

GEOPHYSICAL INVESTIGATION REPORT

SITE LOCATION:

200 Hamilton Avenue White Plains, New York

PREPARED FOR:

AKRF, Inc. 34 South Broadway, Suite 401 White Plains, New York 10601

PREPARED BY:

Martin Young Delta Geophysics Inc. 738 Front Street Catasauqua, PA18032

August 8, 2017

1.0 INTRODUCTION

On August 8, 2017 Delta Geophysics personnel performed a limited geophysical investigation at the 200 Hamilton Avenue property in White Plains, New York. The survey site is an active commercial property Subsurface conditions were unknown at the time of survey; surface conditions consisted of concrete, bituminous pavement and vegetation over soils.

2.0 SCOPE OF WORK

The objective was to investigate the subsurface for anomalies consistent with underground utilities and/or any other anomalous features in the client specified proposed boring locations. All findings would be marked and conveyed to on-site personnel.

3.0 METHODOLOGY

Selection of survey equipment is dependent site conditions and project objectives. For this project the technician utilized the following equipment to survey the area of concern:

- Geophysical Survey Systems Inc. SIR-3000 cart-mounted Ground Penetrating Radar (GPR) unit with a 400 Mhz antenna.
- Radiodetection RD7000 precision utility locator.
- Fisher M-Scope TW-6 pipe and cable locator.

Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 1,000 MHz) to acquire subsurface information. Energy is propagated downward into the ground and is reflected back to the surface from boundaries at which there are electrical property contrasts. GPR is a method that is commonly used for environmental, engineering, archeological, and other shallow investigations.

The GSSI SIR-3000 GPR can accept a wide variety of antennas which provide various depths of penetration and levels of resolution. The 400 MHz antenna can achieve depths of penetration up to about 20 feet, but this depth may be greatly reduced due to site-specific conditions. Signal penetration decreases with increased soil conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in unsaturated sands and fine gravels. Clayey, highly saline or saturated soils, areas covered by steel reinforced concrete, foundry slag, of other highly conductive materials significantly reduces GPR depth of penetration.

The 400MHz antenna was configured to transmit to a depth of approximately 10 feet below the subsurface, but actual signal penetration was limited to approximately 1-3 feet below ground surface (bgs). The limiting factor was signal attenuation from near surface soils.

The RD7000 precision utility locator uses radio emission to trace the location of metal bearing utilities. This radio emission can be active or passive. Active tracing requires the attachment of a radio transmitter to the utility, passive tracing uses radio emissions that are present on the utility. Underground electrical utilities typically emit radio signals that this device can detect.

The TW-6 is designed to find pipes, cables and other metallic objects such as underground storage tanks. One surveyor can carry both the transmitter and receiver together, making it ideally suited for exploration type searches of ferrous metal masses. Metal detectors of this type operate by generating a magnetic field at the transmitter which causes metallic objects in the subsurface to generate a secondary magnetic field. The induced secondary field is detected by the receiver, which generates an audible tone equal to the strength of the secondary field.

4.0 SURVEY FINDINGS

All accessible areas within the client's areas of concern were examined during this survey. Each location was examined with the RD7000 for potential subsurface utilities, and then surveyed with the GPR and TW-6 for other potential anomalies.

Within the parking lot, multiple boring locations were examined and all nearby utilities marked on ground surface.

Within the sidewalk along Hamilton Avenue, two proposed boring locations were examined. One location contained several potential subsurface utilities.

Two boring location along Barker Avenue were examined. Both location were adjacent to potential subsurface utilities.

One potential location was situated on the ground floor within the building. This location could not be cleared due to the construction of the floor.

All potential utility conflicts were discussed with the client representative on-site, and alternate locations were examined where needed.

5.0 SURVEY LIMITATIONS

GPR depth of penetration was limited to approximately 2-3 feet bgs. The limiting factor was due to conductive soils. The TW-6 was not able to be utilized in some areas due to the presence of reinforced concrete. Floor construction within the building prevented signal penetration at the interior location.

6.0 WARRANTIES AND DISCLAIMER

As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity to any anomalies indicated in this report. In addition, the absence of detected signatures does not preclude the possibility that targets may exist. To the extent the client desires more definitive conclusions than are warranted by the currently available facts; it is specifically Delta's intent that the conclusions stated herein will be intended as guidance.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based on the facts currently available within the limit or scope of work, budget and schedule. Delta represents that the services were performed in a manner consistent with currently accepted professional practices employed by geophysical/geological consultants under similar

circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise.

This report was prepared pursuant to the contract Delta has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Delta and its client and serves as the basis upon which this report was prepared. Because of the importance of the understandings between Delta and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Delta.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Delta's contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party.

APPENDIX C

FIELD LOGS

SOI	I RC	ORING LOG	Hami	ilton Green	Soil Boring ID:			SB-1		
			AKRF Proj	ect Number: 170029	Sheet	1 of 1		OD	- 1	
	> \(\)	V DE	Drilling Method:	Geoprobe	Drilling		•			
(K RF	Sampling Method:	5' Macrocore	Start Time	e: 8:55		Finish Tir	ne: 9:15	
			Driller: Weather:	Craig	1					
440		enue South, 7 th Floor ork, NY 10016	weather: Logged By:	75°F, E. Matamoros	Date: 8/8/	2017				
Depth (feet)	Recovery (Inches)		e Condition: 3" T		Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
		Top 3": Dark Brow	n SAND, some S	ilt	ND	Moist	ND	ND		
1		Next 18": Gray Bro Gravel (F		ND, trace Brick,	ND	Moist	ND	ND	SB-1 (2-4)	
3	21									
4										
5										
6										
7 8	34	Gray-Brown SILT a	and SAND, trace	Brick, Gravel (Fill)	ND	Moist	ND	ND		
9										
10									SB-1 (9-11)	
10		Top 16": Brown SA	AND		ND	Moist	ND	ND	36-1 (9-11)	
11										
<u> 12</u>		Next 18": Brown S	AND, some fine (Gravel, Silt.	ND	Wet	ND	ND		
<u> 13</u>	36									
14										
15										
16										
	35	Brown SAND, som	ne Silt		ND	Wet	ND	ND		
<u>17</u>										
18										
<u> 19</u>										
20	0 - 11		VOO- 0000 D	N-SVOCs 8270 TAL ma		<u></u>				

Notes: Soil sample analyzed for VOCs 8260, BN-SVOCs 8270, TAL metals, and PCBs.

Groundwater encountered at approximately 13 feet below grade during soil boring installation.

End of soil boring at 18 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected
Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

SO	I RO	ORING LOG	Hami	Iton Green	Soil Boring ID: SB-2				-2
		JAMES LOG	AKRF Proje	ect Number: 170029	Sheet	1 of 1		<u> </u>	- -
)	$\mathcal{A}V$	NDL	Drilling Method:	Geoprobe	Drilling			•	
		K RF	Sampling Method: Driller:	5' Macrocore Craig	Start Tim	e: 8:15		Finish Tir	ne: 8:30
440	Park Ave	enue South, 7 th Floor	Weather:	70°F,	Date: 8/8/	2017		ı	
	New Y	ork, NY 10016	Logged By:	E. Matamoros	Date. 6/6/	2017	T	T	.
Depth (feet)	Recovery (Inches)	Surface	e Condition: 3" To	op Soild. Grass	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
1									1-3 @ 8:30
2									1-5 @ 0.50
	37	Brown SAND and	SILT trace Brick	Asphalt, Gravel (Fill)	ND	ND	ND	ND	
3	07	Brown 67 (14B and	OILT, HACE BRICK,	Aspriant, Graver (1 m)	IND	l NB	IND	NB	
4									
5									
6		Top 9": Concrete ((FILL)		ND	ND	ND	ND	
6		Bottom 26": Gray S	SILT. some Sand		ND	ND	ND	ND	
7			· , - · · · · · · · · · · · · · · · · · ·						
	35								
8									
9									
10									
11									
<u>'-</u>									
12									
40	31	Olive Green SILT,	some Sand		ND	Moist	ND	ND	
<u> 13</u>									
14									
15						Moist			
16						IVIOISE			
<u> 17</u>									16-18 @ 8:35
18	29	Brown SILT			ND	Wet	ND	ND	
- <u>'</u> -									
19									
20									
40						I			

Notes: Soil sample analyzed for VOCs 8260, BN-SVOCs 8270, TAL metals, and PCBs.

Groundwater encountered at approximately 18 feet below grade during soil boring installation.

End of soil boring at 20 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected
Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

Hamilton Green Soil Boring ID: **SOIL BORING LOG SB-3** Sheet 1 of 1 AKRF Project Number: 170029 Drilling Method: Geoprobe Drilling **PAK**RF Sampling Method: 5' Macrocore Start Time: 13:40 Finish Time: 14:00 Craig Driller: 440 Park Avenue South, 7th Floor Weather: 75°F Date: 8/9/2017 New York, NY 10016 Logged By: E. Matamoros Depth (feet) Recovery (Inches) PID (ppm) Moisture Soil Samples Surface Condition: Grass Collected for Laboratory Analysis Top 4": Brown SAND, some Organics (roots, grass) SB-3 (1-3) Next 27": Brown SAND, some Silt 2 31 ND ND ND ND 3 4 5 6 7_ Brown SAND, some Silt, little Gravel ND ND ND ND 8 9 10 11 12 ND ND ND 41 Brown SAND, some Silt, little Gravel ND 13 14 15 16 SB-3 (17-19) 17 ND Brown SAND, some Silt, little Gravel ND ND ND 18 19

Notes: Soil sample analyzed for VOCs 8260, BN-SVOCs 8270, TAL metals, and PCBs.

Groundwater was not encountered.

End of soil boring at 19 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

	RING AND WELL LLATION LOG	AKRF Pro	Iton Green	Мо	Groundwater nitoring Well ID: Sheet 1 of 2	TW-1		Soil Bo	ring ID:	SB-4	
	K RF	Drilling Method: Sampling Method:	Geoprobe 5' Macrocore	Drilling Start Ti	ime: 12:30			Finish Tir	no: 13:30		
	w.	Driller: Weather:	Craig 75°F,		8/9/2017			1 1111311 111	110. 10.00		
New	York, NY 10016	Logged by:	E. Matamoros	Date.	6/9/2017						
Depth (feet)	Well Construction	Surface	Condition: Asphalt	Recovery (Inches)	Soil Borir	ng Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
3		1" diameter P below grade	VC well casing: 0' to 20'	24	Top 6": Asphalt Bottom 18": Brown SAI Silt, little Asphalt (FILL)		ND	ND	ND	ND	
				13	Brown SAND and SILT (FILL)	, little Wood, Gravel	ND	ND	ND	ND	
11 12 13 14 15				13	Brown SAND, some Gr	ravel, Silt	ND	ND	0.7	ND	
16				23	Gray SAND, some Silt,	little Gravel	ND	ND	5.4 27 570	ND	
Notes: Groundwate	er measured at 23 f	nstalled to 30 fee	et below grade.	Ground End of	Imples analyzed for VO dwater encountered at soil boring at 25 feet phase liquid	approximately 23 f	feet belov	v grade du			tallation.
PID = photoionization detector NAPL = non- Soil classifications and descriptions presented are based on the Modified Burn											

	RING AND WELL LLATION LOG	Iton Green	Mo	Groundwater nitoring Well ID: Sheet 2 of 2	TW-	1	Soil Bo	ring ID:	S	6B-4	
	K KF"	Drilling Method: Sampling Method: Driller:	Geoprobe 5' Macrocore Craig	Drilling Start Ti	me: 12:30			Finish Tir	ne: 13:30		
	venue South, 7 th F l oor York, NY 10016	Weather: Logged by:	75°F, E. Matamoros	Date:	8/9/2017						
Depth (feet)	Well Construction		Recovery (Inches)	Soil Boring	Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
21232425262728303132333435		0.020-inch slo to 30' below g	tted PVC well screen: 20'	27	Gray SILT, little Sand, (Clay	Petroleum like	Dry Wet @ 23 Wet	743 188 634 10.5	ND	
36 37											
38											
40 Notes:	Groundwater	Depth Indicator	mples analyzed for VO	Cs, BN-SVOCs, T	L AL Metals,	and PCBs					
	er measured at 23 fe			Groundwater encountered at approximately 23 feet below grade during soil boring installation.					allation.		
Groundwate	er monitoring well in: PID = photoio		soil boring at 25 feet b	elow grade. ppm = parts pe	r million	N	ID = not de	etected			
Soil classifica	PID = photoionization detector NAPL = non-aqueous phase liquid ppm = parts per million ND = not detected Classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.										

امعا	II R	ORING LOG	Hamil	Soil Bo	ring ID:	SB-5				
			AKRF Proje	ect Number: 170029	Sheet	1 of 1		30)- - 5	
	$\Delta \Lambda$	NDL	Drilling Method:	Geoprobe	Drilling					
		K RF	Sampling Method: Driller:	5' Macrocore Craig	Start Time	e: 10:40		Finish Time: 11:00		
440) Park Ave	enue South, 7 th Floor	Weather:	70°F,	D 4 0/0/0047			L		
	New Yo	ork, NY 10016	Logged By:	E. Matamoros	Date: 8/8/	2017	_			
Depth (feet)	Recovery (Inches)	s	Surface Condition	ı: Grass	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
12	28	Brown Sand, little s	Silt, Gravel, Brick,	ND	Moist	ND	ND	2-4 @11:10		
5		T 45", CAND			ND	NID	NID	ND		
6		Top 15": SAND Bottom 15": Brown	n SAND, little Silt	ND ND	ND ND	ND ND	ND ND			
<u>8</u> _ 9 10	31									
		Top 8": Gray SANI	D, little Silt		Pet Like	ND	311.0	ND	10-12 @11:15	
<u>11</u> 12		Next 2": Brown SA	ND, some Silt		Pet Like	ND	214.9	ND		
	36	Last 26": Gray SAI	ND, some Silt		Pet Like	Wet	88.9	ND		
13 14					Pet Like	Wet	36.2	ND		
15					Pet Like	Wet	8.6	ND		
	37	Gray SAND, some	e Silt	ND	Wet	ND	ND			

Notes: Soil sample analyzed for VOCs 8260, BN-SVOCs 8270, TAL metals, and PCBs.

Groundwater encountered at approximately 13 feet below grade during soil boring installation.

End of soil boring at 20 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

SOI	I R	ORING LOG	Hami	Iton Green	Soil Boring ID: SB-6				-6
			AKRF Proje	ect Number: 170029	Sheet	1 of 1	1	30	-0
	> -\	V DE	Drilling Method:	Geoprobe	Drilling		•		
(K RF	Sampling Method: Driller:	5' Macrocore Craig	Start Tim	e: 10:15		Finish Tir	ne: 10:30
440) Park Ave	enue South, 7 th Floor	Weather:	75°F,	D-4 0/0/	10047			
		ork, NY 10016	Logged By:	E. Matamoros	Date: 8/8/	2017			
Depth (feet)	Recovery (Inches)	s	Surface Conditio	n: Grass	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis
		Top 2": Brown SAI	ND, l ittle Organics		ND	ND	ND	ND	
_ 1									
2		Next 34": Brown S Concrete		, Silt, trace Asphalt,	ND	ND	ND	ND	2-4 @ 11:40
	00	Concrete	S (1 III)						
3	36								
4									
5									
6									
7									
	35	Brown SILT, some	s Sand		ND	Moist	ND	ND	
8		Brown oil i, come	, Garra			Wiolot		1,12	
9									
10									0 11 @ 11:45
10						Moist			9-11 @ 11:45
11									
	34	Brown SILT, little S	Sand		ND	Wet	ND	ND	
<u> 12</u>									
13									
44									
<u> 14</u>									
15									
<u> 16</u>									
17									
40									
18									
19									
20									
20									

Notes: Soil sample analyzed for VOCs 8260, BN-SVOCs 8270, TAL metals, and PCBs.

Groundwater encountered at approximately 11 feet below grade during soil boring installation.

End of soil boring at 13 feet below grade due to refusal.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed

for environmental purposes only.

	RING AND WELL LLATION LOG	AKRF Project Number: 170029		Number: 170029 Sheet 1 of 1			2	Soil Boring ID:		SB-7		
	AK RF	Drilling Method: Sampling Method:	Hand Auger	Drilling								
		Driller:	Craig	Start T	ime: 7:30			Finish Ti	me: 10:30			
	Avenue South, 7 th Floor v York, NY 10016	Weather: Logged by:	Indoor E. Matamoros	Date:	8/9/2017							
Depth (feet)	Well Construction		ce Condition: Tile	Recovery (Inches)	Soil Borir	ng Log	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
1		below grade	VC well casing: 0' to 2' otted PVC well screen: 2' grade	N/A	Brown SAND, some Sil (FILL)	lt, little Brick, Gravel	ND	ND	ND	ND	(2-4)	
				N/A	Brown SAND, some Sil (FILL)	lt, little Brick, Gravel	ND	ND Wet	ND	ND	(8-10)	
11 12 13 14 15												
16 17 18 19												
20												
20 otes:	Groundwater	Depth Indicator		Soil sa	 mples analyzed for VO	Cs, BN-SVOCs, TAI	L Metals,	and PCBs	<u> </u>			
	ter measured at 10.3	·			dwater encountered at					oring ins	tallation.	
	er monitoring well in	_			soil boring at 12 feet b			-	-	-		
		nization detector			phase liquid	ppm = parts per	million		ND = not d	etected		

SOI	I RC	ORING LOG	Hami	iton Green	Soil Bo	Soil Boring ID:			SB-8		
			AKRF Proje	ect Number: 170029	Shee	t 1 of 1	1	<u> </u>			
	$>\Lambda$	V DE	Drilling Method:	Geoprobe	Drilling			_			
(K RF	Sampling Method: Driller:	5' Macrocore Craig	Start Tim	e: 10:00		Finish Tir	me: 10:15		
440	Park Ave	enue South, 7 th Floor	Weather:	70°F,		/00.4 =		<u> </u>			
		ork, NY 10016	Logged By:	E. Matamoros	Date: 8/8	/2017					
Depth (feet)	Recovery (Inches)	s	Surface Condition	n: Grass	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis		
1		Top 6": Brown SAN little Orga	ND some Silt, anics (roots, grass	s)	ND	ND	ND	ND	SB-8 (2-4)		
2		Bottom 11": GRAV	'EL (FILL)		ND	ND	ND	ND	3b-o (2-4)		
3	17										
4											
5											
6		Top 7": GRAVEL,	some Sand, little S	Silt, trace Brick (FILL)	ND	ND	ND	ND			
		Bottom 10": Dark E	Brown SAND, som	e Silt	ND	ND	ND	ND			
7	47										
8	17										
9											
10						Moist			SB-8 (9-11)		
		Top 16": Gray-Brov	wn SILT and SAN	D							
11		Bottom 23": Brown	SAND								
<u> 12</u>											
13	39				ND	Wet	ND	ND			
14											
15											
<u> 16</u>											
17											
18											
19											
20											
Notes:	Soils	amnle analyzed fo	or VOCs 8260 BN	I-SVOCs 8270. TAL me	etals and Po	?Bs					

for environmental purposes only.

SO	I D	DINC LOC	Hami	ton Green	Soil Bo	ring ID:		C D	0	
30	L D	ORING LOG	AKRF Proje	ect Number: 170029	Sheet	1 of 1		SB	-9	
	N	VDT	Drilling Method:	Geoprobe	Drilling					
		K RF	Sampling Method: Driller:	5' Macrocore Craig	Start Time: 9:15		Finish Time: 9:30		ne: 9:30	
440) Park Ave	enue South, 7 th Floor	Weather:	70°F,	D-4 0/0/	20047				
		ork, NY 10016	Logged By:	E. Matamoros	Date: 8/8/	2017			1	
Depth (feet)	Recovery (Inches)	s	Surface Condition	ı: Grass	Odor	Moisture	PID (ppm)	NAPL	Soil Samples Collected for Laboratory Analysis	
		Top 2": Top Soil			ND	ND	ND	ND		
12		Next 3": CONCRE	TE (FILL)		ND	ND	ND	ND	SB-9 (1-3)	
3	20	Bottom 15": Brown	SAND, little Silt, (Concrete, Gravel (Fill).	ND	ND	ND	ND		
4										
5										
		Top 2": Red BRIC	K (FILL).		ND	Moist	ND	ND		
6		Bottom 21": Brown	SAND, little Silt, (Gravel, Brick (Fill)	ND	Moist	ND	ND		
7				, ,						
8	23									
9									SB-9 (8-10)	
						\/\/a4				
10						Wet		1		
11										
12										
	32	Brown SILT and S	AND		ND	Wet	ND	ND		
_ <u>13</u> _										
_ 14										
15										
<u> 16</u>										
17										
18										
19										
20										
	: Soil s	ample analyzed fo	or VOCs 8260. BN	-SVOCs 8270, TAL met	als. and PC	CBs.				

Groundwater encountered at approximately 10 feet below grade during soil boring installation.

End of soil boring at 15 feet below grade.

PID = photoionization detector ppm = parts per million NAPL = non-aqueous phase liquid ND = not detected

Soil classifications and descriptions presented are based on the Modified Burmister Classification System. Descriptions were developed for environmental purposes only.

AKRF Project No:170029Point Installed By:CraigProject Location:White Plains, NYInstallation Method:GeoprobeClient:Street-WorksSampled By:E. MatamorosDate:8/8/2017Weather:70 F							
Client:Street-WorksSampled By:E. MatamorosDate:8/8/2017Weather:70 F							
Date: 8/8/2017 Weather: 70 F							
Sample Setup							
Vapor Point Depth: 60 Inches Total Time of Purge: 10 Minut	es						
Tubing Volume: In ³ Purge Volume: 2L							
Purging Pump: GilAir Plus Purged Vapor PID: 92.6	ppm						
Pump Flow Rate*: 0.2 L/min Helium Concentration: 0.0	%						
Sample Identification							
Soil Vapor Point ID: SV-1 SUMMA® Canister ID: 4166							
Flow Controller ID: 5575 Soil Vapor Sample ID: SV-1							
Sample Collection							
Time Vacuum (in/Hg) Background PID Notes							
Time Started: 12:25 -30 ND							
Time Halfway: 13:30 -14 ND							
Time Stopped: 14:26 -6 ND							
*Purge flow rate not to exceed 0.2 L/min.	*Purge flow rate not to exceed 0.2 L/min.						
Notes: $ND = non-detect$ $ppm = parts per million$ $L/min = Liters p$	L/min = Liters per minute						
Soil vapor sample SV-1 collected in a 6-L SUMMA [®] canister using a 2-hour flow controller	Soil vapor sample SV-1 collected in a 6-L SUMMA® canister using a 2-hour flow controller.						

t No:	170	029	Point Installed By:	Craig				
on:	White Pl	ains, NY	Installation Method:	Geoprobe				
	Street-	Works	Sampled By:	E. Matamoros				
	8/8/2017		Weather:	70 F				
		S	ample Setup					
epth:	60	Inches	Total Time of Purge:	10 Minute	es			
ne:		In ³	Purge Volume:	2L				
):	GilAir Plus		Purged Vapor PID:	121.4	ppm			
ate*:	0.2	L/min	Helium Concentration:	0.0	%			
		Samp	ole Identification					
int ID:	SV	7-2	SUMMA® Canister ID:	2843				
er ID:	31	25	Soil Vapor Sample ID:	SV-2				
		Sar	nple Collection					
)	Vacuum	(in/Hg)	Background PID	Notes				
13:00	-2	29	ND					
14:00	-1	16	ND					
15:00	-6		ND					
	*Purge flow rate not to exceed 0.2 L/min.							
S:	ND = non	-detect	L/min = Liters per minute					
		Soil vapor sample SV-2 collected in a 6-L SUMMA® canister using a 2-hour flow controller.						
	on: Depth: Depth: De: Depth: De: De: Depth: De: De: Depth: De: De: Depth: De: Depth: De: Depth: Dept	White Pl Street- 8/8/2	on: White Plains, NY Street-Works 8/8/2017 Septh: 60 Inches ie: In³ c: GilAir Plus int ID: Sumplement Samplement Sumplement int ID: SV-2 er ID: 3125 Samplement Vacuum (in/Hg) 13:00 -29 14:00 -16 15:00 -6 *Purge flow rate not to exceed ND = non-detect	on: White Plains, NY Installation Method: Street-Works Sampled By: 8/8/2017 Weather: Sample Setup Pepth: 60 Inches Total Time of Purge: Per	Notes			

oject No:	170	0029	Point Installed By:	Craig			
cation:	White P	lains, NY	Installation Method:	Geoprobe			
	Street-Works		Sampled By:	E. Matamoros			
	8/9/2017		Weather:	70 F			
		S	Sample Setup				
nt Depth:	60	Inches	Total Time of Purge:	10 Minu	tes		
olume:		In ³	Purge Volume:	2L			
ump:	GilAir Plus		Purged Vapor PID:	8.4	ppm		
w Rate*:	0.2	L/min	Helium Concentration:	0.0	%		
		Samj	ple Identification				
r Point ID:	SV	V-3	SUMMA® Canister ID:	4363			
troller ID:	51	88	Soil Vapor Sample ID:	SV-3			
		Sar	nple Collection				
ime	Vacuun	n (in/Hg)	Background PID	Notes			
10:25		27	ND				
11:30	-	13	ND				
12:20	-6		ND				
	*Purge flow rate not to exceed 0.2 L/min.						
otes:					per minute		
	Soil vapor sample SV-3 collected in a 6-L SUMMA [®] canister using a 2-hour flow controller.						
	nt Depth: olume: ump: w Rate*: Point ID: croller ID: 11:30 12:20	Street	White Plains, NY Street-Works 8/9/2017	Street-Works Sampled By: 8/9/2017 Weather:	Street-Works Sampled By: E. Matamoros		

AKRF Project No:		0029	Point Installed By:	Craig				
cation:	White Pl	lains, NY	Installation Method:	Geoprobe				
	Street-	-Works	Sampled By:	E. Matamoros				
	8/9/	2017	Weather:	70 F				
		S	Sample Setup					
nt Depth:	60	Inches	Total Time of Purge:	10 Minut	es			
olume:		In ³	Purge Volume:	2L				
ump:	GilAir Plus	•	Purged Vapor PID:	4.2	ppm			
w Rate*:	0.2	L/min	Helium Concentration:	0.0	%			
Sample Identification								
apor Point ID: SV-4 SUMMA® Canister ID: 264		2644	4					
troller ID:	25	528	Soil Vapor Sample ID:	SV-4				
		Sar	nple Collection					
ime	Vacuun	n (in/Hg)	Background PID	Notes				
11:20	-7	29	ND					
			ND					
13:15	-	÷5	ND					
	*Purge flow rate	e not to exceed	1 0.2 L/min.					
otes:	ND = non	-detect	ppm = parts per million	L/min = Liters p	er minute			
	Soil vapor samp	ole SV-4 collec	eted in a 6-L SUMMA [®] canister usi	ng a 2-hour flow controller	r.			
	nt Depth: olume: ump: w Rate*: Point ID: croller ID: 11:20	Street S	White Plains, NY Street-Works 8/9/2017	Street-Works Sampled By: 8/9/2017 Weather:	Street-Works Sampled By: E. Matamoros			

AKRF Project No:170029Point Installed By:CraigProject Location:White Plains, NYInstallation Method:GeoprobeClient:Street-WorksSampled By:E. MatamorosDate:8/9/2017Weather:70 FSample SetupVapor Point Depth:60InchesTotal Time of Purge:10 Minutes								
Client:Street-WorksSampled By:E. MatamorosDate:8/9/2017Weather:70 FSample SetupVapor Point Depth:60InchesTotal Time of Purge:10 Minutes								
Date:8/9/2017Weather:70 FSample SetupVapor Point Depth:60InchesTotal Time of Purge:10 Minutes								
Sample Setup Vapor Point Depth: 60 Inches Total Time of Purge: 10 Minutes								
Vapor Point Depth: 60 Inches Total Time of Purge: 10 Minutes								
	3							
Tubing Volume: In ³ Purge Volume: 2L								
Purging Pump:GilAir PlusPurged Vapor PID:6.8	ppm							
Pump Flow Rate*: 0.2 L/min Helium Concentration: 0.0	%							
Sample Identification								
Soil Vapor Point ID: SV-5 SUMMA® Canister ID: 5609	9							
Flow Controller ID: 4187 Soil Vapor Sample ID: SV-5								
Sample Collection								
Time Vacuum (in/Hg) Background PID Notes								
Time Started: 10:34 -30 ND								
Time Halfway: 11:33 -19 ND								
Time Stopped: 12:30 -8 ND								
*Purge flow rate not to exceed 0.2 L/min.								
Notes: ND = non-detect ppm = parts per million L/min = Liters per	r minute							
Soil vapor sample SV-5 collected in a 6-L SUMMA [®] canister using a 2-hour flow controller.								

Ambient Air Sample Log

				9
AKRF Pro	oject No:	170029	Client:	StreetWorks
Project Lo	ocation:	White Plains, NY	Sampled By:	E. Matamoros
Date:		8/9/2017	Weather:	70 F
		S	Sample Setup	
		Sam	ple Identification	
On-Site L	ocation:	AA-1	SUMMA® Canister ID:	4829
Flow Con	low Controller ID: 5195 Ambient Air Sample ID:		Ambient Air Sample ID:	AA-1
		Sai	mple Collection	
Time		Vacuum (in/Hg)	Background PID	Potential VOC Sources/Notes
Time Started:	11:40	-28	ND	
Time:			ND	
Time Halfway:			ND	
Time:			ND	
Time Stopped:	13:30	-5.00	ND	
N	otes:	ND = non-detect	ppm = parts per million	L/min = Liters per minute
17	oies.	Ambient air sample AA-1 col	lected in a 6-L SUMMA® canister u	sing a 2-hour flow controller.

APPENDIX D LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Job Number: 460-138836-1

Job Description: Hamilton Green; #170029

For:
AKRF Inc
34 South Broadway
Suite 314
White Plains, NY 10601

Attention: Ms. Elizabeth Matamoros

Designee for

Allion L. Bernett

Melissa Haas, Project Manager I 777 New Durham Road, Edison, NJ, 08817 (203)944-1310

melissa.haas@testamericainc.com 08/23/2017

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132

Allison L Bennett Project Manager I 8/23/2017 3:25 PM Job Number: 460-138836-1

Job Description: Hamilton Green; #170029

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverable has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Approved for release. Allison L Bennett Project Manager I 8/23/2017 3:25 PM

Designee for Melissa Haas

Allian L. Bennett

Table of Contents

Cover Title Page	1
Report Narrative	4
Executive Summary	8
Method Summary	27
Method / Analyst Summary	28
Sample Summary	29
Sample Results	30
Sample Datasheets	31
Data Qualifiers	205
QC Results	206
Qc Association Summary	207
Surrogate Recovery Report	219
Qc Reports	226
Client Chain of Custody	301
Sample Receipt Checklist	308

CASE NARRATIVE

Client: AKRF Inc

Project: Hamilton Green; #170029

Report Number: 460-138836-1

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 8/9/2017 11:25 AM, 8/10/2017 11:15 AM and 8/11/2017 10:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 3 coolers at receipt time were 1.2° C, 1.3° C and 1.7° C.

Receipt Exceptions

The container label for the following sample(s) did not match the information listed on the Chain-of-Custody (COC): For sample -11, the Chain of Custody ID states SB-9 (1-3), sample IDs on associated containers state SB-9 (2-4).

The following sample was activated for VOC analysis by the client on 8/18/17: GW-4 (460-139067-4).

The following sample was canceled for SVOC analysis by the client on 8/22/17: GW-4 (460-139067-4).

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples SB-1 (2-4) (460-138836-1), SB-3 (1-3) (460-138908-1), SB-1 (9-11) (460-138836-2), SB-3 (17-19) (460-138908-2), SB-2 (1-3) (460-138836-3), SB-4 (1-3) (460-138908-3), SB-2 (16-18) (460-138836-4), SB-4 (21-23) (460-138908-4), SB-5 (2-4) (460-138836-5), SB-7 (1-3) (460-138908-5), SB-5 (10-12) (460-138836-6), SB-7 (8-10) (460-138908-6), SB-6 (2-4) (460-138836-7), SB-6 (9-11) (460-138836-8), SB-8 (2-4) (460-138836-9), SB-8 (9-11) (460-138836-10), SB-9 (1-3) (460-138836-11) and SB-9 (8-10) (460-138836-12) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260C. The samples were prepared on 08/09/2017 and 08/10/2017 and 08/16/2017 and 08/17/2017.

The continuing calibration verification (CCV) analyzed in batch 456825 was outside the method criteria for the following analyte: Bromoform. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

The continuing calibration verification (CCV) analyzed in batch 456664 was outside the method criteria for the following analyte: Bromoform. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

The continuing calibration verification (CCV) analyzed in batch 456539 was outside the method criteria for the following analyte: Bromoform. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

The continuing calibration verification (CCV) analyzed in batch 460-456502 was outside the method criteria for the following analyte(s): Chloromethane (biased low) and Acrolein (biased high). A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any

detection for the affected analyte(s) is considered estimated.

The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for analytical batch 460-456502 recovered outside control limits for the following analyte: Acrolein. This analyte was biased high in the LCS/LCSD and was not detected in the associated samples; therefore, the data have been reported.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: SB-4 (21-23) (460-138908-4). Elevated reporting limits (RLs) are provided.

No difficulties were encountered during the volatiles analysis.

All quality control parameters were within the acceptance limits.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples TW-1 (460-139067-1), TW-2 (460-139067-2), GW-3 (460-139067-3), GW-4 (460-139067-4), GT-1 (460-139067-5), GT-2 (460-139067-6), GT-3 (460-139067-7), GT-4 (460-139067-8) and TRIP BLANK (460-139067-9) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Methods 8260C. The samples were analyzed on 08/15/2017 and 08/21/2017.

The continuing calibration verification (CCV) associated with batch 457628 recovered above the upper control limit for Trichlorofluoromethane and Freon TF. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Refer to the QC report for details.

The following sample was diluted to bring the concentration of target analytes within the calibration range: GT-2 (460-139067-6). Elevated reporting limits (RLs) are provided.

The following sample was diluted to bring the concentration of target analytes within the calibration range: TW-1 (460-139067-1). Elevated reporting limits (RLs) are provided.

No other difficulties were encountered during the volatiles analysis.

All quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples SB-1 (2-4) (460-138836-1), SB-3 (1-3) (460-138908-1), SB-1 (9-11) (460-138836-2), SB-3 (17-19) (460-138908-2), SB-2 (1-3) (460-138836-3), SB-4 (1-3) (460-138908-3), SB-2 (16-18) (460-138836-4), SB-4 (21-23) (460-138908-4), SB-5 (2-4) (460-138836-5), SB-7 (1-3) (460-138908-5), SB-5 (10-12) (460-138836-6), SB-7 (8-10) (460-138908-6), SB-6 (2-4) (460-138836-7), SB-6 (9-11) (460-138836-8), SB-8 (2-4) (460-138836-9), SB-8 (9-11) (460-138836-10), SB-9 (1-3) (460-138836-11) and SB-9 (8-10) (460-138836-12) were analyzed for semivolatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 08/11/2017 and analyzed on 08/11/2017, 08/12/2017, 08/14/2017, 08/15/2017 and 08/16/2017.

The continuing calibration verification (CCV) analyzed in batch 460-456195 was outside the method criteria for the following analyte(s): 3-Nitroaniline and 4-Nitroaniline. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The continuing calibration verification (CCV) analyzed in batch 460-456219 was outside the method criteria for the following analyte(s): 2,2'-oxybis[1-chloropropane]. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

The continuing calibration verification (CCV) analyzed in batch 460-456035 was outside the method criteria for the following analyte(s): 3-Nitroaniline and 4-Nitroaniline. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Surrogates recoveries for the following laboratory control sample (LCS) associated with batch 460-455775 were outside the upper control limits. All spike recoveries were within limits. Sample has been qualified and reported.

Nitrobenzene-d5 (Surr) failed the surrogate recovery criteria high for 460-138570-A-24-B MS.

Nitrobenzene-d5 (Surr) failed the surrogate recovery criteria high for 460-138570-A-24-C MSD.

Several analytes failed the recovery criteria low for the MS of sample 460-138308-3 in batch 460-456219. Several analytes failed the recovery criteria high.

For the MSD of sample 460-138308-3 in batch 460-456219, Several analytes failed the recovery criteria low. Several analytes failed the recovery criteria high. Also, 3-Nitroaniline and Naphthalene exceeded the RPD limit.

Several analytes failed the recovery criteria low for the MS of sample 460-138570-24 in batch 460-456035. Several analytes failed the recovery criteria high.

Several analytes failed the recovery criteria low for the MSD of sample 460-138570-24 in batch 460-456035. 2,6-Dinitrotoluene, Isophorone, N-Nitrosodi-n-propylamine and N-Nitrosodiphenylamine failed the recovery criteria high.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

SEMIVOLATILE ORGANIC COMPOUNDS (GC/MS)

Samples TW-1 (460-139067-1), TW-2 (460-139067-2), GW-3 (460-139067-3), GT-1 (460-139067-5), GT-2 (460-139067-6), GT-3 (460-139067-7) and GT-4 (460-139067-8) were analyzed for semivolatile organic compounds (GC/MS) in accordance with EPA SW-846 Method 8270D. The samples were prepared on 08/13/2017 and analyzed on 08/14/2017.

The continuing calibration verification (CCV) analyzed in batch 460-456044 was outside the method criteria for the following analyte(s): N-Nitrosodi-n-propylamine and Hexachlorocyclopentadiene. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Hexachloroethane was detected in method blank MB 460-455934/1-A at a level that was above the method detection limit but below the reporting limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. The value should be considered an estimate, and has been flagged. If the associated sample reported a result above the MDL and/or RL, the result has been flagged.

A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for five analytes to recover outside criteria for this method when a full list spike is utilized. The LCS associated with batch 460-455934 had one analyte (Hexachlorocyclopentadiene) outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified. LCS 460-455934/2-A.

A full list spike was utilized for this method. Due to the large number of spiked analytes, there is a high probability that one or more analytes will recover outside acceptance limits. The laboratory's SOP allows for five analytes to recover outside criteria for this method when a full list spike is utilized. The LCSD associated with batch 460-455934 had two analytes (4-Chloroaniline and Hexachlorocyclopentadiene) outside control limits; therefore, re-extraction/re-analysis was not performed. These results have been reported and qualified. LCSD 460-455934/3-A.

Refer to the QC report for details.

No other difficulties were encountered during the semivolatiles analysis.

All other quality control parameters were within the acceptance limits.

POLYCHLORINATED BIPHENYLS

Samples SB-1 (2-4) (460-138836-1), SB-3 (1-3) (460-138908-1), SB-1 (9-11) (460-138836-2), SB-3 (17-19) (460-138908-2), SB-2 (1-3) (460-138836-3), SB-4 (1-3) (460-138908-3), SB-2 (16-18) (460-138836-4), SB-4 (21-23) (460-138908-4), SB-5 (2-4) (460-138836-5), SB-7 (1-3) (460-138908-5), SB-5 (10-12) (460-138836-6), SB-7 (8-10) (460-138908-6), SB-6 (2-4) (460-138836-7), SB-6 (9-11) (460-138836-8), SB-8 (2-4) (460-138836-9), SB-8 (9-11) (460-138836-10), SB-9 (1-3) (460-138836-11) and SB-9 (8-10) (460-138836-12) were analyzed for polychlorinated biphenyls in accordance with EPA SW-846 Method 8082A. The samples were prepared on 08/09/2017 and 08/11/2017 and analyzed on 08/10/2017, 08/11/2017, 08/13/2017, 08/14/2017 and 08/16/2017.

Aroclor 1016 exceeded the RPD limit for the MSD of sample 460-138719-1 in batch 460-455410.

Refer to the QC report for details.

No other difficulties were encountered during the PCBs analysis.

All other quality control parameters were within the acceptance limits.

METALS

Samples SB-1 (2-4) (460-138836-1), SB-3 (1-3) (460-138908-1), SB-1 (9-11) (460-138836-2), SB-3 (17-19) (460-138908-2), SB-2 (1-3) (460-138836-3), SB-4 (1-3) (460-138908-3), SB-2 (16-18) (460-138836-4), SB-4 (21-23) (460-138908-4), SB-5 (2-4) (460-138836-5), SB-7 (1-3) (460-138908-5), SB-5 (10-12) (460-138836-6), SB-7 (8-10) (460-138908-6), SB-6 (2-4) (460-138836-7), SB-6 (9-11) (460-138836-8), SB-8 (2-4) (460-138836-9), SB-8 (9-11) (460-138836-10), SB-9 (1-3) (460-138836-11) and SB-9 (8-10) (460-138836-12)

were analyzed for Metals in accordance with EPA SW-846 Methods 6010C. The samples were prepared on 08/10/2017 and 08/12/2017 and analyzed on 08/10/2017, 08/13/2017, 08/14/2017 and 08/17/2017.

The following sample was diluted because the initial analysis produced a significant negative result for antimony - the absolute value exceeded the reporting limit (RL): SB-3 (17-19) (460-138908-2). Reporting limits (RLs) are elevated as a result.

Antimony failed the recovery criteria low for the MS of sample 460-138795-9 in batch 460-455426. Aluminum and Iron failed the recovery criteria high.

Antimony, Iron and Potassium failed the recovery criteria low for the MS of sample 460-138837-2 in batch 460-455426. Aluminum failed the recovery criteria high.

Aluminum and Iron failed the recovery criteria high for the MS of sample 460-138986-6 in batch 460-456155.

Lead exceeded the RPD limit for the duplicate of sample 460-138795-9.

Arsenic exceeded the RPD limit for the duplicate of sample 460-138986-6.

The presence of the '4' qualifier in the data indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

Samples SB-1 (2-4) (460-138836-1)[4X], SB-3 (1-3) (460-138836-1)[4X], SB-3 (17-19) (460-138836-2)[20X], SB-1 (9-11) (460-138836-2)[4X], SB-3 (17-19) (460-138836-2)[4X], SB-2 (1-3) (460-138836-3)[4X], SB-4 (1-3) (460-138836-3)[4X], SB-2 (16-18) (460-138836-4)[4X], SB-4 (21-23) (460-138836-4)[4X], SB-5 (2-4) (460-138836-5)[4X], SB-7 (1-3) (460-138836-5)[4X], SB-5 (10-12) (460-138836-6)[4X], SB-7 (1-3) (460-138836-6)[4X], SB-8 (2-4) (460-138836-7)[4X], SB-8 (9-11) (460-138836-10)[4X], SB-8 (2-4) (460-138836-9)[4X], SB-8 (9-11) (460-138836-10)[4X], SB-9 (1-3) (460-138836-11)[4X] and SB-9 (8-10) (460-138836-12)[4X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the Metals analysis.

All other quality control parameters were within the acceptance limits.

MERCURY

Samples SB-1 (2-4) (460-138836-1), SB-3 (1-3) (460-138908-1), SB-1 (9-11) (460-138836-2), SB-3 (17-19) (460-138908-2), SB-2 (1-3) (460-138836-3), SB-4 (1-3) (460-138908-3), SB-2 (16-18) (460-138836-4), SB-4 (21-23) (460-138908-4), SB-5 (2-4) (460-138836-5), SB-7 (1-3) (460-138908-5), SB-5 (10-12) (460-138836-6), SB-7 (8-10) (460-138908-6), SB-6 (2-4) (460-138836-7), SB-6 (9-11) (460-138836-8), SB-8 (2-4) (460-138836-9), SB-8 (9-11) (460-138836-10), SB-9 (1-3) (460-138836-11) and SB-9 (8-10) (460-138836-12) were analyzed for mercury in accordance with EPA SW-846 Method 7471B. The samples were prepared and analyzed on 08/11/2017 and 08/14/2017.

No difficulties were encountered during the Hg analysis.

All quality control parameters were within the acceptance limits.

PERCENT SOLIDS/PERCENT MOISTURE

Samples SB-1 (2-4) (460-138836-1), SB-3 (1-3) (460-138908-1), SB-1 (9-11) (460-138836-2), SB-3 (17-19) (460-138908-2), SB-2 (1-3) (460-138836-3), SB-4 (1-3) (460-138908-3), SB-2 (16-18) (460-138836-4), SB-4 (21-23) (460-138908-4), SB-5 (2-4) (460-138836-5), SB-7 (1-3) (460-138908-5), SB-5 (10-12) (460-138836-6), SB-7 (8-10) (460-138908-6), SB-6 (2-4) (460-138836-7), SB-6 (9-11) (460-138836-8), SB-8 (2-4) (460-138836-9), SB-8 (9-11) (460-138836-10), SB-9 (1-3) (460-138836-11) and SB-9 (8-10) (460-138836-12) were analyzed for percent solids/percent moisture in accordance with EPA Method CLPISM01.2 (Exhibit D) Modified. The samples were analyzed on 08/14/2017 and 08/16/2017.

No difficulties were encountered during the %solids/moisture analysis.

All quality control parameters were within the acceptance limits.

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138836-1 SB-1 (2-4)					
2-Methylnaphthalene	0.019	J	0.39	mg/Kg	8270D
Acenaphthylene	0.019	J	0.39	mg/Kg	8270D 8270D
Anthracene	0.092	J	0.39	mg/Kg	8270D 8270D
	0.047	J	0.039	mg/Kg	8270D 8270D
Benzo[a]anthracene	0.44		0.039		8270D 8270D
Benzo[a]pyrene	0.85		0.039	mg/Kg	8270D 8270D
Benzo[b]fluoranthene	0.65		0.039	mg/Kg	8270D 8270D
Benzo[g,h,i]perylene	0.34			mg/Kg	
Benzo[k]fluoranthene			0.039	mg/Kg	8270D
Bis(2-chloroethoxy)methane	0.012	J	0.39	mg/Kg	8270D
Carbazole	0.027	J	0.39	mg/Kg	8270D
Chrysene	0.63		0.39	mg/Kg	8270D
Dibenz(a,h)anthracene	0.13		0.039	mg/Kg	8270D
Dibenzofuran	0.016	J	0.39	mg/Kg	8270D
Fluoranthene	0.60		0.39	mg/Kg	8270D
Fluorene	0.019	J	0.39	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.49		0.039	mg/Kg	8270D
Naphthalene	0.051	J	0.39	mg/Kg	8270D
Phenanthrene	0.27	J	0.39	mg/Kg	8270D
Pyrene	0.71		0.39	mg/Kg	8270D
Aluminum	11600		44.8	mg/Kg	6010C
Arsenic	2.0	J	3.4	mg/Kg	6010C
Barium	78.4		44.8	mg/Kg	6010C
Beryllium	0.053	J	0.45	mg/Kg	6010C
Calcium	4270		1120	mg/Kg	6010C
Cobalt	7.6	J	11.2	mg/Kg	6010C
Chromium	24.9		2.2	mg/Kg	6010C
Copper	38.0		5.6	mg/Kg	6010C
Iron	19700		33.6	mg/Kg	6010C
Potassium	2080		1120	mg/Kg	6010C
Magnesium	5340		1120	mg/Kg	6010C
Manganese	440		3.4	mg/Kg	6010C
Sodium	383	J	1120	mg/Kg	6010C
Nickel	16.4		9.0	mg/Kg	6010C
Lead	40.7		2.2	mg/Kg	6010C
Vanadium	35.3		11.2	mg/Kg	6010C
Zinc	568		6.7	mg/Kg	6010C
Mercury	0.095		0.018	mg/Kg	7471B
Percent Moisture	14.9		1.0	%	Moisture
Percent Solids	85.1		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138836-2	SB-1 (9-11)					
Isophorone	` ,	0.011	J	0.15	mg/Kg	8270D
Aluminum		9260		41.2	mg/Kg	6010C
Barium		121		41.2	mg/Kg	6010C
Calcium		2210		1030	mg/Kg	6010C
Cobalt		8.9	J	10.3	mg/Kg	6010C
Chromium		27.0		2.1	mg/Kg	6010C
Copper		23.9		5.1	mg/Kg	6010C
Iron		20000		30.9	mg/Kg	6010C
Potassium		3090		1030	mg/Kg	6010C
Magnesium		4610		1030	mg/Kg	6010C
Manganese		314		3.1	mg/Kg	6010C
Sodium		346	J	1030	mg/Kg	6010C
Nickel		17.1		8.2	mg/Kg	6010C
Lead		3.0		2.1	mg/Kg	6010C
Vanadium		33.9		10.3	mg/Kg	6010C
Zinc		47.9		6.2	mg/Kg	6010C
Percent Moisture		9.2		1.0	%	Moisture
Percent Solids		90.8		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138836-3 SB-2 (1-3)					
2-Butanone (MEK)	0.0026	J	0.0044	mg/Kg	8260C
Acetone	0.014		0.0044	mg/Kg	8260C
Methylene Chloride	0.00073	J	0.00087	mg/Kg	8260C
2-Methylnaphthalene	0.0092	J	0.35	mg/Kg	8270D
Acenaphthene	0.024	J	0.35	mg/Kg	8270D
Anthracene	0.053	J	0.35	mg/Kg	8270D
Benzo[a]anthracene	0.15		0.035	mg/Kg	8270D
Benzo[a]pyrene	0.13		0.035	mg/Kg	8270D
Benzo[b]fluoranthene	0.18		0.035	mg/Kg	8270D
Benzo[g,h,i]perylene	0.096	J	0.35	mg/Kg	8270D
Benzo[k]fluoranthene	0.080		0.035	mg/Kg	8270D
Carbazole	0.029	J	0.35	mg/Kg	8270D
Chrysene	0.17	J	0.35	mg/Kg	8270D
Dibenz(a,h)anthracene	0.018	J	0.035	mg/Kg	8270D
Dibenzofuran	0.017	J	0.35	mg/Kg	8270D
Fluoranthene	0.31	J	0.35	mg/Kg	8270D
Fluorene	0.028	J	0.35	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.093		0.035	mg/Kg	8270D
Naphthalene	0.020	J	0.35	mg/Kg	8270D
Phenanthrene	0.24	J	0.35	mg/Kg	8270D
Pyrene	0.30	J	0.35	mg/Kg	8270D
Aluminum	12900		42.9	mg/Kg	6010C
Arsenic	2.2	J	3.2	mg/Kg	6010C
Barium	119		42.9	mg/Kg	6010C
Calcium	1770		1070	mg/Kg	6010C
Cobalt	9.1	J	10.7	mg/Kg	6010C
Chromium	29.1		2.1	mg/Kg	6010C
Copper	24.3		5.4	mg/Kg	6010C
Iron	26000		32.2	mg/Kg	6010C
Potassium	2600		1070	mg/Kg	6010C
Magnesium	4320		1070	mg/Kg	6010C
Manganese	405		3.2	mg/Kg	6010C
Sodium	574	J	1070	mg/Kg	6010C
Nickel	19.3		8.6	mg/Kg	6010C
Lead	18.9		2.1	mg/Kg	6010C
Vanadium	40.3		10.7	mg/Kg	6010C
Zinc	60.1		6.4	mg/Kg	6010C
Mercury	0.021		0.017	mg/Kg	7471B
Percent Moisture	6.8		1.0	%	Moisture
Percent Solids	93.2		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138836-4	SB-2 (16-18)					
2-Butanone (MEK)		0.0024	J	0.0047	mg/Kg	8260C
Acetone		0.011		0.0047	mg/Kg	8260C
Fluoranthene		0.049	J	0.37	mg/Kg	8270D
Phenanthrene		0.029	J	0.37	mg/Kg	8270D
Pyrene		0.039	J	0.37	mg/Kg	8270D
Aluminum		7660		41.5	mg/Kg	6010C
Arsenic		1.2	J	3.1	mg/Kg	6010C
Barium		94.4		41.5	mg/Kg	6010C
Calcium		2130		1040	mg/Kg	6010C
Cobalt		9.3	J	10.4	mg/Kg	6010C
Chromium		21.4		2.1	mg/Kg	6010C
Copper		12.4		5.2	mg/Kg	6010C
Iron		14500		31.2	mg/Kg	6010C
Potassium		2120		1040	mg/Kg	6010C
Magnesium		4360		1040	mg/Kg	6010C
Manganese		173		3.1	mg/Kg	6010C
Sodium		127	J	1040	mg/Kg	6010C
Nickel		16.1		8.3	mg/Kg	6010C
Lead		3.8		2.1	mg/Kg	6010C
Vanadium		29.3		10.4	mg/Kg	6010C
Zinc		42.7		6.2	mg/Kg	6010C
Percent Moisture		10.8		1.0	%	Moisture
Percent Solids		89.2		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138836-5 SB-5 (2-4)					
1,2-Dichloroethane	0.0011		0.0011	mg/Kg	8260C
Acetone	0.0046	J	0.0054	mg/Kg	8260C
Benzene	0.0057		0.0011	mg/Kg	8260C
Ethylbenzene	0.00080	J	0.0011	mg/Kg	8260C
m-Xylene & p-Xylene	0.0041		0.0011	mg/Kg	8260C
o-Xylene	0.00095	J	0.0011	mg/Kg	8260C
Toluene	0.013		0.0011	mg/Kg	8260C
2-Methylnaphthalene	0.081	J	0.35	mg/Kg	8270D
Acenaphthene	0.041	J	0.35	mg/Kg	8270D
Acenaphthylene	0.031	J	0.35	mg/Kg	8270D
Anthracene	0.13	J	0.35	mg/Kg	8270D
Benzo[a]anthracene	0.50		0.035	mg/Kg	8270D
Benzo[a]pyrene	0.52		0.035	mg/Kg	8270D
Benzo[b]fluoranthene	0.85		0.035	mg/Kg	8270D
Benzo[g,h,i]perylene	0.28	J	0.35	mg/Kg	8270D
Benzo[k]fluoranthene	0.26		0.035	mg/Kg	8270D
Bis(2-ethylhexyl) phthalate	0.026	J	0.35	mg/Kg	8270D
Butyl benzyl phthalate	0.021	J	0.35	mg/Kg	8270D
Carbazole	0.086	J	0.35	mg/Kg	8270D
Chrysene	0.52		0.35	mg/Kg	8270D
Dibenz(a,h)anthracene	0.10		0.035	mg/Kg	8270D
Dibenzofuran	0.030	J	0.35	mg/Kg	8270D
Fluoranthene	0.94		0.35	mg/Kg	8270D
Fluorene	0.053	J	0.35	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.43		0.035	mg/Kg	8270D
Naphthalene	0.10	J	0.35	mg/Kg	8270D
Phenanthrene	0.56		0.35	mg/Kg	8270D
Pyrene	0.76		0.35	mg/Kg	8270D
Aluminum	11900		40.5	mg/Kg	6010C
Arsenic	4.3		3.0	mg/Kg	6010C
Barium	122		40.5	mg/Kg	6010C
Beryllium	0.11	J	0.40	mg/Kg	6010C
Calcium	34600		1010	mg/Kg	6010C
Cadmium	0.68	J	0.81	mg/Kg	6010C
Cobalt	7.1	J	10.1	mg/Kg	6010C
Chromium	21.8		2.0	mg/Kg	6010C
Copper	32.7		5.1	mg/Kg	6010C
Iron	19600		30.3	mg/Kg	6010C
Potassium	1790		1010	mg/Kg	6010C
Magnesium	11200		1010	mg/Kg	6010C
Manganese	307		3.0	mg/Kg	6010C
Sodium	171	J	1010	mg/Kg	6010C
Nickel	17.9		8.1	mg/Kg	6010C
Lead	295		2.0	mg/Kg	6010C
Antimony	0.58	J	4.0	mg/Kg	6010C
Vanadium	34.2		10.1	mg/Kg	6010C
	- ·· -			שיישיי	

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
Zinc		247		6.1	mg/Kg	6010C
Mercury		0.099		0.018	mg/Kg	7471B
Percent Moisture		6.7		1.0	%	Moisture
Percent Solids		93.3		1.0	%	Moisture
460-138836-6	SB-5 (10-12)					
2-Butanone (MEK)		0.0070		0.0058	mg/Kg	8260C
Acetone		0.037		0.0058	mg/Kg	8260C
Carbon disulfide		0.00070	J	0.0012	mg/Kg	8260C
Ethylbenzene		0.011		0.0012	mg/Kg	8260C
Isopropylbenzene		0.0036		0.0012	mg/Kg	8260C
Methylcyclohexane		0.00090	J	0.0012	mg/Kg	8260C
Methylene Chloride		0.0018		0.0012	mg/Kg	8260C
m-Xylene & p-Xylen	ne	0.0041		0.0012	mg/Kg	8260C
Butyl benzyl phthala	ate	0.12	J	0.39	mg/Kg	8270D
Aluminum		11000		46.2	mg/Kg	6010C
Arsenic		1.1	J	3.5	mg/Kg	6010C
Barium		83.0		46.2	mg/Kg	6010C
Beryllium		0.13	J	0.46	mg/Kg	6010C
Calcium		1700		1160	mg/Kg	6010C
Cobalt		8.5	J	11.6	mg/Kg	6010C
Chromium		20.6		2.3	mg/Kg	6010C
Copper		21.8		5.8	mg/Kg	6010C
Iron		20300		34.7	mg/Kg	6010C
Potassium		2430		1160	mg/Kg	6010C
Magnesium		4240		1160	mg/Kg	6010C
Manganese		288		3.5	mg/Kg	6010C
Sodium		235	J	1160	mg/Kg	6010C
Nickel		16.3		9.2	mg/Kg	6010C
Lead		5.2		2.3	mg/Kg	6010C
Vanadium		34.9		11.6	mg/Kg	6010C
Zinc		41.7		6.9	mg/Kg	6010C
Percent Moisture		16.0		1.0	%	Moisture
Percent Solids		84.0		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138836-7 SB-6 (2-4)					
2-Methylnaphthalene	0.023	J	0.36	mg/Kg	8270D
Acenaphthene	0.013	J	0.36	mg/Kg	8270D
Acenaphthylene	0.060	J	0.36	mg/Kg	8270D
Anthracene	0.063	J	0.36	mg/Kg	8270D
Benzo[a]anthracene	0.43		0.036	mg/Kg	8270D
Benzo[a]pyrene	0.50		0.036	mg/Kg	8270D
Benzo[b]fluoranthene	0.74		0.036	mg/Kg	8270D
Benzo[g,h,i]perylene	0.35	J	0.36	mg/Kg	8270D
Benzo[k]fluoranthene	0.29		0.036	mg/Kg	8270D
Butyl benzyl phthalate	0.023	J	0.36	mg/Kg	8270D
Carbazole	0.033	J	0.36	mg/Kg	8270D
Chrysene	0.50		0.36	mg/Kg	8270D
Dibenz(a,h)anthracene	0.11		0.036	mg/Kg	8270D
Dibenzofuran	0.012	J	0.36	mg/Kg	8270D
Fluoranthene	0.81		0.36	mg/Kg	8270D
Fluorene	0.019	J	0.36	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.54		0.036	mg/Kg	8270D
Naphthalene	0.032	J	0.36	mg/Kg	8270D
Phenanthrene	0.36		0.36	mg/Kg	8270D
Pyrene	0.73		0.36	mg/Kg	8270D
Aluminum	16300		41.1	mg/Kg	6010C
Arsenic	2.4	J	3.1	mg/Kg	6010C
Barium	101		41.1	mg/Kg	6010C
Beryllium	0.11	J	0.41	mg/Kg	6010C
Calcium	2190		1030	mg/Kg	6010C
Cobalt	9.6	J	10.3	mg/Kg	6010C
Chromium	33.8		2.1	mg/Kg	6010C
Copper	23.5		5.1	mg/Kg	6010C
Iron	21900		30.8	mg/Kg	6010C
Potassium	1490		1030	mg/Kg	6010C
Magnesium	6090		1030	mg/Kg	6010C
Manganese	374		3.1	mg/Kg	6010C
Sodium	393	J	1030	mg/Kg	6010C
Nickel	22.2		8.2	mg/Kg	6010C
Lead	77.9		2.1	mg/Kg	6010C
Vanadium	40.2		10.3	mg/Kg	6010C
Zinc	67.0		6.2	mg/Kg	6010C
Mercury	0.021		0.018	mg/Kg	7471B
Percent Moisture	9.0		1.0	%	Moisture
Percent Solids	91.0		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138836-8	SB-6 (9-11)					
Aluminum		19900		45.7	mg/Kg	6010C
Barium		168		45.7	mg/Kg	6010C
Calcium		1420		1140	mg/Kg	6010C
Cobalt		13.8		11.4	mg/Kg	6010C
Chromium		36.8		2.3	mg/Kg	6010C
Copper		30.0		5.7	mg/Kg	6010C
Iron		35500		34.3	mg/Kg	6010C
Potassium		7410		1140	mg/Kg	6010C
Magnesium		9190		1140	mg/Kg	6010C
Manganese		595		3.4	mg/Kg	6010C
Sodium		495	J	1140	mg/Kg	6010C
Nickel		28.9		9.1	mg/Kg	6010C
Lead		5.3		2.3	mg/Kg	6010C
Vanadium		57.7		11.4	mg/Kg	6010C
Zinc		82.5		6.9	mg/Kg	6010C
Percent Moisture		17.4		1.0	%	Moisture
Percent Solids		82.6		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138836-9 SB-8 (2-4)					
Acenaphthylene	0.026	J	0.35	mg/Kg	8270D
Benzo[a]anthracene	0.13		0.035	mg/Kg	8270D
Benzo[a]pyrene	0.19		0.035	mg/Kg	8270D
Benzo[b]fluoranthene	0.20		0.035	mg/Kg	8270D
Benzo[g,h,i]perylene	0.21	J	0.35	mg/Kg	8270D
Benzo[k]fluoranthene	0.065		0.035	mg/Kg	8270D
Chrysene	0.15	J	0.35	mg/Kg	8270D
Fluoranthene	0.18	J	0.35	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.18		0.035	mg/Kg	8270D
Phenanthrene	0.087	J	0.35	mg/Kg	8270D
Pyrene	0.20	J	0.35	mg/Kg	8270D
Aluminum	18000		40.2	mg/Kg	6010C
Arsenic	3.2		3.0	mg/Kg	6010C
Barium	128		40.2	mg/Kg	6010C
Beryllium	0.20	J	0.40	mg/Kg	6010C
Calcium	3850		1000	mg/Kg	6010C
Cobalt	12.5		10.0	mg/Kg	6010C
Chromium	31.4		2.0	mg/Kg	6010C
Copper	25.9		5.0	mg/Kg	6010C
Iron	26600		30.1	mg/Kg	6010C
Potassium	2790		1000	mg/Kg	6010C
Magnesium	10100		1000	mg/Kg	6010C
Manganese	489		3.0	mg/Kg	6010C
Nickel	19.6		8.0	mg/Kg	6010C
Lead	32.5		2.0	mg/Kg	6010C
Vanadium	42.7		10.0	mg/Kg	6010C
Zinc	76.6		6.0	mg/Kg	6010C
Mercury	0.065		0.017	mg/Kg	7471B
Percent Moisture	5.2		1.0	%	Moisture
Percent Solids	94.8		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138836-10	SB-8 (9-11)					_
2-Butanone (MEK)	` ,	0.0023	J	0.0042	mg/Kg	8260C
Acetone		0.017		0.0042	mg/Kg	8260C
Benzo[a]anthracene)	0.040		0.040	mg/Kg	8270D
Benzo[a]pyrene		0.036	J	0.040	mg/Kg	8270D
Benzo[b]fluoranther	ne	0.048		0.040	mg/Kg	8270D
Benzo[g,h,i]perylene	Э	0.024	J	0.40	mg/Kg	8270D
Benzo[k]fluoranthen	ne	0.021	J	0.040	mg/Kg	8270D
Chrysene		0.032	J	0.40	mg/Kg	8270D
Fluoranthene		0.076	J	0.40	mg/Kg	8270D
Naphthalene		0.027	J	0.40	mg/Kg	8270D
Phenanthrene		0.032	J	0.40	mg/Kg	8270D
Pyrene		0.076	J	0.40	mg/Kg	8270D
Aluminum		13200		48.4	mg/Kg	6010C
Barium		122		48.4	mg/Kg	6010C
Calcium		2260		1210	mg/Kg	6010C
Cobalt		11.7	J	12.1	mg/Kg	6010C
Chromium		27.6		2.4	mg/Kg	6010C
Copper		25.5		6.1	mg/Kg	6010C
Iron		26700		36.3	mg/Kg	6010C
Potassium		5050		1210	mg/Kg	6010C
Magnesium		6370		1210	mg/Kg	6010C
Manganese		294		3.6	mg/Kg	6010C
Sodium		101	J	1210	mg/Kg	6010C
Nickel		25.2		9.7	mg/Kg	6010C
Lead		5.9		2.4	mg/Kg	6010C
Vanadium		40.0		12.1	mg/Kg	6010C
Zinc		61.7		7.3	mg/Kg	6010C
Percent Moisture		17.4		1.0	%	Moisture
Percent Solids		82.6		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138836-11 SB-9 (1-3)					
2-Methylnaphthalene	0.082	J	0.35	mg/Kg	8270D
Acenaphthylene	0.029	J	0.35	mg/Kg	8270D
Benzo[a]anthracene	0.15		0.035	mg/Kg	8270D
Benzo[a]pyrene	0.17		0.035	mg/Kg	8270D
Benzo[b]fluoranthene	0.24		0.035	mg/Kg	8270D
Benzo[g,h,i]perylene	0.13	J	0.35	mg/Kg	8270D
Benzo[k]fluoranthene	0.093		0.035	mg/Kg	8270D
Bis(2-chloroethyl)ether	3.5		0.035	mg/Kg	8270D
Carbazole	0.014	J	0.35	mg/Kg	8270D
Chrysene	0.16	J	0.35	mg/Kg	8270D
Dibenz(a,h)anthracene	0.052		0.035	mg/Kg	8270D
Fluoranthene	0.25	J	0.35	mg/Kg	8270D
Fluorene	0.0091	J	0.35	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.21		0.035	mg/Kg	8270D
Naphthalene	0.034	J	0.35	mg/Kg	8270D
Phenanthrene	0.11	J	0.35	mg/Kg	8270D
Pyrene	0.26	J	0.35	mg/Kg	8270D
Aluminum	12300		40.7	mg/Kg	6010C
Arsenic	2.3	J	3.1	mg/Kg	6010C
Barium	136		40.7	mg/Kg	6010C
Beryllium	0.061	J	0.41	mg/Kg	6010C
Calcium	8530		1020	mg/Kg	6010C
Cobalt	8.5	J	10.2	mg/Kg	6010C
Chromium	25.4		2.0	mg/Kg	6010C
Copper	29.8		5.1	mg/Kg	6010C
Iron	21600		30.5	mg/Kg	6010C
Potassium	2350		1020	mg/Kg	6010C
Magnesium	6210		1020	mg/Kg	6010C
Manganese	361		3.1	mg/Kg	6010C
Sodium	223	J	1020	mg/Kg	6010C
Nickel	18.6		8.1	mg/Kg	6010C
Lead	92.1		2.0	mg/Kg	6010C
Vanadium	42.6		10.2	mg/Kg	6010C
Zinc	103		6.1	mg/Kg	6010C
Mercury	0.098		0.018	mg/Kg	7471B
Percent Moisture	5.5		1.0	%	Moisture
Percent Solids	94.5		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138836-12	SB-9 (8-10)					
Aluminum		10200		41.7	mg/Kg	6010C
Barium		139		41.7	mg/Kg	6010C
Calcium		2350		1040	mg/Kg	6010C
Cobalt		8.7	J	10.4	mg/Kg	6010C
Chromium		21.8		2.1	mg/Kg	6010C
Copper		16.7		5.2	mg/Kg	6010C
Iron		14700		31.3	mg/Kg	6010C
Potassium		3280		1040	mg/Kg	6010C
Magnesium		4520		1040	mg/Kg	6010C
Manganese		277		3.1	mg/Kg	6010C
Sodium		193	J	1040	mg/Kg	6010C
Nickel		18.7		8.3	mg/Kg	6010C
Lead		5.0		2.1	mg/Kg	6010C
Vanadium		24.2		10.4	mg/Kg	6010C
Zinc		45.8		6.3	mg/Kg	6010C
Percent Moisture		12.1		1.0	%	Moisture
Percent Solids		87.9		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138908-1 SB-3 (1-3)					
Cyclohexane	0.00075	J	0.0010	mg/Kg	8260C
Methylcyclohexane	0.0027		0.0010	mg/Kg	8260C
2-Methylnaphthalene	0.014	J	0.34	mg/Kg	8270D
Acenaphthene	0.037	J	0.34	mg/Kg	8270D
Acenaphthylene	0.0096	J	0.34	mg/Kg	8270D
Anthracene	0.070	J	0.34	mg/Kg	8270D
Benzo[a]anthracene	0.31		0.034	mg/Kg	8270D
Benzo[a]pyrene	0.32		0.034	mg/Kg	8270D
Benzo[b]fluoranthene	0.43		0.034	mg/Kg	8270D
Benzo[g,h,i]perylene	0.23	J	0.34	mg/Kg	8270D
Benzo[k]fluoranthene	0.16		0.034	mg/Kg	8270D
Carbazole	0.045	J	0.34	mg/Kg	8270D
Chrysene	0.35		0.34	mg/Kg	8270D
Dibenz(a,h)anthracene	0.085		0.034	mg/Kg	8270D
Dibenzofuran	0.024	J	0.34	mg/Kg	8270D
Fluoranthene	0.69		0.34	mg/Kg	8270D
Fluorene	0.061	J	0.34	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.36		0.034	mg/Kg	8270D
Naphthalene	0.014	J	0.34	mg/Kg	8270D
Phenanthrene	0.61		0.34	mg/Kg	8270D
Pyrene	0.77		0.34	mg/Kg	8270D
Aluminum	12300		34.3	mg/Kg	6010C
Arsenic	2.5	J	2.6	mg/Kg	6010C
Barium	102		34.3	mg/Kg	6010C
Beryllium	0.47		0.34	mg/Kg	6010C
Calcium	3640		858	mg/Kg	6010C
Cobalt	7.2	J	8.6	mg/Kg	6010C
Chromium	23.4		1.7	mg/Kg	6010C
Copper	20.7		4.3	mg/Kg	6010C
Iron	18900		25.7	mg/Kg	6010C
Potassium	2110		858	mg/Kg	6010C
Magnesium	5450		858	mg/Kg	6010C
Manganese	296		2.6	mg/Kg	6010C
Sodium	146	J	858	mg/Kg	6010C
Nickel	15.1		6.9	mg/Kg	6010C
Lead	52.5		1.7	mg/Kg	6010C
Vanadium	32.8		8.6	mg/Kg	6010C
Zinc	68.3		5.1	mg/Kg	6010C
Mercury	0.032		0.018	mg/Kg	7471B
Percent Moisture	4.4		1.0	%	Moisture
Percent Solids	95.6		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138908-2	SB-3 (17-19)					
Cyclohexane		0.00032	J	0.00077	mg/Kg	8260C
Methylcyclohexane		0.00098		0.00077	mg/Kg	8260C
Aluminum		9940		33.0	mg/Kg	6010C
Arsenic		0.65	J	2.5	mg/Kg	6010C
Barium		60.6		33.0	mg/Kg	6010C
Beryllium		0.58		0.33	mg/Kg	6010C
Calcium		3630		825	mg/Kg	6010C
Cobalt		6.9	J	8.3	mg/Kg	6010C
Chromium		29.7		1.7	mg/Kg	6010C
Copper		10.8		4.1	mg/Kg	6010C
Iron		18900		24.8	mg/Kg	6010C
Potassium		5460		825	mg/Kg	6010C
Magnesium		4440		825	mg/Kg	6010C
Manganese		163		2.5	mg/Kg	6010C
Sodium		271	J	825	mg/Kg	6010C
Nickel		10.2		6.6	mg/Kg	6010C
Lead		1.5	J	1.7	mg/Kg	6010C
Vanadium		38.6		8.3	mg/Kg	6010C
Zinc		30.8		5.0	mg/Kg	6010C
Percent Moisture		2.3		1.0	%	Moisture
Percent Solids		97.7		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138908-3	SB-4 (1-3)					
Benzene		0.0018		0.00086	mg/Kg	8260C
Cyclohexane		0.0010		0.00086	mg/Kg	8260C
Methylcyclohexane)	0.0032		0.00086	mg/Kg	8260C
2-Methylnaphthaler	ne	0.010	J	0.37	mg/Kg	8270D
Benzo[a]anthracen	е	0.12		0.037	mg/Kg	8270D
Benzo[a]pyrene		0.13		0.037	mg/Kg	8270D
Benzo[b]fluoranthe	ne	0.17		0.037	mg/Kg	8270D
Benzo[g,h,i]perylen	ne	0.10	J	0.37	mg/Kg	8270D
Benzo[k]fluoranthe	ne	0.073		0.037	mg/Kg	8270D
Carbazole		0.021	J	0.37	mg/Kg	8270D
Chrysene		0.13	J	0.37	mg/Kg	8270D
Dibenz(a,h)anthrac	cene	0.059		0.037	mg/Kg	8270D
Fluoranthene		0.22	J	0.37	mg/Kg	8270D
Indeno[1,2,3-cd]pyr	rene	0.18		0.037	mg/Kg	8270D
Phenanthrene		0.12	J	0.37	mg/Kg	8270D
Pyrene		0.21	J	0.37	mg/Kg	8270D
Aluminum		11800		34.4	mg/Kg	6010C
Arsenic		2.4	J	2.6	mg/Kg	6010C
Barium		109		34.4	mg/Kg	6010C
Beryllium		0.44		0.34	mg/Kg	6010C
Calcium		6350		860	mg/Kg	6010C
Cobalt		8.8		8.6	mg/Kg	6010C
Chromium		29.1		1.7	mg/Kg	6010C
Copper		36.2		4.3	mg/Kg	6010C
Iron		26700		25.8	mg/Kg	6010C
Potassium		2470		860	mg/Kg	6010C
Magnesium		5650		860	mg/Kg	6010C
Manganese		573		2.6	mg/Kg	6010C
Sodium		1580		860	mg/Kg	6010C
Nickel		19.4		6.9	mg/Kg	6010C
Lead		43.3		1.7	mg/Kg	6010C
Vanadium		37.6		8.6	mg/Kg	6010C
Zinc		71.0		5.2	mg/Kg	6010C
Mercury		0.030		0.018	mg/Kg	7471B
Percent Moisture		10.6		1.0	%	Moisture
Percent Solids		89.4		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138908-4	SB-4 (21-23)					
Cyclohexane		0.36		0.043	mg/Kg	8260C
Ethylbenzene		0.22		0.043	mg/Kg	8260C
Isopropylbenzene		0.082		0.043	mg/Kg	8260C
Methylcyclohexane		1.8		0.043	mg/Kg	8260C
m-Xylene & p-Xylen	е	0.060		0.043	mg/Kg	8260C
2-Methylnaphthalen	е	2.1		0.38	mg/Kg	8270D
Fluorene		0.0091	J	0.38	mg/Kg	8270D
Naphthalene		2.5		0.38	mg/Kg	8270D
Phenanthrene		0.012	J	0.38	mg/Kg	8270D
Aluminum		8080		35.4	mg/Kg	6010C
Arsenic		1.2	J	2.7	mg/Kg	6010C
Barium		93.4		35.4	mg/Kg	6010C
Beryllium		0.28	J	0.35	mg/Kg	6010C
Calcium		1230		886	mg/Kg	6010C
Cobalt		7.2	J	8.9	mg/Kg	6010C
Chromium		15.6		1.8	mg/Kg	6010C
Copper		9.9		4.4	mg/Kg	6010C
Iron		15100		26.6	mg/Kg	6010C
Potassium		1890		886	mg/Kg	6010C
Magnesium		3250		886	mg/Kg	6010C
Manganese		195		2.7	mg/Kg	6010C
Sodium		456	J	886	mg/Kg	6010C
Nickel		12.5		7.1	mg/Kg	6010C
Lead		6.1		1.8	mg/Kg	6010C
Vanadium		21.0		8.9	mg/Kg	6010C
Zinc		33.7		5.3	mg/Kg	6010C
Percent Moisture		12.5		1.0	%	Moisture
Percent Solids		87.5		1.0	%	Moisture

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
460-138908-5 SB-7 (1-3)					
Acetone	0.0070		0.0048	mg/Kg	8260C
Benzene	0.0023		0.00096	mg/Kg	8260C
Cyclohexane	0.0011		0.00096	mg/Kg	8260C
Methylcyclohexane	0.0043		0.00096	mg/Kg	8260C
m-Xylene & p-Xylene	0.00019	J	0.00096	mg/Kg	8260C
Tetrachloroethene	0.00056	J	0.00096	mg/Kg	8260C
Toluene	0.00061	J	0.00096	mg/Kg	8260C
2-Methylnaphthalene	0.013	J	0.36	mg/Kg	8270D
Acenaphthylene	0.065	J	0.36	mg/Kg	8270D
Benzo[a]anthracene	0.15		0.036	mg/Kg	8270D
Benzo[a]pyrene	0.25		0.036	mg/Kg	8270D
Benzo[b]fluoranthene	0.40		0.036	mg/Kg	8270D
Benzo[g,h,i]perylene	0.17	J	0.36	mg/Kg	8270D
Benzo[k]fluoranthene	0.10		0.036	mg/Kg	8270D
Carbazole	0.018	J	0.36	mg/Kg	8270D
Chrysene	0.19	J	0.36	mg/Kg	8270D
Dibenz(a,h)anthracene	0.063		0.036	mg/Kg	8270D
Fluoranthene	0.22	J	0.36	mg/Kg	8270D
Indeno[1,2,3-cd]pyrene	0.25		0.036	mg/Kg	8270D
Naphthalene	0.028	J	0.36	mg/Kg	8270D
Phenanthrene	0.088	J	0.36	mg/Kg	8270D
Pyrene	0.19	J	0.36	mg/Kg	8270D
Aluminum	8880		33.9	mg/Kg	6010C
Arsenic	2.4	J	2.5	mg/Kg	6010C
Barium	68.5		33.9	mg/Kg	6010C
Beryllium	0.35		0.34	mg/Kg	6010C
Calcium	10200		847	mg/Kg	6010C
Cobalt	5.5	J	8.5	mg/Kg	6010C
Chromium	19.1		1.7	mg/Kg	6010C
Copper	18.9		4.2	mg/Kg	6010C
Iron	14900		25.4	mg/Kg	6010C
Potassium	1420		847	mg/Kg	6010C
Magnesium	4890		847	mg/Kg	6010C
Manganese	302		2.5	mg/Kg	6010C
Sodium	175	J	847	mg/Kg	6010C
Nickel	13.1		6.8	mg/Kg	6010C
Lead	67.3		1.7	mg/Kg	6010C
Vanadium	24.3		8.5	mg/Kg	6010C
Zinc	53.3		5.1	mg/Kg	6010C
Mercury	0.48		0.018	mg/Kg	7471B
Percent Moisture	9.2		1.0	%	Moisture
Percent Solids	90.8		1.0	%	Moisture

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-138908-6	SB-7 (8-10)					
Acetone	, ,	0.0040		0.0039	mg/Kg	8260C
Cyclohexane		0.0041		0.00078	mg/Kg	8260C
Methylcyclohexane		0.018		0.00078	mg/Kg	8260C
Methylene Chloride		0.00054	J	0.00078	mg/Kg	8260C
Aluminum		5800		34.0	mg/Kg	6010C
Barium		40.2		34.0	mg/Kg	6010C
Beryllium		0.25	J	0.34	mg/Kg	6010C
Calcium		1270		851	mg/Kg	6010C
Cobalt		4.5	J	8.5	mg/Kg	6010C
Chromium		12.5		1.7	mg/Kg	6010C
Copper		8.8		4.3	mg/Kg	6010C
Iron		14000		25.5	mg/Kg	6010C
Potassium		1120		851	mg/Kg	6010C
Magnesium		2450		851	mg/Kg	6010C
Manganese		269		2.6	mg/Kg	6010C
Sodium		82.7	J	851	mg/Kg	6010C
Nickel		9.7	J	6.8	mg/Kg	6010C
Lead		2.8		1.7	mg/Kg	6010C
Vanadium		15.8		8.5	mg/Kg	6010C
Zinc		27.2		5.1	mg/Kg	6010C
Percent Moisture		11.7		1.0	%	Moisture
Percent Solids		88.3		1.0	%	Moisture
460-139067-1	TW-1					
Benzene		14		5.0	ug/L	8260C
Cyclohexane		300		5.0	ug/L	8260C
Ethylbenzene		150		5.0	ug/L	8260C
Isopropylbenzene		35		5.0	ug/L	8260C
Methyl tert-butyl ethe	r	260		5.0	ug/L	8260C
Methylcyclohexane		440		5.0	ug/L	8260C
m-Xylene & p-Xylene	•	46		5.0	ug/L	8260C
o-Xylene		4.4	J	5.0	ug/L	8260C
Toluene		6.1		5.0	ug/L	8260C
2-Methylnaphthalene		10		10	ug/L	8270D
Naphthalene		47		10	ug/L	8270D
400 400057 5	T144.0					
460-139067-2	TW-2	0.57		4.0		20000
Chloroform		0.57	J	1.0	ug/L	8260C
Methyl tert-butyl ethe	r	23		1.0	ug/L	8260C
Trichloroethene		0.38	J	1.0	ug/L	8260C
Di-n-butyl phthalate		0.98	J	10	ug/L	8270D

Lab Sample ID Analyte	Client Sample ID	Result	Qualifier	Reporting Limit	Units	Method
460-139067-3	GW-3					
2-Butanone (MEK)		3.8	J	5.0	ug/L	8260C
Acetone		11		5.0	ug/L	8260C
Benzene		0.69	J	1.0	ug/L	8260C
Cyclohexane		16		1.0	ug/L	8260C
Ethylbenzene		5.2		1.0	ug/L	8260C
Isopropylbenzene		1.4		1.0	ug/L	8260C
Methyl tert-butyl eth	er	0.82	J	1.0	ug/L	8260C
Methylcyclohexane		5.1		1.0	ug/L	8260C
m-Xylene & p-Xylen	e	3.8		1.0	ug/L	8260C
o-Xylene		2.8		1.0	ug/L	8260C
Toluene		1.3		1.0	ug/L	8260C
460-139067-5	GT-1					
Carbon disulfide		0.60	J	1.0	ug/L	8260C
460-139067-6	GT-2					
Methyl tert-butyl eth		2000		10	ug/L	8260C
400 400007 7	OT 2					
460-139067-7 Di-n-butyl phthalate	GT-3	1.1	J	10	ug/L	8270D
460-139067-9TB	TRIP BLANK					
Acetone		38		5.0	ug/L	8260C
Methylene Chloride		0.73	J	1.0	ug/L	8260C

METHOD SUMMARY

Client: AKRF Inc Job Number: 460-138836-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Volatile Organic Compounds by GC/MS Closed System Purge and Trap	TAL EDI TAL EDI	SW846 8260C	SW846 5035
Semivolatile Organic Compounds (GC/MS) Microwave Extraction	TAL EDI TAL EDI	SW846 8270D	SW846 3546
Polychlorinated Biphenyls (PCBs) by Gas Chromatography Microwave Extraction	TAL EDI TAL EDI	SW846 8082A	SW846 3546
Metals (ICP) Preparation, Metals	TAL EDI TAL EDI	SW846 6010C	SW846 3050B
Mercury (CVAA) Preparation, Mercury	TAL EDI TAL EDI	SW846 7471B	SW846 7471B
Percent Moisture	TAL EDI	EPA Moisture	
Matrix: Water			
Volatile Organic Compounds by GC/MS Purge and Trap	TAL EDI TAL EDI	SW846 8260C	SW846 5030C
Semivolatile Organic Compounds (GC/MS) Liquid-Liquid Extraction (Separatory Funnel)	TAL EDI TAL EDI	SW846 8270D	SW846 3510C

Lab References:

TAL EDI = TestAmerica Edison

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
SW846 8260C	Boykin, Kenneth	KLB
SW846 8260C	Collado, Ximena X	XXC
SW846 8260C	Martinez, Eddie	EMM
SW846 8260C	Sarmiento, Daniel	DAS
SW846 8260C	Tupayachi, Audberto	AAT
SW846 8270D	Acierno, Mark	MVA
SW846 8270D	Khlungprakhon, Sukanya	SK
SW846 8270D	Manlangit, Ferdie	FAM
SW846 8270D	Xu, Yvonne Y	YYX
SW846 8082A	Mulani, Heta X	HXM
SW846 8082A	Patel, Jignesh	JHP
SW846 6010C	Chang, Churn Der	CDC
SW846 6010C	Huang, Yixin	YZH
SW846 7471B	Staib, Thomas	TJS
EPA Moisture	Callahan, Rory W	RWC
EPA Moisture	DiGuardia, Joseph L	JLD

SAMPLE SUMMARY

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
460-138836-1	SB-1 (2-4)	Solid	08/08/2017 0920	08/09/2017 1125
460-138836-2	SB-1 (9-11)	Solid	08/08/2017 0915	08/09/2017 1125
460-138836-3	SB-2 (1-3)	Solid	08/08/2017 0830	08/09/2017 1125
460-138836-4	SB-2 (16-18)	Solid	08/08/2017 0835	08/09/2017 1125
460-138836-5	SB-5 (2-4)	Solid	08/08/2017 1110	08/09/2017 1125
460-138836-6	SB-5 (10-12)	Solid	08/08/2017 1115	08/09/2017 1125
460-138836-7	SB-6 (2-4)	Solid	08/08/2017 1140	08/09/2017 1125
460-138836-8	SB-6 (9-11)	Solid	08/08/2017 1145	08/09/2017 1125
460-138836-9	SB-8 (2-4)	Solid	08/08/2017 1035	08/09/2017 1125
460-138836-10	SB-8 (9-11)	Solid	08/08/2017 1040	08/09/2017 1125
460-138836-11	SB-9 (1-3)	Solid	08/08/2017 0940	08/09/2017 1125
460-138836-12	SB-9 (8-10)	Solid	08/08/2017 0945	08/09/2017 1125
460-138908-1	SB-3 (1-3)	Solid	08/09/2017 1440	08/10/2017 1115
460-138908-2	SB-3 (17-19)	Solid	08/09/2017 1435	08/10/2017 1115
460-138908-3	SB-4 (1-3)	Solid	08/09/2017 1330	08/10/2017 1115
460-138908-4	SB-4 (21-23)	Solid	08/09/2017 1325	08/10/2017 1115
460-138908-5	SB-7 (1-3)	Solid	08/09/2017 0930	08/10/2017 1115
460-138908-6	SB-7 (8-10)	Solid	08/09/2017 1030	08/10/2017 1115
460-139067-1	TW-1	Water	08/09/2017 1350	08/11/2017 1035
460-139067-2	TW-2	Water	08/09/2017 1130	08/11/2017 1035
460-139067-3	GW-3	Water	08/10/2017 1130	08/11/2017 1035
460-139067-4	GW-4	Water	08/10/2017 1120	08/11/2017 1035
460-139067-5	GT-1	Water	08/10/2017 1110	08/11/2017 1035
460-139067-6	GT-2	Water	08/10/2017 1210	08/11/2017 1035
460-139067-7	GT-3	Water	08/10/2017 1155	08/11/2017 1035
460-139067-8	GT-4	Water	08/10/2017 1145	08/11/2017 1035
460-139067-9TB	TRIP BLANK	Water	08/10/2017 1210	08/11/2017 1035

SAMPLE RESULTS

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid % Moisture: 14.9 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72179.D Dilution: 1.0 Initial Weight/Volume: 7.562 g Analysis Date: 08/17/2017 0044 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.00078	U	0.00018	0.00078
1,1,2,2-Tetrachloroethan	e	0.00078	U	0.00017	0.00078
1,1,2-Trichloro-1,2,2-triflu	ıoroethane	0.00078	U	0.00023	0.00078
1,1,2-Trichloroethane		0.00078	U	0.00014	0.00078
1,1-Dichloroethane		0.00078	U	0.00016	0.00078
1,1-Dichloroethene		0.00078	U	0.00017	0.00078
1,2,3-Trichlorobenzene		0.00078	U	0.00014	0.00078
1,2,4-Trichlorobenzene		0.00078	U	0.000071	0.00078
1,2-Dibromo-3-Chloropro	pane	0.00078	U	0.00036	0.00078
1,2-Dichlorobenzene		0.00078	U	0.00011	0.00078
1,2-Dichloroethane		0.00078	U	0.00023	0.00078
1,2-Dichloropropane		0.00078	U	0.00033	0.00078
1,3-Dichlorobenzene		0.00078	U	0.00012	0.00078
1,4-Dichlorobenzene		0.00078	U	0.000078	0.00078
1,4-Dioxane		0.016	U	0.0071	0.016
2-Butanone (MEK)		0.0039	U	0.00086	0.0039
2-Hexanone		0.0039	U	0.00061	0.0039
4-Methyl-2-pentanone (M	1IBK)	0.0039	U	0.00052	0.0039
Acetone	,	0.0039	U	0.0029	0.0039
Acetonitrile		0.0078	Ü	0.0048	0.0078
Acrolein		0.078	U	0.022	0.078
Benzene		0.00078	U	0.00020	0.00078
Bromoform		0.00078	U	0.00033	0.00078
Bromomethane		0.00078	U	0.00037	0.00078
Carbon disulfide		0.00078	Ū	0.00021	0.00078
Carbon tetrachloride		0.00078	Ü	0.00014	0.00078
Chlorobenzene		0.00078	Ū	0.00014	0.00078
Chlorobromomethane		0.00078	U	0.00022	0.00078
Chlorodibromomethane		0.00078	Ū	0.00015	0.00078
Chloroethane		0.00078	U	0.00041	0.00078
Chloroform		0.00078	Ü	0.00025	0.00078
Chloromethane		0.00078	U	0.00034	0.00078
cis-1,2-Dichloroethene		0.00078	Ü	0.00012	0.00078
cis-1,3-Dichloropropene		0.00078	Ū	0.00021	0.00078
Cyclohexane		0.00078	U	0.00017	0.00078
Dichlorobromomethane		0.00078	Ū	0.00020	0.00078
Dichlorodifluoromethane		0.00078	Ū	0.00026	0.00078
Ethylbenzene		0.00078	Ü	0.00015	0.00078
Ethylene Dibromide		0.00078	Ū	0.00014	0.00078
Isopropylbenzene		0.00078	Ü	0.000098	0.00078
Methyl acetate		0.0039	Ü	0.0033	0.0039
Methyl tert-butyl ether		0.00078	Ü	0.000097	0.00078
Methylcyclohexane		0.00078	Ŭ	0.00012	0.00078
Methylene Chloride		0.00078	Ü	0.00012	0.00078
m-Xylene & p-Xylene		0.00078	Ü	0.00014	0.00078
o-Xylene		0.00078	Ü	0.000074	0.00078
O Aylono		0.00070	J	0.000074	0.00070

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid % Moisture: 14.9 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72179.D Dilution: 1.0 Initial Weight/Volume: 7.562 g Analysis Date: 08/17/2017 0044 Final Weight/Volume: 5 mL

Prep Date: 08/09/2017 1444

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00078	U	0.000096	0.00078
TBA		0.0078	U	0.0026	0.0078
Tetrachloroethene		0.00078	U	0.00011	0.00078
Toluene		0.00078	U	0.00049	0.00078
trans-1,2-Dichloroethene		0.00078	U	0.00019	0.00078
trans-1,3-Dichloropropene		0.00078	U	0.00021	0.00078
Trichloroethene		0.00078	U	0.00011	0.00078
Trichlorofluoromethane		0.00078	U	0.00032	0.00078
Vinyl chloride		0.00078	U	0.00042	0.00078
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr	.)	101	78 - 135		
4-Bromofluorobenzene		96	67 - 126		
Dibromofluoromethane (Sur	r)	102	61 - 149		

97

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72160.D Dilution: 1.0 Initial Weight/Volume: 7.373 g Analysis Date: 08/16/2017 1653 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroetha		0.00075	U	0.00017	0.00075
1,1,2,2-Tetrachlord		0.00075	U	0.00016	0.00075
1,1,2-Trichloro-1,2	,2-trifluoroethane	0.00075	U	0.00022	0.00075
1,1,2-Trichloroetha		0.00075	U	0.00013	0.00075
1,1-Dichloroethane		0.00075	U	0.00015	0.00075
1,1-Dichloroethene		0.00075	U	0.00017	0.00075
1,2,3-Trichloroben		0.00075	U	0.00014	0.00075
1,2,4-Trichloroben		0.00075	U	0.000069	0.00075
1,2-Dibromo-3-Chl	loropropane	0.00075	U	0.00034	0.00075
1,2-Dichlorobenze	ne	0.00075	U	0.00011	0.00075
1,2-Dichloroethane		0.00075	U	0.00022	0.00075
1,2-Dichloropropar	ne	0.00075	U	0.00032	0.00075
1,3-Dichlorobenze	ne	0.00075	U	0.00012	0.00075
1,4-Dichlorobenze	ne	0.00075	U	0.000075	0.00075
1,4-Dioxane		0.015	U	0.0069	0.015
2-Butanone (MEK))	0.0037	U	0.00083	0.0037
2-Hexanone		0.0037	U	0.00058	0.0037
4-Methyl-2-pentan	one (MIBK)	0.0037	U	0.00050	0.0037
Acetone		0.0037	U	0.0028	0.0037
Acetonitrile		0.0075	U	0.0047	0.0075
Acrolein		0.075	U	0.021	0.075
Benzene		0.00075	U	0.00019	0.00075
Bromoform		0.00075	U	0.00032	0.00075
Bromomethane		0.00075	U	0.00035	0.00075
Carbon disulfide		0.00075	U	0.00020	0.00075
Carbon tetrachlorid	de	0.00075	U	0.00014	0.00075
Chlorobenzene		0.00075	U	0.00013	0.00075
Chlorobromometha	ane	0.00075	U	0.00021	0.00075
Chlorodibromomet	thane	0.00075	U	0.00014	0.00075
Chloroethane		0.00075	U	0.00039	0.00075
Chloroform		0.00075	U	0.00024	0.00075
Chloromethane		0.00075	U	0.00033	0.00075
cis-1,2-Dichloroeth	nene	0.00075	U	0.00011	0.00075
cis-1,3-Dichloropro	ppene	0.00075	U	0.00020	0.00075
Cyclohexane		0.00075	U	0.00017	0.00075
Dichlorobromomet	hane	0.00075	U	0.00019	0.00075
Dichlorodifluorome	ethane	0.00075	U	0.00025	0.00075
Ethylbenzene		0.00075	U	0.00015	0.00075
Ethylene Dibromid	e	0.00075	U	0.00013	0.00075
Isopropylbenzene		0.00075	U	0.000094	0.00075
Methyl acetate		0.0037	U	0.0032	0.0037
Methyl tert-butyl et	ther	0.00075	U	0.000093	0.00075
Methylcyclohexane		0.00075	U	0.00012	0.00075
Methylene Chloride		0.00075	U	0.00012	0.00075
m-Xylene & p-Xyle		0.00075	U	0.00013	0.00075
o-Xylene		0.00075	U	0.000071	0.00075
o-∧yierie		0.00075	U	0.000071	0.00075

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

CVOAMS9 Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72160.D Dilution: 1.0 Initial Weight/Volume: 7.373 g Analysis Date: 08/16/2017 1653 Final Weight/Volume: 5 mL

Prep Date: 08/09/2017 1444

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00075	U	0.000092	0.00075
TBA		0.0075	U	0.0025	0.0075
Tetrachloroethene		0.00075	U	0.00011	0.00075
Toluene		0.00075	U	0.00047	0.00075
trans-1,2-Dichloroethene		0.00075	U	0.00018	0.00075
trans-1,3-Dichloropropene		0.00075	U	0.00020	0.00075
Trichloroethene		0.00075	U	0.00011	0.00075
Trichlorofluoromethane		0.00075	U	0.00030	0.00075
Vinyl chloride		0.00075	U	0.00041	0.00075
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Sur	r)	108	78 - 135		
4-Bromofluorobenzene	•	105	67 - 126		
Dibromofluoromethane (Sui	r)	111		61 - 149	

105

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid % Moisture: 6.8 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72161.D Dilution: 1.0 Initial Weight/Volume: 6.166 g 5 mL Analysis Date: 08/16/2017 1717 Final Weight/Volume:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroeth	ane	0.00087	U	0.00020	0.00087
1,1,2,2-Tetrachlor	oethane	0.00087	U	0.00019	0.00087
1,1,2-Trichloro-1,2	2,2-trifluoroethane	0.00087	U	0.00026	0.00087
1,1,2-Trichloroeth	ane	0.00087	U	0.00015	0.00087
1,1-Dichloroethan	e	0.00087	U	0.00018	0.00087
1,1-Dichloroethen	e	0.00087	U	0.00020	0.00087
1,2,3-Trichlorober		0.00087	U	0.00016	0.00087
1,2,4-Trichlorober	nzene	0.00087	U	0.000080	0.00087
1,2-Dibromo-3-Ch	lloropropane	0.00087	U	0.00040	0.00087
1,2-Dichlorobenze	ene	0.00087	U	0.00013	0.00087
1,2-Dichloroethan	e	0.00087	U	0.00026	0.00087
1,2-Dichloropropa	ine	0.00087	U	0.00037	0.00087
1,3-Dichlorobenze	ene	0.00087	U	0.00014	0.00087
1,4-Dichlorobenze	ene	0.00087	U	0.000087	0.00087
1,4-Dioxane		0.017	U	0.0080	0.017
2-Butanone (MEK	<u>(</u>)	0.0026	J	0.00097	0.0044
2-Hexanone		0.0044	U	0.00068	0.0044
4-Methyl-2-pentar	none (MIBK)	0.0044	U	0.00058	0.0044
Acetone		0.014		0.0033	0.0044
Acetonitrile		0.0087	U	0.0054	0.0087
Acrolein		0.087	U	0.024	0.087
Benzene		0.00087	U	0.00022	0.00087
Bromoform		0.00087	U	0.00037	0.00087
Bromomethane		0.00087	U	0.00041	0.00087
Carbon disulfide		0.00087	U	0.00023	0.00087
Carbon tetrachlori	ide	0.00087	U	0.00016	0.00087
Chlorobenzene		0.00087	U	0.00015	0.00087
Chlorobromometh	iane	0.00087	U	0.00024	0.00087
Chlorodibromome	thane	0.00087	U	0.00017	0.00087
Chloroethane		0.00087	U	0.00045	0.00087
Chloroform		0.00087	U	0.00028	0.00087
Chloromethane		0.00087	U	0.00038	0.00087
cis-1,2-Dichloroetl	hene	0.00087	U	0.00013	0.00087
cis-1,3-Dichloropre	opene	0.00087	U	0.00024	0.00087
Cyclohexane		0.00087	U	0.00019	0.00087
Dichlorobromome	thane	0.00087	U	0.00022	0.00087
Dichlorodifluorome	ethane	0.00087	U	0.00029	0.00087
Ethylbenzene		0.00087	U	0.00017	0.00087
Ethylene Dibromic	de	0.00087	U	0.00016	0.00087
Isopropylbenzene		0.00087	U	0.00011	0.00087
Methyl acetate		0.0044	U	0.0037	0.0044
Methyl tert-butyl e	ther	0.00087	Ū	0.00011	0.00087
Methylcyclohexan		0.00087	Ū	0.00014	0.00087
Methylene Chlorid		0.00073	J	0.00014	0.00087
m-Xylene & p-Xyle		0.00087	Ū	0.00015	0.00087
o-Xylene		0.00087	U	0.000083	0.00087
•					

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid % Moisture: 6.8 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9
Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72161.D
Dilution: 1.0 Initial Weight/Volume: 6.166 g
Analysis Date: 08/16/2017 1717 Final Weight/Volume: 5 mL

Analysis Date: 08/16/2017 1717 Prep Date: 08/09/2017 1444

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00087	U	0.00011	0.00087
TBA		0.0087	U	0.0029	0.0087
Tetrachloroethene		0.00087	U	0.00012	0.00087
Toluene		0.00087	U	0.00054	0.00087
trans-1,2-Dichloroethene		0.00087	U	0.00021	0.00087
trans-1,3-Dichloropropene		0.00087	U	0.00023	0.00087
Trichloroethene		0.00087	U	0.00013	0.00087
Trichlorofluoromethane		0.00087	U	0.00035	0.00087
Vinyl chloride		0.00087	U	0.00048	0.00087
Surrogate		%Rec	Qualifier	Acceptan	ice Limits
1,2-Dichloroethane-d4 (Sur	r)	107	78 - 135		
4-Bromofluorobenzene		103	67 - 126		
Dibromofluoromethane (Su	rr)	108	61 - 149		
Toluene-d8 (Surr)		104		73 - 121	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid % Moisture: 10.8 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72162.D Dilution: 1.0 Initial Weight/Volume: 5.962 g 5 mL Analysis Date: 08/16/2017 1740 Final Weight/Volume:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.00094	U	0.00022	0.00094
1,1,2,2-Tetrachloroethane		0.00094	U	0.00020	0.00094
1,1,2-Trichloro-1,2,2-trifluo	roethane	0.00094	U	0.00028	0.00094
1,1,2-Trichloroethane		0.00094	U	0.00017	0.00094
1,1-Dichloroethane		0.00094	U	0.00019	0.00094
1,1-Dichloroethene		0.00094	U	0.00021	0.00094
1,2,3-Trichlorobenzene		0.00094	U	0.00017	0.00094
1,2,4-Trichlorobenzene		0.00094	U	0.000087	0.00094
1,2-Dibromo-3-Chloropropa	ane	0.00094	U	0.00043	0.00094
1,2-Dichlorobenzene		0.00094	U	0.00014	0.00094
1,2-Dichloroethane		0.00094	U	0.00028	0.00094
1,2-Dichloropropane		0.00094	U	0.00040	0.00094
1,3-Dichlorobenzene		0.00094	U	0.00015	0.00094
1,4-Dichlorobenzene		0.00094	U	0.000094	0.00094
1,4-Dioxane		0.019	U	0.0086	0.019
2-Butanone (MEK)		0.0024	J	0.0010	0.0047
2-Hexanone		0.0047	U	0.00073	0.0047
4-Methyl-2-pentanone (MIE	BK)	0.0047	U	0.00062	0.0047
Acetone		0.011		0.0036	0.0047
Acetonitrile		0.0094	U	0.0059	0.0094
Acrolein		0.094	U	0.026	0.094
Benzene		0.00094	U	0.00024	0.00094
Bromoform		0.00094	U	0.00040	0.00094
Bromomethane		0.00094	U	0.00045	0.00094
Carbon disulfide		0.00094	U	0.00025	0.00094
Carbon tetrachloride		0.00094	U	0.00017	0.00094
Chlorobenzene		0.00094	U	0.00017	0.00094
Chlorobromomethane		0.00094	U	0.00026	0.00094
Chlorodibromomethane		0.00094	U	0.00018	0.00094
Chloroethane		0.00094	U	0.00049	0.00094
Chloroform		0.00094	U	0.00030	0.00094
Chloromethane		0.00094	U	0.00041	0.00094
cis-1,2-Dichloroethene		0.00094	U	0.00014	0.00094
cis-1,3-Dichloropropene		0.00094	U	0.00026	0.00094
Cyclohexane		0.00094	U	0.00021	0.00094
Dichlorobromomethane		0.00094	U	0.00024	0.00094
Dichlorodifluoromethane		0.00094	U	0.00032	0.00094
Ethylbenzene		0.00094	U	0.00019	0.00094
Ethylene Dibromide		0.00094	U	0.00017	0.00094
Isopropylbenzene		0.00094	U	0.00012	0.00094
Methyl acetate		0.0047	U	0.0040	0.0047
Methyl tert-butyl ether		0.00094	U	0.00012	0.00094
Methylcyclohexane		0.00094	U	0.00015	0.00094
Methylene Chloride		0.00094	U	0.00015	0.00094
m-Xylene & p-Xylene		0.00094	U	0.00016	0.00094
o-Xylene		0.00094	U	0.000089	0.00094

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid % Moisture: 10.8 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72162.D Dilution: 1.0 Initial Weight/Volume: 5.962 g Analysis Date: 08/16/2017 1740 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00094	U	0.00012	0.00094
TBA		0.0094	U	0.0031	0.0094
Tetrachloroethene		0.00094	U	0.00013	0.00094
Toluene		0.00094	U	0.00059	0.00094
trans-1,2-Dichloroethene		0.00094	U	0.00023	0.00094
trans-1,3-Dichloropropene		0.00094	U	0.00025	0.00094
Trichloroethene		0.00094	U	0.00014	0.00094
Trichlorofluoromethane		0.00094	U	0.00038	0.00094
Vinyl chloride		0.00094	U	0.00051	0.00094
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
1,2-Dichloroethane-d4 (Sur	r)	105	78 - 135		
4-Bromofluorobenzene	•	101	67 - 126		
Dibromofluoromethane (Sur	r)	107	61 - 149		
Toluene-d8 (Surr)		103		73 - 121	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid % Moisture: 6.7 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72163.D Dilution: 1.0 Initial Weight/Volume: 4.971 g Analysis Date: 08/16/2017 1804 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.0011	U	0.00025	0.0011
1,1,2,2-Tetrachloroetha	ane	0.0011	U	0.00023	0.0011
1,1,2-Trichloro-1,2,2-tri	fluoroethane	0.0011	U	0.00032	0.0011
1,1,2-Trichloroethane		0.0011	U	0.00019	0.0011
1,1-Dichloroethane		0.0011	U	0.00022	0.0011
1,1-Dichloroethene		0.0011	U	0.00024	0.0011
1,2,3-Trichlorobenzene	•	0.0011	U	0.00020	0.0011
1,2,4-Trichlorobenzene	•	0.0011	U	0.000099	0.0011
1,2-Dibromo-3-Chlorop	ropane	0.0011	U	0.00050	0.0011
1,2-Dichlorobenzene		0.0011	U	0.00016	0.0011
1,2-Dichloroethane		0.0011		0.00032	0.0011
1,2-Dichloropropane		0.0011	U	0.00046	0.0011
1,3-Dichlorobenzene		0.0011	U	0.00017	0.0011
1,4-Dichlorobenzene		0.0011	U	0.00011	0.0011
1,4-Dioxane		0.022	U	0.0099	0.022
2-Butanone (MEK)		0.0054	U	0.0012	0.0054
2-Hexanone		0.0054	U	0.00084	0.0054
4-Methyl-2-pentanone	(MIBK)	0.0054	U	0.00072	0.0054
Acetone		0.0046	J	0.0041	0.0054
Acetonitrile		0.011	U	0.0067	0.011
Acrolein		0.11	U	0.030	0.11
Benzene		0.0057		0.00028	0.0011
Bromoform		0.0011	U	0.00046	0.0011
Bromomethane		0.0011	U	0.00051	0.0011
Carbon disulfide		0.0011	U	0.00029	0.0011
Carbon tetrachloride		0.0011	U	0.00020	0.0011
Chlorobenzene		0.0011	U	0.00019	0.0011
Chlorobromomethane		0.0011	U	0.00030	0.0011
Chlorodibromomethane	Э	0.0011	U	0.00021	0.0011
Chloroethane		0.0011	U	0.00056	0.0011
Chloroform		0.0011	U	0.00034	0.0011
Chloromethane		0.0011	U	0.00047	0.0011
cis-1,2-Dichloroethene		0.0011	U	0.00016	0.0011
cis-1,3-Dichloropropen	e	0.0011	U	0.00029	0.0011
Cyclohexane		0.0011	U	0.00024	0.0011
Dichlorobromomethane	9	0.0011	U	0.00028	0.0011
Dichlorodifluoromethan	ie	0.0011	U	0.00036	0.0011
Ethylbenzene		0.00080	J	0.00021	0.0011
Ethylene Dibromide		0.0011	U	0.00019	0.0011
Isopropylbenzene		0.0011	U	0.00014	0.0011
Methyl acetate		0.0054	U	0.0046	0.0054
Methyl tert-butyl ether		0.0011	U	0.00013	0.0011
Methylcyclohexane		0.0011	U	0.00017	0.0011
Methylene Chloride		0.0011	U	0.00018	0.0011
m-Xylene & p-Xylene		0.0041		0.00019	0.0011
o-Xylene		0.00095	J	0.00010	0.0011

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid % Moisture: 6.7 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72163.D Dilution: 1.0 Initial Weight/Volume: 4.971 g Analysis Date: 08/16/2017 1804 Final Weight/Volume: 5 mL

Prep Date: 08/09/2017 1445

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.0011	U	0.00013	0.0011
TBA		0.011	U	0.0036	0.011
Tetrachloroethene		0.0011	U	0.00015	0.0011
Toluene		0.013		0.00067	0.0011
trans-1,2-Dichloroethene		0.0011	U	0.00027	0.0011
trans-1,3-Dichloropropene		0.0011	U	0.00029	0.0011
Trichloroethene		0.0011	U	0.00016	0.0011
Trichlorofluoromethane		0.0011	U	0.00044	0.0011
Vinyl chloride		0.0011	U	0.00059	0.0011
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	105	78 - 135		
4-Bromofluorobenzene		96	67 - 126		
Dibromofluoromethane (Sur	r)	104	61 - 149		

102

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Solid % Moisture: 16.0 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72164.D Dilution: 1.0 Initial Weight/Volume: 5.087 g Analysis Date: 08/16/2017 1828 Final Weight/Volume: 5 mL

· · · · · · · · · · · · · · · · · · ·	orrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.0012	U	0.00027	0.0012
1,1,2,2-Tetrachloroethane		0.0012	U	0.00025	0.0012
1,1,2-Trichloro-1,2,2-trifluoroethane		0.0012	U	0.00035	0.0012
1,1,2-Trichloroethane		0.0012	U	0.00021	0.0012
1,1-Dichloroethane		0.0012	U	0.00024	0.0012
1,1-Dichloroethene		0.0012	U	0.00026	0.0012
1,2,3-Trichlorobenzene		0.0012	U	0.00021	0.0012
1,2,4-Trichlorobenzene		0.0012	U	0.00011	0.0012
1,2-Dibromo-3-Chloropropane		0.0012	U	0.00054	0.0012
1,2-Dichlorobenzene		0.0012	U	0.00017	0.0012
1,2-Dichloroethane		0.0012	U	0.00035	0.0012
1,2-Dichloropropane		0.0012	U	0.00049	0.0012
1,3-Dichlorobenzene		0.0012	U	0.00019	0.0012
1,4-Dichlorobenzene		0.0012	Ü	0.00012	0.0012
1,4-Dioxane		0.023	Ü	0.011	0.023
2-Butanone (MEK)		0.0070	•	0.0013	0.0058
2-Hexanone		0.0058	U	0.00091	0.0058
4-Methyl-2-pentanone (MIBK)		0.0058	Ü	0.00078	0.0058
Acetone		0.037	J	0.0044	0.0058
Acetonitrile		0.012	U	0.0073	0.012
Acrolein		0.12	Ü	0.033	0.12
Benzene		0.0012	Ü	0.00030	0.0012
Bromoform		0.0012	Ü	0.00050	0.0012
Bromomethane		0.0012	U	0.00055	0.0012
Carbon disulfide		0.00070	J	0.00033	0.0012
Carbon tetrachloride		0.00070	U	0.00031	0.0012
Chlorobenzene		0.0012	U	0.00021	0.0012
Chlorobromomethane		0.0012	U	0.00021	0.0012
Chlorodibromomethane		0.0012	U	0.00033	0.0012
Chloroethane		0.0012	U	0.00023	0.0012
Chloroform		0.0012	U	0.00037	0.0012
			U		
Chloromethane		0.0012		0.00051	0.0012
cis-1,2-Dichloroethene		0.0012	U	0.00018	0.0012
cis-1,3-Dichloropropene		0.0012	U	0.00032	0.0012
Cyclohexane		0.0012	U	0.00026	0.0012
Dichlorobromomethane		0.0012	U	0.00030	0.0012
Dichlorodifluoromethane		0.0012	U	0.00040	0.0012
Ethylbenzene		0.011	1.1	0.00023	0.0012
Ethylene Dibromide		0.0012	U	0.00021	0.0012
Isopropylbenzene		0.0036		0.00015	0.0012
Methyl acetate		0.0058	U	0.0050	0.0058
Methyl tert-butyl ether		0.0012	Ų	0.00015	0.0012
Methylcyclohexane		0.00090	J	0.00019	0.0012
Methylene Chloride		0.0018		0.00019	0.0012
m-Xylene & p-Xylene		0.0041		0.00020	0.0012
o-Xylene		0.0012	U	0.00011	0.0012

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Solid % Moisture: 16.0 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72164.D Dilution: 1.0 Initial Weight/Volume: 5.087 g Analysis Date: 08/16/2017 1828 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.0012	U	0.00014	0.0012
TBA		0.012	U	0.0039	0.012
Tetrachloroethene		0.0012	U	0.00017	0.0012
Toluene		0.0012	U	0.00073	0.0012
trans-1,2-Dichloroethene		0.0012	U	0.00029	0.0012
trans-1,3-Dichloropropene		0.0012	U	0.00031	0.0012
Trichloroethene		0.0012	U	0.00017	0.0012
Trichlorofluoromethane		0.0012	U	0.00047	0.0012
Vinyl chloride		0.0012	U	0.00064	0.0012
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
1,2-Dichloroethane-d4 (Surr)	107		78 - 135	
4-Bromofluorobenzene		101	67 - 126		
Dibromofluoromethane (Sur	r)	109	61 - 149		
Toluene-d8 (Surr)		105	73 - 121		

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid % Moisture: 9.0 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72165.D Dilution: 1.0 Initial Weight/Volume: 5.6 g 5 mL Analysis Date: 08/16/2017 1851 Final Weight/Volume:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ane	0.00098	U	0.00023	0.00098
1,1,2,2-Tetrachlord	pethane	0.00098	U	0.00021	0.00098
1,1,2-Trichloro-1,2	,2-trifluoroethane	0.00098	U	0.00030	0.00098
1,1,2-Trichloroetha	ane	0.00098	U	0.00017	0.00098
1,1-Dichloroethane	e	0.00098	U	0.00020	0.00098
1,1-Dichloroethene	е	0.00098	U	0.00022	0.00098
1,2,3-Trichloroben	zene	0.00098	U	0.00018	0.00098
1,2,4-Trichloroben	zene	0.00098	U	0.000090	0.00098
1,2-Dibromo-3-Chl	loropropane	0.00098	U	0.00045	0.00098
1,2-Dichlorobenze	ne	0.00098	U	0.00014	0.00098
1,2-Dichloroethane	Э	0.00098	U	0.00029	0.00098
1,2-Dichloropropar	ne	0.00098	U	0.00042	0.00098
1,3-Dichlorobenze	ne	0.00098	U	0.00016	0.00098
1,4-Dichlorobenze	ne	0.00098	U	0.000098	0.00098
1,4-Dioxane		0.020	U	0.0090	0.020
2-Butanone (MEK))	0.0049	U	0.0011	0.0049
2-Hexanone		0.0049	U	0.00077	0.0049
4-Methyl-2-pentan	one (MIBK)	0.0049	U	0.00065	0.0049
Acetone	,	0.0049	U	0.0037	0.0049
Acetonitrile		0.0098	U	0.0061	0.0098
Acrolein		0.098	U	0.027	0.098
Benzene		0.00098	U	0.00025	0.00098
Bromoform		0.00098	U	0.00042	0.00098
Bromomethane		0.00098	U	0.00047	0.00098
Carbon disulfide		0.00098	U	0.00026	0.00098
Carbon tetrachlorid	de	0.00098	Ü	0.00018	0.00098
Chlorobenzene		0.00098	Ū	0.00017	0.00098
Chlorobromometha	ane	0.00098	U	0.00028	0.00098
Chlorodibromomet		0.00098	Ü	0.00019	0.00098
Chloroethane		0.00098	Ū	0.00051	0.00098
Chloroform		0.00098	Ü	0.00031	0.00098
Chloromethane		0.00098	Ü	0.00043	0.00098
cis-1,2-Dichloroeth	nene	0.00098	Ū	0.00015	0.00098
cis-1,3-Dichloropro		0.00098	Ü	0.00027	0.00098
Cyclohexane		0.00098	Ū	0.00022	0.00098
Dichlorobromomet	hane	0.00098	Ü	0.00025	0.00098
Dichlorodifluorome		0.00098	Ü	0.00033	0.00098
Ethylbenzene		0.00098	Ü	0.00020	0.00098
Ethylene Dibromid	e	0.00098	Ü	0.00018	0.00098
Isopropylbenzene	~	0.00098	Ü	0.00012	0.00098
Methyl acetate		0.0049	Ü	0.0042	0.0049
Methyl tert-butyl et	ther	0.00098	Ü	0.00012	0.00098
Methylcyclohexane		0.00098	Ü	0.00012	0.00098
Methylene Chloride		0.00098	Ü	0.00016	0.00098
m-Xylene & p-Xyle o-Xylene	ene	0.00098 0.00098	U U	0.00017 0.000093	0.00098 0.00098

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid % Moisture: 9.0 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9
Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72165.D
Dilution: 1.0 Initial Weight/Volume: 5.6 g

Analysis Date: 08/16/2017 1851 Final Weight/Volume: 5.6 g

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00098	U	0.00012	0.00098
TBA		0.0098	U	0.0032	0.0098
Tetrachloroethene		0.00098	U	0.00014	0.00098
Toluene		0.00098	U	0.00061	0.00098
trans-1,2-Dichloroethene		0.00098	U	0.00024	0.00098
trans-1,3-Dichloropropene		0.00098	U	0.00026	0.00098
Trichloroethene		0.00098	U	0.00014	0.00098
Trichlorofluoromethane		0.00098	U	0.00040	0.00098
Vinyl chloride		0.00098	U	0.00054	0.00098
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	105		78 - 135	
4-Bromofluorobenzene	•	102	67 - 126		
Dibromofluoromethane (Sur	r)	106	61 - 149		
Toluene-d8 (Surr)		103	73 - 121		

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72166.D Dilution: 1.0 Initial Weight/Volume: 5.965 g Analysis Date: 08/16/2017 1915 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.0010	U	0.00024	0.0010
1,1,2,2-Tetrachloroeth	nane	0.0010	U	0.00022	0.0010
1,1,2-Trichloro-1,2,2-t	rifluoroethane	0.0010	U	0.00031	0.0010
1,1,2-Trichloroethane		0.0010	U	0.00018	0.0010
1,1-Dichloroethane		0.0010	U	0.00021	0.0010
1,1-Dichloroethene		0.0010	U	0.00023	0.0010
1,2,3-Trichlorobenzen	ıe	0.0010	U	0.00018	0.0010
1,2,4-Trichlorobenzen	ie	0.0010	U	0.000093	0.0010
1,2-Dibromo-3-Chloro	propane	0.0010	U	0.00047	0.0010
1,2-Dichlorobenzene		0.0010	U	0.00015	0.0010
1,2-Dichloroethane		0.0010	U	0.00030	0.0010
1,2-Dichloropropane		0.0010	U	0.00043	0.0010
1,3-Dichlorobenzene		0.0010	U	0.00016	0.0010
1,4-Dichlorobenzene		0.0010	U	0.00010	0.0010
1,4-Dioxane		0.020	U	0.0093	0.020
2-Butanone (MEK)		0.0051	U	0.0011	0.0051
2-Hexanone \		0.0051	U	0.00079	0.0051
4-Methyl-2-pentanone	e (MIBK)	0.0051	U	0.00067	0.0051
Acetone	,	0.0051	U	0.0038	0.0051
Acetonitrile		0.010	U	0.0063	0.010
Acrolein		0.10	U	0.028	0.10
Benzene		0.0010	U	0.00026	0.0010
Bromoform		0.0010	Ū	0.00043	0.0010
Bromomethane		0.0010	Ū	0.00048	0.0010
Carbon disulfide		0.0010	Ū	0.00027	0.0010
Carbon tetrachloride		0.0010	Ü	0.00018	0.0010
Chlorobenzene		0.0010	Ü	0.00018	0.0010
Chlorobromomethane	1	0.0010	Ü	0.00029	0.0010
Chlorodibromomethan		0.0010	Ü	0.00020	0.0010
Chloroethane		0.0010	Ü	0.00053	0.0010
Chloroform		0.0010	Ü	0.00032	0.0010
Chloromethane		0.0010	Ü	0.00044	0.0010
cis-1,2-Dichloroethene	e	0.0010	Ū	0.00015	0.0010
cis-1,3-Dichloroproper		0.0010	Ū	0.00028	0.0010
Cyclohexane		0.0010	Ü	0.00022	0.0010
Dichlorobromomethan	ne	0.0010	Ü	0.00026	0.0010
Dichlorodifluorometha		0.0010	Ü	0.00034	0.0010
Ethylbenzene		0.0010	Ü	0.00020	0.0010
Ethylene Dibromide		0.0010	Ü	0.00018	0.0010
Isopropylbenzene		0.0010	Ü	0.00013	0.0010
Methyl acetate		0.0051	Ü	0.0044	0.0051
Methyl tert-butyl ether	•	0.0010	Ü	0.00013	0.0010
Methylcyclohexane		0.0010	Ü	0.00016	0.0010
Methylene Chloride		0.0010	Ü	0.00017	0.0010
m-Xylene & p-Xylene		0.0010	Ü	0.00017	0.0010
o-Xylene		0.0010	Ü	0.00010	0.0010

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

CVOAMS9 Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72166.D Dilution: 1.0 Initial Weight/Volume: 5.965 g Analysis Date: 08/16/2017 1915 Final Weight/Volume: 5 mL

Prep Date: 08/09/2017 1446

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.0010	U	0.00012	0.0010
TBA		0.010	U	0.0033	0.010
Tetrachloroethene		0.0010	U	0.00015	0.0010
Toluene		0.0010	U	0.00063	0.0010
trans-1,2-Dichloroethene		0.0010	U	0.00025	0.0010
trans-1,3-Dichloropropene		0.0010	U	0.00027	0.0010
Trichloroethene		0.0010	U	0.00015	0.0010
Trichlorofluoromethane		0.0010	U	0.00041	0.0010
Vinyl chloride		0.0010	U	0.00055	0.0010
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	104	78 - 135		
4-Bromofluorobenzene		99	67 - 126		
Dibromofluoromethane (Sur	r)	104	61 - 149		

101

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid % Moisture: 5.2 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72167.D Dilution: 1.0 Initial Weight/Volume: 4.041 g 5 mL Analysis Date: 08/16/2017 1939 Final Weight/Volume:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ne	0.0013	U	0.00030	0.0013
1,1,2,2-Tetrachloro	ethane	0.0013	U	0.00028	0.0013
1,1,2-Trichloro-1,2,	2-trifluoroethane	0.0013	U	0.00039	0.0013
1,1,2-Trichloroetha	ne	0.0013	U	0.00023	0.0013
1,1-Dichloroethane	•	0.0013	U	0.00027	0.0013
1,1-Dichloroethene	•	0.0013	U	0.00029	0.0013
1,2,3-Trichlorobenz	zene	0.0013	U	0.00024	0.0013
1,2,4-Trichlorobenz	zene	0.0013	U	0.00012	0.0013
1,2-Dibromo-3-Chl	oropropane	0.0013	U	0.00060	0.0013
1,2-Dichlorobenzer	ne	0.0013	U	0.00019	0.0013
1,2-Dichloroethane	•	0.0013	U	0.00039	0.0013
1,2-Dichloropropar	ne	0.0013	U	0.00055	0.0013
1,3-Dichlorobenzer	ne	0.0013	U	0.00021	0.0013
1,4-Dichlorobenzer	ne	0.0013	U	0.00013	0.0013
1,4-Dioxane		0.026	U	0.012	0.026
2-Butanone (MEK)		0.0065	U	0.0014	0.0065
2-Hexanone		0.0065	U	0.0010	0.0065
4-Methyl-2-pentand	one (MIBK)	0.0065	U	0.00087	0.0065
Acetone	,	0.0065	U	0.0049	0.0065
Acetonitri l e		0.013	U	0.0081	0.013
Acrolein		0.13	Ū	0.037	0.13
Benzene		0.0013	Ū	0.00034	0.0013
Bromoform		0.0013	Ū	0.00055	0.0013
Bromomethane		0.0013	Ū	0.00062	0.0013
Carbon disulfide		0.0013	Ū	0.00035	0.0013
Carbon tetrachloric	le	0.0013	Ū	0.00024	0.0013
Chlorobenzene		0.0013	Ū	0.00023	0.0013
Chlorobromometha	ane	0.0013	Ü	0.00037	0.0013
Chlorodibromomet		0.0013	Ū	0.00025	0.0013
Chloroethane		0.0013	Ü	0.00068	0.0013
Chloroform		0.0013	Ü	0.00042	0.0013
Chloromethane		0.0013	Ü	0.00057	0.0013
cis-1,2-Dichloroeth	ene	0.0013	Ü	0.00020	0.0013
cis-1,3-Dichloropro		0.0013	Ü	0.00036	0.0013
Cyclohexane	pone	0.0013	Ü	0.00029	0.0013
Dichlorobromometl	hane	0.0013	Ü	0.00034	0.0013
Dichlorodifluorome		0.0013	Ü	0.00044	0.0013
Ethylbenzene		0.0013	Ŭ	0.00026	0.0013
Ethylene Dibromide	<u> </u>	0.0013	Ü	0.00024	0.0013
Isopropylbenzene	~	0.0013	Ü	0.00024	0.0013
Methyl acetate		0.0065	Ü	0.0056	0.0065
Methyl tert-butyl et	her	0.0003	Ü	0.00016	0.0003
Methylcyclohexane		0.0013	U	0.00010	0.0013
Methylene Chloride		0.0013	U	0.00021	0.0013
m-Xylene & p-Xyle		0.0013	U	0.00021	0.0013
	IIC	0.0013		0.00023	0.0013
o-Xylene		0.0013	U	0.00012	0.0013

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid % Moisture: 5.2 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

CVOAMS9 Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72167.D Dilution: 1.0 Initial Weight/Volume: 4.041 g Analysis Date: 08/16/2017 1939 Final Weight/Volume: 5 mL

Prep Date: 08/09/2017 1447

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.0013	U	0.00016	0.0013
TBA		0.013	U	0.0043	0.013
Tetrachloroethene		0.0013	U	0.00019	0.0013
Toluene		0.0013	U	0.00082	0.0013
trans-1,2-Dichloroethene		0.0013	U	0.00032	0.0013
trans-1,3-Dichloropropene		0.0013	U	0.00035	0.0013
Trichloroethene		0.0013	U	0.00019	0.0013
Trichlorofluoromethane		0.0013	U	0.00053	0.0013
Vinyl chloride		0.0013	U	0.00071	0.0013
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Suri	-)	106	78 - 135		
4-Bromofluorobenzene	•	99	67 - 126		
Dibromofluoromethane (Sur	r)	107	61 - 149		

103

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72168.D Dilution: 1.0 Initial Weight/Volume: 7.216 g Analysis Date: 08/16/2017 2003 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroeth		0.00084	U	0.00020	0.00084
1,1,2,2-Tetrachlo	roethane	0.00084	U	0.00018	0.00084
1,1,2-Trichloro-1,	,2,2-trifluoroethane	0.00084	U	0.00025	0.00084
1,1,2-Trichloroeth	nane	0.00084	U	0.00015	0.00084
1,1-Dichloroethar	ne	0.00084	U	0.00017	0.00084
1,1-Dichloroether	ne	0.00084	U	0.00019	0.00084
1,2,3-Trichlorobe	nzene	0.00084	U	0.00015	0.00084
1,2,4-Trichlorobe	nzene	0.00084	U	0.000077	0.00084
1,2-Dibromo-3-Cl	hloropropane	0.00084	U	0.00039	0.00084
1,2-Dichlorobenz	ene	0.00084	U	0.00012	0.00084
1,2-Dichloroethar	ne	0.00084	U	0.00025	0.00084
1,2-Dichloropropa	ane	0.00084	U	0.00035	0.00084
1,3-Dichlorobenz	ene	0.00084	U	0.00013	0.00084
1,4-Dichlorobenz	ene	0.00084	U	0.000084	0.00084
1,4-Dioxane		0.017	U	0.0077	0.017
2-Butanone (ME	<)	0.0023	J	0.00093	0.0042
2-Hexanone	,	0.0042	U	0.00065	0.0042
4-Methyl-2-penta	none (MIBK)	0.0042	U	0.00056	0.0042
Acetone	,	0.017		0.0032	0.0042
Acetonitrile		0.0084	U	0.0052	0.0084
Acrolein		0.084	U	0.023	0.084
Benzene		0.00084	U	0.00022	0.00084
Bromoform		0.00084	Ū	0.00036	0.00084
Bromomethane		0.00084	Ū	0.00040	0.00084
Carbon disulfide		0.00084	Ü	0.00022	0.00084
Carbon tetrachlor	ride	0.00084	Ū	0.00015	0.00084
Chlorobenzene		0.00084	Ü	0.00015	0.00084
Chlorobromometl	hane	0.00084	Ū	0.00024	0.00084
Chlorodibromome		0.00084	Ü	0.00016	0.00084
Chloroethane		0.00084	Ū	0.00044	0.00084
Chloroform		0.00084	Ü	0.00027	0.00084
Chloromethane		0.00084	Ū	0.00036	0.00084
cis-1,2-Dichloroe	thene	0.00084	Ü	0.00013	0,00084
cis-1,3-Dichlorop		0.00084	Ü	0.00023	0.00084
Cyclohexane		0.00084	Ü	0.00019	0.00084
Dichlorobromome	ethane	0.00084	Ü	0.00022	0.00084
Dichlorodifluorom		0.00084	Ü	0.00028	0.00084
Ethylbenzene		0.00084	Ü	0.00017	0.00084
Ethylene Dibromi	ide	0.00084	Ü	0.00015	0.00084
Isopropylbenzene		0.00084	Ü	0.00013	0.00084
Methyl acetate		0.0042	Ü	0.0036	0.0042
Methyl tert-butyl	ether	0.00042	Ü	0.00010	0.00042
Methylcyclohexar		0.00084	U	0.00013	0.00084
Methylene Chlori		0.00084	Ü	0.00013	0.00084
m-Xylene & p-Xyl		0.00084	Ü	0.00014	0.00084
	IOTIO				
o-Xylene		0.00084	U	0.000080	0.00084

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72168.D Dilution: 1.0 Initial Weight/Volume: 7.216 g Final Weight/Volume: 5 mL

Analysis Date: 08/16/2017 2003 Prep Date: 08/09/2017 1447

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00084	U	0.00010	0.00084
TBA		0.0084	U	0.0028	0.0084
Tetrachloroethene		0.00084	U	0.00012	0.00084
Toluene		0.00084	U	0.00052	0.00084
trans-1,2-Dichloroethene		0.00084	U	0.00021	0.00084
trans-1,3-Dichloropropene		0.00084	U	0.00022	0.00084
Trichloroethene		0.00084	U	0.00012	0.00084
Trichlorofluoromethane		0.00084	U	0.00034	0.00084
Vinyl chloride		0.00084	U	0.00046	0.00084

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	104		78 - 135
4-Bromofluorobenzene	99		67 - 126
Dibromofluoromethane (Surr)	103		61 - 149
Toluene-d8 (Surr)	100		73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid % Moisture: 5.5 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72169.D Dilution: 1.0 Initial Weight/Volume: 5.866 g Analysis Date: 08/16/2017 2026 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ne	0.00090	U	0.00021	0.00090
1,1,2,2-Tetrachloro	ethane	0.00090	U	0.00019	0.00090
1,1,2-Trichloro-1,2,	2-trifluoroethane	0.00090	U	0.00027	0.00090
1,1,2-Trichloroetha	ne	0.00090	U	0.00016	0.00090
1,1-Dichloroethane		0.00090	U	0.00019	0.00090
1,1-Dichloroethene		0.00090	U	0.00020	0.00090
1,2,3-Trichlorobenz	ene	0.00090	U	0.00016	0.00090
1,2,4-Trichlorobenz	ene	0.00090	U	0.000083	0.00090
1,2-Dibromo-3-Chlo	oropropane	0.00090	U	0.00041	0.00090
1,2-Dichlorobenzer	ne	0.00090	U	0.00013	0.00090
1,2-Dichloroethane		0.00090	U	0.00027	0.00090
1,2-Dichloropropan	e	0.00090	U	0.00038	0.00090
1,3-Dichlorobenzer		0.00090	U	0.00014	0.00090
1,4-Dichlorobenzer	ne	0.00090	U	0.000090	0.00090
1,4-Dioxane		0.018	U	0.0083	0.018
2-Butanone (MEK)		0.0045	U	0.0010	0.0045
2-Hexanone		0.0045	U	0.00070	0.0045
4-Methyl-2-pentand	one (MIBK)	0.0045	U	0.00060	0.0045
Acetone	,	0.0045	U	0.0034	0.0045
Acetonitrile		0.0090	U	0.0056	0.0090
Acrolein		0.090	U	0.025	0.090
Benzene		0.00090	U	0.00023	0.00090
Bromoform		0.00090	U	0.00038	0.00090
Bromomethane		0.00090	U	0.00043	0.00090
Carbon disulfide		0.00090	Ū	0.00024	0.00090
Carbon tetrachlorid	e	0.00090	Ü	0.00016	0.00090
Chlorobenzene		0.00090	Ū	0.00016	0.00090
Chlorobromometha	ine	0.00090	U	0.00025	0.00090
Chlorodibromometh	nane	0.00090	U	0.00017	0.00090
Chloroethane		0.00090	U	0.00047	0.00090
Chloroform		0.00090	Ü	0.00029	0.00090
Chloromethane		0.00090	Ū	0.00039	0.00090
cis-1,2-Dichloroeth	ene	0.00090	Ū	0.00014	0.00090
cis-1,3-Dichloropro		0.00090	Ü	0.00025	0.00090
Cyclohexane	,	0.00090	Ū	0.00020	0.00090
Dichlorobromometh	nane	0.00090	Ü	0.00023	0.00090
Dichlorodifluorome		0.00090	Ü	0.00030	0.00090
Ethylbenzene		0.00090	Ü	0.00018	0.00090
Ethylene Dibromide	j	0.00090	Ü	0.00016	0.00090
Isopropylbenzene	-	0.00090	Ü	0.00011	0.00090
Methyl acetate		0.0045	Ü	0.0039	0.0045
Methyl tert-butyl eth	ner	0.00090	Ü	0.00011	0.00090
Methylcyclohexane		0.00090	Ü	0.00014	0.00090
Methylene Chloride		0.00090	Ü	0.00015	0.00090
m-Xylene & p-Xylei		0.00090	Ü	0.00016	0.00090
o-Xylene		0.00090	Ü	0.000010	0.00090
O-Mylette		0.00090	U	0.00000	0.00090

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid % Moisture: 5.5 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72169.D Dilution: 1.0 Initial Weight/Volume: 5.866 g Analysis Date: 08/16/2017 2026 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00090	U	0.00011	0.00090
TBA		0.0090	U	0.0030	0.0090
Tetrachloroethene		0.00090	U	0.00013	0.00090
Toluene		0.00090	U	0.00056	0.00090
trans-1,2-Dichloroethene		0.00090	U	0.00022	0.00090
trans-1,3-Dichloropropene		0.00090	U	0.00024	0.00090
Trichloroethene		0.00090	U	0.00013	0.00090
Trichlorofluoromethane		0.00090	U	0.00037	0.00090
Vinyl chloride		0.00090	U	0.00049	0.00090
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Sur	r)	106	78 - 135		
4. Danasa fluidadh a annsa a	<i>'</i>	404		07 400	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	106		78 - 135
4-Bromofluorobenzene	104		67 - 126
Dibromofluoromethane (Surr)	106		61 - 149
Toluene-d8 (Surr)	105		73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid % Moisture: 12.1 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72180.D Dilution: 1.0 Initial Weight/Volume: 7.361 g Analysis Date: 08/17/2017 0108 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.00077	U	0.00018	0.00077
1,1,2,2-Tetrachloroetha	ine	0.00077	U	0.00017	0.00077
1,1,2-Trichloro-1,2,2-trif	fluoroethane	0.00077	U	0.00023	0.00077
1,1,2-Trichloroethane		0.00077	U	0.00014	0.00077
1,1-Dichloroethane		0.00077	U	0.00016	0.00077
1,1-Dichloroethene		0.00077	U	0.00017	0.00077
1,2,3-Trichlorobenzene		0.00077	U	0.00014	0.00077
1,2,4-Trichlorobenzene		0.00077	U	0.000071	0.00077
1,2-Dibromo-3-Chloropi	ropane	0.00077	U	0.00036	0.00077
1,2-Dichlorobenzene		0.00077	U	0.00011	0.00077
1,2-Dichloroethane		0.00077	U	0.00023	0.00077
1,2-Dichloropropane		0.00077	U	0.00033	0.00077
1,3-Dichlorobenzene		0.00077	U	0.00012	0.00077
1,4-Dichlorobenzene		0.00077	U	0.000077	0.00077
1,4-Dioxane		0.015	U	0.0071	0.015
2-Butanone (MEK)		0.0039	U	0.00086	0.0039
2-Hexanone		0.0039	U	0.00060	0.0039
4-Methyl-2-pentanone ((MIBK)	0.0039	U	0.00051	0.0039
Acetone	,	0.0039	U	0.0029	0.0039
Acetonitrile		0.0077	U	0.0048	0.0077
Acrolein		0.077	U	0.022	0.077
Benzene		0.00077	U	0.00020	0.00077
Bromoform		0.00077	Ū	0.00033	0.00077
Bromomethane		0.00077	Ū	0.00037	0.00077
Carbon disulfide		0.00077	Ü	0.00021	0.00077
Carbon tetrachloride		0.00077	Ü	0.00014	0.00077
Chlorobenzene		0.00077	U	0.00014	0.00077
Chlorobromomethane		0.00077	U	0.00022	0.00077
Chlorodibromomethane		0.00077	Ü	0.00015	0.00077
Chloroethane		0.00077	Ū	0.00040	0.00077
Chloroform		0.00077	Ü	0.00025	0.00077
Chloromethane		0.00077	Ū	0.00034	0.00077
cis-1,2-Dichloroethene		0.00077	Ü	0.00012	0.00077
cis-1,3-Dichloropropene	Э	0.00077	U	0.00021	0.00077
Cyclohexane		0.00077	U	0.00017	0.00077
Dichlorobromomethane	•	0.00077	Ū	0.00020	0.00077
Dichlorodifluoromethan		0.00077	Ū	0.00026	0.00077
Ethylbenzene		0.00077	Ü	0.00015	0.00077
Ethylene Dibromide		0.00077	Ü	0.00014	0.00077
Isopropylbenzene		0.00077	Ü	0.000097	0.00077
Methyl acetate		0.0039	Ü	0.0033	0.0039
Methyl tert-butyl ether		0.00077	Ŭ	0.000097	0.00077
Methylcyclohexane		0.00077	Ü	0.00012	0.00077
Methylene Chloride		0.00077	Ü	0.00012	0.00077
m-Xylene & p-Xylene		0.00077	Ü	0.00013	0.00077
o-Xylene		0.00077	Ü	0.000073	0.00077

61 - 149

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid % Moisture: 12.1 Date Received: 08/09/2017 1125

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455130 Lab File ID: K72180.D Dilution: 1.0 Initial Weight/Volume: 7.361 g Analysis Date: 08/17/2017 0108 Final Weight/Volume: 5 mL

Prep Date: 08/09/2017 1448

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00077	U	0.000095	0.00077
TBA		0.0077	U	0.0026	0.0077
Tetrachloroethene		0.00077	U	0.00011	0.00077
Toluene		0.00077	U	0.00048	0.00077
trans-1,2-Dichloroethene		0.00077	U	0.00019	0.00077
trans-1,3-Dichloropropene		0.00077	U	0.00021	0.00077
Trichloroethene		0.00077	U	0.00011	0.00077
Trichlorofluoromethane		0.00077	U	0.00031	0.00077
Vinyl chloride		0.00077	U	0.00042	0.00077
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Sur	r)	105	78 - 135		
4-Bromofluorobenzene	•	105		67 - 126	

106

104

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72137.D Dilution: 1.0 Initial Weight/Volume: 5.13 g Analysis Date: 08/16/2017 0730 Final Weight/Volume: 5 mL

Analyte DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane	0.0010	U	0.00024	0.0010
1,1,2,2-Tetrachloroethane	0.0010	U	0.00022	0.0010
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0010	U	0.00031	0.0010
1,1,2-Trichloroethane	0.0010	U	0.00018	0.0010
1,1-Dichloroethane	0.0010	U	0.00021	0.0010
1,1-Dichloroethene	0.0010	U	0.00023	0.0010
1,2,3-Trichlorobenzene	0.0010	U	0.00018	0.0010
1,2,4-Trichlorobenzene	0.0010	U	0.000094	0.0010
1,2-Dibromo-3-Chloropropane	0.0010	U	0.00047	0.0010
1,2-Dichlorobenzene	0.0010	U	0.00015	0.0010
1,2-Dichloroethane	0.0010	U	0.00030	0.0010
1,2-Dichloropropane	0.0010	U	0.00043	0.0010
1,3-Dichlorobenzene	0.0010	U	0.00016	0.0010
1,4-Dichlorobenzene	0.0010	U	0.00010	0.0010
1,4-Dioxane	0.020	U	0.0094	0.020
2-Butanone (MEK)	0.0051	U	0.0011	0.0051
2-Hexanone	0.0051	U	0.00080	0.0051
4-Methyl-2-pentanone (MIBK)	0.0051	Ū	0.00068	0.0051
Acetone	0.0051	Ü	0.0039	0.0051
Acetonitrile	0.010	Ü	0.0064	0.010
Acrolein	0.10	Ü	0.029	0.10
Benzene	0.0010	Ü	0.00026	0.0010
Bromoform	0.0010	Ü	0.00043	0.0010
Bromomethane	0.0010	Ü	0.00048	0.0010
Carbon disulfide	0.0010	Ü	0.00027	0.0010
Carbon tetrachloride	0.0010	Ü	0.00018	0.0010
Chlorobenzene	0.0010	Ü	0.00018	0.0010
Chlorobromomethane	0.0010	Ü	0.00029	0.0010
Chlorodibromomethane	0.0010	Ü	0.00020	0.0010
Chloroethane	0.0010	Ü	0.00053	0.0010
Chloroform	0.0010	Ü	0.00033	0.0010
Chloromethane	0.0010	Ü	0.00044	0.0010
cis-1,2-Dichloroethene	0.0010	Ü	0.00044	0.0010
cis-1,3-Dichloropropene	0.0010	U	0.00013	0.0010
Cyclohexane	0.0010	J	0.00028	0.0010
Dichlorobromomethane	0.00075	U	0.00023	0.0010
Dichlorodifluoromethane	0.0010	U	0.00034	0.0010
Ethylbenzene	0.0010	U	0.00020	0.0010
Ethylene Dibromide	0.0010	U	0.00018	0.0010
Isopropylbenzene	0.0010	U	0.00013	0.0010
Methyl acetate	0.0051	U	0.0044	0.0051
Methyl tert-butyl ether	0.0010	U	0.00013	0.0010
Methylcyclohexane	0.0027		0.00016	0.0010
Methylene Chloride	0.0010	U	0.00017	0.0010
m-Xylene & p-Xylene	0.0010	U	0.00018	0.0010
o-Xylene	0.0010	U	0.000097	0.0010

61 - 149

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456539 Instrument ID: CVOAMS9
Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72137.D
Dilution: 1.0 Initial Weight/Volume: 5.13 g
Analysis Date: 08/16/2017 0730 Final Weight/Volume: 5 mL

Analysis Date: 08/16/2017 0730 Prep Date: 08/10/2017 2056

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.0010	U	0.00013	0.0010
TBA		0.010	U	0.0034	0.010
Tetrachloroethene		0.0010	U	0.00015	0.0010
Toluene		0.0010	U	0.00064	0.0010
trans-1,2-Dichloroethene		0.0010	U	0.00025	0.0010
trans-1,3-Dichloropropene		0.0010	U	0.00027	0.0010
Trichloroethene		0.0010	U	0.00015	0.0010
Trichlorofluoromethane		0.0010	U	0.00041	0.0010
Vinyl chloride		0.0010	U	0.00056	0.0010
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Sur	r)	103	78 - 135		
4-Bromofluorobenzene	,	100	67 - 126		

105

101

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72138.D Dilution: 1.0 Initial Weight/Volume: 6.655 g Analysis Date: 08/16/2017 0754 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroeth		0.00077	U	0.00018	0.00077
1,1,2,2-Tetrachlo	roethane	0.00077	U	0.00016	0.00077
1,1,2-Trichloro-1,	2,2-trifluoroethane	0.00077	U	0.00023	0.00077
1,1,2-Trichloroeth	nane	0.00077	U	0.00014	0.00077
1,1-Dichloroethar	ne	0.00077	U	0.00016	0.00077
1,1-Dichloroether	ne	0.00077	U	0.00017	0.00077
1,2,3-Trichlorobe	nzene	0.00077	U	0.00014	0.00077
1,2,4-Trichlorobe	nzene	0.00077	U	0.000071	0.00077
1,2-Dibromo-3-Cl	hloropropane	0.00077	U	0.00035	0.00077
1,2-Dichlorobenz	ene	0.00077	U	0.00011	0.00077
1,2-Dichloroethar	ne	0.00077	U	0.00023	0.00077
1,2-Dichloropropa	ane	0.00077	U	0.00033	0.00077
1,3-Dichlorobenz	ene	0.00077	U	0.00012	0.00077
1,4-Dichlorobenz	ene	0.00077	U	0.000077	0.00077
1,4-Dioxane		0.015	U	0.0071	0.015
2-Butanone (ME	<)	0.0038	U	0.00085	0.0038
2-Hexanone	,	0.0038	U	0.00060	0.0038
4-Methyl-2-penta	none (MIBK)	0.0038	U	0.00051	0.0038
Acetone	,	0.0038	U	0.0029	0.0038
Acetonitrile		0.0077	U	0.0048	0.0077
Acrolein		0.077	U	0.022	0.077
Benzene		0.00077	U	0.00020	0.00077
Bromoform		0.00077	Ū	0.00033	0.00077
Bromomethane		0.00077	Ū	0.00036	0.00077
Carbon disulfide		0.00077	Ü	0.00020	0.00077
Carbon tetrachlor	ride	0.00077	Ū	0.00014	0.00077
Chlorobenzene		0.00077	Ü	0.00014	0.00077
Chlorobromometl	hane	0.00077	U	0.00022	0.00077
Chlorodibromome		0.00077	Ü	0.00015	0.00077
Chloroethane		0.00077	Ū	0.00040	0.00077
Chloroform		0.00077	Ü	0.00025	0.00077
Chloromethane		0.00077	Ū	0.00033	0.00077
cis-1,2-Dichloroe	thene	0.00077	Ü	0.00012	0.00077
cis-1,3-Dichlorop		0.00077	Ü	0.00021	0.00077
Cyclohexane	. • • • • • • • • • • • • • • • • • • •	0.00032	J	0.00017	0.00077
Dichlorobromome	ethane	0.00077	Ü	0.00020	0.00077
Dichlorodifluorom		0.00077	Ü	0.00026	0.00077
Ethylbenzene	iotrario	0.00077	Ü	0.00015	0.00077
Ethylene Dibromi	de	0.00077	Ü	0.00014	0.00077
Isopropylbenzene		0.00077	Ü	0.000097	0.00077
Methyl acetate	-	0.0038	Ü	0.0033	0.0038
Methyl tert-butyl	ether	0.00077	Ü	0.000096	0.00077
Methylcyclohexar		0.00077	J	0.000090	0.00077
Methylene Chlori		0.00090	U	0.00012	0.00077
m-Xylene & p-Xyl		0.00077	Ü	0.00013	0.00077
o-Xylene		0.00077	Ü	0.00013	0.00077
o-∧yierie		0.00011	U	0.000073	0.00077

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72138.D Dilution: 1.0 Initial Weight/Volume: 6.655 g Analysis Date: 08/16/2017 0754 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00077	U	0.000095	0.00077
TBA		0.0077	U	0.0025	0.0077
Tetrachloroethene		0.00077	U	0.00011	0.00077
Toluene		0.00077	U	0.00048	0.00077
trans-1,2-Dichloroethene		0.00077	U	0.00019	0.00077
trans-1,3-Dichloropropene		0.00077	U	0.00020	0.00077
Trichloroethene		0.00077	U	0.00011	0.00077
Trichlorofluoromethane		0.00077	U	0.00031	0.00077
Vinyl chloride		0.00077	U	0.00042	0.00077
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
1,2-Dichloroethane-d4 (Surr)	100		78 - 135	
4-Bromofluorobenzene	•	98	67 - 126		
Dibromofluoromethane (Sur	r)	101	61 - 149		
Toluene-d8 (Surr)		98		73 - 121	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72150.D Dilution: 1.0 Initial Weight/Volume: 6.499 g Analysis Date: 08/16/2017 1256 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroethane		0.00086	U	0.00020	0.00086
1,1,2,2-Tetrachloroethar	ne	0.00086	U	0.00018	0.00086
1,1,2-Trichloro-1,2,2-trifl	uoroethane	0.00086	U	0.00026	0.00086
1,1,2-Trichloroethane		0.00086	U	0.00015	0.00086
1,1-Dichloroethane		0.00086	U	0.00018	0.00086
1,1-Dichloroethene		0.00086	U	0.00019	0.00086
1,2,3-Trichlorobenzene		0.00086	U	0.00016	0.00086
1,2,4-Trichlorobenzene		0.00086	U	0.000079	0.00086
1,2-Dibromo-3-Chloropro	opane	0.00086	U	0.00040	0.00086
1,2-Dichlorobenzene		0.00086	U	0.00012	0.00086
1,2-Dichloroethane		0.00086	U	0.00025	0.00086
1,2-Dichloropropane		0.00086	U	0.00036	0.00086
1,3-Dichlorobenzene		0.00086	U	0.00014	0.00086
1,4-Dichlorobenzene		0.00086	U	0.000086	0.00086
1,4-Dioxane		0.017	U	0.0079	0.017
2-Butanone (MEK)		0.0043	U	0.00096	0.0043
2-Hexanone		0.0043	U	0.00067	0.0043
4-Methyl-2-pentanone (M	MIBK)	0.0043	U	0.00057	0.0043
Acetone	,	0.0043	U	0.0033	0.0043
Acetonitrile		0.0086	U	0.0054	0.0086
Acrolein		0.086	U	0.024	0.086
Benzene		0.0018		0.00022	0.00086
Bromoform		0.00086	U	0.00037	0.00086
Bromomethane		0.00086	U	0.00041	0.00086
Carbon disulfide		0.00086	U	0.00023	0.00086
Carbon tetrachloride		0.00086	U	0.00016	0.00086
Chlorobenzene		0.00086	U	0.00015	0.00086
Chlorobromomethane		0.00086	U	0.00024	0.00086
Chlorodibromomethane		0.00086	U	0.00017	0.00086
Chloroethane		0.00086	U	0.00045	0.00086
Chloroform		0.00086	U	0.00027	0.00086
Chloromethane		0.00086	U	0.00037	0.00086
cis-1,2-Dichloroethene		0.00086	U	0.00013	0.00086
cis-1,3-Dichloropropene		0.00086	U	0.00023	0.00086
Cyclohexane		0.0010		0.00019	0.00086
Dichlorobromomethane		0.00086	U	0.00022	0.00086
Dichlorodifluoromethane	•	0.00086	U	0.00029	0.00086
Ethylbenzene		0.00086	U	0.00017	0.00086
Ethylene Dibromide		0.00086	U	0.00015	0.00086
Isopropylbenzene		0.00086	U	0.00011	0.00086
Methyl acetate		0.0043	U	0.0037	0.0043
Methyl tert-butyl ether		0.00086	U	0.00011	0.00086
Methylcyclohexane		0.0032		0.00014	0.00086
Methylene Chloride		0.00086	U	0.00014	0.00086
m-Xylene & p-Xylene		0.00086	U	0.00015	0.00086
o-Xylene		0.00086	U	0.000082	0.00086

61 - 149 73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

CVOAMS9 Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72150.D Dilution: 1.0 Initial Weight/Volume: 6.499 g 5 mL Analysis Date: 08/16/2017 1256 Final Weight/Volume:

Prep Date: 08/10/2017 2056

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00086	U	0.00011	0.00086
TBA		0.0086	U	0.0028	0.0086
Tetrachloroethene		0.00086	U	0.00012	0.00086
Toluene		0.00086	U	0.00054	0.00086
trans-1,2-Dichloroethene		0.00086	U	0.00021	0.00086
trans-1,3-Dichloropropene		0.00086	U	0.00023	0.00086
Trichloroethene		0.00086	U	0.00012	0.00086
Trichlorofluoromethane		0.00086	U	0.00035	0.00086
Vinyl chloride		0.00086	U	0.00047	0.00086
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr	.)	110	78 - 135		
4-Bromofluorobenzene		102	67 - 126		

110

106

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456502 Instrument ID: CVOAMS6 Prep Method: 5035 Prep Batch: 460-455484 Lab File ID: F51951.D Dilution: 50 Initial Weight/Volume: 6.632 g Analysis Date: 08/16/2017 0005 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg) 0.043	Qualifier	MDL	RL
1,1,1-Trichloroethane	1,1,1-Trichloroethane		U	0.012	0.043
1,1,2,2-Tetrachloroetha	ne	0.043	U	0.0082	0.043
1,1,2-Trichloro-1,2,2-tri	fluoroethane	0.043	U	0.015	0.043
1,1,2-Trichloroethane		0.043	U	0.0034	0.043
1,1-Dichloroethane		0.043	U	0.010	0.043
1,1-Dichloroethene		0.043	U	0.015	0.043
1,2,3-Trichlorobenzene		0.043	U	0.015	0.043
1,2,4-Trichlorobenzene		0.043	U	0.012	0.043
1,2-Dibromo-3-Chlorop	ropane	0.043	U	0.0099	0.043
1,2-Dichlorobenzene		0.043	U	0.0095	0.043
1,2-Dichloroethane		0.043	U	0.011	0.043
1,2-Dichloropropane		0.043	U	0.0078	0.043
1,3-Dichlorobenzene		0.043	U	0.014	0.043
1,4-Dichlorobenzene		0.043	U	0.014	0.043
1,4-Dioxane		2.2	U	0.37	2.2
2-Butanone (MEK)		0.22	U	0.095	0.22
2-Hexanone		0.22	U	0.031	0.22
4-Methyl-2-pentanone	(MIBK)	0.22	U	0.027	0.22
Acetone	,	0.22	U	0.046	0.22
Acetonitrile		0.43	U	0.056	0.43
Acrolein		0.22	U *	0.038	0.22
Benzene		0.043	U	0.0082	0.043
Bromoform		0.043	U	0.0078	0.043
Bromomethane		0.043	U	0.0078	0.043
Carbon disulfide		0.043	U	0.0095	0.043
Carbon tetrachloride		0.043	U	0.014	0.043
Chlorobenzene		0.043	U	0.010	0.043
Chlorobromomethane		0.043	U	0.013	0.043
Chlorodibromomethane	9	0.043	U	0.0095	0.043
Chloroethane		0.043	U	0.016	0.043
Chloroform		0.043	U	0.0095	0.043
Chloromethane		0.043	U	0.0095	0.043
cis-1,2-Dichloroethene		0.043	U	0.011	0.043
cis-1,3-Dichloropropend	е	0.043	U	0.0069	0.043
Cyclohexane		0.36		0.011	0.043
Dichlorobromomethane	;	0.043	U	0.0065	0.043
Dichlorodifluoromethan	e	0.043	U	0.0060	0.043
Ethylbenzene		0.22		0.013	0.043
Ethylene Dibromide		0.043	U	0.0082	0.043
Isopropylbenzene		0.082		0.014	0.043
Methyl acetate		0.22	U	0.025	0.22
Methyl tert-butyl ether		0.043	Ū	0.0056	0.043
Methylcyclohexane		1.8	-	0.0095	0.043
Methylene Chloride		0.043	U	0.0090	0.043
m-Xylene & p-Xylene		0.060	-	0.012	0.043
o-Xylene		0.043	U	0.014	0.043
· y · - · · -			-		

67 - 127

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456502 Instrument ID: CVOAMS6
Prep Method: 5035 Prep Batch: 460-455484 Lab File ID: F51951.D
Dilution: 50 Initial Weight/Volume: 6.632 g
Analysis Date: 08/16/2017 0005 Final Weight/Volume: 5 mL

Analysis Date: 08/16/2017 0005 Prep Date: 08/10/2017 2055

Toluene-d8 (Surr)

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.043	U	0.0073	0.043
TBA		0.43	U	0.052	0.43
Tetrachloroethene		0.043	U	0.016	0.043
Toluene		0.043	U	0.011	0.043
trans-1,2-Dichloroethene		0.043	U	0.0078	0.043
trans-1,3-Dichloropropene		0.043	U	0.0082	0.043
Trichloroethene		0.043	U	0.0095	0.043
Trichlorofluoromethane		0.043	U	0.0065	0.043
Vinyl chloride		0.043	U	0.0086	0.043
Surrogate		%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Sur	r)	89	69 - 143		
4-Bromofluorobenzene	•	115	61 - 137		
Dibromofluoromethane (Sui	r)	100	61 - 135		
	•				

97

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (1-3)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72151.D Dilution: 1.0 Initial Weight/Volume: 5.723 g Analysis Date: 08/16/2017 1320 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroeth		0.00096	U	0.00022	0.00096
1,1,2,2-Tetrachlo	roethane	0.00096	U	0.00021	0.00096
1,1,2-Trichloro-1,	,2,2-trifluoroethane	0.00096	U	0.00029	0.00096
1,1,2-Trichloroeth	nane	0.00096	U	0.00017	0.00096
1,1-Dichloroetha	ne	0.00096	U	0.00020	0.00096
1,1-Dichloroether	ne	0.00096	U	0.00022	0.00096
1,2,3-Trichlorobe	nzene	0.00096	U	0.00017	0.00096
1,2,4-Trichlorobe	nzene	0.00096	U	0.000089	0.00096
1,2-Dibromo-3-C	hloropropane	0.00096	U	0.00044	0.00096
1,2-Dichlorobenz	ene	0.00096	U	0.00014	0.00096
1,2-Dichloroethai	ne	0.00096	U	0.00028	0.00096
1,2-Dichloropropa	ane	0.00096	U	0.00041	0.00096
1,3-Dichlorobenz	ene	0.00096	U	0.00015	0.00096
1,4-Dichlorobenz	ene	0.00096	U	0.000096	0.00096
1,4-Dioxane		0.019	U	0.0088	0.019
2-Butanone (MEI	<)	0.0048	U	0.0011	0.0048
2-Hexanone	,	0.0048	U	0.00075	0.0048
4-Methyl-2-penta	none (MIBK)	0.0048	U	0.00064	0.0048
Acetone	,	0.0070		0.0036	0.0048
Acetonitrile		0.0096	U	0.0060	0.0096
Acrolein		0.096	U	0.027	0.096
Benzene		0.0023		0.00025	0.00096
Bromoform		0.00096	U	0.00041	0.00096
Bromomethane		0.00096	Ū	0.00046	0.00096
Carbon disulfide		0.00096	Ü	0.00026	0.00096
Carbon tetrachlor	ride	0.00096	Ü	0.00017	0.00096
Chlorobenzene		0.00096	Ü	0.00017	0.00096
Chlorobromomet	hane	0.00096	Ü	0.00027	0.00096
Chlorodibromom		0.00096	Ü	0.00019	0.00096
Chloroethane		0.00096	Ü	0.00050	0.00096
Chloroform		0.00096	Ü	0.00031	0.00096
Chloromethane		0.00096	Ü	0.00042	0.00096
cis-1,2-Dichloroe	thene	0.00096	Ü	0.00015	0.00096
cis-1,3-Dichlorop		0.00096	Ü	0.00026	0.00096
Cyclohexane		0.0011	•	0.00021	0.00096
Dichlorobromome	ethane	0.00096	U	0.00025	0.00096
Dichlorodifluorom		0.00096	Ü	0.00033	0.00096
Ethylbenzene	Totalio	0.00096	Ü	0.00019	0.00096
Ethylene Dibromi	ide	0.00096	Ü	0.00017	0.00096
Isopropylbenzene		0.00096	Ü	0.00017	0.00096
Methyl acetate	<u>-</u>	0.0048	Ü	0.0041	0.0048
Methyl tert-butyl	ether	0.00096	Ü	0.00012	0.00096
Methylcyclohexa		0.0043	J	0.00012	0.00096
Methylene Chlori		0.0043	U	0.00015	0.00096
m-Xylene & p-Xy		0.00090	J	0.00017	0.00096
o-Xylene	iono	0.00019	Ü	0.00017	0.00096
o-Aylene		0.00090	U	0.000091	0.00090

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (1-3)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72151.D Dilution: 1.0 Initial Weight/Volume: 5.723 g

Analysis Date: 08/16/2017 1320 Final Weight/Volume: 5 mL

08/10/2017 2057 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00096	U	0.00012	0.00096
TBA		0.0096	U	0.0032	0.0096
Tetrachloroethene		0.00056	J	0.00014	0.00096
Toluene		0.00061	J	0.00060	0.00096
trans-1,2-Dichloroethene		0.00096	U	0.00024	0.00096
trans-1,3-Dichloropropene		0.00096	U	0.00026	0.00096
Trichloroethene		0.00096	U	0.00014	0.00096
Trichlorofluoromethane		0.00096	U	0.00039	0.00096
Vinyl chloride		0.00096	U	0.00053	0.00096
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
1.2 Dichloroothano d4 (Su	r)	105		79 135	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	105		78 - 135
4-Bromofluorobenzene	99		67 - 126
Dibromofluoromethane (Surr)	105		61 - 149
Toluene-d8 (Surr)	103		73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9
Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72152.D
Dilution: 1.0 Initial Weight/Volume: 7.261 g
Analysis Date: 08/16/2017 1344 Final Weight/Volume: 5 mL

Analysis Date: 08/16/2017 1344 Prep Date: 08/10/2017 2057

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,1,1-Trichloroetha	ne	0.00078	U	0.00018	0.00078
1,1,2,2-Tetrachloro	ethane	0.00078	U	0.00017	0.00078
1,1,2-Trichloro-1,2,	2-trifluoroethane	0.00078	U	0.00023	0.00078
1,1,2-Trichloroetha	ne	0.00078	U	0.00014	0.00078
1,1-Dichloroethane		0.00078	U	0.00016	0.00078
1,1-Dichloroethene		0.00078	U	0.00018	0.00078
1,2,3-Trichlorobenz	ene	0.00078	U	0.00014	0.00078
1,2,4-Trichlorobenz	ene	0.00078	U	0.000072	0.00078
1,2-Dibromo-3-Chlo	propropane	0.00078	U	0.00036	0.00078
1,2-Dichlorobenzer	ne .	0.00078	U	0.00011	0.00078
1,2-Dichloroethane		0.00078	U	0.00023	0.00078
1,2-Dichloropropan	e	0.00078	U	0.00033	0.00078
1,3-Dichlorobenzer		0.00078	U	0.00012	0.00078
1,4-Dichlorobenzer	ne	0.00078	U	0.000078	0.00078
1,4-Dioxane		0.016	U	0.0072	0.016
2-Butanone (MEK)		0.0039	U	0.00087	0.0039
2-Hexanone		0.0039	U	0.00061	0.0039
4-Methyl-2-pentano	one (MIBK)	0.0039	U	0.00052	0.0039
Acetone	,	0.0040		0.0030	0.0039
Acetonitrile		0.0078	U	0.0049	0.0078
Acrolein		0.078	U	0.022	0.078
Benzene		0.00078	U	0.00020	0.00078
Bromoform		0.00078	U	0.00033	0.00078
Bromomethane		0.00078	U	0.00037	0.00078
Carbon disulfide		0.00078	Ū	0.00021	0.00078
Carbon tetrachlorid	e	0.00078	Ü	0.00014	0.00078
Chlorobenzene		0.00078	Ū	0.00014	0.00078
Chlorobromometha	ne	0.00078	U	0.00022	0.00078
Chlorodibromometh	nane	0.00078	U	0.00015	0.00078
Chloroethane		0.00078	U	0.00041	0.00078
Chloroform		0.00078	Ü	0.00025	0.00078
Chloromethane		0.00078	Ū	0.00034	0.00078
cis-1,2-Dichloroethe	ene	0.00078	U	0.00012	0.00078
cis-1,3-Dichloropro		0.00078	Ū	0.00021	0.00078
Cyclohexane		0.0041		0.00017	0.00078
Dichlorobromometh	nane	0.00078	U	0.00020	0.00078
Dichlorodifluoromet		0.00078	Ū	0.00026	0.00078
Ethylbenzene		0.00078	Ü	0.00016	0.00078
Ethylene Dibromide		0.00078	Ü	0.00014	0.00078
Isopropylbenzene		0.00078	Ü	0.000098	0.00078
Methyl acetate		0.0039	Ü	0.0034	0.0039
Methyl tert-butyl eth	ner	0.00078	Ü	0.00097	0.00078
Methylcyclohexane		0.018	ŭ	0.00012	0.00078
Methylene Chloride		0.00054	J	0.00012	0.00078
m-Xylene & p-Xylei		0.00078	Ŭ	0.00013	0.00078
o-Xylene		0.00078	Ü	0.00074	0.00078
0-Mylene		0.00076	U	0.000074	0.00076

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456664 Instrument ID: CVOAMS9
Prep Method: 5035 Prep Batch: 460-455485 Lab File ID: K72152.D
Dilution: 1.0 Initial Weight/Volume: 7.261 g

Analysis Date: 08/16/2017 1344 Final Weight/Volume: 5 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Styrene		0.00078	U	0.000096	0.00078
TBA		0.0078	U	0.0026	0.0078
Tetrachloroethene		0.00078	U	0.00011	0.00078
Toluene		0.00078	U	0.00049	0.00078
trans-1,2-Dichloroethene		0.00078	U	0.00019	0.00078
trans-1,3-Dichloropropene		0.00078	U	0.00021	0.00078
Trichloroethene		0.00078	U	0.00011	0.00078
Trichlorofluoromethane		0.00078	U	0.00032	0.00078
Vinyl chloride		0.00078	U	0.00043	0.00078
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
1,2-Dichloroethane-d4 (Surr	-)	103	78 - 135		
4-Bromofluorobenzene	•	100	67 - 126		
Dibromofluoromethane (Sur	r)	105	61 - 149		
Toluene-d8 (Surr)		102		73 - 121	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-1

 Lab Sample ID:
 460-139067-1
 Date Sampled: 08/09/2017 1350

 Client Matrix:
 Water
 Date Received: 08/11/2017 1035

ater Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method:8260CAnalysis Batch:460-456308Instrument ID:CVOAMS6Prep Method:5030CPrep Batch:N/ALab File ID:F51919.DDilution:5.0Initial Weight/Volume:5 mL

Analysis Date: 08/15/2017 1112 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	5.0	U	1.4	5.0
1,1,2,2-Tetrachloroethane	5.0	U	0.95	5.0
1,1,2-Trichloro-1,2,2-trifluoroethane	5.0	U	1.7	5.0
1,1,2-Trichloroethane	5.0	U	0.40	5.0
1,1-Dichloroethane	5.0	U	1.2	5.0
1,1-Dichloroethene	5.0	Ū	1.7	5.0
1,2,3-Trichlorobenzene	5.0	Ū	1.8	5.0
1,2,4-Trichlorobenzene	5.0	Ü	1.4	5.0
1,2-Dibromo-3-Chloropropane	5.0	Ü	1.2	5.0
1,2-Dichlorobenzene	5.0	Ü	1.1	5.0
1,2-Dichloroethane	5.0	Ü	1.3	5.0
1,2-Dichloropropane	5.0	Ü	0.90	5.0
1,3-Dichlorobenzene	5.0	U	1.7	5.0
	5.0 5.0	U	1.7 1.7	5.0 5.0
1,4-Dicylona				
1,4-Dioxane	250	U	44	250
2-Butanone (MEK)	25	U	11	25
2-Hexanone	25	U	3.6	25
4-Methyl-2-pentanone (MIBK)	25	U	3.2	25
Acetone	25	U	5.4	25
Benzene	14		0.45	5.0
Bromoform	5.0	U	0.90	5.0
Bromomethane	5.0	U	0.90	5.0
Carbon disulfide	5.0	U	1.1	5.0
Carbon tetrachloride	5.0	U	1.7	5.0
Chlorobenzene	5.0	U	1.2	5.0
Chlorobromomethane	5.0	U	1.5	5.0
Chlorodibromomethane	5.0	U	1.1	5.0
Chloroethane	5.0	U	1.9	5.0
Chloroform	5.0	U	1.1	5.0
Chloromethane	5.0	U	1.1	5.0
cis-1,2-Dichloroethene	5.0	Ū	1.3	5.0
cis-1,3-Dichloropropene	5.0	Ü	0.80	5.0
Cyclohexane	300	· ·	1.3	5.0
Dichlorobromomethane	5.0	U	0.75	5.0
Dichlorodifluoromethane	5.0	Ü	0.70	5.0
Ethylbenzene	150	U	1.5	5.0
Ethylene Dibromide	5.0	U	0.95	5.0
	3.0 35	U	0.95 1.6	5.0
Isopropylbenzene Methyl acetate		U		5.0 25
Methyl acetate	25	U	2.9	
Methyl tert-butyl ether	260		0.65	5.0
Methylcyclohexane	440		1.1	5.0
Methylene Chloride	5.0	U	1.1	5.0
m-Xylene & p-Xylene	46		1.4	5.0
o-Xylene	4.4	J	1.6	5.0
Styrene	5.0	U	0.85	5.0
Tetrachloroethene	5.0	U	0.60	5.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-1

Lab Sample ID: 460-139067-1 Date Sampled: 08/09/2017 1350

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51919.D
Dilution: 5.0 Initial Weight/Volume: 5 mL

Dilution: 5.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 1112 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	6.1		1.3	5.0	
trans-1,2-Dichloroethene	5.0	U	0.90	5.0	
trans-1,3-Dichloropropene	5.0	U	0.95	5.0	
Trichloroethene	5.0	U	1.1	5.0	
Trichlorofluoromethane	5.0	U	0.75	5.0	
Vinyl chloride	5.0	U	0.30	5.0	
•					

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	93		74 - 132	
4-Bromofluorobenzene	114		77 - 124	
Dibromofluoromethane (Surr)	102		72 - 131	
Toluene-d8 (Surr)	98		80 - 120	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-2

Lab Sample ID: 460-139067-2 Date Sampled: 08/09/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51913.D
Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 08/15/2017 0854

Analysis Date: 08/15/2017 0854 Prep Date: 08/15/2017 0854

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0
1,2-Dichlorobenzene	1.0	U	0.22	1.0
1,2-Dichloroethane	1.0	U	0.25	1.0
1,2-Dichloropropane	1.0	U	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	Ü	0.30	1.0
Chlorodibromomethane	1.0	Ū	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	0.57	J	0.22	1.0
Chloromethane	1.0	U	0.22	1.0
cis-1,2-Dichloroethene	1.0	Ü	0.26	1.0
cis-1,3-Dichloropropene	1.0	Ū	0.16	1.0
Cyclohexane	1.0	Ü	0.26	1.0
Dichlorobromomethane	1.0	Ū	0.15	1.0
Dichlorodifluoromethane	1.0	Ū	0.14	1.0
Ethylbenzene	1.0	Ū	0.30	1.0
Ethylene Dibromide	1.0	Ū	0.19	1.0
Isopropylbenzene	1.0	Ü	0.32	1.0
Methyl acetate	5.0	Ü	0.58	5.0
Methyl tert-butyl ether	23	J	0.13	1.0
Methylcyclohexane	1.0	U	0.22	1.0
Methylene Chloride	1.0	Ü	0.21	1.0
m-Xylene & p-Xylene	1.0	Ü	0.28	1.0
o-Xylene	1.0	Ŭ	0.32	1.0
Styrene	1.0	Ü	0.17	1.0
Tetrachloroethene	1.0	U	0.12	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-2

Lab Sample ID: 460-139067-2 Date Sampled: 08/09/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51913.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0854 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	0.38	J	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	88		74 - 132
4-Bromofluorobenzene	114		77 - 124
Dibromofluoromethane (Surr)	103		72 - 131
Toluene-d8 (Surr)	97		80 - 120

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GW-3

Lab Sample ID: 460-139067-3 Date Sampled: 08/10/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51914.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0917 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,1,1-Trichloroethane	1.0	U	0.28	1.0	
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0	
1,1,2-Trichloroethane	1.0	U	0.080	1.0	
1,1-Dichloroethane	1.0	U	0.24	1.0	
1,1-Dichloroethene	1.0	U	0.34	1.0	
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0	
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0	
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0	
1,2-Dichlorobenzene	1.0	U	0.22	1.0	
1,2-Dichloroethane	1.0	U	0.25	1.0	
1,2-Dichloropropane	1.0	U	0.18	1.0	
1,3-Dichlorobenzene	1.0	U	0.33	1.0	
1,4-Dichlorobenzene	1.0	U	0.33	1.0	
1,4-Dioxane	50	U	8.7	50	
2-Butanone (MEK)	3.8	J	2.2	5.0	
2-Hexanone	5.0	U	0.72	5.0	
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0	
Acetone	11		1.1	5.0	
Benzene	0.69	J	0.090	1.0	
Bromoform	1.0	U	0.18	1.0	
Bromomethane	1.0	U	0.18	1.0	
Carbon disulfide	1.0	U	0.22	1.0	
Carbon tetrachloride	1.0	U	0.33	1.0	
Chlorobenzene	1.0	U	0.24	1.0	
Chlorobromomethane	1.0	U	0.30	1.0	
Chlorodibromomethane	1.0	U	0.22	1.0	
Chloroethane	1.0	U	0.37	1.0	
Chloroform	1.0	U	0.22	1.0	
Chloromethane	1.0	U	0.22	1.0	
cis-1,2-Dichloroethene	1.0	U	0.26	1.0	
cis-1,3-Dichloropropene	1.0	U	0.16	1.0	
Cyclohexane	16		0.26	1.0	
Dichlorobromomethane	1.0	U	0.15	1.0	
Dichlorodifluoromethane	1.0	U	0.14	1.0	
Ethylbenzene	5.2		0.30	1.0	
Ethylene Dibromide	1.0	U	0.19	1.0	
Isopropylbenzene	1.4	•	0.32	1.0	
Methyl acetate	5.0	U	0.58	5.0	
Methyl tert-butyl ether	0.82	Ĵ	0.13	1.0	
Methylcyclohexane	5.1	-	0.22	1.0	
Methylene Chloride	1.0	U	0.21	1.0	
m-Xylene & p-Xylene	3.8	J	0.28	1.0	
o-Xylene	2.8		0.32	1.0	
Styrene	1.0	U	0.17	1.0	
Tetrachloroethene	1.0	Ü	0.12	1.0	
Totadoniorodinorio	1.0	J	0.12	1.0	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GW-3

Lab Sample ID: 460-139067-3 Date Sampled: 08/10/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51914.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0917 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.3		0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	90		74 - 132	
4-Bromofluorobenzene	113		77 - 124	
Dibromofluoromethane (Surr)	102		72 - 131	
Toluene-d8 (Surr)	97		80 - 120	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GW-4

Lab Sample ID: 460-139067-4 Date Sampled: 08/10/2017 1120

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-457628 Instrument ID: CVOAMS2
Prep Method: 5030C Prep Batch: N/A Lab File ID: B19739.D
Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 08/21/2017 1352 Final Weight/Volume: 5 mL

Analysis Date: 08/21/2017 1352 Prep Date: 08/21/2017 1352

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	Ü	0.35	1.0
1,2,4-Trichlorobenzene	1.0	Ū	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	Ū	0.23	1.0
1,2-Dichlorobenzene	1.0	Ü	0.22	1.0
1,2-Dichloroethane	1.0	Ü	0.25	1.0
1,2-Dichloropropane	1.0	Ü	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	U	0.30	1.0
Chlorodibromomethane	1.0	U	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	Ü	0.22	1.0
Chloromethane	1.0	Ū	0.22	1.0
cis-1,2-Dichloroethene	1.0	Ü	0.26	1.0
cis-1,3-Dichloropropene	1.0	Ü	0.16	1.0
Cyclohexane	1.0	Ü	0.26	1.0
Dichlorobromomethane	1.0	Ü	0.15	1.0
Dichlorodifluoromethane	1.0	U	0.13	1.0
	1.0		0.30	1.0
Ethylbenzene		U		
Ethylene Dibromide	1.0	U	0.19	1.0
Isopropylbenzene	1.0	U	0.32	1.0
Methyl acetate	5.0	U	0.58	5.0
Methyl tert-butyl ether	1.0	U	0.13	1.0
Methylcyclohexane	1.0	U	0.22	1.0
Methylene Chloride	1.0	U	0.21	1.0
m-Xylene & p-Xylene	1.0	U	0.28	1.0
o-Xylene	1.0	U	0.32	1.0
Styrene	1.0	U	0.17	1.0
Tetrachloroethene	1.0	Ü	0.12	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GW-4

Lab Sample ID: 460-139067-4 Date Sampled: 08/10/2017 1120

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-457628 Instrument ID: CVOAMS2
Prep Method: 5030C Prep Batch: N/A Lab File ID: B19739.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/21/2017 1352 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	119		74 - 132
4-Bromofluorobenzene	91		77 - 124
Dibromofluoromethane (Surr)	124		72 - 131
Toluene-d8 (Surr)	109		80 - 120

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-1

Lab Sample ID: 460-139067-5 Date Sampled: 08/10/2017 1110

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51915.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0940 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0
1,2-Dichlorobenzene	1.0	U	0.22	1.0
1,2-Dichloroethane	1.0	U	0.25	1.0
1,2-Dichloropropane	1.0	U	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	0.60	J	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	U	0.30	1.0
Chlorodibromomethane	1.0	U	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	U	0.22	1.0
Chloromethane	1.0	U	0.22	1.0
cis-1,2-Dichloroethene	1.0	U	0.26	1.0
cis-1,3-Dichloropropene	1.0	U	0.16	1.0
Cyclohexane	1.0	U	0.26	1.0
Dichlorobromomethane	1.0	U	0.15	1.0
Dichlorodifluoromethane	1.0	U	0.14	1.0
Ethylbenzene	1.0	U	0.30	1.0
Ethylene Dibromide	1.0	U	0.19	1.0
Isopropylbenzene	1.0	U	0.32	1.0
Methyl acetate	5.0	U	0.58	5.0
Methyl tert-butyl ether	1.0	U	0.13	1.0
Methylcyclohexane	1.0	U	0.22	1.0
Methylene Chloride	1.0	U	0.21	1.0
m-Xylene & p-Xylene	1.0	U	0.28	1.0
o-Xylene	1.0	U	0.32	1.0
Styrene	1.0	U	0.17	1.0
Tetrachloroethene	1.0	U	0.12	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-1

Lab Sample ID: 460-139067-5 Date Sampled: 08/10/2017 1110

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51915.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0940 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	89		74 - 132
4-Bromofluorobenzene	113		77 - 124
Dibromofluoromethane (Surr)	100		72 - 131
Toluene-d8 (Surr)	95		80 - 120

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-2

 Lab Sample ID:
 460-139067-6
 Date Sampled: 08/10/2017 1210

 Client Matrix:
 Water
 Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51920.D
Dilution: 10 Initial Weight/Volume: 5 mL
Analysis Date: 08/15/2017 1135

Analysis Date: 08/15/2017 1135 Prep Date: 08/15/2017 1135

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	10	U	2.8	10
1,1,2,2-Tetrachloroethane	10	U	1.9	10
1,1,2-Trichloro-1,2,2-trifluoroethane	10	U	3.4	10
1,1,2-Trichloroethane	10	U	0.80	10
1,1-Dichloroethane	10	U	2.4	10
1,1-Dichloroethene	10	U	3.4	10
1,2,3-Trichlorobenzene	10	U	3.5	10
1,2,4-Trichlorobenzene	10	U	2.7	10
1,2-Dibromo-3-Chloropropane	10	U	2.3	10
1,2-Dichlorobenzene	10	U	2.2	10
1,2-Dichloroethane	10	U	2.5	10
1,2-Dichloropropane	10	U	1.8	10
1,3-Dichlorobenzene	10	U	3.3	10
1,4-Dichlorobenzene	10	U	3.3	10
1,4-Dioxane	500	U	87	500
2-Butanone (MEK)	50	U	22	50
2-Hexanone	50	U	7.2	50
4-Methyl-2-pentanone (MIBK)	50	U	6.3	50
Acetone	50	U	11	50
Benzene	10	U	0.90	10
Bromoform	10	U	1.8	10
Bromomethane	10	U	1.8	10
Carbon disulfide	10	U	2.2	10
Carbon tetrachloride	10	U	3.3	10
Chlorobenzene	10	U	2.4	10
Chlorobromomethane	10	U	3.0	10
Chlorodibromomethane	10	U	2.2	10
Chloroethane	10	U	3.7	10
Chloroform	10	U	2.2	10
Chloromethane	10	U	2.2	10
cis-1,2-Dichloroethene	10	U	2.6	10
cis-1,3-Dichloropropene	10	U	1.6	10
Cyclohexane	10	U	2.6	10
Dichlorobromomethane	10	U	1.5	10
Dichlorodifluoromethane	10	U	1.4	10
Ethylbenzene	10	U	3.0	10
Ethylene Dibromide	10	U	1.9	10
Isopropylbenzene	10	U	3.2	10
Methyl acetate	50	U	5.8	50
Methyl tert-butyl ether	2000		1.3	10
Methylcyclohexane	10	U	2.2	10
Methylene Chloride	10	U	2.1	10
m-Xylene & p-Xylene	10	U	2.8	10
o-Xylene	10	U	3.2	10
Styrene	10	U	1.7	10
Tetrachloroethene	10	U	1.2	10

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-2

Lab Sample ID: 460-139067-6 Date Sampled: 08/10/2017 1210

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51920.D
Dilution: 10 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 1135 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	10	U	2.5	10	
trans-1,2-Dichloroethene	10	U	1.8	10	
trans-1,3-Dichloropropene	10	U	1.9	10	
Trichloroethene	10	U	2.2	10	
Trichlorofluoromethane	10	U	1.5	10	
Vinyl chloride	10	U	0.60	10	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	90		74 - 132
4-Bromofluorobenzene	112		77 - 124
Dibromofluoromethane (Surr)	104		72 - 131
Toluene-d8 (Surr)	95		80 - 120

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-3

Lab Sample ID: 460-139067-7 Date Sampled: 08/10/2017 1155

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51916.D
Dilution: 1.0 Initial Weight/Volume: 5 mL
Analysis Date: 08/15/2017 1003

Analysis Date: 08/15/2017 1003 Prep Date: 08/15/2017 1003

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0
1,2-Dichlorobenzene	1.0	U	0.22	1.0
1,2-Dichloroethane	1.0	U	0.25	1.0
1,2-Dichloropropane	1.0	U	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	Ü	0.30	1.0
Chlorodibromomethane	1.0	U	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	U	0.22	1.0
Chloromethane	1.0	U	0.22	1.0
cis-1,2-Dichloroethene	1.0	U	0.26	1.0
cis-1,3-Dichloropropene	1.0	U	0.16	1.0
Cyclohexane	1.0	U	0.26	1.0
Dichlorobromomethane	1.0	U	0.15	1.0
Dichlorodifluoromethane	1.0	Ü	0.14	1.0
Ethylbenzene	1.0	Ü	0.30	1.0
Ethylene Dibromide	1.0	Ū	0.19	1.0
Isopropylbenzene	1.0	Ü	0.32	1.0
Methyl acetate	5.0	Ü	0.58	5.0
Methyl tert-butyl ether	1.0	Ü	0.13	1.0
Methylcyclohexane	1.0	Ü	0.22	1.0
Methylene Chloride	1.0	Ŭ	0.21	1.0
m-Xylene & p-Xylene	1.0	Ü	0.28	1.0
o-Xylene	1.0	Ŭ	0.32	1.0
Styrene	1.0	Ü	0.17	1.0
Tetrachloroethene	1.0	U	0.17	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-3

Lab Sample ID: 460-139067-7 Date Sampled: 08/10/2017 1155

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51916.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 1003 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	91		74 - 132
4-Bromofluorobenzene	111		77 - 124
Dibromofluoromethane (Surr)	102		72 - 131
Toluene-d8 (Surr)	94		80 - 120

Final Weight/Volume: 5 mL

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-4

Lab Sample ID: 460-139067-8 Date Sampled: 08/10/2017 1145

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51917.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 1026 Prep Date: 08/15/2017 1026

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	Ü	0.35	1.0
1,2,4-Trichlorobenzene	1.0	Ū	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	Ū	0.23	1.0
1,2-Dichlorobenzene	1.0	Ü	0.22	1.0
1,2-Dichloroethane	1.0	Ü	0.25	1.0
1,2-Dichloropropane	1.0	Ü	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	U	0.30	1.0
Chlorodibromomethane	1.0	U	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	Ü	0.22	1.0
Chloromethane	1.0	Ū	0.22	1.0
cis-1,2-Dichloroethene	1.0	Ü	0.26	1.0
cis-1,3-Dichloropropene	1.0	Ü	0.16	1.0
Cyclohexane	1.0	Ü	0.26	1.0
Dichlorobromomethane	1.0	Ü	0.15	1.0
Dichlorodifluoromethane	1.0	U	0.13	1.0
	1.0		0.30	1.0
Ethylbenzene		U		
Ethylene Dibromide	1.0	U	0.19	1.0
Isopropylbenzene	1.0	U	0.32	1.0
Methyl acetate	5.0	U	0.58	5.0
Methyl tert-butyl ether	1.0	U	0.13	1.0
Methylcyclohexane	1.0	U	0.22	1.0
Methylene Chloride	1.0	U	0.21	1.0
m-Xylene & p-Xylene	1.0	U	0.28	1.0
o-Xylene	1.0	U	0.32	1.0
Styrene	1.0	U	0.17	1.0
Tetrachloroethene	1.0	Ü	0.12	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-4

Lab Sample ID: 460-139067-8 Date Sampled: 08/10/2017 1145

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51917.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 1026 Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	90		74 - 132
4-Bromofluorobenzene	111		77 - 124
Dibromofluoromethane (Surr)	102		72 - 131
Toluene-d8 (Surr)	98		80 - 120

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 460-139067-9TB Date Sampled: 08/10/2017 1210

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Batch: 460-456308 Analysis Method: 8260C Instrument ID: CVOAMS6 Prep Batch: Prep Method: 5030C N/A Lab File ID: F51912.D Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 08/15/2017 0831 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0
1,2-Dichlorobenzene	1.0	U	0.22	1.0
1,2-Dichloroethane	1.0	U	0.25	1.0
1,2-Dichloropropane	1.0	U	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	38		1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	Ü	0.30	1.0
Chlorodibromomethane	1.0	Ū	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	Ū	0.22	1.0
Chloromethane	1.0	Ū	0.22	1.0
cis-1,2-Dichloroethene	1.0	Ü	0.26	1.0
cis-1,3-Dichloropropene	1.0	U	0.16	1.0
Cyclohexane	1.0	Ü	0.26	1.0
Dichlorobromomethane	1.0	U	0.15	1.0
Dichlorodifluoromethane	1.0	U	0.14	1.0
Ethylbenzene	1.0	U	0.30	1.0
Ethylene Dibromide	1.0	U	0.19	1.0
Isopropylbenzene	1.0	Ū	0.32	1.0
Methyl acetate	5.0	Ū	0.58	5.0
Methyl tert-butyl ether	1.0	Ü	0.13	1.0
Methylcyclohexane	1.0	Ū	0.22	1.0
Methylene Chloride	0.73	J	0.21	1.0
m-Xylene & p-Xylene	1.0	Ū	0.28	1.0
o-Xylene	1.0	Ü	0.32	1.0
Styrene	1.0	Ü	0.17	1.0
Tetrachloroethene	1.0	Ü	0.12	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 460-139067-9TB Date Sampled: 08/10/2017 1210

Client Matrix: Water Date Received: 08/11/2017 1035

8260C Volatile Organic Compounds by GC/MS

Analysis Method: 8260C Analysis Batch: 460-456308 Instrument ID: CVOAMS6
Prep Method: 5030C Prep Batch: N/A Lab File ID: F51912.D
Dilution: 1.0 Initial Weight/Volume: 5 mL

Dilution: 1.0 Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0831 Final Weight/Volume: 5 mL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	%Rec	Qualifier	Acceptance Limits
1,2-Dichloroethane-d4 (Surr)	86		74 - 132
4-Bromofluorobenzene	114		77 - 124
Dibromofluoromethane (Surr)	102		72 - 131
Toluene-d8 (Surr)	97		80 - 120

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid % Moisture: 14.9 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455798 Instrument ID: CBNAMS5
Prep Method: 3546 Prep Batch: 460-45572 Lab File ID: X263297.D
Dilution: 1.0 Initial Weight/Volume: 15.0415 g
Analysis Date: 08/12/2017 0946 Final Weight/Volume: 1 mL

 Analysis Date:
 08/12/2017 0946
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0723
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.039	U	0.0086	0.039
1,2-Dichlorobenz	zene	0.39	U	0.013	0.39
1,3-Dichlorobenz		0.39	U	0.030	0.39
1,4-Dichlorobenz	zene	0.39	U	0.030	0.39
2,2'-oxybis[1-chlo	oropropane]	0.39	U	0.016	0.39
2,4-Dinitrotoluen	e	0.079	U	0.015	0.079
2,6-Dinitrotoluen	e	0.079	U	0.021	0.079
2-Chloronaphtha	lene	0.39	U	0.0088	0.39
2-Methylnaphtha	lene	0.019	J	0.0086	0.39
2-Nitroaniline		0.39	U	0.013	0.39
3,3'-Dichlorobena	zidine	0.16	U	0.043	0.16
3-Nitroaniline		0.39	U	0.011	0.39
4-Bromophenyl p	phenyl ether	0.39	U	0.012	0.39
4-Chloroaniline		0.39	U	0.010	0.39
4-Chlorophenyl p	phenyl ether	0.39	U	0.012	0.39
4-Nitroaniline	•	0.39	U	0.015	0.39
Acenaphthene		0.39	U	0.0094	0.39
Acenaphthylene		0.092	J	0.010	0.39
Anthracene		0.047	J	0.037	0.39
Benzo[a]anthrace	ene	0.44		0.032	0.039
Benzo[a]pyrene		0.64		0.012	0.039
Benzo[b]fluorantl	hene	0.85		0.015	0.039
Benzo[g,h,i]peryl		0.54		0.022	0.39
Benzo[k]fluorantl		0.34		0.017	0.039
Bis(2-chloroetho		0.012	J	0.012	0.39
Bis(2-chloroethyl		0.039	Ū	0.0091	0.039
Bis(2-ethylhexyl)		0.39	Ū	0.015	0.39
Butyl benzyl phth		0.39	Ū	0.012	0.39
Carbazole		0.027	J	0.0096	0.39
Chrysene		0.63	-	0.011	0.39
Dibenz(a,h)anthr	racene	0.13		0.020	0.039
Dibenzofuran		0.016	J	0.012	0.39
Diethyl phthalate		0.39	Ü	0.011	0.39
Dimethyl phthala		0.39	Ü	0.011	0.39
Di-n-butyl phthala		0.39	Ü	0.012	0.39
Di-n-octyl phthala		0.39	Ü	0.020	0.39
Fluoranthene		0.60	J	0.011	0.39
Fluorene		0.019	J	0.0084	0.39
Hexachlorobenze	ene	0.039	U	0.016	0.039
Hexachlorobutad		0.079	Ü	0.011	0.039
Hexachlorocyclo		0.39	Ü	0.024	0.39
Hexachloroethan		0.039	Ü	0.014	0.039
Indeno[1,2,3-cd]		0.49	J	0.014	0.039
Isophorone	oyi ene	0.49	U	0.028	0.039
Naphthalene		0.051		0.0088	0.16
Nitrobenzene			J U		
miliopenzene		0.039	U	0.012	0.039

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid % Moisture: 14.9 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455798 Instrument ID: CBNAMS5
Prep Method: 3546 Prep Batch: 460-45572 Lab File ID: X263297.D
Dilution: 1.0 Initial Weight/Volume: 15.0415 g

 Analysis Date:
 08/12/2017 0946
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0723
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.039	U	0.013	0.039
N-Nitrosodiphenylamine		0.39	U	0.035	0.39
Phenanthrene		0.27	J	0.010	0.39
Pyrene		0.71		0.018	0.39
•					

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	77		38 - 95
Nitrobenzene-d5 (Surr)	73		37 - 94
Terphenyl-d14 (Surr)	96		24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455798 Instrument ID: CBNAMS5 Prep Method: 3546 Prep Batch: 460-455572 Lab File ID: X263298.D Dilution: Initial Weight/Volume: 15.0492 g 1.0 Analysis Date:

08/12/2017 1010 Final Weight/Volume: 1 mL 08/11/2017 0723 Prep Date: Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene)	0.036	U	0.0080	0.036
1,2-Dichlorobenzene		0.36	U	0.012	0.36
1,3-Dichlorobenzene		0.36	U	0.028	0.36
1,4-Dichlorobenzene		0.36	U	0.028	0.36
2,2'-oxybis[1-chloropro	pane]	0.36	U	0.015	0.36
2,4-Dinitrotoluene		0.074	U	0.014	0.074
2,6-Dinitrotoluene		0.074	U	0.019	0.074
2-Chloronaphthalene		0.36	U	0.0082	0.36
2-Methylnaphthalene		0.36	U	0.0080	0.36
2-Nitroaniline		0.36	U	0.012	0.36
3,3'-Dichlorobenzidine		0.15	U	0.041	0.15
3-Nitroaniline		0.36	U	0.011	0.36
4-Bromophenyl phenyl	ether	0.36	U	0.011	0.36
4-Chloroaniline		0.36	U	0.0093	0.36
4-Chlorophenyl phenyl	ether	0.36	U	0.011	0.36
4-Nitroaniline		0.36	U	0.014	0.36
Acenaphthene		0.36	U	0.0088	0.36
Acenaphthylene		0.36	U	0.0093	0.36
Anthracene		0.36	U	0.034	0.36
Benzo[a]anthracene		0.036	Ü	0.030	0.036
Benzo[a]pyrene		0.036	Ū	0.011	0.036
Benzo[b]fluoranthene		0.036	Ū	0.014	0.036
Benzo[g,h,i]perylene		0.36	Ü	0.021	0.36
Benzo[k]fluoranthene		0.036	Ū	0.016	0.036
Bis(2-chloroethoxy)me	thane	0.36	Ü	0.011	0.36
Bis(2-chloroethyl)ether		0.036	Ü	0.0086	0.036
Bis(2-ethylhexyl) phtha		0.36	Ü	0.014	0.36
Butyl benzyl phthalate		0.36	Ü	0.011	0.36
Carbazole		0.36	Ü	0.0090	0.36
Chrysene		0.36	Ü	0.0099	0.36
Dibenz(a,h)anthracene	•	0.036	Ü	0.019	0.036
Dibenzofuran		0.36	Ŭ	0.011	0.36
Diethyl phthalate		0.36	Ŭ	0.010	0.36
Dimethyl phthalate		0.36	Ŭ	0.011	0.36
Di-n-butyl phthalate		0.36	Ü	0.011	0.36
Di-n-octyl phthalate		0.36	Ü	0.018	0.36
Fluoranthene		0.36	Ü	0.011	0.36
Fluorene		0.36	Ü	0.0079	0.36
Hexachlorobenzene		0.036	Ü	0.015	0.036
Hexachlorobutadiene Hexachlorocyclopentad	diana	0.074 0.36	U	0.010 0.023	0.074 0.36
Hexachloroethane	alene	0.036	U	0.023	0.036
		0.036		0.013	0.036
Indeno[1,2,3-cd]pyrene	;		U		
Isophorone		0.011	J	0.0078	0.15
Naphthalene		0.36	U	0.0092	0.36
Nitrobenzene		0.036	U	0.011	0.036

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455798 Instrument ID: CBNAMS5
Prep Method: 3546 Prep Batch: 460-45572 Lab File ID: X263298.D
Dilution: 1.0 Initial Weight/Volume: 15.0492 g

 Analysis Date:
 08/12/2017 1010
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0723
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
N-Nitrosodi-n-propylamine		0.036	U	0.012	0.036	
N-Nitrosodiphenylamine		0.36	U	0.033	0.36	
Phenanthrene		0.36	U	0.0097	0.36	
Pyrene		0.36	U	0.016	0.36	
Surrogate		%Rec	Qualifier	Acceptar	nce Limits	

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 2-Fluorobiphenyl
 66
 38 - 95

 Nitrobenzene-d5 (Surr)
 65
 37 - 94

 Terphenyl-d14 (Surr)
 99
 24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid % Moisture: 6.8 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455798 Instrument ID: CBNAMS5
Prep Method: 3546 Prep Batch: 460-45572 Lab File ID: X263299.D
Dilution: 1.0 Initial Weight/Volume: 15.0326 g
Analysis Date: 08/12/2017 1033

 Analysis Date:
 08/12/2017 1033
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0723
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.035	U	0.0078	0.035
1,2-Dichlorobenz	zene	0.35	U	0.012	0.35
1,3-Dichlorobenz		0.35	U	0.027	0.35
1,4-Dichlorobenz	zene	0.35	U	0.028	0.35
2,2'-oxybis[1-chlo	oropropane]	0.35	U	0.015	0.35
2,4-Dinitrotoluen	e	0.072	U	0.014	0.072
2,6-Dinitrotoluen	e	0.072	U	0.019	0.072
2-Chloronaphtha	lene	0.35	U	0.0080	0.35
2-Methylnaphtha	lene	0.0092	J	0.0078	0.35
2-Nitroaniline		0.35	U	0.012	0.35
3,3'-Dichlorobena	zidine	0.14	U	0.040	0.14
3-Nitroaniline		0.35	U	0.010	0.35
4-Bromophenyl p	phenyl ether	0.35	U	0.011	0.35
4-Chloroaniline	-	0.35	U	0.0091	0.35
4-Chlorophenyl p	phenyl ether	0.35	U	0.011	0.35
4-Nitroaniline	•	0.35	U	0.013	0.35
Acenaphthene		0.024	J	0.0086	0.35
Acenaphthylene		0.35	U	0.0091	0.35
Anthracene		0.053	J	0.034	0.35
Benzo[a]anthrace	ene	0.15		0.030	0.035
Benzo[a]pyrene		0.13		0.011	0.035
Benzo[b]fluorantl	hene	0.18		0.014	0.035
Benzo[g,h,i]peryl		0.096	J	0.020	0.35
Benzo[k]fluorantl		0.080		0.015	0.035
Bis(2-chloroetho		0.35	U	0.011	0.35
Bis(2-chloroethyl		0.035	Ū	0.0084	0.035
Bis(2-ethylhexyl)		0.35	Ū	0.014	0.35
Butyl benzyl phth		0.35	Ū	0.011	0.35
Carbazole		0.029	J	0.0088	0.35
Chrysene		0.17	J	0.0096	0.35
Dibenz(a,h)anthr	racene	0.018	J	0.018	0.035
Dibenzofuran		0.017	J	0.011	0.35
Diethyl phthalate		0.35	Ü	0.010	0.35
Dimethyl phthala		0.35	Ū	0.010	0.35
Di-n-butyl phthala		0.35	Ü	0.011	0.35
Di-n-octyl phthala		0.35	Ü	0.018	0.35
Fluoranthene		0.31	J	0.010	0.35
Fluorene		0.028	Ĵ	0.0077	0.35
Hexachlorobenze	ene	0.035	Ü	0.014	0.035
Hexachlorobutad		0.072	Ü	0.010	0.072
Hexachlorocyclo		0.35	Ü	0.022	0.35
Hexachloroethan		0.035	Ü	0.013	0.035
Indeno[1,2,3-cd]		0.093	J	0.024	0.035
Isophorone	y,	0.14	U	0.0076	0.14
Naphthalene		0.020	J	0.0070	0.35
Nitrobenzene		0.035	Ü	0.0090	0.035
MITTORETTE		0.000	U	0.011	0.000

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid % Moisture: 6.8 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455798 Instrument ID: CBNAMS5
Prep Method: 3546 Prep Batch: 460-45572 Lab File ID: X263299.D
Dilution: 1.0 Initial Weight/Volume: 15.0326 g

 Analysis Date:
 08/12/2017 1033
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0723
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.035	U	0.012	0.035
N-Nitrosodiphenylamine		0.35	U	0.032	0.35
Phenanthrene		0.24	J	0.0094	0.35
Pyrene		0.30	J	0.016	0.35
•					

Surrogate	%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl	73		38 - 95	
Nitrobenzene-d5 (Surr)	67		37 - 94	
Terphenyl-d14 (Surr)	100		24 - 109	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid % Moisture: 10.8 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455727 Instrument ID: CBNAMS11
Prep Method: 3546 Prep Batch: 460-45573 Lab File ID: z47127.D
Dilution: 1.0 Initial Weight/Volume: 15.0302 g

Analysis Date: 08/11/2017 2003 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 0728 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzen	e	0.037	U	0.0082	0.037
1,2-Dichlorobenzene		0.37	U	0.012	0.37
1,3-Dichlorobenzene		0.37	U	0.029	0.37
1,4-Dichlorobenzene		0.37	U	0.029	0.37
2,2'-oxybis[1-chloropro	opane]	0.37	U	0.015	0.37
2,4-Dinitrotoluene		0.075	U	0.015	0.075
2,6-Dinitrotoluene		0.075	U	0.020	0.075
2-Chloronaphthalene		0.37	U	0.0084	0.37
2-Methylnaphthalene		0.37	U	0.0082	0.37
2-Nitroaniline		0.37	U	0.012	0.37
3,3'-Dichlorobenzidine	•	0.15	U	0.041	0.15
3-Nitroaniline		0.37	U	0.011	0.37
4-Bromophenyl pheny	I ether	0.37	U	0.012	0.37
4-Chloroaniline		0.37	U	0.0095	0.37
4-Chlorophenyl pheny	I ether	0.37	U	0.011	0.37
4-Nitroaniline		0.37	U	0.014	0.37
Acenaphthene		0.37	U	0.0090	0.37
Acenaphthylene		0.37	U	0.0095	0.37
Anthracene		0.37	U	0.035	0.37
Benzo[a]anthracene		0.037	U	0.031	0.037
Benzo[a]pyrene		0.037	U	0.011	0.037
Benzo[b]fluoranthene		0.037	U	0.014	0.037
Benzo[g,h,i]perylene		0.37	U	0.021	0.37
Benzo[k]fluoranthene		0.037	U	0.016	0.037
Bis(2-chloroethoxy)me	ethane	0.37	U	0.012	0.37
Bis(2-chloroethyl)ethe		0.037	U	0.0087	0.037
Bis(2-ethylhexyl) phtha		0.37	Ū	0.014	0.37
Butyl benzyl phthalate		0.37	Ū	0.011	0.37
Carbazole		0.37	Ū	0.0092	0.37
Chrysene		0.37	Ū	0.010	0.37
Dibenz(a,h)anthracen	e	0.037	Ū	0.019	0.037
Dibenzofuran		0.37	Ü	0.011	0.37
Diethyl phthalate		0.37	Ü	0.011	0.37
Dimethyl phthalate		0.37	Ü	0.011	0.37
Di-n-butyl phthalate		0.37	Ü	0.011	0.37
Di-n-octyl phthalate		0.37	Ü	0.019	0.37
Fluoranthene		0.049	J	0.011	0.37
Fluorene		0.37	Ŭ	0.0081	0.37
Hexachlorobenzene		0.037	Ü	0.015	0.037
Hexachlorobutadiene		0.075	Ü	0.010	0.075
Hexachlorocyclopenta	diene	0.37	Ü	0.023	0.37
Hexachloroethane	dictio	0.037	Ü	0.023	0.037
Indeno[1,2,3-cd]pyren	9	0.037	U	0.025	0.037
Isophorone	G	0.057	U	0.025	0.037
Naphthalene		0.15	U	0.0079	0.15
Nitrobenzene		0.037	U	0.012	0.037

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid % Moisture: 10.8 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-455727 Instrument ID: CBNAMS11
Prep Method: 3546 Prep Batch: 460-45573 Lab File ID: z47127.D

Dilution: 1.0 Initial Weight/Volume: 15.0302 g

Analysis Date: 08/11/2017 2003 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 0728 Injection Volume: 1 uL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RLN-Nitrosodi-n-propylamine 0.037 0.012 0.037 U N-Nitrosodiphenylamine U 0.034 0.37 0.37 Phenanthrene 0.029 J 0.0098 0.37 J Pyrene 0.039 0.017 0.37 %Rec Surrogate Qualifier Acceptance Limits 2-Fluorobiphenyl 67 38 - 95

 2-Fluorobiphenyl
 67
 38 - 95

 Nitrobenzene-d5 (Surr)
 69
 37 - 94

 Terphenyl-d14 (Surr)
 84
 24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid % Moisture: 6.7 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456615 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455573 Lab File ID: L19931.D
Dilution: 1.0 Initial Weight/Volume: 15.0445 g

 Analysis Date:
 08/16/2017 1243
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0728
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.035	U	0.0078	0.035
1,2-Dichlorobenz	ene	0.35	U	0.012	0.35
1,3-Dichlorobenz	ene	0.35	U	0.027	0.35
1,4-Dichlorobenz	ene	0.35	U	0.028	0.35
2,2'-oxybis[1-chlo	propropane]	0.35	U	0.015	0.35
2,4-Dinitrotoluene	e	0.072	U	0.014	0.072
2,6-Dinitrotoluene	e	0.072	U	0.019	0.072
2-Chloronaphtha	lene	0.35	U	0.0080	0.35
2-Methylnaphthal	lene	0.081	J	0.0078	0.35
2-Nitroaniline		0.35	U	0.012	0.35
3,3'-Dichlorobenz	zidine	0.14	U	0.039	0.14
3-Nitroaniline		0.35	U	0.010	0.35
4-Bromophenyl p	henyl ether	0.35	U	0.011	0.35
4-Chloroaniline	,	0.35	U	0.0091	0.35
4-Chlorophenyl p	henyl ether	0.35	U	0.011	0.35
4-Nitroaniline	ŕ	0.35	U	0.013	0.35
Acenaphthene		0.041	J	0.0086	0.35
Acenaphthylene		0.031	Ĵ	0.0091	0.35
Anthracene		0.13	J	0.034	0.35
Benzo[a]anthrace	ene	0.50		0.030	0.035
Benzo[a]pyrene		0.52		0.011	0.035
Benzo[b]fluoranth	nene	0.85		0.014	0.035
Benzo[g,h,i]peryl		0.28	J	0.020	0.35
Benzo[k]fluoranth		0.26	J	0.015	0.035
Bis(2-chloroethox		0.35	U	0.011	0.35
Bis(2-chloroethyl		0.035	Ü	0.0083	0.035
Bis(2-ethylhexyl)		0.026	J	0.014	0.35
Butyl benzyl phth		0.021	Ĵ	0.011	0.35
Carbazole	idiato	0.086	Ĵ	0.0088	0.35
Chrysene		0.52	· ·	0.0096	0.35
Dibenz(a,h)anthra	acene	0.10		0.018	0.035
Dibenzofuran	accinc	0.030	J	0.011	0.35
Diethyl phthalate		0.35	Ŭ	0.010	0.35
Dimethyl phthalat		0.35	Ü	0.010	0.35
Di-n-butyl phthala		0.35	Ü	0.011	0.35
Di-n-octyl phthala		0.35	Ü	0.018	0.35
Fluoranthene	110	0.94	U	0.010	0.35
Fluorene		0.053	J	0.0077	0.35
Hexachlorobenze	ono	0.035	U		0.035
Hexachlorobutad		0.033	U	0.014 0.0099	0.033
Hexachlorocyclop		0.072	U	0.0099	0.072
Hexachlorocyclop		0.35 0.035	U	0.022	0.35 0.035
Indeno[1,2,3-cd]		0.43	U	0.013	0.035
	pyrene		1.1		
Isophorone		0.14	U	0.0076	0.14
Naphthalene		0.10	J	0.0090	0.35
Nitrobenzene		0.035	U	0.011	0.035

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid % Moisture: 6.7 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456615 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-45573 Lab File ID: L19931.D
Dilution: Initial Weight/Volume: 15.0445 g

 Analysis Date:
 08/16/2017 1243
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0728
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
N-Nitrosodi-n-propylamine		0.035	U	0.012	0.035	
N-Nitrosodiphenylamine		0.35	U	0.032	0.35	
Phenanthrene		0.56		0.0094	0.35	
Pyrene		0.76		0.016	0.35	
Surrogate		%Rec	Qualifier	Accepta	nce Limits	
O. Elizabeta de la constitución		70		20 05		

Surrogate %Rec Qualifier Acceptance Limits

2-Fluorobiphenyl 72 38 - 95

Nitrobenzene-d5 (Surr) 67 37 - 94

Terphenyl-d14 (Surr) 79 24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Solid % Moisture: 16.0 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456615 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455573 Lab File ID: L19929.D
Dilution: 1.0 Initial Weight/Volume: 15.0267 g

 Analysis Date:
 08/16/2017 1159
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0728
 Injection Volume:
 1 uL

Analyte DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	0.039	U	0.0087	0.039
1,2-Dichlorobenzene	0.39	U	0.013	0.39
1,3-Dichlorobenzene	0.39	U	0.030	0.39
1,4-Dichlorobenzene	0.39	U	0.031	0.39
2,2'-oxybis[1-chloropropane]	0.39	U	0.016	0.39
2,4-Dinitrotoluene	0.080	U	0.016	0.080
2,6-Dinitrotoluene	0.080	U	0.021	0.080
2-Chloronaphthalene	0.39	U	0.0089	0.39
2-Methylnaphthalene	0.39	U	0.0087	0.39
2-Nitroaniline	0.39	U	0.013	0.39
3,3'-Dichlorobenzidine	0.16	U	0.044	0.16
3-Nitroaniline	0.39	U	0.012	0.39
4-Bromophenyl phenyl ether	0.39	U	0.012	0.39
4-Chloroaniline	0.39	U	0.010	0.39
4-Chlorophenyl phenyl ether	0.39	U	0.012	0.39
4-Nitroaniline	0.39	U	0.015	0.39
Acenaphthene	0.39	U	0.0095	0.39
Acenaphthylene	0.39	U	0.010	0.39
Anthracene	0.39	U	0.037	0.39
Benzo[a]anthracene	0.039	U	0.033	0.039
Benzo[a]pyrene	0.039	U	0.012	0.039
Benzo[b]fluoranthene	0.039	U	0.015	0.039
Benzo[g,h,i]perylene	0.39	U	0.023	0.39
Benzo[k]fluoranthene	0.039	U	0.017	0.039
Bis(2-chloroethoxy)methane	0.39	U	0.012	0.39
Bis(2-chloroethyl)ether	0.039	Ü	0.0093	0.039
Bis(2-ethylhexyl) phthalate	0.39	Ū	0.015	0.39
Butyl benzyl phthalate	0.12	J	0.012	0.39
Carbazole	0.39	Ü	0.0097	0.39
Chrysene	0.39	Ū	0.011	0.39
Dibenz(a,h)anthracene	0.039	Ü	0.020	0.039
Dibenzofuran	0.39	Ū	0.012	0.39
Diethyl phthalate	0.39	Ū	0.011	0.39
Dimethyl phthalate	0.39	Ü	0.011	0.39
Di-n-butyl phthalate	0.39	Ü	0.012	0.39
Di-n-octyl phthalate	0.39	Ü	0.020	0.39
Fluoranthene	0.39	Ü	0.012	0.39
Fluorene	0.39	Ü	0.0086	0.39
Hexachlorobenzene	0.039	Ü	0.016	0.039
Hexachlorobutadiene	0.080	Ŭ	0.011	0.080
Hexachlorocyclopentadiene	0.39	Ü	0.024	0.39
Hexachloroethane	0.039	Ü	0.014	0.039
Indeno[1,2,3-cd]pyrene	0.039	Ü	0.026	0.039
			0.0084	0.16
Isophorone	U 1h	L J		
Isophorone Naphthalene	0.16 0.39	U U	0.0084	0.18

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Solid % Moisture: 16.0 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456615 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455573 Lab File ID: L19929.D Initial Weight/Volume: 15.0267 g

 Analysis Date:
 08/16/2017 1159
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0728
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.039	U	0.013	0.039
N-Nitrosodiphenylamine		0.39	U	0.036	0.39
Phenanthrene		0.39	U	0.010	0.39
Pyrene		0.39	U	0.018	0.39
Surrogate		%Rec	Qualifier	Accepta	nce Limits

 State of State of

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid % Moisture: 9.0 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456615 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455573 Lab File ID: L19930.D
Dilution: 1.0 Initial Weight/Volume: 15.0418 g
Analysis Date: 08/16/2017 1221

 Analysis Date:
 08/16/2017 1221
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 0728
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.036	U	0.0080	0.036
1,2-Dichlorobenz	zene	0.36	U	0.012	0.36
1,3-Dichlorobenz	zene	0.36	U	0.028	0.36
1,4-Dichlorobenz	zene	0.36	U	0.028	0.36
2,2'-oxybis[1-chlo	oropropane]	0.36	U	0.015	0.36
2,4-Dinitrotoluene	e	0.073	U	0.014	0.073
2,6-Dinitrotoluene	e	0.073	U	0.019	0.073
2-Chloronaphtha	lene	0.36	U	0.0082	0.36
2-Methylnaphtha		0.023	J	0.0080	0.36
2-Nitroaniline		0.36	U	0.012	0.36
3,3'-Dichlorobenz	zidine	0.15	U	0.040	0.15
3-Nitroaniline		0.36	U	0.011	0.36
4-Bromophenyl p	henyl ether	0.36	U	0.011	0.36
4-Chloroaniline		0.36	U	0.0093	0.36
4-Chlorophenyl p	phenyl ether	0.36	Ū	0.011	0.36
4-Nitroaniline		0.36	U	0.014	0.36
Acenaphthene		0.013	J	0.0088	0.36
Acenaphthylene		0.060	Ĵ	0.0093	0.36
Anthracene		0.063	J	0.034	0.36
Benzo[a]anthrace	ene	0.43		0.030	0.036
Benzo[a]pyrene		0.50		0.011	0.036
Benzo[b]fluorantl	hene	0.74		0.014	0.036
Benzo[g,h,i]peryl		0.35	J	0.021	0.36
Benzo[k]fluoranth		0.29	•	0.016	0.036
Bis(2-chloroethox		0.36	U	0.011	0.36
Bis(2-chloroethyl		0.036	Ü	0.0086	0.036
Bis(2-ethylhexyl)		0.36	Ü	0.014	0.36
Butyl benzyl phth		0.023	J	0.011	0.36
Carbazole		0.033	J	0.0090	0.36
Chrysene		0.50	· ·	0.0099	0.36
Dibenz(a,h)anthr	acene	0.11		0.019	0.036
Dibenzofuran	400110	0.012	J	0.011	0.36
Diethyl phthalate		0.36	Ü	0.010	0.36
Dimethyl phthala		0.36	Ü	0.011	0.36
Di-n-butyl phthala		0.36	Ü	0.011	0.36
Di-n-octyl phthala		0.36	Ŭ	0.018	0.36
Fluoranthene		0.81	J	0.011	0.36
Fluorene		0.019	J	0.0079	0.36
Hexachlorobenze	ene	0.036	Ü	0.015	0.036
Hexachlorobutad		0.073	Ü	0.010	0.073
Hexachlorocyclo		0.36	Ü	0.023	0.36
Hexachloroethan		0.036	Ü	0.023	0.036
Indeno[1,2,3-cd]		0.54	J	0.024	0.036
Isophorone	oyrone -	0.15	U	0.0078	0.030
Naphthalene		0.032		0.0078	0.15
Nitrobenzene		0.032	J U	0.0092	0.036
MILLODELIZELIE		0.030	U	0.011	0.030

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid % Moisture: 9.0 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456615 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-45573 Lab File ID: L19930.D
Dilution: Initial Weight/Volume: 15.0418 g

Analysis Date: 08/16/2017 1221 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 0728 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.036	U	0.012	0.036
N-Nitrosodiphenylamine		0.36	U	0.033	0.36
Phenanthrene		0.36		0.0096	0.36
Pyrene		0.73		0.016	0.36
Surrogate		%Rec	Qualifier	Acceptance I	_imits
2-Fluorobiphenyl		64		38 - 95	

 2-Fluorobiphenyl
 64
 38 - 95

 Nitrobenzene-d5 (Surr)
 57
 37 - 94

 Terphenyl-d14 (Surr)
 78
 24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19824.D
Dilution: 1.0 Initial Weight/Volume: 15.0402 g
Analysis Date: 08/14/2017 1837

Analysis Date: 08/14/2017 1837 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene		0.040	U	0.0088	0.040
1,2-Dichlorobenzene		0.40	U	0.013	0.40
1,3-Dichlorobenzene		0.40	U	0.031	0.40
1,4-Dichlorobenzene		0.40	U	0.031	0.40
2,2'-oxybis[1-chloroprop	pane]	0.40	U	0.016	0.40
2,4-Dinitrotoluene		0.081	U	0.016	0.081
2,6-Dinitrotoluene		0.081	U	0.021	0.081
2-Chloronaphthalene		0.40	U	0.0091	0.40
2-Methylnaphthalene		0.40	U	0.0088	0.40
2-Nitroaniline		0.40	U	0.013	0.40
3,3'-Dichlorobenzidine		0.16	U	0.045	0.16
3-Nitroaniline		0.40	U	0.012	0.40
4-Bromophenyl phenyl	ether	0.40	U	0.013	0.40
4-Chloroaniline		0.40	U	0.010	0.40
4-Chlorophenyl phenyl	ether	0.40	U	0.012	0.40
4-Nitroaniline		0.40	U	0.015	0.40
Acenaphthene		0.40	U	0.0097	0.40
Acenaphthylene		0.40	U	0.010	0.40
Anthracene		0.40	U	0.038	0.40
Benzo[a]anthracene		0.040	U	0.033	0.040
Benzo[a]pyrene		0.040	U	0.012	0.040
Benzo[b]fluoranthene		0.040	U	0.016	0.040
Benzo[g,h,i]perylene		0.40	U	0.023	0.40
Benzo[k]fluoranthene		0.040	U	0.017	0.040
Bis(2-chloroethoxy)metl	nane	0.40	U	0.012	0.40
Bis(2-chloroethyl)ether		0.040	U	0.0094	0.040
Bis(2-ethylhexyl) phthal	ate	0.40	U	0.016	0.40
Butyl benzyl phthalate		0.40	U	0.012	0.40
Carbazole		0.40	U	0.0099	0.40
Chrysene		0.40	U	0.011	0.40
Dibenz(a,h)anthracene		0.040	Ü	0.021	0.040
Dibenzofuran		0.40	Ū	0.012	0.40
Diethyl phthalate		0.40	Ū	0.011	0.40
Dimethyl phthalate		0.40	Ü	0.012	0.40
Di-n-butyl phthalate		0.40	Ü	0.012	0.40
Di-n-octyl phthalate		0.40	Ü	0.020	0.40
Fluoranthene		0.40	Ü	0.012	0.40
Fluorene		0.40	Ü	0.0087	0.40
Hexachlorobenzene		0.040	Ü	0.016	0.040
Hexachlorobutadiene		0.081	Ü	0.011	0.081
Hexachlorocyclopentad	iene	0.40	Ü	0.025	0.40
Hexachloroethane	10110	0.040	Ü	0.015	0.040
Indeno[1,2,3-cd]pyrene		0.040	Ü	0.013	0.040
Isophorone		0.16	U	0.0086	0.16
Naphthalene		0.40	U	0.010	0.40
Nitrobenzene		0.040	U		0.040
ишорепсеце		0.040	U	0.013	0.040

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19824.D
Dilution: 1.0 Initial Weight/Volume: 15.0402 g

 Analysis Date:
 08/14/2017 1837
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine	•	0.040	U	0.013	0.040
N-Nitrosodiphenylamine		0.40	U	0.036	0.40
Phenanthrene		0.40	U	0.011	0.40
Pyrene		0.40	U	0.018	0.40
Surrogate		%Rec	Qualifier	Accepta	ance Limits
2-Fluorobiphenyl		50		38 - 95	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid % Moisture: 5.2 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12 Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19808.D Dilution: 1.0 Initial Weight/Volume: 15.0444 g Analysis Date:

08/14/2017 1142 Final Weight/Volume: 1 mL Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	•	0.035	U	0.0077	0.035
1,2-Dichlorobenzene		0.35	U	0.012	0.35
1,3-Dichlorobenzene		0.35	U	0.027	0.35
1,4-Dichlorobenzene		0.35	U	0.027	0.35
2,2'-oxybis[1-chloropro	pane]	0.35	U	0.014	0.35
2,4-Dinitrotoluene		0.070	U	0.014	0.070
2,6-Dinitrotoluene		0.070	U	0.019	0.070
2-Chloronaphthalene		0.35	U	0.0079	0.35
2-Methylnaphthalene		0.35	U	0.0077	0.35
2-Nitroaniline		0.35	U	0.011	0.35
3,3'-Dichlorobenzidine		0.14	U	0.039	0.14
3-Nitroaniline		0.35	U	0.010	0.35
4-Bromophenyl phenyl	ether	0.35	U	0.011	0.35
4-Chloroaniline		0.35	U	0.0089	0.35
4-Chlorophenyl phenyl	ether	0.35	U	0.010	0.35
4-Nitroaniline		0.35	U	0.013	0.35
Acenaphthene		0.35	U	0.0084	0.35
Acenaphthylene		0.026	J	0.0089	0.35
Anthracene		0.35	U	0.033	0.35
Benzo[a]anthracene		0.13		0.029	0.035
Benzo[a]pyrene		0.19		0.011	0.035
Benzo[b]fluoranthene		0.20		0.014	0.035
Benzo[g,h,i]perylene		0.21	J	0.020	0.35
Benzo[k]fluoranthene		0.065	-	0.015	0.035
Bis(2-chloroethoxy)met	thane	0.35	U	0.011	0.35
Bis(2-chloroethyl)ether		0.035	Ü	0.0082	0.035
Bis(2-ethylhexyl) phtha		0.35	Ü	0.014	0.35
Butyl benzyl phthalate		0.35	Ü	0.011	0.35
Carbazole		0.35	Ü	0.0086	0.35
Chrysene		0.15	J	0.0095	0.35
Dibenz(a,h)anthracene		0.035	Ü	0.018	0.035
Dibenzofuran		0.35	Ŭ	0.011	0.35
Diethyl phthalate		0.35	Ŭ	0.0099	0.35
Dimethyl phthalate		0.35	Ü	0.010	0.35
Di-n-butyl phthalate		0.35	Ü	0.010	0.35
Di-n-octyl phthalate		0.35	Ü	0.018	0.35
Fluoranthene		0.18	J	0.010	0.35
Fluorene		0.35	Ů	0.0076	0.35
Hexachlorobenzene		0.035	Ü	0.014	0.035
				0.0098	
Hexachlorobutadiene	liono	0.070 0.35	U	0.0098	0.070 0.35
Hexachlorocyclopentac Hexachloroethane	NICH IC	0.035	U	0.022	0.035
			U		0.035 0.035
Indeno[1,2,3-cd]pyrene	;	0.18	11	0.023	
Isophorone		0.14	U	0.0075	0.14
Naphthalene		0.35	U	0.0088	0.35
Nitrobenzene		0.035	U	0.011	0.035

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid % Moisture: 5.2 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19808.D
Dilution: 1.0 Initial Weight/Volume: 15.0444 g

Analysis Date: 08/14/2017 1142 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.035	U	0.012	0.035
N-Nitrosodiphenylamine		0.35	U	0.032	0.35
Phenanthrene		0.087	J	0.0093	0.35
Pyrene		0.20	J	0.016	0.35
Surrogate		%Rec	Qualifier	Accepta	nce Limits
2-Fluorobiphenyl		56		38 - 95	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19809.D
Dilution: 1.0 Initial Weight/Volume: 15.0415 g
Analysis Date: 08/14/2017 1203

 Analysis Date:
 08/14/2017 1203
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	Э	0.040	U	0.0088	0.040
1,2-Dichlorobenzene		0.40	U	0.013	0.40
1,3-Dichlorobenzene		0.40	U	0.031	0.40
1,4-Dichlorobenzene		0.40	U	0.031	0.40
2,2'-oxybis[1-chloropro	ppane]	0.40	U	0.016	0.40
2,4-Dinitrotoluene		0.081	U	0.016	0.081
2,6-Dinitrotoluene		0.081	U	0.021	0.081
2-Chloronaphthalene		0.40	U	0.0091	0.40
2-Methylnaphthalene		0.40	U	0.0088	0.40
2-Nitroaniline		0.40	U	0.013	0.40
3,3'-Dichlorobenzidine		0.16	U	0.045	0.16
3-Nitroaniline		0.40	U	0.012	0.40
4-Bromophenyl phenyl	l ether	0.40	U	0.013	0.40
4-Chloroaniline		0.40	U	0.010	0.40
4-Chlorophenyl phenyl	l ether	0.40	U	0.012	0.40
4-Nitroaniline		0.40	U	0.015	0.40
Acenaphthene		0.40	U	0.0097	0.40
Acenaphthylene		0.40	U	0.010	0.40
Anthracene		0.40	U	0.038	0.40
Benzo[a]anthracene		0.040		0.033	0.040
Benzo[a]pyrene		0.036	J	0.012	0.040
Benzo[b]fluoranthene		0.048		0.016	0.040
Benzo[g,h,i]perylene		0.024	J	0.023	0.40
Benzo[k]fluoranthene		0.021	J	0.017	0.040
Bis(2-chloroethoxy)me	thane	0.40	Ü	0.012	0.40
Bis(2-chloroethyl)ether		0.040	Ū	0.0094	0.040
Bis(2-ethylhexyl) phtha		0.40	Ü	0.016	0.40
Butyl benzyl phthalate		0.40	Ū	0.012	0.40
Carbazole		0.40	Ū	0.0099	0.40
Chrysene		0.032	J	0.011	0.40
Dibenz(a,h)anthracene	j	0.040	Ü	0.021	0.040
Dibenzofuran		0.40	Ü	0.012	0.40
Diethyl phthalate		0.40	Ü	0.011	0.40
Dimethyl phthalate		0.40	Ü	0.012	0.40
Di-n-butyl phthalate		0.40	Ü	0.012	0.40
Di-n-octyl phthalate		0.40	Ü	0.020	0.40
Fluoranthene		0.076	J	0.012	0.40
Fluorene		0.40	Ŭ	0.0087	0.40
Hexachlorobenzene		0.040	Ü	0.016	0.040
Hexachlorobutadiene		0.040	Ü	0.010	0.040
Hexachlorocyclopenta	diene	0.40	Ü	0.025	0.40
Hexachloroethane	aiche	0.040	Ü	0.025	0.40
Indeno[1,2,3-cd]pyrene	a	0.040	Ü	0.013	0.040
Isophorone	5	0.040	U	0.027	0.040
Naphthalene		0.16		0.0086	0.40
•			J	0.010	
Nitrobenzene		0.040	U	0.013	0.040

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19809.D
Dilution: Initial Weight/Volume: 15.0415 g

 Analysis Date:
 08/14/2017 1203
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

75

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.040	U	0.013	0.040
N-Nitrosodiphenylamine		0.40	U	0.036	0.40
Phenanthrene		0.032	J	0.011	0.40
Pyrene		0.076	J	0.018	0.40
Surrogate		%Rec	Qualifier	Accepta	nce Limits
2-Fluorobiphenyl		62		38 - 95	
Nitrobenzene-d5 (Surr)		68		37 - 94	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid % Moisture: 5.5 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19810.D
Dilution: 1.0 Initial Weight/Volume: 15.0392 g
Analysis Date: 08/14/2017 1225

 Analysis Date:
 08/14/2017 1225
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.035	U	0.0077	0.035
1,2-Dichlorobenz	ene	0.35	U	0.012	0.35
1,3-Dichlorobenz		0.35	U	0.027	0.35
1,4-Dichlorobenz	ene	0.35	U	0.027	0.35
2,2'-oxybis[1-chlo	ropropane]	0.35	U	0.014	0.35
2,4-Dinitrotoluene)	0.071	U	0.014	0.071
2,6-Dinitrotoluene	Э	0.071	U	0.019	0.071
2-Chloronaphthal	lene	0.35	U	0.0079	0.35
2-Methylnaphthal	lene	0.082	J	0.0077	0.35
2-Nitroaniline		0.35	U	0.011	0.35
3,3'-Dichlorobenz	zidine	0.14	U	0.039	0.14
3-Nitroaniline		0.35	U	0.010	0.35
4-Bromophenyl p	henyl ether	0.35	U	0.011	0.35
4-Chloroaniline	,	0.35	U	0.0090	0.35
4-Chlorophenyl p	henyl ether	0.35	Ū	0.010	0.35
4-Nitroaniline	,	0.35	U	0.013	0.35
Acenaphthene		0.35	U	0.0084	0.35
Acenaphthylene		0.029	J	0.0090	0.35
Anthracene		0.35	Ū	0.033	0.35
Benzo[a]anthrace	ene	0.15		0.029	0.035
Benzo[a]pyrene		0.17		0.011	0.035
Benzo[b]fluoranth	nene	0.24		0.014	0.035
Benzo[g,h,i]peryle		0.13	J	0.020	0.35
Benzo[k]fluoranth		0.093	J	0.015	0.035
Bis(2-chloroethox		0.35	U	0.011	0.35
Bis(2-chloroethyl)		3.5	J	0.0082	0.035
Bis(2-ethylhexyl)		0.35	U	0.014	0.35
Butyl benzyl phth		0.35	Ü	0.011	0.35
Carbazole	alato	0.014	J	0.0087	0.35
Chrysene		0.16	Ĵ	0.0095	0.35
Dibenz(a,h)anthra	acene	0.052	· ·	0.018	0.035
Dibenzofuran	decile	0.35	U	0.011	0.35
Diethyl phthalate		0.35	Ü	0.0099	0.35
Dimethyl phthalat	te	0.35	Ü	0.010	0.35
Di-n-butyl phthala		0.35	Ü	0.010	0.35
Di-n-octyl phthala		0.35	Ü	0.018	0.35
Fluoranthene	ile	0.35		0.010	0.35
Fluorantinene		0.0091	J J	0.0076	0.35
	200		U		
Hexachlorobenze		0.035 0.071	U	0.014 0.0098	0.035 0.071
Hexachlorobutad					
Hexachlorocyclop		0.35	U U	0.022	0.35
Hexachloroethan		0.035	U	0.013	0.035
Indeno[1,2,3-cd]p	pyrene	0.21	11	0.023	0.035
Isophorone		0.14	Ų	0.0075	0.14
Naphthalene		0.034	J	0.0089	0.35
Nitrobenzene		0.035	U	0.011	0.035

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid % Moisture: 5.5 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19810.D
Dilution: 1.0 Initial Weight/Volume: 15.0392 g

 Analysis Date:
 08/14/2017 1225
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

80

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.035	U	0.012	0.035
N-Nitrosodiphenylamine		0.35	U	0.032	0.35
Phenanthrene		0.11	J	0.0093	0.35
Pyrene		0.26	J	0.016	0.35
Surrogate		%Rec	Qualifier	Accepta	nce Limits
2-Fluorobiphenyl		62	38 - 95		
Nitrobenzene-d5 (Surr)		64		37 - 94	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid % Moisture: 12.1 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19811.D
Dilution: 1.0 Initial Weight/Volume: 15.0373 g

 Analysis Date:
 08/14/2017 1247
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.037	U	0.0083	0.037
1,2-Dichlorobenz	rene	0.37	U	0.013	0.37
1,3-Dichlorobenz		0.37	U	0.029	0.37
1,4-Dichlorobenz	rene	0.37	U	0.029	0.37
2,2'-oxybis[1-chlo	propropane]	0.37	U	0.015	0.37
2,4-Dinitrotoluene	e	0.076	U	0.015	0.076
2,6-Dinitrotoluene	e	0.076	U	0.020	0.076
2-Chloronaphtha	lene	0.37	U	0.0085	0.37
2-Methylnaphtha	lene	0.37	U	0.0083	0.37
2-Nitroaniline		0.37	U	0.012	0.37
3,3'-Dichlorobenz	zidine	0.15	U	0.042	0.15
3-Nitroaniline		0.37	U	0.011	0.37
4-Bromophenyl p	henyl ether	0.37	U	0.012	0.37
4-Chloroaniline		0.37	U	0.0096	0.37
4-Chlorophenyl p	henyl ether	0.37	U	0.011	0.37
4-Nitroaniline	-	0.37	U	0.014	0.37
Acenaphthene		0.37	U	0.0091	0.37
Acenaphthylene		0.37	U	0.0096	0.37
Anthracene		0.37	U	0.036	0.37
Benzo[a]anthrace	ene	0.037	U	0.031	0.037
Benzo[a]pyrene		0.037	U	0.011	0.037
Benzo[b]fluoranth	hene	0.037	U	0.015	0.037
Benzo[g,h,i]peryl		0.37	Ū	0.022	0.37
Benzo[k]fluoranth		0.037	Ū	0.016	0.037
Bis(2-chloroethox		0.37	Ū	0.012	0.37
Bis(2-chloroethyl		0.037	Ū	0.0089	0.037
Bis(2-ethylhexyl)		0.37	Ū	0.015	0.37
Butyl benzyl phth		0.37	Ū	0.012	0.37
Carbazole		0.37	Ū	0.0093	0.37
Chrysene		0.37	Ū	0.010	0.37
Dibenz(a,h)anthr	acene	0.037	Ū	0.020	0.037
Dibenzofuran		0.37	Ū	0.011	0.37
Diethyl phthalate		0.37	Ü	0.011	0.37
Dimethyl phthala		0.37	Ū	0.011	0.37
Di-n-butyl phthala		0.37	Ü	0.011	0.37
Di-n-octyl phthala		0.37	Ü	0.019	0.37
Fluoranthene		0.37	Ü	0.011	0.37
Fluorene		0.37	Ü	0.0082	0.37
Hexachlorobenze	ene	0.037	Ü	0.015	0.037
Hexachlorobutad		0.076	Ü	0.011	0.076
Hexachlorocyclo		0.37	Ü	0.023	0.37
Hexachloroethan		0.037	Ü	0.014	0.037
Indeno[1,2,3-cd]		0.037	Ü	0.025	0.037
Isophorone	3,10110	0.15	Ü	0.0081	0.057
Naphthalene		0.13	U	0.0095	0.13
Nitrobenzene		0.037	U	0.0095	0.037
minopenzene		0.037	U	0.012	0.037

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid % Moisture: 12.1 Date Received: 08/09/2017 1125

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456035 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19811.D
Dilution: 1.0 Initial Weight/Volume: 15.0373 g

Analysis Date: 08/14/2017 1247 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

89

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.037	U	0.013	0.037
N-Nitrosodiphenylamine		0.37	U	0.034	0.37
Phenanthrene		0.37	U	0.010	0.37
Pyrene		0.37	U	0.017	0.37
Surrogate		%Rec	Qualifier	Accepta	ince Limits
2-Fluorobiphenyl		67	38 - 95		
Nitrobenzene-d5 (Surr)		72		37 - 94	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19841.D
Dilution: 1.0 Initial Weight/Volume: 15.0409 g

 Analysis Date:
 08/15/2017 0048
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzen	е	0.034	U	0.0076	0.034
1,2-Dichlorobenzene		0.34	U	0.012	0.34
1,3-Dichlorobenzene		0.34	U	0.027	0.34
1,4-Dichlorobenzene		0.34	U	0.027	0.34
2,2'-oxybis[1-chloropro	opane]	0.34	U	0.014	0.34
2,4-Dinitrotoluene		0.070	U	0.014	0.070
2,6-Dinitrotoluene		0.070	U	0.018	0.070
2-Chloronaphthalene		0.34	U	0.0078	0.34
2-Methylnaphthalene		0.014	J	0.0076	0.34
2-Nitroaniline		0.34	U	0.011	0.34
3,3'-Dichlorobenzidine	•	0.14	U	0.039	0.14
3-Nitroaniline		0.34	U	0.010	0.34
4-Bromophenyl pheny	I ether	0.34	U	0.011	0.34
4-Chloroaniline		0.34	U	0.0089	0.34
4-Chlorophenyl pheny	I ether	0.34	U	0.010	0.34
4-Nitroaniline		0.34	U	0.013	0.34
Acenaphthene		0.037	J	0.0083	0.34
Acenaphthylene		0.0096	J	0.0089	0.34
Anthracene		0.070	J	0.033	0.34
Benzo[a]anthracene		0.31		0.029	0.034
Benzo[a]pyrene		0.32		0.010	0.034
Benzo[b]fluoranthene		0.43		0.013	0.034
Benzo[g,h,i]perylene		0.23	J	0.020	0.34
Benzo[k]fluoranthene		0.16		0.015	0.034
Bis(2-chloroethoxy)me	ethane	0.34	U	0.011	0.34
Bis(2-chloroethyl)ethe		0.034	Ü	0.0081	0.034
Bis(2-ethylhexyl) phtha		0.34	U	0.013	0.34
Butyl benzyl phthalate		0.34	U	0.011	0.34
Carbazole		0.045	Ĵ	0.0086	0.34
Chrysene		0.35		0.0094	0.34
Dibenz(a,h)anthracen	9	0.085		0.018	0.034
Dibenzofuran		0.024	J	0.010	0.34
Diethyl phthalate		0.34	Ū	0.0098	0.34
Dimethyl phthalate		0.34	Ü	0.010	0.34
Di-n-butyl phthalate		0.34	Ü	0.010	0.34
Di-n-octyl phthalate		0.34	Ü	0.018	0.34
Fluoranthene		0.69	J	0.010	0.34
Fluorene		0.061	J	0.0075	0.34
Hexachlorobenzene		0.034	Ū	0.014	0.034
Hexachlorobutadiene		0.070	Ŭ	0.0097	0.070
Hexachlorocyclopenta	diene	0.34	Ŭ	0.021	0.34
Hexachloroethane	310110	0.034	Ü	0.013	0.034
Indeno[1,2,3-cd]pyren	e	0.36	J	0.023	0.034
Isophorone	5	0.14	U	0.0074	0.14
Naphthalene		0.014	J	0.0088	0.14
Nitrobenzene		0.014	U	0.0088	0.034
MILLODELIZELIE		0.034	U	0.011	0.034

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19841.D
Dilution: 1.0 Initial Weight/Volume: 15.0409 g

 Analysis Date:
 08/15/2017 0048
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
N-Nitrosodi-n-propylamine		0.034	U	0.012	0.034	
N-Nitrosodiphenylamine		0.34	U	0.031	0.34	
Phenanthrene		0.61		0.0092	0.34	
Pyrene		0.77		0.016	0.34	
Surrogate		%Rec	Qualifier	Acceptar	nce Limits	

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	63		38 - 95
Nitrobenzene-d5 (Surr)	67		37 - 94
Terphenyl-d14 (Surr)	80		24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19825.D
Dilution: 1.0 Initial Weight/Volume: 15.0274 g
Analysis Date: 08/14/2017 1859

Analysis Date: 08/14/2017 1859 Final Weight/Volume: 1 mL
Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene)	0.034	U	0.0075	0.034
1,2-Dichlorobenzene		0.34	U	0.011	0.34
1,3-Dichlorobenzene		0.34	U	0.026	0.34
1,4-Dichlorobenzene		0.34	U	0.026	0.34
2,2'-oxybis[1-chloropro	pane]	0.34	U	0.014	0.34
2,4-Dinitrotoluene		0.068	U	0.013	0.068
2,6-Dinitrotoluene		0.068	U	0.018	0.068
2-Chloronaphthalene		0.34	U	0.0077	0.34
2-Methylnaphthalene		0.34	U	0.0075	0.34
2-Nitroaniline		0.34	U	0.011	0.34
3,3'-Dichlorobenzidine		0.14	U	0.038	0.14
3-Nitroaniline		0.34	U	0.010	0.34
4-Bromophenyl phenyl	ether	0.34	U	0.011	0.34
4-Chloroaniline		0.34	Ū	0.0087	0.34
4-Chlorophenyl phenyl	ether	0.34	Ū	0.010	0.34
4-Nitroaniline		0.34	Ū	0.013	0.34
Acenaphthene		0.34	Ū	0.0082	0.34
Acenaphthylene		0.34	Ü	0.0087	0.34
Anthracene		0.34	Ü	0.032	0.34
Benzo[a]anthracene		0.034	Ŭ	0.028	0.034
Benzo[a]pyrene		0.034	Ŭ	0.010	0.034
Benzo[b]fluoranthene		0.034	Ü	0.013	0.034
Benzo[g,h,i]perylene		0.34	Ü	0.019	0.34
Benzo[k]fluoranthene		0.034	Ü	0.015	0.034
Bis(2-chloroethoxy)met	thana	0.34	U	0.013	0.34
Bis(2-chloroethyl)ether		0.034	Ü	0.0080	0.034
Bis(2-ethylhexyl) phtha		0.34	Ü	0.013	0.34
Butyl benzyl phthalate	iale	0.34	U	0.013	0.34
Carbazole		0.34	U	0.0084	0.34
Chrysene		0.34	U	0.0092	0.34
Dibenz(a,h)anthracene		0.034	U	0.018	0.034
Dibenzofuran		0.34	U	0.010	0.34
Diethyl phthalate		0.34	U	0.0096	0.34
Dimethyl phthalate		0.34	U	0.0098	0.34
Di-n-butyl phthalate		0.34	U	0.010	0.34
Di-n-octyl phthalate		0.34	U	0.017	0.34
Fluoranthene		0.34	U	0.010	0.34
Fluorene		0.34	U	0.0074	0.34
Hexachlorobenzene		0.034	U	0.014	0.034
Hexachlorobutadiene		0.068	U	0.0095	0.068
Hexachlorocyclopentac	diene	0.34	U	0.021	0.34
Hexachloroethane		0.034	U	0.012	0.034
Indeno[1,2,3-cd]pyrene	;	0.034	U	0.022	0.034
Isophorone		0.14	U	0.0073	0.14
Naphthalene		0.34	U	0.0086	0.34
Nitrobenzene		0.034	U	0.011	0.034

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19825.D
Dilution: 1.0 Initial Weight/Volume: 15.0274 g

 Analysis Date:
 08/14/2017 1859
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

83

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.034	U	0.011	0.034
N-Nitrosodiphenylamine		0.34	U	0.031	0.34
Phenanthrene		0.34	U	0.0090	0.34
Pyrene		0.34	U	0.015	0.34
Surrogate		%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl		61	38 - 95		
Nitrobenzene-d5 (Surr)		62	37 - 94		

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19846.D
Dilution: 1.0 Initial Weight/Volume: 15.0328 g

 Analysis Date:
 08/15/2017 0237
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobe		0.037	U	0.0081	0.037
1,2-Dichlorobenz	ene	0.37	U	0.012	0.37
1,3-Dichlorobenz		0.37	U	0.029	0.37
1,4-Dichlorobenz	rene	0.37	U	0.029	0.37
2,2'-oxybis[1-chlo	propropane]	0.37	U	0.015	0.37
2,4-Dinitrotoluene	e	0.075	U	0.015	0.075
2,6-Dinitrotoluene	e	0.075	U	0.020	0.075
2-Chloronaphtha	lene	0.37	U	0.0084	0.37
2-Methylnaphtha	lene	0.010	J	0.0081	0.37
2-Nitroaniline		0.37	U	0.012	0.37
3,3'-Dichlorobenz	zidine	0.15	U	0.041	0.15
3-Nitroaniline		0.37	U	0.011	0.37
4-Bromophenyl p	henyl ether	0.37	U	0.012	0.37
4-Chloroaniline	·	0.37	U	0.0095	0.37
4-Chlorophenyl p	henyl ether	0.37	U	0.011	0.37
4-Nitroaniline	-	0.37	U	0.014	0.37
Acenaphthene		0.37	U	0.0089	0.37
Acenaphthylene		0.37	U	0.0095	0.37
Anthracene		0.37	U	0.035	0.37
Benzo[a]anthrace	ene	0.12		0.031	0.037
Benzo[a]pyrene		0.13		0.011	0.037
Benzo[b]fluorantl	hene	0.17		0.014	0.037
Benzo[g,h,i]peryl		0.10	J	0.021	0.37
Benzo[k]fluoranth		0.073		0.016	0.037
Bis(2-chloroethox		0.37	U	0.011	0.37
Bis(2-chloroethyl		0.037	Ū	0.0087	0.037
Bis(2-ethylhexyl)		0.37	Ū	0.014	0.37
Butyl benzyl phth		0.37	Ū	0.011	0.37
Carbazole		0.021	J	0.0092	0.37
Chrysene		0.13	J	0.010	0.37
Dibenz(a,h)anthr	acene	0.059	-	0.019	0.037
Dibenzofuran		0.37	U	0.011	0.37
Diethyl phthalate		0.37	Ü	0.010	0.37
Dimethyl phthala		0.37	Ü	0.011	0.37
Di-n-butyl phthala		0.37	Ü	0.011	0.37
Di-n-octyl phthala		0.37	Ŭ	0.019	0.37
Fluoranthene		0.22	Ĵ	0.011	0.37
Fluorene		0.37	Ŭ	0.0080	0.37
Hexachlorobenze	ene	0.037	Ü	0.015	0.037
Hexachlorobutad		0.075	Ü	0.010	0.075
Hexachlorocyclo		0.37	Ü	0.023	0.37
Hexachloroethan		0.037	Ü	0.014	0.037
Indeno[1,2,3-cd]		0.18	J	0.025	0.037
Isophorone	J, 55	0.15	U	0.0079	0.15
Naphthalene		0.37	Ü	0.0079	0.13
Nitrobenzene		0.037	Ü	0.012	0.037
INITIONELIZELIE		0.037	U	0.012	0.037

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19846.D
Dilution: Initial Weight/Volume: 15.0328 g

 Analysis Date:
 08/15/2017 0237
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

68

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.037	U	0.012	0.037
N-Nitrosodiphenylamine		0.37	U	0.033	0.37
Phenanthrene		0.12	J	0.0098	0.37
Pyrene		0.21	J	0.017	0.37
Surrogate		%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl		59		38 - 95	
Nitrobenzene-d5 (Surr)		57		37 - 94	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19826.D
Dilution: 1.0 Initial Weight/Volume: 15.0339 g
Analysis Date: 08/14/2017 1920 Final Weight/Volume: 1 mL

Analysis Date: 08/14/2017 1920 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenze		0.038	U	0.0083	0.038
1,2-Dichlorobenzene		0.38	U	0.013	0.38
1,3-Dichlorobenzene		0.38	U	0.029	0.38
1,4-Dichlorobenzene)	0.38	U	0.030	0.38
2,2'-oxybis[1-chlorop	oropane]	0.38	U	0.016	0.38
2,4-Dinitrotoluene		0.076	U	0.015	0.076
2,6-Dinitrotoluene		0.076	U	0.020	0.076
2-Chloronaphthalene	e	0.38	U	0.0086	0.38
2-Methylnaphthalene	e	2.1		0.0083	0.38
2-Nitroaniline		0.38	U	0.012	0.38
3,3'-Dichlorobenzidir	ne	0.15	U	0.042	0.15
3-Nitroaniline		0.38	U	0.011	0.38
4-Bromophenyl phen	nyl ether	0.38	U	0.012	0.38
4-Chloroaniline		0.38	U	0.0097	0.38
4-Chlorophenyl pher	nyl ether	0.38	U	0.011	0.38
4-Nitroaniline		0.38	U	0.014	0.38
Acenaphthene		0.38	U	0.0091	0.38
Acenaphthylene		0.38	U	0.0097	0.38
Anthracene		0.38	U	0.036	0.38
Benzo[a]anthracene		0.038	U	0.031	0.038
Benzo[a]pyrene		0.038	U	0.011	0.038
Benzo[b]fluoranthen	е	0.038	U	0.015	0.038
Benzo[g,h,i]perylene		0.38	U	0.022	0.38
Benzo[k]fluoranthene		0.038	U	0.016	0.038
Bis(2-chloroethoxy)n		0.38	U	0.012	0.38
Bis(2-chloroethyl)eth		0.038	Ü	0.0089	0.038
Bis(2-ethylhexyl) pht		0.38	Ū	0.015	0.38
Butyl benzyl phthalat		0.38	Ū	0.012	0.38
Carbazole		0.38	Ū	0.0093	0.38
Chrysene		0.38	Ū	0.010	0.38
Dibenz(a,h)anthrace	ne	0.038	Ū	0.020	0.038
Dibenzofuran		0.38	Ū	0.011	0.38
Diethyl phthalate		0.38	Ü	0.011	0.38
Dimethyl phthalate		0.38	Ü	0.011	0.38
Di-n-butyl phthalate		0.38	Ü	0.011	0.38
Di-n-octyl phthalate		0.38	Ü	0.019	0.38
Fluoranthene		0.38	Ü	0.013	0.38
Fluorene		0.0091	J	0.0082	0.38
Hexachlorobenzene		0.038	U	0.0052	0.038
Hexachlorobutadiene	۵.	0.038	Ü	0.013	0.036
Hexachlorocyclopen		0.38	U	0.023	0.38
Hexachloroethane	tadio 16	0.038	U	0.023	0.038
Indeno[1,2,3-cd]pyre	ano.	0.038	Ü	0.025	0.038
Indeno[1,2,3-ca]pyre	FIIC	0.036 0.15	U	0.025	0.036
•		0.15 2.5	U		0.15
Naphthalene			1.1	0.0096	
Nitrobenzene		0.038	U	0.012	0.038

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19826.D
Dilution: 1.0 Initial Weight/Volume: 15.0339 g

Analysis Date: 08/14/2017 1920 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RLN-Nitrosodi-n-propylamine 0.038 0.038 U 0.013 N-Nitrosodiphenylamine U 0.38 0.034 0.38 Phenanthrene 0.012 J 0.010 0.38 U Pyrene 0.38 0.017 0.38 Surrogate %Rec Qualifier Acceptance Limits 2-Fluorobiphenyl 71 38 - 95

 2-Fluorobiphenyl
 71
 38 - 95

 Nitrobenzene-d5 (Surr)
 87
 37 - 94

 Terphenyl-d14 (Surr)
 96
 24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (1-3)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19847.D
Dilution: 1.0 Initial Weight/Volume: 15.0284 g
Analysis Date: 08/15/2017 0259

Analysis Date: 08/15/2017 0259 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzer	ne	0.036	U	0.0080	0.036
1,2-Dichlorobenzene		0.36	U	0.012	0.36
1,3-Dichlorobenzene		0.36	U	0.028	0.36
1,4-Dichlorobenzene		0.36	U	0.028	0.36
2,2'-oxybis[1-chloropr	opane]	0.36	U	0.015	0.36
2,4-Dinitrotoluene		0.074	U	0.014	0.074
2,6-Dinitrotoluene		0.074	U	0.019	0.074
2-Chloronaphthalene		0.36	U	0.0082	0.36
2-Methylnaphthalene		0.013	J	0.0080	0.36
2-Nitroaniline		0.36	U	0.012	0.36
3,3'-Dichlorobenzidine	е	0.15	U	0.041	0.15
3-Nitroaniline		0.36	U	0.011	0.36
4-Bromophenyl pheny	/I ether	0.36	U	0.011	0.36
4-Chloroaniline		0.36	U	0.0093	0.36
4-Chlorophenyl pheny	/I ether	0.36	U	0.011	0.36
4-Nitroaniline		0.36	U	0.014	0.36
Acenaphthene		0.36	U	0.0088	0.36
Acenaphthylene		0.065	J	0.0093	0.36
Anthracene		0.36	U	0.035	0.36
Benzo[a]anthracene		0.15		0.030	0.036
Benzo[a]pyrene		0.25		0.011	0.036
Benzo[b]fluoranthene		0.40		0.014	0.036
Benzo[g,h,i]perylene		0.17	J	0.021	0.36
Benzo[k]fluoranthene		0.10		0.016	0.036
Bis(2-chloroethoxy)m		0.36	U	0.011	0.36
Bis(2-chloroethyl)ethe		0.036	U	0.0086	0.036
Bis(2-ethylhexyl) phth		0.36	Ū	0.014	0.36
Butyl benzyl phthalate		0.36	U	0.011	0.36
Carbazole		0.018	J	0.0090	0.36
Chrysene		0.19	J	0.0099	0.36
Dibenz(a,h)anthracen	e	0.063		0.019	0.036
Dibenzofuran		0.36	U	0.011	0.36
Diethyl phthalate		0.36	Ü	0.010	0.36
Dimethyl phthalate		0.36	Ü	0.011	0.36
Di-n-butyl phthalate		0.36	Ü	0.011	0.36
Di-n-octyl phthalate		0.36	Ü	0.018	0.36
Fluoranthene		0.22	J	0.011	0.36
Fluorene		0.36	Ŭ	0.0079	0.36
Hexachlorobenzene		0.036	Ü	0.015	0.036
Hexachlorobutadiene		0.074	Ü	0.010	0.074
Hexachlorocyclopenta		0.36	Ü	0.023	0.36
Hexachloroethane	2010110	0.036	U	0.023	0.036
Indeno[1,2,3-cd]pyrer	10	0.25	J	0.013	0.036
Isophorone		0.25	U	0.024	0.030
Naphthalene		0.028	J	0.0078	0.15
Nitrobenzene			U		0.036
nitropenzene		0.036	U	0.011	0.036

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (1-3)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19847.D
Dilution: 1.0 Initial Weight/Volume: 15.0284 g

 Analysis Date:
 08/15/2017 0259
 Final Weight/Volume:
 1 mL

 Prep Date:
 08/11/2017 2150
 Injection Volume:
 1 uL

65

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.036	U	0.012	0.036
N-Nitrosodiphenylamine		0.36	U	0.033	0.36
Phenanthrene		0.088	J	0.0097	0.36
Pyrene		0.19	J	0.016	0.36
Surrogate		%Rec	Qualifier	er Acceptance Limits	
2-Fluorobiphenyl		69	38 - 95		
Nitrobenzene-d5 (Surr)		72		37 - 94	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19827.D
Dilution: 1.0 Initial Weight/Volume: 15.0490 g
Analysis Date: 08/14/2017 1942 Final Weight/Volume: 1 ml

Analysis Date: 08/14/2017 1942 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
1,2,4-Trichlorobenzer	e	0.037	U	0.0082	0.037
1,2-Dichlorobenzene		0.37	U	0.013	0.37
1,3-Dichlorobenzene		0.37	U	0.029	0.37
1,4-Dichlorobenzene		0.37	U	0.029	0.37
2,2'-oxybis[1-chloropr	opane]	0.37	U	0.015	0.37
2,4-Dinitrotoluene		0.076	U	0.015	0.076
2,6-Dinitrotoluene		0.076	U	0.020	0.076
2-Chloronaphthalene		0.37	U	0.0085	0.37
2-Methylnaphthalene		0.37	U	0.0082	0.37
2-Nitroaniline		0.37	U	0.012	0.37
3,3'-Dichlorobenzidine	9	0.15	U	0.042	0.15
3-Nitroaniline		0.37	U	0.011	0.37
4-Bromophenyl pheny	∕I ether	0.37	U	0.012	0.37
4-Chloroaniline		0.37	U	0.0096	0.37
4-Chlorophenyl pheny	l ether	0.37	U	0.011	0.37
4-Nitroaniline		0.37	U	0.014	0.37
Acenaphthene		0.37	U	0.0090	0.37
Acenaphthylene		0.37	U	0.0096	0.37
Anthracene		0.37	U	0.035	0.37
Benzo[a]anthracene		0.037	U	0.031	0.037
Benzo[a]pyrene		0.037	U	0.011	0.037
Benzo[b]fluoranthene		0.037	U	0.015	0.037
Benzo[g,h,i]perylene		0.37	U	0.021	0.37
Benzo[k]fluoranthene		0.037	U	0.016	0.037
Bis(2-chloroethoxy)m	ethane	0.37	U	0.012	0.37
Bis(2-chloroethyl)ethe		0.037	Ü	0.0088	0.037
Bis(2-ethylhexyl) phth		0.37	Ū	0.015	0.37
Butyl benzyl phthalate		0.37	Ū	0.012	0.37
Carbazole		0.37	Ū	0.0093	0.37
Chrysene		0.37	Ū	0.010	0.37
Dibenz(a,h)anthracen	e	0.037	Ū	0.019	0.037
Dibenzofuran		0.37	Ü	0.011	0.37
Diethyl phthalate		0.37	Ü	0.011	0.37
Dimethyl phthalate		0.37	Ü	0.011	0.37
Di-n-butyl phthalate		0.37	Ū	0.011	0.37
Di-n-octyl phthalate		0.37	Ŭ	0.019	0.37
Fluoranthene		0.37	Ü	0.011	0.37
Fluorene		0.37	Ŭ	0.0081	0.37
Hexachlorobenzene		0.037	Ü	0.015	0.037
Hexachlorobutadiene		0.037	Ü	0.010	0.076
Hexachlorocyclopenta	adiene	0.37	Ü	0.023	0.37
Hexachloroethane	MICHE	0.037	U	0.023	0.037
Indeno[1,2,3-cd]pyrer	10	0.037	U	0.014	0.037
Isophorone	IC .	0.037	U	0.025	0.037
•					
Naphthalene		0.37	U	0.0095	0.37
Nitrobenzene		0.037	U	0.012	0.037

24 - 109

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Terphenyl-d14 (Surr)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456195 Instrument ID: CBNAMS12
Prep Method: 3546 Prep Batch: 460-455775 Lab File ID: L19827.D
Dilution: 1.0 Initial Weight/Volume: 15.0490 g

Analysis Date: 08/14/2017 1942 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL

99

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine		0.037	U	0.013	0.037
N-Nitrosodiphenylamine		0.37	U	0.034	0.37
Phenanthrene		0.37	U	0.0099	0.37
Pyrene		0.37	U	0.017	0.37
Surrogate		%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl		70	38 - 95		
Nitrobenzene-d5 (Surr)		77		37 - 94	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-1

 Lab Sample ID:
 460-139067-1
 Date Sampled: 08/09/2017 1350

 Client Matrix:
 Water
 Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5162.D
Dilution: 1.0 Initial Weight/Volume: 250 mL

Analysis Date: 08/14/2017 0706 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	1.0	U	0.61	1.0
1,2-Dichlorobenzene	10	U	0.83	10
1,3-Dichlorobenzene	10	U	1.1	10
1,4-Dichlorobenzene	10	U	0.66	10
2,2'-oxybis[1-chloropropane]	10	U	0.93	10
2,4-Dinitrotoluene	2.0	U	1.0	2.0
2,6-Dinitrotoluene	2.0	Ü	0.88	2.0
2-Chloronaphthalene	10	Ū	0.61	10
2-Methylnaphthalene	10	•	0.88	10
2-Nitroaniline	10	U	0.65	10
3,3'-Dichlorobenzidine	10	Ü	1.0	10
3-Nitroaniline	10	Ü	0.82	10
4-Bromophenyl phenyl ether	10	Ü	1.0	10
	10	U *	0.73	10
4-Chlorophenyl phonyl other				
4-Chlorophenyl phenyl ether	10	U	0.96	10
4-Nitroaniline	10	U	0.48	10
Acenaphthene	10	U	0.88	10
Acenaphthylene	10	U	0.65	10
Anthracene	10	U	0.57	10
Benzo[a]anthracene	1.0	U	0.55	1.0
Benzo[a]pyrene	1.0	U	0.16	1.0
Benzo[b]fluoranthene	1.0	U	0.44	1.0
Benzo[g,h,i]perylene	10	U	0.75	10
Benzo[k]fluoranthene	1.0	U	0.18	1.0
Bis(2-chloroethoxy)methane	10	U	0.69	10
Bis(2-chloroethyl)ether	1.0	U	0.12	1.0
Bis(2-ethylhexyl) phthalate	2.0	U	0.72	2.0
Butyl benzyl phthalate	10	U	0.60	10
Carbazole	10	U	0.85	10
Chrysene	2.0	U	0.67	2.0
Dibenz(a,h)anthracene	1.0	Ū	0.090	1.0
Dibenzofuran	10	Ü	0.85	10
Diethyl phthalate	10	Ü	1.0	10
Dimethyl phthalate	10	Ŭ	0.98	10
Di-n-butyl phthalate	10	Ü	0.82	10
Di-n-octyl phthalate	10	U	0.69	10
Fluoranthene	10	U	0.72	10
Fluorene	10	U	0.80	10
Hexachlorobenzene	1.0	U	0.47	1.0
Hexachlorobutadiene	1.0	U	0.76	1.0
Hexachlorocyclopentadiene	10	U *	0.61	10
Hexachloroethane	1.0	U	0.090	1.0
Indeno[1,2,3-cd]pyrene	1.0	U	0.21	1.0
Isophorone	10	U	0.67	10
Naphthalene	47		0.80	10
Nitrobenzene	1.0	U	0.49	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-1

Lab Sample ID: 460-139067-1 Date Sampled: 08/09/2017 1350

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5162.D
Dilution: 1.0 Initial Weight/Volume: 250 mL

Analysis Date: 08/14/2017 0706 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine	1.0	U	0.83	1.0
N-Nitrosodiphenylamine	10	U	0.74	10
Phenanthrene	10	U	0.65	10
Pyrene	10	U	0.83	10

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	85		45 - 107
Nitrobenzene-d5 (Surr)	84		51 - 108
Terphenyl-d14 (Surr)	52		40 - 148

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-2

Lab Sample ID: 460-139067-2 Date Sampled: 08/09/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5163.D
Dilution: 1.0 Initial Weight/Volume: 240 mL

 Analysis Date:
 08/14/2017 0728
 Final Weight/Volume:
 2 mL

 Prep Date:
 08/13/2017 0615
 Injection Volume:
 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	1.0	U	0.64	1.0
1,2-Dichlorobenzene	10	U	0.86	10
1,3-Dichlorobenzene	10	U	1.2	10
1,4-Dichlorobenzene	10	U	0.69	10
2,2'-oxybis[1-chloropropane]	10	U	0.97	10
2,4-Dinitrotoluene	2.1	U	1.1	2.1
2,6-Dinitrotoluene	2.1	U	0.92	2.1
2-Chloronaphthalene	10	U	0.64	10
2-Methylnaphthalene	10	U	0.92	10
2-Nitroaniline	10	Ū	0.68	10
3,3'-Dichlorobenzidine	10	Ū	1.1	10
3-Nitroaniline	10	Ü	0.85	10
4-Bromophenyl phenyl ether	10	Ü	1.1	10
4-Chloroaniline	10	U *	0.76	10
4-Chlorophenyl phenyl ether	10	U	1.0	10
4-Nitroaniline	10	U	0.50	10
		U		
Acenaphthene	10		0.92	10
Acenaphthylene	10	U	0.68	10
Anthracene	10	U	0.59	10
Benzo[a]anthracene	1.0	U	0.57	1.0
Benzo[a]pyrene	1.0	U	0.17	1.0
Benzo[b]fluoranthene	1.0	U	0.46	1.0
Benzo[g,h,i]perylene	10	U	0.78	10
Benzo[k]fluoranthene	1.0	U	0.19	1.0
Bis(2-chloroethoxy)methane	10	U	0.72	10
Bis(2-chloroethyl)ether	1.0	U	0.13	1.0
Bis(2-ethylhexyl) phthalate	2.1	U	0.75	2.1
Butyl benzyl phthalate	10	U	0.63	10
Carbazole	10	U	0.89	10
Chrysene	2.1	U	0.70	2.1
Dibenz(a,h)anthracene	1.0	U	0.094	1.0
Dibenzofuran	10	U	0.89	10
Diethyl phthalate	10	Ü	1.0	10
Dimethyl phthalate	10	Ū	1.0	10
Di-n-butyl phthalate	0.98	J	0.85	10
Di-n-octyl phthalate	10	Ŭ	0.72	10
Fluoranthene	10	Ü	0.75	10
Fluorene	10	Ü	0.83	10
Hexachlorobenzene	1.0	U	0.49	1.0
Hexachlorobutadiene	1.0	U	0.49	1.0
		U *		
Hexachlorocyclopentadiene	10		0.64	10
Hexachloroethane	1.0	U	0.094	1.0
Indeno[1,2,3-cd]pyrene	1.0	U	0.22	1.0
Isophorone	10	U	0.70	10
Naphthalene	10	U	0.83	10
Nitrobenzene	1.0	U	0.51	1.0

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: TW-2

Lab Sample ID: 460-139067-2 Date Sampled: 08/09/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5163.D
Dilution: 1.0 Initial Weight/Volume: 240 mL

Analysis Date: 08/14/2017 0728 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte Result (ug/L) Qualifier MDL RL N-Nitrosodi-n-propylamine 1.0 0.86 1.0 U N-Nitrosodiphenylamine U 10 0.77 10 Phenanthrene 10 U 0.68 10 U Pyrene 10 0.86 10

Surrogate %Rec Qualifier Acceptance Limits

2-Fluorobiphenyl 87 45 - 107

Nitrobenzene-d5 (Surr) 90 51 - 108

Terphenyl-d14 (Surr) 83 40 - 148

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GW-3

Lab Sample ID: 460-139067-3 Date Sampled: 08/10/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5164.D
Dilution: 1.0 Initial Weight/Volume: 200 mL

Analysis Date: 08/14/2017 0750 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	1.3	U	0.76	1.3
1,2-Dichlorobenzene	13	U	1.0	13
1,3-Dichlorobenzene	13	U	1.4	13
1,4-Dichlorobenzene	13	U	0.83	13
2,2'-oxybis[1-chloropropane]	13	U	1.2	13
2,4-Dinitrotoluene	2.5	U	1.3	2.5
2,6-Dinitrotoluene	2.5	U	1.1	2.5
2-Chloronaphthalene	13	U	0.76	13
2-Methylnaphthalene	13	Ū	1.1	13
2-Nitroaniline	13	Ū	0.81	13
3,3'-Dichlorobenzidine	13	Ü	1.3	13
3-Nitroaniline	13	Ŭ	1.0	13
4-Bromophenyl phenyl ether	13	Ü	1.3	13
4-Chloroaniline	13	U *	0.91	13
4-Chlorophenyl phenyl ether	13	U	1.2	13
			0.60	
4-Nitroaniline	13	U		13
Acenaphthene	13	U	1.1	13
Acenaphthylene	13	U	0.81	13
Anthracene	13	U	0.71	13
Benzo[a]anthracene	1.3	U	0.69	1.3
Benzo[a]pyrene	1.3	U	0.20	1.3
Benzo[b]fluoranthene	1.3	U	0.55	1.3
Benzo[g,h,i]perylene	13	U	0.94	13
Benzo[k]fluoranthene	1.3	U	0.23	1.3
Bis(2-chloroethoxy)methane	13	U	0.86	13
Bis(2-chloroethyl)ether	1.3	U	0.15	1.3
Bis(2-ethylhexyl) phthalate	2.5	U	0.90	2.5
Butyl benzyl phthalate	13	U	0.75	13
Carbazole	13	U	1.1	13
Chrysene	2.5	U	0.84	2.5
Dibenz(a,h)anthracene	1.3	Ü	0.11	1.3
Dibenzofuran	13	Ü	1.1	13
Diethyl phthalate	13	Ū	1.3	13
Dimethyl phthalate	13	Ü	1.2	13
Di-n-butyl phthalate	13	Ü	1.0	13
Di-n-octyl phthalate	13	Ü	0.86	13
Fluoranthene	13	Ü	0.90	13
	13		1.0	13
Fluorene		U		
Hexachlorobenzene	1.3	U	0.59	1.3
Hexachlorobutadiene	1.3	U	0.95	1.3
Hexachlorocyclopentadiene	13	U *	0.76	13
Hexachloroethane	1.3	U	0.11	1.3
Indeno[1,2,3-cd]pyrene	1.3	U	0.26	1.3
Isophorone	13	U	0.84	13
Naphthalene	13	U	1.0	13
Nitrobenzene	1.3	U	0.61	1.3

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GW-3

Lab Sample ID: 460-139067-3 Date Sampled: 08/10/2017 1130

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5164.D
Dilution: 1.0 Initial Weight/Volume: 200 mL

 Analysis Date:
 08/14/2017 0750
 Final Weight/Volume:
 2 mL

 Prep Date:
 08/13/2017 0615
 Injection Volume:
 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine	1.3	U	1.0	1.3
N-Nitrosodiphenylamine	13	U	0.93	13
Phenanthrene	13	U	0.81	13
Pyrene	13	U	1.0	13

Surrogate	%Rec	Qualifier	Acceptance Limits	
2-Fluorobiphenyl	86		45 - 107	
Nitrobenzene-d5 (Surr)	86		51 - 108	
Terphenyl-d14 (Surr)	83		40 - 148	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-1

 Lab Sample ID:
 460-139067-5
 Date Sampled: 08/10/2017 1110

 Client Matrix:
 Water
 Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5165.D
Dilution: 1.0 Initial Weight/Volume: 210 mL

Analysis Date: 08/14/2017 0813 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	1.2	U	0.73	1.2
1,2-Dichlorobenzene	12	U	0.99	12
1,3-Dichlorobenzene	12	U	1.3	12
1,4-Dichlorobenzene	12	U	0.79	12
2,2'-oxybis[1-chloropropane]	12	Ū	1.1	12
2,4-Dinitrotoluene	2.4	Ü	1.2	2.4
2,6-Dinitrotoluene	2.4	Ü	1.0	2.4
2-Chloronaphthalene	12	Ü	0.73	12
2-Methylnaphthalene	12	Ü	1.0	12
2-Nitroaniline	12	Ü	0.77	12
3,3'-Dichlorobenzidine	12	U	1.2	12
3-Nitroaniline	12	U	0.98	12
4-Bromophenyl phenyl ether	12	U	1.2	12
4-Chloroaniline	12	U *	0.87	12
4-Chlorophenyl phenyl ether	12	U	1.1	12
4-Nitroaniline	12	U	0.57	12
Acenaphthene	12	U	1.0	12
Acenaphthylene	12	U	0.77	12
Anthracene	12	U	0.68	12
Benzo[a]anthracene	1.2	U	0.65	1.2
Benzo[a]pyrene	1.2	Ū	0.19	1.2
Benzo[b]fluoranthene	1.2	Ū	0.52	1.2
Benzo[g,h,i]perylene	12	Ü	0.89	12
Benzo[k]fluoranthene	1.2	Ü	0.21	1.2
Bis(2-chloroethoxy)methane	12	Ü	0.82	12
	1.2	U	0.14	1.2
Bis(2-chloroethyl)ether				
Bis(2-ethylhexyl) phthalate	2.4	U	0.86	2.4
Butyl benzyl phthalate	12	U	0.71	12
Carbazole	12	U	1.0	12
Chrysene	2.4	U	0.80	2.4
Dibenz(a,h)anthracene	1.2	U	0.11	1.2
Dibenzofuran	12	U	1.0	12
Diethyl phthalate	12	U	1.2	12
Dimethyl phthalate	12	U	1.2	12
Di-n-butyl phthalate	12	U	0.98	12
Di-n-octyl phthalate	12	U	0.82	12
Fluoranthene	12	Ū	0.86	12
Fluorene	12	Ü	0.95	12
Hexachlorobenzene	1.2	Ü	0.56	1.2
Hexachlorobutadiene	1.2	Ü	0.90	1.2
Hexachlorocyclopentadiene	12	U *	0.73	12
Hexachloroethane				
	1.2	U	0.11	1.2
Indeno[1,2,3-cd]pyrene	1.2	U	0.25	1.2
Isophorone	12	U	0.80	12
Naphthalene	12	U	0.95	12
Nitrobenzene	1.2	U	0.58	1.2

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-1

Lab Sample ID: 460-139067-5 Date Sampled: 08/10/2017 1110

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5165.D
Dilution: 1.0 Initial Weight/Volume: 210 mL

Analysis Date: 08/14/2017 0813 Final Weight/Volume: 2 mL
Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine	1.2	U	0.99	1.2
N-Nitrosodiphenylamine	12	U	0.88	12
Phenanthrene	12	U	0.77	12
Pyrene	12	U	0.99	12

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	81		45 - 107
Nitrobenzene-d5 (Surr)	80		51 - 108
Terphenyl-d14 (Surr)	79		40 - 148

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-2

 Lab Sample ID:
 460-139067-6
 Date Sampled: 08/10/2017 1210

 Client Matrix:
 Water
 Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5166.D
Dilution: 1.0 Initial Weight/Volume: 210 mL

 Analysis Date:
 08/14/2017 0835
 Final Weight/Volume:
 2 mL

 Prep Date:
 08/13/2017 0615
 Injection Volume:
 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	1.2	U	0.73	1.2
1,2-Dichlorobenzene	12	U	0.99	12
1,3-Dichlorobenzene	12	U	1.3	12
1,4-Dichlorobenzene	12	U	0.79	12
2,2'-oxybis[1-chloropropane]	12	Ū	1.1	12
2,4-Dinitrotoluene	2.4	Ü	1.2	2.4
2,6-Dinitrotoluene	2.4	Ü	1.0	2.4
2-Chloronaphthalene	12	Ü	0.73	12
2-Methylnaphthalene	12	Ü	1.0	12
2-Nitroaniline	12	Ü	0.77	12
3,3'-Dichlorobenzidine	12	U	1.2	12
	12		0.98	
3-Nitroaniline		U		12
4-Bromophenyl phenyl ether	12	U	1.2	12
4-Chloroaniline	12	U *	0.87	12
4-Chlorophenyl phenyl ether	12	U	1.1	12
4-Nitroaniline	12	U	0.57	12
Acenaphthene	12	U	1.0	12
Acenaphthylene	12	U	0.77	12
Anthracene	12	U	0.68	12
Benzo[a]anthracene	1.2	U	0.65	1.2
Benzo[a]pyrene	1.2	U	0.19	1.2
Benzo[b]fluoranthene	1.2	U	0.52	1.2
Benzo[g,h,i]perylene	12	U	0.89	12
Benzo[k]fluoranthene	1.2	U	0.21	1.2
Bis(2-chloroethoxy)methane	12	Ū	0.82	12
Bis(2-chloroethyl)ether	1.2	Ü	0.14	1.2
Bis(2-ethylhexyl) phthalate	2.4	Ü	0.86	2.4
Butyl benzyl phthalate	12	Ü	0.71	12
Carbazole	12	Ü	1.0	12
Chrysene	2.4	U	0.80	2.4
	1.2			
Dibenz(a,h)anthracene		U	0.11	1.2
Dibenzofuran	12	U	1.0	12
Diethyl phthalate	12	U	1.2	12
Dimethyl phthalate	12	U	1.2	12
Di-n-butyl phthalate	12	U	0.98	12
Di-n-octyl phthalate	12	U	0.82	12
Fluoranthene	12	U	0.86	12
Fluorene	12	U	0.95	12
Hexachlorobenzene	1.2	U	0.56	1.2
Hexachlorobutadiene	1.2	U	0.90	1.2
Hexachlorocyclopentadiene	12	U *	0.73	12
Hexachloroethane	1.2	Ū	0.11	1.2
Indeno[1,2,3-cd]pyrene	1.2	Ü	0.25	1.2
Isophorone	12	Ŭ	0.80	12
Naphthalene	12	Ü	0.95	12
Nitrobenzene	1.2	U	0.58	1.2
ninopenzene	1.2	U	0.58	1.2

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-2

Lab Sample ID: 460-139067-6 Date Sampled: 08/10/2017 1210

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5166.D
Dilution: 1.0 Initial Weight/Volume: 210 mL

Analysis Date: 08/14/2017 0835 Final Weight/Volume: 2 mL
Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
N-Nitrosodi-n-propylamine	1.2	U	0.99	1.2
N-Nitrosodiphenylamine	12	U	0.88	12
Phenanthrene	12	U	0.77	12
Pyrene	12	U	0.99	12

Surrogate	%Rec	Qualifier	Acceptance Limits
2-Fluorobiphenyl	92		45 - 107
Nitrobenzene-d5 (Surr)	97		51 - 108
Terphenyl-d14 (Surr)	79		40 - 148

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-3

Lab Sample ID: 460-139067-7 Date Sampled: 08/10/2017 1155

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5167.D
Dilution: 1.0 Initial Weight/Volume: 240 mL

Analysis Date: 08/14/2017 0858 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL	
1,2,4-Trichlorobenzene	1.0	U	0.64	1.0	
1,2-Dichlorobenzene	10	U	0.86	10	
1,3-Dichlorobenzene	10	U	1.2	10	
1,4-Dichlorobenzene	10	U	0.69	10	
2,2'-oxybis[1-chloropropane]	10	U	0.97	10	
2,4-Dinitrotoluene	2.1	U	1.1	2.1	
2,6-Dinitrotoluene	2.1	U	0.92	2.1	
2-Chloronaphthalene	10	U	0.64	10	
2-Methylnaphthalene	10	U	0.92	10	
2-Nitroaniline	10	U	0.68	10	
3,3'-Dichlorobenzidine	10	U	1.1	10	
3-Nitroaniline	10	U	0.85	10	
4-Bromophenyl phenyl ether	10	U	1.1	10	
4-Chloroaniline	10	U *	0.76	10	
4-Chlorophenyl phenyl ether	10	U	1.0	10	
4-Nitroaniline	10	U	0.50	10	
Acenaphthene	10	U	0.92	10	
Acenaphthylene	10	U	0.68	10	
Anthracene	10	U	0.59	10	
Benzo[a]anthracene	1.0	U	0.57	1.0	
Benzo[a]pyrene	1.0	U	0.17	1.0	
Benzo[b]fluoranthene	1.0	U	0.46	1.0	
Benzo[g,h,i]perylene	10	U	0.78	10	
Benzo[k]fluoranthene	1.0	U	0.19	1.0	
Bis(2-chloroethoxy)methane	10	U	0.72	10	
Bis(2-chloroethyl)ether	1.0	U	0.13	1.0	
Bis(2-ethylhexyl) phthalate	2.1	U	0.75	2.1	
Butyl benzyl phthalate	10	U	0.63	10	
Carbazole	10	U	0.89	10	
Chrysene	2.1	U	0.70	2.1	
Dibenz(a,h)anthracene	1.0	U	0.094	1.0	
Dibenzofuran	10	U	0.89	10	
Diethyl phthalate	10	Ü	1.0	10	
Dimethyl phthalate	10	U	1.0	10	
Di-n-butyl phthalate	1.1	J	0.85	10	
Di-n-octyl phthalate	10	Ū	0.72	10	
Fluoranthene	10	Ū	0.75	10	
Fluorene	10	Ū	0.83	10	
Hexachlorobenzene	1.0	Ū	0.49	1.0	
Hexachlorobutadiene	1.0	Ü	0.79	1.0	
Hexachlorocyclopentadiene	10	Ü *	0.64	10	
Hexachloroethane	1.0	Ü	0.094	1.0	
Indeno[1,2,3-cd]pyrene	1.0	Ü	0.22	1.0	
Isophorone	10	Ü	0.70	10	
Naphthalene	10	Ŭ	0.83	10	
Nitrobenzene	1.0	Ü	0.51	1.0	
MUODONZONO	1.0	5	0.01	1.0	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-3

Lab Sample ID: 460-139067-7 Date Sampled: 08/10/2017 1155

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5167.D
Dilution: 1.0 Initial Weight/Volume: 240 mL

Analysis Date: 08/14/2017 0858 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte Result (ug/L) Qualifier MDL RL N-Nitrosodi-n-propylamine 1.0 0.86 1.0 U N-Nitrosodiphenylamine U 10 0.77 10 Phenanthrene 10 U 0.68 10 U Pyrene 10 0.86 10

 Surrogate
 %Rec
 Qualifier
 Acceptance Limits

 2-Fluorobiphenyl
 93
 45 - 107

 Nitrobenzene-d5 (Surr)
 98
 51 - 108

 Terphenyl-d14 (Surr)
 82
 40 - 148

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-4

 Lab Sample ID:
 460-139067-8
 Date Sampled: 08/10/2017 1145

 Client Matrix:
 Water
 Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5168.D
Dilution: 1.0 Initial Weight/Volume: 235 mL

Analysis Date: 08/14/2017 0920 Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte	Result (ug/L)	Qualifier	MDL	RL
1,2,4-Trichlorobenzene	1.1	U	0.65	1.1
1,2-Dichlorobenzene	11	U	0.88	11
1,3-Dichlorobenzene	11	U	1.2	11
1,4-Dichlorobenzene	11	U	0.70	11
2,2'-oxybis[1-chloropropane]	11	U	0.99	11
2,4-Dinitrotoluene	2.1	U	1.1	2.1
2,6-Dinitrotoluene	2.1	U	0.94	2.1
2-Chloronaphthalene	11	U	0.65	11
2-Methylnaphthalene	11	U	0.94	11
2-Nitroaniline	11	U	0.69	11
3,3'-Dichlorobenzidine	11	U	1.1	11
3-Nitroaniline	11	U	0.87	11
4-Bromophenyl phenyl ether	11	U	1.1	11
4-Chloroaniline	11	Ū*	0.78	11
4-Chlorophenyl phenyl ether	11	Ū	1.0	11
4-Nitroaniline	11	Ü	0.51	11
Acenaphthene	11	Ü	0.94	11
Acenaphthylene	11	Ü	0.69	11
Anthracene	11	Ü	0.61	11
Benzo[a]anthracene	1.1	Ü	0.59	1.1
Benzo[a]pyrene	1.1	U	0.17	1.1
Benzo[b]fluoranthene	1.1	U	0.47	1.1
	11	U	0.80	11
Benzo[g,h,i]perylene Benzo[k]fluoranthene	1.1	U	0.19	1.1
			0.73	
Bis(2-chloroethoxy)methane	11	U		11
Bis(2-chloroethyl)ether	1.1	U	0.13	1.1
Bis(2-ethylhexyl) phthalate	2.1	U	0.77	2.1
Butyl benzyl phthalate	11	U	0.64	11
Carbazole	11	U	0.90	11
Chrysene	2.1	U	0.71	2.1
Dibenz(a,h)anthracene	1.1	U	0.096	1.1
Dibenzofuran	11	U	0.90	11
Diethyl phthalate	11	U	1.1	11
Dimethyl phthalate	11	U	1.0	11
Di-n-butyl phthalate	11	U	0.87	11
Di-n-octyl phthalate	11	U	0.73	11
Fluoranthene	11	U	0.77	11
Fluorene	11	U	0.85	11
Hexachlorobenzene	1.1	U	0.50	1.1
Hexachlorobutadiene	1.1	U	0.81	1.1
Hexachlorocyclopentadiene	11	U *	0.65	11
Hexachloroethane	1.1	U	0.096	1.1
Indeno[1,2,3-cd]pyrene	1.1	U	0.22	1.1
Isophorone	11	U	0.71	11
	11	U	0.85	11
Nitrobenzene	1.1	U	0.52	1.1
Hexachloroethane Indeno[1,2,3-cd]pyrene Isophorone Naphthalene	1.1 1.1 11 11	U U U	0.096 0.22 0.71 0.85	1.1 1.1 11 11

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: GT-4

Lab Sample ID: 460-139067-8 Date Sampled: 08/10/2017 1145

Client Matrix: Water Date Received: 08/11/2017 1035

8270D Semivolatile Organic Compounds (GC/MS)

Analysis Method: 8270D Analysis Batch: 460-456044 Instrument ID: CBNAMS6
Prep Method: 3510C Prep Batch: 460-455934 Lab File ID: M5168.D
Dilution: 1.0 Initial Weight/Volume: 235 mL

Analysis Date: 08/14/2017 0920 Final Weight/Volume: 2 mL
Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Analyte Result (ug/L) Qualifier MDL RL N-Nitrosodi-n-propylamine 0.88 1.1 1.1 U N-Nitrosodiphenylamine U 0.79 11 11 Phenanthrene U 11 0.69 11 U Pyrene 11 0.88 11

Surrogate %Rec Qualifier Acceptance Limits

2-Fluorobiphenyl 87 45 - 107

Nitrobenzene-d5 (Surr) 89 51 - 108

Terphenyl-d14 (Surr) 75 40 - 148

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid % Moisture: 14.9 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0020 g
Dilution: 1.0 Final Weight/Volume: 10 mL

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1743
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.079	U	0.010	0.079
Aroclor 1221		0.079	U	0.010	0.079
Aroclor 1232		0.079	U	0.010	0.079
Aroclor 1242		0.079	U	0.010	0.079
Aroclor 1248		0.079	U	0.010	0.079
Aroclor 1254		0.079	U	0.011	0.079
Aroclor 1260		0.079	U	0.011	0.079
Aroclor-1262		0.079	U	0.011	0.079
Aroclor 1268		0.079	U	0.011	0.079
Polychlorinated biphenyls, T	otal	0.079	U	0.011	0.079
Surrogate		%Rec	Qualifier	Acceptance Limits	
DCB Decachlorobiphenyl		121		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid % Moisture: 14.9 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0020 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1743 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 117 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11 Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0131 g Dilution:

1.0 Final Weight/Volume: 10 mL Analysis Date: 08/10/2017 1757 Injection Volume: 1 uL Prep Date: 08/09/2017 2155 Result Type: **PRIMARY**

Analyte [DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.074	U	0.0098	0.074
Aroclor 1221		0.074	U	0.0098	0.074
Aroclor 1232		0.074	U	0.0098	0.074
Aroclor 1242		0.074	U	0.0098	0.074
Aroclor 1248		0.074	U	0.0098	0.074
Aroclor 1254		0.074	U	0.010	0.074
Aroclor 1260		0.074	U	0.010	0.074
Aroclor-1262		0.074	U	0.010	0.074
Aroclor 1268		0.074	U	0.010	0.074
Polychlorinated biphenyls, To	otal	0.074	U	0.010	0.074
Surrogate		%Rec	Qualifier	Acceptance Limits	

35 - 150 DCB Decachlorobiphenyl 123

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0131 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1757 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 117 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid % Moisture: 6.8 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0441 g

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1812
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL Analyte Aroclor 1016 0.072 0.0095 0.072 Aroclor 1221 0.072 U 0.0095 0.072 U Aroclor 1232 0.072 0.0095 0.072 U Aroclor 1242 0.072 0.0095 0.072 Aroclor 1248 0.072 U 0.0095 0.072 U Aroclor 1254 0.072 0.0098 0.072 Aroclor 1260 U 0.072 0.072 0.0098 U Aroclor-1262 0.072 0.072 0.0098 Aroclor 1268 U 0.072 0.0098 0.072 Polychlorinated biphenyls, Total 0.072 U 0.0098 0.072 Surrogate %Rec Qualifier Acceptance Limits DCB Decachlorobiphenyl 112 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid % Moisture: 6.8 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0441 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1812 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 105 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid % Moisture: 10.8 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0323 g
Dilution: 1.0 Final Weight/Volume: 10 mL

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1827
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

Analyte [DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.075	U	0.010	0.075
Aroclor 1221		0.075	U	0.010	0.075
Aroclor 1232		0.075	U	0.010	0.075
Aroclor 1242		0.075	U	0.010	0.075
Aroclor 1248		0.075	U	0.010	0.075
Aroclor 1254		0.075	U	0.010	0.075
Aroclor 1260		0.075	U	0.010	0.075
Aroclor-1262		0.075	U	0.010	0.075
Aroclor 1268		0.075	U	0.010	0.075
Polychlorinated biphenyls, To	otal	0.075	U	0.010	0.075
Surrogate		%Rec	Qualifier	Acceptance Limits	

DCB Decachlorobiphenyl 115 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid % Moisture: 10.8 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0323 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1827 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 110 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid % Moisture: 6.7 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11

Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0220 g

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1841
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.072	U	0.0095	0.072
Aroclor 1221		0.072	U	0.0095	0.072
Aroclor 1232		0.072	U	0.0095	0.072
Aroclor 1242		0.072	U	0.0095	0.072
Aroclor 1248		0.072	U	0.0095	0.072
Aroclor 1254		0.072	U	0.0098	0.072
Aroclor 1260		0.072	U	0.0098	0.072
Aroclor-1262		0.072	U	0.0098	0.072
Aroclor 1268		0.072	U	0.0098	0.072
Polychlorinated biphenyls, 1	-otal	0.072	U	0.0098	0.072
Surrogate		%Rec	Qualifier	Acceptano	ce Limits
DCB Decachlorobiphenyl		112		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid % Moisture: 6.7 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0220 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1841 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 109 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Solid % Moisture: 16.0 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455698 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0119 g

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/11/2017 1632
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RLAnalyte Aroclor 1016 0.080 0.011 0.080 0.080 Aroclor 1221 U 0.011 0.080 U Aroclor 1232 0.080 0.080 0.011 U Aroclor 1242 0.080 0.011 0.080 Aroclor 1248 0.080 U 0.011 0.080 U Aroclor 1254 0.080 0.011 0.080 Aroclor 1260 U 0.080 0.011 0.080

 Aroclor-1262
 0.080
 U
 0.011
 0.080

 Aroclor 1268
 0.080
 U
 0.011
 0.080

 Polychlorinated biphenyls, Total
 0.080
 U
 0.011
 0.080

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 100 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid % Moisture: 9.0 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0088 g

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1910
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.074	U	0.0098	0.074
Aroclor 1221		0.074	U	0.0098	0.074
Aroclor 1232		0.074	U	0.0098	0.074
Aroclor 1242		0.074	U	0.0098	0.074
Aroclor 1248		0.074	U	0.0098	0.074
Aroclor 1254		0.074	U	0.010	0.074
Aroclor 1260		0.074	U	0.010	0.074
Aroclor-1262		0.074	U	0.010	0.074
Aroclor 1268		0.074	U	0.010	0.074
Polychlorinated biphenyls, T	otal	0.074	U	0.010	0.074
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
DCB Decachlorobiphenyl		107		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid % Moisture: 9.0 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0088 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1910 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits
DCB Decachlorobiphenyl 103 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0077 g

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1925
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RLAroclor 1016 0.081 0.011 0.081 0.081 Aroclor 1221 U 0.011 0.081 U Aroclor 1232 0.081 0.081 0.011 U Aroclor 1242 0.081 0.011 0.081 Aroclor 1248 0.081 U 0.011 0.081 U Aroclor 1254 0.081 0.011 0.081 Aroclor 1260 U 0.081 0.011 0.081 U Aroclor-1262 0.011 0.081 0.081 Aroclor 1268 U 0.081 0.011 0.081 Polychlorinated biphenyls, Total 0.081 U 0.011 0.081 Surrogate %Rec Qualifier Acceptance Limits 109 35 - 150 DCB Decachlorobiphenyl

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0077 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1925 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 104 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid % Moisture: 5.2 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0042 g
Dilution: 1.0 Final Weight/Volume: 10 mL

 Dilution:
 1.0
 Final Weight/Volume:
 10 mL

 Analysis Date:
 08/10/2017 1939
 Injection Volume:
 1 uL

 Prep Date:
 08/09/2017 2155
 Result Type:
 PRIMARY

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.071	U	0.0094	0.071
Aroclor 1221		0.071	U	0.0094	0.071
Aroclor 1232		0.071	U	0.0094	0.071
Aroclor 1242		0.071	U	0.0094	0.071
Aroclor 1248		0.071	U	0.0094	0.071
Aroclor 1254		0.071	U	0.0097	0.071
Aroclor 1260		0.071	U	0.0097	0.071
Aroclor-1262		0.071	U	0.0097	0.071
Aroclor 1268		0.071	U	0.0097	0.071
Polychlorinated biphenyls, T	otal	0.071	U	0.0097	0.071
Surrogate		%Rec	Qualifier	er Acceptance Limits	
DCB Decachlorobiphenyl		114		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid % Moisture: 5.2 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0042 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1939 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 104 35 - 150

08/23/2017

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

TestAmerica Edison

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid % Moisture: Date Received: 08/09/2017 1125 17.4

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11 Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0130 g

Dilution: 1.0 Final Weight/Volume: 10 mL Analysis Date: 08/10/2017 1954 Injection Volume: 1 uL Prep Date: 08/09/2017 2155 Result Type: **PRIMARY**

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.081	U	0.011	0.081
Aroclor 1221		0.081	U	0.011	0.081
Aroclor 1232		0.081	U	0.011	0.081
Aroclor 1242		0.081	U	0.011	0.081
Aroclor 1248		0.081	U	0.011	0.081
Aroclor 1254		0.081	U	0.011	0.081
Aroclor 1260		0.081	U	0.011	0.081
Aroclor-1262		0.081	U	0.011	0.081
Aroclor 1268		0.081	U	0.011	0.081
Polychlorinated biphenyls, T	otal	0.081	U	0.011	0.081
Surrogate		%Rec	Qualifier	Accepta	nce Limits
DCB Decachlorobiphenyl		119		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid % Moisture: 17.4 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0130 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 1954 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 107 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid % Moisture: 5.5 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0222 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 2008 Injection Volume: 1 uL
Prep Date: 08/09/2017 2155 Result Type: PRIMARY

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.071	U	0.0094	0.071
Aroclor 1221		0.071	U	0.0094	0.071
Aroclor 1232		0.071	U	0.0094	0.071
Aroclor 1242		0.071	U	0.0094	0.071
Aroclor 1248		0.071	U	0.0094	0.071
Aroclor 1254		0.071	U	0.0097	0.071
Aroclor 1260		0.071	U	0.0097	0.071
Aroclor-1262		0.071	U	0.0097	0.071
Aroclor 1268		0.071	U	0.0097	0.071
Polychlorinated biphenyls,	Гotal	0.071	U	0.0097	0.071
Surrogate		%Rec	Qualifier	Acceptanc	e Limits
DCB Decachlorobiphenyl		118		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid % Moisture: 5.5 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0222 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 2008 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 108 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid % Moisture: Date Received: 08/09/2017 1125 12.1

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11 Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0001 g Dilution:

1.0 Final Weight/Volume: 10 mL Analysis Date: 08/10/2017 2023 Injection Volume: 1 uL Prep Date: 08/09/2017 2155 Result Type: **PRIMARY**

Analyte [DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.076	U	0.010	0.076
Aroclor 1221		0.076	U	0.010	0.076
Aroclor 1232		0.076	U	0.010	0.076
Aroclor 1242		0.076	U	0.010	0.076
Aroclor 1248		0.076	U	0.010	0.076
Aroclor 1254		0.076	U	0.010	0.076
Aroclor 1260		0.076	U	0.010	0.076
Aroclor-1262		0.076	U	0.010	0.076
Aroclor 1268		0.076	U	0.010	0.076
Polychlorinated biphenyls, To	tal	0.076	U	0.010	0.076
Surrogate		%Rec	Qualifier	Acceptance Limits	
DCR Decachlershiphonyl		101		25 150	1

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid % Moisture: 12.1 Date Received: 08/09/2017 1125

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-455410 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455215 Initial Weight/Volume: +15.0001 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/10/2017 2023 Injection Volume: 1 uL

Prep Date: 08/09/2017 2155 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits

DCB Decachlorobiphenyl 116 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456005 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0201 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.070	U	0.0093	0.070
Aroclor 1221		0.070	U	0.0093	0.070
Aroclor 1232		0.070	U	0.0093	0.070
Aroclor 1242		0.070	U	0.0093	0.070
Aroclor 1248		0.070	U	0.0093	0.070
Aroclor 1254		0.070	U	0.0096	0.070
Aroclor 1260		0.070	U	0.0096	0.070
Aroclor-1262		0.070	U	0.0096	0.070
Aroclor 1268		0.070	U	0.0096	0.070
Polychlorinated biphenyls, T	otal	0.070	U	0.0096	0.070
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
DCB Decachlorobiphenyl		124		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456005 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0201 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/13/2017 2335 Injection Volume: 1 uL

Prep Date: 08/11/2017 1702 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits
DCB Decachlorobiphenyl 123 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456005 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0114 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.068	U	0.0091	0.068
Aroclor 1221		0.068	U	0.0091	0.068
Aroclor 1232		0.068	U	0.0091	0.068
Aroclor 1242		0.068	U	0.0091	0.068
Aroclor 1248		0.068	U	0.0091	0.068
Aroclor 1254		0.068	U	0.0094	0.068
Aroclor 1260		0.068	U	0.0094	0.068
Aroclor-1262		0.068	U	0.0094	0.068
Aroclor 1268		0.068	U	0.0094	0.068
Polychlorinated biphenyls,	Total	0.068	U	0.0094	0.068
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
DCB Decachlorobiphenyl		139		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456766 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0200 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.075	U	0.0099	0.075
Aroclor 1221		0.075	U	0.0099	0.075
Aroclor 1232		0.075	U	0.0099	0.075
Aroclor 1242		0.075	U	0.0099	0.075
Aroclor 1248		0.075	U	0.0099	0.075
Aroclor 1254		0.075	U	0.010	0.075
Aroclor 1260		0.075	U	0.010	0.075
Aroclor-1262		0.075	U	0.010	0.075
Aroclor 1268		0.075	U	0.010	0.075
Polychlorinated biphenyls, To	otal	0.075	U	0.010	0.075
Surrogate		%Rec	Qualifier	Acceptar	ice Limits
DCB Decachlorobiphenyl		134		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456766 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0200 g

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/16/2017 2134 Injection Volume: 1 uL

Prep Date: 08/11/2017 1702 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits
DCB Decachlorobiphenyl 128 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456766 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0220 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.076	U	0.010	0.076
Aroclor 1221		0.076	U	0.010	0.076
Aroclor 1232		0.076	U	0.010	0.076
Aroclor 1242		0.076	U	0.010	0.076
Aroclor 1248		0.076	U	0.010	0.076
Aroclor 1254		0.076	U	0.010	0.076
Aroclor 1260		0.076	U	0.010	0.076
Aroclor-1262		0.076	U	0.010	0.076
Aroclor 1268		0.076	U	0.010	0.076
Polychlorinated biphenyls, T	otal	0.076	U	0.010	0.076
Surrogate		%Rec	Qualifier	Acceptan	ce Limits
DCB Decachlorobiphenyl		136		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456766 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0220 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analysis Date: 08/16/2017 2148 Injection Volume: 1 uL

Prep Date: 08/11/2017 1702 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits
DCB Decachlorobiphenyl 131 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (1-3)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456005 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0104 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.074	U	0.0098	0.074
Aroclor 1221		0.074	U	0.0098	0.074
Aroclor 1232		0.074	U	0.0098	0.074
Aroclor 1242		0.074	U	0.0098	0.074
Aroclor 1248		0.074	U	0.0098	0.074
Aroclor 1254		0.074	U	0.010	0.074
Aroclor 1260		0.074	U	0.010	0.074
Aroclor-1262		0.074	U	0.010	0.074
Aroclor 1268		0.074	U	0.010	0.074
Polychlorinated biphenyls, To	otal	0.074	U	0.010	0.074
Surrogate		%Rec	Qualifier	Acceptar	nce Limits
DCB Decachlorobiphenyl		128		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456005 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0450 g
Dilution: 1.0 Final Weight/Volume: 10 mL

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Aroclor 1016		0.076	U	0.010	0.076
Aroclor 1221		0.076	U	0.010	0.076
Aroclor 1232		0.076	U	0.010	0.076
Aroclor 1242		0.076	U	0.010	0.076
Aroclor 1248		0.076	U	0.010	0.076
Aroclor 1254		0.076	U	0.010	0.076
Aroclor 1260		0.076	U	0.010	0.076
Aroclor-1262		0.076	U	0.010	0.076
Aroclor 1268		0.076	U	0.010	0.076
Polychlorinated biphenyls, 1	Гotal	0.076	U	0.010	0.076
Surrogate		%Rec	Qualifier	Acceptano	ce Limits
DCB Decachlorobiphenyl		136		35 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Analysis Method: 8082A Analysis Batch: 460-456005 Instrument ID: CPESTGC11
Prep Method: 3546 Prep Batch: 460-455741 Initial Weight/Volume: 15.0450 g

Dilution: 1.0

Dilution: 1.0 Final Weight/Volume: 10 mL
Analysis Date: 08/14/2017 0259 Injection Volume: 1 uL

Prep Date: 08/11/2017 1702 Result Type: SECONDARY

Surrogate %Rec Qualifier Acceptance Limits
DCB Decachlorobiphenyl 133 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Date Received: 08/09/2017 1125 Solid % Moisture: 14.9

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455245 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.05 g 50 mL Final Weight/Volume:

08/10/2017 2135 Analysis Date: 08/10/2017 0225 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.2	U	0.34	2.2
Aluminum		11600		9.2	44.8
Arsenic		2.0	J	0.83	3.4
Barium		78.4		3.6	44.8
Beryllium		0.053	J	0.051	0.45
Calcium		4270		114	1120
Cadmium		0.90	U	0.13	0.90
Cobalt		7.6	J	1.3	11.2
Chromium		24.9		0.62	2.2
Copper		38.0		1.3	5.6
Iron		19700		6.0	33.6
Potassium		2080		59.5	1120
Magnesium		5340		86.3	1120
Manganese		440		0.35	3.4
Sodium		383	J	86.2	1120
Nickel		16.4		0.85	9.0
Lead		40.7		0.68	2.2
Antimony		4.5	U	0.54	4.5
Selenium		4.5	U	1.4	4.5
Thallium		4.5	U	1.3	4.5
Vanadium		35.3		1.3	11.2
Zinc		568		0.58	6.7

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.67 g Analysis Date: 08/11/2017 1000 Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL0.095 0.012 0.018 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: 9.2 Date Received: 08/09/2017 1125 Solid % Moisture:

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455245 Lab File ID: 455245.asc 1.07 g Dilution: 4.0 Initial Weight/Volume: 08/10/2017 2139 50 mL Analysis Date: Final Weight/Volume:

08/10/2017 0225 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.1	U	0.31	2.1
Aluminum		9260		8.4	41.2
Arsenic		3.1	U	0.76	3.1
Barium		121		3.3	41.2
Beryllium		0.41	U	0.047	0.41
Calcium		2210		105	1030
Cadmium		0.82	U	0.12	0.82
Cobalt		8.9	J	1.2	10.3
Chromium		27.0		0.57	2.1
Copper		23.9		1.2	5.1
Iron		20000		5.6	30.9
Potassium		3090		54.8	1030
Magnesium		4610		79.4	1030
Manganese		314		0.32	3.1
Sodium		346	J	79.3	1030
Nickel		17.1		0.78	8.2
Lead		3.0		0.62	2.1
Antimony		4.1	U	0.49	4.1
Selenium		4.1	U	1.2	4.1
Thallium		4.1	U	1.2	4.1
Vanadium		33.9		1.2	10.3
Zinc		47.9		0.53	6.2

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Analysis Date: Prep Date: 08/11/2017 0427

Initial Weight/Volume: 0.61 g 08/11/2017 1002 Final Weight/Volume: 50 mL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.018 0.012 0.018 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: % Moisture: 6.8 Date Received: 08/09/2017 1125 Solid

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.00 g 50 mL Analysis Date: 08/10/2017 1635 Final Weight/Volume:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.1	U	0.33	2.1
Aluminum		12900		8.8	42.9
Arsenic		2.2	J	0.79	3.2
Barium		119		3.5	42.9
Beryllium		0.43	U	0.049	0.43
Calcium		1770		109	1070
Cadmium		0.86	U	0.13	0.86
Cobalt		9.1	J	1.2	10.7
Chromium		29.1		0.60	2.1
Copper		24.3		1.2	5.4
Iron		26000		5.8	32.2
Potassium		2600		57.1	1070
Magnesium		4320		82.8	1070
Manganese		405		0.33	3.2
Sodium		574	J	82.6	1070
Nickel		19.3		0.81	8.6
Lead		18.9		0.65	2.1
Antimony		4.3	U	0.52	4.3
Selenium		4.3	U	1.3	4.3
Thallium		4.3	U	1.3	4.3
Vanadium		40.3		1.3	10.7
Zinc		60.1		0.55	6.4

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.66 g Analysis Date: 08/11/2017 1003 Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.021 0.017 Mercury 0.011

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Date Received: 08/09/2017 1125 Solid % Moisture: 10.8

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc

Dilution: 4.0 Initial Weight/Volume: 1.08 g 50 mL Analysis Date: 08/10/2017 1639 Final Weight/Volume:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.1	U	0.32	2.1
Aluminum		7660		8.5	41.5
Arsenic		1.2	J	0.77	3.1
Barium		94.4		3.4	41.5
Beryllium		0.42	U	0.048	0.42
Calcium		2130		106	1040
Cadmium		0.83	U	0.12	0.83
Cobalt		9.3	J	1.2	10.4
Chromium		21.4		0.58	2.1
Copper		12.4		1.2	5.2
Iron		14500		5.6	31.2
Potassium		2120		55.2	1040
Magnesium		4360		80.1	1040
Manganese		173		0.32	3.1
Sodium		127	J	80.0	1040
Nickel		16.1		0.79	8.3
Lead		3.8		0.63	2.1
Antimony		4.2	U	0.50	4.2
Selenium		4.2	U	1.3	4.2
Thallium		4.2	U	1.2	4.2
Vanadium		29.3		1.2	10.4
Zinc		42.7		0.54	6.2

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.62 g Analysis Date: 08/11/2017 1005 Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.018 0.012 0.018 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: % Moisture: 6.7 Date Received: 08/09/2017 1125 Solid

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.06 g 50 mL Analysis Date: 08/10/2017 1643 Final Weight/Volume:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.0	U	0.31	2.0
Aluminum		11900		8.3	40.5
Arsenic		4.3		0.75	3.0
Barium		122		3.3	40.5
Beryllium		0.11	J	0.047	0.40
Calcium		34600		103	1010
Cadmium		0.68	J	0.12	0.81
Cobalt		7.1	J	1.2	10.1
Chromium		21.8		0.56	2.0
Copper		32.7		1.1	5.1
Iron		19600		5.5	30.3
Potassium		1790		53.8	1010
Magnesium		11200		78.0	1010
Manganese		307		0.31	3.0
Sodium		171	J	77.9	1010
Nickel		17.9		0.77	8.1
Lead		295		0.61	2.0
Antimony		0.58	J	0.49	4.0
Selenium		4.0	U	1.2	4.0
Thallium		4.0	U	1.2	4.0
Vanadium		34.2		1.2	10.1
Zinc		247		0.52	6.1

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.60 g Analysis Date: 08/11/2017 1007 Final Weight/Volume: 50 mL Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.099 0.012 0.018 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Date Received: 08/09/2017 1125 Solid % Moisture: 16.0

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.03 g

50 mL Analysis Date: 08/10/2017 1647 Final Weight/Volume:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.3	U	0.35	2.3
Aluminum		11000		9.5	46.2
Arsenic		1.1	J	0.85	3.5
Barium		83.0		3.7	46.2
Beryllium		0.13	J	0.053	0.46
Calcium		1700		118	1160
Cadmium		0.92	U	0.14	0.92
Cobalt		8.5	J	1.3	11.6
Chromium		20.6		0.64	2.3
Copper		21.8		1.3	5.8
Iron		20300		6.2	34.7
Potassium		2430		61.5	1160
Magnesium		4240		89.1	1160
Manganese		288		0.36	3.5
Sodium		235	J	88.9	1160
Nickel		16.3		0.88	9.2
Lead		5.2		0.70	2.3
Antimony		4.6	U	0.55	4.6
Selenium		4.6	U	1.4	4.6
Thallium		4.6	U	1.4	4.6
Vanadium		34.9		1.4	11.6
Zinc		41.7		0.60	6.9

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0 Initial Weight/Volume:

0.61 g Analysis Date: 08/11/2017 1008 Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.020 0.013 0.020 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: % Moisture: 9.0 Date Received: 08/09/2017 1125 Solid

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc 1.07 g Dilution: 4.0 Initial Weight/Volume: 50 mL 08/10/2017 1650 Final Weight/Volume:

Analysis Date: 08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.1	U	0.31	2.1
Aluminum		16300		8.4	41.1
Arsenic		2.4	J	0.76	3.1
Barium		101		3.3	41.1
Beryllium		0.11	J	0.047	0.41
Calcium		2190		105	1030
Cadmium		0.82	U	0.12	0.82
Cobalt		9.6	J	1.2	10.3
Chromium		33.8		0.57	2.1
Copper		23.5		1.2	5.1
Iron		21900		5.5	30.8
Potassium		1490		54.7	1030
Magnesium		6090		79.2	1030
Manganese		374		0.32	3.1
Sodium		393	J	79.1	1030
Nickel		22.2		0.78	8.2
Lead		77.9		0.62	2.1
Antimony		4.1	U	0.49	4.1
Selenium		4.1	U	1.2	4.1
Thallium		4.1	U	1.2	4.1
Vanadium		40.2		1.2	10.3
Zinc		67.0		0.53	6.2

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.63 g Analysis Date: 08/11/2017 1010 Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.021 0.012 0.018 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: % Moisture: Date Received: 08/09/2017 1125 Solid 17.4

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.06 g 50 mL

Analysis Date: 08/10/2017 1654 Final Weight/Volume:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.3	U	0.35	2.3
Aluminum		19900		9.4	45.7
Arsenic		3.4	U	0.85	3.4
Barium		168		3.7	45.7
Beryllium		0.46	U	0.053	0.46
Calcium		1420		117	1140
Cadmium		0.91	U	0.14	0.91
Cobalt		13.8		1.3	11.4
Chromium		36.8		0.63	2.3
Copper		30.0		1.3	5.7
Iron		35500		6.2	34.3
Potassium		7410		60.8	1140
Magnesium		9190		88.1	1140
Manganese		595		0.35	3.4
Sodium		495	J	0.88	1140
Nickel		28.9		0.87	9.1
Lead		5.3		0.69	2.3
Antimony		4.6	U	0.55	4.6
Selenium		4.6	U	1.4	4.6
Thallium		4.6	U	1.3	4.6
Vanadium		57.7		1.4	11.4
Zinc		82.5		0.59	6.9

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.60 g Analysis Date: 08/11/2017 1012 Final Weight/Volume: 50 mL Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

0.021 0.013 0.021 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: % Moisture: 5.2 Date Received: 08/09/2017 1125 Solid

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.05 g 50 mL Analysis Date: 08/10/2017 1658 Final Weight/Volume:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.0	U	0.31	2.0
Aluminum		18000		8.2	40.2
Arsenic		3.2		0.74	3.0
Barium		128		3.3	40.2
Beryllium		0.20	J	0.046	0.40
Calcium		3850		103	1000
Cadmium		0.80	U	0.12	0.80
Cobalt		12.5		1.1	10.0
Chromium		31.4		0.56	2.0
Copper		25.9		1.1	5.0
Iron		26600		5.4	30.1
Potassium		2790		53.5	1000
Magnesium		10100		77.5	1000
Manganese		489		0.31	3.0
Sodium		1000	U	77.4	1000
Nickel		19.6		0.76	8.0
Lead		32.5		0.61	2.0
Antimony		4.0	U	0.48	4.0
Selenium		4.0	U	1.2	4.0
Thallium		4.0	U	1.2	4.0
Vanadium		42.7		1.2	10.0
Zinc		76.6		0.52	6.0

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Initial Weight/Volume: 0.64 g Analysis Date: 08/11/2017 1014 Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.065 0.017 Mercury 0.011

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-8 (9-11)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Date Received: 08/09/2017 1125 Solid % Moisture: 17.4

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.00 g 50 mL 08/10/2017 1702 Final Weight/Volume:

Analysis Date: 08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver	Diyitt Contoited. 1	2.4	U	0.37	2.4
Aluminum		13200	•	9.9	48.4
Arsenic		3.6	U	0.90	3.6
Barium		122		3.9	48.4
Beryllium		0.48	U	0.056	0.48
Calcium		2260		123	1210
Cadmium		0.97	U	0.14	0.97
Cobalt		11.7	J	1.4	12.1
Chromium		27.6		0.67	2.4
Copper		25.5		1.4	6.1
Iron		26700		6.5	36.3
Potassium		5050		64.4	1210
Magnesium		6370		93.3	1210
Manganese		294		0.38	3.6
Sodium		101	J	93.2	1210
Nickel		25.2		0.92	9.7
Lead		5.9		0.73	2.4
Antimony		4.8	U	0.58	4.8
Selenium		4.8	U	1.5	4.8
Thallium		4.8	U	1.4	4.8
Vanadium		40.0		1.4	12.1

7471B Mercury (CVAA)

0.63

Initial Weight/Volume:

7.3

0.62 g

50 mL

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV

61.7

Dilution: 1.0

Zinc

Analysis Date: 08/11/2017 1015 Final Weight/Volume: Prep Date: 08/11/2017 0427

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

0.020 0.013 0.020 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: 5.5 Date Received: 08/09/2017 1125 Solid % Moisture:

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.04 g 50 mL 08/10/2017 1706 Final Weight/Volume:

Analysis Date:

08/10/2017 0317 Prep Date:

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.0	U	0.31	2.0
Aluminum		12300		8.3	40.7
Arsenic		2.3	J	0.75	3.1
Barium		136		3.3	40.7
Beryllium		0.061	J	0.047	0.41
Calcium		8530		104	1020
Cadmium		0.81	U	0.12	0.81
Cobalt		8.5	J	1.2	10.2
Chromium		25.4		0.56	2.0
Copper		29.8		1.1	5.1
Iron		21600		5.5	30.5
Potassium		2350		54.1	1020
Magnesium		6210		78.4	1020
Manganese		361		0.32	3.1
Sodium		223	J	78.3	1020
Nickel		18.6		0.77	8.1
Lead		92.1		0.61	2.0
Antimony		4.1	U	0.49	4.1
Selenium		4.1	U	1.2	4.1
Thallium		4.1	U	1.2	4.1
Vanadium		42.6		1.2	10.2
Zinc		103		0.53	6.1

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455552 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Prep Date: 08/11/2017 0532

Initial Weight/Volume: 0.60 g Analysis Date: 08/11/2017 1031 Final Weight/Volume: 50 mL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.098 0.012 0.018 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Date Received: 08/09/2017 1125 Solid % Moisture: 12.1

6010C Metals (ICP)

Analysis Batch: 460-455426 Instrument ID: ICP4 Analysis Method: 6010C Prep Method: 3050B Prep Batch: 460-455253 Lab File ID: 455245.asc Dilution: 4.0 Initial Weight/Volume: 1.09 g 50 mL 08/10/2017 1721 Final Weight/Volume:

Analysis Date: 08/10/2017 0317 Prep Date:

	_				
Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		2.1	U	0.32	2.1
Aluminum		10200		8.6	41.7
Arsenic		3.1	U	0.77	3.1
Barium		139		3.4	41.7
Beryllium		0.42	U	0.048	0.42
Calcium		2350		106	1040
Cadmium		0.83	U	0.12	0.83
Cobalt		8.7	J	1.2	10.4
Chromium		21.8		0.58	2.1
Copper		16.7		1.2	5.2
Iron		14700		5.6	31.3
Potassium		3280		55.5	1040
Magnesium		4520		80.5	1040
Manganese		277		0.32	3.1
Sodium		193	J	80.4	1040
Nickel		18.7		0.79	8.3
Lead		5.0		0.63	2.1
Antimony		4.2	U	0.50	4.2
Selenium		4.2	U	1.3	4.2
Thallium		4.2	U	1.2	4.2
Vanadium		24.2		1.2	10.4

7471B Mercury (CVAA)

0.54

6.3

Analysis Method: 7471B Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-455552 Lab File ID: 455532HG1.CSV

Dilution: 1.0

Zinc

Initial Weight/Volume: 0.62 g Analysis Date: 08/11/2017 1033 Final Weight/Volume: 50 mL

45.8

Prep Date: 08/11/2017 0532

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.019 0.012 0.019 Mercury

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid % Moisture: 4.4 Date Received: 08/10/2017 1115

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 460-455991 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.22 g
Analysis Date: 08/13/2017 1632 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		1.7	U	0.26	1.7
Aluminum		12300		7.0	34.3
Barium		102		2.8	34.3
Beryllium		0.47		0.039	0.34
Calcium		3640		87.5	858
Cadmium		0.69	U	0.10	0.69
Cobalt		7.2	J	0.98	8.6
Chromium		23.4		0.48	1.7
Copper		20.7		0.97	4.3
Iron		18900		4.6	25.7
Potassium		2110		45.6	858
Magnesium		5450		66.1	858
Manganese		296		0.27	2.6
Sodium		146	J	66.0	858
Nickel		15.1		0.65	6.9
Lead		52.5		0.52	1.7
Antimony		3.4	U	0.41	3.4
Thallium		3.4	U	1.0	3.4
Vanadium		32.8		1.0	8.6
Zinc		68.3		0.44	5.1

Analysis Method: 6010C Analysis Batch: 460-456155 Instrument ID: ICP5
Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455997D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.22 g

Analysis Date: 08/14/2017 1841 Final Weight/Volume: 50 mL Prep Date: 08/12/2017 1626

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Arsenic
 2.5
 J
 0.63
 2.6

 Selenium
 3.4
 U
 1.0
 3.4

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Prep Method: 7471B Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Initial Weight/Volume: 0.60 g

Analysis Date: 08/14/2017 1103 Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0416

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL
Mercury 0.032 0.012 0.018

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 460-455991 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.24 g
Analysis Date: 08/13/2017 1636 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		1.7	U	0.25	1.7
Aluminum		9940		6.8	33.0
Barium		60.6		2.7	33.0
Beryllium		0.58		0.038	0.33
Calcium		3630		84.2	825
Cadmium		0.66	U	0.098	0.66
Cobalt		6.9	J	0.94	8.3
Chromium		29.7		0.46	1.7
Copper		10.8		0.93	4.1
Iron		18900		4.5	24.8
Potassium		5460		43.9	825
Magnesium		4440		63.6	825
Manganese		163		0.26	2.5
Sodium		271	J	63.5	825
Nickel		10.2		0.63	6.6
Lead		1.5	J	0.50	1.7
Thallium		3.3	U	0.97	3.3
Vanadium		38.6		0.98	8.3
Zinc		30.8		0.43	5.0

Analysis Method: 6010C Analysis Batch: 460-456155 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455997D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.24 g
Analysis Date: 08/14/2017 1845 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Arsenic
 0.65
 J
 0.61
 2.5

 Selenium
 3.3
 U
 1.0
 3.3

Analysis Method: 6010C Analysis Batch: 460-457011 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 456856D1.asc

Dilution: 20 Initial Weight/Volume: 1.24 g
Analysis Date: 08/17/2017 1540 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL
Antimony 16.5 U 2.0 16.5

7471B Mercury (CVAA)

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid % Moisture: 2.3 Date Received: 08/10/2017 1115

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Prep Method: 7471B Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Initial Weight/Volume: 0.67 g

Analysis Date: 08/14/2017 0935 Final Weight/Volume: 50

Prep Date: 08/14/2017 0416

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL
Mercury 0.016 U 0.010 0.016

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid % Moisture: 10.6 Date Received: 08/10/2017 1115

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 460-455991 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.30 g
Analysis Date: 08/13/2017 1639 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL	
Silver		1.7	U	0.26	1.7	
Aluminum		11800		7.1	34.4	
Barium		109		2.8	34.4	
Beryllium		0.44		0.040	0.34	
Calcium		6350		87.8	860	
Cadmium		0.69	U	0.10	0.69	
Cobalt		8.8		0.98	8.6	
Chromium		29.1		0.48	1.7	
Copper		36.2		0.97	4.3	
Iron		26700		4.6	25.8	
Potassium		2470		45.8	860	
Magnesium		5650		66.3	860	
Manganese		573		0.27	2.6	
Sodium		1580		66.2	860	
Nickel		19.4		0.65	6.9	
Lead		43.3		0.52	1.7	
Antimony		3.4	U	0.41	3.4	
Thallium		3.4	U	1.0	3.4	
Vanadium		37.6		1.0	8.6	
Zinc		71.0		0.44	5.2	

Analysis Method: 6010C Analysis Batch: 460-456155 Instrument ID: ICP5
Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455997D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.30 g
Analysis Date: 08/14/2017 1849 Final Weight/Volume: 50 mL

Analysis Date: 08/14/2017 1849

Prep Date: 08/12/2017 1626

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Arsenic
 2.4
 J
 0.64
 2.6

 Selenium
 3.4
 U
 1.0
 3.4

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Prep Method: 7471B Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Initial Weight/Volume: 0.63 g

Analysis Date: 08/14/2017 0937 Final Weight/Volume: 50 mL Prep Date: 08/14/2017 0416

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL
Mercury 0.030 0.012 0.018

08/23/2017

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid % Moisture: 12.5 Date Received: 08/10/2017 1115

6010C Metals (ICP)

460-455991 ICP5 Analysis Method: 6010C Analysis Batch: Instrument ID:

Prep Method: 3050B Prep Batch: Lab File ID: 455886D1.asc 460-455905

Dilution: 4.0 Initial Weight/Volume: 1.29 g Final Weight/Volume: Analysis Date: 08/13/2017 1643 50 mL

Prep Date: 08/12/2017 1626

Prep Date:

TestAmerica Edison

08/14/2017 0416

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		1.8	U	0.27	1.8
Aluminum		8080		7.3	35.4
Barium		93.4		2.9	35.4
Beryllium		0.28	J	0.041	0.35
Calcium		1230		90.4	886
Cadmium		0.71	U	0.11	0.71
Cobalt		7.2	J	1.0	8.9
Chromium		15.6		0.49	1.8
Copper		9.9		1.0	4.4
Iron		15100		4.8	26.6
Potassium		1890		47.1	886
Magnesium		3250		68.3	886
Manganese		195		0.27	2.7
Sodium		456	J	68.2	886
Nickel		12.5		0.67	7.1
Lead		6.1		0.54	1.8
Antimony		3.5	U	0.43	3.5
Thallium		3.5	U	1.0	3.5
Vanadium		21.0		1.1	8.9
Zinc		33.7		0.46	5.3

Analysis Method: 6010C Analysis Batch: 460-456155 Instrument ID: ICP5 3050B Prep Method: Prep Batch: 460-455905 Lab File ID: 455997D1.asc

Dilution: Initial Weight/Volume: 4.0 1.29 g

Analysis Date: 08/14/2017 1912 Final Weight/Volume: 50 mL Prep Date: 08/12/2017 1626

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL Arsenic 1.2 0.66 2.7 U Selenium 3.5 1.1 3.5

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-456143 Instrument ID: LEEMAN7 Prep Method: 7471B Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Initial Weight/Volume: 0.66 g

08/14/2017 0938 Final Weight/Volume: Analysis Date: 50 mL

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.018 0.011 0.018 Mercury

Page 184 of 310

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (1-3)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid % Moisture: 9.2 Date Received: 08/10/2017 1115

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 460-455991 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.30 g
Analysis Date: 08/13/2017 1647 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		1.7	U	0.26	1.7
Aluminum		8880		6.9	33.9
Barium		68.5		2.7	33.9
Beryllium		0.35		0.039	0.34
Calcium		10200		86.4	847
Cadmium		0.68	U	0.10	0.68
Cobalt		5.5	J	0.97	8.5
Chromium		19.1		0.47	1.7
Copper		18.9		0.96	4.2
Iron		14900		4.6	25.4
Potassium		1420		45.1	847
Magnesium		4890		65.3	847
Manganese		302		0.26	2.5
Sodium		175	J	65.2	847
Nickel		13.1		0.64	6.8
Lead		67.3		0.51	1.7
Antimony		3.4	U	0.41	3.4
Thallium		3.4	U	1.0	3.4
Vanadium		24.3		1.0	8.5
Zinc		53.3		0.44	5.1

Analysis Method: 6010C Analysis Batch: 460-456155 Instrument ID: ICP5
Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455997D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.30 g
Analysis Date: 08/14/2017 1916 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Arsenic
 2.4
 J
 0.63
 2.5

 Selenium
 3.4
 U
 1.0
 3.4

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Prep Method: 7471B Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Initial Weight/Volume: 0.62 g

Analysis Date: 08/14/2017 0940 Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0416

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL
Mercury 0.48 0.012 0.018

Client: AKRF Inc Job Number: 460-138836-1

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid % Moisture: 11.7 Date Received: 08/10/2017 1115

6010C Metals (ICP)

Analysis Method: 6010C Analysis Batch: 460-455991 Instrument ID: ICP5

Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.33 g
Analysis Date: 08/13/2017 1703 Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Analyte	DryWt Corrected: Y	Result (mg/Kg)	Qualifier	MDL	RL
Silver		1.7	U	0.26	1.7
Aluminum		5800		7.0	34.0
Barium		40.2		2.8	34.0
Beryllium		0.25	J	0.039	0.34
Calcium		1270		86.8	851
Cadmium		0.68	U	0.10	0.68
Cobalt		4.5	J	0.97	8.5
Chromium		12.5		0.47	1.7
Copper		8.8		0.96	4.3
Iron		14000		4.6	25.5
Potassium		1120		45.3	851
Magnesium		2450		65.6	851
Manganese		269		0.26	2.6
Sodium		82.7	J	65.5	851
Nickel		9.7		0.65	6.8
Lead		2.8		0.51	1.7
Antimony		3.4	U	0.41	3.4
Thallium		3.4	U	1.0	3.4
Vanadium		15.8		1.0	8.5
Zinc		27.2		0.44	5.1

Analysis Method: 6010C Analysis Batch: 460-456155 Instrument ID: ICP5
Prep Method: 3050B Prep Batch: 460-455905 Lab File ID: 455997D1.asc

Dilution: 4.0 Initial Weight/Volume: 1.33 g

Analysis Date: 08/14/2017 1920 Final Weight/Volume: 50 mL Prep Date: 08/12/2017 1626

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

 Arsenic
 2.6
 U
 0.63
 2.6

 Selenium
 3.4
 U
 1.0
 3.4

7471B Mercury (CVAA)

Analysis Method: 7471B Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Prep Method: 7471B Prep Batch: 460-456063 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Initial Weight/Volume: 0.63 g

Analysis Date: 08/14/2017 0824 Final Weight/Volume: 50 mL Prep Date: 08/14/2017 0351

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Mercury
 0.018
 U
 0.012
 0.018

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-1 (2-4)

Lab Sample ID: 460-138836-1 Date Sampled: 08/08/2017 0920

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 14.9 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 85.1 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-1 (9-11)

Lab Sample ID: 460-138836-2 Date Sampled: 08/08/2017 0915

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 9.2 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 90.8 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-2 (1-3)

Lab Sample ID: 460-138836-3 Date Sampled: 08/08/2017 0830

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 6.8 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 93.2 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-2 (16-18)

Lab Sample ID: 460-138836-4 Date Sampled: 08/08/2017 0835

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 10.8 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 89.2 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-5 (2-4)

Lab Sample ID: 460-138836-5 Date Sampled: 08/08/2017 1110

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 6.7 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 93.3 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-5 (10-12)

Lab Sample ID: 460-138836-6 Date Sampled: 08/08/2017 1115

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 16.0 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 84.0 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-6 (2-4)

Lab Sample ID: 460-138836-7 Date Sampled: 08/08/2017 1140

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 9.0 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 91.0 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-6 (9-11)

Lab Sample ID: 460-138836-8 Date Sampled: 08/08/2017 1145

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 17.4 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 82.6 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-8 (2-4)

Lab Sample ID: 460-138836-9 Date Sampled: 08/08/2017 1035

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 5.2 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 94.8 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-8 (9-11)

Lab Sample ID: 460-138836-10 Date Sampled: 08/08/2017 1040

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 17.4 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 82.6 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-9 (1-3)

Lab Sample ID: 460-138836-11 Date Sampled: 08/08/2017 0940

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 5.5 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 94.5 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-9 (8-10)

Lab Sample ID: 460-138836-12 Date Sampled: 08/08/2017 0945

Client Matrix: Solid Date Received: 08/09/2017 1125

Analyte RLRLDil Method Result Qual Units Percent Moisture 12.1 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456785 Analysis Date: 08/16/2017 1812 DryWt Corrected: N

Percent Solids 87.9 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-3 (1-3)

Lab Sample ID: 460-138908-1 Date Sampled: 08/09/2017 1440

Client Matrix: Solid Date Received: 08/10/2017 1115

Analyte RLRLDil Method Result Qual Units Percent Moisture 4.4 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456823 Analysis Date: 08/16/2017 2007 DryWt Corrected: N

Percent Solids 95.6 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-3 (17-19)

Lab Sample ID: 460-138908-2 Date Sampled: 08/09/2017 1435

Client Matrix: Solid Date Received: 08/10/2017 1115

Analyte RLRLDil Method Result Qual Units Percent Moisture 2.3 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456823 Analysis Date: 08/16/2017 2007 DryWt Corrected: N

Percent Solids 97.7 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-4 (1-3)

Lab Sample ID: 460-138908-3 Date Sampled: 08/09/2017 1330

Client Matrix: Solid Date Received: 08/10/2017 1115

Analyte RLRLDil Method Result Qual Units Percent Moisture 10.6 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456823 Analysis Date: 08/16/2017 2007 DryWt Corrected: N

Percent Solids 89.4 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-4 (21-23)

Lab Sample ID: 460-138908-4 Date Sampled: 08/09/2017 1325

Client Matrix: Solid Date Received: 08/10/2017 1115

Analyte RLRLDil Method Result Qual Units Percent Moisture 12.5 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456823 Analysis Date: 08/16/2017 2007 DryWt Corrected: N

Percent Solids 87.5 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-7 (1-3)

Lab Sample ID: 460-138908-5 Date Sampled: 08/09/2017 0930

Client Matrix: Solid Date Received: 08/10/2017 1115

Analyte RLRLDil Method Result Qual Units Percent Moisture 9.2 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456823 Analysis Date: 08/16/2017 2007 DryWt Corrected: N

Percent Solids 90.8 % 1.0 1.0 Moisture

Client: AKRF Inc Job Number: 460-138836-1

General Chemistry

Client Sample ID: SB-7 (8-10)

Lab Sample ID: 460-138908-6 Date Sampled: 08/09/2017 1030

Client Matrix: Solid Date Received: 08/10/2017 1115

Analyte RLRLDil Method Result Qual Units Percent Moisture 11.7 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-456252 Analysis Date: 08/14/2017 2001 DryWt Corrected: N

Percent Solids 88.3 % 1.0 1.0 Moisture

DATA REPORTING QUALIFIERS

Client: AKRF Inc Job Number: 460-138836-1

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyzed for but not detected.
	J	Indicates an estimated value.
	*	LCS or LCSD is outside acceptance limits.
GC/MS Semi VOA		
	U	Analyzed for but not detected.
	*	Duplicate RPD exceeds control limits
	J	Indicates an estimated value.
	*	LCS or LCSD is outside acceptance limits.
	*	MS or MSD is outside acceptance limits.
	*	Surrogate is outside acceptance limits.
GC Semi VOA		
	U	Analyzed for but not detected.
	*	Duplicate RPD exceeds control limits
	р	The %RPD between the primary and confirmation column/detector is >40%. The lower value has been reported.
Metals		
	U	Indicates analyzed for but not detected.
	4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
	J	Sample result is greater than the MDL but below the CRDL
	N	Spiked sample recovery is not within control limits.

QUALITY CONTROL RESULTS

Client: AKRF Inc Job Number: 460-138836-1

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Prep Batch: 460-4551	30				
460-138836-1	SB-1 (2-4)	Т	Solid	5035	
460-138836-2	SB-1 (9-11)	T	Solid	5035	
460-138836-3	SB-2 (1-3)	T	Solid	5035	
460-138836-4	SB-2 (16-18)	T	Solid	5035	
460-138836-5	SB-5 (2-4)	T	Solid	5035	
460-138836-6	SB-5 (10-12)	T	Solid	5035	
460-138836-7	SB-6 (2-4)	T	Solid	5035	
460-138836-8	SB-6 (9-11)	T	Solid	5035	
460-138836-9	SB-8 (2-4)	T	Solid	5035	
460-138836-10	SB-8 (9-11)	Т	Solid	5035	
460-138836-11	SB-9 (1-3)	Т	Solid	5035	
460-138836-12	SB-9 (8-10)	Т	Solid	5035	
Prep Batch: 460-4554	84				
460-138908-4	SB-4 (21-23)	Т	Solid	5035	
Prep Batch: 460-4554					
460-138908-1	SB-3 (1-3)	T	Solid	5035	
460-138908-2	SB-3 (17-19)	T	Solid	5035	
460-138908-3	SB-4 (1-3)	T	Solid	5035	
460-138908-5	SB-7 (1-3)	T	Solid	5035	
460-138908-6	SB-7 (8-10)	Т	Solid	5035	
Analysis Batch:460-4					
LCS 460-456308/4	Lab Control Sample	T	Water	8260C	
LCSD 460-456308/5	Lab Control Sample Duplicate	Т	Water	8260C	
MB 460-456308/8	Method Blank	Т	Water	8260C	
460-139067-1	TW-1	Т	Water	8260C	
460-139067-2	TW-2	Т	Water	8260C	
460-139067-3	GW-3	Т	Water	8260C	
460-139067-5	GT-1	T	Water	8260C	
460-139067-6	GT-2	Т	Water	8260C	
460-139067-7	GT-3	T	Water	8260C	
460-139067-8	GT-4	T	Water	8260C	
460-139067-9TB	TRIP BLANK	Т	Water	8260C	
Analysis Batch:460-4					
LCS 460-456502/6	Lab Control Sample	Т	Solid	8260C	
LCSD 460-456502/7	Lab Control Sample Duplicate	T	Solid	8260C	
MB 460-456502/11	Method Blank	T	Solid	8260C	
460-138908-4	SB-4 (21-23)	Т	Solid	8260C	460-455484

QC Association Summary

•	•	Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS VOA					
Analysis Batch:460-4	56539				
LCS 460 - 456539/3	Lab Control Sample	Т	Solid	8260C	
LCSD 460-456539/4	Lab Control Sample Duplicate	Т	Solid	8260C	
MB 460 - 456539/7	Method Blank	Т	Solid	8260C	
460-138908-1	SB-3 (1-3)	Т	Solid	8260C	460-455485
460-138908-2	SB-3 (17-19)	Т	Solid	8260C	460-455485
Analysis Batch:460-4	56664				
_CS 460-456664/4	Lab Control Sample	Т	Solid	8260C	
LCSD 460-456664/5	Lab Control Sample Duplicate	Т	Solid	8260C	
MB 460-456664/8	Method Blank	Т	Solid	8260C	
460-138836-2	SB-1 (9-11)	Т	Solid	8260C	460-455130
460-138836-3	SB-2 (1-3)	Т	Solid	8260C	460-455130
160-138836-4	SB-2 (16-18)	Т	Solid	8260C	460-455130
160-138836-5	SB-5 (2-4)	Т	Solid	8260C	460-455130
160-138836-6	SB-5 (10-12)	Т	Solid	8260C	460-455130
160-138836-7	SB-6 (2-4)	Т	Solid	8260C	460-455130
460-138836-8	SB-6 (9-11)	Т	Solid	8260C	460-455130
460-138836-9	SB-8 (2-4)	Т	Solid	8260C	460-455130
160-138836-10	SB-8 (9-11)	Т	Solid	8260C	460-455130
460-138836-11	SB-9 (1-3)	Т	Solid	8260C	460-455130
460-138908-3	SB-4 (1-3)	Т	Solid	8260C	460-455485
160-138908-5	SB-7 (1-3)	T	Solid	8260C	460-455485
460-138908-6	SB-7 (8-10)	Ť	Solid	8260C	460-455485
Analysis Batch:460-4	56825				
_CS 460-456825/4	Lab Control Sample	Т	Solid	8260C	
_CSD 460-456825/5	Lab Control Sample Duplicate	Ť	Solid	8260C	
MB 460-456825/8	Method Blank	Ť	Solid	8260C	
160-138836-1	SB-1 (2-4)	Ť	Solid	8260C	460-455130
460-138836-12	SB-9 (8-10)	Ť	Solid	8260C	460-455130
Analysis Batch:460-4	57628				
LCS 460-457628/3	Lab Control Sample	Т	Water	8260C	
LCSD 460-457628/4	Lab Control Sample Duplicate	T.	Water	8260C	
MB 460-457628/7	Method Blank	Ť	Water	8260C	
460-139067 - 4	GW-4	T	Water	8260C	
100 100001 4	311 ±	•	114101	02000	

Report Basis T = Total

Client: AKRF Inc Job Number: 460-138836-1

Prep Batch: 460-455572	Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
.CS 460-455572/2-A Method Blank T Solid 3546 Method Blank T Solid 3546 160-138308-A-3-B MS Matrix Spike Duplicate 17 Solid 3546 160-138308-A-3-C MSD Matrix Spike Duplicate 180-138308-A-3-C MSD Matrix Spike Duplicate 190-138836-2 SB-1 (9-11) T Solid 3546 160-138836-2 SB-2 (1-3) T Solid 3546 160-138836-3 SB-2 (1-3) T Solid 3546 160-138836-3 SB-2 (1-3) T Solid 3546 160-138836-3 SB-2 (1-3) T Solid 3546 160-138836-4 MB 460-455573/2-A Method Blank T Solid 3546 160-138836-4 SB-2 (16-18) T Solid 3546 160-138836-4 SB-2 (16-18) T Solid 3546 160-138836-4 SB-5 (10-12) T Solid 3546 160-138836-6 SB-5 (2-4) T Solid 3546 160-138836-7 SB-6 (2-4) T Solid 3546 160-138836-8 Analysis Batch: 460-45573/2-A Method Blank T Solid 3546 160-138836-1 Matrix Spike Duplicate T Solid 3546 160-138836-1 Analysis Batch: 460-455772 CS 460-45573/2-A Lab Control Sample T Solid 3546 160-138836-4 Analysis Batch: 460-455775 CS 460-45573/1-A Method Blank T Solid 8270D 460-455573 160-138836-4 SB-2 (16-18) T Solid 8270D 460-455573 160-138836-4 Matrix Spike Duplicate T Solid 8270D 460-455573 160-138836-4 Matrix Spike Duplicate T Solid 8270D 460-455573 160-138836-4 MB 460-455775/1-A Method Blank T Solid 8270D 460-455573 160-138836-4 MB 460-455775/1-A Method Blank T Solid 8270D 460-455573 160-138836-4 MB 460-455775/1-A Method Blank T Solid 3546 160-138836-1 MB 460-455775/1-A MB 460-455775/1-A MB 460-45573 MB 460-455873 MB 460-455775/1-A MB 460-455775/1-A	GC/MS Semi VOA					
.CS 460-455572/2-A Method Blank T Solid 3546 Method Blank T Solid 3546 160-138308-A-3-B MS Matrix Spike Duplicate 17 Solid 3546 160-138308-A-3-C MSD Matrix Spike Duplicate 180-138308-A-3-C MSD Matrix Spike Duplicate 190-138836-2 SB-1 (9-11) T Solid 3546 160-138836-2 SB-2 (1-3) T Solid 3546 160-138836-3 SB-2 (1-3) T Solid 3546 160-138836-3 SB-2 (1-3) T Solid 3546 160-138836-3 SB-2 (1-3) T Solid 3546 160-138836-4 MB 460-455573/2-A Method Blank T Solid 3546 160-138836-4 SB-2 (16-18) T Solid 3546 160-138836-4 SB-2 (16-18) T Solid 3546 160-138836-4 SB-5 (10-12) T Solid 3546 160-138836-6 SB-5 (2-4) T Solid 3546 160-138836-7 SB-6 (2-4) T Solid 3546 160-138836-8 Analysis Batch: 460-45573/2-A Method Blank T Solid 3546 160-138836-1 Matrix Spike Duplicate T Solid 3546 160-138836-1 Analysis Batch: 460-455772 CS 460-45573/2-A Lab Control Sample T Solid 3546 160-138836-4 Analysis Batch: 460-455775 CS 460-45573/1-A Method Blank T Solid 8270D 460-455573 160-138836-4 SB-2 (16-18) T Solid 8270D 460-455573 160-138836-4 Matrix Spike Duplicate T Solid 8270D 460-455573 160-138836-4 Matrix Spike Duplicate T Solid 8270D 460-455573 160-138836-4 MB 460-455775/1-A Method Blank T Solid 8270D 460-455573 160-138836-4 MB 460-455775/1-A Method Blank T Solid 8270D 460-455573 160-138836-4 MB 460-455775/1-A Method Blank T Solid 3546 160-138836-1 MB 460-455775/1-A MB 460-455775/1-A MB 460-45573 MB 460-455873 MB 460-455775/1-A MB 460-455775/1-A	Prep Batch: 460-455572					
MB 460-455572/1-A Method Blank Matrix Spike	LCS 460-455572/2-A	Lab Control Sample	Т	Solid	3546	
## ## ## ## ## ## ## ## ## ## ## ## ##	MB 460-455572/1-A	•		Solid		
## ## ## ## ## ## ## ## ## ## ## ## ##						
## ## ## ## ## ## ## ## ## ## ## ## ##		•				
## ## ## ## ## ## ## ## ## ## ## ## ##						
Record R						
Prep Batch: 460-455573 _CS 460-455573/2-A _Method Blank _T						
LCS 460-455573/2-A Lab Control Sample T Solid S460-455573/1-A Method Blank T Solid S3546 MB 460-455573/1-A Method Blank T Solid S3546 M60-138836-4 MSB Matrix Spike T Solid S3546 M60-138836-4MSD Matrix Spike Duplicate T Solid S3546 M60-138836-5 SB-5 (10-12) T Solid S3546 M60-138836-7 SB-5 (10-12) T Solid S3546 M60-138836-7 SB-6 (2-4) T Solid S270D M60-455573/2-A Lab Control Sample T Solid S270D M60-455573/1-A Method Blank T Solid S270D M60-455573 M60-138836-4 SB-2 (16-18) T Solid S270D M60-455573 M60-138836-4 MSD Matrix Spike T Solid S270D M60-455573 M60-138836-4 MSD Matrix Spike Duplicate T Solid S3546 M60-455775/1-A Method Blank T Solid S3546 M60-455775/1-A Method Blank T Solid S3546 M60-455775/1-A Method Blank T Solid S3546 M60-138836-8 SB-6 (9-11) T Solid S3546 M60-138836-9 SB-8 (2-4) T Solid S3546 M60-138836-1 SB-8 (9-11) T Solid S3546 M60-138836-1 SB-8 (9-11) T Solid S3546 M60-138836-1 SB-9 (1-3) T Solid S3546 M60-1388908-1 SB-3 (1-3) T Solid S3546 M60-138908-2 SB-3 (17-19) T Solid S3546 M60-138908-3 SB-4 (1-3) T Solid S3546 M60-138908-5 SB-7 (1-3) T Solid S3546 M60-138908-5	400-130030-3	36-2 (1-3)	I	Solid	3340	
MB 460-455573/1-A Method Blank MB 17 Solid 3546 460-138836-4 SB-2 (16-18) MB 17 Solid 3546 460-138836-4MS MB 17 Solid 3546 460-138836-4MSD MB 17 Solid 3546 460-138836-4MSD MB 17 Solid 3546 460-138836-5 SB-5 (2-4) MB 25 SB-5 (10-12) MB 25 SB-5 (10-12) MB 25 SB-6 (2-4) MB 25 SB-6	Prep Batch: 460-455573					
1460-138836-4	LCS 460-455573/2-A	Lab Control Sample	Т	Solid	3546	
Hob-138836-4MS Matrix Spike	MB 460-455573/1-A	Method Blank	Т	Solid	3546	
160-138836-4MS Matrix Spike	460-138836-4	SB-2 (16-18)	Т	Solid	3546	
Head	460-138836-4MS		Т	Solid	3546	
## 1460-138836-5 SB-5 (2-4) T	460-138836-4MSD		Т	Solid	3546	
## Afo-138836-6 SB-5 (10-12) T Solid 3546 ## Afo-138836-7 SB-6 (2-4) T Solid S270D 460-455573 ## Afo-138836-34 SB-2 (16-18) T Solid S270D 460-455573 ## Afo-138836-4MS Matrix Spike T Solid S270D 460-455573 ## Afo-138836-4MS Matrix Spike T Solid S270D 460-455573 ## Afo-138836-4MSD Matrix Spike T Solid S270D 460-455573 ## Afo-138836-4MSD Matrix Spike Duplicate T Solid S270D 460-455573 ## Afo-138836-4MSD Matrix Spike T Solid S270D Afo-455573 ## Afo-138836-4MSD Matrix Spike T Solid S246 ## Afo-1388370-A-24-R MSD Matrix Spike T Solid S246 ## Afo-138836-8 SB-6 (9-11) T Solid S246 ## Afo-138836-9 SB-8 (2-4) T Solid S246 ## Afo-138836-10 SB-8 (9-11) T Solid S246 ## Afo-138836-11 SB-9 (1-3) T Solid S246 ## Afo-138836-12 SB-9 (8-10) T Solid S246 ## Afo-138908-1 SB-3 (1-3) T Solid S246 ## Afo-138908-2 SB-3 (17-19) T Solid S246 ## Afo-138908-3 SB-4 (21-23) T Solid S246 ## Afo-138908-5 SB-7 (1-3)	460-138836-5			Solid	3546	
Analysis Batch:460-455727 LCS 460-455573/2-A Lab Control Sample T Solid 8270D 460-455573 460-138836-4 SB-2 (16-18) T Solid 8270D 460-455573 460-138836-4MS Matrix Spike T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 3546 MB 460-455775/2-A Lab Control Sample T Solid 3546 MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (17-19) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546						
Analysis Batch:460-455727 CS 460-455573/2-A Lab Control Sample T Solid 8270D 460-455573 460-455573/1-A Method Blank T Solid 8270D 460-455573 460-138836-4 SB-2 (16-18) T Solid 8270D 460-455573 460-138836-4MS Matrix Spike T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike T Solid 8270D 460-455573 460-4358775 Prep Batch: 460-455775 LCS 460-455775/2-A Lab Control Sample T Solid 3546 MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike Matrix Spike T Solid 3546 460-138836-9 SB-6 (9-11) T Solid 3546 460-138836-10 SB-8 (2-4) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (17-19) T Solid 3546 460-138908-2 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546 460-138908-5						
LCS 460-455573/2-A Lab Control Sample T Solid 8270D 460-455573 MB 460-455573/1-A Method Blank T Solid 8270D 460-455573 460-138836-4 SB-2 (16-18) T Solid 8270D 460-455573 460-138836-4MS Matrix Spike T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 A60-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 Prep Batch: 460-455775 LCS 460-455775/2-A Lab Control Sample T Solid 3546 MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	400 100000 1	GB 0 (2 4)	•	Colla	0040	
MB 460-455573/1-A Method Blank MB 460-455573/1-A Method Blank MB 460-455573/1-A Method Blank MB 460-455573/1-A Method Blank MB 7 Solid MB 270D	Analysis Batch:460-4557	727				
460-138836-4 SB-2 (16-18) T Solid 8270D 460-455573 460-138836-4MS Matrix Spike T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 Prep Batch: 460-455775 LCS 460-455775/2-A Lab Control Sample T Solid 3546 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike Duplicate T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-1388908-1 SB-3 (1-3) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (21-23) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	LCS 460-455573/2-A	Lab Control Sample	Т	Solid	8270D	460-455573
#60-138836-4MS Matrix Spike T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 460-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 460-455775 ## CS 460-455775/2-A Lab Control Sample T Solid 3546 ## MB 460-455775/1-A Method Blank T Solid 3546 ## Matrix Spike T Solid 3546 ## Matrix Spike Duplicate T Solid 3546 ## Matrix Spike Duplicate T Solid 3546 ## M60-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 ## M60-138836-8 SB-6 (9-11) T Solid 3546 ## M60-138836-9 SB-8 (2-4) T Solid 3546 ## M60-138836-10 SB-8 (9-11) T Solid 3546 ## M60-138836-11 SB-9 (1-3) T Solid 3546 ## M60-138836-12 SB-9 (8-10) T Solid 3546 ## M60-138908-1 SB-3 (1-3) T Solid 3546 ## M60-138908-2 SB-3 (17-19) T Solid 3546 ## M60-138908-3 SB-4 (1-3) T Solid 3546 ## M60-138908-3 SB-4 (21-23) T Solid 3546 ## M60-138908-5 SB-7 (1-3) T Solid 3546	MB 460-455573/1-A	Method Blank		Solid	8270D	460-455573
#60-138836-4MSD Matrix Spike Duplicate T Solid 8270D 460-455573 Prep Batch: 460-455775 LCS 460-455775/2-A Lab Control Sample T Solid 3546 MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	460-138836-4	SB-2 (16-18)		Solid	8270D	460-455573
Prep Batch: 460-455775 _CS 460-455775/2-A _Method Blank _T	460-138836-4MS	Matrix Spike	Т	Solid	8270D	460-455573
LCS 460-455775/2-A Lab Control Sample T Solid 3546 MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	460-138836-4MSD	Matrix Spike Duplicate	Т	Solid	8270D	460-455573
LCS 460-455775/2-A Lab Control Sample T Solid 3546 MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	Pren Batch: 460-455775					
MB 460-455775/1-A Method Blank T Solid 3546 460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	LCS 460-455775/2-A	Lab Control Sample	Т	Solid	3546	
460-138570-A-24-B MS Matrix Spike T Solid 3546 460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	MB 460-455775/1-A	Method Blank		Solid	3546	
460-138570-A-24-C MSD Matrix Spike Duplicate T Solid 3546 460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546	460-138570-A-24-B MS	Matrix Spike		Solid	3546	
460-138836-8 SB-6 (9-11) T Solid 3546 460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546						
460-138836-9 SB-8 (2-4) T Solid 3546 460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546						
460-138836-10 SB-8 (9-11) T Solid 3546 460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546						
460-138836-11 SB-9 (1-3) T Solid 3546 460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546		, ,				
460-138836-12 SB-9 (8-10) T Solid 3546 460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546		, ,				
460-138908-1 SB-3 (1-3) T Solid 3546 460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546		· ·				
460-138908-2 SB-3 (17-19) T Solid 3546 460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546						
460-138908-3 SB-4 (1-3) T Solid 3546 460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546		• •				
460-138908-4 SB-4 (21-23) T Solid 3546 460-138908-5 SB-7 (1-3) T Solid 3546						
460-138908-5 SB-7 (1-3) T Solid 3546		,				
	460-138908-4					
460-138908-6 SB-7 (8-10) T Solid 3546	460-138908-5					
	460-138908-6	SB-7 (8-10)	Т	Solid	3546	

	•	Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Analysis Batch:460-455	i798				
LCS 460-455572/2-A	Lab Control Sample	Т	Solid	8270D	460-455572
MB 460-455572/1-A	Method Blank	T	Solid	8270D	460-455572
460-138836-1	SB-1 (2-4)	T	Solid	8270D	460-455572
460-138836-2	SB-1 (9-11)	T	Solid	8270D	460-455572
460-138836-3	SB-2 (1-3)	Т	Solid	8270D	460-455572
Prep Batch: 460-455934	!				
LCS 460-455934/2-A	Lab Control Sample	Т	Water	3510C	
LCSD 460-455934/3-A	Lab Control Sample Duplicate	Т	Water	3510C	
MB 460-455934/1-A	Method Blank	Т	Water	3510C	
460-139067-1	TW-1	Т	Water	3510C	
460-139067-2	TW-2	Т	Water	3510C	
460-139067-3	GW-3	Т	Water	3510C	
460-139067-5	GT-1	Т	Water	3510C	
460-139067-6	GT-2	Т	Water	3510C	
460-139067-7	GT-3	Т	Water	3510C	
460-139067-8	GT-4	Т	Water	3510C	
Analysis Batch:460-456	6035				
LCS 460-455775/2-A	Lab Control Sample	Т	Solid	8270D	460-455775
MB 460-455775/1-A	Method Blank	Т	Solid	8270D	460-455775
460-138570-A-24-B MS	Matrix Spike	Т	Solid	8270D	460-455775
460-138570-A-24-C MSD	•	Т	Solid	8270D	460-455775
460-138836-9	SB-8 (2-4)	Т	Solid	8270D	460-455775
460-138836-10	SB-8 (9-11)	Т	Solid	8270D	460-455775
460-138836-11	SB-9 (1-3)	Т	Solid	8270D	460-455775
460-138836-12	SB-9 (8-10)	Т	Solid	8270D	460-455775
Analysis Batch:460-456	6044				
LCS 460-455934/2-A	Lab Control Sample	Т	Water	8270D	460-455934
LCSD 460-455934/3-A	Lab Control Sample Duplicate	Ť	Water	8270D	460-455934
MB 460-455934/1-A	Method Blank	Ť	Water	8270D	460-455934
460-139067-1	TW-1	Ť	Water	8270D	460-455934
460-139067-2	TW-2	Ť	Water	8270D	460-455934
460-139067-3	GW-3	Ť	Water	8270D	460-455934
460-139067-5	GT-1	Ť	Water	8270D	460-455934
460-139067-6	GT-2	Ť	Water	8270D	460-455934
460-139067-7	GT-3	Ť	Water	8270D	460-455934
460-139067-8	GT-4	Ť	Water	8270D	460-455934

Client: AKRF Inc Job Number: 460-138836-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC/MS Semi VOA					
Analysis Batch:460-456	195				
460-138836-8	SB-6 (9-11)	Т	Solid	8270D	460-455775
460-138908-1	SB-3 (1-3)	Т	Solid	8270D	460-455775
460-138908-2	SB-3 (17-19)	Т	Solid	8270D	460-455775
460-138908-3	SB-4 (1-3)	Т	Solid	8270D	460-455775
460-138908-4	SB-4 (21-23)	Т	Solid	8270D	460-455775
460-138908-5	SB-7 (1-3)	Т	Solid	8270D	460-455775
460-138908-6	SB-7 (8-10)	Т	Solid	8270D	460-455775
Analysis Batch:460-456	219				
460-138308-A-3-B MS	Matrix Spike	T	Solid	8270D	460-455572
460-138308-A-3-C MSD	Matrix Spike Duplicate	Т	Solid	8270D	460-455572
Analysis Batch:460-456	615				
460-138836-5	SB-5 (2-4)	Т	Solid	8270D	460-455573
460-138836-6	SB-5 (10-12)	T	Solid	8270D	460-455573
460-138836-7	SB-6 (2-4)	Т	Solid	8270D	460-455573

Report Basis

T = Total

Client: AKRF Inc Job Number: 460-138836-1

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
GC Semi VOA	-				-
Prep Batch: 460-455215					
LCS 460-455215/2-A	Lab Control Sample	Т	Solid	3546	
MB 460-455215/1-A	Method Blank	Т	Solid	3546	
460-138719-A-1-B MS	Matrix Spike	Т	Solid	3546	
460-138719-A-1-E MSD	Matrix Spike Duplicate	Т	Solid	3546	
460-138836-1	SB-1 (2-4)	Т	Solid	3546	
460-138836-2	SB-1 (9-11)	Т	Solid	3546	
460-138836-3	SB-2 (1-3)	Т	Solid	3546	
460-138836-4	SB-2 (16-18)	Т	Solid	3546	
460-138836-5	SB-5 (2-4)	Т	Solid	3546	
460-138836-6	SB-5 (10-12)	Т	Solid	3546	
160-138836-7	SB-6 (2-4)	Т	Solid	3546	
160-138836-8	SB-6 (9-11)	Т	Solid	3546	
160-138836-9	SB-8 (2-4)	Т	Solid	3546	
160-138836-10	SB-8 (9-11)	Т	Solid	3546	
160-138836-11	SB-9 (1-3)	Т	Solid	3546	
160-138836-12	SB-9 (8-10)	Т	Solid	3546	
Analysis Batch:460-455	410				
_CS 460-455215/2-A	Lab Control Sample	Т	Solid	8082A	460-455215
MB 460-455215/1-A	Method Blank	Т	Solid	8082A	460-455215
460-138719-A-1-B MS	Matrix Spike	T	Solid	8082A	460-455215
160-138719-A-1-E MSD	Matrix Spike Duplicate	Т	Solid	8082A	460-455215
160-138836-1	SB-1 (2-4)	T	Solid	8082A	460-455215
160-138836-2	SB-1 (9-11)	Т	Solid	8082A	460-455215
160-138836-3	SB-2 (1-3)	Т	Solid	8082A	460-455215
160-138836-4	SB-2 (16-18)	Т	Solid	8082A	460-455215
460-138836-5	SB-5 (2-4)	Т	Solid	8082A	460-455215
160-138836-7	SB-6 (2-4)	Т	Solid	8082A	460-455215
160-138836-8	SB-6 (9-11)	T	Solid	8082A	460-455215
160-138836-9	SB-8 (2-4)	Т	Solid	8082A	460-455215
160-138836-10	SB-8 (9-11)	Т	Solid	8082A	460-455215
160-138836-11	SB-9 (1-3)	Т	Solid	8082A	460-455215
460-138836-12	SB-9 (8-10)	Т	Solid	8082A	460-455215
Analysis Batch:460-455	698				
460-138836-6	SB-5 (10-12)	T	Solid	8082A	460-455215

Client: AKRF Inc Job Number: 460-138836-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 460-455741	1				
_CS 460-455741/2-A	Lab Control Sample	Т	Solid	3546	
MB 460-455741/1-A	Method Blank	Т	Solid	3546	
160-138908-1	SB-3 (1-3)	Т	Solid	3546	
160-138908-1MS	Matrix Spike	T	Solid	3546	
160-138908-1MSD	Matrix Spike Duplicate	Т	Solid	3546	
160-138908-2	SB-3 (17-19)	Т	Solid	3546	
160-138908-3	SB-4 (1-3)	Т	Solid	3546	
160-138908-4	SB-4 (21-23)	Т	Solid	3546	
160-138908-5	SB-7 (1-3)	Т	Solid	3546	
160-138908-6	SB-7 (8-10)	T	Solid	3546	
Analysis Batch:460-456	6005				
_CS 460-455741/2-A	Lab Control Sample	Т	Solid	8082A	460-455741
MB 460-455741/1-A	Method Blank	Т	Solid	8082A	460-455741
160-138908-1	SB-3 (1-3)	Т	Solid	8082A	460-455741
160-138908-1MS	Matrix Spike	Т	Solid	8082A	460-455741
160-138908-1MSD	Matrix Spike Duplicate	Т	Solid	8082A	460-455741
160-138908-2	SB-3 (17-19)	Т	Solid	8082A	460-455741
160-138908-5	SB-7 (1-3)	Т	Solid	8082A	460-455741
160-138908-6	SB-7 (8-10)	Т	Solid	8082A	460-455741
Analysis Batch:460-456	5766				
160-138908-3	SB-4 (1-3)	Т	Solid	8082A	460-455741
160-138908-4	SB-4 (21-23)	Ť	Solid	8082A	460-455741

Report Basis T = Total

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 460-455245					
LCSSRM 460-455245/2-A	LCS-Certified Reference Material	Т	Solid	3050B	
MB 460-455245/1-A ^2	Method Blank	T	Solid	3050B	
460-138795-E-9-B DU	Duplicate	Т	Solid	3050B	
460-138795-E-9-C MS	Matrix Spike	T	Solid	3050B	
460-138836-1	SB-1 (2-4)	T	Solid	3050B	
460-138836-2	SB-1 (9-11)	Т	Solid	3050B	
Prep Batch: 460-455253					
LCSSRM 460-455253/2-A	LCS-Certified Reference Material	Т	Solid	3050B	
MB 460-455253/1-A ^2	Method Blank	T	Solid	3050B	
460-138836-3	SB-2 (1-3)	Т	Solid	3050B	
460-138836-4	SB-2 (16-18)	Т	Solid	3050B	
460-138836-5	SB-5 (2-4)	Т	Solid	3050B	
460-138836-6	SB-5 (10-12)	Т	Solid	3050B	
460-138836-7	SB-6 (2-4)	Т	Solid	3050B	
460-138836-8	SB-6 (9-11)	Т	Solid	3050B	
460-138836-9	SB-8 (2-4)	Т	Solid	3050B	
460-138836-10	SB-8 (9-11)	Т	Solid	3050B	
460-138836-11	SB-9 (1-3)	Т	Solid	3050B	
460-138836-12	SB-9 (8-10)	Т	Solid	3050B	
460-138837-D-2-B DU	Duplicate	T	Solid	3050B	
460-138837-D-2-C MS	Matrix Spike	T	Solid	3050B	
Analysis Batch:460-45542	26				
LCSSRM 460-455245/2-A	LCS-Certified Reference Material	Т	Solid	6010C	460-455245
MB 460-455245/1-A ^2	Method Blank	Т	Solid	6010C	460-455245
LCSSRM 460-455253/2-A	LCS-Certified Reference Material	Т	Solid	6010C	460-455253
MB 460-455253/1-A ^2	Method Blank	Т	Solid	6010C	460-455253
460-138795-E-9-B DU	Duplicate	Т	Solid	6010C	460-455245
460-138795-E-9-C MS	Matrix Spike	Т	Solid	6010C	460-455245
460-138836-1	SB-1 (2-4)	Т	Solid	6010C	460-455245
460-138836-2	SB-1 (9-11)	Т	Solid	6010C	460-455245
460-138836-3	SB-2 (1-3)	T	Solid	6010C	460-455253
460-138836-4	SB-2 (16-18)	T	Solid	6010C	460-455253
460-138836-5	SB-5 (2-4)	Т	Solid	6010C	460-455253
460-138836-6	SB-5 (10-12)	Т	Solid	6010C	460-455253
460-138836-7	SB-6 (2-4)	T	Solid	6010C	460-455253
460-138836-8	SB-6 (9-11)	T	Solid	6010C	460-455253
460-138836-9	SB-8 (2-4)	T	Solid	6010C	460-455253
460-138836-10	SB-8 (9-11)	Т	Solid	6010C	460-455253
460-138836-11	SB-9 (1-3)	T	Solid	6010C	460-455253
460-138836-12	SB-9 (8-10)	T	Solid	6010C	460-455253
460-138837-D-2-B DU	Duplicate	Ť	Solid	6010C	460-455253
460-138837-D-2-C MS	Matrix Spike	Т	Solid	6010C	460-455253

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals					
Prep Batch: 460-4555	35				
-	2-A ^40LCS-Certified Reference Material	Т	Solid	7471B	
MB 460-455535/1-A	Method Blank	Ť	Solid	7471B	
460-138836-1	SB-1 (2-4)	Ť	Solid	7471B	
460-138836-2	SB-1 (9-11)	Ť	Solid	7471B	
460-138836-3	SB-2 (1-3)	Ť	Solid	7471B	
460-138836-4	SB-2 (16-18)	Ť	Solid	7471B	
460-138836-5	SB-5 (2-4)	Ť	Solid	7471B	
460-138836-6	SB-5 (10-12)	Ť	Solid	7471B	
460-138836-7	SB-6 (2-4)	Ť	Solid	7471B	
460-138836-8	SB-6 (9-11)	Ť	Solid	7471B	
460-138836-9	SB-8 (2-4)	Ť	Solid	7471B	
460-138836-10	SB-8 (9-11)	Ť	Solid	7471B 7471B	
460-138964-A-5-H DU	Duplicate	Ť	Solid	7471B 7471B	
460-138964-A-5-I MS	Matrix Spike	Ť	Solid	7471B 7471B	
400-136904-A-3-1 M3	машх эрке	ı	Solid	74716	
Prep Batch: 460-4555					
LCSSRM 460-455552/2	2-A ^40LCS-Certified Reference Material	Т	Solid	7471B	
MB 460-455552/1-A	Method Blank	T	Solid	7471B	
460-138836-11	SB-9 (1-3)	Т	Solid	7471B	
460-138836-12	SB-9 (8-10)	Т	Solid	7471B	
460-138855-A-1-E DU	Duplicate	T	Solid	7471B	
460-138855-A-1-F MS	Matrix Spike	Т	Solid	7471B	
Analysis Batch:460-4	55656				
	2-A ^40LCS-Certified Reference Material	Т	Solid	7471B	460-455535
MB 460-455535/1-A	Method Blank	Ť	Solid	7471B	460-455535
	2-A ^40LCS-Certified Reference Material	Ť	Solid	7471B	460-455552
MB 460-455552/1-A	Method Blank	Ť	Solid	7471B	460-455552
460-138836-1	SB-1 (2-4)	Ť	Solid	7471B	460-455535
460-138836-2	SB-1 (9-11)	Ť	Solid	7471B	460-455535
460-138836-3	SB-2 (1-3)	Ť	Solid	7471B 7471B	460-455535
460-138836-4	SB-2 (1-3) SB-2 (16-18)	Ť	Solid	7471B 7471B	460-455535
460-138836-5	SB-5 (2-4)	Ť	Solid	7471B 7471B	460-455535
460-138836-6	· ,	Ť	Solid	7471B 7471B	
460-138836-7	SB-5 (10-12)	Ť	Solid		460-455535
	SB-6 (2-4)	•		7471B	460-455535
460-138836-8	SB-6 (9-11)	T	Solid	7471B	460-455535
460-138836-9 460-138836-10	SB-8 (2-4)	T T	Solid	7471B	460-455535
460-138836-10	SB-8 (9-11)	T	Solid	7471B	460-455535
460-138836-11	SB-9 (1-3)	T	Solid	7471B	460-455552
460-138836-12	SB-9 (8-10)	T	Solid	7471B	460-455552
460-138855-A-1-E DU	Duplicate	T	Solid	7471B	460-455552
460-138855-A-1-F MS	Matrix Spike	T -	Solid	7471B	460-455552
460-138964-A-5-H DU	Duplicate	T	Solid	7471B	460-455535
460-138964-A-5-I MS	Matrix Spike	Т	Solid	7471B	460-455535

Client: AKRF Inc Job Number: 460-138836-1

Lab Sample ID C	lient Sample ID	Report Basis	Client Matrix	Method	Prep Batch
Metals	·				•
Prep Batch: 460-455905					
-	LCS-Certified Reference Material	Т	Solid	3050B	
MB 460-455905/1-A ^2	Method Blank	Т	Solid	3050B	
460-138908-1	SB-3 (1-3)	Т	Solid	3050B	
460-138908-2	SB-3 (17-19)	T	Solid	3050B	
460-138908-3	SB-4 (1-3)	T	Solid	3050B	
460-138908-4	SB-4 (21-23)	Т	Solid	3050B	
460-138908-5	SB-7 (1-3)	T	Solid	3050B	
460-138908-6	SB-7 (8-10)	T	Solid	3050B	
460-138986-E-6-D DU ^4	Duplicate	Т	Solid	3050B	
460-138986-E-6-E MS ^4	Matrix Spike	Т	Solid	3050B	
Analysis Batch:460-455991	l				
LCSSRM 460-455905/2-A ^4	LCS-Certified Reference Material	Т	Solid	6010C	460-455905
460-138908-1	SB-3 (1-3)	Т	Solid	6010C	460-455905
460-138908-2	SB-3 (17-19)	Т	Solid	6010C	460-455905
460-138908-3	SB-4 (1-3)	Т	Solid	6010C	460-455905
460-138908-4	SB-4 (21-23)	Т	Solid	6010C	460-455905
460-138908-5	SB-7 (1-3)	Т	Solid	6010C	460-455905
460-138908-6	SB-7 (8-10)	Т	Solid	6010C	460-455905
460-138986-E-6-D DU ^4	Duplicate	Т	Solid	6010C	460-455905
460-138986-E-6-E MS ^4	Matrix Spike	Т	Solid	6010C	460-455905
Prep Batch: 460-456063					
LCSSRM 460-456063/11-A ^	4LCS-Certified Reference Material	Т	Solid	7471B	
MB 460-456063/10-A	Method Blank	Т	Solid	7471B	
460-138908-6	SB-7 (8-10)	T	Solid	7471B	
460-138908-6DU	Duplicate	Т	Solid	7471B	
460-138908-6MS	Matrix Spike	Т	Solid	7471B	
Prep Batch: 460-456068					
LCSSRM 460-456068/2-A ^4	0LCS-Certified Reference Material	T	Solid	7471B	
MB 460-456068/1-A	Method Blank	T	Solid	7471B	
460-138904-E-3-E DU	Duplicate	T	Solid	7471B	
460-138904-E-3-F MS	Matrix Spike	T	Solid	7471B	
460-138908-1	SB-3 (1-3)	T	Solid	7471B	
460-138908-2	SB-3 (17-19)	T	Solid	7471B	
460-138908-3	SB-4 (1-3)	T	Solid	7471B	
460-138908-4	SB-4 (21-23)	T	Solid	7471B	
460-138908-5	SB-7 (1-3)	T	Solid	7471B	

Client: AKRF Inc Job Number: 460-138836-1

QC Association Summary

	-	Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Metals					
Analysis Batch:460-4561	143				
LCSSRM 460-456063/11- <i>i</i>	A ^4LCS-Certified Reference Material	Т	Solid	7471B	460-456063
MB 460-456063/10-A	Method Blank	T	Solid	7471B	460-456063
LCSSRM 460-456068/2-A	^40LCS-Certified Reference Material	Т	Solid	7471B	460-456068
MB 460-456068/1-A	Method Blank	Т	Solid	7471B	460-456068
460-138904-E-3-E DU	Duplicate	Т	Solid	7471B	460-456068
460-138904-E-3-F MS	Matrix Spike	T	Solid	7471B	460-456068
460-138908-1	SB-3 (1-3)	T	Solid	7471B	460-456068
460-138908-2	SB-3 (17-19)	T	Solid	7471B	460-456068
460-138908-3	SB-4 (1-3)	T	Solid	7471B	460-456068
460-138908-4	SB-4 (21-23)	Т	Solid	7471B	460-456068
460-138908-5	SB-7 (1-3)	Т	Solid	7471B	460-456068
460-138908-6	SB-7 (8-10)	Т	Solid	7471B	460-456063
460-138908-6DU	Duplicate ´	Т	Solid	7471B	460-456063
460-138908-6MS	Matrix Spike	Т	Solid	7471B	460-456063
Analysis Batch:460-4561	155				
LCSSRM 460-455905/2-A	^4 LCS-Certified Reference Material	Т	Solid	6010C	460-455905
MB 460-455905/1-A ^2	Method Blank	Т	Solid	6010C	460-455905
460-138908-1	SB-3 (1-3)	Т	Solid	6010C	460-455905
460-138908-2	SB-3 (17-19)	Т	Solid	6010C	460-455905
460-138908-3	SB-4 (1-3)	Т	Solid	6010C	460-455905
460-138908-4	SB-4 (21-23)	Т	Solid	6010C	460-455905
460-138908-5	SB-7 (1-3)	Т	Solid	6010C	460-455905
460-138908-6	SB-7 (8-10)	Т	Solid	6010C	460-455905
460-138986-E-6-D DU ^4	Duplicate	Т	Solid	6010C	460-455905
460-138986-E-6-E MS ^4	Matrix Spike	Т	Solid	6010C	460-455905
Analysis Batch:460-4563	387				
LCSSRM 460-455253/2-A	LCS-Certified Reference Material	Т	Solid	6010C	460-455253
Analysis Batch:460-4570					
460-138908-2	SB-3 (17-19)	Т	Solid	6010C	460-455905

Report Basis T = Total

Client: AKRF Inc Job Number: 460-138836-1

QC Association Summary

Lab Sample ID	Client Sample ID	Report Basis	Client Matrix	Method	Prep Batch
General Chemistry					-
Analysis Batch:460-45	6252				
460-138503-A-9 MS	Matrix Spike	Т	Solid	Moisture	
460-138503-A-9 MSD	Matrix Spike Duplicate	Т	Solid	Moisture	
460-138908-6	SB-7 (8-10)	Т	Solid	Moisture	
460-139142-A-3 DU	Duplicate	Т	Solid	Moisture	
Analysis Batch:460-45	6785				
460-138836-1	SB-1 (2-4)	T	Solid	Moisture	
460-138836-2	SB-1 (9-11)	T	Solid	Moisture	
460-138836-3	SB-2 (1-3)	T	Solid	Moisture	
460-138836-4	SB-2 (16-18)	T	Solid	Moisture	
460-138836-5	SB-5 (2-4)	T	Solid	Moisture	
460-138836-6	SB-5 (10-12)	T	Solid	Moisture	
460-138836-7	SB-6 (2-4)	T	Solid	Moisture	
460-138836-8	SB-6 (9-11)	T	Solid	Moisture	
460-138836-9	SB-8 (2-4)	Т	Solid	Moisture	
460-138836-10	SB-8 (9-11)	T	Solid	Moisture	
460-138836-11	SB-9 (1-3)	T	Solid	Moisture	
460-138836-12	SB-9 (8-10)	T	Solid	Moisture	
460-138849-A-5 DU	Duplicate	Т	Solid	Moisture	
Analysis Batch:460-45	6823				
460-138908-1	SB-3 (1-3)	Т	Solid	Moisture	
460-138908-2	SB-3 (17-19)	Т	Solid	Moisture	
460-138908-3	SB-4 (1-3)	T	Solid	Moisture	
460-138908-4	SB-4 (21-23)	Т	Solid	Moisture	
460-138908-5	SB-7 (1-3)	Т	Solid	Moisture	
460-139030-E-11 DU	Duplicate	Т	Solid	Moisture	

Report Basis T = Total

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Solid

Lab Sample ID	Client Sample ID	DCA %Rec	BFB %Rec	DBFM %Rec	TOL %Rec
460-138836-1	SB-1 (2-4)	101	96	102	97
460-138836-2	SB-1 (9-11)	108	105	111	105
460-138836-3	SB-2 (1-3)	107	103	108	104
460-138836-4	SB-2 (16-18)	105	101	107	103
460-138836-5	SB-5 (2-4)	105	96	104	102
460-138836-6	SB-5 (10-12)	107	101	109	105
460-138836-7	SB-6 (2-4)	105	102	106	103
460-138836-8	SB-6 (9-11)	104	99	104	101
460-138836-9	SB-8 (2-4)	106	99	107	103
460-138836-10	SB-8 (9-11)	104	99	103	100
460-138836-11	SB-9 (1-3)	106	104	106	105
460-138836-12	SB-9 (8-10)	105	105	106	104
460-138908-1	SB-3 (1-3)	103	100	105	101
460-138908-2	SB-3 (17-19)	100	98	101	98
460-138908-3	SB-4 (1-3)	110	102	110	106
460-138908-5	SB-7 (1-3)	105	99	105	103
460-138908-6	SB-7 (8-10)	103	100	105	102
MB 460-456539/7		98	102	104	104
MB 460-456664/8		102	99	102	100
MB 460-456825/8		100	103	104	104
LCS 460-456539/3		97	100	100	102
LCS 460-456664/4		104	100	105	106
LCS 460-456825/4		103	100	104	103
LCSD 460-456539/4		98	99	101	103
LCSD 460-456664/5		99	98	101	103
LCSD 460-456825/5		102	101	104	105

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	78-135
BFB = 4-Bromofluorobenzene	67-126
DBFM = Dibromofluoromethane (Surr)	61-149
TOL = Toluene-d8 (Surr)	73-121

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Solid

DCA	B⊦B	DBFM	IOL
%Rec	%Rec	%Rec	%Rec
89	115	100	97
89	116	102	98
89	111	100	97
87	110	99	98
	%Rec 89 89 89	%Rec %Rec 89 115 89 116 89 111	%Rec %Rec %Rec 89 115 100 89 116 102 89 111 100

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	69-143
BFB = 4-Bromofluorobenzene	61-137
DBFM = Dibromofluoromethane (Surr)	61-135
TOL = Toluene-d8 (Surr)	67-127

Surrogate Recovery Report

8260C Volatile Organic Compounds by GC/MS

Client Matrix: Water

		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec	%Rec
460-139067-1	TW-1	93	114	102	98
460-139067-2	TW-2	88	114	103	97
460-139067-3	GW-3	90	113	102	97
460-139067-4	GW-4	119	91	124	109
460-139067-5	GT-1	89	113	100	95
460-139067-6	GT-2	90	112	104	95
460-139067-7	GT-3	91	111	102	94
460-139067-8	GT-4	90	111	102	98
460-139067-9	TRIP BLANK	86	114	102	97
MB 460-456308/8		86	111	100	98
MB 460-457628/7		80	88	97	92
LCS 460-456308/4		89	110	101	99
LCS 460-457628/3		78	105	95	107
LCSD 460-456308/5		89	113	98	97
LCSD 460-457628/4		76	106	92	108

Surrogate	Acceptance Limits
DCA = 1,2-Dichloroethane-d4 (Surr)	74-132
BFB = 4-Bromofluorobenzene	77-124
DBFM = Dibromofluoromethane (Surr)	72-131
TOL = Toluene-d8 (Surr)	80-120

Surrogate Recovery Report

8270D Semivolatile Organic Compounds (GC/MS)

Client Matrix: Solid

		FBP	NBZ	TPHL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
460-138836-1	SB-1 (2-4)	77	73	96
460-138836-2	SB-1 (9-11)	66	65	99
460-138836-3	SB-2 (1-3)	73	67	100
460-138836-4	SB-2 (16-18)	67	69	84
460-138836-5	SB-5 (2-4)	72	67	79
460-138836-6	SB-5 (10-12)	66	71	92
460-138836-7	SB-6 (2-4)	64	57	78
460-138836-8	SB-6 (9-11)	50	54	60
460-138836-9	SB-8 (2-4)	56	60	70
460-138836-10	SB-8 (9-11)	62	68	75
460-138836-11	SB-9 (1-3)	62	64	80
460-138836-12	SB-9 (8-10)	67	72	89
460-138908-1	SB-3 (1-3)	63	67	80
460-138908-2	SB-3 (17-19)	61	62	83
460-138908-3	SB-4 (1-3)	59	57	68
460-138908-4	SB-4 (21-23)	71	87	96
460-138908-5	SB-7 (1-3)	69	72	65
460-138908-6	SB-7 (8-10)	70	77	99
MB 460-455572/1-A		74	77	86
MB 460-455573/1-A		66	67	78
MB 460-455775/1-A		73	83	87
LCS 460-455572/2-A		78	83	77
LCS 460-455573/2-A		83	80	89
LCS 460-455775/2-A		80	91	100
460-138836-4 MS	SB-2 (16-18) MS	68	65	73
460-138308-A-3-B MS		74	75	65
460-138570-A-24-B MS		62	176*	62
460-138836-4 MSD	SB-2 (16-18) MSD	74	70	82

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	38-95
NBZ = Nitrobenzene-d5 (Surr)	37 - 94
TPHL = Terphenyl-d14 (Surr)	24-109

Client: AKRF Inc Job Number: 460-138836-1

Surrogate Recovery Report

8270D Semivolatile Organic Compounds (GC/MS)

Client Matrix: Solid

		FBP	NB∠	IPHL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
460-138308-A-3-C MSD		69	76	63
460-138570-A-24-C MSD		56	169*	60

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	38-95
NBZ = Nitrobenzene-d5 (Surr)	37 - 94
TPHL = Terphenyl-d14 (Surr)	24-109

Surrogate Recovery Report

8270D Semivolatile Organic Compounds (GC/MS)

Client Matrix: Water

		FBP	NBZ	TPHL
Lab Sample ID	Client Sample ID	%Rec	%Rec	%Rec
460-139067-1	TW-1	85	84	52
460-139067-2	TW-2	87	90	83
460-139067-3	GW-3	86	86	83
460-139067-5	GT-1	81	80	79
460-139067-6	GT-2	92	97	79
460-139067-7	GT-3	93	98	82
460-139067-8	GT-4	87	89	75
MB 460-455934/1-A		96	98	95
LCS 460-455934/2-A		99	90	90
LCSD 460-455934/3-A		95	108	88

Surrogate	Acceptance Limits
FBP = 2-Fluorobiphenyl	45-107
NBZ = Nitrobenzene-d5 (Surr)	51-108
TPHL = Terphenyl-d14 (Surr)	40-148

Surrogate Recovery Report

8082A Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Matrix: Solid

Lab Carrela ID	Olicut Occupie ID	DCBP1	DCBP2
Lab Sample ID	Client Sample ID	%Rec	%Rec
460-138836-1	SB-1 (2-4)	117	121
460-138836-2	SB-1 (9-11)	123	117
460-138836-3	SB-2 (1-3)	112	105
460-138836-4	SB-2 (16-18)	115	110
460-138836-5	SB-5 (2-4)	112	109
460-138836-6	SB-5 (10-12)		100
460-138836-7	SB-6 (2-4)	103	107
460-138836-8	SB-6 (9-11)	104	109
460-138836-9	SB-8 (2-4)	104	114
460-138836-10	SB-8 (9-11)	119	107
460-138836-11	SB-9 (1-3)	118	108
460-138836-12	SB-9 (8-10)	121	116
460-138908-1	SB-3 (1-3)	124	123
460-138908-2	SB-3 (17-19)	139	
460-138908-3	SB-4 (1-3)	128	134
460-138908-4	SB-4 (21-23)	136	131
460-138908-5	SB-7 (1-3)		128
460-138908-6	SB-7 (8-10)	136	133
MB 460-455215/1-A		129	119
MB 460-455741/1-A		136	130
LCS 460-455215/2-A		124	129
LCS 460-455741/2-A		122	121
460-138908-1 MS	SB-3 (1-3) MS	129	129
460-138719-A-1-B MS		119	115
460-138908-1 MSD	SB-3 (1-3) MSD	129	124
460-138719-A-1-E MSD		110	108

Surrogate	Acceptance Limits
DCBP = DCB Decachlorobiphenyl	35-150

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456308

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 460-456308/8
Client Matrix: Water

Dilution: 1.0

Analysis Date: 08/15/2017 0808 Prep Date: 08/15/2017 0808

Leach Date: N/A

Analysis Batch: 460-456308

Prep Batch: N/A Leach Batch: N/A Units: ug/L Instrument ID: CVOAMS6
Lab File ID: F51911.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL

Analyte	Result	Qual	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0
1,2-Dichlorobenzene	1.0	U	0.22	1.0
1,2-Dichloroethane	1.0	U	0.25	1.0
1,2-Dichloropropane	1.0	U	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	U	0.30	1.0
Chlorodibromomethane	1.0	U	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	U	0.22	1.0
Chloromethane	1.0	U	0.22	1.0
cis-1,2-Dichloroethene	1.0	U	0.26	1.0
cis-1,3-Dichloropropene	1.0	U	0.16	1.0
Cyclohexane	1.0	U	0.26	1.0
Dichlorobromomethane	1.0	U	0.15	1.0
Dichlorodifluoromethane	1.0	U	0.14	1.0
Ethylbenzene	1.0	U	0.30	1.0
Ethylene Dibromide	1.0	U	0.19	1.0
Isopropylbenzene	1.0	U	0.32	1.0
Methyl acetate	5.0	U	0.58	5.0
Methyl tert-butyl ether	1.0	U	0.13	1.0
Methylcyclohexane	1.0	U	0.22	1.0
Methylene Chloride	1.0	U	0.21	1.0
m-Xylene & p-Xylene	1.0	U	0.28	1.0
o-Xylene	1.0	U	0.32	1.0
Styrene	1.0	U	0.17	1.0

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456308

N/A

Leach Date:

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 460-456308/8 Analysis B
Client Matrix: Water Prep Batcl
Dilution: 1.0 Leach Bat
Analysis Date: 08/15/2017 0808 Units:
Prep Date: 08/15/2017 0808

Analysis Batch: 460-456308
Prep Batch: N/A
Leach Batch: N/A
Units: ug/L

Instrument ID: CVOAMS6
Lab File ID: F51911.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL

	Qual	MDL	RL
1.0	U	0.12	1.0
1.0	U	0.25	1.0
1.0	U	0.18	1.0
1.0	U	0.19	1.0
1.0	U	0.22	1.0
1.0	U	0.15	1.0
1.0	U	0.060	1.0
% Rec		Acceptance Limits	;
	1.0 1.0 1.0 1.0 1.0	1.0 U	1.0 U 0.25 1.0 U 0.18 1.0 U 0.19 1.0 U 0.22 1.0 U 0.15 1.0 U 0.060

Surrogate	% Rec	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	86	74 - 132	
4-Bromofluorobenzene	111	77 - 124	
Dibromofluoromethane (Surr)	100	72 - 131	
Toluene-d8 (Surr)	98	80 - 120	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456308 Preparation: 5030C

LCS Lab Sample ID: LCS 460-456308/4 Analysis Batch: 460-456308 Instrument ID: CVOAMS6 Client Matrix: Water Prep Batch: N/A Lab File ID: F51907.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: Analysis Date: 08/15/2017 0635 Units: ug/L 5 mL Prep Date: 08/15/2017 0635 1 uL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-456308/5 Analysis Batch: 460-456308 Instrument ID: CVOAMS6 Client Matrix: Water Prep Batch: Lab File ID: F51908.D N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 08/15/2017 0659 Units: ug/L Final Weight/Volume: 5 mL

Prep Date: 08/15/2017 0659 1 uL

Leach Date: N/A

	%	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1,1-Trichloroethane	103	105	75 - 125	2	30		
1,1,2,2-Tetrachloroethane	96	94	74 - 120	2	30		
1,1,2-Trichloro-1,2,2-trifluoroethane	94	95	59 - 150	1	30		
1,1,2-Trichloroethane	97	101	78 - 120	4	30		
1,1-Dichloroethane	97	101	77 - 123	4	30		
1,1-Dichloroethene	100	104	74 - 123	4	30		
1,2,3-Trichlorobenzene	103	103	78 - 131	0	30		
1,2,4-Trichlorobenzene	103	104	80 - 124	1	30		
1,2-Dibromo-3-Chloropropane	84	90	55 - 134	7	30		
1,2-Dichlorobenzene	103	102	80 - 120	1	30		
1,2-Dichloroethane	92	96	76 - 121	4	30		
1,2-Dichloropropane	100	99	77 - 123	1	30		
1,3-Dichlorobenzene	103	103	80 - 120	0	30		
1,4-Dichlorobenzene	99	102	80 - 120	2	30		
1,4-Dioxane	126	132	10 - 150	4	30		
2-Butanone (MEK)	104	97	64 - 120	7	30		
2-Hexanone	104	105	71 - 125	1	30		
4-Methyl-2-pentanone (MIBK)	103	101	78 - 124	2	30		
Acetone	106	106	39 - 150	0	30		
Benzene	102	101	77 - 121	1	30		
Bromoform	107	107	53 - 120	0	30		
Bromomethane	78	81	10 - 150	5	30		
Carbon disulfide	96	98	69 - 133	2	30		
Carbon tetrachloride	106	108	70 - 132	2	30		
Chlorobenzene	102	103	80 - 120	1	30		
Chlorobromomethane	108	108	77 - 127	0	30		
Chlorodibromomethane	103	102	73 - 120	1	30		
Chloroethane	78	75	52 - 150	3	30		
Chloroform	100	101	80 - 120	1	30		
Chloromethane	85	90	56 - 131	6	30		
cis-1,2-Dichloroethene	105	107	80 - 120	2	30		
cis-1,3-Dichloropropene	99	99	77 - 120	1	30		
Cyclohexane	94	95	56 - 150	1	30		
Dichlorobromomethane	95	100	76 - 120	5	30		
Dichlorodifluoromethane	100	104	50 - 131	4	30		

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C Lab Control Sample Duplicate Recovery Report - Batch: 460-456308 Preparation: 5030C

LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-456308/4 Water 1.0 08/15/2017 0635 08/15/2017 0635 N/A	Pre	lysis Batch: o Batch: ch Batch: s:	460-456308 N/A N/A ug/L			CVOAMS6 F51907.D 5 mL 5 mL 1 uL	;
LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 460-456308/5 Water 1.0 08/15/2017 0659 08/15/2017 0659 N/A	Pre	lysis Batch: o Batch: ch Batch: s:	460-456308 N/A N/A ug/L			CVOAMS6 F51908.D 5 mL 5 mL 1 uL	•
			<u>% Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Ethylbenzene		102	101	80 - 120	1	30		
Ethylene Dibromic	de	105	108	80 - 120	2	30		
Isopropylbenzene		100	104	80 - 123	4	30		
Methyl acetate		104	103	66 - 144	1	30		
Methyl tert-butyl e		104	107	79 - 122	3	30		
Methylcyclohexan		89	92	61 - 145	3	30		
Methylene Chloric		101	102	77 - 123	0	30		
m-Xylene & p-Xyle	ene	102	106	80 - 120	3	30		
o-Xylene		100	104	80 - 120	3	30		
Styrene		108	107	80 - 120	1	30		
Tetrachloroethene	•	112	112	78 - 122	0	30		
Toluene		99	100	80 - 120	1	30		
trans-1,2-Dichloro		104	104	79 - 120	1	30		
trans-1,3-Dichloro	propene	104	103	76 - 120	1	30		
Trichloroethene		103	106	77 - 120	3	30		
Trichlorofluorome	thane	108	113	71 - 143	5	30		
Vinyl chloride		89	93	62 - 138	5	30		
Surrogate			LCS % Rec	LCSD %	Rec	Accep	tance Limits	
1,2-Dichloroethan			89	89			4 - 132	
4-Bromofluorober			110	113			7 - 124	
Dibromofluoromet			101	98			2 - 131	
Toluene-d8 (Surr)			99	97		8	0 - 120	

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456502

Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456502/11 Analysis Batch: 460-456502 Instrument ID: CVOAMS6 Client Matrix: Prep Batch: F51944.D Solid N/A Lab File ID: Dilution: 50 Leach Batch: N/A Initial Weight/Volume: 5 mL mg/Kg Final Weight/Volume: 5 mL Analysis Date: 08/15/2017 2121 Units:

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
1,1,1-Trichloroethane	0.050	U	0.014	0.050
1,1,2,2-Tetrachloroethane	0.050	U	0.0095	0.050
1,1,2-Trichloro-1,2,2-trifluoroethane	0.050	U	0.017	0.050
1,1,2-Trichloroethane	0.050	U	0.0040	0.050
1,1-Dichloroethane	0.050	U	0.012	0.050
1,1-Dichloroethene	0.050	U	0.017	0.050
1,2,3-Trichlorobenzene	0.050	U	0.018	0.050
1,2,4-Trichlorobenzene	0.050	U	0.014	0.050
1,2-Dibromo-3-Chloropropane	0.050	U	0.012	0.050
1,2-Dichlorobenzene	0.050	U	0.011	0.050
1,2-Dichloroethane	0.050	U	0.013	0.050
1,2-Dichloropropane	0.050	U	0.0090	0.050
1,3-Dichlorobenzene	0.050	U	0.017	0.050
1,4-Dichlorobenzene	0.050	U	0.017	0.050
1,4-Dioxane	2.5	U	0.44	2.5
2-Butanone (MEK)	0.25	U	0.11	0.25
2-Hexanone	0.25	U	0.036	0.25
4-Methyl-2-pentanone (MIBK)	0.25	U	0.032	0.25
Acetone	0.25	Ū	0.054	0.25
Acetonitrile	0.50	U	0.065	0.50
Acrolein	0.25	Ü	0.044	0.25
Benzene	0.050	U	0.0095	0.050
Bromoform	0.050	U	0.0090	0.050
Bromomethane	0.050	U	0.0090	0.050
Carbon disulfide	0.050	U	0.011	0.050
Carbon tetrachloride	0.050	U	0.017	0.050
Chlorobenzene	0.050	U	0.012	0.050
Chlorobromomethane	0.050	U	0.015	0.050
Chlorodibromomethane	0.050	U	0.011	0.050
Chloroethane	0.050	Ü	0.019	0.050
Chloroform	0.050	Ū	0.011	0.050
Chloromethane	0.050	Ü	0.011	0.050
cis-1,2-Dichloroethene	0.050	U	0.013	0.050
cis-1,3-Dichloropropene	0.050	Ü	0.0080	0.050
Cyclohexane	0.050	Ū	0.013	0.050
Dichlorobromomethane	0.050	Ū	0.0075	0.050
Dichlorodifluoromethane	0.050	Ū	0.0070	0.050
Ethylbenzene	0.050	Ū	0.015	0.050
Ethylene Dibromide	0.050	Ü	0.0095	0.050
Isopropylbenzene	0.050	Ü	0.016	0.050
Methyl acetate	0.25	Ü	0.029	0.25
Methyl tert-butyl ether	0.050	Ü	0.0065	0.050
Methylcyclohexane	0.050	Ü	0.011	0.050
Methylene Chloride	0.050	Ü	0.011	0.050
m-Xylene & p-Xylene	0.050	Ü	0.014	0.050
III Aylono a p Aylono	0.000	9	0.017	0.000

CVOAMS6

F51944.D

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456502

Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456502/11 Analysis Batch: 460-456502 Instrument ID: Client Matrix: Prep Batch: Solid N/A Lab File ID: Dilution: 50 Leach Batch: N/A Initial Weight/Volume: 5 mL mg/Kg Final Weight/Volume: 5 mL Analysis Date: 08/15/2017 2121 Units:

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
o-Xylene	0.050	U	0.016	0.050
Styrene	0.050	U	0.0085	0.050
TBA	0.50	U	0.060	0.50
Tetrachloroethene	0.050	U	0.018	0.050
Toluene	0.050	U	0.013	0.050
trans-1,2-Dichloroethene	0.050	U	0.0090	0.050
trans-1,3-Dichloropropene	0.050	U	0.0095	0.050
Trichloroethene	0.050	U	0.011	0.050
Trichlorofluoromethane	0.050	U	0.0075	0.050
Vinyl chloride	0.050	U	0.010	0.050
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	89		69 - 143	
4-Bromofluorobenzene	116		61 - 137	
Dibromofluoromethane (Surr)	102		61 - 135	
Toluene-d8 (Surr)	98		67 - 127	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456502 Preparation: N/A

LCS Lab Sample ID: LCS 460-456502/6 Analysis Batch: 460-456502 Instrument ID: CVOAMS6 Client Matrix: Solid Prep Batch: N/A Lab File ID: F51939.D Leach Batch: N/A Initial Weight/Volume: Dilution: 50 5 mL Analysis Date: 08/15/2017 1928 Units: mg/Kg Final Weight/Volume: 5 mL Prep Date: N/A 1 uL Leach Date: N/A LCSD Lab Sample ID: LCSD 460-456502/7 Analysis Batch: 460-456502 Instrument ID: CVOAMS6

Client Matrix: Prep Batch: Lab File ID: F51940.D Solid N/A Dilution: 50 Leach Batch: N/A Initial Weight/Volume: 5 mL 08/15/2017 1950 Final Weight/Volume: Analysis Date: Units: mg/Kg 5 mL 1 uL

Prep Date: N/A
Leach Date: N/A

% Rec. LCS **LCSD RPD** Analyte Limit RPD Limit LCS Qual LCSD Qual 1,1,1-Trichloroethane 103 106 80 - 124 2 30 1,1,2,2-Tetrachloroethane 94 92 68 - 124 2 30 1,1,2-Trichloro-1,2,2-trifluoroethane 92 91 73 - 124 1 30 74 - 120 2 1,1,2-Trichloroethane 95 97 30 98 79 - 1202 1,1-Dichloroethane 95 30 100 77 - 120 1,1-Dichloroethene 99 0 30 1,2,3-Trichlorobenzene 96 104 73 - 1267 30 100 102 73 - 121 2 30 1,2,4-Trichlorobenzene 90 87 60 - 123 2 30 1,2-Dibromo-3-Chloropropane 99 103 78 - 120 4 30 1,2-Dichlorobenzene 1,2-Dichloroethane 93 92 80 - 126 0 30 100 101 78 - 120 30 1,2-Dichloropropane 1 97 80 - 120 30 1,3-Dichlorobenzene 103 6 1,4-Dichlorobenzene 96 99 77 - 1203 30 1,4-Dioxane 126 130 66 - 139 3 30 54 - 128 2-Butanone (MEK) 101 106 4 30 2-Hexanone 109 109 68 - 1341 30 4-Methyl-2-pentanone (MIBK) 102 109 80 - 1237 30 78 - 122 107 3 30 Acetone 103 Acetonitrile 115 111 50 - 1463 30 Acrolein 196 203 53 - 148 3 30 100 76 - 120 7 30 Benzene 94 Bromoform 104 109 77 - 124 4 30 30 Bromomethane 82 82 59 - 132 0 98 68 - 120 30 Carbon disulfide 97 1 Carbon tetrachloride 105 106 80 - 131 1 30 Chlorobenzene 99 102 80 - 120 3 30 Chlorobromomethane 105 108 80 - 123 3 30 98 4 Chlorodibromomethane 102 79 - 120 30 Chloroethane 78 57 - 1432 30 76 Chloroform 97 101 80 - 120 30 4 85 89 48 - 147 30 Chloromethane 4 cis-1,2-Dichloroethene 100 108 80 - 120 7 30 cis-1,3-Dichloropropene 96 97 76 - 120 0 30

68 - 120

5

30

94

89

Cyclohexane

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456502 Preparation: N/A

LCS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-456502/6 Solid 50 08/15/2017 1928 N/A N/A	Prep	sis Batch: Batch: n Batch:	460-456502 N/A N/A mg/Kg			CVOAMS6 F51939.D 5 mL 5 mL 1 uL	5
LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	E ID: LCSD 460-456502/7 Solid 50 08/15/2017 1950 N/A N/A	Prep	sis Batch: Batch: n Batch:	460-456502 N/A N/A mg/Kg			CVOAMS6 F51940.D 5 mL 5 mL 1 uL	3
		o	<u> 6 Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Dichlorobromome	thane	96	98	80 - 120	2	30		
Dichlorodifluorome	ethane	97	104	59 - 131	7	30		
Ethylbenzene		94	102	76 - 120	7	30		
Ethylene Dibromic	le	106	105	78 - 120	0	30		
Isopropylbenzene		95	104	77 - 120	9	30		
Methyl acetate		101	100	72 - 150	0	30		
Methyl tert-butyl e		104	103	80 - 125	2	30		
Methylcyclohexan	e	86	87	58 - 123	1	30		
Methylene Chlorid	e	102	102	77 - 120	0	30		
m-Xylene & p-Xyle	ene	99	105	78 - 120	6	30		
o-Xylene		98	105	80 - 120	7	30		
Styrene		102	106	80 - 120	4	30		
TBA		117	112	80 - 120	5	30		
Tetrachloroethene	•	105	114	77 - 125	8	30		
Toluene		95	99	80 - 120	4	30		
trans-1,2-Dichloro		103	106	77 - 120	3	30		
trans-1,3-Dichloro	propene	106	103	69 - 120	3	30		
Trichloroethene		97	104	80 - 120	7	30		
Trichlorofluoromet	hane	109	111	76 - 128	1	30		
Vinyl chloride		91	91	60 - 144	0	30		
Surrogate			.CS % Rec	LCSD %	Rec	Accep	tance Limits	
1,2-Dichloroethan	,		9	87			9 - 143	
4-Bromofluoroben			11	110			1 - 137	
Dibromofluoromet	hane (Surr)	1	00	99		6	1 - 135	

97

Toluene-d8 (Surr)

98

67 - 127

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456539

Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456539/7 Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Client Matrix: Solid Prep Batch: N/A Lab File ID: K72117.D Leach Batch: N/A Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 08/15/2017 2327 Units: mg/Kg Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

RL Analyte Result Qual MDL 1,1,1-Trichloroethane 0.0010 U 0.00023 0.0010 1,1,2,2-Tetrachloroethane 0.0010 U 0.00021 0.0010 1.1.2-Trichloro-1.2.2-trifluoroethane 0.0010 U 0.00030 0.0010 1,1,2-Trichloroethane 0.0010 U 0.00018 0.0010 U 0.0010 1.1-Dichloroethane 0.0010 0.00021 U 1,1-Dichloroethene 0.0010 0.00023 0.0010 1.2.3-Trichlorobenzene 0.0010 U 0.00018 0.0010 1,2,4-Trichlorobenzene 0.0010 U 0.000092 0.0010 1,2-Dibromo-3-Chloropropane 0.0010 U 0.00046 0.0010 0.0010 U 0.00014 0.0010 1,2-Dichlorobenzene 0.0010 U 0.00030 1,2-Dichloroethane 0.0010 U 1,2-Dichloropropane 0.0010 0.00042 0.0010 1,3-Dichlorobenzene 0.0010 U 0.00016 0.0010 0.0010 U 0.00010 0.0010 1.4-Dichlorobenzene 1,4-Dioxane 0.020 U 0.0092 0.020 2-Butanone (MEK) 0.0050 U 0.0011 0.0050 2-Hexanone 0.0050 U 0.00078 0.0050 4-Methyl-2-pentanone (MIBK) 0.0050 U 0.00066 0.0050 Acetone 0.0050 U 0.0038 0.0050 Acetonitrile 0.010 U 0.0062 0.010 Acrolein U 0.028 0.10 0.10 U Benzene 0.0010 0.00026 0.0010 **Bromoform** 0.0010 U 0.00043 0.0010 Bromomethane 0.0010 U 0.00047 0.0010 U Carbon disulfide 0.0010 0.00027 0.0010 Carbon tetrachloride 0.0010 U 0.00018 0.0010 Chlorobenzene 0.0010 U 0.00018 0.0010 Chlorobromomethane 0.0010 U 0.00028 0.0010 Chlorodibromomethane 0.0010 U 0.00019 0.0010 Chloroethane 0.0010 U 0.00052 0.0010 Chloroform 0.0010 U 0.00032 0.0010 Chloromethane 0.0010 U 0.00044 0.0010 cis-1,2-Dichloroethene 0.0010 U 0.00015 0.0010 cis-1,3-Dichloropropene 0.0010 U 0.00027 0.0010 Cyclohexane 0.0010 U 0.00022 0.0010 Dichlorobromomethane 0.0010 U 0.00026 0.0010 Dichlorodifluoromethane 0.0010 U 0.00034 0.0010 U Ethylbenzene 0.0010 0.00020 0.0010 U Ethylene Dibromide 0.0010 0.00018 0.0010 Isopropylbenzene 0.0010 U 0.00013 0.0010 Methyl acetate U 0.0050 0.0050 0.0043 Methyl tert-butyl ether 0.0010 U 0.00013 0.0010 Methylcyclohexane 0.0010 U 0.00016 0.0010 Methylene Chloride 0.0010 U 0.00016 0.0010 U m-Xylene & p-Xylene 0.0010 0.00017 0.0010

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456539

Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456539/7 Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Client Matrix: Prep Batch: Solid N/A Lab File ID: K72117.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL mg/Kg Final Weight/Volume: 5 mL Analysis Date: 08/15/2017 2327 Units:

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
o-Xylene	0.0010	U	0.000095	0.0010
Styrene	0.0010	U	0.00012	0.0010
TBA	0.010	U	0.0033	0.010
Tetrachloroethene	0.0010	U	0.00014	0.0010
Toluene	0.0010	U	0.00063	0.0010
trans-1,2-Dichloroethene	0.0010	U	0.00025	0.0010
trans-1,3-Dichloropropene	0.0010	U	0.00027	0.0010
Trichloroethene	0.0010	U	0.00014	0.0010
Trichlorofluoromethane	0.0010	U	0.00041	0.0010
Vinyl chloride	0.0010	U	0.00055	0.0010
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	98		78 - 135	
4-Bromofluorobenzene	102		67 - 126	
Dibromofluoromethane (Surr)	104		61 - 149	
Toluene-d8 (Surr)	104		73 - 121	

5 mL

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456539 Preparation: N/A

LCS Lab Sample ID: LCS 460-456539/3 Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Client Matrix: Solid Prep Batch: N/A Lab File ID: K72113.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 08/15/2017 2139 Final Weight/Volume: Analysis Date: Units: mg/Kg 5 mL Prep Date: N/A 5 mL Leach Date: N/A LCSD Lab Sample ID: LCSD 460-456539/4 Analysis Batch: 460-456539 Instrument ID: CVOAMS9 Client Matrix: Prep Batch: Lab File ID: K72114.D Solid N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 08/15/2017 2202 Units: mg/Kg Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

	%	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1,1-Trichloroethane	102	101	80 - 125	0	30		
1,1,2,2-Tetrachloroethane	103	101	72 - 131	2	30		
1,1,2-Trichloro-1,2,2-trifluoroethane	109	108	78 - 132	1	30		
1,1,2-Trichloroethane	102	102	76 - 124	0	30		
1,1-Dichloroethane	106	106	80 - 124	0	30		
1,1-Dichloroethene	102	101	79 - 132	1	30		
1,2,3-Trichlorobenzene	103	104	75 - 123	1	30		
1,2,4-Trichlorobenzene	101	103	74 - 124	2	30		
1,2-Dibromo-3-Chloropropane	82	82	65 - 129	0	30		
1,2-Dichlorobenzene	103	103	80 - 121	0	30		
1,2-Dichloroethane	99	99	68 - 120	0	30		
1,2-Dichloropropane	105	104	77 - 124	1	30		
1,3-Dichlorobenzene	106	102	79 - 124	4	30		
1,4-Dichlorobenzene	102	103	79 - 121	1	30		
1,4-Dioxane	125	114	67 - 150	8	30		
2-Butanone (MEK)	96	92	61 - 140	5	30		
2-Hexanone	114	110	78 - 120	4	30		
4-Methyl-2-pentanone (MIBK)	111	109	80 - 120	2	30		
Acetone	84	82	75 - 120	3	30		
Acetonitrile	101	100	60 - 137	1	30		
Acrolein	96	99	11 - 143	3	30		
Benzene	105	106	75 - 127	1	30		
Bromoform	80	83	19 - 150	3	30		
Bromomethane	94	93	59 - 136	1	30		
Carbon disulfide	102	103	74 - 130	0	30		
Carbon tetrachloride	99	99	77 - 138	0	30		
Chlorobenzene	106	104	80 - 120	2	30		
Chlorobromomethane	101	101	80 - 125	1	30		
Chlorodibromomethane	92	89	67 - 143	3	30		
Chloroethane	98	93	50 - 139	4	30		
Chloroform	104	105	80 - 122	1	30		
Chloromethane	99	96	66 - 128	2	30		
cis-1,2-Dichloroethene	101	102	80 - 123	1	30		
cis-1,3-Dichloropropene	103	102	75 - 124	0	30		
Cyclohexane	109	109	67 - 135	1	30		

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456539 Preparation: N/A

LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-456539/3 Solid 1.0 08/15/2017 2139 N/A N/A	Prep	sis Batch: Batch: n Batch:	460-456539 N/A N/A mg/Kg			CVOAMS9 K72113.D 5 mL 5 mL 5 mL)
LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 460-456539/4 Solid 1.0 08/15/2017 2202 N/A N/A	Prep	sis Batch: Batch: n Batch:	460-456539 N/A N/A mg/Kg			CVOAMS9 K72114.D 5 mL 5 mL 5 mL)
		0,	<u> 6 Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Dichlorobromome	thane	100	96	76 - 129	3	30		
Dichlorodifluorom	ethane	98	94	72 - 127	4	30		
Ethylbenzene		105	100	79 - 124	5	30		
Ethylene Dibromic	de	102	99	80 - 122	3	30		
Isopropylbenzene	•	104	103	80 - 125	2	30		
Methyl acetate		102	102	73 - 123	1	30		
Methyl tert-butyl e		101	101	80 - 120	0	30		
Methylcyclohexan		108	107	71 - 137	1	30		
Methylene Chloric	de	104	106	79 - 128	2	30		
m-Xylene & p-Xyle	ene	103	101	79 - 121	2	30		
o-Xylene		104	102	79 - 123	2	30		
Styrene		103	100	78 - 123	3	30		
TBA		107	107	71 - 120	1	30		
Tetrachloroethene	e	104	102	73 - 130	1	30		
Toluene		106	105	75 - 122	1	30		
trans-1,2-Dichloro		105	106	80 - 129	1	30		
trans-1,3-Dichloro	propene	104	103	72 - 121	1	30		
Trichloroethene		105	103	79 - 122	2	30		
Trichlorofluorome	thane	98	95	68 - 136	3	30		
Vinyl chloride		100	97	70 - 134	4	30		
Surrogate		L	CS % Rec	LCSD %	Rec	Accep	tance Limits	i
1,2-Dichloroethan		9		98			8 - 135	
4-Bromofluorober			00	99			7 - 126	
Dibromofluoromet	thane (Surr)	1	00	101		6	1 - 149	

102

Toluene-d8 (Surr)

103

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456664 Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456664/8 Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Client Matrix: Solid Prep Batch: N/A Lab File ID: K72147.D Leach Batch: N/A Dilution: 1.0 Initial Weight/Volume: 5 mL Analysis Date: 08/16/2017 1145 Units: mg/Kg Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

RL Analyte Result Qual MDL 0.0010 U 0.00023 0.0010 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 0.0010 U 0.00021 0.0010 1.1.2-Trichloro-1.2.2-trifluoroethane 0.0010 U 0.00030 0.0010 1,1,2-Trichloroethane 0.0010 U 0.00018 0.0010 U 0.0010 1.1-Dichloroethane 0.0010 0.00021 U 1,1-Dichloroethene 0.0010 0.00023 0.0010 1.2.3-Trichlorobenzene 0.0010 U 0.00018 0.0010 1,2,4-Trichlorobenzene 0.0010 U 0.000092 0.0010 1,2-Dibromo-3-Chloropropane 0.0010 U 0.00046 0.0010 0.0010 U 0.00014 0.0010 1,2-Dichlorobenzene 0.0010 U 0.00030 1,2-Dichloroethane 0.0010 U 1,2-Dichloropropane 0.0010 0.00042 0.0010 1,3-Dichlorobenzene 0.0010 U 0.00016 0.0010 0.0010 U 0.00010 0.0010 1.4-Dichlorobenzene 1,4-Dioxane 0.020 U 0.0092 0.020 2-Butanone (MEK) 0.0050 U 0.0011 0.0050 2-Hexanone 0.0050 U 0.00078 0.0050 4-Methyl-2-pentanone (MIBK) 0.0050 U 0.00066 0.0050 Acetone 0.0050 U 0.0038 0.0050 Acetonitrile 0.010 U 0.0062 0.010 Acrolein U 0.028 0.10 0.10 U Benzene 0.0010 0.00026 0.0010 **Bromoform** 0.0010 U 0.00043 0.0010 Bromomethane 0.0010 U 0.00047 0.0010 U Carbon disulfide 0.0010 0.00027 0.0010 Carbon tetrachloride 0.0010 U 0.00018 0.0010 Chlorobenzene 0.0010 U 0.00018 0.0010 Chlorobromomethane 0.0010 U 0.00028 0.0010 Chlorodibromomethane 0.0010 U 0.00019 0.0010 Chloroethane 0.0010 U 0.00052 0.0010 Chloroform 0.0010 U 0.00032 0.0010 Chloromethane 0.0010 U 0.00044 0.0010 cis-1,2-Dichloroethene 0.0010 U 0.00015 0.0010 cis-1,3-Dichloropropene 0.0010 U 0.00027 0.0010 Cyclohexane 0.0010 U 0.00022 0.0010 Dichlorobromomethane 0.0010 U 0.00026 0.0010 Dichlorodifluoromethane 0.0010 U 0.00034 0.0010 U Ethylbenzene 0.0010 0.00020 0.0010 U Ethylene Dibromide 0.0010 0.00018 0.0010 Isopropylbenzene 0.0010 U 0.00013 0.0010 Methyl acetate U 0.0050 0.0050 0.0043 Methyl tert-butyl ether 0.0010 U 0.00013 0.0010 Methylcyclohexane 0.0010 U 0.00016 0.0010 Methylene Chloride 0.0010 U 0.00016 0.0010 U m-Xylene & p-Xylene 0.0010 0.00017 0.0010

CVOAMS9

K72147.D

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456664

Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456664/8 Analysis Batch: 460-456664 Instrument ID:
Client Matrix: Solid Prep Batch: N/A Lab File ID:

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 08/16/2017 1145 Units: mg/Kg Final Weight/Volume: 5 mL

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
o-Xylene	0.0010	U	0.000095	0.0010
Styrene	0.0010	U	0.00012	0.0010
TBA	0.010	U	0.0033	0.010
Tetrachloroethene	0.0010	U	0.00014	0.0010
Toluene	0.0010	U	0.00063	0.0010
trans-1,2-Dichloroethene	0.0010	U	0.00025	0.0010
trans-1,3-Dichloropropene	0.0010	U	0.00027	0.0010
Trichloroethene	0.0010	U	0.00014	0.0010
Trichlorofluoromethane	0.0010	U	0.00041	0.0010
Vinyl chloride	0.0010	U	0.00055	0.0010
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	102		78 - 135	
1 Promofluorobonzono	00		67 106	

70 T CO	7 toooptanoo Emito
102	78 - 135
99	67 - 126
102	61 - 149
100	73 - 121
	102 99 102

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456664 Preparation: N/A

LCS Lab Sample ID: LCS 460-456664/4 Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Client Matrix: Solid Prep Batch: N/A Lab File ID: K72143.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 08/16/2017 1011 Final Weight/Volume: Analysis Date: Units: mg/Kg 5 mL Prep Date: N/A 5 mL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-456664/5 Analysis Batch: 460-456664 Instrument ID: CVOAMS9 Client Matrix: Prep Batch: Lab File ID: K72144.D Solid N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL

Analysis Date: 08/16/2017 1034 Units: mg/Kg Final Weight/Volume: 5 mL

Prep Date: N/A 5 mL

Leach Date: N/A

	%	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1,1-Trichloroethane	100	100	80 - 125	1	30		
1,1,2,2-Tetrachloroethane	102	101	72 - 131	1	30		
1,1,2-Trichloro-1,2,2-trifluoroethane	109	108	78 - 132	1	30		
1,1,2-Trichloroethane	99	100	76 - 124	1	30		
1,1-Dichloroethane	108	107	80 - 124	1	30		
1,1-Dichloroethene	105	102	79 - 132	3	30		
1,2,3-Trichlorobenzene	100	97	75 - 123	3	30		
1,2,4-Trichlorobenzene	101	97	74 - 124	4	30		
1,2-Dibromo-3-Chloropropane	84	80	65 - 129	6	30		
1,2-Dichlorobenzene	99	99	80 - 121	0	30		
1,2-Dichloroethane	98	98	68 - 120	0	30		
1,2-Dichloropropane	101	104	77 - 124	3	30		
1,3-Dichlorobenzene	98	98	79 - 124	0	30		
1,4-Dichlorobenzene	98	97	79 - 121	1	30		
1,4-Dioxane	113	118	67 - 150	4	30		
2-Butanone (MEK)	89	92	61 - 140	4	30		
2-Hexanone	99	105	78 - 120	6	30		
4-Methyl-2-pentanone (MIBK)	99	104	80 - 120	6	30		
Acetone	85	88	75 - 120	3	30		
Acetonitrile	90	97	60 - 137	8	30		
Acrolein	60	62	11 - 143	3	30		
Benzene	107	105	75 - 127	2	30		
Bromoform	78	77	19 - 150	1	30		
Bromomethane	104	102	59 - 136	2	30		
Carbon disulfide	104	102	74 - 130	2	30		
Carbon tetrachloride	97	98	77 - 138	1	30		
Chlorobenzene	99	100	80 - 120	2	30		
Chlorobromomethane	102	100	80 - 125	2	30		
Chlorodibromomethane	86	86	67 - 143	1	30		
Chloroethane	113	108	50 - 139	5	30		
Chloroform	104	103	80 - 122	1	30		
Chloromethane	113	107	66 - 128	5	30		
cis-1,2-Dichloroethene	101	102	80 - 123	1	30		
cis-1,3-Dichloropropene	100	101	75 - 124	1	30		
Cyclohexane	109	107	67 - 135	3	30		

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456664 Preparation: N/A

LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-456664/4 Solid 1.0 08/16/2017 1011 N/A N/A	Prep	vsis Batch: Batch: n Batch: :	460-456664 N/A N/A mg/Kg			CVOAMS9 K72143.D 5 mL 5 mL 5 mL)
LCSD Lab Sampl Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 460-456664/5 Solid 1.0 08/16/2017 1034 N/A N/A	Prep	rsis Batch: Batch: n Batch:	460-456664 N/A N/A mg/Kg			CVOAMS9 K72144.D 5 mL 5 mL 5 mL)
		o	% Rec.					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Dichlorobromome	ethane	93	95	76 - 129	3	30		
Dichlorodifluorom	ethane	111	106	72 - 127	5	30		
Ethylbenzene		99	98	79 - 124	1	30		
Ethylene Dibromi	de	97	98	80 - 122	1	30		
Isopropylbenzene)	100	100	80 - 125	0	30		
Methyl acetate		112	106	73 - 123	5	30		
Methyl tert-butyl e		104	102	80 - 120	3	30		
Methylcyclohexar		107	103	71 - 137	4	30		
Methylene Chlorid	de	108	107	79 - 128	1	30		
m-Xylene & p-Xyl	ene	98	99	79 - 121	1	30		
o-Xylene		99	99	79 - 123	1	30		
Styrene		96	98	78 - 123	2	30		
TBA		99	102	71 - 120	3	30		
Tetrachloroethene	е	100	99	73 - 130	2	30		
Toluene		101	102	75 - 122	0	30		
trans-1,2-Dichloro		106	105	80 - 129	1	30		
trans-1,3-Dichloro	ppropene	98	100	72 - 121	1	30		
Trichloroethene		100	98	79 - 122	2	30		
Trichlorofluorome	thane	109	101	68 - 136	8	30		
Vinyl chloride		112	105	70 - 134	6	30		
Surrogate			.CS % Rec	LCSD %	Rec		tance Limits	
1,2-Dichloroethar			04	99			8 - 135	
4-Bromofluorober			00	98			7 - 126	
Dibromofluorome	thane (Surr)	1	05	101		6	1 - 149	

106

Toluene-d8 (Surr)

103

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456825 Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456825/8 Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Client Matrix: Prep Batch: Solid N/A Lab File ID: K72177.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Final Weight/Volume: 5 mL Analysis Date: 08/16/2017 2357 Units: mg/Kg

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
1,1,1-Trichloroethane	0.0010	U	0.00023	0.0010
1,1,2,2-Tetrachloroethane	0.0010	U	0.00021	0.0010
1,1,2-Trichloro-1,2,2-trifluoroethane	0.0010	U	0.00030	0.0010
1,1,2-Trichloroethane	0.0010	U	0.00018	0.0010
1,1-Dichloroethane	0.0010	U	0.00021	0.0010
1,1-Dichloroethene	0.0010	U	0.00023	0.0010
1,2,3-Trichlorobenzene	0.0010	U	0.00018	0.0010
1,2,4-Trichlorobenzene	0.0010	U	0.000092	0.0010
1,2-Dibromo-3-Chloropropane	0.0010	U	0.00046	0.0010
1,2-Dichlorobenzene	0.0010	U	0.00014	0.0010
1,2-Dichloroethane	0.0010	U	0.00030	0.0010
1,2-Dichloropropane	0.0010	U	0.00042	0.0010
1,3-Dichlorobenzene	0.0010	U	0.00016	0.0010
1,4-Dichlorobenzene	0.0010	U	0.00010	0.0010
1,4-Dioxane	0.020	U	0.0092	0.020
2-Butanone (MEK)	0.0050	U	0.0011	0.0050
2-Hexanone	0.0050	U	0.00078	0.0050
4-Methyl-2-pentanone (MIBK)	0.0050	U	0.00066	0.0050
Acetone	0.0050	Ü	0.0038	0.0050
Acetonitrile	0.010	Ū	0.0062	0.010
Acrolein	0.10	Ū	0.028	0.10
Benzene	0.0010	Ü	0.00026	0.0010
Bromoform	0.0010	Ū	0.00043	0.0010
Bromomethane	0.0010	Ü	0.00047	0.0010
Carbon disulfide	0.0010	Ü	0.00027	0.0010
Carbon tetrachloride	0.0010	Ü	0.00018	0.0010
Chlorobenzene	0.0010	Ü	0.00018	0.0010
Chlorobromomethane	0.0010	Ü	0.00028	0.0010
Chlorodibromomethane	0.0010	Ü	0.00019	0.0010
Chloroethane	0.0010	Ü	0.00052	0.0010
Chloroform	0.0010	Ü	0.00032	0.0010
Chloromethane	0.0010	Ŭ	0.00044	0.0010
cis-1,2-Dichloroethene	0.0010	Ü	0.00015	0.0010
cis-1,3-Dichloropropene	0.0010	Ü	0.00027	0.0010
Cyclohexane	0.0010	Ü	0.00022	0.0010
Dichlorobromomethane	0.0010	Ü	0.00026	0.0010
Dichlorodifluoromethane	0.0010	Ü	0.00034	0.0010
Ethylbenzene	0.0010	U	0.00020	0.0010
Ethylene Dibromide	0.0010	Ü	0.00020	0.0010
Isopropylbenzene	0.0010	Ü	0.00013	0.0010
Methyl acetate	0.0050	U	0.0043	0.0050
Methyl tert-butyl ether	0.0050	U	0.0043	0.0030
Methylcyclohexane	0.0010	U	0.00013	0.0010
				0.0010
Methylene Chloride	0.0010	U	0.00016	
m-Xylene & p-Xylene	0.0010	U	0.00017	0.0010

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456825

Method: 8260C Preparation: N/A

Lab Sample ID: MB 460-456825/8 Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Client Matrix: Prep Batch: Solid N/A Lab File ID: K72177.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL mg/Kg Final Weight/Volume: 5 mL Analysis Date: 08/16/2017 2357 Units:

Prep Date: N/A Leach Date: N/A

Analyte	Result	Qual	MDL	RL
o-Xylene	0.0010	U	0.000095	0.0010
Styrene	0.0010	U	0.00012	0.0010
TBA	0.010	U	0.0033	0.010
Tetrachloroethene	0.0010	U	0.00014	0.0010
Toluene	0.0010	U	0.00063	0.0010
trans-1,2-Dichloroethene	0.0010	U	0.00025	0.0010
trans-1,3-Dichloropropene	0.0010	U	0.00027	0.0010
Trichloroethene	0.0010	U	0.00014	0.0010
Trichlorofluoromethane	0.0010	U	0.00041	0.0010
Vinyl chloride	0.0010	U	0.00055	0.0010
Surrogate	% Rec		Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	100		78 - 135	
4-Bromofluorobenzene	103		67 - 126	
Dibromofluoromethane (Surr)	104		61 - 149	
Toluene-d8 (Surr)	104		73 - 121	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456825 Preparation: N/A

LCS Lab Sample ID: LCS 460-456825/4 Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Client Matrix: Solid Prep Batch: N/A Lab File ID: K72173.D Leach Batch: N/A Initial Weight/Volume: Dilution: 1.0 5 mL Analysis Date: 08/16/2017 2205 Units: mg/Kg Final Weight/Volume: 5 mL 5 mL Prep Date: N/A Leach Date: N/A LCSD Lab Sample ID: LCSD 460-456825/5 Analysis Batch: 460-456825 Instrument ID: CVOAMS9 Client Matrix: Prep Batch: Lab File ID: K72174.D Solid N/A

Client Matrix: Solid Prep Batch: N/A Lab File ID: K72174.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL Analysis Date: 08/16/2017 2235 Units: mg/Kg Final Weight/Volume: 5 mL Frep Date: N/A 5 mL

Prep Date: N/A Leach Date: N/A

% Rec. LCS **LCSD RPD** Analyte Limit RPD Limit LCS Qual LCSD Qual 1,1,1-Trichloroethane 109 104 80 - 125 4 30 1,1,2,2-Tetrachloroethane 101 107 72 - 131 6 30 1,1,2-Trichloro-1,2,2-trifluoroethane 119 112 78 - 132 6 30 76 - 124 1,1,2-Trichloroethane 106 105 1 30 80 - 1241,1-Dichloroethane 114 110 4 30 79 - 132 7 1,1-Dichloroethene 112 105 30 75 - 123 1,2,3-Trichlorobenzene 107 109 2 30 103 105 74 - 124 2 30 1,2,4-Trichlorobenzene 84 89 65 - 129 7 30 1,2-Dibromo-3-Chloropropane 2 104 80 - 121 30 1,2-Dichlorobenzene 102 1,2-Dichloroethane 103 104 68 - 120 2 30 108 106 77 - 124 2 30 1,2-Dichloropropane 79 - 124 0 30 102 102 1,3-Dichlorobenzene 1,4-Dichlorobenzene 102 102 79 - 121 0 30 1,4-Dioxane 122 124 67 - 1502 30 2-Butanone (MEK) 95 95 61 - 140 1 30 2-Hexanone 112 109 78 - 120 3 30 4-Methyl-2-pentanone (MIBK) 106 109 80 - 120 3 30 91 75 - 120 3 30 Acetone 88 2 Acetonitrile 104 102 60 - 13730 Acrolein 61 58 11 - 143 5 30 110 75 - 127 5 30 Benzene 105 Bromoform 80 83 19 - 150 4 30 99 30 Bromomethane 110 59 - 136 10 74 - 130 30 Carbon disulfide 110 104 5 Carbon tetrachloride 103 102 77 - 138 1 30 Chlorobenzene 104 104 80 - 120 0 30 Chlorobromomethane 104 105 80 - 125 0 30 3 Chlorodibromomethane 91 94 67 - 14330 Chloroethane 100 50 - 13910 30 111 Chloroform 109 80 - 122 30 110 1 66 - 128 30 Chloromethane 117 106 10 106 106 80 - 12330 cis-1,2-Dichloroethene 1 cis-1,3-Dichloropropene 104 104 75 - 124 0 30 112 67 - 135 5 30 Cyclohexane 117

73 - 121

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-456825 Preparation: N/A

LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-456825/4 Solid 1.0 08/16/2017 2205 N/A N/A	Prep	vsis Batch: Batch: n Batch: :	460-456825 N/A N/A mg/Kg			CVOAMSS K72173.D 5 mL 5 mL 5 mL)
LCSD Lab Sampl Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 460-456825/5 Solid 1.0 08/16/2017 2235 N/A N/A	Prep	vsis Batch: Batch: n Batch:	460-456825 N/A N/A mg/Kg			CVOAMS9 K72174.D 5 mL 5 mL 5 mL)
		c	% Rec.					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Dichlorobromome	ethane	100	100	76 - 129	0	30		
Dichlorodifluorom	ethane	114	103	72 - 127	10	30		
Ethylbenzene		99	102	79 - 124	3	30		
Ethylene Dibromi	de	106	103	80 - 122	3	30		
Isopropylbenzene)	100	105	80 - 125	4	30		
Methyl acetate		113	117	73 - 123	3	30		
Methyl tert-butyl e		114	111	80 - 120	2	30		
Methylcyclohexar		114	109	71 - 137	4	30		
Methylene Chlorid	de	117	113	79 - 128	3	30		
m-Xylene & p-Xyl	ene	100	102	79 - 121	2	30		
o-Xylene		100	104	79 - 123	3	30		
Styrene		102	102	78 - 123	0	30		
TBA		110	106	71 - 120	3	30		
Tetrachloroethene	е	100	102	73 - 130	2	30		
Toluene		104	106	75 - 122	2	30		
trans-1,2-Dichloro		112	108	80 - 129	4	30		
trans-1,3-Dichloro	ppropene	109	106	72 - 121	2	30		
Trichloroethene		105	104	79 - 122	1	30		
Trichlorofluorome	thane	113	102	68 - 136	10	30		
Vinyl chloride		118	104	70 - 134	12	30		
Surrogate			.CS % Rec	LCSD %	Rec		tance Limits	
1,2-Dichloroethar			03	102			8 - 135	
4-Bromofluorober			00	101			7 - 126	
Dibromofluorome	thane (Surr)	1	04	104		6	1 - 149	

105

103

Toluene-d8 (Surr)

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-457628

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 460-457628/7 Client Matrix: Water

Dilution: 1.0 Analysis Date: 08/21/2017 0635

Prep Date: 08/21/2017 0635

Leach Date: N/A

Analysis Batch: 460-457628
Prep Batch: N/A
Leach Batch: N/A
Units: ug/L

Instrument ID: CVOAMS2
Lab File ID: B19723.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL

Analyte	Result	Qual	MDL	RL
1,1,1-Trichloroethane	1.0	U	0.28	1.0
1,1,2,2-Tetrachloroethane	1.0	U	0.19	1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	0.34	1.0
1,1,2-Trichloroethane	1.0	U	0.080	1.0
1,1-Dichloroethane	1.0	U	0.24	1.0
1,1-Dichloroethene	1.0	U	0.34	1.0
1,2,3-Trichlorobenzene	1.0	U	0.35	1.0
1,2,4-Trichlorobenzene	1.0	U	0.27	1.0
1,2-Dibromo-3-Chloropropane	1.0	U	0.23	1.0
1,2-Dichlorobenzene	1.0	U	0.22	1.0
1,2-Dichloroethane	1.0	U	0.25	1.0
1,2-Dichloropropane	1.0	U	0.18	1.0
1,3-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dichlorobenzene	1.0	U	0.33	1.0
1,4-Dioxane	50	U	8.7	50
2-Butanone (MEK)	5.0	U	2.2	5.0
2-Hexanone	5.0	U	0.72	5.0
4-Methyl-2-pentanone (MIBK)	5.0	U	0.63	5.0
Acetone	5.0	U	1.1	5.0
Benzene	1.0	U	0.090	1.0
Bromoform	1.0	U	0.18	1.0
Bromomethane	1.0	U	0.18	1.0
Carbon disulfide	1.0	U	0.22	1.0
Carbon tetrachloride	1.0	U	0.33	1.0
Chlorobenzene	1.0	U	0.24	1.0
Chlorobromomethane	1.0	U	0.30	1.0
Chlorodibromomethane	1.0	U	0.22	1.0
Chloroethane	1.0	U	0.37	1.0
Chloroform	1.0	U	0.22	1.0
Chloromethane	1.0	U	0.22	1.0
cis-1,2-Dichloroethene	1.0	U	0.26	1.0
cis-1,3-Dichloropropene	1.0	U	0.16	1.0
Cyclohexane	1.0	U	0.26	1.0
Dichlorobromomethane	1.0	U	0.15	1.0
Dichlorodifluoromethane	1.0	U	0.14	1.0
Ethylbenzene	1.0	U	0.30	1.0
Ethylene Dibromide	1.0	U	0.19	1.0
Isopropylbenzene	1.0	U	0.32	1.0
Methyl acetate	5.0	U	0.58	5.0
Methyl tert-butyl ether	1.0	U	0.13	1.0
Methylcyclohexane	1.0	U	0.22	1.0
Methylene Chloride	1.0	U	0.21	1.0
m-Xylene & p-Xylene	1.0	Ū	0.28	1.0
o-Xylene	1.0	U	0.32	1.0
Styrene	1.0	U	0.17	1.0

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-457628

Method: 8260C Preparation: 5030C

Lab Sample ID: MB 460-457628/7 Analysis Batch: 460-457628 Client Matrix: Prep Batch: Water N/A Dilution: 1.0 Leach Batch: N/A Analysis Date: 08/21/2017 0635 Units: ug/L Prep Date: 08/21/2017 0635

Instrument ID: CVOAMS2
Lab File ID: B19723.D
Initial Weight/Volume: 5 mL
Final Weight/Volume: 5 mL

Leach Date: N/A

Analyte	Result	Qual	MDL	RL	
Tetrachloroethene	1.0	U	0.12	1.0	
Toluene	1.0	U	0.25	1.0	
trans-1,2-Dichloroethene	1.0	U	0.18	1.0	
trans-1,3-Dichloropropene	1.0	U	0.19	1.0	
Trichloroethene	1.0	U	0.22	1.0	
Trichlorofluoromethane	1.0	U	0.15	1.0	
Vinyl chloride	1.0	U	0.060	1.0	

Surrogate	% Rec	Acceptance Limits	
1,2-Dichloroethane-d4 (Surr)	80	74 - 132	
4-Bromofluorobenzene	88	77 - 124	
Dibromofluoromethane (Surr)	97	72 - 131	
Toluene-d8 (Surr)	92	80 - 120	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C
Lab Control Sample Duplicate Recovery Report - Batch: 460-457628 Preparation: 5030C

LCS Lab Sample ID: LCS 460-457628/3 Analysis Batch: 460-457628 Instrument ID: CVOAMS2 Client Matrix: Water Prep Batch: N/A Lab File ID: B19719.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 5 mL 08/21/2017 0502 Final Weight/Volume: Analysis Date: Units: ug/L 5 mL 08/21/2017 0502 Prep Date: 5 mL

Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-457628/4 Analysis Batch: 460-457628 Instrument ID: CVOAMS2 Client Matrix: Water Prep Batch: Lab File ID: B19720.D N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 5 mL

Analysis Date: 08/21/2017 0525 Units: ug/L Final Weight/Volume: 5 mL

Prep Date: 08/21/2017 0525 5 mL

Leach Date: N/A

	% I	Rec.					
Analyte	LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
1,1,1-Trichloroethane	100	94	75 - 125	6	30		
1,1,2,2-Tetrachloroethane	116	116	74 - 120	0	30		
1,1,2-Trichloro-1,2,2-trifluoroethane	110	112	59 - 150	2	30		
1,1,2-Trichloroethane	103	111	78 - 120	7	30		
1,1-Dichloroethane	98	96	77 - 123	2	30		
1,1-Dichloroethene	97	108	74 - 123	10	30		
1,2,3-Trichlorobenzene	95	97	78 - 131	3	30		
1,2,4-Trichlorobenzene	95	100	80 - 124	5	30		
1,2-Dibromo-3-Chloropropane	101	102	55 - 134	1	30		
1,2-Dichlorobenzene	103	105	80 - 120	2	30		
1,2-Dichloroethane	82	83	76 - 121	1	30		
1,2-Dichloropropane	98	94	77 - 123	5	30		
1,3-Dichlorobenzene	95	100	80 - 120	5	30		
1,4-Dichlorobenzene	103	100	80 - 120	4	30		
1,4-Dioxane	102	110	10 - 150	8	30		
2-Butanone (MEK)	119	120	64 - 120	0	30		
2-Hexanone	94	95	71 - 125	1	30		
4-Methyl-2-pentanone (MIBK)	92	96	78 - 124	4	30		
Acetone	99	95	39 - 150	4	30		
Benzene	118	116	77 - 121	2	30		
Bromoform	88	84	53 - 120	4	30		
Bromomethane	81	83	10 - 150	3	30		
Carbon disulfide	111	107	69 - 133	4	30		
Carbon tetrachloride	104	97	70 - 132	7	30		
Chlorobenzene	108	111	80 - 120	3	30		
Chlorobromomethane	100	98	77 - 127	2	30		
Chlorodibromomethane	99	101	73 - 120	1	30		
Chloroethane	103	114	52 - 150	10	30		
Chloroform	98	94	80 - 120	5	30		
Chloromethane	88	80	56 - 131	10	30		
cis-1,2-Dichloroethene	104	101	80 - 120	3	30		
cis-1,3-Dichloropropene	104	109	77 - 120	5	30		
Cyclohexane	109	104	56 - 150	4	30		
Dichlorobromomethane	95	97	76 - 120	2	30		
Dichlorodifluoromethane	106	92	50 - 131	14	30		

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8260C Lab Control Sample Duplicate Recovery Report - Batch: 460-457628 Preparation: 5030C

LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-457628/3 Water 1.0 08/21/2017 0502 08/21/2017 0502 N/A	Prep	ysis Batch: Batch: h Batch: s:	460-457628 N/A N/A ug/L			CVOAMS2 B19719.D 5 mL 5 mL 5 mL	
LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 460-457628/4 Water 1.0 08/21/2017 0525 08/21/2017 0525 N/A	Prep	ysis Batch: Batch: h Batch: ::	460-457628 N/A N/A ug/L			CVOAMS2 B19720.D 5 mL 5 mL 5 mL	
		(<u>% Rec.</u>					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Ethylbenzene		106	111	80 - 120	5	30		
Ethylene Dibromic	de	107	114	80 - 120	6	30		
Isopropylbenzene		109	112	80 - 123	3	30		
Methyl acetate		92	91	66 - 144	1	30		
Methyl tert-butyl e		101	106	79 - 122	5	30		
Methylcyclohexan		113	111	61 - 145	2	30		
Methylene Chloric		115	117	77 - 123	2	30		
m-Xylene & p-Xyle	ene	100	106	80 - 120	6	30		
o-Xylene		97	106	80 - 120	9	30		
Styrene		104	109	80 - 120	5	30		
Tetrachloroethene	•	100	98	78 - 122	2	30		
Toluene		109	111	80 - 120	2	30		
trans-1,2-Dichloro		112	107	79 - 120	5	30		
trans-1,3-Dichloro	propene	100	98	76 - 120	1	30		
Trichloroethene		101	97	77 - 120	4	30		
Trichlorofluorome	thane	134	122	71 - 143	10	30		
Vinyl chloride		96	84	62 - 138	13	30		
Surrogate		l	LCS % Rec	LCSD %	Rec	Accep	tance Limits	
1,2-Dichloroethan			78	76			4 - 132	
4-Bromofluorober			105	106			7 - 124	
Dibromofluorome			95	92			2 - 131	
Toluene-d8 (Surr)		•	107	108		8	0 - 120	

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455572

Method: 8270D Preparation: 3546

Lab Sample ID: MB 460-455572/1-A

Client Matrix: Solid Dilution: 1.0

Analysis Date: 08/12/2017 0724 Prep Date: 08/11/2017 0723

Leach Date: N/A

Analysis Batch: 460-455798 Prep Batch: 460-455572 Leach Batch: N/A

Units: mg/Kg

Instrument ID: CBNAMS5
Lab File ID: X263291.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Analyte	Result	Qual	MDL	RL
1,2,4-Trichlorobenzene	0.033	U	0.0073	0.033
1,2-Dichlorobenzene	0.33	U	0.011	0.33
1,3-Dichlorobenzene	0.33	U	0.026	0.33
1,4-Dichlorobenzene	0.33	U	0.026	0.33
2,2'-oxybis[1-chloropropane]	0.33	U	0.014	0.33
2,4-Dinitrotoluene	0.067	U	0.013	0.067
2,6-Dinitrotoluene	0.067	U	0.018	0.067
2-Chloronaphthalene	0.33	U	0.0075	0.33
2-Methylnaphthalene	0.33	U	0.0073	0.33
2-Nitroaniline	0.33	U	0.011	0.33
3,3'-Dichlorobenzidine	0.13	Ū	0.037	0.13
3-Nitroaniline	0.33	Ū	0.0098	0.33
4-Bromophenyl phenyl ether	0.33	Ū	0.010	0.33
4-Chloroaniline	0.33	Ū	0.0085	0.33
4-Chlorophenyl phenyl ether	0.33	Ū	0.0099	0.33
4-Nitroaniline	0.33	Ū	0.013	0.33
Acenaphthene	0.33	Ü	0.0080	0.33
Acenaphthylene	0.33	Ü	0.0085	0.33
Anthracene	0.33	Ü	0.031	0.33
Benzo[a]anthracene	0.033	Ü	0.028	0.033
Benzo[a]pyrene	0.033	Ü	0.010	0.033
Benzo[b]fluoranthene	0.033	Ü	0.013	0.033
Benzo[g,h,i]perylene	0.33	Ü	0.019	0.33
Benzo[k]fluoranthene	0.033	Ü	0.014	0.033
Bis(2-chloroethoxy)methane	0.33	Ü	0.010	0.33
Bis(2-chloroethyl)ether	0.033	Ü	0.0078	0.033
Bis(2-ethylhexyl) phthalate	0.33	Ū	0.013	0.33
Butyl benzyl phthalate	0.33	Ü	0.010	0.33
Carbazole	0.33	Ū	0.0082	0.33
Chrysene	0.33	Ü	0.0090	0.33
Dibenz(a,h)anthracene	0.033	Ü	0.017	0.033
Dibenzofuran	0.33	Ü	0.010	0.33
Diethyl phthalate	0.33	Ü	0.0094	0.33
Dimethyl phthalate	0.33	Ü	0.0096	0.33
Di-n-butyl phthalate	0.33	Ü	0.0099	0.33
Di-n-octyl phthalate	0.33	Ü	0.017	0.33
Fluoranthene	0.33	Ü	0.0098	0.33
Fluorene	0.33	Ü	0.0072	0.33
Hexachlorobenzene	0.033	Ü	0.013	0.033
Hexachlorobutadiene	0.067	Ü	0.0093	0.067
Hexachlorocyclopentadiene	0.33	Ü	0.021	0.33
Hexachloroethane	0.033	Ü	0.012	0.033
Indeno[1,2,3-cd]pyrene	0.033	Ŭ	0.022	0.033
Isophorone	0.13	Ü	0.0071	0.13
Naphthalene	0.33	U	0.0071	0.33
нарпанаюто	0.00	9	3.0004	0.00

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455572 Method: 8270D Preparation: 3546

Lab Sample ID: MB 460-455572/1-A Analysis Batch: 460-455798 Instrument ID: CBNAMS5 Client Matrix: Prep Batch: 460-455572 Solid Lab File ID: X263291.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 15.0000 g Analysis Date: 08/12/2017 0724 Units: mg/Kg Final Weight/Volume: 1 mL Injection Volume: Prep Date: 08/11/2017 0723 1 uL

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Nitrobenzene	0.033	U	0.010	0.033
N-Nitrosodi-n-propylamine	0.033	U	0.011	0.033
N-Nitrosodiphenylamine	0.33	U	0.030	0.33
Phenanthrene	0.33	U	0.0088	0.33
Pyrene	0.33	U	0.015	0.33
Surrogate	% Rec		Acceptance Limits	
2-Fluorobiphenyl	74		38 - 95	
Nitrobenzene-d5 (Surr)	77		37 - 94	
Terphenyl-d14 (Surr)	86		24 - 109	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455572

Method: 8270D Preparation: 3546

Lab Sample ID: LCS 460-455572/2-A

Client Matrix: Solid
Dilution: 1.0

Analysis Date: 08/12/2017 0700 Prep Date: 08/11/2017 0723

Leach Date: N/A

Analysis Batch: 460-455798 Prep Batch: 460-455572 Leach Batch: N/A

Units: N/A mg/Kg

Instrument ID: CBNAMS5
Lab File ID: X263290.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,2,4-Trichlorobenzene	3.33	2.72	82	62 - 104	
1,2-Dichlorobenzene	3.33	2.59	78	64 - 98	
1,3-Dichlorobenzene	3.33	2.59	78	62 - 96	
1,4-Dichlorobenzene	3.33	2.60	78	63 - 97	
2,2'-oxybis[1-chloropropane]	3.33	2.22	67	39 - 122	
2,4-Dinitrotoluene	3.33	3.09	93	66 - 122	
2,6-Dinitrotoluene	3.33	2.88	86	70 - 114	
2-Chloronaphthalene	3.33	2.59	78	63 - 107	
2-Methylnaphthalene	3.33	2.74	82	65 - 104	
2-Nitroaniline	3.33	2.58	77	57 - 114	
3,3'-Dichlorobenzidine	3.33	1.76	53	18 - 88	
3-Nitroaniline	3.33	2.22	67	30 - 94	
4-Bromophenyl phenyl ether	3.33	2.70	81	59 - 122	
4-Chloroaniline	3.33	2.17	65	18 - 94	
4-Chlorophenyl phenyl ether	3.33	2.75	82	66 - 110	
4-Nitroaniline	3.33	2.67	80	49 - 118	
Acenaphthene	3.33	2.72	82	62 - 108	
Acenaphthylene	3.33	2.73	82	67 - 107	
Anthracene	3.33	2.80	84	69 - 111	
Benzo[a]anthracene	3.33	2.75	83	68 - 110	
Benzo[a]pyrene	3.33	2.83	85	72 - 115	
Benzo[b]fluoranthene	3.33	2.84	85	69 - 119	
Benzo[g,h,i]perylene	3.33	2.75	83	54 - 128	
Benzo[k]fluoranthene	3.33	2.83	85	70 - 115	
Bis(2-chloroethoxy)methane	3.33	2.58	77	65 - 106	
Bis(2-chloroethyl)ether	3.33	2.59	78	64 - 105	
Bis(2-ethylhexyl) phthalate	3.33	2.93	88	63 - 125	
Butyl benzyl phthalate	3.33	2.87	86	65 - 125	
Carbazole	3.33	2.85	86	66 - 115	
Chrysene	3.33	2.79	84	70 - 111	
Dibenz(a,h)anthracene	3.33	2.90	87	60 - 130	
Dibenzofuran	3.33	2.72	82	67 - 107	
Diethyl phthalate	3.33	3.02	90	66 - 117	
Dimethyl phthalate	3.33	2.91	87	68 - 112	
Di-n-butyl phthalate	3.33	3.01	90	67 - 119	
Di-n-octyl phthalate	3.33	3.00	90	57 - 138	
Fluoranthene	3.33	2.93	88	64 - 114	
Fluorene	3.33	2.76	83	66 - 110	
Hexachlorobenzene	3.33	2.96	89	57 - 128	
Hexachlorobutadiene	3.33	2.93	88	60 - 108	
Hexachlorocyclopentadiene	3.33	2.99	90	50 - 129	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455572

N/A

Leach Date:

Method: 8270D Preparation: 3546

Lab Sample ID: LCS 460-455572/2-A Analysis Batch: 460-455798 Instrument ID: Client Matrix: Prep Batch: Solid 460-455572 Lab File ID: Dilution: 1.0 Leach Batch: N/A Analysis Date: 08/12/2017 0700 Units: mg/Kg Prep Date: 08/11/2017 0723

Instrument ID: CBNAMS5
Lab File ID: X263290.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Hexachloroethane	3.33	2.59	78	63 - 99	
Indeno[1,2,3-cd]pyrene	3.33	2.62	79	53 - 137	
Isophorone	3.33	2.76	83	68 - 111	
Naphthalene	3.33	2.64	79	65 - 102	
Nitrobenzene	3.33	2.60	78	66 - 108	
N-Nitrosodi-n-propylamine	3.33	2.63	79	63 - 117	
N-Nitrosodiphenylamine	3.33	2.63	79	65 - 114	
Phenanthrene	3.33	2.76	83	68 - 111	
Pyrene	3.33	2.62	79	64 - 121	
Surrogate	% R	ec	Acc	eptance Limits	
2-Fluorobiphenyl	78			38 - 95	
Nitrobenzene-d5 (Surr)	83			37 - 94	
Terphenyl-d14 (Surr)	77		24 - 109		

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8270D Matrix Spike Duplicate Recovery Report - Batch: 460-455572 Preparation: 3546

Analysis Batch:

Prep Batch:

Leach Batch:

MS Lab Sample ID: 460-138308-A-3-B MS

Client Matrix: Dilution: 10

Analysis Date: 08/14/2017 2217 Prep Date: 08/11/2017 0723

Leach Date: N/A

MSD Lab Sample ID: 460-138308-A-3-C MSD

Client Matrix: Solid Dilution: 10

Analysis Date: 08/14/2017 2129 Prep Date: 08/11/2017 0723

Leach Date: N/A Analysis Batch: Instrument ID: CBNAMS5 460-456219 Prep Batch: 460-455572 Lab File ID: X263362.D Leach Batch: N/A Initial Weight/Volume: 15.0201 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

460-456219

460-455572

N/A

Instrument ID: CBNAMS5 Lab File ID: X263360.D Initial Weight/Volume: 15.0432 g Final Weight/Volume: 1 mL

Injection Volume: 1 uL

	%	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,2,4-Trichlorobenzene	70	70	62 - 104	0	30		
1,2-Dichlorobenzene	65	62	64 - 98	4	30	J	J *
1,3-Dichlorobenzene	63	62	62 - 96	2	30	J	J
1,4-Dichlorobenzene	64	63	63 - 97	2	30	J	J
2,2'-oxybis[1-chloropropane]	58	58	39 - 122	0	30	J	J
2,4-Dinitrotoluene	203	210	66 - 122	3	30	*	*
2,6-Dinitrotoluene	105	109	70 - 114	4	30		
2-Chloronaphthalene	74	71	63 - 107	4	30	J	J
2-Methylnaphthalene	296	346	65 - 104	5	30	*	*
2-Nitroaniline	183	182	57 - 114	1	30	*	*
3,3'-Dichlorobenzidine	50	50	18 - 88	1	30		
3-Nitroaniline	21	79	30 - 94	117	30	J *	J *
4-Bromophenyl phenyl ether	68	75	59 - 122	10	30	J	J
4-Chloroaniline	16	15	18 - 94	6	30	J *	J *
4-Chlorophenyl phenyl ether	74	73	66 - 110	2	30	J	J
4-Nitroaniline	60	60	49 - 118	0	30	J	J
Acenaphthene	124	116	62 - 108	7	30	*	*
Acenaphthylene	94	94	67 - 107	0	30	J	J
Anthracene	77	98	69 - 111	22	30	J	
Benzo[a]anthracene	76	75	68 - 110	1	30		
Benzo[a]pyrene	70	72	72 - 115	3	30	*	
Benzo[b]fluoranthene	65	68	69 - 119	4	30	*	*
Benzo[g,h,i]perylene	64	66	54 - 128	2	30	J	J
Benzo[k]fluoranthene	75	79	70 - 115	5	30		
Bis(2-chloroethoxy)methane	75	74	65 - 106	1	30	J	J
Bis(2-chloroethyl)ether	62	60	64 - 105	3	30	*	*
Bis(2-ethylhexyl) phthalate	67	71	63 - 125	7	30	J	J
Butyl benzyl phthalate	72	73	65 - 125	1	30	J	J
Carbazole	90	92	66 - 115	1	30	J	J
Chrysene	73	78	70 - 111	7	30	J	J
Dibenz(a,h)anthracene	63	66	60 - 130	4	30		
Dibenzofuran	124	121	67 - 107	3	30	*	*

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8270D
Matrix Spike Duplicate Recovery Report - Batch: 460-455572 Preparation: 3546

Leach Date:

N/A

MS Lab Sample ID	: 460-138308-A-3-B MS	Analysis Batch:	460-456219	Instrument ID:	CBNAMS5
Client Matrix:	Solid	Prep Batch:	460-455572	Lab File ID:	X263362.D
Dilution:	10	Leach Batch:	N/A	Initial Weight/Volume:	15.0201 g

Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 15.0201 g
Analysis Date: 08/14/2017 2217 Final Weight/Volume: 1 mL
Prep Date: 08/11/2017 0723 Injection Volume: 1 uL
Leach Date: N/A

MSD Lab Sample ID: 460-138308-A-3-C MSD Analysis Batch: 460-456219 Instrument ID: CBNAMS5 Client Matrix: Solid Prep Batch: 460-455572 Lab File ID: X263360.D Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 15.0432 g

Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 15.0432 g

Analysis Date: 08/14/2017 2129 Final Weight/Volume: 1 mL

Prep Date: 08/11/2017 0723 Injection Volume: 1 uL

% Rec. MS MSD Limit **RPD** MS Qual MSD Qual Analyte **RPD Limit** Diethyl phthalate 87 90 66 - 117 3 30 J J Dimethyl phthalate 84 85 68 - 1120 30 J J 67 - 119 3 30 83 86 J J Di-n-butyl phthalate Di-n-octyl phthalate 64 66 57 - 138 3 30 J J 2 Fluoranthene 87 85 64 - 114 30 J J Fluorene 97 102 66 - 110 3 30 3 Hexachlorobenzene 74 72 57 - 128 30 70 70 60 - 108 1 Hexachlorobutadiene 30 30 25 50 - 129 19 30 J * J * Hexachlorocyclopentadiene Hexachloroethane 68 64 63 - 99 6 30 Indeno[1,2,3-cd]pyrene 52 58 53 - 137 10 30 87 91 68 - 111 4 30 Isophorone J * 8 166 30 Naphthalene 83 65 - 10230 60 63 66 - 108 4 Nitrobenzene N-Nitrosodi-n-propylamine 79 82 63 - 117 4 30 N-Nitrosodiphenylamine 267 257 65 - 114 4 30 140 4 30 Phenanthrene 126 68 - 111 Pyrene 68 71 64 - 121 4 30 J MS % Rec MSD % Rec Surrogate Acceptance Limits 2-Fluorobiphenyl 74 69 38 - 95 Nitrobenzene-d5 (Surr) 75 76 37 - 94 24 - 109 Terphenyl-d14 (Surr) 65 63

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455573

Method: 8270D Preparation: 3546

Lab Sample ID: MB 460-455573/1-A

Client Matrix: Solid Dilution: 1.0

Analysis Date: 08/11/2017 1852 Prep Date: 08/11/2017 0728

Leach Date: N/A

Analysis Batch: 460-455727 Prep Batch: 460-455573

Leach Batch: N/A Units: mg/Kg Instrument ID: CBNAMS11
Lab File ID: z47124.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Analyte	Result	Qual	MDL	RL
1,2,4-Trichlorobenzene	0.033	U	0.0073	0.033
1,2-Dichlorobenzene	0.33	U	0.011	0.33
1,3-Dichlorobenzene	0.33	U	0.026	0.33
1,4-Dichlorobenzene	0.33	U	0.026	0.33
2,2'-oxybis[1-chloropropane]	0.33	U	0.014	0.33
2,4-Dinitrotoluene	0.067	U	0.013	0.067
2,6-Dinitrotoluene	0.067	U	0.018	0.067
2-Chloronaphthalene	0.33	U	0.0075	0.33
2-Methylnaphthalene	0.33	U	0.0073	0.33
2-Nitroaniline	0.33	U	0.011	0.33
3,3'-Dichlorobenzidine	0.13	U	0.037	0.13
3-Nitroaniline	0.33	U	0.0098	0.33
4-Bromophenyl phenyl ether	0.33	U	0.010	0.33
4-Chloroaniline	0.33	U	0.0085	0.33
4-Chlorophenyl phenyl ether	0.33	U	0.0099	0.33
4-Nitroaniline	0.33	U	0.013	0.33
Acenaphthene	0.33	U	0.0080	0.33
Acenaphthylene	0.33	U	0.0085	0.33
Anthracene	0.33	U	0.031	0.33
Benzo[a]anthracene	0.033	U	0.028	0.033
Benzo[a]pyrene	0.033	U	0.010	0.033
Benzo[b]fluoranthene	0.033	U	0.013	0.033
Benzo[g,h,i]perylene	0.33	U	0.019	0.33
Benzo[k]fluoranthene	0.033	U	0.014	0.033
Bis(2-chloroethoxy)methane	0.33	U	0.010	0.33
Bis(2-chloroethyl)ether	0.033	U	0.0078	0.033
Bis(2-ethylhexyl) phthalate	0.33	U	0.013	0.33
Butyl benzyl phthalate	0.33	U	0.010	0.33
Carbazole	0.33	U	0.0082	0.33
Chrysene	0.33	U	0.0090	0.33
Dibenz(a,h)anthracene	0.033	U	0.017	0.033
Dibenzofuran	0.33	U	0.010	0.33
Diethyl phthalate	0.33	U	0.0094	0.33
Dimethyl phthalate	0.33	U	0.0096	0.33
Di-n-butyl phthalate	0.33	U	0.0099	0.33
Di-n-octyl phthalate	0.33	U	0.017	0.33
Fluoranthene	0.33	U	0.0098	0.33
Fluorene	0.33	U	0.0072	0.33
Hexachlorobenzene	0.033	U	0.013	0.033
Hexachlorobutadiene	0.067	U	0.0093	0.067
Hexachlorocyclopentadiene	0.33	Ū	0.021	0.33
Hexachloroethane	0.033	Ü	0.012	0.033
Indeno[1,2,3-cd]pyrene	0.033	Ü	0.022	0.033
Isophorone	0.13	Ü	0.0071	0.13
Naphthalene	0.33	Ü	0.0084	0.33

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455573 Method: 8270D Preparation: 3546

Lab Sample ID: MB 460-455573/1-A Analysis Batch: 460-455727 Instrument ID: CBNAMS11 Client Matrix: Prep Batch: 460-455573 Solid Lab File ID: z47124.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 15.0000 g Final Weight/Volume: 1 mL Analysis Date: 08/11/2017 1852 Units: mg/Kg Injection Volume: Prep Date: 08/11/2017 0728 1 uL

Leach Date: N/A

Analyte	Result	Qual	MDL	RL
Nitrobenzene	0.033	U	0.010	0.033
N-Nitrosodi-n-propylamine	0.033	U	0.011	0.033
N-Nitrosodiphenylamine	0.33	U	0.030	0.33
Phenanthrene	0.33	U	0.0088	0.33
Pyrene	0.33	U	0.015	0.33
Surrogate	% Rec		Acceptance Limits	
2-Fluorobiphenyl	66		38 - 95	
Nitrobenzene-d5 (Surr)	67		37 - 94	
Terphenyl-d14 (Surr)	78		24 - 109	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455573

Method: 8270D Preparation: 3546

Lab Sample ID: LCS 460-455573/2-A

Client Matrix: Solid
Dilution: 1.0

Analysis Date: 08/11/2017 1916 Prep Date: 08/11/2017 0728

Leach Date: N/A

Analysis Batch: 460-455727 Prep Batch: 460-455573 Leach Batch: N/A

Units: mg/Kg

Instrument ID: CBNAMS11
Lab File ID: z47125.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

% Rec. Limit Qual Analyte Spike Amount Result 3.33 2.84 85 62 - 104 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 3.33 2.77 83 64 - 98 1,3-Dichlorobenzene 3.33 2.72 82 62 - 963.33 2.70 81 63 - 971,4-Dichlorobenzene 2,2'-oxybis[1-chloropropane] 3.33 2.76 83 39 - 122 3.33 93 2,4-Dinitrotoluene 3.11 66 - 122 2,6-Dinitrotoluene 3.33 3.15 95 70 - 114 2-Chloronaphthalene 3.33 2.84 85 63 - 107 2-Methylnaphthalene 3.33 2.82 85 65 - 1042-Nitroaniline 3.33 2.86 86 57 - 114 3,3'-Dichlorobenzidine 3.33 1.90 57 18 - 88 3.33 30 - 943-Nitroaniline 2.04 61 4-Bromophenyl phenyl ether 3.33 3.07 92 59 - 122 4-Chloroaniline 3.33 2.21 66 18 - 94 3.33 2.87 66 - 110 4-Chlorophenyl phenyl ether 86 4-Nitroaniline 3.33 2.76 83 49 - 118 Acenaphthene 3.33 84 62 - 108 2.81 Acenaphthylene 3.33 2.94 88 67 - 107 3.33 69 - 111 Anthracene 3.04 91 92 Benzo[a]anthracene 3.33 3.08 68 - 110Benzo[a]pyrene 3.33 3.38 101 72 - 115 Benzo[b]fluoranthene 3.33 3.24 97 69 - 119 Benzo[g,h,i]perylene 3.33 3.34 100 54 - 128 Benzo[k]fluoranthene 3.33 3.20 96 70 - 115 Bis(2-chloroethoxy)methane 3.33 2.76 83 65 - 1063.33 2.82 64 - 105 Bis(2-chloroethyl)ether 84 Bis(2-ethylhexyl) phthalate 3.33 3.07 92 63 - 125 Butyl benzyl phthalate 3.33 2.99 90 65 - 125 Carbazole 3.33 3.04 91 66 - 115 3.33 3.07 92 Chrysene 70 - 111 Dibenz(a,h)anthracene 3.33 3.41 102 60 - 130Dibenzofuran 3.33 2.89 87 67 - 107 Diethyl phthalate 3.33 2.95 89 66 - 117 Dimethyl phthalate 3.33 2.93 88 68 - 112 Di-n-butyl phthalate 3.33 3.08 92 67 - 119 Di-n-octyl phthalate 3.33 3.07 92 57 - 138 Fluoranthene 3.33 3.04 91 64 - 114 Fluorene 3.33 2.89 87 66 - 110 Hexachlorobenzene 3.33 98 57 - 128 3.27 Hexachlorobutadiene 3.33 2.92 88 60 - 1083.33 50 - 129 Hexachlorocyclopentadiene 2.81 84

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455573

Method: 8270D Preparation: 3546

Lab Sample ID: LCS 460-455573/2-A Client Matrix: Solid Dilution: 1.0 Analysis Date: 08/11/2017 1916

N/A

Prep Date:

Leach Date:

08/11/2017 0728

Analysis Batch: 460-455727 Prep Batch: 460-455573 Leach Batch: N/A Units: mg/Kg

Instrument ID: CBNAMS11 Lab File ID: z47125.D Initial Weight/Volume: 15.0000 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Hexachloroethane	3.33	2.73	82	63 - 99	
Indeno[1,2,3-cd]pyrene	3.33	3.44	103	53 - 137	
Isophorone	3.33	2.87	86	68 - 111	
Naphthalene	3.33	2.78	83	65 - 102	
Nitrobenzene	3.33	2.74	82	66 - 108	
N-Nitrosodi-n-propylamine	3.33	3.01	90	63 - 117	
N-Nitrosodiphenylamine	3.33	3.05	92	65 - 114	
Phenanthrene	3.33	3.01	90	68 - 111	
Pyrene	3.33	2.91	87	64 - 121	
Surrogate	% R	ec	Acc	ceptance Limits	
2-Fluorobiphenyl	83		38 - 95		
Nitrobenzene-d5 (Surr)	80				
Terphenyl-d14 (Surr)	89				

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8270D Matrix Spike Duplicate Recovery Report - Batch: 460-455573 Preparation: 3546

MS Lab Sample ID: 460-138836-4

Client Matrix: Solid Dilution: 1.0

08/11/2017 2026 Analysis Date: Prep Date: 08/11/2017 0728

Leach Date: N/A

MSD Lab Sample ID: 460-138836-4

Client Matrix: Solid Dilution: 1.0

Analysis Date: 08/11/2017 2050 Prep Date: 08/11/2017 0728

Leach Date: N/A Analysis Batch: 460-455727 Prep Batch: 460-455573

Leach Batch: N/A

Instrument ID: CBNAMS11 Lab File ID: z47128.D Initial Weight/Volume: 15.0219 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analysis Batch: 460-455727 Instrument ID: CBNAMS11 Prep Batch: 460-455573 Lab File ID: z47129.D Leach Batch: Initial Weight/Volume: 15.0415 g N/A

Final Weight/Volume: 1 mL Injection Volume: 1 uL

<u>% Rec.</u>							
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
1,2,4-Trichlorobenzene	70	75	62 - 104	6	30		
1,2-Dichlorobenzene	68	70	64 - 98	3	30		
1,3-Dichlorobenzene	67	68	62 - 96	1	30		
1,4-Dichlorobenzene	67	68	63 - 97	2	30		
2,2'-oxybis[1-chloropropane]	67	70	39 - 122	4	30		
2,4-Dinitrotoluene	78	88	66 - 122	11	30		
2,6-Dinitrotoluene	76	85	70 - 114	11	30		
2-Chloronaphthalene	68	75	63 - 107	10	30		
2-Methylnaphthalene	71	77	65 - 104	7	30		
2-Nitroaniline	69	77	57 - 114	11	30		
3,3'-Dichlorobenzidine	54	67	18 - 88	22	30		
3-Nitroaniline	57	64	30 - 94	12	30		
4-Bromophenyl phenyl ether	76	84	59 - 122	10	30		
4-Chloroaniline	54	61	18 - 94	13	30		
4-Chlorophenyl phenyl ether	71	79	66 - 110	10	30		
4-Nitroaniline	72	78	49 - 118	9	30		
Acenaphthene	68	76	62 - 108	10	30		
Acenaphthylene	72	78	67 - 107	9	30		
Anthracene	75	82	69 - 111	9	30		
Benzo[a]anthracene	75	84	68 - 110	12	30		
Benzo[a]pyrene	83	91	72 - 115	10	30		
Benzo[b]fluoranthene	79	88	69 - 119	10	30		
Benzo[g,h,i]perylene	80	90	54 - 128	12	30		
Benzo[k]fluoranthene	77	86	70 - 115	10	30		
Bis(2-chloroethoxy)methane	69	74	65 - 106	7	30		
Bis(2-chloroethyl)ether	67	70	64 - 105	3	30		
Bis(2-ethylhexyl) phthalate	73	82	63 - 125	12	30		
Butyl benzyl phthalate	72	80	65 - 125	11	30		
Carbazole	73	79	66 - 115	7	30		
Chrysene	75	84	70 - 111	11	30		
Dibenz(a,h)anthracene	82	92	60 - 130	12	30		
Dibenzofuran	72	79	67 - 107	9	30		

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8270D Matrix Spike Duplicate Recovery Report - Batch: 460-455573 Preparation: 3546

MS Lab Sample ID): 460-138836-4	Analysis Batch:	460-455727	Instrument ID:	CBNAMS11
Client Matrix:	Solid	Prep Batch:	460-455573	Lab File ID:	z47128.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	15.0219 g
Analysis Date:	08/11/2017 2026			Final Weight/Volume:	1 mL
Prep Date:	08/11/2017 0728			Injection Volume:	1 uL
Leach Date:	N/A				

MSD Lab Sample ID: 460-138836-4 Analysis Batch: 460-455727 Instrument ID: CBNAMS11 Lab File ID: Client Matrix: Solid Prep Batch: 460-455573 z47129.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 15.0415 g

Analysis Date: 08/11/2017 2050 Final Weight/Volume: 1 mL Prep Date: 08/11/2017 0728 Injection Volume: 1 uL Leach Date: N/A

	%	% Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Diethyl phthalate	74	82	66 - 117	10	30		
Dimethyl phthalate	73	81	68 - 112	10	30		
Di-n-butyl phthalate	74	81	67 - 119	9	30		
Di-n-octyl phthalate	73	80	57 - 138	9	30		
Fluoranthene	72	80	64 - 114	10	30		
Fluorene	73	80	66 - 110	10	30		
Hexachlorobenzene	82	89	57 - 128	8	30		
Hexachlorobutadiene	74	78	60 - 108	5	30		
Hexachlorocyclopentadiene	56	57	50 - 129	3	30		
Hexachloroethane	69	71	63 - 99	2	30		
Indeno[1,2,3-cd]pyrene	83	93	53 - 137	12	30		
Isophorone	73	78	68 - 111	7	30		
Naphthalene	69	75	65 - 102	7	30		
Nitrobenzene	67	71	66 - 108	6	30		
N-Nitrosodi-n-propylamine	76	82	63 - 117	6	30		
N-Nitrosodiphenylamine	74	81	65 - 114	9	30		
Phenanthrene	74	81	68 - 111	9	30		
Pyrene	70	79	64 - 121	12	30		
Surrogate		MS % Rec	MSD	% Rec	Acc	eptance Lim	its
2-Fluorobiphenyl		68	74		3	88 - 95	
Nitrobenzene-d5 (Surr)		65	70			87 - 94	
Terphenyl-d14 (Surr)		73	82		2	24 - 109	

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455775

Method: 8270D Preparation: 3546

Lab Sample ID: MB 460-455775/1-A

Client Matrix: Solid Dilution: 1.0

Analysis Date: 08/14/2017 0506 Prep Date: 08/11/2017 2150

Leach Date: N/A

Analysis Batch: 460-456035 Prep Batch: 460-455775 Leach Batch: N/A

Units: mg/Kg

Instrument ID: CBNAMS12
Lab File ID: L19790.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Analyte	Result	Qual	MDL	RL
1,2,4-Trichlorobenzene	0.033	U	0.0073	0.033
1,2-Dichlorobenzene	0.33	U	0.011	0.33
1,3-Dichlorobenzene	0.33	U	0.026	0.33
1,4-Dichlorobenzene	0.33	U	0.026	0.33
2,2'-oxybis[1-chloropropane]	0.33	U	0.014	0.33
2,4-Dinitrotoluene	0.067	U	0.013	0.067
2,6-Dinitrotoluene	0.067	U	0.018	0.067
2-Chloronaphthalene	0.33	U	0.0075	0.33
2-Methylnaphthalene	0.33	U	0.0073	0.33
2-Nitroaniline	0.33	U	0.011	0.33
3,3'-Dichlorobenzidine	0.13	Ü	0.037	0.13
3-Nitroaniline	0.33	Ū	0.0098	0.33
4-Bromophenyl phenyl ether	0.33	Ü	0.010	0.33
4-Chloroaniline	0.33	Ū	0.0085	0.33
4-Chlorophenyl phenyl ether	0.33	Ū	0.0099	0.33
4-Nitroaniline	0.33	Ū	0.013	0.33
Acenaphthene	0.33	Ü	0.0080	0.33
Acenaphthylene	0.33	Ü	0.0085	0.33
Anthracene	0.33	Ü	0.031	0.33
Benzo[a]anthracene	0.033	Ü	0.028	0.033
Benzo[a]pyrene	0.033	Ü	0.010	0.033
Benzo[b]fluoranthene	0.033	Ü	0.013	0.033
Benzo[g,h,i]perylene	0.33	Ü	0.019	0.33
Benzo[k]fluoranthene	0.033	Ü	0.014	0.033
Bis(2-chloroethoxy)methane	0.33	Ü	0.010	0.33
Bis(2-chloroethyl)ether	0.033	Ü	0.0078	0.033
Bis(2-ethylhexyl) phthalate	0.33	Ū	0.013	0.33
Butyl benzyl phthalate	0.33	Ü	0.010	0.33
Carbazole	0.33	Ū	0.0082	0.33
Chrysene	0.33	Ü	0.0090	0.33
Dibenz(a,h)anthracene	0.033	Ü	0.017	0.033
Dibenzofuran	0.33	Ü	0.010	0.33
Diethyl phthalate	0.33	Ü	0.0094	0.33
Dimethyl phthalate	0.33	Ü	0.0096	0.33
Di-n-butyl phthalate	0.33	Ü	0.0099	0.33
Di-n-octyl phthalate	0.33	Ü	0.017	0.33
Fluoranthene	0.33	Ü	0.0098	0.33
Fluorene	0.33	Ü	0.0072	0.33
Hexachlorobenzene	0.033	Ü	0.013	0.033
Hexachlorobutadiene	0.067	Ü	0.0093	0.067
Hexachlorocyclopentadiene	0.33	Ü	0.021	0.33
Hexachloroethane	0.033	Ü	0.012	0.033
Indeno[1,2,3-cd]pyrene	0.033	Ü	0.022	0.033
Isophorone	0.13	Ü	0.0071	0.13
Naphthalene	0.33	U	0.0071	0.33
нарпанаюто	0.00	5	3.0004	0.00

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455775

Method: 8270D Preparation: 3546

Lab Sample ID: MB 460-455775/1-A
Client Matrix: Solid
Dilution: 1.0
Analysis Date: 08/14/2017 0506

08/11/2017 2150

Analysis Batch: 460-456035
Prep Batch: 460-455775
Leach Batch: N/A
Units: mg/Kg

Instrument ID: CBNAMS12
Lab File ID: L19790.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Leach Date: N/A

Prep Date:

Analyte	Result	Qual	MDL	RL
Nitrobenzene	0.033	U	0.010	0.033
N-Nitrosodi-n-propylamine	0.033	U	0.011	0.033
N-Nitrosodiphenylamine	0.33	U	0.030	0.33
Phenanthrene	0.33	U	0.0088	0.33
Pyrene	0.33	U	0.015	0.33
Surrogate	% Rec		Acceptance Limits	
2-Fluorobiphenyl	73		38 - 95	
Nitrobenzene-d5 (Surr)	83	37 - 94		
Terphenyl-d14 (Surr)	87	24 - 109		

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455775

Method: 8270D Preparation: 3546

Lab Sample ID: LCS 460-455775/2-A

Client Matrix: Solid
Dilution: 1.0

Analysis Date: 08/14/2017 0527 Prep Date: 08/11/2017 2150

Leach Date: N/A

Analysis Batch: 460-456035 Prep Batch: 460-455775

Leach Batch: N/A
Units: mg/Kg

Instrument ID: CBNAMS12
Lab File ID: L19791.D
Initial Weight/Volume: 15.0000 g
Final Weight/Volume: 1 mL
Injection Volume: 1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
1,2,4-Trichlorobenzene	3.33	2.85	86	62 - 104	
1,2-Dichlorobenzene	3.33	2.90	87	64 - 98	
1,3-Dichlorobenzene	3.33	2.80	84	62 - 96	
1,4-Dichlorobenzene	3.33	2.84	85	63 - 97	
2,2'-oxybis[1-chloropropane]	3.33	3.01	90	39 - 122	
2,4-Dinitrotoluene	3.33	3.44	103	66 - 122	
2,6-Dinitrotoluene	3.33	3.50	105	70 - 114	
2-Chloronaphthalene	3.33	2.88	87	63 - 107	
2-Methylnaphthalene	3.33	3.00	90	65 - 104	
2-Nitroaniline	3.33	2.89	87	57 - 114	
3,3'-Dichlorobenzidine	3.33	2.14	64	18 - 88	
3-Nitroaniline	3.33	3.12	94	30 - 94	
4-Bromophenyl phenyl ether	3.33	3.01	90	59 - 122	
4-Chloroaniline	3.33	2.52	76	18 - 94	
4-Chlorophenyl phenyl ether	3.33	3.00	90	66 - 110	
4-Nitroaniline	3.33	3.69	111	49 - 118	
Acenaphthene	3.33	2.74	82	62 - 108	
Acenaphthylene	3.33	3.07	92	67 - 107	
Anthracene	3.33	3.10	93	69 - 111	
Benzo[a]anthracene	3.33	3.16	95	68 - 110	
Benzo[a]pyrene	3.33	3.51	105	72 - 115	
Benzo[b]fluoranthene	3.33	3.63	109	69 - 119	
Benzo[g,h,i]perylene	3.33	2.37	71	54 - 128	
Benzo[k]fluoranthene	3.33	3.51	105	70 - 115	
Bis(2-chloroethoxy)methane	3.33	3.09	93	65 - 106	
Bis(2-chloroethyl)ether	3.33	3.16	95	64 - 105	
Bis(2-ethylhexyl) phthalate	3.33	3.20	96	63 - 125	
Butyl benzyl phthalate	3.33	3.21	96	65 - 125	
Carbazole	3.33	3.28	98	66 - 115	
Chrysene	3.33	2.99	90	70 - 111	
Dibenz(a,h)anthracene	3.33	2.59	78	60 - 130	
Dibenzofuran	3.33	3.05	91	67 - 107	
Diethyl phthalate	3.33	3.23	97	66 - 117	
Dimethyl phthalate	3.33	3.16	95	68 - 112	
Di-n-butyl phthalate	3.33	3.18	95	67 - 119	
Di-n-octyl phthalate	3.33	4.01	120	57 - 138	
Fluoranthene	3.33	3.09	93	64 - 114	
Fluorene	3.33	3.08	92	66 - 110	
Hexachlorobenzene	3.33	3.02	91	57 - 128	
Hexachlorobutadiene	3.33	2.80	84	60 - 108	
Hexachlorocyclopentadiene	3.33	3.05	92	50 - 129	

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455775

N/A

Leach Date:

Method: 8270D Preparation: 3546

Lab Sample ID: LCS 460-455775/2-A Analysis Batch: Client Matrix: Solid Dilution: 1.0 Analysis Date: 08/14/2017 0527 Units: Prep Date: 08/11/2017 2150

460-456035 Prep Batch: 460-455775 Leach Batch: N/A mg/Kg

Instrument ID: CBNAMS12 Lab File ID: L19791.D Initial Weight/Volume: 15.0000 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Hexachloroethane	3.33	2.86	86	63 - 99	
Indeno[1,2,3-cd]pyrene	3.33	3.12	94	53 - 137	
Isophorone	3.33	3.11	93	68 - 111	
Naphthalene	3.33	2.95	89	65 - 102	
Nitrobenzene	3.33	3.09	93	66 - 108	
N-Nitrosodi-n-propylamine	3.33	3.27	98	63 - 117	
N-Nitrosodiphenylamine	3.33	3.00	90	65 - 114	
Phenanthrene	3.33	3.02	91	68 - 111	
Pyrene	3.33	3.19	96	64 - 121	
Surrogate	% R	ec	Acc	eptance Limits	
2-Fluorobiphenyl	80		38 - 95		
Nitrobenzene-d5 (Surr)	91				
Terphenyl-d14 (Surr)	100)	24 - 109		

Client: AKRF Inc Job Number: 460-138836-1

460-456035

460-455775

N/A

N/A

Matrix Spike/ Method: 8270D Matrix Spike Duplicate Recovery Report - Batch: 460-455775

Analysis Batch:

Prep Batch:

Leach Batch:

Prep Batch:

Leach Batch:

MS Lab Sample ID: 460-138570-A-24-B MS

Client Matrix: Dilution: 10

Analysis Date: 08/14/2017 1330 Prep Date: 08/11/2017 2150

Leach Date: N/A

MSD Lab Sample ID: 460-138570-A-24-C MSD Analysis Batch:

Client Matrix: Solid

10 Dilution:

Analysis Date: 08/14/2017 1352 Prep Date: 08/11/2017 2150

Leach Date: N/A Preparation: 3546

Instrument ID: CBNAMS12 Lab File ID: L19813.D

Initial Weight/Volume: 15.0306 g Final Weight/Volume: 1 mL Injection Volume: 1 uL

460-456035 Instrument ID: CBNAMS12 Lab File ID: 460-455775 L19814.D Initial Weight/Volume: 15.0391 g Final Weight/Volume: 1 mL

Injection Volume: 1 uL

<u>% Rec.</u>								
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
1,2,4-Trichlorobenzene	61	59	62 - 104	4	30	*	*	
1,2-Dichlorobenzene	58	55	64 - 98	5	30	J *	J *	
1,3-Dichlorobenzene	59	53	62 - 96	11	30	J *	J *	
1,4-Dichlorobenzene	57	54	63 - 97	6	30	J *	J *	
2,2'-oxybis[1-chloropropane]	65	59	39 - 122	8	30	J	J	
2,4-Dinitrotoluene	0	90	66 - 122	NC	30	U *		
2,6-Dinitrotoluene	118	136	70 - 114	14	30	*	*	
2-Chloronaphthalene	63	53	63 - 107	18	30	J	J *	
2-Methylnaphthalene	- 57	- 155	65 - 104	12	30	*	*	
2-Nitroaniline	0	0	57 - 114	NC	30	U *	U *	
3,3'-Dichlorobenzidine	20	18	18 - 88	13	30	J	J	
3-Nitroaniline	39	37	30 - 94	7	30	J	J	
4-Bromophenyl phenyl ether	60	66	59 - 122	9	30	J	J	
4-Chloroaniline	0	48	18 - 94	NC	30	U *	J	
4-Chlorophenyl phenyl ether	68	62	66 - 110	10	30	J	J *	
4-Nitroaniline	35	27	49 - 118	23	30	J *	J *	
Acenaphthene	70	60	62 - 108	15	30	J	J *	
Acenaphthylene	74	68	67 - 107	8	30	J	J	
Anthracene	68	66	69 - 111	4	30	J *	J *	
Benzo[a]anthracene	63	62	68 - 110	0	30	*	*	
Benzo[a]pyrene	68	64	72 - 115	5	30	*	*	
Benzo[b]fluoranthene	77	73	69 - 119	6	30			
Benzo[g,h,i]perylene	56	55	54 - 128	3	30	J	J	
Benzo[k]fluoranthene	72	69	70 - 115	5	30		*	
Bis(2-chloroethoxy)methane	132	101	65 - 106	27	30	*		
Bis(2-chloroethyl)ether	62	59	64 - 105	4	30	*	*	
Bis(2-ethylhexyl) phthalate	61	60	63 - 125	3	30	J *	J *	
Butyl benzyl phthalate	61	60	65 - 125	2	30	J *	J *	
Carbazole	68	60	66 - 115	12	30	J	J *	
Chrysene	62	61	70 - 111	2	30	J *	J *	
Dibenz(a,h)anthracene	64	58	60 - 130	9	30		*	
Dibenzofuran	100	96	67 - 107	4	30		J	

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8270D Matrix Spike Duplicate Recovery Report - Batch: 460-455775 Preparation: 3546

MS Lab Sample ID: 460-138570-A-24-B MS Analysis Batch: Instrument ID: CBNAMS12 460-456035 Client Matrix: Prep Batch: 460-455775 Lab File ID: L19813.D

Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 15.0306 g Final Weight/Volume: Analysis Date: 08/14/2017 1330 1 mL

Prep Date: 08/11/2017 2150 Injection Volume: 1 uL Leach Date: N/A

MSD Lab Sample ID: 460-138570-A-24-C MSD Analysis Batch: 460-456035 Instrument ID: CBNAMS12

Client Matrix: Solid Prep Batch: 460-455775 Lab File ID: L19814.D Dilution: 10 Leach Batch: Initial Weight/Volume: 15.0391 g N/A

Analysis Date: 08/14/2017 1352 Final Weight/Volume: 1 mL

Injection Volume: Prep Date: 08/11/2017 2150 1 uL Leach Date: N/A

<u>% Rec.</u>								
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual	
Diethyl phthalate	84	77	66 - 117	9	30	J	J	
Dimethyl phthalate	70	65	68 - 112	7	30	J	J *	
Di-n-butyl phthalate	68	65	67 - 119	5	30	J	J *	
Di-n-octyl phthalate	71	65	57 - 138	9	30	J	J	
Fluoranthene	68	65	64 - 114	5	30	J	J	
Fluorene	97	96	66 - 110	2	30	J	J	
Hexachlorobenzene	62	60	57 - 128	4	30			
Hexachlorobutadiene	64	58	60 - 108	10	30		*	
Hexachlorocyclopentadiene	45	46	50 - 129	3	30	J *	J *	
Hexachloroethane	0	55	63 - 99	NC	30	U *	*	
Indeno[1,2,3-cd]pyrene	82	96	53 - 137	16	30			
Isophorone	237	210	68 - 111	12	30	*	*	
Naphthalene	22	-28	65 - 102	11	30	*	*	
Nitrobenzene	92	77	66 - 108	18	30			
N-Nitrosodi-n-propylamine	156	181	63 - 117	14	30	*	*	
N-Nitrosodiphenylamine	257	229	65 - 114	12	30	*	*	
Phenanthrene	49	36	68 - 111	7	30	*	*	
Pyrene	55	51	64 - 121	4	30	J *	J *	
Surrogate		MS % Rec	MSD	% Rec	Acceptance Limits		its	
2-Fluorobiphenyl		62	56		3	88 - 95		
Nitrobenzene-d5 (Surr)		176	* 169	*		37 - 94		
Terphenyl-d14 (Surr)		62	60		2	24 - 109		

Surrogate	MS % Rec	MSD % Rec	Acceptance Limits	
2-Fluorobiphenyl	62	56	38 - 95	
Nitrobenzene-d5 (Surr)	176 *	169 *	37 - 94	
Terphenyl-d14 (Surr)	62	60	24 - 109	

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455934

Method: 8270D Preparation: 3510C

Lab Sample ID: MB 460-455934/1-A

Client Matrix: Water Dilution: 1.0

Analysis Date: 08/14/2017 0514 Prep Date: 08/13/2017 0615

Leach Date: N/A

Analysis Batch: 460-456044 Prep Batch: 460-455934

Leach Batch: N/A Units: ug/L Instrument ID: CBNAMS6
Lab File ID: M5157.D
Initial Weight/Volume: 250 mL
Final Weight/Volume: 2 mL
Injection Volume: 5 uL

Analyte	Result	Qual	MDL	RL	
1,2,4-Trichlorobenzene	1.0	U	0.61	1.0	
1,2-Dichlorobenzene	10	U	0.83	10	
1,3-Dichlorobenzene	10	U	1.1	10	
1,4-Dichlorobenzene	10	U	0.66	10	
2,2'-oxybis[1-chloropropane]	10	U	0.93	10	
2,4-Dinitrotoluene	2.0	U	1.0	2.0	
2,6-Dinitrotoluene	2.0	U	0.88	2.0	
2-Chloronaphthalene	10	U	0.61	10	
2-Methylnaphthalene	10	U	0.88	10	
2-Nitroaniline	10	U	0.65	10	
3,3'-Dichlorobenzidine	10	U	1.0	10	
3-Nitroaniline	10	U	0.82	10	
4-Bromophenyl phenyl ether	10	U	1.0	10	
4-Chloroaniline	10	U	0.73	10	
4-Chlorophenyl phenyl ether	10	U	0.96	10	
4-Nitroaniline	10	U	0.48	10	
Acenaphthene	10	U	0.88	10	
Acenaphthylene	10	U	0.65	10	
Anthracene	10	U	0.57	10	
Benzo[a]anthracene	1.0	U	0.55	1.0	
Benzo[a]pyrene	1.0	U	0.16	1.0	
Benzo[b]fluoranthene	1.0	U	0.44	1.0	
Benzo[g,h,i]perylene	10	U	0.75	10	
Benzo[k]fluoranthene	1.0	U	0.18	1.0	
Bis(2-chloroethoxy)methane	10	U	0.69	10	
Bis(2-chloroethyl)ether	1.0	U	0.12	1.0	
Bis(2-ethylhexyl) phthalate	2.0	U	0.72	2.0	
Butyl benzyl phthalate	10	U	0.60	10	
Carbazole	10	U	0.85	10	
Chrysene	2.0	U	0.67	2.0	
Dibenz(a,h)anthracene	1.0	U	0.090	1.0	
Dibenzofuran	10	U	0.85	10	
Diethyl phthalate	10	U	1.0	10	
Dimethyl phthalate	10	U	0.98	10	
Di-n-butyl phthalate	10	U	0.82	10	
Di-n-octyl phthalate	10	U	0.69	10	
Fluoranthene	10	U	0.72	10	
Fluorene	10	U	0.80	10	
Hexachlorobenzene	1.0	U	0.47	1.0	
Hexachlorobutadiene	1.0	U	0.76	1.0	
Hexachlorocyclopentadiene	10	U	0.61	10	
Hexachloroethane	0.357	J	0.090	1.0	
Indeno[1,2,3-cd]pyrene	1.0	Ü	0.21	1.0	
Isophorone	10	Ū	0.67	10	
Naphthalene	10	Ü	0.80	10	
•					

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455934

Method: 8270D Preparation: 3510C

Lab Sample ID: MB 460-455934/1-A

Client Matrix: Water
Dilution: 1.0

Analysis Date: 08/14/2017 0514 Prep Date: 08/13/2017 0615

Leach Date: N/A

Analysis Batch: 460-456044 Prep Batch: 460-455934

Leach Batch: N/A Units: ug/L Instrument ID: CBNAMS6
Lab File ID: M5157.D
Initial Weight/Volume: 250 mL
Final Weight/Volume: 2 mL
Injection Volume: 5 uL

Analyte	Result	Qual	MDL	RL
Nitrobenzene	1.0	U	0.49	1.0
N-Nitrosodi-n-propylamine	1.0	U	0.83	1.0
N-Nitrosodiphenylamine	10	U	0.74	10
Phenanthrene	10	U	0.65	10
Pyrene	10	U	0.83	10

Surrogate	% Rec	Acceptance Limits
2-Fluorobiphenyl	96	45 - 107
Nitrobenzene-d5 (Surr)	98	51 - 108
Terphenyl-d14 (Surr)	95	40 - 148

CBNAMS6

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8270D
Lab Control Sample Duplicate Recovery Report - Batch: 460-455934 Preparation: 3510C

LCS Lab Sample ID: LCS 460-455934/2-A Analysis Batch: 460-456044 Instrument ID: CBNAMS6 Client Matrix: Water Prep Batch: 460-455934 Lab File ID: M5158.D Leach Batch: N/A 250 mL Dilution: 1.0 Initial Weight/Volume: Analysis Date: 08/14/2017 0537 Units: ug/L Final Weight/Volume: 2 mL 08/13/2017 0615 Injection Volume: 5 uL Prep Date: Leach Date: N/A

LCSD Lab Sample ID: LCSD 460-455934/3-A Analysis Batch: 460-456044 Instrument ID:

Client Matrix: Water Prep Batch: 460-455934 Lab File ID: M5159.D Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 250 mL 08/14/2017 0559 Final Weight/Volume: Analysis Date: Units: ug/L 2 mL

Analysis Date: 08/14/2017 0559 Units: ug/L Final Weight/Volume: 2 mL

Prep Date: 08/13/2017 0615 Injection Volume: 5 uL

Leach Date: N/A % Rec. LCS **LCSD RPD** RPD Limit LCS Qual LCSD Qual Analyte Limit 1,2,4-Trichlorobenzene 84 86 43 - 98 2 30 1,2-Dichlorobenzene 75 74 42 - 95 0 30 1,3-Dichlorobenzene 71 72 40 - 92 0 30 76 42 - 94 0 1,4-Dichlorobenzene 76 30 78 84 50 - 1087 30 2,2'-oxybis[1-chloropropane] 88 95 70 - 123 30 2,4-Dinitrotoluene 7 2,6-Dinitrotoluene 99 99 68 - 121 0 30 100 98 54 - 105 2 30 2-Chloronaphthalene 86 84 47 - 104 2 30 2-Methylnaphthalene 2-Nitroaniline 94 112 46 - 124 17 30 3,3'-Dichlorobenzidine 107 97 68 - 123 9 30 60 - 117 61 61 0 30 3-Nitroaniline 4-Bromophenyl phenyl ether 97 57 - 126 30 105 8 4-Chloroaniline 53 50 51 - 108 7 30 4-Chlorophenyl phenyl ether 104 102 60 - 114 30 1 4-Nitroaniline 83 48 - 135 30 72 14 Acenaphthene 94 90 58 - 107 4 30 Acenaphthylene 102 100 61 - 106 1 30 70 - 118 Anthracene 105 103 2 30 Benzo[a]anthracene 99 101 73 - 119 1 30 Benzo[a]pyrene 105 110 76 - 125 5 30 Benzo[b]fluoranthene 98 78 - 123 16 30 115 Benzo[g,h,i]perylene 106 110 63 - 133 4 30 108 2 30 Benzo[k]fluoranthene 110 71 - 12698 67 - 104 7 30 Bis(2-chloroethoxy)methane 92 Bis(2-chloroethyl)ether 81 86 63 - 106 5 30

104

106

96

111

99

99

97

96

97

107

111

102

102

107

94

100

96

104

63 - 135

66 - 129

68 - 121

73 - 121

59 - 136

67 - 108

61 - 129

65 - 121

64 - 130

3

4

6

9

8

5

3

0

7

30

30

30

30

30

30

30

30

30

Bis(2-ethylhexyl) phthalate

Butyl benzyl phthalate

Dibenz(a,h)anthracene

Carbazole

Chrysene

Dibenzofuran

Diethyl phthalate

Dimethyl phthalate

Di-n-butyl phthalate

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample/ Method: 8270D
Lab Control Sample Duplicate Recovery Report - Batch: 460-455934 Preparation: 3510C

LCS Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: LCS 460-455934/2-A Water 1.0 08/14/2017 0537 08/13/2017 0615 N/A	Prep E	sis Batch: Batch: Batch:	460-456044 460-455934 N/A ug/L	Final We		CBNAMS6 M5158.D 250 mL 2 mL 5 uL	
LCSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	e ID: LCSD 460-455934/3-A Water 1.0 08/14/2017 0559 08/13/2017 0615 N/A	Prep E	sis Batch: Batch: Batch:	460-456044 460-455934 N/A ug/L	Final We		CBNAMS6 M5159.D 250 mL 2 mL 5 uL	
		%	Rec.					
Analyte		LCS	LCSD	Limit	RPD	RPD Limit	LCS Qual	LCSD Qual
Di-n-octyl phthala	te	101	107	64 - 131	6	30		
Fluoranthene		100	103	66 - 123	3	30		
Fluorene		101	101	67 - 112	0	30		
Hexachlorobenze	ne	112	97	63 - 125	14	30		
Hexachlorobutadi		84	82	34 - 99	2	30		
Hexachlorocyclop		113	109	18 - 99	4	30	*	*
Hexachloroethane		66	78	39 - 92	16	30		
Indeno[1,2,3-cd]p	yrene	123	124	57 - 142	1	30		
Isophorone		82	87	55 - 105	6	30		
Naphthalene		86	90	51 - 98	4	30		
Nitrobenzene		80	94	56 - 106	16	30		
N-Nitrosodi-n-proj		74	80	48 - 118	8	30		
N-Nitrosodiphenyl	lamine	100	98	69 - 118	2	30		
Phenanthrene		104	105	70 - 117	1	30		
Pyrene		116	107	63 - 129	8	30		
Surrogate		L	CS % Rec	LCSD %	Rec	Accep	tance Limits	
2-Fluorobiphenyl		99		95		-	5 - 107	
Nitrobenzene-d5	•	90	-	108		-	1 - 108	
Terphenyl-d14 (S	urr)	90)	88		4	0 - 148	

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455215

Surrogate

DCB Decachlorobiphenyl

Method: 8082A Preparation: 3546

Acceptance Limits

35 - 150

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 460-455215/1-A Solid 1.0 08/10/2017 1448 08/09/2017 2155 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-455410 460-455215 N/A mg/Kg	Lab Initia Final Injec	ument ID: File ID: I Weight/Volume: Weight/Volume: tion Volume: mn ID:	CPESTGC11 T1347115.D +15.0000 g 10 mL 1 uL PRIMARY
Analyte		Resi	ult	Qual	MDL	RL
Aroclor 1016		0.06	7	U	0.0089	0.067
Aroclor 1221		0.06	7	U	0.0089	0.067
Aroclor 1232		0.06	7	U	0.0089	0.067
Aroclor 1242		0.06	7	U	0.0089	0.067
Aroclor 1248		0.06	7	U	0.0089	0.067
Aroclor 1254		0.06	7	U	0.0092	0.067
Aroclor 1260		0.06	7	U	0.0092	0.067
Aroclor-1262		0.06	7	U	0.0092	0.067
Aroclor 1268		0.06	7	U	0.0092	0.067
Polychlorinated b	iphenyls, Total	0.06	7	U	0.0092	0.067
Surrogate		%	Rec		Acceptance Lin	nits
DCB Decachlorol	ninhenyl	1	29		35 - 150	

% Rec

119

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455215

Method: 8082A Preparation: 3546

Lab Sample ID: LCS 460-455215/2-A Client Matrix: Solid Dilution: 1.0 Analysis Date: 08/10/2017 1502 Prep Date:

08/09/2017 2155

Leach Date: N/A

460-455410 Analysis Batch: Prep Batch:

Leach Batch: N/A Units:

460-455215

mg/Kg

CPESTGC11 Instrument ID: Lab File ID: T1347116.D Initial Weight/Volume: +15.0000 g Final Weight/Volume: 10 mL Injection Volume: 1 uL

Column ID: **PRIMARY**

Analyte Spike Amount Result % Rec. Limit Qual Aroclor 1016 0.333 0.406 122 77 - 150 Aroclor 1260 0.333 79 - 150 0.407 122 % Rec Surrogate Acceptance Limits DCB Decachlorobiphenyl 129 35 - 150

Lab Control Sample - Batch: 460-455215

Method: 8082A Preparation: 3546

Lab Sample ID: LCS 460-455215/2-A Client Matrix: Solid Dilution: 1.0

Analysis Date: 08/10/2017 1502 Prep Date: 08/09/2017 2155

Leach Date: N/A Analysis Batch: Prep Batch:

Leach Batch: N/A Units:

460-455410 460-455215

mg/Kg

Instrument ID: CPESTGC11 Lab File ID: T1347116.D Initial Weight/Volume: +15.0000 g Final Weight/Volume: 10 mL

Injection Volume: 1 uL

Column ID: SECONDARY

% Rec. Analyte Spike Amount Result Limit Qual Aroclor 1016 0.333 0.403 121 77 - 150 Aroclor 1260 0.333 0.405 121 79 - 150 Surrogate % Rec Acceptance Limits DCB Decachlorobiphenyl 124 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8082A
Matrix Spike Duplicate Recovery Report - Batch: 460-455215 Preparation: 3546

MS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 460-138719-A-1-B MS Solid 1.0 08/10/2017 1532 08/09/2017 2155 N/A	Pre	alysis Batch: p Batch: ch Batch:	460-455410 460-455215 N/A	Final We	ID: eight/Volume: eight/Volume: volume:	CPESTGO T1347118 +15.0020 10 mL 1 uL PRIMARY	.D g
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 460-138719-A-1-E MS Solid 1.0 08/10/2017 1546 08/09/2017 2155 N/A	Pre	ilysis Batch: p Batch: ch Batch:	460-455410 460-455215 N/A	Final We	ID: eight/Volume: eight/Volume: volume:	CPESTGO T1347119 +15.0069 10 mL 1 uL PRIMARY	.D g
		%	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aroclor 1016		103	144	77 - 150	33	30		*
Aroclor 1260		112	106	79 - 150	6	30		
Surrogate			MS % Red	MSD %	% Rec	Acce	eptance Lim	its
DCB Decachlorob	iphenyl		119	110		3	5 - 150	

Matrix Spike/ Method: 8082A Matrix Spike Duplicate Recovery Report - Batch: 460-455215 Preparation: 3546

Surrogate

DCB Decachlorobiphenyl

MS Lab Sample I Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 460-138719-A-1-B MS Solid 1.0 08/10/2017 1532 08/09/2017 2155 N/A	Prep E	sis Batch: Batch: Batch:	460-455410 460-455215 N/A	Final We	ID: eight/Volume: eight/Volume: volume:	CPESTGO T1347118 +15.0020 10 mL 1 uL SECONDA	.D g
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 460-138719-A-1-E MS Solid 1.0 08/10/2017 1546 08/09/2017 2155 N/A	Prep E	sis Batch: Batch: Batch:	460-455410 460-455215 N/A	Final We	ID: eight/Volume: eight/Volume: volume:	CPESTG0 T1347119 +15.0069 10 mL 1 uL SECOND	.D g
Analyte		<u>% Re</u> MS	<u>ec.</u> MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aroclor 1016 Aroclor 1260		102 110	100 103	77 - 150 79 - 150	2 7	30 30		

MSD % Rec

108

Acceptance Limits

35 - 150

MS % Rec

115

Acceptance Limits

35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455741 Method: 8082A Preparation: 3546

Surrogate

DCB Decachlorobiphenyl

Lab Sample ID: Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	MB 460-455741/1-A Solid 1.0 08/13/2017 2237 08/11/2017 1702 N/A	Analysis Batch: Prep Batch: Leach Batch: Units:	460-456005 460-455741 N/A mg/Kg	Lab I Initia Final Injec	ument ID: File ID: I Weight/Volume: Weight/Volume: tion Volume: mn ID:	CPESTGC11 T1347330.D 15.0000 g 10 mL 1 uL PRIMARY
Analyte		Resu	ult	Qual	MDL	RL
Aroclor 1016		0.06	7	U	0.0089	0.067
Aroclor 1221		0.06	7	U	0.0089	0.067
Aroclor 1232		0.06	7	U	0.0089	0.067
Aroclor 1242		0.06	7	U	0.0089	0.067
Aroclor 1248		0.06	7	U	0.0089	0.067
Aroclor 1254		0.06	7	U	0.0092	0.067
Aroclor 1260		0.06	7	U	0.0092	0.067
Aroclor-1262		0.06	7	U	0.0092	0.067
Aroclor 1268		0.06	7	U	0.0092	0.067
Polychlorinated b	iphenyls, Total	0.06	7	U	0.0092	0.067
Surrogate		% I	Rec		Acceptance Lin	nits
DCB Decachlorob	piphenyl	1:	36		35 - 150	

% Rec

130

Client: AKRF Inc Job Number: 460-138836-1

Lab Control Sample - Batch: 460-455741

Method: 8082A Preparation: 3546

Lab Sample ID: LCS 460-455741/2-A Client Matrix: Solid Dilution: 1.0 Analysis Date: 08/13/2017 2252 Prep Date:

08/11/2017 1702 N/A

460-456005 Analysis Batch: Prep Batch: 460-455741 Leach Batch: N/A Units: mg/Kg

CPESTGC11 Instrument ID: Lab File ID: T1347331.D Initial Weight/Volume: 15.0000 g Final Weight/Volume: 10 mL Injection Volume: 1 uL Column ID: **PRIMARY**

Analyte Spike Amount Result % Rec. Limit Qual Aroclor 1016 0.333 0.396 119 77 - 150 Aroclor 1260 0.333 114 79 - 150 0.380 % Rec Surrogate Acceptance Limits DCB Decachlorobiphenyl 122 35 - 150

Lab Control Sample - Batch: 460-455741

Method: 8082A Preparation: 3546

Lab Sample ID: LCS 460-455741/2-A Client Matrix: Solid Dilution: 1.0

Analysis Date: 08/13/2017 2252 Prep Date: 08/11/2017 1702

Leach Date: N/A

Leach Date:

Analysis Batch: 460-456005 Prep Batch: 460-455741 Leach Batch: N/A

Units: mg/Kg Instrument ID: CPESTGC11 Lab File ID: T1347331.D Initial Weight/Volume: 15.0000 g Final Weight/Volume: 10 mL Injection Volume: 1 uL

Column ID: SECONDARY

% Rec. Analyte Spike Amount Result Limit Qual Aroclor 1016 0.333 0.374 112 77 - 150 Aroclor 1260 0.333 0.382 115 79 - 150 Surrogate % Rec Acceptance Limits DCB Decachlorobiphenyl 121 35 - 150

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike/ Method: 8082A Matrix Spike Duplicate Recovery Report - Batch: 460-455741 Preparation: 3546

MS Lab Sample II Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	D: 460-138908-1 Solid 1.0 08/13/2017 2306 08/11/2017 1702 N/A	Pre	lysis Batch: o Batch: ch Batch:	460-456005 460-455741 N/A	Final We	ID: eight/Volume: eight/Volume: i Volume:	CPESTGO T1347332 15.0110 10 mL 1 uL PRIMARY	.D g
MSD Lab Sample Client Matrix: Dilution: Analysis Date: Prep Date: Leach Date:	ID: 460-138908-1 Solid 1.0 08/13/2017 2321 08/11/2017 1702 N/A	Pre	lysis Batch: o Batch: ch Batch:	460-456005 460-455741 N/A	Final We	ID: eight/Volume: eight/Volume: i Volume:	CPESTGO T1347333 15.0201 10 mL 1 uL PRIMARY	.D g
		%	Rec.					
Analyte		MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aroclor 1016		126	121	77 - 150	4	30		
Aroclor 1260		124	122	79 - 150	2	30		
Surrogate			MS % Rec	MSD %	% Rec	Acce	eptance Lim	its
DCB Decachlorob	iphenyl		129	129		3	5 - 150	

Matrix Spike/ Method: 8082A Matrix Spike Duplicate Recovery Report - Batch: 460-455741 Preparation: 3546

MS Lab Sample ID): 460-138908-1	Analysis Batch:	460-456005	Instrument ID:	CPESTGC11
Client Matrix:	Solid	Prep Batch:	460-455741	Lab File ID:	T1347332.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	15.0110 g
Analysis Date:	08/13/2017 2306			Final Weight/Volume:	10 mL
Prep Date:	08/11/2017 1702			Injection Volume:	1 uL
Leach Date:	N/A			Column ID:	SECONDARY
MSD Lab Sample	ID: 460-138908-1	Analysis Batch:	460-456005	Instrument ID:	CPESTGC11
Client Matrix:	Solid	Prep Batch:	460-455741	Lab File ID:	T1347333.D
Dilution:	1.0	Leach Batch:	N/A	Initial Weight/Volume:	15.0201 g
Analysis Date:	08/13/2017 2321			Final Weight/Volume:	10 mL
Prep Date:	08/11/2017 1702			Injection Volume:	1 uL
Leach Date:	N/A			Column ID:	SECONDARY
		<u>% Rec.</u>			

	<u>%</u>	Rec.					
Analyte	MS	MSD	Limit	RPD	RPD Limit	MS Qual	MSD Qual
Aroclor 1016	123	114	77 - 150	8	30		
Aroclor 1260	124	118	79 - 150	4	30		
Surrogate		MS % Rec	MSD ^c	% Rec	Acc	eptance Lim	its
DCB Decachlorobiphenyl		129	124		3	5 - 150	

Client: AKRF Inc Job Number: 460-138836-1

Prep Batch:

Units:

Leach Batch:

Method Blank - Batch: 460-455245

Method: 6010C Preparation: 3050B

Lab Sample ID: MB 460-455245/1-A ^2 Client Matrix: Solid

Dilution: 2.0 Analysis Date: 08/10/2017 1926

Prep Date: 08/10/2017 0225

Leach Date: N/A Analysis Batch: 460-455426 Instrument ID: ICP4 460-455245 Lab File ID: 455245.asc N/A Initial Weight/Volume: 1.0 g Final Weight/Volume: 50 mL mg/Kg

Analyte	Result	Qual	MDL	RL
Silver	1.0	U	0.15	1.0
Aluminum	20.0	U	4.1	20.0
Arsenic	1.5	U	0.37	1.5
Barium	20.0	U	1.6	20.0
Beryllium	0.20	U	0.023	0.20
Calcium	500	U	51.0	500
Cadmium	0.40	U	0.060	0.40
Cobalt	5.0	U	0.57	5.0
Chromium	1.0	U	0.28	1.0
Copper	2.5	U	0.57	2.5
Iron	15.0	U	2.7	15.0
Potassium	500	U	26.6	500
Magnesium	500	U	38.6	500
Manganese	1.5	U	0.16	1.5
Sodium	500	U	38.5	500
Nickel	4.0	U	0.38	4.0
Lead	1.0	U	0.30	1.0
Antimony	2.0	U	0.24	2.0
Selenium	2.0	U	0.61	2.0
Thallium	2.0	U	0.59	2.0
Vanadium	5.0	U	0.60	5.0
Zinc	3.0	U	0.26	3.0

Client: AKRF Inc Job Number: 460-138836-1

LCS-Certified Reference Material - Batch: 460-455245

Method: 6010C Preparation: 3050B

Lab Sample ID: Client Matrix:

LCSSRM 460-455245/2-A Analysis Batch: 460-455426 460-455245 Instrument ID: ICP4 Lab File ID: 455245.asc

Dilution:

4.0 08/10/2017 1930

Prep Batch: Leach Batch: N/A Units:

mg/Kg

Initial Weight/Volume: 1.02 g Final Weight/Volume: 50 mL

Analysis Date: Prep Date:

08/10/2017 0225

Leach Date: N/A

nalyte	Spike Amount	Result	% Rec.	Limit	Qual
ilver	40.7	36.53	89.8	79.6 - 120.4	
luminum	8000	6829	85.4	47.4 - 152.5	
rsenic	147	131.2	89.3	83.0 - 117.0	
Barium	314	302.5	96.4	82.2 - 117.8	
Beryllium	53.4	52.65	98.6	82.8 - 117.2	
Calcium	4580	4390	95.9	80.8 - 119.0	
Sadmium	193	183.7	95.2	82.4 - 117.6	
Cobalt	81.3	81.92	100.8	83.4 - 116.6	
Chromium	82.6	77.82	94.2	81.8 - 118.2	
Copper	171	159.4	93.2	83.6 - 116.4	
on	14100	11960	84.8	60.4 - 139.7	
Potassium	2000	1713	85.7	69.5 - 130.5	
/lagnesium	2240	2022	90.2	75.4 - 125.0	
/langanese	222	210.6	94.9	82.0 - 118.0	
Sodium	216	184.1	85.2	72.2 - 127.8	J
lickel	137	137.4	100.3	82.5 - 118.2	
ead	92.3	88.69	96.1	82.8 - 117.0	
ntimony	65.1	30.33	46.6	0.2 - 212.0	
Selenium	187	175.8	94.0	79.1 - 121.4	
hallium	153	158.3	103.4	81.0 - 119.0	
'anadium	86.6	79.37	91.7	77.6 - 122.4	
linc	189	188.1	99.5	79.9 - 120.1	

ICP4

50 mL

455245.asc

Client: AKRF Inc Job Number: 460-138836-1

460-455426

460-455245

N/A

mg/Kg

Analysis Batch:

Prep Batch:

Units:

1.3

Leach Batch:

Matrix Spike - Batch: 460-455245

Method: 6010C Preparation: 3050B

Final Weight/Volume:

Initial Weight/Volume: 1.02 g

Instrument ID:

Lab File ID:

Lab Sample ID: 460-138795-E-9-C MS

Client Matrix: Solid Dilution: 4.0

Analysis Date: 08/10/2017 1957 Prep Date:

Leach Date: N/A

Zinc

08/10/2017 0225

Analyte	Sample R	esult/Qual	Spike Amount	Result	% Rec.	Limit	Qual
Silver	2.2	U	5.82	5.80	100	75 - 125	
Aluminum	2290		233	5910	1556	75 - 125	4
Arsenic	3.3	U	233	216.6	93	75 - 125	
Barium	44.4	U	233	238.3	102	75 - 125	
Beryllium	0.44	U	5.82	5.93	102	75 - 125	
Calcium	1110	U	2330	2418	104	75 - 125	
Cadmium	0.89	U	5.82	5.88	101	75 - 125	
Cobalt	11.1	U	58.2	61.96	107	75 - 125	
Chromium	3.5		23.3	30.20	115	75 - 125	
Copper	5.5	U	29.1	30.13	104	75 - 125	
Iron	1130		116	1303	146	75 - 125	4
Potassium	1110	U	2330	2265	97	75 - 125	
Magnesium	1110	U	2330	2371	102	75 - 125	
Manganese	1.8	J	58.2	63.94	107	75 - 125	
Sodium	1110	U	2330	2239	96	75 - 125	
Nickel	8.9	U	58.2	61.24	105	75 - 125	
Lead	1.1	J	58.2	61.75	104	75 - 125	
Antimony	4.4	U	58.2	38.46	66	75 - 125	Ν
Selenium	4.4	U	233	228.4	98	75 - 125	
Thallium	4.4	U	233	254.1	109	75 - 125	
Vanadium	3.0	J	58.2	64.94	106	75 - 125	

58.2

61.92

104

75 - 125

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-455245

Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138795-E-9-B DU

Client Matrix: Solid
Dilution: 4.0

Analysis Date: 08/10/2017 1934 Prep Date: 08/10/2017 0225

Leach Date: N/A

Zinc

OU Analysis Batch: 460-455426 Prep Batch: 460-455245 Leach Batch: N/A

Units: mg/Kg

Instrument ID: ICP4
Lab File ID: 455245.asc
Initial Weight/Volume: 1.00 g
Final Weight/Volume: 50 mL

Analyte	Sample Re	ocult/Ougl	Result	RPD	Limit	Qual	
Analyte	Sample Re	esui/Quai	Result	KFD	LIIIII	Quai	
Silver	2.2	U	2.4	NC	20	U	
Aluminum	2290		2459	7	20		
Arsenic	3.3	U	3.6	NC	20	U	
Barium	44.4	U	47.5	NC	20	U	
Beryllium	0.44	U	0.47	NC	20	U	
Calcium	1110	U	1190	NC	20	U	
Cadmium	0.89	U	0.95	NC	20	U	
Cobalt	11.1	U	11.9	NC	20	U	
Chromium	3.5		3.88	9	20		
Copper	5.5	U	5.9	NC	20	U	
Iron	1130		1212	7	20		
Potassium	1110	U	1190	NC	20	U	
Magnesium	1110	U	1190	NC	20	U	
Manganese	1.8	J	1.97	7	20	J	
Sodium	1110	U	1190	NC	20	U	
Nickel	8.9	U	9.5	NC	20	U	
Lead	1.1	J	1.49	29	20	J	
Antimony	4.4	U	4.7	NC	20	U	
Selenium	4.4	U	4.7	NC	20	U	
Thallium	4.4	U	4.7	NC	20	U	
Vanadium	3.0	J	3.17	6	20	J	

1.36

7

20

J

1.3

ICP4

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455253

Method: 6010C Preparation: 3050B

Lab Sample ID: MB 460-455253/1-A ^2 Client Matrix: Solid

Dilution: 2.0 Analysis Date: 08/10/2017 1555

Prep Date: 08/10/2017 0317

Leach Date: N/A Analysis Batch: 460-455426 Instrument ID: Prep Batch: 460-455253 Lab File ID:

455245.asc Leach Batch: N/A Initial Weight/Volume: 1.0 g Final Weight/Volume: 50 mL Units: mg/Kg

Analyte	Result	Qual	MDL	RL
Silver	1.0	U	0.15	1.0
Aluminum	20.0	U	4.1	20.0
Arsenic	1.5	U	0.37	1.5
Barium	20.0	U	1.6	20.0
Beryllium	0.20	U	0.023	0.20
Calcium	500	U	51.0	500
Cadmium	0.40	U	0.060	0.40
Cobalt	5.0	U	0.57	5.0
Chromium	1.0	U	0.28	1.0
Copper	2.5	U	0.57	2.5
ron	15.0	U	2.7	15.0
Potassium	500	U	26.6	500
Magnesium	500	U	38.6	500
Manganese	1.5	U	0.16	1.5
Sodium	500	U	38.5	500
Nickel	4.0	U	0.38	4.0
Lead	1.0	U	0.30	1.0
Antimony	2.0	U	0.24	2.0
Selenium	2.0	U	0.61	2.0
Thallium	2.0	U	0.59	2.0
√anadium	5.0	U	0.60	5.0
Zinc	3.0	U	0.26	3.0

ICP4

Client: AKRF Inc Job Number: 460-138836-1

LCS-Certified Reference Material - Batch: 460-455253

Method: 6010C Preparation: 3050B

Lab Sample ID: LCSSRM 460-455253/2-# Analysis Batch: 460-456387 Instrument ID:

Client Matrix: Solid Prep Batch: 460-455253 Lab File ID: A456136.asc Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 1.02 g Analysis Date: 08/14/2017 1201 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/10/2017 0317

Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Silver	40.7	35.80	88.0	79.6 - 120.4	
Aluminum	8000	6659	83.2	47.4 - 152.5	
Arsenic	147	133.6	90.9	83.0 - 117.0	
3arium	314	303.5	96.7	82.2 - 117.8	
Beryllium	53.4	51.25	96.0	82.8 - 117.2	
Calcium	4580	4229	92.3	80.8 - 119.0	
Cadmium	193	184.4	95.6	82.4 - 117.6	
Cobalt	81.3	81.47	100.2	83.4 - 116.6	
Chromium	82.6	76.22	92.3	81.8 - 118.2	
Copper	171	152.5	89.2	83.6 - 116.4	
on	14100	12880	91.4	60.4 - 139.7	
otassium	2000	1710	85.5	69.5 - 130.5	
/lagnesium	2240	2020	90.2	75.4 - 125.0	
langanese	222	219.6	98.9	82.0 - 118.0	
odium	216	177.9	82.4	72.2 - 127.8	J
lickel	137	136.8	99.9	82.5 - 118.2	
ead	92.3	88.94	96.4	82.8 - 117.0	
Intimony	65.1	39.41	60.5	0.2 - 212.0	
elenium	187	174.9	93.5	79.1 - 121.4	
hallium	153	161.0	105.2	81.0 - 119.0	
anadium	86.6	80.43	92.9	77.6 - 122.4	
inc	189	185.7	98.3	79.9 - 120.1	

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike - Batch: 460-455253

Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138837-D-2-C MS

Client Matrix: Solid 4.0 Dilution:

Analysis Date: 08/10/2017 1614 Prep Date:

Leach Date: N/A

08/10/2017 0317

Analysis Batch:	460-455426	Instrument ID:	ICP4
Prep Batch:	460-455253	Lab File ID:	455245.asc
Leach Batch:	N/A	Initial Weight/Volume:	1.02 g
Units:	mg/Kg	Final Weight/Volume:	50 mL

Analyte	Sample Re	Sample Result/Qual		Result	% Rec.	Limit	Qual
Silver	2.1	U	5.38	4.87	90	75 - 125	
Aluminum	6490		215	8393	884	75 - 125	4
Arsenic	8.4		215	192.2	85	75 - 125	
Barium	48.0		215	244.2	91	75 - 125	
Beryllium	0.16	J	5.38	5.18	93	75 - 125	
Calcium	281	J	2150	2250	92	75 - 125	
Cadmium	0.84	U	5.38	4.84	90	75 - 125	
Cobalt	10.6	U	53.8	53.36	99	75 - 125	
Chromium	7.3		21.5	29.37	102	75 - 125	
Copper	4.3	J	26.9	29.30	93	75 - 125	
Iron	9870		108	9860	-10	75 - 125	4
Potassium	854	J	2150	2440	74	75 - 125	N
Magnesium	302	J	2150	2429	99	75 - 125	
Manganese	42.1		53.8	97.49	103	75 - 125	
Sodium	1060	U	2150	1954	91	75 - 125	
Nickel	2.3	J	53.8	54.13	96	75 - 125	
Lead	4.7		53.8	55.55	94	75 - 125	
Antimony	4.2	U	53.8	17.10	32	75 - 125	N
Selenium	4.2	U	215	193.9	90	75 - 125	
Thallium	4.2	Ü	215	213.6	99	75 - 125	
Vanadium	9.3	J	53.8	62.16	98	75 - 125	
Zinc	7.7		53.8	62.14	101	75 - 125	

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-455253

Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138837-D-2-B DU

Client Matrix: Solid Dilution: 4.0

Analysis Date: 08/10/2017 1602 Prep Date: 08/10/2017 0317

Leach Date: N/A

Analysis Batch: 460-455426 Prep Batch: 460-455253

Leach Batch: N/A
Units: mg/Kg

Instrument ID: ICP4
Lab File ID: 455245.asc
Initial Weight/Volume: 1.00 g
Final Weight/Volume: 50 mL

Analyte	Sample R	esult/Qual	Result	RPD	Limit	Qual
Silver	2.1	U	2.2	NC	20	U
Aluminum	6490	J	6856	5	20	J
Arsenic	8.4		9.09	7	20	
Barium	48.0		51.42	7	20	
Beryllium	0.16	J	0.171	5	20	J
Calcium	281	J	295.2	5	20	J
Cadmium	0.84	Ü	0.88	NC	20	Ü
Cobalt	10.6	Ü	11.0	NC	20	Ü
Chromium	7.3		7.84	7	20	
Copper	4.3	J	4.67	7	20	J
Iron	9870		10340	5	20	
Potassium	854	J	915.6	7	20	J
Magnesium	302	J	316.7	5	20	J
Manganese	42.1		44.04	5	20	
Sodium	1060	U	1100	NC	20	U
Nickel	2.3	J	2.52	7	20	J
Lead	4.7		4.85	2	20	
Antimony	4.2	U	4.4	NC	20	U
Selenium	4.2	U	4.4	NC	20	U
Thallium	4.2	U	4.4	NC	20	U
Vanadium	9.3	J	10.05	7	20	J
Zinc	7.7		8.14	6	20	

ICP5

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455905

Method: 6010C Preparation: 3050B

Lab Sample ID: MB 460-455905/1-A ^2

Client Matrix: Solid Dilution: 2.0

Analysis Date: 08/14/2017 1908 Prep Date: 08/12/2017 1626

Leach Date: N/A Analysis Batch: 460-456155 Instrument ID: Prep Batch: 460-455905 Lab File ID: 455997D1.asc Leach Batch: N/A Initial Weight/Volume: 1.00 g Final Weight/Volume: 50 mL Units: mg/Kg

Analyte	Result	Qual	MDL	RL	
Silver	1.0	U	0.15	1.0	
Aluminum	20.0	U	4.1	20.0	
Barium	20.0	U	1.6	20.0	
Beryllium	0.20	U	0.023	0.20	
Calcium	500	U	51.0	500	
Cadmium	0.40	U	0.060	0.40	
Cobalt	5.0	U	0.57	5.0	
Chromium	1.0	U	0.28	1.0	
Copper	2.5	U	0.57	2.5	
Iron	15.0	U	2.7	15.0	
Potassium	500	U	26.6	500	
Magnesium	500	U	38.6	500	
Manganese	1.5	U	0.16	1.5	
Sodium	500	U	38.5	500	
Nickel	4.0	U	0.38	4.0	
Lead	1.0	U	0.30	1.0	
Antimony	2.0	U	0.24	2.0	
Selenium	2.0	U	0.61	2.0	
Thallium	2.0	U	0.59	2.0	
Vanadium	5.0	U	0.60	5.0	
Zinc	3.0	U	0.26	3.0	

Client: AKRF Inc Job Number: 460-138836-1

LCS-Certified Reference Material - Batch: 460-455905

Method: 6010C Preparation: 3050B

Lab Sample ID: LCSSRM 460-455905/2-A Analysis Batch: 460-455991 Instrument ID: ICP5

Client Matrix: Solid Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 1.00 g
Analysis Date: 08/13/2017 1556 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Leach Date: N/A

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Calcium
 4580
 4546
 99.3
 80.8 - 119.0

LCS-Certified Reference Material - Batch: 460-455905

Method: 6010C Preparation: 3050B

Preparation: 30508

Lab Sample ID: LCSSRM 460-455905/2-A Analysis Batch: 460-456155 Instrument ID: ICP5 Client Matrix: Solid Prep Batch: 460-455905 Lab File ID: 455997D1.asc Leach Batch: Dilution: 4.0 N/A Initial Weight/Volume: 1.00 g Analysis Date: 08/14/2017 1853 Units: Final Weight/Volume: mg/Kg 50 mL

Prep Date: 08/12/2017 1626

Leach Date: N/A

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Silver	40.7	35.28	86.7	79.6 - 120.4	
Aluminum	8000	6518	81.5	47.4 - 152.5	
Arsenic	147	134.9	91.8	83.0 - 117.0	
Barium	314	305.4	97.3	82.2 - 117.8	
Beryllium	53.4	51.04	95.6	82.8 - 117.2	
Cadmium	193	183.3	95.0	82.4 - 117.6	
Cobalt	81.3	81.18	99.9	83.4 - 116.6	
Chromium	82.6	74.22	89.9	81.8 - 118.2	
Copper	171	159.1	93.0	83.6 - 116.4	
Iron	14100	11220	79.5	60.4 - 139.7	
Potassium	2000	1679	83.9	69.5 - 130.5	
Magnesium	2240	1892	84.4	75.4 - 125.0	
Manganese	222	205.6	92.6	82.0 - 118.0	
Sodium	216	190.6	88.2	72.2 - 127.8	J
Nickel	137	136.2	99.4	82.5 - 118.2	
Lead	92.3	91.12	98.7	82.8 - 117.0	
Antimony	65.1	34.42	52.9	0.2 - 212.0	
Selenium	187	177.2	94.8	79.1 - 121.4	
Thallium	153	158.9	103.8	81.0 - 119.0	
Vanadium	86.6	76.14	87.9	77.6 - 122.4	
Zinc	189	178.6	94.5	79.9 - 120.1	

Client: AKRF Inc Job Number: 460-138836-1

Matrix Spike - Batch: 460-455905

Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138986-E-6-E MS ^{^4} Analysis Batch: 460-455991 Instrument ID: ICP5

Client Matrix: Solid Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 1.30 g
Analysis Date: 08/13/2017 1616 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Leach Date: N/A

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual
Calcium 822 U 1640 1802 110 75 - 125

Matrix Spike - Batch: 460-455905 Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138986-E-6-E MS ^{^4} Analysis Batch: 460-456155 Instrument ID: ICP5

Client Matrix: Solid Prep Batch: 460-455905 Lab File ID: 455997D1.asc Initial Weight/Volume: Dilution: 4.0 Leach Batch: N/A 1.30 q Analysis Date: 08/14/2017 1826 Units: Final Weight/Volume: mg/Kg 50 mL

Prep Date: 08/12/2017 1626

Leach Date: N/A

Sample Result/Qual Analyte Spike Amount Result % Rec. Limit Qual Silver 1.6 U 4.11 3.93 96 75 - 125 Aluminum 435 164 1032 363 75 - 125 Ν 0.87 75 - 125 Arsenic J 164 153.4 93 75 - 125 Barium 32.9 U 164 167.7 102 Beryllium 0.33 U 4.11 3.98 97 75 - 125 Cadmium 0.66 U 4.11 4.00 97 75 - 125 Cobalt 8.2 U 41.1 41.51 101 75 - 125 75 - 125 Chromium 1.1 J 16.4 17.38 99 U 98 75 - 125 Copper 4.1 20.5 20.19 Iron 604 82.2 727.6 150 75 - 125 4 75 - 125 Potassium 58.6 J 1640 1609 94 Magnesium 822 U 1640 1540 94 75 - 125 99 Manganese 2.7 41.1 43.46 75 - 125 U 97 75 - 125 Sodium 822 1640 1592 75 - 125 6.6 U 41.1 40.65 99 Nickel 75 - 125 Lead 0.87 J 41.1 41.84 100 **Antimony** 3.3 U 41.1 34.77 85 75 - 125 Selenium 3.3 U 164 152.9 93 75 - 125 Thallium 3.3 U 164 168.8 103 75 - 125 Vanadium 96 1.6 J 41.1 40.88 75 - 125 Zinc 1.6 J 41.1 40.85 96 75 - 125

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-455905 Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138986-E-6-D DU ^{^4} Analysis Batch: 460-455991 Instrument ID: ICP5

Client Matrix: Solid Prep Batch: 460-455905 Lab File ID: 455886D1.asc

Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 1.31 g
Analysis Date: 08/13/2017 1620 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/12/2017 1626

Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual
Calcium 822 U 816 NC 20 U

Duplicate - Batch: 460-455905 Method: 6010C Preparation: 3050B

Lab Sample ID: 460-138986-E-6-D DU ^4 Analysis Batch: 460-456155 Instrument ID: ICP5

Client Matrix: Solid Prep Batch: 460-455905 Lab File ID: 455997D1.asc Dilution: 4.0 Leach Batch: N/A Initial Weight/Volume: 1.31 g 08/14/2017 1829 Final Weight/Volume: Analysis Date: Units: mg/Kg 50 mL

Prep Date: 08/12/2017 1626

Leach Date: N/A

Analyte	Sample R	Result/Qual	Result	RPD	Limit	Qual
Silver	1.6	U	1.6	NC	20	U
Aluminum	435		428.7	2	20	
Arsenic	0.87	J	0.701	22	20	J
Barium	32.9	U	2.65	NC	20	J
Beryllium	0.33	U	0.33	NC	20	U
Cadmium	0.66	U	0.65	NC	20	U
Cobalt	8.2	U	8.2	NC	20	U
Chromium	1.1	J	1.07	0.5	20	J
Copper	4.1	U	4.1	NC	20	U
Iron	604		593.2	2	20	
Potassium	58.6	J	60.02	2	20	J
Magnesium	822	U	816	NC	20	U
Manganese	2.7		2.63	2	20	
Sodium	822	U	816	NC	20	U
Nickel	6.6	U	6.5	NC	20	U
Lead	0.87	J	0.838	4	20	J
Antimony	3.3	U	3.3	NC	20	U
Selenium	3.3	U	3.3	NC	20	U
Thallium	3.3	U	3.3	NC	20	U
Vanadium	1.6	J	1.55	4	20	J
Zinc	1.6	J	1.39	11	20	J

Qual

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455535 Method: 7471B

Preparation: 7471B

Lab Sample ID: MB 460-455535/1-A Analysis Batch: 460-455656 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.60 g

Analysis Date: 08/11/2017 0925 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

N/A

N/A

N/A

Leach Date:

Leach Date:

Leach Date:

Analyte Result Qual MDL RL

Mercury 0.017 U 0.011 0.017

LCS-Certified Reference Material - Batch: 460-455535 Method: 7471B Preparation: 7471B

Lab Sample ID: LCSSRM 460-455535/2-A Analysis Batch: 460-455656 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV
Dilution: 40 Leach Batch: N/A Initial Weight/Volume: 0.60 g

Dilution: 40 Leach Batch: N/A Initial Weight/Volume: 0.60 g
Analysis Date: 08/11/2017 0927 Units: mg/Kg Final Weight/Volume: 50 mL

Analysis Date: 08/11/2017 0927 Units: mg/Kg Final Weight/Volume: 50 mL Prep Date: 08/11/2017 0427

Analyte Spike Amount Result % Rec. Limit

Mercury 17.8 16.57 93.1 66.9 - 133.1

Matrix Spike - Batch: 460-455535 Method: 7471B Preparation: 7471B

Lab Sample ID: 460-138964-A-5-I MS Analysis Batch: 460-455656 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.65 g

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.65 g

Analysis Date: 08/11/2017 0932 Units: mg/Kg Final Weight/Volume: 50 mL

Analysis Date: 08/11/2017 0932 Units: mg/Kg Final Weight/Volume: 50 mL Prep Date: 08/11/2017 0427

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

Mercury 0.036 0.0846 0.134 115 75 - 125

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-455535 Method: 7471B Preparation: 7471B

Lab Sample ID: 460-138964-A-5-H DU Analysis Batch: 460-455656 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-455535 Lab File ID: 455532HG1.CSV Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.65 g

Analysis Date: 08/11/2017 0931 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0427

Leach Date:

N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Analyte Sample Result/Qual Result RPD Limit Qual

Mercury 0.036 0.0412 13 20

Qual

75 - 125

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-455552 Method: 7471B Preparation: 7471B

Lab Sample ID: MB 460-455552/1-A Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Client Matrix: Solid Prep Batch: 460-455552 Lab File ID: 455532HG1.CSV

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.60 g Final Weight/Volume: Analysis Date: 08/11/2017 1021 Units: mg/Kg 50 mL

Prep Date: 08/11/2017 0532

N/A

N/A

Leach Date: N/A

Leach Date:

Leach Date:

Mercury

Analyte Result Qual MDL RL 0.017 U 0.011 0.017 Mercury

LCS-Certified Reference Material - Batch: 460-455552 Method: 7471B Preparation: 7471B

Lab Sample ID: LCSSRM 460-455552/2-A Analysis Batch: 460-455656 Instrument ID: LEEMAN7

Client Matrix: Prep Batch: 460-455552 Lab File ID: 455532HG1.CSV Solid 40 Leach Batch: Initial Weight/Volume: Dilution: N/A 0.60 g

Analysis Date: 08/11/2017 1022 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0532

0.056

Analyte Spike Amount Result % Rec. Limit

Mercury 17.8 17.19 96.6 66.9 - 133.1

Matrix Spike - Batch: 460-455552 Method: 7471B Preparation: 7471B

Lab Sample ID: 460-138855-A-1-F MS Analysis Batch: 460-455656 Instrument ID: LEEMAN7 Client Matrix: Solid Prep Batch: 460-455552 Lab File ID:

455532HG1.CSV Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.63 g

Analysis Date: 08/11/2017 1027 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/11/2017 0532

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

0.106

0.161

98

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-455552 Method: 7471B Preparation: 7471B

Leach Date:

N/A

Lab Sample ID: 460-138855-A-1-E DU Analysis Batch: 460-455656 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-455552 Lab File ID: 455532HG1.CSV Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.63 g

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.63 g
Analysis Date: 08/11/2017 1026 Units: mg/Kg Final Weight/Volume: 50 mL

Analysis Date: 08/11/2017 1026 Units: mg/Kg Final Weight/Volume: 50 m Prep Date: 08/11/2017 0532

Analyte Sample Result/Qual Result RPD Limit Qual Mercury 0.056 0.0636 12 20

Qual

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456063 Method: 7471B Preparation: 7471B

Lab Sample ID: MB 460-456063/10-A Analysis Batch: 460-456143 Instrument ID: LEEMAN7
Client Matrix: Solid Prep Batch: 460-456063 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.60 g
Analysis Date: 08/14/2017 0821 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0351

Leach Date: N/A

 Analyte
 Result
 Qual
 MDL
 RL

 Mercury
 0.017
 U
 0.011
 0.017

LCS-Certified Reference Material - Batch: 460-456063 Method: 7471B

Preparation: 7471B

Lab Sample ID: LCSSRM 460-456063/11- Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-456063 Lab File ID: 456063HG1.CSV

Dilution: 40 Leach Batch: N/A Initial Weight/Volume: 0.60 g

Analysis Date: 08/14/2017 0823 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0351 Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit

Mercury 17.8 17.30 97.2 66.9 - 133.1

Matrix Spike - Batch: 460-456063 Method: 7471B Preparation: 7471B

 Lab Sample ID:
 460-138908-6
 Analysis Batch:
 460-456143
 Instrument ID:
 LEEMAN7

 Client Matrix:
 Solid
 Prep Batch:
 460-456063
 Lab File ID:
 456063HG1.CSV

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.63 g
Analysis Date: 08/14/2017 0828 Units: mg/Kg Final Weight/Volume: 50 mL

Analysis Date: 08/14/2017 0828 Units: mg/Kg Final Weight/Volume: 50 r
Prep Date: 08/14/2017 0351

Leach Date: N/A

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

Mercury 0.018 U 0.0898 0.0973 108 75 - 125

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-456063 Method: 7471B Preparation: 7471B

Lab Sample ID: 460-138908-6 Analysis Batch: 460-456143 Instrument ID: LEEMAN7
Client Matrix: Solid Prep Batch: 460-456063 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.63 g
Analysis Date: 08/14/2017 0826 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0351 Final Weight/Volume.

Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Mercury 0.018 U 0.018 NC 20 U

Qual

Client: AKRF Inc Job Number: 460-138836-1

Method Blank - Batch: 460-456068 Method: 7471B Preparation: 7471B

Lab Sample ID: MB 460-456068/1-A Analysis Batch: 460-456143 Instrument ID: LEEMAN7 Client Matrix: Solid Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.60 g Final Weight/Volume: Analysis Date: 08/14/2017 0913 Units: mg/Kg 50 mL

Prep Date: 08/14/2017 0416

N/A

N/A

Leach Date: N/A

Leach Date:

Leach Date:

Mercury

Analyte Result Qual MDL RL 0.017 U 0.011 0.017 Mercury

LCS-Certified Reference Material - Batch: 460-456068 Method: 7471B Preparation: 7471B

Lab Sample ID: LCSSRM 460-456068/2-A Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Client Matrix: Prep Batch: 460-456068 Lab File ID: Solid 456063HG1.CSV 40 Leach Batch: Initial Weight/Volume: Dilution: N/A 0.60 g

Analysis Date: 08/14/2017 0914 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0416

Analyte Spike Amount Result % Rec. Limit

Mercury 17.8 16.92 95.1 66.9 - 133.1

Matrix Spike - Batch: 460-456068 Method: 7471B Preparation: 7471B

0.042

Lab Sample ID: 460-138904-E-3-F MS Analysis Batch: 460-456143 Instrument ID: LEEMAN7 460-456068 Client Matrix: Solid Prep Batch: Lab File ID: 456063HG1.CSV

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.67 g

Analysis Date: 08/14/2017 0919 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0416

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

0.0786

0.131

113

75 - 125

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-456068 Method: 7471B Preparation: 7471B

Lab Sample ID: 460-138904-E-3-E DU Analysis Batch: 460-456143 Instrument ID: LEEMAN7

Client Matrix: Solid Prep Batch: 460-456068 Lab File ID: 456063HG1.CSV Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 0.67 g

Analysis Date: 08/14/2017 0918 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 08/14/2017 0416

Leach Date:

N/A

Analyte Sample Result/Qual Result RPD Limit Qual

Mercury 0.042 0.0439 3 20

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-456252 Method: Moisture Preparation: N/A

Lab Sample ID: 460-139142-A-3 DU Analysis Batch: 460-456252 Instrument ID: No Equipment Assigned

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 08/14/2017 2001 Units: % Final Weight/Volume:

Prep Date: N/A
Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual Percent Moisture 11.9 13.2 10 20 Percent Solids 88.1 86.8 20 1

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-456785 Method: Moisture Preparation: N/A

Lab Sample ID: 460-138849-A-5 DU Analysis Batch: 460-456785 Instrument ID: No Equipment Assigned

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 08/16/2017 1812 Units: % Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

Analyte Sample Result/Qual Result RPD Limit Qual Percent Moisture 2.7 2.4 10 20 Percent Solids 97.3 97.6 0.3 20

Client: AKRF Inc Job Number: 460-138836-1

Duplicate - Batch: 460-456823 Method: Moisture Preparation: N/A

Lab Sample ID: 460-139030-E-11 DU Analysis Batch: 460-456823 Instrument ID: No Equipment Assigned

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 08/16/2017 2007 Units: % Final Weight/Volume: Prep Date: N/A

Leach Date:

N/A

Analyte Sample Result/Qual Result RPD Limit Qual Percent Moisture 82.0 81.7 0.4 20 Percent Solids 18.0 18.3 20 2

TestAmerica

CHAIN OF CUSTODY / A

460-138836 Chain of Custod

⇒w Durham Road , New Jersey 08817 : (732) 549-3900 Fax: (732) 549-3679

Mark Company Compan	32). TAL - 0016 (0715)	ode Island (13	Connecticut (PH-0200), Rhode Island (132). \mathcal{F}		52), Pennsylvania (68-522),	New Jersey (12028), New York (11452), North Carolina (No. 578)	Laboratory Certifications: New Jers Massachusetts (M-NJ312), North Ca
Land [modice] Land [modice					_		
Sample Identification		Company		Received by		Company	telinquished by
Tand (noploe) Company				3)	_		3)
Company Comp		Company		Received by	Date / Time		δ
Tand	11/28 8/9/17	77-60	ion Chifle	2) The	49/17/1125	= -	242
for report and invoice And E. Mahmada Samplers Name (Printed) Sulf-Project Identification And E. Mahmada E	THE CANKIGO.	Company	TIME SUNT	Received by	Date / Time	Company	Relinatuished by
Correspond and Invoice Amin Am	The Carried	Company Pract	807	1) F		Sompany 27	elinquisned by
Invoice	ered (Yes/No)?	ater Metals Filte	Wa	2		4	special Instructions / OCC
Invoice Name Printed Name Prin						_, 7 = Other	6 = Other
C(Ky W, \(\alpha\) E Northmarks) Samplers Name (Printed) Sulfic (Location of site); NJ; NAM			,	<u> </u>	Soil:	$= H_2SO_4$, $4 = HNO_3$, $5 = NaOl$	Used: 1 = ICE
C(Ky K, \(\lambda\) \(\)	Jo		X CHOK	メ	シームース	13	
for regoot and invoice A E Northwise Samplers Name (Printed) Stell Project Identification AM Ho	•		×		X	E/(8	(1)
Samplers Name (Printed) Site/Project Identification AMN MAN E.MATMANAN S. Mathematically Supplers Name (Printed) PARKET MATMANAN S. Mathematical Printed Mathematic	a		★	メメ	イスト	7	(
State (Project Identification PROCKY Wind Project Identification of Site): NJ IND HAMILY Other Project Identification For: STATE SAME FOR THE PROPERTY STATE OF THE PROPERTY STATE (Location of Site): NJ IND HAMILY OTHER PROPERTY STATE (Location of Site): NJ IND HAMILY OTHER PROPERTY STATE (Location of Site): NJ IND O	7		X	メメ	X 5 5	<u> </u>	
Samplers Name (Printed) Scholary (Chy Chy Chy Chy Chy Chy Chy Chy Chy Chy	2		*		5 3 ×	18/17/1	56-5 (10-12)
Samplers Name (Printed) Samplers Name (Printed) EMATON Ess State (Location of site): NJ: NYS Othe NAMERIAL STATE NAMERIAL STATE NAMERIAL STATE Sample Identification Date Time Matrix Cont. Sample Identific	7		X	×	2 5 X	141	5B-5 (N-4)
Samplers Name (Printed) Site/Project Identification HAMI ITAN P.O.# 170029 State (Location of site): NJ: NYSY Othe State (Location of site): NJ: NYSY Othe P.O.# 170029 State (Location of site): NJ: NYSY Othe Regulatory Program: DKQ AMAYER MINS NY 1060) 2 week PROMITE Time Matrix Cont. Signature Cont. Sign	¥	-	×	メメ	S S X	558 EVB18	56-2 (16-18)
Samplers Name (Printed) Ster/Project Identification Ham I Hone Samplers Name (Printed) C.M. Analysis Turnaround Time Apalysis Requision of Site): NJ: NY Othe NO. of: State (Location of Site): NJ: NY Othe Regulatory Program: DKQ Analysis Turnaround Time State (Location of Site): NJ: NY Othe Regulatory Program: DKQ Analysis Requision Program: NO. of: Sample Identification Date Time Matrix Site/Project Identification NY Othe Regulatory Program: DKQ Apalysis Recouss Recouss Recouss Recouse Recousing (EVITER Y: BELOW TO NODOUTE RECOUST) DKQ Apalysis Turnaround Time NO. of: Sample Identification Date Time Matrix Site/Project Identification NY Othe Regulatory Program: DKQ Apalysis Recouss Recouss Recouse Recouse Recousing (EVITER Y: BELOW TO NODOUTE RECOUST) DKQ Apalysis Turnaround Time NO. of: Sample Identification DKQ Apalysis Recouss Recouse Rec	3		X			_	56-2 (1-3)
Samplers Name (Printed) Site/Project Identification HAMI Hove P. O. # 1700 29 State (Location of site): NJ: NY Othe P. O. # 1700 29 State (Location of site): NJ: NY Othe P. O. # 1700 29 State (Location of site): NJ: NY Othe Regulatory Program: DKQ AMANACH MAND State Othe Standard Mandal Manda	90		×	×			56-1 (9-11)
Samplers Name (Printed) Site/Project Identification Ham IIIINO State (Location of site): NJ: NY: Othe NJ: South Blood Wy #100 State (Location of site): NJ: NY: Othe Analysis Tumaround Time Analysis Reouested For: State (Location of site): NJ: NY: Othe State (Location of site): NJ: NY: Othe Regulatory Program: DKO Analysis Reouested For: State (Location of site): NJ: NY: Othe Project Identification NY: Othe Regulatory Program: DKO Analysis Tumaround Time Analysis Reouested (eviter x: BELOW TO NODCATE REOUEST) PROJECT NY: Othe PROJECT N	/		×		S 5 X	L118/	SB-1 (2-4)
Samplers Name (Printed) Selection of site) Site/Project Identification How Individual State (Location of site): NJ: NAME NAME	Sample Numbers		<i>PC</i>	BN TA	No. of. Cont.	Time	Sample Identification
(for report and invoice) (for report and invoi	136836		<u>B</u> 5	-SVC LM6			M 922 2362
(for report and invoice) AND HONOMORE) Samplers Name (Printed) C.M. Approach C. Bittle (Location of site): NJ: NY: Othe Regulatory Program: DKQ C. Approach C. Bittle (Location of site): NJ: NY: Othe C. Approach C. C. Bittle (Location of site): NJ: NY: Othe C. C. Bittle (Location of site): NJ: NJ: NY: Othe C. C. Bittle (Location of site): NJ: NJ: NJ: NJ: NJ: NJ: NJ: NJ: NJ: NJ	Job No:					10601	synter Mins
Site/Project Identification Hamilton Othe WALF P.O. # 170029 Regulatory Program: DKQ DKQ DKQ DKQ DKQ DKQ DKQ DKQ	Project No:			270		10A#1	4 South BRO
for report and invoice) Site/Project Identification Site/Proj	PKQ.				110029		AKK+
(for report and invoice) \ Samplers Name (Printed) \ Site/Project Identification		VALUE V	State (Location of site): NJ:			P.O. #	CKY KINAI
			Site/Project Identification		٦	Samplers	lame (for report and invoice)

CHAIN OF CUSTODY / ANALYSIS REQUEST

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

	nd (132). TAL-0016 (0715)	hode Islan	Connecticut (PH-0200), Rhode Island (132). $\mathcal{TLF}^{0} \qquad \qquad \mathcal{N}^{v} \subset$, ,,	ia (68-522	nnsylvan	152), Pe	York (112	28), New \	sey (120; كarolina (1	cations: New Jer -NJ312), North (Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522) Massachusetts (M-NJ312), North Carolina (No. 578)	_
	1)	Company	-	Received by	Rece	Date / Time	Dat		וע	Company		Relinquished by	
		Company	`	Heceived by 3)	3)	Date / Time	Da		Ž	Company		Helinquished by 3)	
11/12	JED 11:25 8	+	Myl	Men	<u> </u>	1123	FILEHE	YOO	Munose Cousin Malia 11125	Ru	M ANGHLAND		
`	Accueste Couriers		4 on on CHOOM	1) W 7974 Received by		8/1/13 0940 Date / Time	8/1/12	The second second	X A	Company	2	Relinguished by	
	Water Metals Filtered (Yes/No)?	Water Metals		Received by	Rece	Date / Time	Dat			Company	ions	Special Instructions	_
									= Other	, 7 = C	6 = Other		_
				-	4	Soil:	Ĭ	5 = NaOH	, 4 = HNO ₃	3 = H ₂ SO ₄	1= ICE, 2 = HCI,	Preservation Used: $r = ICE/2 = HCI$, $3 = H_2SO_4$, $4 = HNO_3$	
						-							
					-	_							
		+		+-	-								
	7		X	*	*	7	\ <u>\</u>	\\ \rangle \text{1.16}	EVINE		(8-10)	56.9	
	//			\(\cdot\)	×	2	1	त्मुं रामु	<u> 5/2</u>		(1-3)	26/9	_
	Sample Numbers		170	TA1	BN	No. of.	Matrix	Time	Date		Sample Identification	Sample	
	128836		<u> </u>	- Me	1054 -500			1 Week Other			LALL.	Phong 14977 . 7367	
	Job No:			tal	<u>126</u> (58	d For:	Rush Charges Authorized For: 2 Week	Rush Charg		State	555 F	いるる本人へ	
	Project No:	EST)	YSIS REQUESTED (ENTER X: BELOW TO INDICATE REQUEST)	SIS REQUESTE	U 270\$	1	Analysis Turnaround Time Standard	Analysis Turnari Standard	10)	# NP	orth Bontway #40	Voltes Lister	
	DKQP:		State (Location of site): NJ: Regulatory Program:	मू		220	1700	 C. #				Company	
		SM	Site/Project Identification		JA1CK	Bamplers Name (Printed)	Name (F	Samplers		DIMO	and invoice) E Matamoros	(for report	
	Page 2 of 2		חרשטרטי	1 _		CHAIN OF COSTODT/ANALISIS	1000			TING	/IRONMENTAL TES	THE LEADER IN ENVIRONMENTAL TESTING	-

Preservative Name/Conc.:

Lot # of Preservative(s):

Sample No(s). adjusted:

If pH adjustments are required record the information below:

Initials:
7

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.

Expiration Date:

Volume of Preservative used (ml):

Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Date:

TestAmerica Edison Receipt Temperature and pH Log

<u>o</u>

Job Number: Number of Coolers: TALS Sample Number Cooler #1: Cooler #2: Cooler #3: 136836 (pH<2) (pH<2) COD IR Gun# (pH<2) Nitrate Nitrite Cooler #6: Metals (pH<2) Cooler#4: Hardness (pH<2) Cooler Temperatures (pH 5-9) Pest င် (pH<2) EPH or QAM Phenols (pH<2) Sulfide (pH>9) Cooler#9: Cooler#8: (PH<2) ΤŔ (pH<2) Toc (pH>12) Total
Cyanide Total Phos (pH<2) Other Other

Page 303 of 310

CHAIN OF CUSTODY / ANALYSIS REQUEST

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

	32). TAL - 0016 (0715)	Company Rhode Island (132)	-0200),	d by Connecticut (PH	Received by 4) (68-522), Co	Date / Time Receive	II	New York (11452),		Company New Jersey (12028),		Relinquished by Helinquished by Laboratory Certifications:	Relinquished by the control of the
				d by O	Received by	∃.			V.	Company			Relinquished by
Γ ->.		Company HAM	7	of by	2)/ 2 / 0 /		Date /	Coulien		Company	M ANG H LOW	₹	Relinquished by
	ease Couliers	Real	INGH MANT	3	Mee Mi	0930	8/10/17 0930	ec.	777		0		1
		Company		d by	Received by	Date /Time	Date	` 4) () (Conpa		by	Relinquished by
	ered (Yes/No)?	Water Metals Filtered (Yes/No)?	W	7	チン	7	()a	0g0)(> 0	75 (ns 100	Special Instructions	Speçial lı
		460-138908 Chain of Custody	460-138908 C	6	6	Soil: / Water:	•	, 5 = NaOH 	Other	$3 = H_2SO_4$, , $7 = Ot$	= ICB 2 = HCI, = Other	െ 🕰	reservation Used:
					•								
									•				
	2			×	×	X	5	्रिले .	EVW8		6-10)	1 (56-
	d			ナメ	χ.	5 X	3	0930	FILMS		3)	7(1-	56-
	4			メメ	×	×	7)	24	4119		23	(2)	7-95
	w,		3	۲. ۲.	X	×	ハ	325	7.13		رم ا	(76-4
	12	+	40	メ ス	×	へ、 ブン	7	244	ナ/ツ/ジ		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 2	1
		-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	グメ	X	\ \ \	7	-+	4112		ارخو	(1,4)	2,95
	Sample Numbers		-	<u>A1</u> Y	BN	Cont.	Matrix C	Time	Date		Sample Identification	Sample I	
	801001			LM CB	<u>-5uc</u>	 (₅ 8		1 Week			2362	922	114 Par
	100 Mg. 0			eta S	X 5 8		2 Week	2 Week	10901	N		Mexians	2
	Project No:			15			Z	Standard K		Printe		XXX	
	LAB USE ONLY	J	H "X: BELOW TO INDICATE REQUEST)	ANALYSIS REQUESTED (ENTER "X: BELOW	ANALYSIS F	֧֧֧֧֟֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟ ֡֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞֜֞֞֞֜֞֞֞֜֞֞֞֞	Analysis Turnaround Time	Analysis Tur	170) / 1 - W.W. W	7	ddress A
	Other:	NY:	State (Location of site): NJ:	State (Location		Q .	+0010	P. O. #	出こ		B. Condway	5 - 5 -	Suppany O
	ľ		ject Identification		Sulich	Printed)	Name (Printec	Samplers Samplers	Jaken Natomolus	3	12	report and invoice	lame (for re
	Page of		<u>רט</u>	1 1 4	7	֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		9	5	ING	THE LEADER IN ENVIRONMENTAL TESTING	R IN ENVIR	HE LEADE

Massachusetts (M-NJ312), North Carolina (No. 578)

NO C.S.

Preservative Name/Conc.:

Sample No(s). adjusted:

Lot # of Preservative(s):

The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. *Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.

Expiration Date:

Volume of Preservative used (ml):

	Initials:
, , ,	(1)
/	7

TestAmerica Edison

128908	
Receipt Temperature and pH Log	

Job Number:

							TALS Sample Number		Number of Coolers: Cooler#1 2 *C 4 *C Cooler#2
If pH adji					:		 (pH<2)	Ammonia	°C °C
If pH adjustments are required record the information below:							(pH<2)	COD	°C CORRECTED
are requir							(pH<2)	Nitrate Nitrite	
ed record							(pH<2)	Metals *	Cooler #
the infor							(pH<2)	Hardness	LR Gun # Cooler #4: Cooler #5;
mation be							(pH 5-9)	Pest	6 6 6 1
low:							(pH<2)	EPH or QAM	Temperatures connecte connecte cc
							(pH<2)	Phenols	tures
							(pH>9)	Sulfide	C C C C C C C C C C C C C C C C C C C
							(pH<2)	TKN	
							(pH<2)	Toc	ဂီ ဂီ ဂီ
							(pH>12)	Total Cyanide	CONNECTED C
							(pH<2)	Total Cyanide Total Phos	
								Other	
								Other	

Phone: (732) 549-3900 Fax: (732) 549-3679	Edison, New Jersey 08817	
w.		

TA1 0016 (0215)	Rhode Island (132).	Connecticut (PH-0200), Rho	Pennsylvania (68-522), Co		2028), New York (11452),	Laboratory Certifications: New Jersey (12028),
			4)			4)
	Company		Received by	Date / Time	Company	Relinquished by Con
	•		3)	_		3)
	Company	`	Received by		lpany	by
Fh (c) (033	TAGO	- Cent	<u> </u>	81116111118	Acculate Coapies	1ANGHUANI
	Company		Received by	Date / Time	Company	Relinquished thy Con
E 1001 21, 84	ACULATE COUR	MANG HLOTTOS	15 17M2AY	811/2017 0915	102T	一大る二
	Company	,	Received by	Date / Time	Company / /)	
(Yes/No)?	Water Metals Filtered (Yes/No)?	-4	HOLD GN	30t3,	SDG Day	Special/Instructions CIOS S
			4	Water:	= Other	6 = Other, 7
		-	•	OH Soil:	SO_4 , $4 = HNO_3$, $5 = NaOH$	Preservation Used: $1 = \overline{ICE} 2 = HCI$, $3 = H_2SO_4$, $4 = HNO_3$
-	tody	460-139067 Chain of Custody				
			*		\	TRIP BIME
~			* *	Aq 5	81017 IIIB	67-4
<u>۔</u> م			+	Z VI	8/10/17 11:55	G-1-3
ĺ	-		イイ	AW S	8/10/19 12:10	Gt-2
6			*	AUS	8/10/17 11:10	67-1
4		ONHOLD	NO AT	An S	8/10/17/11:20	GW-4
Ø			オナ	Adv S	06:11 E1/a/8	GW-3
2			ナナ	る。 の	8/4/17/1130	TW-2
			スス	M 5	13/50	TW-1
Sample Numbers				No. of. Matrix Cont.	Date Time	Sample Identification
TUNCT			X59 5vo		1 Week Other	My 9223£2
2/8/10:]					2 Week	MUNICIPALITY NA LI
Project No:				Standard No.		
LAB USE ONLY	J	ANALYSIS REQUESTED (ENTER "X: BELOW TO INDICATE REQUEST)	ANALYSIS REQUE	Analysis Turnaround Time	<u> </u>	Address C. Y. Rolling
Other: DKQP:	NY:	State (Location of site): NJ: Regulatory Program:		1700 2g	၂ ဝ	A A
	1/100	Site/Project Identification	Sulich	Samplers Name (Printed)] #	Seame (for report and invoice) Tabeth, Moto Modos
Page of /		REQUEST	ANALYSIS	CHAIN OF CUSTOUY / ANALYSIS REGUES	CHAIN OF	THE LEADER IN ENVIRONMENTAL TESTING

Massachusetts (M-NJ312), North Carolina (No. 578)

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522), Connecticut (PH-0200), Rhode Island (132). Massachusetts (M-NJ312), North Carolina (No. 578)

Preservative Name/Conc.:

Volume of Preservative used (ml):

Expiration Date:

Lot # of Preservative(s):

Sample No(s), adjusted:

Initials:	Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.	The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.
Date:	must be a	uld be not
 E 3	cidified at least 24 hours prior to analysis.	ified about the samples which were pH adjusted.

										TALS Sample Number		Job Number: Cooler #1: Connecticut Cooler #3: °C °C °C Cooler #3: °C °C °C
If pH adju	-									(pH<2)	Ammonia	c c c
If pH adjustments are required record the information below:								i	i	(pH<2)	COD	3° C
are requir										(pH<2)	Nitrate Nitrite	
ed record										(pH<2)	* Metals	Receipt Receipt Cooler#4: Cooler#6:
the inforr										(pH<2)	Hardness	TestAmerica Edison Receipt Temperature and pH Log uni# Cooler #4: Cooler #4: Cooler #5: Cooler #5: Cooler #6: Cooler #6:
nation be										(pH 5-9)	Pest	TestAmerica Edison sipt Temperature and pH L Cooler Temperatures #4: "C CORRECTED COR
low:										(pH<2)	EPH or QAM	mperature armperature armore consecue c
										(pH<2)	Phenols	ures
										(pH>9)	Sulfide	9 00 00 00 00 00
				i	-					(pH<2)	TKN	er er #################################
										(pH<2) (T0C 0	ြို့ ဂြို
										(pH>12) (Total Cyanide Total Phos	C CORRECTED
										(pH<2)		c c c
											Other	Oag Oag
			j								Other	9

Login Sample Receipt Checklist

Client: AKRF Inc Job Number: 460-138836-1

Login Number: 138836 List Source: TestAmerica Edison

List Number: 1

Creator: Meyers, Gary

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.7 ° C iR #8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Login Sample Receipt Checklist

Client: AKRF Inc Job Number: 460-138836-1

Login Number: 138908 List Source: TestAmerica Edison

List Number: 1 Creator: Lysy, Susan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	N/A	Not present
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2°C IR#9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	No analysis requiring residual chlorine check assigned.

Login Sample Receipt Checklist

Client: AKRF Inc Job Number: 460-138836-1

Login Number: 139067 List Source: TestAmerica Edison

List Number: 1

Creator: Wisnewski, Kelly R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.3°C, IR#9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Burlington 30 Community Drive Suite 11 South Burlington, VT 05403

Tel: (802)660-1990

TestAmerica Job ID: 200-39689-1

TestAmerica Sample Delivery Group: 200-39689-1

Client Project/Site: 200 Hamilton

For:

AKRF Inc 440 Park Avenue South 7th Floor New York, New York 10016

Attn: Ms. Elizabeth Matamoros

Knistin Dusabla

Authorized for release by: 8/18/2017 4:21:29 PM

Kristine Dusablon, Project Manager II (802)660-1990

kris.dusablon@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: AKRF Inc Project/Site: 200 Hamilton TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	9
QC Sample Results	30
QC Association Summary	56
Lab Chronicle	57
Certification Summary	58
Method Summary	59
Sample Summary	60
Chain of Custody	61
Receipt Checklists	63
Clean Canister Certification	64
Pre-Ship Certification	64
Clean Canister Data	67

3

4

6

8

9

11

12

14

Definitions/Glossary

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Qualifiers

Air - GC/MS VOA

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

Air - GC/MS VOA TICs

J Indicates an Estimated Value for TICs

N This flag indicates the presumptive evidence of a compound.

Glossary

Abbreviation	These commonly	/ used abbreviations ma	y or may not be	present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

А

_

9

ΙU

12

. .

Case Narrative

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Job ID: 200-39689-1

Laboratory: TestAmerica Burlington

Narrative

CASE NARRATIVE

Client: AKRF Inc

Project: 200 Hamilton

Report Number: 200-39689-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 08/11/2017; the samples arrived in good condition.

VOLATILE ORGANIC COMPOUNDS

Samples SV-1, SV-2, SV-3, SV-4, SV-5 and AA-1 were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 08/12/2017, 08/14/2017, 08/15/2017 and 08/16/2017.

Samples SV-1[8X], SV-2[13.1X], SV-3[6X] and SV-5[10X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-0

4

5

6

_

9

ΙU

1/

Detection Summary

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Client Sample ID: SV-1

Lab Sample ID: 200-39689-1

Analyte	Result	Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
n-Butane	8.2		4.0	ppb v/v		TO-15	Total/NA
1,3-Butadiene	3.3		1.6	ppb v/v	8	TO-15	Total/NA
Acetone	72		40	ppb v/v	8	TO-15	Total/NA
n-Hexane	11		1.6	ppb v/v	8	TO-15	Total/NA
Methyl Ethyl Ketone	12		4.0	ppb v/v	8	TO-15	Total/NA
2,2,4-Trimethylpentane	5.3		1.6	ppb v/v	8	TO-15	Total/NA
Benzene	3.6		1.6	ppb v/v	8	TO-15	Total/NA
n-Heptane	3.0		1.6	ppb v/v	8	TO-15	Total/NA
Toluene	6.1		1.6	ppb v/v	8	TO-15	Total/NA
Ethylbenzene	12		1.6	ppb v/v	8	TO-15	Total/NA
m,p-Xylene	4.3		4.0	ppb v/v	8	TO-15	Total/NA
Xylene, o-	1.7		1.6	ppb v/v	8	TO-15	Total/NA
Xylene (total)	6.0		5.6	ppb v/v	8	TO-15	Total/NA
n-Propylbenzene	1.7		1.6	ppb v/v	8	TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
n-Butane	19		9.5	ug/m3		TO-15	Total/NA
1,3-Butadiene	7.2		3.5	ug/m3	8	TO-15	Total/NA
Acetone	170		95	ug/m3	8	TO-15	Total/NA
n-Hexane	40		5.6	ug/m3	8	TO-15	Total/NA
Methyl Ethyl Ketone	36		12	ug/m3	8	TO-15	Total/NA
2,2,4-Trimethylpentane	25		7.5	ug/m3	8	TO-15	Total/NA
Benzene	11		5.1	ug/m3	8	TO-15	Total/NA
n-Heptane	12		6.6	ug/m3	8	TO-15	Total/NA
Toluene	23		6.0	ug/m3	8	TO-15	Total/NA
Ethylbenzene	50		6.9	ug/m3	8	TO-15	Total/NA
m,p-Xylene	18		17	ug/m3	8	TO-15	Total/NA
Xylene, o-	7.4		6.9	ug/m3	8	TO-15	Total/NA
Xylene (total)	26		24	ug/m3	8	TO-15	Total/NA
n-Propylbenzene	8.6		7.9	ug/m3	8	TO-15	Total/NA

Client Sample ID: SV-2

Lab Sample ID: 200-39689-2

Analyte	Result Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
Chloromethane	9.6	6.6	ppb v/v	13.1	TO-15	Total/NA
n-Butane	310	6.6	ppb v/v	13.1	TO-15	Total/NA
1,3-Butadiene	39	2.6	ppb v/v	13.1	TO-15	Total/NA
Acetone	72	66	ppb v/v	13.1	TO-15	Total/NA
Carbon disulfide	33	6.6	ppb v/v	13.1	TO-15	Total/NA
n-Hexane	170	2.6	ppb v/v	13.1	TO-15	Total/NA
Methyl Ethyl Ketone	15	6.6	ppb v/v	13.1	TO-15	Total/NA
Cyclohexane	5.3	2.6	ppb v/v	13.1	TO-15	Total/NA
2,2,4-Trimethylpentane	3.3	2.6	ppb v/v	13.1	TO-15	Total/NA
Benzene	16	2.6	ppb v/v	13.1	TO-15	Total/NA
n-Heptane	60	2.6	ppb v/v	13.1	TO-15	Total/NA
Toluene	6.2	2.6	ppb v/v	13.1	TO-15	Total/NA
Ethylbenzene	8.7	2.6	ppb v/v	13.1	TO-15	Total/NA
Analyte	Result Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
Chloromethane	20	14	ug/m3	13.1	TO-15	Total/NA
n-Butane	730	16	ug/m3	13.1	TO-15	Total/NA
1,3-Butadiene	87	5.8	ug/m3	13.1	TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

8/18/2017

Page 5 of 87

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

Lab Sample ID: 200-39689-2

Lab Sample ID: 200-39689-3

Lab Sample ID: 200-39689-4

SDG: 200-39689-1

Client Sample ID: SV-2 (Continued)

Analyte	Result Qualifier	RL	RL	Unit	Dil Fac	D N	Method	Prep Type
Acetone	170	160		ug/m3	13.1	_ T	ГО-15	Total/NA
Carbon disulfide	100	20		ug/m3	13.1	Т	ГО-15	Total/NA
n-Hexane	590	9.2		ug/m3	13.1	Т	ГО-15	Total/NA
Methyl Ethyl Ketone	44	19		ug/m3	13.1	T	ГО-15	Total/NA
Cyclohexane	18	9.0		ug/m3	13.1	Т	ГО-15	Total/NA
2,2,4-Trimethylpentane	15	12		ug/m3	13.1	Т	ГО-15	Total/NA
Benzene	52	8.4		ug/m3	13.1	T	ГО-15	Total/NA
n-Heptane	240	11		ug/m3	13.1	Т	ГО-15	Total/NA
Toluene	23	9.9		ug/m3	13.1	Т	ГО-15	Total/NA
Ethylbenzene	38	11		ug/m3	13.1	T	ГО-15	Total/NA

Client Sample ID: SV-3

Chefft Sample ID. 3V-)		Lab Sa	inple ib.	200-39009-3		
Analyte	Result	Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
Freon 22	5.0		3.0	ppb v/v	6	TO-15	Total/NA
n-Butane	20		3.0	ppb v/v	6	TO-15	Total/NA
Acetone	110		30	ppb v/v	6	TO-15	Total/NA
Methylene Chloride	70		3.0	ppb v/v	6	TO-15	Total/NA
n-Hexane	100		1.2	ppb v/v	6	TO-15	Total/NA
Methyl Ethyl Ketone	6.3		3.0	ppb v/v	6	TO-15	Total/NA
Cyclohexane	7.5		1.2	ppb v/v	6	TO-15	Total/NA
n-Heptane	2.0		1.2	ppb v/v	6	TO-15	Total/NA
Trichloroethene	13		0.24	ppb v/v	6	TO-15	Total/NA
Toluene	65		1.2	ppb v/v	6	TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL Unit	Dil Fac D	Method	Prep Type
Freon 22	18		11	ug/m3	6	TO-15	Total/NA
n-Butane	48		7.1	ug/m3	6	TO-15	Total/NA
Acetone	270		71	ug/m3	6	TO-15	Total/NA
Methylene Chloride	240		10	ug/m3	6	TO-15	Total/NA
n-Hexane	350		4.2	ug/m3	6	TO-15	Total/NA
Methyl Ethyl Ketone	18		8.8	ug/m3	6	TO-15	Total/NA
Cyclohexane	26		4.1	ug/m3	6	TO-15	Total/NA
n-Heptane	8.0		4.9	ug/m3	6	TO-15	Total/NA
Trichloroethene	69		1.3	ug/m3	6	TO-15	Total/NA
Toluene	250		4.5	ug/m3	6	TO-15	Total/NA
							

Client Sample ID: SV-4

- Analyte	Result Qualifie	er RL	RL Unit	Dil Fac D	Method	Prep Type		
Freon 22	1.1	0.50	ppb v/v		TO-15	Total/NA		
n-Butane	1.1	0.50	ppb v/v	1	TO-15	Total/NA		
Trichlorofluoromethane	0.39	0.20	ppb v/v	1	TO-15	Total/NA		
Acetone	17	5.0	ppb v/v	1	TO-15	Total/NA		
n-Hexane	0.36	0.20	ppb v/v	1	TO-15	Total/NA		
Methyl Ethyl Ketone	3.8	0.50	ppb v/v	1	TO-15	Total/NA		
Chloroform	0.25	0.20	ppb v/v	1	TO-15	Total/NA		
Benzene	0.90	0.20	ppb v/v	1	TO-15	Total/NA		
Trichloroethene	0.045	0.040	ppb v/v	1	TO-15	Total/NA		
Toluene	1.6	0.20	ppb v/v	1	TO-15	Total/NA		
Methyl Butyl Ketone (2-Hexanone)	0.67	0.50	ppb v/v	1	TO-15	Total/NA		

This Detection Summary does not include radiochemical test results.

Page 6 of 87

Detection Summary

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Client Sample ID: SV-4 (Continued)

Lab Sample ID: 200-39689-4								
Dil Fac D Method	Prep Type							

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Ethylbenzene	0.93		0.20		ppb v/v		_	TO-15	Total/NA
m,p-Xylene	0.66		0.50		ppb v/v	1		TO-15	Total/NA
Xylene, o-	0.31		0.20		ppb v/v	1		TO-15	Total/NA
Xylene (total)	0.97		0.70		ppb v/v	1		TO-15	Total/NA
n-Propylbenzene	0.35		0.20		ppb v/v	1		TO-15	Total/NA
4-Ethyltoluene	0.64		0.20		ppb v/v	1		TO-15	Total/NA
1,3,5-Trimethylbenzene	0.56		0.20		ppb v/v	1		TO-15	Total/NA
1,2,4-Trimethylbenzene	1.4		0.20		ppb v/v	1		TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
Freon 22	3.8		1.8		ug/m3	1	_	TO-15	Total/NA
n-Butane	2.5		1.2		ug/m3	1		TO-15	Total/NA
Trichlorofluoromethane	2.2		1.1		ug/m3	1		TO-15	Total/NA
Acetone	41		12		ug/m3	1		TO-15	Total/NA
n-Hexane	1.3		0.70		ug/m3	1		TO-15	Total/NA
Methyl Ethyl Ketone	11		1.5		ug/m3	1		TO-15	Total/NA
Chloroform	1.2		0.98		ug/m3	1		TO-15	Total/NA
Benzene	2.9		0.64		ug/m3	1		TO-15	Total/NA
Trichloroethene	0.24		0.21		ug/m3	1		TO-15	Total/NA
Toluene	6.0		0.75		ug/m3	1		TO-15	Total/NA
Methyl Butyl Ketone (2-Hexanone)	2.7		2.0		ug/m3	1		TO-15	Total/NA
Ethylbenzene	4.0		0.87		ug/m3	1		TO-15	Total/NA
m,p-Xylene	2.9		2.2		ug/m3	1		TO-15	Total/NA
Xylene, o-	1.3		0.87		ug/m3	1		TO-15	Total/NA
Xylene (total)	4.2		3.0		ug/m3	1		TO-15	Total/NA
n-Propylbenzene	1.7		0.98		ug/m3	1		TO-15	Total/NA
4-Ethyltoluene	3.2		0.98		ug/m3	1		TO-15	Total/NA
1,3,5-Trimethylbenzene	2.8		0.98		ug/m3	1		TO-15	Total/NA
1,2,4-Trimethylbenzene	6.8		0.98		ug/m3	1		TO-15	Total/NA

Client Sample ID: SV-5

Lab Sample ID: 200-39689-5

Analyte	Result	Qualifier	RL	RL U	nit	Dil Fac [Method	Prep Type
Freon 22	6.9		5.0	pp	ob v/v	10	TO-15	Total/NA
n-Butane	13		5.0	pp	ob v/v	10	TO-15	Total/NA
1,3-Butadiene	2.5		2.0	pp	ob v/v	10	TO-15	Total/NA
Acetone	310		50	pp	ob v/v	10	TO-15	Total/NA
Methylene Chloride	15		5.0	pp	ob v/v	10	TO-15	Total/NA
n-Hexane	29		2.0	pp	ob v/v	10	TO-15	Total/NA
Methyl Ethyl Ketone	8.7		5.0	pp	ob v/v	10	TO-15	Total/NA
Chloroform	2.1		2.0	pp	ob v/v	10	TO-15	Total/NA
n-Heptane	4.1		2.0	pp	ob v/v	10	TO-15	Total/NA
Trichloroethene	2.4		0.40	pp	ob v/v	10	TO-15	Total/NA
Toluene	12		2.0	pp	ob v/v	10	TO-15	Total/NA
Ethylbenzene	2.3		2.0	pp	ob v/v	10	TO-15	Total/NA
Cumene	2.6		2.0	pp	ob v/v	10	TO-15	Total/NA
Analyte	Result	Qualifier	RL	RL U	nit	Dil Fac I	Method	Prep Type
Freon 22	24		18	ug	g/m3	10	TO-15	Total/NA
n-Butane	31		12	ug	g/m3	10	TO-15	Total/NA
1,3-Butadiene	5.4		4.4	ug	g/m3	10	TO-15	Total/NA
Acetone	750		120	uç	g/m3	10	TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Burlington

8/18/2017

Page 7 of 87

_

8

10

12

1 1

h

Detection Summary

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Client Sample ID: SV-5 (Continued)

Analyte	Result Qualifier	RL	RL Unit	Dil Fac	D Method	Prep Type
Methylene Chloride	53	17	ug/m3	10	TO-15	Total/NA
n-Hexane	100	7.0	ug/m3	10	TO-15	Total/NA
Methyl Ethyl Ketone	26	15	ug/m3	10	TO-15	Total/NA
Chloroform	10	9.8	ug/m3	10	TO-15	Total/NA
n-Heptane	17	8.2	ug/m3	10	TO-15	Total/NA
Trichloroethene	13	2.1	ug/m3	10	TO-15	Total/NA
Toluene	45	7.5	ug/m3	10	TO-15	Total/NA
Ethylbenzene	10	8.7	ug/m3	10	TO-15	Total/NA
Cumene	13	9.8	ug/m3	10	TO-15	Total/NA

Client Sample ID: AA-1

Analyte Carbon tetrachloride	Result 0.052	Qualifier	RL 0.040	RL	Unit ppb v/v	Dil Fac	D	Method TO-15	Prep Type Total/NA
Analyte Carbon tetrachloride	0.33	Qualifier	RL 0.25	RL	Unit ug/m3	Dil Fac	D	Method TO-15	Prep Type Total/NA

Lab Sample ID: 200-39689-5

Lab Sample ID: 200-39689-6

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-1 Lab Sample ID: 200-39689-1 Matrix: Air

Date Collected: 08/08/17 14:26 Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	4.0	U	4.0	ppb v/v			08/15/17 17:08	
Freon 22	4.0	U	4.0	ppb v/v			08/15/17 17:08	
1,2-Dichlorotetrafluoroethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Chloromethane	4.0	U	4.0	ppb v/v			08/15/17 17:08	
n-Butane	8.2		4.0	ppb v/v			08/15/17 17:08	
Vinyl chloride	0.32	U	0.32	ppb v/v			08/15/17 17:08	
1,3-Butadiene	3.3		1.6	ppb v/v			08/15/17 17:08	
Bromomethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Chloroethane	4.0	U	4.0	ppb v/v			08/15/17 17:08	
Bromoethene(Vinyl Bromide)	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Trichlorofluoromethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Freon TF	1.6	U	1.6	ppb v/v			08/15/17 17:08	
1,1-Dichloroethene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Acetone	72		40	ppb v/v			08/15/17 17:08	
sopropyl alcohol	40	U	40	ppb v/v			08/15/17 17:08	
Carbon disulfide	4.0	Ú	4.0	ppb v/v			08/15/17 17:08	
3-Chloropropene	4.0	U	4.0	ppb v/v			08/15/17 17:08	
Methylene Chloride	4.0	U	4.0	ppb v/v			08/15/17 17:08	
tert-Butyl alcohol	40	U	40	ppb v/v			08/15/17 17:08	
Methyl tert-butyl ether	1.6	U	1.6	ppb v/v			08/15/17 17:08	
trans-1,2-Dichloroethene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
n-Hexane	11		1.6	ppb v/v			08/15/17 17:08	
1,1-Dichloroethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Methyl Ethyl Ketone	12		4.0	ppb v/v			08/15/17 17:08	
cis-1,2-Dichloroethene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
1,2-Dichloroethene, Total	3.2		3.2	ppb v/v			08/15/17 17:08	
Chloroform	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Tetrahydrofuran	40	U	40	ppb v/v			08/15/17 17:08	
1,1,1-Trichloroethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Cyclohexane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Carbon tetrachloride	0.32		0.32	ppb v/v			08/15/17 17:08	
2,2,4-Trimethylpentane	5.3		1.6	ppb v/v			08/15/17 17:08	
Benzene	3.6		1.6	ppb v/v			08/15/17 17:08	
1,2-Dichloroethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
n-Heptane	3.0		1.6	ppb v/v			08/15/17 17:08	
Trichloroethene	0.32	U	0.32	ppb v/v			08/15/17 17:08	
Methyl methacrylate	4.0		4.0	ppb v/v			08/15/17 17:08	
1,2-Dichloropropane	1.6		1.6	ppb v/v			08/15/17 17:08	
1,4-Dioxane	40		40	ppb v/v			08/15/17 17:08	
Bromodichloromethane	1.6		1.6	ppb v/v			08/15/17 17:08	
cis-1,3-Dichloropropene	1.6		1.6	ppb v/v			08/15/17 17:08	
methyl isobutyl ketone	4.0		4.0	ppb v/v			08/15/17 17:08	
Foluene	6.1		1.6	ppb v/v			08/15/17 17:08	
trans-1,3-Dichloropropene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
1,1,2-Trichloroethane	1.6		1.6	ppb v/v			08/15/17 17:08	
Tetrachloroethene	1.6		1.6	ppb v/v			08/15/17 17:08	
Methyl Butyl Ketone (2-Hexanone)	4.0		4.0	ppb v/v			08/15/17 17:08	
Dibromochloromethane	1.6		1.6	ppb v/v			08/15/17 17:08	

TestAmerica Burlington

Page 9 of 87 8/18/2017

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-1 Lab Sample ID: 200-39689-1

Date Collected: 08/08/17 14:26 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Chlorobenzene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Ethylbenzene	12		1.6	ppb v/v			08/15/17 17:08	
m,p-Xylene	4.3		4.0	ppb v/v			08/15/17 17:08	
Xylene, o-	1.7		1.6	ppb v/v			08/15/17 17:08	
Xylene (total)	6.0		5.6	ppb v/v			08/15/17 17:08	
Styrene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Bromoform	1.6	U	1.6	ppb v/v			08/15/17 17:08	
Cumene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
1,1,2,2-Tetrachloroethane	1.6	U	1.6	ppb v/v			08/15/17 17:08	
n-Propylbenzene	1.7		1.6	ppb v/v			08/15/17 17:08	
4-Ethyltoluene	1.6	U	1.6	ppb v/v			08/15/17 17:08	
1,3,5-Trimethylbenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
2-Chlorotoluene	1.6		1.6	ppb v/v			08/15/17 17:08	
tert-Butylbenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
1,2,4-Trimethylbenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
sec-Butylbenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
4-Isopropyltoluene	1.6		1.6	ppb v/v			08/15/17 17:08	
1,3-Dichlorobenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
1.4-Dichlorobenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
Benzyl chloride	1.6		1.6	ppb v/v			08/15/17 17:08	
n-Butylbenzene	1.6		1.6				08/15/17 17:08	
1,2-Dichlorobenzene	1.6		1.6	ppb v/v			08/15/17 17:08	
1,2,4-Trichlorobenzene	4.0		4.0	ppb v/v			08/15/17 17:08	
				ppb v/v				
Hexachlorobutadiene	1.6		1.6	ppb v/v			08/15/17 17:08	
Naphthalene	4.0		4.0	ppb v/v			08/15/17 17:08	
Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	20	U	20	ug/m3			08/15/17 17:08	
Freon 22	14		14	ug/m3			08/15/17 17:08	
1,2-Dichlorotetrafluoroethane	11		11	ug/m3			08/15/17 17:08	
Chloromethane	8.3	U	8.3	ug/m3			08/15/17 17:08	
n-Butane	19		9.5	ug/m3			08/15/17 17:08	
Vinyl chloride	0.82	U	0.82	ug/m3			08/15/17 17:08	
1,3-Butadiene	7.2		3.5	ug/m3			08/15/17 17:08	
Bromomethane	6.2	U	6.2	ug/m3			08/15/17 17:08	
Chloroethane	11	U	11	ug/m3			08/15/17 17:08	
Bromoethene(Vinyl Bromide)	7.0	U	7.0	ug/m3			08/15/17 17:08	
Trichlorofluoromethane	9.0	U	9.0	ug/m3			08/15/17 17:08	
Freon TF	12	U	12	ug/m3			08/15/17 17:08	
1,1-Dichloroethene	6.3	U	6.3	ug/m3			08/15/17 17:08	
Acetone	170		95	ug/m3			08/15/17 17:08	
Isopropyl alcohol	98	U	98	ug/m3			08/15/17 17:08	
Carbon disulfide	12		12	ug/m3			08/15/17 17:08	
3-Chloropropene	13		13	ug/m3			08/15/17 17:08	
Methylene Chloride	14		14	ug/m3			08/15/17 17:08	
tert-Butyl alcohol	120		120	ug/m3			08/15/17 17:08	
Methyl tert-butyl ether	5.8		5.8	ug/m3			08/15/17 17:08	
monty tott-butyl onlol	5.0	U	6.3	ug/m3			08/15/17 17:08	

TestAmerica Burlington

Page 10 of 87

2

3

5

7

9

11

13

14

1 %

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-1

Date Collected: 08/08/17 14:26

Lab Sample ID: 200-39689-1

Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Orgar ^{Analyte}		Qualifier	RL	RL Unit	D Prepared	Analyzed	Dil Fa
n-Hexane	40		5.6	ug/m3		08/15/17 17:08	
I,1-Dichloroethane	6.5	U	6.5	ug/m3		08/15/17 17:08	
Methyl Ethyl Ketone	36		12	ug/m3		08/15/17 17:08	
sis-1,2-Dichloroethene	6.3	U	6.3	ug/m3		08/15/17 17:08	
,2-Dichloroethene, Total	13	U	13	ug/m3		08/15/17 17:08	
Chloroform	7.8	U	7.8	ug/m3		08/15/17 17:08	
etrahydrofuran	120	U	120	ug/m3		08/15/17 17:08	
,1,1-Trichloroethane	8.7	U	8.7	ug/m3		08/15/17 17:08	
Cyclohexane	5.5	U	5.5	ug/m3		08/15/17 17:08	
Carbon tetrachloride	2.0	U	2.0	ug/m3		08/15/17 17:08	
,2,4-Trimethylpentane	25		7.5	ug/m3		08/15/17 17:08	
Benzene	11		5.1	ug/m3		08/15/17 17:08	
,2-Dichloroethane		U	6.5	ug/m3		08/15/17 17:08	
ı-Heptane	12		6.6	ug/m3		08/15/17 17:08	
richloroethene		U	1.7	ug/m3		08/15/17 17:08	
Nethyl methacrylate		U	16	ug/m3		08/15/17 17:08	
,2-Dichloropropane	7.4		7.4	ug/m3		08/15/17 17:08	
,4-Dioxane	140		140	ug/m3		08/15/17 17:08	
Bromodichloromethane			11	ug/m3		08/15/17 17:08	
is-1,3-Dichloropropene		U	7.3	ug/m3		08/15/17 17:08	
nethyl isobutyl ketone	16	_	16	ug/m3		08/15/17 17:08	
oluene	23		6.0	ug/m3		08/15/17 17:08	
ans-1,3-Dichloropropene	7.3	11	7.3	-		08/15/17 17:08	
,1,2-Trichloroethane	8.7		7.3 8.7	ug/m3		08/15/17 17:08	
etrachloroethene		U	0.7 11	ug/m3		08/15/17 17:08	
		U	16	ug/m3		08/15/17 17:08	
Methyl Butyl Ketone (2-Hexanone) Dibromochloromethane	14		14	ug/m3		08/15/17 17:08	
	12		14	ug/m3		08/15/17 17:08	
,2-Dibromoethane	7.4		7.4	ug/m3			
Chlorobenzene		U		ug/m3		08/15/17 17:08	
thylbenzene	50		6.9	ug/m3		08/15/17 17:08	
n,p-Xylene	18		17	ug/m3		08/15/17 17:08	
(ylene, o-	7.4		6.9	ug/m3		08/15/17 17:08	
(ylene (total)	26	,,	24	ug/m3		08/15/17 17:08	
styrene		U	6.8	ug/m3		08/15/17 17:08	
Bromoform	17		17	ug/m3		08/15/17 17:08	
Cumene	7.9		7.9	ug/m3		08/15/17 17:08	
,1,2,2-Tetrachloroethane		U	11	ug/m3		08/15/17 17:08	
-Propylbenzene	8.6		7.9	ug/m3		08/15/17 17:08	
-Ethyltoluene	7.9		7.9	ug/m3		08/15/17 17:08	
,3,5-Trimethylbenzene	7.9		7.9	ug/m3		08/15/17 17:08	
-Chlorotoluene	8.3		8.3	ug/m3		08/15/17 17:08	
ert-Butylbenzene	8.8	U	8.8	ug/m3		08/15/17 17:08	
,2,4-Trimethylbenzene	7.9		7.9	ug/m3		08/15/17 17:08	
ec-Butylbenzene	8.8	U	8.8	ug/m3		08/15/17 17:08	
-Isopropyltoluene	8.8	U	8.8	ug/m3		08/15/17 17:08	
,3-Dichlorobenzene	9.6	U	9.6	ug/m3		08/15/17 17:08	
,4-Dichlorobenzene	9.6	U	9.6	ug/m3		08/15/17 17:08	
Benzyl chloride	8.3	U	8.3	ug/m3		08/15/17 17:08	

TestAmerica Burlington

8/18/2017

3

_

7

8

10

12

1 /

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-1 Lab Sample ID: 200-39689-1

Date Collected: 08/08/17 14:26 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	R	L.	RL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	8.8	U	8	.8		ug/m3			08/15/17 17:08	8
1,2-Dichlorobenzene	9.6	U	9	.6		ug/m3			08/15/17 17:08	8
1,2,4-Trichlorobenzene	30	U	3	30		ug/m3			08/15/17 17:08	8
Hexachlorobutadiene	17	U	1	7		ug/m3			08/15/17 17:08	8
Naphthalene	21	U	2	21		ug/m3			08/15/17 17:08	8
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Propene	11	JN	ppb v/v		3.	14	115-07-1		08/15/17 17:08	8
Unknown	9.0	J	ppb v/v		4.	02			08/15/17 17:08	8
Unknown	8.5	J	ppb v/v		9.	05			08/15/17 17:08	8
Unknown	12	J	ppb v/v		16.	51			08/15/17 17:08	8
Unknown	65	J	ppb v/v		18.	65			08/15/17 17:08	8
									08/15/17 17:08	

Client Sample ID: SV-2 Lab Sample ID: 200-39689-2

Date Collected: 08/08/17 15:00 Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Org Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.1
Freon 22	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.1
1,2-Dichlorotetrafluoroethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Chloromethane	9.6		6.6	ppb v/v			08/16/17 23:55	13.1
n-Butane	310		6.6	ppb v/v			08/16/17 23:55	13.1
Vinyl chloride	0.52	U	0.52	ppb v/v			08/16/17 23:55	13.1
1,3-Butadiene	39		2.6	ppb v/v			08/16/17 23:55	13.1
Bromomethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Chloroethane	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.1
Bromoethene(Vinyl Bromide)	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Trichlorofluoromethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Freon TF	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
1,1-Dichloroethene	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Acetone	72		66	ppb v/v			08/16/17 23:55	13.1
Isopropyl alcohol	66	U	66	ppb v/v			08/16/17 23:55	13.1
Carbon disulfide	33		6.6	ppb v/v			08/16/17 23:55	13.1
3-Chloropropene	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.1
Methylene Chloride	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.1
tert-Butyl alcohol	66	U	66	ppb v/v			08/16/17 23:55	13.1
Methyl tert-butyl ether	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
trans-1,2-Dichloroethene	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
n-Hexane	170		2.6	ppb v/v			08/16/17 23:55	13.1
1,1-Dichloroethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Methyl Ethyl Ketone	15		6.6	ppb v/v			08/16/17 23:55	13.1
cis-1,2-Dichloroethene	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
1,2-Dichloroethene, Total	5.2	U	5.2	ppb v/v			08/16/17 23:55	13.
Chloroform	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Tetrahydrofuran	66	U	66	ppb v/v			08/16/17 23:55	13.1

TestAmerica Burlington

Matrix: Air

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-2 Lab Sample ID: 200-39689-2

Date Collected: 08/08/17 15:00 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
Cyclohexane	5.3		2.6	ppb v/v			08/16/17 23:55	13.1
Carbon tetrachloride	0.52	U	0.52	ppb v/v			08/16/17 23:55	13.1
2,2,4-Trimethylpentane	3.3		2.6	ppb v/v			08/16/17 23:55	13.1
Benzene	16		2.6	ppb v/v			08/16/17 23:55	13.1
1,2-Dichloroethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.
n-Heptane	60		2.6	ppb v/v			08/16/17 23:55	13.1
Trichloroethene	0.52	U	0.52	ppb v/v			08/16/17 23:55	13.1
Methyl methacrylate	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.
1,2-Dichloropropane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
1,4-Dioxane	66	U	66	ppb v/v			08/16/17 23:55	13.1
Bromodichloromethane	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.
cis-1,3-Dichloropropene	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
methyl isobutyl ketone	6.6		6.6	ppb v/v			08/16/17 23:55	13.1
Toluene	6.2		2.6	ppb v/v			08/16/17 23:55	13.
trans-1,3-Dichloropropene	2.6	U	2.6	ppb v/v			08/16/17 23:55	13.1
1,1,2-Trichloroethane	2.6		2.6	ppb v/v			08/16/17 23:55	13.1
Tetrachloroethene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Methyl Butyl Ketone (2-Hexanone)	6.6		6.6	ppb v/v			08/16/17 23:55	13.1
Dibromochloromethane	2.6		2.6	ppb v/v			08/16/17 23:55	13.
1.2-Dibromoethane	2.6		2.6	ppb v/v			08/16/17 23:55	13.1
Chlorobenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Ethylbenzene	8.7	Ü	2.6	ppb v/v			08/16/17 23:55	13.
m,p-Xylene	6.6	. 11	6.6	ppb v/v			08/16/17 23:55	13.
Xylene, o-	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Xylene (total)	9.2		9.2	ppb v/v			08/16/17 23:55	13.
Styrene (total)	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Bromoform	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Cumene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
1,1,2,2-Tetrachloroethane	2.6		2.6	ppb v/v			08/16/17 23:55	13.
n-Propylbenzene	2.6		2.6	ppb v/v ppb v/v			08/16/17 23:55	13.
4-Ethyltoluene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
4-Etriyitoluerie 1,3,5-Trimethylbenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
2-Chlorotoluene	2.6	_	2.6					
	2.6		2.6	ppb v/v			08/16/17 23:55 08/16/17 23:55	13. ⁻ 13. ⁻
tert-Butylbenzene				ppb v/v				
1,2,4-Trimethylbenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
sec-Butylbenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
4-Isopropyltoluene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
1,3-Dichlorobenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
1,4-Dichlorobenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Benzyl chloride	2.6		2.6	ppb v/v			08/16/17 23:55	13.
n-Butylbenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
1,2-Dichlorobenzene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
1,2,4-Trichlorobenzene	6.6		6.6	ppb v/v			08/16/17 23:55	13.
Hexachlorobutadiene	2.6		2.6	ppb v/v			08/16/17 23:55	13.
Naphthalene	6.6	U	6.6	ppb v/v			08/16/17 23:55	13.
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa

TestAmerica Burlington

8/18/2017

4

e

8

10

12

14

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-2 Lab Sample ID: 200-39689-2

Date Collected: 08/08/17 15:00 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

8/16/17 23:55 8/16/17 23:55 8/16/17 23:55 8/16/17 23:55 8/16/17 23:55 8/16/17 23:55	13. 13.
8/16/17 23:55 8/16/17 23:55 8/16/17 23:55	13.
8/16/17 23:55 8/16/17 23:55	13. 13.
8/16/17 23:55	
	13
0/46/47 22:55	13.
0/10/17 23.33	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
8/16/17 23:55	13.
	13.
	13. 13.
	13. 13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
	13.
8/16/17 23:55	13.
8/16/17 23:55	13
	8/16/17 23:55 8/16/17 23:55

TestAmerica Burlington

8/18/2017

3

4

6

8

10

12

14

Ik

TestAmerica Job ID: 200-39689-1 SDG: 200-39689-1

Client Sample ID: SV-2

Date Collected: 08/08/17 15:00 Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Lab Sample ID: 200-39689-2

Matrix: Air

Analyte	Result	Qualifier	RL	RL Únit	D	Prepared	Analyzed	Dil Fac
Chlorobenzene	12	U	12	ug/m3			08/16/17 23:55	13.1
Ethylbenzene	38		11	ug/m3			08/16/17 23:55	13.1
m,p-Xylene	28	U	28	ug/m3			08/16/17 23:55	13.1
Xylene, o-	11	U	11	ug/m3			08/16/17 23:55	13.1
Xylene (total)	40	U	40	ug/m3			08/16/17 23:55	13.1
Styrene	11	U	11	ug/m3			08/16/17 23:55	13.1
Bromoform	27	U	27	ug/m3			08/16/17 23:55	13.1
Cumene	13	U	13	ug/m3			08/16/17 23:55	13.1
1,1,2,2-Tetrachloroethane	18	U	18	ug/m3			08/16/17 23:55	13.1
n-Propylbenzene	13	U	13	ug/m3			08/16/17 23:55	13.1
4-Ethyltoluene	13	U	13	ug/m3			08/16/17 23:55	13.1
1,3,5-Trimethylbenzene	13	U	13	ug/m3			08/16/17 23:55	13.1
2-Chlorotoluene	14	U	14	ug/m3			08/16/17 23:55	13.1
tert-Butylbenzene	14	U	14	ug/m3			08/16/17 23:55	13.1
1,2,4-Trimethylbenzene	13	U	13	ug/m3			08/16/17 23:55	13.1
sec-Butylbenzene	14	U	14	ug/m3			08/16/17 23:55	13.1
4-Isopropyltoluene	14	U	14	ug/m3			08/16/17 23:55	13.1
1,3-Dichlorobenzene	16	U	16	ug/m3			08/16/17 23:55	13.1
1,4-Dichlorobenzene	16	U	16	ug/m3			08/16/17 23:55	13.1
Benzyl chloride	14	U	14	ug/m3			08/16/17 23:55	13.1
n-Butylbenzene	14	U	14	ug/m3			08/16/17 23:55	13.1
1,2-Dichlorobenzene	16	U	16	ug/m3			08/16/17 23:55	13.1
1,2,4-Trichlorobenzene	49	U	49	ug/m3			08/16/17 23:55	13.1
Hexachlorobutadiene	28	U	28	ug/m3			08/16/17 23:55	13.1
Naphthalene	34	U	34	ug/m3			08/16/17 23:55	13.1

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	200	J	ppb v/v		3.12	-		08/16/17 23:55	13.1
Unknown	36	J	ppb v/v		3.41			08/16/17 23:55	13.1
Unknown	29	J	ppb v/v		3.81			08/16/17 23:55	13.1
Pentane	120	JN	ppb v/v		5.01	109-66-0		08/16/17 23:55	13.1
Cyclopropane, 1,2-dimethyl-, cis-	36	J N	ppb v/v		5.26	930-18-7		08/16/17 23:55	13.1
Unknown	64	J	ppb v/v		6.62			08/16/17 23:55	13.1
Unknown	52	J	ppb v/v		7.04			08/16/17 23:55	13.1
2-Hexene, (Z)-	29	JN	ppb v/v		7.83	7688-21-3		08/16/17 23:55	13.1
Hexane, 3-methyl-	61	J N	ppb v/v		10.03	589-34-4		08/16/17 23:55	13.1
Unknown	28	J	ppb v/v		22.62			08/16/17 23:55	13.1

Client Sample ID: SV-3 Lab Sample ID: 200-39689-3 Date Collected: 08/09/17 12:20 Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Org	anic Compou	ınds in Amb	ient Air					
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	3.0	U	3.0	ppb v/v			08/15/17 18:01	6
Freon 22	5.0		3.0	ppb v/v			08/15/17 18:01	6
1,2-Dichlorotetrafluoroethane	1.2	U	1.2	ppb v/v			08/15/17 18:01	6
Chloromethane	3.0	U	3.0	ppb v/v			08/15/17 18:01	6

TestAmerica Burlington

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-3 Lab Sample ID: 200-39689-3

Date Collected: 08/09/17 12:20 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
n-Butane	20		3.0	ppb v/v			08/15/17 18:01	(
Vinyl chloride	0.24		0.24	ppb v/v			08/15/17 18:01	
1,3-Butadiene	1.2		1.2	ppb v/v			08/15/17 18:01	(
Bromomethane	1.2		1.2	ppb v/v			08/15/17 18:01	(
Chloroethane	3.0	U	3.0	ppb v/v			08/15/17 18:01	(
Bromoethene(Vinyl Bromide)	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
Trichlorofluoromethane	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
Freon TF	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
1,1-Dichloroethene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
Acetone	110		30	ppb v/v			08/15/17 18:01	
Isopropyl alcohol	30	U	30	ppb v/v			08/15/17 18:01	(
Carbon disulfide	3.0	U	3.0	ppb v/v			08/15/17 18:01	
3-Chloropropene	3.0	U	3.0	ppb v/v			08/15/17 18:01	(
Methylene Chloride	70		3.0	ppb v/v			08/15/17 18:01	
tert-Butyl alcohol	30	U	30	ppb v/v			08/15/17 18:01	
Methyl tert-butyl ether	1.2	U	1.2	ppb v/v			08/15/17 18:01	
trans-1,2-Dichloroethene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
n-Hexane	100		1.2	ppb v/v			08/15/17 18:01	
1.1-Dichloroethane	1.2	U	1.2	ppb v/v			08/15/17 18:01	
Methyl Ethyl Ketone	6.3		3.0	ppb v/v			08/15/17 18:01	
cis-1,2-Dichloroethene	1.2	. _U	1.2	ppb v/v			08/15/17 18:01	
1,2-Dichloroethene, Total	2.4		2.4	ppb v/v			08/15/17 18:01	
Chloroform	1.2		1.2	ppb v/v			08/15/17 18:01	
Tetrahydrofuran	30		30	ppb v/v			08/15/17 18:01	
1,1,1-Trichloroethane	1.2		1.2	ppb v/v			08/15/17 18:01	
Cyclohexane	7.5	J	1.2	ppb v/v			08/15/17 18:01	
Carbon tetrachloride	0.24	i i	0.24	ppb v/v ppb v/v			08/15/17 18:01	
2,2,4-Trimethylpentane	1.2		1.2	ppb v/v ppb v/v			08/15/17 18:01	
z,z,4-11inetiiyipentane Benzene	1.2		1.2	ppb v/v ppb v/v			08/15/17 18:01	
1,2-Dichloroethane	1.2		1.2				08/15/17 18:01	
,		U	1.2	ppb v/v				
n-Heptane	2.0			ppb v/v			08/15/17 18:01	,
Trichloroethene	13		0.24	ppb v/v			08/15/17 18:01	
Methyl methacrylate	3.0		3.0	ppb v/v			08/15/17 18:01	,
1,2-Dichloropropane	1.2		1.2	ppb v/v			08/15/17 18:01	1
1,4-Dioxane	30		30	ppb v/v			08/15/17 18:01	
Bromodichloromethane	1.2		1.2	ppb v/v			08/15/17 18:01	,
cis-1,3-Dichloropropene	1.2		1.2	ppb v/v			08/15/17 18:01	
methyl isobutyl ketone	3.0	U	3.0	ppb v/v			08/15/17 18:01	
Toluene	65		1.2	ppb v/v			08/15/17 18:01	
trans-1,3-Dichloropropene	1.2		1.2	ppb v/v			08/15/17 18:01	
1,1,2-Trichloroethane	1.2		1.2	ppb v/v			08/15/17 18:01	
Tetrachloroethene	1.2		1.2	ppb v/v			08/15/17 18:01	
Methyl Butyl Ketone (2-Hexanone)	3.0		3.0	ppb v/v			08/15/17 18:01	
Dibromochloromethane	1.2		1.2	ppb v/v			08/15/17 18:01	
1,2-Dibromoethane	1.2		1.2	ppb v/v			08/15/17 18:01	
Chlorobenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
Ethylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
m,p-Xylene	3.0	U	3.0	ppb v/v			08/15/17 18:01	

TestAmerica Burlington

8/18/2017

2

A

J

Ω

4.0

12

1!

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-3 Lab Sample ID: 200-39689-3

Date Collected: 08/09/17 12:20 Date Received: 08/11/17 10:30

trans-1,2-Dichloroethene

1,1-Dichloroethane

Methyl Ethyl Ketone

cis-1,2-Dichloroethene

n-Hexane

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa
Xylene, o-	1.2		1.2	ppb v/v			08/15/17 18:01	-
Xylene (total)	4.2		4.2	ppb v/v			08/15/17 18:01	(
Styrene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
Bromoform	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
Cumene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
1,1,2,2-Tetrachloroethane	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
n-Propylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
4-Ethyltoluene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
1,3,5-Trimethylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
2-Chlorotoluene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
tert-Butylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
1,2,4-Trimethylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
sec-Butylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
4-Isopropyltoluene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
1,3-Dichlorobenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
1,4-Dichlorobenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
Benzyl chloride	1.2	U	1.2	ppb v/v			08/15/17 18:01	•
n-Butylbenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
1,2-Dichlorobenzene	1.2	U	1.2	ppb v/v			08/15/17 18:01	(
1,2,4-Trichlorobenzene	3.0	U	3.0	ppb v/v			08/15/17 18:01	•
Hexachlorobutadiene	1.2	U	1.2	ppb v/v			08/15/17 18:01	
Naphthalene	3.0	U	3.0	ppb v/v			08/15/17 18:01	(
Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	15	U	15	ug/m3			08/15/17 18:01	-
Freon 22	18		11	ug/m3			08/15/17 18:01	(
1,2-Dichlorotetrafluoroethane	8.4		8.4	ug/m3			08/15/17 18:01	(
Chloromethane	6.2	U	6.2	ug/m3			08/15/17 18:01	
n-Butane	48		7.1	ug/m3			08/15/17 18:01	(
Vinyl chloride	0.61	U	0.61	ug/m3			08/15/17 18:01	(
1,3-Butadiene	2.7	U	2.7	ug/m3			08/15/17 18:01	(
Bromomethane	4.7	U	4.7	ug/m3			08/15/17 18:01	(
Chloroethane	7.9	U	7.9	ug/m3			08/15/17 18:01	(
Bromoethene(Vinyl Bromide)	5.2	U	5.2	ug/m3			08/15/17 18:01	(
Trichlorofluoromethane	6.7	U	6.7	ug/m3			08/15/17 18:01	(
Freon TF	9.2	U	9.2	ug/m3			08/15/17 18:01	(
1,1-Dichloroethene	4.8	U	4.8	ug/m3			08/15/17 18:01	
Acetone	270		71	ug/m3			08/15/17 18:01	(
Isopropyl alcohol	74	U	74	ug/m3			08/15/17 18:01	(
Carbon disulfide	9.3	U	9.3	ug/m3			08/15/17 18:01	
3-Chloropropene	9.4	U	9.4	ug/m3			08/15/17 18:01	(
Methylene Chloride	240		10	ug/m3			08/15/17 18:01	(
montylene officiale								
tert-Butyl alcohol	91	U	91	ug/m3			08/15/17 18:01	
-			91 4.3	ug/m3 ug/m3				

TestAmerica Burlington

08/15/17 18:01

08/15/17 18:01

08/15/17 18:01

08/15/17 18:01

08/15/17 18:01

4.8

4.2

4.9

8.8

4.8

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

4.8 U

4.9 U

4.8 U

350

18

3

Matrix: Air

4

6

8

10

12

14

H.

6

6

6

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-3

Date Collected: 08/09/17 12:20

Lab Sample ID: 200-39689-3

Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dichloroethene, Total	9.5		9.5	ug/m3			08/15/17 18:01	-
Chloroform	5.9	U	5.9	ug/m3			08/15/17 18:01	(
Tetrahydrofuran	88	U	88	ug/m3			08/15/17 18:01	(
1,1,1-Trichloroethane	6.5	U	6.5	ug/m3			08/15/17 18:01	(
Cyclohexane	26		4.1	ug/m3			08/15/17 18:01	
Carbon tetrachloride	1.5	U	1.5	ug/m3			08/15/17 18:01	
2,2,4-Trimethylpentane	5.6	U	5.6	ug/m3			08/15/17 18:01	
Benzene	3.8	U	3.8	ug/m3			08/15/17 18:01	
1,2-Dichloroethane	4.9	U	4.9	ug/m3			08/15/17 18:01	
n-Heptane	8.0		4.9	ug/m3			08/15/17 18:01	
Trichloroethene	69		1.3	ug/m3			08/15/17 18:01	
Methyl methacrylate	12	U	12	ug/m3			08/15/17 18:01	
1,2-Dichloropropane	5.5	U	5.5	ug/m3			08/15/17 18:01	
1,4-Dioxane	110	U	110	ug/m3			08/15/17 18:01	
Bromodichloromethane	8.0	U	8.0	ug/m3			08/15/17 18:01	
cis-1,3-Dichloropropene	5.4	U	5.4	ug/m3			08/15/17 18:01	
methyl isobutyl ketone	12	U	12	ug/m3			08/15/17 18:01	
Toluene	250		4.5	ug/m3			08/15/17 18:01	
trans-1,3-Dichloropropene	5.4	U	5.4	ug/m3			08/15/17 18:01	
1.1.2-Trichloroethane	6.5		6.5	ug/m3			08/15/17 18:01	
Tetrachloroethene	8.1		8.1	ug/m3			08/15/17 18:01	
Methyl Butyl Ketone (2-Hexanone)	12		12	ug/m3			08/15/17 18:01	
Dibromochloromethane	10		10	ug/m3			08/15/17 18:01	
1,2-Dibromoethane	9.2		9.2	ug/m3			08/15/17 18:01	
Chlorobenzene	5.5		5.5	ug/m3			08/15/17 18:01	
Ethylbenzene	5.2		5.2	ug/m3			08/15/17 18:01	
n,p-Xylene	13		13	ug/m3			08/15/17 18:01	
Xylene, o-	5.2		5.2	ug/m3			08/15/17 18:01	
Xylene (total)	18		18	ug/m3			08/15/17 18:01	
Styrene (total)	5.1		5.1	ug/m3			08/15/17 18:01	
Bromoform	12		12	ug/m3			08/15/17 18:01	·
Cumene	5.9		5.9	ug/m3			08/15/17 18:01	
1,1,2,2-Tetrachloroethane	8.2		8.2	ug/m3			08/15/17 18:01	
n-Propylbenzene	5.9		5.9	ug/m3			08/15/17 18:01	
4-Ethyltoluene	5.9		5.9	ug/m3			08/15/17 18:01	
4-Ethyliolidene 1,3,5-Trimethylbenzene	5.9		5.9	.			08/15/17 18:01	
•	6.2			ug/m3				
2-Chlorotoluene	6.6		6.2 6.6	ug/m3			08/15/17 18:01 08/15/17 18:01	
tert-Butylbenzene				ug/m3				
1,2,4-Trimethylbenzene	5.9		5.9	ug/m3			08/15/17 18:01	
sec-Butylbenzene	6.6		6.6	ug/m3			08/15/17 18:01	
4-Isopropyltoluene	6.6		6.6	ug/m3			08/15/17 18:01	
1,3-Dichlorobenzene	7.2		7.2	ug/m3			08/15/17 18:01	,
1,4-Dichlorobenzene	7.2		7.2	ug/m3			08/15/17 18:01	
Benzyl chloride	6.2		6.2	ug/m3			08/15/17 18:01	
n-Butylbenzene	6.6		6.6	ug/m3			08/15/17 18:01	
1,2-Dichlorobenzene	7.2		7.2	ug/m3			08/15/17 18:01	•
1,2,4-Trichlorobenzene Hexachlorobutadiene	22 13		22 13	ug/m3 ug/m3			08/15/17 18:01 08/15/17 18:01	

TestAmerica Burlington

8/18/2017

3

6

0

10

12

1 /

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton

SDG: 200-39689-1

Client Sample ID: SV-3 Lab Sample ID: 200-39689-3 Date Collected: 08/09/17 12:20

Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	R	L	RL	Unit	D	Prepared	Analyzed	Dil Fac
Naphthalene	16	U		6		ug/m3			08/15/17 18:01	6
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	ı	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	15	J	ppb v/v		3.	14			08/15/17 18:01	6
Isobutane	11	J N	ppb v/v		3.	44	75-28-5		08/15/17 18:01	6
Pentane, 2-methyl-	36	J N	ppb v/v		7.	15	107-83-5		08/15/17 18:01	6
Pentane, 3-methyl-	48	JN	ppb v/v		7.	59	96-14-0		08/15/17 18:01	6
Cyclopentane, methyl-	35	J N	ppb v/v		9.	05	96-37-7		08/15/17 18:01	6
Hexane, 2-methyl-	6.8	J N	ppb v/v		9.	90	591-76-4		08/15/17 18:01	6
Hexane, 3-methyl-	6.1	JN	ppb v/v		10.	17	589-34-4		08/15/17 18:01	6
Unknown	12	J	ppb v/v		16.	51			08/15/17 18:01	6
Unknown	25	J	ppb v/v		18.	66			08/15/17 18:01	6

Client Sample ID: SV-4 Lab Sample ID: 200-39689-4

Date Collected: 08/09/17 13:15 Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
Freon 22	1.1		0.50		ppb v/v			08/14/17 21:06	1
1,2-Dichlorotetrafluoroethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Chloromethane	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
n-Butane	1.1		0.50		ppb v/v			08/14/17 21:06	1
Vinyl chloride	0.040	U	0.040		ppb v/v			08/14/17 21:06	1
1,3-Butadiene	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Bromomethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Chloroethane	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
Bromoethene(Vinyl Bromide)	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Trichlorofluoromethane	0.39		0.20		ppb v/v			08/14/17 21:06	1
Freon TF	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
1,1-Dichloroethene	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Acetone	17		5.0		ppb v/v			08/14/17 21:06	1
Isopropyl alcohol	5.0	U	5.0		ppb v/v			08/14/17 21:06	1
Carbon disulfide	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
3-Chloropropene	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
Methylene Chloride	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
tert-Butyl alcohol	5.0	U	5.0		ppb v/v			08/14/17 21:06	1
Methyl tert-butyl ether	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
trans-1,2-Dichloroethene	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
n-Hexane	0.36		0.20		ppb v/v			08/14/17 21:06	1
1,1-Dichloroethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Methyl Ethyl Ketone	3.8		0.50		ppb v/v			08/14/17 21:06	1
cis-1,2-Dichloroethene	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
1,2-Dichloroethene, Total	0.40	U	0.40		ppb v/v			08/14/17 21:06	1
Chloroform	0.25		0.20		ppb v/v			08/14/17 21:06	1
Tetrahydrofuran	5.0	U	5.0		ppb v/v			08/14/17 21:06	1
1,1,1-Trichloroethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1

TestAmerica Burlington

Page 19 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-4

Lab Sample ID: 200-39689-4

Date Collected: 08/09/17 13:15
Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	0.20		0.20		ppb v/v			08/14/17 21:06	
Carbon tetrachloride	0.040	U	0.040		ppb v/v			08/14/17 21:06	,
2,2,4-Trimethylpentane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Benzene	0.90		0.20		ppb v/v			08/14/17 21:06	1
1,2-Dichloroethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
n-Heptane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Trichloroethene	0.045		0.040		ppb v/v			08/14/17 21:06	1
Methyl methacrylate	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
1,2-Dichloropropane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
1,4-Dioxane	5.0	U	5.0		ppb v/v			08/14/17 21:06	1
Bromodichloromethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
cis-1,3-Dichloropropene	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
methyl isobutyl ketone	0.50	U	0.50		ppb v/v			08/14/17 21:06	1
Toluene	1.6		0.20		ppb v/v			08/14/17 21:06	1
trans-1,3-Dichloropropene	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
1,1,2-Trichloroethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
Tetrachloroethene	0.20		0.20		ppb v/v			08/14/17 21:06	1
Methyl Butyl Ketone (2-Hexanone)	0.67		0.50		ppb v/v			08/14/17 21:06	1
Dibromochloromethane	0.20	U	0.20		ppb v/v			08/14/17 21:06	1
1.2-Dibromoethane	0.20		0.20		ppb v/v			08/14/17 21:06	1
Chlorobenzene	0.20		0.20		ppb v/v			08/14/17 21:06	1
Ethylbenzene	0.93		0.20		ppb v/v			08/14/17 21:06	1
m,p-Xylene	0.66		0.50		ppb v/v			08/14/17 21:06	
Xylene, o-	0.31		0.20		ppb v/v			08/14/17 21:06	1
Xylene (total)	0.97		0.70		ppb v/v			08/14/17 21:06	,
Styrene	0.20		0.20		ppb v/v			08/14/17 21:06	
Bromoform	0.20		0.20		ppb v/v			08/14/17 21:06	,
Cumene	0.20		0.20		ppb v/v			08/14/17 21:06	,
1,1,2,2-Tetrachloroethane	0.20		0.20		ppb v/v			08/14/17 21:06	
n-Propylbenzene	0.25	O	0.20		ppb v/v			08/14/17 21:06	,
	0.55		0.20		ppb v/v			08/14/17 21:06	1
4-Ethyltoluene	0.54		0.20		ppb v/v			08/14/17 21:06	,
1,3,5-Trimethylbenzene 2-Chlorotoluene	0.20	11	0.20		ppb v/v			08/14/17 21:06	,
	0.20							08/14/17 21:06	1
tert-Butylbenzene			0.20		ppb v/v				
1,2,4-Trimethylbenzene	1.4 0.20	11	0.20 0.20		ppb v/v			08/14/17 21:06 08/14/17 21:06	
sec-Butylbenzene					ppb v/v				,
4-Isopropyltoluene	0.20		0.20		ppb v/v			08/14/17 21:06	
1,3-Dichlorobenzene	0.20		0.20		ppb v/v			08/14/17 21:06	1
1,4-Dichlorobenzene	0.20		0.20		ppb v/v			08/14/17 21:06	1
Benzyl chloride	0.20		0.20		ppb v/v			08/14/17 21:06	1
n-Butylbenzene	0.20		0.20		ppb v/v			08/14/17 21:06	1
1,2-Dichlorobenzene	0.20		0.20		ppb v/v			08/14/17 21:06	1
1,2,4-Trichlorobenzene	0.50		0.50		ppb v/v			08/14/17 21:06	
Hexachlorobutadiene	0.20		0.20		ppb v/v			08/14/17 21:06	•
Naphthalene	0.50	U	0.50		ppb v/v			08/14/17 21:06	•
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5	U	2.5		ug/m3			08/14/17 21:06	1
Freon 22	3.8		1.8		ug/m3			08/14/17 21:06	1

TestAmerica Burlington

8/18/2017

3

Matrix: Air

4

6

8

10

12

14

- 1

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-4

Date Collected: 08/09/17 13:15

Lab Sample ID: 200-39689-4

Matrix: Air

Sample Container: Summa Canister 6L

Date Received: 08/11/17 10:30

Method: TO-15 - Volatile Organi Analyte	Result	Qualifier	RL `	RL Únit	D	Prepared	Analyzed	Dil Fa
1,2-Dichlorotetrafluoroethane	1.4	U	1.4	ug/m3			08/14/17 21:06	
Chloromethane	1.0	U	1.0	ug/m3			08/14/17 21:06	
n-Butane	2.5		1.2	ug/m3			08/14/17 21:06	
Vinyl chloride	0.10	U	0.10	ug/m3			08/14/17 21:06	
1,3-Butadiene	0.44	U	0.44	ug/m3			08/14/17 21:06	
Bromomethane	0.78	U	0.78	ug/m3			08/14/17 21:06	
Chloroethane	1.3	U	1.3	ug/m3			08/14/17 21:06	
Bromoethene(Vinyl Bromide)	0.87	U	0.87	ug/m3			08/14/17 21:06	
Trichlorofluoromethane	2.2		1.1	ug/m3			08/14/17 21:06	
Freon TF	1.5	U	1.5	ug/m3			08/14/17 21:06	
1,1-Dichloroethene	0.79	U	0.79	ug/m3			08/14/17 21:06	
Acetone	41		12	ug/m3			08/14/17 21:06	
sopropyl alcohol	12	U	12	ug/m3			08/14/17 21:06	
Carbon disulfide	1.6	U	1.6	ug/m3			08/14/17 21:06	
3-Chloropropene	1.6		1.6	ug/m3			08/14/17 21:06	
Methylene Chloride	1.7		1.7	ug/m3			08/14/17 21:06	
tert-Butyl alcohol	15		15	ug/m3			08/14/17 21:06	
Methyl tert-butyl ether	0.72		0.72	ug/m3			08/14/17 21:06	
trans-1,2-Dichloroethene	0.79		0.79	ug/m3			08/14/17 21:06	
n-Hexane	1.3		0.70	ug/m3			08/14/17 21:06	
1,1-Dichloroethane	0.81	U	0.81	ug/m3			08/14/17 21:06	
Methyl Ethyl Ketone	11	Ü	1.5	ug/m3			08/14/17 21:06	
cis-1,2-Dichloroethene	0.79	11	0.79	ug/m3			08/14/17 21:06	
1,2-Dichloroethene, Total	1.6		1.6	ug/m3			08/14/17 21:06	
Chloroform	1.0	O	0.98	ug/m3			08/14/17 21:06	
Tetrahydrofuran	15	11	15	ug/m3			08/14/17 21:06	
1,1,1-Trichloroethane	1.1		1.1	ug/m3			08/14/17 21:06	
Cyclohexane	0.69		0.69	ug/m3			08/14/17 21:06	
Carbon tetrachloride	0.09		0.09	ug/m3			08/14/17 21:06	
	0.23		0.23	_			08/14/17 21:06	
2,2,4-Trimethylpentane Benzene		U	0.93	ug/m3			08/14/17 21:06	
Jenzene 1,2-Dichloroethane	2.9			ug/m3			08/14/17 21:06	
·	0.81		0.81	ug/m3				
n-Heptane	0.82	U	0.82	ug/m3			08/14/17 21:06 08/14/17 21:06	
Trichloroethene	0.24		0.21	ug/m3				
Methyl methacrylate	2.0		2.0	ug/m3			08/14/17 21:06	
1,2-Dichloropropane	0.92		0.92	ug/m3			08/14/17 21:06	
1,4-Dioxane	18		18	ug/m3			08/14/17 21:06	
3romodichloromethane	1.3		1.3	ug/m3			08/14/17 21:06	
cis-1,3-Dichloropropene	0.91		0.91	ug/m3			08/14/17 21:06	
nethyl isobutyl ketone	2.0	0	2.0	ug/m3			08/14/17 21:06	
Toluene	6.0		0.75	ug/m3			08/14/17 21:06	
rans-1,3-Dichloropropene	0.91	_	0.91	ug/m3			08/14/17 21:06	
1,1,2-Trichloroethane	1.1		1.1	ug/m3			08/14/17 21:06	
Tetrachloroethene	1.4	U	1.4	ug/m3			08/14/17 21:06	
Methyl Butyl Ketone (2-Hexanone)	2.7		2.0	ug/m3			08/14/17 21:06	
Dibromochloromethane	1.7		1.7	ug/m3			08/14/17 21:06	
1,2-Dibromoethane	1.5	U	1.5	ug/m3			08/14/17 21:06	
Chlorobenzene	0.92	U	0.92	ug/m3			08/14/17 21:06	

TestAmerica Burlington

8/18/2017

Page 21 of 87

6

3

4

6

8

10

12

14

- 1

SDG: 200-39689-1

Client Sample ID: SV-4

Date Collected: 08/09/17 13:15

Lab Sample ID: 200-39689-4

Matrix: Air

Date Received: 08/11/17 10:30 Sample Container: Summa Canister 6L

U	0.87 2.2 0.87 3.0	ug/m3 ug/m3 ug/m3 ug/m3		08/14/17 21:06 08/14/17 21:06 08/14/17 21:06	1
U	0.87 3.0	ug/m3			1
U	3.0	-		09/14/17 21:06	
U		ua/m3		00/14/17 21.00	1
	0.05	~g/11.5		08/14/17 21:06	1
U	0.85	ug/m3		08/14/17 21:06	1
-	2.1	ug/m3		08/14/17 21:06	1
U	0.98	ug/m3		08/14/17 21:06	1
· U	1.4	ug/m3		08/14/17 21:06	1
•	0.98	ug/m3		08/14/17 21:06	1
	0.98	ug/m3		08/14/17 21:06	1
	0.98	ug/m3		08/14/17 21:06	1
U	1.0	ug/m3		08/14/17 21:06	1
U	1.1	ug/m3		08/14/17 21:06	1
	0.98	ug/m3		08/14/17 21:06	1
U	1.1	ug/m3		08/14/17 21:06	1
U	1.1	ug/m3		08/14/17 21:06	1
: U	1.2	ug/m3		08/14/17 21:06	1
: U	1.2	ug/m3		08/14/17 21:06	1
U	1.0	ug/m3		08/14/17 21:06	1
U	1.1	ug/m3		08/14/17 21:06	1
: U	1.2	ug/m3		08/14/17 21:06	1
U	3.7	ug/m3		08/14/17 21:06	1
U	2.1	ug/m3		08/14/17 21:06	1
U	2.6	ug/m3		08/14/17 21:06	1
7	2	7 U 3.7 1 U 2.1	7 U 3.7 ug/m3 1 U 2.1 ug/m3	7 U 3.7 ug/m3 1 U 2.1 ug/m3 6 U 2.6 ug/m3	7 U 3.7 ug/m3 08/14/17 21:06 1 U 2.1 ug/m3 08/14/17 21:06

Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	1.1	J	ppb v/v		3.96			08/14/17 21:06	1
Butanal	1.1	J N	ppb v/v		8.75	123-72-8		08/14/17 21:06	1
Unknown	2.3	J	ppb v/v		19.84			08/14/17 21:06	1
Unknown	1.0	J	ppb v/v		21.25			08/14/17 21:06	1
Unknown	8.3	J	ppb v/v		22.62			08/14/17 21:06	1

Client Sample ID: SV-5 Lab Sample ID: 200-39689-5

Date Collected: 08/09/17 12:30 Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5.0	U	5.0		ppb v/v			08/14/17 21:57	10
Freon 22	6.9		5.0		ppb v/v			08/14/17 21:57	10
1,2-Dichlorotetrafluoroethane	2.0	U	2.0		ppb v/v			08/14/17 21:57	10
Chloromethane	5.0	U	5.0		ppb v/v			08/14/17 21:57	10
n-Butane	13		5.0		ppb v/v			08/14/17 21:57	10
Vinyl chloride	0.40	U	0.40		ppb v/v			08/14/17 21:57	10
1,3-Butadiene	2.5		2.0		ppb v/v			08/14/17 21:57	10
Bromomethane	2.0	U	2.0		ppb v/v			08/14/17 21:57	10
Chloroethane	5.0	U	5.0		ppb v/v			08/14/17 21:57	10
Bromoethene(Vinyl Bromide)	2.0	U	2.0		ppb v/v			08/14/17 21:57	10

TestAmerica Burlington

Matrix: Air

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-5

Lab Sample ID: 200-39689-5

Date Collected: 08/09/17 12:30 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D Prepared	Analyzed	Dil Fac
Trichlorofluoromethane	2.0		2.0	ppb v/v		08/14/17 21:57	10
Freon TF	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
1,1-Dichloroethene	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
Acetone	310		50	ppb v/v		08/14/17 21:57	10
Isopropyl alcohol	50	U	50	ppb v/v		08/14/17 21:57	10
Carbon disulfide	5.0	U	5.0	ppb v/v		08/14/17 21:57	10
3-Chloropropene	5.0	U	5.0	ppb v/v		08/14/17 21:57	10
Methylene Chloride	15		5.0	ppb v/v		08/14/17 21:57	10
tert-Butyl alcohol	50	U	50	ppb v/v		08/14/17 21:57	10
Methyl tert-butyl ether	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
trans-1,2-Dichloroethene	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
n-Hexane	29		2.0	ppb v/v		08/14/17 21:57	10
1,1-Dichloroethane	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
Methyl Ethyl Ketone	8.7		5.0	ppb v/v		08/14/17 21:57	10
cis-1,2-Dichloroethene	2.0	. U	2.0	ppb v/v		08/14/17 21:57	10
1,2-Dichloroethene, Total	4.0	U	4.0	ppb v/v		08/14/17 21:57	10
Chloroform	2.1		2.0	ppb v/v		08/14/17 21:57	10
Tetrahydrofuran	50	U	50	ppb v/v		08/14/17 21:57	10
1,1,1-Trichloroethane	2.0		2.0	ppb v/v		08/14/17 21:57	10
Cyclohexane	2.0		2.0	ppb v/v		08/14/17 21:57	10
Carbon tetrachloride	0.40		0.40	ppb v/v		08/14/17 21:57	10
2,2,4-Trimethylpentane	2.0		2.0	ppb v/v		08/14/17 21:57	10
Benzene	2.0		2.0	ppb v/v		08/14/17 21:57	10
1,2-Dichloroethane	2.0		2.0	ppb v/v		08/14/17 21:57	10
n-Heptane	4.1	J	2.0	ppb v/v		08/14/17 21:57	10
Trichloroethene	2.4		0.40	ppb v/v		08/14/17 21:57	10
Methyl methacrylate	5.0	. 11	5.0	ppb v/v		08/14/17 21:57	10
1,2-Dichloropropane	2.0		2.0	ppb v/v		08/14/17 21:57	10
1,4-Dioxane	50		50	ppb v/v		08/14/17 21:57	10
Bromodichloromethane	2.0		2.0	ppb v/v		08/14/17 21:57	10
cis-1,3-Dichloropropene	2.0		2.0	ppb v/v		08/14/17 21:57	10
methyl isobutyl ketone	5.0		5.0	ppb v/v		08/14/17 21:57	10
Toluene	3.0 12		2.0	ppb v/v		08/14/17 21:57	10
trans-1,3-Dichloropropene	2.0	11	2.0	ppb v/v		08/14/17 21:57	10
1.1.2-Trichloroethane	2.0		2.0			08/14/17 21:57	10
				ppb v/v			
Tetrachloroethene	2.0		2.0	ppb v/v		08/14/17 21:57	10
Methyl Butyl Ketone (2-Hexanone)	5.0		5.0	ppb v/v		08/14/17 21:57	1(
Dibromochloromethane	2.0		2.0	ppb v/v		08/14/17 21:57	1(
1,2-Dibromoethane	2.0		2.0	ppb v/v		08/14/17 21:57	10
Chlorobenzene	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
Ethylbenzene	2.3	- , ,	2.0	ppb v/v		08/14/17 21:57	10
m,p-Xylene	5.0		5.0	ppb v/v		08/14/17 21:57	10
Xylene, o-	2.0		2.0	ppb v/v		08/14/17 21:57	10
Xylene (total)	7.0		7.0	ppb v/v		08/14/17 21:57	10
Styrene	2.0		2.0	ppb v/v		08/14/17 21:57	10
Bromoform	2.0	U	2.0	ppb v/v		08/14/17 21:57	10
Cumene	2.6	U	2.0	ppb v/v		08/14/17 21:57	10

TestAmerica Burlington

8/18/2017

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-5

Lab Sample ID: 200-39689-5

Date Collected: 08/09/17 12:30
Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Org Analyte	Result	Qualifier	RL `	RL Únit	D	Prepared	Analyzed	Dil Fa
n-Propylbenzene	2.0		2.0	ppb v/v			08/14/17 21:57	1
4-Ethyltoluene	2.0	U	2.0	ppb v/v			08/14/17 21:57	1
1,3,5-Trimethylbenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	1
2-Chlorotoluene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
tert-Butylbenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
1,2,4-Trimethylbenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
sec-Butylbenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
4-Isopropyltoluene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
1,3-Dichlorobenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
1,4-Dichlorobenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
Benzyl chloride	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
n-Butylbenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
1,2-Dichlorobenzene	2.0	U	2.0	ppb v/v			08/14/17 21:57	10
1,2,4-Trichlorobenzene	5.0		5.0	ppb v/v			08/14/17 21:57	10
Hexachlorobutadiene	2.0		2.0	ppb v/v			08/14/17 21:57	10
Naphthalene	5.0		5.0	ppb v/v			08/14/17 21:57	10
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	25		25	ug/m3	— <u> </u>		08/14/17 21:57	10
Freon 22	24		18	ug/m3			08/14/17 21:57	10
1,2-Dichlorotetrafluoroethane	14	IJ	14	ug/m3			08/14/17 21:57	10
Chloromethane	10		10	ug/m3			08/14/17 21:57	10
n-Butane	31		12	ug/m3			08/14/17 21:57	10
Vinyl chloride	1.0	П	1.0	ug/m3			08/14/17 21:57	10
1,3-Butadiene	5.4		4.4	ug/m3			08/14/17 21:57	10
Bromomethane	7.8	П	7.8	ug/m3			08/14/17 21:57	10
Chloroethane	13		13	ug/m3			08/14/17 21:57	10
Bromoethene(Vinyl Bromide)	8.7		8.7	ug/m3			08/14/17 21:57	10
Trichlorofluoromethane	11		11	ug/m3			08/14/17 21:57	10
Freon TF	15	_	15	ug/m3			08/14/17 21:57	10
1,1-Dichloroethene	7.9		7.9	_			08/14/17 21:57	10
<i>'</i>		U	7.9 120	ug/m3			08/14/17 21:57	10
Acetone	750 120	1.1	120	ug/m3			08/14/17 21:57	
Isopropyl alcohol				ug/m3				10
Carbon disulfide	16	U	16	ug/m3			08/14/17 21:57	10
3-Chloropropene	16	U	16	ug/m3			08/14/17 21:57	10
Methylene Chloride	53		17	ug/m3			08/14/17 21:57	10
tert-Butyl alcohol	150		150	ug/m3			08/14/17 21:57	10
Methyl tert-butyl ether	7.2		7.2	ug/m3			08/14/17 21:57	10
trans-1,2-Dichloroethene	7.9	U	7.9	ug/m3			08/14/17 21:57	10
n-Hexane	100		7.0	ug/m3			08/14/17 21:57	10
1,1-Dichloroethane	8.1	U	8.1	ug/m3			08/14/17 21:57	10
Methyl Ethyl Ketone	26		15	ug/m3			08/14/17 21:57	10
cis-1,2-Dichloroethene	7.9		7.9	ug/m3			08/14/17 21:57	10
1,2-Dichloroethene, Total	16	U	16	ug/m3			08/14/17 21:57	10
Chloroform	10		9.8	ug/m3			08/14/17 21:57	1
Tetrahydrofuran	150	U	150	ug/m3			08/14/17 21:57	1
1,1,1-Trichloroethane	11	U	11	ug/m3			08/14/17 21:57	10
Cyclohexane	6.9	U	6.9	ug/m3			08/14/17 21:57	1
Carbon tetrachloride	2.5	U	2.5	ug/m3			08/14/17 21:57	1

TestAmerica Burlington

8/18/2017

Page 24 of 87

2

3

Matrix: Air

5

b

ŏ

10

12

14

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: SV-5 Lab Sample ID: 200-39689-5 Date Collected: 08/09/17 12:30 Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL		RL Unit	D	Prepared	Analyzed	Dil Fa
2,2,4-Trimethylpentane	9.3	U	9.3	-	ug/m3			08/14/17 21:57	1
Benzene	6.4	U	6.4		ug/m3			08/14/17 21:57	1
1,2-Dichloroethane	8.1	U	8.1		ug/m3			08/14/17 21:57	1
n-Heptane	17		8.2		ug/m3			08/14/17 21:57	10
Trichloroethene	13		2.1		ug/m3			08/14/17 21:57	10
Methyl methacrylate	20	U	20		ug/m3			08/14/17 21:57	1
1,2-Dichloropropane	9.2	U	9.2		ug/m3			08/14/17 21:57	1
1,4-Dioxane	180	U	180		ug/m3			08/14/17 21:57	1
Bromodichloromethane	13	U	13		ug/m3			08/14/17 21:57	1
cis-1,3-Dichloropropene	9.1	U	9.1		ug/m3			08/14/17 21:57	1
methyl isobutyl ketone	20	U	20		ug/m3			08/14/17 21:57	1
Toluene	45		7.5		ug/m3			08/14/17 21:57	1
trans-1,3-Dichloropropene	9.1	U	9.1		ug/m3			08/14/17 21:57	1
1,1,2-Trichloroethane	11		11		ug/m3			08/14/17 21:57	1
Tetrachloroethene	14	U	14		ug/m3			08/14/17 21:57	1
Methyl Butyl Ketone (2-Hexanone)	20	U	20		ug/m3			08/14/17 21:57	1
Dibromochloromethane	17	U	17		ug/m3			08/14/17 21:57	1
1,2-Dibromoethane	15	U	15		ug/m3			08/14/17 21:57	1
Chlorobenzene	9.2	U	9.2		ug/m3			08/14/17 21:57	1
Ethylbenzene	10		8.7		ug/m3			08/14/17 21:57	1
m,p-Xylene	22	U	22		ug/m3			08/14/17 21:57	1
Xylene, o-	8.7	U	8.7		ug/m3			08/14/17 21:57	1
Xylene (total)	30	U	30		ug/m3			08/14/17 21:57	1
Styrene	8.5	U	8.5		ug/m3			08/14/17 21:57	1
Bromoform	21	U	21		ug/m3			08/14/17 21:57	1
Cumene	13		9.8		ug/m3			08/14/17 21:57	1
1,1,2,2-Tetrachloroethane	14	U	14		ug/m3			08/14/17 21:57	1
n-Propylbenzene	9.8	U	9.8		ug/m3			08/14/17 21:57	1
4-Ethyltoluene	9.8	U	9.8		ug/m3			08/14/17 21:57	1
1,3,5-Trimethylbenzene	9.8	U	9.8		ug/m3			08/14/17 21:57	1
2-Chlorotoluene	10	U	10		ug/m3			08/14/17 21:57	1
tert-Butylbenzene	11	U	11		ug/m3			08/14/17 21:57	1
1,2,4-Trimethylbenzene	9.8	U	9.8		ug/m3			08/14/17 21:57	1
sec-Butylbenzene	11	U	11		ug/m3			08/14/17 21:57	1
4-Isopropyltoluene	11	U	11		ug/m3			08/14/17 21:57	1
1,3-Dichlorobenzene	12		12		ug/m3			08/14/17 21:57	1
1,4-Dichlorobenzene	12		12		ug/m3			08/14/17 21:57	1
Benzyl chloride	10		10		ug/m3			08/14/17 21:57	1
n-Butylbenzene	11	U	11		ug/m3			08/14/17 21:57	1
1,2-Dichlorobenzene	12		12		ug/m3			08/14/17 21:57	1
1,2,4-Trichlorobenzene	37	U	37		ug/m3			08/14/17 21:57	1
Hexachlorobutadiene	21	U	21		ug/m3			08/14/17 21:57	1
Naphthalene	26		26		ug/m3			08/14/17 21:57	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fa

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: AA-1 Lab Sample ID: 200-39689-6 Date Collected: 08/09/17 13:30 Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

.50 .50 .50 .50 .20 .20 .20 .20 .20 .20 .50 .50 .50 .50 .50 .50 .50 .20 .20 .50 .20 .20 .20 .20 .20 .20 .20 .20 .20 .2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 0.50 0.50 0.20 0.50 0.50 0.040 0.20 0.20 0.20 0.20 0.20 0.20 0.	ppb v/v			08/12/17 06:18 08/12/17 06:18	
.20 .50 .50 .20 .20 .20 .20 .20 .50 .50 .50 .50 .50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.20 0.50 0.50 0.040 0.20 0.20 0.20 0.20 0.20 0.20 5.0 5.0 0.50 0.50	ppb v/v			08/12/17 06:18 08/12/17 06:18	
.50 .50 .20 .20 .20 .20 .20 .50 .50 .50 .50 .50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.50 0.50 0.040 0.20 0.20 0.50 0.20 0.20 0.20 5.0 5.0 0.50 0.50	ppb v/v			08/12/17 06:18 08/12/17 06:18	
.50 .20 .20 .20 .20 .20 .20 .50 .50 .50 .50 .50	U U U U U U U U U U U U U U U U U U U	0.50 0.040 0.20 0.20 0.50 0.20 0.20 0.20 0.50 0.5	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 .20 .50 .20 .20 .20 .50 .50 .50 .50 .20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.040 0.20 0.20 0.50 0.20 0.20 0.20 5.0 5.0 0.50 0.5	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 .20 .50 .20 .20 .20 .50 .50 .50 .50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.20 0.20 0.50 0.20 0.20 0.20 5.0 5.0 0.50 0.5	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 .50 .20 .20 .20 .50 .50 .50 .50 .20	U U U U U U U U U U U U U U U U U U U	0.20 0.50 0.20 0.20 0.20 0.20 5.0 5.0 0.50 0.50	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.50 .20 .20 .20 .50 .50 .50 .50 .20	U U U U U U U U U U	0.50 0.20 0.20 0.20 0.20 5.0 5.0 0.50 0.5	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 .20 .20 .20 5.0 5.0 .50 .50 .20	U U U U U U U U U	0.20 0.20 0.20 0.20 5.0 5.0 0.50 0.50	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 .20 .20 5.0 5.0 .50 .50 .50	U U U U U U U U	0.20 0.20 0.20 5.0 5.0 0.50 0.50	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 .20 5.0 5.0 .50 .50 .50 .20	U U U U U U U	0.20 0.20 5.0 5.0 0.50 0.50	ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
.20 5.0 5.0 .50 .50 .50 .20	U U U U U U	0.20 5.0 5.0 0.50 0.50 0.50	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v			08/12/17 06:18 08/12/17 06:18 08/12/17 06:18	
5.0 5.0 .50 .50 .50 .50 .20	U U U U U	5.0 5.0 0.50 0.50 0.50	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v			08/12/17 06:18 08/12/17 06:18	
5.0 .50 .50 .50 5.0 .20	U U U U	5.0 0.50 0.50 0.50	ppb v/v ppb v/v ppb v/v ppb v/v ppb v/v			08/12/17 06:18	
.50 .50 .50 5.0 .20	U U U	0.50 0.50 0.50	ppb v/v ppb v/v ppb v/v ppb v/v				
.50 .50 5.0 .20	U U U	0.50 0.50	ppb v/v ppb v/v ppb v/v			00/40/47 00 40	
.50 .50 5.0 .20	U U U	0.50 0.50	ppb v/v ppb v/v			08/12/17 06:18	
.50 5.0 .20 .20	U	0.50	ppb v/v			08/12/17 06:18	
5.0 .20 .20	U					08/12/17 06:18	
.20 .20		0.0	ppb v/v			08/12/17 06:18	
.20	•	0.20	ppb v/v			08/12/17 06:18	
	U	0.20	ppb v/v			08/12/17 06:18	
		0.20	ppb v/v			08/12/17 06:18	
.20		0.20	ppb v/v			08/12/17 06:18	
.50		0.50	ppb v/v			08/12/17 06:18	
.20		0.20	ppb v/v			08/12/17 06:18	
.40		0.40	ppb v/v			08/12/17 06:18	
.20		0.20	ppb v/v			08/12/17 06:18	
5.0		5.0	ppb v/v			08/12/17 06:18	
.20		0.20	ppb v/v			08/12/17 06:18	
.20		0.20	ppb v/v			08/12/17 06:18	
		0.20	ppb v/v ppb v/v			08/12/17 06:18	
.20	11	0.040				08/12/17 06:18	
.20		0.20	ppb v/v ppb v/v			08/12/17 06:18	
			• • •				
	0.20 0.20 0.40 0.50 0.20 5.0 0.20 0.20 0.20 0.20 0.20	0.20 U 0.20 U 0.20 U 0.50 U 0.20 U	0.20 U 0.20 0.20 U 0.20 0.40 U 0.040 0.50 U 0.50 0.20 U 0.20 5.0 U 5.0 0.20 U 0.20 0.20 U 0.20	0.20 U 0.20 ppb v/v 0.20 U 0.20 ppb v/v 0.20 U 0.20 ppb v/v 0.40 U 0.040 ppb v/v 0.50 U 0.50 ppb v/v 0.20 U 0.20 ppb v/v 0.50 U 0.50 ppb v/v 0.20 U 0.20 ppb v/v 0.50 U 0.50 ppb v/v	0.20 U 0.20 ppb v/v 0.20 U 0.20 ppb v/v 0.20 U 0.20 ppb v/v 0.40 U 0.040 ppb v/v 0.50 U 0.50 ppb v/v 0.20 U 0.20 ppb v/v	0.20 U 0.20 ppb v/v 0.20 U 0.20 ppb v/v 0.040 U 0.040 ppb v/v 0.50 U 0.50 ppb v/v 0.20 U 0.20 ppb v/v	0.20 U 0.20 ppb v/v 08/12/17 06:18 0.20 U 0.20 ppb v/v 08/12/17 06:18 0.40 U 0.040 ppb v/v 08/12/17 06:18 0.50 U 0.50 ppb v/v 08/12/17 06:18 0.20 U 0.20 ppb v/v 08/12/17 06:18 0.20 U 5.0 ppb v/v 08/12/17 06:18 0.20 U 0.20 ppb v/v 08/12/17 06:18 0.20 U 0.20 ppb v/v 08/12/17 06:18 0.50 U 0.50 ppb v/v 08/12/17 06:18 0.20 U 0.20 ppb v/v 08/12/17 06:18 0.50 U 0.50 ppb v/v 08/12/17 06:18

TestAmerica Burlington

8/18/2017

Client: AKRF Inc TestAmerica Job ID: 200-39689-1

Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: AA-1 Lab Sample ID: 200-39689-6 Matrix: Air

Date Collected: 08/09/17 13:30 Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.20		0.20	ppb v/v			08/12/17 06:18	
Chlorobenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
Ethylbenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	•
m,p-Xylene	0.50	U	0.50	ppb v/v			08/12/17 06:18	
Xylene, o-	0.20	U	0.20	ppb v/v			08/12/17 06:18	1
Xylene (total)	0.70	U	0.70	ppb v/v			08/12/17 06:18	•
Styrene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
Bromoform	0.20	U	0.20	ppb v/v			08/12/17 06:18	
Cumene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
1,1,2,2-Tetrachloroethane	0.20	U	0.20	ppb v/v			08/12/17 06:18	
n-Propylbenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	•
4-Ethyltoluene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
1,3,5-Trimethylbenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
2-Chlorotoluene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
tert-Butylbenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
1,2,4-Trimethylbenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
sec-Butylbenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
4-Isopropyltoluene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
1,3-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
1,4-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
Benzyl chloride	0.20	U	0.20	ppb v/v			08/12/17 06:18	
n-Butylbenzene	0.20		0.20	ppb v/v			08/12/17 06:18	
1,2-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/12/17 06:18	
1,2,4-Trichlorobenzene	0.50	U	0.50	ppb v/v			08/12/17 06:18	
Hexachlorobutadiene	0.20		0.20	ppb v/v			08/12/17 06:18	
Naphthalene	0.50	U	0.50	ppb v/v			08/12/17 06:18	
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5		2.5	ug/m3	— <u> </u>		08/12/17 06:18	
Freon 22	1.8		1.8	ug/m3			08/12/17 06:18	
1,2-Dichlorotetrafluoroethane	1.4	U	1.4	ug/m3			08/12/17 06:18	
Chloromethane	1.0		1.0	ug/m3			08/12/17 06:18	
n-Butane	1.2		1.2	ug/m3			08/12/17 06:18	
Vinyl chloride	0.10		0.10	ug/m3			08/12/17 06:18	
1,3-Butadiene	0.44		0.44	ug/m3			08/12/17 06:18	
Bromomethane	0.78		0.78	ug/m3			08/12/17 06:18	
Chloroethane	1.3		1.3	ug/m3			08/12/17 06:18	
Bromoethene(Vinyl Bromide)	0.87		0.87	ug/m3			08/12/17 06:18	
Trichlorofluoromethane	1.1		1.1	ug/m3			08/12/17 06:18	
Freon TF	1.5		1.5	ug/m3			08/12/17 06:18	
1,1-Dichloroethene	0.79		0.79	ug/m3			08/12/17 06:18	
Acetone	12		12	ug/m3			08/12/17 06:18	
Isopropyl alcohol	12		12	ug/m3			08/12/17 06:18	
Carbon disulfide	1.6		1.6	ug/m3			08/12/17 06:18	
3-Chloropropene	1.6		1.6	ug/m3			08/12/17 06:18	
Methylene Chloride	1.7		1.7	ug/m3			08/12/17 06:18	
tert-Butyl alcohol	1.7		1.7	ug/m3			08/12/17 06:18	
Methyl tert-butyl ether	0.72		0.72	ug/m3			08/12/17 06:18	

TestAmerica Burlington

8/18/2017

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Client Sample ID: AA-1 Lab Sample ID: 200-39689-6

Date Collected: 08/09/17 13:30 Matrix: Air Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

0.70	U	0.70				00/40/47 00:40	
0.04	•	0.70	ug/m3			08/12/17 06:18	
0.81	U	0.81	ug/m3			08/12/17 06:18	
1.5	U	1.5	ug/m3			08/12/17 06:18	
0.79	Ū	0.79	ug/m3			08/12/17 06:18	
1.6	U	1.6	ug/m3			08/12/17 06:18	
0.98	U	0.98	ug/m3			08/12/17 06:18	
15	U	15	ug/m3			08/12/17 06:18	
1.1	U	1.1	-			08/12/17 06:18	
0.69	U	0.69	-			08/12/17 06:18	
0.33		0.25	-			08/12/17 06:18	
	U	0.93	-			08/12/17 06:18	
0.64	U	0.64	-			08/12/17 06:18	
							
		0.82	-			08/12/17 06:18	
			-			08/12/17 06:18	
			.				
			-				
			-				
			.				
			-				
			-				
			-				
			-				
			-				
			.				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			.				
			-				
			-				
			.				
			-				
			ug/m3				
			-				
	1.6 0.98 15 1.1 0.69 0.33 0.93 0.64 0.81 0.82 0.21 2.0 0.92 18 1.3 0.91 2.0 0.75 0.91 1.1 1.4 2.0 1.7 1.5 0.92 0.87 2.2 0.87 3.0 0.85 2.1 0.98 1.4 0.98 0.98 1.0 1.1 1.1 1.2 1.2	0.79 U 1.6 U 0.98 U 1.5 U 1.1 U 0.69 U 0.33 0.93 U 0.64 U 0.81 U 0.82 U 0.21 U 2.0 U 0.92 U 18 U 1.3 U 0.91 U 2.0 U 0.75 U 0.91 U 1.1 U 1.4 U 2.0 U 1.7 U 1.5 U 0.92 U 0.87 U 2.2 U 0.87 U 2.2 U 0.87 U 2.2 U 0.87 U 0.98 U 1.4 U 0.98 U 1.4 U 0.98 U 1.98 U 1.1 U 1.1 U 1.1 U 1.1 U 1.2 U 1.1 U 1.2 U 1.1 U 1.2 U 1.2 U 1.0 U	1.6 U	1.6 U 1.6 ug/m3 0.98 U 0.98 ug/m3 1.5 U 1.5 ug/m3 1.1 U 1.1 ug/m3 0.69 U 0.69 ug/m3 0.69 U 0.69 ug/m3 0.33 0.25 ug/m3 0.93 U 0.93 ug/m3 0.64 U 0.64 ug/m3 0.81 U 0.81 ug/m3 0.82 U 0.82 ug/m3 0.81 U 0.82 ug/m3 0.82 U 0.92 ug/m3 0.92 U 0.92 ug/m3 0.91 U 0.91 ug/m3 0	1.6 U 1.6 Ug/m3 0.98 U 0.98 Ug/m3 15 U 15 Ug/m3 1.1 U 1.1 Ug/m3 0.69 U 0.69 Ug/m3 0.33 0.25 Ug/m3 0.93 U 0.93 Ug/m3 0.81 U 0.81 Ug/m3 0.82 U 0.82 Ug/m3 0.20 U 0.82 Ug/m3 0.92 U 0.92 Ug/m3 1.3 U 1.3 Ug/m3 0.91 U 0.91 Ug/m3 1.3 U 1.3 Ug/m3 0.91 U 0.91 Ug/m3 1.4 U 1.1 Ug/m3 1.5 U 1.5 Ug/m3 1.6 U 1.7 Ug/m3 1.7 U 1.7 Ug/m3 1.8 U 1.8 Ug/m3 1.9 U 0.91 Ug/m3 1.1 U 1.1 Ug/m3 1.1 U 1.1 Ug/m3 1.2 U 1.2 Ug/m3 0.92 U 0.99 Ug/m3 0.91 U 0.91 Ug/m3 0.92 U 0.99 Ug/m3 0.93 U 0.99 Ug/m3 0.96 U 0.99 Ug/m3 0.97 U 0.99 Ug/m3 0.98 U 0.98 Ug/m3 0.99 U 0.99 Ug/m3 1.1 U 1.1 Ug/m3 0.99 U 0.99 Ug/m3 1.1 U 1.1 Ug/m3 1.1 U 1.1 Ug/m3 1.1 U 1.1 Ug/m3 1.2 U 1.2 Ug/m3	1.6 U 1.6 ug/m3 0.98 U 0.98 ug/m3 15 U 15 ug/m3 1.1 U 1.1 ug/m3 0.69 U 0.69 ug/m3 0.33 0.25 ug/m3 0.93 U 0.93 ug/m3 0.64 U 0.64 ug/m3 0.81 U 0.81 ug/m3 0.82 U 0.82 ug/m3 0.21 U 0.21 ug/m3 0.92 U 0.92 ug/m3 1.3 U 1.3 ug/m3 0.91 U 0.91 ug/m3 0.91 U 0.91 ug/m3 0.91 U 0.91 ug/m3 1.1 U 1.1 ug/m3 1.1 U 1.1 ug/m3 1.1 U 1.1 ug/m3 1.5 U 1.5 ug/m3 0.92 U 0.92 ug/m3 0.91 U 0.91 ug/m3 0.92 U 0.992 ug/m3 0.98 U 0.98 ug/m3 0.99 U 0.99 ug/m3	1.6 U 1.6 Ug/m3 08/12/17 06:18 0.98 U 0.98 ug/m3 08/12/17 06:18 1.1 U 1.1 ug/m3 08/12/17 06:18 1.1 U 1.1 ug/m3 08/12/17 06:18 1.1 U 1.1 ug/m3 08/12/17 06:18 0.69 U 0.69 ug/m3 08/12/17 06:18 0.33 0.25 ug/m3 08/12/17 06:18 0.64 U 0.64 ug/m3 08/12/17 06:18 0.65 U 0.68 ug/m3 08/12/17 06:18 0.66 U 0.68 ug/m3 08/12/17 06:18 0.67 U 0.81 ug/m3 08/12/17 06:18 0.82 U 0.82 ug/m3 08/12/17 06:18 0.82 U 0.82 ug/m3 08/12/17 06:18 0.81 U 0.81 ug/m3 08/12/17 06:18 0.82 U 0.82 ug/m3 08/12/17 06:18 0.81 U 0.82 ug/m3 08/12/17 06:18 0.82 U 0.92 ug/m3 08/12/17 06:18 0.81 U 0.91 ug/m3 08/12/17 06:18 0.91 U 0.91 ug/m3 08/12/17 06:18 0.92 U 0.92 ug/m3 08/12/17 06:18 0.93 U 0.94 ug/m3 08/12/17 06:18 0.95 U 0.95 ug/m3 08/12/17 06:18 0.96 U 0.99 ug/m3 08/12/17 06:18 0.97 U 0.91 ug/m3 08/12/17 06:18 0.98 U 0.99 ug/m3 08/12/17 06:18 0.99 U 0.99 ug/m3 08/12/17 06:18

TestAmerica Burlington

8/18/2017

Page 28 of 87

6

3

H

b

8

10

12

14

He.

Client Sample Results

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton

SDG: 200-39689-1

Client Sample ID: AA-1 Lab Sample ID: 200-39689-6 Date Collected: 08/09/17 13:30

Matrix: Air

Date Received: 08/11/17 10:30

Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	R	L	RL	Unit	D	Prepared	Analyzed	Dil Fac
n-Butylbenzene	1.1	U	1.	1		ug/m3	3		08/12/17 06:18	1
1,2-Dichlorobenzene	1.2	U	1.	2		ug/m3	}		08/12/17 06:18	1
1,2,4-Trichlorobenzene	3.7	U	3.	7		ug/m3	3		08/12/17 06:18	1
Hexachlorobutadiene	2.1	U	2.	1		ug/m3	}		08/12/17 06:18	1
Naphthalene	2.6	U	2.	6		ug/m3	3		08/12/17 06:18	1
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclotrisiloxane, hexamethyl-	1.5	JN	ppb v/v		13.	.54	541-05-9		08/12/17 06:18	1

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 200-119644/4

Matrix: Air

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 119644	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.50	U	0.50	ppb v/v			08/11/17 12:40	
Freon 22	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Chloromethane	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
n-Butane	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
Vinyl chloride	0.040	U	0.040	ppb v/v			08/11/17 12:40	1
1,3-Butadiene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Bromomethane	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Chloroethane	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
Bromoethene(Vinyl Bromide)	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Trichlorofluoromethane	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Freon TF	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,1-Dichloroethene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Acetone	5.0	U	5.0	ppb v/v			08/11/17 12:40	1
Isopropyl alcohol	5.0	U	5.0	ppb v/v			08/11/17 12:40	1
Carbon disulfide	0.50	U	0.50	ppb v/v			08/11/17 12:40	
3-Chloropropene	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
Methylene Chloride	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
tert-Butyl alcohol	5.0		5.0	ppb v/v			08/11/17 12:40	
Methyl tert-butyl ether	0.20		0.20	ppb v/v			08/11/17 12:40	1
trans-1,2-Dichloroethene	0.20		0.20	ppb v/v			08/11/17 12:40	
n-Hexane	0.20		0.20	ppb v/v			08/11/17 12:40	
1,1-Dichloroethane	0.20		0.20	ppb v/v			08/11/17 12:40	
Methyl Ethyl Ketone	0.50		0.50	ppb v/v			08/11/17 12:40	
cis-1,2-Dichloroethene	0.20		0.20	ppb v/v			08/11/17 12:40	
1,2-Dichloroethene, Total	0.40		0.40	ppb v/v			08/11/17 12:40	
Chloroform	0.20		0.20	ppb v/v			08/11/17 12:40	
Tetrahydrofuran	5.0		5.0	ppb v/v			08/11/17 12:40	
1,1,1-Trichloroethane	0.20		0.20	ppb v/v			08/11/17 12:40	
Cyclohexane	0.20		0.20	ppb v/v			08/11/17 12:40	
Carbon tetrachloride	0.040		0.040	ppb v/v			08/11/17 12:40	
2,2,4-Trimethylpentane	0.20		0.20	ppb v/v			08/11/17 12:40	
Benzene	0.20		0.20	ppb v/v			08/11/17 12:40	
1,2-Dichloroethane	0.20		0.20	ppb v/v			08/11/17 12:40	
n-Heptane	0.20		0.20	ppb v/v			08/11/17 12:40	
Trichloroethene	0.040		0.040	ppb v/v			08/11/17 12:40	
Methyl methacrylate	0.50		0.50	ppb v/v			08/11/17 12:40	,
1,2-Dichloropropane	0.20		0.20	ppb v/v			08/11/17 12:40	
1,4-Dioxane	5.0		5.0	ppb v/v			08/11/17 12:40	
Bromodichloromethane	0.20		0.20	ppb v/v			08/11/17 12:40	
cis-1,3-Dichloropropene	0.20		0.20	ppb v/v			08/11/17 12:40	
methyl isobutyl ketone	0.50		0.50	ppb v/v			08/11/17 12:40	
Toluene	0.30		0.20	ppb v/v			08/11/17 12:40	
trans-1,3-Dichloropropene	0.20		0.20	ppb v/v			08/11/17 12:40	
1,1,2-Trichloroethane	0.20		0.20	ppb v/v			08/11/17 12:40	
Tetrachloroethene	0.20		0.20	ppb v/v ppb v/v			08/11/17 12:40	
Methyl Butyl Ketone (2-Hexanone)	0.20		0.20	ppb v/v			08/11/17 12:40	
Dibromochloromethane	0.30		0.30	ppb v/v			08/11/17 12:40	

TestAmerica Burlington

8/18/2017

Page 30 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton

SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119644/4

Matrix: Air

Analysis Batch: 119644

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis batch. 119044	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Chlorobenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Ethylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
m,p-Xylene	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
Xylene, o-	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Xylene (total)	0.70	U	0.70	ppb v/v			08/11/17 12:40	1
Styrene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Bromoform	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Cumene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
n-Propylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
4-Ethyltoluene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,3,5-Trimethylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
2-Chlorotoluene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
tert-Butylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,2,4-Trimethylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
sec-Butylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
4-Isopropyltoluene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,3-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,4-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Benzyl chloride	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
n-Butylbenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,2-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
1,2,4-Trichlorobenzene	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
Hexachlorobutadiene	0.20	U	0.20	ppb v/v			08/11/17 12:40	1
Naphthalene	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
·	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5	U	2.5	ug/m3			08/11/17 12:40	1
Freon 22	1.8	U	1.8	ug/m3			08/11/17 12:40	1
1,2-Dichlorotetrafluoroethane	1.4	U	1.4	ug/m3			08/11/17 12:40	1

Naphthalene	0.50	U	0.50	ppb v/v			08/11/17 12:40	1
	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5	U	2.5	ug/m3			08/11/17 12:40	1
Freon 22	1.8	U	1.8	ug/m3			08/11/17 12:40	1
1,2-Dichlorotetrafluoroethane	1.4	U	1.4	ug/m3			08/11/17 12:40	1
Chloromethane	1.0	U	1.0	ug/m3			08/11/17 12:40	1
n-Butane	1.2	U	1.2	ug/m3			08/11/17 12:40	1
Vinyl chloride	0.10	U	0.10	ug/m3			08/11/17 12:40	1
1,3-Butadiene	0.44	U	0.44	ug/m3			08/11/17 12:40	1
Bromomethane	0.78	U	0.78	ug/m3			08/11/17 12:40	1
Chloroethane	1.3	U	1.3	ug/m3			08/11/17 12:40	1
Bromoethene(Vinyl Bromide)	0.87	U	0.87	ug/m3			08/11/17 12:40	1
Trichlorofluoromethane	1.1	U	1.1	ug/m3			08/11/17 12:40	1
Freon TF	1.5	U	1.5	ug/m3			08/11/17 12:40	1
1,1-Dichloroethene	0.79	U	0.79	ug/m3			08/11/17 12:40	1
Acetone	12	U	12	ug/m3			08/11/17 12:40	1
Isopropyl alcohol	12	U	12	ug/m3			08/11/17 12:40	1
Carbon disulfide	1.6	U	1.6	ug/m3			08/11/17 12:40	1
3-Chloropropene	1.6	U	1.6	ug/m3			08/11/17 12:40	1
Methylene Chloride	1.7	U	1.7	ug/m3			08/11/17 12:40	1
tert-Butyl alcohol	15	U	15	ug/m3			08/11/17 12:40	1
Methyl tert-butyl ether	0.72	U	0.72	ug/m3			08/11/17 12:40	1

TestAmerica Burlington

Page 31 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119644/4

Matrix: Air

Client Sample ID: Method Blank	C
Prep Type: Total/NA	N.

Analysis Batch: 119644		MB						
Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	0.79		0.79	ug/m3			08/11/17 12:40	1
n-Hexane	0.70	U	0.70	ug/m3			08/11/17 12:40	1
1,1-Dichloroethane	0.81	U	0.81	ug/m3			08/11/17 12:40	1
Methyl Ethyl Ketone	1.5	U	1.5	ug/m3			08/11/17 12:40	1
cis-1,2-Dichloroethene	0.79	U	0.79	ug/m3			08/11/17 12:40	
1,2-Dichloroethene, Total	1.6	U	1.6	ug/m3			08/11/17 12:40	•
Chloroform	0.98	U	0.98	ug/m3			08/11/17 12:40	•
Tetrahydrofuran	15	U	15	ug/m3			08/11/17 12:40	
1,1,1-Trichloroethane	1.1	U	1.1	ug/m3			08/11/17 12:40	•
Cyclohexane	0.69	U	0.69	ug/m3			08/11/17 12:40	•
Carbon tetrachloride	0.25	U	0.25	ug/m3			08/11/17 12:40	
2,2,4-Trimethylpentane	0.93	U	0.93	ug/m3			08/11/17 12:40	
Benzene	0.64	U	0.64	ug/m3			08/11/17 12:40	
1,2-Dichloroethane	0.81	U	0.81	ug/m3			08/11/17 12:40	
n-Heptane	0.82	U	0.82	ug/m3			08/11/17 12:40	
Trichloroethene	0.21	U	0.21	ug/m3			08/11/17 12:40	1
Methyl methacrylate	2.0	U	2.0	ug/m3			08/11/17 12:40	
1,2-Dichloropropane	0.92	U	0.92	ug/m3			08/11/17 12:40	•
1,4-Dioxane	18	U	18	ug/m3			08/11/17 12:40	1
Bromodichloromethane	1.3	U	1.3	ug/m3			08/11/17 12:40	
cis-1,3-Dichloropropene	0.91		0.91	ug/m3			08/11/17 12:40	
methyl isobutyl ketone	2.0		2.0	ug/m3			08/11/17 12:40	
Toluene	0.75		0.75	ug/m3			08/11/17 12:40	
trans-1,3-Dichloropropene	0.91		0.91	ug/m3			08/11/17 12:40	
1,1,2-Trichloroethane	1.1		1.1	ug/m3			08/11/17 12:40	
Tetrachloroethene	1.4		1.4	ug/m3			08/11/17 12:40	
Methyl Butyl Ketone (2-Hexanone)	2.0		2.0	ug/m3			08/11/17 12:40	
Dibromochloromethane	1.7		1.7	ug/m3			08/11/17 12:40	
1.2-Dibromoethane	1.5		1.5	ug/m3			08/11/17 12:40	
Chlorobenzene	0.92		0.92	ug/m3			08/11/17 12:40	
Ethylbenzene	0.87		0.87	ug/m3			08/11/17 12:40	
m,p-Xylene	2.2		2.2	ug/m3			08/11/17 12:40	
Xylene, o-	0.87		0.87	ug/m3			08/11/17 12:40	
Xylene (total)	3.0		3.0	ug/m3			08/11/17 12:40	
Styrene	0.85		0.85	ug/m3			08/11/17 12:40	
Bromoform	2.1		2.1	ug/m3			08/11/17 12:40	
Cumene	0.98		0.98	ug/m3			08/11/17 12:40	
1,1,2,2-Tetrachloroethane	1.4		1.4	ug/m3			08/11/17 12:40	
n-Propylbenzene	0.98		0.98	ug/m3			08/11/17 12:40	,
4-Ethyltoluene	0.98		0.98	ug/m3			08/11/17 12:40	,
1,3,5-Trimethylbenzene	0.98		0.98	ug/m3			08/11/17 12:40	
2-Chlorotoluene	1.0		1.0	ug/m3			08/11/17 12:40	
tert-Butylbenzene	1.1		1.1	ug/m3			08/11/17 12:40	
1,2,4-Trimethylbenzene	0.98		0.98	ug/m3			08/11/17 12:40	
sec-Butylbenzene	1.1		1.1				08/11/17 12:40	
4-Isopropyltoluene	1.1		1.1	ug/m3			08/11/17 12:40	
				ug/m3				
1,3-Dichlorobenzene 1,4-Dichlorobenzene	1.2 1.2		1.2 1.2	ug/m3 ug/m3			08/11/17 12:40 08/11/17 12:40	<i>^</i>

TestAmerica Burlington

8/18/2017

Page 32 of 87

2

3

4

6

Ω

10

13

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 119644

Matrix: Air

Lab Sample ID: MB 200-119644/4

	MB	MB							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzyl chloride	1.0	U	1.0		ug/m3			08/11/17 12:40	1
n-Butylbenzene	1.1	U	1.1		ug/m3			08/11/17 12:40	1
1,2-Dichlorobenzene	1.2	U	1.2		ug/m3			08/11/17 12:40	1
1,2,4-Trichlorobenzene	3.7	U	3.7		ug/m3			08/11/17 12:40	1
Hexachlorobutadiene	2.1	Ú	2.1		ug/m3			08/11/17 12:40	1
Naphthalene	2.6	U	2.6		ug/m3			08/11/17 12:40	1
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

Tentatively Identified Compound None ppb v/v 08/11/17 12:40 Lab Sample ID: LCS 200-119644/3 **Client Sample ID: Lab Control Sample** Matrix: Air Prep Type: Total/NA

A coloris Details 440044						• • • • • • • • • • • • • • • • • • • •
Analysis Batch: 119644	Spike	LCS LCS			%Rec.	
Analyte	Added	Result Qualifier	Unit	D %Rec	‰Rec. Limits	
Dichlorodifluoromethane	10.0	9.15	ppb v/v	$-\frac{5}{92}$	68 - 128	
Freon 22	10.0	9.31	ppb v/v	93	64 - 128	
1,2-Dichlorotetrafluoroethane	10.0	10.3	ppb v/v	103	78 - 138	
Chloromethane	10.0	9.28	ppb v/v	93	57 - 126	
n-Butane	10.0	9.40	ppb v/v	94	56 - 130	
Vinyl chloride	10.0	9.28	ppb v/v	93	62 - 125	
1,3-Butadiene	10.0	9.15	ppb v/v	91	59 - 125	
Bromomethane	10.0	9.62	ppb v/v	96	68 - 128	
Chloroethane	10.0	8.93	ppb v/v	89	65 - 125	
Bromoethene(Vinyl Bromide)	10.0	9.24	ppb v/v	92	67 - 127	
Trichlorofluoromethane	10.0	8.62	ppb v/v	86	67 - 127	
Freon TF	10.0	8.12	ppb v/v	81	68 - 128	
1,1-Dichloroethene	10.0	8.07	ppb v/v	81	67 - 127	
Acetone	10.0	7.99	ppb v/v	80	64 - 136	
Isopropyl alcohol	10.0	6.78	ppb v/v	68	55 - 124	
Carbon disulfide	10.0	8.91	ppb v/v	89	81 - 141	
3-Chloropropene	10.0	6.64	ppb v/v	66	53 - 133	
Methylene Chloride	10.0	6.93	ppb v/v	69	62 - 122	
tert-Butyl alcohol	10.0	8.26	ppb v/v	83	64 - 124	
Methyl tert-butyl ether	10.0	8.94	ppb v/v	89	67 - 127	
trans-1,2-Dichloroethene	10.0	9.49	ppb v/v	95	72 - 132	
n-Hexane	10.0	11.0	ppb v/v	110	71 - 131	
1,1-Dichloroethane	10.0	10.2	ppb v/v	102	66 - 126	
Methyl Ethyl Ketone	10.0	10.4	ppb v/v	104	62 - 122	
cis-1,2-Dichloroethene	10.0	10.1	ppb v/v	101	67 - 127	
Chloroform	10.0	10.1	ppb v/v	101	69 - 129	
Tetrahydrofuran	10.0	10.3	ppb v/v	103	61 - 136	
1,1,1-Trichloroethane	10.0	9.88	ppb v/v	99	70 - 130	
Cyclohexane	10.0	10.4	ppb v/v	104	69 - 129	
Carbon tetrachloride	10.0	10.3	ppb v/v	103	62 - 143	
2,2,4-Trimethylpentane	10.0	10.2	ppb v/v	102	67 - 127	
Benzene	10.0	10.1	ppb v/v	101	67 - 127	
1,2-Dichloroethane	10.0	9.75	ppb v/v	98	67 - 132	
			• •			

TestAmerica Burlington

Page 33 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119644/3

Matrix: Air Analysis Batch: 119644

Client Sample ID: Lab	Control Sample
Pre	p Type: Total/NA

Analysis Batch: 119644	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
n-Heptane	10.0	9.95		ppb v/v		100	62 - 130	_
Trichloroethene	10.0	9.45		ppb v/v		94	68 - 128	
Methyl methacrylate	10.0	10.5		ppb v/v		105	70 - 130	
1,2-Dichloropropane	10.0	9.98		ppb v/v		100	67 - 127	
1,4-Dioxane	10.0	10.6		ppb v/v		106	66 - 132	
Bromodichloromethane	10.0	9.65		ppb v/v		96	69 - 129	
cis-1,3-Dichloropropene	10.0	10.5		ppb v/v		105	70 - 130	
methyl isobutyl ketone	10.0	10.9		ppb v/v		109	62 - 130	
Toluene	10.0	10.1		ppb v/v		101	67 - 127	
trans-1,3-Dichloropropene	10.0	10.4		ppb v/v		104	69 - 129	
1,1,2-Trichloroethane	10.0	10.4		ppb v/v		104	69 - 129	
Tetrachloroethene	10.0	9.67		ppb v/v		97	70 - 130	
Methyl Butyl Ketone	10.0	10.9		ppb v/v		109	61 - 127	
(2-Hexanone) Dibromochloromethane	10.0	9.77		ppb v/v		98	66 - 130	
1,2-Dibromoethane	10.0	10.2				102	70-130	
Chlorobenzene				ppb v/v				
	10.0	10.2		ppb v/v		102	68 - 128 68 - 128	
Ethylbenzene	10.0	10.1		ppb v/v		101		
n,p-Xylene	20.0	18.6		ppb v/v		93	68 - 128	
Xylene, o-	10.0	9.10		ppb v/v		91	67 - 127	
Styrene	10.0	9.12		ppb v/v		91	68 - 128	
Bromoform	10.0	9.05		ppb v/v		91	34 - 170	
Cumene	10.0	8.19		ppb v/v		82	67 - 127	
1,1,2,2-Tetrachloroethane	10.0	9.08		ppb v/v		91	69 - 129	
n-Propylbenzene	10.0	8.88		ppb v/v		89	67 - 127	
4-Ethyltoluene	10.0	8.43		ppb v/v		84	69 - 129	
1,3,5-Trimethylbenzene	10.0	7.77		ppb v/v		78	65 - 125	
2-Chlorotoluene	10.0	8.15		ppb v/v		82	67 - 127	
tert-Butylbenzene	10.0	8.68		ppb v/v		87	63 - 125	
1,2,4-Trimethylbenzene	10.0	8.67		ppb v/v		87	65 - 125	
sec-Butylbenzene	10.0	8.52		ppb v/v		85	66 - 126	
4-Isopropyltoluene	10.0	8.86		ppb v/v		89	67 - 129	
1,3-Dichlorobenzene	10.0	9.05		ppb v/v		91	67 - 127	
1,4-Dichlorobenzene	10.0	8.33		ppb v/v		83	66 - 126	
Benzyl chloride	10.0	7.22		ppb v/v		72	54 - 135	
n-Butylbenzene	10.0	7.84		ppb v/v		78	67 - 127	
1,2-Dichlorobenzene	10.0	8.29		ppb v/v		83	67 - 127	
1,2,4-Trichlorobenzene	10.0	8.44		ppb v/v		84	59 - 126	
Hexachlorobutadiene	10.0	9.09		ppb v/v		91	62 - 130	
Naphthalene	10.0	6.63		ppb v/v		66	50 - 121	
	Spike	LCS	LCS				%Rec.	
Analyte	Added			Unit	D	%Rec	Limits	
Dichlorodifluoromethane	49	45.3		ug/m3		92	68 - 128	
Freon 22	35	32.9		ug/m3		93	64 - 128	
1,2-Dichlorotetrafluoroethane	70	72.2		ug/m3		103	78 - 138	
Chloromethane	21	19.2		ug/m3		93	57 - 126	
n-Butane	24	22.4		ug/m3		94	56 - 130	
Vinyl chloride	26	23.7		ug/m3		93	62 - 125	

TestAmerica Burlington

Page 34 of 87

9

3

7

_

10

12

14

lk

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119644/3

Matrix: Air

Client Sample	ID: Lab	Control S	ample
	Pren	Type: To	tal/NA

Analysis Batch: 119644 LCS LCS Spike %Rec. Added Result Qualifier %Rec Analyte Unit D Limits 1,3-Butadiene 22 20.2 91 ug/m3 59 - 125 Bromomethane 39 37.4 ug/m3 96 68 - 128Chloroethane 26 23.6 ug/m3 89 65 - 125 Bromoethene(Vinyl Bromide) 44 40.4 ug/m3 92 67 - 127 Trichlorofluoromethane 56 48.4 ug/m3 86 67 - 12777 Freon TF 62.2 ug/m3 81 68 - 128 1.1-Dichloroethene 40 32.0 81 67 - 127 ug/m3 24 80 Acetone 19.0 ug/m3 64 - 136Isopropyl alcohol 25 16.7 ug/m3 68 55 - 124 Carbon disulfide 31 27.8 89 81 - 141 ug/m3 31 3-Chloropropene 20.8 ug/m3 66 53 - 133 35 Methylene Chloride 24.1 ug/m3 69 62 - 122 30 25.0 83 64 - 124 tert-Butyl alcohol ug/m3 36 89 32.2 67 - 127 Methyl tert-butyl ether ug/m3 trans-1,2-Dichloroethene 40 37.6 ug/m3 95 72 - 132 35 n-Hexane 38.9 ug/m3 110 71 - 1311,1-Dichloroethane 40 41.5 ug/m3 102 66 - 126 29 30.6 104 62 - 122 Methyl Ethyl Ketone ug/m3 cis-1,2-Dichloroethene 40 40.2 ug/m3 101 67 - 127Chloroform 49 49.1 ug/m3 101 69 - 129 29 Tetrahydrofuran 30.5 ug/m3 103 61 - 1361,1,1-Trichloroethane 55 53.9 ug/m3 99 70 - 130Cyclohexane 34 35.9 ug/m3 104 69 - 129Carbon tetrachloride 63 64.5 ug/m3 103 62 - 14347 102 2,2,4-Trimethylpentane 47.7 ug/m3 67 - 127 Benzene 32 32.2 ug/m3 101 67 - 127 1,2-Dichloroethane 40 39.5 ug/m3 98 67 - 132 41 40.8 ug/m3 100 62 - 130n-Heptane 54 94 Trichloroethene 50.8 ug/m3 68 - 128Methyl methacrylate 41 42.9 ug/m3 105 70 - 130 1,2-Dichloropropane 46 46.1 ug/m3 100 67 - 12736 1,4-Dioxane 38.3 ug/m3 106 66 - 132 Bromodichloromethane 67 64.6 ug/m3 96 69 - 129 45 105 cis-1,3-Dichloropropene 47.6 ug/m3 70 - 130 methyl isobutyl ketone 41 44.7 ug/m3 109 62 - 13038 38.1 ug/m3 101 67 - 127Toluene 45 trans-1,3-Dichloropropene 47.4 ug/m3 104 69 - 129 1,1,2-Trichloroethane 55 56.5 ug/m3 104 69-129 Tetrachloroethene 68 65.6 ug/m3 97 70 - 130 109 41 44.8 ug/m3 61 - 127 Methyl Butyl Ketone (2-Hexanone) 85 83.3 98 66 - 130 Dibromochloromethane ug/m3 77 78.5 102 1,2-Dibromoethane ug/m3 70 - 130Chlorobenzene 46 46.8 ug/m3 102 68 - 128 Ethylbenzene 43 43.9 ug/m3 101 68 - 128 m,p-Xylene 87 81.0 ug/m3 93 68 - 128 Xylene, o-91 43 39.5 ug/m3 67 - 127 Styrene 43 38.8 ug/m3 91 68 - 128

TestAmerica Burlington

Page 35 of 87

3

_

7

-

10

12

11

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119644/3

Matrix: Air

Analysis Batch: 119644

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Bromoform	100	93.5		ug/m3		91	34 - 170
Cumene	49	40.3		ug/m3		82	67 - 127
1,1,2,2-Tetrachloroethane	69	62.3		ug/m3		91	69 - 129
n-Propylbenzene	49	43.6		ug/m3		89	67 - 127
4-Ethyltoluene	49	41.4		ug/m3		84	69 - 129
1,3,5-Trimethylbenzene	49	38.2		ug/m3		78	65 - 125
2-Chlorotoluene	52	42.2		ug/m3		82	67 - 127
tert-Butylbenzene	55	47.6		ug/m3		87	63 - 125
1,2,4-Trimethylbenzene	49	42.6		ug/m3		87	65 - 125
sec-Butylbenzene	55	46.8		ug/m3		85	66 - 126
4-Isopropyltoluene	55	48.6		ug/m3		89	67 - 129
1,3-Dichlorobenzene	60	54.4		ug/m3		91	67 - 127
1,4-Dichlorobenzene	60	50.1		ug/m3		83	66 - 126
Benzyl chloride	52	37.4		ug/m3		72	54 - 135
n-Butylbenzene	55	43.0		ug/m3		78	67 - 127
1,2-Dichlorobenzene	60	49.8		ug/m3		83	67 - 127
1,2,4-Trichlorobenzene	74	62.7		ug/m3		84	59 - 126
Hexachlorobutadiene	110	96.9		ug/m3		91	62 - 130
Naphthalene	52	34.7		ug/m3		66	50 - 121

Lab Sample ID: MB 200-119704/5

Matrix: Air

Analysis Batch: 119704

Client Sample ID: Method Blank Prep Type: Total/NA

Allalysis Batch. 119704	МВ	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
Freon 22	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
Chloromethane	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
n-Butane	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
Vinyl chloride	0.040	U	0.040	ppb v/v			08/14/17 12:34	1
1,3-Butadiene	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
Bromomethane	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
Chloroethane	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
Bromoethene(Vinyl Bromide)	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
Trichlorofluoromethane	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
Freon TF	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
1,1-Dichloroethene	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
Acetone	5.0	U	5.0	ppb v/v			08/14/17 12:34	1
Isopropyl alcohol	5.0	U	5.0	ppb v/v			08/14/17 12:34	1
Carbon disulfide	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
3-Chloropropene	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
Methylene Chloride	0.50	U	0.50	ppb v/v			08/14/17 12:34	1
tert-Butyl alcohol	5.0	U	5.0	ppb v/v			08/14/17 12:34	1
Methyl tert-butyl ether	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
trans-1,2-Dichloroethene	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
n-Hexane	0.20	U	0.20	ppb v/v			08/14/17 12:34	1
1,1-Dichloroethane	0.20	U	0.20	ppb v/v			08/14/17 12:34	1

TestAmerica Burlington

Page 36 of 87

6

1

5

7

_

10

14

14

. .

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119704/5

Matrix: Air

Analysis Batch: 119704

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte		MB Qualifier	RL	RI	Unit	D	Prepared	Analyzed	Dil Fac
Methyl Ethyl Ketone	0.50		0.50		ppb v/v		i i epaieu	08/14/17 12:34	1
cis-1,2-Dichloroethene	0.20		0.20		ppb v/v			08/14/17 12:34	
1,2-Dichloroethene, Total	0.40		0.40		ppb v/v			08/14/17 12:34	1
Chloroform	0.20		0.20		ppb v/v			08/14/17 12:34	1
Tetrahydrofuran	5.0		5.0		ppb v/v			08/14/17 12:34	
1,1,1-Trichloroethane	0.20		0.20		ppb v/v			08/14/17 12:34	1
Cyclohexane	0.20		0.20		ppb v/v			08/14/17 12:34	1
Carbon tetrachloride	0.040		0.040		ppb v/v			08/14/17 12:34	
2,2,4-Trimethylpentane	0.20		0.20		ppb v/v			08/14/17 12:34	1
Benzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
1,2-Dichloroethane	0.20		0.20		ppb v/v			08/14/17 12:34	
n-Heptane	0.20		0.20		ppb v/v			08/14/17 12:34	1
Trichloroethene	0.040		0.040		ppb v/v			08/14/17 12:34	1
Methyl methacrylate	0.50		0.50		ppb v/v			08/14/17 12:34	
1,2-Dichloropropane	0.30		0.30		ppb v/v			08/14/17 12:34	1
1.4-Dioxane	5.0		5.0		ppb v/v			08/14/17 12:34	1
Bromodichloromethane	0.20		0.20		ppb v/v			08/14/17 12:34	
cis-1,3-Dichloropropene	0.20		0.20		ppb v/v			08/14/17 12:34	1
methyl isobutyl ketone	0.50		0.50		ppb v/v			08/14/17 12:34	1
Toluene	0.20		0.20		ppb v/v			08/14/17 12:34	
trans-1,3-Dichloropropene	0.20		0.20		ppb v/v			08/14/17 12:34	1
1,1,2-Trichloroethane	0.20		0.20		ppb v/v			08/14/17 12:34	1
Tetrachloroethene	0.20		0.20		ppb v/v			08/14/17 12:34	
Methyl Butyl Ketone (2-Hexanone)	0.50		0.50		ppb v/v			08/14/17 12:34	1
Dibromochloromethane	0.30		0.20		ppb v/v			08/14/17 12:34	1
1,2-Dibromoethane	0.20		0.20		ppb v/v			08/14/17 12:34	' 1
Chlorobenzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
Ethylbenzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
m,p-Xylene	0.50		0.50		ppb v/v			08/14/17 12:34	'
Xylene, o-	0.30		0.20		ppb v/v			08/14/17 12:34	1
Xylene (total)	0.20		0.20		ppb v/v			08/14/17 12:34	1
Styrene	0.70		0.70		ppb v/v			08/14/17 12:34	
Bromoform	0.20		0.20		ppb v/v			08/14/17 12:34	1
Cumene	0.20		0.20					08/14/17 12:34	1
1.1.2.2-Tetrachloroethane	0.20		0.20		ppb v/v ppb v/v			08/14/17 12:34	
	0.20		0.20					08/14/17 12:34	1
n-Propylbenzene 4-Ethyltoluene	0.20	_	0.20		ppb v/v			08/14/17 12:34	1
					ppb v/v				
1,3,5-Trimethylbenzene 2-Chlorotoluene	0.20 0.20		0.20 0.20		ppb v/v ppb v/v			08/14/17 12:34 08/14/17 12:34	1
									1
tert-Butylbenzene	0.20		0.20		ppb v/v			08/14/17 12:34	ا 4
1,2,4-Trimethylbenzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
sec-Butylbenzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
4-Isopropyltoluene	0.20		0.20		ppb v/v			08/14/17 12:34	ا
1,3-Dichlorobenzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
1,4-Dichlorobenzene	0.20		0.20		ppb v/v			08/14/17 12:34	1
Benzyl chloride	0.20		0.20		ppb v/v			08/14/17 12:34	1
n-Butylbenzene	0.20	U	0.20		ppb v/v			08/14/17 12:34	1

TestAmerica Burlington

8/18/2017

Page 37 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119704/5

Toluene

Client Sample ID: Method Blank

Matrix: Air								Prep Type: To	otal/NA
Analysis Batch: 119704									
-		MB							
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	0.50		0.50		ppb v/v			08/14/17 12:34	1
Hexachlorobutadiene	0.20		0.20		ppb v/v			08/14/17 12:34	1
Naphthalene	0.50		0.50		ppb v/v			08/14/17 12:34	1
		MB							
Analyte		Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5		2.5		ug/m3			08/14/17 12:34	1
Freon 22	1.8	U	1.8		ug/m3			08/14/17 12:34	1
1,2-Dichlorotetrafluoroethane	1.4		1.4		ug/m3			08/14/17 12:34	1
Chloromethane	1.0	U	1.0		ug/m3			08/14/17 12:34	1
n-Butane	1.2	U	1.2		ug/m3			08/14/17 12:34	1
Vinyl chloride	0.10	U	0.10		ug/m3			08/14/17 12:34	1
1,3-Butadiene	0.44	U	0.44		ug/m3			08/14/17 12:34	1
Bromomethane	0.78	U	0.78		ug/m3			08/14/17 12:34	1
Chloroethane	1.3	U	1.3		ug/m3			08/14/17 12:34	1
Bromoethene(Vinyl Bromide)	0.87	U	0.87		ug/m3			08/14/17 12:34	1
Trichlorofluoromethane	1.1	U	1.1		ug/m3			08/14/17 12:34	1
Freon TF	1.5	U	1.5		ug/m3			08/14/17 12:34	1
1,1-Dichloroethene	0.79	U	0.79		ug/m3			08/14/17 12:34	1
Acetone	12	U	12		ug/m3			08/14/17 12:34	1
Isopropyl alcohol	12	U	12		ug/m3			08/14/17 12:34	1
Carbon disulfide	1.6	U	1.6		ug/m3			08/14/17 12:34	1
3-Chloropropene	1.6		1.6		ug/m3			08/14/17 12:34	1
Methylene Chloride	1.7		1.7		ug/m3			08/14/17 12:34	1
tert-Butyl alcohol	15		15		ug/m3			08/14/17 12:34	1
Methyl tert-butyl ether	0.72		0.72		ug/m3			08/14/17 12:34	1
trans-1,2-Dichloroethene	0.79		0.79		ug/m3			08/14/17 12:34	1
n-Hexane	0.70		0.70		ug/m3			08/14/17 12:34	1
1,1-Dichloroethane	0.81		0.81		ug/m3			08/14/17 12:34	1
Methyl Ethyl Ketone	1.5		1.5		ug/m3			08/14/17 12:34	1
cis-1,2-Dichloroethene	0.79		0.79		ug/m3			08/14/17 12:34	
1,2-Dichloroethene, Total	1.6		1.6		ug/m3			08/14/17 12:34	1
Chloroform	0.98		0.98		ug/m3			08/14/17 12:34	1
Tetrahydrofuran	15		15		ug/m3			08/14/17 12:34	
1,1,1-Trichloroethane	1.1		1.1		ug/m3			08/14/17 12:34	1
Cyclohexane	0.69		0.69		ug/m3			08/14/17 12:34	1
Carbon tetrachloride	0.25		0.25		ug/m3			08/14/17 12:34	
2,2,4-Trimethylpentane	0.93		0.93		ug/m3			08/14/17 12:34	1
Benzene	0.64		0.64		ug/m3			08/14/17 12:34	1
1,2-Dichloroethane	0.81		0.81		ug/m3			08/14/17 12:34	
n-Heptane	0.81		0.81		ug/m3			08/14/17 12:34	1
Trichloroethene	0.82		0.82		ug/m3			08/14/17 12:34	,
Methyl methacrylate	2.0		2.0		ug/m3			08/14/17 12:34	
•	0.92				-			08/14/17 12:34	,
1,2-Dichloropropane			0.92		ug/m3				
1,4-Dioxane	18		18		ug/m3			08/14/17 12:34	
Bromodichloromethane	1.3		1.3		ug/m3			08/14/17 12:34	1
cis-1,3-Dichloropropene	0.91		0.91		ug/m3			08/14/17 12:34	1
methyl isobutyl ketone	2.0	U	2.0		ug/m3			08/14/17 12:34	1

TestAmerica Burlington

08/14/17 12:34

Page 38 of 87

0.75

ug/m3

0.75 U

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Est. Result Qualifier

None

Lab Sample ID: MB 200-119704/5

Matrix: Air

Client: AKRF Inc

Analysis Batch: 119704

Project/Site: 200 Hamilton

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Result Qualifier RL **RL Unit** Dil Fac Analyte Prepared Analyzed trans-1,3-Dichloropropene 0.91 U 0.91 08/14/17 12:34 ug/m3 1,1,2-Trichloroethane 1.1 U 1.1 ug/m3 08/14/17 12:34 Tetrachloroethene 1.4 U 1.4 ug/m3 08/14/17 12:34 Methyl Butyl Ketone (2-Hexanone) 2.0 U 2.0 ug/m3 08/14/17 12:34 Dibromochloromethane 1.7 U 1.7 ug/m3 08/14/17 12:34 1,2-Dibromoethane 1.5 U 1.5 ug/m3 08/14/17 12:34 Chlorobenzene 0.92 U 0.92 ug/m3 08/14/17 12:34 Ethylbenzene ug/m3 0.87 U 0.87 08/14/17 12:34 1 m,p-Xylene 2.2 U 2.2 ug/m3 08/14/17 12:34 1 Xylene, o-0.87 U 0.87 ug/m3 1 08/14/17 12:34 ug/m3 Xylene (total) 3.0 U 3.0 08/14/17 12:34 1 Styrene 0.85 U 0.85 ug/m3 08/14/17 12:34 Bromoform 2.1 U 2.1 ug/m3 08/14/17 12:34 Cumene 0.98 U 0.98 ug/m3 08/14/17 12:34 1,1,2,2-Tetrachloroethane 1.4 U 1.4 ug/m3 08/14/17 12:34 ug/m3 0.98 U 0.98 n-Propylbenzene 08/14/17 12:34 4-Ethyltoluene 0.98 U 0.98 ug/m3 08/14/17 12:34 1,3,5-Trimethylbenzene 0.98 U 0.98 08/14/17 12:34 ug/m3 2-Chlorotoluene 1.0 U 1.0 ug/m3 08/14/17 12:34 tert-Butylbenzene 1.1 U ug/m3 08/14/17 12:34 1.1 0.98 U 0.98 ug/m3 1,2,4-Trimethylbenzene 08/14/17 12:34 sec-Butylbenzene 1.1 U 1.1 ug/m3 08/14/17 12:34 1.1 U 4-Isopropyltoluene 1.1 ug/m3 08/14/17 12:34 1,3-Dichlorobenzene 1.2 U 1.2 ug/m3 08/14/17 12:34 1,4-Dichlorobenzene 1.2 U 1.2 ug/m3 08/14/17 12:34 Benzyl chloride 1.0 U 1.0 ug/m3 08/14/17 12:34 n-Butylbenzene 1.1 U 1.1 ug/m3 08/14/17 12:34 1,2-Dichlorobenzene 1.2 U 1.2 ug/m3 08/14/17 12:34 3.7 U 1.2.4-Trichlorobenzene 3.7 ug/m3 08/14/17 12:34 Hexachlorobutadiene 2.1 U 2.1 ug/m3 08/14/17 12:34 Naphthalene 2.6 U 2.6 ug/m3 08/14/17 12:34 MB MB

Lab Sample ID: LCS 200-119704/4

Matrix: Air

Analysis Batch: 119704

Tentatively Identified Compound

Tentatively Identified Compound

Client Sample ID	Lab Control Sample	•
	Prep Type: Total/NA	

Analyzed

08/14/17 12:34

Dil Fac

Prepared

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	10.0	10.1		ppb v/v		101	68 - 128	
Freon 22	10.0	10.7		ppb v/v		107	64 - 128	
1,2-Dichlorotetrafluoroethane	10.0	9.45		ppb v/v		95	78 - 138	
Chloromethane	10.0	9.75		ppb v/v		97	57 - 126	
n-Butane	10.0	10.1		ppb v/v		101	56 - 130	
Vinyl chloride	10.0	9.39		ppb v/v		94	62 - 125	
1,3-Butadiene	10.0	9.72		ppb v/v		97	59 - 125	
Bromomethane	10.0	8.92		ppb v/v		89	68 - 128	

D

Unit

ppb v/v

CAS No.

RT

TestAmerica Burlington

Page 39 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119704/4

Matrix: Air

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 119704	Spike	1.00	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Chloroethane	10.0	10.2	Qualifici	ppb v/v	_ =	102	65 - 125
Bromoethene(Vinyl Bromide)	10.0	8.86		ppb v/v		89	67 - 127
Trichlorofluoromethane	10.0	9.22		ppb v/v		92	67 - 127
Freon TF	10.0	9.01		ppb v/v		90	68 - 128
1,1-Dichloroethene	10.0	8.78		ppb v/v		88	67 - 127
Acetone	10.0	11.1		ppb v/v		112	64 - 136
Isopropyl alcohol	10.0	10.6		ppb v/v		106	55 - 124
Carbon disulfide	10.0	9.61		ppb v/v		96	81 - 141
3-Chloropropene	10.0	11.0		ppb v/v		110	53 - 133
Methylene Chloride	10.0	10.2		ppb v/v		102	62 - 122
tert-Butyl alcohol	10.0	10.2				102	64 - 124
Methyl tert-butyl ether	10.0	10.8		ppb v/v ppb v/v		103	67 - 127
•	10.0	10.3				103	72 - 132
trans-1,2-Dichloroethene n-Hexane				ppb v/v			
	10.0	10.2		ppb v/v		102	71 - 131
1,1-Dichloroethane	10.0	9.76		ppb v/v		98	66-126
Methyl Ethyl Ketone	10.0	9.37		ppb v/v		94	62 - 122
cis-1,2-Dichloroethene	10.0	9.26		ppb v/v		93	67 - 127
Chloroform	10.0	8.32		ppb v/v		83	69 - 129
Tetrahydrofuran	10.0	9.25		ppb v/v		92	61 - 136
1,1,1-Trichloroethane	10.0	8.22		ppb v/v		82	70 - 130
Cyclohexane	10.0	8.39		ppb v/v		84	69 - 129
Carbon tetrachloride	10.0	8.74		ppb v/v		87	62 - 143
2,2,4-Trimethylpentane	10.0	7.89		ppb v/v		79	67 - 127
Benzene	10.0	8.04		ppb v/v		80	67 - 127
1,2-Dichloroethane	10.0	8.54		ppb v/v		85	67 - 132
n-Heptane	10.0	7.40		ppb v/v		74	62 - 130
Trichloroethene	10.0	7.41		ppb v/v		74	68 - 128
Methyl methacrylate	10.0	8.24		ppb v/v		82	70 - 130
1,2-Dichloropropane	10.0	7.53		ppb v/v		75	67 - 127
1,4-Dioxane	10.0	8.17		ppb v/v		82	66 - 132
Bromodichloromethane	10.0	8.66		ppb v/v		87	69 - 129
cis-1,3-Dichloropropene	10.0	8.49		ppb v/v		85	70 - 130
methyl isobutyl ketone	10.0	7.60		ppb v/v		76	62 - 130
Toluene	10.0	8.49		ppb v/v		85	67 - 127
trans-1,3-Dichloropropene	10.0	8.37		ppb v/v		84	69 - 129
1,1,2-Trichloroethane	10.0	8.12		ppb v/v		81	69 - 129
Tetrachloroethene	10.0	7.94		ppb v/v		79	70 - 130
Methyl Butyl Ketone (2-Hexanone)	10.0	7.77		ppb v/v		78	61 - 127
Dibromochloromethane	10.0	9.43		ppb v/v		94	66 - 130
1,2-Dibromoethane	10.0	8.54		ppb v/v		85	70 - 130
Chlorobenzene	10.0	8.62		ppb v/v		86	68 - 128
Ethylbenzene	10.0	8.83		ppb v/v		88	68 - 128
m,p-Xylene	20.0	17.6		ppb v/v		88	68 - 128
Xylene, o-	10.0	8.84		ppb v/v		88	67 - 127
Styrene	10.0	9.40		ppb v/v		94	68 - 128
Bromoform	10.0	10.2		ppb v/v		102	34 - 170
Cumene	10.0	9.09		ppb v/v		91	67 - 127

TestAmerica Burlington

Page 40 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119704/4

Matrix: Air

Client Sample	ID: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 119704							1.0p 1.ypo1.10tu	
,	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane	10.0	8.29		ppb v/v		83	69 - 129	
n-Propylbenzene	10.0	9.06		ppb v/v		91	67 - 127	
4-Ethyltoluene	10.0	9.43		ppb v/v		94	69 - 129	
1,3,5-Trimethylbenzene	10.0	9.14		ppb v/v		91	65 - 125	
2-Chlorotoluene	10.0	9.11		ppb v/v		91	67 - 127	
tert-Butylbenzene	10.0	9.01		ppb v/v		90	63 - 125	
1,2,4-Trimethylbenzene	10.0	9.30		ppb v/v		93	65 - 125	
sec-Butylbenzene	10.0	9.06		ppb v/v		91	66 - 126	
4-Isopropyltoluene	10.0	9.45		ppb v/v		95	67 - 129	
1,3-Dichlorobenzene	10.0	8.88		ppb v/v		89	67 - 127	
1,4-Dichlorobenzene	10.0	9.05		ppb v/v		90	66 - 126	
Benzyl chloride	10.0	9.93		ppb v/v		99	54 - 135	
n-Butylbenzene	10.0	9.40		ppb v/v		94	67 - 127	
1,2-Dichlorobenzene	10.0	8.83		ppb v/v		88	67 - 127	
1,2,4-Trichlorobenzene	10.0	8.57		ppb v/v		86	59 - 126	
Hexachlorobutadiene	10.0	8.20		ppb v/v		82	62 - 130	
Naphthalene	10.0	9.21		ppb v/v		92	50 - 121	
·	Spike		LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	49	49.7	-	ug/m3		101	68 - 128	
Freon 22	35	37.9		ug/m3		107	64 - 128	
1,2-Dichlorotetrafluoroethane	70	66.1		ug/m3		95	78 - 138	
Chloromethane	21	20.1		ug/m3		97	57 - 126	
n-Butane	24	24.1		ug/m3		101	56 - 130	
Vinyl chloride	26	24.0		ug/m3		94	62 - 125	
1,3-Butadiene	22	21.5		ug/m3		97	59 - 125	
Bromomethane	39	34.6		ug/m3		89	68 - 128	
Chloroethane	26	27.0		ug/m3		102	65 - 125	
Bromoethene(Vinyl Bromide)	44	38.7		ug/m3		89	67 - 127	
Trichlorofluoromethane	56	51.8		ug/m3		92	67 - 127	
Freon TF	77	69.1		ug/m3		90	68 - 128	
1,1-Dichloroethene	40	34.8		ug/m3		88	67 - 127	
Acetone	24	26.5		ug/m3		112	64 - 136	
Isopropyl alcohol	25	26.0		ug/m3		106	55 - 124	
Carbon disulfide	31	29.9		ug/m3		96	81 - 141	
3-Chloropropene	31	34.4		ug/m3		110	53 - 133	
Methylene Chloride	35	35.6		ug/m3		102	62 - 122	
tert-Butyl alcohol	30	32.1		ug/m3		102	64 - 124	
Methyl tert-butyl ether	36	37.1		ug/m3		103	67 - 127	
trans-1,2-Dichloroethene	40	39.9		ug/m3		103	72-132	
n-Hexane	35	36.0		ug/m3		101	71 - 131	
1,1-Dichloroethane				-			66 - 126	
	40	39.5		ug/m3		98 04		
Methyl Ethyl Ketone	29	27.6		ug/m3		94	62-122	
cis-1,2-Dichloroethene	40	36.7		ug/m3		93	67 - 127	
Chloroform Take by deaf year	49	40.6		ug/m3		83	69-129	
Tetrahydrofuran	29	27.3		ug/m3		92	61 - 136	
1,1,1-Trichloroethane	55	44.9		ug/m3		82	70-130	
Cyclohexane	34	28.9		ug/m3		84	69 - 129	

TestAmerica Burlington

Page 41 of 87

6

3

4

8

10

12

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton

SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119704/4

Matrix: Air

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 119704	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Carbon tetrachloride	63	55.0		ug/m3		87	62 - 143
2,2,4-Trimethylpentane	47	36.9		ug/m3		79	67 - 127
Benzene	32	25.7		ug/m3		80	67 - 127
1,2-Dichloroethane	40	34.6		ug/m3		85	67 - 132
n-Heptane	41	30.3		ug/m3		74	62 - 130
Frichloroethene	54	39.8		ug/m3		74	68 - 128
Methyl methacrylate	41	33.7		ug/m3		82	70 - 130
I,2-Dichloropropane	46	34.8		ug/m3		75	67 - 127
I,4-Dioxane	36	29.4		ug/m3		82	66 - 132
Bromodichloromethane	67	58.0		ug/m3		87	69 - 129
cis-1,3-Dichloropropene	45	38.5		ug/m3		85	70 - 130
methyl isobutyl ketone	41	31.1		ug/m3		76	62 - 130
Foluene	38	32.0		ug/m3		85	67 - 127
rans-1,3-Dichloropropene	45	38.0		ug/m3		84	69 - 129
I,1,2-Trichloroethane	55	44.3		ug/m3		81	69 - 129
Fetrachloroethene	68	53.9		ug/m3		79	70 - 130
Methyl Butyl Ketone	41	31.8		ug/m3		78	61 - 127
2-Hexanone) Dibromochloromethane	85	80.4		ug/m3		94	66 - 130
,2-Dibromoethane	77	65.6		ug/m3		85	70 - 130
Chlorobenzene	46	39.7		ug/m3		86	68 - 128
Ethylbenzene	43	38.3		ug/m3		88	68 - 128
n,p-Xylene	87	76.5		ug/m3		88	68 - 128
Kylene, o-	43	38.4		ug/m3		88	67 - 127
Styrene	43	40.0		ug/m3		94	68 - 128
Bromoform	100	105		ug/m3		102	34 - 170
Cumene	49	44.7				91	67 - 127
I,1,2,2-Tetrachloroethane	69	56.9		ug/m3		83	69 - 129
	49	44.5		ug/m3		91	67 - 127
n-Propylbenzene 1-Ethyltoluene	49	46.4		ug/m3		94	69 - 129
1,3,5-Trimethylbenzene	49	44.9		ug/m3		91	65 - 125
2-Chlorotoluene	49 52	44.9 47.1		ug/m3		91	67 - 127
				ug/m3			
ert-Butylbenzene	55	49.5		ug/m3		90	63 - 125
1,2,4-Trimethylbenzene	49	45.7		ug/m3		93	65-125
sec-Butylbenzene	55	49.7		ug/m3		91	66 - 126
4-Isopropyltoluene	55	51.9		ug/m3		95	67 - 129
1,3-Dichlorobenzene	60	53.4		ug/m3		89	67 - 127
I,4-Dichlorobenzene	60	54.4		ug/m3		90	66 - 126
Benzyl chloride	52	51.4		ug/m3		99	54 - 135
n-Butylbenzene	55	51.6		ug/m3		94	67 - 127
1,2-Dichlorobenzene	60	53.1		ug/m3		88	67 - 127
1,2,4-Trichlorobenzene	74	63.6		ug/m3		86	59 - 126
Hexachlorobutadiene	110	87.5		ug/m3		82	62 - 130
Naphthalene	52	48.3		ug/m3		92	50 - 121

TestAmerica Burlington

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119760/7

Matrix: Air

Client Sample II	D: Method Blank
Pre	p Type: Total/NA

		MB					
Analyte		Qualifier	RL	RL Unit	D Prepared	Analyzed	Dil Fa
Dichlorodifluoromethane	0.50	U	0.50	ppb v/v		08/15/17 15:20	
Freon 22	0.50	U	0.50	ppb v/v		08/15/17 15:20	
l,2-Dichlorotetrafluoroethane	0.20	U	0.20	ppb v/v		08/15/17 15:20	
Chloromethane	0.50	U	0.50	ppb v/v		08/15/17 15:20	
n-Butane	0.50	U	0.50	ppb v/v		08/15/17 15:20	
/inyl chloride	0.040	U	0.040	ppb v/v		08/15/17 15:20	
,3-Butadiene	0.20	U	0.20	ppb v/v		08/15/17 15:20	
Bromomethane	0.20	U	0.20	ppb v/v		08/15/17 15:20	
Chloroethane	0.50	U	0.50	ppb v/v		08/15/17 15:20	
Bromoethene(Vinyl Bromide)	0.20	U	0.20	ppb v/v		08/15/17 15:20	
Trichlorofluoromethane	0.20	U	0.20	ppb v/v		08/15/17 15:20	
Freon TF	0.20	U	0.20	ppb v/v		08/15/17 15:20	
,1-Dichloroethene	0.20		0.20	ppb v/v		08/15/17 15:20	
Acetone	5.0		5.0	ppb v/v		08/15/17 15:20	
sopropyl alcohol	5.0	U	5.0	ppb v/v		08/15/17 15:20	
Carbon disulfide	0.50		0.50	ppb v/v		08/15/17 15:20	
3-Chloropropene	0.50		0.50	ppb v/v		08/15/17 15:20	
Methylene Chloride	0.50		0.50	ppb v/v		08/15/17 15:20	
ert-Butyl alcohol	5.0		5.0	ppb v/v		08/15/17 15:20	
Methyl tert-butyl ether	0.20		0.20	ppb v/v		08/15/17 15:20	
rans-1,2-Dichloroethene	0.20		0.20	ppb v/v		08/15/17 15:20	
i-Hexane	0.20		0.20	ppb v/v		08/15/17 15:20	
,1-Dichloroethane	0.20		0.20	ppb v/v		08/15/17 15:20	
Methyl Ethyl Ketone	0.50		0.50	ppb v/v		08/15/17 15:20	
	0.30		0.30			08/15/17 15:20	
cis-1,2-Dichloroethene				ppb v/v			
,2-Dichloroethene, Total	0.40		0.40	ppb v/v		08/15/17 15:20	
Chloroform	0.20		0.20	ppb v/v		08/15/17 15:20	
Tetrahydrofuran	5.0		5.0	ppb v/v		08/15/17 15:20	
I,1,1-Trichloroethane	0.20		0.20	ppb v/v		08/15/17 15:20	
Cyclohexane	0.20		0.20	ppb v/v		08/15/17 15:20	
Carbon tetrachloride	0.040		0.040	ppb v/v		08/15/17 15:20	
2,2,4-Trimethylpentane	0.20		0.20	ppb v/v		08/15/17 15:20	
Benzene	0.20		0.20	ppb v/v		08/15/17 15:20	
I,2-Dichloroethane	0.20		0.20	ppb v/v		08/15/17 15:20	
n-Heptane	0.20		0.20	ppb v/v		08/15/17 15:20	
Frichloroethene	0.040		0.040	ppb v/v		08/15/17 15:20	
Methyl methacrylate	0.50		0.50	ppb v/v		08/15/17 15:20	
,2-Dichloropropane	0.20		0.20	ppb v/v		08/15/17 15:20	
,4-Dioxane	5.0	U	5.0	ppb v/v		08/15/17 15:20	
Bromodichloromethane	0.20	U	0.20	ppb v/v		08/15/17 15:20	
sis-1,3-Dichloropropene	0.20	U	0.20	ppb v/v		08/15/17 15:20	
nethyl isobutyl ketone	0.50	U	0.50	ppb v/v		08/15/17 15:20	
oluene	0.20	U	0.20	ppb v/v		08/15/17 15:20	
rans-1,3-Dichloropropene	0.20	U	0.20	ppb v/v		08/15/17 15:20	
I,1,2-Trichloroethane	0.20	U	0.20	ppb v/v		08/15/17 15:20	
Tetrachloroethene	0.20		0.20	ppb v/v		08/15/17 15:20	
Methyl Butyl Ketone (2-Hexanone)	0.50		0.50	ppb v/v		08/15/17 15:20	
Dibromochloromethane	0.20		0.20	ppb v/v		08/15/17 15:20	

TestAmerica Burlington

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

0.72 U

Lab Sample ID: MB 200-119760/7

Matrix: Air

Methyl tert-butyl ether

Client Samp	ole ID	: Meth	od Blank
	Prep	Type:	Total/NA

Analysis Batch: 119760	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
Chlorobenzene	0.20		0.20	ppb v/v			08/15/17 15:20	1
Ethylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
m,p-Xylene	0.50	U	0.50	ppb v/v			08/15/17 15:20	1
Xylene, o-	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
Xylene (total)	0.70	U	0.70	ppb v/v			08/15/17 15:20	1
Styrene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
Bromoform	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
Cumene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,1,2,2-Tetrachloroethane	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
n-Propylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
4-Ethyltoluene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,3,5-Trimethylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
2-Chlorotoluene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
tert-Butylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,2,4-Trimethylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
sec-Butylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
4-Isopropyltoluene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,3-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,4-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
Benzyl chloride	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
n-Butylbenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,2-Dichlorobenzene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
1,2,4-Trichlorobenzene	0.50	U	0.50	ppb v/v			08/15/17 15:20	1
Hexachlorobutadiene	0.20	U	0.20	ppb v/v			08/15/17 15:20	1
Naphthalene	0.50	U	0.50	ppb v/v			08/15/17 15:20	1
·	MB	MB						
Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5	U	2.5	ug/m3		•	08/15/17 15:20	1
Freon 22	1.8	U	1.8	ug/m3			08/15/17 15:20	1
1,2-Dichlorotetrafluoroethane	1.4	U	1.4	ug/m3			08/15/17 15:20	1
Chloromethane	1.0	U	1.0	ug/m3			08/15/17 15:20	1
n-Butane	1.2		1.2	ug/m3			08/15/17 15:20	1
Vinyl chloride	0.10		0.10	ug/m3			08/15/17 15:20	1
1,3-Butadiene	0.44	U	0.44	ug/m3			08/15/17 15:20	1
Bromomethane	0.78	U	0.78	ug/m3			08/15/17 15:20	1
Chloroethane	1.3		1.3	ug/m3			08/15/17 15:20	1
Bromoethene(Vinyl Bromide)	0.87		0.87	ug/m3			08/15/17 15:20	1
Trichlorofluoromethane	1.1		1.1	ug/m3			08/15/17 15:20	1
Freon TF	1.5		1.5	ug/m3			08/15/17 15:20	1
1,1-Dichloroethene	0.79		0.79	ug/m3			08/15/17 15:20	1
Acetone	12		12	ug/m3			08/15/17 15:20	1
Isopropyl alcohol	12		12	ug/m3			08/15/17 15:20	1
Carbon disulfide	1.6		1.6	ug/m3			08/15/17 15:20	· · · · · · · · · · · · · · · · · · ·
3-Chloropropene	1.6		1.6	ug/m3			08/15/17 15:20	1
Methylene Chloride	1.7		1.7	ug/m3			08/15/17 15:20	1
tert-Butyl alcohol	15		15	ug/m3			08/15/17 15:20	
Mathyl tort butyl other	0.70	-	0.70	ug/1110			00/45/47 45:00	,

0.72

TestAmerica Burlington

8/18/2017

08/15/17 15:20

Page 44 of 87

ug/m3

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119760/7

Matrix: Air

Client Sample	ID: Method	Blank
Pro	ep Type: Tot	al/NA

Analysis Batch: 119760	MD	МВ				Trep Type. I	
Analyte		Qualifier	RL	RL Unit	D Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	0.79		0.79	ug/m3		08/15/17 15:20	1
n-Hexane	0.70		0.70	ug/m3		08/15/17 15:20	1
1,1-Dichloroethane	0.81		0.81	ug/m3		08/15/17 15:20	1
Methyl Ethyl Ketone	1.5		1.5	ug/m3		08/15/17 15:20	1
cis-1,2-Dichloroethene	0.79		0.79	ug/m3		08/15/17 15:20	
1,2-Dichloroethene, Total	1.6		1.6	ug/m3		08/15/17 15:20	1
Chloroform	0.98		0.98	ug/m3		08/15/17 15:20	1
Tetrahydrofuran	15		15	ug/m3		08/15/17 15:20	
1,1,1-Trichloroethane	1.1		1.1	ug/m3		08/15/17 15:20	1
Cyclohexane	0.69		0.69	ug/m3		08/15/17 15:20	1
Carbon tetrachloride	0.09		0.09	ug/m3		08/15/17 15:20	· · · · · · · · · · · · · · · · · · ·
2,2,4-Trimethylpentane	0.23		0.23	ug/m3		08/15/17 15:20	1
Benzene	0.93		0.64	ug/m3		08/15/17 15:20	1
1,2-Dichloroethane	0.84		0.81			08/15/17 15:20	
	0.81		0.81	ug/m3		08/15/17 15:20	
n-Heptane Trichloroethene	0.82		0.82	ug/m3		08/15/17 15:20	1
				ug/m3			1
Methyl methacrylate	2.0		2.0	ug/m3		08/15/17 15:20 08/15/17 15:20	1
1,2-Dichloropropane	0.92		0.92	ug/m3			1
1,4-Dioxane	18		18	ug/m3		08/15/17 15:20	1
Bromodichloromethane	1.3		1.3	ug/m3		08/15/17 15:20	1
cis-1,3-Dichloropropene	0.91		0.91	ug/m3		08/15/17 15:20	1
methyl isobutyl ketone	2.0		2.0	ug/m3		08/15/17 15:20	1
Toluene	0.75		0.75	ug/m3		08/15/17 15:20	1
trans-1,3-Dichloropropene	0.91		0.91	ug/m3		08/15/17 15:20	1
1,1,2-Trichloroethane	1.1		1.1	ug/m3		08/15/17 15:20	1
Tetrachloroethene	1.4		1.4	ug/m3		08/15/17 15:20	1
Methyl Butyl Ketone (2-Hexanone)	2.0		2.0	ug/m3		08/15/17 15:20	1
Dibromochloromethane	1.7		1.7	ug/m3		08/15/17 15:20	1
1,2-Dibromoethane	1.5		1.5	ug/m3		08/15/17 15:20	1
Chlorobenzene	0.92		0.92	ug/m3		08/15/17 15:20	1
Ethylbenzene	0.87		0.87	ug/m3		08/15/17 15:20	1
m,p-Xylene	2.2		2.2	ug/m3		08/15/17 15:20	1
Xylene, o-	0.87		0.87	ug/m3		08/15/17 15:20	1
Xylene (total)	3.0		3.0	ug/m3		08/15/17 15:20	1
Styrene	0.85		0.85	ug/m3		08/15/17 15:20	1
Bromoform	2.1		2.1	ug/m3		08/15/17 15:20	1
Cumene	0.98		0.98	ug/m3		08/15/17 15:20	1
1,1,2,2-Tetrachloroethane	1.4		1.4	ug/m3		08/15/17 15:20	1
n-Propylbenzene	0.98	U	0.98	ug/m3		08/15/17 15:20	1
4-Ethyltoluene	0.98	U	0.98	ug/m3		08/15/17 15:20	1
1,3,5-Trimethylbenzene	0.98		0.98	ug/m3		08/15/17 15:20	1
2-Chlorotoluene	1.0	U	1.0	ug/m3		08/15/17 15:20	1
tert-Butylbenzene	1.1	U	1.1	ug/m3		08/15/17 15:20	1
1,2,4-Trimethylbenzene	0.98	U	0.98	ug/m3		08/15/17 15:20	1
sec-Butylbenzene	1.1	U	1.1	ug/m3		08/15/17 15:20	1
4-Isopropyltoluene	1.1	U	1.1	ug/m3		08/15/17 15:20	1
1,3-Dichlorobenzene	1.2	U	1.2	ug/m3		08/15/17 15:20	1
1,4-Dichlorobenzene	1.2	U	1.2	ug/m3		08/15/17 15:20	1

TestAmerica Burlington

8/18/2017

Page 45 of 87

2

3

4

7

-

10

12

14

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

MB MB

None

Lab Sample ID: MB 200-119760/7 Client Sample ID: Method Blank Matrix: Air Prep Type: Total/NA

Analysis Batch: 119760

Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzyl chloride	1.0	U	1.0	-	ug/m3			08/15/17 15:20	1
n-Butylbenzene	1.1	U	1.1		ug/m3			08/15/17 15:20	1
1,2-Dichlorobenzene	1.2	U	1.2		ug/m3			08/15/17 15:20	1
1,2,4-Trichlorobenzene	3.7	U	3.7		ug/m3			08/15/17 15:20	1
Hexachlorobutadiene	2.1	U	2.1		ug/m3			08/15/17 15:20	1
Naphthalene	2.6	U	2.6		ug/m3			08/15/17 15:20	1
	MB	MB							
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 200-119760/6 **Client Sample ID: Lab Control Sample** Matrix: Air Prep Type: Total/NA

ppb v/v

Tentatively Identified Compound

Analysis Batch: 119760						
	Spike	LCS LC	cs		%Rec.	
Analyte	Added	Result Qu	ualifier Unit	D %Rec	Limits	
Dichlorodifluoromethane	10.0	9.66	ppb v/v	97	68 - 128	
Freon 22	10.0	9.50	ppb v/v	95	64 - 128	
1,2-Dichlorotetrafluoroethane	10.0	10.8	ppb v/v	108	78 - 138	
Chloromethane	10.0	9.20	ppb v/v	92	57 - 126	
n-Butane	10.0	9.38	ppb v/v	94	56 - 130	
Vinyl chloride	10.0	9.45	ppb v/v	95	62 - 125	
1,3-Butadiene	10.0	9.22	ppb v/v	92	59 - 125	
Bromomethane	10.0	9.02	ppb v/v	90	68 - 128	
Chloroethane	10.0	9.17	ppb v/v	92	65 - 125	
Bromoethene(Vinyl Bromide)	10.0	9.90	ppb v/v	99	67 - 127	
Trichlorofluoromethane	10.0	9.37	ppb v/v	94	67 - 127	
Freon TF	10.0	9.32	ppb v/v	93	68 - 128	
1,1-Dichloroethene	10.0	9.38	ppb v/v	94	67 - 127	
Acetone	10.0	10.0	ppb v/v	100	64 - 136	
Isopropyl alcohol	10.0	9.37	ppb v/v	94	55 - 124	
Carbon disulfide	10.0	11.7	ppb v/v	117	81 - 141	
3-Chloropropene	10.0	9.37	ppb v/v	94	53 - 133	
Methylene Chloride	10.0	7.68	ppb v/v	77	62 - 122	
tert-Butyl alcohol	10.0	8.96	ppb v/v	90	64 - 124	
Methyl tert-butyl ether	10.0	9.25	ppb v/v	92	67 - 127	
trans-1,2-Dichloroethene	10.0	8.96	ppb v/v	90	72 - 132	
n-Hexane	10.0	8.77	ppb v/v	88	71 - 131	
1,1-Dichloroethane	10.0	9.26	ppb v/v	93	66 - 126	
Methyl Ethyl Ketone	10.0	8.84	ppb v/v	88	62 - 122	
cis-1,2-Dichloroethene	10.0	9.14	ppb v/v	91	67 - 127	
Chloroform	10.0	9.28	ppb v/v	93	69 - 129	
Tetrahydrofuran	10.0	7.77	ppb v/v	78	61 - 136	
1,1,1-Trichloroethane	10.0	9.81	ppb v/v	98	70 - 130	
Cyclohexane	10.0	10.2	ppb v/v	102	69 - 129	
Carbon tetrachloride	10.0	10.3	ppb v/v	103	62 - 143	
2,2,4-Trimethylpentane	10.0	9.61	ppb v/v	96	67 - 127	
Benzene	10.0	9.74	ppb v/v	97	67 - 127	
1,2-Dichloroethane	10.0	9.48	ppb v/v	95	67 - 132	
I and the second se			•			

TestAmerica Burlington

Page 46 of 87

08/15/17 15:20

8/18/2017

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119760/6

Matrix: Air

Client Sample ID: Lab Control Sam	ple
Pren Type: Total/	NΑ

Analysis Batch: 119760	Spike	I Ce	LCS				%Rec.
Analyte	Added Added		Qualifier	Unit	D	%Rec	%Rec. Limits
n-Heptane	10.0	9.23	Qualifier	ppb v/v		92	62 - 130
Trichloroethene	10.0	9.35		ppb v/v		94	68 - 128
Methyl methacrylate	10.0	10.0		ppb v/v		100	70 - 130
1,2-Dichloropropane	10.0	9.40		ppb v/v		94	67 - 127
1,4-Dioxane	10.0	10.3		ppb v/v		103	66 - 132
Bromodichloromethane	10.0	9.51		ppb v/v		95	69-129
cis-1,3-Dichloropropene	10.0	10.1		ppb v/v		101	70-130
methyl isobutyl ketone	10.0	10.1		ppb v/v		101	62 - 130
Toluene	10.0	9.67		ppb v/v		97	67 - 127
trans-1,3-Dichloropropene	10.0	10.0		ppb v/v		100	69-129
	10.0	9.82				98	69 - 129
1,1,2-Trichloroethane Tetrachloroethene		9.62		ppb v/v		96 97	70 - 130
	10.0			ppb v/v			
Methyl Butyl Ketone	10.0	9.93		ppb v/v		99	61 - 127
(2-Hexanone) Dibromochloromethane	10.0	9.59		ppb v/v		96	66 - 130
1,2-Dibromoethane	10.0	9.94		ppb v/v		99	70 - 130
Chlorobenzene	10.0	9.81		ppb v/v		98	68-128
Ethylbenzene	10.0	9.76		ppb v/v		98	68 - 128
m,p-Xylene	20.0	19.6		ppb v/v		98	68 - 128
Xylene, o-	10.0	8.90		ppb v/v		89	67 - 127
Styrene	10.0	9.05		ppb v/v		91	68 - 128
Bromoform	10.0	9.49		ppb v/v		95	34 - 170
Cumene	10.0	8.57		ppb v/v		86	67 - 127
1,1,2,2-Tetrachloroethane	10.0	8.37		ppb v/v		84	69 - 129
n-Propylbenzene	10.0	8.41		ppb v/v		84	67 - 127
4-Ethyltoluene	10.0	8.92				89	69 - 129
1,3,5-Trimethylbenzene	10.0	8.02		ppb v/v ppb v/v		80	65 - 125
2-Chlorotoluene	10.0	8.27		ppb v/v		83	67 - 127
		7.76					
tert-Butylbenzene	10.0			ppb v/v		78 75	63 - 125 65 - 125
1,2,4-Trimethylbenzene	10.0	7.54		ppb v/v		75 75	
sec-Butylbenzene	10.0	7.53		ppb v/v		75	66 - 126
4-Isopropyltoluene	10.0	8.06		ppb v/v		81	67 - 129
1,3-Dichlorobenzene	10.0	8.37		ppb v/v		84	67 - 127
1,4-Dichlorobenzene	10.0	8.44		ppb v/v		84	66 - 126
Benzyl chloride	10.0	7.26		ppb v/v		73	54 - 135
n-Butylbenzene	10.0	8.06		ppb v/v		81	67 - 127
1,2-Dichlorobenzene	10.0	8.54		ppb v/v		85	67 - 127
1,2,4-Trichlorobenzene	10.0	8.52		ppb v/v		85	59 - 126
Hexachlorobutadiene	10.0	9.28		ppb v/v		93	62-130
Naphthalene	10.0	7.09		ppb v/v		71	50 - 121
	Spike		LCS		_	a. =	%Rec.
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits
Dichlorodifluoromethane	49	47.8		ug/m3		97	68 - 128
Freon 22	35	33.6		ug/m3		95	64 - 128
1,2-Dichlorotetrafluoroethane	70	75.8		ug/m3		108	78 - 138
Chloromethane	21	19.0		ug/m3		92	57 - 126
n-Butane	24	22.3		ug/m3		94	56 - 130
Vinyl chloride	26	24.2		ug/m3		95	62 - 125

TestAmerica Burlington

Page 47 of 87

6

1

7

0

10

13

14

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119760/6

Matrix: Air

Client Sample ID:	Lab Control Sample
•	Pren Type: Total/NA

Analysis Batch: 119760	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,3-Butadiene		20.4	-	ug/m3		92	59 - 125
Bromomethane	39	35.0		ug/m3		90	68 - 128
Chloroethane	26	24.2		ug/m3		92	65 - 125
Bromoethene(Vinyl Bromide)	44	43.3		ug/m3		99	67 - 127
Trichlorofluoromethane	56	52.7		ug/m3		94	67 - 127
Freon TF	77	71.5		ug/m3		93	68 - 128
1,1-Dichloroethene	40	37.2		ug/m3		94	67 - 127
Acetone	24	23.8		ug/m3		100	64 - 136
Isopropyl alcohol	25	23.0		ug/m3		94	55 - 124
Carbon disulfide	31	36.3		ug/m3		117	81 - 141
3-Chloropropene	31	29.3		ug/m3		94	53 - 133
Methylene Chloride	35	26.7		ug/m3		77	62 - 122
tert-Butyl alcohol	30	27.2		ug/m3		90	64 - 124
Methyl tert-butyl ether	36	33.3		ug/m3		92	67 - 127
trans-1,2-Dichloroethene	40	35.5		ug/m3		90	72 - 132
n-Hexane	35	30.9		ug/m3		88	71 - 131
1,1-Dichloroethane	40	37.5		ug/m3		93	66 - 126
Methyl Ethyl Ketone	29	26.1		ug/m3		88	62 - 122
cis-1,2-Dichloroethene	40	36.2		ug/m3		91	67 - 127
Chloroform	49	45.3		ug/m3		93	69 - 129
Tetrahydrofuran	29	22.9		ug/m3		78	61 - 136
1,1,1-Trichloroethane	55	53.5		ug/m3		98	70 - 130
Cyclohexane	34	35.2		ug/m3		102	69 - 129
Carbon tetrachloride	63	64.6		ug/m3		103	62 - 143
2,2,4-Trimethylpentane	47	44.9		ug/m3		96	67 - 127
Benzene	32	31.1		ug/m3		97	67 - 127
1,2-Dichloroethane	40	38.4		ug/m3		95	67 - 132
n-Heptane	41	37.8		ug/m3		92	62 - 130
Trichloroethene	54	50.3		ug/m3		94	68 - 128
Methyl methacrylate	41	41.1		ug/m3		100	70 - 130
1,2-Dichloropropane	46	43.4		ug/m3		94	67 - 127
1,4-Dioxane	36	37.3		ug/m3		103	66 - 132
Bromodichloromethane	67	63.7		ug/m3		95	69 - 129
cis-1,3-Dichloropropene	45	45.8		ug/m3		101	70-130
methyl isobutyl ketone	41	41.6		ug/m3		102	62 - 130
Toluene	38	36.4		ug/m3		97	67 - 127
trans-1,3-Dichloropropene	45	45.5		ug/m3		100	69 - 129
1,1,2-Trichloroethane	55	53.6		ug/m3		98	69 - 129
Tetrachloroethene	68	65.9		ug/m3		97	70 - 130
Methyl Butyl Ketone	41	40.7		ug/m3		99	61 - 127
(2-Hexanone)				agimo		00	31-121
Dibromochloromethane	85	81.7		ug/m3		96	66 - 130
1,2-Dibromoethane	77	76.4		ug/m3		99	70 - 130
Chlorobenzene	46	45.2		ug/m3		98	68 - 128
Ethylbenzene	43	42.4		ug/m3		98	68 - 128
m,p-Xylene	87	85.1		ug/m3		98	68 - 128
Xylene, o-	43	38.6		ug/m3		89	67 - 127
Styrene	43	38.6		ug/m3		91	68 - 128

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119760/6

Matrix: Air

Analysis Batch: 119760

Client Sample ID: Lab Control Sample Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	100	98.1	-	ug/m3		95	34 - 170	
Cumene	49	42.1		ug/m3		86	67 - 127	
1,1,2,2-Tetrachloroethane	69	57.5		ug/m3		84	69 - 129	
n-Propylbenzene	49	41.3		ug/m3		84	67 - 127	
4-Ethyltoluene	49	43.8		ug/m3		89	69 - 129	
1,3,5-Trimethylbenzene	49	39.4		ug/m3		80	65 - 125	
2-Chlorotoluene	52	42.8		ug/m3		83	67 - 127	
tert-Butylbenzene	55	42.6		ug/m3		78	63 - 125	
1,2,4-Trimethylbenzene	49	37.1		ug/m3		75	65 - 125	
sec-Butylbenzene	55	41.3		ug/m3		75	66 - 126	
4-Isopropyltoluene	55	44.2		ug/m3		81	67 - 129	
1,3-Dichlorobenzene	60	50.3		ug/m3		84	67 - 127	
1,4-Dichlorobenzene	60	50.8		ug/m3		84	66 - 126	
Benzyl chloride	52	37.6		ug/m3		73	54 - 135	
n-Butylbenzene	55	44.3		ug/m3		81	67 - 127	
1,2-Dichlorobenzene	60	51.3		ug/m3		85	67 - 127	
1,2,4-Trichlorobenzene	74	63.2		ug/m3		85	59 - 126	
Hexachlorobutadiene	110	99.0		ug/m3		93	62 - 130	
Naphthalene	52	37.2		ug/m3		71	50 - 121	

Lab Sample ID: MB 200-119837/4

Matrix: Air

Analysis Batch: 119837

Client Sample ID: Method Blank Prep Type: Total/NA

Tillary old Batolii Tiloooti								
	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
Freon 22	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
1,2-Dichlorotetrafluoroethane	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
Chloromethane	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
n-Butane	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
Vinyl chloride	0.040	U	0.040	ppb v/v			08/16/17 13:37	1
1,3-Butadiene	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
Bromomethane	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
Chloroethane	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
Bromoethene(Vinyl Bromide)	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
Trichlorofluoromethane	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
Freon TF	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
1,1-Dichloroethene	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
Acetone	5.0	U	5.0	ppb v/v			08/16/17 13:37	1
Isopropyl alcohol	5.0	U	5.0	ppb v/v			08/16/17 13:37	1
Carbon disulfide	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
3-Chloropropene	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
Methylene Chloride	0.50	U	0.50	ppb v/v			08/16/17 13:37	1
tert-Butyl alcohol	5.0	U	5.0	ppb v/v			08/16/17 13:37	1
Methyl tert-butyl ether	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
trans-1,2-Dichloroethene	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
n-Hexane	0.20	U	0.20	ppb v/v			08/16/17 13:37	1
1,1-Dichloroethane	0.20	U	0.20	ppb v/v			08/16/17 13:37	1

Page 49 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

RL

0.50

RL Unit

ppb v/v

D

Prepared

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

MB MB

0.50 U

0.20 U

Result Qualifier

Lab Sample ID: MB 200-119837/4

Matrix: Air

Methyl Ethyl Ketone

n-Propylbenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

4-Ethyltoluene

2-Chlorotoluene

tert-Butylbenzene

sec-Butylbenzene

4-Isopropyltoluene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Benzyl chloride

n-Butylbenzene

Analyte

Analysis Batch: 119837

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

08/16/17 13:37

			PP-2		
cis-1,2-Dichloroethene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
1,2-Dichloroethene, Total	0.40 U	0.40	ppb v/v	08/16/17 13:37	1
Chloroform	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Tetrahydrofuran	5.0 U	5.0	ppb v/v	08/16/17 13:37	1
1,1,1-Trichloroethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Cyclohexane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Carbon tetrachloride	0.040 U	0.040	ppb v/v	08/16/17 13:37	1
2,2,4-Trimethylpentane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Benzene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
1,2-Dichloroethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
n-Heptane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Trichloroethene	0.040 U	0.040	ppb v/v	08/16/17 13:37	1
Methyl methacrylate	0.50 U	0.50	ppb v/v	08/16/17 13:37	1
1,2-Dichloropropane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
1,4-Dioxane	5.0 U	5.0	ppb v/v	08/16/17 13:37	1
Bromodichloromethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
cis-1,3-Dichloropropene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
methyl isobutyl ketone	0.50 U	0.50	ppb v/v	08/16/17 13:37	1
Toluene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
trans-1,3-Dichloropropene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
1,1,2-Trichloroethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Tetrachloroethene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Methyl Butyl Ketone (2-Hexanone)	0.50 U	0.50	ppb v/v	08/16/17 13:37	1
Dibromochloromethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
1,2-Dibromoethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Chlorobenzene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Ethylbenzene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
m,p-Xylene	0.50 U	0.50	ppb v/v	08/16/17 13:37	1
Xylene, o-	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Xylene (total)	0.70 U	0.70	ppb v/v	08/16/17 13:37	1
Styrene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Bromoform	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
Cumene	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
1,1,2,2-Tetrachloroethane	0.20 U	0.20	ppb v/v	08/16/17 13:37	1
5 "	0.00 11	0.00	1 /	00//0//= /0.0=	

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

TestAmerica Burlington

8/18/2017

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

08/16/17 13:37

Page 50 of 87

ppb v/v

2

3

А

6

Dil Fac

7

ŏ

10

12

IJ

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119837/4
Matrix: Air

Toluene

Client Sam	ple ID:	Metho	od Blank
	Prep '	Type: '	Total/NA

Matrix: Air							Prep Type: To	otal/NA
Analysis Batch: 119837								
-		MB						
Analyte		Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	0.50	U	0.50	ppb v/	/		08/16/17 13:37	1
Hexachlorobutadiene	0.20	U	0.20	ppb v/	/		08/16/17 13:37	1
Naphthalene	0.50	U	0.50	ppb v/	/		08/16/17 13:37	1
	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	2.5	U	2.5	ug/m3			08/16/17 13:37	1
Freon 22	1.8	U	1.8	ug/m3			08/16/17 13:37	1
1,2-Dichlorotetrafluoroethane	1.4	U	1.4	ug/m3			08/16/17 13:37	1
Chloromethane	1.0	U	1.0	ug/m3			08/16/17 13:37	1
n-Butane	1.2	U	1.2	ug/m3			08/16/17 13:37	1
Vinyl chloride	0.10	U	0.10	ug/m3			08/16/17 13:37	1
1,3-Butadiene	0.44	U	0.44	ug/m3			08/16/17 13:37	1
Bromomethane	0.78	U	0.78	ug/m3			08/16/17 13:37	1
Chloroethane	1.3	U	1.3	ug/m3			08/16/17 13:37	1
Bromoethene(Vinyl Bromide)	0.87		0.87	ug/m3			08/16/17 13:37	1
Trichlorofluoromethane	1.1		1.1	ug/m3			08/16/17 13:37	1
Freon TF	1.5		1.5	ug/m3			08/16/17 13:37	1
1,1-Dichloroethene	0.79		0.79	ug/m3			08/16/17 13:37	1
Acetone	12		12	ug/m3			08/16/17 13:37	1
Isopropyl alcohol	12		12	ug/m3			08/16/17 13:37	1
Carbon disulfide	1.6		1.6	ug/m3			08/16/17 13:37	1
3-Chloropropene	1.6		1.6	ug/m3			08/16/17 13:37	1
Methylene Chloride	1.7		1.7	ug/m3			08/16/17 13:37	1
tert-Butyl alcohol	15		15	ug/m3			08/16/17 13:37	· · · · · · · · · · · · · · · · · · ·
Methyl tert-butyl ether	0.72		0.72	ug/m3 ug/m3			08/16/17 13:37	1
trans-1,2-Dichloroethene	0.72		0.72	ug/m3 ug/m3			08/16/17 13:37	1
n-Hexane	0.79		0.79	ug/m3 ug/m3			08/16/17 13:37	
	0.70			-				
1,1-Dichloroethane			0.81	ug/m3			08/16/17 13:37	1
Methyl Ethyl Ketone	1.5		1.5	ug/m3			08/16/17 13:37	1
cis-1,2-Dichloroethene	0.79		0.79	ug/m3			08/16/17 13:37	1
1,2-Dichloroethene, Total	1.6		1.6	ug/m3			08/16/17 13:37	1
Chloroform	0.98		0.98	ug/m3			08/16/17 13:37	1
Tetrahydrofuran	15		15	ug/m3			08/16/17 13:37	1
1,1,1-Trichloroethane	1.1		1.1	ug/m3			08/16/17 13:37	1
Cyclohexane	0.69		0.69	ug/m3			08/16/17 13:37	1
Carbon tetrachloride	0.25		0.25	ug/m3			08/16/17 13:37	1
2,2,4-Trimethylpentane	0.93		0.93	ug/m3			08/16/17 13:37	1
Benzene	0.64		0.64	ug/m3			08/16/17 13:37	1
1,2-Dichloroethane	0.81		0.81	ug/m3			08/16/17 13:37	1
n-Heptane	0.82		0.82	ug/m3			08/16/17 13:37	1
Trichloroethene	0.21		0.21	ug/m3			08/16/17 13:37	1
Methyl methacrylate	2.0		2.0	ug/m3			08/16/17 13:37	1
1,2-Dichloropropane	0.92		0.92	ug/m3			08/16/17 13:37	1
1,4-Dioxane	18		18	ug/m3			08/16/17 13:37	1
Bromodichloromethane	1.3		1.3	ug/m3			08/16/17 13:37	1
cis-1,3-Dichloropropene	0.91		0.91	ug/m3			08/16/17 13:37	1
methyl isobutyl ketone	2.0	U	2.0	ug/m3			08/16/17 13:37	1

TestAmerica Burlington

08/16/17 13:37

Page 51 of 87

0.75

ug/m3

0.75 U

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 200-119837/4

Matrix: Air

Client: AKRF Inc

Analysis Batch: 119837

Project/Site: 200 Hamilton

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 119837	MB	MB						
Analyte	Result	Qualifier	RL	RL Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	0.91	U	0.91	ug/m3			08/16/17 13:37	1
1,1,2-Trichloroethane	1.1	U	1.1	ug/m3			08/16/17 13:37	1
Tetrachloroethene	1.4	U	1.4	ug/m3			08/16/17 13:37	1
Methyl Butyl Ketone (2-Hexanone)	2.0	U	2.0	ug/m3			08/16/17 13:37	1
Dibromochloromethane	1.7	U	1.7	ug/m3			08/16/17 13:37	1
1,2-Dibromoethane	1.5	Ú	1.5	ug/m3			08/16/17 13:37	1
Chlorobenzene	0.92	U	0.92	ug/m3			08/16/17 13:37	1
Ethylbenzene	0.87	U	0.87	ug/m3			08/16/17 13:37	1
m,p-Xylene	2.2	U	2.2	ug/m3			08/16/17 13:37	1
Xylene, o-	0.87	U	0.87	ug/m3			08/16/17 13:37	1
Xylene (total)	3.0	U	3.0	ug/m3			08/16/17 13:37	1
Styrene	0.85	U	0.85	ug/m3			08/16/17 13:37	1
Bromoform	2.1	U	2.1	ug/m3			08/16/17 13:37	1
Cumene	0.98	U	0.98	ug/m3			08/16/17 13:37	1
1,1,2,2-Tetrachloroethane	1.4	U	1.4	ug/m3			08/16/17 13:37	1
n-Propylbenzene	0.98	U	0.98	ug/m3			08/16/17 13:37	1
4-Ethyltoluene	0.98	U	0.98	ug/m3			08/16/17 13:37	1
1,3,5-Trimethylbenzene	0.98	U	0.98	ug/m3			08/16/17 13:37	1
2-Chlorotoluene	1.0	U	1.0	ug/m3			08/16/17 13:37	1
tert-Butylbenzene	1.1	U	1.1	ug/m3			08/16/17 13:37	1
1,2,4-Trimethylbenzene	0.98	Ú	0.98	ug/m3			08/16/17 13:37	1
sec-Butylbenzene	1.1	U	1.1	ug/m3			08/16/17 13:37	1
4-Isopropyltoluene	1.1	U	1.1	ug/m3			08/16/17 13:37	1
1,3-Dichlorobenzene	1.2	U	1.2	ug/m3			08/16/17 13:37	1
1,4-Dichlorobenzene	1.2	U	1.2	ug/m3			08/16/17 13:37	1
Benzyl chloride	1.0	U	1.0	ug/m3			08/16/17 13:37	1
n-Butylbenzene	1.1	U	1.1	ug/m3			08/16/17 13:37	1
1,2-Dichlorobenzene	1.2	U	1.2	ug/m3			08/16/17 13:37	1
1,2,4-Trichlorobenzene	3.7	U	3.7	ug/m3			08/16/17 13:37	1
Hexachlorobutadiene	2.1	U	2.1	ug/m3			08/16/17 13:37	1
Naphthalene	2.6	U	2.6	ug/m3			08/16/17 13:37	1
	MB	MB						
Tentatively Identified Compound	Est. Result	Qualifier	Unit E) RT	CAS No.	Prepared	Analyzed	Dil Fac

Lab Sample ID: LCS 200-119837/5

None

Matrix: Air

Analysis Batch: 119837

Tentatively Identified Compound

Client Sample ID: Lab Control Sample Prep Type: Total/NA

08/16/17 13:37

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dichlorodifluoromethane	10.0	10.0		ppb v/v		100	68 - 128	
Freon 22	10.0	9.18		ppb v/v		92	64 - 128	
1,2-Dichlorotetrafluoroethane	10.0	10.7		ppb v/v		107	78 - 138	
Chloromethane	10.0	8.31		ppb v/v		83	57 - 126	
n-Butane	10.0	8.68		ppb v/v		87	56 - 130	
Vinyl chloride	10.0	8.39		ppb v/v		84	62 - 125	
1,3-Butadiene	10.0	8.17		ppb v/v		82	59 - 125	
Bromomethane	10.0	9.40		ppb v/v		94	68 - 128	

ppb v/v

TestAmerica Burlington

8/18/2017

Page 52 of 87

_

3

5

Ĭ

8

10

12

13

14

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119837/5

Matrix: Air

Client Sample	ID: Lab	Control Sampl	е
	Pren	Type: Total/N	Δ

Analysis Batch: 119837	Spike	1.00	LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Chloroethane		8.88	Qualifier	ppb v/v	_ =	89	65 - 125
Bromoethene(Vinyl Bromide)	10.0	9.44		ppb v/v		94	67 - 127
Trichlorofluoromethane	10.0	9.62		ppb v/v		96	67 - 127
Freon TF	10.0	9.51		ppb v/v		95	68 - 128
1,1-Dichloroethene	10.0	9.09		ppb v/v		91	67 - 127
Acetone	10.0	9.09		ppb v/v		93	64 - 136
	10.0	8.53				93 85	55 - 124
Isopropyl alcohol		10.6		ppb v/v		106	81 - 141
Carbon disulfide	10.0 10.0	8.31		ppb v/v		83	53 - 133
3-Chloropropene				ppb v/v			62 - 122
Methylene Chloride	10.0	8.61		ppb v/v		86	
tert-Butyl alcohol	10.0	9.83		ppb v/v		98	64 - 124
Methyl tert-butyl ether	10.0	9.59		ppb v/v		96	67 - 127
trans-1,2-Dichloroethene	10.0	9.60		ppb v/v		96	72 - 132
n-Hexane	10.0	9.97		ppb v/v		100	71_131
1,1-Dichloroethane	10.0	8.80		ppb v/v		88	66 - 126
Methyl Ethyl Ketone	10.0	8.88		ppb v/v		89	62 - 122
cis-1,2-Dichloroethene	10.0	9.37		ppb v/v		94	67 - 127
Chloroform	10.0	8.27		ppb v/v		83	69 - 129
Tetrahydrofuran	10.0	8.98		ppb v/v		90	61 - 136
1,1,1-Trichloroethane	10.0	10.2		ppb v/v		102	70 - 130
Cyclohexane	10.0	10.1		ppb v/v		101	69 - 129
Carbon tetrachloride	10.0	11.3		ppb v/v		113	62 - 143
2,2,4-Trimethylpentane	10.0	8.38		ppb v/v		84	67 - 127
Benzene	10.0	8.65		ppb v/v		86	67 - 127
1,2-Dichloroethane	10.0	8.88		ppb v/v		89	67 - 132
n-Heptane	10.0	7.35		ppb v/v		74	62 - 130
Trichloroethene	10.0	9.61		ppb v/v		96	68 - 128
Methyl methacrylate	10.0	9.70		ppb v/v		97	70 - 130
1,2-Dichloropropane	10.0	7.94		ppb v/v		79	67 - 127
1,4-Dioxane	10.0	10.6		ppb v/v		106	66 - 132
Bromodichloromethane	10.0	10.2		ppb v/v		102	69 - 129
cis-1,3-Dichloropropene	10.0	9.68		ppb v/v		97	70 - 130
methyl isobutyl ketone	10.0	8.49		ppb v/v		85	62 - 130
Toluene	10.0	9.36		ppb v/v		94	67 - 127
trans-1,3-Dichloropropene	10.0	9.79		ppb v/v		98	69 - 129
1,1,2-Trichloroethane	10.0	8.80		ppb v/v		88	69 - 129
Tetrachloroethene	10.0	11.0		ppb v/v		110	70 - 130
Methyl Butyl Ketone	10.0	8.27		ppb v/v		83	61 - 127
(2-Hexanone) Dibromochloromethane	10.0	11.0		ppb v/v		110	66 - 130
1,2-Dibromoethane	10.0	10.1		ppb v/v		101	70 - 130
Chlorobenzene	10.0	10.1		ppb v/v		101	68 - 128
Ethylbenzene	10.0	9.61		ppb v/v		96	68 - 128
-	20.0			ppb v/v			68 - 128
m,p-Xylene Xylene, o-		19.9				100	
•	10.0	9.93		ppb v/v		99 106	67 - 127
Styrene	10.0	10.6		ppb v/v		106	68 - 128
Bromoform	10.0	13.0		ppb v/v		130	34 - 170
Cumene	10.0	10.2		ppb v/v		102	67 - 127

TestAmerica Burlington

Page 53 of 87

Client: AKRF Inc TestAmerica Job ID: 200-39689-1
Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119837/5

Matrix: Air

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

Analysis Databy 440027							i iep i ype	. Totality
Analysis Batch: 119837	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,2,2-Tetrachloroethane	10.0	9.18	Qualifici	ppb v/v	_ =	92	69 - 129	
n-Propylbenzene	10.0	9.76		ppb v/v		98	67 - 127	
4-Ethyltoluene	10.0	10.9		ppb v/v		109	69 - 129	
1,3,5-Trimethylbenzene	10.0	10.4		ppb v/v		104	65 - 125	
2-Chlorotoluene	10.0	9.81		ppb v/v		98	67 - 127	
tert-Butylbenzene	10.0	10.7		ppb v/v		107	63 - 125	
1,2,4-Trimethylbenzene	10.0	10.7		ppb v/v		106	65 - 125	
sec-Butylbenzene	10.0	10.3		ppb v/v		103	66 - 126	
4-Isopropyltoluene	10.0	11.3		ppb v/v		113	67 - 129	
1,3-Dichlorobenzene	10.0	11.2		ppb v/v		112	67 - 127	
1,4-Dichlorobenzene	10.0	11.4		ppb v/v		115	66 - 126	
Benzyl chloride	10.0	10.2		ppb v/v		102	54 - 135	
	10.0	10.2		ppb v/v		104	67 - 127	
n-Butylbenzene 1,2-Dichlorobenzene	10.0	11.2				112	67 - 127	
1,2,4-Trichlorobenzene	10.0	11.5		ppb v/v		115	59-126	
Hexachlorobutadiene	10.0	11.3		ppb v/v		113	62 - 130	
	10.0			ppb v/v		98		
Naphthalene		9.77	1.00	ppb v/v		90	50 - 121 %Rec .	
Amaluta	Spike		LCS	11!4	_	0/ D	%Rec. Limits	
Analyte Dichlorodifluoromethane	Added 49	49.5	Qualifier	Unit	_ D	%Rec 100	68-128	
Freon 22	35	32.5		ug/m3 ug/m3		92	64 - 128	
1,2-Dichlorotetrafluoroethane	70	74.7		ug/m3		107	78 - 138	
Chloromethane	21	17.2		ug/m3		83	70 - 136 57 - 126	
n-Butane	24	20.6		ug/m3		87	56 - 130	
Vinyl chloride	24 26	21.5		ug/m3		84	62 - 125	
1,3-Butadiene	22	18.1				82	59 - 125	
Bromomethane	39	36.5		ug/m3		94	68 - 128	
Chloroethane	26	23.4		ug/m3 ug/m3		89	65 - 125	
Bromoethene(Vinyl Bromide)	44	41.3				94	67 - 127	
Trichlorofluoromethane	56	54.0		ug/m3 ug/m3		96	67 - 127	
Freon TF	77	72.9		-		95	68 - 128	
1,1-Dichloroethene	40	36.0		ug/m3		91	67 - 127	
Acetone	24	22.1		ug/m3 ug/m3		93	64 - 136	
	25	21.0		-		95 85	55 - 124	
Isopropyl alcohol Carbon disulfide	31	33.1		ug/m3 ug/m3		106	81 - 141	
3-Chloropropene	31	26.0		ug/m3		83	53 - 133	
Methylene Chloride	35	29.9		ug/m3		86	62 - 122	
tert-Butyl alcohol	30	29.9				98	64 - 124	
Methyl tert-butyl ether	36	34.6		ug/m3 ug/m3		96	67 - 127	
trans-1,2-Dichloroethene	40	38.0		ug/m3		96	72-132	
n-Hexane	35	35.1		ug/m3		100	71 - 131	
1,1-Dichloroethane	40			-				
	40 29	35.6 26.2		ug/m3		88 89	66 - 126	
Methyl Ethyl Ketone	40			ug/m3			62 - 122 67 - 127	
cis-1,2-Dichloroethene	40 49	37.1		ug/m3		94		
Chloroform		40.4		ug/m3		83	69 - 129	
Tetrahydrofuran	29	26.5		ug/m3		90	61 - 136	
1,1,1-Trichloroethane	55	55.9		ug/m3		102	70 - 130	
Cyclohexane	34	34.8		ug/m3		101	69 - 129	

TestAmerica Burlington

8/18/2017

Page 54 of 87

G

1

5

7

9

11

13

14

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton SDG: 200-39689-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-119837/5

Matrix: Air

Client Sample	ID: Lab	Control Sample
	Pren	Type: Total/NA

Analysis Batch: 119837	Spike	LCS	LCS			%Rec.
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Carbon tetrachloride	63	71.3		ug/m3	113	62 - 143
2,2,4-Trimethylpentane	47	39.1		ug/m3	84	67 - 127
Benzene	32	27.6		ug/m3	86	67 - 127
1,2-Dichloroethane	40	35.9		ug/m3	89	67 - 132
n-Heptane	41	30.1		ug/m3	74	62 - 130
Trichloroethene	54	51.6		ug/m3	96	68 - 128
Methyl methacrylate	41	39.7		ug/m3	97	70 - 130
1,2-Dichloropropane	46	36.7		ug/m3	79	67 - 127
1,4-Dioxane	36	38.3		ug/m3	106	66 - 132
Bromodichloromethane	67	68.4		ug/m3	102	69 - 129
cis-1,3-Dichloropropene	45	43.9		ug/m3	97	70 - 130
methyl isobutyl ketone	41	34.8		ug/m3	85	62 - 130
Toluene	38	35.3		ug/m3	94	67 - 127
trans-1,3-Dichloropropene	45	44.4		ug/m3	98	69 - 129
1,1,2-Trichloroethane	55	48.0		ug/m3	88	69 - 129
Tetrachloroethene	68	74.3		ug/m3	110	70 - 130
Methyl Butyl Ketone	41	33.9		ug/m3	83	61 - 127
(2-Hexanone) Dibromochloromethane	85	93.3		ug/m3	110	66 - 130
1,2-Dibromoethane	77	77.6		ug/m3	101	70 - 130
Chlorobenzene	46	47.0		ug/m3	102	68 - 128
Ethylbenzene	43	41.7		ug/m3	96	68 - 128
m,p-Xylene	87	86.4		ug/m3	100	68 - 128
Xylene, o-	43	43.1		ug/m3	99	67 - 127
Styrene	43	45.1		ug/m3	106	68 - 128
Bromoform	100	135		ug/m3	130	34 - 170
Cumene	49	50.1		ug/m3	102	67 - 127
1,1,2,2-Tetrachloroethane	69	63.0		ug/m3	92	69 - 129
n-Propylbenzene	49	48.0		ug/m3	98	67 - 127
4-Ethyltoluene	49	53.6		ug/m3	109	69 - 129
1,3,5-Trimethylbenzene	49	51.1		ug/m3	104	65 - 125
2-Chlorotoluene	52	50.8		ug/m3	98	67 - 127
tert-Butylbenzene	55	58.8		ug/m3	107	63 - 125
1,2,4-Trimethylbenzene	49	52.2		ug/m3	106	65 - 125
sec-Butylbenzene	55	56.4		ug/m3	103	66 - 126
4-Isopropyltoluene	55	61.8		ug/m3	113	67 - 129
1,3-Dichlorobenzene	60	67.5		ug/m3	112	67 - 127
1,4-Dichlorobenzene	60	68.8		ug/m3	115	66 - 126
Benzyl chloride	52	52.8		ug/m3	102	54 - 135
n-Butylbenzene	55	57.0		ug/m3	104	67 - 127
1,2-Dichlorobenzene	60	67.5		ug/m3	112	67 - 127
1,2,4-Trichlorobenzene	74	85.6			115	59 - 126
1,2,4-Trichlorobenzene Hexachlorobutadiene	110	121		ug/m3		
				ug/m3	113	62-130
Naphthalene	52	51.2		ug/m3	98	50 - 121

QC Association Summary

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Air - GC/MS VOA

Analysis Batch: 119644

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-39689-6	AA-1	Total/NA	Air	TO-15	
MB 200-119644/4	Method Blank	Total/NA	Air	TO-15	
LCS 200-119644/3	Lab Control Sample	Total/NA	Air	TO-15	

Analysis Batch: 119704

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-39689-4	SV-4	Total/NA	Air	TO-15	
200-39689-5	SV-5	Total/NA	Air	TO-15	
MB 200-119704/5	Method Blank	Total/NA	Air	TO-15	
LCS 200-119704/4	Lab Control Sample	Total/NA	Air	TO-15	

Analysis Batch: 119760

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-39689-1	SV-1	Total/NA	Air	TO-15	
200-39689-3	SV-3	Total/NA	Air	TO-15	
MB 200-119760/7	Method Blank	Total/NA	Air	TO-15	
LCS 200-119760/6	Lab Control Sample	Total/NA	Air	TO-15	

Analysis Batch: 119837

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
200-39689-2	SV-2	Total/NA	Air	TO-15	
MB 200-119837/4	Method Blank	Total/NA	Air	TO-15	
LCS 200-119837/5	Lab Control Sample	Total/NA	Air	TO-15	

- 3

6

_

9

10

12

13

14

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Client Sample ID: SV-1

Date Collected: 08/08/17 14:26

Lab Sample ID: 200-39689-1

Matrix: Air

Date Received: 08/11/17 10:30

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Type

Analyst Lab TAL BUR Total/NA Analysis TO-15 8 119760 08/15/17 17:08 K1P

Client Sample ID: SV-2

Date Collected: 08/08/17 15:00

Lab Sample ID: 200-39689-2

Matrix: Air

Matrix: Air

Date Received: 08/11/17 10:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab

08/16/17 23:55 Total/NA TO-15 13.1 119837 K1P TAL BUR Analysis

Client Sample ID: SV-3 Lab Sample ID: 200-39689-3

Date Collected: 08/09/17 12:20 Date Received: 08/11/17 10:30

Dilution Batch Batch Batch **Prepared**

Method or Analyzed Prep Type Type Run **Factor** Number Analyst Lab TO-15 08/15/17 18:01 K1P TAL BUR Total/NA Analysis

Client Sample ID: SV-4 Lab Sample ID: 200-39689-4 Matrix: Air

Date Collected: 08/09/17 13:15

Date Received: 08/11/17 10:30

Batch Batch Dilution Batch **Prepared** Method Factor or Analyzed **Prep Type** Type Run Number Analyst Lab TO-15 TAL BUR Total/NA Analysis 119704 08/14/17 21:06 ERT

Client Sample ID: SV-5 Lab Sample ID: 200-39689-5

Date Collected: 08/09/17 12:30 Matrix: Air

Date Received: 08/11/17 10:30

Batch Dilution Batch Batch Prepared Prep Type Method Run **Factor** Number or Analyzed Type Analyst Lab TAL BUR Total/NA Analysis TO-15 10 119704 08/14/17 21:57 ERT

Client Sample ID: AA-1 Lab Sample ID: 200-39689-6

Date Collected: 08/09/17 13:30 Matrix: Air

Date Received: 08/11/17 10:30

Batch Dilution Batch Batch **Prepared Prep Type** Type Method **Factor** Number or Analyzed Run Analyst Lab Total/NA Analysis TO-15 119644 08/12/17 06:18 K1P TAL BUR

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Accreditation/Certification Summary

Client: AKRF Inc TestAmerica Job ID: 200-39689-1 Project/Site: 200 Hamilton

SDG: 200-39689-1

Laboratory: TestAmerica Burlington

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
lew Jersey	NELAP		2	VT972	06-30-18
The following analytes	are included in this report,	but are not accre	dited/certified under	this accreditation/certificatio	n:
Analysis Method	Prep Method	Matrix	Analy	te	
TO-15	 : 	Air	1,2-D	ichloroethene, Total	
TO-15		Air	4-Isop	oropyltoluene	
TO-15		Air	Cume	ene	
TO-15		Air	Freon	1 22	
TO-15		Air	n-But	ane	
TO-15		Air	n-But	ylbenzene	
TO-15		Air	n-Pro	pylbenzene	
TO-15		Air	sec-B	utylbenzene	
TO-15		Air	tert-B	utylbenzene	

Method Summary

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Method	Method Description	Protocol	Laboratory
TO-15	Volatile Organic Compounds in Ambient Air	EPA	TAL BUR

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

Sample Summary

Client: AKRF Inc

Project/Site: 200 Hamilton

TestAmerica Job ID: 200-39689-1

SDG: 200-39689-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
200-39689-1	SV-1	Air	08/08/17 14:26 0	8/11/17 10:30
200-39689-2	SV-2	Air	08/08/17 15:00 0	8/11/17 10:30
200-39689-3	SV-3	Air	08/09/17 12:20 0	8/11/17 10:30
200-39689-4	SV-4	Air	08/09/17 13:15 0	8/11/17 10:30
200-39689-5	SV-5	Air	08/09/17 12:30 0	8/11/17 10:30
200-39689-6	AA-1	Air	08/09/17 13:30 0	8/11/17 10:30

3

4

5

7

8

9

11

40

14

A COUNTER -

Samples Received by:

Date/Time:

Opened by:

Canister Samples Chain of Custody Record

TestAmerica Analytical Testing Corp. assumes no liability with respect to the collection and shipment of these samples.

phone 802-660-1990 fax 802-660-1919

South Burlington, VT 05403

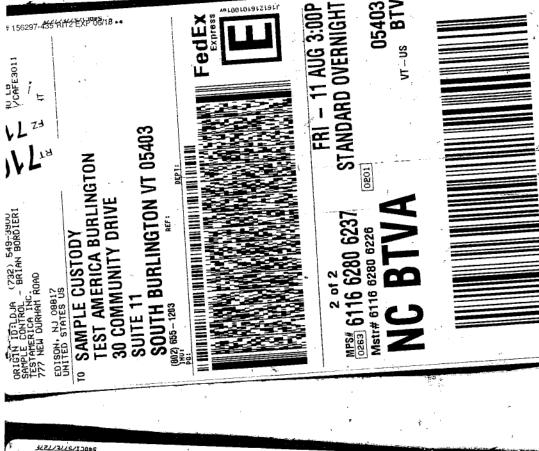
TestAmerica Burlington

30 Community Drive

Suite 11

Project Manager: BECKY Rephone: 9 14-922-27-25 Start Sample Sample Standard (Specify) Rush (Samples Collected By L. Mathons S. Souza			n notes section)				#57.50 S19459		STREET, PLANS			18 PHH	Tow Controller TO A A A A A A A A A A A A A A A A A A A	3575 416 X	x Ehoto	X 5387 4313 X	X hh96 8636	×	×	Straight day						AND CHAIN OF CUSTODY	The state of the s
Project Ma Phone: G Phone: G Site Conta Sample Date(s) Sample Date(s) Sample Start Story Story Story Story Story Story Story	Ager DECKY KENIX	4-422-2263	of @ okcf.	-		Analysis Turnaround Time	landard (Specify)	tush (Specify)			_	Time Stop (Start)	25-1426 -30	1500 -2091	- CG- OCC 170	PC- 7151 00	34 B30	0 1330	Temperature (Fahrenheit)	lor			Pressure (inches of Hg)	ior	-			
Sample Identifi	Project Mana		SOUNT #401 Email: 0 X	62 12 50		DUTON.		æ			alamen	Sample Identification Date(s)	_	LIGIE	9917	1/8/8	1/8/8				Start	Stop			Г	dots		

Ofher (Please specify in notes section)


JUNGHHOMING HAVE

Date/Time:'8/

Shipper Name:

Lab Use Only

05403

VT-US BTV

メススノスインのから Part # 156297-455 行行と音気が18・・ 05403 vr-us BTV FRI - 11 AUG 3:00P STANDARD OVERNIGHT SHIP DATE: 10AUG17 ACTWGT: 33.60 LB CAD: 0358159/CAFE3011 BILL RECIPIENT SOUTH BURLINGTON VT 05403 **FEST AMERICA BURLINGTON** 30 COMMUNITY DRIVE ORIGIN ID:LDJA (732) 549-3900 SAMPLE CONTROL - BRIAN BORDIERI TESTAMERICA INC. 777 NEW DURHAM ROAD BTVA 10 SAMPLE CUSTODY OCC 6201 6116 6280 6226 ## MASTER ## EDISON, NJ 08817 UNITED STATES US 1 of 2 SUITE 11

Login Sample Receipt Checklist

 Client: AKRF Inc
 Job Number: 200-39689-1

 SDG Number: 200-39689-1
 SDG Number: 200-39689-1

Login Number: 39689 List Source: TestAmerica Burlington

List Number: 1

Creator: Lavigne, Scott M

Answer	Comment
True	Lab does not accept radioactive samples.
True	Not present
True	
True	
N/A	Thermal preservation not required.
True	
N/A	Thermal preservation not required.
True	
N/A	
True	
N/A	
	True True True True N/A True N/A True True True True True True True True

3

4

3

8

10

12

14

Loc: 200 37617 Temp: 200-37617-A-1 Individual Bottle: Summa Canister 6L Sampled: 3/3/2017 12:00 AM Α 200-1020289 Certification Type: BP: 29. Secondary Review 3 Difference = Final Pressure - Adjusted Initial Pressure. Acceptance Criteria: (1) The difference must be less than or equal to + 0.5. (2) Pressure readings must be at least 24 hours apart. Tech Final Reading Batch Time: Review Date 3/67 Date: ĩ Canister Size 혖 3 O Gauge: Limited # Clean Canister Certification Analysis & Authorization of Release to Inventory ī Temp: Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch. 22 4 Inventory Level Canister Cleaning & Pre-Shipment Leak Test 29.6 8 Technician EJE × Tech: PM Authorization Initial Reading 7 Comments: G=6 148 Time: Date: Cleaning Date 3/3/2017 Analyst Gauge: હ If time frame was not met, the PM must authorize shipment of canister 0 Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv). . Initial² 186 Adjusted Initial Pressure = Initial Pressure + (Initial BP - Final BP). Inventory Level 1: Individual Canister Certification (TO15LL 0.01). Test Method: < TO15 Routine < TO15 LL < NJDEP-LL TO15 0 Ø10

Pre-Shipment Clean Canister Certification Report

Cycles

System ID Top Rack

12 ₹ FHg

79.4

29,62

4717 4363 4020 3397 5714 3667

(gH.)

ġ

Final

Initial ("Hg)

Can ID

Port

-29.5

しなが

79.5

29.5

n

-29.8

-29.5 29.5

3146

3712 5164 3074 3528 2781

∞

129.5

5 9 Ø

-295 139.5

-29.5

9

6

12 Ξ

-29.5

Inventory Level 4: Individual or Batch Certification (TO15LLNJ 0.08 ppbv). Inventory Level Limited: Canisters may only be used for certain projects. Inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).

TestAmerica Burlington FAI023:04.13.16:9

315/19

Sequence

Date

Can ID 4717

ç

20/10%

Pre-Shipment Clean Canister Certification Report

		 		-	2		Canister Cleaning	aning	ing & Pre-Shipment Leak	& Pre-Shipment Leak Test							
	0	system ID		# Cycles	cles	Clean	Cleaning Date		Tech	Technician		Canis	Canister Size	1	Gertification Type	ion Type:	
	B B	Bottom Rack		50	0	3/6	3/6/2017		- 1	EJE		7	ا ا	P Bal	Batch	Indiv	Individual
		Initial	Final	Adj. Initial				Initial Reading	Reading					Final Reading	ading		
Port	can ID	("Hg)	("Hg)	("Hg)	SH.	Gauge:	Date:	Time:	Tech:	8.E.	Temp:	Gauge:	Date:	Time:	Tech:	BP:	Temp:
- ~	3008	80	76.1	-191,	N d	12	2.7.7	620		290) 2 0 0	25.0	430		201	000
1 m	3212	1	-2916	4	2	9-	<u>:</u> -)	/ -) -	/ -			3-	-	2) -
4	4291		-29.6		Ø	_	-					-		-			
5	4476		-29.6		Ø	_		_							- F8		
9	3477		-29.16		Þ							. Species of	*****				
7	2884		29.62-		9											وماخوري	
∞	5609		-29.65		Ø		_					70***	e water-ion com				
6	4824		-29.6		Ò												
10	5897		91 102-		Ø												
1	3217		7362-		Ø			_									
12	3033	L\	9332-1)	Ø	1	1	1		7	1	}	t	Je	4	4	4
- 2 6 -	¹ Batch Certification: The reading is taken on the "batch" canister and this value is used ² Adjusted Initial Pressure = Initial Bressure + (Initial BP - Final BP). ³ Difference = Final Pressure - Adjusted Initial Pressure . Acceptance Criteria: (1) The	n: The reading essure = Initia Pressure - Ad	g is taken on al Pressure + djusted Initial	the "batch" ca (Initial BP - F I Pressure . A	anister and inal BP).	this value is Criteria: (1)	used as the The differen	initial pressi	ture for all call call call call call call call	as the initial pressure for all canisters in the difference must be less than or equal to + 0.5	he batch. 0.5. (2) Pre	ssure read	as the initial pressure for all canisters in the batch. difference must be less than or equal to + 0.5. (2) Pressure readings must be at least 24 hours apart.	at least 24	hours apart		
ige	ir time irame was not met,	nor mer, me	PM must a	the PM must authorize shipment of canlister Clean Canli	Ment of ca	Canister C	ertification	Analysis & Authoriz	Authorizati	ration Analysis & Authorization of Release to Inventory	ase to Inve	ntorv			Date:		
	Test Meth9 d : $\leq T$	≤ TO15 Routine	3 ≤ T015 LL	L ≤ NJDEP-LL TO15	L T015			_	=	Inventory Level	vel			Seco	Secondary Review	iew	
		Date		Sequence		Analyst	st	-	2	3	4	Limited	Review Date			Revie	
	3614	£1/\$/E	92		3	666			×				1 20/20	7,	040	s	3
\coprod		†														ampled: 3/6/20	00-37637 614 ottle: Summa (
																	-A-1
																20	
			+		+											0-1020	111111
					+											0597	BI ■ (I)
																	lil.
Inver	Inventory Level 1: Individual Canister Certification (TO15LL 0.01). Inventory Level 2: Individual or Batch Certification (TO15 0.04 poby).	Individual C.	anister Certifi Batch Certifi	fication (TO15)	LL 0.01).	-		Comments	ts:								
Inve	Inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).	Individual or	. Batch Certifi	fication (TO15	0.2 ppbv).											A	#
Inve	Inventory Level 4: Individual or Batch Certification (TO15LLNJ 0.08 ppbv).	Individual or	· Batch Certif	fication (TO15)	LLNJ 0.08 p	opbv).											1
Jave /10/	ntory Level Li	mited: Canis	sters may on	ly be used for	certain proj	ects.											37
2017	D FAI023:04.13.16:9 L TestAmerica Burlington	13.16:9 a Burlington															
,		ŀ															

200-39295-A-5 2883 Location: Air-Storage Bottle: Summa Canister 6L Sampled: 7/13/2017 12:00 AM 200-1053060

Loc: 200 39295 #5 A

	_																																	`		
	100	Batch	Temp:	23	22										7	olire apart	5			Reviewer																
Cortification Type	LINCALION A	Individual	Tech:	$\frac{3}{2}$	A	_									1	leact 24 h	Date:		Secondary Review	Review, Date	6//															
٥	ב כב	Final Reading	Time:	17:00	(Sec.)			_		_					7	mist be at			Secondar	Reviev	100/2	,														
Canictor Office	ر خاتما		Date:	7.22.17	7.22.17	_	_				_				2	e readings				Limited																
+ inc	Callist	 	Gauge:	,	525	_	_				_			_	4	this value is used as the initial pressure for all canisters in the batch. (1) The difference must be less than or equal to + 0.25psi (2) Pressure readings must be at least 24 hours apart	. (-)	tory		4																
			Temp:	22	122								_		1	anisters in t + 0 25psi		Authorization of Release to Inventory	y Level	3																
Leak Test	n in claim	ב ה	Tech:	33	#	_	_		_				_		1	ire for all con	ization	n of Relea	Inventory Level	2	XXX										.,					
Shipment L		Initial Reading	Time:	12:00	18	_	/								4	nitial pressu	PM Authorization	uthorizatio		,										7	Comments:					
Canister Cleaning & Pre-Shipment Leak Test	Juane 047		Date:	121.17	214.17	} {		_				_				Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch. Difference = Final Pressure - Initial Pressure - Acceptance Criteria: (1) The difference must be less than or equal to + 0.25ps; (2) Press		alysis & A															•	•	'	
ister Cleaning &	7/12/2017	1/13/2	Gauge:	25	1 12	-						_	_		1	s value is us The differe	ter	Clean Canister Certification Analysis &		Analyst													3		į	
		Final	-	<i>`</i>) SE	25.5	19.4	29.4	3.4	29.4	3.15	7.7	13:61	19:4	9.4	ster and this	int of canis	nister Cert	TO15		BK					_		_	1	_ 3	0.01).	04 ppbv).	2 ppbv).	tain projects		
adov?#	200	07	Difff. ³	1	7 40	1,	- 20	0	7 10	n -1	7	Z A	B	\lambda	3	batch" canis	ize shipme	Clean Car	< NJDEP-LL TO15	Sequence	955										n (TO15LL	n (TO15 0.0	n (TO15 0.2	ii (i O i see		
	$\frac{1}{1}$	le le		10	40, 5				A *	~	Ą				7 .03	en on the "l	ust author		15 LL < 1	Seq	259.									:	Certificatio	Certificatio	Certificatio	oei uiicauo	, , , , , , , , , , , , , , , , , , , ,	
		Final		1,05	80/ 1	9,	, clo	,04	80,	121	Sc,	δ	40,	20.	10	iding is tak - Initial Pre	the PM m		≤ TO15 Røutine ≤ TO15 LL	Date	// //				1						al Canister	al or Batch	al or Batch	anisters ma		ე gton
Svetem ID	Aprel no.	I Initial	(psia)	100	10.	_									0	n: The rea I Pressure	mot met,		TO15 Rou		7/26	,									subividus	Individue	: Individus	mited: C		4.26.17:1(rica Burlin
	֓֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡		Can ID	2883 1	5159	4550	4283	4829	2644	2843	2632	4564	5035	2784	4166	Certificatio	☐ If time frame was not met, the PM must authorize shipment of canister		ethod: ≤ i	Can ID	2883	- Company of the Comp							Merchanic		Inventory Level 1: Individual Canister Certification (TO15LL 0.01).	Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv).	ory Level 3.	ny Level T		S FAI023:04.26.17:10 TestAmerica Burlington
			Port	-	2	က	4	2	9	7	80	6	10	7	12	Batch Differe	If time		Test Method		of										Invento	Invento	Invento	Invento		2/004=

Pre-Shipment Clean Canister Certification Report

Lab Name: TestAmerica Burlington Job No.: 200-37617-1 SDG No.: Client Sample ID: 4717 Lab Sample ID: 200-37617-1 Lab File ID: 24194_13.d Matrix: Air Analysis Method: TO-15 Date Collected: 03/03/2017 00:00 Sample wt/vol: 1000(mL) _____ Date Analyzed: 03/06/2017 23:53 Soil Aliquot Vol: Dilution Factor: 0.2 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 114642 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.10
75-45-6	Freon 22	0.10	U	0.10	0.1
76-14-2	1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.04
74-87-3	Chloromethane	0.10	U	0.10	0.1
106-97-8	n-Butane	0.10	U	0.10	0.1
75-01-4	Vinyl chloride	0.040	U	0.040	0.04
106-99-0	1,3-Butadiene	0.040	U	0.040	0.04
74-83-9	Bromomethane	0.040	U	0.040	0.04
75-00-3	Chloroethane	0.10	U	0.10	0.1
593-60-2	Bromoethene(Vinyl Bromide)	0.040	U	0.040	0.04
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.04
64-17-5	Ethanol	1.0	U	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.04
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.04
67-64-1	Acetone	1.0	U	1.0	1.
67-63-0	Isopropyl alcohol	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.1
107-05-1	3-Chloropropene	0.10	U	0.10	0.1
75-09-2	Methylene Chloride	0.10	U	0.10	0.1
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.04
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.04
110-54-3	n-Hexane	0.040	U	0.040	0.04
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.04
108-05-4	Vinyl acetate	1.0	U	1.0	1.
141-78-6	Ethyl acetate	1.0	U	1.0	1.
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.1
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.04
540-59-0	1,2-Dichloroethene, Total	0.080	U	0.080	0.08
67-66-3	Chloroform	0.040	U	0.040	0.04
109-99-9	Tetrahydrofuran	1.0	U	1.0	1.
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.04
110-82-7	Cyclohexane	0.040	U	0.040	0.04
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.04
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.04

FORM I TO-15

Lab Name: TestAmerica Burlington Job No.: 200-37617-1 SDG No.: Client Sample ID: 4717 Lab Sample ID: 200-37617-1 Lab File ID: 24194_13.d Matrix: Air Analysis Method: TO-15 Date Collected: 03/03/2017 00:00 Sample wt/vol: 1000(mL) _____ Date Analyzed: 03/06/2017 23:53 Soil Aliquot Vol: Dilution Factor: 0.2 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 114642 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.040	U	0.040	0.040
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.04
79-01-6	Trichloroethene	0.040	U	0.040	0.04
80-62-6	Methyl methacrylate	0.10	U	0.10	0.1
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.04
123-91-1	1,4-Dioxane	1.0	U	1.0	1.
75-27-4	Bromodichloromethane	0.040	U	0.040	0.04
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.04
108-10-1	methyl isobutyl ketone	0.10	U	0.10	0.1
108-88-3	Toluene	0.040	U	0.040	0.04
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.04
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.04
127-18-4	Tetrachloroethene	0.040	U	0.040	0.04
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U	0.10	0.1
124-48-1	Dibromochloromethane	0.040	U	0.040	0.04
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.04
108-90-7	Chlorobenzene	0.040	U	0.040	0.04
100-41-4	Ethylbenzene	0.040	U	0.040	0.04
179601-23-1	m,p-Xylene	0.10	U	0.10	0.1
95-47-6	Xylene, o-	0.040	U	0.040	0.04
1330-20-7	Xylene (total)	0.14	U	0.14	0.1
100-42-5	Styrene	0.040	U	0.040	0.04
75-25-2	Bromoform	0.040	U	0.040	0.04
98-82-8	Cumene	0.040	U	0.040	0.04
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.04
103-65-1	n-Propylbenzene	0.040	U	0.040	0.04
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.04
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.04
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.04
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.04
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.04
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.04
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.04
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.04
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.04

FORM I TO-15

Lab Name: TestAmerica Burlington

SDG No.:

Client Sample ID: 4717

Lab Sample ID: 200-37617-1

Matrix: Air

Lab File ID: 24194_13.d

Analysis Method: TO-15

Date Collected: 03/03/2017 00:00

Sample wt/vol: 1000(mL)

Date Analyzed: 03/06/2017 23:53

Soil Aliquot Vol:

Dilution Factor: 0.2

Soil Extract Vol.:

GC Column: RTX-624

ID: 0.32 (mm)

Moisture:

Level: (low/med) Low

Units: ppb v/v

			I		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	1,2-Dichlorobenzene	0.040	U	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U	0.10	0.10

TestAmerica Burlington Target Compound Quantitation Report

Data File: \\ChromNA\Burlington\ChromData\CHW.i\20170306-24194.b\24194_13.d

Lims ID: 200-37617-A-1

Client ID: 4717 Sample Type: Client

Inject. Date: 06-Mar-2017 23:53:30 ALS Bottle#: 11 Worklist Smp#: 11

Purge Vol: 200.000 mL Dil. Factor: 0.2000

Sample Info: 200-0024194-011

Misc. Info.: 37633-01

Operator ID: pad Instrument ID: CHW.i

Method: \ChromNA\Burlington\ChromData\CHW.i\20170306-24194.b\TO15_MasterMethod_(v1).m

Limit Group: AI_TO15_ICAL

Last Update:07-Mar-2017 11:51:39Calib Date:18-Feb-2017 22:37:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Burlington\ChromData\CHW.i\20170218-23991.b\23991_13.d

Column 1: RTX-624 (0.32 mm) Det: MS SCAN

Process Host: XAWRK004

First Level Reviewer: guazzonig			D	ate:		07-Mar-20	17 11:43:18	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	O	Response	OnCol Amt ppb v/v	Flags
1 Propene	41		5.281				ND	
2 Dichlorodifluoromethane	85		5.393				ND	
3 Chlorodifluoromethane	51		5.474				ND	
4 1,2-Dichloro-1,1,2,2-tetra	85		5.800				ND	
5 Chloromethane	50		5.993				ND	
6 Butane	43		6.265				ND	
7 Vinyl chloride	62		6.319				ND	
8 Butadiene	54		6.415				ND	
10 Bromomethane	94		7.212				ND	
11 Chloroethane	64		7.458				ND	
13 Vinyl bromide	106		7.870				ND	
14 Trichlorofluoromethane	101		7.967				ND	
17 Ethanol	45		8.464				ND	
20 1,1,2-Trichloro-1,2,2-trif	101		8.967				ND	
21 1,1-Dichloroethene	96		9.037				ND	
22 Acetone	43		9.229				ND	
24 Isopropyl alcohol	45		9.427				ND	
23 Carbon disulfide	76		9.432				ND	
25 3-Chloro-1-propene	41		9.737				ND	
27 Methylene Chloride	49		9.994				ND	
28 2-Methyl-2-propanol	59		10.112			ĺ	ND	
S 30 1,2-Dichloroethene, Total	61		10.200			ĺ	ND	
29 Methyl tert-butyl ether	73		10.337				ND	
31 trans-1,2-Dichloroethene	61		10.395				ND	
33 Hexane	57		10.727				ND	
34 1,1-Dichloroethane	63		11.198				ND	
35 Vinyl acetate	43		11.225				ND	
37 cis-1,2-Dichloroethene	96		12.209				ND	
38 2-Butanone (MEK)	72		12.225				ND	
39 Ethyl acetate	88		12.230				ND	
41 Tetrahydrofuran	42		12.632				ND	

Chrom Revision: 2.2 10-Jan-2017 11:26:10

Data File: \\ChromN.	Alburlingto				3UO-24	194.b\24194	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v Flags
* 40 Chlorobromomethane	128	12.632	12.637	-0.005	77	250614	10.0
42 Chloroform	83		12.728				ND
43 Cyclohexane	84		12.995				ND
44 1,1,1-Trichloroethane	97		13.006				ND
45 Carbon tetrachloride	117		13.236				ND
46 Isooctane	57		13.589				ND
47 Benzene	78		13.653				ND
48 1,2-Dichloroethane	62		13.798				ND
49 n-Heptane	43		13.905				ND
* 50 1,4-Difluorobenzene	114	14.343	14.349	-0.006	92	1154601	10.0
53 Trichloroethene	95		14.777				ND
54 1,2-Dichloropropane	63		15.274				ND
55 Methyl methacrylate	69		15.349				ND
56 1,4-Dioxane	88		15.440				ND
57 Dibromomethane	174		15.504				ND
58 Dichlorobromomethane	83		15.734				ND
60 cis-1,3-Dichloropropene	75		16.564				ND
61 4-Methyl-2-pentanone (MII	BK 43		16.794				ND
65 Toluene	92		17.115				ND
66 trans-1,3-Dichloropropene	75		17.634				ND
67 1,1,2-Trichloroethane	83		17.992				ND
68 Tetrachloroethene	166		18.110				ND
69 2-Hexanone	43		18.377				ND
71 Chlorodibromomethane	129		18.720				ND
72 Ethylene Dibromide	107		18.998				ND
* 74 Chlorobenzene-d5	117	19.838	19.838	0.000	82	997265	10.0
75 Chlorobenzene	112		19.896				ND
76 Ethylbenzene	91		20.020				ND
S 73 Xylenes, Total	106		20.100				ND
78 m-Xylene & p-Xylene	106		20.255				ND
79 o-Xylene	106		20.999				ND
80 Styrene	104		21.041				ND
81 Bromoform	173		21.426				ND
82 Isopropylbenzene	105		21.587				ND
84 1,1,2,2-Tetrachloroethane			22.175				ND
85 N-Propylbenzene	91		22.250				ND
88 4-Ethyltoluene	105		22.422				ND
89 2-Chlorotoluene	91		22.448				ND
90 1,3,5-Trimethylbenzene	105		22.523				ND
92 tert-Butylbenzene	119		22.989				ND
93 1,2,4-Trimethylbenzene	105		23.080				ND
94 sec-Butylbenzene	105		23.310				ND
95 4-Isopropyltoluene	119		23.508				ND
96 1,3-Dichlorobenzene	146		23.556				ND
97 1,4-Dichlorobenzene	146		23.700				ND
98 Benzyl chloride	91		23.903				ND
100 n-Butylbenzene	91		24.117				ND
101 1,2-Dichlorobenzene	146		24.278				ND
103 1,2,4-Trichlorobenzene	180		27.022				ND
104 Hexachlorobutadiene	225		27.220				ND
105 Naphthalene	128		27.579				ND

Report Date: 07-Mar-2017 11:55:55 Chrom Revision: 2.2 10-Jan-2017 11:26:10

Reagents:

ATTO15WISs_00004 Amount Added: 20.00 Units: mL Run Reagent

2

5

6

_

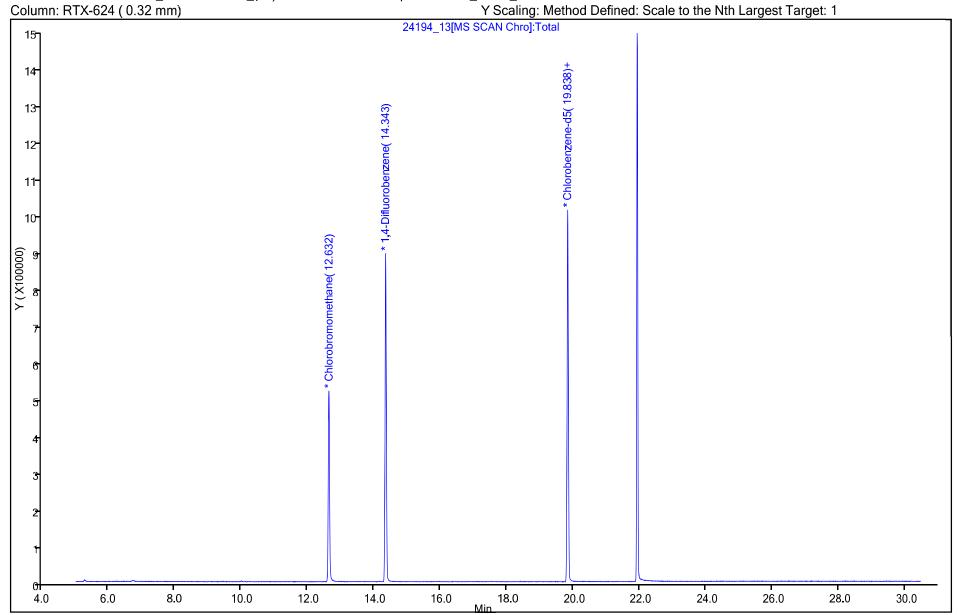
10

11

12

14

Report Date: 07-Mar-2017 11:55:55 Chrom Revision: 2.2 10-Jan-2017 11:26:10


 $\label{thm:lington} TestAmerica Burlington $$ \ChromNA\Burlington\ChromData\CHW.i\20170306-24194.b\24194_13.d $$$ Data File:

Injection Date: 06-Mar-2017 23:53:30 Instrument ID: CHW.i Operator ID: pad Lims ID: Lab Sample ID: Worklist Smp#: 200-37617-A-1 200-37617-1 11

Client ID: 4717

Purge Vol: 200.000 mL Dil. Factor: 0.2000 ALS Bottle#: 11

Method: TO15_MasterMethod_(v1) Limit Group: AI_TO15_ICAL

Lab Name: TestAmerica Burlington Job No.: 200-37637-1 SDG No.: Client Sample ID: 3614 Lab Sample ID: 200-37637-1 Lab File ID: 24212_05.D Matrix: Air Analysis Method: TO-15 Date Collected: 03/06/2017 00:00 Sample wt/vol: 1000 (mL) Date Analyzed: 03/07/2017 15:37 Soil Aliquot Vol: Dilution Factor: 0.2 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 114688 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.10
75-45-6	Freon 22	0.10	U	0.10	0.10
76-14-2	1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.040
74-87-3	Chloromethane	0.10	U	0.10	0.10
106-97-8	n-Butane	0.10	U	0.10	0.10
75-01-4	Vinyl chloride	0.040	U	0.040	0.040
106-99-0	1,3-Butadiene	0.040	U	0.040	0.040
74-83-9	Bromomethane	0.040	U	0.040	0.040
75-00-3	Chloroethane	0.10	U	0.10	0.10
593-60-2	Bromoethene (Vinyl Bromide)	0.040	U	0.040	0.040
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.040
64-17-5	Ethanol	1.0	U	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.040
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.040
67-64-1	Acetone	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.10
107-05-1	3-Chloropropene	0.10	U	0.10	0.10
75-09-2	Methylene Chloride	0.10	U	0.10	0.10
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.040
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.040
110-54-3	n-Hexane	0.040	U	0.040	0.040
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.040
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
141-78-6	Ethyl acetate	1.0	U	1.0	1.0
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.10
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.040
540-59-0	1,2-Dichloroethene, Total	0.080	U	0.080	0.080
67-66-3	Chloroform	0.040	U	0.040	0.040
109-99-9	Tetrahydrofuran	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.040
110-82-7	Cyclohexane	0.040	U	0.040	0.040
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.040
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.04

FORM I TO-15

 Lab Name: TestAmerica Burlington
 Job No.: 200-37637-1

 SDG No.:
 Client Sample ID: 3614
 Lab Sample ID: 200-37637-1

 Matrix: Air
 Lab File ID: 24212_05.D

 Analysis Method: TO-15
 Date Collected: 03/06/2017 00:00

 Sample wt/vol: 1000(mL)
 Date Analyzed: 03/07/2017 15:37

 Soil Aliquot Vol:
 Dilution Factor: 0.2

 Soil Extract Vol.:
 GC Column: RTX-624 ID: 0.32 (mm)

 % Moisture:
 Level: (low/med) Low

 Analysis Batch No.: 114688
 Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.040	U	0.040	0.040
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.040
79-01-6	Trichloroethene	0.040	U	0.040	0.040
80-62-6	Methyl methacrylate	0.10	U	0.10	0.10
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.040
123-91-1	1,4-Dioxane	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	0.040	U	0.040	0.040
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.040
108-10-1	methyl isobutyl ketone	0.10	U	0.10	0.10
108-88-3	Toluene	0.040	U	0.040	0.040
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.040
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.040
127-18-4	Tetrachloroethene	0.040	U	0.040	0.040
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U	0.10	0.10
124-48-1	Dibromochloromethane	0.040	U	0.040	0.040
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.040
108-90-7	Chlorobenzene	0.040	U	0.040	0.040
100-41-4	Ethylbenzene	0.040	U	0.040	0.040
179601-23-1	m,p-Xylene	0.10	U	0.10	0.10
95-47-6	Xylene, o-	0.040	U	0.040	0.040
1330-20-7	Xylene (total)	0.14	U	0.14	0.14
100-42-5	Styrene	0.040	U	0.040	0.040
75-25-2	Bromoform	0.040	U	0.040	0.040
98-82-8	Cumene	0.040	U	0.040	0.040
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.040
103-65-1	n-Propylbenzene	0.040	U	0.040	0.040
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.040
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.040
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.040
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.040
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.040
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.040
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.04
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.040
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.040

FORM I TO-15

2

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington

SDG No.:

Client Sample ID: 3614

Matrix: Air

Lab File ID: 24212_05.D

Analysis Method: TO-15

Date Collected: 03/06/2017 00:00

Sample wt/vol: 1000(mL)

Date Analyzed: 03/07/2017 15:37

Soil Aliquot Vol:

Soil Extract Vol.:

GC Column: RTX-624

Analysis Batch No.: 114688

Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	1,2-Dichlorobenzene	0.040	U	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U	0.10	0.10

TestAmerica Burlington Target Compound Quantitation Report

Data File: \\ChromNA\Burlington\ChromData\CHX.i\20170307-24212.b\24212_05.D

Lims ID: 200-37637-A-1

Client ID: 3614 Sample Type: Client

Inject. Date: 07-Mar-2017 15:37:30 ALS Bottle#: 4 Worklist Smp#: 5

Purge Vol: 200.000 mL Dil. Factor: 0.2000

Sample Info: 200-0024212-005

Misc. Info.: 37637-01

Operator ID: ggg Instrument ID: CHX.i

Method: \ChromNA\Burlington\ChromData\CHX.i\20170307-24212.b\TO15_MasterMethod_X.m.m

Limit Group: AI_TO15_ICAL

Last Update:08-Mar-2017 14:02:00Calib Date:19-Feb-2017 19:03:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\ChromNA\Burlington\ChromData\CHX.i\20170219-23993.b\23993_11.D

Column 1: RTX-624 (0.32 mm) Det: MS SCAN

Process Host: XAWRK016

First Level Reviewer: daiglep			D	ate:		09-Mar-20	17 10:23:16
		RT	Adj RT	Dlt RT			OnCol Amt
Compound	Sig	(min.)	(min.)	(min.)	Q	Response	ppb v/v Flags
1 Dranana	41		2.065				ND
1 Propene 2 Dichlorodifluoromethane	41 85		3.065				ND ND
			3.135				ND ND
3 Chlorodifluoromethane	51		3.183				ND ND
4 1,2-Dichloro-1,1,2,2-tetra	85		3.386				ND
5 Chloromethane	50		3.520				ND
6 Butane	43		3.707				ND
7 Vinyl chloride	62		3.750				ND
8 Butadiene	54		3.820				ND
10 Bromomethane	94		4.472				ND
11 Chloroethane	64		4.692				ND
13 Vinyl bromide	106		5.066				ND
14 Trichlorofluoromethane	101		5.152				ND
17 Ethanol	45	5.804	5.762	0.042	94	1097	0.1524
20 1,1,2-Trichloro-1,2,2-trif	101		6.184				ND
21 1,1-Dichloroethene	96		6.243				ND
22 Acetone	43		6.516				ND
23 Carbon disulfide	76		6.628				ND
24 Isopropyl alcohol	45	6.890	6.826	0.064	97	1922	0.0764
25 3-Chloro-1-propene	41		7.019				ND
27 Methylene Chloride	49		7.318				ND
28 2-Methyl-2-propanol	59		7.607				ND
29 Methyl tert-butyl ether	73		7.746				ND
31 trans-1,2-Dichloroethene	61		7.752				ND
33 Hexane	57		8.121				ND
34 1,1-Dichloroethane	63		8.645				ND
35 Vinyl acetate	43		8.731				ND
S 30 1,2-Dichloroethene, Total	61		9.665				ND
37 cis-1,2-Dichloroethene	96		9.785				ND
38 2-Butanone (MEK)	72		9.886				ND
39 Ethyl acetate	88		9.913				ND
* 40 Chlorobromomethane	128	10.271	10.277	-0.006	90	188297	10.0
40 Chiolomomomethane	120	10.2/1	10.277	-0.000	30	100237	10.0

2

3

_

1

9

44

12

Report Date: 09-Mar-2017 10:23:18

Chrom Revision: 2.2 10-Jan-2017 11:26:10

Data File:

Data File: \\ChromNA\B	umngu				0/-24	212.b\24212_	_	
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
44 Tatus la valuati vua u	40		10 205				ND	
41 Tetrahydrofuran	42		10.325				ND	
42 Chloroform	83		10.410				ND	
43 Cyclohexane	84		10.646				ND	
44 1,1,1-Trichloroethane	97 117		10.694				ND	
45 Carbon tetrachloride	117 57		10.951				ND	
46 Isooctane	57 78		11.400				ND	
47 Benzene	62		11.459 11.668				ND ND	
48 1,2-Dichloroethane	43		11.817				ND	
49 n-Heptane * 50 1,4-Difluorobenzene	43 114	12.363	12.368	-0.005	94	1043006	לאו 10.0	
53 Trichloroethene	95	12.303	12.306	-0.005	94	1043000	ND	
54 1,2-Dichloropropane	63		13.465				ND	
55 Methyl methacrylate	69		13.658				ND	
57 Dibromomethane	174		13.733				ND	
56 1,4-Dioxane	88		13.738				ND	
58 Dichlorobromomethane	83		14.038				ND	
60 cis-1,3-Dichloropropene	75		15.022				ND	
61 4-Methyl-2-pentanone (MIBK	43		15.364				ND	
65 Toluene	92		15.632				ND	
66 trans-1,3-Dichloropropene	75		16.279				ND	
67 1,1,2-Trichloroethane	83		16.675				ND	
68 Tetrachloroethene	166		16.755				ND	
69 2-Hexanone	43		17.183				ND	
71 Chlorodibromomethane	129		17.163				ND	
72 Ethylene Dibromide	107		17.756				ND	
* 74 Chlorobenzene-d5	117	18.697	18.697	0.000	86	935896	10.0	
75 Chlorobenzene	112	10.007	18.756	0.000	00	300030	ND	
76 Ethylbenzene	91		18.922				ND	
78 m-Xylene & p-Xylene	106		19.189				ND	
S 73 Xylenes, Total	106		19.600				ND	
79 o-Xylene	106		20.088				ND	
80 Styrene	104		20.147				ND	
81 Bromoform	173		20.607				ND	
82 Isopropylbenzene	105		20.832				ND	
84 1,1,2,2-Tetrachloroethane	83		21.549				ND	
85 N-Propylbenzene	91		21.607				ND	
88 4-Ethyltoluene	105		21.811				ND	
89 2-Chlorotoluene	91		21.816				ND	
90 1,3,5-Trimethylbenzene	105		21.928				ND	
92 tert-Butylbenzene	119		22.442				ND	
93 1,2,4-Trimethylbenzene	105		22.544				ND	
94 sec-Butylbenzene	105		22.784				ND	
95 4-Isopropyltoluene	119		22.998				ND	
96 1,3-Dichlorobenzene	146		23.020				ND	
97 1,4-Dichlorobenzene	146		23.164				ND	
98 Benzyl chloride	91		23.378				ND	
100 n-Butylbenzene	91		23.592				ND	
101 1,2-Dichlorobenzene	146		23.715				ND	
103 1,2,4-Trichlorobenzene	180		26.310				ND	
104 Hexachlorobutadiene	225		26.497				ND	
105 Naphthalene	128		26.818				ND	
	5		_5.5.6					

Report Date: 09-Mar-2017 10:23:18 Chrom Revision: 2.2 10-Jan-2017 11:26:10

Reagents:

ATTO15XISs_00002 Amount Added: 20.00 Units: mL Run Reagent

9

7

8

9

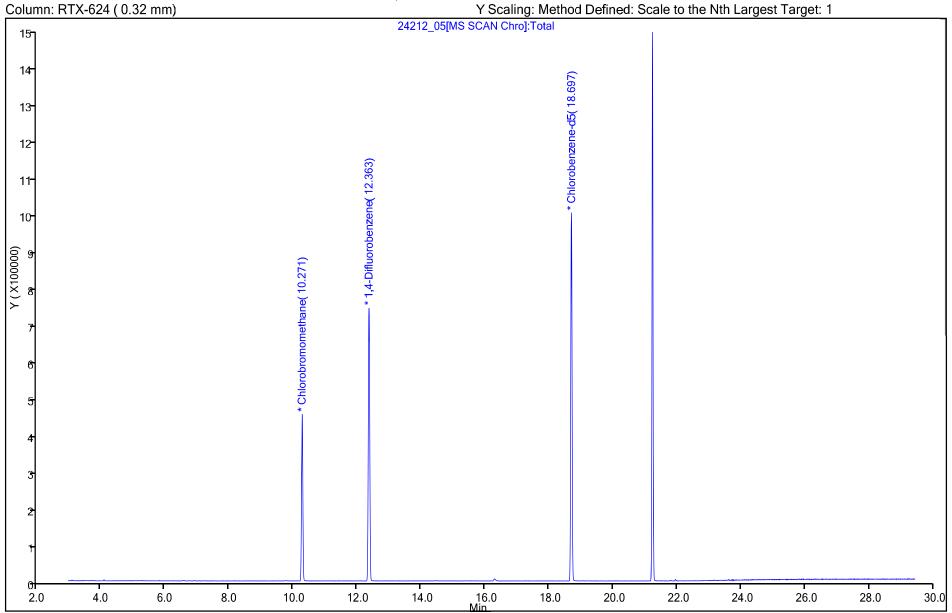
10

4.6

13

14

Report Date: 09-Mar-2017 10:23:18 Chrom Revision: 2.2 10-Jan-2017 11:26:10


TestAmerica Burlington \\ChromNA\Burlington\ChromData\CHX.i\20170307-24212.b\24212_05.D Data File:

Injection Date: 07-Mar-2017 15:37:30 Instrument ID: CHX.i Operator ID: ggg Lab Sample ID: Worklist Smp#: Lims ID: 200-37637-A-1 200-37637-1 5

Client ID: 3614

Purge Vol: 200.000 mL Dil. Factor: 0.2000 ALS Bottle#: 4

Method: TO15_MasterMethod_X.m Limit Group: AI_TO15_ICAL

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.10
75-45-6	Freon 22	0.10	U	0.10	0.10
76-14-2	1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.040
74-87-3	Chloromethane	0.10	U	0.10	0.10
106-97-8	n-Butane	0.10	U	0.10	0.10
75-01-4	Vinyl chloride	0.040	U	0.040	0.040
106-99-0	1,3-Butadiene	0.040	U	0.040	0.040
74-83-9	Bromomethane	0.040	U	0.040	0.040
75-00-3	Chloroethane	0.10	U	0.10	0.10
593-60-2	Bromoethene(Vinyl Bromide)	0.040	U	0.040	0.040
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.040
64-17-5	Ethanol	1.0	U	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.040
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.040
67-64-1	Acetone	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.10
107-05-1	3-Chloropropene	0.10	U	0.10	0.10
75-09-2	Methylene Chloride	0.10	U	0.10	0.10
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.040
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.040
110-54-3	n-Hexane	0.040	Π *	0.040	0.040
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.040
108-05-4	Vinyl acetate	1.0	U *	1.0	1.0
141-78-6	Ethyl acetate	1.0	U	1.0	1.0
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.10
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.040
540-59-0	1,2-Dichloroethene, Total	0.080	U	0.080	0.080
67-66-3	Chloroform	0.040	U	0.040	0.040
109-99-9	Tetrahydrofuran	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.040
110-82-7	Cyclohexane	0.040	U	0.040	0.040
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.040
540-84-1	2,2,4-Trimethylpentane	0.040	IJ	0.040	0.040

FORM I TO-15

CAS NO.	CAS NO. COMPOUND NAME		Q	RL	RL
71-43-2	Benzene	0.040	U	0.040	0.040
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.040
79-01-6	Trichloroethene	0.040	U	0.040	0.040
80-62-6	Methyl methacrylate	0.10	U	0.10	0.10
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.040
123-91-1	1,4-Dioxane	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	0.040	U	0.040	0.040
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.040
108-10-1	methyl isobutyl ketone	0.10	U	0.10	0.10
108-88-3	Toluene	0.040	U	0.040	0.040
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.040
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.040
127-18-4	Tetrachloroethene	0.040	U	0.040	0.040
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U	0.10	0.10
124-48-1	Dibromochloromethane	0.040	U	0.040	0.040
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.040
108-90-7	Chlorobenzene	0.040	U	0.040	0.040
100-41-4	Ethylbenzene	0.040	U	0.040	0.040
179601-23-1	m,p-Xylene	0.10	U	0.10	0.10
95-47-6	Xylene, o-	0.040	U	0.040	0.040
1330-20-7	Xylene (total)	0.14	U	0.14	0.14
100-42-5	Styrene	0.040	U	0.040	0.040
75-25-2	Bromoform	0.040	U	0.040	0.040
98-82-8	Cumene	0.040	U	0.040	0.040
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.040
103-65-1	n-Propylbenzene	0.040	U	0.040	0.040
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.040
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.040
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.040
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.040
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.040
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.040
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.040
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.040
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.040

FORM I TO-15

3

4

5

_

8

10

12

14

Lab Name: TestAmerica Burlington	Job No.: 200-39295-1
SDG No.:	
Client Sample ID: 2883	Lab Sample ID: 200-39295-5
Matrix: Air	Lab File ID: 25955-06.d
Analysis Method: TO-15	Date Collected: 07/13/2017 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 07/18/2017 18:49
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32 (mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 118667	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	1,2-Dichlorobenzene	0.040	U	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U	0.10	0.10

Report Date: 20-Jul-2017 13:29:58

TestAmerica Burlington Target Compound Quantitation Report

Data File: \ChromNA\Burlington\ChromData\CHW.i\20170718-25955.b\25955-06.d

Lims ID: 200-39295-A-5

Client ID: 2883 Sample Type: Client

Inject. Date: 18-Jul-2017 18:49:30 ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol: 200.000 mL Dil. Factor: 0.2000

Sample Info: 200-0025955-06

Operator ID: ert Instrument ID: CHW.i

Method: \ChromNA\Burlington\ChromData\CHW.i\20170718-25955.b\TO15_MasterMethod_(v1).m

Limit Group: AI_TO15_ICAL

Last Update:20-Jul-2017 13:29:54Calib Date:19-Jun-2017 20:48:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\ChromNA\Burlington\ChromData\CHW.i\20170619-25526.b\25526-10.d

Column 1 : RTX-624 (0.32 mm) Det: MS SCAN

Process Host: XAWRK023

First Level Reviewer: puangmaleek			Date: 19-Jul-2017 13:40:2			7 13:40:29		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	О	Response	OnCol Amt ppb v/v	Flags
Compound	Olg	(111111.)	(111111.)	(111111.)	Q	rtesponse	ppb v/v	i lays
1 Propene	41		5.249				ND	
2 Dichlorodifluoromethane	85		5.367			ĺ	ND	
3 Chlorodifluoromethane	51		5.447				ND	
4 1,2-Dichloro-1,1,2,2-tetra	85		5.779				ND	
5 Chloromethane	50		5.971				ND	
6 Butane	43		6.244				ND	
7 Vinyl chloride	62		6.303				ND	
8 Butadiene	54		6.399				ND	
10 Bromomethane	94		7.196			ĺ	ND	
11 Chloroethane	64		7.453				ND	
13 Vinyl bromide	106		7.860				ND	
14 Trichlorofluoromethane	101		7.956				ND	
17 Ethanol	45		8.459				ND	
20 1,1,2-Trichloro-1,2,2-trif	101		8.962				ND	
21 1,1-Dichloroethene	96		9.026				ND	
22 Acetone	43	9.234	9.219	0.015	96	14475	0.3517	
23 Carbon disulfide	76		9.422				ND	
24 Isopropyl alcohol	45	9.438	9.427	0.011	98	10812	0.2304	
25 3-Chloro-1-propene	41		9.727				ND	
27 Methylene Chloride	49	9.994	9.989	0.005	91	2624	0.0789	
28 2-Methyl-2-propanol	59		10.112				ND	
S 30 1,2-Dichloroethene, Total	61		10.200				ND	
29 Methyl tert-butyl ether	73		10.331				ND	
31 trans-1,2-Dichloroethene	61		10.390				ND	
33 Hexane	57		10.717				ND	
34 1,1-Dichloroethane	63		11.193				ND	
35 Vinyl acetate	43		11.219				ND	
37 cis-1,2-Dichloroethene	96		12.204			I	ND	
38 2-Butanone (MEK)	72		12.220			I	ND	
39 Ethyl acetate	88		12.231				ND	
41 Tetrahydrofuran	42		12.632				ND	
* 40 Chlorobromomethane	128	12.626	12.637	-0.011	96	160684	10.0	

110

12

10

Report Date: 20-Jul-2017 13:29:58

Chrom Revision: 2.2 26-Jun-2017 09:07:56

Data File:

Data File. NCIIIOIIIVA	1				. 10 20	7900.D\Z0900·		
Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
42 Chloroform	83		12.723				ND	
43 Cyclohexane	84		12.990				ND	
44 1,1,1-Trichloroethane	97		13.006				ND	
45 Carbon tetrachloride	117		13.236				ND	
46 Isooctane	57		13.584				ND	
47 Benzene	78		13.654				ND	
48 1,2-Dichloroethane	62		13.054				ND	
	43		13.798				ND	
49 n-Heptane		14 242		0.001	06			
* 50 1,4-Difluorobenzene	114	14.343	14.344	-0.001	96	830904	10.0	
53 Trichloroethene	95		14.777				ND	
54 1,2-Dichloropropane	63		15.274				ND	
55 Methyl methacrylate	69		15.349				ND	
56 1,4-Dioxane	88		15.435				ND	
57 Dibromomethane	174		15.505				ND	
58 Dichlorobromomethane	83		15.729				ND	
60 cis-1,3-Dichloropropene	75		16.558				ND	
61 4-Methyl-2-pentanone (MIBK	43		16.788				ND	
65 Toluene	92		17.109				ND	
66 trans-1,3-Dichloropropene	75		17.628				ND	
67 1,1,2-Trichloroethane	83		17.987				ND	
68 Tetrachloroethene	166		18.110				ND	
69 2-Hexanone	43		18.372				ND	
71 Chlorodibromomethane	129		18.714				ND	
72 Ethylene Dibromide	107		18.993				ND	
* 74 Chlorobenzene-d5	117	19.837	19.832	0.005	90	721578	10.0	
75 Chlorobenzene	112		19.891				ND	
76 Ethylbenzene	91		20.020				ND	
S 73 Xylenes, Total	106		20.100				ND	
78 m-Xylene & p-Xylene	106		20.250				ND	
79 o-Xylene	106		20.999				ND	
80 Styrene	104		21.041				ND	
81 Bromoform	173		21.427				ND	
82 Isopropylbenzene	105		21.587				ND	
84 1,1,2,2-Tetrachloroethane	83		22.176				ND	
85 N-Propylbenzene	91		22.245				ND	
88 4-Ethyltoluene	105		22.422				ND	
89 2-Chlorotoluene	91		22.443				ND	
90 1,3,5-Trimethylbenzene	105		22.518				ND	
92 tert-Butylbenzene	119		22.989				ND	
93 1,2,4-Trimethylbenzene	105		23.074				ND	
94 sec-Butylbenzene	105		23.304				ND	
95 4-Isopropyltoluene	119		23.502				ND	
96 1,3-Dichlorobenzene	146	23.550	23.556	-0.006	83	997	0.0121	
97 1,4-Dichlorobenzene	146	23.695	23.695	0.000	92	1107	0.0142	
98 Benzyl chloride	91		23.904				ND	
100 n-Butylbenzene	91		24.112				ND	
101 1,2-Dichlorobenzene	146	24.278	24.273	0.005	92	1012	0.0131	
103 1,2,4-Trichlorobenzene	180		27.017				ND	
104 Hexachlorobutadiene	225		27.210				ND	
105 Naphthalene	128		27.568				ND	
•								

Page 85 of 87

8/18/2017

Report Date: 20-Jul-2017 13:29:58 Chrom Revision: 2.2 26-Jun-2017 09:07:56

Reagents:

ATTO15WISs_00004 Amount Added: 20.00 Units: mL Run Reagent

9

4

- 6

_

7

8

9

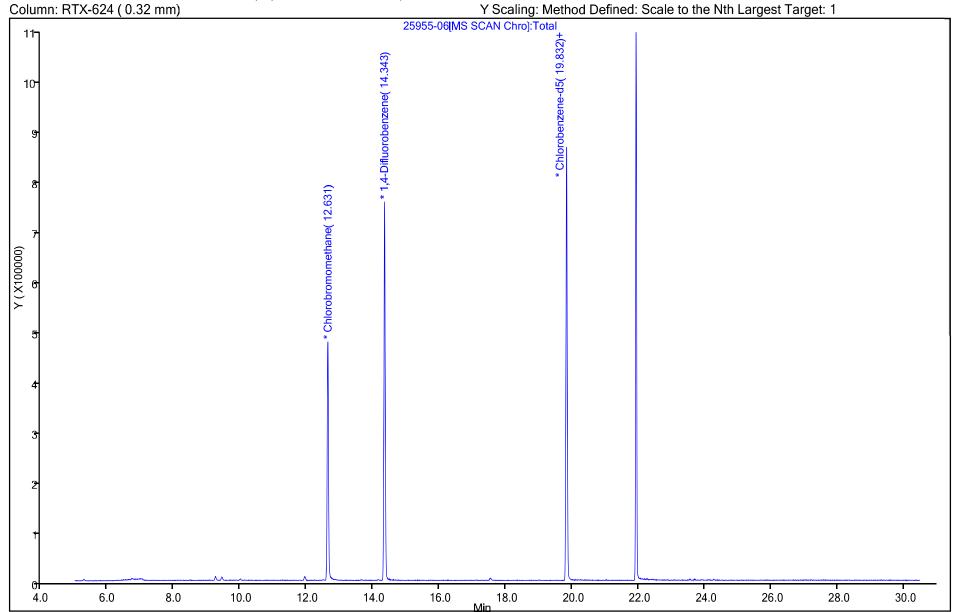
. .

12

13

14

Report Date: 20-Jul-2017 13:29:58 Chrom Revision: 2.2 26-Jun-2017 09:07:56


TestAmerica Burlington \\ChromNA\Burlington\ChromData\CHW.i\20170718-25955.b\25955-06.d Data File:

Injection Date: 18-Jul-2017 18:49:30 Instrument ID: CHW.i Operator ID: ert 200-39295-A-5 Worklist Smp#: Lims ID: Lab Sample ID: 200-39295-5 6

2883 Client ID:

Purge Vol: 200.000 mL Dil. Factor: 0.2000 ALS Bottle#: 5

Method: TO15_MasterMethod_(v1) Limit Group: AI_TO15_ICAL

White Plains Mall

200 HAMILTON AVENUE, WHITE PLAINS, NEW YORK

Spill Investigation NYSDEC Spill Number 1706297

AKRF Project Number: 170029

Prepared for:

SWD II, LLC dba Street-Works Development 168-A Irving Avenue, Suite 200K Port Chester, NY 10573

Prepared by:

TABLE OF CONTENTS

INTRODUCTION	2
Geophysical Survey and Utility Mark-Outs	5
Soil Sampling	5
Monitoring Well Installation	7
Groundwater Sampling	8
Monitoring Well Surveying and Fluid Level Gauging	9
Investigation Results	9
Geophysical Survey and Utility Mark Outs	9
Field Observations	9
Soil Analytical Results	10
Groundwater Analytical Results	12
Fluid Level Gauging Results	13
Summary, Conclusions and Recommendations	14
Conclusions	15
Recommendations	16
Limitations	18
Soil Disposal Issues	19
	INTRODUCTION Site Description

TABLES

- Table 1 Soil Analytical Results of Volatile Organic Compounds (VOCs)
- Table 2 Soil Analytical Results of Semivolatile Organic Compounds (SVOCs)
- Table 3 Soil Analytical Results of Metals
- Table 4 Groundwater Analytical Results of VOCs
- Table 5 Groundwater Elevations Summary

FIGURES

- Figure 1 Property Location
- Figure 2 Site Map with Sample Locations
- Figure 3 Groundwater Contour Map February 16, 2018
- Figure 4 Groundwater Contour Map February 26, 2018
- Figure 5 Soil Sample Concentrations Above NYSDEC Soil Cleanup Objectives (SCOs)
- Figure 6 Groundwater Sample Concentrations Above NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSs)

APPENDICES

- Appendix A Photographic Documentation
- Appendix B Geophysical Investigation Report
- Appendix C Field Sampling Logs
- Appendix D Laboratory Analytical Reports

1.0 INTRODUCTION

AKRF, Inc. (AKRF) was retained by SWD II, LLC dba Street-Works Development to perform a Spill Investigation (SI) at the property located at 200 Hamilton Avenue in the City of White Plains, Westchester County, New York (the "Site"). The 3.86-acre Site, as shown on Figure 1, includes the two-story White Plains Mall and associated asphalt-paved parking lot, and is identified as Tax Map ID Section 125.67, Block 5, Lot 1 on the City of White Plains tax map. The Site is bounded by Barker Avenue to the north followed by offices, a hotel, and commercial development; Cottage Place to the east followed by a Gulf service station and commercial buildings; Hamilton Avenue to the south followed by commercial and government buildings; and Dr. Martin Luther King Jr. Boulevard to the west followed by commercial development. The fieldwork associated with the SI was completed between February 6 and 26, 2018.

The purpose of the SI was to further assess petroleum-related contamination identified in the southeastern and southern portions of the Site during a Subsurface (Phase II) Investigation. As reported in the Subsurface (Phase II) Investigation Report (dated October 2017), field observations and laboratory results indicated evidence of a historic petroleum release or releases, resulting in the presence of petroleum-related volatile organic compounds (VOCs) detected in groundwater at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Ambient Water Quality Standards and Guidance Values (AWQSs). The petroleum-related groundwater contamination was reported to the NYSDEC Spills division, and Spill Number 1706297 was assigned to the Site. This SI was designed to further delineate the extent of the petroleum-related contamination and to evaluate potential source(s).

The SI scope included a geophysical survey, the advancement of 10 soil borings, installation of three permanent groundwater monitoring wells, and the collection of soil and groundwater samples for field-screening and laboratory analysis. In addition, four of the six groundwater monitoring wells previously installed at the Site by others were sampled for laboratory analysis. All nine on-site wells (three newly installed and six previously installed) were surveyed and gauged, and groundwater contour maps were prepared. This report describes the methods and results of the SI conducted by AKRF, and provides recommendations and a conceptual remedial plan to address the residual petroleum-related contamination that was identified. The locations of the soil borings and monitoring wells (including the locations from the 2017 Phase II) are depicted on Figure 2. A photographic log documenting the field activities is provided as Appendix A.

2.0 SITE DESCRIPTION

The Site consists of a two-story shopping mall and an east-adjacent asphalt-paved parking lot, with additional parking on the building roof, accessed by a ramp on the northern side of the building. Based on a May 4, 2017 topographic survey prepared by Insite Engineering, Surveying & Landscape Architecture, P.C. (Insite), the topography surrounding the Site slopes downward to the west from approximately 200 feet along Cottage Place to approximately 190 feet along Martin Luther King Jr. Boulevard. Due to this change in elevation, the upper floor of the mall is at street level on the eastern side of the building, and the lower level is at street level on the western side. A retaining wall is present along the southeastern portion of the Site, where the Hamilton Avenue sidewalk is situated approximately 6 to 8 feet lower than the parking lot. The soil sampling depths and depths to groundwater referenced in this report are reported relative to existing ground surface at the corresponding boring and monitoring well locations.

3.0 PREVIOUS INVESTIGATIONS

<u>Subsurface Exploration and Geotechnical Engineering Report, White Plains Mall, White Plains, New York; prepared by GZA GeoEnvironmental of New York, prepare for Exclusive Management, LLC - November 20, 2015.</u>

GZA GeoEnvironmental of New York (GZA) conducted a geotechnical investigation at the Site to develop preliminary engineering recommendations for potential redevelopment. The investigation included the advancement of four soil borings around the Site perimeter to termination depths between 25 and 26 feet below ground surface (bgs), installation of an observation well at each boring, and collection of water level measurements from the wells. Based on logging of soil samples from the borings, GZA identified a fill layer present to depths of 6 to 8 feet bgs, consisting of sand with gravel, silt, and occasional construction debris (brick, crushed stone fragments). The fill layer was underlain by clay, silt, and sand. Groundwater was encountered in the observation wells at varying depths, generally between approximately 10 and 18 feet bgs. The observation wells installed by GZA were sampled during AKRF's 2017 Phase II investigation, and were designated as GT-1 through GT-4 (these wells have subsequently been re-designated as MW-1 through MW-4, respectively, as shown on Figure 2).

Phase I Environmental Site Assessment (ESA), 200 Hamilton Avenue, AKRF, Inc. – May 2017

AKRF conducted a Phase I ESA that was detailed in a May 2017 report. The objective of the Phase I ESA was to evaluate the Site for Recognized Environmental Conditions (RECs) and environmental concerns resulting from past or current uses of the Site and neighboring properties. The Phase I ESA identified the following RECs:

On-Site Recognized Environmental Conditions

- Based on review of historic records, two gasoline service stations were located on the Site prior to construction of the White Plains Mall. Historic Sanborn (fire insurance) maps depicted a gasoline station with three gas tanks on the 1930 through 1950 maps at the corner of Hamilton Avenue and William Street (230 Hamilton Avenue), and a second gasoline station with greasing operations and four gasoline tanks at the corner of Hamilton Avenue and Cottage Place (250 Hamilton Avenue). These gasoline stations may have been present until construction of the current building in approximately 1970. Over 20 private dwellings were shown within the current building footprint on historic Sanborn maps from 1894 to 1950. Based on these findings, the Phase I ESA identified the potential for abandoned underground storage tanks (USTs) and/or associated petroleum contamination in the Site subsurface associated with the gasoline service stations and/or heating oil for the residential dwellings.
- The Site was identified in the EDR Historic Cleaners database from 2004 to 2011 and potential dry cleaners ("Mall Cleaners" and "White Plains Mall Cleaners") were listed in the City Directories at 200 Hamilton Avenue in 1992, 1995, 1999, and 2008. The Site was not listed on the Resource Conservation and Recovery Act (RCRA) generator report or any other database.

Off-Site Recognized Environmental Conditions

- The regulatory database, historic city directories, site reconnaissance, and Sanborn maps identified an east-adjacent operating gasoline filling station with an open NYSDEC Spill (Spill No. 97-07887), and also listed on the petroleum bulk storage (PBS), RCRA, and Historic Auto databases.
- The regulatory database and Sanborn maps identified facilities in the surrounding area with some potential to have affected the Site subsurface, including: RCRA generators, Spills, PBS facilities, an NYSDEC Brownfield Cleanup (BCP) site and a NYSDEC Voluntary Cleanup (VCP) site.

In addition to the on-site and off-site REC's described above, the Phase I assessment identified on-site environmental concerns for consideration ahead of future redevelopment work, including: the presence of a historic fill layer identified during the 2015 geotechnical investigation; the presence of electric and hydraulic equipment that may contain polychlorinated biphenyl (PCB)- or mercury-containing components or oils; and suspect asbestos-containing materials (ACM) and lead-based paint (LBP) associated with the on-site structure.

Preliminary Geotechnical Engineering Report, 200 Hamilton Avenue, AKRF, Inc. – August 27, 2017

AKRF completed a preliminary geotechnical investigation in the parking lot in the eastern portion of the Site to evaluate subsurface conditions for the proposed redevelopment work. This geotechnical investigation was conducted concurrently with AKRF's 2017 Phase II investigation, described below. The geotechnical investigation included the advancement of four soil borings to depths between 24 and 55 feet below existing surface grade, including rock coring to confirm the presence of bedrock. Results of the investigation indicated that the Site is underlain by a layer of uncontrolled fill consisting mainly of brown, fine to coarse sand and gravel with varying amounts of silt and other miscellaneous fill including wood and asphalt fragments. A layer of brown, fine to coarse sand with varying amounts of silt and gravel was encountered below the uncontrolled fill material in all borings. Bedrock was encountered beneath the sand at depths ranging from approximately 13 feet below existing grade in the northeastern portion of the parking lot to approximately 37 feet below existing grade in the central portion of the parking lot. The AKRF geotechnical engineer gauged groundwater levels in the previously installed GZA monitoring wells and in the temporary wells installed as part of the Phase II investigation. Depth to groundwater measurements ranging from 9.9 feet bgs at B-03 (GT-3, re-designated MW-3), located at the lower elevation area along Martin Luther King Boulevard, to 23 feet bgs at TW-1, located in the higher elevation area in the asphalt-paved parking lot, were reported.

Subsurface (Phase II) Investigation, 200 Hamilton Avenue, AKRF, Inc. - October 2017

AKRF conducted a Phase II investigation at the Site that was detailed in the Phase II Report (dated October 2017). The objectives of the Phase II investigation were to further assess the RECs and other environmental concerns identified during AKRF's May 2017 Phase I ESA of the Site. The scope of the Phase II investigation included a soil boring and groundwater sampling program to characterize soil, soil vapor, and groundwater in the area of RECs and areas that would be disturbed during the proposed future redevelopment activities at the Site. Based on the field observations and laboratory analytical results, the following conclusions were presented:

- A historical petroleum release or releases was identified that affected groundwater beneath the Site, resulting in the presence of petroleum-related VOCs above the NYSDEC AWQSs. Although no obvious on-site source area (e.g., separate phase oil on the water table, grossly contaminated soil at the anticipated depth of potential former underground storage tanks) was identified, the observed groundwater contamination was attributed to the former on-site gasoline stations. The presence of MTBE in groundwater suggested that an off-site source (e.g., the existing gas station across Cottage Place) also contributed to the contamination, since the on-site gasoline stations closed before 1970 (before MTBE was used in New York State). Field evidence of petroleum contamination observed in the "smear zone" in soil borings SB-4 and SB-5, and petroleum-related VOCs detected above New York State Department of Health (NYSDOH) background levels in soil vapor were attributed to the groundwater contamination and any residual soil contamination. AKRF reported the groundwater contamination to the NYSDEC Spills division and the case was assigned spill #1706297.
- The chlorinated solvent trichloroethene (TCE) was detected above the NYSDOH Air Guidance Value (AGV) in two sub-slab vapor samples, but was not detected above the regulatory standards or guidance values in any soil or groundwater samples collected during the Phase II. Although TCE

may have been used by one of the potential former on-site dry cleaners identified in the May 2017 Phase I ESA, the levels detected in soil vapor were not considered to be indicative of a widespread release or on-site source area.

Based on the Phase II field observations, metals and semivolatile organic compounds (SVOCs) that
were detected in soil at levels above their respective Part 375 Unrestricted and/or Restricted
Residential Use Soil Cleanup Objectives were attributable to likely contaminants in the shallow fill
layer observed in the Site subsurface or to background conditions, and not likely to an on-site release
or other source area.

The Phase II Report concluded with a recommendation to conduct a Spill Investigation (SI) to assess the extent of the petroleum-related contamination in groundwater and to further investigate potential on-site source area(s).

4.0 FIELD ACTIVITIES

4.1 Geophysical Survey and Utility Mark-Outs

On February 13, 2018, a geophysical survey was conducted across accessible indoor and outdoor areas of the Site to clear the proposed soil boring locations for subsurface utilities and/or structures. During the survey, accessible areas around the proposed borings were scanned for potential buried storage tanks to the extent feasible. The geophysical survey included electromagnetic (EM), radio-detection (RD), and ground penetrating radar (GPR) methods. The Geophysical Investigation Report is attached as Appendix B.

In addition to the geophysical survey, Cascade Drilling, Inc. (Cascade), the drilling contractor, notified Dig Safely New York prior to the start of the intrusive investigation work.

4.2 Soil Sampling

A total of 10 soil borings (SB-10 through SB-18, and MW-9) were advanced at the Site between February 6 and 9, 2018 by Cascade at the locations shown on Figure 2. Soil borings SB-10 through SB-14, and SB-18 were advanced in the southeastern portion of the Site, in and adjacent to the footprint of the former gasoline station in this area. Soil borings SB-15 through SB-17 were advanced in the southern portion of the Site, in and adjacent to the footprint of the former gasoline station in this area. It should be noted that due to access restrictions (an active fitness center exists in this area), soil borings SB-16 and SB-17 were advanced outside of the Site building, along the southern edge of the footprint of the former gasoline station, and SB-15 was advanced in a main corridor inside of the Site building to the west (downgradient). Soil boring MW-9 was advanced in the southwestern corner of the Site, downgradient of the former onsite gasoline stations. Soil borings SB-10 through SB-14, SB-18, and MW-9 were advanced with a trackmounted Geoprobe[®] 6620DT direct push probe (DPP) unit. Due to limited access, SB-15 through SB-17 were advanced with a bobcat-mounted Geoprobe[®] 540MT DPP unit. The soil borings were advanced to depths ranging from 12 to 30 feet bgs. The locations and depths of the soil borings are summarized in the following table:

Soil Boring Locations and Depths

Soil Boring	Soil Boring Depth (feet bgs)	Soil Boring Location
SB-10 to SB- 14, and SB-18	12-30	Southeastern portion of the Site, within footprint of a former gas station at 250 Hamilton Avenue
SB-15	16	Inside southern portion of the mall building, west of former gas station footprint at 230 Hamilton Avenue
SB-16 and SB-17	20	In concrete walkway south-adjacent to the mall building, within footprint of a former gas station at 230 Hamilton Avenue
MW-9	15	Southwestern (presumed downgradient) corner of the Site

Notes:

bgs - below ground surface

Continuous soil samples were collected from the soil borings using 2-inch diameter macrocore piston rod samplers fitted with dedicated acetate liners. The soil samples at soil borings SB-10 through SB-14, SB-18, and MW-9 were collected with 5-foot long samplers and the samples at soil borings SB-15 through SB-17 were collected using 4-foot long samplers.

Each macrocore sample liner was split lengthwise and all samples were logged by AKRF field personnel. Logging consisted of describing the soil according to the modified Burmister Classification System; describing any evidence of contamination (e.g., staining, sheens, odors); and field-screening the soil for organic vapors using a photoionization detector (PID) in 6-inch intervals. Soil boring logs are provided in Appendix C. The PID was calibrated each day prior to on-site use using isobutylene gas in accordance with the manufacturer's specifications.

In general, two soil samples were selected for laboratory analysis from each boring: one from a 2-foot interval from between 0 to 10 feet below ground surface; and one from the 2-foot interval exhibiting the greatest evidence of contamination (or from the groundwater interface if no evidence of contamination was observed). Only one sample was selected for laboratory analysis from SB-18, which was added to the field program based on field evidence of contamination observed in SB-13; and no laboratory samples were selected from MW-9, which was advanced only for the purposes of installing groundwater monitoring well MW-9.

Samples selected for laboratory analysis were placed in laboratory-supplied containers and a chilled cooler in accordance with EPA protocols and transported via courier with appropriate chain of custody (COC) documentation to Alpha Analytical, Inc., a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified laboratory, in Westborough, Massachusetts. All soil samples were analyzed for the VOCs listed in Table 2 – Soil Cleanup Levels for Gasoline-Contaminated Soil presented in the NYSDEC Commissioner Policy, *CP-51: Soil Cleanup Guidance* by EPA Method 8260. In addition, the soil samples collected from the shallower suspected historic fill layer were also analyzed for the SVOCs listed in CP-51 Table 3 – Soil Cleanup Levels for Fuel Oil-Contaminated Soil by EPA Method 8270, and Resource Conservation and Recovery Act (RCRA) 8 Metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) plus zinc by the EPA's 6000/7000 series Methods. A summary of soil sampling depths and corresponding laboratory analysis is presented in the following table:

Soil Sample Deptl

Soil Boring	Sample Depths (feet bgs)	CP-51 VOCs	CP-51 SVOCs	RCRA 8 metals + Zn
SB-10	3-5	X	X	X
	20-22	X		
SB-11	5-7	X	X	X
	17-19	X		
SB-12	2-4	X	X	X
	15-16	X		
SB-13	3-5	X	X	X
SD-13	10-12	X		
SB-14	2-4	X	X	X
3D-14	15-16	X		
SB-15	2-4	X	X	X
SD-13	10-11	X		
CD 16	2-4	X	X	X
SB-16	12-13	X		
CD 17	5-7	X	X	X
SB-17	8-9	X		
SB-18	12-14	X		
MW-9	1	NΑ		

Notes:

bgs – below ground surface

NA -No samples collected

4.3 Monitoring Well Installation

Three permanent groundwater monitoring wells (MW-7 through MW-9) were installed in soil borings SB-14, SB-15, and MW-9, respectively, for the collection of groundwater samples for laboratory analysis. Monitoring wells MW-7 and MW-8 were constructed with 10 feet of pre-packed wells screen and MW-9 was constructed with 15 feet of pre-packed well screen. The pre-packed well screen consisted of standard, slotted PVC well screen surrounded by stainless steel mesh, with sand packed between the slotted PVC well screen and the stainless steel mesh. Solid PVC well riser pipe was used to bring each monitoring well to grade surface. The exterior monitoring wells (MW-7 and MW-9) were installed by advancing 3.75-inch O.D. hollow casing into the corresponding open bore hole using the track-mounted Geoprobe® 6620DT DPP unit to install 2-inch diameter wells. The interior monitoring well (MW-8) was installed by advancing 3.25-inch O.D. hollow casing into the corresponding bore hole using the bobcatmounted Geoprobe® 540MT DPP unit to install a 1-inch diameter well. Once the target depth was achieved, the pre-packed well screen was lowered into the hollow casing with threaded PVC well riser pipe, and the casing was removed. Morie #2 sand was used to extend the sand pack to approximately 1 foot above the well screen, followed by a 1-foot bentonite well seal, and cement grout to the surface. The monitoring wells were completed with a locking well cap, and a bolt-down, flush-with-grade gate box set in concrete.

Following installation, the monitoring wells were developed by pumping and surging with a whale pump (MW-7 and MW-9) and a peristaltic pump (MW-8) to ensure that sedimentation/turbidity was reduced, to the extent practical, in each well. Turbidity was monitored during the development utilizing a LaMotte 2020we Turbidity Meter. Development continued until turbidity was less than 10 nephelometric turbidity units (NTU) at MW-8 and MW-9, with approximately 4 gallons and 12 gallons removed, respectively. Due to slow recharge, development at MW-7 occurred over the course of two days with turbidity reaching 98.3 NTU after removing a total of approximately 4.5 gallons. The development water was containerized in DOT-approved 55-gallon labeled drums staged in the loading dock area pending transportation and disposal at a licensed off-site disposal facility.

4.4 Groundwater Sampling

AKRF returned to the Site on February 16, 2018 to collect groundwater samples from seven of the nine on-site monitoring wells, including the following:

- Two of the four monitoring wells installed during the 2015 GZA geotechnical investigation. These monitoring wells were referred to as GT-1 and GT-2 in previous reports, but have been re-designated MW-1 and MW-2 for the purposes of this SI. Monitoring wells MW-3 (previously GT-3) and MW-4 (previously GT-4) were not sampled as part of this SI;
- Two monitoring wells located near the eastern property boundary, which are suspected to be associated with the investigation of NYSDEC Spill Number 9707887 at the existing gasoline station across Cottage Place from the Site. These monitoring wells were referred to as GW-3 and GW-4 in AKRF's 2017 Phase II report, but have been re-designated as MW-5 and MW-6, respectively, for the purpose of this investigation.
- The three newly installed monitoring wells, MW-7, MW-8, and MW-9.

The locations of the groundwater monitoring wells are shown on Figure 2.

Prior to collecting the samples, the headspace at each monitoring well was screened for the presence of VOCs using a calibrated PID after removing the well cap. The depth to groundwater and the total well depth were then measured in each well using an oil-water interface probe attached to a measuring tape accurate to 0.01 feet.

Low-flow sampling techniques and dedicated tubing were utilized to purge the monitoring wells prior to sample collection. The purged water was monitored for turbidity and water quality indicators (i.e., pH, temperature, dissolved oxygen, oxidation-reduction potential, and specific conductivity) with measurements collected approximately every five minutes. Purging of the wells continued until the turbidity was less than 50 NTU for three successive readings and water quality indicators had stabilized to the extent practicable (MW-1, MW-6, MW-8, and MW-9). If turbidity and/or water quality indicators did not stabilize after two hours, purging was discontinued and samples were collected (MW-2, MW-5, and MW-7). Groundwater sampling logs are provided in Appendix C.

Groundwater samples were collected in laboratory-supplied glassware and placed in a chilled cooler in accordance with EPA protocols. The samples were transported via courier with appropriate COC documentation to Alpha Analytical, Inc. The groundwater samples were analyzed for the VOCs listed in CP-51, Table 2 by EPA Method 8260.

Purge water generated during monitoring well sampling was containerized in the DOT-approved 55-gallon labeled drums staged in the loading dock area pending transportation and disposal at a licensed off-site disposal facility.

4.5 Monitoring Well Surveying and Fluid Level Gauging

Insite Engineering, Surveying & Landscape Architecture, P.C. (Insite), a New York State-licensed surveyor, met with AKRF staff during the groundwater sampling activities on February 16, 2018 to survey the nine on-site monitoring wells. Elevation measurements were taken at three points for each well location: the ground surface beside the well; the rim of the gate box; and the top of the PVC well casing. The elevations were referenced to the North American Vertical Datum of 1988 (NAVD 88).

Gauging of the nine wells was conducted on February 16, 2018 during the groundwater sampling activities and again on February 26, 2018 to determine the groundwater elevations and to check for the presence of light non-aqueous phase liquid (LNAPL). AKRF recorded the depth to groundwater and the total well depth in each well using an oil-water interface probe attached to a measuring tape accurate to 0.01 feet. Results from the well survey and water level gauging are described in Section 5.5.

5.0 INVESTIGATION RESULTS

5.1 Geophysical Survey and Utility Mark Outs

During the geophysical survey, linear anomalies consistent with subsurface utilities were marked out with spray paint prior to drilling and soil boring locations were adjusted accordingly. No evidence of buried tanks was identified in the areas that were scanned during the geophysical survey. The Geophysical Investigation Report is attached as Appendix B.

5.2 Field Observations

Soils encountered during this investigation included historic fill extending from just below ground surface to depths ranging from 5 to 12 feet bgs. This fill layer included sand, silt, organics (wood/grass), brick, asphalt, gravel, and rubber. Apparent native soils composed of varying amounts of sand, silt, and gravel were identified underlying the fill layer extending to approximately 30 feet bgs (the maximum boring depth). Evidence of petroleum contamination was noted in seven of the 10 soil borings advanced during the investigation (SB-11, and SB-13 through SB-18), as summarized in the following table:

Evidence of Petroleum Contamination

Soil Boring	Depth (ft bgs)	Moisture	Field Observations	PID Readings (PPM)
SB-11	12-22	Dry	Petroleum-like odors	0.5 - 53.2
SB-13	8-15	Dry	Petroleum-like odors	3.1 - 881.4
	0-5	Dry	Septic-like odors	0.2 - 4.5
SB-14 5-16		Dry	Petroleum- and Septic-like odors	1.0 - 1370
	16-30	Wet	Petroleum-like odors	4.2 - 1264
SB-15	10.5-11.5	Moist	Petroleum-like odors	10.2 - 895
SB-15 11.5-16		Wet	Petroleum-like odors	12.8 - 1101
SB-16	12-13	Moist	Petroleum-like odors	2.8 - 5.5
3D-10	13-19	Wet	Petroleum-like odors	0.1 - 5.8
SB-17	8-9	Dry	Petroleum-like odors	24.3 - 298
SD-1/	9-19	Wet	Petroleum-like odors	0.5 - 15.7
SB-18	11-19	Dry	Petroleum-like odors	6.1 - 752

Notes:

ft bgs = feet below ground surface

PPM = parts per million

No evidence of petroleum-like contamination or elevated PID readings were detected in the remaining soil borings. Soil descriptions, observations, and PID readings are detailed in the soil boring logs provided in Appendix C.

The depths to groundwater measured in the on-site monitoring wells were shallower in the southern and western portions of the Site (along Hamilton Avenue and Martin Luther King Boulevard) and deeper in the eastern portion of the Site (along Cottage Place), consistent with the elevation changes across the Site. No LNAPL was detected during sampling or fluid level gauging of the monitoring wells; however, petroleum-like odors were noted on purge water during sampling at MW-2, MW-6, MW-7, and MW-8. Results from the well survey and corresponding groundwater elevation calculations are described in Section 5.5.

5.3 Soil Analytical Results

The analytical results from the 17 soil samples that were submitted to the laboratory from this investigation were compared to the Unrestricted Use Soil Cleanup Objectives (UUSCOs) and the Restricted Residential Soil Cleanup Objectives (RRSCOs) listed in Sections 6.8(a) and 6.8(b) of 6 NYCRR Part 375. In addition, the VOC and SVOC results were compared to the Soil Cleanup Levels (SCLs) for gasoline- and fuel oil-contaminated soil listed in Table 2 and Table 3 of the NYSDEC Commissioner Policy, *CP-51: Soil Cleanup Guidance*. Soil analytical results are summarized in Tables 1 through 3. The complete laboratory analytical report is provided as Appendix D. Exceedances of the NYSDEC SCOs and SCLs are summarized on Figure 5. The analytical results from the soil sampling are discussed below:

Volatile Organic Compounds (VOCs)

All 16 petroleum-related VOCs analyzed for were detected in one or more of the soil samples at concentrations ranging from 0.00018 to 100 milligrams per kilogram (mg/kg). As summarized in the following table, eight VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, benzene, ethylbenzene, isopropylbenzene, n-propylbenzene, toluene, and total xylenes) were detected at concentrations exceeding the UUSCOs and CP-51 SCLs, and one VOC (1,2,4-trimethylbenzene) was detected at a concentration above its RRSCO.

Volatile Organic Compounds Detected in Soil Above the Part 375 SCOs and CP-51 SCLs

Boring ID	Part 375	Part 375	SB-11	SB-13	SB-14	SB-18
Depth (ft bgs)	UUSCO/	RRSCO	(17-19)	(10-12)	(15-16)	(12-14)
Date Sampled	CP-51 SCL		2/6/2018	2/6/2018	2/6/2018	2/6/2018
Dilution Factor			10	10	10	20
Units = mg/kg						
1,2,4-Trimethylbenzene	3.6	52	60	69	19	100
1,3,5-Trimethylbenzene	8.4	52	17	22	11	34
Benzene	0.06	4.8	0.1 U	0.11 U	0.12 J	0.18 U
Ethylbenzene	1	41	11	14	4.9	11
Isopropylbenzene	2.3	NS	4.1	3.1	2.5	2.4
n-Propylbenzene	3.9	100	15	12	4.1	7.2
Toluene	0.7	100	0.11 U	0.87	0.12 U	0.28 J
Xylenes, Total	0.26	100	18	68	17 J	78

Notes:

Bold = Exceeds Unrestricted Use Soil Cleanup Objective (UUSCO)/CP-51 Table 2 Soil Cleanup Level (SCL) Highlighted = Exceeds Restricted Residential Soil Cleanup Objective (RRSCO)

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

U = The analyte was not detected at the indicated concentration

J =The concentration given is an estimated value

Based on the field observations and the historic presence of a gasoline station at the Site in the vicinity of these soil sampling locations, the VOC detections in unsaturated soil are likely attributable to a historic release or releases from USTs associated with the former gasoline station. The complete analytical results for VOCs in soil are summarized in Table 1.

Semivolatile Organic Compounds (SVOCs)

All 16 petroleum-related SVOCs analyzed for were detected in one or more of the soil samples at concentrations ranging from 0.018 to 3.3 mg/kg. As summarized in the following table, seven SVOCs [benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene] were detected in one sample [SB-17 (5'-7')] at concentrations exceeding their respective UUSCOs/CP-51 SCLs and/or RRSCOs:

Semi-Volatile Organic Compounds Detected in Soil Above the Part 375 SCOs and CP-51 SCLs

Boring ID	Part 375	Part 375	SB-17
Depth (ft bgs)	UUSCO/	RRSCO	(5-7)
Date Sampled	CP-51 SCL		2/9/2018
Dilution Factor			1
Units = mg/kg			
Benzo(a)anthracene	1	1	2.8
Benzo(a)pyrene	1	1	2.4
Benzo(b)fluoranthene	1	1	3.3
Benzo(k)fluoranthene	0.8	3.9	0.85
Chrysene	1	3.9	2.2
Dibenzo(a,h)anthracene	0.33	0.33	0.41
Indeno(1,2,3-cd)pyrene	0.5	0.5	1.8

Notes:

Bold = Exceeds Unrestricted Use Soil Cleanup Objective (UUSCO)/CP-51 Table 3 Soil Cleanup Level (SCL)

Highlighted = Exceeds Restricted Residential Soil Cleanup Objective (RRSCO)

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

Based on the field observations and the Site history, the SVOC detections are likely attributable to the historic fill material observed in the soil borings, and not to a release or other source area. The complete analytical results for SVOCs in soil are summarized in Table 2.

Metals

Eight of the nine metals analyzed for were detected in one or more of the soil samples at concentrations ranging from 0.03 to 292 mg/kg. The detected metals included arsenic, barium, cadmium, chromium, lead, mercury, selenium, and zinc. As summarized in the following table, chromium lead, and mercury were detected at concentrations above their respective UUSCOs, but below their RRSCOs.

Boring ID	Part 375	Part 375	SB-10	SB-12	SB-14	SB-15
Depth (ft bgs)	UUSCO	RRSCO	(3-5)	(2-4)	(2-4)	(2-4)
Date Sampled			2/7/2018	2/6/2018	2/6/2018	2/9/2018
Dilution Factor			1	1	1	1
Units = mg/kg						
Chromium	30*	180*	39.5	113	19.9	14.7
Lead	63	400	10.2	6.66	140	40.9
Mercury	0.18	0.81	0.01 U	0.02 U	0.09	0.4

Metals Detected in Soil Above the Part 375 SCOs

Notes:

Bold = Exceeds Unrestricted Use Soil Cleanup Objective (UUSCO); ft bgs = feet below ground surface mg/kg = milligram per kilogram; * = Standard reflects trivalent chromium, not total chromium U = The analyte was not detected at the indicated concentration

Based on the field observations and the Site history, the metal detections are likely attributable to the historic fill material observed in the borings and/or background conditions, and not to a release or other source area. The complete analytical results for metals in soil are summarized in Table 3.

5.4 Groundwater Analytical Results

The analytical results from the seven groundwater samples and the associated trip blank were compared to the NYSDEC Class GA Ambient Water Quality Standards and Guidance Values (AWQSs) as listed in the NYSDEC Division of Water Technical Operational and Guidance Series (TOGS)1.1.1. The groundwater analytical results are summarized in Table 4. The complete laboratory analytical report is provided as Appendix D. Exceedances of the NYSDEC AWQSs are summarized on Figure 6. The analytical results from the groundwater sampling are discussed below:

VOCs

Fifteen (15) of the 16 petroleum-related VOCs analyzed for were detected in one or more of the groundwater samples at concentrations ranging from 0.67 to 1,800 micrograms per liter (μ g/L). As summarized in the following table, 12 VOCs (1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, ethylbenzene, isopropylbenzene, MTBE, n-butylbenzene, n-propylbenzene, naphthalene, o-xylene, p/m-xylene, p-isopropyltoluene, and sec-butylbenzene) were detected at concentrations exceeding the AWQSs.

Volatile Organic Compounds Detected in Groundwater Above the Class GA AWOSs

Sample ID Date Sampled	Class GA AWQS	MW-2 2/16/2018	MW-7 2/16/2018	MW-8 2/16/2018	MW-9 2/16/2018
Dilution Factor Units = µg/L	AWQS	10	2/10/2018	2/10/2018	1
1,2,4-Trimethylbenzene	5	7 U	110	4.8 J	0.7 U
1,3,5-Trimethylbenzene	5	7 U	56	57	0.7 U
Ethylbenzene	5	7 U	92	33	0.7 U
Isopropylbenzene	5	7 U	14	44	0.7 U
MTBE	10	1,800	15	20	34
Naphthalene	10	7 U	14	23	0.7 U
n-Butylbenzene	5	7 U	1.9 J	36	0.7 U
n-Propylbenzene	5	7 U	14	130	0.7 U
o-Xylene	5	7 U	28	1.4 U	0.7 U
p/m-Xylene	5	7 U	290	22	0.7 U

Sample ID	Class GA	MW-2	MW-7	MW-8	MW-9
Date Sampled	AWQS	2/16/2018	2/16/2018	2/16/2018	2/16/2018
Dilution Factor		10	2	2	1
Units = μg/L					
p-Isopropyltoluene	5	7 U	4.5 J	8.3	0.7 U
sec-Butylbenzene	5	7 U	2.7 J	25	0.7 U

Notes:

Bold = Exceeds the Class GA AWQS

 $\mu g/L = microgram per liter$

U = The analyte was not detected at the indicated concentration

J =The concentration given is an estimated value

Monitoring wells MW-2, MW-7, and MW-8 are located within or immediately downgradient of the footprints of the former on-site gasoline stations in the southeastern and southern portions of the Site, while MW-9 is located near the downgradient boundary of the Site. All four of these monitoring wells are located downgradient of the existing off-site gasoline station located east of the Site, on the corner of Cottage Pace and Hamilton Avenue. As discussed further in Section 6.0, the identified groundwater contamination is likely attributable to a combination of historic petroleum releases from both the on-site and off-site facilities. The complete analytical results for VOCs in groundwater are summarized in Table 4.

5.5 Fluid Level Gauging Results

The water table was measured in the nine on-site groundwater monitoring wells at depths ranging from 9.93 to 23.90 feet bgs on February 16, 2018 and from 9.58 to 22.51 feet bgs on February 26, 2018. The shallower groundwater depths were noted in those wells in the southern and western portions of the Site (along Hamilton Avenue and Martin Luther King Boulevard) and at deeper depths in the eastern portion of the Site (along Cottage Place), consistent with the elevation changes across the Site. The surveyed monitoring well elevations and the corresponding depth to water measurements were used to calculate the groundwater elevations in each well, as summarized in Table 5. Contour maps of the groundwater elevations measured for each event are provided as Figures 3 and 4. The contour maps indicate that groundwater flows in a southwesterly direction across the Site, with groundwater elevations ranging from 178.70 to 181.89 feet above mean sea level (referenced to NAVD 88).

6.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

AKRF performed a Spill Investigation (SI) at the property located at 200 Hamilton Avenue in the City of White Plains, Westchester County, New York, as shown on Figure 1, between February 6 and 26, 2018. The purpose of the SI was to further assess petroleum-related contamination identified in the southeastern and southern portions of the Site during a Subsurface (Phase II) investigation. As reported in the Subsurface (Phase II) Investigation Report (dated October 2017), field observations and laboratory results indicated evidence of a historic petroleum release or releases, resulting in the presence of petroleum-related volatile organic compounds (VOCs) in groundwater at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Ambient Water Quality Standards and Guidance Values (AWQSs). The SI scope included a soil boring and groundwater sampling program to further delineate the extent of the petroleum-related contamination associated with NYSDEC Spill Number 1706297 and to evaluate potential source(s).

The SI scope included a geophysical survey, the advancement of 10 soil borings, installation of three permanent groundwater monitoring wells, and the collection of soil and groundwater samples for field-screening and laboratory analysis. In addition, four of the six groundwater monitoring wells previously installed at the Site by others were sampled for laboratory analysis. The locations of the soil borings and monitoring wells (including the locations from the 2017 Phase II) are depicted on Figure 2. All nine on-site wells (three newly installed and six previously installed) were surveyed and gauged, and groundwater contour maps were prepared.

Consistent with the findings from the 2017 Phase II, a shallow fill layer was encountered in the 10 soil borings to depths ranging from approximately 5 to 12 feet below ground surface (bgs). The fill material was generally underlain by apparent native sand and silt to approximately 30 feet bgs (the maximum soil boring depth).

Evidence of petroleum contamination (petroleum-like odors and staining) and elevated photoionization detector (PID) readings as high as 1,370 parts per million (ppm) were noted above the saturated zone, as shallow as 8 feet bgs, in soil borings advanced within the footprint of the former gasoline station in the southeastern portion of the Site (SB-11, SB-13, SB-14, and SB-18). Refusal was encountered prior to reaching groundwater at soil borings SB-11, SB-13, and SB-18; however, contamination was observed to extend into the saturated zone below the observed groundwater interface at soil boring SB-14.

Evidence of contamination and elevated PID readings as high as 1,101 ppm were observed just above and within the saturated zone in soil borings advanced within the footprint of the former gasoline station in the southern portion of the Site (SB-15, SB-16, and SB-17).

Analytical results for the soil samples identified petroleum-related VOCs at concentrations above the New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup Objectives (UUSCOs) and the Restricted Residential Soil Cleanup Objectives (RRSCOs) listed in Sections 6.8(a) and 6.8(b) of 6 NYCRR Part 375, and the Soil Cleanup Levels (SCLs) for gasoline-contaminated soil listed in Table 2 of the NYSDEC Commissioner Policy, *CP-51: Soil Cleanup Guidance*. The VOC exceedances were in samples collected from above the water table from soil borings SB-11, SB-13, SB-14, and SB-18, advanced in the footprint of the former gasoline station in the southeastern portion of the Site. Semivolatile organic compounds (SVOCs) above the NYSDEC UUSCOs and RRSCOs, and the CP-51 SCLs were noted in the samples collected from above the water table in soil boring SB-17. Three metals (chromium, lead, and mercury) were detected above the NYSDEC UUSCOs in samples collected from the shallow fill layer in SB-10, SB-12, SB-14, and SB-15. Soil analytical results are summarized in Tables 1 through 3. Exceedances of the NYSDEC SCOs and SCLs are summarized on Figure 5.

The water table was measured in the nine on-site groundwater monitoring wells at depths ranging from 9.58 to 23.90 feet bgs during two gauging events. Groundwater was noted to be shallower in the southern and western portions of the Site (along Hamilton Avenue and Martin Luther King Boulevard), and deeper in the eastern portion of the Site (along Cottage Place), consistent with the elevation changes across the Site. Groundwater elevations ranged from 181.89 to 179.70 feet above mean sea level [referenced to the North American Vertical Datum of 1988 (NAVD 88)] during the two gauging events, and groundwater elevation contours maps indicate that groundwater at the Site flows in a southwesterly direction. The elevations of each of the monitoring wells and the corresponding groundwater elevations from gauging events are summarized in Table 5, and the groundwater contours and flow directions are shown on Figures 3 and 4. No separate phase product was detected in the on-site monitoring wells; however, evidence of petroleum-like odors was noted on groundwater during sampling at MW-2, MW-6, MW-7, and MW-8.

Analytical results identified petroleum-related VOCs, including trimethylbenzenes, ethylbenzene, propylbenzenes, butylbenzenes, naphthalene, xylenes, and p-isopropyltoluene, above their respective NYSDEC Class GA Ambient Water Quality Standards and Guidance Values (AWQSs) in the groundwater samples from monitoring wells MW-7 (installed at soil boring SB-14) and MW-8 (installed at soil boring SB-15). Methyl tert-butyl ether (MTBE), an oxygenate that was used as a gasoline additive in New York State between 1979 and 2004, was detected above its AWQS of 10 micrograms per liter (μ g/L) in four groundwater samples, MW-2 (1,800 μ g/L), MW-7 (14 μ g/L), MW-8 (20 μ g/L), and MW-9 (34 μ g/L). The groundwater analytical results are summarized in Table 4. Exceedances of the NYSDEC AWQSs are summarized on Figure 6.

6.1 Conclusions

Based on the findings of the SI, AKRF concludes the following:

- Petroleum-contaminated soil is present in the unsaturated zone and extending below the water table within the footprint of the former gasoline station in the southeastern portion of the Site. The evidence of contamination included field observations of staining and odors as shallow as 5 feet bgs, and detection of petroleum-related VOCs exceeding the NYSDEC CP-51 Soil Cleanup Levels in samples as shallow as 10 feet bgs from soil borings in this area. This contamination is likely the result of a historic petroleum release or releases from the former gasoline station in this area and represents an on-site source of the documented groundwater contamination at the Site.
- Field evidence of petroleum-contamination was noted just above and extending into the saturated zone in soil borings located within the footprint and immediately downgradient of former on-site gasoline station in the southern portion of the site; however, VOCs were not detected above the NYSDEC CP-51 SCLs in soil samples collected from this area. The contamination observed in this area, which was primarily in the "smear zone" (i.e., the zone just above the water table that is intermittently saturate during periods of higher groundwater levels) is likely associated with groundwater contamination identified at the Site. It is inconclusive whether this contamination is indicative of a second on-site release area. However, a source of petroleum contamination may be present in areas of the former gas station footprint that were not accessible during this investigation.
- The presence of MTBE in groundwater suggests that an off-site source (e.g., the existing gas station across Cottage Place) has contributed to the documented on-site groundwater contamination. MTBE is an oxygenate that was used as a gasoline additive in New York State between 1979 and 2004, and since the on-site gasoline stations were closed prior to 1970, the source of the MTBE contamination could not have originated on-site. Therefore, it is likely that the groundwater contamination at the Site represents a comingled plume from historic releases from both the former on-site and existing off-site

gasoline stations. It appears that the original source of the MTBE contamination is no longer present, since the highest levels were detected over 300 feet downgradient of the off-site gasoline station.

 Based on the SI field observations, the metals and SVOCs detected in soil at levels above their respective Part 375 UUSCOs and RRSCOs, and CP-51 SCLs are likely attributable to contaminants in the shallow fill layer observed in the Site subsurface or to background conditions, and not likely to an on-site release or other source area.

6.2 Recommendations

AKRF understands that SWD II, LLC is proposing to redevelop the entire Site footprint with a mixed use development that includes four high-rise residential buildings set on a "Public Platform" that will include specialty retail, restaurant and office space, and dynamic programmed public open space.

Based on the conclusions presented above in conjunction with the scope of the proposed redevelopment work, AKRF recommends applying to enroll in the NYSDEC Brownfield Cleanup Program (BCP). If the Site is accepted into the BCP, the open Spill case could be addressed and closed under the program, and qualified remediation costs and a portion of the redevelopment costs could be eligible for New York State tax credits. The NYSDEC BCP includes multiple phases including the Application and Agreement Phase, a Remedial Investigation Phase to delineate the nature and extent of contamination, and a Remediation Phase to select a remedy and complete the cleanup of the Site.

A full-scale remedial investigation phase may not be required for the Site based on the data generated from the Phase II and SI; however, some level of remedial investigation to further delineate the extent of contamination, and to provide additional data to integrate the designs for the proposed remediation and redevelopment is recommended. After completing the Remedial Investigation (RI), a Remedial Action Work Plan (RAWP) would be prepared to outline measures for addressing the Site contamination in conjunction with the proposed Site redevelopment. It is anticipated that the RAWP would include the following elements:

- Installation of a "cut-off wall" (e.g., steel sheeting with water-proofed joints) along the southeastern Site boundary to prevent migration of groundwater contamination onto the Site from the documented petroleum spill at the east-adjacent gasoline station. This wall could also serve as support-of-excavation for remedial excavations and any excavation required for Site redevelopment in this area.
- Excavation and off-site disposal of petroleum-contaminated soil from the southeastern and southern portions of the Site to remove "hot-spot" areas of contamination, with collection of post-excavation endpoint samples to demonstrate that the remedial action objectives have been achieved. The estimated extent of hot-spot remediation would be determined during the remedial investigation phase.
- Injection or application of a chemical oxidation and/or oxygen releasing product directly to groundwater in the open excavation areas to address residual groundwater contamination.
- Proper characterization, management, and off-site disposal of all soil excavated during site redevelopment, including the shallow fill layer observed at the Site and potential residual petroleum-contaminated soil near the groundwater interface in deeper excavations.
- Pre-treatment and appropriate discharge of any dewatering fluids pumped from the hot-spot excavations and other deeper excavations required for building foundations. Dewatering may also assist in remediating the groundwater contamination at the Site. It is anticipated that discharge of dewatering fluids to the municipal storm-water sewer system will require approval by the NYSDEC Division of Water under the BCP, which may take up to 4 or 5 months to obtain.

- Appropriate testing of any required backfill and top soil to ensure that it meets the import criteria specified in the RAWP.
- Implementation of appropriate Health and Safety and air monitoring measures during all excavation activities to ensure the protection of on-site workers and the surrounding community.
- Protection of existing and/or installation of new permanent groundwater monitoring wells for the
 collection of post-remedial groundwater samples to demonstrate that remedial action objectives have
 been achieved.
- Contingency measures for addressing any underground storage tanks and/or unexpected contaminated soil that may be encountered during excavation for Site redevelopment.

In addition to the remedial measures described above, the New York State Department of Health (NYSDOH) may also require installation of vapor mitigation measures under the new buildings. It is anticipated that these measures would not be required for the majority of the area under the public platform, which will consist of separately ventilated loading area/parking garage and storage areas. However, installation of a sub-slab depressurization system (e.g., slotted PVC piping installed in a permeable gravel layer under the building slab connected to vertical risers that vent to the building roof) may be required for some of the retail spaces that are not underlain by the garage/storage areas.

Alternatively, to the extent that the new foundations approach and/or extend into the water table, a waterproofing membrane (e.g., Grace Preprufe) may satisfy any vapor mitigation requirements. To the extent that waterproofing will be installed as part of the development activities, such costs may not be classified by the NYSDEC as "remediation costs" eligible for tax credits under the BCP.

7.0 LIMITATIONS

The findings set forth in this report are strictly limited in scope and time to the date of the evaluation described herein. The conclusions and recommendations presented in the report are based solely on the services and any limitations described in this report.

This report may contain conclusions that are based on the analysis of data collected at the time and locations noted in the report through intrusive or non-intrusive sampling. However, further investigation might reveal additional data or variations of the current data, which may differ from our understanding of the conditions presented in this report and require the enclosed recommendations to be reevaluated or modified.

Chemical analyses may have been performed for specific parameters during the course of this investigation, as summarized in the text and tables. It should be noted that additional chemical constituents, not searched for during this investigation, may be present at the site. Due to the nature of the investigation and the limited data available, no warranty, expressed or implied, shall be construed with respect to undiscovered liabilities. The presence of biological hazards, radioactive materials, lead-based paint and asbestos-containing materials was not investigated, unless specified in the report.

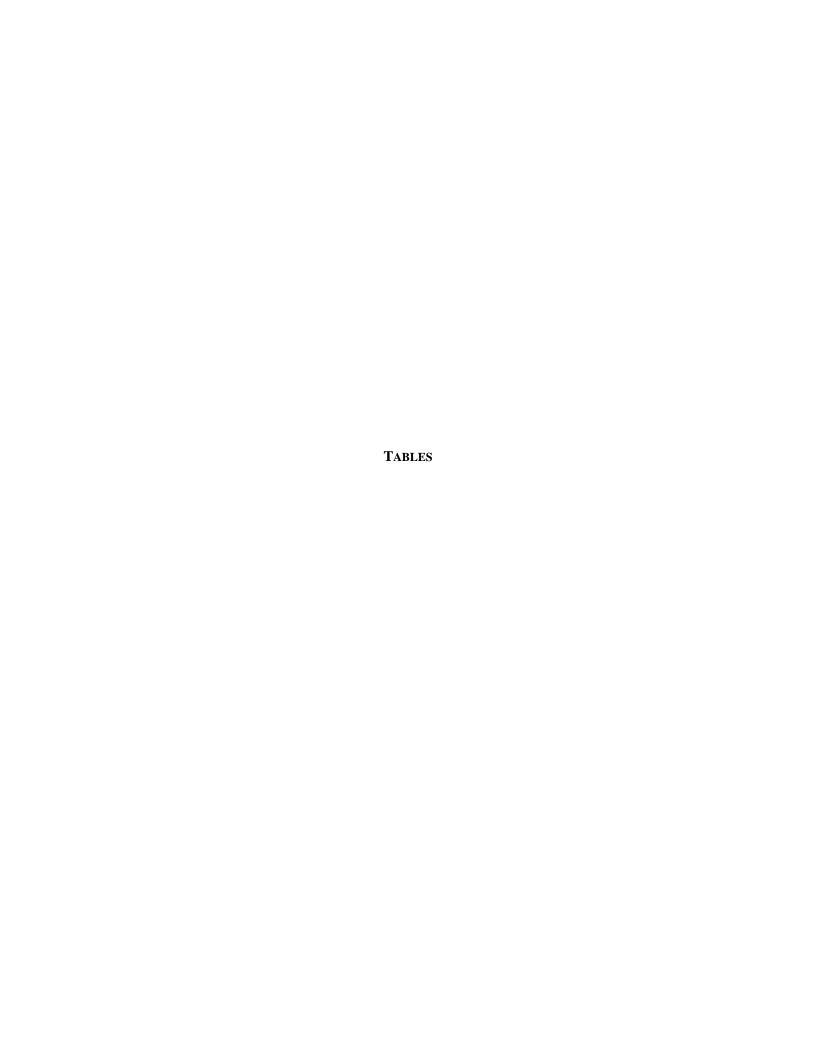
Interpretations of the data, including comparison to regulatory standards, guidelines or background values, are not opinions that these comparisons are legally applicable. Furthermore, any conclusions or recommendations should not be construed as legal advice. For such advice, the client is recommended to seek appropriate legal counsel. Disturbance, handling, transportation, storage and disposal of known or potentially contaminated materials is subject to all applicable laws, which may or may not be fully described as part of this report.

The analytical data, conclusions, and/or recommendations provided in this report should not be construed in any way as a classification of waste that may be generated during future disturbance of the project site. Waste(s) generated at the site including excess fill may be considered regulated solid waste and potentially hazardous waste. Requirements for intended disposal facilities should be determined beforehand as the data provided in this report may be insufficient and could vary following additional sampling.

This report may be based solely or partially on data collected, conducted, and provided by, AKRF and/or others. No warranty is expressed or implied by usage of such data. Such data may be included in other investigation reports or documentation. In addition, these reports may have been based upon available previous reports, historical records, documentation from federal, state and local government agencies, personal interviews, and geological mapping. This report is subject, at a minimum, to the limitations of the previous reports, historical documents, availability and accuracy of collected documentation, and personal recollection of those persons interviewed. In certain instances, AKRF has been required to assume that the information provided is accurate with limited or no corroboratory evidence.

This report is intended for the use solely by SWD II, LLC. Reliance by third parties on the information and opinions contained herein is strictly prohibited and requires the written consent of AKRF. AKRF accepts no responsibility for damages incurred by third parties for any decisions or actions taken based on this report. This report must be used, interpreted, and presented in its entirety.

8.0 SOIL DISPOSAL ISSUES


In addition to the discussions in the Conclusions, Recommendations, and Limitations Sections (Sections 6.0 and 7.0), the issue of appropriate management of off-site disposal of soil warrants careful consideration. Any material being disposed of off-site is a regulated waste, and disposal must be in accordance with:

- Requirements of the specific receiving facility;
- Requirements of any agencies overseeing the cleanup/excavation; and
- Federal and state requirements (sometimes in both the state where the soil is generated and where disposal will occur).

For hazardous wastes and petroleum-contaminated soil (and other 'clearly contaminated' materials), the requirements are usually fairly well defined. It is in the situation where contamination is not readily apparent (e.g., so called "historic or urban fill" or "construction and demolition debris" or material that may have been formerly identified as "clean fill") that present the greatest potential for problems and cost overruns. Even on sites where no contamination requiring remediation is identified, it is common that most of the excavated material is considered "contaminated" for purposes of waste disposal. Concentrations of the various contaminants in historic fill can be highly variable, and upon further testing, the material could contain higher contaminant concentrations than outlined in this investigation. Portions of this material could be classified as hazardous waste.

It is important that the intended disposal facility (or facilities) be identified in advance of off-site disposal. Agency approval is sometimes required for disposal, and the facility will frequently require additional testing prior to (and sometimes at the time of) accepting material. Material must conform to a lengthy list of requirements based on both chemical composition and sometimes numerous other parameters (related to size, percentage of liquids, presence of odors, etc.) for acceptance at the facility. Assuming (or allowing a contractor to assume) that all, or even most, of the soil from a site can be disposed of at minimal cost may result in unanticipated and expensive change orders.

For these reasons, we recommend that professional advice be sought prior to preparing bid documents and contracts incorporating soil disposal.

Table 1 200 Hamilton Avenue White Plains, NY

Spill Investigation Soil Analytical Results Volatile Organic Compounds

Client ID	CP-51	NYSDEC	NYSDEC	SB-10 (20-22)	SB-10 (3-5)	SB-11 (17-19)	SB-11 (5-7)	SB-12 (2-4)	SB-12 (15-16)
Lab Sample ID	Soil Cleanup	Part 375	Part 375	L1804131-10	L1804131-11	L1804131-01	L1804131-02	L1804131-08	L1804131-09
Date Sampled	Level	Unrestricted	Restricted	2/7/2018	2/7/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018
Dilution	SCL	sco	Residential	1	1	10	1	1	1
			sco						
Analyte	mg/kg	mg/kg	mg/kg						
1,2,4-Trimethylbenzene	3.6	3.6	52	0.00018 U	0.00017 U	60	0.0002 U	0.00031 J	0.00017 U
1,3,5-Trimethylbenzene	8.4	8.4	52	0.00016 U	0.00015 U	17	0.00017 U	0.00016 U	0.00015 U
Benzene	0.06	0.06	4.8	0.00019 U	0.00018 U	0.1 U	0.0002 U	0.0002 U	0.00018 U
Ethylbenzene	1	1	41	0.00016 U	0.00016 U	11	0.00018 U	0.00019 J	0.00016 U
Isopropylbenzene	2.3	NS	NS	0.00019 U	0.00018 U	4.1	0.00021 U	0.0002 U	0.00018 U
Methyl tert butyl ether	0.93	0.93	100	0.00015 U	0.00014 U	0.084 U	0.00016 U	0.00016 U	0.00014 U
Naphthalene	12	12	100	0.00013 U	0.00013 U	3.4	0.00015 U	0.00032 J	0.00013 U
n-Butylbenzene	12	12	100	0.00022 U	0.00021 U	4	0.00024 U	0.00023 U	0.00021 U
n-Propylbenzene	3.9	3.9	100	0.00021 U	0.0002 U	15	0.00023 U	0.00022 U	0.0002 U
o-Xylene	0.26 TS	0.26 TS	100 TS	0.00033 U	0.00031 U	1.4	0.00036 U	0.00035 U	0.00031 U
p/m-Xylene	0.26 TS	0.26 TS	100 TS	0.00034 U	0.00033 U	17	0.00037 U	0.00049 J	0.00033 U
p-Isopropyltoluene	10	NS	NS	0.0002 U	0.00019 U	1	0.00022 U	0.00021 U	0.00019 U
sec-Butylbenzene	11	11	100	0.00021 U	0.0002 U	2.3	0.00023 U	0.00022 U	0.0002 U
tert-Butylbenzene	5.9	5.9	100	0.00024 U	0.00023 U	0.14 U	0.00026 U	0.00025 U	0.00023 U
Toluene	0.7	0.7	100	0.00019 U	0.00018 U	0.11 U	0.00021 U	0.0002 U	0.00018 U
Xylenes, Total	0.26	0.26	100	0.00033 U	0.00031 U	18	0.00036 U	0.00049 J	0.00031 U

Table 1 200 Hamilton Avenue White Plains, NY

Spill Investigation Soil Analytical Results Volatile Organic Compounds

Client ID	CP-51	NYSDEC	NYSDEC	SB-13 (10-12)	SB-13 (3-5)	SB-14 (2-4)	SB-14 (15-16)	SB-15 (10-11)	SB-15 (2-4)
Lab Sample ID	Soil Cleanup	Part 375	Part 375	L1804131-03	L1804131-04	L1804131-06	L1804131-07	L1804131-12	L1804131-13
Date Sampled	Level	Unrestricted	Restricted	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/9/2018	2/9/2018
Dilution	SCL	sco	Residential	10	1	1	10	1	1
			sco						
Analyte	mg/kg	mg/kg	mg/kg						
1,2,4-Trimethylbenzene	3.6	3.6	52	69	0.00032 J	0.0008 J	19	0.00054 J	0.00022 U
1,3,5-Trimethylbenzene	8.4	8.4	52	22	0.00016 U	0.0003 J	11	0.0011 J	0.00019 U
Benzene	0.06	0.06	4.8	0.11 U	0.00019 U	0.00018 U	0.12 J	0.00023 U	0.00023 U
Ethylbenzene	1	1	41	14	0.00017 U	0.00018 J	4.9	0.00036 J	0.0002 U
Isopropylbenzene	2.3	NS	NS	3.1	0.00019 U	0.00018 U	2.5	0.0014	0.00023 U
Methyl tert butyl ether	0.93	0.93	100	0.085 U	0.00015 U	0.00014 U	0.094 U	0.0024	0.00018 U
Naphthalene	12	12	100	5.8	0.00014 U	0.00085 J	2.8 J	0.0019 J	0.00016 U
n-Butylbenzene	12	12	100	4.1	0.00022 U	0.00021 U	1.4	0.0064	0.00027 U
n-Propylbenzene	3.9	3.9	100	12	0.00021 U	0.0002 U	4.1	0.0048	0.00025 U
o-Xylene	0.26 TS	0.26 TS	100 TS	14	0.00033 U	0.00031 U	0.54 J	0.0004 U	0.0004 U
p/m-Xylene	0.26 TS	0.26 TS	100 TS	54	0.00035 U	0.00066 J	16	0.00041 U	0.00041 U
p-Isopropyltoluene	10	NS	NS	0.95	0.0002 U	0.00019 U	1.3	0.00091 J	0.00024 U
sec-Butylbenzene	11	11	100	2.1	0.00021 U	0.00022 J	0.99	0.0037	0.00026 U
tert-Butylbenzene	5.9	5.9	100	0.14 U	0.00024 U	0.00058 J	0.19 J	0.00031 J	0.00029 U
Toluene	0.7	0.7	100	0.87	0.00019 U	0.00018 U	0.12 U	0.00023 U	0.00027 J
Xylenes, Total	0.26	0.26	100	68	0.00033 U	0.00066 J	17	0.0004 U	0.0004 U

Table 1 200 Hamilton Avenue White Plains, NY

Spill Investigation Soil Analytical Results Volatile Organic Compounds

Client ID	CP-51	NYSDEC	NYSDEC	SB-16 (12-13)	SB-16 (2-4)	SB-17 (8-9)	SB-17 (5-7)	SB-18 (12-14)
Lab Sample ID	Soil Cleanup	Part 375	Part 375	L1804131-14	L1804131-15	L1804131-16	L1804131-17	L1804131-05
Date Sampled	Level	Unrestricted	Restricted	2/9/2018	2/9/2018	2/9/2018	2/9/2018	2/6/2018
Dilution	SCL	sco	Residential	1	1	1	1	20
			sco					
Analyte	mg/kg	mg/kg	mg/kg					
1,2,4-Trimethylbenzene	3.6	3.6	52	0.0002 U	0.0005 J	0.00056 J	0.00033 J	100
1,3,5-Trimethylbenzene	8.4	8.4	52	0.00017 U	0.00069 J	0.00024 J	0.0002 J	34
Benzene	0.06	0.06	4.8	0.00021 U	0.00023 U	0.00023 U	0.0002 U	0.18 U
Ethylbenzene	1	1	41	0.00018 U	0.0002 U	0.0002 U	0.00018 U	11
Isopropylbenzene	2.3	NS	NS	0.00021 U	0.00023 U	0.0011 J	0.0002 U	2.4
Methyl tert butyl ether	0.93	0.93	100	0.037	0.00018 U	0.00018 U	0.00016 U	0.14 U
Naphthalene	12	12	100	0.00015 U	0.00025 J	0.0028 J	0.00014 U	6.6
n-Butylbenzene	12	12	100	0.00024 U	0.00028 U	0.00027 U	0.00024 U	5.2
n-Propylbenzene	3.9	3.9	100	0.00023 U	0.00026 U	0.0007 J	0.00022 U	7.2
o-Xylene	0.26 TS	0.26 TS	100 TS	0.00036 U	0.00041 U	0.0004 U	0.00035 U	2.3
p/m-Xylene	0.26 TS	0.26 TS	100 TS	0.00038 U	0.00042 U	0.00041 U	0.00037 U	76
p-Isopropyltoluene	10	NS	NS	0.00022 U	0.00024 U	0.00024 U	0.00021 U	1.4
sec-Butylbenzene	11	11	100	0.00025 J	0.00026 U	0.00026 U	0.00023 U	2.9
tert-Butylbenzene	5.9	5.9	100	0.00026 U	0.0003 U	0.00034 J	0.00026 U	0.23 U
Toluene	0.7	0.7	100	0.0003 J	0.00026 J	0.00023 U	0.00047 J	0.28 J
Xylenes, Total	0.26	0.26	100	0.00036 U	0.00041 U	0.0004 U	0.00035 U	78

Table 2 200 Hamilton Avenue

White Plains, NY

Spill Investigation Soil Analytical Results Semivolatile Organic Compounds

Client ID	CP-51	NYSDEC	NYSDEC	SB-10 (3-5)	SB-11 (5-7)	SB-12 (2-4)	SB-13 (3-5)	SB-14 (2-4)	SB-15 (2-4)	SB-16 (2-4)	SB-17 (5-7)
Lab Sample ID	Soil Cleanup	Part 375	Part 375	L1804131-11	L1804131-02	L1804131-08	L1804131-04	L1804131-06	L1804131-13	L1804131-15	L1804131-17
Date Sampled	Level	Unrestricted	Restricted	2/7/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/9/2018	2/9/2018	2/9/2018
	SCL	sco	Residential								
			sco								
Analyte	mg/kg	mg/kg	mg/kg								
Acenaphthene	20	20	100	0.018 U	0.019 U	0.019 U	0.02 U	0.035 J	0.019 U	0.02 U	0.088 J
Acenaphthylene	100	100	100	0.028 U	0.029 U	0.028 U	0.029 U	0.047 J	0.028 U	0.089 J	0.43
Anthracene	100	100	100	0.035 U	0.036 U	0.036 U	0.037 U	0.088 J	0.036 U	0.068 J	0.96
Benzo(a)anthracene	1	1	1	0.02 U	0.021 U	0.02 U	0.021 U	0.24	0.036 J	0.24	2.8
Benzo(a)pyrene	1	1	1	0.044 U	0.046 U	0.045 U	0.046 U	0.24	0.045 U	0.23	2.4
Benzo(b)fluoranthene	1	1	1	0.03 U	0.032 U	0.031 U	0.032 U	0.33	0.05 J	0.32	3.3
Benzo(ghi)perylene	100	100	100	0.021 U	0.022 U	0.022 U	0.022 U	0.19	0.028 J	0.16	1.5
Benzo(k)fluoranthene	0.8	0.8	3.9	0.028 U	0.03 U	0.029 U	0.03 U	0.095 J	0.029 U	0.12	0.85
Chrysene	1	1	3.9	0.018 U	0.019 U	0.019 U	0.02 U	0.21	0.03 J	0.21	2.2
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.021 U	0.022 U	0.021 U	0.022 U	0.051 J	0.021 U	0.048 J	0.41
Fluoranthene	100	100	100	0.02 U	0.022 U	0.024 J	0.022 U	0.55	0.038 J	0.44	5.3
Fluorene	30	30	100	0.017 U	0.018 U	0.018 U	0.018 U	0.018 J	0.018 U	0.03 J	0.19
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	0.025 U	0.026 U	0.025 U	0.026 U	0.2	0.03 J	0.19	1.8
Naphthalene	12	12	100	0.022 U	0.023 U	0.022 U	0.023 U	0.03 J	0.022 U	0.023 U	0.05 J
Phenanthrene	100	100	100	0.022 U	0.023 U	0.022 U	0.023 U	0.12	0.022 U	0.24	2.7
Pyrene	100	100	100	0.018 U	0.019 U	0.024 J	0.019 U	0.44	0.039 J	0.37	4.2

Table 3 200 Hamilton Avenue

White Plains, NY

Spill Investigation Soil Analytical Results Metals

Client ID	NYSDEC	NYSDEC	SB-10 (3-5)	SB-11 (5-7)	SB-12 (2-4)	SB-13 (3-5)	SB-14 (2-4)	SB-15 (2-4)	SB-16 (2-4)	SB-17 (5-7)
Lab Sample ID	Part 375	Part 375	L1804131-11	L1804131-02	L1804131-08	L1804131-04	L1804131-06	L1804131-13	L1804131-15	L1804131-17
Date Sampled	Unrestricted	Restricted	2/7/2018	2/6/2018	2/6/2018	2/6/2018	2/6/2018	2/9/2018	2/9/2018	2/9/2018
	sco	Residential								
		sco								
Analyte	mg/kg	mg/kg								
Arsenic, Total	13	16	2.05	1.3	1.77	1.73	2.04	1.46	1.69	1.92
Barium, Total	350	400	158	80.5	292	95.6	92.7	55.3	59.8	56.6
Cadmium, Total	2.5	4.3	0.041 U	0.043 U	0.041 U	0.044 U	0.042 U	0.439	0.526	0.574
Chromium, Total	30*	180*	39.5	18.5	113	21	19.9	14.7	12.8	12
Lead, Total	63	400	10.2	4.32	6.66	14.1	140	40.9	8.19	16.5
Mercury, Total	0.18	0.81	0.01 U	0.02 U	0.02 U	0.04 J	0.09	0.4	0.03 J	0.05 J
Selenium, Total	3.9	180	0.116 J	0.113 U	0.108 U	0.117 U	0.111 U	0.11 U	0.117 U	0.108 J
Silver, Total	2	180	0.117 U	0.124 U	0.119 U	0.128 U	0.122 U	0.121 U	0.128 U	0.114 U
Zinc, Total	109	10,000	56.1	32.3	59.2	42	66.5	41.4	26.9	38.8

Table 4 200 Hamilton Avenue White Plains, NY

Spill Investigation Groundwater Analytical Results

Volatile Organic Compounds

Client ID	NYSDEC	MW-1	MW-2	MW-5	MW-6	MW-7	MW-8	MW-9	TB-1
Lab Sample ID	Class GA	L1805675-01	L1805675-05	L1805675-02	L1805675-03	L1805675-04	L1805675-08	L1805675-06	L1805675-07
Date Sampled	Ambient	2/16/2018	2/16/2018	2/16/2018	2/16/2018	2/16/2018	2/16/2018	2/16/2018	2/16/2018
Units	Standard	1	10	2.5	1	2	2	1	1
Analyte	μg/L								
1,2,4-Trimethylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	110	4.8 J	0.7 U	0.7 U
1,3,5-Trimethylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	56	57	0.7 U	0.7 U
Benzene	1	0.16 U	1.6 U	0.4 U	0.67	0.94 J	0.32 U	0.16 U	0.16 U
Ethylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	92	33	0.7 U	0.7 U
Isopropylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	14	44	0.7 U	0.7 U
Methyl tert butyl ether	10	0.7 U	1,800	1.8 U	1.2 J	15	20	34	0.7 U
Naphthalene	10	0.7 U	7 U	1.8 U	0.7 U	14	23	0.7 U	0.7 U
n-Butylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	1.9 J	36	0.7 U	0.7 U
n-Propylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	14	130	0.7 U	0.7 U
o-Xylene	5	0.7 U	7 U	1.8 U	0.7 U	28	1.4 U	0.7 U	0.7 U
p/m-Xylene	5	0.7 U	7 U	1.8 U	0.7 U	290	22	0.7 U	0.7 U
p-Isopropyltoluene	5	0.7 U	7 U	1.8 U	0.7 U	4.5 J	8.3	0.7 U	0.7 U
sec-Butylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	2.7 J	25	0.7 U	0.7 U
tert-Butylbenzene	5	0.7 U	7 U	1.8 U	0.7 U	1.4 U	1.4 U	0.7 U	0.7 U
Toluene	5	0.7 U	7 U	1.8 U	0.7 U	2.3 J	1.4 U	0.7 U	0.7 U
Xylenes, Total	NS	0.7 U	7 U	1.8 U	0.7 U	320	22	0.7 U	0.7 U

Tables 1-4 200 Hamilton Avenue

White Plains, NY

Spill Investigation Analytical Results Notes

GENERAL

NS: No standard.

U: The analyte was not detected at the indicated concentration.

J: The concentration given is an estimated value.

TS: Value represents a sum total standard.

SOIL

Part 375 Soil

Soil Cleanup Objectives listed in NYSDEC (New York State Department of Environmental

Cleanup: Conservation) "Part 375" Regulations (6 NYCRR Part 375).

CP-51 Soil Soil Cleanup Levels for Gasoline Contaminated Soils listed in Table 2 of NYSDEC "CP-51/Soil

Cleanup Levels : Cleanup Guidance."

mg/kg: milligrams per kilogram = parts per million (ppm)

Metals

*: Standard reflects trivalent, not total, Chromium.

Exceedances of Part 375 Unrestricted Soil Cleanup Objectives (UUSCO) and CP-51 Soil Cleanup Levels (SCL) are highlighted in bold font.

Exceedances of Part 375 Restricted Residential Soil Cleanup Objectives (RRSCO) are highlighted in gray.

GROUNDWATER

NYSDEC

Class GA . New York State Department of Environmental Conservation Technical and Operational Guidance

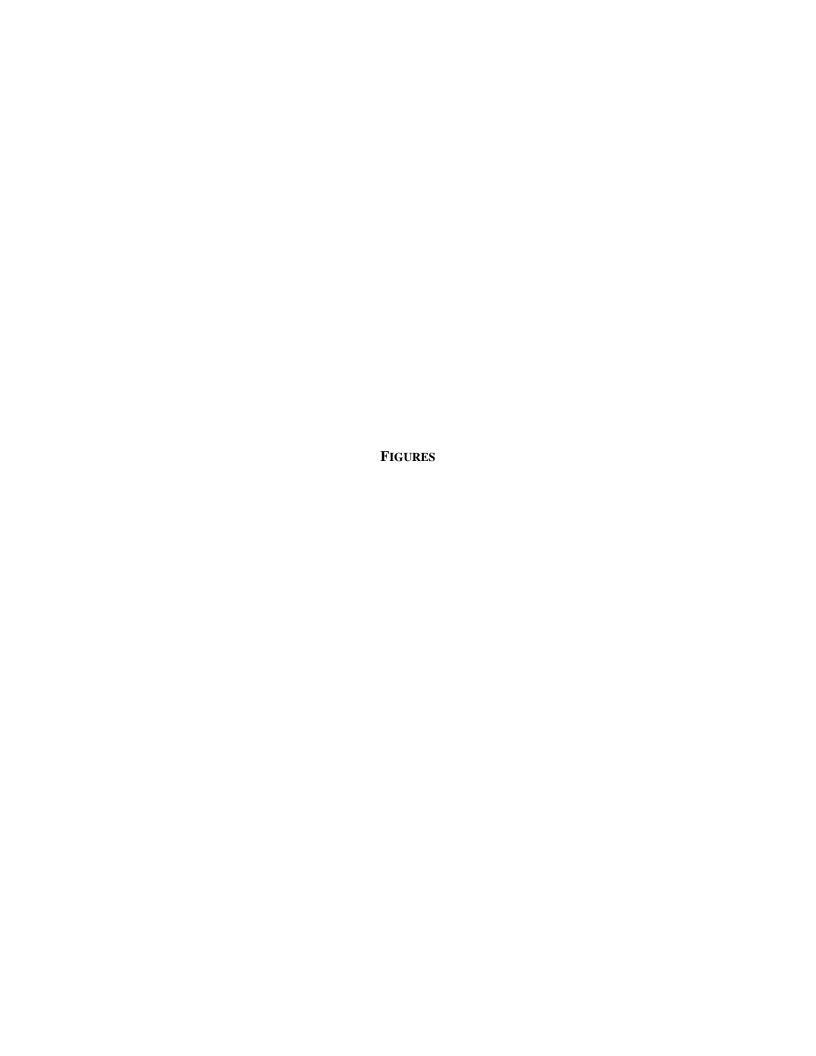
Ambient Series (1.1.1): Class GA Ambient Water Quality Standards and Guidance Values.

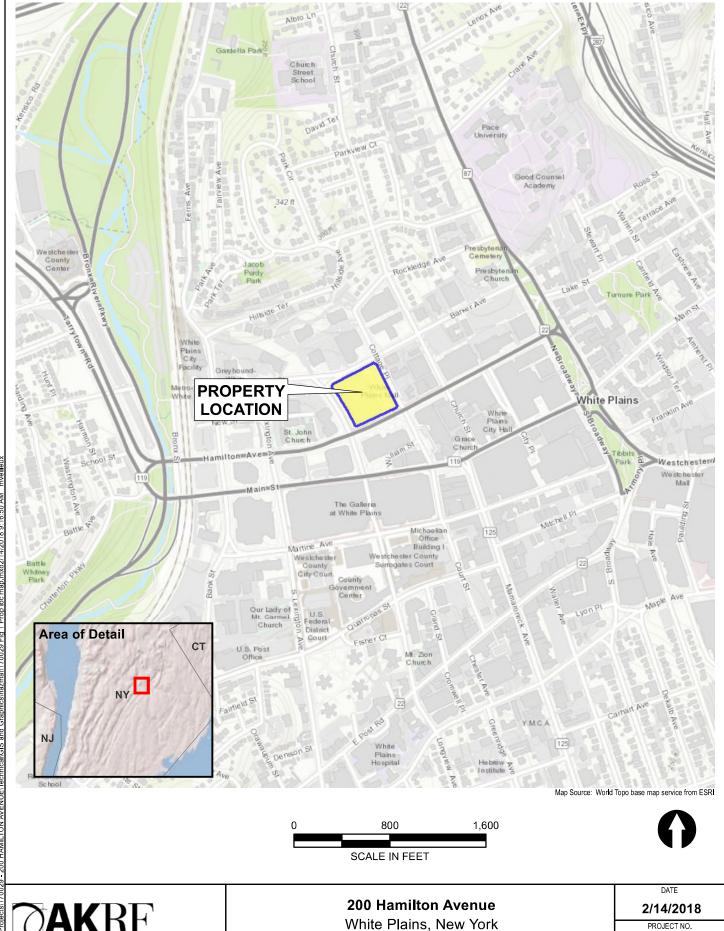
Standard

μg/L: micrograms per Liter = parts per billion (ppb)

Exceedances of NYSDEC Class GA Ambient Standards are highlighted in bold font.

Table 5 200 Hamilton Avenue

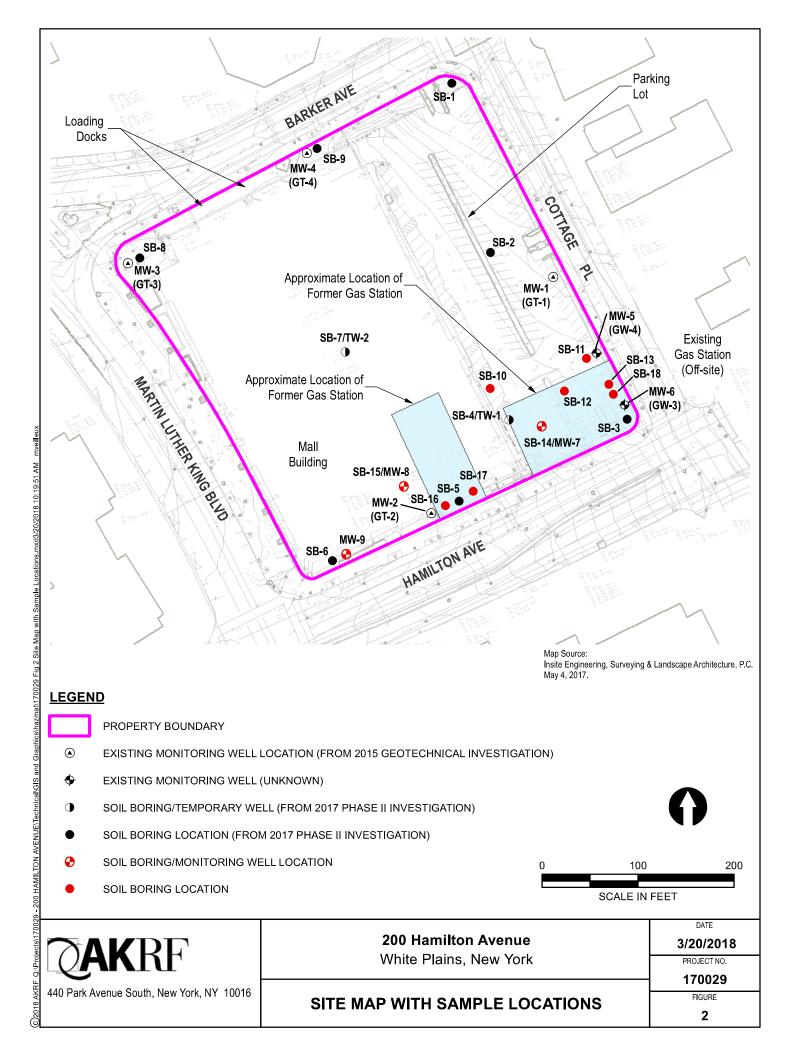

200 Hamilton Avenue, White Plains, New York

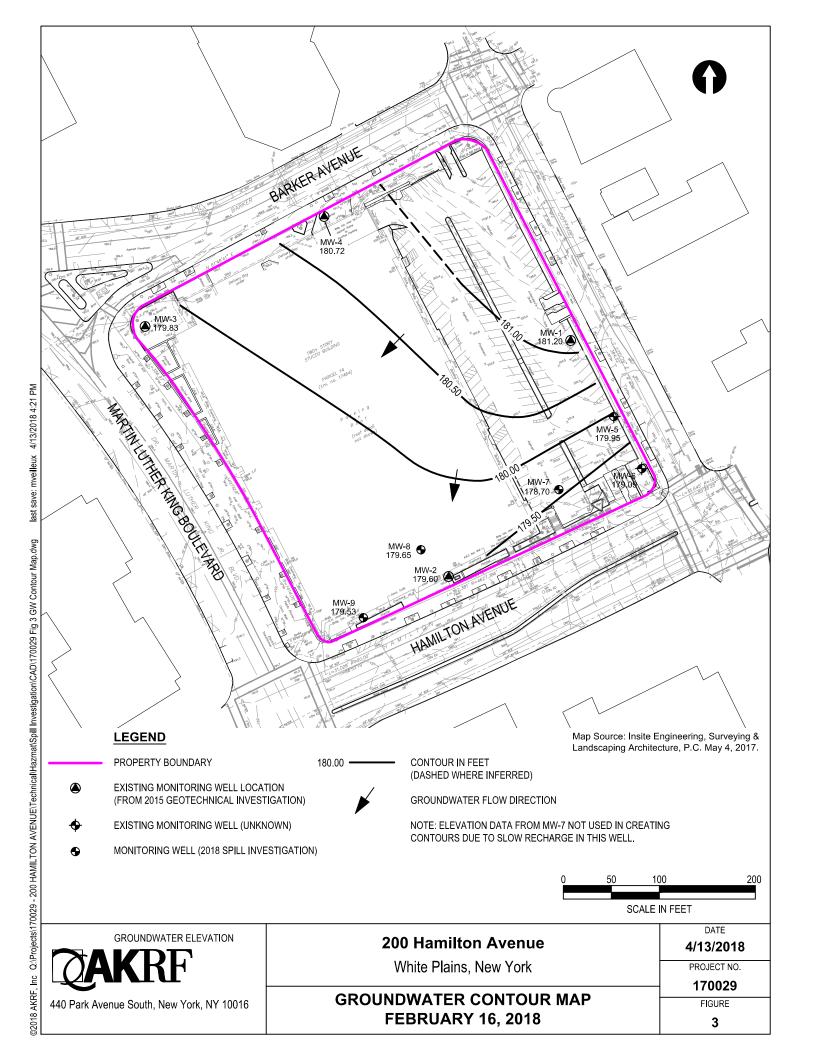

Groundwater Elevations

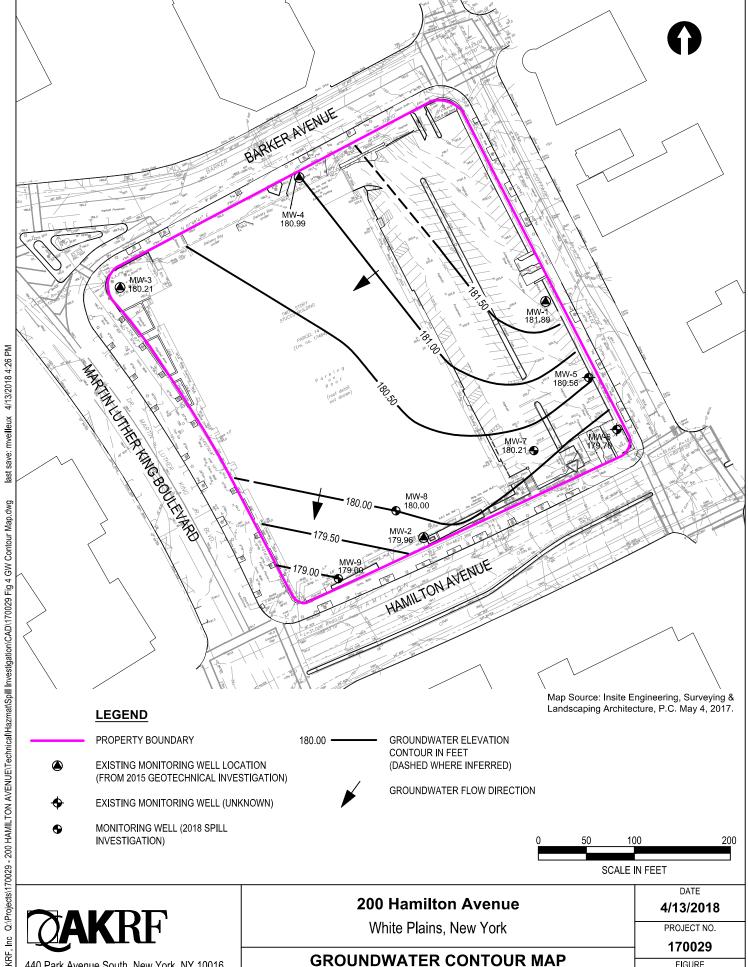
	Top of Well Casing		2/16/2018		2/26/2018
Monitor Well ID	Elevation (feet NAVD)	DTW (feet)	Groundwater Elevation (feet NAVD)	DTW (feet)	Groundwater Elevation (feet NAVD)
MW-1	199.58	18.38	181.20	17.69	181.89
MW-2	192.02	12.42	179.60	12.06	179.96
MW-3	189.92	10.09	179.83	9.71	180.21
MW-4	191.25	10.53	180.72	10.26	180.99
MW-5	201.36	21.41	179.95	20.80	180.56
MW-6	202.21	23.12	179.09	22.51	179.70
MW-7	202.60	23.90	178.70	22.39	180.21
MW-8	189.58	9.93	179.65	9.58	180.00
MW-9	191.35	11.82	179.53	11.45	179.90

Notes:

All elevations relative to North American Vertical Datum of 1988 (NAVD 88). DTW - Depth to Water

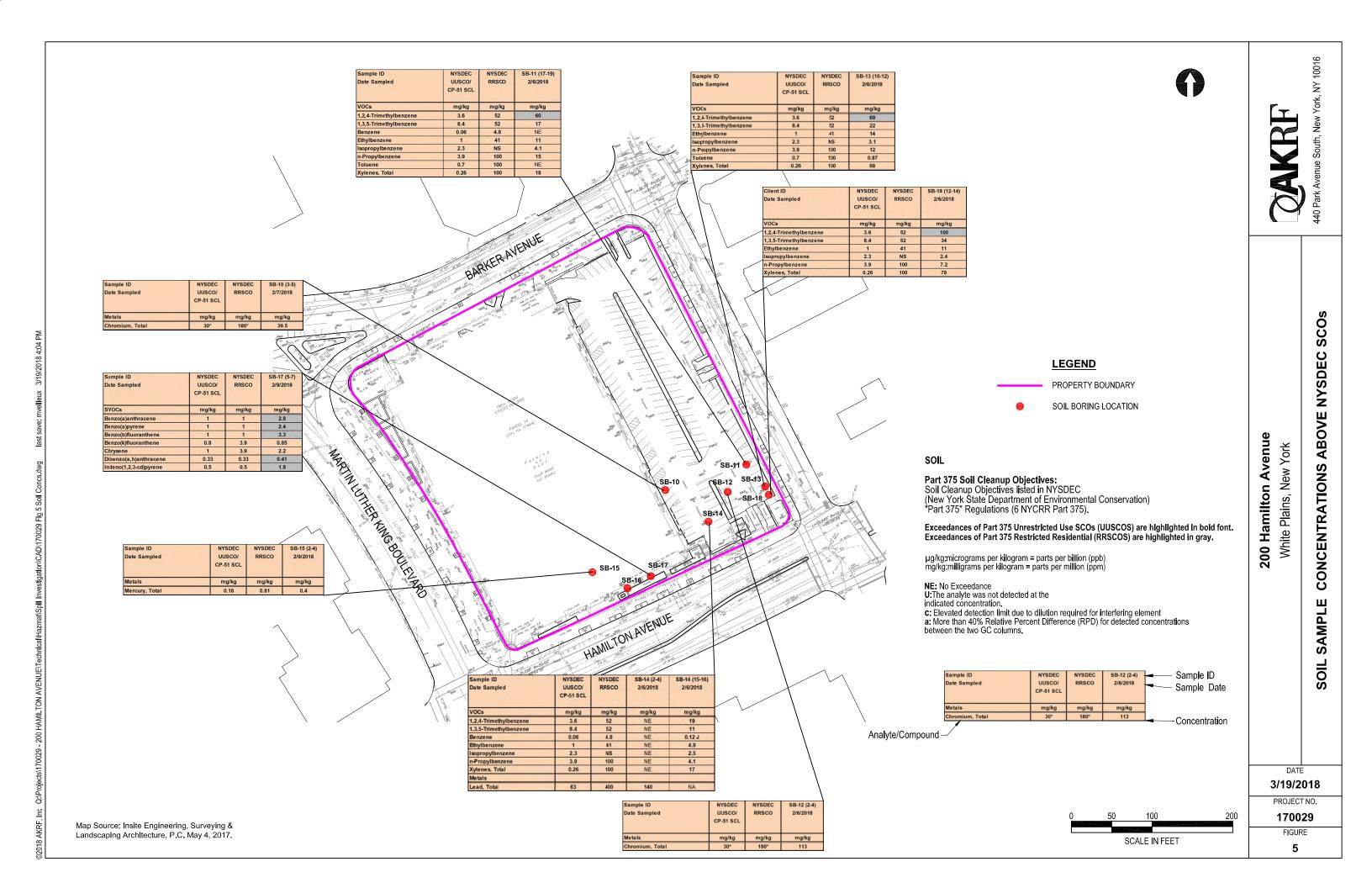

440 Park Avenue South, New York, NY 10016

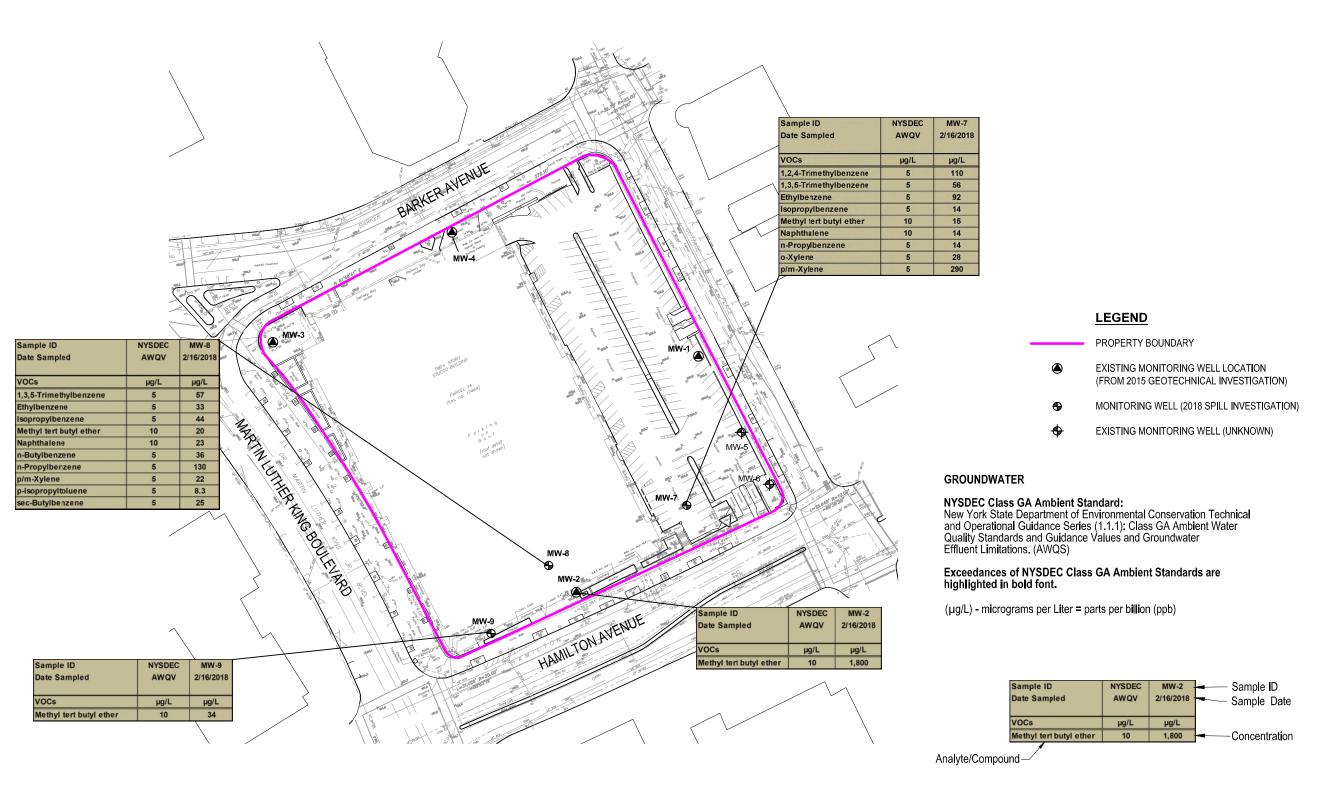

White Plains, New York


PROPERTY LOCATION

170029 FIGURE

1


FEBRUARY 26, 2018


FIGURE

4

©2018 AKRF, Inc

440 Park Avenue South, New York, NY 10016

0 50 100 200 SCALE IN FEET

Map Source: Insite Engineering, Surveying & Landscaping Architecture, P.C. May 4, 2017.

440 Park Avenue South New York NY

GROUNDWATER SAMPLE CONCENTRATIONS ABOVE NYSDEC AWQS

200 Hamilton Avenue White Plains, New York

DATE

4/13/2018

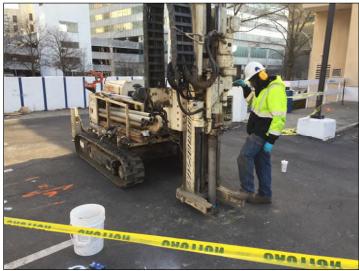

PROJECT NO. **170029**

FIGURE 6

APPENDIX A PHOTOGRAPHIC DOCUMENTATION

Photograph 1: Installation of soil boring SB-10 with track-mounted Geoprobe 6620DT.

Photograph 3: Installation of 3.75-inch O.D. hollow casing at SB-14 for the installation of MW-7.

Photograph 2: Soil cores from soil boring SB-10 staged for field screening and sample collection.

Photograph 4: Development of MW-7.

Photograph 5: Installation of soil boring SB-15 with bobcat-mounted Geoprobe 540MT.

Photograph 7: Development of MW-15.

Photograph 6: Soil cores from soil boring SB-15 staged for field screening and sample collection.

Photograph 8: Low-flow groundwater sampling equipment set up at MW-5.