September 23, 2019

LIMITED PHASE II SUBSURFACE INVESTIGATION REPORT

Property Identification:

131 Pearl Street Port Chester, New York 10573

AEI Project No. 411189

Prepared for:

Shorewood Properties, LLC 126 Manhattan Avenue Hermosa Beach, California 90254

Prepared by:

AEI Consultants 30 Montgomery Street, Suite 220 Jersey City, New Jersey 07302 Environmental Due Diligence

Site Investigation & Remediation

Energy Performance & Benchmarking

Industrial Hygiene

Construction Consulting

Construction, Site Stabilization & Stormwater Services

Zoning Analysis Reports & ALTA Surveys

National Presence

Regional Focus

Local Solutions

TABLE OF CONTENTS

1.0	SITE DES	CRIPTION	1
2.0	BACKGRO	OUND	1
3.0	INVESTIC	GATION EFFORTS	2
3.2 3.3 3.4 3.5 3.6 3.7	Permitting a Geophysica Drilling and Groundwate Boring Abar Laboratory	and Utility Clearance	
4.0	FINDING	S	3
4.2	Geology an	d Hydrogeology	
5.0	SUMMAR	Y AND CONCLUSIONS	4
6.0	REPORT I	IMITATIONS AND RELIAN	ICE5
Figu	re 1	Sample Location Map	FIGURES
94		cample bootton map	
Tabl	e 1	Soil Sample Data Summary	TABLES
			APPENDICES

Appendix A Appendix B

Boring Logs Laboratory Analytical Reports

September 23, 2019

Ryan Shore Shorewood Properties, LLC 126 Manhattan Avenue Hermosa Beach, California 90254

Subject: Limited Phase II Subsurface Investigation

131 Pearl Street

Port Chester, New York 10573

AEI Project No. 411189

AEI Consultants (AEI) is pleased to provide this report which describes the activities and results of the Limited Phase II Subsurface Investigation (Phase II) performed at the above-referenced property, hereinafter referred to as the "Site". This investigation was completed in general accordance with the authorized scope of services outlined in our proposal number 65906 dated August 16, 2019.

1.0 SITE DESCRIPTION

A Phase I Environmental Site Assessment (ESA) was performed by AEI as detailed in our draft report dated August 8, 2019 (AEI Project Number 408942). According to the Phase I ESA, the Site consists of 0.19 acres of land and is currently utilized by Service Unlimited Painters for administrative and storage activities associated with painting contractors.

2.0 BACKGROUND

The following Recognized Environmental Condition (REC) was identified by AEI as being associated with the Site:

Based on a review of the historical sources, agency records, and prior reports, the Site was developed with the current commercial building in 1928 and utilized as a filling station/vulcanization facility from 1928 through at least 1950. Occupancy of the Site could not be determined between 1951 and 1968; however, it is assumed that during this time, the facility remained utilized as a filling station/vulcanization facility. The process of vulcanization is typically applied to rubbery or elastomeric materials (such as tires). The process is usually carried out by heating the rubber and mixing it with a vulcanizing agent in a mold under pressure. Sulfur is typically used as a vulcanizing agent. This method is applied to tire repairs, thus it is likely the former vulcanization facility identified at the Site was related to auto and tire repair activities. According to building records, the Site was expanded in 1940 for continued use as a service station with washing and lubrication activities also identified indicating auto repair operations. Based on this information, it is possible the Site was utilized for gas station and auto repair operations from 1928 through 1968. Site investigations relating to former Underground Storage Tanks (USTs) onsite were conducted; however, the Site has not been investigated for impacts that may have resulted from historic auto repair operations. As such, the historic use of the Site for vulcanization and auto repair operations represents a REC.

3.0 INVESTIGATION EFFORTS

Based on the above REC, further assessment was recommended to evaluate the potential impacts from the former auto repair and vulcanization operations.

3.1 Health and Safety Plan

A Site-specific health and safety plan was prepared and kept on-site for the duration of the fieldwork.

3.2 Permitting and Utility Clearance

Drilling permits were not required for this investigation. New York 811 was contacted to provide a mark out of public utilities servicing the Site. Delta Geophysics Inc. ("Delta") of Catasauqua, Pennsylvania provided geophysical services to investigate the presence, or absence, of any potential UST systems and to survey the areas of the potential boring locations to investigate potential underground hazards.

3.3 Geophysical Survey

On September 11, 2019, a geophysical survey was conducted by Delta. The purpose of the survey was to evaluate the presence of underground structures, including the suspected USTs, utilities, disturbed soils, and/or cavities, using ground penetrating radar (GPR) and other geophysical methods.

3.4 Drilling and Soil Sample Collection

On September 11, 2019, four (4) soil borings (SB-1 through SB-4) were advanced at the Site. The borings were advanced by Core Down Drilling LLC ("Core Down") of Brewster, New York using a direct push drill rig, Geoprobe[®]. The location and depth of each boring is listed below and also shown on Figure 1:

- Boring SB-1 was advanced in the southern portion of the Site, southwest of the onsite building in the area of former the gasoline USTs to a depth of 20 feet below grade surface (bgs).
- Boring SB-2 was advanced in the northwestern portion of the Site, west of the onsite building in the area of former gasoline USTs to a depth of 20 feet bgs.
- Boring SB-3 was advanced in the eastern portion of the Site, southeast of the onsite building to a depth of 6 feet bgs.
- Boring SB-4 was advanced in the northeastern portion of the Site, east of the onsite building to a depth of 6 feet bgs

The borings were advanced using 2.25-inch outer diameter Macro-Core® samplers (rods), and samples were collected continuously by advancing five-foot-long rods equipped with acetate sample liners. After each interval, the core was retrieved, core barrel disassembled, and the sample liner was removed and transferred to the onsite field scientist. The target depth of 30 feet below ground surface (bgs) could not be achieved at any of the four boring locations attempted due to bedrock refusal of the direct-push drilling equipment at depths ranging from 6 to 20 feet bgs.

The soil borings were logged using the Unified Soil Classification System. A photo-ionization detector (PID) was used to screen soil samples in the field and the PID readings for each sample were recorded on the boring logs (Appendix A). PID readings above background concentrations were recorded in soil borings SB-1 and SB-2 ranging from 2.7 parts per million volume (ppmv) to 1,121 ppmv. No staining was observed; however, a strong petroleum odor was detected in the 15-20 foot intervals of borings SB-1 and SB-2. No PID readings were recorded above background concentrations at boring locations SB-3 and SB-4. Soil samples were collected for laboratory analysis at the location of the highest PID reading (18.5-19.0 for SB-1 and 19.5-20.0 for SB-2) or terminus of each boring location if no PID readings were recorded. The samples were then transferred into laboratory supplied glassware and placed into a cooler containing ice.

3.5 Groundwater Sample Collection

While multiple attempts were made to collect groundwater, groundwater was not encountered during this investigation; therefore, no groundwater samples were collected.

3.6 Boring Abandonment

Following completion of sample collection and removal of tooling, the borings were backfilled with drill cuttings and hydrated bentonite chips and completed at the surface with concrete/asphalt patch to match surrounding conditions.

3.7 Laboratory Analyses

The soil samples were labeled, placed in a cooler with ice for preservation, packaged, and transferred under appropriate chain-of-custody documentation to Alpha Analytical Laboratories (Alpha) of Westborough, Massachusetts. Laboratory analytical documentation is provided in Appendix B. The samples were analyzed as follows:

- Four soil samples were analyzed for Target Compound List Volatile Organic Compounds (TCL- VOCs) and Polycyclic Aromatic Hydrocarbons (PAHs)
- Additional analysis for Resource Conservation and Recovery Act (RCRA) 8 metals was also collected and placed on hold pending initial laboratory analysis at all sampling locations.

3.8 Investigation Derived Wastes

No investigation derived waste was created during this investigation.

4.0 FINDINGS

For the purpose of providing context to the data obtained during this investigation, analytical results are compared to available regulatory screening levels. The New York State Department of Environmental Conservation (NYSDEC) has the responsibility for overseeing environmental cleanups which are managed under a variety of different regulatory programs. The results of this investigation were reviewed along with the New York Codes, Rules, and Regulations (NYCCR) Part 375 Residential, Commercial, and Unrestricted use Soil Cleanup Objectives (SCOs).

4.1 Geophysical Survey

The results of the geophysical survey identified several small irregularly shaped anomalies, none of which were consistent with that of a UST or associated piping. The anomalies were consistent

with fill material and related debris. Additionally, the survey cleared boring locations of underground utilities.

The Client should be aware of the inherent limitations of geophysical surveying methods and that above and underground utilities and other man-made or natural features (i.e. automobiles, debris piles, tree roots, reinforced concrete, certain soil conditions, etc.), if in the area of the survey, may decrease the effectiveness of the survey. The Client should be aware that the lack of a detection of a feature from a geophysical survey does not mean that the feature does not exist only that it was not detected.

4.2 Geology and Hydrogeology

Material encountered in each of the borings generally consisted of brown fine sands with cobbles and unconsolidated bedrock (Appendix A). Groundwater was not encountered during this investigation.

4.3 Soil Sample Analytical Results

The following information is a summary of the soil sample analytical test results (Appendix B). This information has also been included in Table 1.

- n-Propylbenzene was detected in SB-1 at 11 milligrams per kilogram (mg/kg) which exceeds the NYSDEC Unrestricted use SCO of 11 mg/kg, but is below the NYSDEC residential and commercial SCO's of 100 and 500 mg/kg, respectively.
- No additional VOCs or SVOCs were detected in the soil samples analyzed at concentrations greater than their respective, most-stringent NYSDEC SCOs.

5.0 SUMMARY AND CONCLUSIONS

AEI has completed a Limited Phase II Subsurface Investigation at the Site which included a geophysical survey and the collection of soil samples to evaluate the potential impacts to the Site related to the potential impacts from the former auto repair and vulcanization operations. A total of four (4) borings were advanced at the Site for the collection of soil samples.

While some irregularly shaped anomalies were identified, the results of the geophysical survey did not identify an anomalies consistent with that of an UST in any of the areas surveyed.

PID readings above background concentrations were recorded in soil borings SB-1 and SB-2 ranging from 2.7 ppmv to 1,121 ppmv. No staining was observed; however, a strong petroleum odor was detected in the 15-20 foot intervals of borings SB-1 and SB-2. No PID readings were recorded above background concentrations at boring locations SB-3 and SB-4.

n-Propylbenzene was detected in SB-1 at 11 mg/kg which exceeds the NYSDEC Unrestricted use SCO of 11 mg/kg, however it did not exceed the applicable residential or commercial NYSDEC SCOs. No additional VOCs or SVOCs were detected in the soil samples analyzed at concentrations greater than their respective, most-stringent NYSDEC SCOs. The lack of significant detections despite strong odors and elevated PID readings is likely due to the contaminants chemically degrading over time.

As such, AEI recommends no further investigation at this time. However, due to the strong odors of petroleum, elevated PID readings and expected redevelopment of the Site, AEI recommends that a Soil Management Plan be implemented to address any potentially contaminated soil that may be encountered during redevelopment.

6.0 REPORT LIMITATIONS AND RELIANCE

This report presents a summary of work completed by AEI Consultants. The completed work includes observations and descriptions of Site conditions encountered. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide the requested information, subject to scope of work for which AEI was retained and limitations inherent in this type of work, but it cannot be assumed that they are representative of areas not sampled. This report should not be regarded as a guarantee that no further contamination beyond that which could have been detected within the scope of this investigation is present beneath the Site. Undocumented, unauthorized releases of hazardous material, the remains of which are not readily identifiable by visual inspection and are of different chemical constituents, are difficult and often impossible to detect within the scope of a chemical specific investigation.

Any conclusions and/or recommendations are based on these analyses and observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document. These services were performed in accordance with generally accepted practices, in the environmental engineering and construction field, which existed at the time and location of the work. No other warranty, either expressed or implied, has been made.

This investigation was prepared for the sole use and benefit of Shorewood Properties, LLC. All reports, both verbal and written, whether in draft or final, are for the benefit of Shorewood Properties, LLC. This report has no other purpose and may not be relied upon by any other person or entity without the written consent of AEI. Either verbally or in writing, third parties may come into possession of this report or all or part of the information generated as a result of this work. In the absence of a written agreement with AEI granting such rights, no third parties shall have rights of recourse or recovery whatsoever under any course of action against AEI, its officers, employees, vendors, successors or assigns. Reliance is provided in accordance with AEI's Proposal and Standard Terms & Conditions executed by Shorewood Properties, LLC. The limitation of liability defined in the Terms and Conditions is the aggregate limit of AEI's liability to the client and all relying parties.

If there are any questions regarding our investigation, please do not hesitate to contact AEI at (732) 414-2720.

Sincerely,

AEI Consultants

Joseph M. Maggiult

Joseph Maggiulli

Anthony Cauterucci, CHMM

Gothany Cackern

Project Scientist

Senior Author

FIGURES

Figure 1: Sample Location Map

131 Pearl Street, Port Chester, NY Project Number: 411189

TABLES

Table 1: Soil Sample Analytical Results 131 Pearl Street, Port Chester, New York **AEI Project Number 411189**

SAMPLE LOCATION SAMPLING DATE					SB-1 9/11/2019	SB-2 9/11/2019	SB-3 9/11/2019	SB-4 9/11/2019
SAMPLE DEPTH (ft.)					18.5-19.0	19.5-20.0	5.5-6.0	4.5-5.0
	NY-RESC	NY-RESR	NY-UNRES	Units	Results	Results	Results	Results
Semivolatile Organics by GC/MS 2-Chloronaphthalene				mg/kg	ND	ND	ND	ND
2-Methylnaphthalene				mg/kg	1.2	0.88	ND	ND
Acenaphthene	500	100	20	mg/kg	ND	ND	ND	ND
Acenaphthylene Anthracene	500 500	100 100	100 100	mg/kg	ND ND	ND ND	ND ND	ND ND
Benzo(a)anthracene	5.6	1	100	mg/kg mg/kg	ND	ND ND	ND	ND
Benzo(a)pyrene	1	1	1	mg/kg	ND	ND	ND	ND
Benzo(b)fluoranthene	5.6	1	1	mg/kg	ND	ND	ND	ND
Benzo(ghi)perylene Benzo(k)fluoranthene	500 56	100	100 0.8	mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
Chrysene	56	1	1	mg/kg	ND	ND	ND	ND
Dibenzo(a,h)anthracene	0.56	0.33	0.33	mg/kg	ND	ND	ND	ND
Fluoranthene Fluorene	500 500	100 100	100 30	mg/kg	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-cd)pyrene	5.6	0.5	0.5	mg/kg mg/kg	ND	ND	ND	ND
Naphthalene	500	100	12	mg/kg	0.08 (J)	0.041 (J)	ND	ND
Phenanthrene Pyrene	500 500	100 100	100 100	mg/kg	ND ND	ND ND	ND ND	ND ND
Volatile Organics by EPA 5035	500	100	100	mg/kg	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane				mg/kg	ND	ND	ND	ND
1,1,1-Trichloroethane	500	100	0.68	mg/kg	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane				mg/kg	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	240	19	0.27	mg/kg mg/kg	ND ND	ND ND	ND	ND ND
1,1-Dichloroethene	500	100	0.33	mg/kg	ND	ND	ND	ND
1,1-Dichloropropene				mg/kg	ND	ND ND	ND ND	ND
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane				mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
1,2,4,5-Tetramethylbenzene				mg/kg	7.6	0.84	ND	ND
1,2,4-Trichlorobenzene			_	mg/kg	ND	ND	ND	ND
1,2,4-Trimethylbenzene	190	47	3.6	mg/kg	ND ND	0.016 (J)	ND ND	ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane				mg/kg mg/kg	ND	ND ND	ND	ND ND
1,2-Dichlorobenzene	500	100	1.1	mg/kg	ND	ND	ND	ND
1,2-Dichloroethane	30	2.3	0.02	mg/kg	ND	ND	ND	ND
1,2-Dichloroethene, Total 1,2-Dichloropropane				mg/kg mg/kg	ND ND	ND ND	ND ND	0.00014 (J) ND
1,3,5-Trimethylbenzene	190	47	8.4	mg/kg	ND	ND ND	ND	ND ND
1,3-Dichlorobenzene	280	17	2.4	mg/kg	ND	ND	ND	ND
1,3-Dichloropropane				mg/kg	ND	ND	ND	ND
1,3-Dichloropropene, Total 1,4-Dichlorobenzene	130	9.8	1.8	mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
1,4-Dioxane	130	9.8	0.1	mg/kg	ND	ND	ND	ND
2,2-Dichloropropane				mg/kg	ND	ND	ND	ND
2-Butanone	500	100	0.12	mg/kg	ND	ND	ND	ND
2-Hexanone 4-Methyl-2-pentanone				mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
Acetone	500	100	0.05	mg/kg	ND	ND	ND	0.023
Acrylonitrile				mg/kg	ND	ND	ND	ND
Benzene Bromobenzene	44	2.9	0.06	mg/kg	ND ND	ND ND	ND ND	0.00037 (J) ND
Bromochloromethane				mg/kg mg/kg	ND	ND ND	ND	ND ND
Bromodichloromethane				mg/kg	ND	ND	ND	ND
Bromoform				mg/kg	ND	ND	ND	ND
Bromomethane Carbon disulfide				mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
Carbon tetrachloride	22	1.4	0.76	mg/kg	ND	ND	ND	ND
Chlorobenzene	500	100	1.1	mg/kg	ND	ND	ND	ND
Chloroethane	050		0.07	mg/kg	ND	ND	ND	ND
Chloroform Chloromethane	350	10	0.37	mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
cis-1,2-Dichloroethene	500	59	0.25	mg/kg	ND	ND	ND	ND
cis-1,3-Dichloropropene				mg/kg	ND	ND	ND	ND
Dibromochloromethane Dibromomethane				mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane				mg/kg	ND	ND	ND	ND
Ethyl ether				mg/kg	ND	ND	ND	ND
Ethylbenzene Hovachlorehutadiano	390	30	1	mg/kg	0.89	0.096	ND ND	ND ND
Hexachlorobutadiene Isopropylbenzene				mg/kg mg/kg	ND 5.8	ND 0.43	ND ND	ND ND
Methyl tert butyl ether	500	62	0.93	mg/kg	ND	ND	ND	ND
Methylene chloride	500	51	0.05	mg/kg	ND	ND	ND ND	ND
n-Butylbenzene	500	100	12 3.9	mg/kg	3.2	0.46	0.014 (J) ND	ND ND
n-Propylbenzene Naphthalene	500 500	100	12	mg/kg mg/kg	11 ND	1.9 0.1 (J)	ND ND	ND ND
o-Chlorotoluene				mg/kg	ND	ND	ND	ND
o-Xylene	1			mg/kg	ND	ND	ND	ND
p-Chlorotoluene p-Diethylbenzene				mg/kg	ND 2	ND 0.29	ND ND	ND ND
p-Ethyltoluene				mg/kg mg/kg	0.32 (J)	0.29 0.042 (J)	ND ND	ND ND
p-Isopropyltoluene				mg/kg	1	0.058	ND	ND
p/m-Xylene	Foo	100		mg/kg	ND	ND 0.07	ND	ND
sec-Butylbenzene Styrene	500	100	11	mg/kg mg/kg	2.3 ND	0.26 ND	ND ND	ND ND
tert-Butylbenzene	500	100	5.9	mg/kg mg/kg	0.33 (J)	0.012 (J)	ND	ND ND
Tetrachloroethene	150	5.5	1.3	mg/kg	ND	ND	ND	ND
Toluene	500	100	0.7	mg/kg	ND	ND ND	ND	ND 0.00014 (I)
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	500	100	0.19	mg/kg mg/kg	ND ND	ND ND	ND ND	0.00014 (J)
trans-1,3-Dichloropropene trans-1,4-Dichloro-2-butene				mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
Trichloroethene	200	10	0.47	mg/kg	ND	ND	ND	ND
Trichlorofluoromethane				mg/kg	ND	ND	ND	ND
Vinyl acetate Vinyl chloride	13	0.21	0.02	mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND
VILLAL CHIOLIGE	13	100	0.02	mg/kg mg/kg	ND ND	ND ND	ND ND	ND ND

Key:
mg/kg: Milligrams per kilogram
ND: Non-Detect
J: Estimated value
NY-RESC: New York NYCRR Part 375 Commercial Criteria, New York Restricted use
NY-RESR: New York NYCRR Part 375 Residential Criteria, New York Restricted use
NY-UNRES: New York NYCRR Part 375 New York Unrestricted use Criteria

APPENDIX A

Boring Logs

BORING NUMBER SB-1 PAGE 1 OF 1

	NT Shorewoo	od Properties,			746-6099	PROJECT NAME		
	ECT NUMBE					PROJECT LOCATION 131 Pearl Stre	et, Port Chester NY	
						GROUND ELEVATION HOLE SIZE 2.25 inches		
						GROUND WATER LEVELS:		
DRILI	ING METHO	D Direct Push	1			AT TIME OF DRILLING		
LOGG	SED BY Joe	Maggiulli	(CHEC	CKED BY	AT END OF DRILLING		
NOTE	S Groundwa	ater not encour	ntered			AFTER DRILLING		
O DEPTH (ft)	SAMPLE TYPE NUMBER	BLOW	PID DATA (ppm)	GRAPHIC LOG		ATERIAL DESCRIPTION	COMPLETION	
					Asphalt and sub bas	e		
-		C	0.0		1.0 Brown Fine SAND w	/ cobbles dry - moist		
-		C	0.0					
		c	0.0					
Ω.Υ. Ω.Υ.		c	0.0					
CHESTER 2		C	0.0	<u> </u>	5.0 Brown Fine SAND w	/ cobbles dry - moist		
PORT		C	0.0					
S/411189		C	0.0					
ROJECT	-	C	0.0					
YYGINTY		C	0.0					
BENTLE BENTLE		C	0.0	<u> </u>	10.0 Brown Fine SAND w	/ cobbles dry - moist (odor)		
OMENTS 		C	0.0					
AEI BORING - GINT STD US LAB.GDT - 9/13/19 11:02 - C:USERSIPUBLIC/DOCUMENTS/BENTLEY/GINT/PROJECTS/4/11/89_PORT CHESTER NY.GPJ O		C	0.0					
ERS/PUB	1	2	2.7					
- C:\USE	1	5.	2.1		45.0			
- 15 11:05 - 15		7	8.9		Brown Fine SAND w. moist (strong odor)	/ Mica and unconsolidated bedrock, dry -		
0T - 9/13/		1	27		- '			
S LAB.GI		8	92					
T STD U.	SB-1	1	121					
<u> </u>	0 00 1	8	45					
20					20.0	Polytical at 20.0 feet		
AEI BC					Bott	Refusal at 20.0 feet. om of borehole at 20.0 feet.		

BORING NUMBER SB-2 PAGE 1 OF 1

	NT Shorewoo	Services od Properties, LI		25 746-6099	PROJECT NAME	
	JECT NUMBE	•			PROJECT LOCATION 131 Pearl Stre	et, Port Chester NY
					GROUND ELEVATION	
DRIL	LING CONTR	ACTOR Core D	own Dril	lling	GROUND WATER LEVELS:	
				ECKED BY		
NOTE		ater not encounte	ered		AFTER DRILLING	
O DEPTH	SAMPLE TYPE NUMBER	BLOW COUNTS	GRAPHIC		ATERIAL DESCRIPTION	COMPLETION
				Asphalt and sub bas	е	
-	-	0.0)	1.0 Brown Fine SAND w	/ cobbles dry - moist	
	-	0.0)			
	-	0.0)			
R N N .G	_	0.0)			
5 <u>5</u>	_	0.0)	Brown Fine SAND w	/ cobbles dry - moist	
89_PORT	_	0.0)			
CTS/4111	-	0.0)			
NPROJE		0.0)			
NE NE		0.0)			
NBENTLE	_	0.0)	Brown Fine SAND w	/ cobbles dry - moist	
CMENTS	_	0.0)			
3LIC/DOC	1	0.0)			
SERS/PUI		0.0)			
SUS		0.0				
- 15 11:05 - 15	-	28.	8	Brown Fine SAND w moist (strong odor)	/ Mica and unconsolidated bedrock, dry	
T - 9/13/	-	129	.5			
AEI BORING - GINT STD US LAB GDT - 9/13/19 11:02 - C:USERSIPUBLIC/DOCUMENT/SBENTLEY/GINT/PROJECT/SW11189_PORT CHESTER NY.GPJ 0	-	420	.1			
T STD U	-	873	.7			
€	000	104	8			
20	∜ SB-2			20.0	Refusal at 20.0 feet.	
AEI B				Bott	om of borehole at 20.0 feet.	

BORING NUMBER SB-3 PAGE 1 OF 1

	ngineering Services		5 746-6099		
1	norewood Properti				
1	NUMBER 411189			PROJECT LOCATION 131 Pearl Stre	
1				GROUND ELEVATION	HOLE SIZE 2.25 inches
				GROUND WATER LEVELS:	
1	METHOD Direct F				
			CKED BY		
NOTES gr	oundwater not end	countered		AFTER DRILLING	
O DEPTH O (ft) SAMPLE TYPE	NUMBER BLOW COUNTS	PID DATA (ppm) GRAPHIC LOG	M	ATERIAL DESCRIPTION	COMPLETION
			asphalt		
		0.0	1.0 Brown Fine SAND w moist	// Mica and unconsolidated bedrock, dry	-
5.0		0.0			
(m)	SB-3		6.0	Patrical at 0.0 feet	
			Bot	Refusal at 6.0 feet. tom of borehole at 6.0 feet.	

BORING NUMBER SB-4 PAGE 1 OF 1

Environmental & Engineering Services	Fax: 925 746-6099		
CLIENT Shorewood Propert			1 D 1 O 1 N N
PROJECT NUMBER 411189		PROJECT LOCATION 131 Pearl Stree	
		GROUND ELEVATION	HOLE SIZE 2.25 inches
		GROUND WATER LEVELS:	
DRILLING METHOD Direct I			
LOGGED BY Joe Maggiulli	CHECKED BY	AT END OF DRILLING	
NOTES groundwater not en	countered	AFTER DRILLING	
SAMPLE TYPE NUMBER BLOW COUNTS	PID DATA (ppm) GRAPHIC LOG	MATERIAL DESCRIPTION	COMPLETION
	Aspalt		
1	0.0 Brown Fine moist 0.0 0.0 5.0	SAND w/ Mica and unconsolidated bedrock, dry - Refusal at 5.0 feet. Bottom of borehole at 5.0 feet.	

APPENDIX **B**LABORATORY ANALYTICAL REPORT


```
JOB: L1941587
                  REPORT STYLE: Data Usability Report
0010: Alpha Analytical Report Cover Page - OK
0015: Sample Cross Reference Summary - OK
0060: Case Narrative - OK
0100: Volatiles Cover Page - OK
0110: Volatiles Sample Results - OK
0120: Volatiles Method Blank Report - OK
0130: Volatiles LCS Report - OK
0180: Semivolatiles Cover Page - OK
0190: Semivolatiles Sample Results - OK
0200: Semivolatiles Method Blank Report - OK
0210: Semivolatiles LCS Report - OK
1180: Inorganics Cover Page - OK
1200: Wet Chemistry Sample Results - OK
1250: Wet Chemistry Duplicate Report - OK
5100: Sample Receipt & Container Information Report - OK
5200: Glossary - OK
5400: References - OK
```


ANALYTICAL REPORT

Lab Number: L1941587

Client: AEI Consultants

30 Montgomery Street

Suite 220

Jersey City, NJ 07302

ATTN: Joseph Maggiulli Phone: (201) 332-1844

Project Name: PORT CHESTER, NY

Project Number: 411189 Report Date: 09/19/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587 **Report Date:** 09/19/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1941587-01	SB-1	SOIL	131 PEARL STREET	09/11/19 10:00	09/11/19
L1941587-02	SB-2	SOIL	131 PEARL STREET	09/11/19 11:00	09/11/19
L1941587-03	SB-3	SOIL	131 PEARL STREET	09/11/19 12:00	09/11/19
L1941587-04	SB-4	SOIL	131 PEARL STREET	09/11/19 12:30	09/11/19

L1941587

Lab Number:

Project Name: PORT CHESTER, NY

Project Number: 411189 Report Date: 09/19/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L1941587

Lab Number:

Project Name: PORT CHESTER, NY

Project Number: 411189 Report Date: 09/19/19

Case Narrative (continued)

Report Submission

September 19, 2019: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1941587-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

L1941587-01: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (153%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L1941587-03: The analysis of Volatile Organics by EPA Method 5035/8260 Low Level could not be performed due to the elevated concentrations of non-target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 09/19/19

Melissa Sturgis Melissa Sturgis

ORGANICS

VOLATILES

09/11/19 10:00

Not Specified

09/11/19

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Lab Number: L1941587

Report Date: 09/19/19

Date Collected:

Date Received:

Field Prep:

Lab ID: L1941587-01 D

Client ID: SB-1

Sample Location: 131 PEARL STREET

PEARL STREET

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 09/18/19 01:24

Analyst: NLK Percent Solids: 89%

Volatile Organics by EPA 5035 High - Westbor Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND N	ug/kg ug/kg ug/kg ug/kg ug/kg	860 170 260 170	390 25. 24. 40.	2.5 2.5 2.5 2.5
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	170 260 170	25. 24. 40.	2.5 2.5
Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND ND ND	ug/kg ug/kg ug/kg ug/kg	260 170	24. 40.	2.5
Carbon tetrachloride 1,2-Dichloropropane	ND ND ND	ug/kg ug/kg	170	40.	
1,2-Dichloropropane	ND ND	ug/kg			2.5
· · · · ·	ND		170		2.0
Dibromochloromethane		//		22.	2.5
	ND	ug/kg	170	24.	2.5
1,1,2-Trichloroethane		ug/kg	170	46.	2.5
Tetrachloroethene	ND	ug/kg	86	34.	2.5
Chlorobenzene	ND	ug/kg	86	22.	2.5
Trichlorofluoromethane	ND	ug/kg	690	120	2.5
1,2-Dichloroethane	ND	ug/kg	170	44.	2.5
1,1,1-Trichloroethane	ND	ug/kg	86	29.	2.5
Bromodichloromethane	ND	ug/kg	86	19.	2.5
trans-1,3-Dichloropropene	ND	ug/kg	170	47.	2.5
cis-1,3-Dichloropropene	ND	ug/kg	86	27.	2.5
1,3-Dichloropropene, Total	ND	ug/kg	86	27.	2.5
1,1-Dichloropropene	ND	ug/kg	86	27.	2.5
Bromoform	ND	ug/kg	690	42.	2.5
1,1,2,2-Tetrachloroethane	ND	ug/kg	86	28.	2.5
Benzene	ND	ug/kg	86	28.	2.5
Toluene	ND	ug/kg	170	94.	2.5
Ethylbenzene	890	ug/kg	170	24.	2.5
Chloromethane	ND	ug/kg	690	160	2.5
Bromomethane	ND	ug/kg	340	100	2.5
Vinyl chloride	ND	ug/kg	170	58.	2.5
Chloroethane	ND	ug/kg	340	78.	2.5
1,1-Dichloroethene	ND	ug/kg	170	41.	2.5
trans-1,2-Dichloroethene	ND	ug/kg	260	24.	2.5

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-01 D Date Collected: 09/11/19 10:00

Client ID: SB-1 Date Received: 09/11/19

Sample Location: 131 PEARL STREET Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035	High - Westborough Lab					
Trichloroethene	ND		ug/kg	86	24.	2.5
1,2-Dichlorobenzene	ND		ug/kg	340	25.	2.5
1,3-Dichlorobenzene	ND		ug/kg	340	25.	2.5
1,4-Dichlorobenzene	ND		ug/kg	340	29.	2.5
Methyl tert butyl ether	ND		ug/kg	340	35.	2.5
p/m-Xylene	ND		ug/kg	340	96.	2.5
o-Xylene	ND		ug/kg	170	50.	2.5
Xylenes, Total	ND		ug/kg	170	50.	2.5
cis-1,2-Dichloroethene	ND		ug/kg	170	30.	2.5
1,2-Dichloroethene, Total	ND		ug/kg	170	24.	2.5
Dibromomethane	ND		ug/kg	340	41.	2.5
Styrene	ND		ug/kg	170	34.	2.5
Dichlorodifluoromethane	ND		ug/kg	1700	160	2.5
Acetone	ND		ug/kg	1700	830	2.5
Carbon disulfide	ND		ug/kg	1700	780	2.5
2-Butanone	ND		ug/kg	1700	380	2.5
Vinyl acetate	ND		ug/kg	1700	370	2.5
4-Methyl-2-pentanone	ND		ug/kg	1700	220	2.5
1,2,3-Trichloropropane	ND		ug/kg	340	22.	2.5
2-Hexanone	ND		ug/kg	1700	200	2.5
Bromochloromethane	ND		ug/kg	340	35.	2.5
2,2-Dichloropropane	ND		ug/kg	340	35.	2.5
1,2-Dibromoethane	ND		ug/kg	170	48.	2.5
1,3-Dichloropropane	ND		ug/kg	340	29.	2.5
1,1,1,2-Tetrachloroethane	ND		ug/kg	86	23.	2.5
Bromobenzene	ND		ug/kg	340	25.	2.5
n-Butylbenzene	3200		ug/kg	170	29.	2.5
sec-Butylbenzene	2300		ug/kg	170	25.	2.5
tert-Butylbenzene	330	J	ug/kg	340	20.	2.5
o-Chlorotoluene	ND		ug/kg	340	33.	2.5
p-Chlorotoluene	ND		ug/kg	340	19.	2.5
1,2-Dibromo-3-chloropropane	ND		ug/kg	520	170	2.5
Hexachlorobutadiene	ND		ug/kg	690	29.	2.5
Isopropylbenzene	5800		ug/kg	170	19.	2.5
p-Isopropyltoluene	1000		ug/kg	170	19.	2.5
Naphthalene	ND		ug/kg	690	110	2.5
Acrylonitrile	ND		ug/kg	690	200	2.5

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-01 D Date Collected: 09/11/19 10:00

Client ID: SB-1 Date Received: 09/11/19
Sample Location: 131 PEARL STREET Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High -	Westborough Lab)					
n-Propylbenzene	11000		ug/kg	170	29.	2.5	
1,2,3-Trichlorobenzene	ND		ug/kg	340	55.	2.5	
1,2,4-Trichlorobenzene	ND		ug/kg	340	47.	2.5	
1,3,5-Trimethylbenzene	ND		ug/kg	340	33.	2.5	
1,2,4-Trimethylbenzene	ND		ug/kg	340	58.	2.5	
1,4-Dioxane	ND		ug/kg	14000	6000	2.5	
p-Diethylbenzene	2000		ug/kg	340	30.	2.5	
p-Ethyltoluene	320	J	ug/kg	340	66.	2.5	
1,2,4,5-Tetramethylbenzene	7600		ug/kg	340	33.	2.5	
Ethyl ether	ND		ug/kg	340	59.	2.5	
trans-1,4-Dichloro-2-butene	ND		ug/kg	860	240	2.5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	118		70-130	
4-Bromofluorobenzene	153	Q	70-130	
Dibromofluoromethane	90		70-130	

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Lab Number: L1941587

Report Date: 09/19/19

Lab ID: L1941587-02 Date Collected:

Client ID: SB-2

Sample Location: 131 PEARL STREET Date Received: Field Prep:

09/11/19 11:00 09/11/19

Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/18/19 00:33

Analyst: NLK 94% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Hig	h - Westborough Lab)				
Methylene chloride	ND		ug/kg	250	110	1
1,1-Dichloroethane	ND		ug/kg	49	7.2	1
Chloroform	ND		ug/kg	74	6.9	1
Carbon tetrachloride	ND		ug/kg	49	11.	1
1,2-Dichloropropane	ND		ug/kg	49	6.2	1
Dibromochloromethane	ND		ug/kg	49	6.9	1
1,1,2-Trichloroethane	ND		ug/kg	49	13.	1
Tetrachloroethene	ND		ug/kg	25	9.7	1
Chlorobenzene	ND		ug/kg	25	6.3	1
Trichlorofluoromethane	ND		ug/kg	200	34.	1
1,2-Dichloroethane	ND		ug/kg	49	13.	1
1,1,1-Trichloroethane	ND		ug/kg	25	8.2	1
Bromodichloromethane	ND		ug/kg	25	5.4	1
trans-1,3-Dichloropropene	ND		ug/kg	49	13.	1
cis-1,3-Dichloropropene	ND		ug/kg	25	7.8	1
1,3-Dichloropropene, Total	ND		ug/kg	25	7.8	1
1,1-Dichloropropene	ND		ug/kg	25	7.8	1
Bromoform	ND		ug/kg	200	12.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8.2	1
Benzene	ND		ug/kg	25	8.2	1
Toluene	ND		ug/kg	49	27.	1
Ethylbenzene	96		ug/kg	49	7.0	1
Chloromethane	ND		ug/kg	200	46.	1
Bromomethane	ND		ug/kg	99	29.	1
Vinyl chloride	ND		ug/kg	49	16.	1
Chloroethane	ND		ug/kg	99	22.	1
1,1-Dichloroethene	ND		ug/kg	49	12.	1
trans-1,2-Dichloroethene	ND		ug/kg	74	6.8	1

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-02 Date Collected: 09/11/19 11:00

Client ID: SB-2 Date Received: 09/11/19
Sample Location: 131 PEARL STREET Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 High -	Westborough Lab					
Trichloroethene	ND		ug/kg	25	6.8	1
1,2-Dichlorobenzene	ND		ug/kg	99	7.1	1
1,3-Dichlorobenzene	ND		ug/kg	99	7.3	1
1,4-Dichlorobenzene	ND		ug/kg	99	8.4	1
Methyl tert butyl ether	ND		ug/kg	99	9.9	1
p/m-Xylene	ND		ug/kg	99	28.	1
o-Xylene	ND		ug/kg	49	14.	1
Xylenes, Total	ND		ug/kg	49	14.	1
cis-1,2-Dichloroethene	ND		ug/kg	49	8.6	1
1,2-Dichloroethene, Total	ND		ug/kg	49	6.8	1
Dibromomethane	ND		ug/kg	99	12.	1
Styrene	ND		ug/kg	49	9.7	1
Dichlorodifluoromethane	ND		ug/kg	490	45.	1
Acetone	ND		ug/kg	490	240	1
Carbon disulfide	ND		ug/kg	490	220	1
2-Butanone	ND		ug/kg	490	110	1
Vinyl acetate	ND		ug/kg	490	110	1
4-Methyl-2-pentanone	ND		ug/kg	490	63.	1
1,2,3-Trichloropropane	ND		ug/kg	99	6.3	1
2-Hexanone	ND		ug/kg	490	58.	1
Bromochloromethane	ND		ug/kg	99	10.	1
2,2-Dichloropropane	ND		ug/kg	99	10.	1
1,2-Dibromoethane	ND		ug/kg	49	14.	1
1,3-Dichloropropane	ND		ug/kg	99	8.2	1
1,1,1,2-Tetrachloroethane	ND		ug/kg	25	6.5	1
Bromobenzene	ND		ug/kg	99	7.2	1
n-Butylbenzene	460		ug/kg	49	8.2	1
sec-Butylbenzene	260		ug/kg	49	7.2	1
tert-Butylbenzene	12	J	ug/kg	99	5.8	1
o-Chlorotoluene	ND		ug/kg	99	9.4	1
p-Chlorotoluene	ND		ug/kg	99	5.3	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	49.	1
Hexachlorobutadiene	ND		ug/kg	200	8.3	1
Isopropylbenzene	430		ug/kg	49	5.4	1
p-Isopropyltoluene	58		ug/kg	49	5.4	1
Naphthalene	100	J	ug/kg	200	32.	1
Acrylonitrile	ND		ug/kg	200	57.	1

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-02 Date Collected: 09/11/19 11:00

Client ID: SB-2 Date Received: 09/11/19
Sample Location: 131 PEARL STREET Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - V	Vestborough Lab)					
n-Propylbenzene	1900		ug/kg	49	8.4	1	
1,2,3-Trichlorobenzene	ND		ug/kg	99	16.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	99	13.	1	
1,3,5-Trimethylbenzene	ND		ug/kg	99	9.5	1	
1,2,4-Trimethylbenzene	16	J	ug/kg	99	16.	1	
1,4-Dioxane	ND		ug/kg	4000	1700	1	
p-Diethylbenzene	290		ug/kg	99	8.7	1	
p-Ethyltoluene	42	J	ug/kg	99	19.	1	
1,2,4,5-Tetramethylbenzene	840		ug/kg	99	9.4	1	
Ethyl ether	ND		ug/kg	99	17.	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	250	70.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	94	70-130	

09/11/19 12:00

Not Specified

Dilution Factor

09/11/19

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Lab Number: L1941587

Date Collected:

Date Received:

Field Prep:

RL

MDL

Report Date: 09/19/19

Result

Lab ID: L1941587-03

Client ID: SB-3

Sample Location: 131 PEARL STREET

Sample Depth:

Parameter

Matrix: Soil Analytical Method: 1,8260C 09/18/19 00:58 Analytical Date:

Analyst: NLK 86% Percent Solids:

raiailielei	Result	Qualifie	Ullits	IV.L	WIDE	Dilution ractor
Volatile Organics by EPA 5035 High	- Westborough Lab					
Methylene chloride	ND		ug/kg	290	130	1
1,1-Dichloroethane	ND		ug/kg	58	8.4	1
Chloroform	ND		ug/kg	86	8.1	1
Carbon tetrachloride	ND		ug/kg	58	13.	1
1,2-Dichloropropane	ND		ug/kg	58	7.2	1
Dibromochloromethane	ND		ug/kg	58	8.1	1
1,1,2-Trichloroethane	ND		ug/kg	58	15.	1
Tetrachloroethene	ND		ug/kg	29	11.	1
Chlorobenzene	ND		ug/kg	29	7.3	1
Trichlorofluoromethane	ND		ug/kg	230	40.	1
1,2-Dichloroethane	ND		ug/kg	58	15.	1
1,1,1-Trichloroethane	ND		ug/kg	29	9.6	1
Bromodichloromethane	ND		ug/kg	29	6.3	1
trans-1,3-Dichloropropene	ND		ug/kg	58	16.	1
cis-1,3-Dichloropropene	ND		ug/kg	29	9.1	1
1,3-Dichloropropene, Total	ND		ug/kg	29	9.1	1
1,1-Dichloropropene	ND		ug/kg	29	9.2	1
Bromoform	ND		ug/kg	230	14.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	29	9.6	1
Benzene	ND		ug/kg	29	9.6	1
Toluene	ND		ug/kg	58	31.	1
Ethylbenzene	ND		ug/kg	58	8.1	1
Chloromethane	ND		ug/kg	230	54.	1
Bromomethane	ND		ug/kg	120	33.	1
Vinyl chloride	ND		ug/kg	58	19.	1
Chloroethane	ND		ug/kg	120	26.	1
1,1-Dichloroethene	ND		ug/kg	58	14.	1
trans-1,2-Dichloroethene	ND		ug/kg	86	7.9	1

Qualifier

Units

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-03 Date Collected: 09/11/19 12:00

Client ID: SB-3 Date Received: 09/11/19
Sample Location: 131 PEARL STREET Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 I	High - Westborough Lab					
Trichloroethene	ND		ug/kg	29	7.9	1
1,2-Dichlorobenzene	ND		ug/kg	120	8.3	1
1,3-Dichlorobenzene	ND		ug/kg	120	8.5	 1
1,4-Dichlorobenzene	ND		ug/kg	120	9.8	1
Methyl tert butyl ether	ND		ug/kg	120	12.	 1
p/m-Xylene	ND		ug/kg	120	32.	1
o-Xylene	ND		ug/kg	58	17.	
Xylenes, Total	ND		ug/kg	58	17.	
cis-1,2-Dichloroethene	ND		ug/kg	58	10.	 1
1,2-Dichloroethene, Total	ND		ug/kg	58	7.9	 1
Dibromomethane	ND		ug/kg	120	14.	
Styrene	ND		ug/kg	58	11.	 1
Dichlorodifluoromethane	ND		ug/kg	580	53.	1
Acetone	ND		ug/kg	580	280	 1
Carbon disulfide	ND		ug/kg	580	260	 1
2-Butanone	ND		ug/kg	580	130	 1
Vinyl acetate	ND		ug/kg	580	120	 1
4-Methyl-2-pentanone	ND		ug/kg	580	74.	
1,2,3-Trichloropropane	ND		ug/kg	120	7.3	
2-Hexanone	ND		ug/kg	580	68.	 1
Bromochloromethane	ND		ug/kg	120	12.	1
2,2-Dichloropropane	ND		ug/kg	120	12.	
1,2-Dibromoethane	ND		ug/kg	58	16.	1
1,3-Dichloropropane	ND		ug/kg	120	9.6	
1,1,1,2-Tetrachloroethane	ND		ug/kg	29	7.6	1
Bromobenzene	ND		ug/kg	120	8.4	1
n-Butylbenzene	14	J	ug/kg	58	9.6	1
sec-Butylbenzene	ND		ug/kg	58	8.4	1
tert-Butylbenzene	ND		ug/kg	120	6.8	1
o-Chlorotoluene	ND		ug/kg	120	11.	1
p-Chlorotoluene	ND		ug/kg	120	6.2	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	170	57.	1
Hexachlorobutadiene	ND		ug/kg	230	9.7	1
Isopropylbenzene	ND		ug/kg	58	6.3	1
p-Isopropyltoluene	ND		ug/kg	58	6.3	1
Naphthalene	ND		ug/kg	230	37.	1
Acrylonitrile	ND		ug/kg	230	66.	1
· · · ·			~a,.,a			

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-03 Date Collected: 09/11/19 12:00

Client ID: SB-3 Date Received: 09/11/19
Sample Location: 131 PEARL STREET Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 High - We	stborough Lab)					
n-Propylbenzene	ND		ug/kg	58	9.8	1	
1,2,3-Trichlorobenzene	ND		ug/kg	120	18.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	120	16.	1	
1,3,5-Trimethylbenzene	ND		ug/kg	120	11.	1	
1,2,4-Trimethylbenzene	ND		ug/kg	120	19.	1	
1,4-Dioxane	ND		ug/kg	4600	2000	1	
p-Diethylbenzene	ND		ug/kg	120	10.	1	
p-Ethyltoluene	ND		ug/kg	120	22.	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	120	11.	1	
Ethyl ether	ND		ug/kg	120	20.	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	290	82.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	93	70-130	

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Lab Number: L1941587

Report Date: 09/19/19

Lab ID: L1941587-04 Date Collected: 09/11/19 12:30

Client ID: Date Received: 09/11/19 SB-4

Sample Location: Field Prep: 131 PEARL STREET Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8260C Analytical Date: 09/17/19 23:16

Analyst: NLK 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low	- Westborough Lab						
Methylene chloride	ND		ug/kg	4.5	2.1	1	
1,1-Dichloroethane	ND		ug/kg	0.91	0.13	1	
Chloroform	ND		ug/kg	1.4	0.13	1	
Carbon tetrachloride	ND		ug/kg	0.91	0.21	1	
1,2-Dichloropropane	ND		ug/kg	0.91	0.11	1	
Dibromochloromethane	ND		ug/kg	0.91	0.13	1	
1,1,2-Trichloroethane	ND		ug/kg	0.91	0.24	1	
Tetrachloroethene	ND		ug/kg	0.45	0.18	1	
Chlorobenzene	ND		ug/kg	0.45	0.12	1	
Trichlorofluoromethane	ND		ug/kg	3.6	0.63	1	
1,2-Dichloroethane	ND		ug/kg	0.91	0.23	1	
1,1,1-Trichloroethane	ND		ug/kg	0.45	0.15	1	
Bromodichloromethane	ND		ug/kg	0.45	0.10	1	
trans-1,3-Dichloropropene	ND		ug/kg	0.91	0.25	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.45	0.14	1	
1,3-Dichloropropene, Total	ND		ug/kg	0.45	0.14	1	
1,1-Dichloropropene	ND		ug/kg	0.45	0.14	1	
Bromoform	ND		ug/kg	3.6	0.22	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.45	0.15	1	
Benzene	0.37	J	ug/kg	0.45	0.15	1	
Toluene	ND		ug/kg	0.91	0.49	1	
Ethylbenzene	ND		ug/kg	0.91	0.13	1	
Chloromethane	ND		ug/kg	3.6	0.84	1	
Bromomethane	ND		ug/kg	1.8	0.53	1	
Vinyl chloride	ND		ug/kg	0.91	0.30	1	
Chloroethane	ND		ug/kg	1.8	0.41	1	
1,1-Dichloroethene	ND		ug/kg	0.91	0.22	1	
trans-1,2-Dichloroethene	0.14	J	ug/kg	1.4	0.12	1	

Project Name: PORT CHESTER, NY Lab Number: L1941587

Project Number: Report Date: 411189 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-04 Date Collected: 09/11/19 12:30

Client ID: SB-4 Date Received: 09/11/19

Sample Location: 131 PEARL STREET Field Prep: Not Specified

Volatile Organics by EPA 5035 Low - Westborough Lab	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,2-Dichlorobenzene ND	Volatile Organics by EPA 5035 Lo	w - Westborough Lab					
1,2-Dichlorobenzane	Trichloroethene	ND		ua/ka	0.45	0.12	1
1.3-Dichlorobenzene ND ug/kg 1.8 0.13 1 1.4-Dichlorobenzene ND ug/kg 1.8 0.16 1 Methy tert budy ether ND ug/kg 1.8 0.16 1 Dim-Xylene ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.16 1 1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 Dibromoethane ND ug/kg 0.91 0.12 1 Dichlorodifluoromethane ND ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.1 1 Carbon disulfide							
1.4-Dichlorobenzene ND							
Methyl tent bulyl ether ND ug/kg 1.8 0.18 1 p/m-Xylene ND ug/kg 1.8 0.51 1 c-Xylene ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.16 1 1.2-Dichloroethene ND ug/kg 0.91 0.12 1 1.2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 Dibromomethane ND ug/kg 0.91 0.18 1 Styrene ND ug/kg 9.1 0.18 1 Dichlorodifluromethane ND ug/kg 9.1 0.18 1 Carbon disulfide ND ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 1.9 1 2-Butanone ND ug/kg 9.1 1.2							
p/m-Xylene ND ug/kg 1.8 0.51 1 c-Xylene ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.16 1 L2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.16 1 L2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.18 1 Dibridomomethane ND ug/kg 0.91 0.18 1 Styrene ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 0.4 1 Acetone 23 ug/kg 9.1 4.4 1 2-Butanone ND ug/kg 9.1 1.9 1 Vinyl acetate ND ug/kg 9.1 1.2 1 4-Methyl-2-pentanone ND ug/kg 1.8 0.12 <							
o-Xylene ND ug/kg 0.91 0.26 1 Xylenes, Total ND ug/kg 0.91 0.26 1 cls-1,2-Dichloroethene ND ug/kg 0.91 0.16 1 1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 Dibromomethane ND ug/kg 0.91 0.12 1 Styrene ND ug/kg 0.91 0.18 1 Dichlorodifluoromethane ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.4 1 2-Butanone ND ug/kg 9.1 4.1 1 Vinyl acetate ND ug/kg 9.1 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 4-Wathyl-2-pentanone ND ug/kg 1.8 0.12							
Xylenes, Total ND ug/kg 0.91 0.26 1 cis-1,2-Dichloroethene ND ug/kg 0.91 0.16 1 1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 Dibromomethane ND ug/kg 0.91 0.18 1 Styrene ND ug/kg 0.91 0.18 1 Dichlorodifluoromethane ND ug/kg 0.91 0.18 1 Acetone ND ug/kg 9.1 0.83 1 Carbon disulfide ND ug/kg 9.1 4.4 1 2-Butanone ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2-3-Trichloropropane ND ug/kg 9.1 1.1 1 2-Hexanone ND ug/kg 1.8 0.18	·						
cis-1,2-Dichloroethene ND ug/kg 0.91 0.16 1 1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 Dibromomethane ND ug/kg 1.8 0.22 1 Styrene ND ug/kg 9.91 0.18 1 Dichlorodifluoromethane ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 4.1 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2-3-Trichloropropane ND ug/kg 9.1 1.1 1 2-Hexanone ND ug/kg 1.8 0.18							
1,2-Dichloroethene, Total 0.14 J ug/kg 0.91 0.12 1 Dibromomethane ND ug/kg 1.8 0.22 1 Styrene ND ug/kg 0.91 0.18 1 Dichlorodifluoromethane ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.4 1 2-Butanone ND ug/kg 9.1 2.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 4-Methyl-2-pentanone ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 1.8 0.18 1 2-Johichoropropane ND ug/kg 1.8 0.18 1 <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	<u> </u>						
Dibromomethane ND ug/kg 1.8 0.22 1 Styrene ND ug/kg 0.91 0.18 1 Dichlorodiffluoromethane ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 2.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1-2-Hexanone ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 1.8 0.12 1 Bromochloromethane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 0.9 0.15 1			J				
Styrene ND ug/kg 0.91 0.18 1 Dichlorodiffluoromethane ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 4.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2-3-Tirchloropropane ND ug/kg 9.1 0.1 1 2-Dibromothane ND ug/kg 0.18 0.18 1		ND					1
Dichlorodifluoromethane ND ug/kg 9.1 0.83 1 Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 2.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2.3-Trichloropropane ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 9.1 1.1 1 2-Hexanone ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 1.8 0.18 1 2-Hexanone ND ug/kg 1.8 0.18 1 2-Hexanone ND ug/kg 1.8 0.18 1 1,2	Styrene	ND			0.91	0.18	1
Acetone 23 ug/kg 9.1 4.4 1 Carbon disulfide ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 2.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2,3-Trichloropropane ND ug/kg 1.8 0.12 1 1,2,3-Trichloropropane ND ug/kg 9.1 1.1 1 2-Hexanone ND ug/kg 1.8 0.18 1 1,2,3-Trichloropropane ND ug/kg 1.8 0.18 1 2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,3-Dichloropropane ND ug/kg 0.91 0.25 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12		ND			9.1	0.83	1
Carbon disulfide ND ug/kg 9.1 4.1 1 2-Butanone ND ug/kg 9.1 2.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2,3-Trichloropropane ND ug/kg 1.8 0.12 1 1,2,3-Trichloropropane ND ug/kg 9.1 1.1 1 2-Hexanone ND ug/kg 1.8 0.12 1 Bromochloromethane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 0.45 0.12 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 0.91 0.15	Acetone	23			9.1	4.4	1
2-Butanone ND ug/kg 9.1 2.0 1 Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2,3-Trichloropropane ND ug/kg 1.8 0.12 1 1,2,3-Trichloropropane ND ug/kg 9.1 1.1 1 2-Hexanone ND ug/kg 9.1 1.1 1 Bromochloromethane ND ug/kg 1.8 0.18 1 2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 1.8 0.18 1 1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.8 0.13 1 Bromobenzene ND ug/kg 0.91 0.15 1 n-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11	Carbon disulfide	ND			9.1	4.1	1
Vinyl acetate ND ug/kg 9.1 1.9 1 4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2,3-Trichloropropane ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 9.1 1.1 1 Bromochloromethane ND ug/kg 1.8 0.18 1 2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 0.45 0.12 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 0.91 0.15 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 tert-Butylbenzene ND ug/kg 1.8 0.11	2-Butanone	ND			9.1	2.0	1
4-Methyl-2-pentanone ND ug/kg 9.1 1.2 1 1,2,3-Trichloropropane ND ug/kg 1.8 0.12 1 2-Hexanone ND ug/kg 9.1 1.1 1 Bromochloromethane ND ug/kg 1.8 0.18 1 2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 1.8 0.11 1 c-Chlorotoluene ND ug/kg 1.8 0.11	Vinyl acetate	ND			9.1	1.9	1
2-Hexanone ND ug/kg 9.1 1.1 1 Bromochloromethane ND ug/kg 1.8 0.18 1 2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.15 1 tetr-Butylbenzene ND ug/kg 0.91 0.13 1 tetr-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.11 1 p-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 tetr-Butylbenzene ND ug/kg 1.8 0.10 1 ug/kg 1.8 0.10 1 tetr-Butylbenzene ND ug/kg 1.8 0.10 1 ug/kg 1.8 0.10 1	4-Methyl-2-pentanone	ND			9.1	1.2	1
Bromochloromethane ND ug/kg 1.8 0.18 1 2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.11 1 p-Chlorotoluene ND ug/kg 1.8 0.17 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6	1,2,3-Trichloropropane	ND		ug/kg	1.8	0.12	1
2,2-Dichloropropane ND ug/kg 1.8 0.18 1 1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	2-Hexanone	ND		ug/kg	9.1	1.1	1
1,2-Dibromoethane ND ug/kg 0.91 0.25 1 1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	Bromochloromethane	ND		ug/kg	1.8	0.18	1
1,3-Dichloropropane ND ug/kg 1.8 0.15 1 1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	2,2-Dichloropropane	ND		ug/kg	1.8	0.18	1
1,1,1,2-Tetrachloroethane ND ug/kg 0.45 0.12 1 Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	1,2-Dibromoethane	ND		ug/kg	0.91	0.25	1
Bromobenzene ND ug/kg 1.8 0.13 1 n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	1,3-Dichloropropane	ND		ug/kg	1.8	0.15	1
n-Butylbenzene ND ug/kg 0.91 0.15 1 sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	1,1,1,2-Tetrachloroethane	ND		ug/kg	0.45	0.12	1
sec-Butylbenzene ND ug/kg 0.91 0.13 1 tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	Bromobenzene	ND		ug/kg	1.8	0.13	1
tert-Butylbenzene ND ug/kg 1.8 0.11 1 o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	n-Butylbenzene	ND		ug/kg	0.91	0.15	1
o-Chlorotoluene ND ug/kg 1.8 0.17 1 p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	sec-Butylbenzene	ND		ug/kg	0.91	0.13	1
p-Chlorotoluene ND ug/kg 1.8 0.10 1 1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	tert-Butylbenzene	ND		ug/kg	1.8	0.11	1
1,2-Dibromo-3-chloropropane ND ug/kg 2.7 0.90 1 Hexachlorobutadiene ND ug/kg 3.6 0.15 1	o-Chlorotoluene	ND		ug/kg	1.8	0.17	1
Hexachlorobutadiene ND ug/kg 3.6 0.15 1	p-Chlorotoluene	ND		ug/kg	1.8	0.10	1
, i	1,2-Dibromo-3-chloropropane	ND		ug/kg	2.7	0.90	1
Isopropylbenzene ND ug/kg 0.91 0.10 1	Hexachlorobutadiene	ND		ug/kg	3.6	0.15	1
	Isopropylbenzene	ND		ug/kg	0.91	0.10	1
p-Isopropyltoluene ND ug/kg 0.91 0.10 1	p-Isopropyltoluene	ND		ug/kg	0.91	0.10	1
Naphthalene ND ug/kg 3.6 0.59 1	Naphthalene	ND		ug/kg	3.6	0.59	1
Acrylonitrile ND ug/kg 3.6 1.0 1	Acrylonitrile	ND		ug/kg	3.6	1.0	1

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-04 Date Collected: 09/11/19 12:30

Client ID: SB-4 Date Received: 09/11/19
Sample Location: 131 PEARL STREET Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 Low -	Westborough Lab						
n-Propylbenzene	ND		ug/kg	0.91	0.16	1	
1,2,3-Trichlorobenzene	ND		ug/kg	1.8	0.29	1	
1,2,4-Trichlorobenzene	ND		ug/kg	1.8	0.25	1	
1,3,5-Trimethylbenzene	ND		ug/kg	1.8	0.18	1	
1,2,4-Trimethylbenzene	ND		ug/kg	1.8	0.30	1	
1,4-Dioxane	ND		ug/kg	72	32.	1	
p-Diethylbenzene	ND		ug/kg	1.8	0.16	1	
p-Ethyltoluene	ND		ug/kg	1.8	0.35	1	
1,2,4,5-Tetramethylbenzene	ND		ug/kg	1.8	0.17	1	
Ethyl ether	ND		ug/kg	1.8	0.31	1	
trans-1,4-Dichloro-2-butene	ND		ug/kg	4.5	1.3	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	97	70-130	

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/17/19 16:55

arameter	Result	Qualifier	Units	RL	М	DL
olatile Organics by EPA 5035 H	ligh - Westbord	ough Lab fo	r sample(s):	01-03	Batch:	WG1285570-5
Methylene chloride	ND		ug/kg	250	1	10
1,1-Dichloroethane	ND		ug/kg	50	7	7.2
Chloroform	ND		ug/kg	75	7	. .0
Carbon tetrachloride	ND		ug/kg	50	1	2.
1,2-Dichloropropane	ND		ug/kg	50	6	5.2
Dibromochloromethane	ND		ug/kg	50	7	. .0
1,1,2-Trichloroethane	ND		ug/kg	50	1	3.
Tetrachloroethene	ND		ug/kg	25	9	0.8
Chlorobenzene	ND		ug/kg	25	6	5.4
Trichlorofluoromethane	ND		ug/kg	200	3	5.
1,2-Dichloroethane	ND		ug/kg	50	1	3.
1,1,1-Trichloroethane	ND		ug/kg	25	8	3.4
Bromodichloromethane	ND		ug/kg	25	5	5.4
trans-1,3-Dichloropropene	ND		ug/kg	50	1	4.
cis-1,3-Dichloropropene	ND		ug/kg	25	7	. .9
1,3-Dichloropropene, Total	ND		ug/kg	25	7	. .9
1,1-Dichloropropene	ND		ug/kg	25	8	3.0
Bromoform	ND		ug/kg	200	1	2.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8	3.3
Benzene	ND		ug/kg	25	8	3.3
Toluene	ND		ug/kg	50	2	27.
Ethylbenzene	ND		ug/kg	50	7	7.0
Chloromethane	ND		ug/kg	200	4	7.
Bromomethane	ND		ug/kg	100	2	9.
Vinyl chloride	ND		ug/kg	50	1	7.
Chloroethane	ND		ug/kg	100	2	3.
1,1-Dichloroethene	ND		ug/kg	50	1	2.
trans-1,2-Dichloroethene	ND		ug/kg	75	6	5.8
Trichloroethene	ND		ug/kg	25	6	5.8

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/17/19 16:55

1,2-Dichlorobenzene ND	Parameter	Result	Qualifier Units	RL	MDL	
1,3-Dichlorobenzene ND ug/kg 100 7.4 1,4-Dichlorobenzene ND ug/kg 100 8.6 Methyl tert butyl ether ND ug/kg 100 10. p/m-Xylene ND ug/kg 100 28. o-Xylene ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 8.8 1,2-Dichloroethene ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 9.8 Styrene ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110<	Volatile Organics by EPA 5035 H	ligh - Westbord	ough Lab for sample	(s): 01-03	Batch: WG128	5570-5
1,4-Dichlorobenzene ND ug/kg 100 8.6 Methyl tert butyl ether ND ug/kg 100 10. p/m-Xylene ND ug/kg 100 28. o-Xylene ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 6.8 Dibromodifluoromethane ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 46 Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 64 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>ug/kg</td> <td>100</td> <td>7.2</td> <td></td>	1,2-Dichlorobenzene	ND	ug/kg	100	7.2	
Methyl tert butyl ether ND ug/kg 100 10. p/m-Xylene ND ug/kg 100 28. o-Xylene ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 14. cis-1,2-Dichloroethene ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 9.8 Dibromomethane ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 110 Vinyla acetate ND ug/kg 500 110	1,3-Dichlorobenzene	ND	ug/kg	100	7.4	
p/m-Xylene ND ug/kg 100 28. o-Xylene ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 14. cis-1,2-Dichloroethene ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 9.8 Dichlorodiffuoromethane ND ug/kg 50 9.8 Dichlorodiffuoromethane ND ug/kg 500 46. Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64.	1,4-Dichlorobenzene	ND	ug/kg	100	8.6	
o-Xylene ND ug/kg 50 14. Xylenes, Total ND ug/kg 50 14. cis-1,2-Dichloroethene ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 6.8 Dibromomethane ND ug/kg 50 9.8 Dibromomethane ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 46 Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64 1,2,3-Trichloropropane ND ug/kg 500 <t< td=""><td>Methyl tert butyl ether</td><td>ND</td><td>ug/kg</td><td>100</td><td>10.</td><td></td></t<>	Methyl tert butyl ether	ND	ug/kg	100	10.	
Xylenes, Total ND ug/kg 50 14. cis-1,2-Dichloroethene ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 100 12. Styrene ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 46. Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100	p/m-Xylene	ND	ug/kg	100	28.	
cis-1,2-Dichloroethene ND ug/kg 50 8.8 1,2-Dichloroethene, Total ND ug/kg 50 6.8 Dibromomethane ND ug/kg 100 12. Styrene ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 46. Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100	o-Xylene	ND	ug/kg	50	14.	
1,2-Dichloroethene, Total ND	Xylenes, Total	ND	ug/kg	50	14.	
Dibromomethane ND ug/kg 100 12. Styrene ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 46. Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25	cis-1,2-Dichloroethene	ND	ug/kg	50	8.8	
Styrene ND ug/kg 50 9.8 Dichlorodifluoromethane ND ug/kg 500 46. Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 50 14. 1,3-Tetrachloroethane ND ug/kg 25 <	1,2-Dichloroethene, Total	ND	ug/kg	50	6.8	
Dichlorodifluoromethane ND ug/kg 500 46. Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 50 14. 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50	Dibromomethane	ND	ug/kg	100	12.	
Acetone ND ug/kg 500 240 Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 50 8.4 n-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 <t< td=""><td>Styrene</td><td>ND</td><td>ug/kg</td><td>50</td><td>9.8</td><td></td></t<>	Styrene	ND	ug/kg	50	9.8	
Carbon disulfide ND ug/kg 500 230 2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 50 8.4 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100	Dichlorodifluoromethane	ND	ug/kg	500	46.	
2-Butanone ND ug/kg 500 110 Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	Acetone	ND	ug/kg	500	240	
Vinyl acetate ND ug/kg 500 110 4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	Carbon disulfide	ND	ug/kg	500	230	
4-Methyl-2-pentanone ND ug/kg 500 64. 1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	2-Butanone	ND	ug/kg	500	110	
1,2,3-Trichloropropane ND ug/kg 100 6.4 2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	Vinyl acetate	ND	ug/kg	500	110	
2-Hexanone ND ug/kg 500 59. Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	4-Methyl-2-pentanone	ND	ug/kg	500	64.	
Bromochloromethane ND ug/kg 100 10. 2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	1,2,3-Trichloropropane	ND	ug/kg	100	6.4	
2,2-Dichloropropane ND ug/kg 100 10. 1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	2-Hexanone	ND	ug/kg	500	59.	
1,2-Dibromoethane ND ug/kg 50 14. 1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	Bromochloromethane	ND	ug/kg	100	10.	
1,3-Dichloropropane ND ug/kg 100 8.4 1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	2,2-Dichloropropane	ND	ug/kg	100	10.	
1,1,1,2-Tetrachloroethane ND ug/kg 25 6.6 Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	1,2-Dibromoethane	ND	ug/kg	50	14.	
Bromobenzene ND ug/kg 100 7.2 n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	1,3-Dichloropropane	ND	ug/kg	100	8.4	
n-Butylbenzene ND ug/kg 50 8.4 sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	1,1,1,2-Tetrachloroethane	ND	ug/kg	25	6.6	
sec-Butylbenzene ND ug/kg 50 7.3 tert-Butylbenzene ND ug/kg 100 5.9	Bromobenzene	ND	ug/kg	100	7.2	
tert-Butylbenzene ND ug/kg 100 5.9	n-Butylbenzene	ND	ug/kg	50	8.4	
	sec-Butylbenzene	ND	ug/kg	50	7.3	
o-Chlorotoluene ND ug/kg 100 9.6	tert-Butylbenzene	ND	ug/kg	100	5.9	
	o-Chlorotoluene	ND	ug/kg	100	9.6	

L1941587

09/19/19

Lab Number:

Project Name: PORT CHESTER, NY

Project Number: 411189 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/17/19 16:55

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 High	- Westboro	ough Lab fo	or sample(s):	01-03	Batch: WG1285570-5
p-Chlorotoluene	ND		ug/kg	100	5.4
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	50.
Hexachlorobutadiene	ND		ug/kg	200	8.4
Isopropylbenzene	ND		ug/kg	50	5.4
p-Isopropyltoluene	ND		ug/kg	50	5.4
Naphthalene	ND		ug/kg	200	32.
Acrylonitrile	ND		ug/kg	200	58.
n-Propylbenzene	ND		ug/kg	50	8.6
1,2,3-Trichlorobenzene	ND		ug/kg	100	16.
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.
1,3,5-Trimethylbenzene	ND		ug/kg	100	9.6
1,2,4-Trimethylbenzene	ND		ug/kg	100	17.
1,4-Dioxane	ND		ug/kg	4000	1800
p-Diethylbenzene	ND		ug/kg	100	8.8
p-Ethyltoluene	ND		ug/kg	100	19.
1,2,4,5-Tetramethylbenzene	ND		ug/kg	100	9.6
Ethyl ether	ND		ug/kg	100	17.
trans-1,4-Dichloro-2-butene	ND		ug/kg	250	71.

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	91	70-130
Dibromofluoromethane	94	70-130

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/17/19 16:55

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Low	r - Westboro	ough Lab fo	r sample(s):	04	Batch:	WG1285572-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
1,3-Dichloropropene, Total	ND		ug/kg	0.50		0.16
1,1-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	ND		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14

Project Name: PORT CHESTER, NY **Lab Number:** L1941587

Project Number: 411189 Report Date: 09/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/17/19 16:55

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	5 Low - Westbord	ough Lab fo	r sample(s):	04	Batch:	WG1285572-5
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
Xylenes, Total	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
1,2-Dichloroethene, Total	ND		ug/kg	1.0		0.14
Dibromomethane	ND		ug/kg	2.0		0.24
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
Vinyl acetate	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
1,2,3-Trichloropropane	ND		ug/kg	2.0		0.13
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0		0.20
2,2-Dichloropropane	ND		ug/kg	2.0		0.20
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
1,3-Dichloropropane	ND		ug/kg	2.0		0.17
1,1,1,2-Tetrachloroethane	ND		ug/kg	0.50		0.13
Bromobenzene	ND		ug/kg	2.0		0.14
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
o-Chlorotoluene	ND		ug/kg	2.0		0.19

L1941587

Lab Number:

Project Name: PORT CHESTER, NY

Project Number: 411189 Report Date: 09/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 09/17/19 16:55

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Organics by EPA 5035 Low	- Westbord	ough Lab fo	r sample(s):	04	Batch:	WG1285572-5
p-Chlorotoluene	ND		ug/kg	2.0		0.11
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Hexachlorobutadiene	ND		ug/kg	4.0		0.17
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
Acrylonitrile	ND		ug/kg	4.0		1.2
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,3-Trichlorobenzene	ND		ug/kg	2.0		0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
1,4-Dioxane	ND		ug/kg	80		35.
p-Diethylbenzene	ND		ug/kg	2.0		0.18
p-Ethyltoluene	ND		ug/kg	2.0		0.38
1,2,4,5-Tetramethylbenzene	ND		ug/kg	2.0		0.19
Ethyl ether	ND		ug/kg	2.0		0.34
trans-1,4-Dichloro-2-butene	ND		ug/kg	5.0		1.4

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	91	70-130
Dibromofluoromethane	94	70-130

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Volatile Organics by EPA 5035 High - Westborough Lab Associated sample(s): 01-03 Batch: WG1285570-3 WG1285570-4 Methylene chloride 96 95 70-130 1 30 1,1-Dichloroethane 92 91 70-130 1 30 Chroot tetrachloride 94 92 70-130 2 30 Carbon tetrachloride 94 92 70-130 1 30 12-Dichloropropane 98 97 70-130 1 30 Dibromochloromethane 95 93 70-130 2 30 1,1,2-Trichloroethane 94 91 70-130 3 30 Tetrachloroethane 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 0 30 Trichlorofluoromethane 82 82 70-139 0 30 1,1,1-Trichloroethane 93 93 70-130 1 30 1,1,2-Dichloropropene 93 <td< th=""><th>Parameter</th><th>LCS %Recovery</th><th>Qual</th><th>LCSD %Recovery</th><th>%Recovery Qual Limits</th><th>RPD</th><th>RPD Qual Limits</th></td<>	Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
1,1-Dichloroethane 92 91 70-130 1 30 Chloroform 102 100 70-130 2 30 Carbon tetrachloride 94 92 70-130 2 30 1,2-Dichloropropane 98 97 70-130 1 30 Dibromochloromethane 95 93 70-130 2 30 1,1,2-Tichlorosthane 94 91 70-130 3 30 Tetrachloroethane 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 2 30 Trichlorofluoromethane 82 82 70-130 0 30 Trichloroethane 96 95 70-130 1 30 1,1-Trichloroethane 93 93 70-130 1 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 3	olatile Organics by EPA 5035 High - Westb	orough Lab Ass	sociated sample	e(s): 01-03 Bat	ch: WG1285570-3 WG12	85570-4	
Chloroform 102 100 70-130 2 30 Carbon tetrachloride 94 92 70-130 2 30 1,2-Dichloropropane 98 97 70-130 1 30 Dibromochloromethane 95 93 70-130 2 30 1,1,2-Trichloroethane 94 91 70-130 3 30 Tetrachloroethene 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 2 30 Chlorofuloromethane 82 82 82 70-130 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 Bromodichloropropene 93 92 70-130 1 30 dis-1,3-Dichloropropene 93 94 70-130 <th< td=""><td>Methylene chloride</td><td>96</td><td></td><td>95</td><td>70-130</td><td>1</td><td>30</td></th<>	Methylene chloride	96		95	70-130	1	30
Carbon tetrachloride 94 92 70-130 2 30 1,2-Dichloropropane 98 97 70-130 1 30 Dibromochloromethane 95 93 70-130 2 30 1,1,2-Trichloroethane 94 91 70-130 3 30 Tetrachloroethene 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 0 30 Trichlorofluoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1-1-Trichloroethane 93 93 70-130 1 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1	1,1-Dichloroethane	92		91	70-130	1	30
1,2-Dichloropropane 98 97 70-130 1 30 Dibromochloromethane 95 93 70-130 2 30 1,1,2-Trichloroethane 94 91 70-130 3 30 Tetrachloroethene 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 0 30 Trichlorofluoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 1 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 93 94 70-130 1 30 cis-1,3-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 Bromoform 96 95 70-130 1 <td< td=""><td>Chloroform</td><td>102</td><td></td><td>100</td><td>70-130</td><td>2</td><td>30</td></td<>	Chloroform	102		100	70-130	2	30
Dibromochloromethane 95 93 70-130 2 30 1,1,2-Trichloroethane 94 91 70-130 3 30 Tetrachloroethene 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 0 30 Trichloroftuoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 Benzene 97 95 70-130 1 30 <td>Carbon tetrachloride</td> <td>94</td> <td></td> <td>92</td> <td>70-130</td> <td>2</td> <td>30</td>	Carbon tetrachloride	94		92	70-130	2	30
1,1,2-Trichloroethane 94 91 70-130 3 30 Tetrachloroethene 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 0 30 Trichlorofluoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 93 94 70-130 1 30 cis-1,3-Dichloropropene 93 94 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 Benzene 97 95 70-130 2 30<	1,2-Dichloropropane	98		97	70-130	1	30
Tetrachloroethene 100 98 70-130 2 30 Chlorobenzene 93 93 70-130 0 30 Trichlorofluoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1-2,2-Tetrachloroethane 90 86 70-130 2 30 Benzene 97 95 70-130 1 <	Dibromochloromethane	95		93	70-130	2	30
Chlorobenzene 93 93 70-130 0 30 Trichlorofluoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 2 30 Benzene 97 95 70-130 1 30 Toluene 93 92 70-130 1 30 <	1,1,2-Trichloroethane	94		91	70-130	3	30
Trichlorofluoromethane 82 82 70-139 0 30 1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30 </td <td>Tetrachloroethene</td> <td>100</td> <td></td> <td>98</td> <td>70-130</td> <td>2</td> <td>30</td>	Tetrachloroethene	100		98	70-130	2	30
1,2-Dichloroethane 96 95 70-130 1 30 1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	Chlorobenzene	93		93	70-130	0	30
1,1,1-Trichloroethane 93 93 70-130 0 30 Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	Trichlorofluoromethane	82		82	70-139	0	30
Bromodichloromethane 95 94 70-130 1 30 trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	1,2-Dichloroethane	96		95	70-130	1	30
trans-1,3-Dichloropropene 93 92 70-130 1 30 cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	1,1,1-Trichloroethane	93		93	70-130	0	30
cis-1,3-Dichloropropene 101 99 70-130 2 30 1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	Bromodichloromethane	95		94	70-130	1	30
1,1-Dichloropropene 93 94 70-130 1 30 Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	trans-1,3-Dichloropropene	93		92	70-130	1	30
Bromoform 96 95 70-130 1 30 1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	cis-1,3-Dichloropropene	101		99	70-130	2	30
1,1,2,2-Tetrachloroethane 90 86 70-130 5 30 Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	1,1-Dichloropropene	93		94	70-130	1	30
Benzene 97 95 70-130 2 30 Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	Bromoform	96		95	70-130	1	30
Toluene 93 92 70-130 1 30 Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	1,1,2,2-Tetrachloroethane	90		86	70-130	5	30
Ethylbenzene 94 94 70-130 0 30 Chloromethane 90 89 52-130 1 30	Benzene	97		95	70-130	2	30
Chloromethane 90 89 52-130 1 30	Toluene	93		92	70-130	1	30
	Ethylbenzene	94		94	70-130	0	30
Bromomethane 87 87 57-147 0 30	Chloromethane	90		89	52-130	1	30
	Bromomethane	87		87	57-147	0	30

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

arameter	LCS %Recovery	LCSD Qual %Recover	%Recov 'Y Qual Limits	•	RPD Qual Limits
olatile Organics by EPA 5035 High - West	borough Lab Ass	ociated sample(s): 01-03	Batch: WG1285570-3	WG1285570-4	
Vinyl chloride	81	78	67-130	4	30
Chloroethane	81	82	50-151	1	30
1,1-Dichloroethene	90	88	65-135	2	30
trans-1,2-Dichloroethene	95	95	70-130	0	30
Trichloroethene	96	94	70-130	2	30
1,2-Dichlorobenzene	95	95	70-130	0	30
1,3-Dichlorobenzene	96	95	70-130	1	30
1,4-Dichlorobenzene	99	99	70-130	0	30
Methyl tert butyl ether	93	90	66-130	3	30
p/m-Xylene	96	97	70-130	1	30
o-Xylene	96	96	70-130	0	30
cis-1,2-Dichloroethene	97	97	70-130	0	30
Dibromomethane	98	98	70-130	0	30
Styrene	101	100	70-130	1	30
Dichlorodifluoromethane	82	81	30-146	1	30
Acetone	96	88	54-140	9	30
Carbon disulfide	89	88	59-130	1	30
2-Butanone	77	75	70-130	3	30
Vinyl acetate	88	84	70-130	5	30
4-Methyl-2-pentanone	101	96	70-130	5	30
1,2,3-Trichloropropane	87	84	68-130	4	30
2-Hexanone	90	88	70-130	2	30
Bromochloromethane	102	100	70-130	2	30

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recove ' Qual Limits	-	RPD Qual Limits
olatile Organics by EPA 5035 High - Westh	oorough Lab Ass	sociated sample(s): 01-03	Batch: WG1285570-3	WG1285570-4	
2,2-Dichloropropane	92	92	70-130	0	30
1,2-Dibromoethane	97	94	70-130	3	30
1,3-Dichloropropane	92	90	69-130	2	30
1,1,1,2-Tetrachloroethane	96	96	70-130	0	30
Bromobenzene	94	94	70-130	0	30
n-Butylbenzene	90	91	70-130	1	30
sec-Butylbenzene	90	90	70-130	0	30
tert-Butylbenzene	92	91	70-130	1	30
o-Chlorotoluene	99	93	70-130	6	30
p-Chlorotoluene	90	88	70-130	2	30
1,2-Dibromo-3-chloropropane	100	96	68-130	4	30
Hexachlorobutadiene	95	96	67-130	1	30
Isopropylbenzene	90	90	70-130	0	30
p-Isopropyltoluene	93	93	70-130	0	30
Naphthalene	97	92	70-130	5	30
Acrylonitrile	101	97	70-130	4	30
n-Propylbenzene	89	89	70-130	0	30
1,2,3-Trichlorobenzene	101	98	70-130	3	30
1,2,4-Trichlorobenzene	103	100	70-130	3	30
1,3,5-Trimethylbenzene	92	91	70-130	1	30
1,2,4-Trimethylbenzene	94	93	70-130	1	30
1,4-Dioxane	102	95	65-136	7	30
p-Diethylbenzene	96	95	70-130	1	30

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number:

L1941587

Report Date:

09/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 High - Westb	orough Lab Ass	ociated sample	e(s): 01-03 B	Batch: WG1	285570-3 WG128	85570-4		
p-Ethyltoluene	93		92		70-130	1		30
1,2,4,5-Tetramethylbenzene	96		95		70-130	1		30
Ethyl ether	89		88		67-130	1		30
trans-1,4-Dichloro-2-butene	85		82		70-130	4		30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	88	87	70-130	
Toluene-d8	95	95	70-130	
4-Bromofluorobenzene	94	93	70-130	
Dibromofluoromethane	99	98	70-130	

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample(s): 04 Batch:	WG1285572-3 WG128557	2-4	
Methylene chloride	96	95	70-130	1	30
1,1-Dichloroethane	92	91	70-130	1	30
Chloroform	102	100	70-130	2	30
Carbon tetrachloride	94	92	70-130	2	30
1,2-Dichloropropane	98	97	70-130	1	30
Dibromochloromethane	95	93	70-130	2	30
1,1,2-Trichloroethane	94	91	70-130	3	30
Tetrachloroethene	100	98	70-130	2	30
Chlorobenzene	93	93	70-130	0	30
Trichlorofluoromethane	82	82	70-139	0	30
1,2-Dichloroethane	96	95	70-130	1	30
1,1,1-Trichloroethane	93	93	70-130	0	30
Bromodichloromethane	95	94	70-130	1	30
trans-1,3-Dichloropropene	93	92	70-130	1	30
cis-1,3-Dichloropropene	101	99	70-130	2	30
1,1-Dichloropropene	93	94	70-130	1	30
Bromoform	96	95	70-130	1	30
1,1,2,2-Tetrachloroethane	90	86	70-130	5	30
Benzene	97	95	70-130	2	30
Toluene	93	92	70-130	1	30
Ethylbenzene	94	94	70-130	0	30
Chloromethane	90	89	52-130	1	30
Bromomethane	87	87	57-147	0	30

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Parameter	LCS %Recovery	LC Qual %Rec			ecovery .imits	RPD	Qual	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample(s): 04	Batch:	WG1285572-3	WG1285572-	4		
Vinyl chloride	81	7	8	6	67-130	4		30
Chloroethane	81	8	2	5	50-151	1		30
1,1-Dichloroethene	90	3	8	6	65-135	2		30
trans-1,2-Dichloroethene	95	Ş	5	7	70-130	0		30
Trichloroethene	96	Ş	4	7	70-130	2		30
1,2-Dichlorobenzene	95	9	5	7	70-130	0		30
1,3-Dichlorobenzene	96	9	5	7	70-130	1		30
1,4-Dichlorobenzene	99	9	9	7	70-130	0		30
Methyl tert butyl ether	93	9	0	6	66-130	3		30
p/m-Xylene	96	9	7	7	70-130	1		30
o-Xylene	96	9	6	7	70-130	0		30
cis-1,2-Dichloroethene	97	9	7	7	70-130	0		30
Dibromomethane	98	9	8	7	70-130	0		30
Styrene	101	1	00	7	70-130	1		30
Dichlorodifluoromethane	82	3	1	3	80-146	1		30
Acetone	96	3	8	5	54-140	9		30
Carbon disulfide	89	3	8	5	59-130	1		30
2-Butanone	77	7	5	7	70-130	3		30
Vinyl acetate	88	3	4	7	70-130	5		30
4-Methyl-2-pentanone	101	9	6	7	70-130	5		30
1,2,3-Trichloropropane	87	3	4	6	88-130	4		30
2-Hexanone	90	3	8	7	70-130	2		30
Bromochloromethane	102	1	00	7	70-130	2		30

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Parameter	LCS %Recovery	LCSD Qual %Recove		RPD	RPD Qual Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample(s): 04	Batch: WG1285572-3 WG12	85572-4	
2,2-Dichloropropane	92	92	70-130	0	30
1,2-Dibromoethane	97	94	70-130	3	30
1,3-Dichloropropane	92	90	69-130	2	30
1,1,1,2-Tetrachloroethane	96	96	70-130	0	30
Bromobenzene	94	94	70-130	0	30
n-Butylbenzene	90	91	70-130	1	30
sec-Butylbenzene	90	90	70-130	0	30
tert-Butylbenzene	92	91	70-130	1	30
o-Chlorotoluene	99	93	70-130	6	30
p-Chlorotoluene	90	88	70-130	2	30
1,2-Dibromo-3-chloropropane	100	96	68-130	4	30
Hexachlorobutadiene	95	96	67-130	1	30
Isopropylbenzene	90	90	70-130	0	30
p-Isopropyltoluene	93	93	70-130	0	30
Naphthalene	97	92	70-130	5	30
Acrylonitrile	101	97	70-130	4	30
n-Propylbenzene	89	89	70-130	0	30
1,2,3-Trichlorobenzene	101	98	70-130	3	30
1,2,4-Trichlorobenzene	103	100	70-130	3	30
1,3,5-Trimethylbenzene	92	91	70-130	1	30
1,2,4-Trimethylbenzene	94	93	70-130	1	30
1,4-Dioxane	102	95	65-136	7	30
p-Diethylbenzene	96	95	70-130	1	30

09/19/19

Lab Control Sample Analysis Batch Quality Control

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Ass	ociated sample	(s): 04 Batch	: WG12855	72-3 WG128557	'2-4	
p-Ethyltoluene	93		92		70-130	1	30
1,2,4,5-Tetramethylbenzene	96		95		70-130	1	30
Ethyl ether	89		88		67-130	1	30
trans-1,4-Dichloro-2-butene	85		82		70-130	4	30

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	88	87	70-130	
Toluene-d8	95	95	70-130	
4-Bromofluorobenzene	94	93	70-130	
Dibromofluoromethane	99	98	70-130	

SEMIVOLATILES

L1941587

09/14/19 20:40

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Report Date: 09/19/19

Lab Number:

Extraction Date:

Lab ID: L1941587-01

Client ID: SB-1

Sample Location: 131 PEARL STREET

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/19/19 02:12

CB Analyst: 89% Percent Solids:

Date Collected: 09/11/19 10:00

Date Received: 09/11/19

Field Prep: Not Specified

Extraction Method: EPA 3546

Qualifier RL MDL Result Units **Dilution Factor Parameter** Semivolatile Organics by GC/MS - Westborough Lab Acenaphthene ND ug/kg 150 19. 1 2-Chloronaphthalene ND ug/kg 180 18. Fluoranthene ND ug/kg 110 21. 1 J 22. 1 Naphthalene 80 ug/kg 180 Benzo(a)anthracene ND ug/kg 110 21. 1 ND Benzo(a)pyrene ug/kg 150 45. 1 Benzo(b)fluoranthene ND 110 31. 1 ug/kg Benzo(k)fluoranthene ND 110 30. 1 ug/kg Chrysene ND 19. 1 ug/kg 110 ND Acenaphthylene 150 28. 1 ug/kg ND Anthracene 110 36. 1 ug/kg ND 22. Benzo(ghi)perylene 150 1 ug/kg Fluorene ND 180 18. 1 ug/kg ND 22. 1 Phenanthrene ug/kg 110 Dibenzo(a,h)anthracene ND 110 21. 1 ug/kg Indeno(1,2,3-cd)pyrene ND 150 26. 1 ug/kg ND Pyrene 110 18. ug/kg 1 2-Methylnaphthalene 1200 220 22. 1 ug/kg

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	60	23-120	
2-Fluorobiphenyl	59	30-120	
4-Terphenyl-d14	61	18-120	

L1941587

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Report Date: 09/19/19

Lab Number:

Lab ID: L1941587-02

Client ID: SB-2

Sample Location: 131 PEARL STREET

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 09/19/19 00:12

Analyst: CB 94% Percent Solids:

Date Collected: 09/11/19 11:00

Date Received: 09/11/19

Field Prep: Not Specified

Extraction Method: EPA 3546

Extraction Date: 09/14/19 20:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Acenaphthene	ND		ug/kg	140	18.	1	
2-Chloronaphthalene	ND		ug/kg	180	18.	1	
Fluoranthene	ND		ug/kg	100	20.	1	
Naphthalene	41	J	ug/kg	180	21.	1	
Benzo(a)anthracene	ND		ug/kg	100	20.	1	
Benzo(a)pyrene	ND		ug/kg	140	43.	1	
Benzo(b)fluoranthene	ND		ug/kg	100	30.	1	
Benzo(k)fluoranthene	ND		ug/kg	100	28.	1	
Chrysene	ND		ug/kg	100	18.	1	
Acenaphthylene	ND		ug/kg	140	27.	1	
Anthracene	ND		ug/kg	100	34.	1	
Benzo(ghi)perylene	ND		ug/kg	140	21.	1	
Fluorene	ND		ug/kg	180	17.	1	
Phenanthrene	ND		ug/kg	100	21.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	100	20.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1	
Pyrene	ND		ug/kg	100	18.	1	
2-Methylnaphthalene	880		ug/kg	210	21.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	68	30-120	
4-Terphenyl-d14	73	18-120	

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

Report Date: 09/19/19

Lab ID: L1941587-03

Client ID: SB-3

Sample Location: 131 PEARL STREET

Sample Depth:

Matrix: Soil 1,8270D Analytical Method: Analytical Date: 09/19/19 07:01

Analyst: CB 86% Percent Solids:

Date Collected:

09/11/19 12:00

L1941587

Date Received:

Lab Number:

09/11/19

Field Prep:

Not Specified

Extraction Method: EPA 3546

Extraction Date: 09/14/19 20:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Acenaphthene	ND		ug/kg	150	20.	1	
2-Chloronaphthalene	ND		ug/kg	190	19.	1	
Fluoranthene	ND		ug/kg	110	22.	1	
Naphthalene	ND		ug/kg	190	23.	1	
Benzo(a)anthracene	ND		ug/kg	110	21.	1	
Benzo(a)pyrene	ND		ug/kg	150	46.	1	
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1	
Chrysene	ND		ug/kg	110	20.	1	
Acenaphthylene	ND		ug/kg	150	29.	1	
Anthracene	ND		ug/kg	110	37.	1	
Benzo(ghi)perylene	ND		ug/kg	150	22.	1	
Fluorene	ND		ug/kg	190	18.	1	
Phenanthrene	ND		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	
Pyrene	ND		ug/kg	110	19.	1	
2-Methylnaphthalene	ND		ug/kg	230	23.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	56		23-120	
2-Fluorobiphenyl	54		30-120	
4-Terphenyl-d14	50		18-120	

L1941587

09/11/19 12:30

Not Specified

09/11/19

Project Name: PORT CHESTER, NY

Project Number: 411189

SAMPLE RESULTS

00/10/10

Report Date: 09/19/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1941587-04

Client ID: SB-4

Sample Location: 131 PEARL STREET

Sample Depth:

Matrix: Soil
Analytical Method: 1,8270D
Analytical Date: 09/19/19 05:49

Analyst: CB Percent Solids: 90% Extraction Method: EPA 3546

Extraction Date: 09/14/19 20:40

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
Acenaphthene	ND		ug/kg	140	19.	1
2-Chloronaphthalene	ND		ug/kg	180	18.	1
Fluoranthene	ND		ug/kg	110	21.	1
Naphthalene	ND		ug/kg	180	22.	1
Benzo(a)anthracene	ND		ug/kg	110	20.	1
Benzo(a)pyrene	ND		ug/kg	140	44.	1
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	140	28.	1
Anthracene	ND		ug/kg	110	35.	1
Benzo(ghi)perylene	ND		ug/kg	140	21.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1
Pyrene	ND		ug/kg	110	18.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	59		23-120	
2-Fluorobiphenyl	55		30-120	
4-Terphenyl-d14	48		18-120	

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Report Date: 09/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 09/18/19 00:00

Analyst: KR

Extraction Method: EPA 3546
Extraction Date: 09/14/19 20:40

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-04	Batch:	WG1284271-1
Acenaphthene	ND		ug/kg	130		17.
2-Chloronaphthalene	ND		ug/kg	160		16.
Fluoranthene	ND		ug/kg	99		19.
Naphthalene	ND		ug/kg	160		20.
Benzo(a)anthracene	ND		ug/kg	99		19.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		26.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
2-Methylnaphthalene	ND		ug/kg	200		20.

		Acceptance
Surrogate	%Recovery Qua	alifier Criteria
2-Fluorophenol	68	25-120
Phenol-d6	68	10-120
Nitrobenzene-d5	50	23-120
2-Fluorobiphenyl	57	30-120
2,4,6-Tribromophenol	71	10-136
4-Terphenyl-d14	60	18-120

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborou	igh Lab Assoc	ated sample(s):	: 01-04 Batc	n: WG1284271-2 WG12842	71-3		
Acenaphthene	71		76	31-137	7	50	
2-Chloronaphthalene	75		82	40-140	9	50	
Fluoranthene	78		81	40-140	4	50	
Naphthalene	73		78	40-140	7	50	
Benzo(a)anthracene	75		79	40-140	5	50	
Benzo(a)pyrene	73		78	40-140	7	50	
Benzo(b)fluoranthene	76		80	40-140	5	50	
Benzo(k)fluoranthene	76		83	40-140	9	50	
Chrysene	75		79	40-140	5	50	
Acenaphthylene	77		83	40-140	8	50	
Anthracene	76		81	40-140	6	50	
Benzo(ghi)perylene	78		82	40-140	5	50	
Fluorene	76		82	40-140	8	50	
Phenanthrene	76		80	40-140	5	50	
Dibenzo(a,h)anthracene	78		81	40-140	4	50	
Indeno(1,2,3-cd)pyrene	78		82	40-140	5	50	
Pyrene	76		81	35-142	6	50	
2-Methylnaphthalene	74		80	40-140	8	50	

Project Name: PORT CHESTER, NY Lab Number:

L1941587

Project Number: 411189

Report Date:

09/19/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04 Batch: WG1284271-2 WG1284271-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	75	82	25-120
Phenol-d6	72	77	10-120
Nitrobenzene-d5	53	59	23-120
2-Fluorobiphenyl	61	66	30-120
2,4,6-Tribromophenol	81	86	10-136
4-Terphenyl-d14	66	69	18-120

INORGANICS & MISCELLANEOUS

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number:

L1941587

Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-01

Client ID: SB-1

Sample Location: 131 PEARL STREET

Date Collected:

09/11/19 10:00

Date Received:

09/11/19

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Solids, Total	89.3		%	0.100	NA	1	-	09/12/19 12:10	121,2540G	RI

Date Collected:

L1941587

09/11/19 11:00

PORT CHESTER, NY **Project Name:**

Lab Number:

Project Number: Report Date: 09/19/19 411189

SAMPLE RESULTS

Lab ID: L1941587-02

Client ID: SB-2 Date Received: 09/11/19

Not Specified Sample Location: 131 PEARL STREET Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	93.9		%	0.100	NA	1	-	09/12/19 12:10	121,2540G	RI

L1941587

PORT CHESTER, NY **Project Name:**

Project Number: 411189

Report Date:

Lab Number:

09/19/19

SAMPLE RESULTS

Lab ID: L1941587-03

Client ID: SB-3

Sample Location: 131 PEARL STREET

Date Collected: 09/11/19 12:00 Date Received: 09/11/19

Not Specified Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	86.4		%	0.100	NA	1	-	09/12/19 12:10	121,2540G	RI

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number:

L1941587

Report Date: 09/19/19

SAMPLE RESULTS

Lab ID: L1941587-04

Client ID: SB-4

Sample Location: 131 PEARL STREET

Date Collected:

09/11/19 12:30

Date Received:

09/11/19

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	89.8		%	0.100	NA	1	-	09/12/19 12:10	121,2540G	RI

L1941587

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** PORT CHESTER, NY

Project Number: 411189 Report Date: 09/19/19

Parameter	Native Sam	ple [Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-04	QC Batch ID:	WG1283295-1	QC Sample:	L1941431-01	Client ID:	DUP Sample
Solids, Total	92.7		93.0	%	0		20

Project Name: PORT CHESTER, NY

Project Number: 411189

Lab Number: L1941587
Report Date: 09/19/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1941587-01A	Vial MeOH preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L1941587-01B	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-01C	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-01D	Plastic 2oz unpreserved for TS	Α	NA		2.8	Υ	Absent		TS(7)
L1941587-01E	Glass 60mL/2oz unpreserved	Α	NA		2.8	Υ	Absent		HOLD-METAL(180)
L1941587-01F	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8270(14)
L1941587-02A	Vial MeOH preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L1941587-02B	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-02C	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-02D	Plastic 2oz unpreserved for TS	Α	NA		2.8	Υ	Absent		TS(7)
L1941587-02E	Glass 60mL/2oz unpreserved	Α	NA		2.8	Υ	Absent		HOLD-METAL(180)
L1941587-02F	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8270(14)
L1941587-03A	Vial MeOH preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L1941587-03B	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-03C	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-03D	Plastic 2oz unpreserved for TS	Α	NA		2.8	Υ	Absent		TS(7)
L1941587-03E	Glass 60mL/2oz unpreserved	Α	NA		2.8	Υ	Absent		HOLD-METAL(180)
L1941587-03F	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8270(14)
L1941587-04A	Vial MeOH preserved	Α	NA		2.8	Υ	Absent		NYTCL-8260HLW(14)
L1941587-04B	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-04C	Vial water preserved	Α	NA		2.8	Υ	Absent	12-SEP-19 10:15	NYTCL-8260HLW(14)
L1941587-04D	Plastic 2oz unpreserved for TS	Α	NA		2.8	Υ	Absent		TS(7)
L1941587-04E	Glass 60mL/2oz unpreserved	Α	NA		2.8	Υ	Absent		HOLD-METAL(180)

Lab Number: L1941587

Report Date: 09/19/19

Project Name: PORT CHESTER, NY
Project Number: 411189

Container Information			Initial		Temp			Frozen	
Container ID	Container Type	Cooler	Cooler pH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1941587-04F	Glass 120ml/4oz unpreserved	Α	NA		2.8	Υ	Absent		NYTCL-8270(14)

Project Name: PORT CHESTER, NY Lab Number: L1941587

Project Number: 411189 Report Date: 09/19/19

GLOSSARY

Acronyms

EDL

LOD

MDI

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:PORT CHESTER, NYLab Number:L1941587Project Number:411189Report Date:09/19/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- ${\bf E} \qquad \hbox{-Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.}$
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- \boldsymbol{P} - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name: PORT CHESTER, NY Lab Number: L1941587
Project Number: 411189 Report Date: 09/19/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:09191914:25

ID No.:17873 Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: Part Chest as N Y					Date Rec'd in Lab Deliverables ASP-A				9/12/19 			ALPHA Job # L 94 587 Billing Information Same as Client Info		
Client Information	E VIDE SELECT	Project # 411189	EQuIS (1 File) EQuIS (4 File)							PO#204981						
Client: #61									_	iremen	ıt	Disposal Site Information				
Address:		Project Manager: Tre Manager: ALPHAQuote #:							OGS Standa	ards		Please identify below location of applicable disposal facilities.				
Phone:		Turn-Around Time							estricte		=	Disposal Facility:				
Fax:		Standard		ΙĒ			ted Use	-	Other		□ NJ □ NY					
Email:		Rush (only if pre approved		Due Date # of Days			lπ			Dischar				Other:		
These samples have b	peen previously analyz							LYSIS				Sample Filtration	T			
Please specify Metal	c requirements/comm	nents:					- 102	4H	RA Britals					□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	t a l	
ALPHA Lab ID (Lab Use Only)	Sa	imple ID	Collection Date Time		Sample Matrix	Sampler's Initials	72	P						Sample Specific Comments	- 1	
41587 -01	SB-1		9///	1000	50	In		V	Н				\vdash	cample opecinic comments	е	
-02	SB-1		4111	1100	50	Th	X	X	Ĥ				\vdash		+	
703	SB-3		9/11	1200	50	54	X	X	H	\vdash					+	
-04	SB-4		9/11	1250	50	54	X	×	1-1				\vdash		+	
STATE OF STATE OF	CASE P						1	-	-						+	
															$^{+}$	
															$^{+}$	
															T	
															†	
															T	
Preservative Code: A = None B = HCI C = HNO ₃	N = None P = Plastic Westboro: Certification No: MA938 B = HCl A = Amber Glass Mansfield: Certification No: MA018				Container Type		٧	A	A					Please print clearly, legib and completely. Samples not be logged in and	Please print clearly, legibly and completely. Samples can	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup	Preservative						BAA						turnaround time clock will start until any ambiguities		
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	Mellatiki X					Date/Time 9 4 19 1500 11/4 9 11 19, 17:35			Receiviégo Astriki AMUMANA AMU				Time 16:45 2009	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES		
Form No: 01-25 HC (rev. 3	0-Sent-2013)		5×5/1	9/14/13	177-1	100	21	w	-		OI	210	08.0	(See reverse side.)		

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA100\2019\190917N\

Data File : V00190917N24.D

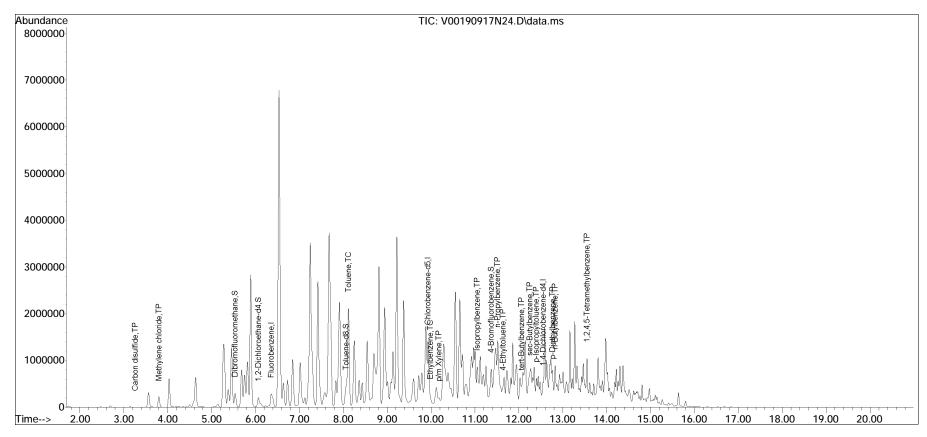
Acq On : 18 Sep 2019 1:24 am

Operator : VOA100:NLK

Sample : 11941587-01D,31H,4.45,5,0.040,,a

Misc : WG1285570,ICAL16112 ALS Vial : 24 Sample Multiplier: 1

Quant Time: Sep 18 10:10:20 2019


Quant Method : I:\VOLATILES\VOA100\2019\190917N\V100_190906A_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Tue Sep 10 09:47:03 2019

Response via : Initial Calibration

Sub List : 8260-NYTCL - Megamix plus Diox90917N\V00190917N01.D.

V100_190906A_8260.m Wed Sep 18 11:16:45 2019