23	1	
ND		ug/kg	0.93	0.18	1	
ND		ug/kg	0.93	0.19	1	
ND		ug/kg	4.6	0.13	1	
ND		ug/kg	0.93	0.20	1	
ND		ug/kg	4.6	0.15	1	
ND		ug/kg	4.6	0.17	1	
	ND N	stborough Lab ND ND ND ND ND ND ND ND ND N	ND ug/kg ND ug/kg	Riborough Lab ND ug/kg 0.93 ND ug/kg 1.4 ND ug/kg 0.93 ND ug/kg 1.9 ND ug/kg 1.9 ND ug/kg 1.9 ND ug/kg 1.9 ND ug/kg 0.93 ND ug/kg 4.6 ND ug/kg 0.93 ND ug/kg 4.6	ND	ND ug/kg 0.93 0.18 1 ND ug/kg 1.4 0.18 1 ND ug/kg 0.93 0.16 1 ND ug/kg 1.9 0.14 1 ND ug/kg 1.9 0.33 1 ND ug/kg 1.9 0.31 1 ND ug/kg 1.9 0.31 1 ND ug/kg 0.93 0.21 1 ND ug/kg 0.93 0.21 1 ND ug/kg 0.93 0.20 1 ND ug/kg 0.93 0.18 1 ND ug/kg 0.93 0.19 1 ND ug/kg 4.6 0.13 1 ND ug/kg 4.6 0.13 1 ND ug/kg 0.93 0.20 1 ND ug/kg 4.6 0.13 1 ND ug/kg 0.93 0.20 1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	103		70-130	
Toluene-d8	104		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	104		70-130	

L1804131

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Report Date: 02/13/18

Lab Number:

Lab ID: L1804131-12 Client ID: SB-15 (10-11)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/12/18 09:51

Analyst: MV Percent Solids: 83%

Date Collected:	02/09/18 08:55
Date Received:	02/09/18
Field Prep:	Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor
estborough Lab					
ND		ug/kg	1.2	0.23	1
ND		ug/kg	1.8	0.23	1
0.36	J	ug/kg	1.2	0.20	1
2.4		ug/kg	2.4	0.18	1
ND		ug/kg	2.4	0.41	1
ND		ug/kg	2.4	0.40	1
ND		ug/kg	2.4	0.40	1
6.4		ug/kg	1.2	0.27	1
3.7		ug/kg	1.2	0.26	1
0.31	J	ug/kg	5.9	0.29	1
1.4		ug/kg	1.2	0.23	1
0.91	J	ug/kg	1.2	0.24	1
1.9	J	ug/kg	5.9	0.16	1
4.8		ug/kg	1.2	0.25	1
1.1	J	ug/kg	5.9	0.19	1
0.54	J	ug/kg	5.9	0.22	1
	ND ND 0.36 2.4 ND ND ND ND ND 1.4 0.91 1.9 4.8 1.1	ND ND 0.36 J 2.4 ND ND ND ND ND 6.4 3.7 0.31 J 1.4 0.91 J 1.9 J 4.8 1.1 J	ND ug/kg ND ug/kg 0.36 J ug/kg 2.4 ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg ND ug/kg 1.4 ug/kg 1.4 ug/kg 1.4 ug/kg 1.4 ug/kg 1.9 J ug/kg 4.8 ug/kg 1.1 J ug/kg	ND ug/kg 1.2 ND ug/kg 1.8 0.36 J ug/kg 1.2 2.4 ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 1.2 3.7 ug/kg 1.2 3.7 ug/kg 1.2 3.7 ug/kg 1.2 1.4 ug/kg 5.9 1.4 ug/kg 5.9 1.5 ug/kg 1.2 1.9 J ug/kg 5.9 4.8 ug/kg 1.2 1.1 J ug/kg 5.9	ND ug/kg 1.2 0.23 ND ug/kg 1.8 0.23 0.36 J ug/kg 1.2 0.20 2.4 ug/kg 2.4 0.18 ND ug/kg 2.4 0.41 ND ug/kg 2.4 0.40 ND ug/kg 2.4 0.40 ND ug/kg 1.2 0.27 3.7 ug/kg 1.2 0.27 3.7 ug/kg 1.2 0.26 0.31 J ug/kg 5.9 0.29 1.4 ug/kg 1.2 0.23 0.91 J ug/kg 1.2 0.23 0.91 J ug/kg 1.2 0.24 1.9 J ug/kg 5.9 0.16 4.8 ug/kg 1.2 0.25 1.1 J ug/kg 5.9 0.19

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	109	70-130	
Dibromofluoromethane	100	70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1804131-13

Client ID: SB-15 (2-4)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/10/18 14:48

Analyst: AD Percent Solids: 90%

Date Collected: 02/09/18 09:00
Date Received: 02/09/18
Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Westborough Lab					
ND		ug/kg	1.2	0.23	1
0.27	J	ug/kg	1.8	0.23	1
ND		ug/kg	1.2	0.20	1
ND		ug/kg	2.4	0.18	1
ND		ug/kg	2.4	0.41	1
ND		ug/kg	2.4	0.40	1
ND		ug/kg	2.4	0.40	1
ND		ug/kg	1.2	0.27	1
ND		ug/kg	1.2	0.26	1
ND		ug/kg	5.9	0.29	1
ND		ug/kg	1.2	0.23	1
ND		ug/kg	1.2	0.24	1
ND		ug/kg	5.9	0.16	1
ND		ug/kg	1.2	0.25	1
ND		ug/kg	5.9	0.19	1
ND		ug/kg	5.9	0.22	1
	ND 0.27 ND	tborough Lab ND 0.27 J ND ND ND ND ND ND ND ND ND N	ND ug/kg 0.27 J ug/kg ND ug/kg	tborough Lab ND ug/kg 1.2 0.27 J ug/kg 1.8 ND ug/kg 1.2 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 1.2 ND ug/kg 1.2 ND ug/kg 5.9 ND ug/kg 1.2 ND ug/kg 5.9 ND ug/kg 5.9	ND ug/kg 1.2 0.23 0.27 J ug/kg 1.8 0.23 ND ug/kg 1.2 0.20 ND ug/kg 1.2 0.20 ND ug/kg 2.4 0.18 ND ug/kg 2.4 0.41 ND ug/kg 2.4 0.40 ND ug/kg 2.4 0.40 ND ug/kg 1.2 0.27 ND ug/kg 1.2 0.27 ND ug/kg 1.2 0.26 ND ug/kg 1.2 0.26 ND ug/kg 5.9 0.29 ND ug/kg 1.2 0.23 ND ug/kg 1.2 0.23 ND ug/kg 1.2 0.24 ND ug/kg 1.2 0.25 ND ug/kg 5.9 0.16 ND ug/kg 5.9 0.16 ND ug/kg 5.9 0.16 ND ug/kg 5.9 0.19

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Lab Number: L1804131

Report Date: 02/13/18

Lab ID: L1804131-14

Client ID: SB-16 (12-13)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 02/10/18 15:16

Analyst: ΑD 82% Percent Solids:

Date Collected: 02/09/18 11:00 Date Received: 02/09/18 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by 8260/5035	- Westborough Lab						
Benzene	ND		ug/kg	1.1	0.21	1	
Toluene	0.30	J	ug/kg	1.6	0.21	1	
Ethylbenzene	ND		ug/kg	1.1	0.18	1	
Methyl tert butyl ether	37		ug/kg	2.2	0.16	1	
p/m-Xylene	ND		ug/kg	2.2	0.38	1	
o-Xylene	ND		ug/kg	2.2	0.36	1	
Xylenes, Total	ND		ug/kg	2.2	0.36	1	
n-Butylbenzene	ND		ug/kg	1.1	0.24	1	
sec-Butylbenzene	0.25	J	ug/kg	1.1	0.23	1	
tert-Butylbenzene	ND		ug/kg	5.4	0.26	1	
Isopropylbenzene	ND		ug/kg	1.1	0.21	1	
p-Isopropyltoluene	ND		ug/kg	1.1	0.22	1	
Naphthalene	ND		ug/kg	5.4	0.15	1	
n-Propylbenzene	ND		ug/kg	1.1	0.23	1	
1,3,5-Trimethylbenzene	ND		ug/kg	5.4	0.17	1	
1,2,4-Trimethylbenzene	ND		ug/kg	5.4	0.20	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	104		70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Data Callactad: 02/00/40 44:40

Lab Number:

Report Date:

Lab ID: L1804131-15

Client ID: SB-16 (2-4)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/10/18 15:43

Analyst: AD Percent Solids: 86%

Date Collected: 02/09/18 11:10
Date Received: 02/09/18
Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by 8260/5035 - Westborough Lab								
ND		ug/kg	1.2	0.23	1			
0.26	J	ug/kg	1.8	0.24	1			
ND		ug/kg	1.2	0.20	1			
ND		ug/kg	2.4	0.18	1			
ND		ug/kg	2.4	0.42	1			
ND		ug/kg	2.4	0.41	1			
ND		ug/kg	2.4	0.41	1			
ND		ug/kg	1.2	0.28	1			
ND		ug/kg	1.2	0.26	1			
ND		ug/kg	6.0	0.30	1			
ND		ug/kg	1.2	0.23	1			
ND		ug/kg	1.2	0.24	1			
0.25	J	ug/kg	6.0	0.17	1			
ND		ug/kg	1.2	0.26	1			
0.69	J	ug/kg	6.0	0.19	1			
0.50	J	ug/kg	6.0	0.22	1			
	ND 0.26 ND	ND O.26 ND ND ND ND ND ND ND ND ND N	ND ug/kg 0.26 J ug/kg ND ug/kg 0.25 J ug/kg ND ug/kg ND ug/kg O.69 J ug/kg	ND ug/kg 1.2 0.26 J ug/kg 1.8 ND ug/kg 1.2 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 2.4 ND ug/kg 1.2 ND ug/kg 6.0 ND ug/kg 1.2 ND ug/kg 6.0 ND ug/kg 1.2 ND ug/kg 1.2	ND ug/kg 1.2 0.23 0.26 J ug/kg 1.8 0.24 ND ug/kg 1.2 0.20 ND ug/kg 2.4 0.18 ND ug/kg 2.4 0.42 ND ug/kg 2.4 0.41 ND ug/kg 2.4 0.41 ND ug/kg 1.2 0.28 ND ug/kg 1.2 0.28 ND ug/kg 1.2 0.28 ND ug/kg 1.2 0.28 ND ug/kg 1.2 0.26 ND ug/kg 1.2 0.26			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	106	70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Data Callactad: 02/00/40 42:25

Lab Number:

Report Date:

Lab ID: L1804131-16

Client ID: SB-17 (8-9)

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/12/18 10:17

Analyst: MV Percent Solids: 80%

Date Collected: 02/09/18 12:25
Date Received: 02/09/18
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by 8260/5035 - Wes	tborough Lab					
Benzene	ND		ug/kg	1.2	0.23	1
Toluene	ND		ug/kg	1.8	0.23	1
Ethylbenzene	ND		ug/kg	1.2	0.20	1
Methyl tert butyl ether	ND		ug/kg	2.4	0.18	1
p/m-Xylene	ND		ug/kg	2.4	0.41	1
o-Xylene	ND		ug/kg	2.4	0.40	1
Xylenes, Total	ND		ug/kg	2.4	0.40	1
n-Butylbenzene	ND		ug/kg	1.2	0.27	1
sec-Butylbenzene	ND		ug/kg	1.2	0.26	1
tert-Butylbenzene	0.34	J	ug/kg	5.9	0.29	1
Isopropylbenzene	1.1	J	ug/kg	1.2	0.23	1
p-Isopropyltoluene	ND		ug/kg	1.2	0.24	1
Naphthalene	2.8	J	ug/kg	5.9	0.16	1
n-Propylbenzene	0.70	J	ug/kg	1.2	0.25	1
1,3,5-Trimethylbenzene	0.24	J	ug/kg	5.9	0.19	1
1,2,4-Trimethylbenzene	0.56	J	ug/kg	5.9	0.22	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	106		70-130	
4-Bromofluorobenzene	160	Q	70-130	
Dibromofluoromethane	99		70-130	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1804131-17

Client ID: SB-17 (5-7)
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 02/10/18 16:11

Analyst: AD Percent Solids: 93%

Date Collected: 02/09/18 12:35
Date Received: 02/09/18
Field Prep: Not Specified

Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by 8260/5035 - Westborough Lab								
ND		ug/kg	1.0	0.20	1			
0.47	J	ug/kg	1.6	0.20	1			
ND		ug/kg	1.0	0.18	1			
ND		ug/kg	2.1	0.16	1			
ND		ug/kg	2.1	0.37	1			
ND		ug/kg	2.1	0.35	1			
ND		ug/kg	2.1	0.35	1			
ND		ug/kg	1.0	0.24	1			
ND		ug/kg	1.0	0.23	1			
ND		ug/kg	5.2	0.26	1			
ND		ug/kg	1.0	0.20	1			
ND		ug/kg	1.0	0.21	1			
ND		ug/kg	5.2	0.14	1			
ND		ug/kg	1.0	0.22	1			
0.20	J	ug/kg	5.2	0.17	1			
0.33	J	ug/kg	5.2	0.20	1			
	ND 0.47 ND	ND O.47 J ND ND ND ND ND ND ND ND ND N	ND ug/kg 0.47 J ug/kg ND ug/kg	ND ug/kg 1.0 0.47 J ug/kg 1.6 ND ug/kg 1.0 ND ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 2.1 ND ug/kg 1.0 ND ug/kg 5.2 ND ug/kg 1.0 ND ug/kg 5.2 ND ug/kg 5.2	ND ug/kg 1.0 0.20 0.47 J ug/kg 1.6 0.20 ND ug/kg 1.0 0.18 ND ug/kg 2.1 0.16 ND ug/kg 2.1 0.37 ND ug/kg 2.1 0.35 ND ug/kg 2.1 0.35 ND ug/kg 1.0 0.24 ND ug/kg 1.0 0.23 ND ug/kg 5.2 0.26 ND ug/kg 1.0 0.20 ND ug/kg 1.0 0.21 ND ug/kg 5.2 0.14 ND ug/kg 5.2 0.14 ND ug/kg 1.0 0.22 0.20 J ug/kg 5.2 0.17			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	104	70-130	

L1804131

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/10/18 11:08

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by 8260/503 WG1088368-5	5 - Westborough	Lab for sa	mple(s):	02,04,06,08-1	11,13-15,17	Batch:
Benzene	ND		ug/kg	1.0	0.19	
Toluene	ND		ug/kg	1.5	0.20	
Ethylbenzene	ND		ug/kg	1.0	0.17	
Methyl tert butyl ether	ND		ug/kg	2.0	0.15	
p/m-Xylene	ND		ug/kg	2.0	0.35	
o-Xylene	ND		ug/kg	2.0	0.34	
Xylenes, Total	ND		ug/kg	2.0	0.34	
n-Butylbenzene	ND		ug/kg	1.0	0.23	
sec-Butylbenzene	ND		ug/kg	1.0	0.22	
tert-Butylbenzene	ND		ug/kg	5.0	0.25	
Isopropylbenzene	ND		ug/kg	1.0	0.19	
p-Isopropyltoluene	ND		ug/kg	1.0	0.20	
Naphthalene	ND		ug/kg	5.0	0.14	
n-Propylbenzene	ND		ug/kg	1.0	0.22	
1,3,5-Trimethylbenzene	ND		ug/kg	5.0	0.16	
1,2,4-Trimethylbenzene	ND		ug/kg	5.0	0.19	

	Acceptance					
Surrogate	%Recovery Quali	fier Criteria				
1,2-Dichloroethane-d4	103	70-130				
Toluene-d8	104	70-130				
4-Bromofluorobenzene	98	70-130				
Dibromofluoromethane	103	70-130				

L1804131

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/12/18 08:59

Analyst: MV

Parameter	Result	Qualifier	Units	RI	-	MDL	
olatile Organics by 8260/5035 -	Westborough	Lab for sa	mple(s):	12,16	Batch:	WG1088505-5	
Benzene	ND		ug/kg	1.0)	0.19	
Toluene	ND		ug/kg	1.5	5	0.20	
Ethylbenzene	ND		ug/kg	1.0)	0.17	
Methyl tert butyl ether	0.21	J	ug/kg	2.0)	0.15	
p/m-Xylene	ND		ug/kg	2.0)	0.35	
o-Xylene	ND		ug/kg	2.0)	0.34	
Xylenes, Total	ND		ug/kg	2.0)	0.34	
n-Butylbenzene	ND		ug/kg	1.0)	0.23	
sec-Butylbenzene	ND		ug/kg	1.0)	0.22	
tert-Butylbenzene	ND		ug/kg	5.0)	0.25	
Isopropylbenzene	ND		ug/kg	1.0)	0.19	
p-Isopropyltoluene	ND		ug/kg	1.0)	0.20	
Naphthalene	ND		ug/kg	5.0)	0.14	
n-Propylbenzene	ND		ug/kg	1.0)	0.22	
1,3,5-Trimethylbenzene	ND		ug/kg	5.0)	0.16	
1,2,4-Trimethylbenzene	ND		ug/kg	5.0)	0.19	

		Acceptance
Surrogate	%Recovery C	Qualifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	102	70-130
Dibromofluoromethane	99	70-130

L1804131

Project Name: 200 HAMILTON AVENUE Lab Number:

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/12/18 08:59

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by 8260/5035 - W	estborough/	Lab for sa	mple(s):	01,03,05,07	Batch:	WG1088551-5
Benzene	ND		ug/kg	50	9.6	
Toluene	ND		ug/kg	75	9.8	
Ethylbenzene	ND		ug/kg	50	8.5	
Methyl tert butyl ether	10	J	ug/kg	100	7.6	
p/m-Xylene	ND		ug/kg	100	18.	
o-Xylene	ND		ug/kg	100	17.	
Xylenes, Total	ND		ug/kg	100	17.	
n-Butylbenzene	ND		ug/kg	50	11.	
sec-Butylbenzene	ND		ug/kg	50	11.	
tert-Butylbenzene	ND		ug/kg	250	12.	
Isopropylbenzene	ND		ug/kg	50	9.7	
p-Isopropyltoluene	ND		ug/kg	50	10.	
Naphthalene	ND		ug/kg	250	6.9	
n-Propylbenzene	ND		ug/kg	50	11.	
1,3,5-Trimethylbenzene	ND		ug/kg	250	8.0	
1,2,4-Trimethylbenzene	ND		ug/kg	250	9.3	

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	99	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Report Date: 02/13/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD nits
Volatile Organics by 8260/5035 - Westboroug	ıh Lab Associat	ted sample(s):	02,04,06,08-1	1,13-15,17	Batch: WG10883	68-3 WG10	88368-4	
Benzene	84		84		70-130	0	3	30
Toluene	96		96		70-130	0	3	30
Ethylbenzene	103		104		70-130	1	3	30
Methyl tert butyl ether	76		76		66-130	0	3	30
p/m-Xylene	102		104		70-130	2	3	30
o-Xylene	102		102		70-130	0	3	30
n-Butylbenzene	113		115		70-130	2	3	30
sec-Butylbenzene	112		115		70-130	3	3	30
tert-Butylbenzene	112		114		70-130	2	3	30
Isopropylbenzene	108		110		70-130	2	3	30
p-Isopropyltoluene	116		117		70-130	1	3	30
Naphthalene	87		96		70-130	10	3	30
n-Propylbenzene	108		109		70-130	1	3	30
1,3,5-Trimethylbenzene	110		111		70-130	1	3	30
1,2,4-Trimethylbenzene	108		110		70-130	2	3	30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	100	100	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	93	95	70-130
Dibromofluoromethane	102	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Report Date:

02/13/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by 8260/5035 - Westboroug	gh Lab Associat	ed sample(s):	12,16 Bat	ch: WG10885	05-3 WG108850	5-4		
Benzene	93		92		70-130	1		30
Toluene	92		91		70-130	1		30
Ethylbenzene	97		96		70-130	1		30
Methyl tert butyl ether	96		95		66-130	1		30
p/m-Xylene	98		97		70-130	1		30
o-Xylene	102		101		70-130	1		30
n-Butylbenzene	96		94		70-130	2		30
sec-Butylbenzene	96		93		70-130	3		30
tert-Butylbenzene	96		93		70-130	3		30
Isopropylbenzene	98		94		70-130	4		30
p-Isopropyltoluene	96		94		70-130	2		30
Naphthalene	95		98		70-130	3		30
n-Propylbenzene	97		94		70-130	3		30
1,3,5-Trimethylbenzene	96		95		70-130	1		30
1,2,4-Trimethylbenzene	97		94		70-130	3		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	111	110	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	104	101	70-130
Dibromofluoromethane	103	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Report Date: 02/13/18

	LCS		LCSD		%Recove	ery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qua	al Limits	RPD	Qua	al Limits	
Volatile Organics by 8260/5035 - Westboroug	h Lab Associa	ted sample(s):	01,03,05,07	Batch:	WG1088551-3	WG1088551-4			
Benzene	93		92		70-130	1		30	
Toluene	92		91		70-130	1		30	
Ethylbenzene	97		96		70-130	1		30	
Methyl tert butyl ether	96		95		66-130	1		30	
p/m-Xylene	98		97		70-130	1		30	
o-Xylene	102		101		70-130	1		30	
n-Butylbenzene	96		94		70-130	2		30	
sec-Butylbenzene	96		93		70-130	3		30	
tert-Butylbenzene	96		93		70-130	3		30	
Isopropylbenzene	98		94		70-130	4		30	
p-Isopropyltoluene	96		94		70-130	2		30	
Naphthalene	95		98		70-130	3		30	
n-Propylbenzene	97		94		70-130	3		30	
1,3,5-Trimethylbenzene	96		95		70-130	1		30	
1,2,4-Trimethylbenzene	97		94		70-130	3		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	111	110	70-130
Toluene-d8	104	104	70-130
4-Bromofluorobenzene	104	101	70-130
Dibromofluoromethane	103	102	70-130

SEMIVOLATILES

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 11:05

Date Received: 02/06/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

L1804131-02

SB-11 (5-7)

Sample Depth:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 02/10/18 03:23

Analyst: RC Percent Solids: 89%

Extraction Method:EPA 3546
Extraction Date: 02/08/18 22:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	ND		ug/kg	150	19.	1	
Fluoranthene	ND		ug/kg	110	22.	1	
Naphthalene	ND		ug/kg	190	23.	1	
Benzo(a)anthracene	ND		ug/kg	110	21.	1	
Benzo(a)pyrene	ND		ug/kg	150	46.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1	
Chrysene	ND		ug/kg	110	19.	1	
Acenaphthylene	ND		ug/kg	150	29.	1	
Anthracene	ND		ug/kg	110	36.	1	
Benzo(ghi)perylene	ND		ug/kg	150	22.	1	
Fluorene	ND		ug/kg	190	18.	1	
Phenanthrene	ND		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	
Pyrene	ND		ug/kg	110	19.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	88		23-120	
2-Fluorobiphenyl	85		30-120	
4-Terphenyl-d14	104		18-120	

L1804131

Project Name: Lab Number: 200 HAMILTON AVENUE

Report Date: **Project Number:** 170029 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-04 Date Collected: 02/06/18 12:05

Date Received: Client ID: SB-13 (3-5) 02/06/18

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 02/08/18 22:06 Analytical Method: 1,8270D

Analytical Date: 02/10/18 03:47

Analyst: RC 87% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
Fluoranthene	ND		ug/kg	110	22.	1
Naphthalene	ND		ug/kg	190	23.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	46.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	20.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	37.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	19.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	84		23-120	
2-Fluorobiphenyl	82		30-120	
4-Terphenyl-d14	104		18-120	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 15:00

Lab Number:

Report Date:

Lab ID: L1804131-06 Date Received: Client ID: SB-14 (2-4) 02/06/18

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 02/08/18 22:06 Analytical Method: 1,8270D

Analytical Date: 02/10/18 06:59 RC

Analyst: 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	35	J	ug/kg	140	19.	1
Fluoranthene	550		ug/kg	110	21.	1
Naphthalene	30	J	ug/kg	180	22.	1
Benzo(a)anthracene	240		ug/kg	110	20.	1
Benzo(a)pyrene	240		ug/kg	140	44.	1
Benzo(b)fluoranthene	330		ug/kg	110	31.	1
Benzo(k)fluoranthene	95	J	ug/kg	110	29.	1
Chrysene	210		ug/kg	110	19.	1
Acenaphthylene	47	J	ug/kg	140	28.	1
Anthracene	88	J	ug/kg	110	36.	1
Benzo(ghi)perylene	190		ug/kg	140	21.	1
Fluorene	18	J	ug/kg	180	18.	1
Phenanthrene	120		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	51	J	ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	200		ug/kg	140	25.	1
Pyrene	440		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	111		23-120	
2-Fluorobiphenyl	93		30-120	
4-Terphenyl-d14	109		18-120	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/06/18 15:40

Lab Number:

Report Date:

Lab ID: L1804131-08
Client ID: SB-12 (2-4)

Client ID: SB-12 (2-4) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 02/08/18 22:06
Analytical Date: 02/10/18 04:59

Analyst: RC Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Acenaphthene	ND		ug/kg	150	19.	1
Fluoranthene	24	J	ug/kg	110	21.	1
Naphthalene	ND		ug/kg	180	22.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	150	45.	1
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	28.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	25.	1
Pyrene	24	J	ug/kg	110	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	86	23-120	
2-Fluorobiphenyl	88	30-120	
4-Terphenyl-d14	113	18-120	

Extraction Method: EPA 3546

L1804131

Project Name: Lab Number: 200 HAMILTON AVENUE

Report Date: **Project Number:** 170029 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-11 Date Collected: 02/07/18 09:25

Date Received: Client ID: SB-10 (3-5) 02/07/18 Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth: Matrix: Soil

Extraction Date: 02/08/18 22:06 Analytical Method: 1,8270D Analytical Date: 02/10/18 04:35

Analyst: RC 93% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Assessment	ND			4.40	40	4
Acenaphthene	ND		ug/kg	140	18.	1
Fluoranthene	ND		ug/kg	110	20.	1
Naphthalene	ND		ug/kg	180	22.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	28.	1
Chrysene	ND		ug/kg	110	18.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	17.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	ND		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	96		23-120	
2-Fluorobiphenyl	93		30-120	
4-Terphenyl-d14	123	Q	18-120	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/09/18 09:00

Lab Number:

Report Date:

Lab ID: L1804131-13 Client ID: SB-15 (2-4)

SB-15 (2-4) Date Received: 02/09/18 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Location: Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 02/10/18 07:50

Analytical Date: 02/11/18 17:36

Analyst: TT
Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Acenaphthene	ND		ug/kg	150	19.	1
Fluoranthene	38	J	ug/kg	110	21.	1
Naphthalene	ND		ug/kg	180	22.	1
Benzo(a)anthracene	36	J	ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	45.	1
Benzo(b)fluoranthene	50	J	ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	30	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	28.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	28	J	ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	30	J	ug/kg	150	26.	1
Pyrene	39	J	ug/kg	110	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	82	23-120	
2-Fluorobiphenyl	88	30-120	
4-Terphenyl-d14	94	18-120	

L1804131

02/13/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/09/18 11:10

Lab Number:

Report Date:

Lab ID: L1804131-15 Client ID: SB-16 (2-4)

SB-16 (2-4) Date Received: 02/09/18 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Sample Location:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 02/10/18 07:50
Analytical Date: 02/13/18 05:37

Analyst: RC Percent Solids: 86%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Assessables	ND			450	00	_
Acenaphthene	NU		ug/kg	150	20.	1
Fluoranthene	440		ug/kg	110	22.	1
Naphthalene	ND		ug/kg	190	23.	1
Benzo(a)anthracene	240		ug/kg	110	22.	1
Benzo(a)pyrene	230		ug/kg	150	47.	1
Benzo(b)fluoranthene	320		ug/kg	110	32.	1
Benzo(k)fluoranthene	120		ug/kg	110	31.	1
Chrysene	210		ug/kg	110	20.	1
Acenaphthylene	89	J	ug/kg	150	30.	1
Anthracene	68	J	ug/kg	110	37.	1
Benzo(ghi)perylene	160		ug/kg	150	22.	1
Fluorene	30	J	ug/kg	190	19.	1
Phenanthrene	240		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	48	J	ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	190		ug/kg	150	27.	1
Pyrene	370		ug/kg	110	19.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	95	23-120	
2-Fluorobiphenyl	83	30-120	
4-Terphenyl-d14	81	18-120	

L1804131

Project Name: Lab Number: 200 HAMILTON AVENUE

Report Date: **Project Number:** 170029 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-17 Date Collected: 02/09/18 12:35

Date Received: Client ID: SB-17 (5-7) 02/09/18 Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil Extraction Date: 02/10/18 07:50 Analytical Method: 1,8270D

Analytical Date: 02/13/18 06:01 Analyst: RC

93% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	88	J	ug/kg	140	18.	1
Fluoranthene	5300		ug/kg	110	20.	1
Naphthalene	50	J	ug/kg	180	22.	1
Benzo(a)anthracene	2800		ug/kg	110	20.	1
Benzo(a)pyrene	2400		ug/kg	140	43.	1
Benzo(b)fluoranthene	3300		ug/kg	110	30.	1
Benzo(k)fluoranthene	850		ug/kg	110	28.	1
Chrysene	2200		ug/kg	110	18.	1
Acenaphthylene	430		ug/kg	140	27.	1
Anthracene	960		ug/kg	110	35.	1
Benzo(ghi)perylene	1500		ug/kg	140	21.	1
Fluorene	190		ug/kg	180	17.	1
Phenanthrene	2700		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	410		ug/kg	110	20.	1
Indeno(1,2,3-cd)pyrene	1800		ug/kg	140	25.	1
Pyrene	4200		ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	89		23-120	
2-Fluorobiphenyl	74		30-120	
4-Terphenyl-d14	70		18-120	

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 02/12/18 08:50 Extraction Date: 02/08/18 22:06

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - \ WG1087801-1	Westborough	Lab for sa	ample(s):	02,04,06,08,11	Batch:
Acenaphthene	ND		ug/kg	130	17.
Fluoranthene	ND		ug/kg	97	18.
Naphthalene	ND		ug/kg	160	20.
Benzo(a)anthracene	ND		ug/kg	97	18.
Benzo(a)pyrene	ND		ug/kg	130	39.
Benzo(b)fluoranthene	ND		ug/kg	97	27.
Benzo(k)fluoranthene	ND		ug/kg	97	26.
Chrysene	ND		ug/kg	97	17.
Acenaphthylene	ND		ug/kg	130	25.
Anthracene	ND		ug/kg	97	32.
Benzo(ghi)perylene	ND		ug/kg	130	19.
Fluorene	ND		ug/kg	160	16.
Phenanthrene	ND		ug/kg	97	20.
Dibenzo(a,h)anthracene	ND		ug/kg	97	19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	22.
Pyrene	ND		ug/kg	97	16.

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 02/12/18 08:50 Extraction Date: 02/08/18 22:06

Analyst: EK

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	02,04,06,08,11	Batch:
WG1087801-1					

Surrogate	%Recovery Qua	Acceptance lifier Criteria
2-Fluorophenol	67	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	67	23-120
2-Fluorobiphenyl	77	30-120
2,4,6-Tribromophenol	94	10-136
4-Terphenyl-d14	111	18-120

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 02/12/18 11:49

Analyst: TT Extraction Method: EPA 3546 **Extraction Date:** 02/10/18 07:50

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S - Westborough	n Lab for s	ample(s):	13,15,17	Batch: WG108818	8-1
Acenaphthene	ND		ug/kg	130	17.	
Fluoranthene	ND		ug/kg	98	19.	
Naphthalene	ND		ug/kg	160	20.	
Benzo(a)anthracene	ND		ug/kg	98	18.	
Benzo(a)pyrene	ND		ug/kg	130	40.	
Benzo(b)fluoranthene	ND		ug/kg	98	28.	
Benzo(k)fluoranthene	ND		ug/kg	98	26.	
Chrysene	ND		ug/kg	98	17.	
Acenaphthylene	ND		ug/kg	130	25.	
Anthracene	ND		ug/kg	98	32.	
Benzo(ghi)perylene	ND		ug/kg	130	19.	
Fluorene	ND		ug/kg	160	16.	
Phenanthrene	ND		ug/kg	98	20.	
Dibenzo(a,h)anthracene	ND		ug/kg	98	19.	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130	23.	
Pyrene	ND		ug/kg	98	16.	

Tentatively Identified Compounds

No Tentatively Identified Compounds ND ug/kg

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D

Analyst: TT

Extraction Method: EPA 3546 Analytical Date: 02/12/18 11:49 02/10/18 07:50 Extraction Date:

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	13,15,17	Batch: WG1088188-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2 Elverophonel	92	25 420
2-Fluorophenol	82	25-120
Phenol-d6	83	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	83	30-120
2,4,6-Tribromophenol	77	10-136
4-Terphenyl-d14	96	18-120

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Report Date:

02/13/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS -	- Westborough Lab Associa	ated sample(s):	02,04,06,08,11	Batch:	WG1087801-2	WG1087801-3			
Acenaphthene	80		97		31-137	19		50	
Fluoranthene	87		104		40-140	18		50	
Naphthalene	76		88		40-140	15		50	
Benzo(a)anthracene	83		101		40-140	20		50	
Benzo(a)pyrene	88		106		40-140	19		50	
Benzo(b)fluoranthene	86		102		40-140	17		50	
Benzo(k)fluoranthene	84		104		40-140	21		50	
Chrysene	82		97		40-140	17		50	
Acenaphthylene	84		102		40-140	19		50	
Anthracene	83		102		40-140	21		50	
Benzo(ghi)perylene	84		102		40-140	19		50	
Fluorene	84		100		40-140	17		50	
Phenanthrene	80		98		40-140	20		50	
Dibenzo(a,h)anthracene	87		105		40-140	19		50	
Indeno(1,2,3-cd)pyrene	102		109		40-140	7		50	
Pyrene	84		101		35-142	18		50	

200 HAMILTON AVENUE

Lab Number:

L1804131

Project Number: 170029

Project Name:

Report Date:

02/13/18

LCS **LCSD** %Recovery RPD %Recovery %Recovery Limits Limits Parameter RPD Qual Qual Qual

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02,04,06,08,11 Batch: WG1087801-2 WG1087801-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	84	96	25-120
Phenol-d6	85	99	10-120
Nitrobenzene-d5	79	105	23-120
2-Fluorobiphenyl	84	99	30-120
2,4,6-Tribromophenol	96	114	10-136
4-Terphenyl-d14	96	113	18-120

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Report Date:

02/13/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - West	borough Lab Associa	ited sample(s):	13,15,17 B	atch: WG108	8188-2 WG108	88188-3		
Acenaphthene	83		75		31-137	10		50
Fluoranthene	88		82		40-140	7		50
Naphthalene	76		69		40-140	10		50
Benzo(a)anthracene	87		80		40-140	8		50
Benzo(a)pyrene	92		83		40-140	10		50
Benzo(b)fluoranthene	92		85		40-140	8		50
Benzo(k)fluoranthene	86		74		40-140	15		50
Chrysene	82		77		40-140	6		50
Acenaphthylene	86		80		40-140	7		50
Anthracene	87		81		40-140	7		50
Benzo(ghi)perylene	87		81		40-140	7		50
Fluorene	86		78		40-140	10		50
Phenanthrene	82		77		40-140	6		50
Dibenzo(a,h)anthracene	88		82		40-140	7		50
Indeno(1,2,3-cd)pyrene	91		86		40-140	6		50
Pyrene	85		80		35-142	6		50

Project Name: 200 HAMILTON AVENUE 170029

Project Number:

Lab Number:

L1804131

Report Date:

02/13/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 13,15,17 Batch: WG1088188-2 WG1088188-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	79	71	25-120
Phenol-d6	83	74	10-120
Nitrobenzene-d5	83	80	23-120
2-Fluorobiphenyl	81	75	30-120
2,4,6-Tribromophenol	90	83	10-136
4-Terphenyl-d14	91	83	18-120

METALS

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-02 Date Collected: 02/06/18 11:05

Client ID: SB-11 (5-7) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 89%

Analytical Dilution Date Date Prep Method Method Factor Prepared Analyzed Analyst **Parameter** Result Qualifier Units RL MDL Total Metals - Mansfield Lab 1,6010C Arsenic, Total 1.30 0.091 1 02/07/18 21:10 02/12/18 17:30 EPA 3050B AΒ mg/kg 0.438 Barium, Total 80.5 mg/kg 0.438 0.076 1 02/07/18 21:10 02/12/18 17:30 EPA 3050B 1,6010C AB Cadmium, Total ND mg/kg 0.438 0.043 1 02/07/18 21:10 02/12/18 17:30 EPA 3050B 1,6010C AB Chromium, Total 18.5 mg/kg 0.438 0.042 1 02/07/18 21:10 02/12/18 17:30 EPA 3050B 1,6010C AΒ 1 1,6010C Lead, Total 4.32 mg/kg 2.19 0.117 02/07/18 21:10 02/12/18 17:30 EPA 3050B AB Mercury, Total ND mg/kg 0.07 0.02 1 02/08/18 08:00 02/08/18 19:36 EPA 7471B 1,7471B EΑ ND 1 1,6010C Selenium, Total mg/kg 0.876 0.113 02/07/18 21:10 02/12/18 17:30 EPA 3050B AB Silver, Total ND mg/kg 0.438 0.124 1 02/07/18 21:10 02/12/18 17:30 EPA 3050B 1,6010C ΑB 32.3 1 02/07/18 21:10 02/12/18 17:30 EPA 3050B 1,6010C ΑB Zinc, Total mg/kg 2.19 0.128

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-04 Date Collected: 02/06/18 12:05

Client ID: SB-13 (3-5) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 87%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Nesun	Qualifici	Onito		WIDE		•	<u> </u>			Allalyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	1.73		mg/kg	0.452	0.094	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Barium, Total	95.6		mg/kg	0.452	0.079	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Cadmium, Total	ND		mg/kg	0.452	0.044	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Chromium, Total	21.0		mg/kg	0.452	0.043	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Lead, Total	14.1		mg/kg	2.26	0.121	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Mercury, Total	0.04	J	mg/kg	0.07	0.02	1	02/08/18 08:00	02/08/18 19:38	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.904	0.117	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Silver, Total	ND		mg/kg	0.452	0.128	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB
Zinc, Total	42.0		mg/kg	2.26	0.132	1	02/07/18 21:10	02/12/18 17:35	EPA 3050B	1,6010C	AB

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-06 Date Collected: 02/06/18 15:00

Client ID: SB-14 (2-4) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Nesuit	Qualifier	Units		WIDE		•				Allalyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	2.04		mg/kg	0.431	0.090	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Barium, Total	92.7		mg/kg	0.431	0.075	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Cadmium, Total	ND		mg/kg	0.431	0.042	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Chromium, Total	19.9		mg/kg	0.431	0.041	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Lead, Total	140		mg/kg	2.15	0.115	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Mercury, Total	0.09		mg/kg	0.07	0.02	1	02/08/18 08:00	02/08/18 19:40	EPA 7471B	1,7471B	EA
Selenium, Total	ND		mg/kg	0.862	0.111	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Silver, Total	ND		mg/kg	0.431	0.122	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB
Zinc, Total	66.5		mg/kg	2.15	0.126	1	02/07/18 21:10	02/12/18 17:40	EPA 3050B	1,6010C	AB

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-08 Date Collected: 02/06/18 15:40

Client ID: SB-12 (2-4) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 90%

Analytical Dilution Date Date Prep Method Method Factor Prepared Analyzed Analyst **Parameter** Result Qualifier Units RL MDL Total Metals - Mansfield Lab 1,6010C 1.77 0.087 1 02/07/18 21:10 02/12/18 17:45 EPA 3050B AΒ Arsenic, Total mg/kg 0.420 Barium, Total 292 mg/kg 0.420 0.073 1 02/07/18 21:10 02/12/18 17:45 EPA 3050B 1,6010C AB Cadmium, Total ND mg/kg 0.420 0.041 1 02/07/18 21:10 02/12/18 17:45 EPA 3050B 1,6010C AB Chromium, Total 113 mg/kg 0.420 0.040 1 02/07/18 21:10 02/12/18 17:45 EPA 3050B 1,6010C AΒ 1 1,6010C Lead, Total 6.66 mg/kg 2.10 0.112 02/07/18 21:10 02/12/18 17:45 EPA 3050B AB Mercury, Total ND mg/kg 0.07 0.02 1 02/08/18 08:00 02/08/18 19:42 EPA 7471B 1,7471B EΑ ND 1 1,6010C Selenium, Total mg/kg 0.839 0.108 02/07/18 21:10 02/12/18 17:45 EPA 3050B AB Silver, Total ND mg/kg 0.420 0.119 1 02/07/18 21:10 02/12/18 17:45 EPA 3050B 1,6010C ΑB 59.2 1 02/07/18 21:10 02/12/18 17:45 EPA 3050B 1,6010C ΑB Zinc, Total mg/kg 2.10 0.123

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-11 Date Collected: 02/07/18 09:25

Client ID: SB-10 (3-5) Date Received: 02/07/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 93%

Percent Solids:	93%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	2.05		mg/kg	0.414	0.086	1	02/08/18 07:00) 02/08/18 12:41	EPA 3050B	1,6010C	LC
Barium, Total	158		mg/kg	0.414	0.072	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC
Cadmium, Total	ND		mg/kg	0.414	0.041	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC
Chromium, Total	39.5		mg/kg	0.414	0.040	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC
Lead, Total	10.2		mg/kg	2.07	0.111	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC
Mercury, Total	ND		mg/kg	0.07	0.01	1	02/08/18 08:00	02/08/18 19:44	EPA 7471B	1,7471B	EA
Selenium, Total	0.116	J	mg/kg	0.828	0.107	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC
Silver, Total	ND		mg/kg	0.414	0.117	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC
Zinc, Total	56.1		mg/kg	2.07	0.121	1	02/08/18 07:00	02/08/18 12:41	EPA 3050B	1,6010C	LC

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-13 Date Collected: 02/09/18 09:00

Client ID: SB-15 (2-4) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 90%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Arsenic, Total	1.46		mg/kg	0.426	0.089	1	02/10/18 07:00) 02/12/18 11:50	EPA 3050B	1,6010C	PS
Barium, Total	55.3		mg/kg	0.426	0.074	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS
Cadmium, Total	0.439		mg/kg	0.426	0.042	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS
Chromium, Total	14.7		mg/kg	0.426	0.041	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS
Lead, Total	40.9		mg/kg	2.13	0.114	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS
Mercury, Total	0.40		mg/kg	0.07	0.02	1	02/10/18 11:00	02/12/18 11:34	EPA 7471B	1,7471B	MG
Selenium, Total	ND		mg/kg	0.853	0.110	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.426	0.121	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS
Zinc, Total	41.4		mg/kg	2.13	0.125	1	02/10/18 07:00	02/12/18 11:50	EPA 3050B	1,6010C	PS

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-15 Date Collected: 02/09/18 11:10

Client ID: SB-16 (2-4) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 86%

Percent Solids:	80%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	1.69		mg/kg	0.453	0.094	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Barium, Total	59.8		mg/kg	0.453	0.079	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Cadmium, Total	0.526		mg/kg	0.453	0.044	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Chromium, Total	12.8		mg/kg	0.453	0.044	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Lead, Total	8.19		mg/kg	2.27	0.121	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Mercury, Total	0.03	J	mg/kg	0.07	0.02	1	02/10/18 11:00	02/12/18 11:41	EPA 7471B	1,7471B	MG
Selenium, Total	ND		mg/kg	0.907	0.117	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Silver, Total	ND		mg/kg	0.453	0.128	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS
Zinc, Total	26.9		mg/kg	2.27	0.133	1	02/10/18 07:00	02/12/18 14:19	EPA 3050B	1,6010C	PS

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-17 Date Collected: 02/09/18 12:35

Client ID: SB-17 (5-7) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 93%

Analytical Dilution Date Date Prep Method Method Factor Prepared Analyzed Analyst **Parameter** Result Qualifier Units RL MDL Total Metals - Mansfield Lab 1,6010C Arsenic, Total 1.92 0.402 0.084 1 02/10/18 07:00 02/12/18 14:24 EPA 3050B PS mg/kg Barium, Total 56.6 mg/kg 0.402 0.070 1 02/10/18 07:00 02/12/18 14:24 EPA 3050B 1,6010C PS Cadmium, Total 0.574 mg/kg 0.402 0.039 1 02/10/18 07:00 02/12/18 14:24 EPA 3050B 1,6010C PS Chromium, Total 12.0 mg/kg 0.402 0.039 1 02/10/18 07:00 02/12/18 14:24 EPA 3050B 1,6010C PS 1 1,6010C PS Lead, Total 16.5 mg/kg 2.01 0.108 02/10/18 07:00 02/12/18 14:24 EPA 3050B Mercury, Total 0.05 J mg/kg 0.07 0.01 1 02/10/18 11:00 02/12/18 11:43 EPA 7471B 1,7471B MG J 1 1,6010C PS Selenium, Total 0.108 mg/kg 0.803 0.104 02/10/18 07:00 02/12/18 14:24 EPA 3050B Silver, Total ND mg/kg 0.402 0.114 1 02/10/18 07:00 02/12/18 14:24 EPA 3050B 1,6010C PS 38.8 2.01 1 02/10/18 07:00 02/12/18 14:24 EPA 3050B 1,6010C PS Zinc, Total mg/kg 0.118

Project Name: 200 HAMILTON AVENUE

200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Report Date: 02/13/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	02,04,06,	08 Bato	ch: WG	1087407-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Barium, Total	ND	mg/kg	0.400	0.070	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Cadmium, Total	ND	mg/kg	0.400	0.039	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Chromium, Total	ND	mg/kg	0.400	0.038	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Lead, Total	ND	mg/kg	2.00	0.107	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Selenium, Total	ND	mg/kg	0.800	0.103	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Silver, Total	ND	mg/kg	0.400	0.113	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC
Zinc, Total	ND	mg/kg	2.00	0.117	1	02/07/18 21:10	02/12/18 15:16	1,6010C	LC

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	02,04,06,08	3,11	Batch: V	VG1087472	-1			
Mercury, Total	ND	mg/kg	0.08	0.02	1	02/08/18 08:00	02/08/18 19:07	1,7471B	EA

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	11 Batch	n: WG10	087494-	1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Barium, Total	ND	mg/kg	0.400	0.070	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Cadmium, Total	ND	mg/kg	0.400	0.039	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Chromium, Total	ND	mg/kg	0.400	0.038	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Lead, Total	ND	mg/kg	2.00	0.107	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Selenium, Total	ND	mg/kg	0.800	0.103	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Silver, Total	ND	mg/kg	0.400	0.113	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC
Zinc, Total	ND	mg/kg	2.00	0.117	1	02/08/18 07:00	02/08/18 12:03	1,6010C	LC

Project Name: 200 HAMILTON AVENUE

L1804131

Project Number: 170029

Report Date:

Lab Number:

02/13/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method:

EPA 3050B

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for s	ample(s):	13,15,17	Batch:	WG108	8164-1				
Arsenic, Total	ND		mg/kg	0.400	0.083	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Barium, Total	ND		mg/kg	0.400	0.070	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Cadmium, Total	0.040	J	mg/kg	0.400	0.039	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Chromium, Total	ND		mg/kg	0.400	0.038	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Lead, Total	ND		mg/kg	2.00	0.107	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Selenium, Total	ND		mg/kg	0.800	0.103	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Silver, Total	ND		mg/kg	0.400	0.113	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS
Zinc, Total	ND		mg/kg	2.00	0.117	1	02/10/18 07:00	02/12/18 11:08	1,6010C	PS

Prep Information

Digestion Method:

EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	13,15,17	Batch:	WG108	8167-1				
Mercury, Total	ND	mg/kg	0.08	0.02	1	02/10/18 11:00	02/12/18 11:30	1,7471B	MG

Prep Information

Digestion Method:

EPA 7471B

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Arsenic, Total 98 - 85-117 - 85-118 - Cadmium, Total 99 - 99 - 80-120 - 85-140 - 85-147 - 85-1418 - 85-141	Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Barium, Total 86	Total Metals - Mansfield Lab Associated sa	ample(s): 02,04,06,08	Batch: WG1087407-2	SRM Lot Number: D098-540			
Cadmium, Total 94 - 82-117 - Chromium, Total 92 - 83-119 - Lead, Total 92 - 82-117 - Selenium, Total 100 - 78-121 - Silver, Total 99 - 80-120 - Zinc, Total 96 - 81-119 - otal Metals - Mansfield Lab Associated sample(s): 02,04,06,08,11 Batch: WG1087472-2 SRM Lot Number: D098-540 Mercury, Total 102 - 50-149 - Otal Metals - Mansfield Lab Associated sample(s): 11 Batch: WG1087494-2 SRM Lot Number: D098-540 Arsenic, Total 113 - 83-117 - Barium, Total 101 - 82-118 - Cadmium, Total 107 - 82-117 - Chromium, Total 102 - 83-119 - Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 <td>Arsenic, Total</td> <td>98</td> <td>-</td> <td>83-117</td> <td>-</td> <td></td> <td></td>	Arsenic, Total	98	-	83-117	-		
Chromium, Total 92 - 83-119 -	Barium, Total	86	-	82-118	-		
Lead, Total 92 - 82-117 - Selenium, Total 100 - 78-121 - Silver, Total 99 - 80-120 - Zinc, Total 96 - 81-119 - Stal Metals - Mansfield Lab Associated sample(s): 02,04,06,08,11 Batch: WG1087472-2 SRM Lot Number: D098-540 Mercury, Total 102 - 50-149 - Stal Metals - Mansfield Lab Associated sample(s): 11 Batch: WG1087494-2 SRM Lot Number: D098-540 Arsenic, Total 113 - 83-117 - Barium, Total 101 - 82-118 - Cadmium, Total 107 - 82-117 - Chromium, Total 102 - 83-119 - Lead, Total 102 - 83-117 - Selenium, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -	Cadmium, Total	94	•	82-117	-		
Selenium, Total 100 - 78-121 -	Chromium, Total	92	•	83-119	-		
Silver, Total 99	Lead, Total	92	-	82-117	-		
Sinc, Total 96 - 81-119 -	Selenium, Total	100	-	78-121	-		
bital Metals - Mansfield Lab Associated sample(s): 02,04,06,08,11 Batch: WG1087472-2 SRM Lot Number: D098-540 Mercury, Total 102 - 50-149 - Otal Metals - Mansfield Lab Associated sample(s): 11 Batch: WG1087494-2 SRM Lot Number: D098-540 Arsenic, Total 113 - 83-117 - Barium, Total 101 - 82-118 - Cadmium, Total 107 - 82-117 - Chromium, Total 102 - 83-119 - Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -	Silver, Total	99	-	80-120	-		
Mercury, Total 102 - 50-149 - otal Metals - Mansfield Lab Associated sample(s): 11 Batch: WG1087494-2 SRM Lot Number: D098-540 Arsenic, Total 113 - 83-117 - Barium, Total 101 - 82-118 - Cadmium, Total 107 - 82-117 - Chromium, Total 102 - 83-119 - Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -	Zinc, Total	96	-	81-119	-		
Arsenic, Total 113 - 83-117 - Barium, Total 101 - 82-118 - Cadmium, Total 107 - 82-117 - Chromium, Total 102 - 83-119 - Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -							
Barium, Total 101 - 82-118 - Cadmium, Total 107 - 82-117 - Chromium, Total 102 - 83-119 - Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -				83-117			
Chromium, Total 102 - 83-119 - Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -			-	82-118	-		
Lead, Total 102 - 82-117 - Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -	Cadmium, Total	107	•	82-117	-		
Selenium, Total 113 - 78-121 - Silver, Total 111 - 80-120 -	Chromium, Total	102	-	83-119	-		
Silver, Total - 80-120 -	Lead, Total	102	-	82-117	-		
	Selenium, Total	113	-	78-121	-		
Zinc, Total - 81-119 -	Silver, Total	111	-	80-120	-		
	Zinc, Total	102	-	81-119	-		

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

Parameter	LCS %Recovery	LCSD %Recove		RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 13,15,17	Batch: WG1088164-2	SRM Lot Number: D098-540		
Arsenic, Total	98		83-117	-	
Barium, Total	92	-	82-118	-	
Cadmium, Total	93	-	82-117	-	
Chromium, Total	92	-	83-119	-	
Lead, Total	93	-	82-117	-	
Selenium, Total	95	-	78-121	-	
Silver, Total	98	-	80-120	-	
Zinc, Total	94	-	81-119	-	
otal Metals - Mansfield Lab	Associated sample(s): 13,15,17	Batch: WG1088167-2	SRM Lot Number: D098-540		
Mercury, Total	94		50-149	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

ırameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limits	•	RPD D Qual Limits
otal Metals - Mansfield La	ab Associated san	nple(s): 02,0	04,06,08	QC Batch ID: W	/G1087	407-3	QC Sample: L180	04089-03 Clie	nt ID: M	S Sample
Arsenic, Total	2.64	12.8	13.1	82		-	-	75-125	-	20
Barium, Total	721.	214	660	0	Q	-	-	75-125	-	20
Cadmium, Total	ND	5.45	4.67	86		-	-	75-125	-	20
Chromium, Total	11.9	21.4	32.0	94		-	-	75-125	-	20
Lead, Total	12.4	54.5	57.3	82		-	-	75-125	-	20
Selenium, Total	ND	12.8	10.2	80		-	-	75-125	-	20
Silver, Total	0.628J	32	30.3	94		-	-	75-125	-	20
Zinc, Total	101.	53.4	140	73	Q	-	-	75-125	-	20
otal Metals - Mansfield La	ab Associated sar	nple(s): 02,0	04,06,08,11	QC Batch ID	: WG10)87472-3	QC Sample: L	1804036-01 C	lient ID:	MS Sample
Mercury, Total	ND	0.161	0.20	124	Q	-	-	80-120	-	20
otal Metals - Mansfield La										
	ab Associated san	nple(s): 11	QC Batch	ID: WG108749	4-3 (QC Samp	le: L1803664-15	Client ID: MS	Sample	;
Arsenic, Total	ab Associated san	nple(s): 11	QC Batch	ID: WG108749	4-3 (QC Samp	le: L1803664-15	Client ID: MS	Sample -	20
Arsenic, Total Barium, Total		,			4-3 (QC Samp - -	le: L1803664-15 - -		•	
	1.83	10.1	10.6	87		QC Samp - - -	le: L1803664-15 - -	75-125	•	20
Barium, Total	1.83 60.6	10.1	10.6 186	87 74	Q	QC Samp - - - -	-	75-125 75-125	-	20
Barium, Total Cadmium, Total	1.83 60.6 ND	10.1 168 4.29	10.6 186 3.02	87 74 70	Q Q	QC Samp - - - -	-	75-125 75-125 75-125	-	20 20 20
Barium, Total Cadmium, Total Chromium, Total	1.83 60.6 ND 7.36	10.1 168 4.29 16.8	10.6 186 3.02 18.7	74 70 67	Q Q Q	QC Samp - - - - -	-	75-125 75-125 75-125 75-125	-	20 20 20 20 20
Barium, Total Cadmium, Total Chromium, Total Lead, Total	1.83 60.6 ND 7.36 8.03	10.1 168 4.29 16.8 42.9	10.6 186 3.02 18.7 35.5	87 74 70 67 64	Q Q Q	QC Samp	-	75-125 75-125 75-125 75-125 75-125	-	20 20 20 20 20 20

Matrix Spike Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1804131

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD ound	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab	Associated san	nple(s): 13,1	5,17 QC	Batch ID: WG10	088164-3	QC S	sample: L1804693-01	Client ID:	MS Sample	
Arsenic, Total	20.1	12.7	34.1	110		-	-	75-125	-	20
Barium, Total	93.6	212	300	97		-	-	75-125	-	20
Cadmium, Total	3.46	5.42	8.43	92		-	-	75-125	-	20
Chromium, Total	141.	21.2	161	94		-	-	75-125	-	20
Lead, Total	198.	54.2	232	63	Q	-	-	75-125	-	20
Selenium, Total	ND	12.7	11.7	92		-	-	75-125	-	20
Silver, Total	0.191J	31.8	32.9	103		-	-	75-125	-	20
Zinc, Total	43.7	53.1	92.2	91		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated san	nple(s): 13,1	5,17 QC	Batch ID: WG10	088167-3	QC S	sample: L1804131-13	Client ID:	SB-15 (2-4)	
Mercury, Total	0.40	0.139	0.36	0	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number:

L1804131

Report Date:

02/13/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s)	: 02,04,06,08 QC Batch ID	: WG1087407-4 QC S	Sample: L180408	39-03 Cli	ent ID: D	UP Sample
Arsenic, Total	2.64	2.18	mg/kg	19		20
Barium, Total	721.	448	mg/kg	47	Q	20
Cadmium, Total	ND	ND	mg/kg	NC		20
Chromium, Total	11.9	17.8	mg/kg	40	Q	20
Lead, Total	12.4	52.6	mg/kg	124	Q	20
Selenium, Total	ND	ND	mg/kg	NC		20
Silver, Total	0.628J	0.440J	mg/kg	NC		20
Zinc, Total	101.	140	mg/kg	32	Q	20
Total Metals - Mansfield Lab Associated sample(s)	: 02,04,06,08,11 QC Batch	ID: WG1087472-4 Q	C Sample: L180	4036-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample(s)	: 11 QC Batch ID: WG108	7494-4 QC Sample: L	_1803664-15 Clie	ent ID: D	UP Samp	le
Chromium, Total	7.36	6.06	mg/kg	19		20
Total Metals - Mansfield Lab Associated sample(s)	: 13,15,17 QC Batch ID: W	/G1088164-4 QC Sam	nple: L1804693-0	01 Client	ID: DUP	Sample
Lead, Total	198.	196	mg/kg	1		20
Total Metals - Mansfield Lab Associated sample(s)	: 13,15,17 QC Batch ID: W	/G1088167-4 QC Sam	nple: L1804131-1	13 Client	ID: SB-1	5 (2-4)
Mercury, Total	0.40	0.25	mg/kg	46	Q	20

INORGANICS & MISCELLANEOUS

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: Report Date: 02/13/18 170029

SAMPLE RESULTS

Lab ID: Date Collected: L1804131-01 02/06/18 11:00

Client ID: Date Received: 02/06/18 SB-11 (17-19) Not Specified Field Prep:

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	88.2		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-02 Date Collected: 02/06/18 11:05

Client ID: SB-11 (5-7) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	88.6		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

L1804131

Project Name: 200 HAMILTON AVENUE Lab Number:

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-03 Date Collected: 02/06/18 12:00

Client ID: SB-13 (10-12) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	92.0		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-04 Date Collected: 02/06/18 12:05

Client ID: SB-13 (3-5) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Cample Double

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	87.3		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-05 Date Collected: 02/06/18 13:05

Client ID: SB-18 (12-14) Date Received: 02/06/18 Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	94.4		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-06 Date Collected: 02/06/18 15:00

Client ID: SB-14 (2-4) Date Received: 02/06/18 Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	90.3		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

L1804131

Project Name: 200 HAMILTON AVENUE Lab Number:

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-07 Date Collected: 02/06/18 15:10

Client ID: SB-14 (15-16) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	89.0		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-08 Date Collected: 02/06/18 15:40

Client ID: SB-12 (2-4) Date Received: 02/06/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	90.0		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

L1804131

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number:

Report Date: 02/13/18 170029

SAMPLE RESULTS

Lab ID: Date Collected: L1804131-09 02/06/18 15:50

Client ID: Date Received: 02/06/18 SB-12 (15-16) Not Specified Field Prep:

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	88.0		%	0.100	NA	1	-	02/07/18 12:03	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: Report Date: 02/13/18 170029

SAMPLE RESULTS

Lab ID: Date Collected: L1804131-10 02/07/18 09:20

Client ID: SB-10 (20-22) Date Received: 02/07/18 Not Specified Field Prep:

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	· Westborough Lab)								
Solids, Total	91.6		%	0.100	NA	1	-	02/08/18 00:57	121,2540G	FN

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: Report Date: 02/13/18 170029

SAMPLE RESULTS

Lab ID: Date Collected: L1804131-11 02/07/18 09:25

Client ID: SB-10 (3-5) Date Received: 02/07/18 Not Specified Field Prep:

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	92.6		%	0.100	NA	1	-	02/08/18 00:57	121,2540G	FN

L1804131

Project Name: 200 HAMILTON AVENUE Lab Number:

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-12 Date Collected: 02/09/18 08:55

Client ID: SB-15 (10-11) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	83.1		%	0.100	NA	1	-	02/10/18 11:06	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-13 Date Collected: 02/09/18 09:00

Client ID: SB-15 (2-4) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	90.0		%	0.100	NA	1	-	02/10/18 11:06	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-14 Date Collected: 02/09/18 11:00

Client ID: SB-16 (12-13) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	81.5		%	0.100	NA	1	-	02/10/18 11:06	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-15 Date Collected: 02/09/18 11:10

Client ID: SB-16 (2-4) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	86.3		%	0.100	NA	1	-	02/10/18 11:06	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-16 Date Collected: 02/09/18 12:25

Client ID: SB-17 (8-9) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	80.1		%	0.100	NA	1	-	02/10/18 11:06	121,2540G	RI

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131

Project Number: 170029 Report Date: 02/13/18

SAMPLE RESULTS

Lab ID: L1804131-17 Date Collected: 02/09/18 12:35

Client ID: SB-17 (5-7) Date Received: 02/09/18
Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	93.4		%	0.100	NA	1	-	02/10/18 11:06	121,2540G	RI

Lab Number:

Lab Duplicate Analysis Batch Quality Control

200 HAMILTON AVENUE

L1804131 Report Date: 02/13/18

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01-09	QC Batch ID:	WG1087274-1	QC Sample:	L1804097-01	Client ID:	DUP Sample
Solids, Total	86.8		86.0	%	1		20
General Chemistry - Westborough Lab As	ssociated sample(s): 10-11	QC Batch ID:	WG1087465-1	QC Sample:	L1804250-01	Client ID:	DUP Sample
Solids, Total	89.5		90.6	%	1		20

Project Name:

Serial_No:02131814:52 *Lab Number:* L1804131

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/13/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

CoolerCustody SealAAbsentA1AbsentA2Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рH	deg C	Pres	Seal	Date/Time	Analysis(*)
L1804131-01A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-01B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-01C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-01D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-01X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-01Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-01Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-02A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-02B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-02C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-02D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-02E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.5	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-02F	Glass 120ml/4oz unpreserved	Α	NA		3.5	Υ	Absent		NYCP51-PAH(14)
L1804131-02X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-02Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-02Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-03A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-03B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-03C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-03D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)

Lab Number: L1804131

Report Date: 02/13/18

Project Name: 200 HAMILTON AVENUE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler pH pH deg ['] C Pres Seal		Seal	Date/Time	Analysis(*)			
L1804131-03X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-03Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-03Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-04A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-04B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-04C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-04D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-04E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-04F	Glass 120ml/4oz unpreserved	Α	NA		3.5	Υ	Absent		NYCP51-PAH(14)
L1804131-04X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-04Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-04Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-05A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-05B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-05C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-05D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-05X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-05Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-05Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-06A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-06B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-06C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-06D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-06E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-06F	Glass 120ml/4oz unpreserved	Α	NA		3.5	Υ	Absent		NYCP51-PAH(14)
L1804131-06X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-06Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)

Lab Number: L1804131

Report Date: 02/13/18

Project Name: 200 HAMILTON AVENUE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1804131-06Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-07A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-07B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-07C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-07D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-07X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-07Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-07Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-08A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-08B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-08C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-08D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-08E	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		3.5	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-08F	Glass 120ml/4oz unpreserved	Α	NA		3.5	Υ	Absent		NYCP51-PAH(14)
L1804131-08X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-08Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-08Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-09A	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-09B	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-09C	5 gram Encore Sampler	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-09D	Plastic 2oz unpreserved for TS	Α	NA		3.5	Υ	Absent		TS(7)
L1804131-09X	Vial MeOH preserved split	Α	NA		3.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-09Y	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-09Z	Vial Water preserved split	Α	NA		3.5	Υ	Absent	07-FEB-18 09:16	NYCP51-8260HLW(14)
L1804131-10A	5 gram Encore Sampler	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-10B	5 gram Encore Sampler	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-10C	5 gram Encore Sampler	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)

Lab Number: L1804131

Report Date: 02/13/18

Project Name: 200 HAMILTON AVENUE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1804131-10D	Plastic 2oz unpreserved for TS	A1	NA		2.5	Υ	Absent		TS(7)
L1804131-10X	Vial MeOH preserved split	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-10Y	Vial Water preserved split	A1	NA		2.5	Υ	Absent	08-FEB-18 02:07	NYCP51-8260HLW(14)
L1804131-10Z	Vial Water preserved split	A1	NA		2.5	Υ	Absent	08-FEB-18 02:07	NYCP51-8260HLW(14)
L1804131-11A	5 gram Encore Sampler	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-11B	5 gram Encore Sampler	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-11C	5 gram Encore Sampler	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-11D	Plastic 2oz unpreserved for TS	A1	NA		2.5	Υ	Absent		TS(7)
L1804131-11E	Metals Only-Glass 60mL/2oz unpreserved	A1	NA		2.5	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-11F	Glass 120ml/4oz unpreserved	A1	NA		2.5	Υ	Absent		NYCP51-PAH(14)
L1804131-11X	Vial MeOH preserved split	A1	NA		2.5	Υ	Absent		NYCP51-8260HLW(14)
L1804131-11Y	Vial Water preserved split	A1	NA		2.5	Υ	Absent	08-FEB-18 02:07	NYCP51-8260HLW(14)
L1804131-11Z	Vial Water preserved split	A1	NA		2.5	Υ	Absent	08-FEB-18 02:07	NYCP51-8260HLW(14)
L1804131-12A	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-12B	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-12C	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-12D	Plastic 2oz unpreserved for TS	A2	NA		3.1	Υ	Absent		TS(7)
L1804131-12X	Vial MeOH preserved split	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-12Y	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-12Z	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-13A	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-13B	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-13C	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-13D	Plastic 2oz unpreserved for TS	A2	NA		3.1	Υ	Absent		TS(7)
L1804131-13E	Metals Only-Glass 60mL/2oz unpreserved	A2	NA		3.1	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-13F	Glass 120ml/4oz unpreserved	A2	NA		3.1	Υ	Absent		NYCP51-PAH(14)
L1804131-13X	Vial MeOH preserved split	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)

Lab Number: L1804131

Report Date: 02/13/18

Project Name: 200 HAMILTON AVENUE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	•	Pres	Seal	Date/Time	Analysis(*)
L1804131-13Y	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-13Z	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-14A	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-14B	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-14C	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-14D	Plastic 2oz unpreserved for TS	A2	NA		3.1	Υ	Absent		TS(7)
L1804131-14X	Vial MeOH preserved split	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-14Y	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-14Z	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-15A	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-15B	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-15C	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-15D	Plastic 2oz unpreserved for TS	A2	NA		3.1	Υ	Absent		TS(7)
L1804131-15E	Metals Only-Glass 60mL/2oz unpreserved	A2	NA		3.1	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-15F	Glass 120ml/4oz unpreserved	A2	NA		3.1	Υ	Absent		NYCP51-PAH(14)
L1804131-15X	Vial MeOH preserved split	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-15Y	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-15Z	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-16A	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-16B	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-16C	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-16D	Plastic 2oz unpreserved for TS	A2	NA		3.1	Υ	Absent		TS(7)
L1804131-16X	Vial MeOH preserved split	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-16Y	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-16Z	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-17A	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-17B	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)

Lab Number: L1804131

Report Date: 02/13/18

Project Name: 200 HAMILTON AVENUE

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1804131-17C	5 gram Encore Sampler	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-17D	Plastic 2oz unpreserved for TS	A2	NA		3.1	Υ	Absent		TS(7)
L1804131-17E	Metals Only-Glass 60mL/2oz unpreserved	A2	NA		3.1	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),HG- T(28),CD-TI(180)
L1804131-17F	Glass 120ml/4oz unpreserved	A2	NA		3.1	Υ	Absent		NYCP51-PAH(14)
L1804131-17X	Vial MeOH preserved split	A2	NA		3.1	Υ	Absent		NYCP51-8260HLW(14)
L1804131-17Y	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)
L1804131-17Z	Vial Water preserved split	A2	NA		3.1	Υ	Absent	10-FEB-18 11:36	NYCP51-8260HLW(14)

Project Name: 200 HAMILTON AVENUE Lab Number: L1804131
Project Number: 170029 Report Date: 02/13/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

В

Project Name:200 HAMILTON AVENUELab Number:L1804131Project Number:170029Report Date:02/13/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:200 HAMILTON AVENUELab Number:L1804131Project Number:170029Report Date:02/13/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

<u>Title: Certificate/Approval Program Summary</u>

ID No.:**17873** Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coo	ay	5	Page	-	t	ate I	Rec'd .ab	2	6/18		ALPHA Job#	
Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: 200 Project Location: 200	Hamilton Hangilton A		te Plains	۲۵,		ASP-	A S (1 File)	ASI	P-B uIS (4 File)	Same as Clie	
Client Information	THE PARTY OF THE P	Project # 170029						Other	HILL SHOW IN	revent.			Disposal Site Info	rmation
Client AKRF, INC		(Use Project name as Project name)		,			The state of the s	NY TO	Require	100	NV.	Part 375	Please identify below	SOURCE HOLD -
Address: 34 South	Broadway	Project Manager: 'Re\	secco. Kir	14/					Standard		X NY		applicable disposal f	
White Plains	٢٢ .	ALPHAQuote #:						(CEE)	stricted l		Oth		Disposal Facility:	
Phone: 914-922-3	1362	Turn-Around Time	- Long III	a think			Same F.		restricted		L] Out	ui.	The state of the s	□ NY
Fax:		Standard		Due Date:									Other	
Email: RKING1@A	KRF. LOM	Rush (only if pre approved)	# of Days			NYC Sewer Discharge						Sample Filtration	
These samples have be	en previously analyz	zed by Alpha					ANA	YSIS		_	_	1 1		- 0
Other project specific	requirements/com						Voc.> (636.9)	Syrcs (8746)	8 Metels +				Lab to do Preservation Lab to do (Please Specify)	t a l
			1	and the second	1	Tana and a	15		4		1	1 1	ir rease speeing	t
ALPHA Lab ID (Lab Use Only)	S	ample ID	Date	ection Time	Sample Matrix	Sampler's Initials	CP	CP.ST	PCRA			\perp	Sample Specific Co	omments e
09/31 - 01	58-11 (17-K	4)	2/6/18	1100	3	TH	X			_	-	-		
02	58-11 (5-7)	•	2018	1105	5	TW	X	X	X			-		
03	58-13 (10-1	2)	2/4/18	1200	5	TM	7							
04	SB-13 (3-5		2/6/18	1205	5	TM	*	*	*					
05	58-18 (12-	14)	2/6/18	1305	S	TM	X					,		
66	58-14 (2-4		2/6/18	1500	5	TM	×	X	×					
07	5B-14 (15-16		2618	1510	5	+m	X							
	58-12 (2-4)		2/6/18	1540	5	TM	X	×	X			4		
09	58-12 (15-1	ú)	2/6/18	1550	5	TM	X							
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification I Mansfield: Certification I			1300	ntainer Type Preservative	-	GA	6				Please print cle and completely not be logged turnaround tim start until any	y. Samples car in and e clock will not
E = NaOH F = MeOH G = NaHSO ₄	B = Bacteria Cup				/Time		Recei	ved B	y: .4A	4	- 1	ate/Time	resolved, BY E	EXECUTING HE CLIENT
$H = Na_2S_2O_3$ $E = Encore$ $U = V = V = V = V = V = V = V = V = V = $				19:56	au	-	V	-	140	0.6	116 10	TO BE BOUNI TERMS & COI (See reverse s	D BY ALPHA'S NDITIONS.	
Form No: 01-25 HC (rev. 3	30-Sept-2013)													

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	105	Pag	e of		in	Rec'd Lab	217	118		ALPHA JOB# L1804131
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd	Project Information						verabl					Billing Information
FAX: 508-898-9193	TEL: 506-822-9300 FAX: 508-822-3288	Project Name: 200 I			21		X	ASF		L	ASP.		Same as Client Info
0		Project Location: 200 H	tourilton 1	Ave white	e Ykilus	127	4 📙	Comments.	IS (1 File) [EQui	IS (4 File)	PO#
Client Information		Project # 170039						Othe	-				
Client: AKRF, I		(Use Project name as Pr					Reg		/ Require	AND THE REAL PROPERTY.			Disposal Site Information
Address: 34 South		Project Manager: Reb	recca k	ina)			4 -	NYT			NY Pa		Please identify below location of
White Plain		ALPHAQuote #:						AWO	Standard	3	NYC	P-51	applicable disposal facilities.
Phone: 914-922-2	362	Turn-Around Time	Name of the last					NYR	estricted L	Jse	Other		Disposal Facility:
Fax:		Standard	- Secretary	Due Date	\$			NYU	nrestricted	Use			□ NJ □ NY
Email: RKINGI@A	A CONTRACTOR OF THE PARTY OF TH	Rush (only if pre approved) [# of Days	3			NYC	Sewer Dis	charge			Other;
These samples have be Other project specific	The state of the s	The state of the s	pha 🔲										Sample Filtration
	se keep SD						(8360)	(esto)	A B Mekis+				☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)
ALPHA Lab ID		and ID	Coll	ection	Sample	Sampler's	h	CP.57	06				(r rease Specify below)
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	CD	C	RC.				Sample Specific Comments
04131 10	5B-10 (20.	-22)	2/7/18	920	5	-174	X						
11	53-10 (3-5	The state of the s	217/18	925	5	Thu	X	×	X	_			
= None = HCl = HNO ₃ = H ₂ SO ₄	V = Vial G = Glass	Westboro: Certification No Mansfield: Certification No				tainer Type	E	GA	G				Please print clearly, legibly and completely. Samples ca not be logged in and turnaround time clock will no
= MeOH = NaHSO ₄ = Na ₂ S ₂ O ₃	B = Becteria Cup C = Cube O = Other E = Encore	Relinquished B	y:	Date/1		F	Receiv	ed By		2/7	Date/	Time 6:10	start until any ambiguities ar resolved. BY EXECUTING THIS COC, THE CLIENT
/E = Zn Ac/NaOH = Other orm No: 01-25 HC (rev. 30-	D = BOD Bottle	Daniel Fischer A	AL	7/7/18	7:42	0	_	4		21	16	2230	HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitn Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	05	Pag	of \	Delk		Rec'd Lab	2)0	ili8		ALPHA Job # L1864131 Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	> Hamilt	ma Que	Nav VP		-	ASP	in tel		ASP	-R	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 200	Howille	1 Ano	White 5	No in all		-	IS (1 Fil	e) [-	IS (4 File)	PO#
Client Information		Project # 1700 2		1100	COINC 1	Tanky IP	4 1	Othe		-/	1 -00	10 (41 110)	10.0
Client: AKRE, I	inc.	(Use Project name as P					Reni	-	Require	ement			Disposal Site Information
Address: 34 South		Project Manager: Re					181531	NYT		The Real Property lies	NYP	ad 275	- A
White Plain		ALPHAQuote #:	Secca	ningi			1 1		Standard		NYC		Please identify below location of applicable disposal facilities.
Phone: 914-92		Turn-Around Time					l	No.	estricted				***************************************
Fax:		Standar		Due Date					nrestricte	-	Joine		Disposal Facility:
Email: RKING1	O AKZE	Rush (only if pre approve		# of Days	15				Sewer Di				□ NJ □ NY
These samples have to			-/	# OI Days	5.		ANA	LYSIS		scharge			Other:
Other project specific			one 🗀										Sample Filtration
1	lose SDG						Joc.5 (8260)	SNOCS	+ BMetals+				Done Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID			Coll	ection	Sample	Sampler's	5	CP-51	RCRA				
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	상	3	8C				Sample Specific Comments
64131-12	SB-15 (10-1	1)	3/4/18	855	5	tm	X			\neg	\vdash		
-13	SB-15 (2-4	100	2918	900	3	TM	X	×	X		1		
-14	53-16 (12-	E	2/9/18	1100	5	+m	×	-	1		+		
-15	58-16 (2-		29/18	1110	5	TM	X	*	×		\vdash		
-16	53-17 (8-		3/9/18	1225	5	TM	X	-		_			
-17	SB-17 (5-	-	3/9/18	1235	3	TM	X	*	X	_		\vdash	
				1.00		11.	-	-	-	\rightarrow	+		
									-	_	-		
									-	+	+		
									-	_	-		
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				tainer Type	-	G	G A				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	h malle	Brue Josh ADL 2/9/18 1600 /					Received By: Date/Time New Jords AM 2/9/18 15-12 January Math 2/9/18 25:					start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)

ANALYTICAL REPORT

Lab Number: L1805675

Client: AKRF, Inc.

34 South Broadway White Plains, NY 10601

ATTN: Becky Kinal Phone: (914) 922-2362

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/22/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number:

L1805675

Report Date:

02/22/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1805675-01	MW-1	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 10:25	02/16/18
L1805675-02	MW-5	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 11:45	02/16/18
L1805675-03	MW-6	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 13:20	02/16/18
L1805675-04	MW-7	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 13:55	02/16/18
L1805675-05	MW-2	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 16:25	02/16/18
L1805675-06	MW-9	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 16:47	02/16/18
L1805675-07	TB-1	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 00:00	02/16/18
L1805675-08	MW-8	WATER	200 HAMILTON AVE., WHITE PLAINS, NY	02/16/18 18:07	02/17/18

L1805675

Lab Number:

Project Name: 200 HAMILTON AVENUE

Project Number: 170029 Report Date: 02/22/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please d	contact	Client S	Services	at 800	-624-9220	with	any c	question	S.

Project Name: 200 HAMILTON AVENUE Lab Number: L1805675
Project Number: 170029 Report Date: 02/22/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1805675-02: The sample has elevated detection limits due to the dilution required by the sample matrix (foam).

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/22/18

Kara Soroko

ORGANICS

VOLATILES

L1805675

02/16/18 10:25

Not Specified

02/16/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Report Date: 02/22/18

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1805675-01

Client ID: MW-1

Sample Location: Sample Depth:

200 HAMILTON AVE., WHITE PLAINS, NY

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 02/21/18 11:30

Analyst: ΑD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	84	70-130	
Dibromofluoromethane	106	70-130	

L1805675

02/22/18

02/16/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Date Collected: 02/16/18 11:45

Lab Number:

Report Date:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1805675-02 D

Client ID: MW-5

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/20/18 21:13

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Benzene	ND		ug/l	1.2	0.40	2.5	
Toluene	ND		ug/l	6.2	1.8	2.5	
Ethylbenzene	ND		ug/l	6.2	1.8	2.5	
Methyl tert butyl ether	ND		ug/l	6.2	1.8	2.5	
p/m-Xylene	ND		ug/l	6.2	1.8	2.5	
o-Xylene	ND		ug/l	6.2	1.8	2.5	
Xylenes, Total	ND		ug/l	6.2	1.8	2.5	
n-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
sec-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
tert-Butylbenzene	ND		ug/l	6.2	1.8	2.5	
Isopropylbenzene	ND		ug/l	6.2	1.8	2.5	
p-Isopropyltoluene	ND		ug/l	6.2	1.8	2.5	
Naphthalene	ND		ug/l	6.2	1.8	2.5	
n-Propylbenzene	ND		ug/l	6.2	1.8	2.5	
1,3,5-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	
1,2,4-Trimethylbenzene	ND		ug/l	6.2	1.8	2.5	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	105	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	103	70-130	

L1805675

02/16/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/16/18 13:20

Lab Number:

Date Received:

Field Prep:

Report Date: 02/22/18

Lab ID: L1805675-03

Client ID: MW-6

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 02/21/18 11:59

Analyst: ΑD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wo	estborough Lab						
Benzene	0.67		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	1.2	J	ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	104	70-130	

L1805675

02/22/18

02/16/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/16/18 13:55

Lab Number:

Report Date:

Date Received:

Field Prep:

Lab ID: L1805675-04 D

Client ID: MW-7

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/21/18 12:27

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Benzene	0.94	J	ug/l	1.0	0.32	2
Toluene	2.3	J	ug/l	5.0	1.4	2
Ethylbenzene	92		ug/l	5.0	1.4	2
Methyl tert butyl ether	15		ug/l	5.0	1.4	2
p/m-Xylene	290		ug/l	5.0	1.4	2
o-Xylene	28		ug/l	5.0	1.4	2
Xylenes, Total	320		ug/l	5.0	1.4	2
n-Butylbenzene	1.9	J	ug/l	5.0	1.4	2
sec-Butylbenzene	2.7	J	ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	14		ug/l	5.0	1.4	2
p-Isopropyltoluene	4.5	J	ug/l	5.0	1.4	2
Naphthalene	14		ug/l	5.0	1.4	2
n-Propylbenzene	14		ug/l	5.0	1.4	2
1,3,5-Trimethylbenzene	56		ug/l	5.0	1.4	2
1,2,4-Trimethylbenzene	110		ug/l	5.0	1.4	2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	92	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	101	70-130	

L1805675

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/16/18 16:25

Report Date: 02/22/18

Lab Number:

Date Received: 02/16/18

Field Prep: Not Specified

Lab ID: L1805675-05 D

Client ID: MW-2

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 02/21/18 12:56

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	1800		ug/l	25	7.0	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Xylenes, Total	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10
n-Propylbenzene	ND		ug/l	25	7.0	10
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	85	70-130	
Dibromofluoromethane	104	70-130	

L1805675

02/22/18

02/16/18

Not Specified

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Date Collected:

Lab Number:

Report Date:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1805675-06 02/16/18 16:47

Client ID: MW-9

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 02/21/18 13:54

Analyst: ΑD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	34		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
Xylenes, Total	ND		ug/l	2.5	0.70	1	
n-Butylbenzene	ND		ug/l	2.5	0.70	1	
sec-Butylbenzene	ND		ug/l	2.5	0.70	1	
tert-Butylbenzene	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1	
Naphthalene	ND		ug/l	2.5	0.70	1	
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	89	70-130	
4-Bromofluorobenzene	84	70-130	
Dibromofluoromethane	104	70-130	

L1805675

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/16/18 00:00

Report Date: 02/22/18

Lab Number:

Lab ID: L1805675-07

Client ID: TB-1

Client ID.

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/20/18 20:38

Analyst: PD

Date Collected:	02/16/18 00:00
Date Received:	02/16/18
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND			2.5	0.70	1
			ug/l			
Ethylbenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	103	70-130	

L1805675

02/22/18

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

SAMPLE RESULTS

Date Collected: 02/16/18 18:07

Lab ID: L1805675-08 D

Client ID: MW-8

Sample Location: 200 HAMILTON AVE., WHITE PLAINS, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/21/18 13:25

Analyst: AD

Date Concetta.	02, 10, 10 10.0
Date Received:	02/17/18
Field Prep:	Not Specified

Lab Number:

Report Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	Volatile Organics by GC/MS - Westborough Lab						
Benzene	ND		ug/l	1.0	0.32	2	
Toluene	ND		ug/l	5.0	1.4	2	
Ethylbenzene	33		ug/l	5.0	1.4	2	
Methyl tert butyl ether	20		ug/l	5.0	1.4	2	
p/m-Xylene	22		ug/l	5.0	1.4	2	
o-Xylene	ND		ug/l	5.0	1.4	2	
Xylenes, Total	22		ug/l	5.0	1.4	2	
n-Butylbenzene	36		ug/l	5.0	1.4	2	
sec-Butylbenzene	25		ug/l	5.0	1.4	2	
tert-Butylbenzene	ND		ug/l	5.0	1.4	2	
Isopropylbenzene	44		ug/l	5.0	1.4	2	
p-Isopropyltoluene	8.3		ug/l	5.0	1.4	2	
Naphthalene	23		ug/l	5.0	1.4	2	
n-Propylbenzene	130		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	57		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	4.8	J	ug/l	5.0	1.4	2	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	118		70-130	
Toluene-d8	90		70-130	
4-Bromofluorobenzene	84		70-130	
Dibromofluoromethane	97		70-130	

L1805675

Project Name: 200 HAMILTON AVENUE Lab Number:

Project Number: 170029 Report Date: 02/22/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/20/18 17:41

Analyst: PD

Parameter	Result	Qualifier Units	RL RL	MDL
Volatile Organics by GC/MS -	· Westborough Lab	for sample(s):	02,07 Batch:	WG1091048-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l		0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

	Acceptance				
Surrogate	%Recovery	Qualifier Criteria			
1,2-Dichloroethane-d4	104	70-130			
Toluene-d8	97	70-130			
4-Bromofluorobenzene	98	70-130			
Dibromofluoromethane	102	70-130			

L1805675

Project Name: 200 HAMILTON AVENUE Lab Number:

Project Number: 170029 Report Date: 02/22/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/21/18 10:32

Analyst: PD

Parameter	Result	Qualifier Units	RL RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01,03-06,08	Batch: WG1091209-5
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70

	Acceptance							
Surrogate	%Recovery	Qualifier Criteria						
1,2-Dichloroethane-d4	107	70-130						
Toluene-d8	90	70-130						
4-Bromofluorobenzene	85	70-130						
Dibromofluoromethane	104	70-130						

Lab Control Sample Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number:

L1805675

Report Date:

02/22/18

	LCS	01	LCSD %Recovery	0/	%Recovery	555	0	RPD
arameter	%Recovery	Qual	76Kecovery	Qual	Limits	RPD	Qual	Limits
olatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s):	02,07 Batch:	WG1091048-3	WG1091048-4			
Benzene	100		96		70-130	4		20
Toluene	100		96		70-130	4		20
Ethylbenzene	100		100		70-130	0		20
Methyl tert butyl ether	100		97		63-130	3		20
p/m-Xylene	105		100		70-130	5		20
o-Xylene	105		100		70-130	5		20
n-Butylbenzene	110		99		53-136	11		20
sec-Butylbenzene	110		99		70-130	11		20
tert-Butylbenzene	100		96		70-130	4		20
Isopropylbenzene	100		96		70-130	4		20
p-Isopropyltoluene	110		99		70-130	11		20
Naphthalene	140	Q	130		70-130	7		20
n-Propylbenzene	100		98		69-130	2		20
1,3,5-Trimethylbenzene	100		96		64-130	4		20
1,2,4-Trimethylbenzene	100		96		70-130	4		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	103	102	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	97	99	70-130
Dibromofluoromethane	101	101	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1805675

Report Date: 02/22/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	01,03-06,08 Bat	ch: WG1091	209-3 WG10912	209-4		
Benzene	92		93		70-130	1	20	
Toluene	87		86		70-130	1	20	
Ethylbenzene	92		92		70-130	0	20	
Methyl tert butyl ether	94		93		63-130	1	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	100		100		70-130	0	20	
n-Butylbenzene	89		88		53-136	1	20	
sec-Butylbenzene	86		86		70-130	0	20	
tert-Butylbenzene	87		86		70-130	1	20	
Isopropylbenzene	82		82		70-130	0	20	
p-Isopropyltoluene	91		91		70-130	0	20	
Naphthalene	100		94		70-130	6	20	
n-Propylbenzene	82		82		69-130	0	20	
1,3,5-Trimethylbenzene	87		87		64-130	0	20	
1,2,4-Trimethylbenzene	88		88		70-130	0	20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	114	113	70-130
Toluene-d8	89	89	70-130
4-Bromofluorobenzene	84	85	70-130
Dibromofluoromethane	105	106	70-130

Project Name: 200 HAMILTON AVENUE

Project Number: 170029

Lab Number: L1805675 **Report Date:** 02/22/18

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent Α1 Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1805675-01A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-01B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-01C	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-02A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-02B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-02C	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-03A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-03B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-03C	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-04A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-04B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-04C	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-05A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-05B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-05C	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-06A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-06B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-06C	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-07A	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-07B	Vial HCl preserved	Α	NA		2.7	Υ	Absent		NYCP51-8260-G(14)
L1805675-08A	Vial HCl preserved	A1	NA		3.2	Υ	Absent		NYCP51-8260-G(14)
L1805675-08B	Vial HCl preserved	A1	NA		3.2	Υ	Absent		NYCP51-8260-G(14)

Lab Number: L1805675

Report Date: 02/22/18 Project Number: 170029

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1805675-08C	Vial HCl preserved	A1	NA		3.2	Υ	Absent		NYCP51-8260-G(14)

Project Name:

200 HAMILTON AVENUE

Project Name:200 HAMILTON AVENUELab Number:L1805675Project Number:170029Report Date:02/22/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: DU Report with 'J' Qualifiers

В

Project Name:200 HAMILTON AVENUELab Number:L1805675Project Number:170029Report Date:02/22/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:200 HAMILTON AVENUELab Number:L1805675Project Number:170029Report Date:02/22/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 White Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275	r Way	105	Pag	ge (1000	ite Rec'd in Lab	1	2 (16	le	ALPHA Job# C 180 5675	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliver	ables				Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: 200	D Hamilto	on Aven	ve		X A	SP-A	I	ASF	P-В	Same as Client Info	
No.	1191.000 022.0000	Project Location: 20	roject Location: 200 Hamilton Ave, White Plains, NY) [EQ	ulS (4 File)	PO#	
Client Information		Project # 1700 2	oject# 170029							- 100 A 100	105270		
Client: AKRF, 7		(Use Project name as	Project #)				Regula	ory Require	ment s		TO THE	Disposal Site Information	
Address: 34 Soul	n Brocdway	Project Manager:							1	Part 375	The second second second		
White Plai	ns NY	ALPHAQuote #:	LPHAQuote #:						T	NY	P-51	Please identify below location of applicable disposal facilities.	
Phone: 914-922	2-2362	Turn-Around Time	20.71	-			10000	Y Restricted U		Othe	True true	Disposal Facility:	
Fax:		Standa	ard X	Due Date	4			Y Unrestricted	-		7		
Email: RKINAL	@ AKRF. COM	Rush (only if pre approve		# of Days			2000	YC Sewer Disa				NJ NY	
These samples have be				n or soje	,		ANALY		chage	_		Other:	
Other project specific						_	NINAL!	313		1		Sample Filtration	
Please specify Metals	eep SDG ortal.	open &					(09189)					Done Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID	6-		Colle	ection	Sample	Sampler's	5,39					(rease specify below)	
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	20					Comple Constitle Const	
05675- 01	mw-1		2/16/18	1025	GW	CP	×		_	-		Sample Specific Comments	
20	mw-5		2/16/18	1145	6W	The	X	_	+	+			
03	mw-6		2/16/18	1320	6W	TM	1		_		-	-	
OY	MW-7		2/16/18		GW	CP	7	-	+	+	-		
of	mw-a		2 16 18	1.00	GW	TM	X	++	+	-			
06	MW-9		2/16/18	The second second	600	CP	X	+	+	+			
07	TB-1		2 16/16		water	LAB	X		+	-			
	101		N HOLE	LHID	Worker	LHD	-	-	-	-			
								-	+				
-									1	-			
reservative Code:	Container Code		1						_				
= None = HCl	P = Plastic	Westboro: Certification I Mansfield: Certification I			Con	tainer Type	V					Please print clearly, legibly and completely. Samples can	
= H ₂ SO ₄	G = Glass B = Bacteria Cup	Pres			reservative	B	В				not be logged in and turnaround time clock will not		
1110000000	C = Cube O = Other	Relinquished	Relinquished By: Date/Time					Bv:	1	Date/	Time	start until any ambiguities are resolved, BY EXECUTING	
= Na ₂ S ₂ O ₃	E = Encore	In Welly	A CONTRACTOR OF THE PROPERTY O						Received By: Date/Time 2/16/18 17:17			THIS COC, THE CLIENT	
/E = Zn Ac/NaOH I = Other	D = BOD Bottle	1//	AAL	2/16/18	3 19:00	//	7/1/	G KK	1/2/	16/19	1411	HAS READ AND AGREES TO BE BOUND BY ALPHA'S	
orm No: 01-25 HC (rev. 30-	Sent-2013)	100		1/16/16	-1231	au	1		0/1	10/13	233	TERMS & CONDITIONS, (See reverse side.)	
at Es ito liev. Su-	OOM-E010]									19.5-		(Coo levelad side.)	

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co Project Information Project Name: 200 Project Location: 200	Nay hoper Ave, Suite 1 Hamilto Hawilton	on Ave	NUE	of l	Deliv	Date Re- in Lab (crables ASP-A EQuis (1	10	_	ASP-B	(4 File)	ALPHA Job # LV 805 6-75 Billing Information Same as Client Info P0#
Client Information		Project # 17000					Other						
Client: AKRF, I		(Use Project name as Pr		14.			TOTAL DESCRIPTION OF THE PERSON OF THE PERSO	datory Red	A STATE OF THE PARTY OF	400			Disposal Site Information
Address: 34 Sou White Pla		Project Manager: \^@ ALPHAQuote #:	roject Manager: Rebecca Kinal LPHAQuote#:					NY TOGS NY Part 375 AWQ Standards NY CP-51					Please identify below location of applicable disposal facilities.
Phone: 914-922.		Turn-Around Time	111111	100				NY Restric	ted Use	П	Other		Disposal Facility:
Fax: Email: RKINAL		Standard	Standard Due Date:						ricted Use				□ NJ □ NY □ Other:
	peen previously analyze			n or obje	,		ANA	LYSIS		9-			Sample Filtration
Other project specific											\neg		0
Please specify Metals		ose SDG	*				Salvo)						□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID	Sa	mple ID	ple ID Collection Sample Sample				0						(Frease Specify Delow)
(Lab Use Only)	1100	5.X15.501	Date	Time	Matrix	Initials	Ü		\perp		_		Sample Specific Comments
05675-08	MW-8	5	2/16/18	1807	GW	CP	X		-	_	-	_	
					-		-		-	-	-	-	
					-				+	-	+	_	
						-				-	+	-	
							\vdash		1	-	-	+	
									1	-	_	+	
									+	_	\rightarrow	_	
							\Box				\rightarrow	+	
Preservative Code: A = None B = HCl	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	V						Please print clearly, legibly and completely. Samples can
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	G = Glass B = Bacteria Cup	Preserv				reservative	В					turnaround time clock will not start until any ambiguities are	
F = MeOH G = NaHSO ₄	C = Cube O = Other	/ Relinquished B	Ву:	Date/	Time	1	Receiv	ed By:		t	Date/Tir	ne	resolved. BY EXECUTING
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	E = Encore D = BOD Bottle	Brade Lens					1 7/18/D'L				12:49		
O = Other		#12 _	1	2/19/1	(0)11	M			_	2119	118 2	10	TERMS & CONDITIONS.
Form No: 01-25 HC (rev. 3)	0-Sept-2013)			1111	W C								(See reverse side.)

Attachment E Proof of Site Access

HAMILTON GREEN BROWNFIELD CLEANUP APPLICATION ACCESS AND CONSENT AGREEMENT

ACCESS AGREEMENT made as of this goday of 2018, by and between W.P. Mall Realty, LLC ("Grantor"), having an address at Exclusive Management, 35 West Street, Suite 202, Spring Valley, New York, and S-WD/WP, LLC ("Grantee"), having an address at 168-A Irving Avenue, Suite 200K, Port Chester, New York 10573.

WHEREAS, Grantor owns the real property located at 200 Hamilton Avenue, White Plains, New York (Section 125.67, Block 5, Lot 1) ("Grantor's Property"), together with the building and improvements thereon ("Grantor's Building") (Grantor's Property and Grantor's Building shall be referred to collectively as Grantor's Property"); and

WHEREAS, Grantee is about to make application to the NYS Brownfield Cleanup Program ("BCP") to investigate and to remediate the Grantor's Property for the purpose of obtaining a Certificate of Completion under the BCP (the "Work"); and

WHEREAS, Grantee requires access to Grantor's Property to perform the Work; and

WHEREAS, Grantor has agreed to grant access to Grantor's Property and permit the performance of the Work, subject to the terms and conditions as set forth in this Agreement.

NOW, THEREFORE, in consideration of the foregoing and for good and valuable consideration, the receipt of which is hereby acknowledged, Grantor and Grantee agree as follows:

- 1. Grantor hereby grants access and a license upon, into, under or through Grantor's Property for the purpose of the entry thereon by Grantee, its agents, employees, architects, engineers, contractors and consultants, successors or assigns (collectively, the "Grantee Related Parties" and each a "Grantee Related Party"), vehicles, equipment and materials required by Grantee in order to perform all tasks reasonable and necessary in connection with the Work, including the demolition of the building and consent of the Grantor to the filing by the Grantee of an Environmental Easement on the Grantor's Property as may be required for the issuance of the Certificate of Completion.
- 2. Grantee Related Parties shall perform the Work in a workmanlike manner and in accordance with industry standards and in accordance with applicable laws, rules and regulations. The rights granted pursuant to paragraph 1 of this Agreement are nonexclusive, it being understood and agreed that Grantor, its agents, employees, workers, contractors and tenants will have full authority to access to Grantor's Property during the performance of the Work, until otherwise agreed by the parties in writing. The performance of the Work will not interfere unreasonably with the quiet enjoyment of Grantor's Building by the tenants thereof.

Grantor agrees that it will use commercially reasonable efforts to avoid unreasonable interference with Grantee's exercise of its rights hereunder.

- 3. All of the foregoing activities shall be performed at Grantee's sole cost and expense.
- 4. Grantee shall provide reasonable notice to Grantor prior to Grantee's need for access to Grantor's Property to perform the Work.
- 5. Grantee shall be responsible for obtaining all federal, state or local governmental approvals in relation to the Work. Grantor agrees to execute all reasonable, necessary and customary documents and provide any permission required, during the course of performing the Work to obtain any federal, state and/or local governmental or other approval required to perform the Work.
- 6. This Agreement shall be governed by and construed in accordance with the laws of the State of New York. Any proceedings initiated by either party to enforce the terms of or otherwise related to this Agreement shall be brought in the state or federal court in Westchester County, New York.

IN WITNESS WHEREOF, this Agreement has been executed by Grantor and Grantee and is effective as of the date set forth above.

Grantor: W.P. Mail Realty, LLC	Grantee: S-WD/WP, LLC By: S-WD II, JALC					
By: Juddlee (sign) Name: Juda Klein Title: Managing Member	By:(sign) Name: Kenneth D. Narva Title: Managing Member					
Date:	Date: 5/10/18					

Attachment F Repository Acknowledgment Letter

Environmental and Planning Consultants

440 Park Avenue South 7th Floor New York, NY 10016 tel: 212 696-0670 fax: 212 213-3191 www.akrf.com

May 8, 2018

Brian Kenney White Plains Public Library 100 Martine Avenue White Plains, New York 10601

Re:

Document Repository for 200 Hamilton Avenue, White Plains, NY

Dear Mr. Kenney:

AKRF, Inc. is submitting a New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Application on behalf of S-WD/WP, LLC for the project site located at 200 Hamilton Avenue in White Plains, New York. As required by NYSDEC, the White Plains Public Library will serve as a repository to which all pertinent electronic documents generated for this project will be sent. Please understand that these documents will have to be made available to the public when requested until the NYSDEC determines that these documents are no longer needed.

Please signify your understanding and agreement by signing below and returning a copy of the signed letter using either the envelope provided or via email to tmcclintock@akrf.com. Please call me at (914) 922-2374 with any questions. Thank you.

Sincerely,

Timothy McClintock

Environmental Professional

ACKNOWLEDGED AND ACCEPTED:

Name

Γitle

Director Brian Kenney

Attachment G Zoning Change Documentation

COMMON COUNCIL AGENDA REGULAR STATED MEETING MAY 7, 2018 7:30 P.M.

PLEDGE TO THE FLAG: Hon. John Kirkpatrick

ROLL CALL: City Clerk

ADJOURNED PUBLIC HEARINGS:

 Public Hearing in relation to the proposed amendment to the Zoning Ordinance of the City of White Plains creating a new TD-1 Transit Zoning District and re-zoning a certain property in the B-2 Neighborhood Business Zoning District to TD-1 Transit Zoning District.

PUBLIC HEARINGS:

- Public Hearing to consider the Tax Budget of the City of White Plains for Fiscal Year 2018-2019.
- 3. Public Hearing in relation to a proposed amendment to the Zoning Ordinance to rezone certain properties on: A) Cobb Avenue from the R1-12.5 Single Family Zoning District to the R1-5 Single Family Zoning District; and B) Saxon Wood Park Drive from the R1-12.5 Single Family Zoning District to the R1-7.5 Single Family Zoning District.

4.	Communications from	Commissioner of Building
5.		Design Review Board
6.		Commissioner of Public Safety
7.		Commissioner of Public Works
8.		Deputy Commissioner, Traffic Division
9.		Transportation Commission
10.		Commissioner of Parking
11,		Conservation Board

COMMON COUNCIL AGENDA REGULAR STATED MEETING APRIL 2, 2018 7:30 P.M.

PLEDGE TO THE FLAG: Hon. Nadine Hunt-Robinson

ROLL CALL: City Clerk

RECOGNITION: Community Development Block Grant Program

National Community Development Week April 2, 2018 - April 6, 2018

ADJOURNED PUBLIC HEARINGS:

- 1. Public Hearing in relation to the proposed amendment to the Zoning Ordinance of the City of White Plains creating a new TD-1 Transit Zoning District and re-zoning a certain property in the B-2 Neighborhood Business Zoning District to TD-1 Transit Zoning District. **OPENED/ADJOURNED TO MAY 7, 2018.**
- 2. Public Hearing in relation to the application submitted on behalf of Saber White Plains LLC and Chauncey White Plains, LLC, (Saber Chauncey WP LLC) for Special Permits to construct a mixed use development at 100-106 Westchester Avenue, 90-96 Westchester Avenue, 80 Westchester Avenue, and on certain lots on Franklin Avenue, White Plains, NY. **OPENED/CLOSED**
- 3. <u>Communication</u> from the Environmental Officer in relation to an application submitted on behalf of Saber Chauncey WP LLC, for site plan and special permit approvals to construct a mixed use development known as The Collection, at 100 106 Westchester Avenue, 90 96 Westchester Avenue, 80 Westchester Avenue, and on certain lots on Franklin Avenue. **F/S**
- 4. <u>Environmental Findings Resolution</u> **ADOPTED 5 2. NAYS: Mr. Krolian and Mrs. Lecuona**

THE CITY OF WHITE PLAINS STATE OF NEW YORK

In the Matter of the Application of

W.P. MALL REALTY, LLC

PETITION

For an Amendment to the Zoning Ordinance of the City of White Plains to: (a) Establish a new District Classification to be known as TD-1 (Transit Development 1) District; and (b) to Map the Premises known and designated on the Tax Assessment Map of the City of White Plains as Section 125.67, Block 5, Lot 1 from the B-2 (Neighborhood Business) District into the newly created TD-1 (Transit Development 1) District.

TO THE HONORABLE MAYOR AND MEMBERS OF THE COMMON COUNCIL OF THE CITY OF WHITE PLAINS:

The Petition of W.P. MALL REALTY, LLC (the "Petitioner") respectfully shows and alleges in support of Petitioner's request:

- 1. <u>Ownership Information:</u> Petitioner, W.P. MALL REALTY, LLC, is the owner of real property situated at 200 Hamilton Avenue, commonly known as The White Plains Mall, designated on the Tax Assessment Map of the City of White Plains as Section 125.67, Block 5, Lot 1 (collectively referred to herein as the "Subject Premises"), which is bounded on the northerly side by Barker Avenue (with approximately 370 feet of frontage), on the southerly side by Hamilton Avenue (with approximately 360 feet of frontage), on the easterly side by Cottage Place (with approximately 380 feet of frontage), and on the westerly side by Dr. Martin Luther King, Jr. Boulevard (with approximately 355 feet of frontage).
- 2. <u>Description of the Subject Premises & Present Mapping:</u> The Subject Premises comprise approximately 3.748 acres (i.e., approximately 163,250 square feet) of fully developed land mapped in the B-2 (Neighborhood Business) District and improved by The White Plains Mall, which contains approximately 170,000 square feet of retail, restaurant and other commercial space, together with parking on two outdoor levels one at-grade and the other above the building. The Subject Premises is mapped in the Central Parking Area (CPA) and is located just a few blocks from the White Plains Metro-North Station.
- 3. <u>Visual Documents detailing Subject Premises:</u> Annexed hereto are the following documents detailing the Subject Premises in support of this proposed rezoning:
 - Exhibit A contains an aerial photograph of the Subject Premises and the relevant area of the City of White Plains (with the Subject Premises highlighted in yellow); and

- b. **Exhibit B** is comprised of a survey entitled, "Existing Condition Plans".
- 4. Existing Mapping of Adjacent Lands: Exhibit C is an excerpt of the relevant area of the Official Zoning Map showing the zoning classifications affecting the Subject Premises and the properties adjacent thereto, as follows:

<u>Northerly Boundary</u>: Immediately to the north of the Subject Premises is Barker Avenue a two-way street connecting Dr. Martin Luther King, Jr. Boulevard to Cottage Place. The properties situated on the northerly side of Barker Avenue are mapped in the CB-4 (Core Business 4) District and improved with multiple distinct uses in several buildings including an office building, a hotel and a multifamily dwelling.

<u>Southerly Boundary</u>: Immediately to the south of the Subject Premises is Hamilton Avenue (Westchester County Route 119), a wide, two-way street with five to six lanes of traffic and a median dividing it. The properties situated on the southerly side of Hamilton Avenue are mapped in the CB-3 (Core Business 3) District and improved with multiple office buildings.

<u>Easterly Boundary</u>: Immediately to the east of the Subject Premises is Cottage Place, a two-way street connecting Hamilton Avenue to Barker Avenue. The properties situated on the easterly side of Cottage Place are mapped in the CB-4 (Core Business 4) District and improved with multiple distinct uses in several buildings including a non-conforming automobile service station, an office building, a student residence hall for Berkeley College and a multifamily dwelling.

<u>Westerly Boundary</u>: Immediately to the west of the Subject Premises is Dr. Martin Luther King, Jr. Boulevard, which is a wide one-way street connecting Hamilton Avenue to both Water Street and Barker Avenue. Across Dr. Martin Luther King, Jr. Boulevard the properties are classified in the CB-4 (Core Business 4) District and improved with multiple distinct uses in several buildings including an office building and a Con Edison utility facility.

<u>Other significant Adjacent Properties</u>: Diagonally southeasterly of the Subject Premises is the Ritz Carlton and its two multifamily towers that stand approximately 450 feet in height. These properties also are classified in the CB-4 (Core Business 4) District.

- 5. Area Affected: As previously noted, annexed hereto as **Exhibit C** is an excerpt of a portion of the Zoning Map showing the Subject Premises and the zoning classifications of adjacent lands, which are classified either in the CB-3 (Core Business 3) District or the CB-4 (Core Business 4) District. The names of owners of properties within 200 feet of the Subject Premises (the "Area Affected") as listed on the tax assessment roll of the City of White Plains, are set forth on **Exhibit D** annexed hereto, which also includes the relevant sections of the tax map.
- 6. <u>Proposed Redevelopment:</u> The Petitioner contemplates demolition of The White Plains Mall and construction of a new, pedestrian-friendly, multi-use development, including retail,

restaurant, and multi-family uses together with appurtenant parking consistent with its location close to the White Plains Metro-North Station and the downtown. A key component of the redevelopment would be activating the streets with pedestrian activity and providing a destination "use" between the train station and the downtown. Further, a new "Craft Food Market Hall" use is proposed to be established, which would form a destination use within this revitalized area of the downtown.

While a formal design suitable for Site Plan review has not yet been prepared at this time, a Conceptual Development Plan ("CDP") accompanies this submission and is referenced in **Exhibit F** to this Petition and an accompanying booklet containing conceptual redevelopment plans for the Subject Premises illustrating a mixed—use project.

7. Request to Establish a new TD-1 District and to Map the Subject Premises therein:
Petitioner requests that the Common Council remap the Subject Premises from the B-2
(Neighborhood Retail) District to the TD-1 (Transit Development 1) District. The new TD-1
District has been drafted to include extensive design guidelines and standards to ensure the inclusion of improvements that will result in pedestrian-friendly streets and to encourage publicly accessible open space. This Petition respectfully submits that the existing B-2
District classification is inappropriate for the Subject Premises and should be abandoned with a more consistent classification placed thereon that is compatible with surrounding properties, but maintains more control on the type of development that will be allowed to occur. Simply put, the B-2 District is not consistent with the successful redevelopment of the lands located near the White Plains Metro-North station.

Among other things, the existing B-2 District classification of the Subject Premises limits the maximum height to two (2) stories or 30 feet, maximum Floor Area Ratio ("FAR") to 0.80, and maximum building coverage to fifty percent (50%) (although the Subject Premises has a building coverage of 100%). The proposed TD-1 District would establish dimensional parameters compatible with the adjacent development of the properties classified in the CB-3 and CB-4 Districts, but would limit the area of any "tower" to be constructed on the Subject Premises to only 40% of the lot area. The details of the proposed TD-1 District regulations are set forth at length in **Exhibit E** annexed hereto and made a part hereof.

8. <u>SEQR Compliance and Planning Considerations in Support of Petition:</u> Petitioner's request regarding the redevelopment of the Subject Premises to permit its redevelopment is wholly consistent with the City's commitment to revitalize the downtown enabling the removal of The White Plains Mall, which is an older retail complex that is in need of replacement. The Full Environmental Assessment Form ("EAF"), annexed hereto as **Exhibit F**, contains information supportive of this Petition including substantive analyses such as consistency with the Comprehensive Plan, a preliminary traffic study, and School Children Analysis.

WHEREFORE, Petitioner respectfully requests that this Petition be granted in its entirety with the Subject Premises being mapped in the TD-1 District and implementing the text amendments set forth herein.

Dated: November 23, 2016

Respectfully submitted,

By: W.P. MALL REALTY, LLC

By: / h / L
Its: Managing Member

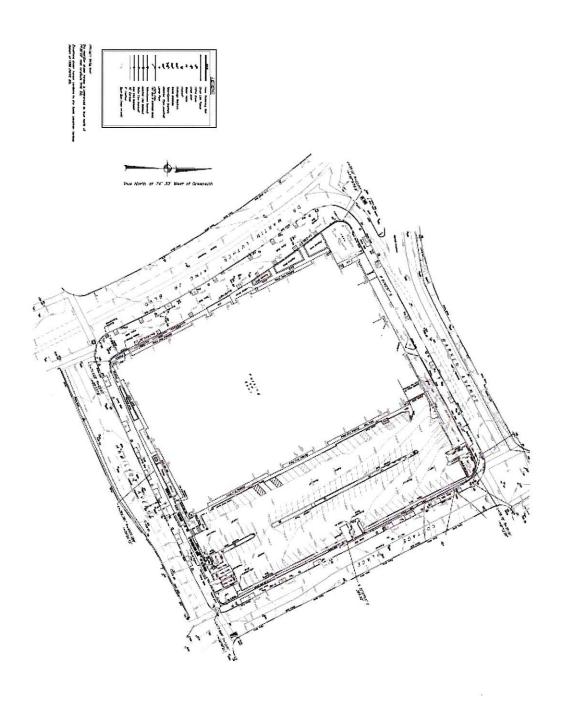

EXHIBIT A

EXHIBIT A Aerial Photograph of Subject Premises

EXHIBIT B

EXHIBIT B Existing Condition Plans

EXHIBIT C

EXHIBIT C
Section of Zoning Map showing Subject Premises
(which is colored magenta and labeled B-2)

