Permeable Reactive Barrier Work Plan

BCP No. C360227

Location:

Warburton Dry Cleaners Site Site No. C360227 305-321 Warburton Avenue, 32 Point Street, and 247-262A Woodworth Avenue Yonkers, New York 10701

Prepared for:

Warburton Avenue Apartments, LLC 1000 University Avenue Rochester, NY 14607

LaBella Project No. 2221378

November 2024

Table of Contents

1.0 2.0 2.1	BAC	RODUCTION	4
2.2		ite History	
2.3		urrounding Properties	
2.4	Te	opography	4
2.5	G	eology and Hydrogeology	5
2	.5.1	Regional Geology/Hydrogeology	5
2	.5.2	Site Geology/Hydrogeology	5
3.0	REN	MEDIAL INVESTIGATION FINDINGS	5
3.1	P	otential Sources	6
3.2		roundwater Results	
3.3		oil Vapor Results	
3.4		oil Results	
4.0 4.1		ICEPTUAL SITE MODELnvironmental Fate and Transport	
4.1		otential Exposure Pathways - On-Site	
	.2.1	Current Conditions	
4.3		otential Exposure Pathways - Off-Site	
4.4		valuation of Human Health Exposure	
	- .4.1	Construction/Remediation Activities	
-	.4.2	•	
5.0		-DESIGN INVESTIGATION - GROUNDWATER TREATMENT DESIGN	
5.1		ydraulic Conductivity Testing	
5.2	G	roundwater Sampling	11
5.3	Р	re-Design Investigation Results	13
6.0 6.1		NITORING WELL INSTALLATION AND SAMPLING	
6.2		Ionitoring Well Construction	
6	.2.1	Upgradient Well Construction	. 14
6	.2.2	Downgradient Well Construction	. 15
6.3	G	roundwater Sampling Methodology	16
6.4	P	ost-PRB Installation Monitoring	16
7.0	IN-S	ITU CHEMICAL TREATMENT / PERMEABLE REACTIVE BARRIER INSTALLATION	. 17

TABLE OF CONTENTS

Continued

7.1 Inje	ction Point Installation
7.1.1	Direct Injection Methodology
7.1.2	Injection Materials
7.2 Inje	ction Wells
7.3 Inje	ction Oversight / Monitoring19
7.3.1	Daily Reporting
7.3.2	Community Air Monitoring Program
7.4 Perr	mitting
7.5 Soil	Staging Methods
7.6 Dec	ontamination
8.0 SCHEE	DULE
Figures Figure 1 Figure 2 Figure 3A Figure 3B Figure 4 Figure 5	Site Plan Monitoring Well Locations and Analytical Data Groundwater VOC Contours Soil Vapor VOC Contours PRB Location Plan Cross Section A-A'
Appendices Appendix A Appendix B Appendix C Appendix D Appendix E	Slug Testing Summary and AQTESOLV Data Interpretation Groundwater Velocity Calculations Groundwater Sampling Results Summary Tables Groundwater Sampling Laboratory Reports Groundwater Sampling Field Logs

1.0 INTRODUCTION

This Permeable Reactive Barrier (PRB) Work Plan has been prepared by LaBella Associates, D.P.C (LaBella) on behalf of the Volunteer, Warburton Avenue Apartments, LLC to support the implementation of remedial activities for the Warburton Dry Cleaners Site (Site), located at 305-321 Warburton Avenue, 32 Point Street, and 247-262A Woodworth Avenue in the City of Yonkers, Westchester County, New York. Details related to the remedial activities are presented in the RAWP dated May 2024. The Site is enrolled in the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) (Site No. C360227).

The objective of this PRB Work Plan is to provide the details on the anticipated extent, depth, injectant material and initial monitoring plan for the PRB. Long-term monitoring of the PRB will be defined in the future Site Management Plan (SMP) to be developed for the Site.

2.0 BACKGROUND

2.1 Site Description

The BCP Site is a $(\pm)1.166$ -acre property and comprised of 15 tax lots located in a mixed residential and commercial area of Yonkers, New York. The 15 tax lots were merged into one following closing. The Site is currently under active construction. Site redevelopment includes construction of a new residential affordable housing building and a parking lot. Prior uses of the Site include residential housing and commercial auto repair.

The Site is located in a mixed residential and commercial area of Yonkers, New York. A site plan is included as **Figure 1**.

2.2 Site History

The Site has historically been a mixed-use property with both residential and commercial occupants. Commercial occupants included grocers, auto repair, a clothing store, a tailor, a restaurant, a pharmacy, a hardware store, a security service, and a barber shop. Although the City Directory indicates a connection between 28 Point Street, which appears to be co-located with a portion of 321 Warburton Ave., and the Rappaport Plaza Cleaners in 1977 there is no current known evidence that the property was utilized as a dry-cleaning facility.

2.3 Surrounding Properties

Adjacent properties include residential dwellings, commercial storefronts, undeveloped lots, and two former dry cleaning facilities which were historically located adjacent to the Site, including the Former Rappaport Plaza Cleaners, located across the street to the east at 322 Warburton Avenue, and the Former Glenwood Cleaners, located across the street to the north at 323 Warburton Avenue.

2.4 Topography

According to the United States Geological Survey (USGS), the topographic elevation ranges from approximately 50 feet above mean sea level (amsl) in the western portion of the Site to 80 feet amsl in the eastern portion of the Site. The Site slopes west towards the Hudson River.

2.5 Geology and Hydrogeology

2.5.1 Regional Geology/Hydrogeology

According to the NYSDOT Geotechnical Design Manual Chapter 3 NYS Geology, the region is located within the Manhattan Prong, a subdivision of the Hudson Highlands.

The geologic setting consists of intensely metamorphosed sediments. The rocks extend in parallel ridges; and folding has steeply upturned them so that differential erosion has developed the ridges. Resistant rocks of schist, gneiss and granodiorite form the ridges while less resistant marble is the valley maker. According to the USGS NYC Region Geologic Map, the area is underlain by Precambrian gneisses.

2.5.2 Site Geology/Hydrogeology

The Site's bedrock is mapped on the Geologic Map of New York as Precambrian-Middle Proterozoic-aged rocks consisting of Fordham gneiss, biotite, and granite. A review of the Surficial Geologic Map of New York (Lower Hudson Sheet, 1989) indicates that surficial soils in the area are mapped as till.

Based on a review of available information, including area topography, regional groundwater flow in the vicinity of the Subject Property is expected to be west towards the Hudson River. Municipal water supply is provided by the Water Bureau of Yonkers.

On-Site soil generally consists of fill material from surface to approximately 6 to 12 feet bgs. Fill material is underlain by dense to very dense brown coarse to fine Sand, with varying amounts of silt and gravel.

Based on measurements taken in December 2023 as part of the Remedial Investigation (RI), depth to groundwater at monitoring wells MW-1 through MW-4 was observed to be approximately 35.9 (MW-3) ft bgs to 64.8 (MW-2) ft bgs. Groundwater elevation at monitoring wells MW-1 through MW-4 was observed to be approximately 29.6 to 32.8 ft (assumed datum) at monitoring wells MW-1 through MW-4. Bedrock is assumed to be approximately 71 ft bgs in the vicinity of MW-1D and approximately 90 ft bgs in the vicinity of MW-5 and MW-6 based upon field observations.

Based on the RI, on-Site soil generally consists of historic fill material from surface to approximately 1 to 12 ft bgs, varying throughout the Site. The non-native contaminated historic fill material (CHFM) generally appears to consist of fine brown sand, asphalt, brick, wood, glass, ash, and other construction debris. The CHFM is underlain by light brown medium-fine sand, with varying amounts gravel.

3.0 REMEDIAL INVESTIGATION FINDINGS

The Remedial Investigation (RI) consisted of the collection of 185 soil samples from 23 borings, 4 groundwater monitoring wells, and a soil vapor intrusion investigation including 8 soil vapor points, 3 subslab samples, 9 off-site soil vapor points, and one indoor air sample. Pursuant to receipt of RI comments and subsequent discussions with NYSDEC, LaBella performed an additional investigation of the suspect fuel oil tank fill port and a soil vapor and groundwater data gap investigation as part of the first phase of a Pre-Design Investigation (PDI). The soil vapor and groundwater data gap investigation included the installation and sampling of two additional soil vapor sampling points (SV-19 and SV-20) in the vicinity of the additional monitoring well installed in Block 2116, Lot 22 (MW-5). MW-5 was installed downgradient of wells MW-1/1D to further evaluate the nature and extent of the groundwater contamination. A monitoring well (MW-6) was also installed adjacent to the sidewalk on Warburton Ave in Block 2116, Lot 28 to further evaluate the migration of contaminated groundwater from upgradient, off-site sources. The objective was to address the potential for migration of groundwater contamination onto the site and to evaluate the potential for off-site migration of groundwater and soil vapor. RI findings pertaining to Chlorinated Volatile Organic Compounds (CVOC) contamination are summarized in this section.

3.1 Potential Sources

Potential off-site sources of CVOC contamination include two former dry cleaners including 1) Glenwood Cleaners at 323 -325 Warburton Ave., directly north of the 321 Warburton Parcel (across Point Street) and 2) Rappaport Plaza Cleaners northeast of the 321 Warburton Parcel on the east side of Warburton Ave (322 Warburton Ave). Sanborn mapping indicates that the Rappaport Plaza Cleaners building (322 Warburton Ave) was demolished in 1978 and a new building was constructed sometime between 1978 and 1989.

LaBella was provided with maps from the City of Yonkers that identified a 20-inch vitrified clay sewer pipe that runs south along Warburton and pipe joints connecting at the intersection of Warburton Ave and Wicker Street, which is east of the Site and MW-6. Vitrified clay pipe has bell joints every 5 to 10 feet. There are likely several bell joints along Warburton Ave and at the intersection of Warburton Ave and Wicker Street, which is hydraulically upgradient of the Site. The sewer pipe and pipe joints represent a potential source of release of tetrachloroethylene (PCE) from the sewer and the subsurface, and ultimately groundwater. In addition, the maps do not show the presence of a sewer pipe along Point Street. Remediation of any off-site sources has not been performed to date.

3.2 Groundwater Results

The presence of PCE in groundwater at MW-2 and MW-6, which are located at the most upgradient portions of the Site, indicates that PCE is migrating onto the site from an off-site source. The aforementioned sewer pipe and pipe joints may represent a potential secondary off-site source of release of CVOCs to the subsurface, and ultimately groundwater. Although the concentration of PCE at MW-6 (720 μ g/L) is slightly lower than at MW-4 (1500 μ g/L), this may be attributable to variations in source strength, release duration and/or frequency, and/or other source term factors in connection with the release of PCE into a sanitary sewer and / or at the dry-cleaning facility itself. The presence of TCE at MW-4 is attributable to the degradation of PCE and does not reflect the presence of a source of TCE. In addition, the concentration of PCE in groundwater at MW-5 is only 1 μ g/L which is below the Ambient Water Quality Standard of 5 μ g/L. MW-5 is located at the western edge of the Site along Point Street, down gradient of both MW-1 (160 μ g/L PCE) and MW-1D (1600 μ g/L PCE).

This data indicates that the extent of off-site migration of CVOCs in groundwater is limited. Locations of the monitoring wells MW-5 and MW-6 and analytical results for all of the wells are included in **Figure 2.** Contours representing the total PCE and TCE concentrations detected in groundwater samples collected as part of the RI were created in Surfer 23.2.176 via the Kriging method. The contours are shown on **Figure 3A** and support the conclusion that PCE is migrating onto the site from an off-site source.

3.3 Soil Vapor Results

Soil vapor sampling results from the sidewalk adjacent to the Former Rappaport Plaza Cleaners to the east of the Site indicate the presence of PCE and TCE at highly elevated concentrations including PCE at a concentration of 530,000 $\mu g/m^3$ directly in front of the Former Rappaport Plaza Cleaners. Soil vapor sampling results from the sidewalk adjacent to the Former Glenwood Cleaners to the north of the Site also indicate the presence of PCE and TCE at highly elevated concentrations including PCE at a concentration of 200,000 $\mu g/m^3$ directly in front of the Former Glenwood Cleaners. Concentrations of PCE and TCE in soil vapor decrease significantly with distance from these suspected off-site sources.

Specifically, proceeding east from SV-15, located directly in front of the Former Rappaport Plaza Cleaners, which contained 530,000 $\mu g/m^3$ PCE, concentrations decrease to 59,000 $\mu g/m^3$ PCE at SV-13 $\mu g/m^3$ PCE, 3450 $\mu g/m^3$ PCE at SV-03, 52.7 $\mu g/m^3$ PCE at SV-02, and non-detect for PCE and TCE at SV-20, which is located adjacent to MW-1 and MW-1D and SV-19, which is located adjacent to MW-5, along the eastern property boundary near the corner of Woodworth Avenue and Point Street. On-site concentrations of PCE in soil vapor range were detected at a maximum concentration of 48.6 $\mu g/m^3$ at SV-10, with two non-detect samples (SV-19 and SV-20). TCE was not detected in any of the eight on-site soil vapor samples collected, compared to the TCE detections ranging from 27 $\mu g/m^3$ to 9,900 $\mu g/m^3$ detected in soil vapor samples

taken from the sidewalks on the northeast of the site in front of the Former Rappaport Plaza Cleaners and the Former Glenwood Cleaners.

This data indicates that the extent of off-site migration of CVOCs is limited.

Contours representing the total PCE and TCE concentrations detected in RI soil vapor samples were created in Surfer 23.2.176 via the Kriging method. The contours indicate that the highest concentrations of PCE and TCE were detected directly in front of 322 Warburton Ave, which was the location of a former dry cleaner. The contours are included in **Figure 3B.** The results from the soil vapor investigation indicate that the extent of off-site migration of CVOCs in groundwater is limited and support the conclusion that there is no on-site source of PCE.

3.4 Soil Results

A total of 185 soil grab samples were analyzed for VOCs from 23 soil borings as part of the RI, 25 soil grab samples analyzed for VOCs from 40 soil borings as part of the waste characterization effort, and 24 soil grab samples collected from 18 soil borings (out of the 40 previously noted) as part of the sampling effort for approval of soil targeted for on-site re-use. LaBella also advanced 3 borings in the basement of the former building located at 321 Warburton Ave on March 29, 2024 to determine if there is a source under this building. The borings were advanced to a depth of 6 feet below the basement surface, which was approximately 9.5 ft bgs. Sample results from the borings did not contain VOCs in exceedance of Restricted Residential Soil Cleanup Objectives (RRSCOs).

VOCs were not detected in any of the 91 post-excavation confirmation samples analyzed to date.

4.0 CONCEPTUAL SITE MODEL

Pursuant to DER-10 Section 3.2.2, a conceptual site model (CSM) was developed as part of the 2024 Remedial Action Work Plan based on Remedial Investigation findings and previous investigations to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways. The CSM considers Site history and context, including the factors that influence distribution, and fate and transport of remedy-relevant constituents, as well as potential receptors and pathways for exposure. These factors include potential sources and release mechanisms, the physical-chemical mechanisms that control constituent fate and transport, and the likely exposure pathways that govern the potential for adverse effects to human and ecological receptors.

The data indicate that there are multiple potential off-Site sources of CVOCs in the subsurface beneath the former Rappaport Plaza Cleaners located at 322 Warburton Avenue, the former Glenwood Cleaners located at 323 Warburton Avenue, and / or the sewer main located on Warburton Avenue. A summary of the CSM pertaining to CVOC contamination is included below.

4.1 Environmental Fate and Transport

Chemicals are transported or transformed in the environment through physical and kinetic processes. Physical processes including dissolution, vaporization, and adsorption result in the transfer of substances across media and phases. Kinetic processes, which include biotic and abiotic chemical transformations, decrease the concentration of a chemical by degrading it into other products. The current understanding of the fate and transport of Contaminants of Potential Concern (COPCs), specifically, chlorinated volatile organic compounds (CVOCs), is summarized below for each of the environmental media of interest at the Site.

Soil

There is no evidence of the presence of CVOCs in soil in connection with the former off-Site dry cleaning facilities.

Groundwater

Depth to groundwater varies from approximately 35 to 65 ft bgs subject to topographic variations across the Site. The fate and transport mechanisms that affect groundwater include advection, dispersion, dissolution, and natural degradation which may work to reduce the concentration of any dissolved-phase constituents. Groundwater flow direction is generally to the west.

Soil Vapor

There is the potential for contaminated groundwater to contribute to the presence of vapor-phase constituents to enter buildings through cracks and joints in foundation walls in the vicinity of former drycleaning facilities at which CVOC-related constituents have been released to the subsurface. There is no current evidence that a release of CVOC-related constituents has occurred at the Site. However, the subslab soil vapor and indoor air sampling indicate the presence of PCE in sub-slab and indoor air at concentrations that warrant additional action as per the NYSDOH Guidance document (2006, updated 2017 and 2024) at 321 Warburton Ave.

An SSDS will be installed as part of the construction of the foundation as a remedy to mitigate the potential for soil vapor intrusion resulting from migration of contaminated soil vapor onto the Site. The SSDS will be activated, or a soil vapor intrusion evaluation will be conducted to determine if there is a need for the SSDS to be activated.

4.2 Potential Exposure Pathways - On-Site

4.2.1 Current Conditions

The Site is currently under active construction. The Site remedy includes excavation to remove soil at concentrations that exceed restricted residential soil cleanup objectives. An SSDS will be installed to address potential exposure from contaminated groundwater and soil vapor. Groundwater is not expected to be used for any purposes in the foreseeable future. Soil vapor sampling results indicate that engineering controls may be necessary to address potential exposure to these media until such time that sources have been remediated.

During future subsurface investigations and remediation where human exposure to contaminated soil, groundwater and soil vapor is possible, the potential exposure pathways (dermal absorption, inhalation, and ingestion) will be controlled through implementation of a HASP or Construction Health and Safety Plan (CHASP).

In the absence of engineering and institutional controls, potential exposure pathways exist for dermal absorption, ingestion, and/or inhalation during construction/remediation. Construction and remedial activities include demolition, excavation and off-Site disposal of impacted soil, potential localized dewatering of contaminated groundwater and construction of foundation components. These exposure pathways will be controlled through the implementation of a CHASP, CAMP, and use of vapor and dust suppression techniques.

4.3 Potential Exposure Pathways – Off-Site

The potential for off-Site soil vapor intrusion may warrant evaluation at the apartment buildings at 256 - 258 Woodworth Ave to the extent access is permitted.

The potential off-Site migration of Site contaminants in soil is not expected to result in a complete exposure pathway for current, construction and remediation, or future conditions for the following reasons:

- The Site is located in an urban area with continuous and relatively impervious surface covering (i.e. building foundations and concrete and asphalt paving),
- During Site redevelopment and remediation, the following protective measures will be implemented:

- Air monitoring will be conducted for particulates (i.e., dust) and VOCs during all intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-Site migration of soil and vapors.
- Vehicle tires and undercarriages will be washed as necessary prior to leaving the Site to prevent tracking material off-Site.

4.4 Evaluation of Human Health Exposure

Based upon the CSM and the review of environmental data, complete on-Site and off-Site exposure pathways do not appear to be present under current conditions. During construction and remediation there is a risk of exposure to humans from Site contaminants via exposure to soil. The HASP will mitigate this risk.

Complete exposure pathways have the following five elements: 1) a contaminant source; 2) a contaminant release and transport mechanism; 3) a point of exposure; 4) a route of exposure; and 5) a receptor population. A discussion of the five elements comprising a complete pathway as they pertain to the Site is provided below.

Contaminant release and transport mechanisms include contaminated soil transported as dust, contaminated groundwater flow and volatilization of contaminants from the soil and groundwater matrices to the soil vapor phase, and transport of existing soil vapor contaminants. Under current Site conditions, the likelihood of exposure to humans is limited, as the Site is vacant, mostly covered by impervious surfaces, and potable water is obtained from an off-Site source. Subsurface investigations were conducted in accordance with a HASP to minimize exposure risk.

4.4.1 Construction/Remediation Activities

During development and remediation, points of exposure include disturbed and exposed soil during excavation, dust and organic vapors generated during excavation, and contaminated groundwater that may be encountered during excavation and/or localized dewatering operations. Potential routes of exposure include ingestion and dermal absorption of contaminated soil. The receptor population includes construction and remediation workers and, to a lesser extent, the public adjacent to the Site.

The potential for completed exposure pathways is present since all five elements exist; however, the risk will be minimized by the implementation of appropriate health and safety measures during construction and remediation, such as monitoring the air for organic vapors and dust, using vapor and dust suppression measures, cleaning truck undercarriages prior to exiting the Site to prevent off-Site soil tracking, maintaining site security, and wearing the appropriate personal protective equipment (PPE).

In accordance with a Remedial Action Work Plan (RAWP), which will include a CHASP, a Soil/Materials Management Plan (SMMP), and a CAMP, measures such as conducting an air monitoring program, donning PPE, covering soil stockpiles, altering work sequencing, maintaining a secure construction entrance, proper housekeeping, and applying vapor and dust suppression measures to prevent off-Site migration of contaminants during construction will be implemented. Such measures will prevent completion of these potential exposure pathways.

4.4.2 Human Health Exposure Assessment Conclusions

Human exposure to Site contaminants is limited under current conditions on the Site. The primary exposure pathways are for dermal contact, ingestion, and inhalation of soil, soil vapor, or groundwater by Site investigation workers. The exposure risks can be avoided or minimized by following the appropriate health and safety and vapor and dust suppression measures outlined in the site-specific HASP during investigation activities.

The COPCs detected at the Site have the potential to have adverse effects on human health and may be absorbed after ingestion, inhalation, or dermal exposure. Acute exposure symptoms may include headache,

dizziness, unconsciousness, abdominal pain, nausea, diarrhea, and skin and eye irritation among other effects. Chronic exposure may cause harm to the central nervous system, liver, kidneys, and dermatitis among other effects. Many of the compounds are known or probable human carcinogens.

In the absence of institutional and engineering controls, there is potential for exposure during construction and remediation activities. The primary exposure pathways are:

- Dermal contact, ingestion and inhalation of contaminated soil, groundwater, or soil vapor by construction workers.
- Dermal contact, ingestion and inhalation of soil (dust) and inhalation of soil vapor by the community in the vicinity of the Site.

These exposure risks can be avoided or minimized by performing community air monitoring and by following the appropriate health and safety, vapor and dust suppression and Site security measures outlined in a site-specific CHASP.

The existence of a complete exposure pathway for Site contaminants to human receptors during proposed future conditions is unlikely, as contaminated soil will be excavated and transported to an off-Site disposal facility and any residual soil that remains will be below a cover system. The potable use of groundwater is prohibited and an SSDS will mitigate the potential for soil vapor intrusion from off-Site sources of SVOCs.

It is possible that a complete exposure pathway exists for the migration of Site contaminants to off-Site human receptors for current, construction phase, or future conditions. Monitoring and control measures will be used during investigation and construction to prevent community exposure to contaminated dust and vapors.

5.0 PRE-DESIGN INVESTIGATION – GROUNDWATER TREATMENT DESIGN

As part of the design process for the PRB, a pre-design investigation was conducted pursuant to the NYSDEC-approved work plan dated August 6, 2024. Specifically, the investigation included hydraulic conductivity testing and passive diffusion bag sampling.

5.1 Hydraulic Conductivity Testing

LaBella conducted slug testing to assess the hydraulic conductivity of the aquifer in the treatment zone and the groundwater velocity such that residence time (contact time) between the contaminated groundwater and the PRB could be assessed. Slug tests were performed on June 20th through 24th on three (3) monitoring wells (MW-2, MW-4 and MW-6) that are closest in proximity to the planned PRB. Due to suspect results for MW-6, an additional slug testing event was conducted on July 30th to re-test MW-6 and perform tests on wells MW-1, MW-1D and MW-5 to obtain additional data and utilize averages across the site. The slug testing was consistent with the USEPA Standard Operating Procedures: Slug Tests dated April 29, 2020, included as an attachment to the PDI Work Plan.

The methods for conducting the slug tests were as follows:

- Initially, the static water level was measured/recorded prior to initiating the test.
- A pressure transducer was placed into the wells listed above, one well at a time, to record water level measurements over time.
- A PVC slug of known volume was dropped into the well to quickly displace a volume of water.
- Pressure transducer measurements were collected throughout; however, periodic manual static water level meter readings were also collected.
- Subsequent to allowing water levels to return to pre-test levels, the slug was rapidly removed to conduct a 'slug out' (i.e., negative displacement) test.
- The above procedures were repeated for each well to assess repeatability of the test/results.

 The above testing results were utilized to calculate hydraulic conductivity for each well tested using the Hvorslev Method and this information was utilized along with groundwater gradients to develop a groundwater velocity across the Site/PRB area.

In addition to the above testing that was included in the Pre-Design Investigation Work Plan, wells MW-1D, MW-5 and MW-6 also were tested by utilizing a slug of potable water. Specifically, the following water slugs were utilized:

Well	5-Gallon	10-Gallon
MW-1D	1 test	
MW-5	2 tests	
MW-6	2 tests	1 test

The slug testing results were assessed utilizing AQTESOLVE version 4.5.002 to graph and interpret the results and obtain a range of hydraulic conductivities for each well. Specifically, AQTESOLVE was utilized to estimate hydraulic conductivities; however, a visual assessment of the conductivity graphs was also conducted to estimate the conductivities. A table summarizing the results of the slug testing is included in **Appendix A**. In addition, the AQTESOLVE results are also presented in **Appendix A**. As shown conductivities ranged from 1.12×10^{-2} cm/sec to 6.29×10^{-4} cm/sec

The estimated hydraulic conductivities for each well were utilized to assess groundwater velocity across the Site. This was determined by utilizing the groundwater contours developed from static water levels collected on December 19, 2023 and obtaining a hydraulic gradient for the site. The hydraulic gradient was developed by averaging gradients from 2 well pairs. This resulted in a range of groundwater flow velocities between 0.18 to 0.46 ft/day. The groundwater velocities are summarized in **Appendix B.**

5.2 Groundwater Sampling

Passive Diffusion Bag (PDB) sampling was conducted to assess the vertical profile of contamination and evaluate any significant variations in PCE concentration with depth to determine if placement of additional PRB treatment chemical is warranted in different vertical zones. The sampling also included the collection of geochemical parameters in order to evaluate existing conditions (e.g., anaerobic vs. aerobic, reductive state, etc.) with respect to the potential for Monitored Natural Attenuation (MNA).

Passive Diffusion Bag Sampling

PDBs were deployed in three (3) wells (MW-2, MW-4, and MW-6) that are closest in proximity to the planned PRB. The PDBs were deployed at the following depths in each well (i.e. at the top, middle, and bottom of the water column). Prior to deployment the depths were confirmed based on the depth-to-water measurements at the time the PDB was deployed.

Monitoring Well	Well Screen Depth (FT BGS)	Depth of PDB (FT BGS – Center of PDB)				
		60				
MW-2	-	66				
		73.5				
		59				
MW-4	56 - 76	66.5				
		73.5				
		65				
MW-6	56 - 76	70				
		73.5				

The PDBs were deployed on May 21st (MW-2 & MW-4) and May 28th (MW-6) and sampled on June 11th. The PDBs are left in the well for a minimum of 2 weeks for the PDB to equilibrate with the water in the well and allow for diffusion of contaminants into the PDB such that a sample representative of the groundwater column/depth is obtained. The PDBs were deployed and sampled in accordance with the EON Standard Operating Procedure for Groundwater Sampling Using Passive Diffusion Samplers which was included as an attachment with the PDI Work Plan. The groundwater removed from each well was sampled for Volatile Organic Compounds (VOCs) via EPA Method 8260.

The results of the PDB sampling are provided on **Table 1** which is included in **Appendix C**. As indicated in Table 1, a majority of the VOCs were below the laboratory method detection limit. The data is further summarized below to indicate only significant detections. All other VOCs were either non-detect or estimated concentrations and below the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 groundwater standards and/or guidance values.

Well	Well Sample Depth (ft. bgs)		TCE	Acetone		
DAIA! O	60	6,000	< 25	< 250		
MW-2	66 73.5	7,800 8,400	< 25 < 50	82 J < 500		
	59	79	2.3	80		
MW-4	66.5	38	0.94	99		
	73.5	170	3.6	110		
	56	160	0.45 J	9.4		
MW-6	65	2,200	< 10	<100		
	73.5	2,400	< 12	< 120		

Notes:

- < denotes contaminant not detected above detection limit shown.
- J denotes estimated concentration.
- Bold denotes concentration exceeds NYSDEC TOGS 1.1.1 Groundwater Standard.

As shown in the above table, perchloroethylene (PCE) was the most significant constituent detected which is consistent with prior groundwater testing data. Acetone was also detected in each well at varying concentrations. PCE concentrations generally increased with depth; however, the concentrations for each bottom sample were similar to concentrations in the middle samples (i.e., did not increase by orders of magnitude). The bottom sample concentrations for each well are not representative of free product/dense non-aqueous phase liquid.

Degradation products of PCE (e.g., trichloroethylene (TCE), cis/trans 1,2-dichloroethylene (1,2-DCE) and vinyl chloride (VC)) were limited to some low-level detections of TCE. Based on the VOC sampling data there does not appear to be any significant degradation/natural attenuation of PCE occurring (further discussed in the MNA parameter assessment below).

MNA Parameters Assessment

All of the monitoring wells on-site (MW-1, MW-1D, MW-2, MW-3, MW-4, MW-5, and MW-6) were sampled for baseline conditions prior to the installation of the PRB. The wells were sampled via low-flow sampling techniques consistent with the procedures utilized during the Remedial Investigation. Purge water was containerized and run through a carbon filter and discharged to the ground surface. During sampling, the following parameters were measured and recorded at three (3) to five (5) minute intervals:

- Water level drawdown (<0.3')
- Temperature (+/- 3%)
- pH (+/- 0.1 unit)
- Dissolved oxygen (+/- 10%)

- Specific conductance (+/- 3%)
- Oxidation reduction potential (+/- 10 millivolts)
- Turbidity (+/- 10%, <50 NTU for metals)

Samples were also collected when the parameters were stabilized within the specified range for three (3) consecutive intervals. The following samples were also collected and transported to an ELAP-certified laboratory under standard chain of custody procedures for analysis of:

- Alkalinity, EPA Method 031.2
- Chloride, EPA Method 0300
- Hardness, EPA Method 130.1
- nitrate/nitrite, EPA Method 353.2
- sulfate/sulfide, EPA Method 300/376.1
- Ferrous iron, EPA Method 3010
- Total Organic Carbon (TOC), EPA Method 9060

Additionally, samples were also collected from the wells without PDBs deployed (MW-1, MW-1D, MW-3, and MW-5) for TCL VOCs by USEPA Method 8260. This sampling was completed to confirm prior results have not significantly changed.

5.3 Pre-Design Investigation Results

The results of this sampling are summarized in **Table 2** included in **Attachment C**. This sampling was not conducted to evaluate a full site wide MNA approach but rather to assess existing conditions and if natural attenuation could be expected to contribute to degradation based on groundwater conditions. To assess this, the United States Environmental Protection Agency (USEPA) Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Ground Water, September 1998 was utilized to compare the values with MNA scoring parameters. It should be noted that a full MNA assessment/scoring was not completed, rather the values listed were utilized for comparison purposes only as part of a general assessment. Specifically, Table 2.3 (Analytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradation Processes) was utilized to assess the indicator parameters. A background sample was not collected. The results of the comparisons are summarized below:

- Alkalinity an alkalinity range typical for favorable MNA conditions is 2 times background. Although a background sample was not collected, alkalinity in 'clean' wells (MW-3 and MW-5) was in the same range as impacted wells thus indicating alkalinity conditions may not be favorable for MNA.
- Nitrate Nitrate concentrations of less than 1 mg/L indicate favorable MNA conditions. Nitrate concentrations at the Site ranged between 2.6 and 6.5 mg/L except for MW-1 (0.151 mg/L). Based on this data, nitrate conditions may not be favorable for MNA.
- Total Organic Carbon (TOC) TOC concentrations above 20 mg/L indicate favorable MNA conditions.
 TOC concentrations ranged between 0.33 and 2.1 mg/L thus indicating TOC conditions may not be favorable for MNA.
- Ferrous Iron (Iron II) Iron II concentrations above 1 mg/L indicate favorable MNA conditions. Iron II concentrations ranged between 0.08 and 0.16 mg/L thus indicating Iron II conditions may not be favorable for MNA.
- Sulfate Sulfate concentrations below 20 mg/L indicate favorable MNA conditions. Sulfate concentrations ranged between 26.8 and 55.7 mg/L, except for MW-1 (7.44 mg/L) thus indicating Sulfate conditions may not be favorable for MNA.
- Chloride a chloride range typical for favorable MNA conditions is 2 times background. Although a
 background sample was not collected, chloride in 'clean' wells (MW-3 (4.06 mg/L) and MW-5 (347

mg/L)) was in the same range as impacted wells thus indicating alkalinity conditions may not be favorable for MNA.

- Dissolved Oxygen (DO) DO concentrations less than 0.5 mg/L indicate favorable conditions for MNA. DO was measured in the field and concentrations at the Site ranged from 0.6 to 5.3 mg/L thus indicating that conditions are not anaerobic.
- Oxidation Reduction Potential (ORP) ORP readings less than 50 mV indicate the reductive dichlorination pathway is possible and less than -100 mV indicates reductive dichlorination pathway is likely. ORP readings were measured in the field and ranged from -104 mV (MW-3) to +120 mV (MW-2). The ORP readings generally indicated that reducing conditions were only present in some locations.

Based on the above, MNA via anaerobic reductive dichlorination does not appear to be contributing to any significant degradation of PCE in groundwater at the Site, which is consistent with a lack of degradation products as indicated by the VOC testing data.

The findings from the Remedial Investigation (Section 3.0) and PDI (Section 5.0) were the basis of the PRB design to achieve Remedial Action Objectives. Per the July 23, 2024 NYSDEC Decision Document, the selected remedy for groundwater includes in-situ chemical reduction (ISCR) to treat PCE, TCE, and other PCE breakdown compounds in groundwater as it passes through the PRB. The PRB will be installed perpendicular to groundwater flow in the approximate location shown in **Figure 4**. The general groundwater flow direction is toward the west, towards the Hudson River.

6.0 MONITORING WELL INSTALLATION AND SAMPLING

6.1 Monitoring Well Network

A total of four new monitoring wells will be installed at the Site to monitor the performance of the PRB. These wells will replace the monitoring well network that has been decommissioned due to site redevelopment. The new well network will consist of one upgradient well couple installed on the northeast portion of the Site, including one shallow overburden well and one deep well extending to the top of bedrock. In addition, two monitoring wells will be installed downgradient of the PRB, directly west of the future building. The construction of these wells will depend on the results of the sampling of the upgradient well. The proposed well locations are indicated on **Figure 4**.

6.2 Monitoring Well Construction

The monitoring well installation will be conducted in accordance with NYSDEC DER-10. The following sections detail the well construction methodology for the upgradient and downgradient wells. The objective is to confirm baseline upgradient groundwater conditions above bedrock at depths similar to those which were sampled as part of the PDI while also collecting deeper baseline samples to confirm the vertical extent of contamination. The two upgradient well screens will have at least a 5-foot interval between well screen depths, with the objective of obtaining data from the two sampling intervals that are not biased or impacted from a zone known to be impacted. Downgradient monitoring well construction (i.e., screened interval) would be determined based upon an evaluation of these results.

6.2.1 Upgradient Well Construction

One upgradient well couple will be installed on the northeast portion of the Site, including one well (MW-2S) extending to 76 ft bgs and one well (MW-2D) extending to the top of bedrock (assumed to be approximately 90 ft bgs). MW-2D will be installed first, with the objective of determining bedrock depth. Based upon bedrock depth, the MW-2S well screen interval may be modified accordingly. The proposed well screen depths are included on **Figure 5**.

The upgradient deep well (MW-2D) will be advanced with a Sonic rig to the top of bedrock (assumed to be approximately 90 ft bgs) with a minimum 6-inch diameter borehole and continuous soil sampling from the ground surface to the top of bedrock. The upgradient deep well will be constructed of Schedule 40- 2-inch diameter PVC with 5 feet of 10-slot well screen (85 to 90 ft bgs). A sand filter pack will be installed around the annulus from the bottom of the borehole to 2-feet above the well screen, and 1 foot of choke sand will be installed above the sand pack, then cement-bentonite grout, finished with a J-Plug cap and flush-mount cover set in concrete.

The upgradient shallow well (MW-2S) will be advanced with a Sonic rig to a depth of 76 ft bgs, with a minimum 6-inch diameter borehole. The upgradient shallow well will be constructed of Schedule 40 2-inch diameter PVC with 20 feet of 10-slot well screen (56 to 76 ft bgs). A sand filter pack will be installed around the annulus from the bottom of the borehole to 2-feet above the well screen, and 1 foot of choke sand will be installed above the sand pack, then cement-bentonite grout, finished with a J-Plug cap and flush-mount cover set in concrete.

The wells will be developed immediately after construction with a downhole submersible pump. Water quality parameters including temperature, pH, conductivity, oxidation-reduction potential (ORP), dissolved oxygen, and turbidity, will be collected and recorded at a frequency of not less than once per well volume removed. Ten well volumes will be removed, at a minimum.

The upgradient wells will be sampled for VOCs. The initial sampling will be completed via Passive Diffusion Bags (PDBs). Three PDBs will be placed in MW-2S at the same depths previously sampled in **Section 5.2** and one PDB will be placed in MW-2D at the center of the 5-foot screen. Subsequent (post PRB installation) sampling is summarized in **Section 6.3**. Following receipt of the sample analytical data, downgradient wells will be installed at locations directly west of the future building, pursuant to discussions with NYSDEC, as indicated on **Figure 4B**. Sampling methodology is further detailed in **Section 6.3**.

6.2.2 Downgradient Well Construction

Following receipt of sample analytical data from the upgradient wells, the downgradient wells will be installed. Final well details are subject to change based upon results from the upgradient wells. The downgradient well screens will be installed at the depth elevations as the upgradient well screens, assuming a flat bedrock layer.

Two downgradient wells will be installed downgradient of the PRB, directly west of the future building. The downgradient wells will be advanced with a Sonic rig to a depth of 71 ft bgs, with a minimum 6-inch diameter borehole and continuous soil sampling from the ground surface to 71 ft in depth. The downgradient wells will be constructed of Schedule 40 2-inch diameter PVC with 20 feet of 10-slot well screen (51 to 71 ft bgs). A sand filter pack will be installed around the annulus from the bottom of the borehole to 2-feet above the well screen, and 1 foot of choke sand will be installed above the sand pack, then cement-bentonite grout, finished with a J-Plug cap and flush-mount cover set in concrete.

The wells will be developed immediately after construction with a downhole submersible pump. Water quality parameters including temperature, pH, conductivity, and turbidity, will be collected and recorded at a frequency of not less than once per well volume removed. Three well volumes will be removed, at a minimum.

The downgradient wells will be sampled, prior to installing the PRB, via low-flow groundwater sampling methodologies, refer to **Section 6.3**.

After completion of the well installations, all the monitoring well locations will be surveyed by a licensed surveyor.

6.3 Groundwater Sampling Methodology

The monitoring well installation and groundwater sampling procedures will be conducted in accordance with NYSDEC DER-10. Groundwater samples will be analyzed for VOCs via EPA Method 8260 and samples will be transferred to laboratory supplied glassware and packed in a cooler with ice and shipped under proper chain-of-custody procedures to a NYSDOH ELAP certified laboratory for analysis individually following NYSDEC ASP - Category B Deliverables. QA/QC samples such as trip blanks, duplicate samples, matrix spike/matrix spike duplicate samples (MS/MSDS), and field blanks will be collected.

Each groundwater monitoring event is anticipated to consist of the following:

- Prior to sampling, LaBella field staff will collect headspace readings and static water level measurements from each well. Headspace readings will be collected by measuring VOC concentrations with a photo ionization detector (PID) immediately after removing the cap from each well. The PID will be capable of measuring VOCs in the parts per billion (PPB) range and utilize an 11.7 eV lamp. Static water level readings will be collected using an oil-water interface probe. The probe will also be extended to the bottom of each well to gauge for non-aqueous phase liquid (NAPL).
- A submersible pump will be utilized for low flow sampling. During sampling, the pump intake will be set in the zone of highest contamination based on the vertical profiling via PDB sampling.
- Pumping rates will be used to ensure water level stabilization in accordance with EPA low-flow procedures. Water quality parameters including turbidity, pH, temperature, specific conductivity, dissolved oxygen, oxidation reduction potential, and depth to water will be recorded at 5-minute intervals. If 5-minute intervals are not sufficient to ensure one flow-through cell volume is "turned over" between measurements based on the flow rate required to achieve water level stabilization, the measurement interval will be extended appropriately. Samples will be collected when the parameters have stabilized for three (3) consecutive monitoring intervals to within the specified ranges below:
 - Turbidity (+/- 10%, <50 NTU for metals)
 - \circ pH (+/-0.1)
 - Temperature (+/- 3%)
 - Specific conductivity (+/- 3%)
 - Dissolved Oxygen (+/- 10%)
 - Oxidation reduction potential (+/- 10 millivolts)

Flow rates used to achieve water level stabilization will remain constant throughout purging, indicator parameter monitoring and during sample collection.

6.4 Post-PRB Installation Monitoring

Groundwater Monitoring

To assess the efficacy of the treatment chemical and the installation of the PRB, groundwater monitoring shall occur according to the following schedule:

- Initial effectiveness / performance monitoring event (approximately three months after injection work is completed)
- Continuing effectiveness / performance monitoring event (approximately six months after injection work is completed)

The 3- and 6-month monitoring events shall utilize low-flow sampling methodology and include an analysis of standard groundwater quality parameters (DO, ORP, pH, specific conductance, turbidity, and temperature). Groundwater samples will be collected and analyzed for the following:

• USEPA TCL and NYSDEC CP-51-list VOCs using USEPA Method 8260;

In addition to the VOC testing, the initial two (2) rounds only will include:

- Dissolved gases (methane, ethane, and ethene) using USEPA approved method (see also *Technical Guidance for the Natural Attenuation Indicators: Methane, Ethane, and Ethene*, Revised February 21, 2002 https://clu-in.org/download/contaminantfocus/dnapl/Treatment Technologies/Ethene-ethane-methane-analysis.pdf)
- Cations manganese and iron using USEPA Method 6020; and,
- Inorganic anions chloride and sulfate using USEPA Method 300.0.

Each monitoring event shall include sampling of the same wells sampled during the baseline sampling event. QA/QC samples will be collected during each sampling event, including:

- One (1) Blind Field Duplicate;
- One (1) Matrix Spike / Matrix Spike Duplicate; and,
- One (1) Trip Blank.

QA/QC samples will be collected for analysis of target contaminants of concern only (i.e., VOCs). QA/QC samples will not be collected for dissolved gases.

The samples will be analyzed by an Environmental Laboratory Accreditation Program (ELAP) certified laboratory and an ASP Category B Deliverable will be provided. In addition, electronic data deliverables will be submitted to the NYSDEC. Data Usability Summary Reports (DUSRs) will be prepared by a third-party data validator.

Subsequent future sampling will be defined in the future Site Management Plan. However, it is anticipated that the long-term groundwater monitoring will be limited to VOCs only and will be collected via PDBs.

7.0 IN-SITU CHEMICAL TREATMENT / PERMEABLE REACTIVE BARRIER INSTALLATION

The findings from the Remedial Investigation and PDI were the basis of the PRB design to achieve Remedial Action Objectives. Per the July 23, 2024 NYSDEC Decision Document, the selected remedy for groundwater includes in-situ chemical reduction (ISCR) to treat PCE, TCE, and other PCE breakdown compounds in groundwater as it passes through the PRB. The PRB will be installed perpendicular to groundwater flow in the approximate location shown in **Figures 4**. The general groundwater flow direction is to the west, towards the Hudson River.

Zero valent iron, a chemical reducing agent, or similar approved compound from the list in Section 5.1.2, will be injected into the subsurface to reduce the contaminant concentrations in an approximately 3,400 square foot area. The final product and volume will depend on final PRB details; however, the lateral extent of the PRB will extend approximately 170 feet in length by 20 feet in width and located in the upper eastern portion of the site where PCE, TCE, and other PCE breakdown compounds were elevated in groundwater. Based on the groundwater velocity range of up to 0.46 ft/day, a 20-ft. wide PRB will allow for a minimum of 43 days or residence time for groundwater passing through the PRB.

The northern end of the proposed PRB will initiate at the northern site boundary adjacent to Point Street. The PRB will extend to the south and terminate approximately 36 ft south of MW-6. Vertically, the PRB will extend from approximately 55 to 76 ft bgs. The western end of the PRB will consist of approximately four points parallel to Point Street. The vertical extent of the PRB will be confirmed following installation and sampling of the upgradient monitoring wells. Each individual injection point will have an approximate 10' lateral radius of influence.

The PRB location has been determined by the following:

- The PRB is most effective when installed perpendicular to groundwater flow;
- Plume mapping generated during the RI further confirms groundwater flow direction and logical placement of the barrier;

- The barrier spans the apparent width and depth of the plume (limiting the possibility that contaminants circumvent the barrier);
- The terminal depth of the barrier is at the depth where equipment refusal was encountered during investigation drilling activities;
- The location is on-Site.
- The location is fully accessible.

Figure 4 illustrates the lateral extent of the PRB, including estimated injection point locations and area of direct influence (i.e., injection points are shown as circles having 10' radius). **Figure 6** includes a cross section of the subsurface soil profile and illustrates the vertical extent of the PRB.

Vertical injection points will be utilized to deliver the injection chemical to the subsurface. An estimated fourteen (14) injection points will be advanced across the length of the PRB (unless an additional row is deemed warranted based on residence time).

The number and spacing of injection points and quantity and concentration of material were calculated to provide adequate area of influence / coverage to the entire footprint of the PRB. The PRB injection methodology is detailed in **the following sections.**

7.1 Injection Point Installation

Injection points will be advanced using a Sonic drill rig (or equivalent). Prior to initiating drilling activities, the drive rods and associated equipment, will be steam cleaned or washed with an Alconox® and water solution. This cleaning procedure will occur between each location. Injection points will be advanced with 2-inch (or larger) inside diameter (ID) cores through overburden soils.

All cuttings will be placed on poly and covered with poly sheeting for subsequent characterization and management. Liquids from drilling operations will be containerized (e.g., 20,000 gallon frac tank) for subsequent characterization and management.

7.1.1 Direct Injection Methodology

Approximately 50,000 lbs of ISCR (final quantity to be determined after deep well sampling) will be mixed and placed into 14 injection points. Material will be injected in 2-ft. intervals vertically from the bottom of each location. Based on an estimated 50,000 total lbs., the injections are targeted to provide 119 lbs/ft. for each injection location which we anticipate will achieve a radius of influence (ROI) of 10 ft at each injection point. It should be noted that the injection points nearest the upgradient/deep wells will be off-set from the other PRB injection points in order to minimize the potential for short-circuiting/daylighting via these wells. These will either be installed vertically or potentially via angle drilling.

If the initial injection zone appears to provide inadequate coverage or due to issues with selected injection points, additional injection points will be placed west of the injection locations on **Figure 4** to ensure adequate PRB distribution and coverage.

7.1.2 Injection Materials

An ISCR material will be utilized. The final product selection will be based on the final PRB limits and contaminant concentrations. However, the ISCR materials listed below are capable of producing anaerobic reductive dichlorination and one of these is anticipated for use:

- Zero-Valent Iron (ZVI)
- ZVI with an emulsified oil

- EHC®: by EvonikERD, EZVI, Provect-IR
- S-Micro ZVI

The selected product will be provided to NYSDEC for approval prior to use.

7.2 Injection Wells

If issues with direct injection arise (such as daylighting), the use of injection wells may become necessary.

Each injection well will be constructed with 4-inch diameter casing with 30-ft. of 4-inch diameter 20-slot screen (set between 50-80 ft. bgs). Sand pack will extend from 2-ft. below screen to 2-ft. above screen and with appropriate sand pack compatible with 20-slot screen. A 2-foot minimum bentonite seal will be installed to above the sand and grouted to surface. The wells will be completed with flush mount well covers. The top of the wells will be installed with cam-lock fitting, threaded pipe or other for connection of injection equipment.

Packers may also be used to seal off the casing, thereby directing the slurry horizontally into the formation and preventing the injected material from coming back up the casing. Packering of the injection wells would occur at 2-ft intervals to create definite intervals for injection.

The NYSDEC shall be notified prior to the use of injection wells. Injections into existing monitoring wells will not occur.

7.3 Injection Oversight / Monitoring

At each injection point, LaBella will monitor and record injection pressure and approximate flow rate of each injection (elapsed time divided by injection volume). Each injection point will include an injection log that includes the mass and volume of material injected at each interval.

During injection activities, LaBella will monitor the surrounding area for evidence of daylighting a minimum of three times per day. If daylighting is observed, response actions will include:

- Pausing injection activities:
- Taking steps to stop the material from free-flowing (i.e., spill containment materials will be on-site and readily available next to the injection area);
- Recovering and appropriately containerizing the material to the maximum extent feasible using spill containment materials (i.e. pads, booms, berms, etc.), buckets, drum vacuums, etc.;
- Considering the use of injection wells;
- Sealing completed injection points with grout; and,
- Reassessing the injection plan (i.e. reducing the quantity of material to be injected at each location/depth, adding/removing/relocating injection points, etc.).

The NYSDEC will be contacted for approval prior to making any significant changes to the injection plan (i.e., adding, removing, or relocating injection points).

7.3.1 Daily Reporting

Daily reports will be submitted to the NYSDEC per the NYSDEC-approved RAWP.

7.3.2 Community Air Monitoring Program

The Community Air Monitoring Plan (CAMP) will be implemented and executed in accordance with 29 Code of Federal Regulations (CFR) 1910.120(h) and the NYSDOH Generic CAMP. Upwind and downwind CAMP will be conducted during all ground intrusive activities. The Site-Specific CAMP dated July 2024 will be adhered to for all PRB work.

7.4 Permitting

Prior to any injection activities occurring, an Underground Injection Control Program permit from the USEPA shall be obtained. The permit shall be shared with the NYSDEC and kept on-site during injection activities. The permit will also be included as an attachment in the Final Engineering Report.

7.5 Soil Staging Methods

Soil excavated during remedial work is anticipated to be directly loaded to the degree practicable; however, some temporary stockpiles may be required to facilitate disposal. Hay bales will be used as needed near discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

In order to prevent cross-contamination of non-hazardous and hazardous soil during soil staging activities, different colored tarps will be used to differentiate the non-hazardous from the hazardous soil (e.g., clear tarp for non-hazardous soil versus black tarp for hazardous soil).

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be provided to the NYSDEC in the Daily Summary Reports.

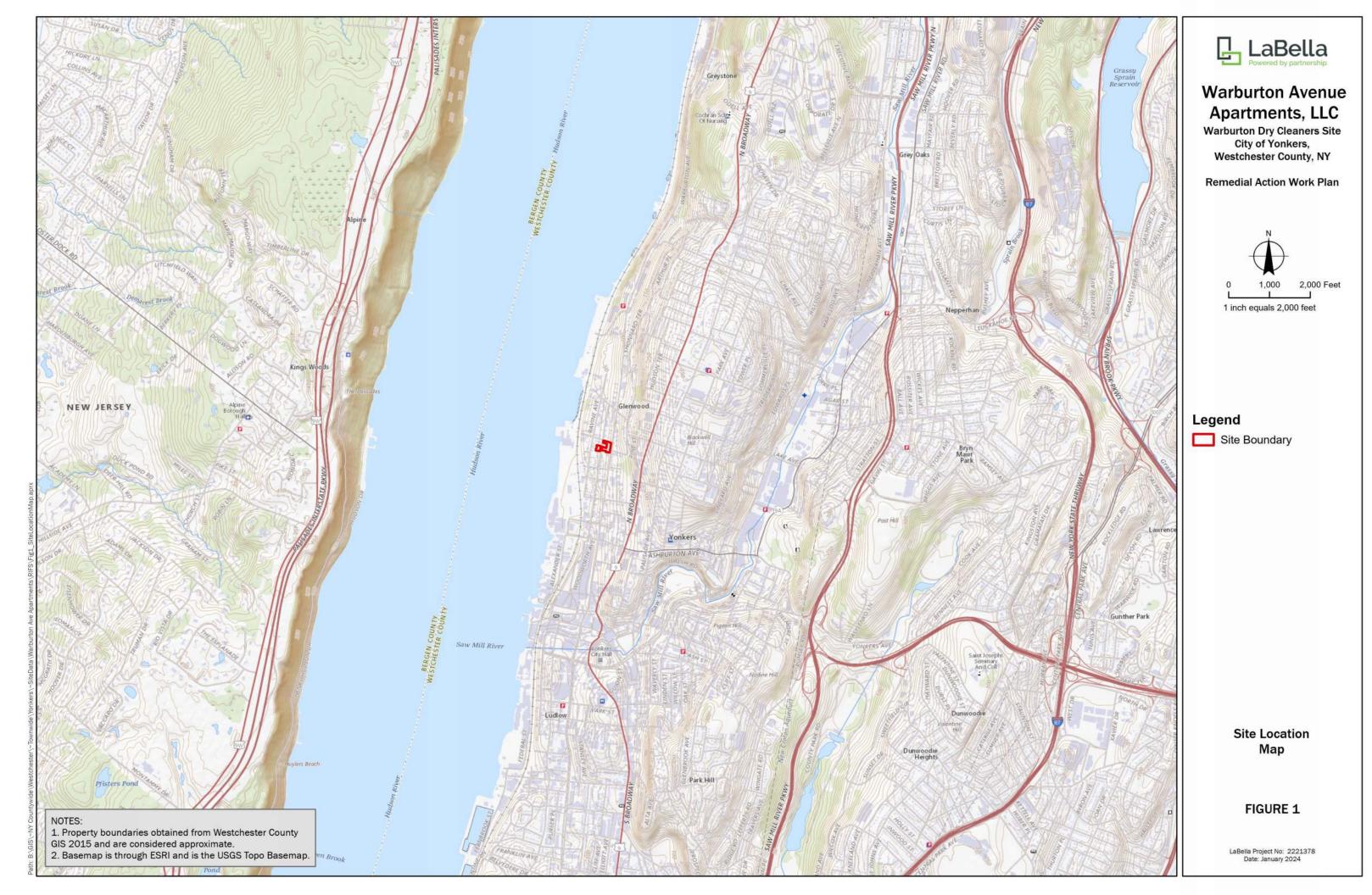
7.6 Decontamination

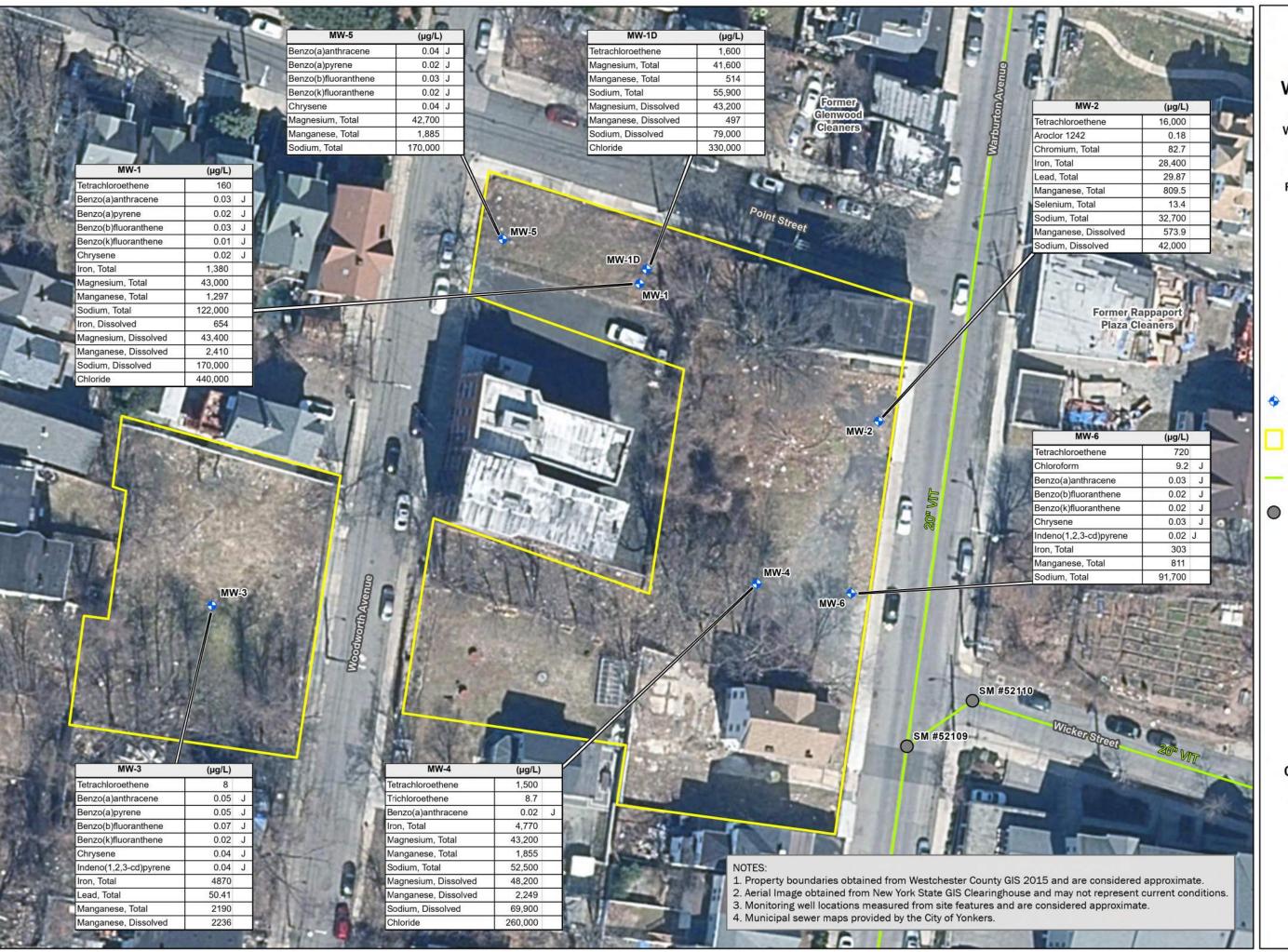
Dedicated machinery (including excavation equipment, soil loading equipment, and other equipment that would contact soils) will be utilized in the hazardous and non-hazardous areas, to the degree practicable. Therefore, it is anticipated that decontamination of equipment between hazardous and non-hazardous areas will not be necessary routinely, but will be completed any time equipment moves between hazardous and non-hazardous areas.

Equipment will be decontaminated by removing all soils from excavator tracks and buckets via shovels and brooms and the soil will be disposed of with the appropriate material (i.e., soil removed from equipment that handled hazardous waste will be disposed of as hazardous waste). In the event that material can be removed and the equipment can be visually deemed clean (i.e., only de minimis amounts of soil remain) then the equipment can be removed from the excavation area for use in other areas and/or demobilized from the Site. However, in the event that the equipment is muddy or can't be thoroughly decontaminated via dry methods, additional decontamination will be completed via power washing or other methods to remove soils until only de minimis amounts remain. Any wash waters will be containerized and properly disposed off-Site.

8.0 SCHEDULE

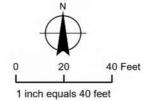

The proposed schedule for the work outlined in this PRB Work Plan is noted below.


Field Work:


- The upgradient monitoring wells will be installed by Q1 2025
- The downgradient monitoring wells will be installed following receipt of the sample results from the upgradient monitoring wells in Q1 2025
- PRB installation will commence on April 30, 2025 and be completed by June 24, 2025.

Deliverables:

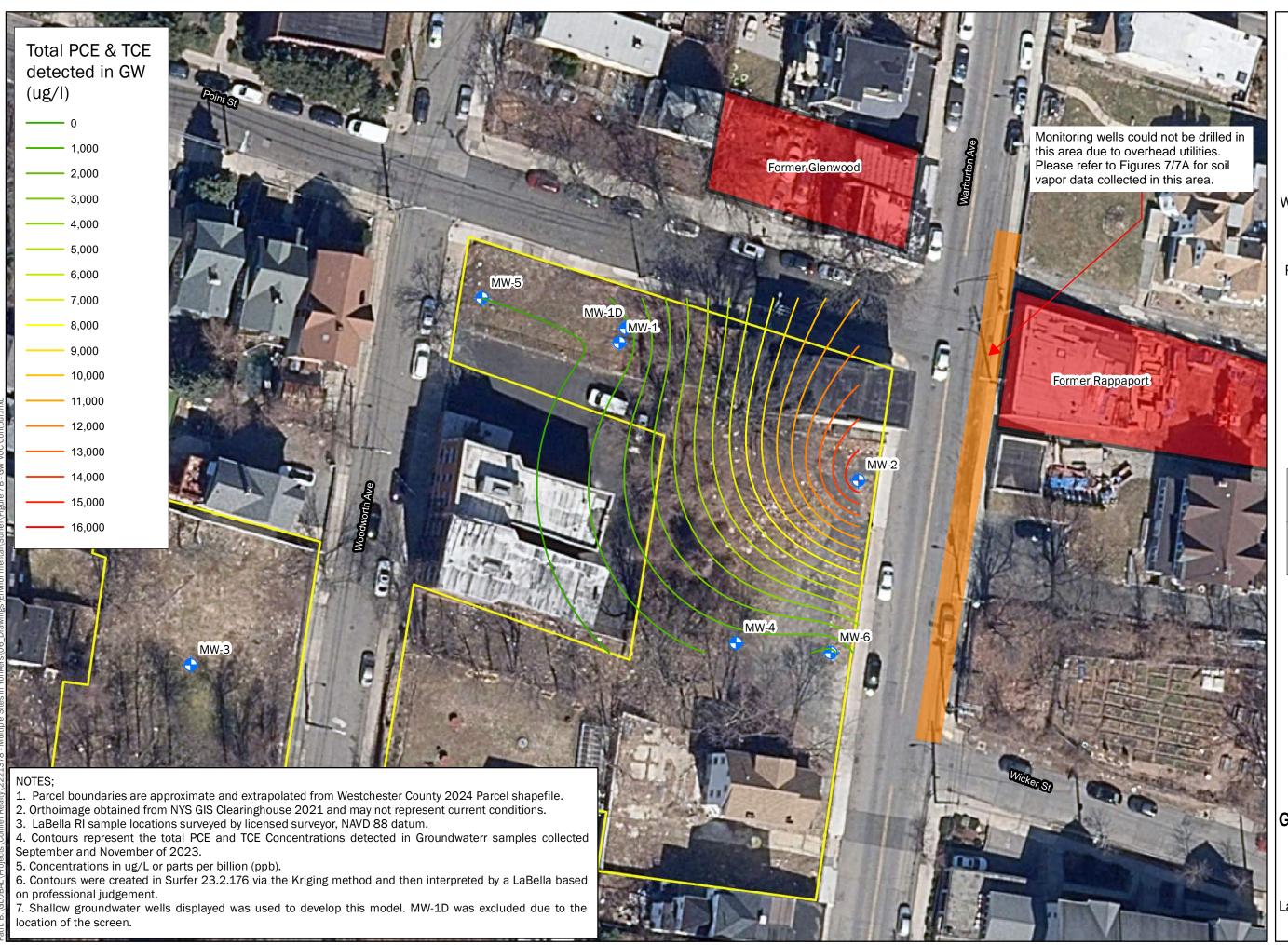
• The PRB installation will be documented in the Final Engineering Report (FER).



Warburton Avenue Apartments, LLC

Warburton Dry Cleaners Site City of Yonkers, Westchester County, NY

Remedial Action Work Plan

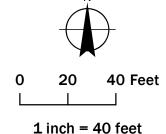


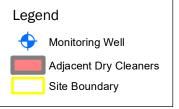
- Approximate Location of Monitoring Well
- Site Boundary
- Approximate Location of Sewer Line
- Sewer Manhole

Groundwater Sampling Locations with AWQS Exceedances

FIGURE 2

LaBella Project No: 2221378 Date: March 2024

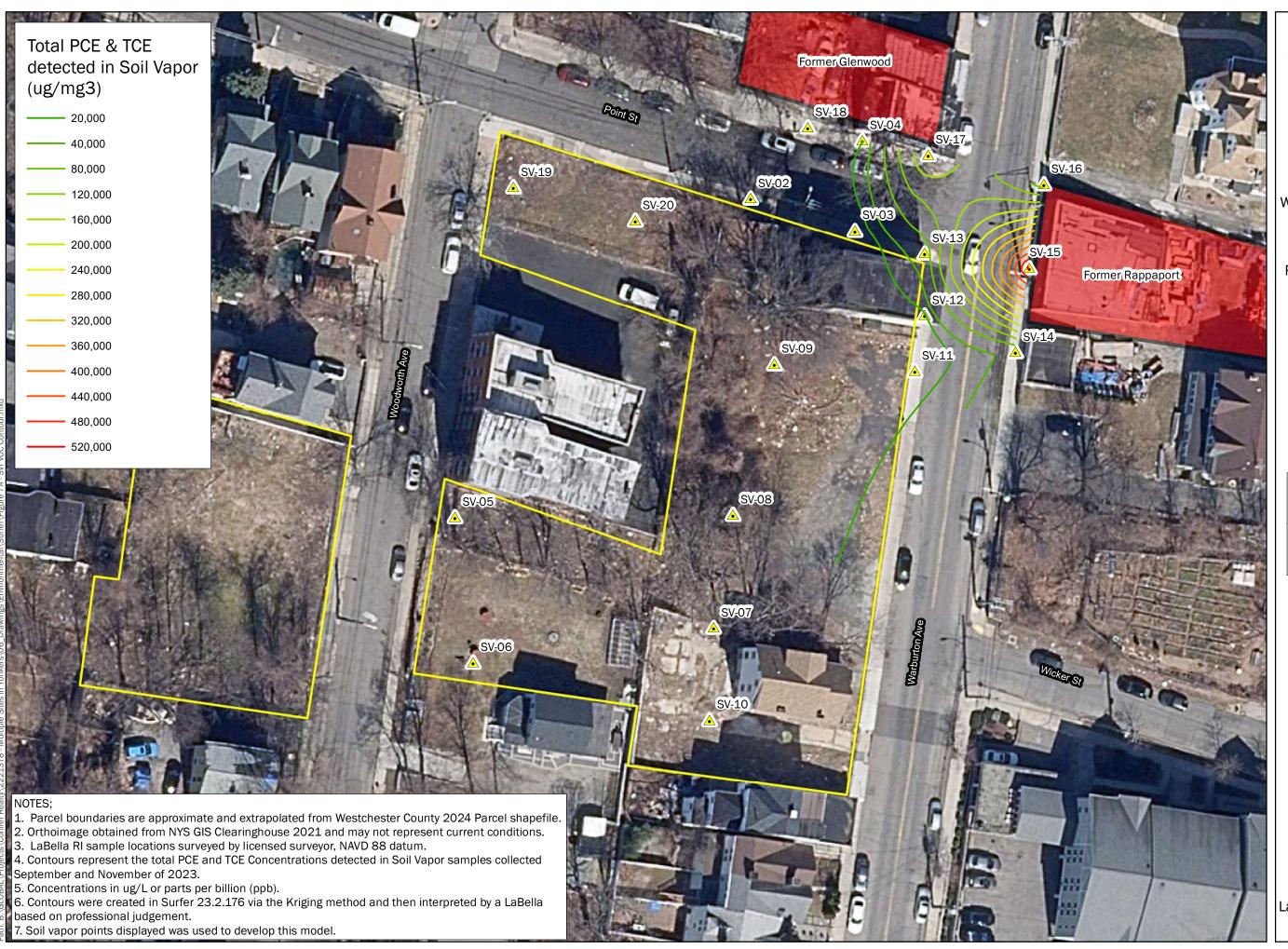




Warburton Avenue, Aparments, LLC

Warburton Dry Cleaners Site City of Yonkers Westchester County, NY

Remedial Action Work Plan

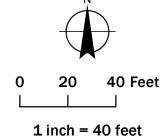


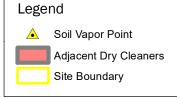
Intended to print as 11" x 17".

PCE & TCE in Groundwater Contour Map FIGURE 3A

LaBella Project No: 222079

Date: 3/15/2024

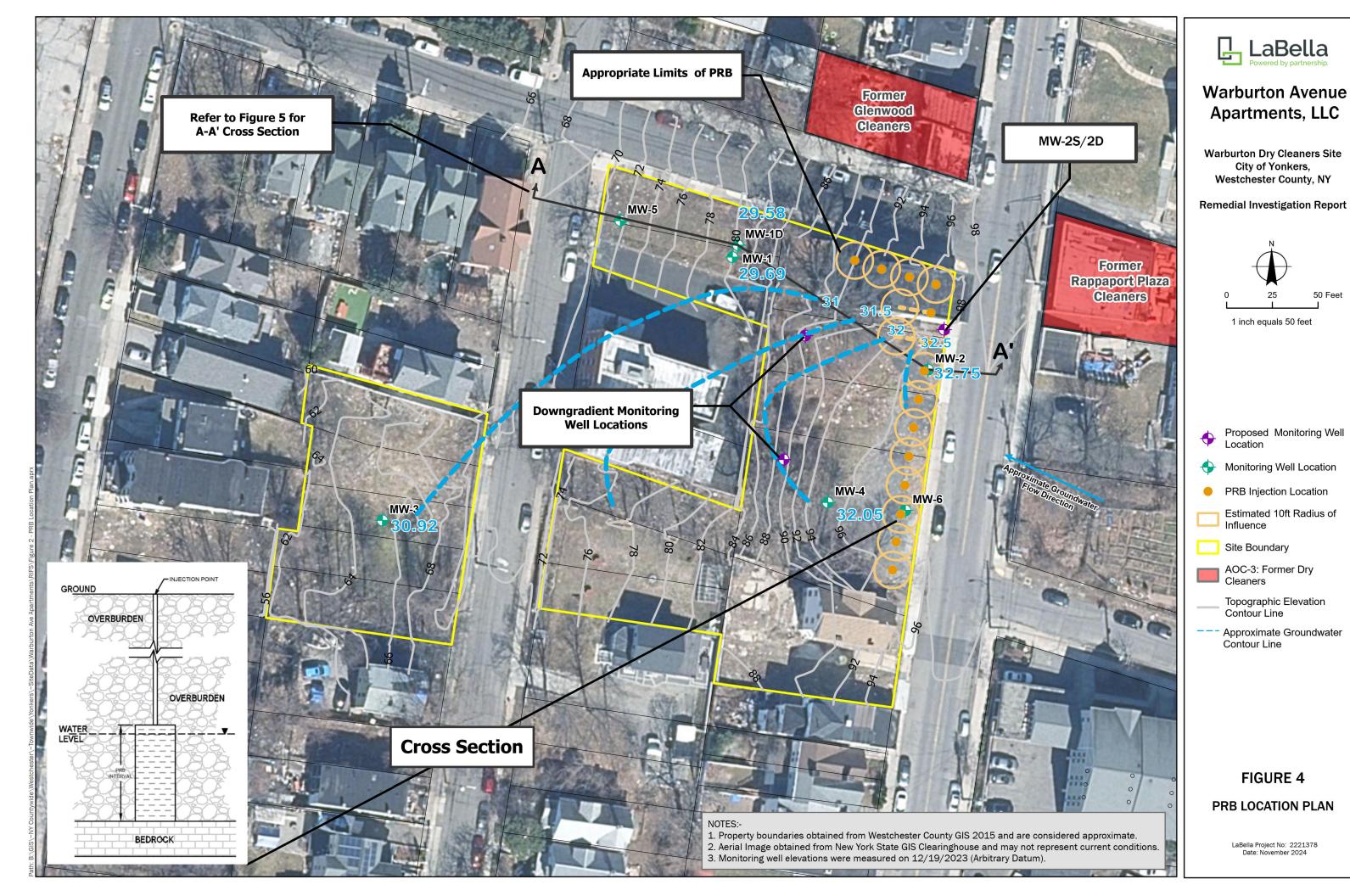


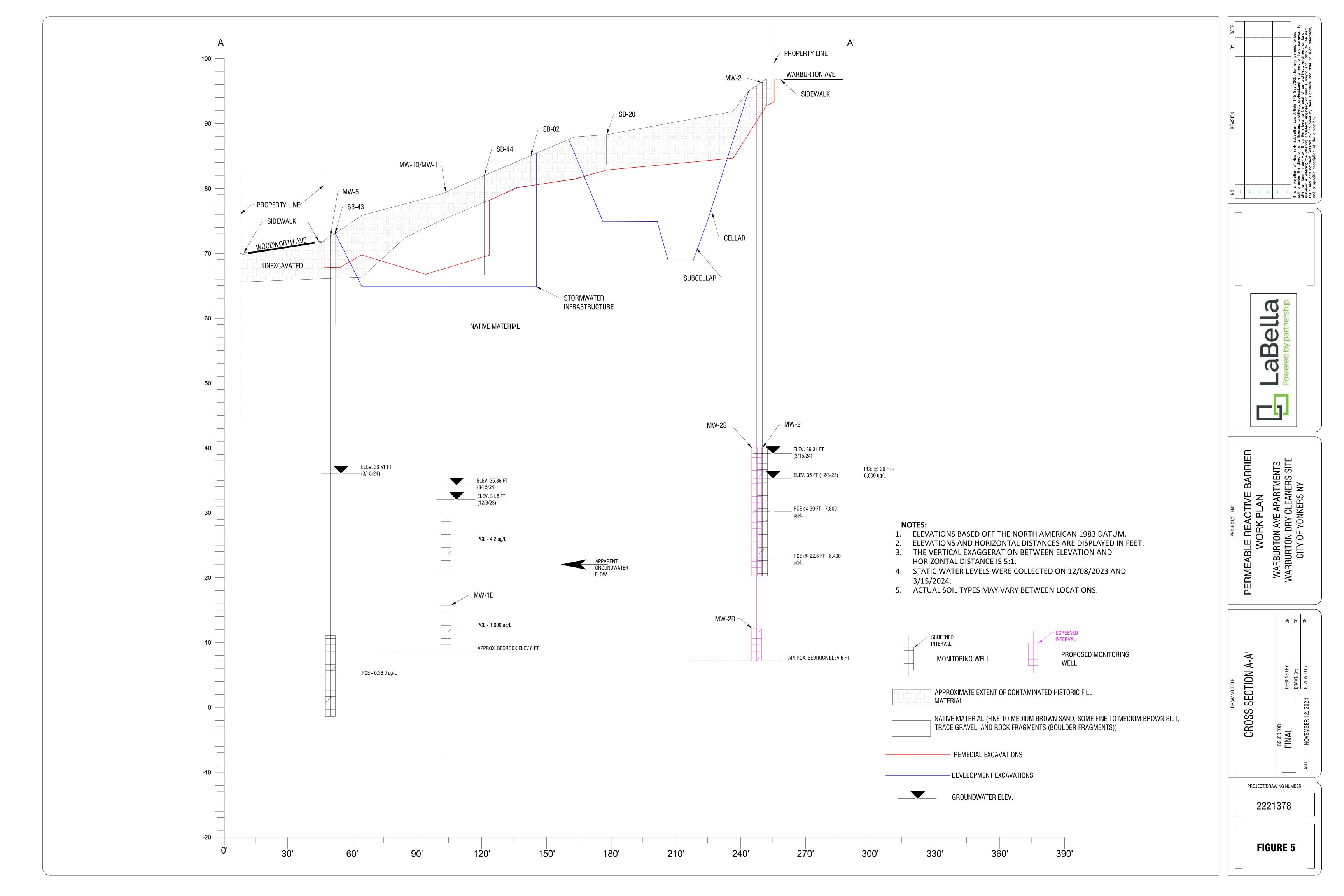


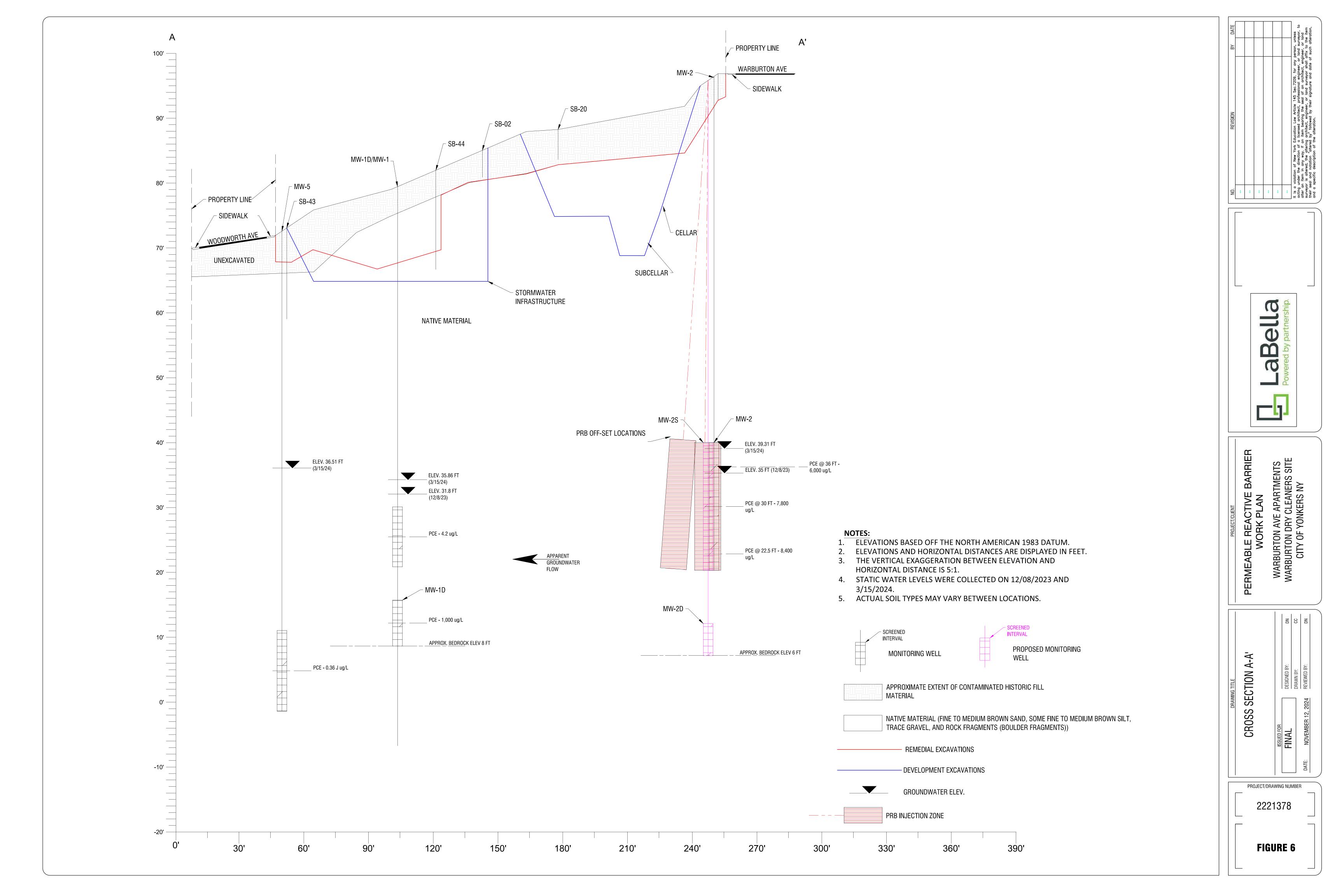
Warburton Avenue, Aparments, LLC

Warburton Dry Cleaners Site City of Yonkers Westchester County, NY

Remedial Action Work Plan


Intended to print as 11" x 1


PCE & TCE in Soil Vapor Contour Map


FIGURE 3B

LaBella Project No: 222079

Date: 3/15/2024

APPENDIX A

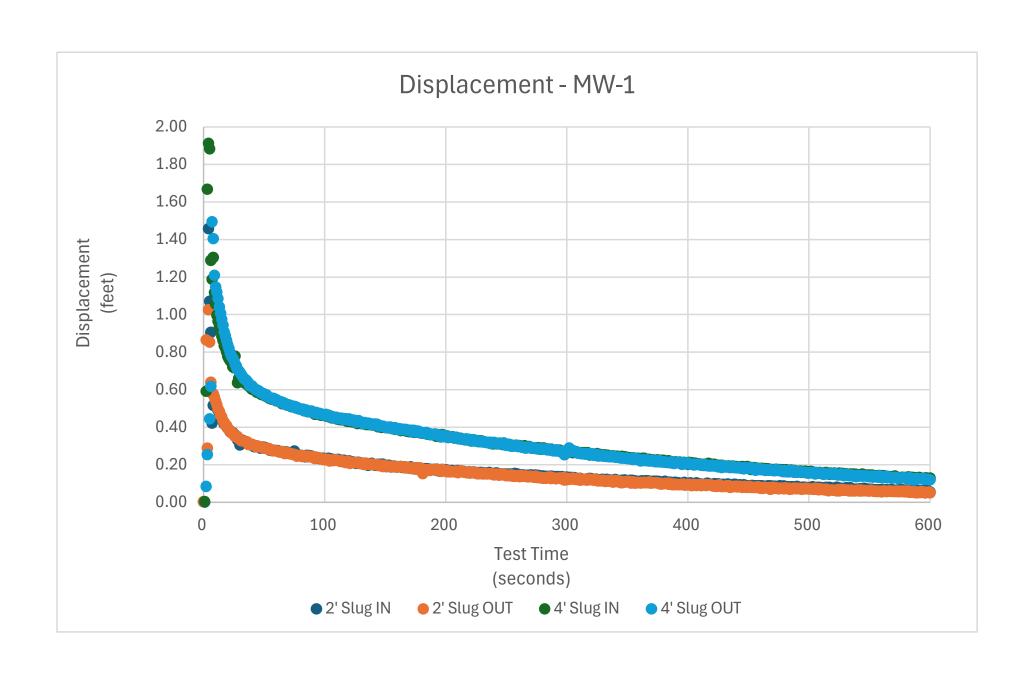
Slug Testing Summary

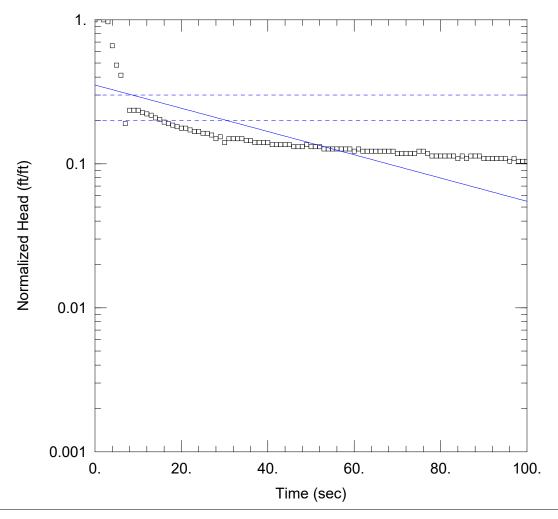
AQTESOLV Data Interpretation

Summary of Hydraulic Conductivity Testing Results June-July, 2024 Warburton Dry Cleaners Site 321 Warburton Avenue Yonkers, New York

	Slug Length	Slug IN/OUT	Test	June, 2024			July, 2024								
Well ID				AQTESOLVE SOLUTION			AQTESOLVE SOLUTION				VISUAL SOLUTION				
		31ug 114/001		Hydraulic Conductivity* Average Hydra			ulic Conductivity	-	onductivity*	Average Hydraulic Conductivity		Hydraulic Conductivity*			lic Conductivity
				cm/sec	ft/day	cm/sec	ft/day	cm/sec	ft/day	cm/sec	ft/day	cm/sec	ft/day	cm/sec	ft/day
MW-1	2.0	IN	1					2.02E-03	5.72	1.24E-03		2.73E-03	7.73	2.87E-03	8.14
		OUT	1		NOT	TESTED		1.06E-03	3.01		3.52	3.29E-03	9.32		
	4.0	IN	1					1.07E-03	3.02			2.22E-03	6.29		
		OUT	1					8.22E-04	2.33			3.26E-03	9.23		
l	2.0	IN	1					4.53E-03	12.84			6.82E-03	19.32		
		OUT	1					5.56E-03	15.75		1	7.33E-03	20.77		
MW-1D	4.0	IN	1	NOT TESTED				5.40E-03	15.31	4.96E-03	14.06	7.01E-03	19.87	6.77E-03	19.17
		OUT	1					5.04E-03	14.28			7.49E-03	21.23		
	5 Gallon	IN	1					4.27E-03	12.10			5.18E-03	14.68		
	2.0	IN	1	6.84E-04	1.94										
MW-2		OUT	1	6.06E-04	1.72	6.19E-04	1.75	NOT TESTED							
	4.0	IN	1	6.54E-04	1.85	0.132 04	15								
		OUT	1	5.33E-04	1.51										
	2.0	IN	1	2.13E-04	0.60	2.26E-04	0.64								
1			2	2.01E-04	-04 0.57			NOT TESTED							
MW-4		OUT	1	2.50E-04	0.71										
			2	2.58E-04	0.73										
	4.0	IN	1	1.71E-04	0.48										
		OUT	1	2.66E-04	0.75										
	2.0	IN						9.89E-03	28.02			1.34E-02	37.92	1.38E-02	
		OUT						1.20E-02	33.95	8.01E-03 2		2.25E-02	63.68		39.01
MW-5	4.0	IN			NOT	TESTED		6.04E-03	17.12		22.70	9.99E-03	28.31		
10100-3	4.0	OUT			NOT	TESTED		9.17E-03	26.00			1.99E-02	56.40		33.01
	5 Gallon	IN	TEST-1					6.18E-03	17.52			8.85E-03	25.08		
		IN	TEST-2					4.81E-03	13.62			8.00E-03	22.67		
	2.0	IN	1	1.29E-02	36.42										
	2.0	OUT	1	1.35E-02	38.37										
		IN.	1	2.03E-02	57.59	1.12E-02	31.78	NOT TESTED							
	4.0	IN	2	6.00E-03	16.99	1.126-02	31.76								
MW-6**		OUT	1	1.02E-02	28.82										
		001	2	4.42E-03	12.52										
ĺ	5 Gallon	IN	TEST-1					1.30E-03	3.68	1.50E-03 4	4.25	3.42E-03	9.68	1.54E-03	4.36
		IN	TEST-2	1	NOT	TESTED		1.89E-03	5.34			3.26E-03	9.23		
	10 Gallon	IN	TEST-1	ĺ				1.32E-03	3.74			2.56E-03	7.25		
Notes:	otes:									•					

Notes:


Slug tests conducted June 20, 2024 Through June 24, 2024 and July 30,2024


^{*} Hydraulic conductivity given in centimeters per second and feet per day

^{**} MW-6 results from June, 2024 testing are considered questionable

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-1 (July, 2024)

JULY, 2024 SLUG TESTING (2ND ROUND)

Data Set: \...\MW-1 2' SLUG IN AUTO.aqt

Date: 08/08/24 Time: 13:21:22

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

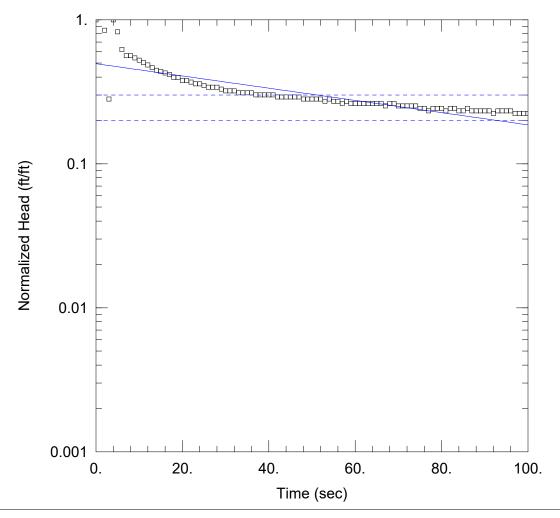
Test Well: MW-1 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 2' Slug IN (AUTO))

Initial Displacement: 2.21 ft Static Water Column Height: 13.97 ft


Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002019 cm/sec y0 = 0.7787 ft

JULY, 2024 SLUG TESTING (2ND ROUND)

Data Set: \...\MW-1 2' SLUG OUT AUTO.aqt

Date: 08/08/24 Time: 13:20:59

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: 321 Warburton Ave, Yonkers, NY

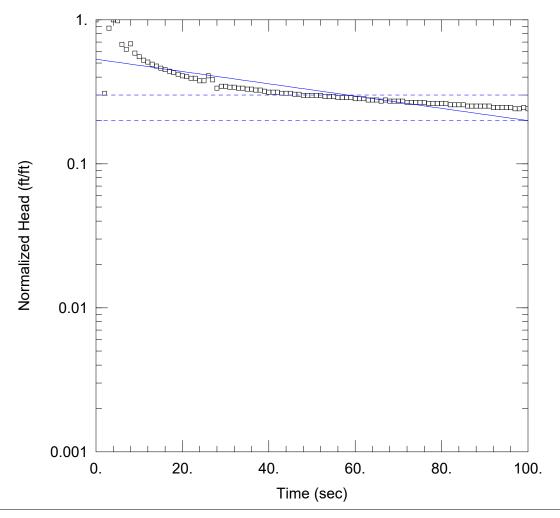
Test Well: MW-1 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 2' Slug OUT (AUTO))

Initial Displacement: 1.03 ft Static Water Column Height: 11.03 ft


Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001062 cm/sec y0 = 0.5101 ft

JULY, 2024 SLUG TESTING (2ND ROUND)

Data Set: \...\MW-1 4' SLUG IN AUTO.aqt

Date: 08/08/24 Time: 13:20:12

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

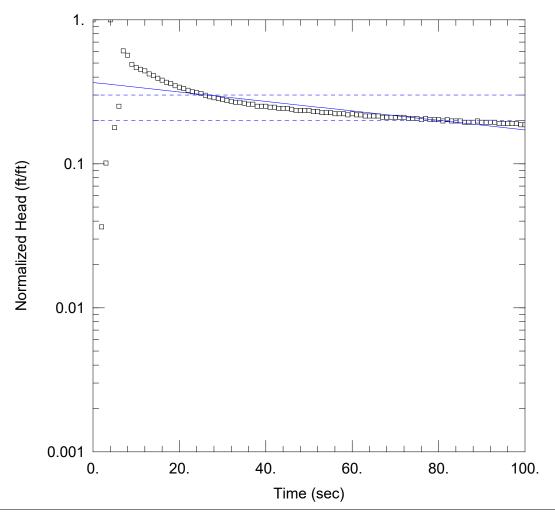
Test Well: MW-1 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 4' Slug IN (AUTO))

Initial Displacement: 1.91 ft Static Water Column Height: 13.97 ft


Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001066 cm/sec y0 = 1.016 ft

Data Set: \...\MW-1 4' SLUG OUT AUTO.aqt

Date: 08/08/24 Time: 13:21:37

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

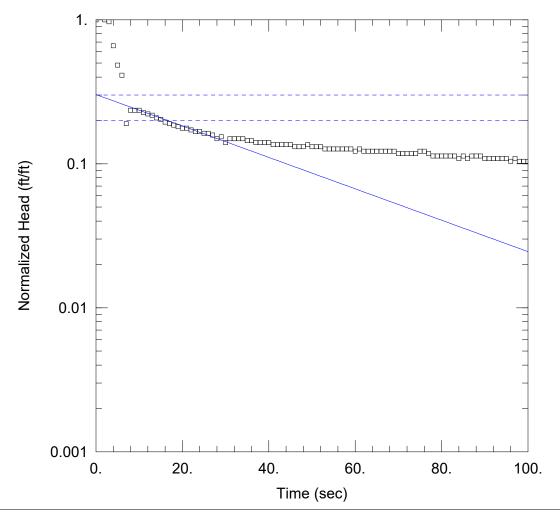
Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 4' Slug OUT (AUTO))

Initial Displacement: 2.47 ft Static Water Column Height: 13.97 ft

Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0008222 cm/sec y0 = 0.9058 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

AQTESOLVE - VISUAL SOLUTION

Data Set: \...\MW-1 2' SLUG IN VISUAL.aqt

Date: 08/08/24 Time: 13:29:37

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

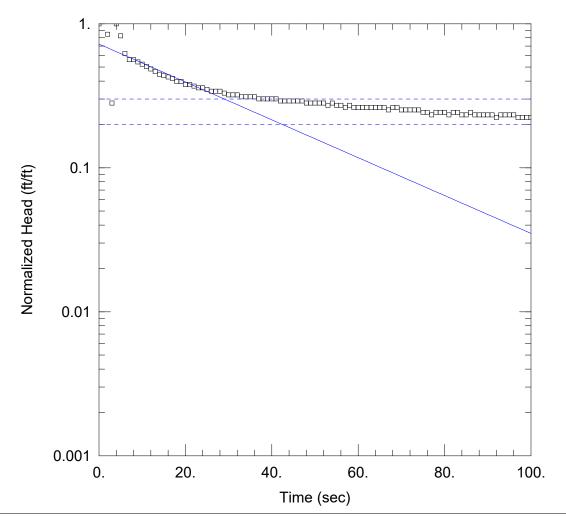
Test Well: MW-1 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 2' Slug IN (VISUAL))

Initial Displacement: 2.21 ft Static Water Column Height: 13.97 ft


Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.002728 cm/sec y0 = 0.6685 ft

Data Set: \...\MW-1 2' SLUG OUT VISUAL.aqt

Date: 08/08/24 Time: 13:29:22

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

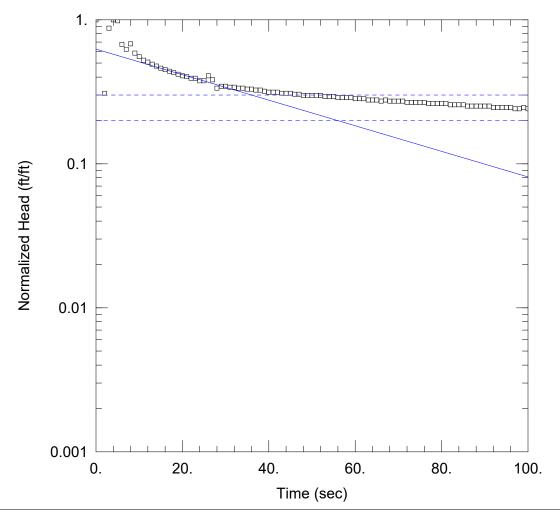
Test Well: MW-1 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 2' Slug OUT (VISUAL))

Initial Displacement: 1.03 ft Static Water Column Height: 11.03 ft


Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003288 cm/sec y0 = 0.7441 ft

Data Set: \...\MW-1 4' SLUG IN VISUAL.aqt

Date: 08/08/24 Time: 13:30:15

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

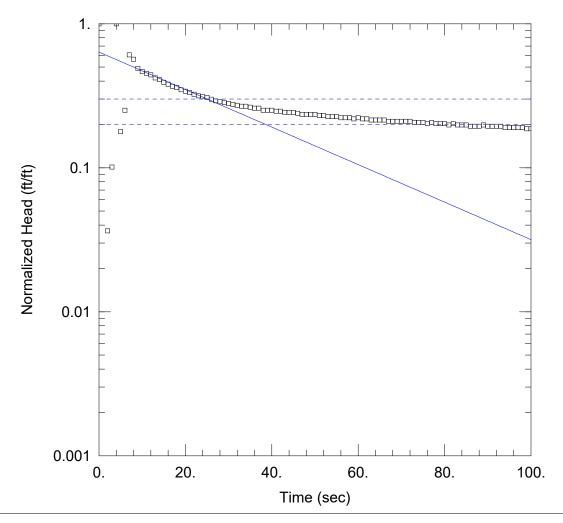
Test Well: MW-1 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1 - 4' Slug IN (VISUAL))

Initial Displacement: 1.91 ft Static Water Column Height: 13.97 ft


Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00222 cm/sec y0 = 1.195 ft

Data Set: \...\MW-1 4' SLUG OUT VISUAL.aqt

Date: 08/08/24 Time: 13:29:53

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

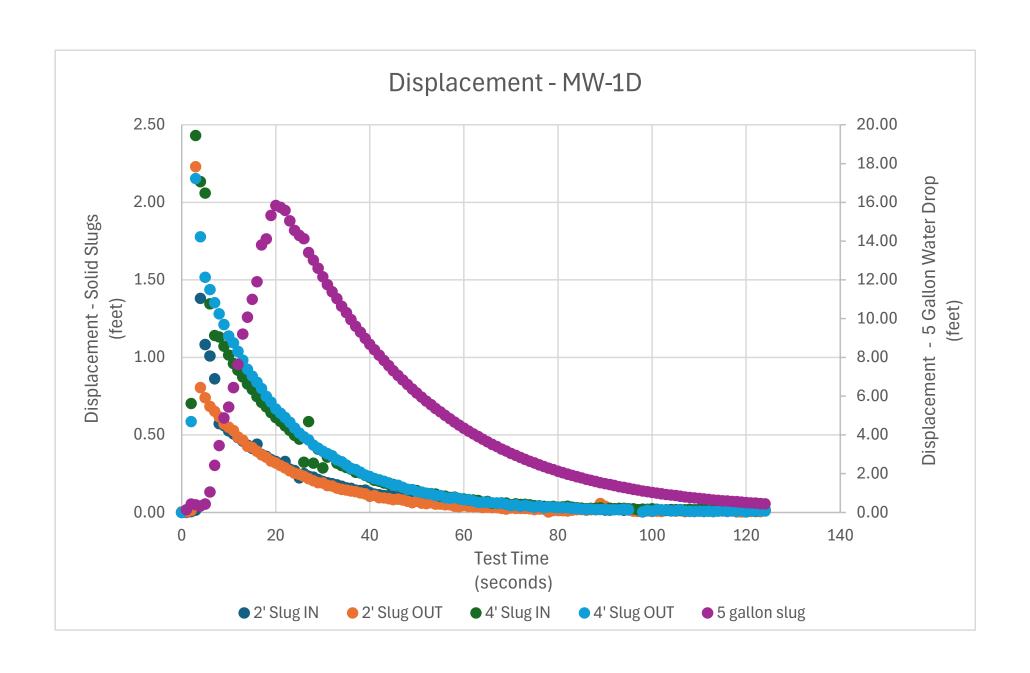
Saturated Thickness: 13.97 ft Anisotropy Ratio (Kz/Kr): 1.

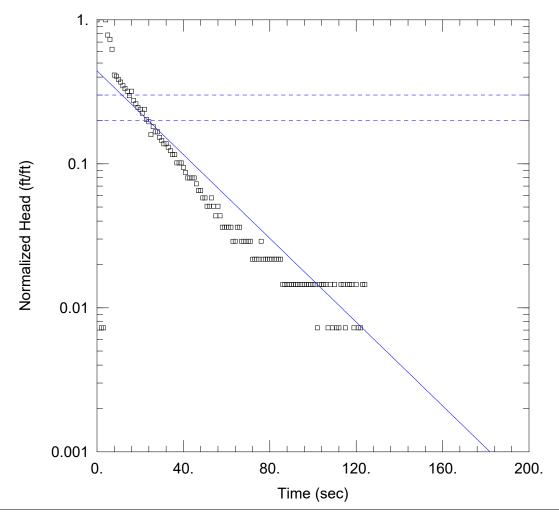
WELL DATA (MW-1 - 4' Slug OUT (VISUAL))

Initial Displacement: 2.47 ft Static Water Column Height: 13.97 ft

Total Well Penetration Depth: 13.97 ft Screen Length: 10. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003257 cm/sec y0 = 1.57 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-1D (July, 2024)

Data Set: \...\MW-1D 2' SLUG IN AUTO.aqt

Date: 08/08/24 Time: 13:23:00

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

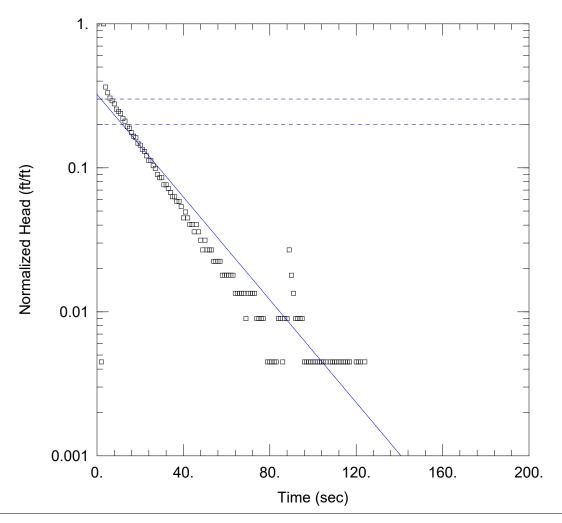
Test Well: MW-1D (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: <u>27.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-1D - 2' Slug IN (AUTO))

Initial Displacement: 1.38 ft Static Water Column Height: 27. ft


Total Well Penetration Depth: 27. ft Screen Length: 9. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00453 cm/sec y0 = 0.6097 ft

Data Set: \...\MW-1D 2' SLUG OUT AUTO.aqt

Date: 08/08/24 Time: 13:22:44

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

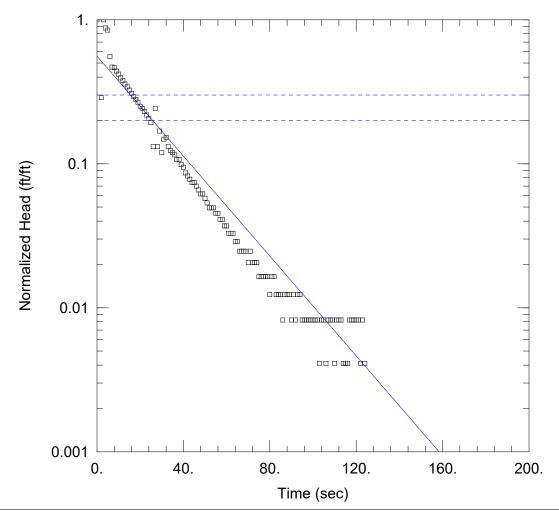
Test Well: MW-1D (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 27. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1D - 2' Slug OUT (AUTO))

Initial Displacement: 2.23 ft Static Water Column Height: 27. ft


Total Well Penetration Depth: <u>27.</u> ft Screen Length: <u>9.</u> ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.005556 cm/sec y0 = 0.7216 ft

Data Set: \...\MW-1D 4' SLUG IN AUTO.aqt

Date: 08/08/24 Time: 13:22:28

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

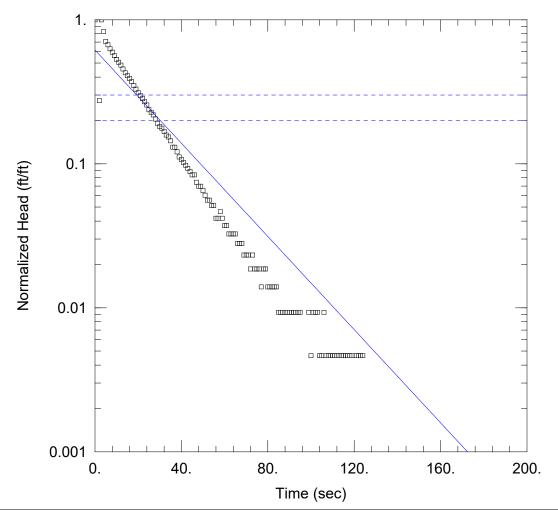
Test Well: MW-1D (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: <u>27.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-1D - 4' Slug IN (AUTO))

Initial Displacement: 2.43 ft Static Water Column Height: 27. ft


Total Well Penetration Depth: 27. ft Screen Length: 9. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.005404 cm/sec y0 = 1.358 ft

Data Set: \...\MW-1D 4' SLUG OUT AUTO.aqt

Date: 08/08/24 Time: 13:22:13

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1D (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 27. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1D - 4' Slug OUT (AUTO))

Initial Displacement: 2.15 ft

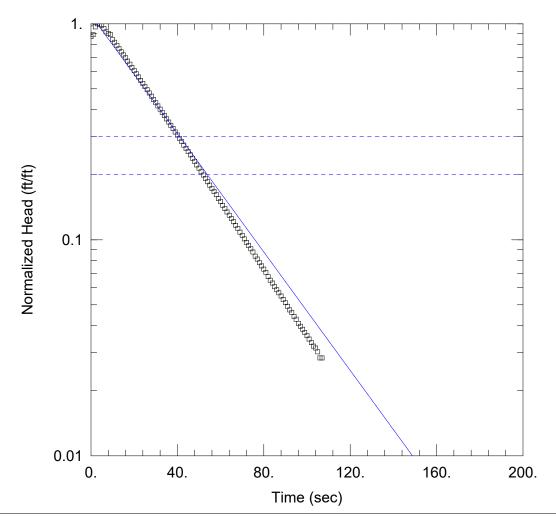
Static Water Column Height: 27. ft

Total Well Penetration Depth: 27. ft

Screen Length: 9. ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.00504 cm/sec

y0 = 1.324 ft

Data Set: \...\MW-1D 5 Gallon AUTO.aqt

Date: 08/08/24 Time: 13:23:16

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1D (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

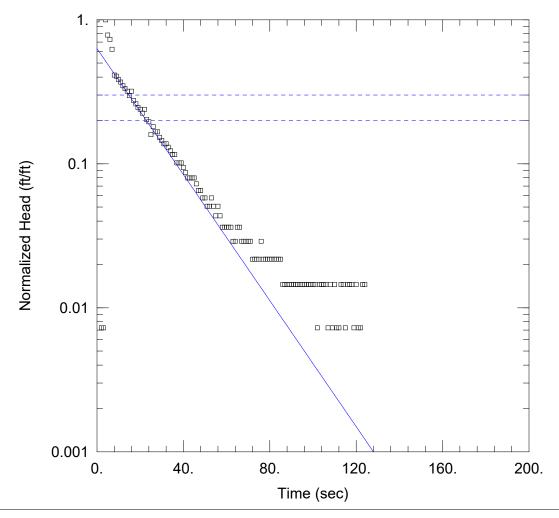
Saturated Thickness: <u>27.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-1D - 5 Gallon (AUTO))

Initial Displacement: 15.85 ft Static Water Column Height: 27. ft

Total Well Penetration Depth: 27. ft Screen Length: 9. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004268 cm/sec y0 = 17.36 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

AQTESOLVE - VISUAL SOLUTION

Data Set: \...\MW-1D 2' SLUG IN VISUAL.aqt

Date: 08/08/24 Time: 13:31:41

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

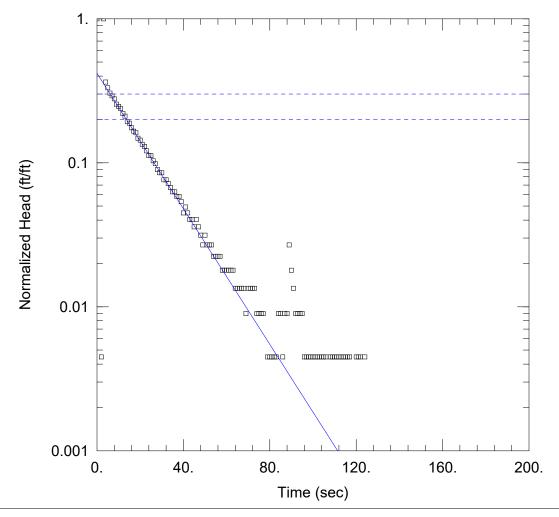
Test Well: MW-1D (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 27. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1D - 2' Slug IN (VISUAL))

Initial Displacement: 1.38 ft Static Water Column Height: 27. ft


Total Well Penetration Depth: <u>27.</u> ft Screen Length: <u>9.</u> ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.006816 cm/sec y0 = 0.8707 ft

Data Set: \...\MW-1D 2' SLUG OUT VISUAL.aqt

Date: 08/08/24 Time: 13:31:25

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1D (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 27. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1D - 2' Slug OUT (VISUAL))

Initial Displacement: 2.23 ft

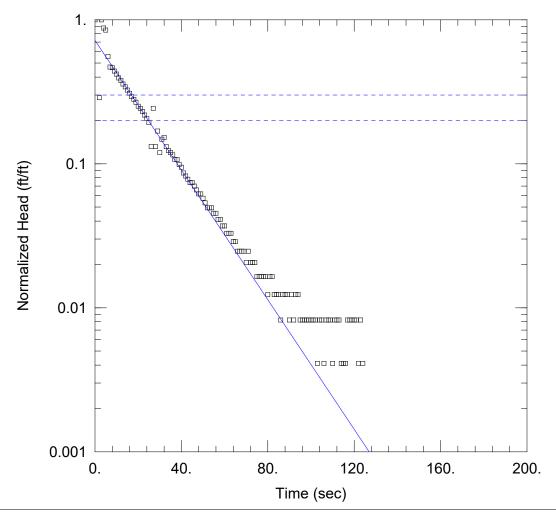
Static Water Column Height: 27. ft

Total Well Penetration Depth: 27. ft

Screen Length: 9. ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.007329 cm/sec

y0 = 0.932 ft

Data Set: \...\MW-1D 4' SLUG IN VISUAL.aqt

Date: 08/08/24 Time: 13:31:11

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

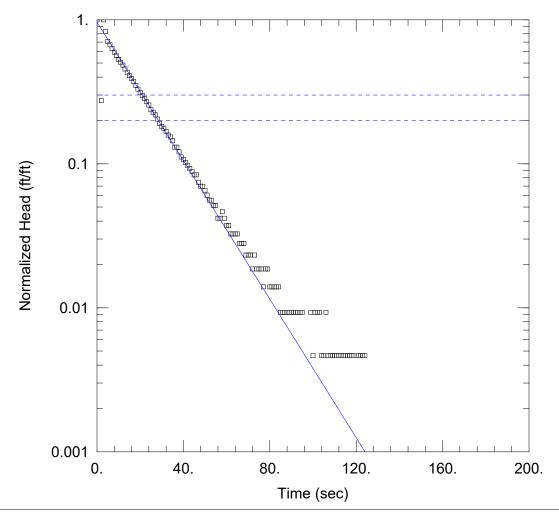
Test Well: MW-1D (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 27. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1D - 4' Slug IN (VISUAL))

Initial Displacement: 2.43 ft Static Water Column Height: 27. ft


Total Well Penetration Depth: <u>27.</u> ft Screen Length: <u>9.</u> ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.007011 cm/sec y0 = 1.745 ft

Data Set: \...\MW-1D 4' SLUG OUT VISUAL.aqt

Date: 08/08/24 Time: 13:30:56

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1D (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 27. ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-1D - 4' Slug OUT (VISUAL))

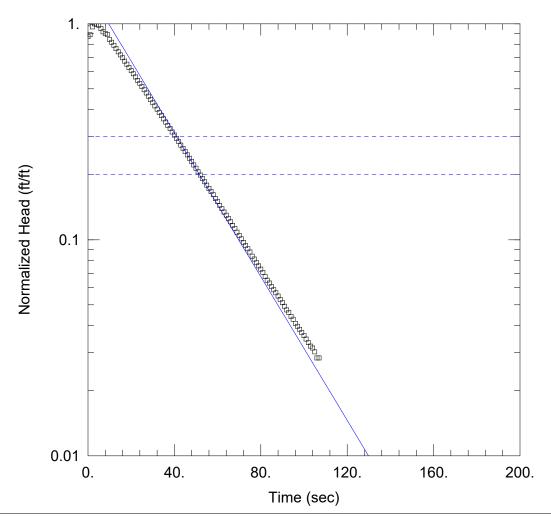
Initial Displacement: 2.15 ft

Static Water Column Height: 27. ft

Total Well Penetration Depth: 27. ft

Screen Length: 9. ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.007491 cm/sec y0 = 2.069 ft

Data Set: \...\MW-1D 5 Gallon VISUAL.aqt

Date: 08/08/24 Time: 13:32:06

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-1D (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: <u>27.</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-1D - 5 Gallon (VISUAL))

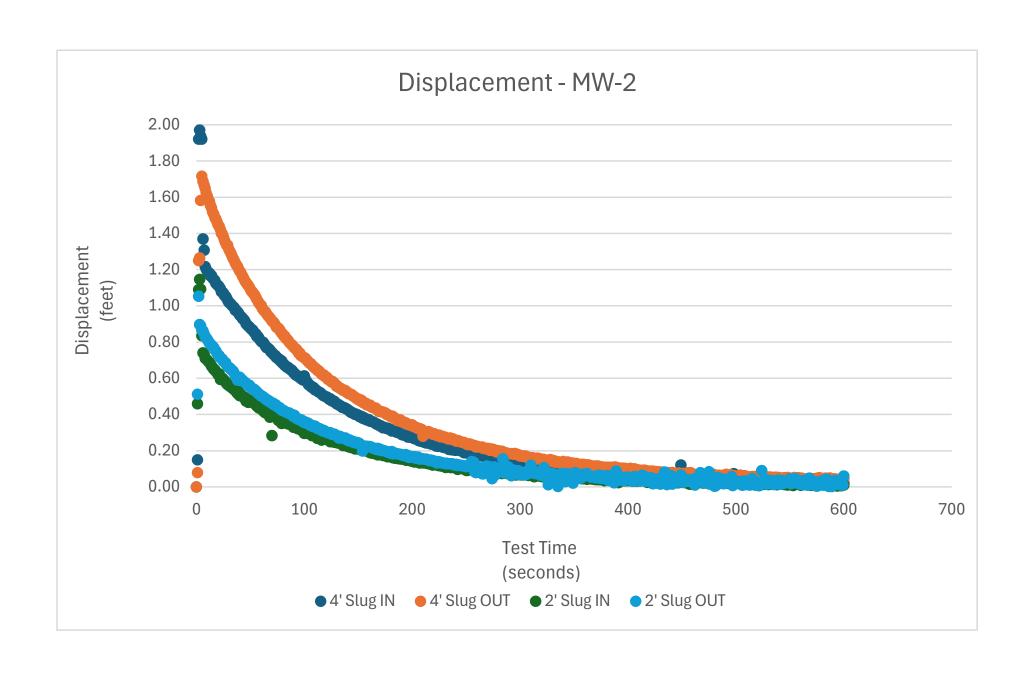
Initial Displacement: 15.85 ft

Total Well Penetration Depth: 27. ft Screen Length: 9. ft

Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

Static Water Column Height: 27. ft


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00518 cm/sec y0 = 22.88 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-2 (June, 2024)

Data Set: C:\...\MW-2 2' SLUG IN.aqt

Date: 06/27/24 Time: 10:32:13

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-2

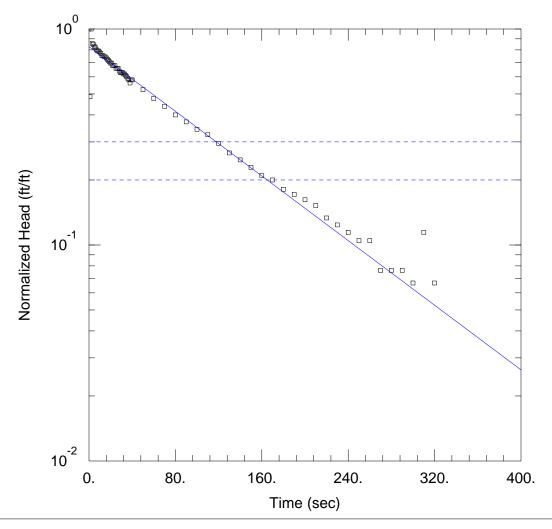
Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2 - 2' Slug IN)

Initial Displacement: 1.15 ft Static Water Column Height: 16.39 ft


Total Well Penetration Depth: 16.39 ft Screen Length: 16.39 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0006836 cm/sec y0 = 0.816 ft

Data Set: C:\...\MW-2 2' SLUG OUT.aqt

Date: 06/27/24 Time: 10:37:04

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-2

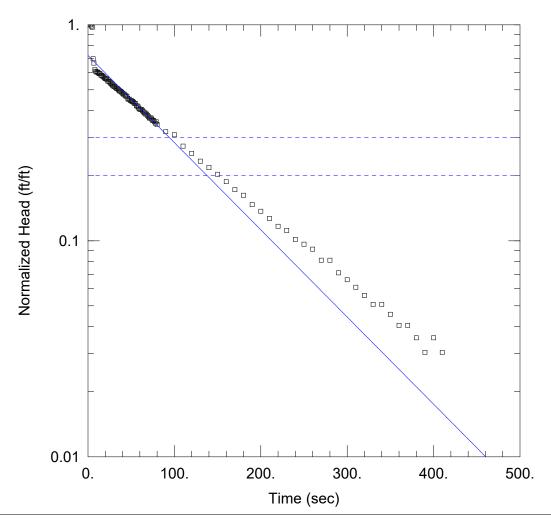
Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2 - 2' Slug OUT)

Initial Displacement: 1.05 ft Static Water Column Height: 16.39 ft


Total Well Penetration Depth: 16.39 ft Screen Length: 16.39 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.000606 cm/sec y0 = 0.8695 ft

MW-2 4.0-SLUG - IN

Data Set: \...\MW-2 4' SLUG IN.aqt

Date: 08/08/24 Time: 10:01:53

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-2

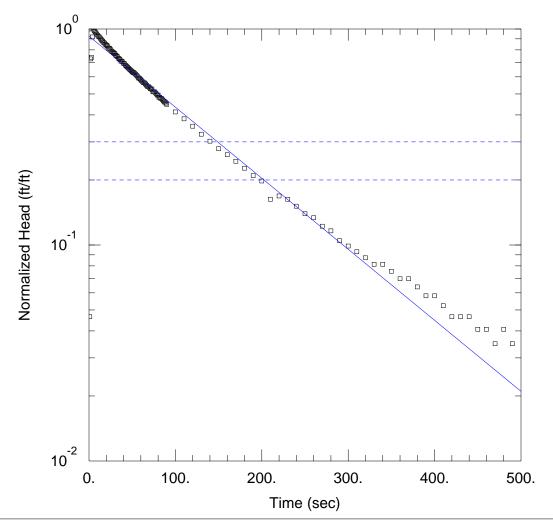
Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.39 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-2 (4.0' SLUG IN))

Initial Displacement: 1.97 ft Static Water Column Height: 16.39 ft


Total Well Penetration Depth: 16.39 ft Screen Length: 16.39 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: <u>0.3</u>

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0006539 cm/sec y0 = 1.42 ft

Data Set:

Date: 06/27/24 Time: 10:25:43

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-2

Test Date: June 20-24, 2024

AQUIFER DATA

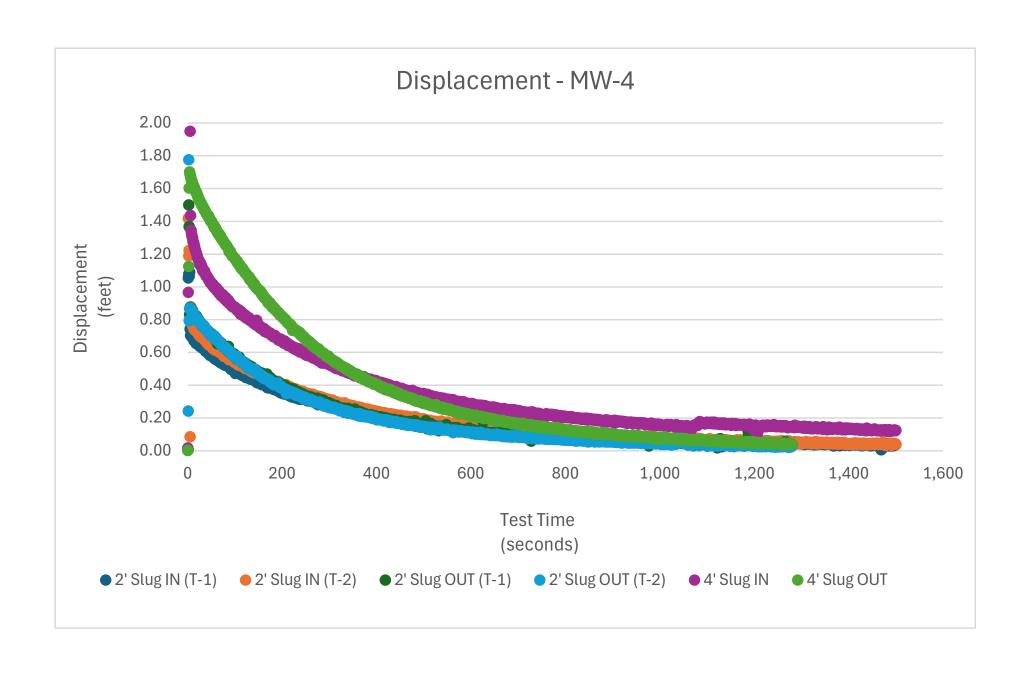
Saturated Thickness: 16.39 ft Anisotropy Ratio (Kz/Kr): 1.

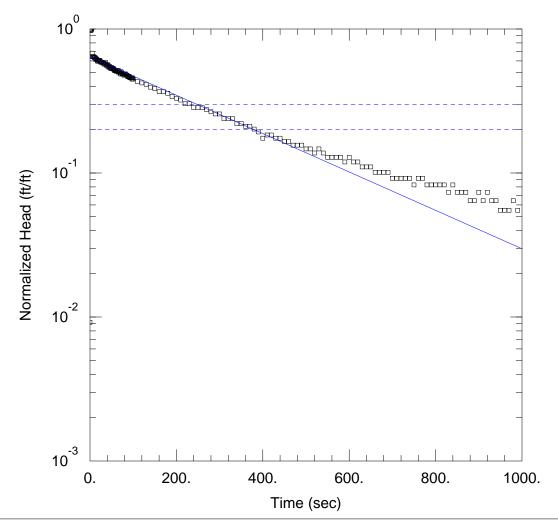
WELL DATA (MW-2 - 4' Slug OUT)

Initial Displacement: 1.72 ft Static Water Column Height: 16.39 ft

Total Well Penetration Depth: 16.39 ft Screen Length: 16.39 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0005329 cm/sec y0 = 1.593 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-4 (June, 2024)

Data Set: C:\...\MW-4 2' SLUG IN (T-1).aqt

Date: 06/27/24 Time: 11:46:35

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-4

Test Date: June 20-24, 2024

AQUIFER DATA

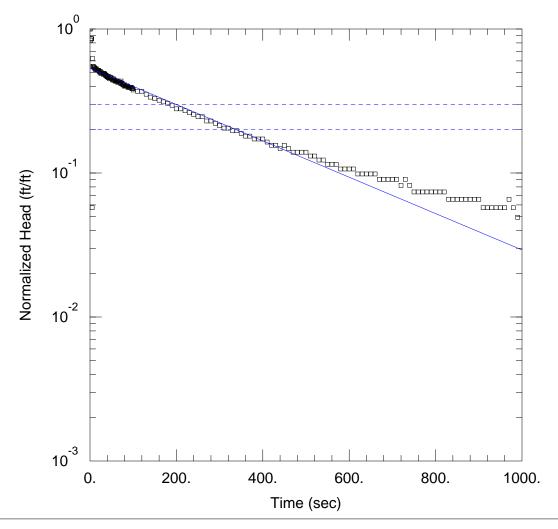
Saturated Thickness: 16.73 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4 - 2' Slug IN (T-1))

Initial Displacement: 1.09 ft

Total Well Penetration Depth: 16.73 ft

Casing Radius: 0.083 ft


Static Water Column Height: 16.73 ft

Screen Length: 16.73 ft Well Radius: 0.25 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0002126 cm/sec y0 = 0.6982 ft

Data Set: C:\...\MW-4 2' SLUG IN (T-2).aqt

Date: 06/27/24 Time: 11:45:45

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-4

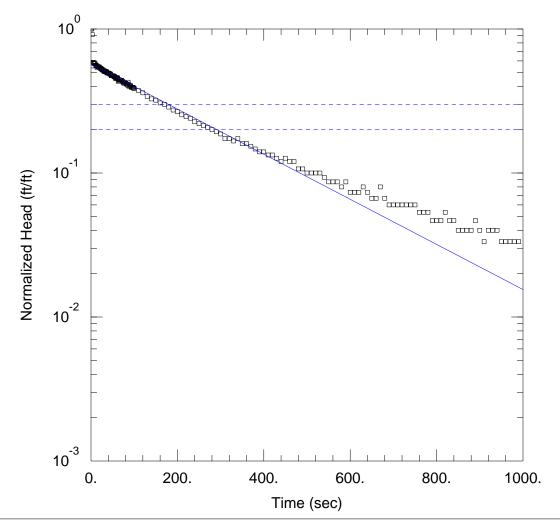
Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.73 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4 - 2' Slug IN (T-2))

Initial Displacement: 1.22 ft Static Water Column Height: 16.73 ft


Total Well Penetration Depth: 16.73 ft Screen Length: 16.73 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0002014 cm/sec y0 = 0.6519 ft

Data Set: C:\...\MW-4 2' SLUG OUT (T-1).aqt

Date: 06/27/24 Time: 11:52:51

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-4

Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.73 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4 - 2' Slug OUT (T-1))

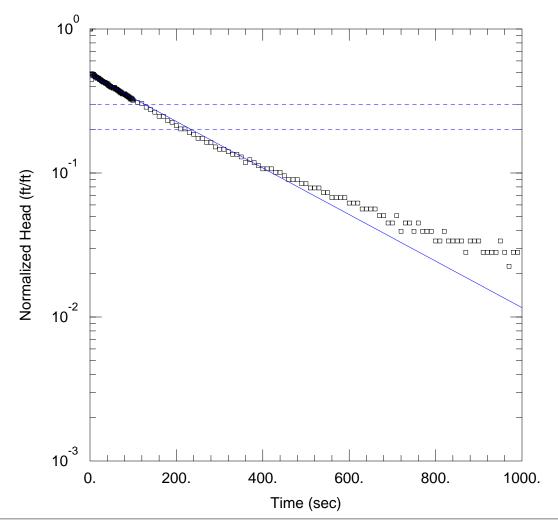
Initial Displacement: 1.5 ft

Static Water Column Height: 16.73 ft

Total Well Penetration Depth: 16.73 ft

Screen Length: 16.73 ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0002499 cm/sec y0 = 0.8576 ft

Data Set: C:\...\MW-4 2' SLUG OUT (T-2).aqt

Date: 06/27/24 Time: 11:51:52

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-4

Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.73 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4 - 2' Slug OUT (T-2))

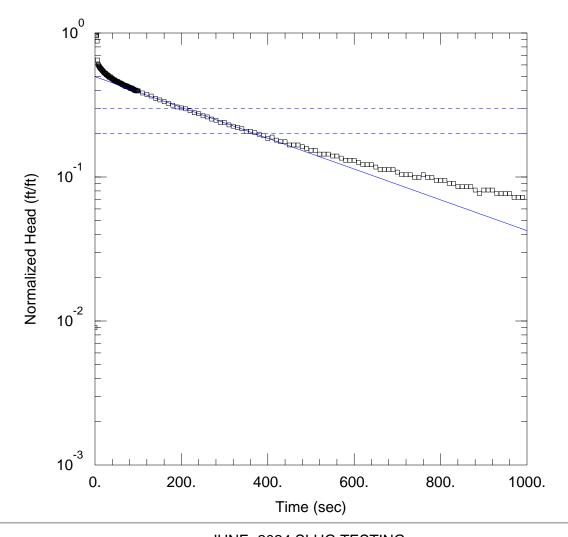
Initial Displacement: 1.78 ft

Static Water Column Height: 16.73 ft

Total Well Penetration Depth: 16.73 ft

Screen Length: 16.73 ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0002579 cm/sec y0 = 0.8539 ft

Data Set: C:\...\MW-4 4' SLUG IN.aqt

Date: 06/27/24 Time: 11:48:40

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-4

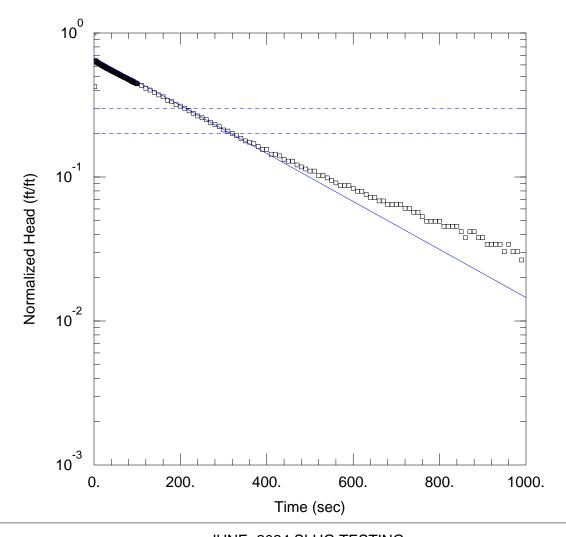
Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 16.73 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-4 - 4' Slug IN)

Initial Displacement: 2.22 ft Static Water Column Height: 16.73 ft


Total Well Penetration Depth: 16.73 ft Screen Length: 16.73 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0001706 cm/sec y0 = 1.104 ft

Data Set: C:\...\MW-4 4' SLUG OUT.aqt

Date: 06/27/24 Time: 11:49:45

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-4

Test Date: June 20-24, 2024

AQUIFER DATA

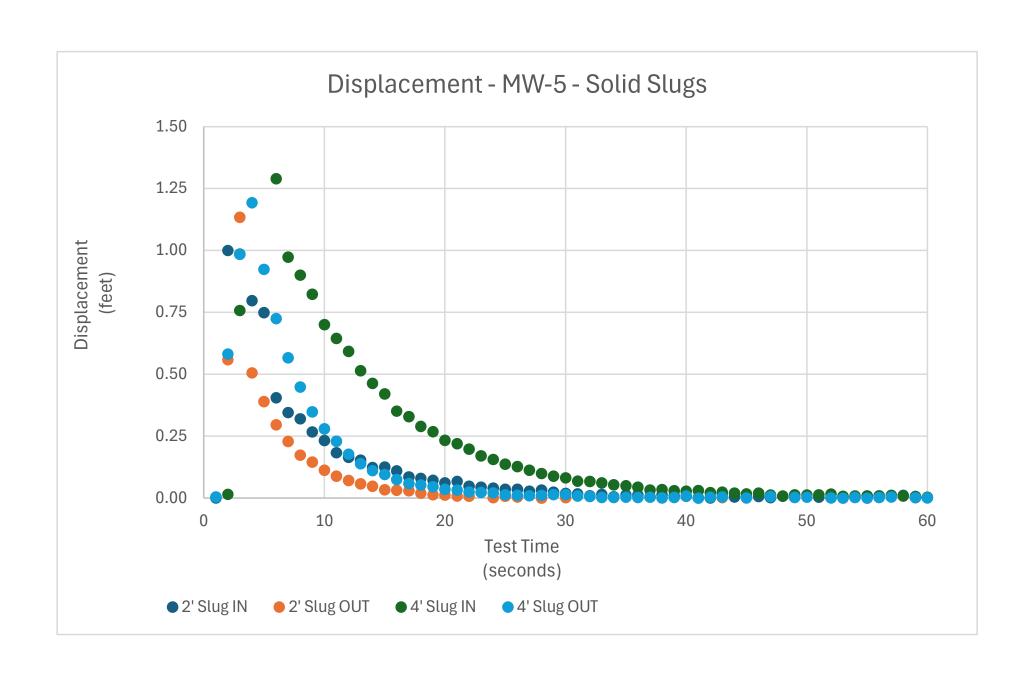
Saturated Thickness: 16.73 ft Anisotropy Ratio (Kz/Kr): 1.

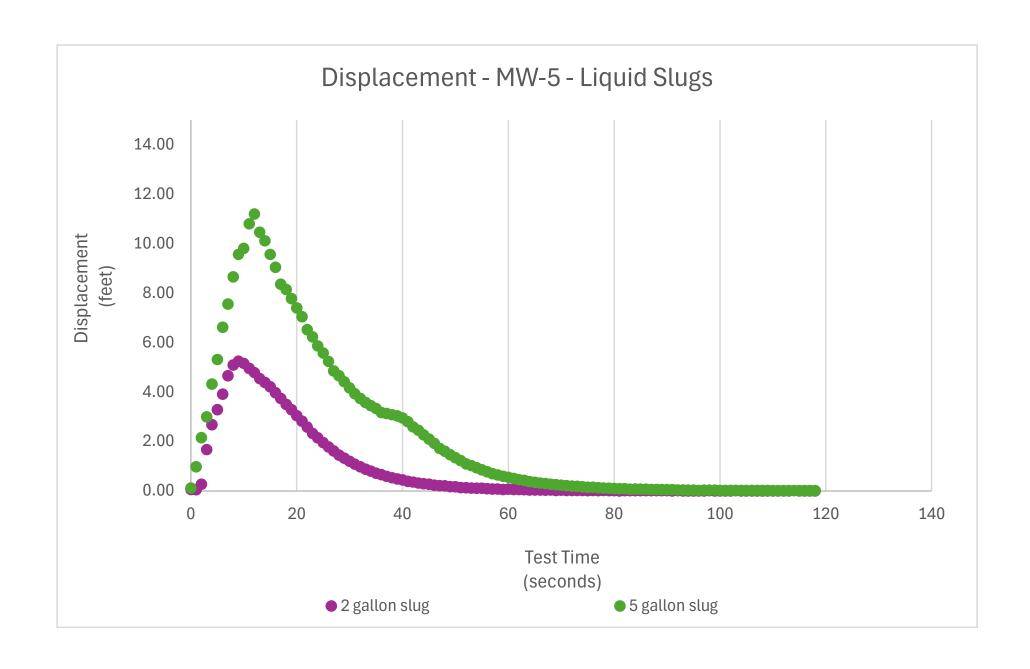
WELL DATA (MW-4 - 4' Slug OUT)

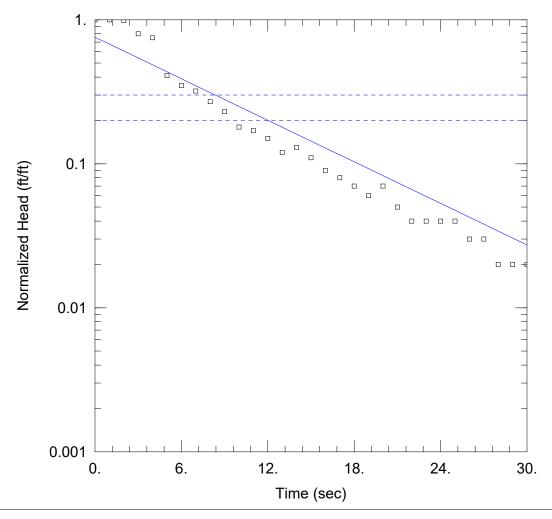
Initial Displacement: 2.64 ft

Static Water Column Height: 16.73 ft Total Well Penetration Depth: 16.73 ft Screen Length: 16.73 ft

Casing Radius: 0.083 ft


Well Radius: 0.25 ft Gravel Pack Porosity: 0.3


SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0002659 cm/secy0 = 1.784 ft Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-5 (July, 2024)

Data Set: \...\MW-5 2' SLUG IN AUTO.aqt

Date: 08/08/24 Time: 13:25:08

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: 321 Warburton Ave, Yonkers, NY

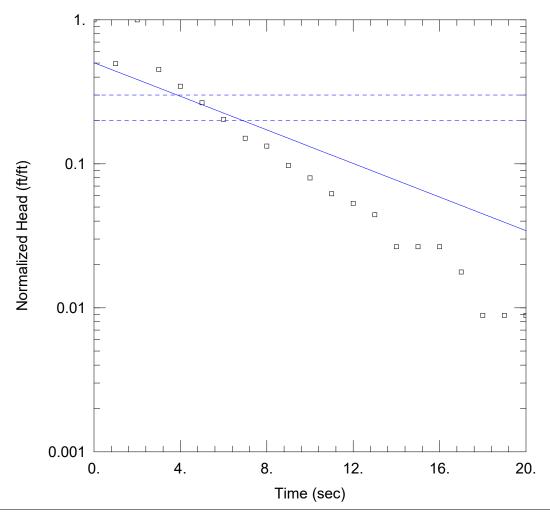
Test Well: MW-5 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 2' SLUG IN (AUTO))

Initial Displacement: 1. ft Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.009888 cm/sec y0 = 0.7566 ft

Data Set: \...\MW-5 2' SLUG OUT AUTO.aqt

Date: 08/08/24 Time: 13:24:49

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

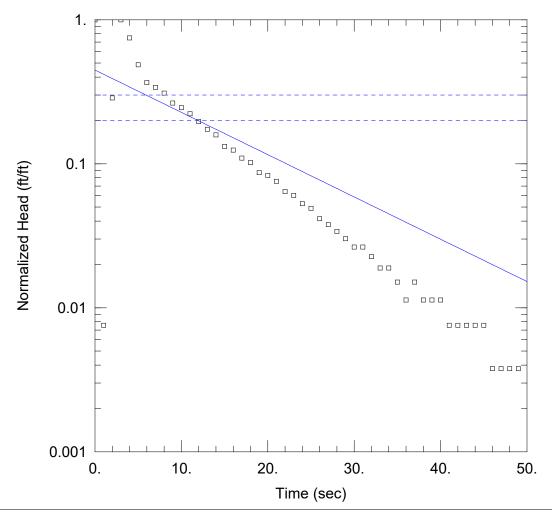
Test Well: MW-5 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 2' SLUG OUT (AUTO))

Initial Displacement: 1.13 ft Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft

Casing Radius: 0.083 ft Well Radius: 0.25 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.01198 cm/sec y0 = 0.5684 ft

Data Set: \...\MW-5 4' SLUG IN AUTO.aqt

Date: 08/08/24 Time: 13:24:07

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

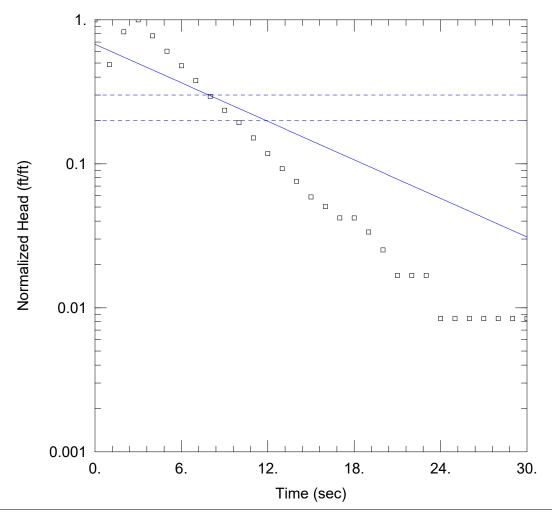
Test Well: MW-5 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 4' SLUG IN (AUTO))

Initial Displacement: 2.65 ft Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00604 cm/sec y0 = 1.185 ft

Data Set: \...\MW-5 4' SLUG OUT AUTO.aqt

Date: 08/08/24 Time: 13:23:48

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-5 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 4' SLUG OUT (AUTO))

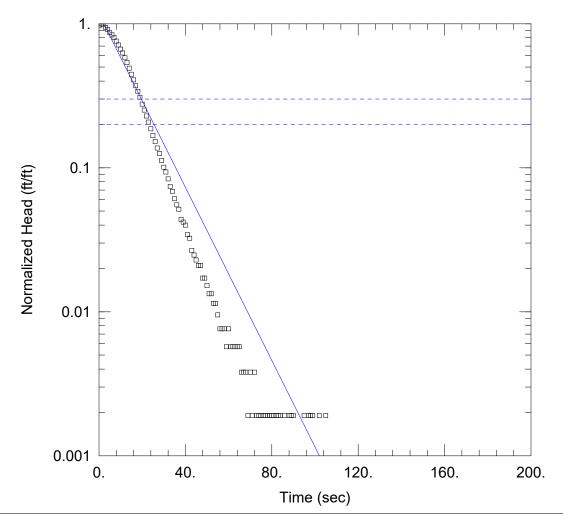
Initial Displacement: 1.19 ft

Static Water Column Height: 38.55 ft

Total Well Penetration Depth: 38.55 ft

Screen Length: 15. ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.009174 cm/sec y0 = 0.8046 ft

Data Set: \...\MW-5 2-Gallon AUTO.aqt

Date: 08/08/24 Time: 13:24:28

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

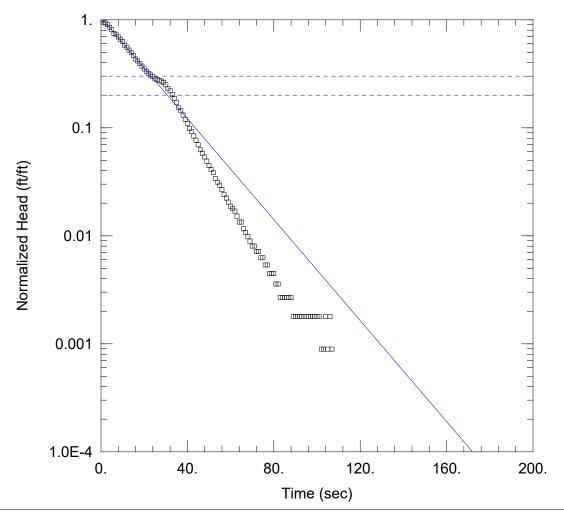
Test Well: MW-5 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 2 Gallon (AUTO))

Initial Displacement: 5.25 ft Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.006181 cm/sec y0 = 6.119 ft

Data Set: \...\MW-5 5 Gallon AUTO.aqt

Date: 08/08/24 Time: 13:25:24

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-5 (AUTO)
Test Date: July 30, 2024

AQUIFER DATA

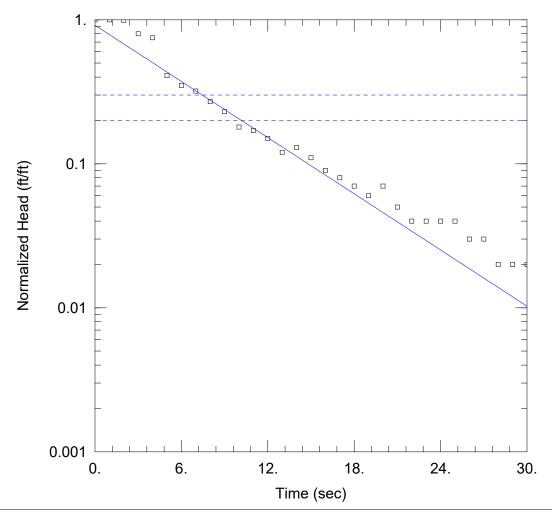
Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 5 Gallon (AUTO))

Initial Displacement: 11.2 ft Static Water Column Height: 38.55 ft

Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004807 cm/sec y0 = 11.72 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

AQTESOLVE - VISUAL SOLUTION

Data Set: \...\MW-5 2' SLUG IN VISUAL.aqt

Date: 08/08/24 Time: 13:33:36

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-5 (VISUAL)
Test Date: July 30, 2024

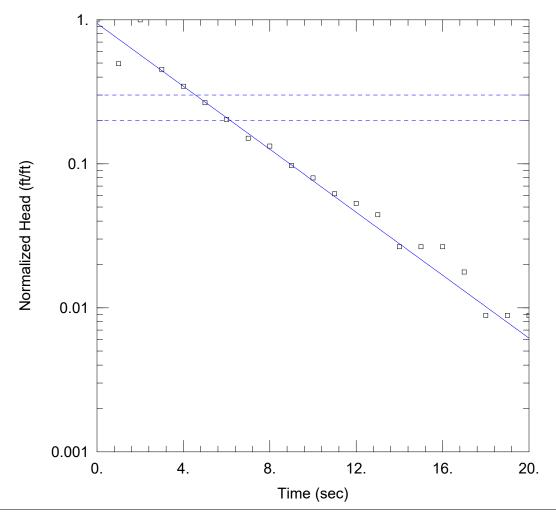
AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 2' SLUG IN (VISUAL))

Initial Displacement: <u>1.</u> ft Static

Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.01338 cm/sec y0 = 0.9164 ft

Data Set: \...\MW-5 2' SLUG OUT VISUAL.aqt

Date: 08/08/24 Time: 13:33:23

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-5 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 2' SLUG OUT (VISUAL))

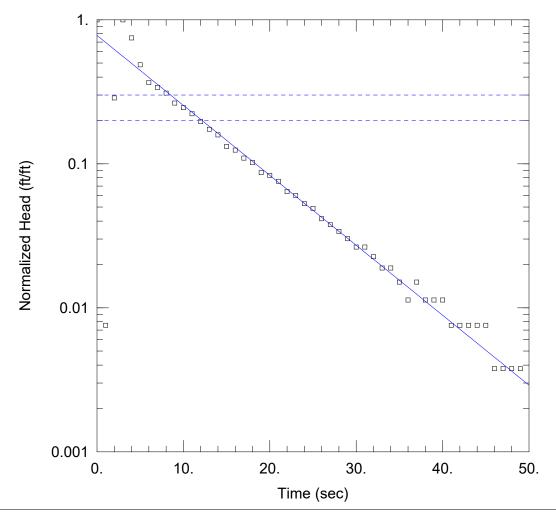
Initial Displacement: 1.13 ft

Static Water Column Height: 38.55 ft

Total Well Penetration Depth: 38.55 ft

Screen Length: 15. ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.02247 cm/sec y0 = 1.066 ft

Data Set: \...\MW-5 4' SLUG IN VISUAL.aqt

Date: 08/08/24 Time: 13:32:53

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

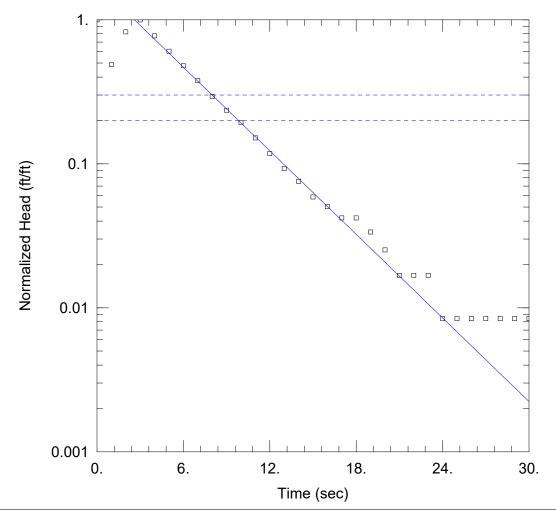
Test Well: MW-5 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 4' SLUG IN (VISUAL))

Initial Displacement: 2.65 ft Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.009991 cm/sec y0 = 2.063 ft

Data Set: \...\MW-5 4' SLUG OUT VISUAL.aqt

Date: 08/08/24 Time: 13:32:36

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-5 (VISUAL) Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 4' SLUG OUT (VISUAL))

Initial Displacement: 1.19 ft

Static Water Column Height: 38.55 ft

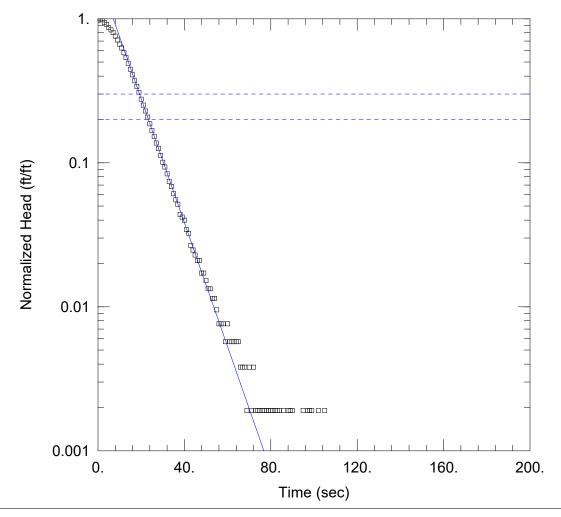
Total Well Penetration Depth: 38.55 ft

Screen Length: 15. ft

Casing Radius: 0.083 ft

Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.0199 cm/sec

y0 = 2.123 ft

Data Set: \...\MW-5 2-Gallon VISUAL.aqt

Date: 08/08/24 Time: 13:33:07

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

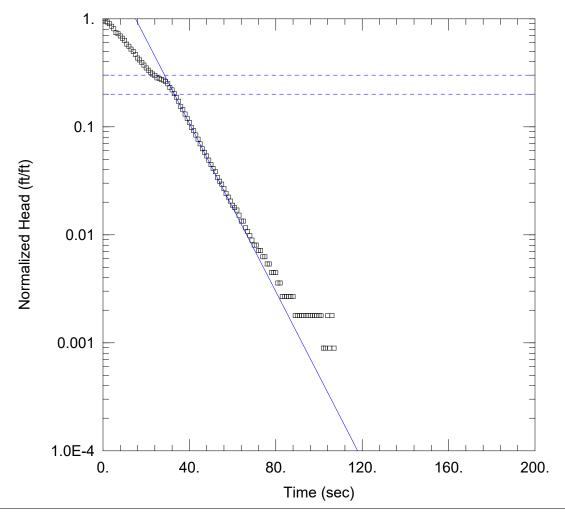
Test Well: MW-5 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-5 - 2 Gallon (VISUAL))

Initial Displacement: 5.25 ft Static Water Column Height: 38.55 ft


Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00885 cm/sec y0 = 10.59 ft

Data Set: \...\MW-5 5 Gallon VISUAL.aqt

Date: 08/08/24 Time: 13:33:48

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-5 (VISUAL)
Test Date: July 30, 2024

AQUIFER DATA

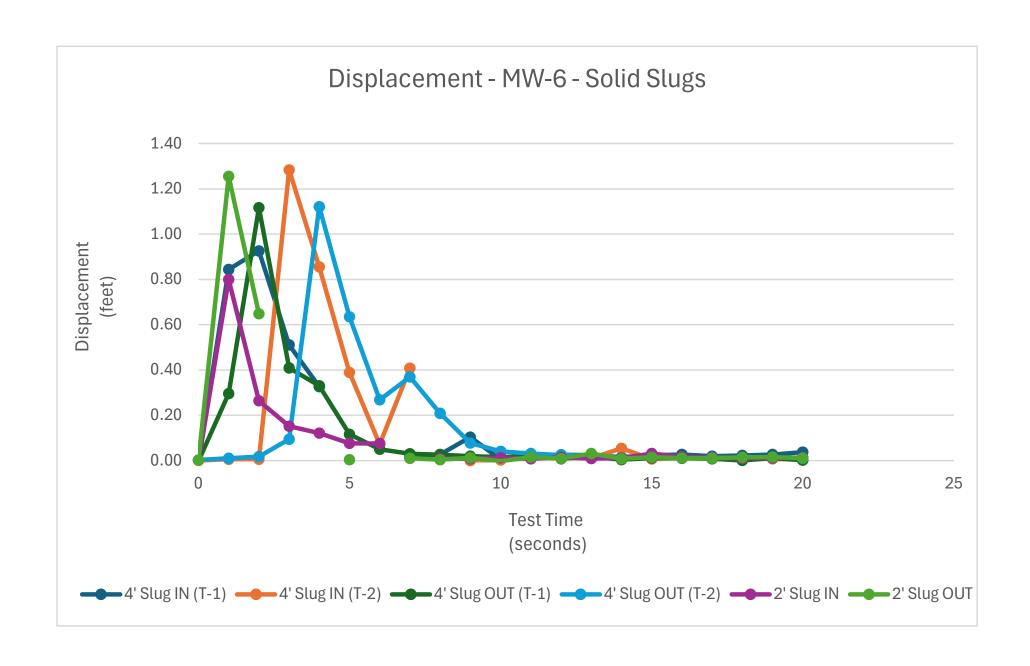
Saturated Thickness: 38.55 ft Anisotropy Ratio (Kz/Kr): 1.

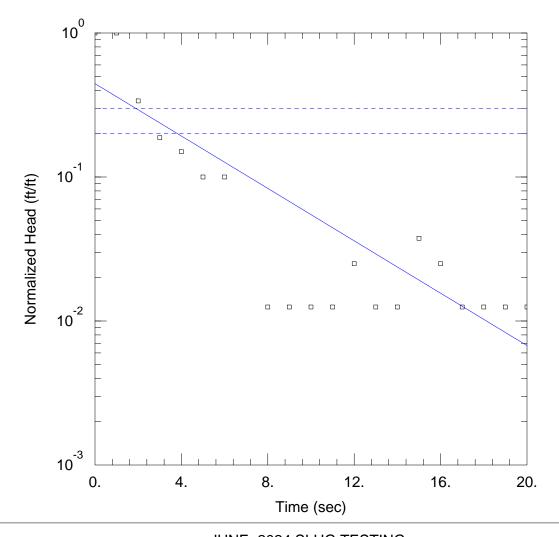
WELL DATA (MW-5 - 5 Gallon (VISUAL))

Initial Displacement: 11.2 ft Static Water Column Height: 38.55 ft

Total Well Penetration Depth: 38.55 ft Screen Length: 15. ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.008001 cm/sec y0 = 43.25 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-6 (June, 2024)

Data Set: C:\...\MW-6 2' SLUG IN.aqt

Date: 06/27/24 Time: 12:00:22

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-6

Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 19.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 2' Slug IN)

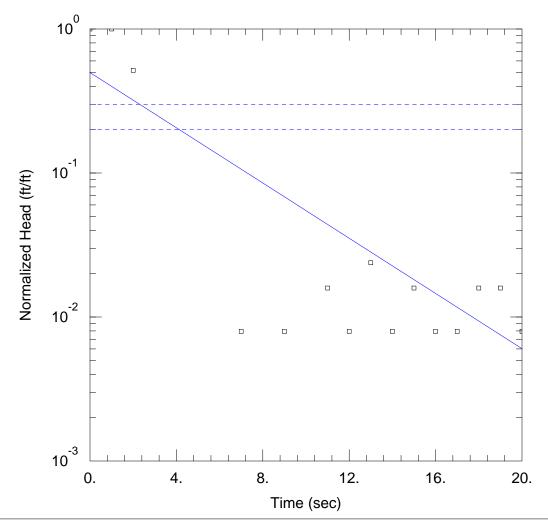
Initial Displacement: 0.8 ft

Static Water Column Height: 19.63 ft

Total Well Penetration Depth: 19.63 ft

Screen Length: 19.63 ft Well Radius: 0.25 ft

Casing Radius: 0.083 ft


Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.01285 cm/sec y0 = 0.3557 ft

Data Set: C:\...\MW-6 2' SLUG OUT.aqt

Date: 06/27/24 Time: 11:59:33

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-6

Test Date: June 20-24, 2024

AQUIFER DATA

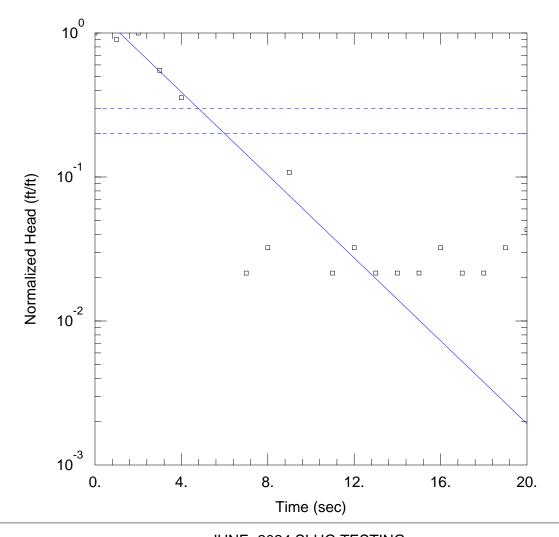
Saturated Thickness: 19.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 2' Slug OUT)

Initial Displacement: 1.26 ft

Total Well Penetration Depth: 19.63 ft

Casing Radius: 0.083 ft


Static Water Column Height: 19.63 ft

Screen Length: 19.63 ft Well Radius: 0.25 ft Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.01354 cm/sec y0 = 0.6274 ft

Data Set: C:\...\MW-6 4' SLUG IN (T-1).aqt

Date: <u>06/27/24</u> Time: <u>12:01:10</u>

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-6

Test Date: June 20-24, 2024

AQUIFER DATA

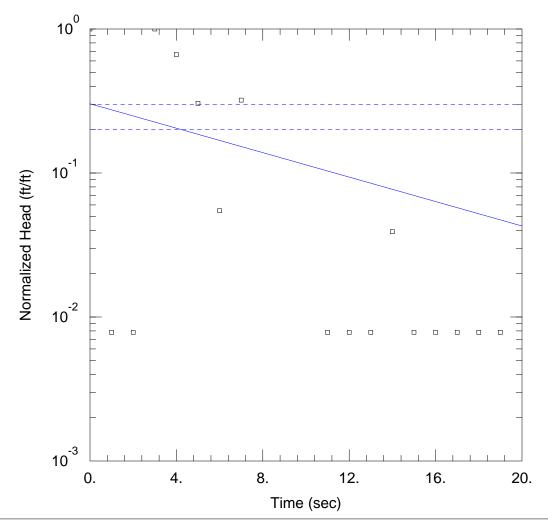
Saturated Thickness: 19.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 4' Slug IN (T-1))

Initial Displacement: 0.93 ft

Total Well Penetration Depth: 19.63 ft

Casing Radius: 0.083 ft


Static Water Column Height: 19.63 ft

Screen Length: 19.63 ft Well Radius: 0.25 ft Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.02032 cm/sec y0 = 1.358 ft

Data Set: C:\...\MW-6 4' SLUG IN (T-2).aqt

Date: 06/27/24 Time: 12:01:54

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-6

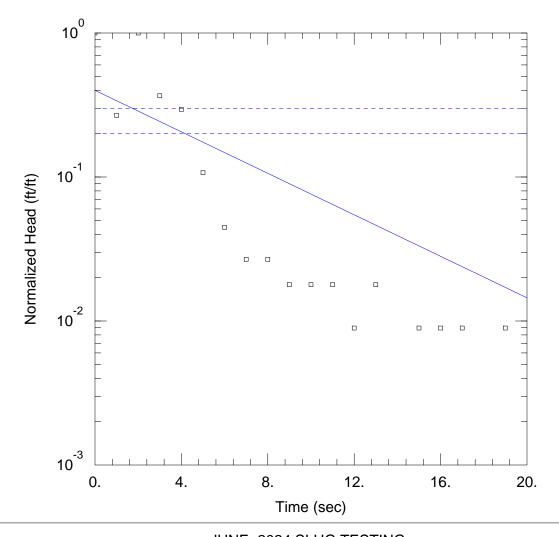
Test Date: June 20-24, 2024

AQUIFER DATA

Saturated Thickness: 19.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 4' Slug IN (T-2))

Initial Displacement: 1.28 ft Static Water Column Height: 19.63 ft


Total Well Penetration Depth: 19.63 ft Screen Length: 19.63 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.005996 cm/sec y0 = 0.3872 ft

Data Set: C:\...\MW-6 4' SLUG OUT (T-1).aqt

Date: <u>06/27/24</u> Time: <u>12:02:47</u>

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-6

Test Date: June 20-24, 2024

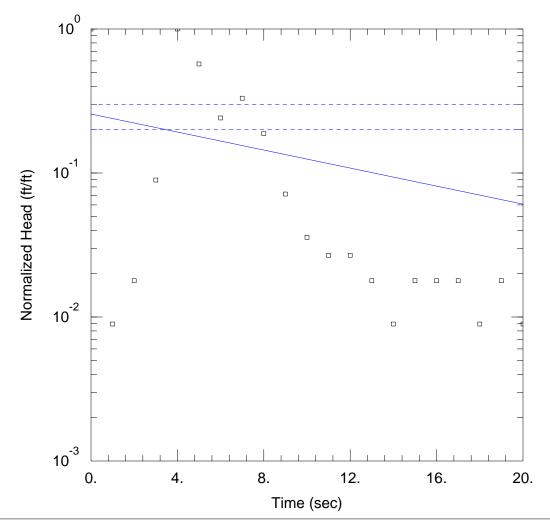
AQUIFER DATA

Saturated Thickness: 19.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 4' Slug OUT (T-1))

Initial Displacement: 1.12 ft Stati

Static Water Column Height: 19.63 ft Screen Length: 19.63 ft


Total Well Penetration Depth: 19.63 ft Casing Radius: 0.083 ft

Well Radius: 0.25 ft
Gravel Pack Porosity: 0.3

SOLUTION

Aguifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.01017 cm/sec y0 = 0.4473 ft

Data Set: C:\...\MW-6 4' SLUG OUT (T-2).aqt

Date: 06/27/24 Time: 12:03:26

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty
Project: 2221378 TASK 39

Location: 321 Warburton Ave, Yonkers, NY

Test Well: MW-6

Test Date: June 20-24, 2024

AQUIFER DATA

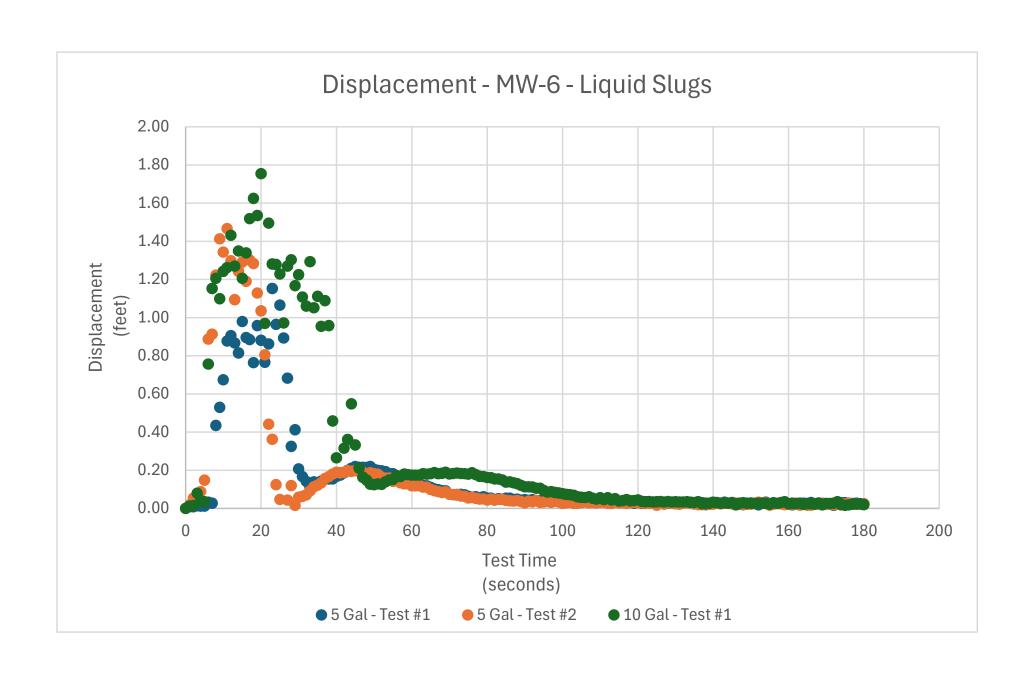
Saturated Thickness: 19.63 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 4' Slug OUT (T-2))

Initial Displacement: 1.12 ft Static Water Column Height: 19.63 ft

Total Well Penetration Depth: 19.63 ft Screen Length: 19.63 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.004418 cm/sec y0 = 0.2874 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

WELL MW-6 (July, 2024)

Data Set: \...\MW-6 5 Gallon - TEST #1 AUTO.aqt

Date: 08/08/24 Time: 13:26:17

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: <u>321 Warburton Ave, Yonkers, NY</u> Test Well: <u>MW-6 LIQUID SLUGS (AUTO)</u>

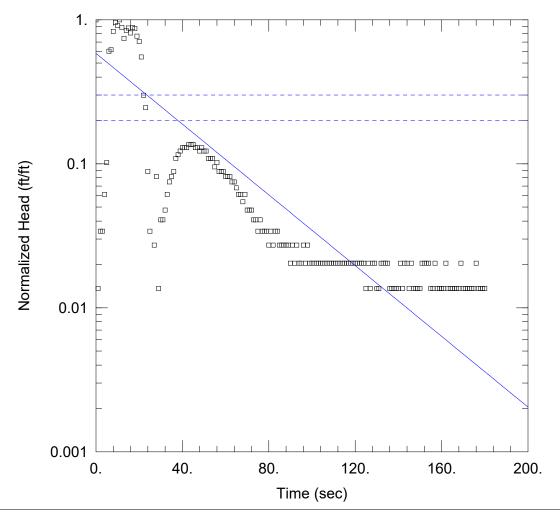
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: <u>17.6</u> ft Anisotropy Ratio (Kz/Kr): <u>1.</u>

WELL DATA (MW-6 - 5 Gallon TEST #1)

Initial Displacement: 1.15 ft Static Water Column Height: 17.6 ft


Total Well Penetration Depth: 17.6 ft Screen Length: 17.6 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.0013 cm/sec y0 = 0.5924 ft

Data Set: \...\MW-6 5 Gallon - TEST #2 AUTO.aqt

Date: 08/08/24 Time: 13:26:01

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: 2221378 TASK 39

Location: <u>321 Warburton Ave, Yonkers, NY</u> Test Well: <u>MW-6 LIQUID SLUGS (AUTO)</u>

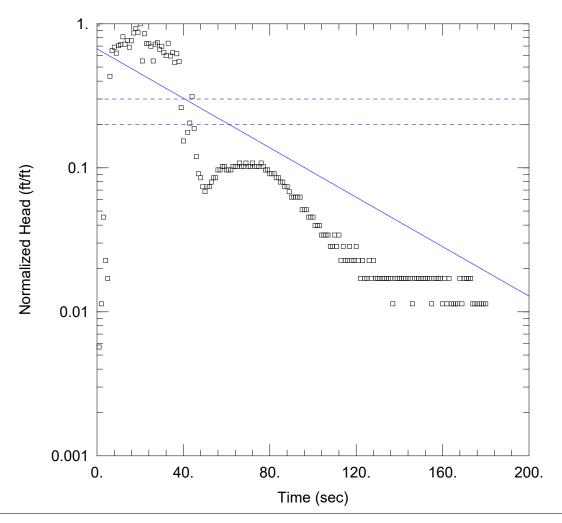
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 17.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 5 Gallon TEST #2 (AUTO))

Initial Displacement: 1.47 ft Static Water Column Height: 17.6 ft


Total Well Penetration Depth: 17.6 ft Screen Length: 17.6 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001885 cm/sec y0 = 0.8585 ft

Data Set: \...\MW-6 10 Gallon AUTO.aqt

Date: 08/08/24 Time: 13:26:45

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: <u>321 Warburton Ave, Yonkers, NY</u> Test Well: <u>MW-6 LIQUID SLUGS (AUTO)</u>

Test Date: July 30, 2024

AQUIFER DATA

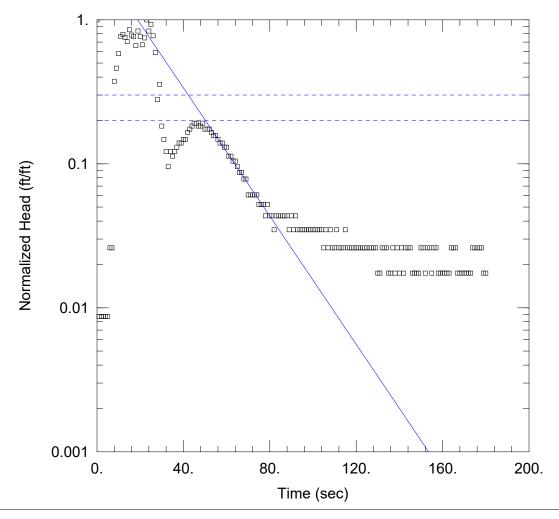
Saturated Thickness: 17.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 10 Gallon (AUTO))

Initial Displacement: 1.76 ft Static Water Column Height: 17.6 ft

Total Well Penetration Depth: 17.6 ft Screen Length: 17.6 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.001318 cm/sec y0 = 1.179 ft

Summary of Hydraulic Conductivity Testing Results
June-July, 2024
Warburton Dry Cleaners Site
321 Warburton Avenue
Yonkers, New York

AQTESOLVE - VISUAL SOLUTION

Data Set: \...\MW-6 5 Gallon - TEST #1 VISUAL.aqt

Date: 08/08/24 Time: 13:34:41

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: 321 Warburton Ave, Yonkers, NY Test Well: MW-6 LIQUID SLUGS (VISUAL)

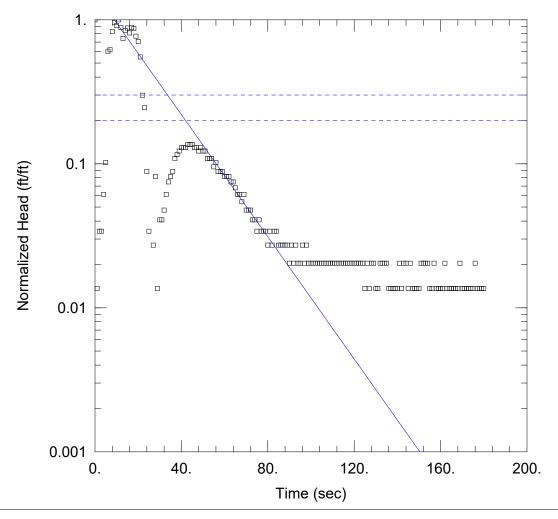
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 17.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 5 Gallon TEST #1 (VISUAL))

Initial Displacement: 1.15 ft Static Water Column Height: 17.6 ft


Total Well Penetration Depth: 17.6 ft Screen Length: 17.6 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.003417 cm/sec y0 = 3.008 ft

Data Set: \...\MW-6 5 Gallon - TEST #2 VISUAL.aqt

Date: 08/08/24 Time: 13:34:27

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: <u>321 Warburton Ave, Yonkers, NY</u> Test Well: <u>MW-6 LIQUID SLUGS (VISUAL)</u>

Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 17.6 ft Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (MW-6 - 5 Gallon TEST #2 (VISUAL))

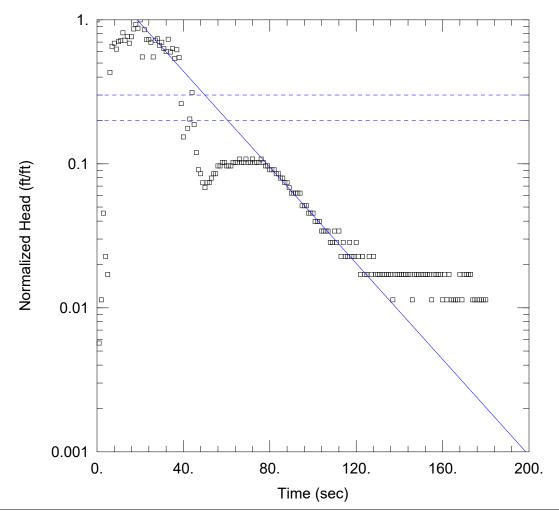
Initial Displacement: 1.47 ft

Static Water Column Height: 17.6 ft

Total Well Penetration Depth: 17.6 ft

Screen Length: 17.6 ft

Casing Radius: 0.083 ft


Well Radius: 0.25 ft Gravel Pack Porosity: 0.3

SOLUTION

Aquifer Model: Unconfined

Solution Method: Bouwer-Rice

K = 0.003257 cm/sec y0 = 2.276 ft

Data Set: \...\MW-6 10 Gallon VISUAL.aqt

Date: 08/08/24 Time: 13:34:54

PROJECT INFORMATION

Company: LaBella Associates, D.P.C.

Client: Conifer Realty

Project: <u>2221378 TASK 39</u>

Location: 321 Warburton Ave, Yonkers, NY Test Well: MW-6 LIQUID SLUGS (VISUAL)

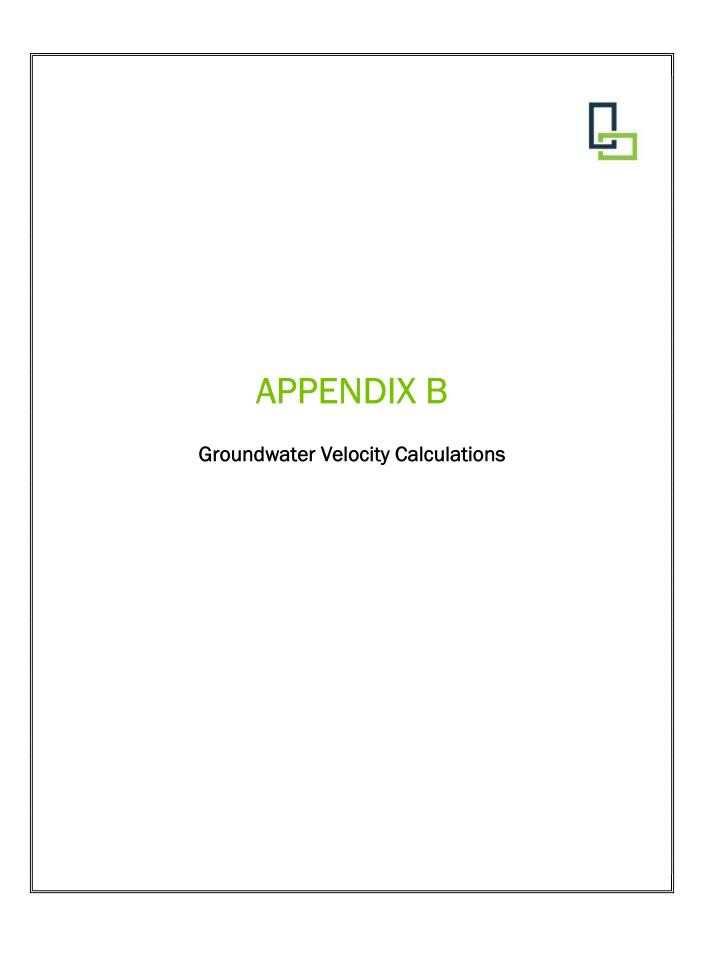
Test Date: July 30, 2024

AQUIFER DATA

Saturated Thickness: 17.6 ft Anisotropy Ratio (Kz/Kr): 1.

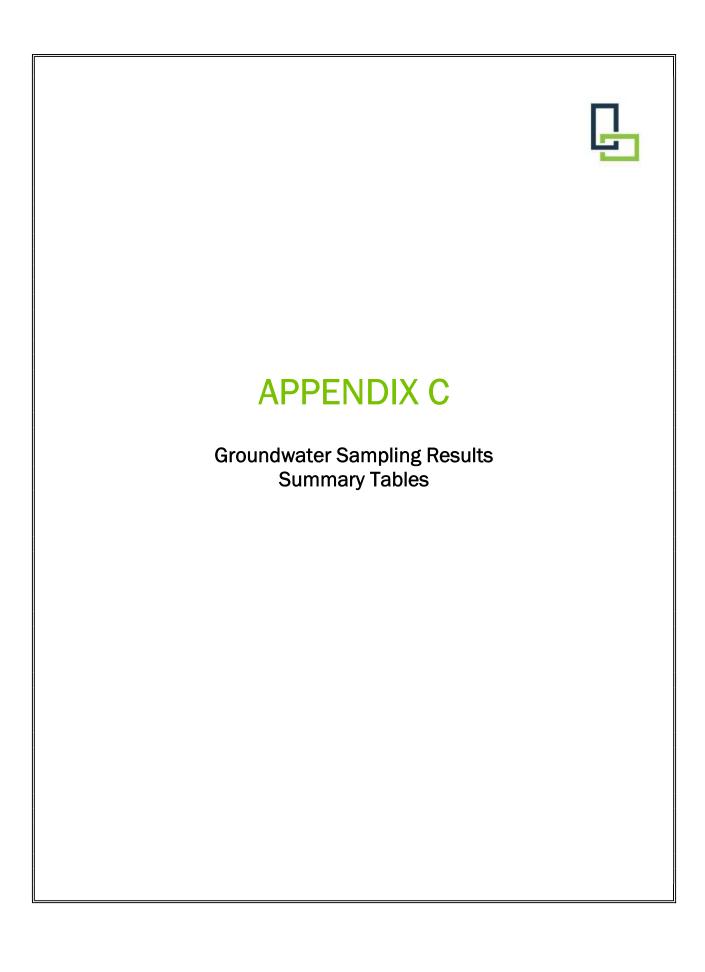
WELL DATA (MW-6 - 10 Gallon (VISUAL))

Initial Displacement: 1.76 ft Static Water Column Height: 17.6 ft


Total Well Penetration Depth: 17.6 ft Screen Length: 17.6 ft Casing Radius: 0.083 ft Well Radius: 0.25 ft

Gravel Pack Porosity: 0.3

SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

K = 0.00256 cm/sec y0 = 3.593 ft

Warburton Dry Cleaners Site 321 Warburton Avenue Yonkers, New York

Sitewide Geo. Mean K =	2.16E-03	cm/sec
Sitewide Geo. Mean K =	6.13	ft/day
Site hydraulic gradient	0.006 - 0.015	ft/ft
Assumed effective porosity	0.2	
Average groundwater velocity	0.18 - 0.46	ft/day

Table 1 Groundwater Analytical Results - VOCs neable Reactive Barrier Work Plan BCP No. C360227

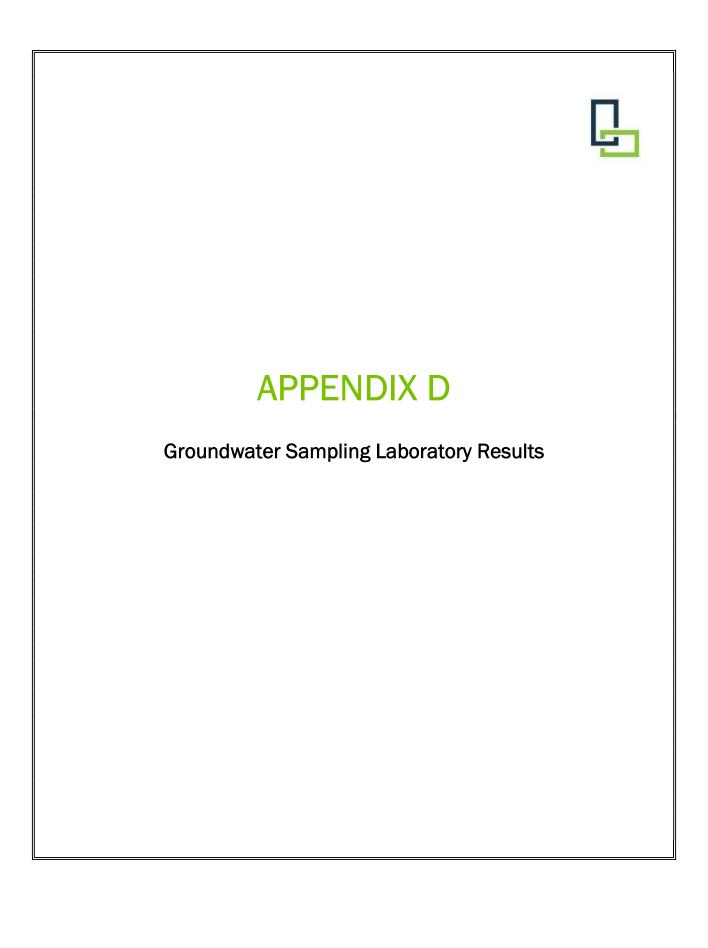
LOCATION			MW-1-20240610	MW-1D-20240610	MW-3-20240610	MW-5-20240610	DUP-20240610	MW-2 (60')	MW-2 (66')	MW-2 (73.5')	MW-4 (59')	MW-4 (66.5')	MW-4 (73.5')	MW-6 (56')	MW-6 (65')	MW-6 (73.5')	
SAMPLING DATE LAB SAMPLE ID	NY-AWQS		6/10/2024	6/10/2024 L2432304-02	6/10/2024	6/10/2024	6/10/2024	6/11/2024	6/11/2024	6/11/2024	6/11/2024	6/11/2024	6/11/2024	6/11/2024	6/11/2024	6/11/2024	
SAMPLE TYPE	N1-AWQS		L2432304-01 WATER	WATER	L2432304-03 WATER	L2432304-04 WATER	L2432304-05 WATER	L2432795-01 WATER	L2432795-02 WATER	L2432795-03 WATER	L2432795-04 WATER	L2432795-05 WATER	L2432795-06 WATER	L2432795-07 WATER	L2432795-08 WATER	L2432795-09 WATER	
SAMIFEE TIFE	-	Units			Results Q			Results Q			Results C			Results Q	Results Q		
Volatile Organics by GC/MS																	
Methylene chloride		5 ug/l	2.5 U	25 U	2.5 U	2.5 U	2.5 U	120 U	120 l	J 250 U	2.5 L	J 2.5 U	5 U	2.5 U	50 U	62 U	
1,1-Dichloroethane		5 ug/l	2.5 U		2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
Chloroform		7 ug/l	2.5 U	25 U	2.5 U		0.91 J	120 U	120 L		2.5 L	J 2.5 U	5 U	3	50 U	62 U	
Carbon tetrachloride 1,2-Dichloropropane		5 ug/l	0.5 U		0.5 U		0.5 U	25 U 50 U	25 L 50 L		0.5 L		1 U	0.5 U	10 U 20 U	12 U 25 U	
Dibromochloromethane		1 ug/l 0 ug/l	0.5 U	5 U	0.5 U		0.5 U	25 U	25 L		0.5 L		1 11	0.5 U	10 U	12 U	
1,1,2-Trichloroethane		1 ug/l	1.5 U		1.5 U		1.5 U	75 U	75 L		1.5 L		3 U	1.5 U	30 U	38 U	
Tetrachloroethene		5 ug/l	4.2	1000	0.5 U		2.8	6000	7800	8400	79	38	170	160	2200	2400	
Chlorobenzene	!	5 ug/l	2.5 U	25 U	2.5 U	2.5 U		120 U	120 l		2.5 L	J 2.5 U	5 U	2.5 U	50 U	62 U	
Trichlorofluoromethane		5 ug/I	2.5 U		2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
1,2-Dichloroethane		6 ug/l	0.5 U	5 U	0.5 U		0.5 U	25 U 120 U	25 L 120 L		0.5 L 2.5 L		1 0	0.5 U 2.5 U	10 U 50 U	12 U 62 U	
1,1,1-Trichloroethane Bromodichloromethane		5 ug/l 0 ug/l	2.5 U 0.5 U		2.5 U 0.5 U		2.5 U 0.5 U	120 U 25 U	120 l		2.5 L 0.5 L		5 U	0.5 U	50 U 10 U	62 U 12 U	
trans-1,3-Dichloropropene		4 ug/l	0.5 U	5 U	0.5 U		0.5 U	25 U	25 L		0.5 L	0.5 U	1 U	0.5 U	10 U	12 U	
cis-1,3-Dichloropropene		4 ug/l	0.5 U	5 U	0.5 U		0.5 U	25 U	25 l		0.5 L	_	1 U	0.5 U	10 U	12 U	
1,3-Dichloropropene, Total		ug/l	0.5 U	5 U	0.5 U	0.5 U	0.5 U	25 U	25 l	J 50 U	0.5 L	U 0.5 U	1 U	0.5 U	10 U	12 U	
1,1-Dichloropropene		5 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 U		2.5 L		5 U	2.5 U	50 U	62 U	
Bromoform		0 ug/l	2 U	20 U	2 U		2 U	100 U	100 l		2 L		4 U	2 U	40 U	50 U	
1,1,2,2-Tetrachloroethane Benzene		5 ug/l 1 ug/l	0.5 U		0.5 U		0.5 U 0.5 U	25 U 25 U	25 L 25 L		0.5 L 0.5 L		1 U	0.5 U 0.5 U	10 U 10 U	12 U 12 U	
Toluene		1 ug/1 5 ug/l	2.5 U		2.5 U			120 U	120		2.5 L		5 U	2.5 U	50 U	62 U	
Ethylbenzene		5 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
Chloromethane		ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
Bromomethane		5 ug/l	2.5 U		2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
Vinyl chloride		2 ug/l	1 U	10 U	1 U		1 U	50 U	50 L		1 L	1 U	2 U	1 U	20 U	25 U	
1,1-Dichloroethene		5 ug/l	2.5 U 0.5 U		2.5 U 0.5 U			120 U 25 U	120 l		2.5 L 0.5 L		5 U	2.5 U 0.5 U	50 U 10 U	62 U 12 U	
trans-1,2-Dichloroethene		5 ug/l 5 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120		2.5 L		5 U	2.5 U	50 U	62 U	
Trichloroethene		5 ug/l	0.5 U		0.5 U		0.5 U	25 U	25 L		2.3	0.94	3.6	0.45 J	10 U	12 U	
1,2-Dichlorobenzene		3 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 l		2.5 L	J 2.5 U	5 U	2.5 U	50 U	62 U	
1,3-Dichlorobenzene		3 ug/l	2.5 U	25 U	2.5 U	2.5 U	2.5 U	120 U	120 l	J 250 U	2.5 L	J 2.5 U	5 U	2.5 U	50 U	62 U	
1,4-Dichlorobenzene		3 ug/l	2.5 U		2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
Methyl tert butyl ether		0 ug/l	2.5 U		2.5 U		2.5 U	120 U	120 L		2.5 L	2.0	5 U	2.5 U	50 U	62 U	
p/m-Xylene o-Xylene		5 ug/l 5 ug/l	2.5 U 2.5 U		2.5 U 2.5 U		2.5 U 2.5 U	120 U 120 U	120 l		2.5 L 2.5 L		5 U	2.5 U 2.5 U	50 U 50 U	62 U 62 U	
Xylenes, Total	+	ug/I	2.5 U	25 U	2.5 U		2.5 U	120 U	120		2.5 L		5 U	2.5 U	50 U	62 U	
cis-1,2-Dichloroethene		5 ug/l	2.5 U		2.5 U			120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
1,2-Dichloroethene, Total		ug/l	2.5 U	25 U	2.5 U	2.5 U	2.5 U	120 U	120 l	J 250 U	2.5 L	J 2.5 U	5 U	2.5 U	50 U	62 U	
Dibromomethane		5 ug/l	5 U	50 U	5 U		5 U	250 U	250 l		5 L	J 5 U	10 U	5 U	100 U	120 U	
1,2,3-Trichloropropane		4 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 L		2.5 L		5 U	2.5 U	50 U	62 U	
Acrylonitrile Styrene		5 ug/l 5 ug/l	5 U 2.5 U	50 U 25 U	5 U 2.5 U		5 U 2.5 U	250 U 120 U	250 L 120 L		5 L 2.5 L	5 U J 2.5 U	10 U	5 U 2.5 U	100 U 50 U	120 U 62 U	
Dichlorodifluoromethane		5 ug/l	5 U		5 U		5 U	250 U	250 L		5 L		10 U	5 U	100 U	120 U	
Acetone		0 ug/l	5 U		5 U	5 U	5 U	250 U	82	J 500 U	80	99	110	9.4	100 U	120 U	
Carbon disulfide	60	0 ug/l	5 U	50 U	5 U	5 U	5 U	250 U	250 l	J 500 U	5 L	J 5 U	10 U	5 U	100 U	120 U	
2-Butanone	50	0 ug/l	5 U	50 U	5 U	5 U	5 U	250 U	250 l		2.1 J	2.5 J	10 U	4 J	100 U	120 U	
Vinyl acetate		ug/l	5 U	50 U	5 U		5 U	250 U	250 L		5 L	J 5 U	10 U	5 U	100 U	120 U	
4-Methyl-2-pentanone 2-Hexanone	-	ug/l 0 ug/l	5 U	50 U	5 U		5 U	250 U 250 U	250 L 250 L		5 L	5 U	10 U	5 U	100 U 100 U	120 U 120 U	
2-Hexanone Bromochloromethane		0 ug/1 5 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 U		2.5 L		5 11	2.5 U	50 U	62 U	
2,2-Dichloropropane		5 ug/l	2.5 U		2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
1,2-Dibromoethane	0.000		2 U		2 U	2 U	2 U	100 U	100 l	J 200 U	2 L	J 2 U	4 U	2 U	40 U	50 U	
1,3-Dichloropropane		5 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
1,1,1,2-Tetrachloroethane		5 ug/l	2.5 U	25 U	2.5 U		2.5 U	120 U	120 L		2.5 L		5 U	2.5 U	50 U	62 U	
Bromobenzene n-Butylbenzene		5 ug/l 5 ug/l	2.5 U 2.5 U	25 U 25 U	2.5 U 2.5 U	2.5 U	2.5 U 2.5 U	120 U 120 U	120 U		2.5 L 2.5 L	J 2.5 U 2.5 U	5 U	2.5 U 2.5 U	50 U 50 U	62 U 62 U	
sec-Butylbenzene		5 ug/I 5 ug/I	2.5 U		2.5 U			120 U		J 250 U	2.5 L		5 U	2.5 U	50 U		
tert-Butylbenzene		5 ug/l	2.5 U					120 U		J 250 U	2.5 L			2.5 U	50 U		
o-Chlorotoluene		5 ug/l	2.5 U					120 U		J 250 U	2.5 L				50 U		
p-Chlorotoluene		5 ug/l	2.5 U					120 U			2.5 L			2.5 U	50 U		
1,2-Dibromo-3-chloropropane		4 ug/l	2.5 U					120 U	120 l		2.5 L			2.5 U	50 U	62 U	
Hexachlorobutadiene		5 ug/l	2.5 U					120 U	120 L		2.5 L			2.5 U	50 U		
Isopropylbenzene p-Isopropyltoluene		5 ug/l 5 ug/l	2.5 U 2.5 U		2.5 U 2.5 U			120 U 120 U	120 U		2.5 L 2.5 L			2.5 U 2.5 U	50 U	62 U 62 U	
Naphthalene		0 ug/l	2.5 U					120 U	120		2.5 L	_		2.5 U	50 U	62 U	
n-Propylbenzene		5 ug/l	2.5 U					120 U		J 250 U	2.5 L			2.5 U			
1,2,3-Trichlorobenzene		5 ug/l	2.5 U		2.5 U			120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
1,2,4-Trichlorobenzene		5 ug/l	2.5 U		2.5 U			120 U	120 l		2.5 L			2.5 U	50 U	62 U	
1,3,5-Trimethylbenzene		5 ug/l	2.5 U					120 U		J 250 U	2.5 L			2.5 U	50 U		
1,2,4-Trimethylbenzene 1,4-Dioxane	+ !	5 ug/l	2.5 U 250 U		2.5 U 250 U			120 U 12000 U			2.5 L 250 L			2.5 U 250 U	50 U 5000 U		
p-Diethylbenzene		ug/l ug/l	250 U		250 U 2 U		250 U	12000 U 100 U	12000 U		250 L			250 U 2 U	5000 U 40 U		
p-Ethyltoluene		ug/I	2 U					100 U			2 (2 U	40 U		
1,2,4,5-Tetramethylbenzene		5 ug/l	2 U					100 U		J 200 U	2 (4 U	2 U	40 U		
Ethyl ether		ug/l	2.5 U		2.5 U			120 U	120 l		2.5 L		5 U	2.5 U	50 U	62 U	
trans-1,4-Dichloro-2-butene		5 ug/l	2.5 U	25 U	2.5 U	2.5 U	2.5 U	120 U	120 l	J 250 U	2.5 L	J 2.5 U	5 U	2.5 U	50 U	62 U	
Comparison is not performed on																	

trans-1,4-Dichloro-2-butene | 5 | ug/1 | 2.5 0

Table 2
Groundwater Analytical Results
Monitored Natural Attenuation Parameters
Permeable Reactive Barrier Work Plan
BCP No. C360227

LOCATION			MW-1-20240	610	MW-1D-20240610	MW-3-20240	310	MW-5-202406	310	DUP-20240610	0	MW-2-20240	611	MW-4-20240	611	MW-6-20240	0611	
SAMPLING DATE			6/10/2024 L2432304-01		6/10/2024	6/10/2024 L2432304-03		6/10/2024 L2432304-04		6/10/2024		6/11/202	4	6/11/202	4	6/11/2024		
LAB SAMPLE ID					L2432304-02					L2432304-05		L2432795-1	.1	L2432795-1	2	L2432795-13		
SAMPLE TYPE			WATER		WATER	WATER		WATER		WATER		WATER		WATER		WATER		
	NY-AWQS	Units	Results Q		Results Q	Results	Results Q		Results Q		Q	Results Q		Results Q		Results	Q	
Field Parameter Measurements		,								•	•							
Temperature		°C	16.1		14.8	18		14.6		-		16.4		15.7		14.7		
Dissolved Oxygen		mg/L	0.6		5.32	1.4		4.5		-		3.75		2.85		6.14		
Conductivity		mS/cm	1.816		1.674	755		1.633		-		0.938		1.723		1.642		
pH			7.65		6.41	7.65		6.38		-		5.95		6.64		6.29		
Redox		mV	-80		118.4	-104.2		30.3		-		120.7		3.2		-1		
Turbidity		NTU	10		6.8	22.46		28.8		-		4.89		10.01		28.56		
Anions by Ion Chromatography											•							
Chloride	250000	ug/l	464000		406000	4060		347000		457000		158000		341000		367000		
Sulfate	250000	ug/l	7440		49100	40200		55900		26800		41600		55700		40100		
General Chemistry										•	•							
Alkalinity, Total		mg CaCO3	151		110	290		169		152		119		277		110		
Nitrogen, Nitrate/Nitrite	10000	ug/l	100	U	6000	5500		6500		2600		7300		3400		5900		
Total Organic Carbon		ug/l	660		330 J	2100		870		620		1300		1000		360	J	
Iron, Ferrous		ug/l	80	J	160 J	70	J	500	U	130	J	500	U	80	J	500	U	
Total Hardness (by calculation)		,									•							
Hardness		ug/l	333700		495100	325700		361500		367500		282400		513800		326300		

^{*} Comparison is not performed on parameters with non-numeric criteria.



=

NY-AWQS: New York TOGS 111 Ambient Water Quality Standards criteria reflects all addendum to criteria through June 2004. Highlighted cells exceed NY-AWQS.

U - Not detected at the reported detection limit for the sample.

J - Estimated value.

ANALYTICAL REPORT

Lab Number: L2432304

Client: LaBella Associates

45 Main Street

Brooklyn, NY 11201

ATTN: Cynthia Chu
Phone: (917) 280-6364

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378
Report Date: 06/20/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number: L2432304 **Report Date:** 06/20/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2432304-01	MW-1-20240610	WATER	YONKERS, NY	06/10/24 10:57	06/10/24
L2432304-02	MW-1D-20240610	WATER	YONKERS, NY	06/10/24 10:07	06/10/24
L2432304-03	MW-3-20240610	WATER	YONKERS, NY	06/10/24 11:45	06/10/24
L2432304-04	MW-5-20240610	WATER	YONKERS, NY	06/10/24 12:20	06/10/24
L2432304-05	DUP-20240610	WATER	YONKERS, NY	06/10/24 12:00	06/10/24
L2432304-06	TRIP BLANK	WATER	YONKERS, NY	06/10/24 00:00	06/10/24

Project Name:WARBURTON DRY CLEANERS SITELab Number:L2432304Project Number:2221378Report Date:06/20/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304
Project Number: 2221378 Report Date: 06/20/24

Case Narrative (continued)

Report Submission

June 20, 2024: This final report includes the results of all requested analyses.

June 19, 2024: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Sulfide was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 06/20/24

ORGANICS

VOLATILES

L2432304

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

SAMPLE RESULTS

Report Date: 06/20/24

Lab Number:

Lab ID: L2432304-01 Date Collected: 06/10/24 10:57

Client ID: MW-1-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/14/24 00:11

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	4.2		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2432304

06/20/24

Project Name: Lab Number: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

L2432304-01

MW-1-20240610

YONKERS, NY

SAMPLE RESULTS

Date Collected: 06/10/24 10:57

Date Received: 06/10/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
			_			
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432304-01 Date Collected: 06/10/24 10:57

Client ID: MW-1-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westh	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	98	70-130	

L2432304

06/20/24

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2432304-02 D Date Collected: 06/10/24 10:07

Client ID: Date Received: 06/10/24 MW-1D-20240610 Field Prep: Sample Location: Not Specified YONKERS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/14/24 00:35

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	25	7.0	10
1,1-Dichloroethane	ND		ug/l	25	7.0	10
Chloroform	ND		ug/l	25	7.0	10
Carbon tetrachloride	ND		ug/l	5.0	1.3	10
1,2-Dichloropropane	ND		ug/l	10	1.4	10
Dibromochloromethane	ND		ug/l	5.0	1.5	10
1,1,2-Trichloroethane	ND		ug/l	15	5.0	10
Tetrachloroethene	1000		ug/l	5.0	1.8	10
Chlorobenzene	ND		ug/l	25	7.0	10
Trichlorofluoromethane	ND		ug/l	25	7.0	10
1,2-Dichloroethane	ND		ug/l	5.0	1.3	10
1,1,1-Trichloroethane	ND		ug/l	25	7.0	10
Bromodichloromethane	ND		ug/l	5.0	1.9	10
trans-1,3-Dichloropropene	ND		ug/l	5.0	1.6	10
cis-1,3-Dichloropropene	ND		ug/l	5.0	1.4	10
1,3-Dichloropropene, Total	ND		ug/l	5.0	1.4	10
1,1-Dichloropropene	ND		ug/l	25	7.0	10
Bromoform	ND		ug/l	20	6.5	10
1,1,2,2-Tetrachloroethane	ND		ug/l	5.0	1.7	10
Benzene	ND		ug/l	5.0	1.6	10
Toluene	ND		ug/l	25	7.0	10
Ethylbenzene	ND		ug/l	25	7.0	10
Chloromethane	ND		ug/l	25	7.0	10
Bromomethane	ND		ug/l	25	7.0	10
Vinyl chloride	ND		ug/l	10	0.71	10
Chloroethane	ND		ug/l	25	7.0	10
1,1-Dichloroethene	ND		ug/l	5.0	1.7	10
trans-1,2-Dichloroethene	ND		ug/l	25	7.0	10

06/20/24

Project Name: Lab Number: WARBURTON DRY CLEANERS SITE L2432304

Project Number: 2221378

L2432304-02

D

SAMPLE RESULTS

Date Collected: 06/10/24 10:07

Report Date:

Client ID: Date Received: 06/10/24 MW-1D-20240610 Sample Location: YONKERS, NY

Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	ND		ug/l	5.0	1.8	10
1,2-Dichlorobenzene	ND		ug/l	25	7.0	10
1,3-Dichlorobenzene	ND		ug/l	25	7.0	10
1,4-Dichlorobenzene	ND		ug/l	25	7.0	10
Methyl tert butyl ether	ND		ug/l	25	1.7	10
p/m-Xylene	ND		ug/l	25	7.0	10
o-Xylene	ND		ug/l	25	7.0	10
Xylenes, Total	ND		ug/l	25	7.0	10
cis-1,2-Dichloroethene	ND		ug/l	25	7.0	10
1,2-Dichloroethene, Total	ND		ug/l	25	7.0	10
Dibromomethane	ND		ug/l	50	10.	10
1,2,3-Trichloropropane	ND		ug/l	25	7.0	10
Acrylonitrile	ND		ug/l	50	15.	10
Styrene	ND		ug/l	25	7.0	10
Dichlorodifluoromethane	ND		ug/l	50	10.	10
Acetone	ND		ug/l	50	15.	10
Carbon disulfide	ND		ug/l	50	10.	10
2-Butanone	ND		ug/l	50	19.	10
Vinyl acetate	ND		ug/l	50	10.	10
4-Methyl-2-pentanone	ND		ug/l	50	10.	10
2-Hexanone	ND		ug/l	50	10.	10
Bromochloromethane	ND		ug/l	25	7.0	10
2,2-Dichloropropane	ND		ug/l	25	7.0	10
1,2-Dibromoethane	ND		ug/l	20	6.5	10
1,3-Dichloropropane	ND		ug/l	25	7.0	10
1,1,1,2-Tetrachloroethane	ND		ug/l	25	7.0	10
Bromobenzene	ND		ug/l	25	7.0	10
n-Butylbenzene	ND		ug/l	25	7.0	10
sec-Butylbenzene	ND		ug/l	25	7.0	10
tert-Butylbenzene	ND		ug/l	25	7.0	10
o-Chlorotoluene	ND		ug/l	25	7.0	10
p-Chlorotoluene	ND		ug/l	25	7.0	10
1,2-Dibromo-3-chloropropane	ND		ug/l	25	7.0	10
Hexachlorobutadiene	ND		ug/l	25	7.0	10
Isopropylbenzene	ND		ug/l	25	7.0	10
p-Isopropyltoluene	ND		ug/l	25	7.0	10
Naphthalene	ND		ug/l	25	7.0	10

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432304-02 D Date Collected: 06/10/24 10:07

Client ID: MW-1D-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
n-Propylbenzene	ND		ug/l	25	7.0	10	
1,2,3-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,2,4-Trichlorobenzene	ND		ug/l	25	7.0	10	
1,3,5-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,2,4-Trimethylbenzene	ND		ug/l	25	7.0	10	
1,4-Dioxane	ND		ug/l	2500	610	10	
p-Diethylbenzene	ND		ug/l	20	7.0	10	
p-Ethyltoluene	ND		ug/l	20	7.0	10	
1,2,4,5-Tetramethylbenzene	ND		ug/l	20	5.4	10	
Ethyl ether	ND		ug/l	25	7.0	10	
trans-1,4-Dichloro-2-butene	ND		ug/l	25	7.0	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	97	70-130	

06/10/24 11:45

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

SAMPLE RESULTS

L2432304

Lab Number:

Date Collected:

Report Date: 06/20/24

Lab ID: L2432304-03 Client ID: MW-3-20240610

Sample Location: YONKERS, NY Date Received: 06/10/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D 06/14/24 00:59 Analytical Date:

Analyst: MKS

Volatile Organics by GC/MS - Westborough Methylene chloride 1,1-Dichloroethane	ND ND ND ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
				0.70	1
011 (ND	ug/l	2.5	0.70	1
Chloroform		ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

06/20/24

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378

SAMPLE RESULTS

Date Collected: 06/10/24 11:45

Date Received: 06/10/24
Field Prep: Not Specified

Report Date:

Client ID: MW-3-20240610 Sample Location: YONKERS, NY

L2432304-03

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: WARBURTON DRY CLEANERS SITE L2432304

Project Number: Report Date: 2221378 06/20/24

SAMPLE RESULTS

Lab ID: L2432304-03 Date Collected: 06/10/24 11:45

Client ID: Date Received: 06/10/24 MW-3-20240610 Sample Location: Field Prep: Not Specified YONKERS, NY

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
n-Propylbenzene	ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1		
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1		
1,4-Dioxane	ND		ug/l	250	61.	1		
p-Diethylbenzene	ND		ug/l	2.0	0.70	1		
p-Ethyltoluene	ND		ug/l	2.0	0.70	1		
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1		
Ethyl ether	ND		ug/l	2.5	0.70	1		
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	97	70-130	

L2432304

06/20/24

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2432304-04 Date Collected: 06/10/24 12:20

Client ID: MW-5-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/14/24 01:22

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.36	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

L2432304

06/20/24

Project Name: WARBURTON DRY CLEANERS SITE Lab Number:

Project Number: 2221378

L2432304-04

MW-5-20240610

YONKERS, NY

SAMPLE RESULTS

Date Collected: 06/10/24 12:20

Date Received: 06/10/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Volatile Organics by GC/MS - Westborough Lab Trichioroethene ND ugil 0.50 0.18 1 1.2-Dichioroetheroen ND ugil 2.5 0.70 1 1.4-Dichioroetheroen ND ugil 2.5 0.70 1 1.4-Dichioroetheroen ND ugil 2.5 0.70 1 Methyl ten buryl ether ND ugil 2.5 0.70 1 Methylsen ND ugil 2.5 0.70 1 Vylene ND ugil 2.5 0.70 1 Xylenes, Total ND ugil 2.5 0.70 1 Xylenes, Total ND ugil 2.5 0.70 1 2-Dichtoredinene ND ugil <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th>Dilution Factor</th>	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2-Dichlorobenzene ND Ugl 2.5 0.70 1 1.3-Dichlorobenzene ND Ugl 2.5 0.70 1 1.3-Dichloropropane ND Ugl 2.5 0.70	Volatile Organics by GC/MS - West	tborough Lab					
1,4-Dichlorobenzene	Trichloroethene	ND		ug/l	0.50	0.18	1
1.4-Dichlorobenzene ND ugh 2.5 0.70 1	1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert bulyl ether ND ugh 2.5 0.17 1 p/m-Xylene ND ugh 2.5 0.70 1 o-Xylene ND ugh 2.5 0.70 1 o-Xylenea ND ugh 2.5 0.70 1 cis-1,2-Dichloroethene ND ugh 2.5 0.70 1 1,2-Dichloroethene, Total ND ugh 2.5 0.70 1 Dibromomethane ND ugh 2.5 0.70 1 Acrylontrile ND ugh 5.0 1.0 1 Acrylontrile ND ugh 5.0 0.70 1 Skyrene ND ugh 5.0 1.5 1 Obchlorodifluoromethane ND ugh 5.0 1.0 1 Acetone ND ugh 5.0 1.0 1 Carbon disatifide ND ugh 5.0 1.0 1 Herbettyl-Zepentano	1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
pfm-Xylene ND ugh 2.5 0.70 1 o-Xylene ND ugh 2.5 0.70 1 Xylenes, Total ND ugh 2.5 0.70 1 Local-1, 2-Dichloroethene ND ugh 2.5 0.70 1 1,2-Dichloroethene, Total ND ugh 2.5 0.70 1 1,2-Dichloroethene, Total ND ugh 2.5 0.70 1 1,2-Brichloropropane ND ugh 2.5 0.70 1 Acylontrille ND ugh 5.0 1.0 1 Styrene ND ugh 5.0 1.0 1 Acetone ND ugh 5.0 1.0 1 Acetone ND ugh 5.0 1.0 1 Vinyl acetate ND ugh 5.0 1.0 1 Vinyl acetate ND ugh 5.0 1.0 1 2-Besanone	1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
o-Xylene ND ugfl 2.5 0.70 1 Xylenes, Total ND ugfl 2.5 0.70 1 cis-1,2-Dichloroethene, Total ND ugfl 2.5 0.70 1 Dibromomethane ND ugfl 5.0 1.0 1 Dibromomethane ND ugfl 5.0 1.0 1 Actyfonitrile ND ugfl 5.0 1.5 1 Styrene ND ugfl 5.0 1.5 1 Actone ND ugfl 5.0 1.0 1 Carbon disulfide ND ugfl 5.0 1.0 1 Carbon disulfid	Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
Xylenes, Total ND ugfl 2.5 0.70 1 cis-1,2-Dichloroethene ND ugfl 2.5 0.70 1 1,2-Dichloroethene, Total ND ugfl 2.5 0.70 1 Dibromomethane ND ugfl 2.5 0.70 1 Action ND ugfl 5.0 1.5 1 Action ND ugfl 5.0 1.5 1 Styrene ND ugfl 5.0 1.0 1 Dichlorodifluoromethane ND ugfl 5.0 1.0 1 Acetone ND ugfl 5.0 1.0 1 Carbon disulfide ND ugfl 5.0 1.0 1 2-Butanone ND ugfl 5.0 1.0 1 Vinyl acetate ND ugfl 5.0 1.0 1 4-Methyl-2-pentanone ND ugfl 5.0 1.0 1 2-Ebutanone	p/m-Xylene	ND		ug/l	2.5	0.70	1
ND	o-Xylene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total ND ug/l 2.5 0.70 1 1 1 1 1 1 1 1 1	Xylenes, Total	ND		ug/l	2.5	0.70	1
Dibromomethane ND ug/l 5.0 1.0 1 1,2,3-Trichloropropane ND ug/l 2.5 0.70 1 Acryfontirle ND ug/l 5.0 1.5 1 Styrene ND ug/l 5.0 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 0.70 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 2.5 0.70 1 2-2-Dichloropropane ND ug/l 2.5 0.70 1 1,3-Dichl	cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2,3-Trichloropropane ND ug/l 2.5 0.70 1	1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Acrylonitrile ND ug/l 5.0 1.5 1 Styrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 5.0 1.0 1 1-2-Dibromoethane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,1-12-Tetrachloroethane ND ug/l 2.5 0.70 1 1-Eurylbenzene ND ug/l 2.5 0.70 1 1-Eurylbenzene ND ug/l 2.5 0.70 1 1-Eur-Butylbenzene ND ug/l 2.5 0.70 1	Dibromomethane	ND		ug/l	5.0	1.0	1
Syrene ND ug/l 2.5 0.70 1 Dichlorodifluoromethane ND ug/l 5.0 1.0 1 Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Viryl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Methyl-2-pentanone ND ug/l 5.0 1.0 1 8-Methyl-2-pentanone ND ug/l 2.5 0.70 1 8-Dromochoromethane ND ug/l 2.5 0.70 1 1,2-Dictoromethane ND ug/l 2.5 0.70 1	1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Dichlorodiffluoromethane ND ug/l 5.0 1.0 1 1 1 1 1 1 1 1 1	Acrylonitrile	ND		ug/l	5.0	1.5	1
Acetone ND ug/l 5.0 1.5 1 Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1	Styrene	ND		ug/l	2.5	0.70	1
Carbon disulfide ND ug/l 5.0 1.0 1 2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1	Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
2-Butanone ND ug/l 5.0 1.9 1 Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 <	Acetone	ND		ug/l	5.0	1.5	1
Vinyl acetate ND ug/l 5.0 1.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1	Carbon disulfide	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone ND ug/l 5.0 1.0 1 2-Hexanone ND ug/l 5.0 1.0 1 Bromochloromethane ND ug/l 2.5 0.70 1 2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.5 0.70 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 tetr-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 <td>2-Butanone</td> <td>ND</td> <td></td> <td>ug/l</td> <td>5.0</td> <td>1.9</td> <td>1</td>	2-Butanone	ND		ug/l	5.0	1.9	1
2-Hexanone ND ug/l 5.0 1.0 1	Vinyl acetate	ND		ug/l	5.0	1.0	1
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2,2-Dichloropropane ND ug/l 2.5 0.70 1 1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylboluene ND ug/l 2.5 0.70 <	2-Hexanone	ND		ug/l	5.0	1.0	1
1,2-Dibromoethane ND ug/l 2.0 0.65 1 1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 <th< td=""><td>Bromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>2.5</td><td>0.70</td><td>1</td></th<>	Bromochloromethane	ND		ug/l	2.5	0.70	1
1,3-Dichloropropane ND ug/l 2.5 0.70 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane ND ug/l 2.5 0.70 1 Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
Bromobenzene ND ug/l 2.5 0.70 1 n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
n-Butylbenzene ND ug/l 2.5 0.70 1 sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
sec-Butylbenzene ND ug/l 2.5 0.70 1 tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	Bromobenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene ND ug/l 2.5 0.70 1 o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 sopropyltoluene ND ug/l 2.5 0.70 1 sopropyltoluene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	n-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene ND ug/l 2.5 0.70 1 p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	sec-Butylbenzene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene ND ug/l 2.5 0.70 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	tert-Butylbenzene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 0.70 1 Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	o-Chlorotoluene	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene ND ug/l 2.5 0.70 1 Isopropylbenzene ND ug/l 2.5 0.70 1 p-Isopropyltoluene ND ug/l 2.5 0.70 1	p-Chlorotoluene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene ND ug/l 2.5 0.70 1	Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
•	Isopropylbenzene	ND		ug/l	2.5	0.70	1
Naphthalene ND ug/l 2.5 0.70 1	p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
	Naphthalene	ND		ug/l	2.5	0.70	1

06/20/24

Report Date:

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378

SAMPLE RESULTS

Lab ID: L2432304-04 Date Collected: 06/10/24 12:20

Client ID: MW-5-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	98	70-130	

L2432304

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

SAMPLE RESULTS

Lab Number:

Report Date: 06/20/24

Lab ID: L2432304-05 Date Collected: 06/10/24 12:00

Client ID: Date Received: 06/10/24 DUP-20240610 Field Prep: Sample Location: Not Specified YONKERS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/14/24 01:46

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	0.91	J	ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	2.8		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

06/20/24

Report Date:

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378

SAMPLE RESULTS

Lab ID: L2432304-05 Date Collected: 06/10/24 12:00

Client ID: DUP-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab				
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.17	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432304-05 Date Collected: 06/10/24 12:00

Client ID: DUP-20240610 Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	104	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	96	70-130	

L2432304

06/20/24

Not Specified

Project Name: WARBURTON DRY CLEANERS SITE

YONKERS, NY

Project Number: 2221378

SAMPLE RESULTS

._____

Field Prep:

Lab Number:

Report Date:

 Lab ID:
 L2432304-06
 Date Collected:
 06/10/24 00:00

 Client ID:
 TRIP BLANK
 Date Received:
 06/10/24

Sample Depth:

Sample Location:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/14/24 02:10

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432304-06 Date Collected: 06/10/24 00:00

Client ID: TRIP BLANK Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Trichloroethene	ND		.ua/I	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND			2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l ug/l	2.5	0.70	1
Dibromomethane	ND			5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
			ug/l			
Acetone Carbon disulfide	ND		ug/l	5.0	1.5	1
	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	<u> </u>
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	<u> </u>
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432304-06 Date Collected: 06/10/24 00:00

Client ID: TRIP BLANK Date Received: 06/10/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	98	70-130	

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/13/24 19:00

Analyst: LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1934333-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/13/24 19:00

Analyst: LAC

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1934333-5	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.17	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
Xylenes, Total	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	
Dibromomethane	ND	ug/l	5.0	1.0	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	
Acrylonitrile	ND	ug/l	5.0	1.5	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
Vinyl acetate	ND	ug/l	5.0	1.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
Bromochloromethane	ND	ug/l	2.5	0.70	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	
Bromobenzene	ND	ug/l	2.5	0.70	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	

L2432304

Project Name: Lab Number: WARBURTON DRY CLEANERS SITE

Project Number: Report Date: 2221378 06/20/24

Method Blank Analysis Batch Quality Control

1,8260D

06/13/24 19:00

Analyst: LAC

Analytical Method:

Analytical Date:

Parameter	Result C	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough Lab fo	or sample(s):	01-06 Batch:	WG1934333-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	102		70-130		
Toluene-d8	104		70-130		
4-Bromofluorobenzene	118		70-130		
Dibromofluoromethane	94		70-130		

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number: L2432304

Report Date: 06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: W0	G1934333-3 WG1934333-4	·	
Methylene chloride	91		98	70-130	7	20
1,1-Dichloroethane	100		110	70-130	10	20
Chloroform	93		95	70-130	2	20
Carbon tetrachloride	89		89	63-132	0	20
1,2-Dichloropropane	100		110	70-130	10	20
Dibromochloromethane	92		99	63-130	7	20
1,1,2-Trichloroethane	97		100	70-130	3	20
Tetrachloroethene	92		93	70-130	1	20
Chlorobenzene	95		99	75-130	4	20
Trichlorofluoromethane	81		82	62-150	1	20
1,2-Dichloroethane	96		100	70-130	4	20
1,1,1-Trichloroethane	94		96	67-130	2	20
Bromodichloromethane	91		97	67-130	6	20
trans-1,3-Dichloropropene	100		110	70-130	10	20
cis-1,3-Dichloropropene	93		100	70-130	7	20
1,1-Dichloropropene	97		99	70-130	2	20
Bromoform	88		95	54-136	8	20
1,1,2,2-Tetrachloroethane	120		130	67-130	8	20
Benzene	97		100	70-130	3	20
Toluene	100		100	70-130	0	20
Ethylbenzene	96		99	70-130	3	20
Chloromethane	84		87	64-130	4	20
Bromomethane	19	Q	22	Q 39-139	15	20

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number: L2432304

Report Date: 06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: W	G1934333-3	WG1934333-4				
Vinyl chloride	100		100		55-140	0		20	
Chloroethane	71		70		55-138	1		20	
1,1-Dichloroethene	88		91		61-145	3		20	
trans-1,2-Dichloroethene	88		94		70-130	7		20	
Trichloroethene	79		82		70-130	4		20	
1,2-Dichlorobenzene	97		100		70-130	3		20	
1,3-Dichlorobenzene	97		100		70-130	3		20	
1,4-Dichlorobenzene	95		100		70-130	5		20	
Methyl tert butyl ether	88		100		63-130	13		20	
p/m-Xylene	90		90		70-130	0		20	
o-Xylene	85		90		70-130	6		20	
cis-1,2-Dichloroethene	88		94		70-130	7		20	
Dibromomethane	88		94		70-130	7		20	
1,2,3-Trichloropropane	99		120		64-130	19		20	
Acrylonitrile	100		120		70-130	18		20	
Styrene	90		95		70-130	5		20	
Dichlorodifluoromethane	75		77		36-147	3		20	
Acetone	92		110		58-148	18		20	
Carbon disulfide	91		93		51-130	2		20	
2-Butanone	100		130		63-138	26	Q	20	
Vinyl acetate	180	Q	190	Q	70-130	5		20	
4-Methyl-2-pentanone	110		120		59-130	9		20	
2-Hexanone	120		130		57-130	8		20	

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number: L2432304

Report Date: 06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - W	Vestborough Lab Associated	sample(s):	01-06 Batch:	WG1934333-3	WG1934333-4				
Bromochloromethane	85		90		70-130	6		20	
2,2-Dichloropropane	100		110		63-133	10		20	
1,2-Dibromoethane	97		100		70-130	3		20	
1,3-Dichloropropane	100		110		70-130	10		20	
1,1,1,2-Tetrachloroethane	91		97		64-130	6		20	
Bromobenzene	98		110		70-130	12		20	
n-Butylbenzene	94		98		53-136	4		20	
sec-Butylbenzene	100		110		70-130	10		20	
tert-Butylbenzene	96		100		70-130	4		20	
o-Chlorotoluene	110		120		70-130	9		20	
p-Chlorotoluene	110		110		70-130	0		20	
1,2-Dibromo-3-chloropropane	90		99		41-144	10		20	
Hexachlorobutadiene	97		100		63-130	3		20	
Isopropylbenzene	95		99		70-130	4		20	
p-Isopropyltoluene	100		100		70-130	0		20	
Naphthalene	82		94		70-130	14		20	
n-Propylbenzene	110		120		69-130	9		20	
1,2,3-Trichlorobenzene	83		95		70-130	13		20	
1,2,4-Trichlorobenzene	89		97		70-130	9		20	
1,3,5-Trimethylbenzene	100		110		64-130	10		20	
1,2,4-Trimethylbenzene	100		110		70-130	10		20	
1,4-Dioxane	70		84		56-162	18		20	
p-Diethylbenzene	95		100		70-130	5		20	

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378 Lab Number: L2432304

Report Date: 06/20/24

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06 Ba	tch:	WG1934333-3	WG1934333-4				
p-Ethyltoluene	100		110	0		70-130	10		20	
1,2,4,5-Tetramethylbenzene	84		89)		70-130	6		20	
Ethyl ether	88		93	8		59-134	6		20	
trans-1,4-Dichloro-2-butene	72		86	i		70-130	18		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	104	106	70-130	
Toluene-d8	108	106	70-130	
4-Bromofluorobenzene	118	120	70-130	
Dibromofluoromethane	94	93	70-130	

METALS

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-01
 Date Collected:
 06/10/24 10:57

 Client ID:
 MW-1-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by calculation	n) - Mansfi	eld Lab								
Hardness	333.7		mg/l	0.5400	NA	1	06/14/24 17:5	7 06/18/24 15:03	3 EPA 3005A	1,6020B	NTB

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-02
 Date Collected:
 06/10/24 10:07

 Client ID:
 MW-1D-20240610
 Date Received:
 06/10/24

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by calculation) - Mansfield Lab											
Hardness	495.1		mg/l	0.5400	NA	1	06/14/24 17:5	7 06/18/24 15:08	B EPA 3005A	1,6020B	NTB

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-03
 Date Collected:
 06/10/24 11:45

 Client ID:
 MW-3-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by calculation) - Mansfield Lab											
Hardness	325.7		mg/l	0.5400	NA	1	06/14/24 17:5	57 06/18/24 15:1	2 EPA 3005A	1,6020B	NTB

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-04
 Date Collected:
 06/10/24 12:20

 Client ID:
 MW-5-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by calculation) - Mansfield Lab											
Hardness	361.5		mg/l	0.5400	NA	1	06/14/24 17:5	7 06/18/24 15:33	B EPA 3005A	1,6020B	NTB

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID:L2432304-05Date Collected:06/10/24 12:00Client ID:DUP-20240610Date Received:06/10/24Sample Location:YONKERS, NYField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by	y calculation	on) - Mansfi	eld Lab								
Hardness	367.5		mg/l	0.5400	NA	1	06/14/24 17:5	7 06/18/24 15:38	B EPA 3005A	1,6020B	NTB

L2432304

Project Name: WARBURTON DRY CLEANERS SITE

Result Qualifier

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical
Units RL MDL Factor Prepared Analyzed Method Analyst

Lab Number:

Total Hardness (by calculation) - Mansfield Lab for sample(s): 01-05 Batch: WG1934060-1

Hardness ND mg/l 0.5400 NA 1 06/14/24 17:57 06/18/24 14:31 1,6020B NTB

Prep Information

Digestion Method: EPA 3005A

Parameter

Lab Control Sample Analysis Batch Quality Control

Project Name: WARBURTON DRY CLEANERS SITE

Lab Number:

L2432304

Project Number: 2221378

Report Date:

06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness (by calculation) - Mansfield Lab	Associated samp	ole(s): 01-0	5 Batch: WG19	34060-2				
Hardness	108		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number:

L2432304

Report Date:

06/20/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD Qual Limits
Total Hardness (by calculation) - Sample	· Mansfield L	_ab Associate	ed sample(s): 01-05 Q	C Batch	ID: WG193	4060-3 QC S	Sample: L2432352	-01 Clie	nt ID: MS
Hardness	62.10	66.2	132.2	106		-	-	75-125	-	20

INORGANICS & MISCELLANEOUS

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-01
 Date Collected:
 06/10/24 10:57

 Client ID:
 MW-1-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	t Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Alkalinity, Total	151.		mg CaCO3/L	2.00	NA	1	-	06/15/24 04:48	121,2320B	MRM
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	06/12/24 15:51	121,4500NO3-F	MRM
Total Organic Carbon	0.66		mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	0.080	J	mg/l	0.50	0.056	1	-	06/11/24 05:33	121,3500FE-B	CAR
Anions by Ion Chromato	ography - We	stboroug	h Lab							
Chloride	464.		mg/l	12.5	2.10	25	-	06/13/24 21:46	44,300.0	AVT
Sulfate	7.44		mg/l	1.00	0.454	1	-	06/13/24 17:02	44,300.0	AVT

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-02
 Date Collected:
 06/10/24 10:07

 Client ID:
 MW-1D-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualifie	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	b								
Alkalinity, Total	110.	n	ng CaCO3/L	2.00	NA	1	-	06/15/24 04:52	121,2320B	MRM
Nitrogen, Nitrate/Nitrite	6.0		mg/l	0.10	0.046	1	-	06/12/24 15:52	121,4500NO3-F	MRM
Total Organic Carbon	0.33	J	mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	0.16	J	mg/l	0.50	0.056	1	-	06/11/24 05:33	121,3500FE-B	CAR
Anions by Ion Chromato	ography - Wes	stborough	Lab							
Chloride	406.		mg/l	12.5	2.10	25	-	06/13/24 21:57	44,300.0	AVT
Sulfate	49.1		mg/l	1.00	0.454	1	-	06/13/24 17:13	44,300.0	AVT

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-03
 Date Collected:
 06/10/24 11:45

 Client ID:
 MW-3-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Result	Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Alkalinity, Total	290.		mg CaCO3/L	2.00	NA	1	-	06/15/24 04:56	121,2320B	MRM
Nitrogen, Nitrate/Nitrite	5.5		mg/l	0.10	0.046	1	-	06/12/24 15:54	121,4500NO3-F	MRM
Total Organic Carbon	2.1		mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	0.070	J	mg/l	0.50	0.056	1	-	06/11/24 05:33	121,3500FE-B	CAR
Anions by Ion Chromato	ography - We	stboroug	h Lab							
Chloride	4.06		mg/l	0.500	0.083	1	-	06/13/24 23:02	44,300.0	AVT
Sulfate	40.2		mg/l	1.00	0.454	1	-	06/13/24 23:02	44,300.0	AVT

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-04
 Date Collected:
 06/10/24 12:20

 Client ID:
 MW-5-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Result	Qualifier Un	nits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
estborough La	b								
169.	mg Ca	CO3/L	2.00	NA	1	-	06/15/24 05:03	121,2320B	MRM
6.5	m	g/l	0.10	0.046	1	-	06/12/24 15:55	121,4500NO3-F	MRM
0.87	mę	g/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
ND	mę	g/l	0.50	0.056	1	-	06/11/24 05:33	121,3500FE-B	CAR
graphy - Wes	tborough Lab)							
347.	mę	g/l	12.5	2.10	25	-	06/13/24 22:07	44,300.0	AVT
55.9	m	g/l	1.00	0.454	1	-	06/13/24 17:34	44,300.0	AVT
	estborough La 169. 6.5 0.87 ND ography - Wes 347.	estborough Lab 169. mg Ca 6.5 m 0.87 m ND m ography - Westborough Lab	estborough Lab 169. mg CaCO3/L 6.5 mg/l 0.87 mg/l ND mg/l ography - Westborough Lab 347. mg/l	estborough Lab 169. mg CaCO3/L 2.00 6.5 mg/l 0.10 0.87 mg/l 0.50 ND mg/l 0.50 ography - Westborough Lab 347. mg/l 12.5	estborough Lab 169. mg CaCO3/L 2.00 NA 6.5 mg/l 0.10 0.046 0.87 mg/l 0.50 0.09 ND mg/l 0.50 0.056 ography - Westborough Lab 347. mg/l 12.5 2.10	Result Qualifier Units RL MDL Factor estborough Lab 169. mg CaCO3/L 2.00 NA 1 6.5 mg/l 0.10 0.046 1 0.87 mg/l 0.50 0.09 1 ND mg/l 0.50 0.056 1 ography - Westborough Lab mg/l 12.5 2.10 25	Result Qualifier Units RL MDL Factor Prepared estborough Lab 169. mg CaCO3/L 2.00 NA 1 - 6.5 mg/l 0.10 0.046 1 - 0.87 mg/l 0.50 0.09 1 - ND mg/l 0.50 0.056 1 - ography - Westborough Lab mg/l 12.5 2.10 25 -	Result Qualifier Units RL MDL Factor Prepared Analyzed estborough Lab 169. mg CaCO3/L 2.00 NA 1 - 06/15/24 05:03 6.5 mg/l 0.10 0.046 1 - 06/12/24 15:55 0.87 mg/l 0.50 0.09 1 - 06/13/24 02:51 ND mg/l 0.50 0.056 1 - 06/11/24 05:33 ography - Westborough Lab mg/l 12.5 2.10 25 - 06/13/24 22:07	Result Qualifier Units RL MDL Factor Prepared Analyzed Method estborough Lab 169. mg CaCO3/L 2.00 NA 1 - 06/15/24 05:03 121,2320B 6.5 mg/l 0.10 0.046 1 - 06/12/24 15:55 121,4500NO3-F 0.87 mg/l 0.50 0.09 1 - 06/13/24 02:51 1,9060A ND mg/l 0.50 0.056 1 - 06/11/24 05:33 121,3500FE-B ography - Westborough Lab - 06/13/24 22:07 44,300.0

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432304-05
 Date Collected:
 06/10/24 12:00

 Client ID:
 DUP-20240610
 Date Received:
 06/10/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Parameter	Resul	t Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough L	ab								
Alkalinity, Total	152.		mg CaCO3/L	2.00	NA	1	-	06/15/24 05:08	121,2320B	MRM
Nitrogen, Nitrate/Nitrite	2.6		mg/l	0.10	0.046	1	-	06/12/24 15:56	121,4500NO3-F	MRM
Total Organic Carbon	0.62		mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	0.13	J	mg/l	0.50	0.056	1	-	06/11/24 05:34	121,3500FE-B	CAR
Anions by Ion Chromato	ography - We	stboroug	h Lab							
Chloride	457.		mg/l	12.5	2.10	25	-	06/13/24 17:56	44,300.0	AVT
Sulfate	26.8		mg/l	1.00	0.454	1	-	06/13/24 17:45	44,300.0	AVT

L2432304

Lab Number:

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis	3
Batch Quality Control	

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab	for sam	ple(s): 01	-05 Ba	tch: WG	61932401-1				
Iron, Ferrous	ND		mg/l	0.50	0.056	1	-	06/11/24 05:31	121,3500FE-B	CAR
General Chemistry - W	estborough Lab	for sam	ple(s): 01	-05 Ba	tch: WG	61933303-				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	06/12/24 12:50	121,4500NO3-F	= MRM
General Chemistry - W	estborough Lab	for sam	ple(s): 01	-05 Ba	tch: WG	31933621-				
Total Organic Carbon	ND		mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Anions by Ion Chromat	ography - West	borough	Lab for sa	mple(s)	: 01-05	Batch: W	'G1934149-1			
Chloride	0.148	J	mg/l	0.500	0.083	1	-	06/13/24 16:40	44,300.0	AVT
Sulfate	ND		mg/l	1.00	0.454	1	-	06/13/24 16:40	44,300.0	AVT
General Chemistry - W	estborough Lab	for sam	ple(s): 01	-05 Ba	tch: WG	31934446-				
Alkalinity, Total	ND		mg CaCO3/L	2.00	NA	1	-	06/15/24 03:59	121,2320B	MRM

Lab Control Sample Analysis Batch Quality Control

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number:

L2432304

Report Date:

06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s):	01-05	Batch: WG19324	401-2				
Iron, Ferrous	92		-		90-110	-		
General Chemistry - Westborough Lab A	Associated sample(s):	01-05	Batch: WG19333	303-2				
Nitrogen, Nitrate/Nitrite	108		-		90-110	-		20
General Chemistry - Westborough Lab A	Associated sample(s):	01-05	Batch: WG19336	621-2				
Total Organic Carbon	101		-		90-110	-		
Anions by Ion Chromatography - Westbo	rough Lab Associate	d samp	le(s): 01-05 Bato	h: WG193	4149-2			
Chloride	106		-		90-110	-		
Sulfate	104		-		90-110	-		
General Chemistry - Westborough Lab A	Associated sample(s):	01-05	Batch: WG19344	146-2				
Alkalinity, Total	105		-		90-110	-		10

Matrix Spike Analysis Batch Quality Control

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number:

L2432304

Report Date: 06/20/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recove Limits	•	Qual	RPD Limits
General Chemistry - Westborou	igh Lab Assoc	iated samp	ole(s): 01-05	QC Batch II	D: WG1	932401-4	QC Sample:	L24323	304-01	Client ID:	MW-1-	20240610
Iron, Ferrous	0.080J	1	0.99	99		-	-		80-120	-		20
General Chemistry - Westborou	igh Lab Assoc	iated samp	ole(s): 01-05	QC Batch II	D: WG1:	933303-4	QC Sample:	L24318	372-01	Client ID:	MS Sa	mple
Nitrogen, Nitrate/Nitrite	1.1	4	4.9	95		-	-		80-120	-		20
General Chemistry - Westborou	igh Lab Assoc	iated samp	ole(s): 01-05	QC Batch II	D: WG1:	933621-4	QC Sample:	L24323	304-01	Client ID:	MW-1-2	20240610
Total Organic Carbon	0.66	16	19	116		-	-		80-120	-		20
Anions by Ion Chromatography 3-20240610	- Westboroug	h Lab Asso	ociated samp	ole(s): 01-05	QC Bat	tch ID: WG	1934149-3	QC San	nple: L24	32304-03	Clien	t ID: MW-
Chloride	4.06	4	8.21	104		-	-		90-110	-		18
Sulfate	40.2	8	47.4	90		-	-		90-110	-		20
General Chemistry - Westborou	igh Lab Assoc	iated samp	ole(s): 01-05	QC Batch II	D: WG1	934446-4	QC Sample:	L24322	271-02	Client ID:	MS Sa	mple
Alkalinity, Total	2960	500	3010	9	Q	-	-		86-116	-		10

Lab Duplicate Analysis Batch Quality Control

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Lab Number:

L2432304

Report Date:

06/20/24

Native Sample	Duplicate Samp	ole Units	RPD	Qual	RPD Limits
le(s): 01-05 QC	Batch ID: WG1932401-3	3 QC Sample:	L2432304-01	Client ID:	MW-1-20240610
0.080J	0.10J	mg/l	NC		20
le(s): 01-05 QC	Batch ID: WG1933303-3	3 QC Sample:	L2431872-01	Client ID:	DUP Sample
1.1	1.1	mg/l	0		20
le(s): 01-05 QC	Batch ID: WG1933621-3	3 QC Sample:	L2432304-01	Client ID:	MW-1-20240610
0.66	0.58	mg/l	13		20
ciated sample(s):	01-05 QC Batch ID: W	/G1934149-4 C	QC Sample: L	2432304-0	3 Client ID: MW-
4.06	4.01	mg/l	1		18
40.2	39.9	mg/l	1		20
e(s): 01-05 QC	Batch ID: WG1934446-3	3 QC Sample:	L2432271-02	Client ID:	DUP Sample
2960	2980	mg CaCO3/L	. 0		10
	e(s): 01-05 QC 0.080J e(s): 01-05 QC 1.1 e(s): 01-05 QC 0.66 ciated sample(s): 4.06 40.2 e(s): 01-05 QC	e(s): 01-05 QC Batch ID: WG1932401-3 0.080J 0.10J e(s): 01-05 QC Batch ID: WG1933303-3 1.1 1.1 e(s): 01-05 QC Batch ID: WG1933621-3 0.66 0.58 ciated sample(s): 01-05 QC Batch ID: W 4.06 4.01 40.2 39.9 e(s): 01-05 QC Batch ID: WG1934446-3	e(s): 01-05 QC Batch ID: WG1932401-3 QC Sample:	e(s): 01-05 QC Batch ID: WG1932401-3 QC Sample: L2432304-01 0.080J 0.10J mg/l NC e(s): 01-05 QC Batch ID: WG1933303-3 QC Sample: L2431872-01 1.1 1.1 1.1 1.1 mg/l 0 e(s): 01-05 QC Batch ID: WG1933621-3 QC Sample: L2432304-01 0.66 0.58 mg/l 13 ciated sample(s): 01-05 QC Batch ID: WG1934149-4 QC Sample: L 4.06 4.01 mg/l 40.2 39.9 mg/l 1 e(s): 01-05 QC Batch ID: WG1934446-3 QC Sample: L2432271-02	e(s): 01-05 QC Batch ID: WG1932401-3 QC Sample: L2432304-01 Client ID: 0.080J 0.10J mg/l NC e(s): 01-05 QC Batch ID: WG1933303-3 QC Sample: L2431872-01 Client ID: 1.1 mg/l 0 e(s): 01-05 QC Batch ID: WG1933621-3 QC Sample: L2432304-01 Client ID: 0.66 0.58 mg/l 13 ciated sample(s): 01-05 QC Batch ID: WG1934149-4 QC Sample: L2432304-0 4.06 4.01 mg/l 1 40.2 39.9 mg/l 1 e(s): 01-05 QC Batch ID: WG1934446-3 QC Sample: L2432271-02 Client ID:

Serial_No:06202418:03 *Lab Number:* L2432304

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378 Report Date: 06/20/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2432304-01A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-01B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-01C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-01D	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-01E	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-01F	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-01G	Plastic 250ml unpreserved/No Headspace	Α	NA		2.6	Υ	Absent		ALK-T-2320(14)
L2432304-01H	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432304-01I	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		HARDT-6020(180)
L2432304-01J	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NO3/NO2-4500(28)
L2432304-01K	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-01L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-02A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-02B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-02C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-02D	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-02E	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-02F	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-02G	Plastic 250ml unpreserved/No Headspace	Α	NA		2.6	Υ	Absent		ALK-T-2320(14)
L2432304-02H	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432304-02I	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		HARDT-6020(180)
L2432304-02J	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NO3/NO2-4500(28)
L2432304-02K	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)

Lab Number: L2432304

Report Date: 06/20/24

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2432304-02L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-03A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-03B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-03C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-03D	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-03E	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-03F	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-03G	Plastic 250ml unpreserved/No Headspace	Α	NA		2.6	Υ	Absent		ALK-T-2320(14)
L2432304-03H	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432304-03I	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		HARDT-6020(180)
L2432304-03J	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NO3/NO2-4500(28)
L2432304-03K	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-03L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-04A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-04B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-04C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-04D	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-04E	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-04F	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-04G	Plastic 250ml unpreserved/No Headspace	Α	NA		2.6	Υ	Absent		ALK-T-2320(14)
L2432304-04H	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432304-04I	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		HARDT-6020(180)
L2432304-04J	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NO3/NO2-4500(28)
L2432304-04K	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-04L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-05A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-05B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-05C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)

Lab Number: L2432304

Report Date: 06/20/24

Project Name: WARBURTON DRY CLEANERS SITE

Project Number: 2221378

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2432304-05D	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-05E	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-05F	Vial H2SO4 preserved	Α	NA		2.6	Υ	Absent		TOC-9060(28)
L2432304-05G	Plastic 250ml unpreserved/No Headspace	Α	NA		2.6	Υ	Absent		ALK-T-2320(14)
L2432304-05H	Plastic 250ml unpreserved	Α	7	7	2.6	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432304-05I	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		HARDT-6020(180)
L2432304-05J	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NO3/NO2-4500(28)
L2432304-05K	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-05L	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.6	Υ	Absent		SUB-SULFIDE(7)
L2432304-06A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)
L2432304-06B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		NYTCL-8260(14)

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304
Project Number: 2221378 Report Date: 06/20/24

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from cilcutions, concentrations or moisture content, where applicable. (Dod report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304
Project Number: 2221378 Report Date: 06/20/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert but

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304
Project Number: 2221378 Report Date: 06/20/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: WARBURTON DRY CLEANERS SITE Lab Number: L2432304
Project Number: 2221378 Report Date: 06/20/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 21

Published Date: 04/17/2024

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

N.	NEW YORK	Service Centers Mahwah, NJ 07430: 35 Whit	new Bull College		Pag	e i						IN E	MV		TOTAL STREET, SALES
Дерна	CHAIN OF CUSTODY	Albany, NY 12205: 14 Walke Tonawanda, NY 14150: 275	er Way	105	- 0	of 2		Date in l	Rec'	d (0/1	1/2	14		ALPHA Job# L2432304
Westborough, MA 01581	Mansfield, MA 02048	Project Information		100000	100000		Deliv	erable	s				ST. MILE	NEWS .	Billing Information
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: WAR	LURTON DRY C	EANERS ST	F			ASP-				ASP-	B		Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288		OWKERS, NY	and the second s			1 7	EQui		ile)		EQui		(la)	PO#
Client Information		Project#	2221378				-	Other	7.1	110)		Locus	0 (41	110)	PO#
Client: La Belle Asso	viales	(Use Project name as					-	-		iremer	4	T Sale			Disposal Site Information
Address: 45 Hainst			CYNTHIA	CHO			Name and Address of the Owner, where the Owner, which the	NY TO		il etilei	16.	NV P	art 375		
11204	7,7,7	ALPHAQuote #:	- ar	-11-0	-		-	AWQ		urde	Н	NY C			Please identify below location of applicable disposal facilities.
Phone:		Turn-Around Time	Sales Sales	111 300	OR SHEET	STREET, STREET		NY Re			H	Other			Disposal Facility:
Fax:		Stand	ard	Due Date		-	-			ted Use	Į.	Other			
Email: cchu@ Lebella	PpC.(om	Rush (only if pre approv		# of Days						Dischar					NJ NY
These samples have be		The second secon	1	ii di baya				YSIS		L-lourid!	80		_	_	Other:
Other project specific															Sample Filtration
Please specify Metals							17 JA 2320	1C- EM 100.0	SMYSDO	EPA 300.0	1. SM 3500	5 EPA BLOO	c (asken 9060	8000 MS	Done Lab to do Preservation Lab to do
ALPHA Lab ID		CONTRACT NAME OF	Col	lection	Sample	Sampler's	Alfelinity	de by	de by		os fron	Voleties	Organic	hudnes	(Please Specify below)
(Lab Use Only)	SE	ample ID	Date	Time	Matrix	Initials	Total	Chloride	Solfide	Soifate	Forcos	TCL	Total	3	Sample Specific Comments
32304-01	MW-1- 2024 061	0	06/10	10:57	W	TBK		X	X	又	2	ヌ	2	×	oumpre opecine comments
02	4505 - 01 - WM			10:01	Ĭ	7.00.	×	×	<	×	R	×	又	×	
03	MW - 3 - 2024	0610		11: 45	1		×	×	×	Z	><	2	Z	4	
04	MW-5-2024			12:20		1	×	×	×	2	94	×	34	200	-
05	000- 202406		1	12:00	1		×	×	~	×	×	×	×	×	
00	TRIP BLAN			74.00				-			_	×			
						-									
						-		_							
D = H ₂ SO ₄	Container Code P = Ptastic A = Amber Glass V = Vial G = Glass	Westboro: Certification Mansfield: Certification				ntainer Type									Please print clearly, legibly and completely. Samples ca not be logged in and turnaround time clock will no
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	7.11	40						_					_	start until any ambiguities ar
G = NaHSO ₄	O = Other	Relinquishe	ed By:	Date/		ant	Receiv				*		Time		resolved. BY EXECUTING THIS COC, THE CLIENT
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Men		6/10	13:40	194			ACP.		6//	14/		9	HAS READ AND AGREES TO BE BOUND BY ALPHAS
Form No. 01.25 HC (www. 20	0 Seet 2012)	7	11	9/0/21	-5/	1			Ju	_	6/	-	220	and the second	TERMS & CONDITIONS. (See reverse side.)
Form No: 01-25 HC (rev. 30	u-sept-2013)		N	K 4//	330						(01)	1/24	00	30	(OGG TOVETOG SIGE.)

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	105	Pag	e 7 of Z	D	ate Rec'd in Lab	6/11	124		ALPHA Job#
Westborough, MA 01581	Mansfield, MA 02048	Project Information			School Service	-		PION		1-		L2432304
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 506-822-9300	Project Information		PERCENT.			Delive			100.0	Part of	Billing Information
FAX: 508-898-9193	FAX: 508-822-3288	Project Name:					-	ASP-A	111	ASP-B		Same as Client Info
CII I I I	1557 J. O. B. D.	Project Location:		CAA			-	EQuIS (1 File		EQuIS	(4 File)	PO#
Client Information	A MANUFACTURE	Project #		244			THE REAL PROPERTY.	Other	SCOTO CONTRACTOR OF THE PARTY O	_		
Client:		(Use Project name as F	roject#)	10200 10 -1			NAME OF TAXABLE PARTY.	tory Require	ment		Tible In	Disposal Site Information
Address:	4	Project Manager:						Y TOGS		NY Par	375	Please identify below location of
\sim $< \omega$		ALPHAQuote #:						WQ Standards		NY CP-	51	applicable disposal facilities.
Phone: DFF	γ	Turn-Around Time						Y Restricted U	se 🗌	Other		Disposal Facility:
Fax		Standar		Due Date				Y Unrestricted	Use			NJ NY
Email:		Rush (only if pre approve	d) [# of Days				YC Sewer Disc	charge			Other:
These samples have be	een previously analyz	ed by Alpha					ANAL	YSIS				Sample Filtration
Other project specific	requirements/comn	nents:					120	E			-	Done
Please specify Metals	or TAL.						Combined analysis					Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Co	lection Time	Sample Matrix	Sampler's Initials	ma3/ma					Sample Specific Comments
32304-01	MW-1 - 2024 0640)	6110	10:57	W	TBU	×		_	-	_	oampie Specific Comments
02	MW-10- 202406		1000	10:07	T	11	1		-	-	_	
03	Mw-3 - 20240		+	11:45		+	×		-	-	_	
04	MW-5- 2024			12:20		-	×		_	-	_	
05	DUP- 202401		1	12.13	-	-	×	_	-	_	_	
03	Dol- Canol	610	- 4	-	d-	4	X				_	
Preservative Code:	Container Code P = Plastic	Westboro: Certification	No: MA935		Col	ntainer Type			+			Please print clearly, legibly
3 = HCI C = HNO ₃ C = H _Z SO ₄	A = Amber Glass V = Vial G = Glass	Mansfield: Certification	No: MA015			Preservative			+	\dashv		and completely. Samples countries to logged in and turnaround time clock will n
= NaOH = MeOH = NaHSO ₄ = Na ₂ S ₂ O ₃ /E = Zn Ac/NaOH = Other	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	f By:	610.10		M	Receive	d By:	0/1	Date/I	3:40	start until any ambiguities a resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA
orm No: 01-25 HC (rev. 30	0-Sept-2013)	Ser.	-	6/10/24	030	1	Le constitution of the second		N 61	100000	2200	TERMS & CONDITIONS. (See reverse side.)

Pace Analytical Services, LLC-Fairfield

ANALYTICAL RESULTS

LEVEL II DELIVERABLES FORMAT

Work Order Number: 24F0844

Pace - Alpha Analytical, Westborough, MA

Project: L2432304

Sudip Pradhan Laboratory Director

All Results meet the requirements of the National Environmental Laboratory Accreditation Conference and/or State specific certifications as applicable.

Report Date: Jun 18, 2024

CONTENTS

1.	Sample Summary	3
2.	Chain of Custody	4
3.	Methodology Summary	6
4.	Abbreviations and Qualifiers	7
5.	Conformance/Non-Conformance Summary	8
6.	Positive Results Summary	9
7.	All Results Summary	. 10
8.	General Chemistry	.11
	8.1. General Chemistry Results	. 12

Sample Summary

Work Order: 24F0844

Client: Pace - Alpha Analytical, Westborough, MA

Project: L2432304

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1-20240610	24F0844-01	Water	06/10/2024 10:57	06/12/2024 08:10
MW-1D-20240610	24F0844-02	Water	06/10/2024 10:07	06/12/2024 08:10
MW-3-20240610	24F0844-03	Water	06/10/2024 11:45	06/12/2024 08:10
MW-5-20240610	24F0844-04	Water	06/10/2024 12:20	06/12/2024 08:10
DUP-20240610	24F0844-05	Water	06/10/2024 12:00	06/12/2024 08:10

ace		<u></u>	abcontra	Subcontract Chain of Custody		
Pace Analytical Services-Fairfield www.pacelabs.com	rices-Fairfield .com	APL/ 1275 Bidg. Fairlie	APL/ Pace Fairfield 1275 Bloomfield Ave. Bldg. 6 Fairfield, NJ 07004		24F0844	Alpha Job Number L2432304
Clien	Client Information		Project Information		ha Analytical, Westborough, MA	ents/Report Limits
Client: Alpha Analy Address: Eight Walku Westboroug	Alpha Analytical Labs Eight Walkup Drive Westborough, MA 01581-1019	Project Location: NY Project Manager: Nicole Galamb Turnaround & Delivera	Nicole Galan Nicole Galan nd & Delive	t Location: NY t Manager: Nicole Galamb Turnaround & Deliverables Information	State/Federal Program. Regulatory Criteria: NY-AWQS	
Phone: 201.428.2601 Email: Nicole.Galamb@pacelabs.com	01 mb@pacelabs.com	Due Date: Deliverables:				
			Requireme	or Report Red	irements	
Refe Additional Commen	Reference following Alpha Job Number on tinal report/on Additional Comments: Invoices to: invoices@pacelabs.coupahost.com	nber on final report/deliverables: Lz43z304 labs.coupahost.com Reports to: west.subre	Reports to:	l eports@pacelab	Keport to Include Method Blank, LCS/LCSD:	ILCSD:
Lab ID	Client ID	Collection Date/Time	Sample	Analysis	9	Batch
	MW-1-20240610 MW-1D-20240610 MW-3-20240610 DUP-20240610	06-10-24 10:57 06-10-24 10:07 06-10-24 11:45 06-10-24 12:20 06-10-24 12:00	WATER WATER WATER WATER	Sulfide Sulfide Sulfide Sulfide Sulfide		*
			X)			
2.5	Relinquished By	i i i i i i i i i i i i i i i i i i i		Date/Time:	Received By:	Date/Time:
Form No: AL subcoc	The Stall	May The		5030 46/F/19	Jelle Hermins	4/12/24 02/0

24F0844

DC#_Title:	ENV-FRM-FAIR-007	v01_Sample	Condition	Upon Receipt Form
		The second secon		The second of the second secon

Effective Date: 7/26/2023

Sample Condition Upon Receipt Form (SCUR)

1
Pace*
ANALYTICAL SERVICES

Pace" ANALYTICAL SERVICES	Affix Sample Label	Here	Date and Initials of person: Examining contents: 4/2 mc Label: 4/2 mc Deliver to location: pH: 4/12 mc
Thermometer Used: TRU3	Date: 6/12/27	Time: 🁌	310 Initials: A
State of Origin: NJ		0.000000000	
Cooler #1 Temp.°C 2.9 (Visual) _0	<u>U</u> (Compation Fort) 2 (F	
		(Actual)	Samples on ice, cooling process has begun
		mmercial Pace	□ Other
Shipping Method: ☐ First Overnight ☐	Priority Overnight Standard	Overnight Ground	1
□ Other			
Tracking #			
Custody Seal on Cooler/Box Present:	ubble Bags	tact: Yes No Other	Ice: Wet Blue Melted None
	/	Comments:	
Chain of Custody Present	ФYes □ No □ N/A		
Chain of Custody Filled Out	□Yes □ No □ N/A		
Relinquished Signature on COC	□Yes □ No □ N/A		
Sampler Name and Signature on COC	□Yes □ No □ N/A		
Samples Arrived within Hold Time	□Yes □ No □ N/A		
Rush TAT requested on COC	□Yes □ No □ N/A		
Sufficient Volume	Yes □ No □ N/A		
Correct Containers Used	□Yes □ No □ N/A		
Containers Intact	□Yes □ No □ N/A		
Sample Labels match COC (sample IDs & da	AND THE RESIDENCE OF THE PROPERTY OF THE PROPE		
collection) All containers needing acid/base preservation	TYes □ No □ N/A	Preservation Information	,
been checked.	r Yes □ No □ N/A	Preservative:	
All Containers needing preservation are found compliance with EPA recommendation:	to be in □Yes □ No □ N/A	Lot #/Trace #:	Time:
Exceptions: Vials, Microbiolog	1	Initials:	Time
Headspace in VOA Vials? (>6mm):	□Yes □ No □N/A		
Trip Blank Present:	□Yes □ No □N/A		
Additional Login Comments:			
Client notification/ Resolution			
Person Contacted:		Date/Time:	
Comments/Resolution:			

Qualtrax ID: 188127

Pace® Analytical Services, LLC

Page 1 of 1

Pace Analytical Services, LLC-Fairfield Methodology Summary

Extractable Petroleum Hydrocarbons:

Gas Chromatography/Flame Ionization Detector

New Jersey Department of Environmental Protection Site Remediation Program Extractable Petroleum Hydrocarbons Methodology (Version 3.0).

USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 8015D or NJDEP Office of Quality Assurance Quantitation of Semi-Volatile Petroleum Products in Water, Soil and Sediment OQA-QAM-025, Revision 6.

Metals:

Inductively-Coupled Plasma Atomic Emission Spectrometry or Inductively-Coupled Plasma Mass Spectroscopy

Wastewater and Groundwater Samples: USEPA Methods for the Analysis of Water and Wastes, Method 200.7, Method 200.8. Soil Samples: USEPA Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 6010D.

Mercury:

Cold Vapor Atomic Absorption Spectrometry

Wastewater and Groundwater Samples: USEPA Methods for the Analysis of Water and Wastes, Method 245.1.

Soil Samples: USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 7471B.

Volatile Organic Compounds:

Purge and Trap Gas Chromatography/Mass Spectroscopy

Drinking Water Samples: USEPA Methods for the Determination of Organic Compounds in Drinking Water, Method 524.2.

Wastewater Samples: USEPA Methods for the Analysis of Water and Wastes, Method 624.1.

Soil and Groundwater Samples: USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update VI, Method 8260D.

Semi-Volatile Organic Compounds:

Gas Chromatography/Mass Spectroscopy

Wastewater Samples: USEPA Methods for the Analysis of Water and Wastes, Method 625.1.

Soil and Groundwater Samples: USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update VI, Method 8270E.

PFAS Compounds:

Liquid Chromatography/Tandem Mass Spectroscopy

Drinking Water Samples: USEPA Methods for the Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS), Method 537 (v1.1).

Pesticides:

Gas Chromatography/Electron Capture Detector

Wastewater Samples: USEPA Methods for the Analysis of Water and Wastes, Method 608.3.

Soil and Groundwater Samples: USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 8081B.

Polychlorinated Biphenyls (PCBs):

Gas Chromatography/Electron Capture Detector

Wastewater Samples: USEPA Methods for the Analysis of Water and Wastes, Method 608.3.

Soil and Groundwater Samples: USEPA SW-846 Test Methods for Evaluating Solid Waste Physical/Chemical Methods Update III, Method 8082A.

General Chemistry Methods:

Various general chemistry methods are taken from "Standard Methods for the Examination of Water and Wastewater, 22nd Edition", .

Specific method citations can be found on the Analytical Results Summary page of this report listed under 'Method'.

** A complete list of Pace Fairfield's certified Methods are on the Standards And Docs page of the Results Retrieval System

Methodology Summary

APL

Pace Analytical Services, LLC-Fairfield Data Reporting Abbreviations and Qualifiers

Method Detection Limit (MDL):

The MDL is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results. The value is calculated following the

> "Definition and Procedure for the Determination of the Method Detection Limit, Revision 2" EPA 821-R-16-006, published December 2016.

Reporting Limit (RL):

The RL is the Concentration of the lowest calibration standard that was included in the initial calibration of the instrument. On analytical reports this value is corrected for percent moisture and any concentration or dilution factors.

Concentration (Conc.) / Result:

If the compound is detected, the measured concentration is reported. If this column is "ND", or contains a 'less than' (<) symbol, the compound was not detected.

Tentatively Identified Compound (TIC):

A TIC is a non-targeted compound, not included in the calibration, identified by a mass spectral library search OR requested to be identified and reported by the client.

Abbreviations:

ND Non-Detect

TNTC Too Numerous To Count

Qualifers:

Compound not detected

Data Reporting Abbreviations and Qualifiers

Pace Analytical Services, LLC-Fairfield

QUALITY CONTROL Conformance/Non-Conformance Summary

ANALYSIS: Sulfide [SM 4500-S-D-11]

COMMENTS:

The matrix spike and matrix spike duplicate recovery for Sulfide was outside QC limits (low).

Reviewed By:	Also Land	(IK)	6/18/2024
	Sudip Pradhan - Laboratory Director		Date

For any questions about your Quality Control, please call us at 973-227-0422

U

.

Positive Results Only Summary

Pace Analytical Services, LLC-Fairfield

_	
Dilution	Analyzed 6/17/24 11:30
_	
Dilution	Analyzed 6/17/24 11:30
_	
Dilution	Analyzed 6/17/24 11:30
_	
Dilution	Analyzed 6/17/24 11:30
_	
— Dilution	Analyzed
	Dilution 1

ND - Indicates compound analyzed for but not detected

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

H - Indicates a Hold Time violation

P - Greater than 25% diff. between 2 GC columns.

MDL - Minimum detection limit, RL - Reporting limit D1 - Sample was Decanted (Dissolved)

All Results Summary

Pace Analytical Services, LLC-Fairfield

Client: Pace - Alpha Analytical, Westborough, MA

Work Order: 24F0844

24F0844-01 (Water) Sample Name: MW-1-20240610 Collected: 6/10/2024 10:57:00AM

SM 4500-S-D-11 - General Chemistry

Analyte	Result	Qual	MDL	RL	Units	Dilution	Analyzed
Sulfide	0.0220		0.00500	0.0100	mg/L	1	6/17/24 11:30

24F0844-02 (Water) Sample Name: MW-1D-20240610 Collected: 6/10/2024 10:07:00AM

SM 4500-S-D-11 - General Chemistry

Analyte	Result	Qual	MDL	RL	Units	Dilution	Analyzed
Sulfide	0.0200		0.00500	0.0100	mg/L	1	6/17/24 11:30

24F0844-03 (Water) Sample Name: MW-3-20240610 Collected: 6/10/2024 11:45:00AM

SM 4500-S-D-11 - General Chemistry

_ Analyte	Result	Qual	MDL	RL	Units	Dilution	Analyzed
Sulfide	0.0110		0.00500	0.0100	mg/L	1	6/17/24 11:30

24F0844-04 (Water) Sample Name: MW-5-20240610 Collected: 6/10/2024 12:20:00PM

SM 4500-S-D-11 - General Chemistry

_ Analyte	Result	Qual	MDL	RL	Units	Dilution	Analyzed	
Sulfide	0.0100		0.00500	0.0100	mg/L	1	6/17/24 11:30	

24F0844-05 (Water) Sample Name: **DUP-20240610** Collected: **6/10/2024 12:00:00PM**

SM 4500-S-D-11 - General Chemistry

Analyte	Result	Qual	MDL	RL	Units	Dilution	Analyzed	
Sulfide	0.0260		0.00500	0.0100	ma/L	1	6/17/24 11:30	

ND, U - Indicates compound analyzed for but not detected

MDL - Minimum detection limit, RL - Reporting limit

J - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

H - Indicates a Hold Time violation

 $[\]boldsymbol{P}$ - Greater than 25% diff. between 2 GC columns.

D1 - Sample was Decanted (Dissolved)

GENERAL CHEMISTRY

∞

Pace - Alpha Analytical, Westborough, MA
Work Order: 24F0844

Project: L2432304

ANALYSIS DATA SHEET

General Chemistry

Client: Pace - Alpha Analytical, Westborough, MA

Project: L2432304 Work Order: 24F0844

General Chemistry

24F0844-01 (Water) - MW-1-20240610

Analyte	Units	Conc.	RL	DF	Qual	Analyzed	Method
Sulfide	mg/L	0.0220	0.0100	1		06/17/24 11:30	SM 4500-S-D-11
IF0844-02 (Water) - MW-1	D-20240610						
Analyte	Units	Conc.	RL	DF	Qual	Analyzed	Method
Sulfide	mg/L	0.0200	0.0100	1		06/17/24 11:30	SM 4500-S-D-11
1F0844-03 (Water) - MW-3	3-20240610						
Analyte	Units	Conc.	RL	DF	Qual	Analyzed	Method
Sulfide	mg/L	0.0110	0.0100	1		06/17/24 11:30	SM 4500-S-D-11
IF0844-04 (Water) - MW-5	5-20240610						
Analyte	Units	Conc.	RL	DF	Qual	Analyzed	Method
Sulfide	mg/L	0.0100	0.0100	1		06/17/24 11:30	SM 4500-S-D-11
1F0844-05 (Water) - DUP-	20240610						
Analyte	Units	Conc.	RL	DF	Qual	Analyzed	Method
Sulfide	mg/L	0.0260	0.0100	1		06/17/24 11:30	SM 4500-S-D-11

ND - Indicates compound analyzed for but not detected

 ${\bf J}$ - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

 $\ensuremath{\mathbf{H}}$ - Indicates a Hold Time violation

 $\mbox{\bf P}$ - Greater than 25% diff. between 2 GC columns.

MDL - Minimum detection limit, RL - Reporting limit

ANALYTICAL REPORT

Lab Number: L2432795

Client: LaBella Associates

45 Main Street

Brooklyn, NY 11201

ATTN: Cynthia Chu
Phone: (917) 280-6364

Project Name: 321 WARBURTON AVE.

Project Number: 2221378
Report Date: 06/20/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795 **Report Date:** 06/20/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2432795-01	MW-2 (60')	WATER	YONKERS, NY	06/11/24 08:40	06/11/24
L2432795-02	MW-2 (66')	WATER	YONKERS, NY	06/11/24 08:45	06/11/24
L2432795-03	MW-2 (73.5')	WATER	YONKERS, NY	06/11/24 08:50	06/11/24
L2432795-04	MW-4 (59')	WATER	YONKERS, NY	06/11/24 09:10	06/11/24
L2432795-05	MW-4 (66.5')	WATER	YONKERS, NY	06/11/24 09:15	06/11/24
L2432795-06	MW-4 (73.5')	WATER	YONKERS, NY	06/11/24 09:20	06/11/24
L2432795-07	MW-6 (56')	WATER	YONKERS, NY	06/11/24 08:00	06/11/24
L2432795-08	MW-6 (65')	WATER	YONKERS, NY	06/11/24 08:05	06/11/24
L2432795-09	MW-6 (73.5')	WATER	YONKERS, NY	06/11/24 08:10	06/11/24
L2432795-10	TRIP BLANK	WATER	YONKERS, NY	06/11/24 00:00	06/11/24
L2432795-11	MW-2-20240611	WATER	YONKERS, NY	06/11/24 08:41	06/11/24
L2432795-12	MW-4-20240611	WATER	YONKERS, NY	06/11/24 11:35	06/11/24
L2432795-13	MW-6-20240611	WATER	YONKERS, NY	06/11/24 10:15	06/11/24

Project Name: 321 WARBURTON AVE. Lab Number: L2432795

Project Number: 2221378 Report Date: 06/20/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 321 WARBURTON AVE. Lab Number: L2432795
Project Number: 2221378 Report Date: 06/20/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Sulfide was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/20/24

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

06/11/24 08:40

Project Name: 321 WARBURTON AVE.

L2432795-01

Project Number: 2221378

SAMPLE RESULTS

Lab Number: L2432795

Report Date: 06/20/24

D

Client ID: MW-2 (60') Sample Location: YONKERS, NY Date Received: 06/11/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/15/24 16:40

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
Methylene chloride	ND		ug/l	120	35.	50
1,1-Dichloroethane	ND		ug/l	120	35.	50
Chloroform	ND		ug/l	120	35.	50
Carbon tetrachloride	ND		ug/l	25	6.7	50
1,2-Dichloropropane	ND		ug/l	50	6.8	50
Dibromochloromethane	ND		ug/l	25	7.4	50
1,1,2-Trichloroethane	ND		ug/l	75	25.	50
Tetrachloroethene	6000		ug/l	25	9.0	50
Chlorobenzene	ND		ug/l	120	35.	50
Trichlorofluoromethane	ND		ug/l	120	35.	50
1,2-Dichloroethane	ND		ug/l	25	6.6	50
1,1,1-Trichloroethane	ND		ug/l	120	35.	50
Bromodichloromethane	ND		ug/l	25	9.6	50
trans-1,3-Dichloropropene	ND		ug/l	25	8.2	50
cis-1,3-Dichloropropene	ND		ug/l	25	7.2	50
1,3-Dichloropropene, Total	ND		ug/l	25	7.2	50
1,1-Dichloropropene	ND		ug/l	120	35.	50
Bromoform	ND		ug/l	100	32.	50
1,1,2,2-Tetrachloroethane	ND		ug/l	25	8.4	50
Benzene	ND		ug/l	25	8.0	50
Toluene	ND		ug/l	120	35.	50
Ethylbenzene	ND		ug/l	120	35.	50
Chloromethane	ND		ug/l	120	35.	50
Bromomethane	ND		ug/l	120	35.	50
Vinyl chloride	ND		ug/l	50	3.6	50
Chloroethane	ND		ug/l	120	35.	50
1,1-Dichloroethene	ND		ug/l	25	8.4	50
trans-1,2-Dichloroethene	ND		ug/l	120	35.	50

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-01 D Date Collected: 06/11/24 08:40

Client ID: MW-2 (60') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND	ug/l	25	8.8	50	
1,2-Dichlorobenzene	ND	ug/l	120	35.	50	
1,3-Dichlorobenzene	ND	ug/l	120	35.	50	
1,4-Dichlorobenzene	ND	ug/l	120	35.	50	
Methyl tert butyl ether	ND	ug/l	120	8.3	50	
p/m-Xylene	ND	ug/l	120	35.	50	
o-Xylene	ND	ug/l	120	35.	50	
Xylenes, Total	ND	ug/l	120	35.	50	
cis-1,2-Dichloroethene	ND	ug/l	120	35.	50	
1,2-Dichloroethene, Total	ND	ug/l	120	35.	50	
Dibromomethane	ND	ug/l	250	50.	50	
1,2,3-Trichloropropane	ND	ug/l	120	35.	50	
Acrylonitrile	ND	ug/l	250	75.	50	
Styrene	ND	ug/l	120	35.	50	
Dichlorodifluoromethane	ND	ug/l	250	50.	50	
Acetone	ND	ug/l	250	73.	50	
Carbon disulfide	ND	ug/l	250	50.	50	
2-Butanone	ND	ug/l	250	97.	50	
Vinyl acetate	ND	ug/l	250	50.	50	
4-Methyl-2-pentanone	ND	ug/l	250	50.	50	
2-Hexanone	ND	ug/l	250	50.	50	
Bromochloromethane	ND	ug/l	120	35.	50	
2,2-Dichloropropane	ND	ug/l	120	35.	50	
1,2-Dibromoethane	ND	ug/l	100	32.	50	
1,3-Dichloropropane	ND	ug/l	120	35.	50	
1,1,1,2-Tetrachloroethane	ND	ug/l	120	35.	50	
Bromobenzene	ND	ug/l	120	35.	50	
n-Butylbenzene	ND	ug/l	120	35.	50	
sec-Butylbenzene	ND	ug/l	120	35.	50	
tert-Butylbenzene	ND	ug/l	120	35.	50	
o-Chlorotoluene	ND	ug/l	120	35.	50	
p-Chlorotoluene	ND	ug/l	120	35.	50	
1,2-Dibromo-3-chloropropane	ND	ug/l	120	35.	50	
Hexachlorobutadiene	ND	ug/l	120	35.	50	
Isopropylbenzene	ND	ug/l	120	35.	50	
p-Isopropyltoluene	ND	ug/l	120	35.	50	
Naphthalene	ND	ug/l	120	35.	50	

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-01 D Date Collected: 06/11/24 08:40

Client ID: MW-2 (60') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	ıgh Lab						
n-Propylbenzene	ND		ug/l	120	35.	50	
1,2,3-Trichlorobenzene	ND		ug/l	120	35.	50	
1,2,4-Trichlorobenzene	ND		ug/l	120	35.	50	
1,3,5-Trimethylbenzene	ND		ug/l	120	35.	50	
1,2,4-Trimethylbenzene	ND		ug/l	120	35.	50	
1,4-Dioxane	ND		ug/l	12000	3000	50	
p-Diethylbenzene	ND		ug/l	100	35.	50	
p-Ethyltoluene	ND		ug/l	100	35.	50	
1,2,4,5-Tetramethylbenzene	ND		ug/l	100	27.	50	
Ethyl ether	ND		ug/l	120	35.	50	
trans-1,4-Dichloro-2-butene	ND		ug/l	120	35.	50	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	107	70-130	

06/11/24 08:45

Not Specified

06/11/24

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

SAMPLE RESULTS

Lab Number: L2432795

Date Collected:

Date Received:

Field Prep:

Report Date: 06/20/24

Lab ID: L2432795-02 D

Client ID: MW-2 (66') Sample Location: YONKERS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/17/24 23:01

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	120	35.	50
1,1-Dichloroethane	ND		ug/l	120	35.	50
Chloroform	ND		ug/l	120	35.	50
Carbon tetrachloride	ND		ug/l	25	6.7	50
1,2-Dichloropropane	ND		ug/l	50	6.8	50
Dibromochloromethane	ND		ug/l	25	7.4	50
1,1,2-Trichloroethane	ND		ug/l	75	25.	50
Tetrachloroethene	7800		ug/l	25	9.0	50
Chlorobenzene	ND		ug/l	120	35.	50
Trichlorofluoromethane	ND		ug/l	120	35.	50
1,2-Dichloroethane	ND		ug/l	25	6.6	50
1,1,1-Trichloroethane	ND		ug/l	120	35.	50
Bromodichloromethane	ND		ug/l	25	9.6	50
trans-1,3-Dichloropropene	ND		ug/l	25	8.2	50
cis-1,3-Dichloropropene	ND		ug/l	25	7.2	50
1,3-Dichloropropene, Total	ND		ug/l	25	7.2	50
1,1-Dichloropropene	ND		ug/l	120	35.	50
Bromoform	ND		ug/l	100	32.	50
1,1,2,2-Tetrachloroethane	ND		ug/l	25	8.4	50
Benzene	ND		ug/l	25	8.0	50
Toluene	ND		ug/l	120	35.	50
Ethylbenzene	ND		ug/l	120	35.	50
Chloromethane	ND		ug/l	120	35.	50
Bromomethane	ND		ug/l	120	35.	50
Vinyl chloride	ND		ug/l	50	3.6	50
Chloroethane	ND		ug/l	120	35.	50
1,1-Dichloroethene	ND		ug/l	25	8.4	50
trans-1,2-Dichloroethene	ND		ug/l	120	35.	50

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-02 D Date Collected: 06/11/24 08:45

Client ID: MW-2 (66') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab ND ug1 25 8.8 50 1.2-Dichiorobenzene ND ug1 120 35 50 1.4-Dichiorobenzene ND ug1 120 35 50 1.4-Dichiorobenzene ND ug1 120 35 50 Methyl tor buyl eher ND ug1 120 35 50 Pmr Xylene ND ug1 120 35 50 Vylenes, Total ND ug1 120 35 50 Xylenes, Total ND ug1 120 35 50 Sylenes, Total ND ug1 120 35 50 L2-Dichiorosthene, Total ND ug1 120 35 50 Dibromonethane ND ug1 120 35 50 Dibromonethane ND ug1 120 35 50 Allentine ND ug1 250 75 50	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2-Dichlorobenzene	Volatile Organics by GC/MS - Westboro	ough Lab					
1,4-Dichlorobenzene	Trichloroethene	ND		ug/l	25	8.8	50
1,4-Dichlorobenzene	1,2-Dichlorobenzene	ND		ug/l	120	35.	50
Metryl tert bulyl ether ND ug/l 120 8.3 50 pm:x/lene ND ug/l 120 35. 50 o-Xylene ND ug/l 120 35. 50 o-Xylenes ND ug/l 120 35. 50 cis-1,2-Dichloroethene ND ug/l 120 35. 50 1,2-Dichloroethene, Total ND ug/l 120 35. 50 Dibromomethane ND ug/l 250 50. 50 Dibromomethane ND ug/l 250 50. 50 Styrene ND ug/l 250 75. 50 Styrene ND ug/l 250 75. 50 Styrene ND ug/l 250 50. 50 Obchlorodifluoromethane ND ug/l 250 50. 50 Acetone 82 J ug/l 250 50. 50	1,3-Dichlorobenzene	ND		ug/l	120	35.	50
ND	1,4-Dichlorobenzene	ND		ug/l	120	35.	50
o-Xylene ND ug/l 120 35. 50 Xylenes, Total ND ug/l 120 35. 50 cis-1,2-Dichloroethene ND ug/l 120 35. 50 1,2-Dichloroethene, Total ND ug/l 120 35. 50 Dibromomethane ND ug/l 250 50. 50 1,2,3-Trichloropropane ND ug/l 250 75. 50 Actrylonitrile ND ug/l 250 75. 50 Styrene ND ug/l 250 75. 50 Actrolone 82 J ug/l 250 75. 50 Carbon disulfide ND ug/l 250 73. 50 Carbon disulfide ND ug/l 250 97. 50 Carbon disulfide ND ug/l 250 97. 50 Vinyl acetate ND ug/l 250 50. 50 </td <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>120</td> <td>8.3</td> <td>50</td>	Methyl tert butyl ether	ND		ug/l	120	8.3	50
Xylenes, Total ND ugfl 120 35. 50 cis-1,2-Dichloroethene ND ugfl 120 35. 50 1,2-Dichloroethene, Total ND ugfl 120 35. 50 Dichloromethane ND ugfl 120 35. 50 1,2,3-Trichloroptopane ND ugfl 120 35. 50 Acrylonitrile ND ugfl 120 35. 50 Styrene ND ugfl 120 35. 50 Dichlorodifluromethane ND ugfl 250 75. 50 Acetone 82 J ugfl 250 50. 50 Carbon disulfide ND ugfl 250 50. <td< td=""><td>p/m-Xylene</td><td>ND</td><td></td><td>ug/l</td><td>120</td><td>35.</td><td>50</td></td<>	p/m-Xylene	ND		ug/l	120	35.	50
ND	o-Xylene	ND		ug/l	120	35.	50
1,2-Dichloroethene, Total ND ug/l 120 35. 50 50 1,2,3-Trichloropropane ND ug/l 120 35. 50 50 1,2,3-Trichloropropane ND ug/l 120 35. 50 50 50 50 50 50 50	Xylenes, Total	ND		ug/l	120	35.	50
Dibromomethane ND ug/l 250 50. 50 1,2,3-Trichloropropane ND ug/l 120 35. 50 Acrylontrile ND ug/l 250 75. 50 Styrene ND ug/l 250 75. 50 Dichlorodifluoromethane ND ug/l 250 73. 50 Acetone 82 J ug/l 250 73. 50 Carbon disulfide ND ug/l 250 50. 50 2-Butanone ND ug/l 250 50. 50 Viryl acetate ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 2-Hexanone ND ug/l 250 50. 50 2-2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 120 35. 50	cis-1,2-Dichloroethene	ND		ug/l	120	35.	50
1,2,3-Trichloropropane ND ug/l 120 35. 50	1,2-Dichloroethene, Total	ND		ug/l	120	35.	50
Actylonitrile ND ug/l 250 75. 50 Styrene ND ug/l 120 35. 50 Dichlorodifluoromethane ND ug/l 250 50. 50 Acetone 82 J ug/l 250 73. 50 Carbon disulfide ND ug/l 250 50. 50 2-Butanone ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 2-Hexanone ND ug/l 120 35. 50 2-Hexanone ND ug/l 120 35. 50 2-Lexiolaroperopane ND ug/l 120 35. 50 <td>Dibromomethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>250</td> <td>50.</td> <td>50</td>	Dibromomethane	ND		ug/l	250	50.	50
Syrene ND ug/l 120 35. 50 Dichlorodifluoromethane ND ug/l 250 50. 50 Acetone 82 J ug/l 250 73. 50 Carbon disulfide ND ug/l 250 50. 50 2-Butanone ND ug/l 250 97. 50 Viryl acetate ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 50	1,2,3-Trichloropropane	ND		ug/l	120	35.	50
Dichlorodifluoromethane	Acrylonitrile	ND		ug/l	250	75.	50
Acetone 82 J ug/l 250 73 50 Carbon disulfide ND ug/l 250 50 50 2-Butanone ND ug/l 250 97 50 Vinyl acetate ND ug/l 250 50 50 4-Methyl-2-pentanone ND ug/l 250 50 50 2-Hexanone ND ug/l 250 50 50 Bromochloromethane ND ug/l 120 35 50 2,2-Dichloropropane ND ug/l 120 35 50 1,2-Dibromoethane ND ug/l 100 32 50 1,3-Dichloropropane ND ug/l 120 35 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35 50 Bromobenzene ND ug/l 120 35 50 Bromobenzene ND ug/l 120 35 50 <tr< td=""><td>Styrene</td><td>ND</td><td></td><td>ug/l</td><td>120</td><td>35.</td><td>50</td></tr<>	Styrene	ND		ug/l	120	35.	50
Carbon disulfide ND ug/l 250 50. 50 2-Butanone ND ug/l 250 97. 50 Vinyl acetate ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 2-Hexanone ND ug/l 250 50. 50 Bromochloromethane ND ug/l 120 35. 50 2,2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 100 32. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50	Dichlorodifluoromethane	ND		ug/l	250	50.	50
2-Butanone ND ug/l 250 97. 50 Vinyl acetate ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 2-Hexanone ND ug/l 250 50. 50 Bromochloromethane ND ug/l 120 35. 50 2,2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 100 32. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50	Acetone	82	J	ug/l	250	73.	50
Vinyl acetate ND ug/l 250 50. 50 4-Methyl-2-pentanone ND ug/l 250 50. 50 2-Hexanone ND ug/l 250 50. 50 Bromochloromethane ND ug/l 120 35. 50 2,2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 100 32. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 bec-Butylbenzene ND ug/l 120 35. 50 <t< td=""><td>Carbon disulfide</td><td>ND</td><td></td><td>ug/l</td><td>250</td><td>50.</td><td>50</td></t<>	Carbon disulfide	ND		ug/l	250	50.	50
4-Methyl-2-pentanone ND ug/l 250 50. 50 2-Hexanone ND ug/l 250 50. 50 Bromochloromethane ND ug/l 120 35. 50 2,2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 100 32. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tetr-Butylbenzene ND ug/l 120 35. 50 tetr-Butylbenzene ND ug/l 120 35. 50 c-Chlorotoluene ND ug/l 120 35. 50	2-Butanone	ND		ug/l	250	97.	50
2-Hexanone ND ug/l 250 50. 50 Bromochloromethane ND ug/l 120 35. 50 2,2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 120 35. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 cec-Butylbenzene ND ug/l 120 35. 50 cert-Butylbenzene ND ug/l 120 35. 50 cett-Butylbenzene ND ug/l 120 35. 50	Vinyl acetate	ND		ug/l	250	50.	50
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	250	50.	50
2,2-Dichloropropane ND ug/l 120 35. 50 1,2-Dibromoethane ND ug/l 100 32. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. <	2-Hexanone	ND		ug/l	250	50.	50
1,2-Dibromoethane ND ug/l 100 32. 50 1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35.	Bromochloromethane	ND		ug/l	120	35.	50
1,3-Dichloropropane ND ug/l 120 35. 50 1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	2,2-Dichloropropane	ND		ug/l	120	35.	50
1,1,1,2-Tetrachloroethane ND ug/l 120 35. 50 Bromobenzene ND ug/l 120 35. 50 n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	1,2-Dibromoethane	ND		ug/l	100	32.	50
Bromobenzene ND ug/l 120 35. 50 n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	1,3-Dichloropropane	ND		ug/l	120	35.	50
n-Butylbenzene ND ug/l 120 35. 50 sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	1,1,1,2-Tetrachloroethane	ND		ug/l	120	35.	50
sec-Butylbenzene ND ug/l 120 35. 50 tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	Bromobenzene	ND		ug/l	120	35.	50
tert-Butylbenzene ND ug/l 120 35. 50 o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 sopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	n-Butylbenzene	ND		ug/l	120	35.	50
o-Chlorotoluene ND ug/l 120 35. 50 p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	sec-Butylbenzene	ND		ug/l	120	35.	50
p-Chlorotoluene ND ug/l 120 35. 50 1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	tert-Butylbenzene	ND		ug/l	120	35.	50
1,2-Dibromo-3-chloropropane ND ug/l 120 35. 50 Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	o-Chlorotoluene	ND		ug/l	120	35.	50
Hexachlorobutadiene ND ug/l 120 35. 50 Isopropylbenzene ND ug/l 120 35. 50 p-Isopropyltoluene ND ug/l 120 35. 50	p-Chlorotoluene	ND		ug/l	120	35.	50
Isopropylbenzene	1,2-Dibromo-3-chloropropane	ND		ug/l	120	35.	50
p-Isopropyltoluene ND ug/l 120 35. 50	Hexachlorobutadiene	ND		ug/l	120	35.	50
·	Isopropylbenzene	ND		ug/l	120	35.	50
Naphthalene ND ug/l 120 35. 50	p-Isopropyltoluene	ND		ug/l	120	35.	50
	Naphthalene	ND		ug/l	120	35.	50

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-02 D Date Collected: 06/11/24 08:45

Client ID: MW-2 (66') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	120	35.	50	
1,2,3-Trichlorobenzene	ND		ug/l	120	35.	50	
1,2,4-Trichlorobenzene	ND		ug/l	120	35.	50	
1,3,5-Trimethylbenzene	ND		ug/l	120	35.	50	
1,2,4-Trimethylbenzene	ND		ug/l	120	35.	50	
1,4-Dioxane	ND		ug/l	12000	3000	50	
p-Diethylbenzene	ND		ug/l	100	35.	50	
p-Ethyltoluene	ND		ug/l	100	35.	50	
1,2,4,5-Tetramethylbenzene	ND		ug/l	100	27.	50	
Ethyl ether	ND		ug/l	120	35.	50	
trans-1,4-Dichloro-2-butene	ND		ug/l	120	35.	50	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	110	70-130	
Dibromofluoromethane	102	70-130	

L2432795

06/20/24

Project Name: Lab Number: 321 WARBURTON AVE.

Project Number: Report Date: 2221378

SAMPLE RESULTS

Lab ID: L2432795-03 D Date Collected:

06/11/24 08:50 Client ID: Date Received: 06/11/24 MW-2 (73.5') Sample Location: Field Prep: Not Specified YONKERS, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/15/24 17:24

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	250	70.	100	
1,1-Dichloroethane	ND		ug/l	250	70.	100	
Chloroform	ND		ug/l	250	70.	100	
Carbon tetrachloride	ND		ug/l	50	13.	100	
1,2-Dichloropropane	ND		ug/l	100	14.	100	
Dibromochloromethane	ND		ug/l	50	15.	100	
1,1,2-Trichloroethane	ND		ug/l	150	50.	100	
Tetrachloroethene	8400		ug/l	50	18.	100	
Chlorobenzene	ND		ug/l	250	70.	100	
Trichlorofluoromethane	ND		ug/l	250	70.	100	
1,2-Dichloroethane	ND		ug/l	50	13.	100	
1,1,1-Trichloroethane	ND		ug/l	250	70.	100	
Bromodichloromethane	ND		ug/l	50	19.	100	
trans-1,3-Dichloropropene	ND		ug/l	50	16.	100	
cis-1,3-Dichloropropene	ND		ug/l	50	14.	100	
1,3-Dichloropropene, Total	ND		ug/l	50	14.	100	
1,1-Dichloropropene	ND		ug/l	250	70.	100	
Bromoform	ND		ug/l	200	65.	100	
1,1,2,2-Tetrachloroethane	ND		ug/l	50	17.	100	
Benzene	ND		ug/l	50	16.	100	
Toluene	ND		ug/l	250	70.	100	
Ethylbenzene	ND		ug/l	250	70.	100	
Chloromethane	ND		ug/l	250	70.	100	
Bromomethane	ND		ug/l	250	70.	100	
Vinyl chloride	ND		ug/l	100	7.1	100	
Chloroethane	ND		ug/l	250	70.	100	
1,1-Dichloroethene	ND		ug/l	50	17.	100	
trans-1,2-Dichloroethene	ND		ug/l	250	70.	100	

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-03 D Date Collected: 06/11/24 08:50

Client ID: MW-2 (73.5') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND	ug/l	50	18.	100	
1,2-Dichlorobenzene	ND	ug/l	250	70.	100	
1,3-Dichlorobenzene	ND	ug/l	250	70.	100	
1,4-Dichlorobenzene	ND	ug/l	250	70.	100	
Methyl tert butyl ether	ND	ug/l	250	17.	100	
p/m-Xylene	ND	ug/l	250	70.	100	
o-Xylene	ND	ug/l	250	70.	100	
Xylenes, Total	ND	ug/l	250	70.	100	
cis-1,2-Dichloroethene	ND	ug/l	250	70.	100	
1,2-Dichloroethene, Total	ND	ug/l	250	70.	100	
Dibromomethane	ND	ug/l	500	100	100	
1,2,3-Trichloropropane	ND	ug/l	250	70.	100	
Acrylonitrile	ND	ug/l	500	150	100	
Styrene	ND	ug/l	250	70.	100	
Dichlorodifluoromethane	ND	ug/l	500	100	100	
Acetone	ND	ug/l	500	150	100	
Carbon disulfide	ND	ug/l	500	100	100	
2-Butanone	ND	ug/l	500	190	100	
Vinyl acetate	ND	ug/l	500	100	100	
4-Methyl-2-pentanone	ND	ug/l	500	100	100	
2-Hexanone	ND	ug/l	500	100	100	
Bromochloromethane	ND	ug/l	250	70.	100	
2,2-Dichloropropane	ND	ug/l	250	70.	100	
1,2-Dibromoethane	ND	ug/l	200	65.	100	
1,3-Dichloropropane	ND	ug/l	250	70.	100	
1,1,1,2-Tetrachloroethane	ND	ug/l	250	70.	100	
Bromobenzene	ND	ug/l	250	70.	100	
n-Butylbenzene	ND	ug/l	250	70.	100	
sec-Butylbenzene	ND	ug/l	250	70.	100	
tert-Butylbenzene	ND	ug/l	250	70.	100	
o-Chlorotoluene	ND	ug/l	250	70.	100	
p-Chlorotoluene	ND	ug/l	250	70.	100	
1,2-Dibromo-3-chloropropane	ND	ug/l	250	70.	100	
Hexachlorobutadiene	ND	ug/l	250	70.	100	
Isopropylbenzene	ND	ug/l	250	70.	100	
p-Isopropyltoluene	ND	ug/l	250	70.	100	
Naphthalene	ND	ug/l	250	70.	100	

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-03 D Date Collected: 06/11/24 08:50

Client ID: MW-2 (73.5') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
n-Propylbenzene	ND		ug/l	250	70.	100
1,2,3-Trichlorobenzene	ND		ug/l	250	70.	100
1,2,4-Trichlorobenzene	ND		ug/l	250	70.	100
1,3,5-Trimethylbenzene	ND		ug/l	250	70.	100
1,2,4-Trimethylbenzene	ND		ug/l	250	70.	100
1,4-Dioxane	ND		ug/l	25000	6100	100
p-Diethylbenzene	ND		ug/l	200	70.	100
p-Ethyltoluene	ND		ug/l	200	70.	100
1,2,4,5-Tetramethylbenzene	ND		ug/l	200	54.	100
Ethyl ether	ND		ug/l	250	70.	100
trans-1,4-Dichloro-2-butene	ND		ug/l	250	70.	100

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	107	70-130	

L2432795

06/11/24 09:10

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

SAMPLE RESULTS

Report Date: 06/20/24

Lab Number:

Date Collected:

Lab ID: L2432795-04

Client ID: MW-4 (59') Sample Location: YONKERS, NY

Date Received: 06/11/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/15/24 15:33

Analyst: MKS

1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.14 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 79 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 trans-1,3-Dichloropropene ND ug/l 0.50 <	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorothuromethane ND ug/l 2.5 0.70 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,2-Dichloroethane ND ug/l 0.50 0.14<	Volatile Organics by GC/MS - We	estborough Lab					
1,1-Dichloroethane ND ug/l 2.5 0.70 1 Chloroform ND ug/l 2.5 0.70 1 Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 0.50 0.14 1 Dibromochloromethane ND ug/l 0.50 0.18 1 1,1,2-Trichloroethane ND ug/l 0.50 0.18 1 Tetrachloroethane ND ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 0.50 0.18 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.18 1 Bromodichloromethane ND ug/l 0.50 0.	Methylene chloride	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 79 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l	1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Carbon tetrachloride ND ug/l 0.50 0.13 1 1,2-Dichloropropane ND ug/l 1.0 0.14 1 Dibromochloromethane ND ug/l 0.50 0.15 1 1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 79 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofthane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1-1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5	Chloroform	ND		ug/l	2.5	0.70	1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,1,2-Trichloroethane ND ug/l 1.5 0.50 1 Tetrachloroethane 79 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 sis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5	1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Tetrachloroethene 79 ug/l 0.50 0.18 1 Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 0.50 0.13 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-1,2-2-Tetrachloroethane ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5	Dibromochloromethane	ND		ug/l	0.50	0.15	1
Chlorobenzene ND ug/l 2.5 0.70 1 Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloropethane ND ug/l 0.50 0.13 1 1,1,1-Trichloropethane ND ug/l 0.50 0.19 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 <	1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Trichlorofluoromethane ND ug/l 2.5 0.70 1 1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 Itrans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1<	Tetrachloroethene	79		ug/l	0.50	0.18	1
1,2-Dichloroethane ND ug/l 0.50 0.13 1 1,1,1-Trichloroethane ND ug/l 2.5 0.70 1 Bromodichloromethane ND ug/l 0.50 0.19 1 trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene, Total ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70	Chlorobenzene	ND		ug/l	2.5	0.70	1
1,1,1-Trichloroethane ND ug/l 2.5 0.70 1	Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane ND ug/l 0.50 0.19 1 1 1 1 1 1 1 1 1	1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
trans-1,3-Dichloropropene ND ug/l 0.50 0.16 1 cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 Chlorotethane ND ug/l 2.5 0.70 1 I	1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
cis-1,3-Dichloropropene ND ug/l 0.50 0.14 1 1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromodichloromethane	ND		ug/l	0.50	0.19	1
1,3-Dichloropropene, Total ND ug/l 0.50 0.14 1 1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
1,1-Dichloropropene ND ug/l 2.5 0.70 1 Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform ND ug/l 2.0 0.65 1 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.17 1 Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Benzene ND ug/l 0.50 0.16 1 Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromoform	ND		ug/l	2.0	0.65	1
Toluene ND ug/l 2.5 0.70 1 Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 2.5 0.70 1 Chloroethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Ethylbenzene ND ug/l 2.5 0.70 1 Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Benzene	ND		ug/l	0.50	0.16	1
Chloromethane ND ug/l 2.5 0.70 1 Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Toluene	ND		ug/l	2.5	0.70	1
Bromomethane ND ug/l 2.5 0.70 1 Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Ethylbenzene	ND		ug/l	2.5	0.70	1
Vinyl chloride ND ug/l 1.0 0.07 1 Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Chloromethane	ND		ug/l	2.5	0.70	1
Chloroethane ND ug/l 2.5 0.70 1 1,1-Dichloroethene ND ug/l 0.50 0.17 1	Bromomethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene ND ug/l 0.50 0.17 1	Vinyl chloride	ND		ug/l	1.0	0.07	1
-9*	Chloroethane	ND		ug/l	2.5	0.70	1
trans-1,2-Dichloroethene ND ug/l 2.5 0.70 1	1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
	trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-04 Date Collected: 06/11/24 09:10

Client ID: MW-4 (59') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS -	Westborough Lab					
Trichloroethene	2.3		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	80		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	2.1	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-04 Date Collected: 06/11/24 09:10

Client ID: MW-4 (59') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	rough Lab					
n-Propylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1
1,4-Dioxane	ND		ug/l	250	61.	1
p-Diethylbenzene	ND		ug/l	2.0	0.70	1
p-Ethyltoluene	ND		ug/l	2.0	0.70	1
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1
Ethyl ether	ND		ug/l	2.5	0.70	1
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	106	70-130	

L2432795

Project Name: 321 WARBURTON AVE.

L2432795-05

MW-4 (66.5')

YONKERS, NY

Project Number: 2221378

SAMPLE RESULTS

Report Date: 06/20/24

Lab Number:

Date Collected: 06/11/24 09:15
Date Received: 06/11/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/15/24 15:55

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	38		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-05 Date Collected: 06/11/24 09:15

Client ID: MW-4 (66.5') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	0.94		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	99		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	2.5	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-05 Date Collected: 06/11/24 09:15

Client ID: MW-4 (66.5') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	106	70-130	

06/11/24 09:20

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

SAMPLE RESULTS

Lab Number: L2432795

Report Date: 06/20/24

Lab ID: L2432795-06 D

Client ID: MW-4 (73.5') Sample Location: YONKERS, NY Date Received: 06/11/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/15/24 17:47

Analyst: MKS

Volatile Organics by GC/MS - Westborough	n Lab				
Methylene chloride	ND	ug/l	5.0	1.4	2
1,1-Dichloroethane	ND	ug/l	5.0	1.4	2
Chloroform	ND	ug/l	5.0	1.4	2
Carbon tetrachloride	ND	ug/l	1.0	0.27	2
1,2-Dichloropropane	ND	ug/l	2.0	0.27	2
Dibromochloromethane	ND	ug/l	1.0	0.30	2
1,1,2-Trichloroethane	ND	ug/l	3.0	1.0	2
Tetrachloroethene	170	ug/l	1.0	0.36	2
Chlorobenzene	ND	ug/l	5.0	1.4	2
Trichlorofluoromethane	ND	ug/l	5.0	1.4	2
1,2-Dichloroethane	ND	ug/l	1.0	0.26	2
1,1,1-Trichloroethane	ND	ug/l	5.0	1.4	2
Bromodichloromethane	ND	ug/l	1.0	0.38	2
trans-1,3-Dichloropropene	ND	ug/l	1.0	0.33	2
cis-1,3-Dichloropropene	ND	ug/l	1.0	0.29	2
1,3-Dichloropropene, Total	ND	ug/l	1.0	0.29	2
1,1-Dichloropropene	ND	ug/l	5.0	1.4	2
Bromoform	ND	ug/l	4.0	1.3	2
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	0.33	2
Benzene	ND	ug/l	1.0	0.32	2
Toluene	ND	ug/l	5.0	1.4	2
Ethylbenzene	ND	ug/l	5.0	1.4	2
Chloromethane	ND	ug/l	5.0	1.4	2
Bromomethane	ND	ug/l	5.0	1.4	2
Vinyl chloride	ND	ug/l	2.0	0.14	2
Chloroethane	ND	ug/l	5.0	1.4	2
1,1-Dichloroethene	ND	ug/l	1.0	0.34	2
trans-1,2-Dichloroethene	ND	ug/l	5.0	1.4	2

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-06 D Date Collected: 06/11/24 09:20

Client ID: MW-4 (73.5') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	ıgh Lab					
Trichloroethene	3.6		ug/l	1.0	0.35	2
1,2-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,3-Dichlorobenzene	ND		ug/l	5.0	1.4	2
1,4-Dichlorobenzene	ND		ug/l	5.0	1.4	2
Methyl tert butyl ether	ND		ug/l	5.0	0.33	2
p/m-Xylene	ND		ug/l	5.0	1.4	2
o-Xylene	ND		ug/l	5.0	1.4	2
Xylenes, Total	ND		ug/l	5.0	1.4	2
cis-1,2-Dichloroethene	ND		ug/l	5.0	1.4	2
1,2-Dichloroethene, Total	ND		ug/l	5.0	1.4	2
Dibromomethane	ND		ug/l	10	2.0	2
1,2,3-Trichloropropane	ND		ug/l	5.0	1.4	2
Acrylonitrile	ND		ug/l	10	3.0	2
Styrene	ND		ug/l	5.0	1.4	2
Dichlorodifluoromethane	ND		ug/l	10	2.0	2
Acetone	110		ug/l	10	2.9	2
Carbon disulfide	ND		ug/l	10	2.0	2
2-Butanone	ND		ug/l	10	3.9	2
Vinyl acetate	ND		ug/l	10	2.0	2
4-Methyl-2-pentanone	ND		ug/l	10	2.0	2
2-Hexanone	ND		ug/l	10	2.0	2
Bromochloromethane	ND		ug/l	5.0	1.4	2
2,2-Dichloropropane	ND		ug/l	5.0	1.4	2
1,2-Dibromoethane	ND		ug/l	4.0	1.3	2
1,3-Dichloropropane	ND		ug/l	5.0	1.4	2
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0	1.4	2
Bromobenzene	ND		ug/l	5.0	1.4	2
n-Butylbenzene	ND		ug/l	5.0	1.4	2
sec-Butylbenzene	ND		ug/l	5.0	1.4	2
tert-Butylbenzene	ND		ug/l	5.0	1.4	2
o-Chlorotoluene	ND		ug/l	5.0	1.4	2
p-Chlorotoluene	ND		ug/l	5.0	1.4	2
1,2-Dibromo-3-chloropropane	ND		ug/l	5.0	1.4	2
Hexachlorobutadiene	ND		ug/l	5.0	1.4	2
Isopropylbenzene	ND		ug/l	5.0	1.4	2
p-Isopropyltoluene	ND		ug/l	5.0	1.4	2
Naphthalene	ND		ug/l	5.0	1.4	2

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-06 D Date Collected: 06/11/24 09:20

Client ID: MW-4 (73.5') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	jh Lab						
n-Propylbenzene	ND		ug/l	5.0	1.4	2	
1,2,3-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trichlorobenzene	ND		ug/l	5.0	1.4	2	
1,3,5-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,2,4-Trimethylbenzene	ND		ug/l	5.0	1.4	2	
1,4-Dioxane	ND		ug/l	500	120	2	
p-Diethylbenzene	ND		ug/l	4.0	1.4	2	
p-Ethyltoluene	ND		ug/l	4.0	1.4	2	
1,2,4,5-Tetramethylbenzene	ND		ug/l	4.0	1.1	2	
Ethyl ether	ND		ug/l	5.0	1.4	2	
trans-1,4-Dichloro-2-butene	ND		ug/l	5.0	1.4	2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	106	70-130	

L2432795

06/20/24

Project Name: 321 WARBURTON AVE.

L2432795-07

YONKERS, NY

MW-6 (56')

Project Number: 2221378

SAMPLE RESULTS

Date Collected: 06/11/24 08:00

Lab Number:

Report Date:

Date Received: 06/11/24
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/15/24 16:18

Analyst: MKS

Valatila Ossassiaa ku OO/MO - Waathassassala					Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab				
Methylene chloride	ND	ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	3.0	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	160	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14	1
1,1-Dichloropropene	ND	ug/l	2.5	0.70	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-07 Date Collected: 06/11/24 08:00

Client ID: MW-6 (56') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroethene	0.45	J	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	9.4		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	4.0	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-07 Date Collected: 06/11/24 08:00

Client ID: MW-6 (56') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	105	70-130	

06/11/24 08:05

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

SAMPLE RESULTS

Lab Number: L2432795

Report Date: 06/20/24

Lab ID: L2432795-08 D

Client ID: MW-6 (65')
Sample Location: YONKERS, NY

Date Received: 06/11/24
Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/15/24 18:09

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
Methylene chloride	ND		ug/l	50	14.	20	
1,1-Dichloroethane	ND		ug/l	50	14.	20	
Chloroform	ND		ug/l	50	14.	20	
Carbon tetrachloride	ND		ug/l	10	2.7	20	
1,2-Dichloropropane	ND		ug/l	20	2.7	20	
Dibromochloromethane	ND		ug/l	10	3.0	20	
1,1,2-Trichloroethane	ND		ug/l	30	10.	20	
Tetrachloroethene	2200		ug/l	10	3.6	20	
Chlorobenzene	ND		ug/l	50	14.	20	
Trichlorofluoromethane	ND		ug/l	50	14.	20	
1,2-Dichloroethane	ND		ug/l	10	2.6	20	
1,1,1-Trichloroethane	ND		ug/l	50	14.	20	
Bromodichloromethane	ND		ug/l	10	3.8	20	
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20	
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20	
1,3-Dichloropropene, Total	ND		ug/l	10	2.9	20	
1,1-Dichloropropene	ND		ug/l	50	14.	20	
Bromoform	ND		ug/l	40	13.	20	
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20	
Benzene	ND		ug/l	10	3.2	20	
Toluene	ND		ug/l	50	14.	20	
Ethylbenzene	ND		ug/l	50	14.	20	
Chloromethane	ND		ug/l	50	14.	20	
Bromomethane	ND		ug/l	50	14.	20	
Vinyl chloride	ND		ug/l	20	1.4	20	
Chloroethane	ND		ug/l	50	14.	20	
1,1-Dichloroethene	ND		ug/l	10	3.4	20	
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20	

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-08 D Date Collected: 06/11/24 08:05

Client ID: MW-6 (65') Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Volatile Organics by GC/MS - Westborough Lab Volume upfl 10 3.5 20 1.2 Okinkonbervaren ND upfl 50 14 20 1.4 Okinkonbervaren ND upfl 50 14 20 1.4 Okinkonbervaren ND upfl 50 14 20 Methy tet buyl ether ND upfl 50 14 20 Okykene ND upfl 50 14 20 Sylene ND upfl 50 14 20 Sylene, Total ND upfl 50 14 20 Sylene, Total ND upfl 50 14 20 Upflestondhene, Total ND upfl 50 14 20 Dibromamethane ND upfl 50 14 20 Dibromamethane ND upfl 50 14 20 Syrene ND upfl 100 20 20	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.2-Dichlorobenzene ND ugil 50 14. 20 1.3-Dichlorobenzene ND ugil 100 20. 20 20 1.3-Dichlorobenzene ND ugil 100 20. 20 20 1.3-Dichlorobenzene ND ugil 100 20. 20 20 20 20 20 20	Volatile Organics by GC/MS - Westbord	ough Lab					
1.3-Dichlorobenzene ND ugil 50 14. 20 1.4-Dichlorobenzene ND ugil 50 14. 20 Melbyl tort buyl other ND ugil 50 14. 20 prm-Xylene ND ugil 50 14. 20 xylenes, Total ND ugil 50 14. 20 xylenes, Total ND ugil 50 14. 20 1.2-Dichloroethene ND ugil 50 14. 20 1.2-Dichloroethene, Total ND ugil 100 20. 20 Dichroroethene, Total ND ugil 100 20. 20 Acytheritie ND ugil 100 20.	Trichloroethene	ND		ug/l	10	3.5	20
Methylether burylether ND ugl 50 14. 20 20 20 20 20 20 20 2	1,2-Dichlorobenzene	ND		ug/l	50	14.	20
Methyl tent bulyl ether ND ugl 50 3.3 20 p/m-Xylene ND ugl 50 14. 20	1,3-Dichlorobenzene	ND		ug/l	50	14.	20
Prim-Xylene	1,4-Dichlorobenzene	ND		ug/l	50	14.	20
o-Xylene ND ug/l 50 14. 20 Xylenes, Total ND ug/l 50 14. 20 cis-1,2-Dichloroethene ND ug/l 50 14. 20 cis-1,2-Dichloroethene, Total ND ug/l 50 14. 20 Dibromomethane ND ug/l 100 20. 20 1,2.3-Trichloropropane ND ug/l 100 30. 20 Acrylontrile ND ug/l 100 30. 20 Styrene ND ug/l 100 30. 20 Carbon disulfide ND ug/l 100 20. 20 Carbon disulfide ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 39. 20 Carbon disulfide ND ug/l 100 20. 20 Carbon disulfide ND ug/l 100 20. 20 <tr< td=""><td>Methyl tert butyl ether</td><td>ND</td><td></td><td>ug/l</td><td>50</td><td>3.3</td><td>20</td></tr<>	Methyl tert butyl ether	ND		ug/l	50	3.3	20
Xylenes, Total ND ugl 50 14. 20 cis-1,2-Dichlorcethene ND ugl 50 14. 20 1,2-Dichlorcethene, Total ND ugl 50 14. 20 Dibromomethane ND ugl 50 14. 20 Ly,2-Trichloropropane ND ugl 50 14. 20 Acrylonitrile ND ugl 50 14. 20 Syrene ND ugl 100 30. 20 Carbon disulfide ND ugl 100 20. 20 Carbon disulfide ND ugl 100 20. 20 Carbon disulfide ND ugl 100 20. 20 2-Butanone ND ugl 100 20. 20 4-Methyl-2-pentanone ND ugl 100 20. 20 2-Butanone ND ugl 50 14. 20 2-Hexat	p/m-Xylene	ND		ug/l	50	14.	20
cis-1,2-Dichloroethene ND ug/l 50 1.4. 20 1,2-Dichloroethene, Total ND ug/l 50 14. 20 Dibromomethane ND ug/l 100 20. 20 1,2,3-Trichloropropane ND ug/l 150 14. 20 Actrichloropropane ND ug/l 150 14. 20 Styrene ND ug/l 100 20. 20 Styrene ND ug/l 100 20. 20 Actone ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 20. 20 2-Butanone ND ug/l 100 20. 20 Viryl acetate ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 50 14. 20	o-Xylene	ND		ug/l	50	14.	20
1,2-Dichloroethene, Total ND ug/l 50 14. 20 20 12,3-Trichloropropane ND ug/l 50 14. 20 20 12,3-Trichloropropane ND ug/l 50 14. 20 20 20 20 20 20 20 2	Xylenes, Total	ND		ug/l	50	14.	20
Dibromomethane ND ug/l 100 20. 20 1,2,3-Trichloropropane ND ug/l 50 14. 20 Acrylonitrile ND ug/l 100 30. 20 Styrene ND ug/l 100 20. 20 Dichlorodifluoromethane ND ug/l 100 29. 20 Acetone ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 29. 20 2-Butanone ND ug/l 100 20. 20 2-Butanone ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 50 14. 20 2-Dichloropropane ND ug/l 50 14. 20 1,3-Dichloropr	cis-1,2-Dichloroethene	ND		ug/l	50	14.	20
1,2,3-Trichloropropane ND ug/l 50 14. 20	1,2-Dichloroethene, Total	ND		ug/l	50	14.	20
Acrylonitrile ND ug/l 100 30. 20 Styrene ND ug/l 50 14. 20 Dichlorodifluoromethane ND ug/l 100 20. 20 Acetone ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 20. 20 2-Butanone ND ug/l 100 20. 20 2-Butanone ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 50 14. 20 2-Pethexanone ND ug/l 50 14. 20 2-Pethexanone ND ug/l 50 14. 20 1,2-Dictorocethane <td>Dibromomethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>100</td> <td>20.</td> <td>20</td>	Dibromomethane	ND		ug/l	100	20.	20
Styrene ND ug/l 50 14. 20 Dichlorodiffluoromethane ND ug/l 100 20. 20 Acetone ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 20. 20 2-Butanone ND ug/l 100 39. 20 Virnyl acetate ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 50 14. 20 2-Hexanone ND ug/l 50 14. 20 2-Hexanone ND ug/l 50 14. 20 1,2-Distromethane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane	1,2,3-Trichloropropane	ND		ug/l	50	14.	20
Dichlorodiffluoromethane ND Ug/l 100 20. 20 20 20 20 20 20	Acrylonitrile	ND		ug/l	100	30.	20
Acetone ND ug/l 100 29. 20 Carbon disulfide ND ug/l 100 20. 20 2-Butanone ND ug/l 100 39. 20 Vinyl acetate ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 Bromochloromethane ND ug/l 50 14. 20 2,2-Dichloropropane ND ug/l 50 14. 20 1,2-Dibromoethane ND ug/l 50 14. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 <td< td=""><td>Styrene</td><td>ND</td><td></td><td>ug/l</td><td>50</td><td>14.</td><td>20</td></td<>	Styrene	ND		ug/l	50	14.	20
Carbon disulfide ND ug/l 100 20. 20 2-Butanone ND ug/l 100 39. 20 Vinyl acetate ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 Bromochloromethane ND ug/l 50 14. 20 2,2-Dichloropropane ND ug/l 50 14. 20 1,2-Dibromoethane ND ug/l 50 14. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20	Dichlorodifluoromethane	ND		ug/l	100	20.	20
2-Butanone ND ug/l 100 39. 20 Vinyl acetate ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 Bromochloromethane ND ug/l 50 14. 20 2,2-Dichloropropane ND ug/l 50 14. 20 1,2-Dibromoethane ND ug/l 40 13. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 ec-Butylbenzene ND ug/l 50 14. 20	Acetone	ND		ug/l	100	29.	20
Vinyl acetate ND ug/l 100 20. 20 4-Methyl-2-pentanone ND ug/l 100 20. 20 2-Hexanone ND ug/l 100 20. 20 Bromochloromethane ND ug/l 50 14. 20 2,2-Dichloropropane ND ug/l 50 14. 20 1,2-Dibromoethane ND ug/l 50 14. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 Brombenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 tetr-Butylbenzene ND ug/l 50 14. 20 tetr-Butylbenzene ND ug/l 50 14. 20	Carbon disulfide	ND		ug/l	100	20.	20
4-Methyl-2-pentanone ND ug/l 100 20 20 2-Hexanone ND ug/l 100 20 20 Bromochloromethane ND ug/l 50 14 20 2,2-Dichloropropane ND ug/l 50 14 20 1,2-Dibromoethane ND ug/l 50 14 20 1,3-Dichloropropane ND ug/l 50 14 20 1,3-Dichloropropane ND ug/l 50 14 20 Bromobenzene ND ug/l 50 14 20 Bromobenzene ND ug/l 50 14 20 n-Butylbenzene ND ug/l 50 14 20 sec-Butylbenzene ND ug/l 50 14 20 tert-Butylbenzene ND ug/l 50 14 20 c-Chlorotoluene ND ug/l 50 14 20 p-Chlo	2-Butanone	ND		ug/l	100	39.	20
2-Hexanone ND ug/l 100 20. 20	Vinyl acetate	ND		ug/l	100	20.	20
Bromochloromethane ND	4-Methyl-2-pentanone	ND		ug/l	100	20.	20
2,2-Dichloropropane ND ug/l 50 14. 20 1,2-Dibromoethane ND ug/l 40 13. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 c-Chlorotoluene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20 c-Chlorotoluene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20 c-Chlorotoluene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20	2-Hexanone	ND		ug/l	100	20.	20
1,2-Dibromoethane ND ug/l 40 13. 20 1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 Isopropyltoluene ND ug/l 50 14. 20	Bromochloromethane	ND		ug/l	50	14.	20
1,3-Dichloropropane ND ug/l 50 14. 20 1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	2,2-Dichloropropane	ND		ug/l	50	14.	20
1,1,1,2-Tetrachloroethane ND ug/l 50 14. 20 Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 tetr-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	1,2-Dibromoethane	ND		ug/l	40	13.	20
Bromobenzene ND ug/l 50 14. 20 n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	1,3-Dichloropropane	ND		ug/l	50	14.	20
n-Butylbenzene ND ug/l 50 14. 20 sec-Butylbenzene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	1,1,1,2-Tetrachloroethane	ND		ug/l	50	14.	20
sec-Butylbenzene ND ug/l 50 14. 20 tert-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	Bromobenzene	ND		ug/l	50	14.	20
tert-Butylbenzene ND ug/l 50 14. 20 o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 lsopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	n-Butylbenzene	ND		ug/l	50	14.	20
o-Chlorotoluene ND ug/l 50 14. 20 p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	sec-Butylbenzene	ND		ug/l	50	14.	20
p-Chlorotoluene ND ug/l 50 14. 20 1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	tert-Butylbenzene	ND		ug/l	50	14.	20
1,2-Dibromo-3-chloropropane ND ug/l 50 14. 20 Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	o-Chlorotoluene	ND		ug/l	50	14.	20
Hexachlorobutadiene ND ug/l 50 14. 20 Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	p-Chlorotoluene	ND		ug/l	50	14.	20
Isopropylbenzene ND ug/l 50 14. 20 p-Isopropyltoluene ND ug/l 50 14. 20	1,2-Dibromo-3-chloropropane	ND		ug/l	50	14.	20
p-Isopropyltoluene ND ug/l 50 14. 20	Hexachlorobutadiene	ND		ug/l	50	14.	20
	Isopropylbenzene	ND		ug/l	50	14.	20
Naphthalene ND ug/l 50 14. 20	p-Isopropyltoluene	ND		ug/l	50	14.	20
	Naphthalene	ND		ug/l	50	14.	20

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-08 D Date Collected: 06/11/24 08:05

Client ID: MW-6 (65') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	50	14.	20	
1,2,3-Trichlorobenzene	ND		ug/l	50	14.	20	
1,2,4-Trichlorobenzene	ND		ug/l	50	14.	20	
1,3,5-Trimethylbenzene	ND		ug/l	50	14.	20	
1,2,4-Trimethylbenzene	ND		ug/l	50	14.	20	
1,4-Dioxane	ND		ug/l	5000	1200	20	
p-Diethylbenzene	ND		ug/l	40	14.	20	
p-Ethyltoluene	ND		ug/l	40	14.	20	
1,2,4,5-Tetramethylbenzene	ND		ug/l	40	11.	20	
Ethyl ether	ND		ug/l	50	14.	20	
trans-1,4-Dichloro-2-butene	ND		ug/l	50	14.	20	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	107	70-130	

L2432795

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

SAMPLE RESULTS

Report Date: 06/20/24

Lab Number:

Lab ID: L2432795-09 D

Client ID: MW-6 (73.5')
Sample Location: YONKERS, NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/15/24 18:31

Analyst: MKS

Date Collected: 06/11/24 08:10
Date Received: 06/11/24

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	62	18.	25	
1,1-Dichloroethane	ND		ug/l	62	18.	25	
Chloroform	ND		ug/l	62	18.	25	
Carbon tetrachloride	ND		ug/l	12	3.4	25	
1,2-Dichloropropane	ND		ug/l	25	3.4	25	
Dibromochloromethane	ND		ug/l	12	3.7	25	
1,1,2-Trichloroethane	ND		ug/l	38	12.	25	
Tetrachloroethene	2400		ug/l	12	4.5	25	
Chlorobenzene	ND		ug/l	62	18.	25	
Trichlorofluoromethane	ND		ug/l	62	18.	25	
1,2-Dichloroethane	ND		ug/l	12	3.3	25	
1,1,1-Trichloroethane	ND		ug/l	62	18.	25	
Bromodichloromethane	ND		ug/l	12	4.8	25	
trans-1,3-Dichloropropene	ND		ug/l	12	4.1	25	
cis-1,3-Dichloropropene	ND		ug/l	12	3.6	25	
1,3-Dichloropropene, Total	ND		ug/l	12	3.6	25	
1,1-Dichloropropene	ND		ug/l	62	18.	25	
Bromoform	ND		ug/l	50	16.	25	
1,1,2,2-Tetrachloroethane	ND		ug/l	12	4.2	25	
Benzene	ND		ug/l	12	4.0	25	
Toluene	ND		ug/l	62	18.	25	
Ethylbenzene	ND		ug/l	62	18.	25	
Chloromethane	ND		ug/l	62	18.	25	
Bromomethane	ND		ug/l	62	18.	25	
Vinyl chloride	ND		ug/l	25	1.8	25	
Chloroethane	ND		ug/l	62	18.	25	
1,1-Dichloroethene	ND		ug/l	12	4.2	25	
trans-1,2-Dichloroethene	ND		ug/l	62	18.	25	

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-09 D Date Collected: 06/11/24 08:10

Client ID: MW-6 (73.5') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	Vestborough Lab					
Trichloroethene	ND	ug/l	12	4.4	25	
1,2-Dichlorobenzene	ND	ug/l	62	18.	25	
1,3-Dichlorobenzene	ND	ug/l	62	18.	25	
1,4-Dichlorobenzene	ND	ug/l	62	18.	25	
Methyl tert butyl ether	ND	ug/l	62	4.2	25	
p/m-Xylene	ND	ug/l	62	18.	25	
o-Xylene	ND	ug/l	62	18.	25	
Xylenes, Total	ND	ug/l	62	18.	25	
cis-1,2-Dichloroethene	ND	ug/l	62	18.	25	
1,2-Dichloroethene, Total	ND	ug/l	62	18.	25	
Dibromomethane	ND	ug/l	120	25.	25	
1,2,3-Trichloropropane	ND	ug/l	62	18.	25	
Acrylonitrile	ND	ug/l	120	38.	25	
Styrene	ND	ug/l	62	18.	25	
Dichlorodifluoromethane	ND	ug/l	120	25.	25	
Acetone	ND	ug/l	120	36.	25	
Carbon disulfide	ND	ug/l	120	25.	25	
2-Butanone	ND	ug/l	120	48.	25	
Vinyl acetate	ND	ug/l	120	25.	25	
4-Methyl-2-pentanone	ND	ug/l	120	25.	25	
2-Hexanone	ND	ug/l	120	25.	25	
Bromochloromethane	ND	ug/l	62	18.	25	
2,2-Dichloropropane	ND	ug/l	62	18.	25	
1,2-Dibromoethane	ND	ug/l	50	16.	25	
1,3-Dichloropropane	ND	ug/l	62	18.	25	
1,1,1,2-Tetrachloroethane	ND	ug/l	62	18.	25	
Bromobenzene	ND	ug/l	62	18.	25	
n-Butylbenzene	ND	ug/l	62	18.	25	
sec-Butylbenzene	ND	ug/l	62	18.	25	
tert-Butylbenzene	ND	ug/l	62	18.	25	
o-Chlorotoluene	ND	ug/l	62	18.	25	
p-Chlorotoluene	ND	ug/l	62	18.	25	
1,2-Dibromo-3-chloropropane	ND	ug/l	62	18.	25	
Hexachlorobutadiene	ND	ug/l	62	18.	25	
Isopropylbenzene	ND	ug/l	62	18.	25	
p-Isopropyltoluene	ND	ug/l	62	18.	25	
Naphthalene	ND	ug/l	62	18.	25	

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-09 D Date Collected: 06/11/24 08:10

Client ID: MW-6 (73.5') Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
n-Propylbenzene	ND		ug/l	62	18.	25	
1,2,3-Trichlorobenzene	ND		ug/l	62	18.	25	
1,2,4-Trichlorobenzene	ND		ug/l	62	18.	25	
1,3,5-Trimethylbenzene	ND		ug/l	62	18.	25	
1,2,4-Trimethylbenzene	ND		ug/l	62	18.	25	
1,4-Dioxane	ND		ug/l	6200	1500	25	
p-Diethylbenzene	ND		ug/l	50	18.	25	
p-Ethyltoluene	ND		ug/l	50	18.	25	
1,2,4,5-Tetramethylbenzene	ND		ug/l	50	14.	25	
Ethyl ether	ND		ug/l	62	18.	25	
trans-1,4-Dichloro-2-butene	ND		ug/l	62	18.	25	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	106	70-130	

L2432795

06/11/24 00:00

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

SAMPLE RESULTS

06/20/24

Report Date:

Lab Number:

Date Collected:

Lab ID: L2432795-10

Client ID: TRIP BLANK Sample Location: YONKERS, NY Date Received: 06/11/24 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/15/24 15:11

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-10 Date Collected: 06/11/24 00:00

Client ID: TRIP BLANK Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND			2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
	ND		ug/l	2.5	0.70	1
p/m-Xylene o-Xylene	ND ND		ug/l	2.5	0.70	1
<u> </u>	ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-lsopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 **Report Date:** 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-10 Date Collected: 06/11/24 00:00

Client ID: TRIP BLANK Date Received: 06/11/24
Sample Location: YONKERS, NY Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	106	70-130	
Dibromofluoromethane	104	70-130	

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/15/24 13:41

Analyst: MJV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01,03-10 Bato	th: WG1935128-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/15/24 13:41

Analyst: MJV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01,03-10	Batch: WG1935128-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/15/24 13:41

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	-	MDL	
Volatile Organics by GC/MS - We	stborough Lab	for sample	(s):	01,03-10	Batch:	WG1935128-5	
o-Chlorotoluene	ND		ug/l	2.5	5	0.70	
p-Chlorotoluene	ND		ug/l	2.5	5	0.70	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	5	0.70	
Hexachlorobutadiene	ND		ug/l	2.5	5	0.70	
Isopropylbenzene	ND		ug/l	2.5	5	0.70	
p-Isopropyltoluene	ND		ug/l	2.5	5	0.70	
Naphthalene	ND		ug/l	2.5	5	0.70	
n-Propylbenzene	ND		ug/l	2.5	5	0.70	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	5	0.70	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	5	0.70	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	5	0.70	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	5	0.70	
1,4-Dioxane	ND		ug/l	250)	61.	
p-Diethylbenzene	ND		ug/l	2.0)	0.70	
p-Ethyltoluene	ND		ug/l	2.0)	0.70	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0)	0.54	
Ethyl ether	ND		ug/l	2.5	5	0.70	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	5	0.70	

	Acceptance
%Recovery Qu	alifier Criteria
108	70-130
101	70-130
105	70-130
106	70-130
	108 101 105

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/17/24 18:56

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	for sample(s):	02 Batch:	WG1935682-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2432795

Project Name: 321 WARBURTON AVE. Lab Number:

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/17/24 18:56

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02 Batch:	WG1935682-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/17/24 18:56

Analyst: TMS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s): 02	Batch:	WG1935682-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

		Acceptance	
Surrogate	%Recovery		_
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	108	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01,03-10 Batch:	WG1935128-3 WG1935128	-4	
Methylene chloride	100		100	70-130	0	20
1,1-Dichloroethane	100		100	70-130	0	20
Chloroform	110		110	70-130	0	20
Carbon tetrachloride	110		110	63-132	0	20
1,2-Dichloropropane	96		97	70-130	1	20
Dibromochloromethane	100		100	63-130	0	20
1,1,2-Trichloroethane	100		100	70-130	0	20
Tetrachloroethene	93		93	70-130	0	20
Chlorobenzene	100		100	75-130	0	20
Trichlorofluoromethane	100		100	62-150	0	20
1,2-Dichloroethane	110		110	70-130	0	20
1,1,1-Trichloroethane	110		110	67-130	0	20
Bromodichloromethane	100		100	67-130	0	20
trans-1,3-Dichloropropene	98		97	70-130	1	20
cis-1,3-Dichloropropene	95		96	70-130	1	20
1,1-Dichloropropene	100		100	70-130	0	20
Bromoform	96		92	54-136	4	20
1,1,2,2-Tetrachloroethane	100		98	67-130	2	20
Benzene	95		96	70-130	1	20
Toluene	99		98	70-130	1	20
Ethylbenzene	100		100	70-130	0	20
Chloromethane	79		80	64-130	1	20
Bromomethane	64		63	39-139	2	20

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

arameter		LCS %Recovery	Qual	LC: %Rec	_	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS	- Westborough La	ab Associated	sample(s):	01,03-10	Batch:	WG193512	8-3 WG193512	8-4			
Vinyl chloride		80		8	1		55-140	1		20	
Chloroethane		100		1	00		55-138	0		20	
1,1-Dichloroethene		97		9	9		61-145	2		20	
trans-1,2-Dichloroethene		97		1	00		70-130	3		20	
Trichloroethene		100		1	00		70-130	0		20	
1,2-Dichlorobenzene		100		1	00		70-130	0		20	
1,3-Dichlorobenzene		100		1	00		70-130	0		20	
1,4-Dichlorobenzene		100		1	00		70-130	0		20	
Methyl tert butyl ether		89		9	0		63-130	1		20	
p/m-Xylene		100		1	00		70-130	0		20	
o-Xylene		100		1	00		70-130	0		20	
cis-1,2-Dichloroethene		100		1	00		70-130	0		20	
Dibromomethane		110		1	10		70-130	0		20	
1,2,3-Trichloropropane		100		1	00		64-130	0		20	
Acrylonitrile		83		8	2		70-130	1		20	
Styrene		100		1	00		70-130	0		20	
Dichlorodifluoromethane		99		9	6		36-147	3		20	
Acetone		110		1	10		58-148	0		20	
Carbon disulfide		96		9	6		51-130	0		20	
2-Butanone		96		1	00		63-138	4		20	
Vinyl acetate		100		9	9		70-130	1		20	
4-Methyl-2-pentanone		80		7	9		59-130	1		20	
2-Hexanone		77		7	9		57-130	3		20	

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01,03-10 Batch:	WG1935128-3 WG1935128	-4	
Bromochloromethane	100		100	70-130	0	20
2,2-Dichloropropane	100		100	63-133	0	20
1,2-Dibromoethane	100		100	70-130	0	20
1,3-Dichloropropane	100		100	70-130	0	20
1,1,1,2-Tetrachloroethane	100		100	64-130	0	20
Bromobenzene	99		97	70-130	2	20
n-Butylbenzene	110		110	53-136	0	20
sec-Butylbenzene	110		100	70-130	10	20
tert-Butylbenzene	110		100	70-130	10	20
o-Chlorotoluene	110		100	70-130	10	20
p-Chlorotoluene	110		100	70-130	10	20
1,2-Dibromo-3-chloropropane	93		95	41-144	2	20
Hexachlorobutadiene	97		95	63-130	2	20
Isopropylbenzene	100		100	70-130	0	20
p-Isopropyltoluene	110		100	70-130	10	20
Naphthalene	94		92	70-130	2	20
n-Propylbenzene	110		100	69-130	10	20
1,2,3-Trichlorobenzene	95		94	70-130	1	20
1,2,4-Trichlorobenzene	94		94	70-130	0	20
1,3,5-Trimethylbenzene	110		100	64-130	10	20
1,2,4-Trimethylbenzene	110		100	70-130	10	20
1,4-Dioxane	102		104	56-162	2	20
p-Diethylbenzene	100		100	70-130	0	20

Project Name: 321 WARBURTON AVE.

Lab Number:

L2432795

Project Number: 2221378

Report Date:

06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 0	1,03-10 Batch:	WG193512	28-3 WG1935128	3-4		
p-Ethyltoluene	100		100		70-130	0		20
1,2,4,5-Tetramethylbenzene	100		99		70-130	1		20
Ethyl ether	89		90		59-134	1		20
trans-1,4-Dichloro-2-butene	87		87		70-130	0		20

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	106	111	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	97	97	70-130
Dibromofluoromethane	103	104	70-130

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	n Lab Associated	sample(s): 0	2 Batch: WG1	935682-3	WG1935682-4		
Methylene chloride	100		89		70-130	12	20
1,1-Dichloroethane	100		88		70-130	13	20
Chloroform	110		93		70-130	17	20
Carbon tetrachloride	110		97		63-132	13	20
1,2-Dichloropropane	96		83		70-130	15	20
Dibromochloromethane	100		89		63-130	12	20
1,1,2-Trichloroethane	100		90		70-130	11	20
Tetrachloroethene	92		79		70-130	15	20
Chlorobenzene	110		92		75-130	18	20
Trichlorofluoromethane	90		77		62-150	16	20
1,2-Dichloroethane	110		95		70-130	15	20
1,1,1-Trichloroethane	110		97		67-130	13	20
Bromodichloromethane	100		91		67-130	9	20
trans-1,3-Dichloropropene	99		87		70-130	13	20
cis-1,3-Dichloropropene	93		82		70-130	13	20
1,1-Dichloropropene	100		89		70-130	12	20
Bromoform	100		89		54-136	12	20
1,1,2,2-Tetrachloroethane	120		100		67-130	18	20
Benzene	94		81		70-130	15	20
Toluene	100		88		70-130	13	20
Ethylbenzene	100		92		70-130	8	20
Chloromethane	75		65		64-130	14	20
Bromomethane	41		36	Q	39-139	13	20

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	2 Batch: WG1	935682-3	WG1935682-4				
Vinyl chloride	76		66		55-140	14		20	
Chloroethane	84		71		55-138	17		20	
1,1-Dichloroethene	87		74		61-145	16		20	
trans-1,2-Dichloroethene	98		85		70-130	14		20	
Trichloroethene	100		91		70-130	9		20	
1,2-Dichlorobenzene	110		98		70-130	12		20	
1,3-Dichlorobenzene	110		98		70-130	12		20	
1,4-Dichlorobenzene	110		98		70-130	12		20	
Methyl tert butyl ether	88		78		63-130	12		20	
p/m-Xylene	100		90		70-130	11		20	
o-Xylene	100		85		70-130	16		20	
cis-1,2-Dichloroethene	98		85		70-130	14		20	
Dibromomethane	110		96		70-130	14		20	
1,2,3-Trichloropropane	120		100		64-130	18		20	
Acrylonitrile	85		76		70-130	11		20	
Styrene	100		90		70-130	11		20	
Dichlorodifluoromethane	94		83		36-147	12		20	
Acetone	110		110		58-148	0		20	
Carbon disulfide	92		74		51-130	22	Q	20	
2-Butanone	94		86		63-138	9		20	
Vinyl acetate	100		88		70-130	13		20	
4-Methyl-2-pentanone	80		71		59-130	12		20	
2-Hexanone	75		70		57-130	7		20	

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0	02 Batch: WG1	935682-3	WG1935682-4			
Bromochloromethane	95		84		70-130	12		20
2,2-Dichloropropane	100		89		63-133	12		20
1,2-Dibromoethane	100		91		70-130	9		20
1,3-Dichloropropane	100		92		70-130	8		20
1,1,1,2-Tetrachloroethane	100		90		64-130	11		20
Bromobenzene	110		92		70-130	18		20
n-Butylbenzene	120		110		53-136	9		20
sec-Butylbenzene	120		110		70-130	9		20
tert-Butylbenzene	120		100		70-130	18		20
o-Chlorotoluene	120		110		70-130	9		20
p-Chlorotoluene	120		110		70-130	9		20
1,2-Dibromo-3-chloropropane	100		91		41-144	9		20
Hexachlorobutadiene	100		84		63-130	17		20
Isopropylbenzene	120		100		70-130	18		20
p-Isopropyltoluene	120		100		70-130	18		20
Naphthalene	100		91		70-130	9		20
n-Propylbenzene	120		100		69-130	18		20
1,2,3-Trichlorobenzene	98		88		70-130	11		20
1,2,4-Trichlorobenzene	97		84		70-130	14		20
1,3,5-Trimethylbenzene	120		100		64-130	18		20
1,2,4-Trimethylbenzene	120		100		70-130	18		20
1,4-Dioxane	104		92		56-162	12		20
p-Diethylbenzene	110		97		70-130	13		20

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Report Date:

06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 02	Batch: WG	1935682-3	WG1935682-4				
p-Ethyltoluene	120		100		70-130	18		20	
1,2,4,5-Tetramethylbenzene	110		94		70-130	16		20	
Ethyl ether	79		67		59-134	16		20	
trans-1,4-Dichloro-2-butene	110		96		70-130	14		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	113	113	70-130
Toluene-d8	104	103	70-130
4-Bromofluorobenzene	111	111	70-130
Dibromofluoromethane	105	105	70-130

METALS

Project Name: Lab Number: 321 WARBURTON AVE. L2432795

Project Number: Report Date:

2221378 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-11 Date Collected: 06/11/24 08:41 Client ID: MW-2-20240611 Date Received: 06/11/24 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	282.4		mg/l	0.5400	NA	1	06/16/24 15:5	5 06/19/24 17:34	EPA 3005A	1,6020B	NTB

Project Name: 321 WARBURTON AVE. Lab Number: L2432795

Project Number: 2221378 Report Date: 06/20/24

SAMPLE RESULTS

 Lab ID:
 L2432795-12
 Date Collected:
 06/11/24 11:35

 Client ID:
 MW-4-20240611
 Date Received:
 06/11/24

 Sample Location:
 YONKERS, NY
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	513.8		mg/l	0.5400	NA	1	06/16/24 15:5	5 06/19/24 17:39	EPA 3005A	1,6020B	NTB

Project Name: Lab Number: 321 WARBURTON AVE. L2432795

Project Number:

Report Date: 2221378 06/20/24

SAMPLE RESULTS

Lab ID: L2432795-13 Client ID: MW-6-20240611 Sample Location: YONKERS, NY

Date Collected: 06/11/24 10:15 Date Received: 06/11/24

Field Prep:

Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
		`									
Total Hardness (by	calculatio	n) - Mansfi	eld Lab								
Hardness	326.3		mg/l	0.5400	NA	1	06/16/24 15:5	5 06/19/24 17:44	EPA 3005A	1,6020B	NTB

Project Name: 321 WARBURTON AVE. **Lab Number:** L2432795

Project Number: 2221378 Report Date: 06/20/24

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness (by calc	ulation) - Mansfield L	ab for sa	mple(s):	11-13	Batch: WO	G1934994-1			
Hardness	ND	mg/l	0.5400	NA	1	06/16/24 15:55	06/17/24 10:27	1,6020B	EJF

Prep Information

Digestion Method: EPA 3005A

Lab Number: L2432795

Project Number: 2221378 Report Date: 06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Hardness (by calculation) - Mansfield Lab	Associated sam	ple(s): 11-1	3 Batch: WG193	34994-2					
Hardness	105		-		80-120	-			

Project Name:

321 WARBURTON AVE.

Matrix Spike Analysis Batch Quality Control

Project Name: 321 WARBURTON AVE.

Project Number: 2221378 Lab Number:

L2432795

Report Date:

06/20/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	F Qual	Recovery Limits	RPD	RPD Qual Limits
Total Hardness (by calculation) of ID: MS Sample	- Mansfield I	Lab Associat	ed sample(s	s): 11-13 Q(Batch I	D: WG19349	994-3 WG19	34994-4	QC Samp	ole: L24	32682-03 Client
Hardness	260.8	66.2	416.9	236	Q	419.1	239	Q	75-125	1	20

INORGANICS & MISCELLANEOUS

Project Name: 321 WARBURTON AVE.

Water

Lab Number: Report Date:

L2432795

Project Number: 2221378

06/20/24

SAMPLE RESULTS

Lab ID: L2432795-11 Client ID: MW-2-20240611 Sample Location: YONKERS, NY

Date Collected:

06/11/24 08:41

Date Received: Field Prep:

06/11/24 Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)							
Alkalinity, Total	119.	mg CaCO3/L	2.00	NA	1	-	06/16/24 10:54	121,2320B	MRW
Nitrogen, Nitrate/Nitrite	7.3	mg/l	0.10	0.046	1	-	06/13/24 05:45	121,4500NO3-F	KAF
Total Organic Carbon	1.3	mg/l	1.0	0.19	2	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	ND	mg/l	0.50	0.056	1	-	06/12/24 07:02	121,3500FE-B	CAR
Anions by Ion Chromato	ography - West	borough Lab							
Chloride	158.	mg/l	5.00	0.839	10	-	06/15/24 11:28	44,300.0	CVN
Sulfate	41.6	mg/l	1.00	0.454	1	-	06/15/24 14:54	44,300.0	CVN

L2432795

06/11/24 11:35

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Report Date: 06/20/24

Lab Number:

Date Collected:

SAMPLE RESULTS

Lab ID: L2432795-12

Client ID: MW-4-20240611 Sample Location: YONKERS, NY

Date Received: 06/11/24
Field Prep: Not Specified

nple Location: YONKERS, NY Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	ab								
Alkalinity, Total	277.	m	g CaCO3/L	2.00	NA	1	-	06/16/24 11:02	121,2320B	MRW
Nitrogen, Nitrate/Nitrite	3.4		mg/l	0.10	0.046	1	-	06/13/24 05:47	121,4500NO3-F	KAF
Total Organic Carbon	1.0		mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	0.080	J	mg/l	0.50	0.056	1	-	06/12/24 07:02	121,3500FE-B	CAR
Anions by Ion Chromato	ography - We	stborough	Lab							
Chloride	341.		mg/l	5.00	0.839	10	-	06/15/24 11:40	44,300.0	CVN
Sulfate	55.7		mg/l	1.00	0.454	1	-	06/15/24 15:06	44,300.0	CVN

Project Name: 321 WARBURTON AVE.

Lab Number:

L2432795

Project Number: 2221378

Report Date: 06/2

06/20/24

SAMPLE RESULTS

Lab ID: L2432795-13

MW-6-20240611

Date Collected: 06/11/24 10:15

Client ID:

VONUEDO NIV

Date Received: 06/11/24

Sample Location: YONKERS, NY

Field Prep: Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Alkalinity, Total	110.	m	g CaCO3/L	2.00	NA	1	-	06/16/24 11:09	121,2320B	MRW
Nitrogen, Nitrate/Nitrite	5.9		mg/l	0.10	0.046	1	-	06/13/24 05:52	121,4500NO3-F	KAF
Total Organic Carbon	0.36	J	mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Iron, Ferrous	ND		mg/l	0.50	0.056	1	-	06/12/24 07:02	121,3500FE-B	CAR
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	367.		mg/l	5.00	0.839	10	-	06/15/24 11:53	44,300.0	CVN
Sulfate	40.1		mg/l	1.00	0.454	1	-	06/15/24 15:18	44,300.0	CVN

L2432795

Lab Number:

Project Name: 321 WARBURTON AVE.

Project Number: 2221378 Report Date: 06/20/24

Method	Blank	Analysis	
Batch	Quality	Control	

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal	o for sam	nple(s): 1	1-13 Ba	tch: WG	G1933095-	1			
Iron, Ferrous	ND		mg/l	0.50	0.056	1	-	06/12/24 07:01	121,3500FE-B	CAR
General Chemistry - W	estborough Lal	o for sam	nple(s): 1	1-13 Ba	tch: WC	61933613-	1			
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10	0.046	1	-	06/13/24 02:59	121,4500NO3-F	= KAF
General Chemistry - W	estborough Lal	o for sam	nple(s): 1	1-13 Ba	tch: WG	61933621-	1			
Total Organic Carbon	ND		mg/l	0.50	0.09	1	-	06/13/24 02:51	1,9060A	DEW
Anions by Ion Chromat	ography - Wes	tborough	Lab for s	ample(s)	: 11-13	Batch: V	VG1934806-1			
Chloride	0.242	J	mg/l	0.500	0.083	1	-	06/15/24 09:27	44,300.0	CVN
Sulfate	ND		mg/l	1.00	0.454	1	-	06/15/24 09:27	44,300.0	CVN
General Chemistry - W	estborough Lal	o for sam	nple(s): 1	1-13 Ba	tch: WC	61934939-	5			
Alkalinity, Total	ND		mg CaCO3	/L 2.00	NA	1	-	06/16/24 12:02	121,2320B	MRW

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number:

L2432795

Report Date:

06/20/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associ	ciated sample(s)	: 11-13	Batch: WG19330)95-2				
Iron, Ferrous	92		-		90-110	-		
General Chemistry - Westborough Lab Association	ciated sample(s)	: 11-13	Batch: WG19336	613-2				
Nitrogen, Nitrate/Nitrite	100		-		90-110	-		20
General Chemistry - Westborough Lab Associ	ciated sample(s)	: 11-13	Batch: WG19336	621-2				
Total Organic Carbon	101		-		90-110	-		
Anions by Ion Chromatography - Westboroug	h Lab Associate	ed samp	le(s): 11-13 Batc	h: WG193	4806-2			
Chloride	102		-		90-110	-		
Sulfate	99		-		90-110	-		
General Chemistry - Westborough Lab Association	ciated sample(s)	: 11-13	Batch: WG19349	939-6				
Alkalinity, Total	108		-		90-110	-		10

Matrix Spike Analysis Batch Quality Control

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number: L2432795

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recove Limits	,		RPD Limits
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 11-13	QC Batch II	D: WG1	933095-4	QC Sample:	L24327	95-11	Client ID:	MW-2-2	0240611
Iron, Ferrous	ND	1	0.92	92		-	-		80-120	-		20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 11-13	QC Batch II	D: WG1:	933613-4	QC Sample:	L24329	40-01	Client ID:	MS San	nple
Nitrogen, Nitrate/Nitrite	0.27	4	4.2	98		-	-		80-120	-		20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 11-13	QC Batch II	D: WG1:	933621-4	QC Sample:	L24323	04-01	Client ID:	MS San	nple
Total Organic Carbon	0.66	16	19	116		-	-		80-120	-		20
Anions by Ion Chromatography Sample	- Westboroug	h Lab Asso	ociated samp	ole(s): 11-13	QC Bat	tch ID: WG	1934806-3	QC San	nple: L24	33740-01	Client	ID: MS
Chloride	14.2	4	17.6	85	Q	-	-		90-110	-		18
Sulfate	15.5	8	22.6	89	Q	-	-		90-110	-		20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	ole(s): 11-13	QC Batch II	D: WG1	934939-8	QC Sample:	L24311	82-01	Client ID:	MS San	nple
Alkalinity, Total	26.9	100	125	98		-	-		86-116	-		10

Lab Duplicate Analysis Batch Quality Control

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Lab Number:

L2432795

Report Date:

06/20/24

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sam	ple(s): 11-13	QC Batch ID:	WG1933095-3	QC Sample:	L2432795-11	Client ID:	MW-2-20240611
Iron, Ferrous	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sam	ple(s): 11-13	QC Batch ID:	WG1933613-3	QC Sample:	L2432940-01	Client ID:	DUP Sample
Nitrogen, Nitrate/Nitrite	0.27		0.23	mg/l	16		20
General Chemistry - Westborough Lab Associated sam	ple(s): 11-13	QC Batch ID:	WG1933621-3	QC Sample:	L2432304-01	Client ID:	DUP Sample
Total Organic Carbon	0.66		0.58	mg/l	13		20
Anions by Ion Chromatography - Westborough Lab Ass Sample	ociated sample	(s): 11-13 C	C Batch ID: WG	1934806-4	QC Sample: L	.2433740-0	1 Client ID: DUP
Chloride	14.2		14.2	mg/l	0		18
Sulfate	15.5		15.6	mg/l	1		20
General Chemistry - Westborough Lab Associated sam	ple(s): 11-13	QC Batch ID:	WG1934939-7	QC Sample:	L2431182-01	Client ID:	DUP Sample
Alkalinity, Total	26.9		26.4	mg CaCO3/l	2		10

Project Name: 321 WARBURTON AVE.

Lab Number: L2432795 **Report Date:** 06/20/24

Project Number: 2221378 Report Date:

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L2432795-01A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-01B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-01C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-02A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-02B	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-02C	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-03A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-03B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-03C	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-04A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-04B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-04C	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-05A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-05B	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-05C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-06A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-06B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-06C	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-07A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-07B	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-08A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-08B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-08C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)

Lab Number: L2432795

Report Date: 06/20/24

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L2432795-09A	Vial HCI preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-09B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-09C	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-10A	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-10B	Vial HCl preserved	Α	NA		2.2	Υ	Absent		NYTCL-8260(14)
L2432795-11A	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-11B	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-11C	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-11D	Plastic 250ml unpreserved/No Headspace	Α	NA		2.2	Υ	Absent		ALK-T-2320(14)
L2432795-11E	Plastic 250ml unpreserved	Α	7	7	2.2	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432795-11F	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		HARDT-6020(180)
L2432795-11G	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.2	Υ	Absent		NO3/NO2-4500(28)
L2432795-11H	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.2	Υ	Absent		SUB-SULFIDE()
L2432795-11I	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.2	Υ	Absent		SUB-SULFIDE()
L2432795-12A	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-12B	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-12C	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-12D	Plastic 250ml unpreserved/No Headspace	Α	NA		2.2	Υ	Absent		ALK-T-2320(14)
L2432795-12E	Plastic 250ml unpreserved	Α	7	7	2.2	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)
L2432795-12F	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		HARDT-6020(180)
L2432795-12G	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.2	Υ	Absent		NO3/NO2-4500(28)
L2432795-12H	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.2	Υ	Absent		SUB-SULFIDE()
L2432795-12I	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.2	Υ	Absent		SUB-SULFIDE()
L2432795-13A	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-13B	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-13C	Vial H2SO4 preserved	Α	NA		2.2	Υ	Absent		TOC-9060(28)
L2432795-13D	Plastic 250ml unpreserved/No Headspace	Α	NA		2.2	Υ	Absent		ALK-T-2320(14)
L2432795-13E	Plastic 250ml unpreserved	Α	7	7	2.2	Υ	Absent		SO4-300(28),CL-300(28),FERROUS(1)

Lab Number: L2432795

Report Date: 06/20/24

Project Name: 321 WARBURTON AVE.

Project Number: 2221378

Container Info	Container Information				Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2432795-13F	Plastic 250ml HNO3 preserved	Α	<2	<2	2.2	Υ	Absent		HARDT-6020(180)
L2432795-13G	Plastic 250ml H2SO4 preserved	Α	<2	<2	2.2	Υ	Absent		NO3/NO2-4500(28)
L2432795-13H	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.2	Υ	Absent		SUB-SULFIDE()
L2432795-13I	Plastic 250ml Zn Acetate/NaOH preserved	Α	>9	>9	2.2	Υ	Absent		SUB-SULFIDE()

Project Name:321 WARBURTON AVE.Lab Number:L2432795Project Number:2221378Report Date:06/20/24

GLOSSARY

Acronyms

EDL

EMPC

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an
analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case
estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:321 WARBURTON AVE.Lab Number:L2432795Project Number:2221378Report Date:06/20/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:321 WARBURTON AVE.Lab Number:L2432795Project Number:2221378Report Date:06/20/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:321 WARBURTON AVE.Lab Number:L2432795Project Number:2221378Report Date:06/20/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:06202409:16

ID No.:17873 Revision 21

Published Date: 04/17/2024

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Alberry, NY 12205: 14 Walker Tonawanda, NY 14150: 275 C	Way	5	Page	7		Rec'd Lab	0 12	-124	ALPHA Job# L2432795
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	S Was a land		A THE	TO THE REAL PROPERTY.	Deliverable	s		STEEL STEEL	Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 321 W	Jarborton,	Ave			ASP-	A	AS	P-B	Same as Client Info
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: You					EQui	S (1 File)	Z EC	lulS (4 File)	PO#
Client Information		Project# 222137	8				Othe	r			
Client: La Bella As	sviates	(Use Project name as F	roject#)		-		Regulatory	Requireme	nt		Disposal Site Information
Address: 45 Main St	+ Suite 1018	Project Manager: (4/	thia Chu	,			□ NY TO	ogs	NY	Part 375	Please identify below location of
Breeklyn, NY		ALPHAQuote #:					AWQ	Standards	NY NY	CP-51	applicable disposal facilities.
Phone: 516 - 225-		Turn-Around Time	3 12	F - 10	STATE OF	THE RE	NY R	estricted Use	Oth	er	Disposal Facility:
Fax:		Standa	rd 🛮	Due Date	:		☐ NY U	restricted Us	ie		NJ NY
Email: 🗯 CZ 🗤 🔞	labellape con	Rush (only if pre approve	d)	# of Days			☐ NYC	Sewer Discha	irge		Other:
These samples have be	en previously analyz	red by Alpha					ANALYSIS	14 =			Sample Filtration
Other project specific				. U			g l				Done
							8000 B				Lab to do
							斑				Preservation
Please specify Metals	or TAL.		1				20				Lab to do
							Note				(Please Specify below)
ALPHA Lab ID			Colle	ection	Sample	Sampler's	20	1			
(Lab Use Only)	Si	ample ID -	Date	Time	Matrix.	Initials	75	18	1 1		Sample Specific Comments
32795-01	MW-2 (601	7	6-11-24	8:40	w	TMH	×				
02	MW-2 (66')	1	8:45			*				
03	MW-2 (73.5	***************************************		8:50			×				
	MW-4 (59	rid-		9:10			×				
05	MW-4 (66.5			9:15			7				
0.10		5')		9:20			×				
07	MW-6 (56))		8:00			X				
0.4	MW-6 (65)	fee		8:05			*				
09	MW-6 (73.0	Market and the second s	1	8:10	W	1	×				
Ad	TRIP RLAN		14		4						
Preservative Code:	Container Code	Westboro: Certification	No: MA935								Disease estat alexantic tradition
	P = Plastic A = Amber Glass	Mansfield: Certification			Co	ntainer Type	V				Please print clearly, legibly and completely. Samples ca
	V = Vial	Mariandia, Corumbiation	NO. WHO TO		\vdash	100	1	+	+		not be logged in and
	G = Glass					Preservative	A				turnaround time clock will no
1,444 367 3	B = Bacteria Cup C = Cube	. Relinquishe	d Byr	Dete	/Time	T -	Pacelund P	<u></u>	D.	ato/Time	start until any ambiguities ar resolved. BY EXECUTING
G = NaHSO ₄	O = Other	Reinquisne	и Бу.	6-11-24	9 1 1111123	TALL	Received B		1	ete/Time	
Delice Control of the		CV JUNE	ic.	HI decision of the second		AATI	-1 190		6/11/	1	HAS READ AND AGREES
11 - 14020203	E = Encore D = BOD Bottle	The state of the s	. 0	A Lath	14-06	-	-				The time many the many the second
[F1.T.1402G2G3]		WIKI (PW	(e)	6/11/24	14:00	9	900	14	PH 19	19:20	TO BE BOUND BY ALPHA'
K/E = Zn Ac/NaOH	D = BOD Bottle	WIE! (PW	(e)	61124	19:00	1	1	- AL	(6/1)	2200	TERMS & CONDITIONS.

Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430; 35 Whitney Albany, NY 12205; 14 Walker W Tonawanda, NY 14150; 275 Coo	lay	95	Page			Date I		1 (9 1	2/	24		ALPHA Job# L2432795
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	200	THE PERSON	4500		Deliv	erable			1				Billing Information
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: 321 V	Jasbyton	Ave			ASP-A ASP-B							Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: York					EQuis (1 File) EQuis (4 File)					ile)	PO#		
Client Information		Project # 222137						Other							
Client: LaBelle Ass	ociates	(Use Project name as Pr	oject#)		4		Regu	latory	Requi	iremer	nt	13			Disposal Site Information
Address: 45 Main		Project Manager: Cyn	The state of the s					NY TO	GS	The state of the s		NY Pa	rt 375		Please identify below location of
Brookfunny		ALPHAQuote #:		TOTAL TOTAL				AWQ :	Standa	rds		NY CF	-51		applicable disposal facilities.
Phone: 516-225-	0396	Turn-Around Time	43411	NAME OF STREET	Service .	No. of Street		NY Re	stricte	d Úse		Other			Disposal Facility:
Fax:		Standard		Due Date:				NY Un	restric	ted Use	± .				□ NJ □ NY
Email: cchupo lal	pellape com	Rush (only if pre approved)	# of Days:				NYC S	lewer I	Dischar	ge				Other:
These samples have b	THE RESERVE OF THE PARTY OF THE	ed by Alpha			ANA	LYSIS							Sample Filtration		
Other project specific										0		m .			Done
Please specify Metals	or TAL.						Attalinity-	de 4 IC-	5.54 45.00	Sulfate, IC-EPA 300:0	7. 12	18	Hurdness by	or contined	Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID			Colli	ection	Sample	Sampler's	72	50	Silfide	13	40,0	10/21 °	4 4	35	
(Lab Use Only)	5	ample ID	Matrix	Initials	38	38	3	3	15	00	60	5 2	Sample Specific Comments		
32795 - 11	MW-2-2024	0611	6-11-24	8:41	w	TEH	X	×	X	X	X	×	×	×	
12	MW-4-2074	10611	1	11:35		TBH	+	+	X	+	7	x	+	+	
13	MW-6-2024	0611	4	10:15	V	773H	4	1	x	1	+	X	*	X	
							-								
								-							
							_								
1000 783															
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification Mansfield: Certificati			Co	ntainer Type	6	P	ρ	P	P	V	P	P	Please print clearly, legibly and completely, Samples ca not be logged in and
D = H ₂ SO ₄	G = Glass					Preservative									turnaround time clock will no
E = NaOH	B = Bacteria Cup C = Cube	la constitution of the				T					_				start until any ambiguities a
F = MeOH G = NaHSO ₄	O = Other	Relinquished	By:	Date/				ved By	_		71	-	/Time		resolved. BY EXECUTING THIS COC, THE CLIENT
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Wifi (Po	us	6/11/29	[9:00	Wir	-1	Pag	e	lu '	911	1 / /	20		HAS READ AND AGREES TO BE BOUND BY ALPHA
- Contract		900	1	6/11/24	100	/		_	_	RC,	4 6/		22		TERMS & CONDITIONS. (See reverse side.)
orm No: 01-25 HC (rev. 3	30-Sept-2013)		the	1812	120		1				4/1	2/24	01.	20	(See levelse side.)

Page 75 of 87

June 18, 2024

Reports Alpha Analytical 8 Walkup Drive Westborough, MA 01581

RE: Project: L2432795

Pace Project No.: 70301493

Dear Reports:

Enclosed are the analytical results for sample(s) received by the laboratory on June 13, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Melville

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brianna D. Rivera brianna.rivera@pacelabs.com 516-370-6007 Project Manager

Enclosures

Pace

575 Broad Hollow Road Melville, NY 11747 516-370-6000

CERTIFICATIONS

Project: L2432795
Pace Project No.: 70301493

Pace Analytical Services Long Island

New Hampshire Certification #: 2987

575 Broad Hollow Rd, Melville, NY 11747 Connecticut Certification #: PH-0435 Delaware Certification # NY 10478 Maryland Certification #: 208 Massachusetts Certification #: M-NY026 New Jersey Certification #: NY158

New York Certification #: 10478 Primary Accrediting Body

Pennsylvania Certification #: 68-00350 Rhode Island Certification #: LAO00340

Virginia Certification # 460302

Serial_No:0620 Pace A

SAMPLE SUMMARY

Project: L2432795
Pace Project No.: 70301493

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
70301493001	MW-2-20240611	Water	06/11/24 08:41	06/13/24 08:00	
70301493002	MW-4-20240611	Water	06/11/24 11:35	06/13/24 08:00	
70301493003	MW-6-20240611	Water	06/11/24 10:15	06/13/24 08:00	

SAMPLE ANALYTE COUNT

Project: L2432795
Pace Project No.: 70301493

Lab ID	Sample ID	Method	Analysts	Analytes Reported
70301493001	MW-2-20240611	SM22 4500-S2 F	CEA	1
70301493002	MW-4-20240611	SM22 4500-S2 F	CEA	1
70301493003	MW-6-20240611	SM22 4500-S2 F	CEA	1

PACE-MV = Pace Analytical Services - Melville

06/17/24 15:07

Pace

Sulfide

575 Broad Hollow Road Melville, NY 11747 516-370-6000

ANALYTICAL RESULTS

Project: L2432795
Pace Project No.: 70301493

Sample: MW-2-20240611 Lab ID: 70301493001 Collected: 06/11/24 08:41 Received: 06/13/24 08:00 Matrix: Water Report Parameters Results Units Limit MDL DF Prepared CAS No. Analyzed Qual 4500S2F W Sulfide Iodometric Analytical Method: SM22 4500-S2 F Pace Analytical Services - Melville

0.20

2.0

<2.0

mg/L

Date: 06/18/2024 09:37 AM Page 80 of 87

06/17/24 15:08

Pace

<2.0

mg/L

575 Broad Hollow Road Melville, NY 11747 516-370-6000

ANALYTICAL RESULTS

Project: L2432795
Pace Project No.: 70301493

Sulfide

Sample: MW-4-20240611 Lab ID: 70301493002 Collected: 06/11/24 11:35 Received: 06/13/24 08:00 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual 4500S2F W Sulfide Iodometric Analytical Method: SM22 4500-S2 F Pace Analytical Services - Melville

0.20

2.0

06/17/24 15:09

Sulfide

575 Broad Hollow Road Melville, NY 11747 516-370-6000

ANALYTICAL RESULTS

Project: L2432795
Pace Project No.: 70301493

Sample: MW-6-20240611 Lab ID: 70301493003 Collected: 06/11/24 10:15 Received: 06/13/24 08:00 Matrix: Water Report **Parameters** Results Units Limit MDL DF Prepared CAS No. Analyzed Qual 4500S2F W Sulfide Iodometric Analytical Method: SM22 4500-S2 F Pace Analytical Services - Melville

0.20

2.0

<2.0

mg/L

REPORT OF LABORATORY ANALYSIS

Date: 06/18/2024 09:37 AM Page 82 of 87

QUALITY CONTROL DATA

Project: L2432795 Pace Project No.: 70301493

QC Batch: 351937 Analysis Method: SM22 4500-S2 F

QC Batch Method: SM22 4500-S2 F Analysis Description: 4500S2F W Sulfide Iodometric

Laboratory: Pace Analytical Services - Melville

Associated Lab Samples: 70301493001, 70301493002, 70301493003

METHOD BLANK: 1822674 Matrix: Water

Associated Lab Samples: 70301493001, 70301493002, 70301493003

Blank Reporting
Parameter Units Result Limit MDL Analyzed Qualifiers

Sulfide mg/L ND 2.0 0.20 06/17/24 14:52

LABORATORY CONTROL SAMPLE & LCSD: 1822701 1822675 Spike LCS LCSD LCS **LCSD** % Rec Max RPD RPD Units Conc. Result Result % Rec % Rec Limits Qualifiers Parameter Sulfide 0 mg/L 14.0 14.0 100 100 85-115 20

LABORATORY CONTROL SAMPLE & LCSD: 1822702 1822675 LCS Spike **LCSD** LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers 0 Sulfide mg/L 14 14.0 14.0 100 100 85-115 20

LABORATORY CONTROL SAMPLE & LCSD: 1822675 1822703 LCSD LCS LCSD LCS Spike % Rec Max Parameter Units Conc. Result % Rec % Rec **RPD RPD** Qualifiers Result Limits Sulfide mg/L 14 14.0 14.0 100 100 85-115 0 20

LABORATORY CONTROL SAMPLE & LCSD: 1822675 1822704 Spike LCS LCSD LCS **LCSD** % Rec Max RPD Parameter Units Conc. Result Result % Rec % Rec Limits **RPD** Qualifiers Sulfide mg/L 14 14.0 14.0 100 100 85-115 0 20

SAMPLE DUPLICATE: 1822678 70301297003 Dup Max RPD RPD Qualifiers Parameter Units Result Result Sulfide < 0.20 20 mg/L < 2.0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: L2432795 Pace Project No.: 70301493

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

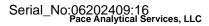
NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Reported results are not rounded until the final step prior to reporting. Therefore, calculated parameters that are typically reported as "Total" may vary slightly from the sum of the reported component parameters.


Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

REPORT OF LABORATORY ANALYSIS

Page 84 of 87

Date: 06/18/2024 09:37 AM

Pace

575 Broad Hollow Road Melville, NY 11747 516-370-6000

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: L2432795
Pace Project No.: 70301493

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
70301493001	MW-2-20240611	SM22 4500-S2 F	351937		
70301493002	MW-4-20240611	SM22 4500-S2 F	351937		
70301493003	MW-6-20240611	SM22 4500-S2 F	351937		

REPORT OF LABORATORY ANALYSIS

Date: 06/18/2024 09:37 AM Page 85 of 87

Alpha Job Number L2432795		Regulatory Requirements/Report Limits	ıgram: a: NY-AWQS			Report to include Method Blank, LCS/LCSD:		Batch				Date/Time: Mark Star Scoon
		Regulator	State/Federal Program: Regulatory Criteria: NY-AWQS		ements	oort to include Metho	om					Received By:
Subcontract Chain of Custody e Analytical (Melville) Broad Hollow Road ville, NY 11747		Project Information	t Location: NY t Manager: Nicole Galamb Turnaround & Deliverables Information		Project Specific Requirements and/or Report Requirements		Reports to: west.subreports@pacelabs.com	Analysis	Suffde Suffde Suffde			Date/Tirhe:
Subcontract Cha Pace Analytical (Melville) 575 Broad Hollow Road Melville, NY 11747		roject Inf	y licole Galar d & Delive		equireme	liverables:	Reports to:	Sample Matrix	WATER WATER WATER			
Su Pace 4 575 Br Melvill			Project Location: NY Project Manager: Nicole Galamb Turnaround & Delivera	Due Date: Deliverables:	Project Specific F	nber on final report/de	abs.coupahost.com	Collection Date/Time	06-11-24 08:41 06-11-24 11:35 06-11-24 10:15		ą	3y:
301493		Client Information	al Labs Drive MA 01581-1019	@pacelabs.com		Reference following Alpha Job Number on final report/deliverables: L2432795	Additional Comments: Invoices to: invoices@pacelabs.coupahost.com	Client ID	MW-2-20240611 MW-4-20240611 MW-6-20240611			Relinquished By:
WO#: 70301493	World Class Chemistry	Client Ir	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Phone: 201,428,2601 Email: Nicole.Galamb@pacelabs.com		Referen	Additional Comments:	Lab ID				Form No: AL_subcoc

Cfl_Title: Excel Form Template										
ffective Date:						MO	#:70	30149	13	
Client Name: Alph or			ā		Project	PM: BE	R	Due Date:	06/20	/24
ourier: 🛘 Fed Ex 🗌 UPS 🗎 USPS	G□ Clie	nC Ce	mmercial	V Pac€	Other	CLIENT	: ALPHA	1		
racking #:	/									
ustody Seal on Cooler/Box Prese acking Material: ☐ Bubble Wrap☐		s № No Bags 🗆	Seals ir Ziplo	ntact: □ ` Non∈	es 🔼 No Other	Temperat	ure Blank l ce: Wei	Present: □ Yes <u>¶</u> Blue None	No No	
Thermometer Used: THZIL Cooler Temperature(°C): 'Z_ & emp should be above freezing to 6,0°C JSDA Regulated Soil (N N/A, wate		Temper		rected(°C				ng process has be s placed in freeze		_
Did samples originate in a quarantin	a zone wi	thin the	United St	ates: Al /	AR CA FL	GA. 1D. L	A. MS. NC.	NM, NY, OK, OR,	SC, TN, TX	· ·
Did samples originate in a quarantin	c zone w	or	VA (check	k map)?□	Ye□	No	,			
Did samples or	gnate fro	m a fore	eign sourc	e includin	, Hawaii aı	nd Puerto R	ico)? 🗀 Y	es□ No		
If Yes to either question, fill ou				ist (ENV-	RM-MEL	/-0076) and	include w	ith SCUR/COC pa	perwork.	_ 1
in resits clinici question,	1,193			Date a	nd Initial	s of pers	on exami	ning contents:	wk	6113
				Y			COMMENT	S:		$\neg l^{-1}$
Chain of Custody Present:	Lyes	□No		1,						
Chain of Custody Filled Out:	_Yes	□No		2.						
Chain of Custody Relinquished:	exes	□No		3.						-
Sampler Name & Signature on COC		ΠNο	□N/A	4.						
Samples Arrived within Hold Time:	₫Yes	DNO		5						-
Short Hold Time Analysis (<72hr):	□Yes	Mo	-	6. 7.						
Rush Turn Around Time Requeste	ı res ⊩Yes	ØNo □No		8.						_
Sufficient Volume: (Triple volume provided for MS/MSD)	DYes	□No		9.				_		
Correct Containers Used: -Pace Containers Used:	Yes	□No		3.5						
Containers Intact:	eYes	□No		10.						
Filtered volume received for Dissolved tests	□Yes	□No	ØN/A	11.	Note: if se	diment is vis	ible in the dis	solved container		
Sample Labels match COC:	nyes /			12.						
-Includes date/time/ID/Analysis Matrix	: SL/V	VT OIL	OTHER	Data	nd Initia	c of nors	on check	ding preservation	on:	_/_
			_	Date a	nu mua				SH	6/13
All containers needing pres ervati on have been pH paper Lot # All containers needing preservation:	□Yes are found	□No to be	DNJA	13. Sample #	□ HNO₃	□ H _z SO ₄	□ NaOH	o HCI		
in compliance with method recomme (HNO₃, H₂SO₄, HCI, NaOH>9 Sulfid NAOH>12 Cyanide)		□No	QM/A							
Exceptions: VOA, Coliform, TOC/DC DRO/8015 (water).	C, Oil an	nd Greas	e,	Initial whe	n completed;	Lot # of add		Date/Time preservative	added:	
Per Method, VOA pH is checked after	er analysi	is				preservativ	e:			_
Samples checked for dechlorination:	□Yes	□No	DAMA	14.						
KI starch test strips Lot #				D	for Res. C	hlaring?	Y N			
Residual chlorine strips Lot #	ul =Voa	□No	DAVA	15.	ioi Res. C	monne:	1 14			_
SM 4500 CN samples checked for s Lead Acetate Strips Lot #	ui 🗆 ies	ПИО	LIDIA	1 12	for Sulfide	e?	Y N			
Headspace in ALK Bottle (>6mm):	□Yes	ΠNο	DMA							
Headspace in VOA Vials (>6mm):	□Yes	□No	MA	16.						
Trip Blank Present:	□Yes	□No	AVA	17.						
Trip Blank Custody Seals Present	□Yes	□No	TONIA							
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:				Field D	ata Requii Date/Tir		Y / N			

^{*} PM (Project Manager) review (which includes the SCUR) is documented electronically in LIMS,

Pace Analytical Services, LLC-Fairfield

General Chemistry - Quality Control

Sulfide		Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch BBF0907			Pı	epared & A	Analyzed: 6/	17/2024	·	·	·	
BBF0907-BLK1		ND	0.0100	mg/L						
BBF0907-BS1		0.363	0.0100	mg/L	0.400		90.8	80-120		
BBF0907-DUP1	Source: 24F0844-01	0.0220	0.0100	mg/L		0.0220			0.00	20
BBF0907-MS1	Source: 24F0844-01	0.271	0.0100	mg/L	0.400	0.0220	62.2*	70-130		
BBF0907-MSD1	Source: 24F0844-01	0.277	0.0100	mg/L	0.400	0.0220	63.8*	70-130	2.19	20

MDL - Minimum detection limit, RL - Reporting limit

 $[\]ensuremath{\mathbf{ND}}$ - Indicates compound analyzed for but not detected

 $^{{\}bf J}$ - Indicates estimated value

B - Indicates compound found in associated blank

E - Concentration exceeds highest calibration standard

D - Indicates result is based on a dilution

 $[\]ensuremath{\mathbf{H}}$ - Indicates a Hold Time violation

 $[\]boldsymbol{P}$ - Greater than 25% diff. between 2 GC columns.

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL ID. MW₋1 Project Name: Warburton Dry Cleaners Site

TBH/WC

Location: 321 Warburton Ave, Yonkers NY

Project No.: 2221378 Sampled By:

Date: 06/10/2024

Woothor: 70°E C

WELL I.D	/ IVIVV-			weather.	70 5	ınny				
WELL SAM	IPLING INFOR	MATION								
Well Diame	eter:	2"				Sta	atic Water Lev	el:	42.36 ft bgs	
Depth of W	√ell:					Le	ngth of Well S	creen:		
Measuring	Point:	Top of casin	ng			De	epth to Top of	Pump:		
Pump Type	_	Bladder pun				Tu	bing Type:		1/4" HDPE	
FIELD PAR	AMETER MEA	SUREMENT								
Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рН	Redox	Turbid	ity Depth to	Comments
		Purged	∘c ·	(mg/L)	(mS/cm)		(mV)	(NTU) Water	
	1 , . , . ,	1 '		1001	, ,		(10) (`		

Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рН	Redox	Turbidity	Depth to	Comments
		Purged	۰C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
10:43			16.2	2.20	1.701	10.60	16.1	74.0	42.36	
10:46			16.0	0.71	1.688	8.60	-99.1	48.8		
10:49			15.8	0.68	1.714	8.00	-99.0	26.3		
10:52		2.5	16.1	0.62	1.713	7.93	-89.8	15.20		
10:55			16.1	0.60	1.816	7.65	-80.0	10.0	43.64	
								<u> </u>		
								<u> </u>		

Total 2.5 Gallons Purged

Purge Time Start: Purge Time End: Final Static Water Level: 11:15 10:43 43.64'

Sampled at 10:57 DUP collected				

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL I.D.: MW-1D

Project Name:	Warburton Dry	/ Cleaners Site

Location: 321 Warburton Ave, Yonkers, NY

Project No.: 2221378

Sampled By: TBH/WC

Date: 06/10/2024
Weather: 70°F Sunny

WELL SAMPLING INFORMATION

Well Diameter: 2" Static Water Level: 41.9 ft bgs

Depth of Well: 72.6' Length of Well Screen: Measuring Point: Top of casing Depth to Top of Pump:

Pump Type: Bladder pump Tubing Type: 1/4" HDPE

FIELD PARAMETER MEASUREMENT

TILLDIAN	VAIVIETER IVIEAS	OITLIVILIAI	,				,			
Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	pН	Redox	Turbidity	Depth to	Comments
		Purged	۰C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
9:42			15.1	5.66	1.657	7.60	94.9	172	41.9	
9:45			15.1	5.58	1.664	7.00	97.5	94.0		
9:50		2	15.0	5.93	1.674	6.74	101.5	78.9		
9:54			15.7	5.50	1.672	6.52	108.0	25.11		
9:57			15.2	5.48	1.673	6.49	110.9	14.63	42.4	
10:00			15.1	5.41	1.673	6.47	112.6	8.43		
10:03		4	15.0	5.35	1.674	6.45	116.4	5.70		
10:05			14.8	5.32	1.674	6.41	118.4	6.80		
								•		
								•		

Total 5 Gallons Purged

Purge Time Start: 9:42 Purge Time End: 10:12 Final Static Water Level: 42.4 ft bgs

Sampled at 10:07			

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL I.D.: MW-2

Project Name: Warburton Dry Cleaners Site

Location: 321 Warburton Ave, Yonkers, NY

Project No.: <u>2221378</u>

Sampled By: TBH/WC

Date: 06/11/2024

Weather: 75°F Sunny

WELL SAMPLING INFORMATION

Well Diameter:2"Static Water Level:59.0 ft bgs

Depth of Well: 76' Length of Well Screen: Measuring Point: Top of casing Depth to Top of Pump:

Pump Type: Bladder pump Tubing Type: 1/4" HDPE

FIELD PARAMETER MEASUREMENT

	CAIAIT LEIV IAITA	1			Ì		1			
Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рH	Redox	Turbidity	Depth to	Comments
		Purged	°C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
9:35			15.1		1.101	6.45	48.6	1000	59	
9:40		3	15.0		1.098	6.45	33.6	761		YSI restart 02 calibration
9:55			16.1	43.0	0.940	6.70	149.2	110	59.8	
9:58			15.9	3.85	0.938	6.33	140.4	30.6		
10:01		5	15.8	3.80	0.935	6.13	132.7	15.9		
10:04			15.9	3.78	0.937	6.04	127.2	10.8		
10:07			15.9	3.78	0.934	6.00	123.4	7.5	61.2	
10:10		7	16.1	3.76	0.936	5.97	121.4	5.27		
10:13			16.4	3.75	0.938	5.95	120.7	4.89		

Total 7 Gallons Purged

Purge Time Start: 9:35 Purge Time End: 10:20 Final Static Water Level: 61.2 ft bgs

Sample collected at 10:15 AM.

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL I.D.: MW-3

Project Name:	Warburton Dry	Cleaners Site

Location: 321 Warburton Ave, Yonkers, NY

Project No.: <u>2221378</u>

Sampled By: TBH/WC

Weather:

Date: 06/10/2024

WELL SAMPLING INFORMATION	W	/EL	L S/	١٩М٧	LING	INFO	RMATION
---------------------------	---	-----	------	------	------	------	---------

Well Diameter:	2"	Static Water Level:	29.8 ft bgs
Depth of Well:		Length of Well Screen:	
Measuring Point:	Top of casing	Depth to Top of Pump:	
Pump Type:	Bladder pump	Tubing Type:	1/4" HDPE

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рН	Redox	Turbidity	Depth to		Comments
		Purged	°C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water		
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS		
8:53			15.0	1.50	511	8.21	16.5	195.55	29.8		
8:56			14.6	0.59	508	8.28	-30.3	370.2			
8:59			14.8	0.42	499.2	8.37	-48	392.2			
9:02			14.8	0.37	496.5	8.42	-59.1	372.4		Dried up	
9:05				0.24	530	8.03	-79.8	163.8			
9:48			15.0	2.02	636	7.93	-79.2	44.69	37.8		
9:51			15.7	0.69	591	7.88	-91.1	62.4			
10:18			15.3	1.21	703	7.85	-90.8	31.14			
10:30			15.8	1.94	749	7.72	-61.8	398.4			
10:33			16.5	0.79	691	7.76	-98.6	168.4			
10:36			17.1	1.12	657	7.83	-80.7	128.5			
10:39		5	17.2	0.78	661	7.81	-82.33	81.60	37.5		
11:20			15.8	2.62	856	7.67	-134.3	9.42			
11:23			15.9	0.96	806	7.59	-152.8	15.8			
11:26			16.6	0.97	793	7.63	-138.4	28.6			
11:29			17.1	1.34	782	7.66	-109	25.14			
11:32			18.0	1.40	787	7.64	-106.2	19.92			
11:35			16.7	1.28	794	7.63	-109.9	17.25			
11:38			17.1	1.39	757	7.66	-100.0	19.69			
11:41		10	17.5	1.50	746	7.67	-98.3	20.67			
11:44		•	18.0	1.40	755	7.65	-104.2	22.46			

Total 10 Gallons Purged

Purge Time Start: 8:53 Purge Time End: 11:50 Final Static Water Level: 37.5 ft bgs

OBSERVATIONS

Sample collected at 11:45

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

MW-4 WELL I.D.:

Project Name: Warburton Dry Cleaners Site

Location: 321 Warburton Ave, Yonkers, NY

Project No.: 2221378

Sampled By: TBH/WC

Date: 06/11/2024 Weather:

75°F Sunny

WELL SAMPLING INFO	RMATION		
Well Diameter:	2"	Static Water Level:	58.35 ft bgs
Depth of Well:		Length of Well Screen:	
Measuring Point:	Top of casing	Depth to Top of Pump:	
Pump Type:	Bladder pump	Tubing Type:	1/4" HDPE
EIELD DADAMETED ME	ACLIDEMENT		
FIELD PARAMETER ME	ASUREIVIENI		

Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	рН	Redox	Turbidity	Depth to	Comments
		Purged	°C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
11:15		4	15.5	2.46	1.633	7.15	32.0	53.44	58.35	
11:18			15.8	2.25	1.646	6.96	9.60	47.64		
11:21			15.6	2.34	1.666	6.86	6.6	18.55		
11:24		7	15.5	2.64	1.689	6.71	11.0	15.20		
11:27			15.6	2.95	1.711	6.73	5.6	14.89		
11:30			15.6	2.95	1.725	6.66	5.8	11.85		
11:33			15.7	2.85	1.723	6.64	3.2	10.01		

Total 9 Gallons Purged Purge Time End: Purge Time Start: Final Static Water Level: 11:10 11:40

OBSERVATIONS	
Sampled at 11:35	

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

WELL I.D.: MW-5

Project Name:	Warburton Dr	V Cleaners Site

Location: 321 Warburton Ave, Yonkers, NY

Project No.: 2221378

Sampled By: <u>TBH/WC</u>
Date: 06/10/2024

Weather: 70 F Sunny

Well Diameter:2"Static Water Level:33.8 ft bgs

Depth of Well: 76.7' Length of Well Screen: Measuring Point: Top of casing Depth to Top of Pump:

Pump Type: Bladder pump Tubing Type: 1/4"HDPE

FIELD PARAMETER MEASUREMENT

TILLDIAN	AIVIETER IVIEAS	JOINLIVILIAI								
Time	Pump Rate	Gallons	Temp	Dissolved O ₂	Conductivity	pН	Redox	Turbidity	Depth to	Comments
		Purged	°C	(mg/L)	(mS/cm)		(mV)	(NTU)	Water	
	(mL/min)			+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	
11:56			16.5	2.68	1.009	10.7	-144.8	10.08	33.8	
11:59			14.7	3.22	1.597	8.08	32.1	6.66		
12:02			14.9	3.24	1.606	6.90	10.2	3.91		
12:04			14.8	3.40	1.610	6.70	4.9	3.27		
12:06		2	14.8	3.63	1.618	6.60	19.3	3.67		
12:08			14.8	3.92	1.627	6.51	28.2	3.74		
12:10			14.8	4.07	1.630	6.42	33.2	3.80		
12:12			14.6	4.27	1.630	6.39	40.3	24.0		
12:14		3	14.6	4.35	1.625	6.38	36.3	25.1		
12:16			14.6	4.44	1.629	6.39	28.2	26.1		
12:18			14.6	4.50	1.633	6.38	30.3	28.8		
								•		
								•		

Total 3.5 Gallons Purged

Purge Time Start: 11:56 Purge Time End: 12:25 Final Static Water Level: 33.83 ft bgs

Sampled at 12:20		

Rochester, New York 14614 Telephone: (585) 454-6110 Facsimile: (585) 454-3066

MW-6 WELL I.D.:

Project Name:	Warburton Dry	Cleaners Site
riojectivanie.	warburton bry	Cleaners Site

Location: 321 Warburton Ave, Yonkers NY

Project No.: 2221378

Sampled By: TBH/WC

Date: 6/11/24

Weather: 75° F Sunny

Well Diameter: Depth of Well: 76'

Measuring Point: Top of casing Pump Type: Bladder pump Static Water Level: 55.55 ft bgs

Length of Well Screen: 20' Depth to Top of Pump:

Tubing Type: 1/4" HDPE

FIELD PARAMETER MEASUREMENT

Time	Pump Rate	Gallons Purged	Temp oC	Dissolved O ₂ (mg/L)	Conductivity (mS/cm)	рН	Redox (mV)	Turbidity (NTU)	Depth to Water	Comments
	(mL/min)	Fuigeu	30	+ 10%	+/- 3%	+/- 0.1	+/- 10 mV	+ 10%	Ft. BGS	-
8:25		4	14.4	4.72	1.599	6.26	-30.1	71.3	55.55	
8:28			14.4	5.65	1.621	6.27	-12.8	49.0		
8:31			14.4	5.70	1.629	6.27	-10.1	40.54		
8:33			14.6	5.84	1.632	6.28	-5.9	31.54		
8:36		5	14.6	6.01	1.639	6.28	-3.2	28.74		
8:39			14.7	6.14	1.642	6.29	-1.0	28.56	55.56	
		-						<u> </u>		

Total	5	Gallons Purged

Purge Time Start:	8:25	Purge Time End:	8:44	Final Static Water Level:	55.56 ft bgs
-------------------	------	-----------------	------	---------------------------	--------------

Sampled at 8:41			