REMEDIAL INVESTIGATION REPORT

South Island Apartments Site 1 Osgood Avenue/Center Island, Town of Green Island, Albany County, New York BCP Site # C401074

August 2018

Prepared for: South Island Apartments, LLC c/o Couch White, LLP 540 Broadway, 7th Floor Albany, New York 12201-2222

Prepared by:

349 Northern Blvd. STE 3 Albany, NY 12205

Envirospec Engineering Project E17-1600

Unauthorized alteration or addition to this Document is a violation of Section 7209 Subdivision 2 of the New York State Education Law

© Copyright 2017 Envirospec Engineering, PLLC

TABLE OF CONTENTS

	RTIFICATION	1
1.0	INTRODUCTION	2
	1.1 General Site Description	2
2.0	SITE HISTORY AND BACKGROUND INFORMATION	3
	2.1 Site Topography and Drainage	
	2.2 Site Geology and Hydrogeology	
	2.3 Existing Site Infrastructure	
	2.4 Sensitive Receptors	
	2.4.1 Wetlands and Floodplains	
	 2.4.2 Hudson River 2.4.3 Residences, Schools, Parks and Water Supply Wells Locations 	
3.0	PREVIOUS SITE ASSESSMENTS AND INVESTIGATIONS	
	3.1 2006 Shifrin Site Investigation	
	3.2 2008 Shifrin Phase I ESA3.3 2010 Shifrin Site Assessment	
	3.4 2010 Shifrin Product Removal Letter	-
	3.5 2014 Shifrin Product Removal Letter	
	3.6 2016 SPEC Supplemental Upper Soils Investigation	
	3.7 Remedial Investigation	
4.0	RI SCOPE OF WORK	
	SUMMARY OF RI ACTIVITIES	
5.0		
	5.1 Soil Borings 1	0
	5.1Soil Borings15.1.1Protection of Groundwater Sampling1	0
	5.1 Soil Borings	0 0 0
	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples1	0 0 0
	5.1 Soil Borings15.1.1 Protection of Groundwater Sampling15.1.2 Bank Samples15.1.3 Sediment Samples1	0 0 1
	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling1	0 0 1 1 2 3
	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation1	10 10 11 12 13 14
	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.4Groundwater Flow Evaluation15.4Groundwater Sample Collection1	10 10 11 12 13 14 14
	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.4Groundwater Flow Evaluation15.5Decontamination and Management of Investigation Derived Waste1	10 10 11 12 13 14 14 15
	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation15.4Groundwater Sample Collection15.5Decontamination and Management of Investigation Derived Waste15.6Survey1	10 10 11 12 13 14 15 15
6.0	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation15.4Groundwater Sample Collection15.5Decontamination and Management of Investigation Derived Waste15.6Survey1RESULTS OF INVESTIGATION	10 10 11 12 13 14 15 15 16
6.0	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation15.4Groundwater Sample Collection15.5Decontamination and Management of Investigation Derived Waste15.6Survey1RESULTS OF INVESTIGATION6.1Soil Boring Samples1	10 10 11 12 13 14 15 15 16 16
6.0	5.1Soil Borings	10 10 11 12 13 14 14 15 15 16 16
6.0	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation15.4Groundwater Sample Collection15.5Decontamination and Management of Investigation Derived Waste15.6Survey16.1Soil Boring Samples16.1.1Surface Soils16.1.2Subsurface Soil1	10 10 11 12 13 14 15 16 16 18
6.0	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation15.4Groundwater Sample Collection15.5Decontamination and Management of Investigation Derived Waste15.6Survey16.1Soil Boring Samples16.1.1Surface Soils16.1.2Subsurface Soil16.1.3SPLP Results2	10 10 10 11 12 13 14 15 16 16 16 18 23
6.0	5.1Soil Borings15.1.1Protection of Groundwater Sampling15.1.2Bank Samples15.1.3Sediment Samples15.1.4Soil Vapor Sampling15.2Soil Sampling Procedures15.3Groundwater Sampling15.3.1Groundwater Flow Evaluation15.4Groundwater Sample Collection15.5Decontamination and Management of Investigation Derived Waste15.6Survey16.1Soil Boring Samples16.1.1Surface Soils16.1.2Subsurface Soil1	10 10 10 11 12 13 14 15 16 16 16 18 23 24

9.0	REF	FERENCES	
8.0	DAT	TA USABILITY SUMMARY REPORT (DUSR)	
		Fish and Wildlife Resource Impact Analysis (FWRIA)	
7.0	-	Human Health Exposure Assessment (HHEA)	
70		ALITATIVE EXPOSURE ASSESSMENT	
		Soil Vapor Samples	
	6.5	Groundwater Samples	27

TABLES

Table 1	Samples Collected during RI
Table 2	Investigation Groundwater Sampling
Table 3	Exceedances for metals in surface soils
Table 4	Exceedances for SVOCs in surface soils
Table 5	Exceedances for metals in shallow subsurface soils
Table 6	Exceedances for SVOCs in shallow subsurface soils
Table 7	Exceedances for SVOCs in groundwater interface subsurface soils
Table 8	Exceedances for metals in surface bank samples
Table 9	Exceedances for SVOCs in surface bank samples
Table 10	Exceedances for metals in subsurface bank samples
Table 11	Exceedances for SVOCs in subsurface bank samples
Table 12	Exceedances in Groundwater Samples
Table 13	Soil Analytical Results (Appendix E)
Table 14	Pore Water Analytical Results (Appendix E)
m 1 1 1 7	

- Table 15Groundwater Analytical Results (Appendix E)
- Table 16Soil Vapor Analytical Results (Appendix E)

FIGURES

- Figure 2 NYSDEC Environmental Resource Mapper
- Figure 3 USFWS National Wetlands Inventory
- Figure 4 FEMA Flood Insurance Rate Map

DRAWINGS

S-1 SITE PLAN
S-2 HISTORICAL SOIL & GROUNDWATER SAMPLING RESULTS
S-3 HISTORICAL MEASURED LNAPL

- S-4 MAY 2016 SOIL & GROUNDWATER SAMPLING RESULTS
- S-5 SURVEYED SAMPLE LOCATIONS
- R-1 SURFACE SOILS METALS
- R-2 SUBSURFACE SOILS METALS
- R-3 SURFACE SOILS SVOCS
- R-4 SUBSURFACE SOILS SVOCS
- R-5 SURFACE AND SUBSURFACE SOILS TPH
- R-6 LNAPL THICKNESS
- R-7 SOIL VAPOR BTEX RESULTS
- R-8 GROUNDWATER EXCEEDANCES
- R-9 BANK AND SEDIMENT METALS
- R-10 BANK AND SEDIMENT SAMPLES SVOCS
- R-11 BANK AND SEDIMENT TPH RESULTS
- C-1 CROSS SECTION LOCATIONS
- C-2 CROSS SECTION A-A'
- C-3 CROSS SECTION B-B'
- C-4 HIGH TIDE GROUNDWATER ELEVATION CONTOURS
- C-5 LOW TIDE GROUNDWATER ELEVATION CONTOURS

APPENDICES

- APPENDIX A CONCEPTUAL SITE MODEL
- APPENDIX B SOIL BORING LOGS
- APPENDIX C GROUNDWATER SAMPLING LOGS
- APPENDIX D PHOTO LOGS
- APPENDIX E TABLES OF SAMPLE RESULTS
- APPENDIX F HUMAN HEALTH EXPOSURE ASSESSMENT (HHEA)
- APPENDIX G FISH AND WILDLIFE RESOURCE IMPACT ANALYSIS (FWRIA)
- APPENDIX H DATA USABILITY SUMMARY REPORT (DUSR) (SEPARATE ELECTRONIC FILE)

CERTIFICATION

I, Gianna M. Aiezza, certify that I am currently a NYS registered professional engineer and that this Remedial Investigation Report was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

Gianna M. Aiezza, P.E.

Name

081422

NYS PE License Number

٢

29/18

Date

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

1.0 INTRODUCTION

This Remedial Investigation (RI) Report has been prepared by Envirospec Engineering, PLLC (Envirospec) on behalf of South Island Apartments, LLC (SIA) for the South Island Apartments (Site) located at 1 Osgood Avenue/Center Island in the Town of Green Island (and Village), Albany County, New York (see Figure 1).

SIA is submitting this RI Report under the New York State Brownfield Cleanup Program (BCP) as a Volunteer. SIA intends to remediate the Site for a Restricted Residential end use. The Site will be redeveloped as a mixed housing and commercial use consisting of apartments, retail, and recreation areas.

1.1 General Site Description

The property is located on the southern portion of Starbuck Island in the Town of Green Island. The Site is bounded to the north by the Troy/Green Island Bridge and a commercial property formerly consisting of a car wash and office building and to the south by a commercial property and the Hudson River. The Hudson River is located directly to the east and west of the Site (see Figure 1). The Site is identified on the Albany 2016 Final Tax Map as 33.09 Block 1 Lot 3. According to the tax map, the property comprises approximately 8.9 acres. According to aerial images, land uses in the surrounding area include various commercial and residential uses.

The Site is a former petroleum terminal. The terminal was demolished between 2008 and 2010. According to the Albany County Assessor, the Site is zoned as vacant - industrial. The final zoning for the site will be mixed use of restricted residential and commercial.

2.0 SITE HISTORY AND BACKGROUND INFORMATION

According to a 2008 Phase I Environmental Site Assessment (2008 Phase I ESA) conducted by Shifrin & Associates Inc. (Shifrin), the Site was operated as a petroleum terminal since 1918. Available historical maps show a terminal located on the property in 1925. Reportedly during its operation, the Site was improved with sixteen (16) aboveground storage tanks (ASTs), potentially two (2) underground oil-water separator tanks, a truck loading rack, a barge dock, an office building, an electrical shed, storage sheds, brick buildings, earthen dikes, and internal roads. When in service, the terminal loaded and unloaded products that were transported to the Site by barge. Fuels stored at the former terminal included kerosene, low sulfur diesel, ultra-low sulfur diesel, and No. 2 fuel oil. The terminal was not connected to a sewer line; wastewater was discharged to a septic tank and leach field on-Site. According to the NYSDEC Spill Incidents Database, the Site has had thirteen (13) documented petroleum spills, with twelve (12) closed by the NYSDEC and one (1) spill (#8702376) remaining open.

According to the Supplemental Site Investigation in May 2016 conducted by SPEC Engineering (SPEC), the terminal was demolished sometime between 2008 and 2010 although the earthen dikes, at least one (1) underground oil-water separator, and a handful of small, vacant structures remained on the site. There were no other noted uses of this property.

Site surfaces consist largely of compacted gravel with gravel berms. The compacted gravel areas were former secondary containment areas. There are also several small structures, small grassy areas and wooded areas along the banks of the River.

2.1 Site Topography and Drainage

The Site elevation ranges from approximately 5 (at the River) to approximately 30 feet above mean sea level (AMSL) according to the survey completed for the site. Mean high water is at 5.9 feet AMSL. The Site slopes to the east, south and west towards the Hudson River. The banks are steep in most areas. Presumably, site runoff drains to the east or west towards the Hudson River.

2.2 Site Geology and Hydrogeology

The U.S. Department of Agriculture Soil Conservation Service (SCS) soil survey map of the Site describes the general soil type as Urban Land, and is listed as "Not Prime Farmland".

During the Supplemental Site Investigation in May 2016 conducted by SPEC, test pits were excavated to a depth of approximately 8-10 feet below grade surface (bgs). According to the Investigation Report, soil from test pits consisted primarily of sandy and gravelly fill, with

rounded pebbles to cobbles, broken glass, brick and wood fragments, mussel and clam shells, and lightweight black solid chips throughout. The Investigation Report further states that the Site consists mainly of fill material for at least the top 10 feet, with the presence of slag or cinder ash historical fill present throughput. Based on soil boring logs from the 2006 Site Investigation by Shifrin & Associates Inc. (Shifrin), soil from depth ranges of 0 to approximately 20 feet is a mix of gravel, brick, concrete, and silty material, with some clay layers observed starting at approximately 20 feet bgs.

RI soil borings confirmed the site is fill material to a depth of great than 20 feet bgs. Cross sections developed from borings collected during the RI are included as Drawings C-1, C-2 and C-3.

Based on the New York State Museum Geologic Map of New York, the Site is situated over the Canajoharie Shale Formation. Envirospec could not determine depth to bedrock at the Site from historical records. However, during the 2006 Site Assessment by Shifrin, soil borings were advanced to approximately 30 feet bgs. Furthermore, several groundwater monitoring wells installed prior to the 2006 Site Assessment were found to have depth to bottom of well measurements ranging from 32-38.5 feet bgs.

The Site is located in the Hudson River basin, south of where the Mohawk River and the Hudson River converge. Regional groundwater presumably flows toward the Hudson River. Groundwater flow at the Site was determined to flow west toward the Hudson. Groundwater is tidal and fluctuates with the Hudson River.

2.3 Existing Site Infrastructure

Based on the 2008 Phase I ESA conducted by Shifrin, the Site lies within the water service area of the Village of Green Island, with a supply well located on the northern end of Starbuck Island. Reportedly, wastewater from the terminal was discharged to a septic tank and leach field on-Site.

According to the Supplemental Site Investigation in May 2016 conducted by SPEC, the former petroleum terminal was demolished, although earthen dikes, at least one (1) underground oil-water separator, and a handful of small, vacant structures reportedly remain on the site. A Site Plan is included as Drawing S-1.

2.4 Sensitive Receptors

Area land uses within one half mile of the Site include residential, commercial and industrial uses. Sensitive receptors are not identified on the Site, but are further discussed in the following

sections.

2.4.1 Wetlands and Floodplains

According to the NYSDEC Environmental Resource Mapper (Figure 2) and the USFWS National Wetlands Inventory (Figure 3), there are no state or federal designated wetlands located within the Site boundaries. The Hudson River borders the site to the east and west. Refer to Section 2.4.2 for further discussion on the Hudson River.

Portions of the Site are located in the 100 year flood plain according to the Flood Insurance Rate Map, map number 36001C0202D, effective date 03/16/2015 (Figure 4). The 100 year flood elevation at the Site is approximately 26 ft AMSL.

2.4.2 Hudson River

As previously discussed, the Hudson River is located immediately adjacent to the Site and borders the Site to the east and west. According to the NYSDEC Environmental Resource Mapper, the Hudson River shorelines are known to contain rare plants, rare animals, and significant natural communities.

2.4.3 Residences, Schools, Parks and Water Supply Wells Locations

Residential units are located upgradient within one-tenth mile to the north of the Site on Starbuck Island. Residential units and park areas are noted at locations across the Hudson River to the east, south and west of the Site. The closest residential units and park are within one-tenth mile to the east/southeast of the Site, across the Hudson River. The closest school is located outside a half mile radius of the Site.

As previously referenced, the 2008 Phase I ESA conducted by Shifrin stated that the Site lies within the water service area of the Village of Green Island, with a supply well located on the northern end of Starbuck Island.

3.0 PREVIOUS SITE ASSESSMENTS AND INVESTIGATIONS

Previous investigations encompassing portions of the Site were performed on the BCP Site and are briefly summarized below. Historical sampling results above restricted residential soil cleanup objectives (RRSCOs) are included as Drawing S-2.

3.1 2006 Shifrin Site Investigation

On January 19, 2006, Shifrin submitted a Site Investigations Report to the NYSDEC (2006 SI Report). The 2006 SI Report discussed the December 2005 installation of five (5) new monitoring wells at the Site and the depth to groundwater measurement of seven (7) existing monitoring wells. The installation of these wells included a soil investigation of each soil boring advanced at the Site.

Samples were analyzed for VOCs and SVOCs. The 2006 SI Report indicated concentrations of chrysene in soil samples from two (2) of the soil borings exceeded cleanup criteria detailed by NYSDEC Technical and Administrative Guidance Memorandum No. 4046 (which has since been replaced by CP-51 in 2010).

3.2 2008 Shifrin Phase I ESA

On June 3, 2008, Shifrin prepared a Phase I Environmental Site Assessment Report (2008 Phase I ESA) summarizing available historical records for the Site and Site observations. The Phase I ESA claimed that the facility had been a petroleum terminal for approximately 90 years.

The 2008 Phase I ESA concluded that there was evidence of recognized environmental conditions (RECs) at the Site in connection with releases which had not yet been closed by the NYSDEC. Shifrin recommended that sampling of the monitoring wells and recovery of free product be continued with the requisite reporting to NYSDEC.

3.3 2010 Shifrin Site Assessment

On February 25, 2010, Shifrin issued a Site Assessment letter to the NYSDEC (2010 SA Letter). The 2010 SA Letter discussed the advancement and investigation of eight (8) new soil borings at the Site. According to Shifrin, four (4) were to be advanced near previously advanced S-8, and four (4) were advanced near previously advanced S-17. Samples were collected from the new soil borings and analyzed for VOCs and SVOCs. Some exceedances of TAGM 4046 cleanup objectives were observed, however there were no exceedances of RRSCOs.

Shifrin concluded that additional soil borings were not necessary to further delineate the contaminants on the Site, and that they wished to discuss with the NYSDEC the procedures required to obtain closure of the Site.

3.4 2010 Shifrin Product Removal Letter

On September 21, 2010, Shifrin issued a letter to NYSDEC discussing weekly product recovery from six (6) monitoring wells and provided graphs of product thickness versus time from March 19 to August 26, 2010. Reportedly, many of the recorded thicknesses were either none or trace product, with all wells consistently holding much less than one (1) foot of free product.

Due to the collected data and the low recharge rate of wells, Shifrin recommended that weekly vacuum extraction of product from these wells be discontinued. Shifrin instead recommended using a mobile multi-phase extraction system, as well as continuing to gauge accessible wells on a bi-weekly basis at the Site.

3.5 2014 Shifrin Product Removal Letter

On March 11, 2014, Shifrin issued a letter to the NYSDEC discussing continual efforts to remove residual free product from the facility, which had preceded the purchase of the site by NATCO.

According to Shifrin's review of gauging data from the vacuum extraction event on January 23, 2014, no measurable free product remained in the gauged wells (MW-9, MW-11, MW-15, MW-22, MW-23 and MW-24) following completion of the extraction event. Reportedly, on January 24, the wells were re-gauged, and product thickness had rebounded in MW-11 and MW-22. Shifrin also reported that free product was present in MW-4, MW-8, MW-18, MW-20, and MW-21 on January 24th. Reportedly MW-4, MW-8, MW-18, MW-20, and MW-21 were gauged upon completion of the second day of extraction and had no measurable free product present. Historical measured LNAPL thickness in site monitoring wells is shown on Drawing S-3.

According to the letter, NATCO closed the terminal and removed the aboveground steel tanks and associated piping.

Shifrin stated that high vacuum extraction was an appropriate technology to address the residual product and concluded by proposing to install four (4) more extraction wells in the vicinity of MW-17, MW-22 and MW-24 to reduce the well spacing to within the radius of influence of the extraction system. Though the specific well IDs are not provided in the 2014 letter, it seems to refer to MW-25, MW-26, MW-27, and MW-28, which were installed in the former loading rack

area sometime between the 2014 letter and the 2016 site activities discussed in Section 3.6. Well construction details are not available for these four (4) wells.

3.6 2016 SPEC Supplemental Upper Soils Investigation

SPEC performed a Supplemental Investigation in May 2016. The investigation consisted of excavating twelve (12) test pits across the Site and sampling representative soil (0 to ± 10 feet bgs) for laboratory analytical testing.

According to SPEC, analytical testing of soil was based upon the former site use (petroleum storage and distribution) and Site fill materials. Reportedly, the analytical results demonstrated the soil contamination was consistent with detected levels of metals, SVOCs and VOCs which exceeded Unrestricted Use Soil Cleanup Objectives set by NYSDEC in 6 NYCRR Subpart 375-6. SPEC stated that one test pit sample exceeded acceptable Toxicity Characteristic Leaching Procedure (TCLP) levels for lead.

Monitoring well samples from MW-22, MW-23, MW-25, and MW-28 were analyzed for SVOCs and VOCs. Exceedances of Part 703 Groundwater Standards were observed for benzene in MW-22 (23 ppb) and MW-23 (43 ppb). According to the Investigation Report, specific gravity analysis of free phase hydrocarbon material observed in monitoring wells was consistent with No. 2 Fuel Oil (weathered) or No. 4 Fuel Oil.

Soil and groundwater results from the May 2016 investigation are included on Drawing S-4.

3.7 Remedial Investigation

In summer 2017, Envirospec, on behalf of SIA, completed a RI to define the nature and extent of contamination under the BCP. The following items were completed as part of the RI:

- Further Site investigation to define the nature and extent of on-site contamination;
- Sampling of nine (9) existing groundwater monitoring wells (2 sampling events);
- Completion of an on-Site and off-Site qualitative Human Health Exposure Assessment (HHEA);
- Completion of a Fish and Wildlife Resource Impact Analysis (FWIRA).

4.0 RI SCOPE OF WORK

The RI was performed to further delineate the nature and extent of the contamination on-site. The specific goals of the RI are outlined below:

- Advance a series of soil borings across the property for the purpose of developing a soil profile across the property;
- Collect and analyze representative surface and subsurface soil samples to supplement samples collected in previous investigations;
- Collect and analyze bank samples and sediment samples to investigate characterize the banks and sediment at and surrounding the Site;
- Investigate the potential for LNAPL seeps into the Hudson River;
- Collect and analyze soil vapor samples to evaluate whether actions are necessary to address exposures related to soil vapor intrusion;
- Sample existing groundwater wells to assess groundwater impacts from on-Site sources and to better understand Site hydrogeology;
- Collect soil and groundwater data to support the completion of a Qualitative Human Health Exposure Assessment in accordance with DER-10 Section 3.3(c) 4;
- Gather data necessary to develop a FWIRA in accordance with DER-10 Section 3.10(c).

Soil borings were completed in July 2017. Soil vapor sampling, sediment sampling and bank sampling was completed in August 2017. Two rounds of groundwater sampling were completed, with the first in early September and the second in late October 2017. A NYSDEC representative was on site periodically during investigation activities to guide selection of sample locations and to observe progress. The specific work completed during the RI included the following:

- Completion of soil borings at 36 locations across the site with the collection of 104 soil samples at varying depths;
- Collection of bank samples at nine (9) locations at two depths per location;
- Collection of five (5) sediment samples along the western bank;
- Collection of one (1) pore water sample along the western bank to investigate the potential for seepage of LNAPL into the Hudson;
- Collection of eight (8) soil vapor samples and one (1) ambient air sample;
- Two rounds of groundwater sampling at nine (9) existing monitoring wells.

The summary of samples collected during the RI is provided in Table 1 in Section 5.0. Data collected during the RI was used to develop a Conceptual Site Model, provided in Appendix A.

5.0 SUMMARY OF RI ACTIVITIES

The RI consisted of sampling across the Site to further delineate the nature and extent of contamination and to identify potential source areas. The investigation was completed as outlined in the sections below. A summary of samples collected is provided in Table 1.

5.1 Soil Borings

A total of 36 soil borings were completed across the Site (not including offsets) on an approximate 100 foot grid. Borings were relocated as necessary for accessibility and were offset to get enough material for sampling. Borings were completed to groundwater, which was at a maximum of approximately 33 feet bgs. A large portion of the site consists of former secondary containment areas which have of a top layer of crushed stone. Within the former secondary containment areas, two samples were collected from each boring. One sample was collected from the layer immediately below the crushed stone, which was approximately 2 inches to 2 feet bgs. A second sample was collected from the interface with groundwater. Outside of the former secondary containment areas, three (3) samples were collected from each boring, with one sample collected from the surface at 0-2 inches, one sample collected from 2 inches – 2 feet and one sample collected from the interface with groundwater.

Additional samples were collected from soils that looked different or where there was a defined fill layer. Additional samples were also collected from soil with elevated PID readings. All samples were analyzed for metals. At least half of the samples were analyzed for additional parameters as shown in Table 1. Soil boring sampling was conducted in accordance with Section 5.2. Surveyed soil boring locations are shown on Drawing S-5.

5.1.1 Protection of Groundwater Sampling

In order to determine the potential for metals, such as lead and mercury, to impact groundwater, half of the samples collected from the soil borings were analyzed for SPLP metals via EPA SW-846 Method 1312. Samples analyzed for SPLP are shown in Table 1.

5.1.2 Bank Samples

Bank samples were collected along the eastern and western borders of the site along the Hudson. Samples were collected from 0-6 inches bgs and 6 inches-2 feet bgs, as outlined in Table 1.

Samples were collected approximately halfway down the bank, with five (5) bank samples collected along the west shoreline and four (4) bank samples collected along the east shoreline, for a total of nine (9) sample locations. A fifth location could not be collected on the east

shoreline due to access issues. The samples were collected at random locations along the banks, based on discussions with NYSDEC in the field, with two (2) sample locations in the bank adjacent to the former loading rack where LNAPL has been documented.

5.1.3 Sediment Samples

Sediment samples were collected from the western side of the site within the river at low tide. Five (5) sediment samples were collected along the western shoreline of the site. The samples were collected at random locations along the River, based on discussions with NYSDEC in the field, with 2 samples from sediment where potential LNAPL seeps were identified. Samples were collected from 0-6 inches bgs as outlined in Table 1. A pore water sample was also collected from the area of the potential seeps. Sediment samples were not collected along the eastern shoreline given the rocky shoreline and poor accessibility of the sediment.

5.1.4 Soil Vapor Sampling

Soil vapor sampling was completed in accordance with the approved protocol included in the RI Work Plan. Samples were analyzed by Centek Laboratories in Syracuse, NY. Soil vapor samples were collected from eight (8) locations across the site, with two (2) samples being collected along the property line adjacent to the car wash and office building. Locations were approved by NYSDEC. Surveyed sample locations are shown on Drawing S-5.

Medium Sampled	Number of Samples Collected	Analyzed
Surface Soils (0 to 2" bgs)	18	18 – Metals 9 – Full
Shallow Subsurface Soils (0 to 2' bgs or 2" to 2' bgs)	36	36 – Metals 19 – Full
Intermediate Subsurface Soils (varying depths)	13	Dependent on layer sampled
Groundwater Interface Soils (approx. 25 to 30' bgs)	37	36 – Metals 19 - Full

Table 1Samples Collected during RI^a

Medium Sampled	Number of Samples Collected	Analyzed
Shallow Bank Soils (0 to 6" bgs)	9	9 - Full
Subsurface Bank Soils (6" to 2' bgs)	9	9 - Full
Sediment (0 to 6" bgs)	5	5 – Full
Pore Water	1	Full
Soil Vapor	8	TO-15 list
Ambient Air	1	TO-15 list
Groundwater	17	17 - Full

^a = The table does not include duplicate samples. "Full" analyses included metals, VOCs, SVOCs, PCBs, pesticides, TPH, and SPLP.

5.2 Soil Sampling Procedures

Soil borings were completed with 5 foot macro core samplers via Geoprobe©. Each interval was characterized and screened for the presence of VOCs using a photoionization detector (PID). A grab sample was collected from each interval and placed in a ziplock bag for a headspace reading. Upon reaching the completion of each soil boring, field results including PID, visual, and olfactory results were reviewed. A grab sample was collected for VOCs from the interval with the highest reading on the PID or if the layer looked significantly different from other layers that were already sampled. The remainder of that sampling interval was composited for SVOCs, metals, pesticides, and PCBs. If there was no visual contamination and no headspace reading, the originally planned interval was sampled. In areas with poor recovery, the boring was offset by approximately a one (1) foot to obtain the remainder of the samples from the same sampling interval(s). Soil boring logs are provided in Appendix B.

Soil samples were collected using dedicated sampling tools as described in the Sampling and Analysis Plan / Quality Assurance Project Plan (SAP/QAPP) approved as part of the RI Work Plan. Representative soil samples were placed in laboratory provided sample bottles and transported under chain-of-custody command to Pace Analytical Services in Melville, NY. All laboratories used on this project are New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP)-certified laboratories.

Envirospec collected samples in accordance with the protocols described in the SAP/QAPP. USEPA and NYSDEC approved sample collection and handling techniques were used during implementation of the investigation.

Samples for chemical analysis were analyzed in accordance with USEPA SW-846 methodology with an equivalent Category B deliverable package to meet the definitive-level data requirements and appropriate method detection limits for comparison to applicable cleanup objectives. A Data Usability Summary Report (DUSR) was completed by a third-party data validation expert in accordance with the SAP/QAPP. The DUSR is discussed in Section 8.0.

Bank samples and sediment samples were collected by hand on the western side of the site. A shovel was used in the bank to get to the proposed sample depths. Bank samples on the eastern side of the site were collected from an excavator bucket, given the inability of personnel to safely access the sampling locations. This sampling approach was approved by NYSDEC in the field.

Quality Assurance/ Quality Control (QA/QC) Measures were followed as discussed in the SAP/QAPP provided in the RI Work Plan. The specific contaminants of concern that investigation samples were analyzed for are shown in Table 1.

5.3 Groundwater Sampling

No additional groundwater monitoring wells were installed as part of the investigation activities. Two groundwater sampling events were completed as part of the RI. During the first sampling event in September 2017, nine (9) existing groundwater monitoring wells (MW-2, MW-3, MW-4, MW-7, MW-10, MW-11, MW-13, MW-14, and UMW-D) were sampled to evaluate current groundwater quality.

A vacuum truck was brought onsite prior to the first sampling event to attempt to extract LNAPL from the impacted wells so that sampling could be completed. Extraction was attempted on a total of eighteen (18) wells. Some were observed to be dry after a very short period of extraction. The more heavily impacted wells, including MW-5 and MW-22, did not show significant decreases in LNAPL thickness after extraction.

It was decided, with NYSDEC approval, to avoid sampling the heavily impacted wells and to focus, instead, on wells MW-4, MW-10, and MW-11. These wells are located in the former loading rack area and showed very thin layers of LNAPL so sampling could be completed beneath the LNAPL layer. Attempts were made to collect a sample from an additional well in the former loading rack area, but the remaining wells could not be sampled either due to the presence of significant LNAPL, lack of flow, or very high turbidity.

South Island Apartments Site	Page 14
Remedial Investigation Report	August 2018

A second sampling event was completed at the request of NYSDEC. Eight (8) of the wells sampled during the first event were sampled again in late October 2017. One well (MW-7) could not be resampled due to issues with high turbidity and lack of sufficient recharge of the well. Two attempts were made to sample this well on different days, and both were unsuccessful.

The wells were sampled in accordance with Table 2 below. Groundwater monitoring wells that were sampled and with results above groundwater standards are shown on Drawing R-8.

	Investigation Groundwater Sampling									
Sample Location										
ID	Analyses Completed									
	TCL VOCs by EPA Method 8260,									
MW-2, MW-3,	TPH – GRO and DRO									
MW-4, MW-7,	TCL SVOCs by EPA Method 8270									
MW-10, MW-11,	PCBs by EPA method 8082									
MW-13, MW-14,	Pesticides by Method 8081									
UMW-D	TAL Metals by EPA Method 6010 (total and									
	dissolved) (mercury via EPA Method 7471).									

 Table 2

 Investigation Groundwater Sampling

5.3.1 Groundwater Flow Evaluation

Prior to sample collection, static water levels were measured and recorded during the RI activities from existing Site groundwater monitoring wells. Water table level data was collected and used to develop the groundwater elevation contours provided as Drawings C-4 and C-5, which show groundwater elevations at high and low tide, respectively. Product thickness was also measured and documented. Product thicknesses are shown in Drawing R-6.

5.4 Groundwater Sample Collection

For the first sampling event, Envirospec personnel purged the monitoring wells using a peristaltic pump following low-flow purge and sample collection procedures. The wells were sampled using the pump for all analyses except VOCs and TPH-GRO. VOCs and TPH-GRO were collected with a dedicated disposable bailer due to the entrainment of air bubbles in the tubing that was observed using the peristaltic pump and concerns that this could result in loss of volatiles. This sampling method change was made in the field with NYSDEC approval.

For the second sampling event, a submersible pump was used to collect the samples given

concerns about depth limitations of the peristaltic pump. Wells were purged at a higher flowrate (approximately 0.6 L/min) and then flow was decreased for low-flow sample collection. This approach was approved by NYSDEC prior to sampling. As with the first sampling round, VOCs and TPH-GRO were collected with dedicated disposable bailers. The pump tubing also showed a significant entrainment of air bubbles when the submersible pump was used. The pump was decontaminated between sample locations, and a field equipment blank was collected at the completion of the sampling event to determine the effectiveness of the decontamination procedures.

For both events, groundwater samples were placed in pre-cleaned laboratory provided sample bottles, cooled to 4°C in the field, and transported under chain-of-custody command to Test America. Well sampling logs are included in Appendix C.

5.5 Decontamination and Management of Investigation Derived Waste

The sampling methods and equipment selected for the soil sampling and groundwater sampling limited both the need for decontamination and the volume of waste material to be generated. Personal protective equipment (i.e. nitrile gloves) and disposable sampling equipment (i.e., polyethylene tubing) were placed in plastic garbage bags for disposal as solid waste at the Site.

Drill cuttings were placed back into soil borings and water generated on-Site during the RI was drummed and disposed of off-Site in conformance with applicable waste regulations.

5.6 Survey

Following completion of a sampling location, locations were staked and marked. Following completion of the field work, sampling locations were surveyed for development of a Site map showing the final sampling locations. Final locations are shown on Drawing S-5.

6.0 **RESULTS OF INVESTIGATION**

The results of the investigation are discussed in the following sections. Field Documentation of the RI including soil boring logs, groundwater sampling logs and photo logs are included in Appendices B, C and D, respectively. Tables with full sampling results are included in Appendix E.

6.1 Soil Boring Samples

Full results from the soil borings completed across the site are provided in Table 13, attached in Appendix E. Surface and subsurface soil data are discussed separately in the following sections.

6.1.1 Surface Soils

Surface soil samples (0 to 2") were collected outside of former containment areas where gravel was not present at the surface. Drawings R-1 and R-3 show exceedances of soil cleanup objectives for metals and SVOCs, respectively. Drawing R-5 shows TPH results for surface soils.

Exceedances of Restricted Residential Soil Cleanup Objectives (RRSCOs) and Commercial Soil Cleanup Objectives (CSCOs) for metals were consistent with historic fill. If site soils meet RRSCOs, then by default they also meet the CSCOs, which are less stringent. No source areas of metals were identified in surface soils. Metals with exceedances were lead, copper, mercury, arsenic, and one exceedance for barium. Table 3 summarizes the surface soil exceedances of Unrestricted Use Soil Cleanup Objectives (UUSCOs), RRSCOs, CSCOs, and Industrial Soil Cleanup Objectives (ISCOs). The results for all samples are provided in Table 13 in Appendix E.

Exceedances of RRSCOs for SVOCs were observed for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene (see Table 4). Of the SVOCs analyzed, only benzo(a)pyrene exceeded the CSCO (SB-11, SB-19, SB-32). Benzo(a)pyrene was detected in several samples at similar levels across the site. Although the results exceed the cleanup standard of 1 ppm (residential, commercial and industrial), the results are consistent with a fill material and there was no source area found. In addition to the exceedances shown in Table 3, low level exceedances of UUSCOs were also observed for 4,4'-DDT and PCB-1254 in SB-24AO and for 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT at SB-7AO.

There are no cleanup goals for TPH, although an elevated detection was observed at SB-7 (2850 ppm). No exceedances of RRSCOs were observed for pesticides, PCBs, or VOCs in surface soils.

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-2A	SB-4A	SB-5A	SB-6A	SB-7A	SB-8A
Lead	63	400	1000	3900	-	-	521	637	76.5	1260
Mercury	0.18	0.81	2.8	5.7	-	-	2.1	4.5	-	1.6
Arsenic	13	13	16	16	-	-	-	-	-	13.2
Barium	350	400	400	10000	-	362	-	-	-	409
Chromium	1	110	140	800	9.9	11.7	17.2	32.2	7.8	65.6
Copper	50	270	270	10000	-	-	98	129	-	143
Nickel	30	310	310	10000	-	-	-	33	-	38.5
Silver	2	180	1500	6800	-	2.1	2.2	3.9	-	-
Zinc	109	10000	10000	10000	161	-	384	470	162	645

Table 3.Exceedances for metals in surface soils

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-11A	SB-15A	SB-17A	SB-19A	SB-20A	SB- 21A	SB- 22A
Lead	63	400	1000	3900	456	722	1090	1330	746	175	1150
Mercury	0.18	0.81	2.8	5.7	0.52	3	1.4	5.9	6.7	0.36	4.6
Arsenic	13	16	16	16	-	14.7	14.6	17.4	19.1	-	29.9
Barium	350	400	400	10000	-	-	-	395	-	-	-
Beryllium	7.2	72	590	2700	-	40.3	-	-	-	-	-
Cadmium	2.5	4.3	9.3	60	-	-	-	-	-	-	3
Chromium	1	110	140	800	25.5	-	15	33	20	7.7	36.1
Copper	50	270	270	10000	64.9	393	146	327	242		216
Manganese	1600	2000	10000	10000	-	-	-	-	-	-	-
Nickel	30	310	310	10000	-	125	-	79.8	49	-	44.6
Silver	2	180	1500	6800	-	3.7	3	7	2.6	2.3	15.9
Zinc	109	10000	10000	10000	385	800	576	-	569	368	615

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB- 23A	SB- 24A	SB- 26A	SB- 32A	SB- 33A
Lead	63	400	1000	3900	112	477	454	1030	33 A
							777	1050	-
Mercury	0.18	0.81	2.8	5.7	0.23	0.44	-	-	-
Arsenic	13	16	16	16	-	16.7	-	15.1	-
Barium	350	400	400	10000	-	-	-	358	-
Beryllium	7.2	72	590	2700	-	-	-	8.4	-
Cadmium	2.5	4.3	9.3	60	-	-	-	-	-
Chromium	1	110	140	800	5.2	36.5	25.6	75.8	4.3
Copper	50	270	270	10000	-	91.5	81.9	569	-
Manganese	1600	2000	10000	10000	2150	-	-	-	-
Nickel	30	310	310	10000	-	41.3	54.4	122	-
Silver	2	180	1500	6800	-	3.9	2.7	6.3	-
Zinc	109	10000	10000	10000	209	432	324	1820	-

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-11A	SB-19A	SB-20A	SB-24A	SB-26A	SB-32A
Benzo(a)anthracene	1	1	5.6	11	1.43	1.43	-	-	-	1.69
Benzo(a)pyrene	1	1	1	1.1	1.66	1.47	-	-	-	1.74
Benzo(b)fluoranthene	1	1	5.6	11	2.71	2.3	1.09	3.99	1.17	2.49
Benzo(k)fluoranthene	0.8	3.9	56	110	1.33	0.861	-	-	-	1.14
Chrysene	1	3.9	56	110	1.68	1.68	-	-	-	1.86
Dibenz(a,h)anthracene	0.33	0.33	0.56	1.1	-	-	-	0.404	-	-
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	0.683	0.741	-	-	-	0.884

Table 4.Exceedances for SVOCs in surface soils

6.1.2 Subsurface Soil

Subsurface soil samples were collected in shallow soils (generally 2" to 2') and at the groundwater interface (approximately 25' to 30'). Intermediate depth samples were also collected based on PID results and visual observations in the field. Drawings R-2 and R-4 show exceedances of soil cleanup objectives for metals and SVOCs, respectively. Drawing R-5 shows TPH results for subsurface soils.

6.1.2.1 Shallow Subsurface Soil

Exceedances of RRSCOs were detected for metals in shallow (2" to 2') subsurface soils. The metals and levels detected were consistent with those expected in historic fill. Table 5 summarizes the surface soil exceedances of UUSCOs, RRSCOs, CSCOs, and ISCOs. There was no evidence of a specific source area of metals in subsurface soils.

Several exceedances of RRSCOs for SVOCs were detected in shallow subsurface soils. SVOC results are summarized in Table 6. Benzo(a)pyrene was detected in several samples at similar levels across the site. Although the results exceed the cleanup standard of 1 ppm (residential, commercial and industrial), the results are consistent with a fill material and there was no source area found. In addition to the exceedances shown in Table 5, low level exceedances of UUSCOs were also observed for acetone in SB-35BO and SB-36C, for methyl ethyl ketone at SB-17BO, and for 4,4'-DDT at SB-26BO.

Although there are no cleanup standards available for TPH, an elevated detection of 5630 ppm was observed at SB-23. This sample was collected north of the former loading rack along the roadway. It is close to MW-5 where LNAPL was observed at the top of the water table at a thickness of approximately 1.23'. No exceedances of RRSCOs were observed for pesticides,

PCBs, or VOCs in shallow subsurface soils.

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-1BO	SB-2BO	SB-3BO	SB-4BO	SB-5BO	SB-6BO
Lead	63	400	1000	3900	476	1370	1080	1290	6520	222
Mercury	0.18	0.81	2.8	5.7	0.89	5.9	1.5	2.3	2.1	1.6
Arsenic	13	16	16	16	13.8	-	20.9	17.9	42.6	-
Barium	350	400	400	10000	-	423	-	476	1740	-
Cadmium	2.5	4.3	9.3	60	-	-	_	-	6.6	-
Chromium	1	110	140	800	12.2	15.7	11.3	26.2	28.5	9.1
Copper	50	270	270	10000	-	126	135	302	556	65.2
Manganese	1600	2000	10000	10000	-	-	_	1930	-	-
Nickel	30	310	310	10000	-	47.3	-	-	33	-
Selenium	3.9	180	1500	6800	-	-	-	-	7	-
Silver	2	180	1500	6800	-	2.5	2.4	3.1	5.3	2.7
Zinc	109	10000	10000	10000	267	823	452	948	2990	174

Table 5.Exceedances for metals in shallow subsurface soils

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-7BO	SB-8B	SB-9B	SB-10B	SB-11B	SB-12BO
Lead	63	400	1000	3900	1820	1230	116	373	469	2200
Mercury	0.18	0.81	2.8	5.7	39.4	8.5	1	2.6	1.1	19.3
Arsenic	13	16	16	16	23.5	18.3	-	13.2	-	16
Barium	350	400	400	10000	408	368	-	-	-	-
Chromium	1	110	140	800	20.5	51.7	12.8	16.7	20.5	23.7
Copper	50	270	270	10000	724	282	294	111	186	1740
Nickel	30	310	310	10000	-	63.5	-	32.4	-	-
Silver	2	180	1500	6800	3.7	-	177	3.9	-	-
Zinc	109	10000	10000	10000	540	897	-	289	310	873

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-13B	SB-14BO	SB-150	SB-16BO	SB-17BO	SB- 1801	SB- 19BO
Lead	63	400	1000	3900	711	-	-	240	524	687	1340
Mercury	0.18	0.81	2.8	5.7	2.6	-	-	0.51	1.6	1.1	14.1
Arsenic	13	16	16	16	14.3	16.2	-	-	45.1	30.1	19
Barium	350	400	400	10000	-	-	-	414	-	-	360
Cadmium	2.5	4.3	9.3	60	-	-	-	-	-	-	2.6
Chromium	1	110	140	800	18.6	7.5	5.4	9.9	17.8	20.2	23.2
Copper	50	270	270	10000	118	-	-	51	85.1	173	361
Nickel	30	310	310	10000	-	30.9	-	30.1	-	36.1	38.2
Selenium	3.9	180	1500	6800	-	-	-	-	11	-	-
Silver	2	180	1500	6800	4.5	7	2.2	3.1	3.6	4.5	4.6

South Island Apartments Site Remedial Investigation Report

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-13B	SB-14BO	SB-150	SB-16BO	SB-17BO	SB- 1801	SB- 19BO
Zinc	109	10000	10000	10000	474	-	-	311	254	558	922

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB- 20BO	SB- 21BO	SB- 22B	SB- 23BO	SB- 24BO	SB- 25BO
Lead	63	400	1000	3900	1310	1670	963	332	254	1010
Mercury	0.18	0.81	2.8	5.7	25.1	0.9	2	0.57	0.24	0.53
Arsenic	13	16	16	16	19.7	18.8	19.4	13.9	-	16
Chromium	1	110	140	800	18.6	11	52.4	13	41.7	8.6
Copper	50	270	270	10000	185	163	226	63.7	68.6	91.2
Nickel	30	310	310	10000	-	-	30.1	41.1	37.2	-
Silver	2	180	1500	6800	2.3	2.8	-	-	3.1	2.5
Zinc	109	10000	10000	10000	612	364	823	274	313	224

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB- 26BO	SB-27B	SB- 28BO	SB- 29BO	SB-30B	SB-31B
Lead	63	400	1000	3900	751	-	246	560	1060	521
Mercury	0.18	0.81	2.8	5.7	0.73	-	0.31	0.58	1.1	1.5
Arsenic	13	16	16	16	-	-	-	-	-	17
Chromium	1	110	140	800	66.8	13.9	8.2	6.2	18.1	21.1
Copper	50	270	270	10000	107	-	-	265	150	115
Nickel	30	310	310	10000	50.4	-	-	-	-	-
Silver	2	180	1500	6800	2.8	3.4	138	3.4	-	-
Zinc	109	10000	10000	10000	404	-	-	973	432	-

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-32B	SB- 33BO	SB- 34BO	SB- 35BO	SB- 36BO
Lead	63	400	1000	3900	387	673	2290	198	575
Mercury	0.18	0.81	2.8	5.7	0.93	1	11.6	-	0.55
Arsenic	13	16	16	16	-	16	20.3	-	-
Chromium	1	110	140	800	21.9	4.9	15.4	16.7	7
Copper	50	270	270	10000	389	1990	156	87.1	119
Manganese	1600	200	10000	10000	-	2190	-	-	-
Nickel	30	310	310	10000	-	_	-	-	-
Silver	2	180	1500	6800	-	-	3.3	7	-
Zinc	109	10000	10000	10000	-	-	530	179	260

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-3	SB-4	SB-8	SB-11
Benzo(a)anthracene	1	1	5.6	11	1.04	1.83	1.48	-
Benzo(a)pyrene	1	1	1	1.1	1.37	1.9	1.33	1.1
Benzo(b)fluoranthene	1	1	5.6	11	1.59	2.77	1.81	1.7
Benzo(k)fluoranthene	0.8	3.9	56	110	-	1.16	-	-
Chrysene	1	3.9	56	110	1.61	1.89	-	1.26
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	0.841	0.795	0.64	-

Table 6. Exceedances for SVOCs in shallow subsurface soils

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-19	SB-20	SB-26	SB-35
Benzo(a)anthracene	1	1	5.6	11	2.21	1.76	5.84	2.37
Benzo(a)pyrene	1	1	1	1.1	2.09	1.71	6.09	2.04
Benzo(b)fluoranthene	1	1	5.6	11	3.22	2.65	9.21	3.21
Benzo(k)fluoranthene	0.8	3.9	56	110	-	-	6.31	1.5
Chrysene	1	3.9	56	110	-	-	7.21	2.21
Dibenz(a,h)anthracene	0.33	0.33	0.56	1.1	-	-	1.04	-
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	0.735	0.674	3.84	0.697

6.1.2.2 Intermediate Subsurface Soil

Of the five (5) intermediate depth metals samples that were collected, only one showed an exceedance for mercury. This sample was collected from SB-13 at a depth of 7' to 9', where mercury was detected at 6.9 ppm, which exceeds the ISCO. No other RRSCO metal exceedances were detected at this depth interval. Some low level exceedances of UUSCOs were observed in intermediate samples, which are provided in Table 13.

No other RRSCO exceedances were detected in the intermediate subsurface samples. However, some elevated TPH detections were observed, including SB-12 (1210 ppm at 8' to 10'), SB-3 (6870 ppm at 5' to 10'), SB-35 (1390 ppm at 5' to 10'), and SB-9 (3590 ppm at 7' to 8').

6.1.2.3 Groundwater Interface Subsurface Soils

Relatively few exceedances were observed in the soils at the groundwater interface, which was at a depth of approximately 25' to 30'. Two locations showed exceedances of the RRSCO for lead (SB-21 and SB-8), and one location showed an exceedance of the RRSCO for mercury (SB-4). One location showed an exceedance of the CSCO for arsenic (SB-26). Exceedances are shown in Table 7. In addition to the exceedances shown in the table, low level exceedances of UUSCOs were observed for acetone in SB-18C and PCB-1260 in SB-11C.

Elevated TPH detections were observed at SB-4 (1090 ppm at 25' to 30'), SB-10 (7490 ppm at

28' to 30'), SB-11 (5620 ppm at 30' to 32'), SB-22 (1310 ppm at 25' to 27'), and SB-23 (7970 ppm at 25' to 30'). SB-10 and SB-11 are both located in the former loading rack area, and SB-23 is close to MW-5 where LNAPL impacts were observed, as discussed in Section 6.1.2.1. No RRSCO exceedances for SVOCs, pesticides, PCBs, or VOCs were observed in the groundwater interface soil samples.

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-4C	SB-8C	SB-13C	SB-14C	SB-15C	SB-18C	SB-21C
Lead	63	400	1000	3900	-	481	71.8	-	-	-	740
Mercury	0.18	0.81	2.8	5.7	0.95	0.51	-	-	-	-	0.34
Arsenic	13	16	16	16	-	-	-	-	-	-	14.6
Chromium	1	110	140	800	11.2	11	13.7	2.4	4.3	3.7	64.5
Copper	50	270	270	10000	-	-	-	8.5	-	-	53.8
Nickel	30	310	310	10000	-	-	-	-	-	-	
Selenium	3.9	180	1500	6800	-	-	-	-	-	-	3.9
Silver	2	180	1500	6800	-	-	2.5	-	-	-	4.9
Zinc	109	10000	10000	10000	-	193	-	-	-	-	478

 Table 7. Exceedances for metals in groundwater interface subsurface soils

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB- 26C	SB- 34C	SB- 10C	SB- 27C	SB- 31C	SB- 32C	SB- 35CO2	SB- 16C
Lead	63	400	1000	3900	-	-	-	-	-	-	-	-
Mercury	0.18	0.81	2.8	5.7	-	-	-	-	-	-	-	-
Arsenic	13	16	16	16	56.6	-	-	-	-	-	-	-
Chromium	1	110	140	800	77.6	4.4	7	5.6	4.5	6.5	7.5	3.8
Copper	50	270	270	10000	-	-	-	-	-	-	-	-
Nickel	30	310	310	10000	72.9	-	-	-	-	-	-	-
Silver	2	180	1500	6800	7.5	-	-	2.3	3.2	-	2.2	-
Zinc	109	10000	10000	10000	-	-	-	-	-	-	-	-

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-17C	SB- 25C	SB-11C	SB-12C	SB-22C	SB-30C	SB-9C	SB-1C
Lead	63	400	1000	3900	197	-	70.7	-	-	-	-	-
Mercury	0.18	0.81	2.8	5.7	0.18	-	-	-	-	-	-	-
Arsenic	13	16	16	16	-	-	-	-	-	-	-	-
Chromium	1	110	140	800	8.9	5.7	10.7	11	9.2	5.4	6.1	5.4
Copper	50	270	270	10000	59.5	-	-	-	153	-	-	-
Silver	2	180	1500	6800	-	-	-	-	-	-	-	-
Zinc	109	10000	10000	10000	124	-	-	-	-	-	-	-

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-20C	SB-23C	SB-5C	SB-7C	SB-28C	SB-29C	SB-36C
Lead	63	400	1000	3900	124	-	158	-	-	-	-
Mercury	0.18	0.81	2.8	5.7	0.23	-	0.32	-	-	0.34	-
Arsenic	13	16	16	16	-	-	-	-	-	-	-
Chromium	1	110	140	800	7.4	9.5	6.9	7.8	3.8	7.9	7.8
Copper	50	270	270	10000	-	-	-	-	-	-	-
Silver	2	180	1500	6800	-	-	-	-	-	-	-
Zinc	109	10000	10000	10000	-	-	-	-	-	-	-

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	SB-3C	SB-2C	SB-33C	SB-19C	SB-24C	SB-6C
Lead	63	400	1000	3900	-	-	86.9	-	-	-
Mercury	0.18	0.81	2.8	5.7	-	-	0.32	-	0.46	-
Arsenic	13	16	16	16	-	-	-	-	-	-
Chromium	1	110	140	800	5	6	7	4.9	2.8	4.8
Copper	50	270	270	10000	-	-	-	-	-	-
Silver	2	180	1500	6800	-	-	-	-	2.7	-
Zinc	109	10000	10000	10000	-	-	-	-	-	-

6.1.3 SPLP Results

SPLP data was collected to aid in the determination if contaminants were impacting groundwater at the site. SPLP results are an indicator of the potential for metals to mobilize under acidic conditions (such as acid rain) and can be a better determination of the potential for contaminants to mobilize into groundwater than the Toxicity Characteristic Leaching Procedure (TCLP). SPLP results were compared to NYCRR Part 703 Groundwater Standards, as there are no published results for SPLP comparison. It should be noted that these standards are low, and often metals are elevated at background levels above these standards.

For the surface soils, five SPLP exceedances were above groundwater standards for lead (SB-8, SB-17, SB-19, SB-20, and SB-32) and one for mercury (SB-20). Shallow subsurface soils showed 14 exceedances of groundwater standards for lead and 2 for mercury. In intermediate subsurface soils, sample location SB-35 showed an exceedance of the groundwater standard for arsenic based on the SPLP results. This sample was collected from a depth of 5' to 10' and, at 29 ppb, was only slightly above the 25 ppb standard. In the groundwater interface samples, four locations showed exceedances for lead based on the SPLP results (SB-4, SB-8, SB-26, SB-33), though no exceedances of lead were observed in the monitoring well data (see Section 6.5). Exceedances of groundwater standards in SPLP samples are provided in Table 13.

For arsenic, only one location showed an exceedance. The arsenic soil concentration (6.7 mg/kg) at this location was significantly below the RRSCO of 16 mg/kg. The SPLP result at this location

is not consistent with the non-detect SPLP values measured at other areas of the site with higher arsenic concentrations in soil. Therefore, it is considered to be an anomaly.

For lead and mercury, regression analyses were completed to compare the soil to SPLP concentrations for all soil borings where SPLP samples were collected. For these analyses, non-detects were assumed to be half of the detection limit and J-flagged values were entered as detections. The regression analyses for lead and mercury resulted in R^2 values of 0.4225 and 0.4805, respectively, which indicate that there was no correlation between the soil and SPLP concentrations.

The levels of the exceedances observed were low and were not indicative of contaminants in soil leaching into groundwater. There was no correlation found between metals in soil and SPLP results. Furthermore, groundwater monitoring results showed that contaminants in soil are not contributing to groundwater contamination and there were no source areas of soils found on site during the RI.

SPLP results need to be considered in the context of other subsurface data, such as groundwater data, depth to groundwater, and the buffering capacity of soil at the groundwater interface to determine their significance. The soil at the groundwater interface at this site is predominately clay, which has a naturally high buffering capacity. The depth to groundwater is also significantly deeper than the zone of the subsurface likely to be impacted by acid rain. These factors should be considered when interpreting SPLP results.

6.2 Bank Samples

Bank sample results are provided in Table 13, in Appendix E. Drawings R-9 and R-10 show exceedances of soil cleanup objectives for metals and SVOCs, respectively. Drawing R-11 shows TPH results.

Exceedances in soil for lead, mercury, arsenic, and SVOCs were observed in the bank samples, which is consistent with their prevalence of the fill material across the site. Some exceedances for barium and copper were also observed. One sample (BS-3B) showed a lead concentration of 24,800 mg/kg. This sample was run again at Pace Analytical in Pittsburgh, PA to confirm the data from their lab in Melville, NY. A significantly lower concentration of 612 mg/kg was observed in the sample analyzed in Pittsburgh. Judy Harry, the third party evaluator who completed the DUSR, reviewed this sample at the request of Envirospec. The differences in results were attributed to the non-homogeneous nature of the matrix and not to issues with the laboratories.

Bank sample results for surface soils (0" - 6") are summarized in Tables 8 and 9 below. Bank

South Island Apartments Site	Page 25
Remedial Investigation Report	August 2018

sample results for subsurface soils (6" - 2") are summarized in Tables 10 and 11 below.

In general, higher concentrations of metals and SVOCs were detected in the eastern bank samples when compared to samples from the western bank. Elevated TPH results were observed in a few samples on the western bank, specifically BS-5A (4220 ppm, 0 to 6"), BS-8B (4350 ppm, 6" to 2'), and BS-9A (993 ppm, 0 to 6"). In addition to the exceedances shown in Tables 8 through 11, low level exceedances of the UUSCO for 4,4'-DDT were observed at BS-5B, BS-6A, BS-7A, BS-7B, BS-8B, and BS-9A.

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	BS- 1A	BS- 2A	BS-3A	BS-4A	BS-5A	BS-6A	BS-7A	BS-8A	BS-9A
Lead	63	400	1000	3900	802	982	514	306	284	436	-	69.7	242
Mercury	0.18	0.81	2.8	5.7	19	-	1.5	1.8	1	1.3	-	0.23	0.64
Arsenic	13	16	16	16	-	18	-	-	-	-	-	-	-
Chromium	1	110	140	800	11.8	15.9	21.9	9.6	18.8	28.8	15.5	24.6	16.9
Copper	50	270	270	10000	166	101	73.7	-	71.9	143	-	-	60.6
Nickel	30	310	310	10000	-	-	-	45.4	-	61.4	-	-	30.1
Silver	2	180	1500	6800	2.2	4.4	3.2	2.9	2.1	2.2	-	-	2.3
Zinc	109	10000	10000	10000	327	635	352	248	451	522	173	184	472

 Table 8. Exceedances for metals in surface bank samples

Table 9. Exceedances for SVOCs in surface bank samples

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	BS-1A	BS-2A	BS-5A	BS-9A
Benzo(a)anthracene	1	1	5.6	11	5.95	2.1	-	-
Benzo(a)pyrene	1	1	1	1.1	5.36	1.91	-	-
Benzo(b)fluoranthene	1	1	5.6	11	11.1	3.33	-	1.22
Benzo(k)fluoranthene	0.8	3.9	56	110	3.67	1.14	-	-
Chrysene	1	3.9	56	110	6.04	2.09	-	-
Dibenz(a,h)anthracene	0.33	0.33	0.56	1.1	0.674	-	-	-
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	2.34	0.699	0.5	-

Table 10. Exceedances for metals in subsurface bank samples

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	BS-1B	BS-2B	BS-3B	BS-4B	BS-5B	BS-6B
Lead	63	400	1000	3900	989	2300	24800/612 ^b	348	318	813
Mercury	0.18	0.81	2.8	5.7	1.4	2.8	1.7	1.5	1.7	2.6
Arsenic	13	16	16	16	15.9	22.6	-	14.1	-	14.6
Chromium	1	110	140	800	12.6	11	24.8	10.8	16.5	36.2
Copper	50	270	270	10000	139	57.7	382	63.3	79.2	180

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	BS-1B	BS-2B	BS-3B	BS-4B	BS-5B	BS-6B
Nickel	30	310	310	10000	-	-	-	40.6	-	57.5
Silver	2	180	1500	6800	2.1	3.8	4.3	3.3	2.1	2.9
Zinc	109	10000	10000	10000	442	314	427	250	335	669

 b = Results include data from labs in Melville and Pittsburgh labs. See discussion in Section 6.2.

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	BS-7B	BS-8B	BS-9B
Lead	63	400	1000	3900	71	107	308
Mercury	0.18	0.81	2.8	5.7	-	0.46	0.61
Arsenic	13	16	16	16	-	-	-
Chromium	1	110	140	800	13.3	18.6	8.9
Copper	50	270	270	10000	51.8	-	58.6
Nickel	30	310	310	10000	35.4	-	-
Silver	2	180	1500	6800	-	-	-
Zinc	109	10000	10000	10000	363	159	3200

Table 11. Exceedances for SVOCs in subsurface bank samples

Analyte (ppm)	UUSCO	RRSCO	CSCO	ISCO	BS-1B	BS-2B	BS-3B	BS-6B
Benzo(a)anthracene	1	1	5.6	11	1.11	7.41	-	2.51
Benzo(a)pyrene	1	1	1	1.1	1.18	5.43	-	2.35
Benzo(b)fluoranthene	1	1	5.6	11	1.95	6.64	1.21	3.17
Benzo(k)fluoranthene	0.8	3.9	56	110	0.879	3.08	-	1.2
Chrysene	1	3.9	56	110	1.24	7.25	-	2.75
Dibenz(a,h)anthracene	0.33	0.33	0.56	1.1	-	0.631	-	-
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	-	2.02	-	1.06

6.3 Sediment Samples

Sediment sample results are provided in Table 13, in Appendix E. Drawings R-9 and R-11 provide comparisons to Sediment Guidance Values (SGVs) for metals and TPH data, respectively. No exceedances of RRSCOs were detected in sediment samples. No exceedances of SGVs for SVOCs were observed.

Samples that fall within the Class B range of SGVs for a contaminant indicate that additional information would be needed to assess potential impacts to aquatic life. Exceedances of Class C SGVs indicate that the sediment has a high potential to be toxic to aquatic life. However, SGVs are only intended to be used as a starting point for the risk assessment process and should be considered within the context of other data when determining potential impacts to aquatic life (NYSDEC 2014). This is discussed further in Section 7.2.

Only one sediment location (SE-7) showed an exceedance of a Class C SGV of 130 ppm for lead

(142 ppm, 0 to 6"). Some sediment samples fell within the Class B SGV ranges for copper, silver, and mercury.

The sediment TPH results ranged from non-detect (at detection limit of 629 ppm) to 3390 ppm. The highest TPH concentration in sediment was observed at SE-6, which was collected near the southwest area of the site.

6.4 **Pore Water Sample**

The results from the pore water sample collected along the western bank are provided in Table 14, included in Appendix E. No detections of pesticides, PCBs, TPH, or SVOCs were observed. No metals of concern were detected above surface or groundwater standards. Only iron, manganese, and sodium were detected above groundwater standards. VOCs were primarily non-detect, with the exception of a low level detection of acetone.

6.5 Groundwater Samples

The results from the groundwater sampling are provided in Table 15, attached in Appendix E, and a summary is provided in Table 12 below. Drawing R-8 shows exceedances of compounds when compared to NYCRR 703.5 Groundwater Standards. No lead or mercury exceedances were observed in either sampling event.

One monitoring well (MW-10) showed an exceedance of the 25 ppb standard for arsenic (35.5 ppb total, 35.3 ppb dissolved) in the first sampling round. MW-10 is located within the former loading rack area. The second sampling round showed a detection of 22 ppb for arsenic at this well, which does not exceed the standard.

Exceedances for benzene were detected at MW-4 in both sampling rounds and in MW-13 in the second sampling round. An exceedance of isopropylbenzene was detected at MW-10 during the first sampling round. Detections of benzene and isopropylbenzene in MW-4 and MW-10 are consistent with the presence of LNAPL in wells in the former loading rack area. Although there are no groundwater standards for TPH, there were also detections of TPH-GRO and TPH-DRO in this area.

During the first sampling event, one exceedance was observed for total PCBs at MW-10. A very low level of endrin was also detected at this location (0.0072 ppb), which is above the non-detect groundwater standard for this contaminant. During the second sampling round, exceedances for total PCBs were observed in seven (7) wells. Total PCBs, however, were also detected at a similar level in the field equipment blank. This indicates possible contamination of equipment

from the lab. Alternatively, the low levels could be attributed to the quality of the Hudson River, as PCBs were not a contaminant of concern across the site.

		MW-2	MW-3	MV	V-4
Analyte (ppb)	Part 703 Groundwater Standard	10/2017	10/2017	9/2017	10/2017
Benzene	1	-	-	6.1	7.9
Endrin	ND	0.002	-	-	0.0046
Total PCB	0.09	0.45	0.3	-	0.13

Table 12. Exceedances in Groundwater Samples

		MV	V-10	MW-13	MW-14	UMW-D
Analyte (ppb)	Part 703 Groundwater Standard	9/2017	10/2017	10/2017	10/2017	10/2017
Aldrin	ND	-	0.00086	-	-	-
Arsenic, total	25	35.5	-	-	-	-
Arsenic, dissolved	25	35.3	-	-	-	-
Benzene	1	-	-	1.2	-	-
Endrin	ND	0.0072	-	0.0013	-	-
Isopropylbenzene	5	8.7	-	-	-	-
Phenol	1	-	-	-	-	1.5
Total PCB	0.09	0.85	0.45	0.16	0.45	0.32

6.6 Soil Vapor Samples

The full results from the eight (8) soil vapor samples are provided in Table 16, included in Appendix E. One ambient air sample was also collected so the data could be compared to the subsurface vapor results. Soil vapor sample results were compared the air guideline values in the NYSDOH VI guidance, with no exceedances noted. Detections of BTEX were observed at several locations, which is consistent with the historical use of the site. Soil vapor results are shown in Drawing R-7. As discussed in further detail in Section 7.1, mitigation systems will be installed on onsite buildings as a proactive measure.

7.0 QUALITATIVE EXPOSURE ASSESSMENT

As required by the BCP, an on-Site and off-Site qualitative exposure assessment was completed in accordance with DER-10 section 3.3(c)4. The human health qualitative assessment was completed as described in Section 7.1 below. A fish and wildlife impact analysis was completed as described in Section 7.2.

7.1 Human Health Exposure Assessment (HHEA)

The qualitative HHEA evaluated the five (5) elements (DER-10 Appendix 3B) associated with exposure pathways, and described how each of these elements pertains to the Site. The elements addressed include:

- A description of the contaminant source(s) including the location of the contaminant release to the environment (any waste disposal area or point of discharge) or if the original source is unknown, the contaminated environmental medium (soil, indoor or outdoor air, biota, water) at the point of exposure;
- An explanation of the contaminant release and transport mechanisms to the exposed population;
- Identification of all potential exposure point(s) where actual or potential human contact with a contaminated medium may occur;
- Description(s) of the route(s) of exposure (i.e., ingestion, inhalation, dermal absorption); and
- A characterization of the receptor populations who may be exposed to contaminants at a point of exposure.

Given the plan to install an engineered cover of two (2) feet of clean fill across the site and the depth to groundwater of at least 22 feet bgs, potential human exposure risks to contamination at this site would be minimal and limited to potential soil vapor intrusion exposure, which will be addressed through installation of mitigation systems, and potential exposures during onsite ground-intrusive work, which will be addressed through air monitoring and proper training and health and safety procedures.

The full Qualitative Human Health Exposure Assessment is provided in Appendix F.

7.2 Fish and Wildlife Resource Impact Analysis (FWRIA)

Due to the surrounding Hudson River, a FWRIA was completed. The FWRIA was completed in accordance with DER-10 Section 3.10(c) and the DFW&MR Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (1994) guidance document.

Though potentially complete pathways were identified in the FWRIA, there were no source areas of contamination identified at the site during the RI. Levels of metals identified were expected, as the site consists primarily of historical fill material. The final remedy for the site will be an engineered cover system which will eliminate the most probable route of exposure for fish and wildlife. Impacts from source contamination to the Hudson River from the site were not identified, as there were no source areas found. The impacts to the Hudson River are those associated with historical fill and do not require mitigation. Based on these findings, no additional ecological assessment is needed.

The full FWRIA is provided in Appendix G.

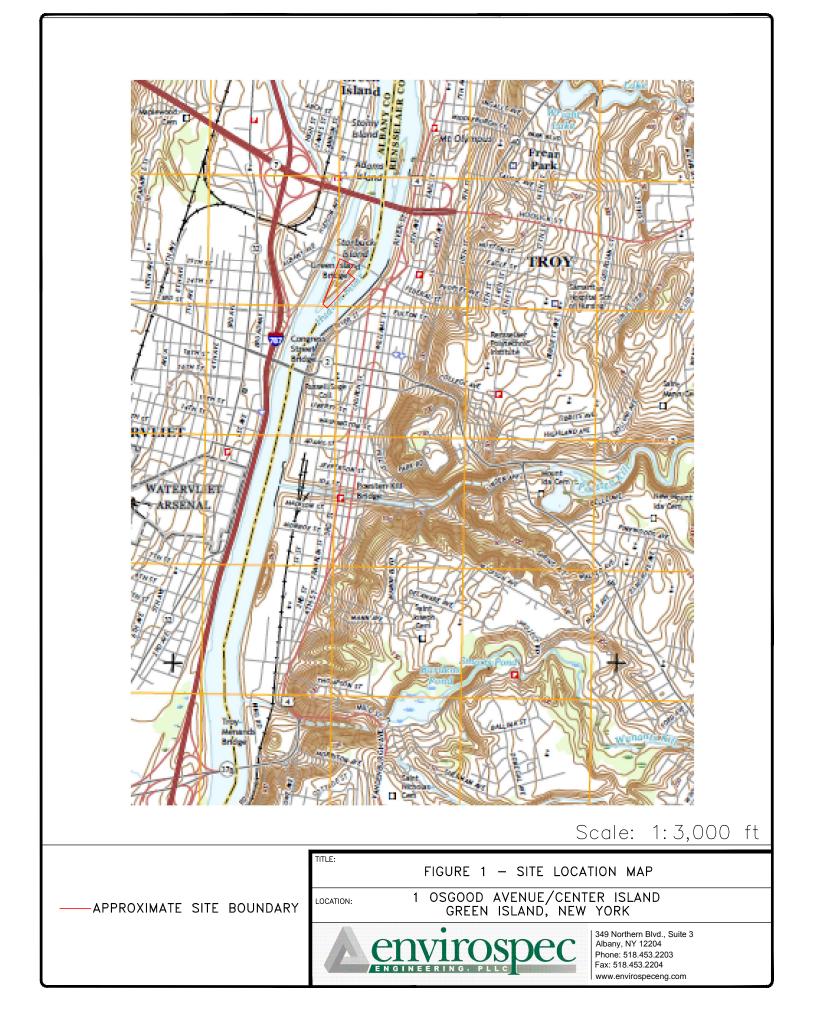
8.0 DATA USABILITY SUMMARY REPORT (DUSR)

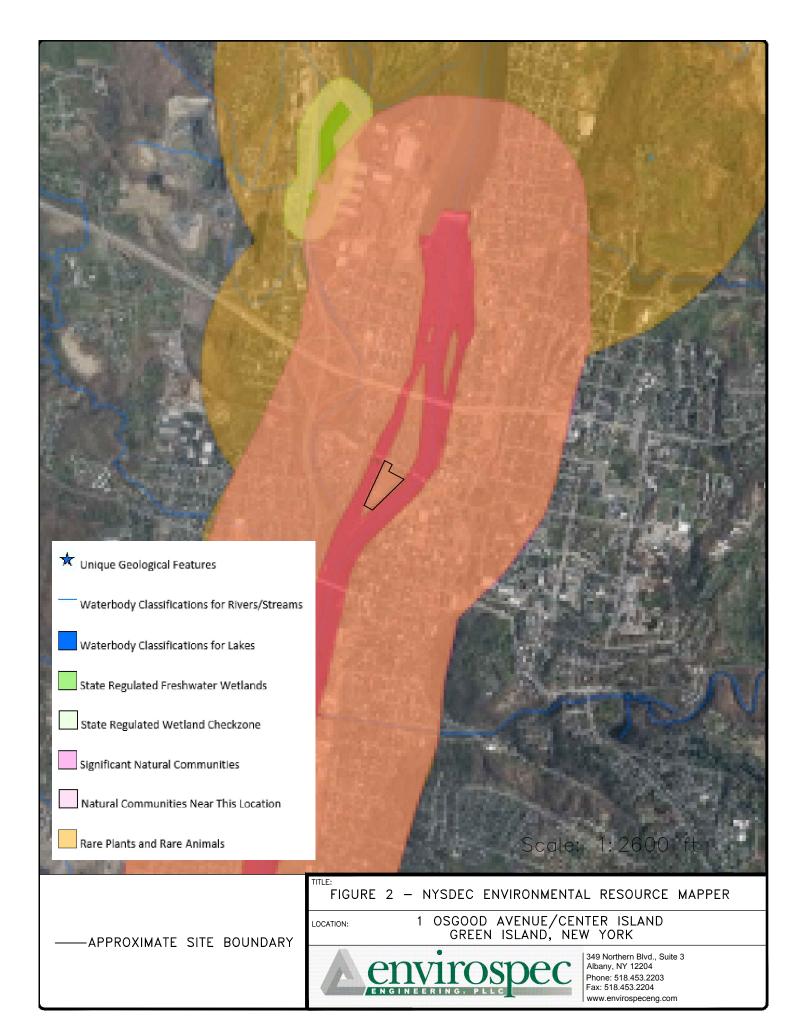
The data collected during the RI were reviewed by a third party data validation expert. The results of the DUSR are provided in Appendix H.

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

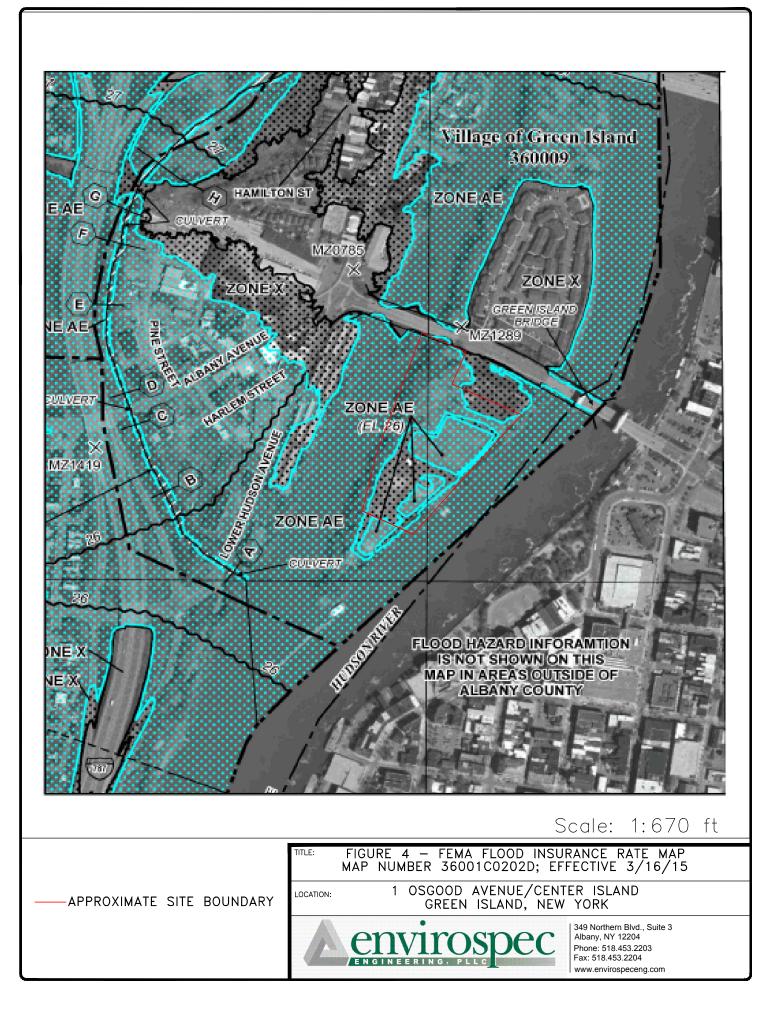
9.0 **REFERENCES**

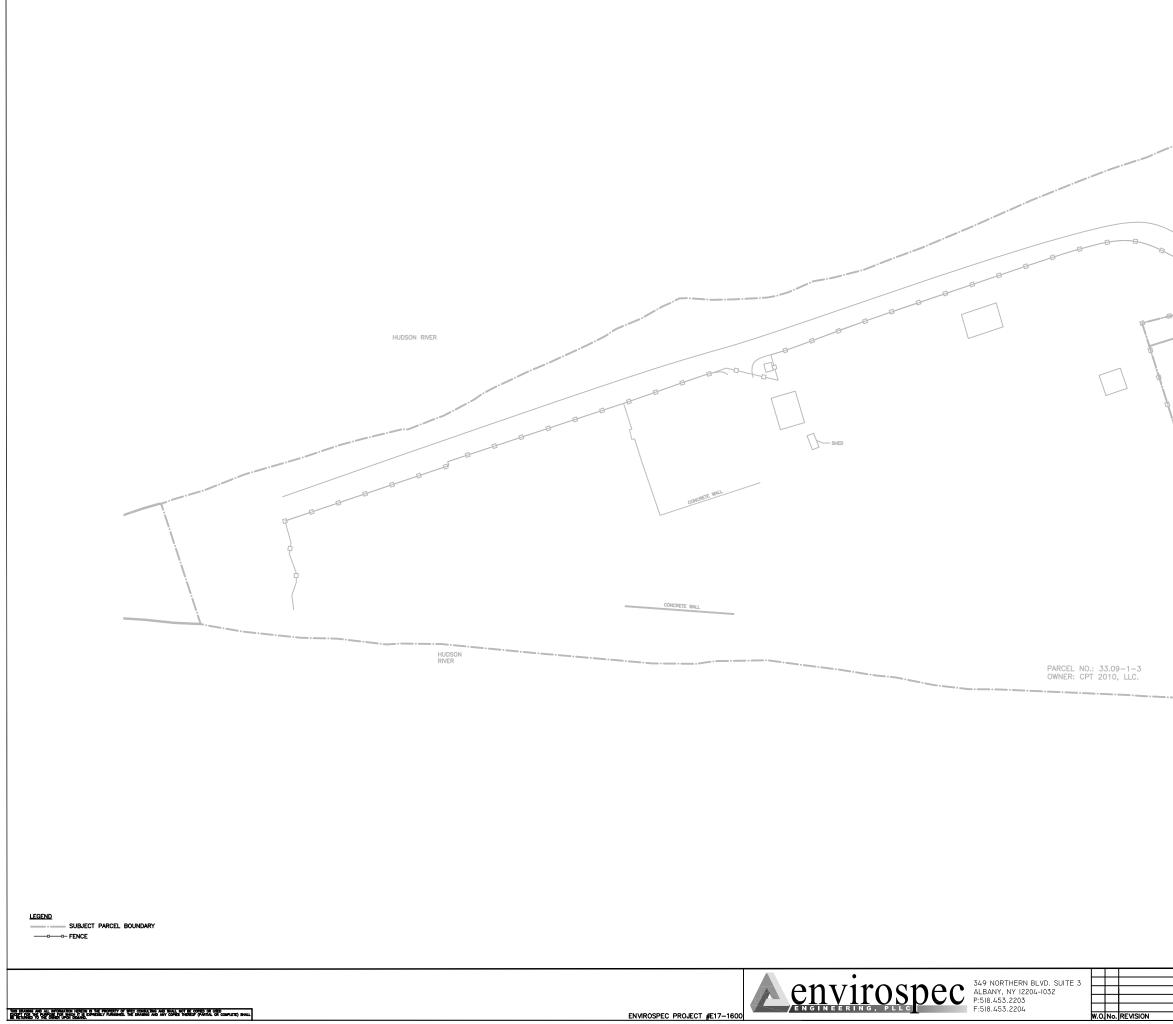
NYSDEC. 2014. Screening and Assessment of Contaminated Sediment. http://www.dec.ny.gov/docs/fish_marine_pdf/screenasssedfin.pdf

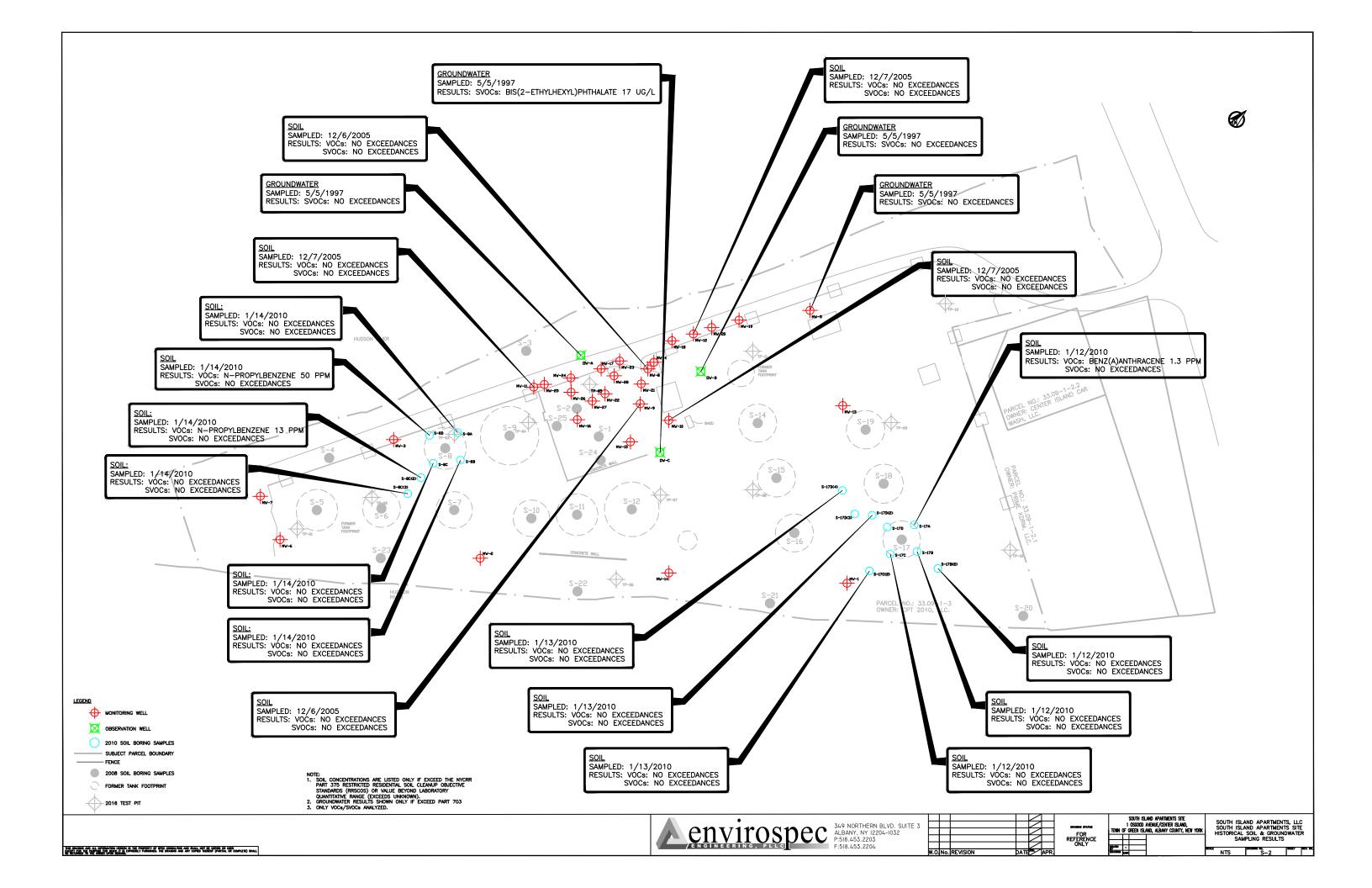



349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

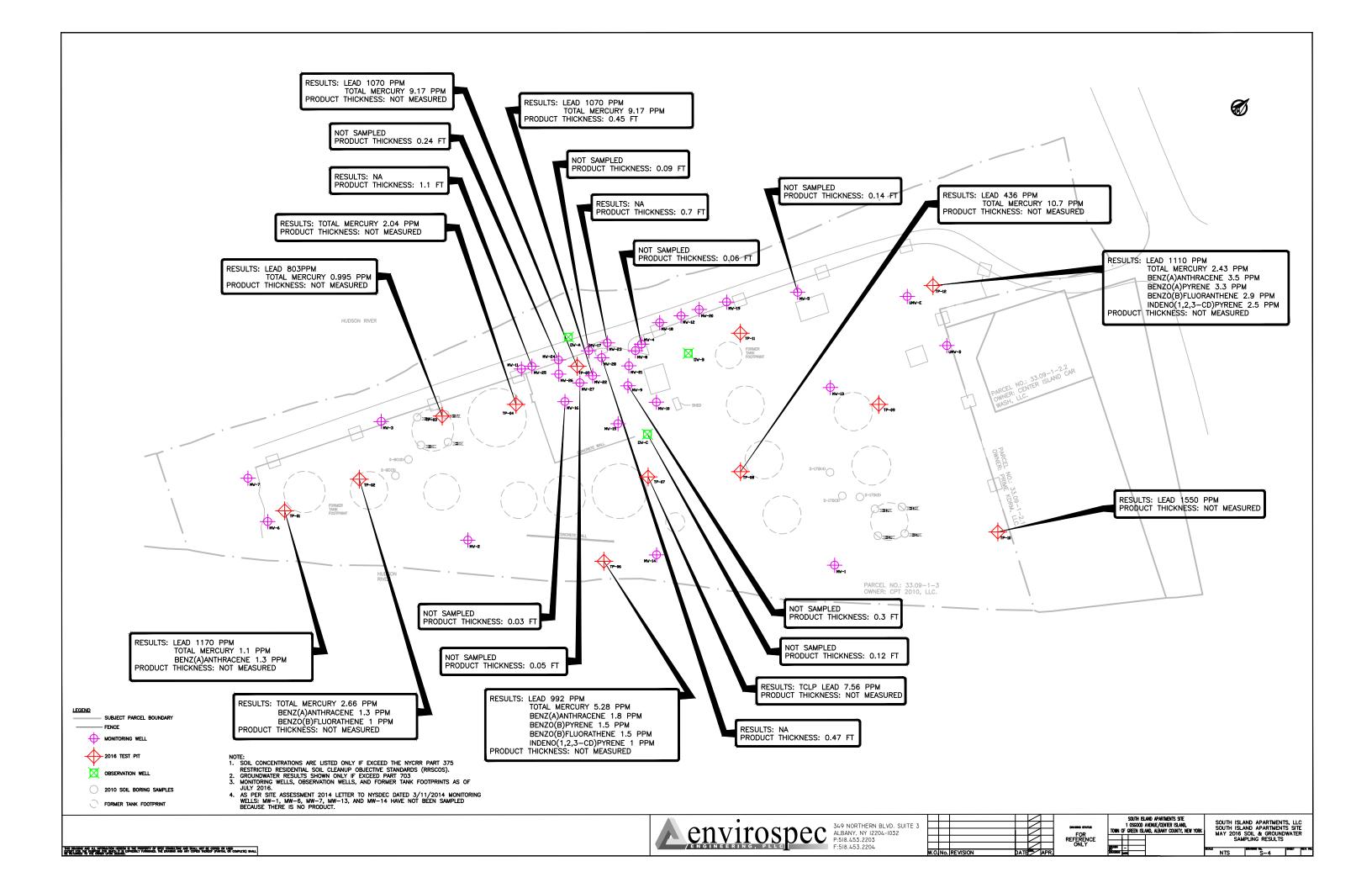
FIGURES

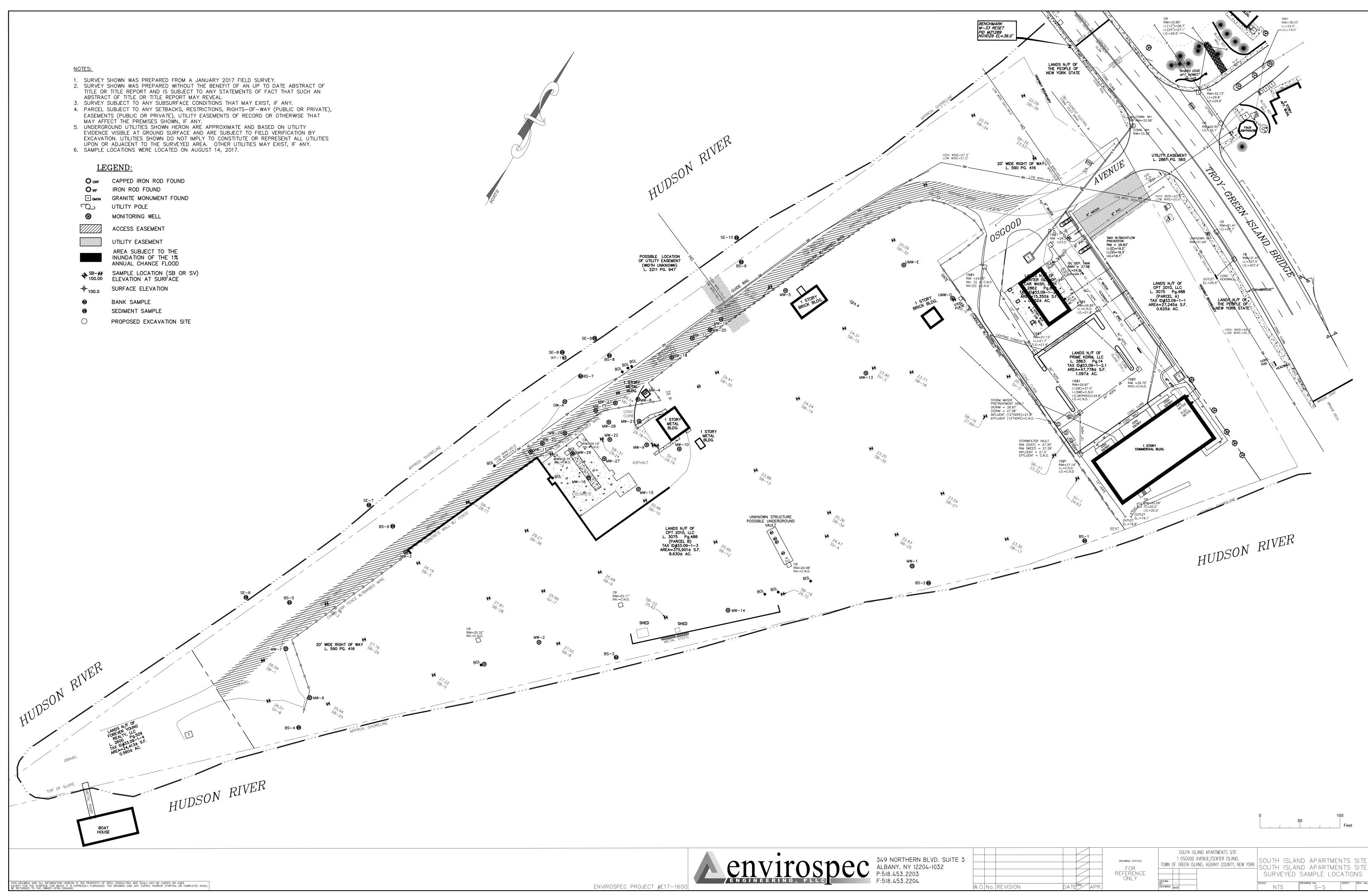

Figure 1	Site Location Map
Figure 2	NYSDEC Environmental Resource Mapper
Figure 3	USFWS National Wetlands Inventory
Figure 4	FEMA Flood Insurance Rate Map




DRAWINGS

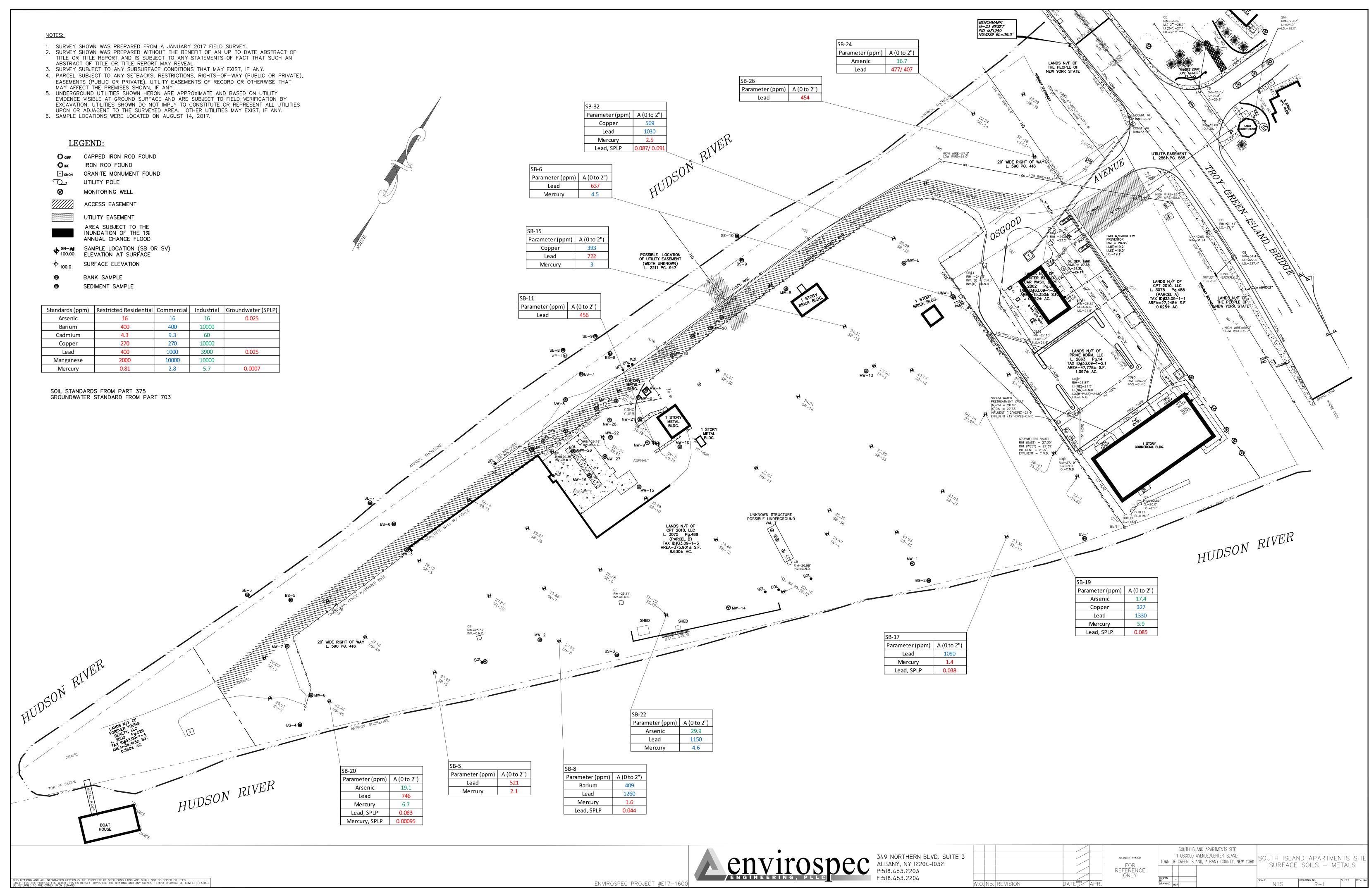
S-1	SITE PLAN
S-2	HISTORICAL SOIL & GROUNDWATER SAMPLING RESULTS
S-3	HISTORICAL MEASURED LNAPL
S-4	MAY 2016 SOIL & GROUNDWATER SAMPLING RESULTS
S-5	SURVEYED SAMPLE LOCATIONS
R-1	SURFACE SOILS – METALS
R-2	SUBSURFACE SOILS – METALS
R-3	SURFACE SOILS – SVOCS
R-4	SUBSURFACE SOILS – SVOCS
R-5	SURFACE AND SUBSURFACE SOILS – TPH
R-6	LNAPL THICKNESS
R-7	SOIL VAPOR – BTEX RESULTS
R-8	GROUNDWATER EXCEEDANCES
R-9	BANK AND SEDIMENT – METALS
R-10	BANK AND SEDIMENT SAMPLES – SVOCS
R-11	BANK AND SEDIMENT – TPH RESULTS
C-1	CROSS SECTION LOCATIONS
C-2	CROSS SECTION A-A'
C-3	CROSS SECTION B-B'
C-4	HIGH TIDE GROUNDWATER ELEVATION CONTOURS
C-5	LOW TIDE GROUNDWATER ELEVATION CONTOURS

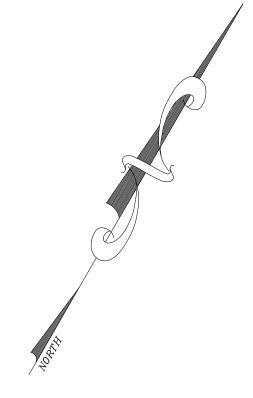

PARCEL NO: 33.09-1-2.2 PARCEL NO: 33.09-1-2.2 OWNER: JELAND CAR OWNER: U.C. WASH, U.C. WASH, U.C. THE PARCEL PARCEL NO: 33.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 CAR PARCEL NO: 35.09-1-2.2 PARCEL NO: 35.09-1-2 PARCEL NO: 35.09-1-2.2 PARCEL NO: 35.09-1-2.2
PARTICIPATION AND A CONTRACT TO A CONTRACT T
SOUTH ISLAND APARTMENTS STE 1 050000 AMBUE/CONTR ISLAND, TOW OF GEEN ISLAND, ABANY COUNTY, NEW YORK SOUTH ISLAND APARTMENTS, LLC SOUTH ISLAND APARTMENTS, STE SOUTH ISLAND APARTMENTS, STE SOUTH ISLAND APARTMENTS, STE SOUTH ISLAND APARTMENTS, STE SOUTH ISLAND APARTMENTS, LLC SOUTH ISLAND APARTMENTS, STE SOUTH ISLAND APARTMENTS, STE

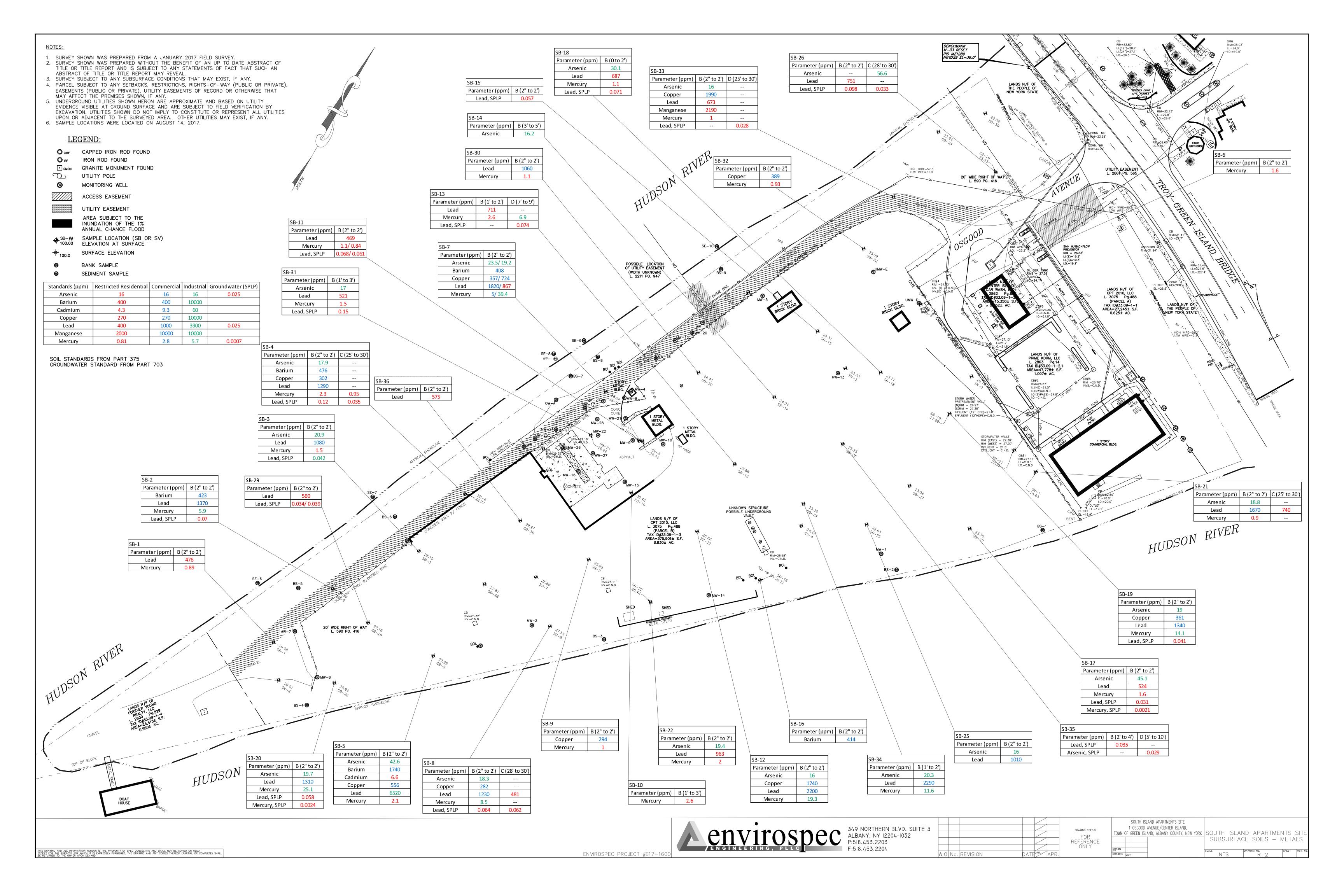


FEET 0.03 0.00-0.64 0.00-0.07 0.00-0.54 0.02-1.86 0.00-0.25 0.00-0.42 0.00-0.10 0.00-0.03	Ś	
PARCEL NO.: 33.09-1-22 PARCEL CENTER ISLAND CAR OWNER: U.C. WASH, U.C.		
PARCELR OWNER: U.C. WASH. U.C. ONNER: PRIME KORM		
S-20	YEAR FEET 2012 NDT MEASUR 2013 0.00-0.04 2014 0.00-0.26	
YEAR FEET 2005 0.00 2006 N□T 2007 0.00 2008 0.00-0.01 2010 N□T 2010 0.00-0.14 2011 0.00-0.05 2012 0.00-0.17 2013 0.00-0.06 2014 0.00-0.01	RED	
	South ISJAND APAPTMENTS SITE 1 055000 Avenue/Contre ISJAND, Man of Green us and Julian of Manity Heavy More	SOUTH ISLAND APARTMENTS, LLC

DATE	APR.	ONLT	DRAMM DRAMMG	-		SCALE	NTS	S-3	SHEET	REV. No.
		REFERENCE			-		HISTORIC	AL MEASURED	LNAPL	
		FOR	TOWN	of green is	AND, ALBANY COUNTY, NEW YORK			AND APARTME		Έ
		DRAWING STATUS		1 0SG00D	avenue/center Island,		SOUTH ISL	AND APARTME	NTS, LL	.c
				SOUTH IS	land apartments site					

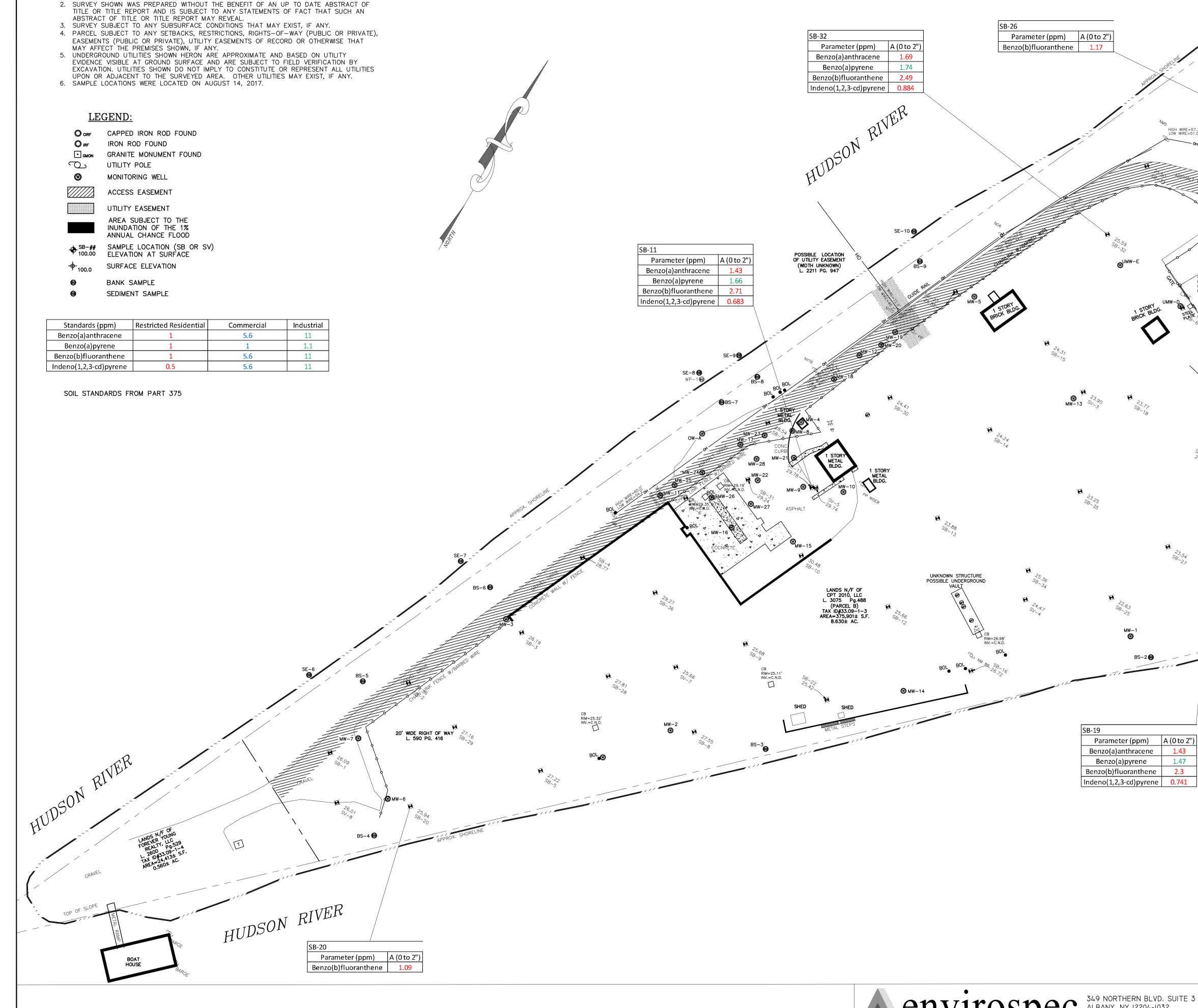

	CAPPED IRON ROD FOUND IRON ROD FOUND
	GRANITE MONUMENT FOUND
പ	UTILITY POLE
W	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE
+ + 100.0	SURFACE ELEVATION
69	BANK SAMPLE
8	SEDIMENT SAMPLE
0	PROPOSED EXCAVATION SITE

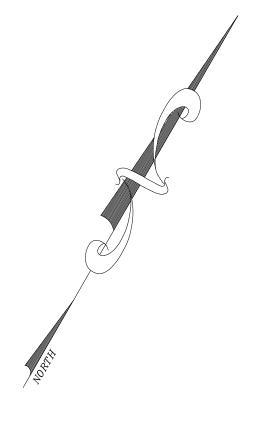



- ABSTRACT OF TITLE OR TITLE REPORT MAY REVEAL.
- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT

	CAPPED IRON ROD FOUND
	IRON ROD FOUND
	GRANITE MONUMENT FOUND
ပ	UTILITY POLE
0	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE
- ∲- 100.0	SURFACE ELEVATION
ß	BANK SAMPLE

Arsenic	16	16	16	0.025
Barium	400	400	10000	
Cadmium	4.3	9.3	60	
Copper	270	270	10000	
Lead	400	1000	3900	0.025
Manganese	2000	10000	10000	
Mercury	0.81	2.8	5.7	0.0007

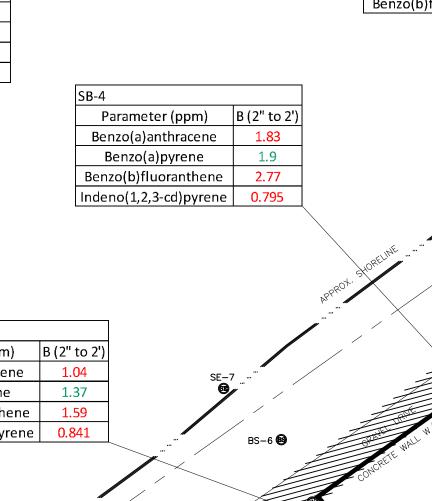


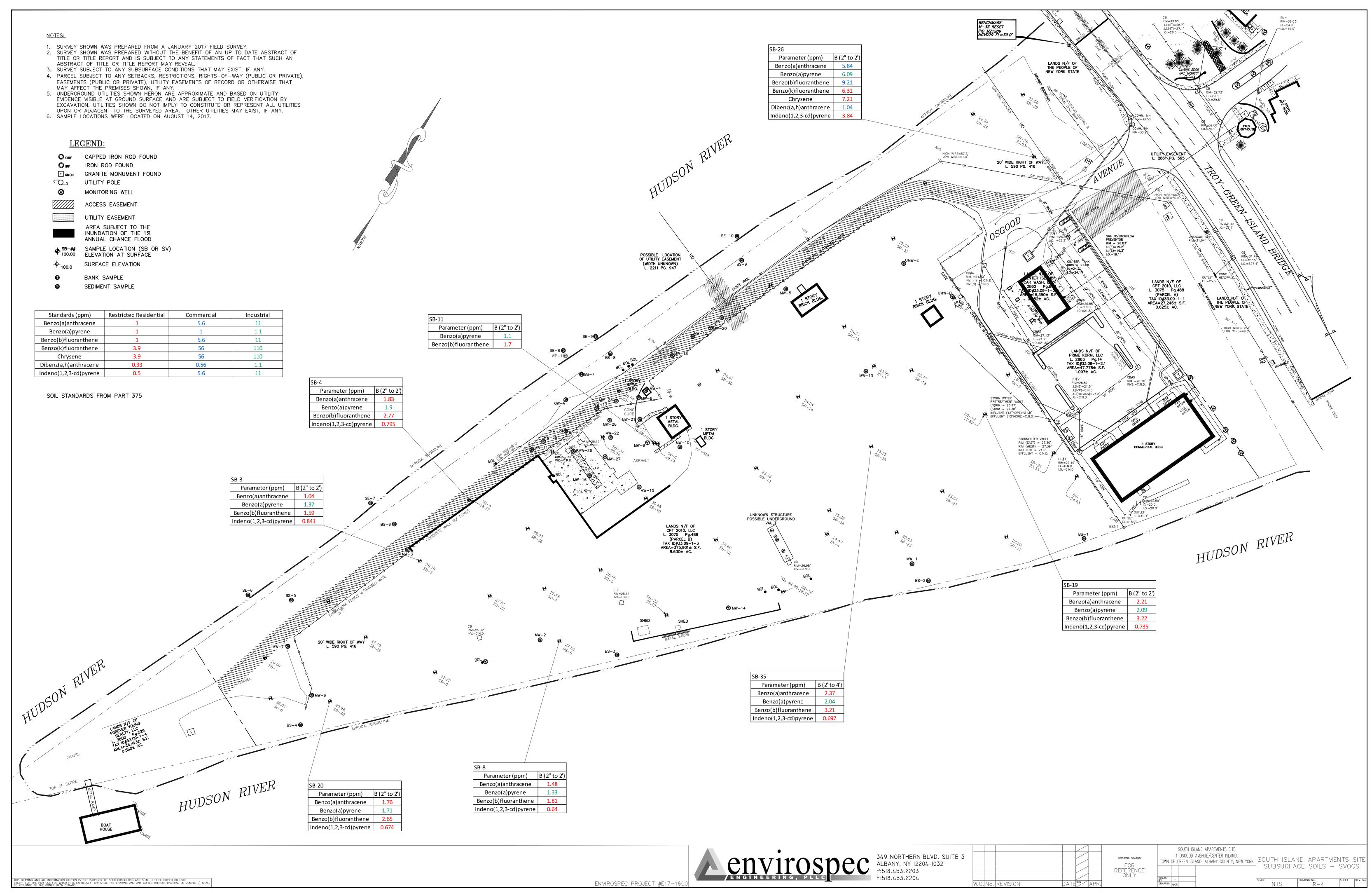

NOTES:

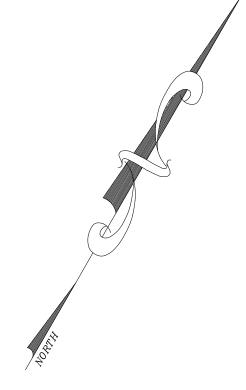
- SURVEY SHOWN WAS PREPARED FROM A JANUARY 2017 FIELD SURVEY.
 SURVEY SHOWN WAS PREPARED WITHOUT THE BENEFIT OF AN UP TO DATE ABSTRACT OF TITLE OR TITLE REPORT AND IS SUBJECT TO ANY STATEMENTS OF FACT THAT SUCH AN
- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT

	CAPPED IRON ROD FOUND
	IRON ROD FOUND
	GRANITE MONUMENT FOUND
ပ	UTILITY POLE
W	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
- ∲- ^{SB-} ## 100.00	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE
- 100.0	SURFACE ELEVATION
₿	BANK SAMPLE
69	SEDIMENT SAMPLE

Standards (ppm)	Restricted Residential	Commercial	Industrial
Benzo(a)anthracene	1	5.6	11
Benzo(a)pyrene	1	1	1.1
Benzo(b)fluoranthene	1	5.6	11
Indeno(1,2,3-cd)pyrene	0.5	5.6	11

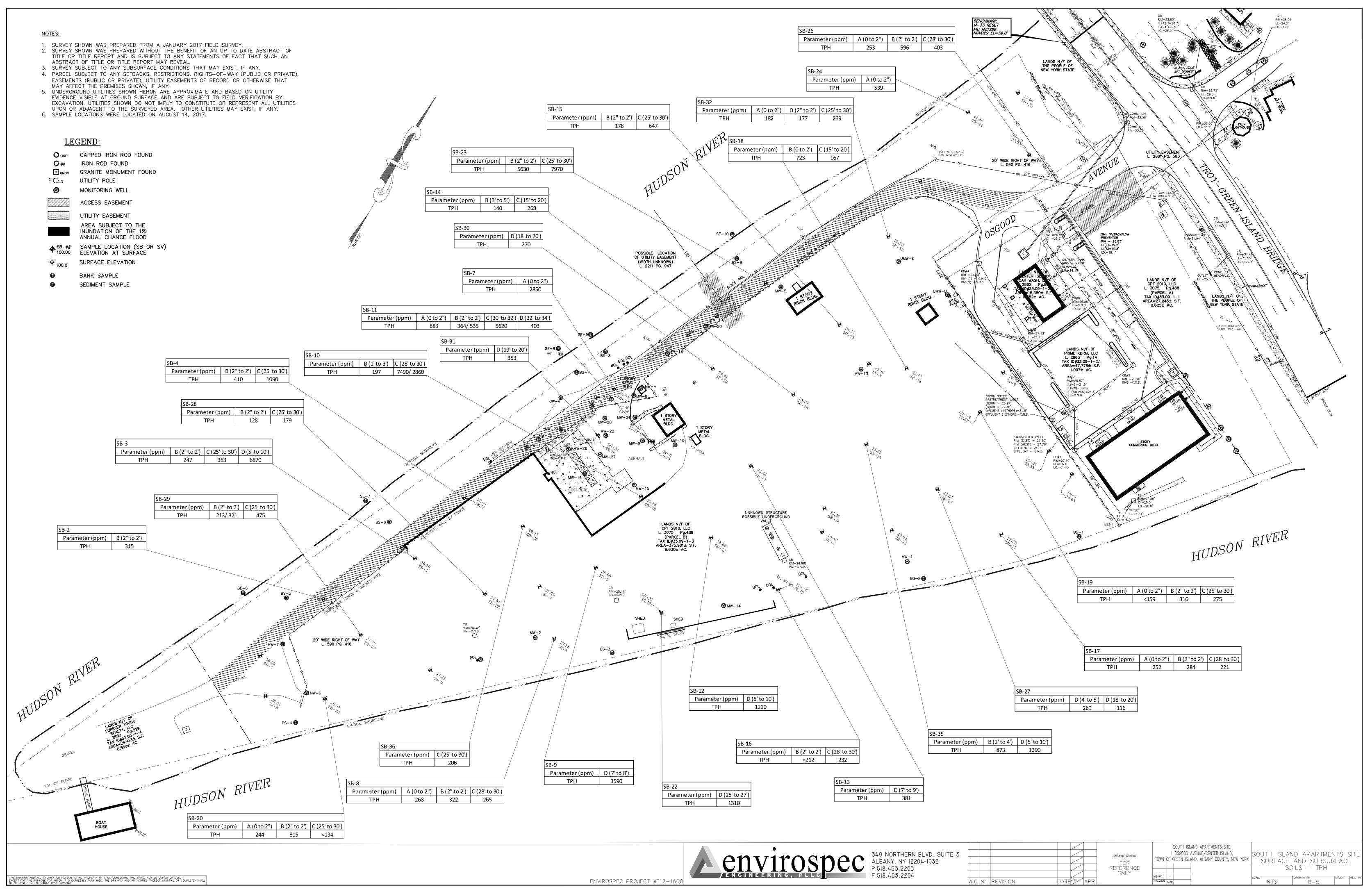


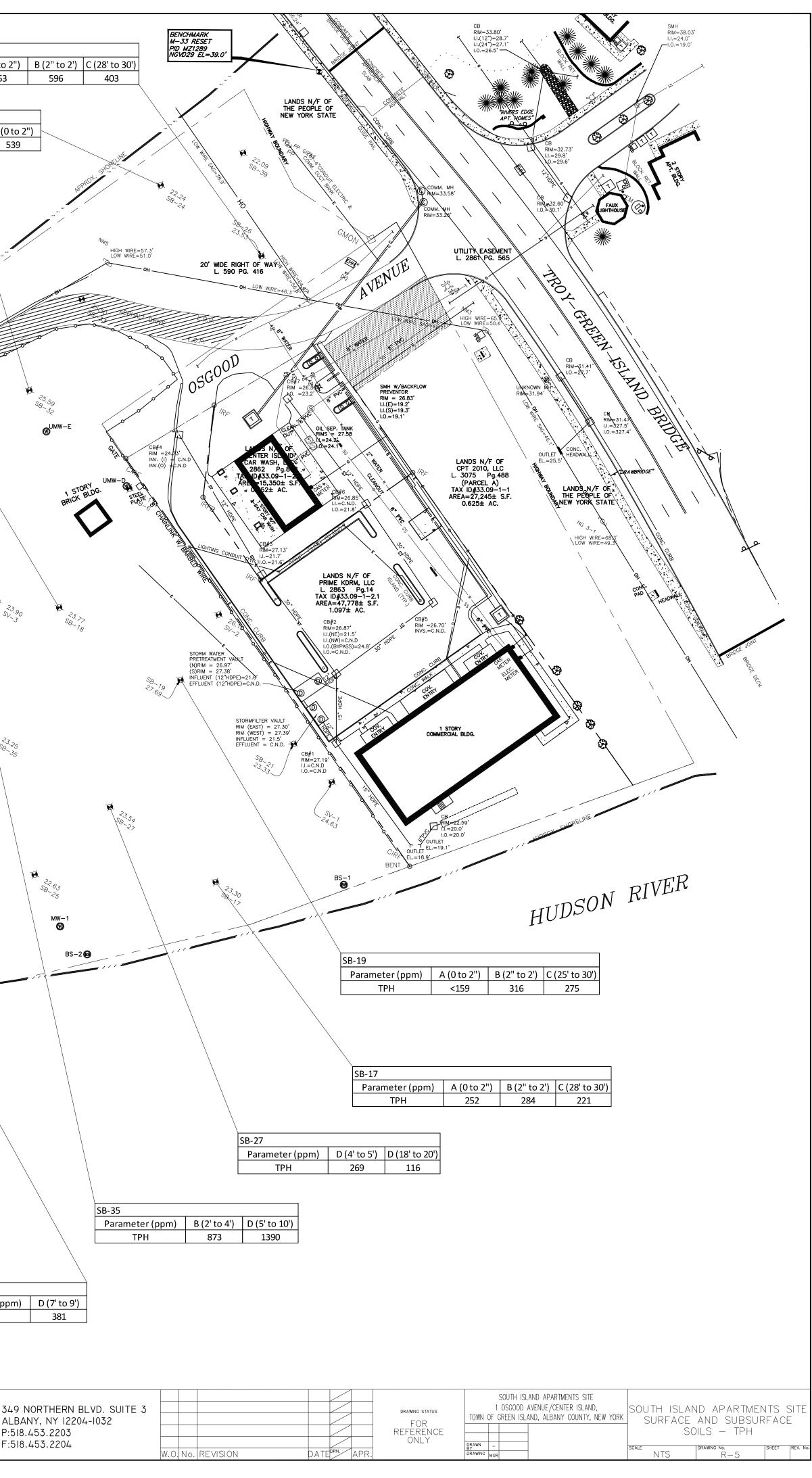

		св	SMH
BENCHMARK M-33 RESET PID MZ1289 NGVD29 EL=39.0'		RM=33.80' I.I.(12")=28.7' I.I.(24")=27.1' I.O.=26.5'	RIM=38.03' I.I.=24.0' I.O.=19.0'
LANDS N THE PEOF NEW YORK	V/F OF PLE OF K STATE	RIVERS EDGE AFT. HOMES	
		1.1.=29.8 0.=29.6'	TITIT A A A A A A A A A A A A A
22.24 SB-24 28 24 56 24 56	COMM. WH		
58 23,53	COMM. AN RIM=33.26	RIM ₇ 52.60 1.0.≦30.1 ⁻ ↓ 2 Lighthouse	
=57.3' =51.0' - он 20' WDE RIGHT OF WAY	NUE L	ILITY EASEMENT	
OH LOW WIRE=46.3			
Contraction of the second seco	e ente e re e	HIGH WIRE=65.9 •• HIGH WIRE=50.6 •• HIGH WIRE=50	
osGOOD OSGOOD RIM = 26.5 NO. = 23.2		CB RIM=31.41' UNKNOWN MH** RIM=31.94' ***	
	.I.I.(E)=19.2' I.I.(S)=19.3' I.O.=19.1'	CB RIM=31.94'	BR
	Sh0.=24.1		BRIDGERAN
ARB 15,350± S.F. ARB 15,350± S.F. ARB 25,350± S.F.			RAWBRIDGE"
		No 3.	
		HIGH WIRE=6833' LOW WIRE=49.3	
	LANDS N/F OF PRIME KDRM, LLC L. 2863 Pg.14 TAX ID#33.09-1-2.1 AREA=47,778± S.F.		3 CONTE PAD HEADMAN
	1.097± AC. CB#2 RIM=26.87' I.I.(NE)=21.5' I.I.(NW)=C.N.D I.O.(BYPASS)=24.8' 30'		
STORM WATER PRETREATMENT VADUT (N)RIM = 26.97' (S)RIM = 27.38' (S)RIM = 27.38' EFFLUENT (12"HDPE)=21.6' EFFLUENT (12"HDPE)=C.N.D.	1.0.(BYPASS)=24.8' 5' '''	Entre Sterrer 1. 18	A H H H H H H H H
INFLUENT = 21.5' EFFLUENT = C.N.D.	A STORY COMMERCIAL	BLDG.	
Se CB# RIM= ?3.33 I.L= I.L=	21 =27.19 =C.N.D =C.N.D		
		.59' SUGRELINE	
	OUTLET C/PA EL.=18.9'	0'	
\$ \$8.15	BS-1		RIVER
		HUDSON	101
·")			
7		SOUTH ISLAND APARTMENTS SITE 1 OSGOOD AVENUE/CENTER ISLAND,	
3	DRAWING STATUS FOR REFERENCE ONLY	TOWN OF GREEN ISLAND, ALBANY COUNTY, NEW YORK	SOUTH ISLAND APARTMENTS SITE SURFACE SOILS — SVOCS SCALE NTS DRAWING NO. SHEET REV. NO.
		DRAWN – DRAWNG MGR	SCALE DRAWING NO. SHEET REV. NO.

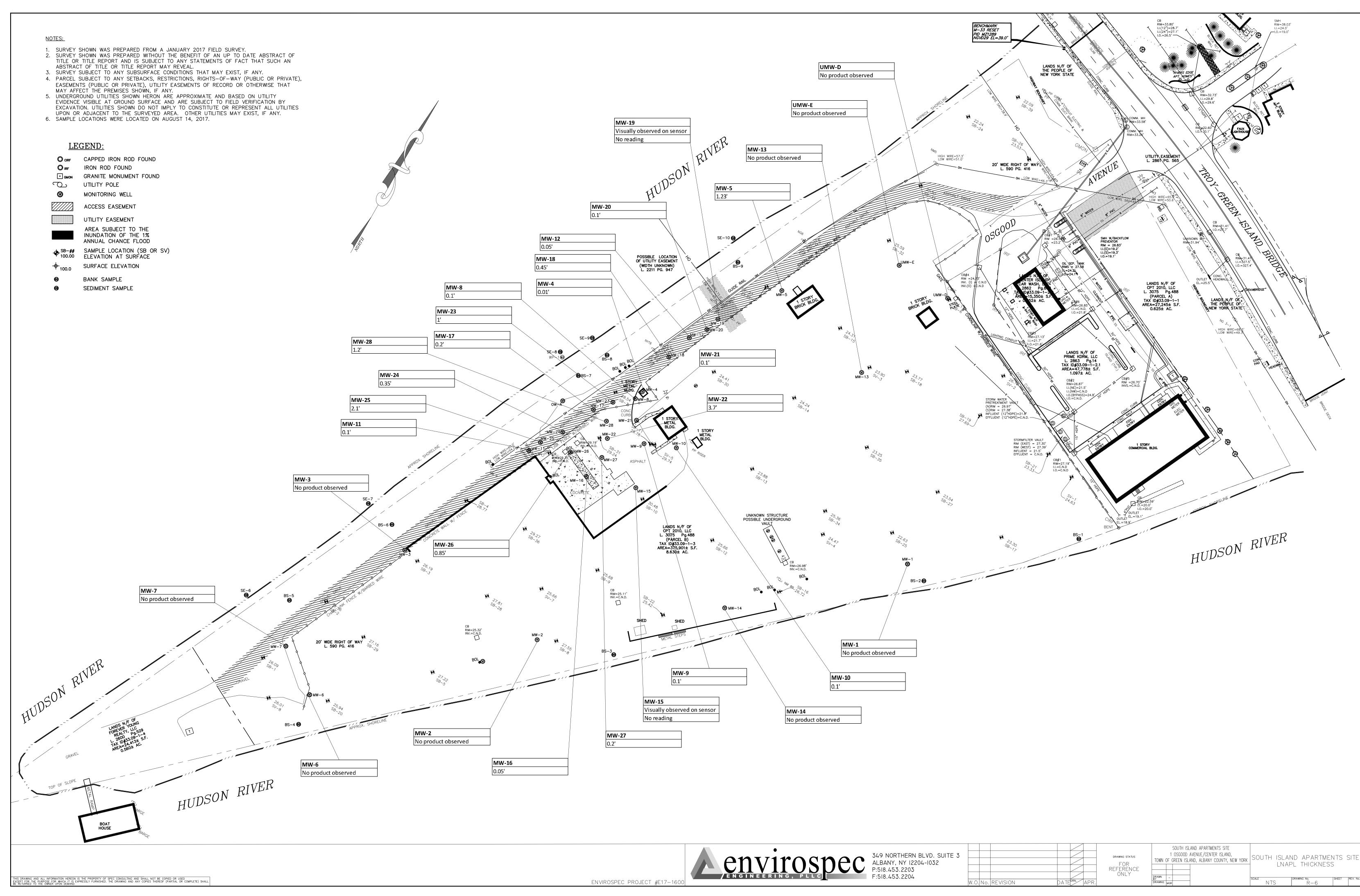

- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.

	CAPPED IRON ROD FOUND
	IRON ROD FOUND
	GRANITE MONUMENT FOUND
C)	UTILITY POLE
W	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
◆ SB-## 100.00	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE
A	

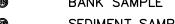
Standards (ppm)	Restricted Residential	Commercial	Industrial
Benzo(a)anthracene	1	5.6	11
Benzo(a)pyrene	1	1	1.1
Benzo(b)fluoranthene	1	5.6	11
Benzo(k)fluoranthene	3.9	56	110
Chrysene	3.9	56	110
Dibenz(a,h)anthracene	0.33	0.56	1.1
Indeno(1,2,3-cd)pyrene	0.5	5.6	11

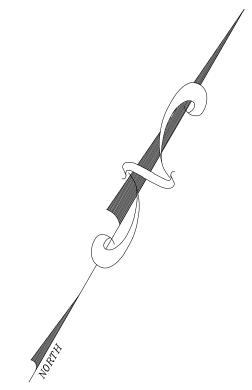


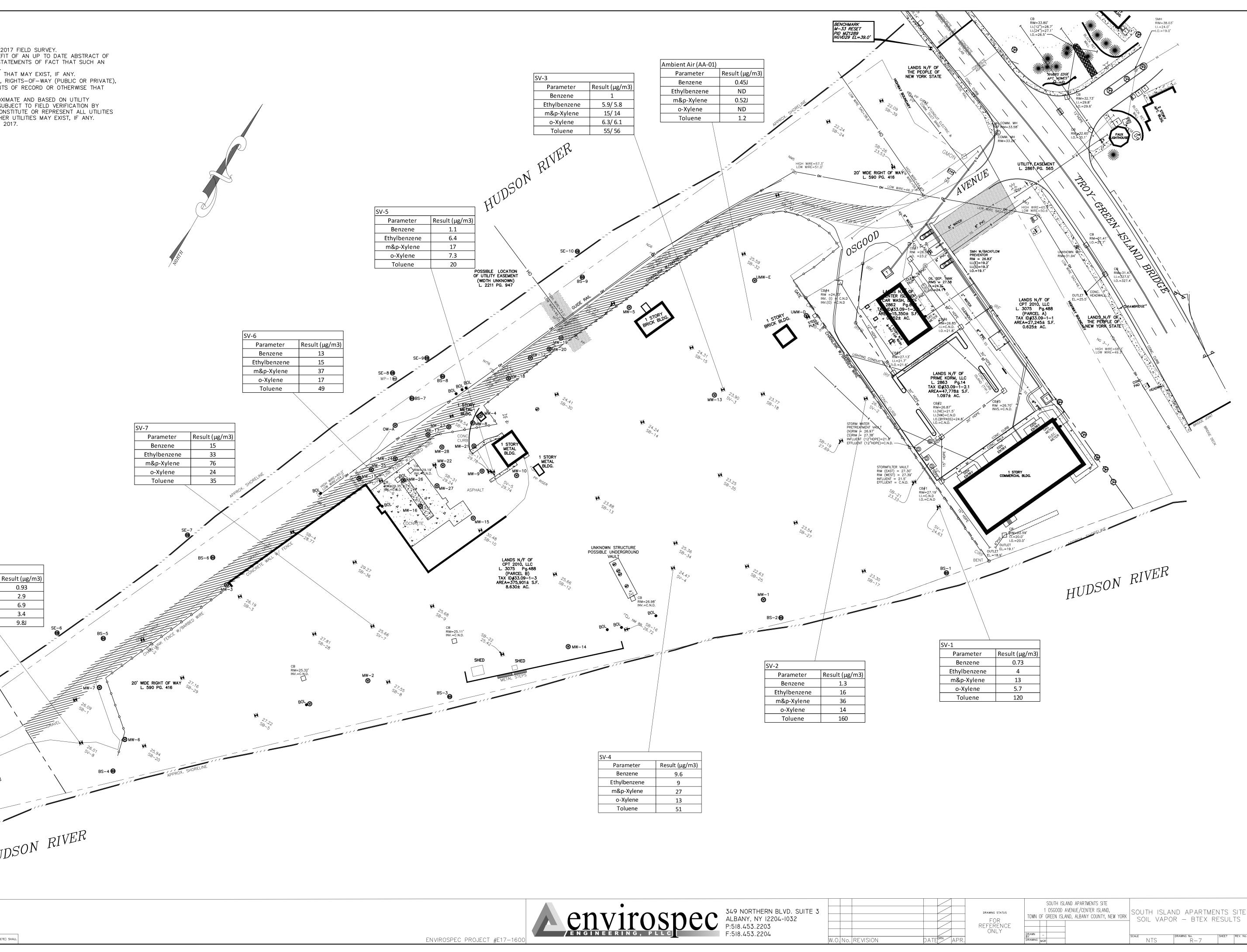


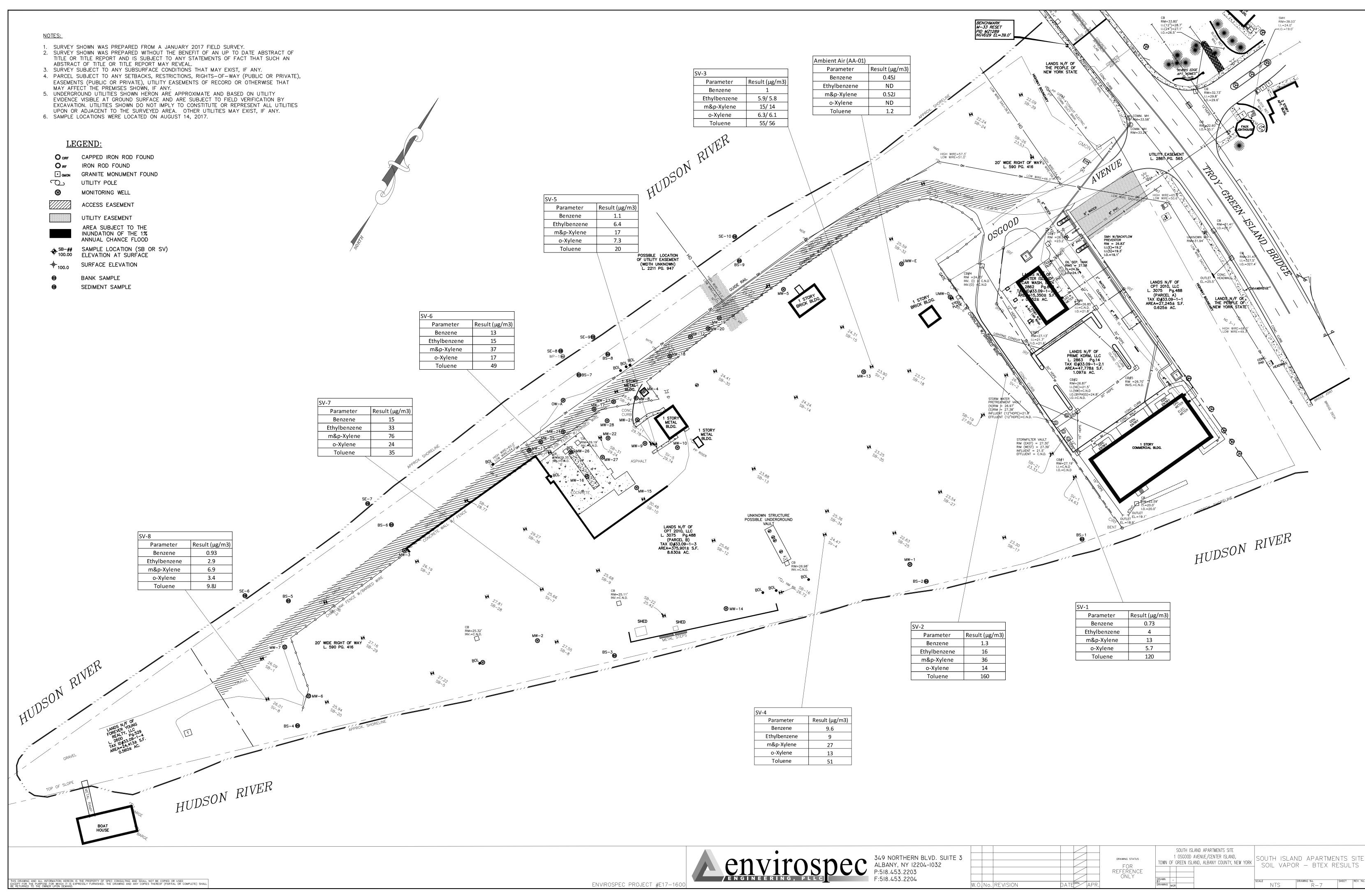


- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.
- EXCAVATION. UTILITIES SHOWN DO NOT IMPLY TO CONSTITUTE OR REPRESENT ALL UTILITIES UPON OR ADJACENT TO THE SURVEYED AREA. OTHER UTILITIES MAY EXIST, IF ANY.

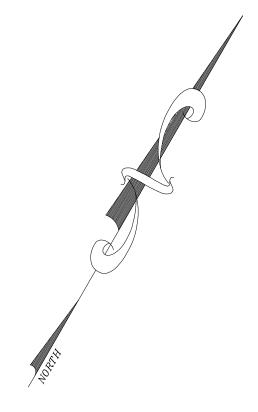

- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.

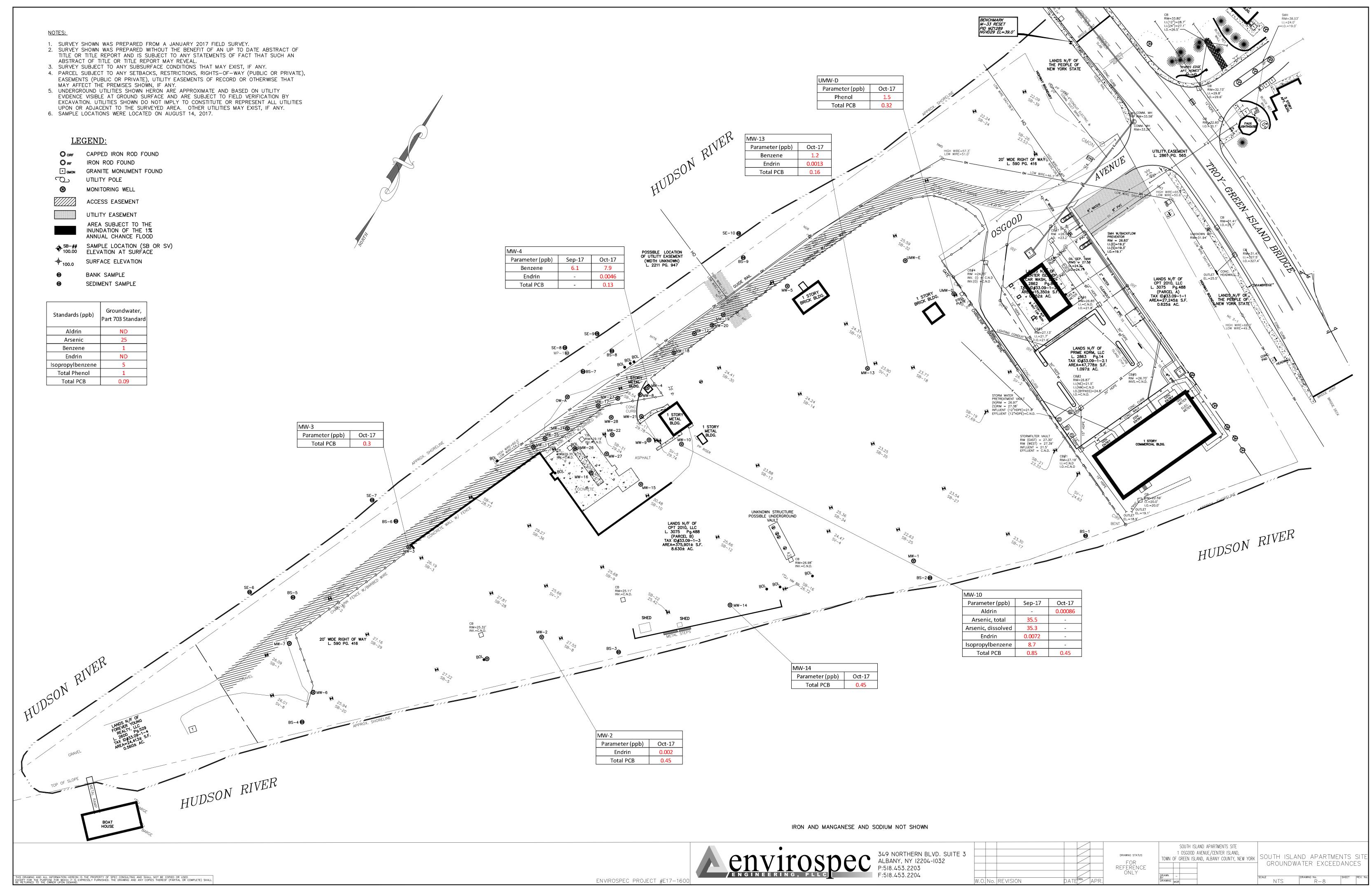




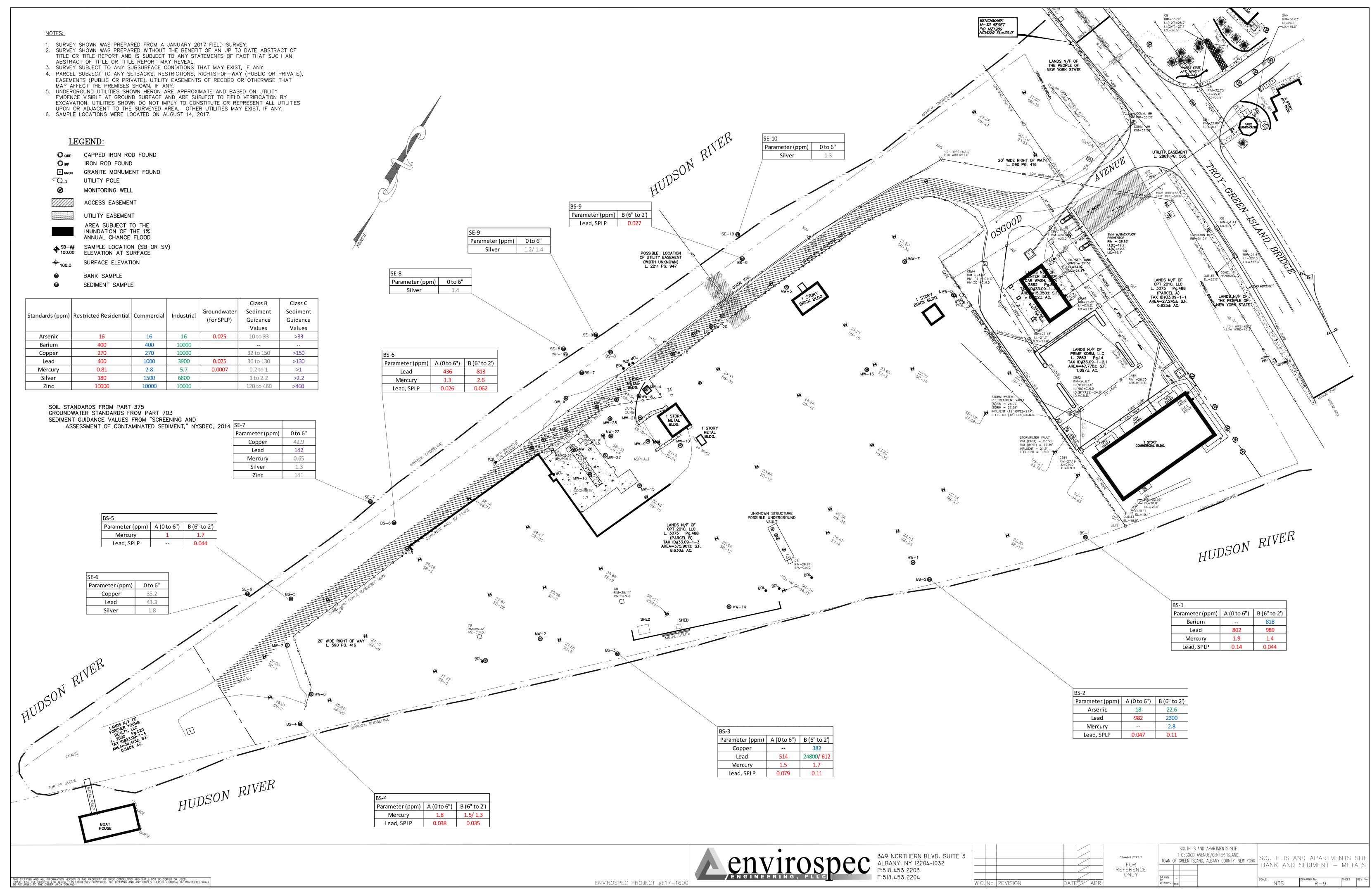

- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.
- EVIDENCE VISIBLE AT GROUND SURFACE AND ARE SUBJECT TO FIELD VERIFICATION BY UPON OR ADJACENT TO THE SURVEYED AREA. OTHER UTILITIES MAY EXIST, IF ANY.

LEGEND.				
	CAPPED IRON ROD FOUND IRON ROD FOUND			
	GRANITE MONUMENT FOUND			
ပ	UTILITY POLE			
\odot	MONITORING WELL			
	ACCESS EASEMENT			
	UTILITY EASEMENT			
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD			
	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE			
+ 100.0	SURFACE ELEVATION			
~				

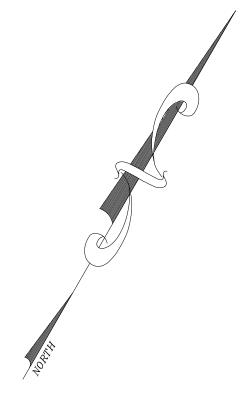


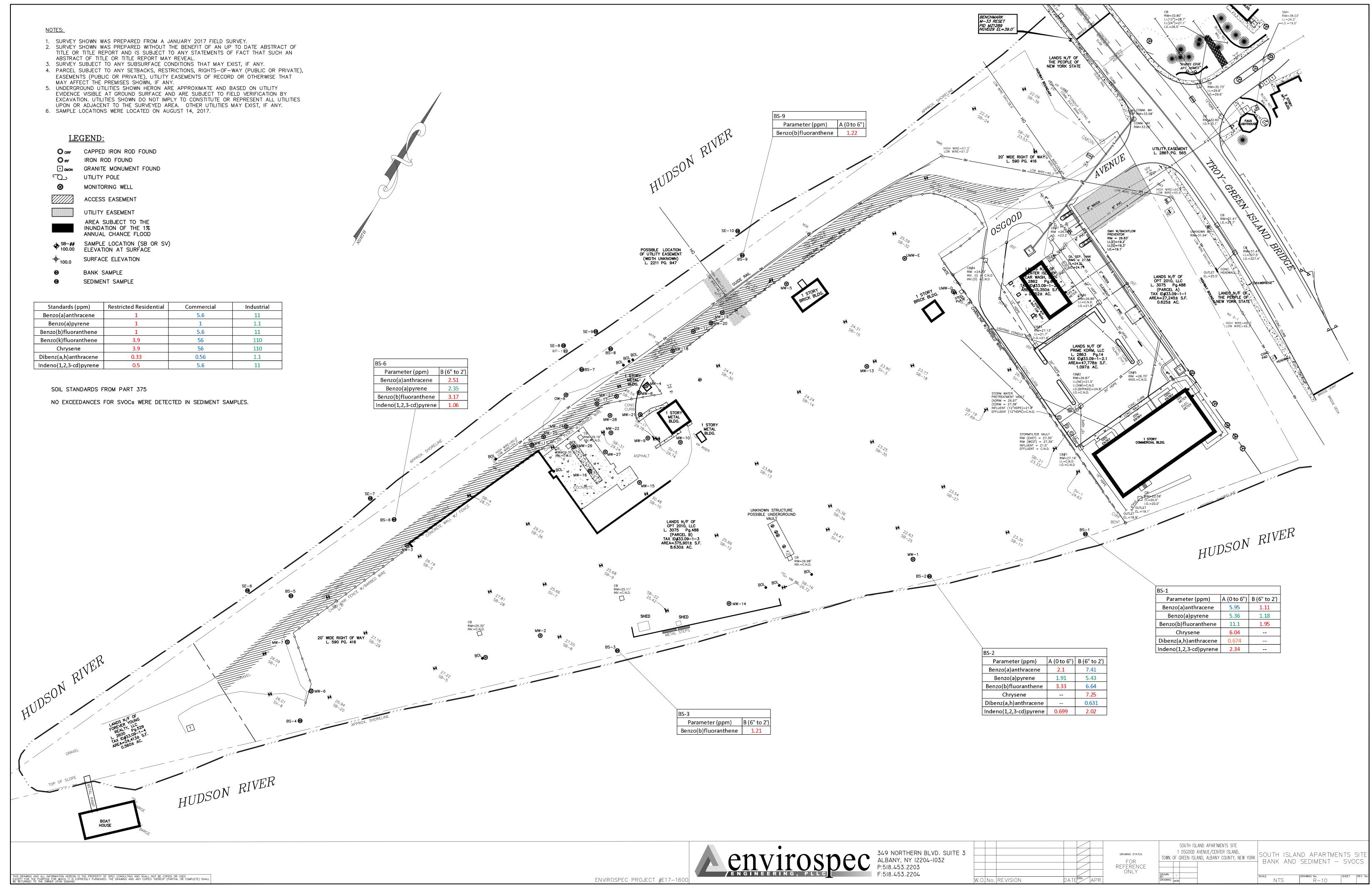

- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT
- EVIDENCE VISIBLE AT GROUND SURFACE AND ARE SUBJECT TO FIELD VERIFICATION BY

	CAPPED IRON ROD FOUND	
	IRON ROD FOUND	
	GRANITE MONUMENT FOUND	
ပြ	UTILITY POLE	
8	MONITORING WELL	
	ACCESS EASEMENT	
	UTILITY EASEMENT	
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD	
◆ SB-## 100.00	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE	
- ∲ - _{100.0}	SURFACE ELEVATION	
69	BANK SAMPLE	



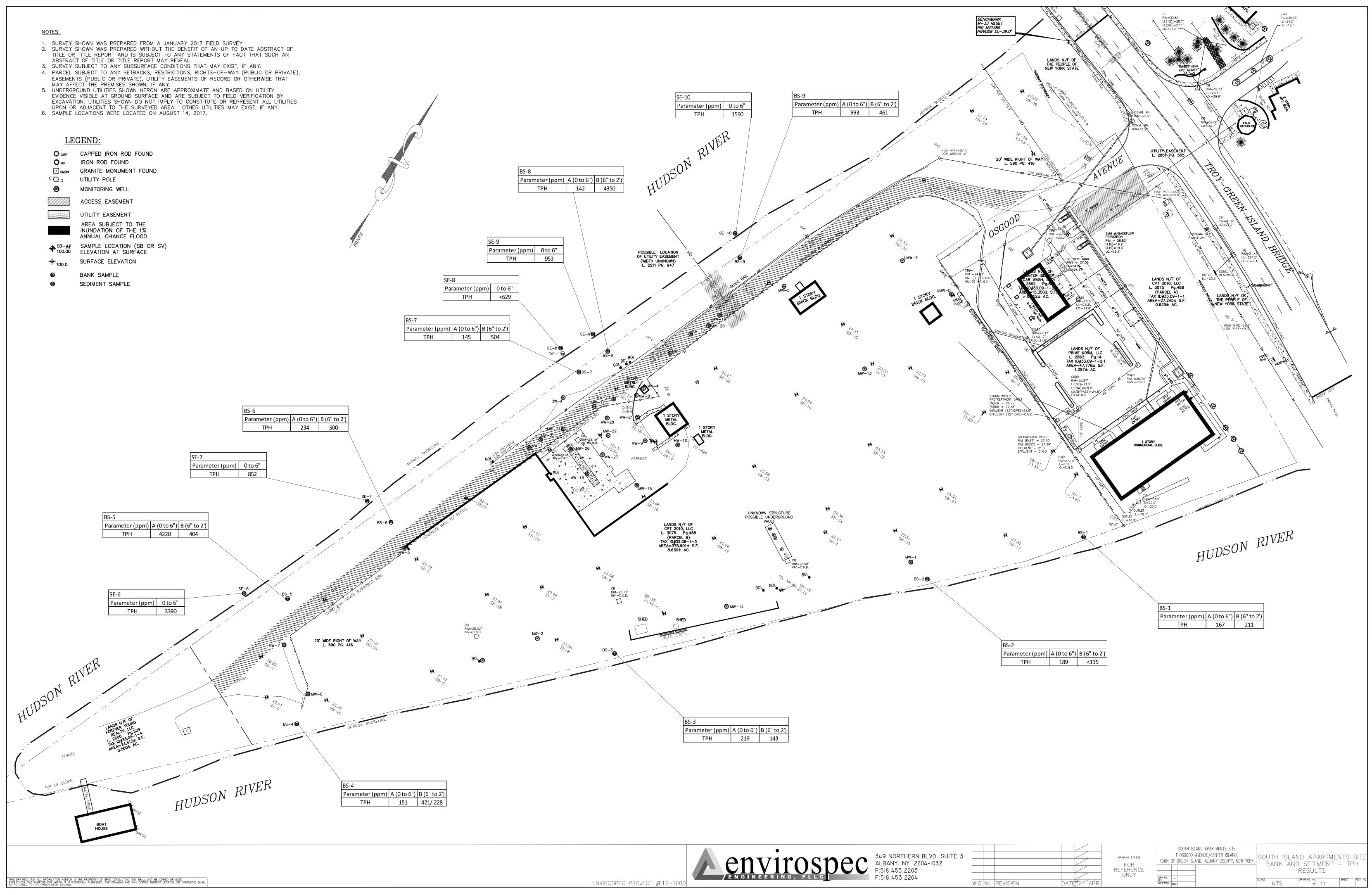
Standards (ppb)	Groundwater, Part 703 Standard
Aldrin	ND
Arsenic	25
Benzene	1
Endrin	ND
lsopropylbenzene	5
Total Phenol	1
Total PCB	0.09


- ABSTRACT OF TITLE OR TITLE REPORT MAY REVEAL.
- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT
- EVIDENCE VISIBLE AT GROUND SURFACE AND ARE SUBJECT TO FIELD VERIFICATION BY

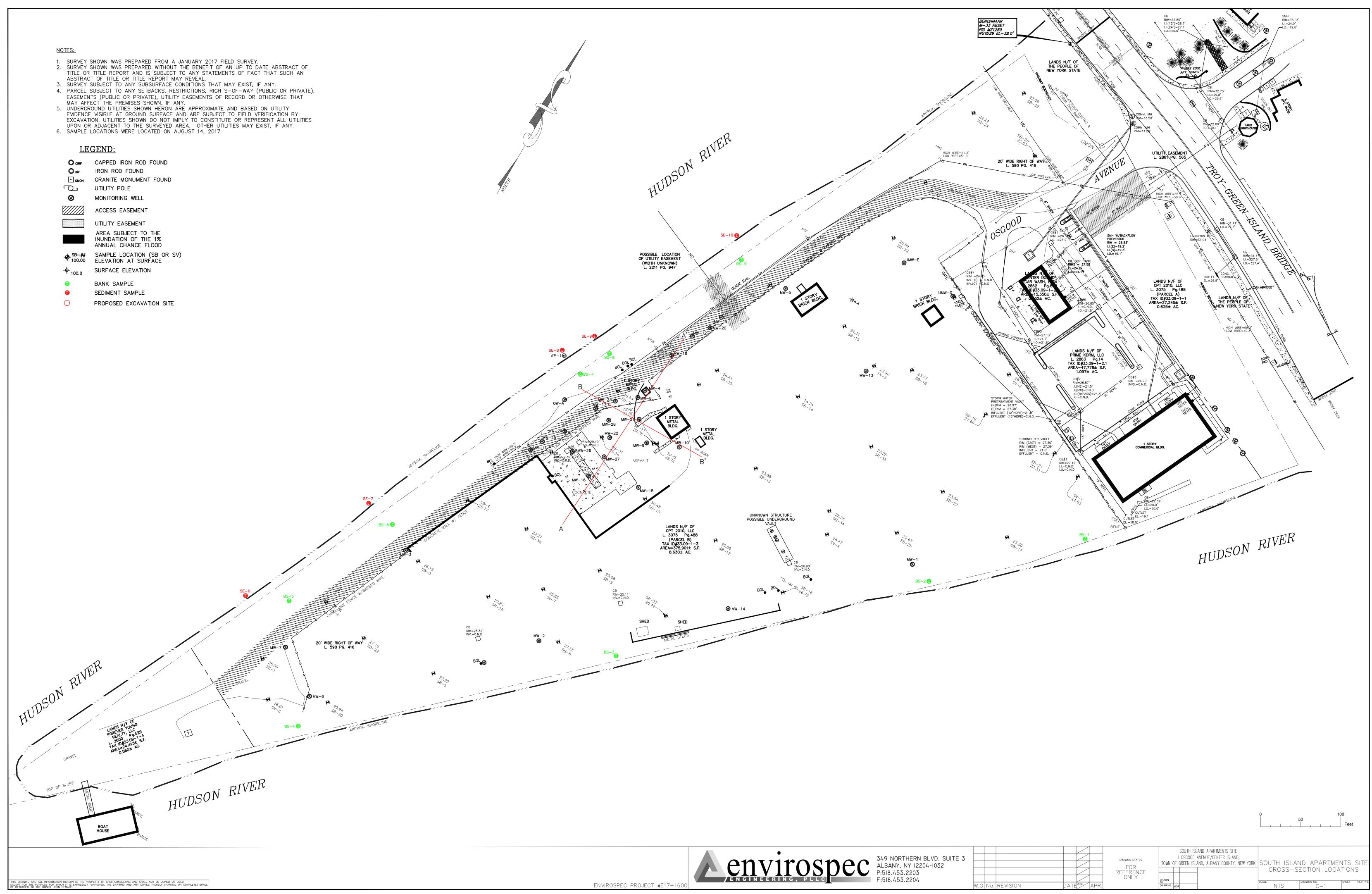


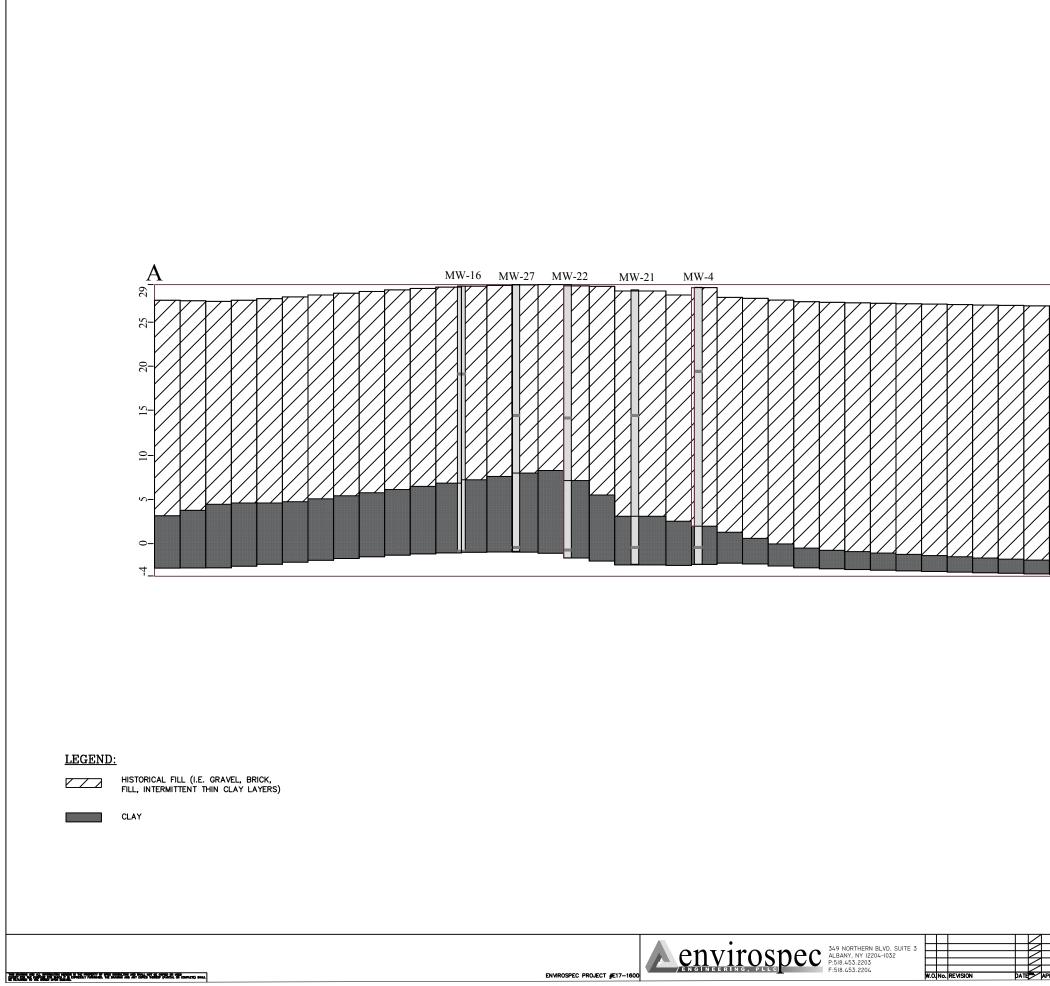
- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT
- EVIDENCE VISIBLE AT GROUND SURFACE AND ARE SUBJECT TO FIELD VERIFICATION BY

	CAPPED IRON ROD FOUND
	IRON ROD FOUND
	GRANITE MONUMENT FOUND
ပ	UTILITY POLE
W	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE
- +100.0	SURFACE ELEVATION

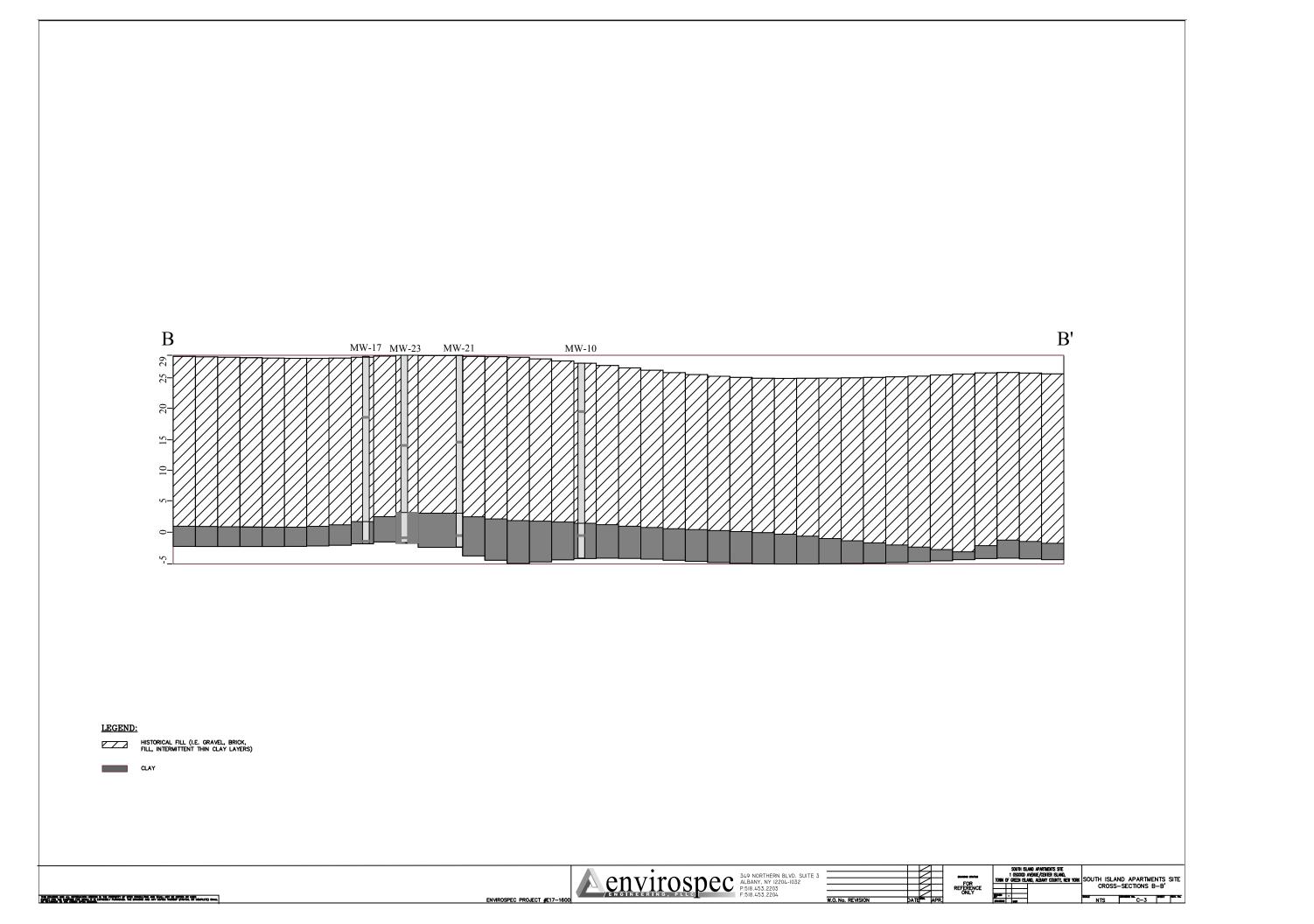

Standards (ppm)	Restricted Residential	Commercial	Industrial
Benzo(a)anthracene	1	5.6	11
Benzo(a)pyrene	1	1	1.1
Benzo(b)fluoranthene	1	5.6	11
Benzo(k)fluoranthene	3.9	56	110
Chrysene	3.9	56	110
Dibenz(a,h)anthracene	0.33	0.56	1.1
Indona(1.2.3 cd) nyrana	0.5	5.6	11

- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.
- EVIDENCE VISIBLE AT GROUND SURFACE AND ARE SUBJECT TO FIELD VERIFICATION BY UPON OR ADJACENT TO THE SURVEYED AREA. OTHER UTILITIES MAY EXIST, IF ANY.

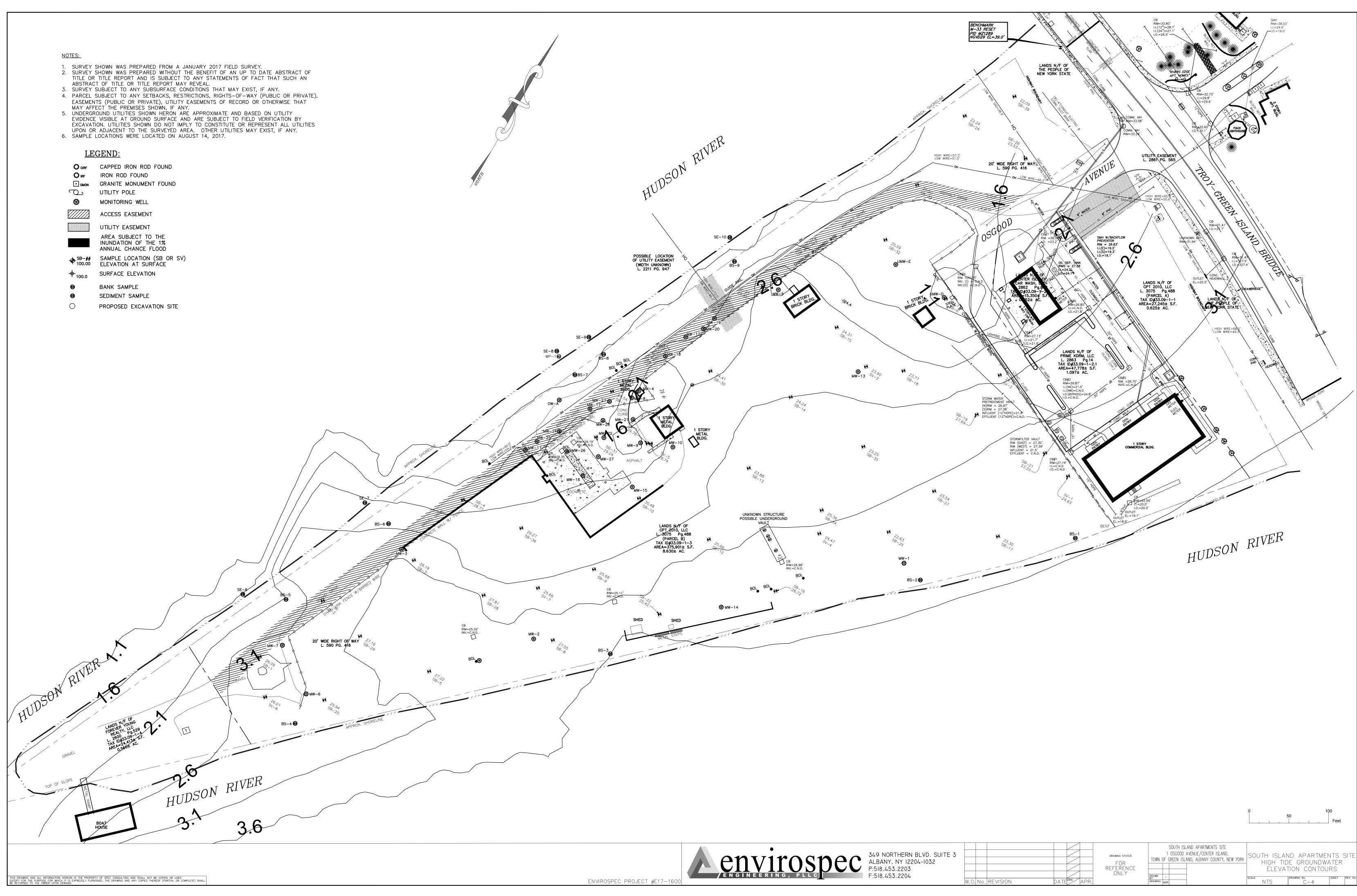



- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.

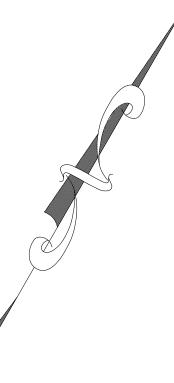
CAPPED	IRON	ROD	FOUND


	IRON ROD FOUND
• GMON	GRANITE MONUMENT F
പ	UTILITY POLE
Ø	MONITORING WELL

ACCESS EASEMENT
UTILITY EASEMENT
AREA SUBJECT TO THE INUNDATION OF THE 1%



				A 1			
				A'			
~	, , , , ,			<u>, , , , , , , , , , , , , , , , , , , </u>			
X	// X	\mathbb{Z}	/	1//			
ł	/X/	X	.//	K/			
]	/X/X	Χ	//	\mathbb{K}			
X	///X	\bigwedge	//	1/1			
Ł	///	/	//	1//			
ł	/X/	X		K/			
1	/X/X	Χ	//	\mathbf{k}			
ł	ΛX	/	//	1//			
Ł	///	/}	//	1//			
ł	/X/	X		K/			
]	/X/X.	Λ	//	1/1			
ł	ΛX	/	//	1//			
4			\angle				
	anamad suutud	1	South Isl. Osgood /	and apartments site Avenue/center Island, No, Albany County, New York	501171 101 11		TS 617F
	FOR REFERENCE ONLY			ALANTI COURTS REN TURK		SECTIONS A-	-A'
VPR.			1		NTS	C-2	


- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.


	CAPPED IRON ROD FOUND
	IRON ROD FOUND
	GRANITE MONUMENT FOUND
C)	UTILITY POLE
8	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
+ + + + + + + + + + + + + + + + + + + +	SAMPLE LOCATION (SB OR SV) ELEVATION AT SURFACE
+ + 100.0	SURFACE ELEVATION
A	

- EASEMENTS (PUBLIC OR PRIVATE), UTILITY EASEMENTS OF RECORD OR OTHERWISE THAT MAY AFFECT THE PREMISES SHOWN, IF ANY.

	CAPPED IRON ROD FOUND
	IRON ROD FOUND
• GMON	GRANITE MONUMENT FOUND
C)	UTILITY POLE
®	MONITORING WELL
	ACCESS EASEMENT
	UTILITY EASEMENT
	AREA SUBJECT TO THE INUNDATION OF THE 1% ANNUAL CHANCE FLOOD
- ∲- ^{SB-} ## 100.00	SAMPLE LOCATION (SB OR S) ELEVATION AT SURFACE
+ + 100.0	SURFACE ELEVATION
ß	BANK SAMPLE

APPENDIX A CONCEPTUAL SITE MODEL

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

CONCEPTUAL SITE MODEL

South Island Apartments Site 1 Osgood Avenue/Center Island, Town of Green Island, Albany County, New York BCP Site # C401074

November 2017

Prepared for: South Island Apartments, LLC c/o Couch White, LLP 540 Broadway, 7th Floor Albany, New York 12201-2222

Prepared by:

349 Northern Blvd. STE 3 Albany, NY 12205

Envirospec Engineering Project E17-1600

Unauthorized alteration or addition to this Document is a violation of Section 7209 Subdivision 2 of the New York State Education Law

© Copyright 2009 Envirospec Engineering

TABLE OF CONTENTS

1.0	CONCEPTUAL SITE MODEL	. 1
2.0	PRESENCE OF ON-SITE SOURCE AREAS	. 1
3.0	POTENTIAL FOR OFF-SITE SOURCES	. 2
4.0	POTENTIAL FUTURE MIGRATION	. 2
	4.1 Migration from shallow to deeper soils	. 3
	4.2 Migration from soil to groundwater	
	4.3 Migration from soil and/or groundwater to soil gas	. 3
	4.4 Groundwater migration across site	. 3
	4.5 Migration to surface water	
5.0	POTENTIAL RECEPTORS	. 4

1.0 CONCEPTUAL SITE MODEL

The conceptual site model considers the following:

- How was the site impacted?
- Has a source area been identified? Are there multiple sources?
- Is there a historical or continuing source of contamination?
- Is there evidence of an off-site source area?
- What on-site media are currently impacted by contamination?
- What are potential contaminant pathways that could lead to future migration in soil, soil gas, and/or groundwater?
- What are the actual and potential human and/or environmental receptors?

The following sections address these questions based on the information available from historical sources and the data collected during the 2017 Remedial Investigation (RI).

2.0 PRESENCE OF ON-SITE SOURCE AREAS

The primary contaminants of concern (COCs) at this site, based on soil data collected historically and during the RI, are metals, specifically lead, mercury, and arsenic, and SVOCs.

The metals detected above CSCOs are consistent with the historic fill at the site, and there is no clear source area based on historical data and the data collected in the RI. In general, detections of SVOCs are below CSCOs, except for benzo(a)pyrene, for all soil borings except for the shallow subsurface sample at SB-26. The elevated concentrations of benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene in this area could be associated with a localized historical release. There is no evidence of migration to deeper soils in this area based on the samples collected at 28-30' bgs.

In addition to metals and SVOCs, there are also the LNAPL-impacted areas near the former loading rack and MW-5. The LNAPL impacts are associated with spills of fuel oil during historical operations at the site. Drawing R-6 shows the LNAPL thicknesses in monitoring wells at the site.

In the former loading rack area, LNAPL impacts are primarily in the center of the loading rack area and along the edge of the adjacent roadway. LNAPL thickness decreases significantly along the northern perimeter of the area at MW-4, MW-8, MW-21, MW-9, and MW-10. No significant

LNAPL layer was measured in MW-15 along the eastern side of the area, though a small amount of oil was observed on the outside of the interface probe when it was removed from the well.

Though about two (2) feet of LNAPL was observed in MW-25 along the southern boundary of the former loading rack, adjacent well MW-11 only showed a thickness of 0.1 feet. Wells further south along the roadway (MW-3 and MW-7) show no sign of LNAPL impacts. Though there were some elevated detections of TPH in bank soil samples, no indications of seeps from the loading rack area to the Hudson on the western side of the site have been observed. TPH was non-detect in the pore water sample collected near this area at WP-1.

There is one well north of the loading rack area (MW-5) that shows more than one (1) foot of LNAPL at the top of the water table. This is consistent with high TPH data at nearby soil boring location SB-23. Given the distance between this well and the former loading rack area, this is potentially due to an isolated spill. Wells MW-12, MW-18, MW-19, and MW-20, which are located between MW-5 and the former loading area, show relatively little LNAPL impact compared to MW-5. Additional characterization is planned between MW-5 and the former loading rack area to further define the extent of proposed deep excavations to address the LNAPL impacts. This information can also be used to further refine the conceptual model in this area.

3.0 POTENTIAL FOR OFF-SITE SOURCES

There are no indications of an off-site source at the site. The adjacent property was historically remediated to address petroleum contamination. Groundwater and soil data collected across the northern boundary of the site near the property boundary do not indicate the presence of off-site source areas.

4.0 POTENTIAL FUTURE MIGRATION

The following pathways were considered in evaluating the potential for future migration of contaminants at the site:

- Migration from shallow to deeper soils
- Migration from soil to groundwater
- Migration from soil and/or groundwater to soil gas
- Groundwater migration across site
- Migration to surface water

The potential significance of these pathways is discussed in the following sections. Metals, SVOCs, VOCs, and LNAPL are addressed for relevant pathways.

4.1 Migration from shallow to deeper soils

Exceedances of CSCOs for metals and SVOCs are primarily observed in the shallow soil samples within the first two (2) feet of the subsurface, with very few exceedances observed in the groundwater interface soil samples at approximately 25-30' bgs. This indicates that the metals and SVOCs in shallow soils are not migrating through the subsurface. This is not considered to be a significant pathway for future contaminant migration at this site.

4.2 Migration from soil to groundwater

The lack of significant detections of metals and SVOCs of concern in groundwater at this site indicates that migration from soil to groundwater is not occurring, and it is not considered to be a pathway of concern for future contaminant migration.

4.3 Migration from soil and/or groundwater to soil gas

The soil vapor samples collected during the RI indicate the presence of BTEX at several locations across the site. This indicates that migration to soil gas may be occurring within the subsurface. Given the depth to groundwater and the low detections of BTEX in groundwater, the impacts to soil gas would likely be due to migration from soil contamination, however, exceedances of CSCOs for VOCs were not observed at this site. VOCs were detected at low levels in soil, however.

4.4 Groundwater migration across site

Migration of contaminants in groundwater is not a significant concern for metals, SVOCs, or VOCs given that few exceedances of groundwater standards were observed for these contaminants. The potential for LNAPL migration was also considered when preparing the conceptual site model. The measured LNAPL thicknesses from the 2017 were compared to historical data available from 2005 to 2016.

LNAPL impacts in most wells have decreased significantly over time after the extraction events. The wells showing the highest product thicknesses are MW-5, MW-22, MW-25, MW-26, and MW-28.

The remaining wells were installed more recently and have fewer historical observations available. However, it should be noted that these wells are located towards the center of the loading rack area. The wells that have shown decreases over time are around the perimeter of the former loading rack. This would seem to indicate that the impacts are localized and that significant migration outside of the former loading rack area is not expected.

4.5 Migration to surface water

There are no indications of migration of contaminants to surface water based on the results from the pore water sample WP-1. These results are provided in Table 14 of Appendix E of the RI Report.

5.0 POTENTIAL RECEPTORS

Based on the potential migration pathways reviewed in Section 4.0, the only potential pathway of concern would be the migration to soil gas due to soil gas results. This is addressed further within the Qualitative Human Health Exposure Assessment submitted with the RI Report as Appendix F. Mitigation of the exposure pathway is also discussed. Other potential exposure concerns related to the presence of COCs at the site are addressed within that assessment. Potential environmental receptors are considered within the Fish and Wildlife Resources Impact Analysis submitted with the RI Report as Appendix G.

APPENDIX B SOIL BORING LOGS

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

Soil Boring: SB-1

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	22"	0.0	Gravel and brick.
3	2 – 4		0.0	Fill, gravel and brick.
5 6	4 - 6		0.0	Fill, gravel and brick.
7 <u> </u>	6 – 8		0.0	Fill and gravel.
9 <u> </u>	8 – 10		0.0	Fill and gravel.
-	10 – 12	20″	0.0	Fill and gravel.
	12 – 14		0.0	Fill and gravel.
	14 – 16		0.0	Fill and gravel.
	16 – 18	20″	0.0	Fill and gravel.
19 —— 20 ——	18 – 20		0.0	Fill and gravel.
-	20 – 22		0.0	Clay.
	22 – 24	28″	0.0	Clay.
	24 – 26		0.0	Clay.
-	26 – 28	30″	0.0	Clay.
29 <u> </u>	28 – 30		0.0	Clay.

Notes:	PID Headspace (H/S) Readings		Grab/Composite Samples		
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):28ft	0-2"	0.6	Sample Time:	NA	
		2"-2	0.6	Sample ID:	NA
SB-1 BO was an offset soil boring.	2-4	0.6			
		4-6	0.7	Interval:	2" – 2'
		6-8	0.7	Sample Time:	9:31
	8-10	0.7	Sample ID:	SB-1 BO	
	10-12	0.5		-	
Composite Sample Notes:		12-14	0.5	Interval:	25' – 30'
	14-16	0.6	Sample Time:	9:25	
SB-1 BO – TAL metals.		16-18	0.6	Sample ID:	SB-1 C
SB-1 C – TAL metals.		18-20	0.6		
		20-22	0.3		
		22-24	0.3		
		24-26	0.2		
		26-28	0.2		
		28-30	0.2		
DATE: 7/27/2017		LOCATION: 1 Osgood Avenue, Town of Green Island, NY			
LOGGED BY: Rachel Farnum	Soil Boring Log				
BORING LOCATION: SB-1					
Envirospec Engineering , PLLC 349 Northern Blvd., Suite 3		CLIENT: South Island Apartments, LLC PROJECT #:E17-1600			
LITOTISLENITO, CALO	Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist				
1 —— 2 ——	0 – 2" 2" – 2		0.1	Brick, glass, gravel and fill.				
3 4	2 – 4	32″	0.1	Brick, glass, gravel and fill.				
5 6	4 - 6		0.1	Brick, glass, gravel and fill.				
7 8	6 – 8	0	NA	NA				
9 10	8 – 10		NA	NA				
11 <u> </u>	10 – 12		0.5	Fill and brick.				
13 —— 14 ——	12 – 14	13″	0.5	Fill and brick.				
	14 – 16		0.5	Fill and brick.				
17 <u> </u>	16 – 18	18″	0.0	Fill, clay and brick.				
	18 – 20		0.0	Fill, clay and brick.				
-	20 – 22		0.0	Fill.				
23 —— 24 ——		16″	0.0	Fill.				
25 —— 26 ——	24 – 26		0.0	Clay with gravel.				
27 <u> </u> 28 <u> </u>	26 – 28	16″	0.0	Clay with gravel.				
29 —— 30 ——	28 – 30		0.0	Clay with gravel.				
Notes:	ed By: Cascad	e		PID Headspace (H/S) Readings Grab/Composite Samples Interval PID H/S Interval: NA				

NULES.		T ID TICauspace	(11/O) readings	Orab/Oomp	Jane Gampies	
Performed By: Cascade		Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):28ft		0-2"	1.3	Sample Time:	NA	
		2"-2	1.3	Sample ID:	NA	
SB-2 BO was an offset soil boring.		2-4	1.3			
		4-6	NA	Interval:	2" – 2'	
		6-8	NA	Sample Time:	10:47	
		8-10	NA	Sample ID:	SB-2 BO	
		10-12	0.8			
Composite Sample Notes:		12-14	0.8	Interval:	25' - 30'	
		14-16	0.8	Sample Time:	11:15	
SB-2 BO – Full analysis.		16-18	0.8	Sample ID:	SB-2 C	
SB-2 C – TAL Metals.		18-20	0.8			
		20-22	2.0			
		22-24	2.0			
		24-26	0.5			
		26-28	0.5			
		28-30	0.5			
DATE: 7/28/2017		LOCATION: 1 Osgoo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Rachel Farnum						
BORING LOCATION: SB-2		Soil Boring Log				
envirospec	Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENGINEERING, PLLC	Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	2.4."	0.0	Brick and fill.
3	2 – 4	34″	0.0	Brick and fill.
5 <u> </u>	4 - 6		0.0	Brick and fill.
7 <u> </u>	6 – 8	15″	58.0	Fill and clay. Strong odor.
9 <u> </u>	8 – 10		58.0	Fill and clay. Strong odor.
	10 – 12		4.5	Fill and some clay.
	12 – 14	22″	4.5	Fill and some clay.
	14 – 16		1.0	Fill, gravel and clay.
-	16 – 18	21″	1.0	Fill and gravel.
	18 – 20		1.0	Fill and gravel.
-	20 – 22		2.5	Sand and clay.
	22 – 24	25″	2.5	Sand and clay.
	24 – 26	_		Clay with gravel.
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28			Clay with gravel.
	28 – 30		0.0	Clay with gravel.

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples		
Performed By: Cascade	Interval	PID H/S	Interval:	NA		
Groundwater Interface (▼):26ft	0-2"	0.4	Sample Time:	NA		
	2"-2	0.4	Sample ID:	NA		
Extra sample (SD-3 D) taken from 5 – 10 ft at 8:46. To be analyze	ed 2-4	0.4				
for VOCs and TPH.	4-6	400.0	Interval:	2" – 2'		
	6-8	400.0	Sample Time:	8:34		
SB-3 BO was an offset soil boring.	8-10	400.0	Sample ID:	SB-3 BO		
	10-12	80.0				
Composite Sample Notes:	12-14	80.0	Interval:	25' - 30'		
	14-16	80.0	Sample Time:	8:59		
SB-3 BO – Full analysis.	16-18	5.0	Sample ID:	SB-3 C		
SB-3 C – Full analysis .	18-20	5.0				
	20-22	3.8				
	22-24	3.8				
	24-26	2.9				
	26-28	2.9				
	28-30	2.9				
DATE: 7/28/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY			
LOGGED BY: Rachel Farnum		Soil Boring Log				
BORING LOCATION: SB-3		Son Boring Log				
Envirospec Engineering, PI 349 Northern Blvd., Suite 3	LLC CLIENT: South Islan Apartments, LLC		PROJECT #:E17-1600			
ENCINEERING, PLIC Albany, NY 12204		PRO	PROJECT MANAGER: Gianna Aiezza			

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Fill and some glass.
3	2 – 4	31″	0.0	Fill and some glass.
5	4 - 6		0.0	Fill and some glass.
7 <u> </u>	6 – 8	23″	0.0	Fill with small amount of clay.
9 <u> </u>	8 – 10		0.0	Fill with small amount of clay.
-	10 – 12		0.0	Fill and clay.
	12 – 14	26″	0.0	Fill and clay.
	14 – 16		0.0	Fill and clay.
	16 – 18	12″	0.0	Fill.
	18 – 20		0.0	Fill.
	20 – 22		0.0	Fill.
	22 – 24	18″	0.0	Fill.
	24 – 26		0.1	Clay.
-	26 – 28	45″	0.1	Clay.
	28 – 30		0.1	Clay.

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples		
Performed By: Cascade		Interval	PID H/S	Interval:	NA		
Groundwater Interface (▼):28ft		0-2"	0.8	Sample Time:	NA		
		2"-2	0.8	Sample ID:	NA		
SB-4 BO was an offset soil boring.		2-4	0.8				
		4-6	0.6	Interval:	2" – 2'		
		6-8	0.6	Sample Time:	10:12		
		8-10	0.6	Sample ID:	SB-4 BO		
		10-12	1.0		-		
Composite Sample Notes:		12-14	1.0	Interval:	25' - 30'		
		14-16	1.0	Sample Time:	10:39		
SB-4 BO – Full analysis.		16-18	0.8	Sample ID:	SB-4 C		
SB-4 C – Full analysis.		18-20	0.8				
		20-22	0.2				
		22-24	0.2				
		24-26	1.2				
		26-28	1.2				
		28-30	1.2				
DATE: 7/27/2017		LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY			
LOGGED BY: Rachel Farnum		Soil Boring Log					
BORING LOCATION: SB-4							
envirospec	Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		PROJECT #:E17-1600			
ENGINEERING, PLLC	Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza			

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist		
1	0 – 2″ 2″ – 2	60″	0.0	Soil, gravel, and fill.		
3	2 – 4		0.0	Brick, ash, and fill.		
•	4 - 6		0.0	Clay.		
7 <u> </u>	6 – 8	12″	0.0	Fill, ash, and brick.		
9 <u> </u>	8 – 10		0.0	Clay.		
-	10 – 12		0.0	Fill and ash.		
	12 – 14	12″	0.0	Ash and fill.		
	14 – 16		0.1	Fill and ash.		
	16 – 18	12″	12″	12″	0.1	Fill, ash, and wood.
	18 – 20		0.1	Clay and fill.		
	20 – 22		0.0	Clay and fill.		
	22 – 24	48″	0.0	Fill and ash.		
	24 – 26		0.1	Ash and fill.		
	26 – 28	36″	0.1	Sand.		
	28 – 30		0.1	Sand and rock.		

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples		
Performed By: Cascade		Interval	PID H/S	Interval:	0-2"		
Groundwater Interface (▼):28ft		0-2"	0.7	Sample Time:	2:50		
		2"-2	0.6	Sample ID:	SB- 5 A		
SB-5 BO was an offset soil boring.		2-4	0.6				
		4-6	0.6	Interval:	2" – 2'		
		6-8	0.4	Sample Time:	2:55		
		8-10	0.4	Sample ID:	SB-5 BO		
		10-12	0.7		-		
Composite Sample Notes:		12-14	0.7	Interval:	25' - 30'		
		14-16	2.6	Sample Time:	3:10		
SB-5 A- TAL metals.		16-18	2.6	Sample ID:	SB-5 C		
SB-5 BO – TAL metals.		18-20	0.9				
SB-5 C – TAL metals.		20-22	0.5				
		22-24	0.5				
		24-26	1.2				
		26-28	1.2				
		28-30	1.2				
DATE: 7/26/2017		LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY			
LOGGED BY: Charlotte Verhoef	LOGGED BY: Charlotte Verhoef			Soil Boring Log			
BORING LOCATION: SB-5		Soli Boring Log					
envirospec	Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3 Albany, NY 12204	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600			
	Albally, 11 12204		PROJ	ECT MANAGER: Gi	anna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%;
(11)		. ,	(ppm)	D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	~12″	NA	Fill and gavel.
3	2 – 4		NA	Clay.
5	4 - 6		NA	Gravel and brick.
6 <u> </u>	6 – 8	~12″	NA	Gravel and brick.
8 <u> </u>	8 – 10		NA	Clay.
	10 – 12		NA	Clay.
	12 – 14	~24″	NA	Clay.
	14 – 16		NA	Sand.
	16 – 18	~18	NA	Sand.
	18 – 20		NA	Clay.
	20 – 22		NA	Gravel.
	22 – 24	~30″	NA	Clay.
	24 – 26		NA	Sand and rock.
26 —— 27 ——	26 – 28	~50″	NA	Clay, rock, and sand.
28 —— 29 —— 30 ——	28 – 30		NA	Clay, rock, and sand.

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2"	
Groundwater Interface (▼):27ft	0-2"	NA	Sample Time:	11:05	
	2"-2	NA	Sample ID:	SB-6 A	
PID measurements NA due to moisture causing inaccurate readings.	2-4	NA			
	4-6	NA	Interval:	2" – 2'	
SB-6 BO was an offset soil boring.	6-8	NA	Sample Time:	11:10	
	8-10	NA	Sample ID:	SB-6 BO	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'	
	14-16	NA	Sample Time:	11:00	
SB-6 A – TAL metals.	16-18	NA	Sample ID:	SB-6 C	
SB-6 BO – TAL metals.	18-20	NA			
SB-6 C – TAL metals.	20-22	NA			
	22-24	NA			
	24-26	NA			
	26-28	NA			
	28-30	NA			
DATE: 7/24/2017	LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef					
BORING LOCATION: SB-6		SOII BOI	ring Log		
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		JECT #:E17-1600		
Albany, NY 12204		PRO	PROJECT MANAGER: Gianna Aiezza		

Soil Boring: SB-7 surface (offset)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		NA	Soil, fill, rocks, and roots.
	2 – 4	NA	NA	NA
5 6	4 - 6		NA	NA
7 <u> </u>	6 – 8	NA	NA	NA
Ũ	8 – 10		NA	NA
	10 – 12		NA	NA
	12 – 14	NA	NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
-	18 – 20		NA	NA
	20 – 22		NA	NA
23 —	22 – 24	NA	NA	NA
	24 – 26		NA	NA
	26 – 28	NA	NA	NA
	28 – 30		NA	NA

Notes:	PID Headspace (H/S) Readings	Grab/Comp	osite Samples	
Performed By: Envirospec	Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):NA	0-2"	0.2	Sample Time:	8:10	
	2"-2	NA	Sample ID:	SB-7 AO	
Top of bank near SB-7.	2-4	NA			
	4-6	NA	Interval:	NA	
	6-8	NA	Sample Time:	NA	
	8-10	NA	Sample ID:	NA	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	NA	
	14-16	NA	Sample Time:	NA	
SB-7 AO – Full analysis.	16-18	NA	Sample ID:	NA	
	18-20	NA			
	20-22	NA			
	22-24	NA			
	24-26	NA			
	26-28	NA			
	28-30	NA			
DATE: 8/8/2017	LOCATION: 1 Osgoo	d Avenue, Town o	f Green Island, NY		
LOGGED BY: Rachel Farnum		Soil Bori	ina Loa		
BORING LOCATION: SB-7					
Envirospec Engineering, F 349 Northern Blvd., Suite 3			PROJECT #:E17-1600		
ENGINEERING, PLLC	-	PROJE	PROJECT MANAGER: Gianna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		13.9	Fill, brick and gravel.
3	2 – 4	34″	13.9	Fill, brick and gravel.
5 <u> </u>	4 - 6		0.5	Fill, brick and gravel.
7 <u> </u>	6 – 8	17″	0.5	Fill.
9 <u> </u>	8 – 10		0.5	Fill.
-	10 – 12		0.2	Fill.
	12 – 14	11″	0.2	Fill.
	14 – 16		0.2	Fill.
-	16 – 18	26″	0.2	Fill and some clay.
-	18 – 20		0.2	Fill and some clay.
	20 – 22		0.3	Fill and some clay.
	22 – 24	16″	0.3	Fill and some clay.
25 <u></u> 26 <u></u>	24 – 26		0.2	Fill and some clay.
	26 – 28	40″	0.2	Clay with strong odor.
	28 – 30		0.2	Clay with strong odor.

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade		Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):27ft		0-2"	3.6	Sample Time:	NA	
		2"-2	3.6	Sample ID:	NA	
SB-7 BO was an offset soil boring.		2-4	3.6			
A Duplicate was taken at SB-7 BO at	11:30.	4-6	3.8	Interval:	2" – 2'	
		6-8	3.8	Sample Time:	11:27	
		8-10	3.8	Sample ID:	SB-7 BO	
		10-12	2.9		-	
Composite Sample Notes:		12-14	2.9	Interval:	25' – 30'	
		14-16	2.9	Sample Time:	11:32	
SB-7 BO – TAL metals.		16-18	2.7	Sample ID:	SB-7 C	
SB-7 C – TAL metals.		18-20	2.7			
		20-22	1.9			
		22-24	1.9			
		24-26	63.8			
		26-28	63.8			
		28-30	63.8			
DATE: 7/27/2017		LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Boring Log					
BORING LOCATION: SB-7	Son Bornig Log					
envirospec	Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600		
ENGINEERING, PLLC	Albany, NY 12204		PRO	PROJECT MANAGER: Gianna Aiezza		

Depth	Sample	Recovery	PID	Description
(ft)	Interval (ft)	(in)	Screen (ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		0.0	Soil and gravel.
3	2 – 4	48″	0.0	Soil, fill, brick, and gravel.
	4 - 6		0.0	Soil.
7 <u> </u>	6 – 8	24″	0.0	Fill and sand.
9 <u> </u>	8 – 10		0.0	Fill and sand.
-	10 – 12		0.0	Fill, soil, and ash.
	12 – 14	12″	0.0	Fill, soil, and ash.
	14 – 16		0.0	Ash.
	16 – 18	24″	0.0	Ash and coal.
	18 – 20		0.0	Clay and ash.
	20 – 22		3.0	Ash.
	22 – 24	24″	109.0	Clay and sand.
25 ——	24 – 26		108.4	Clay and sand.
	26 – 28	36″	22.1	Clay and sand.
28 —— 29 —— 30 ——	28 – 30		1.1	Sand and Rock.

Notes:		PID Headspace	(H/S) Readings	lings Grab/Composite Samples		
Performed By: Cascade		Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):28ft		0-2"	2.8	Sample Time:	1:40	
		2"-2	1.1	Sample ID:	SB-8 A	
SB-5 BO was an offset soil boring.		2-4	1.1		-	
		4-6	2.8	Interval:	2" – 2'	
		6-8	2.8	Sample Time:	1:45	
		8-10	2.8	Sample ID:	SB-8 B	
		10-12	2.2		-	
Composite Sample Notes:		12-14	2.2	Interval:	25' - 30'	
		14-16	1.1	Sample Time:	2:20	
SB-8 A- Full analysis.		16-18	1.1	Sample ID:	SB-8 C	
SB-8 BO – Full analysis.		18-20	1.8			
SB-8 C – Full analysis.		20-22	2.8			
		22-24	101.2			
		24-26	101.2			
		26-28	256.7			
		28-30	378.5			
DATE: 7/26/2017		LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef	Soil Boring Log					
BORING LOCATION: SB-8						
envirospec Engineering, PLLC 349 Northern Blvd., Suite 3		CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENGINEERING, PLLC	Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth	Sample	Recovery	PID	Description
(ft)	Interval (ft)	(in)	Screen (ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″		0.0	Fill and gravel.
2	2" – 2	18″		
3	2 – 4	10	0.0	Brick and ash.
5	4 - 6		0.0	Fill.
6 —— 7 ——	6 – 8		75.0	Clay. Strong odor.
8	0 - 0	36″	75.0	
	8 – 10		4.0	Brick and ash
10	10 – 12		41.0	
12	10 – 12		41.8	Brick.
13 ——	12 – 14	<12″	9.7	Black ash layer.
14	14 – 16		0.0	
16	14 – 16		0.9	Silt and clay
17	16 – 18	24″	0.9	Sand.
18	10 00		0.4	
20	18 – 20		0.1	Sand.
21	20 – 22		0.0	Fill and gravel.
22		36″		
23	22 – 24		0.0	Silt and clay.
	24 – 26		0.0	Silt and clay.
26 —	27 20		0.0	
27 28	26 – 28	48″	0.0	Rocks, silt, and clay.
	00 00		0.0	
30	28 – 30		0.0	Clay and gravel.

Notes:	PID Headspace	e (H/S) Readings	Grab/Comp	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	NA
Groundwater Interface (▼):28ft	0-2"	1.8	Sample Time:	NA
	2"-2	1.8	Sample ID:	NA
	2-4	1.8		
	4-6	39.9	Interval:	2" – 2'
	6-8	39.9	Sample Time:	10:50
	8-10	5.2	Sample ID:	SB-9 B
	10-12	2.4		
Composite Sample Notes:	12-14	2.4	Interval:	25' – 30'
	14-16	1.4	Sample Time:	11:20
SB-30 B – TAL metals.	16-18	1.4	Sample ID:	SB-9 C
SB-30 C – TAL metals.	18-20	1.2		
SB-30 D– VOCs and TPH.	20-22	4.1	Interval:	7'-8'
	22-24	1.5	Sample Time:	11:00
	24-26	2.6	Sample ID:	SB-9 D
	26-28	2.6		
	28-30	0.9		
DATE: 7/26/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY	
LOGGED BY: Charlotte Verhoef and Ross Carpinello		Soil Bor	ina Loa	
BORING LOCATION: SB-9	Soil Boring Log			
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3 Albany, NY 12204	CLIENT: South Islar Apartments, LLC		ECT #:E17-1600	
······································		PROJ	ECT MANAGER: Gi	anna Aiezza

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist				
1	0 – 2" 2" – 2		0.0	Brick, gravel, and asphalt.				
3	2 – 4	<6"	0.0	Brick, gravel, and asphalt.				
5 <u> </u>	4 - 6		0.0	Brick, gravel, and asphalt.				
7 <u> </u>	6 – 8	<12″	0.0	Gravel, asphalt, and clay.				
9 <u> </u>	8 – 10		0.0	Gravel, asphalt, and clay.				
11 <u>11</u>	10 – 12		0.0	Gravel and asphalt.				
13	12 – 14	<12″	0.0	Brick, clay, and rocks.				
15	14 – 16		0.0	Brick, clay, and rocks.				
-	16 – 18	~18″	0.0	Sand, gravel, brick, and rocks.				
19 <u> </u>	18 – 20		0.0	Sand, gravel, brick, and rocks.				
20 <u></u> 21 <u></u> 22 <u></u>	20 – 22		0.0	Some brick and clay.				
22 <u> </u>	22 – 24	~24″	0.0	Some brick and clay.				
24 <u></u> 25 <u></u> 26 <u></u>	24 – 26		0.0	Some brick and clay.				
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~12″	85.0	Clay. Petroleum odor.				
28 <u></u> 29 <u></u> 30 <u></u>	28 – 30		85.0	Clay. Petroleum odor.				
Notes:	I			PID Headspace (H/S) Readings Grab/Composite Samples				

Notes:	FID Heauspace	(1%O) Readings		Sille Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	2" – 2'	
Groundwater Interface (▼):28ft	0-2"	25.0	Sample Time:	10:25	
	2"-2	25.0	Sample ID:	SB-10 BO2	
SB-10 BO, SB-10 BO2, SB-10 BO3, and SB-10 CO were offset soil	2-4	25.0			
borings.	4-6	130.0	Interval:	2" – 2'	
Duplicate sample was taken from SB-10C at 10:15.	6-8	130.0	Sample Time:	10:25	
Duplicate sample was taken nom SB-10C at 10.15.	8-10	130.0	Sample ID:	SB-10 BO3	
	10-12	72.2			
Composite Sample Notes:	12-14	72.2	Interval:	25' – 30'	
	14-16	72.2	Sample Time:	10:03	
SB-10 BO2 – VOCs and TAL metals.	16-18	1764	Sample ID:	SB-10 C	
SB-10 BO3 – TPH.	18-20	1764	_		
SB-10 C – Full analysis, no TPH.	20-22	746.0	Interval:	25'-30'	
SB-10 CO-TPH.	22-24	746.0	Sample Time:	10:03	
	24-26	565.0	Sample ID:	SB -10 CO	
	26-28	565.0			
	28-30	565.0			
DATE: 7/21/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Charlotte Verhoef					
BORING LOCATION: SB-10	Soil Boring Log				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENGINEERING, PLLC Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Soil.
3 —— 4 ——	2 – 4	18″	0.0	Gravel, fill, and soil.
5 6	4 - 6		0.0	Fill.
7	6 – 8	18″	0.0	Gravel.
9 <u> </u>	8 – 10		0.0	Clay.
11	10 – 12		0.0	Clay.
13	12 – 14	36″	0.0	Clay and brick.
15 —— 16 ——	14 – 16		0.0	Clay and brick.
17	16 – 18	36″	0.0	Clay and brick.
19 <u> </u>	18 – 20		1.8	Clay.
21 <u>22</u>	20 – 22		0.0	Silt, Clay, and Brick.
23 <u> </u> 24 <u> </u>	22 – 24	36″	0.0	Silt, Clay, and Brick.
25 —— 26 ——	24 – 26		23.2	Silt, Clay, and Brick. Strong Odor.
27 <u> </u> 28 <u> </u>	26 – 28	60″	67.0	Brick. Strong Odor.
29 <u> </u>	28 – 30		89.8	Silt and clay. Strong odor.
31 <u></u> 32	30 - 32		102.2	Silt and clay.
33 34 35	33 - 35	60″	40.7	Silt and clay.

Soil Boring: SB-11 (continued)

Notes:	PID Headspace (H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):28ft	0-2"	0.0	Sample Time:	9:00	
	2"-2	0.3	Sample ID:	SB-11 A	
SB-11 BO was an offset soil boring.	2-4	0.3			
Duplicate was taken from SB-11 BO at 9:10.	4-6	1.0	Interval:	2" – 2'	
	6-8	1.0	Sample Time:	9:05	
	8-10	1.0	Sample ID:	SB-11 BO	
	10-12	0.9			
Composite Sample Notes:	12-14	0.9	Interval:	30' - 32'	
	14-16	0.9	Sample Time:	9:59	
SB-22 A – Full analysis.	16-18	0.4	Sample ID:	SB-11 C	
SB-22 BO – Full analysis.	18-20	0.4			
SB-22 C – Full analysis.	20-22	0.6	Interval:	34'-35'	
SB-22 D – VOCs and TPH.	22-24	0.6	Sample Time:	10:04	
	24-26	1.6	Sample ID:	SB-11 D	
	26-28	1.4			
	28-30	4.0			
	30-32	397.7			
	33-35	1.7			
DATE: 7/26/2017	LOCATION: 1 Osgoo	d Avenue, Town (of Green Island, NY		
LOGGED BY: Charlotte Verhoef and Ross Carpinello		Soil Boring Log			
BORING LOCATION: SB-11					
envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	c CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600		
Albany, NY 12204				anna Aiozza	

PROJECT MANAGER: Gianna Aiezza

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Fill, sand, ash and gravel.
3	2 – 4	~36″	0.0	Fill, sand, ash and gravel.
5 <u> </u>	4 - 6		0.0	Clay. Petroleum odor.
7 <u> </u>	6 – 8	~24″	3.7	Clay with a black layer at 7-9 feet. Petroleum odor.
9 <u> </u>	8 – 10		13.8	Clay with a black layer at 7-9 feet. Petroleum odor.
11 <u>11</u>	10 – 12		67.8	Clay and sand. Petroleum odor.
13	12 – 14	~24"	67.8	Clay and sand with a black layer at 12-13 feet. Petroleum odor.
15	14 – 16		70.2	Clay and sand. Petroleum odor.
17 <u>17</u>	16 – 18	~36″	70.2	Clay, fill and sand. Petroleum odor.
19 <u> </u>	18 – 20		23.4	Clay, fill and sand. Petroleum odor.
21 <u></u> 22 <u></u>	20 – 22		8.4	Silt/clay. Petroleum odor.
23 <u> </u>	22 – 24	~54″	0.7	Silt/clay. Petroleum odor.
25 <u></u> 26 <u></u>	24 – 26		0.7	Silt/clay. Petroleum odor.
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~48″	16.5	Silt/clay. Petroleum odor.
29 <u></u> 30 <u></u>	28 – 30		3.1	Silt/clay. Petroleum odor.

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):28ft	0-2"	1.9	Sample Time:	NA	
	2"-2	1.9	Sample ID:	NA	
SB-12 BO was an offset soil boring.	2-4	2.4			
An addition sample SB-12 D was taken at 3:20 from 8-10 ft.	4-6	2.4	Interval:	2" – 2'	
	6-8	1.8	Sample Time:	2:55	
	8-10	198.6	Sample ID:	SB-12 BO	
	10-12	84.0			
Composite Sample Notes:	12-14	60.4	Interval:	25' - 30'	
	14-16	60.4	Sample Time:	3:10	
SB-12 BO – Full Analysis.	16-18	88.3	Sample ID:	SB-12 C	
SB-12 C – Full Analysis.	18-20	88.3			
SB-12 D – VOCs and TPH.	20-22	4.5	Interval:	8' - 10'	
	22-24	6.5	Sample Time:	3:20	
	24-26	140.0	Sample ID:	SB-12 D	
	26-28	140.0			
	28-30	4.8			
DATE: 7/25/2017	LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef and Ross Carpinello	_	Soil Boring Log			
BORING LOCATION: SB-12					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC	-	ECT #:E17-1600		
ENCINEERING, PLLC		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	24″	0.3	Fill, gravel, brick, and ash.
3	2 – 4		0.3	Fill, gravel, brick, and ash.
5	4 - 6		0.7	Clay, Brick, and a black layer
7	6 – 8	36″	0.7	Clay, Brick, and a black layer
9 <u> </u>	8 – 10		0.7	Clay, Brick, and a black layer
-	10 – 12		1.3	Fill, gray ash, clay, and gravel.
	12 – 14	30″	0.3	Fill, gray ash, clay, and gravel.
	14 – 16		0.3	Fill, gray ash, clay, and gravel.
	16 – 18	12″	0.3	Fill, clay, gravel.
	18 – 20		0.3	Fill, clay, gravel.
	20 – 22		0.0	Clay and gravel.
22 <u></u> 23 <u></u> 24 <u></u>	22 – 24	>12″	0.0	Clay and gravel.
	24 – 26		0.0	Clay and gravel.
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	24″	0.0	Clay and gravel.
28 <u></u> 29 <u></u> 30 <u></u>	28 – 30		0.0	Clay and gravel.

Notes:	PID Headspace	(H/S) Readings	Grab/Composite Samples			
Performed By: Cascade	Interval	PID H/S	Interval:	2" – 2'		
Groundwater Interface (▼):27ft	0-2"	1.0	Sample Time:	11:54		
	2"-2	1.0	Sample ID:	SB-13 B		
	2-4	3.6				
	4-6	3.6	Interval:	25' - 28'		
	6-8	51.0	Sample Time:	12:40		
	8-10	3.3	Sample ID:	SB-13 C		
	10-12	3.5				
Composite Sample Notes:	12-14	3.5	Interval:	7' - 9'		
	14-16	2.8	Sample Time:	11:40		
SB-13 B- Full analysis.	16-18	5.4	Sample ID:	SB-13 D		
SB-13 C – Full analysis.	18-20	5.4				
SB-13 D – VOCs, TPH, TAL metals, and SPLP RCRA metals.	20-22	2.8				
	22-24	4.3				
	24-26	5.5				
	26-28	1.5				
	28-30	1.5				
DATE: 7/20/2017	LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY			
LOGGED BY: Charlotte Verhoef	Soil Boring Log					
BORING LOCATION: SB-13						
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600			
ENCINEERING, PLIC Albany, NY 12204		PRO	ECT MANAGER: Gi	anna Aiezza		

Soil Boring: SB-14 Offset (revisit)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2	NA	NA	NA
3	2 – 4		NA	NA
5 <u> </u>	4 - 6		NA	NA
7	6 – 8	NA	NA	NA
9 <u> </u>	8 – 10		NA	NA
11 <u> </u>	10 – 12		NA	NA
13 —— 14 ——	12 – 14	NA	NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
	18 – 20		NA	NA
-	20 – 22		82.6	Clay and some gravel. Strong odor.
23 —— 24 ——	22 – 24	33″	82.6	Clay and some gravel. Strong odor.
25 —— 26 ——	24 – 26		82.3	Clay and some gravel. Strong odor.
27 <u> </u>	26 – 28	36″	30.0	Fill, clay, and gravel.
29 <u></u> 30 <u></u>	28 – 30		30.0	Fill, clay, and gravel.
Notes:		1	1	PID Headspace (H/S) Readings Grab/Composite Samples

NOTES:	PID neadspace (n/S) Readings	Grab/Compo	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):26ft	0-2"	NA	Sample Time:	NA	
	2"-2	NA	Sample ID:	NA	
SB-14CO was an offset soil boring.	2-4	NA			
	4-6	NA	Interval:	NA	
PID only conducted 20-30 feet – where sampling was not conducted	6-8	NA	Sample Time:	NA	
before.	8-10	NA	Sample ID:	NA	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'	
	14-16	NA	Sample Time:	10:02	
SB-14 CO – TAL Metal and SPLP only.	16-18	NA	Sample ID:	SB-14 CO	
	18-20	NA			
	20-22	248.0			
	22-24	248.0			
	24-26	248.0			
	26-28	190.0			
	28-30	190.0			
DATE: 7/31/2017	LOCATION: 1 Osgoo	d Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Boring Log				
BORING LOCATION: SB-14 O					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600		
ENCINEERING, PLIC Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		0.1	Brick.
_	2 – 4	<48"	0.1	Gravel, ash, brick, and clay.
5 ——	4 - 6		0.2	Gravel, ash, brick, and clay.
7 <u> </u>	6 – 8	<24″	0.2	Gravel, ash, brick, and clay.
Ũ	8 – 10		0.2	Gravel, ash, brick, and clay.
	10 – 12		0.2	Gravel, brick, and clay.
	12 – 14	<24″	0.2	Gravel, brick, and clay.
	14 – 16		5.1	Clay with strong odor.
-	16 – 18	<48″	5.1	Clay with strong odor.
-	18 – 20		5.1	Clay with strong odor.
	20 – 22			
	22 – 24			
	24 – 26			
	26 – 28			
29 <u> </u>	28 – 30			

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):20ft	0-2"	1.6	Sample Time:	NA	
	2"-2	1.6	Sample ID:	NA	
SB-14 BO was an additional offset soil boring. The offset boring	g (2" – 2-4	9.7			
2 ft) was also more brick. A sample was taken from the $3-5\ \text{ft}$	4-6	9.7	Interval:	3' – 5'	
because there was clay to sample.	6-8	2.7	Sample Time:	10:45	
	8-10	2.7	Sample ID:	SB – 14 BO	
	10-12	3.8			
Composite Sample Notes:	12-14	3.8	Interval:	15' – 20'	
	14-16	3.8	Sample Time:	10:33	
SB-14 BO – Full analysis.	16-18	94.3	Sample ID:	SB-14 C	
SB-14 C – Full analysis.	18-20	94.3			
	20-22				
	22-24				
	24-26				
	26-28				
	28-30				
DATE: 7/20/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Rachel Farnum and Charlotte Verhoef		Soil Boring Log			
BORING LOCATION: SB-14					
envirospec Engineering, 349 Northern Blvd. Suite	PLLC CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
CIIVIIOSPEC 349 Northern Blvd., Suite		TROJ			
Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza		

Soil Boring: SB-15 Offset (revisit)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2	37″	NA	Fill, brick, and clay.
3	2 – 4		NA	Fill, brick, and clay.
5 6	4 - 6		NA	Fill and clay.
7 <u> </u>	6 – 8	22″	NA	Fill and clay.
9 <u> </u>	8 – 10		NA	Fill and clay.
-	10 – 12		NA	Fill and gravel.
	12 – 14	18″	NA	Fill and gravel.
	14 – 16		NA	Sand and fill.
	16 – 18	22″	NA	Sand and fill.
-	18 – 20		NA	Sand and fill.
	20 – 22		0.0	Clay.
23 —— 24 ——	22 – 24	54″	0.0	Clay.
	24 – 26		0.0	Clay.
-	26 – 28	60″	0.0	Clay.
	28 – 30		0.0	Clay.

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	NA
Groundwater Interface (▼):26ft	0-2"	NA	Sample Time:	NA
	2"-2	NA	Sample ID:	NA
PID only conducted 20-30 feet – where sampling was not conducted	2-4	NA		
before.	4-6	NA	Interval:	2" – 2'
	6-8	NA	Sample Time:	8:07
SB-15 BO2 was an additional offset soil boring.	8-10	NA	Sample ID:	SB-15 BO2
	10-12	NA		
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'
	14-16	NA	Sample Time:	8:40
SB-15 BO2 – Full analysis (no TAL metals).	16-18	NA	Sample ID:	SB-15 CO
SB-15 C – Full analysis.	18-20	NA		
	20-22	4.3		
	22-24	4.3		
	24-26	0.3		
	26-28	0.3		
	28-30	0.3		
DATE: 7/31/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY	
LOGGED BY: Rachel Farnum	Soil Boring Log			
BORING LOCATION: SB-15 O				
Envirospec Engineering, PLLC 349 Northern Blvd. Suite 3	CLIENT: South Islan Apartments, LLC		PROJECT #:E17-1600	
349 Northern Blvd., Suite 3 Albany, NY 12204		PRO	IECT MANAGER: Gi	anna Aiezza

Soil Boring: SB-15 surface

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	NA	NA	Fill and some rocks.
	2 – 4		NA	NA
-	4 - 6		NA	NA
7 <u> </u>	6 – 8	NA	NA	NA
-	8 – 10		NA	NA
-	10 – 12		NA	NA
	12 – 14	NA	NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
	18 – 20		NA	NA
	20 – 22		NA	NA
23 —— 24 ——	22 – 24	NA	NA	NA
	24 – 26		NA	NA
	26 – 28	NA	NA	NA
29 <u> </u>	28 – 30		NA	NA

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Envirospec		Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):NA		0-2"	NA	Sample Time:	7:40	
		2"-2	NA	Sample ID:	SB-15 A	
		2-4	NA			
		4-6	NA	Interval:	NA	
		6-8	NA	Sample Time:	NA	
		8-10	NA	Sample ID:	NA	
		10-12	NA		-	
Composite Sample Notes:		12-14	NA	Interval:	NA	
		14-16	NA	Sample Time:	NA	
SB-15 A – TAL metals.		16-18	NA	Sample ID:	NA	
		18-20	NA			
		20-22	NA			
		22-24	NA			
		24-26	NA	-		
		26-28	NA	-		
		28-30	NA			
DATE: 8/8/2017		LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum		Coll Doring Log				
BORING LOCATION: SB-15		Soil Boring Log				
envirospec Env	CLIENT: South Islan Apartments, LLC		PROJECT #:E17-1600			
	Northern Blvd., Suite 3 any, NY 12204		PRO	ROJECT MANAGER: Gianna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Ash, brick, and clay.
	2 – 4	~6"	0.0	Ash, brick, and clay.
5 6	4 - 6		0.0	Ash, brick, and clay.
7 <u> </u>	6 – 8	~36″	0.0	Gravel, brick, fill and clay.
°,	8 – 10		0.0	Gravel, brick, fill and clay.
	10 – 12		0.0	Gravel, stones, fill and clay.
	12 – 14	~24″	0.0	Gravel, stones, fill and clay.
	14 – 16		0.0	Sand and fill.
	16 – 18	~24″	0.0	Sand and fill.
	18 – 20		0.0	Sand and fill.
-	20 – 22			
	22 – 24			
	24 – 26			
-	26 – 28			
28 <u></u> 29 <u></u> 30 <u></u>	28 – 30			

Notes:	PID Headspace	ce (H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2 feet	
Groundwater Interface (▼):20ft	0-2"	2.6	Sample Time:	8:10	
	2"-2	1.8	Sample ID:	SB-15 O	
SB-15 O was an additional offset soil boring.	2-4	1.8			
There was not enough to composite for a SB-15 B.	4-6	3.0	Interval:	NA	
	6-8	3.0	Sample Time:	NA	
	8-10	3.0	Sample ID:	NA	
	10-12	2.3			
Composite Sample Notes:	12-14	2.3	Interval:	15' – 20'	
	14-16	1.8	Sample Time:	8:40	
SB-15 O – TAL metals.	16-18	1.8	Sample ID:	SB-15 C	
SB-15 C – TAL metals.	18-20	1.8			
	20-22				
	22-24				
	24-26				
	26-28				
	28-30				
DATE: 7/20/2017	LOCATION: 1 Osg	good Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum and Charlotte Verhoef		Soil Boring Log			
BORING LOCATION: SB-15					
Envirospec Engineering, P 349 Northern Blvd, Suite 3	CLIENT: South Isla		ECT #:E17-1600		
		FROJ	PROJECT #:E17-1600		
Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		NA	Fill, rocks and gravel. No odor or visual petroleum.
3	2 – 4	~24″	NA	Fill, rocks and gravel. No odor or visual petroleum.
5 <u> </u>	4 - 6		NA	Fill, sand and gravel. No odor or visual petroleum.
7 <u> </u>	6 – 8	~18″	NA	Fill, ash and gravel. No odor or visual petroleum.
9 <u> </u>	8 – 10		NA	Fill, ash and gravel. No odor or visual petroleum.
-	10 – 12	NA		Ash, gravel, rocks and gravel. No odor or visual petroleum.
	12 – 14	~18″	NA	Ash, gravel, rocks and gravel. No odor or visual petroleum.
	14 – 16	NA		Ash, gravel, rocks and gravel. No odor or visual petroleum.
-	16 – 18	~30″	NA	Ash, gravel, rocks and gravel. No odor or visual petroleum.
-	18 – 20		NA	Ash, gravel, rocks and gravel. No odor or visual petroleum.
-	20 – 22		NA	Sand, fill, brick and clay. No odor or visual petroleum.
	22 – 24	~24″ NA		Sand, fill, brick and clay. No odor or visual petroleum.
25 <u></u> 26 <u></u>	24 – 26	NA		Sand, fill, brick and clay. No odor or visual petroleum.
-	26 – 28	~18″ NA		Clay. No odor or visual petroleum.
	28 – 30		NA	Clay. No odor or visual petroleum.

Notes:	PID Headspace	e (H/S) Readings	Grab/Composite Samples			
Performed By: Cascade	Interval	PID H/S	Interval:	NA		
Groundwater Interface (▼):27ft	0-2"	NA	Sample Time:	NA		
	2"-2	NA	Sample ID:	NA		
SB-16 BO was an offset soil boring.	2-4	NA				
	4-6	NA	Interval:	2" – 2'		
PID measurements NA due to moisture causing inaccurate readings.	6-8	NA	Sample Time:	11:00		
	8-10	NA	Sample ID:	SB-16 BO		
	10-12	NA				
Composite Sample Notes:	12-14	NA	Interval:	28' – 30'		
	14-16	NA	Sample Time:	11:25		
SB-16 BO – Full Analysis.	16-18	NA	Sample ID:	SB-16 C		
SB-16 C – Full Analysis.	18-20	NA				
	20-22	NA				
	22-24	NA				
	24-26	NA				
	26-28	NA				
	28-30	NA				
DATE: 7/25/2017	LOCATION: 1 Osgo	ood Avenue, Town	of Green Island, NY			
LOGGED BY: Charlotte Verhoef						
BORING LOCATION: SB-16		Soil Boring Log				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		JECT #:E17-1600			
ENGINEERING, PLLC Albany, NY 12204		PRO	JECT MANAGER: Gi	anna Aiezza		

		D	DID					
Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist				
1	0 – 2" 2" – 2		NA	Fill, wood and gravel. No odor or visual petroleum.				
3	2 – 4	~36″	NA	Fill, wood and gravel. No odor or visual petroleum.				
5	4 - 6		NA	Fill, wood and gravel. No odor or visual petroleum.				
7 <u> </u>	6 – 8	~36″	NA	Soil, ash, clay, gravel and fill. No odor or visual petroleum.				
9 <u> </u>	8 – 10		NA	Soil, ash, clay, gravel and fill. No odor or visual petroleum.				
10 <u> </u>	10 – 12	NA		Soil, ash, clay, gravel and fill. No odor or visual petroleum.				
13	12 – 14	~24″	NA	Soil, ash, clay, gravel and fill. No odor or visual petroleum.				
15	14 – 16		NA	Soil, ash, clay, gravel and fill. No odor or visual petroleum.				
16 —— 17 —— 18 ——	16 – 18	~36″ NA		Brick, ash, clay, gravel and fill. No odor or visual petroleum. Black layer at 17-18 feet.				
19 <u> </u>	18 – 20		NA	Brick, ash, clay, gravel and fill. No odor or visual petroleum.				
20 <u></u> 21 <u></u> 22 <u></u>	20 – 22		NA	Brick, ash, clay, gravel and fill. No odor or visual petroleum.				
22 <u></u> 23 <u></u> 24 <u></u>	22 – 24	~48″ NA		Brick, ash, clay, gravel and fill. No odor or visual petroleum.				
24 <u></u> 25 <u></u> 26 <u></u>	24 – 26	NA		Brick, ash, clay, gravel and fill. No odor or visual petroleum.				
26 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~36″ NA		Clay. Petroleum odor.				
28 <u></u> 29 <u></u> 30 <u></u>	28 – 30		NA	Clay. Petroleum odor.				

Notes:	PID Headspace	(H/S) Readings	Grab/Composite Samples		
Performed By: Cascade	Interval	PID H/S	Interval:	0 - 2"	
Groundwater Interface (▼):28ft	0-2"	NA	Sample Time:	2:50	
	2"-2	NA	Sample ID:	SB-17 A	
SB-17 BO was an offset soil boring.	2-4	NA			
	4-6	NA	Interval:	2" – 2'	
PID measurements NA due to moisture causing inaccurate readings.	6-8	NA	Sample Time:	2:55	
	8-10	NA	Sample ID:	SB-17 BO	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'	
	14-16	NA	Sample Time:	3:10	
SB-17 A – Full analysis.	16-18	NA	Sample ID:	SB-17 C	
SB-17 BO – Full analysis.	18-20	NA			
SB-17 C – Full analysis.	20-22	NA			
	22-24	NA	-		
	24-26	NA	-		
	26-28	NA	-		
	28-30	NA			
DATE: 7/24/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef	Soil Boring Log				
BORING LOCATION: SB-17					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islar Apartments, LLC		JECT #:E17-1600		
ENGINEERING, PLLC Albany, NY 12204		PRO	PROJECT MANAGER: Gianna Aiezza		

Soil Boring: SB-18 Offset (revisit)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	NA	NA	NA
3	2 – 4		NA	NA
	4 - 6		NA	NA
7	6 – 8	NA	NA	NA
9 <u> </u>	8 – 10		NA	NA
	10 – 12		NA	NA
	12 – 14	NA	NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
19 —— 20 ——	18 – 20		NA	NA
21 22	20 – 22	0.4	0.0	Clay and fill.
23 —— 24 ——	22 – 24	24″	0.0	Clay and fill.
	24 – 26		0.0	Clay and fill.
	26 – 28	60″	0.0	Clay and gravel.
29 <u> </u>	28 – 30		0.0	Clay and gravel.
Notes:				PID Headspace (H/S) Readings Grab/Composite Samples

Notes:	PID Headspace (H/S) Readings Grab/Composite Sa				
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):26ft	0-2"	NA	Sample Time:	NA	
	2"-2	NA	Sample ID:	NA	
	2-4	NA			
	4-6	NA	Interval:	NA	
	6-8	NA	Sample Time:	NA	
	8-10	NA	Sample ID:	NA	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'	
	14-16	NA	Sample Time:	9:27	
SB-18 CO – TAL Metal and SPLP only.	16-18	NA	Sample ID:	SB-18 CO	
	18-20	NA			
	20-22	0.9			
	22-24	0.9			
	24-26	0.9			
	26-28	0.7			
	28-30	0.7			
DATE: 7/31/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Boring Log				
BORING LOCATION: SB-18 O					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islar Apartments, LLC		ECT #:E17-1600		
Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2	~6″,~2	0.1	Fill and gravel.
3	2 – 4	4" and ~24"	0.0	Fill, brick, and seashells.
5 <u> </u>	4 - 6		0.0	Fill, brick, and seashells.
7	6 – 8	~36″	0.0	Fill, brick and clay.
9 <u> </u>	8 – 10		0.0	Fill, brick and clay.
-	10 – 12		0.0	Clay and some brick.
	12 – 14	~18″	0.0	Clay and some brick.
	14 – 16		0.0	Clay and some brick.
-	16 – 18	~36″	0.0	Clay and some brick.
-	18 – 20		0.0	Clay and some brick.
-	20 – 22			
	22 – 24			
	24 – 26			
-	26 – 28			
28 <u></u> 29 <u></u> 30 <u></u>	28 – 30			

Notes:	PID Headspace (H/S) Readings	Grab/Composite Samples		
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2 feet	
Groundwater Interface (▼):20ft	0-2"	3.5	Sample Time:	9:45	
	2"-2	1.4	Sample ID:	SB-18 O1	
SB-18 O1 and SB-18 O2 were additional offset soil borings.	2-4	1.4			
SB-18 01 soil boring filed all the jars except for the SPLP metals jar.	4-6	5.2	Interval:	NA	
This jar was filled by SB-18 O2 soil boring.	6-8	5.2	Sample Time:	NA	
	8-10	5.2	Sample ID:	NA	
	10-12	2.4		-	
Composite Sample Notes:	12-14	2.4	Interval:	15' – 20'	
	14-16	1.5	Sample Time:	9:40	
SB-18 O1 – Full analysis.	16-18	1.5	Sample ID:	SB-18 C	
SB-18 C – Full analysis.	18-20	1.5			
	20-22				
	22-24				
	24-26				
	26-28				
	28-30				
DATE: 7/20/2017	LOCATION: 1 Osgoo	d Avenue, Town o	of Green Island, NY		
LOGGED BY: Rachel Farnum	_	Soil Poring Log			
BORING LOCATION: SB-18	Soil Boring Log				
Envirospec Engineering , PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC		ECT #:E17-1600		
Albany, NY 12204	Apartments, LEO			anna Aiezza	
		PRUJ	LUT WANAGER. GI	anna Alezza	

Soil Boring: SB-19 Offset (revisit)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist			
1	0 – 2" 2" – 2		NA	Fill, gravel, and rocks.			
3	2 – 4	41″	NA	Fill, gravel, and rocks.			
5	4 - 6		NA	Fill, gravel, and rocks.			
7	6 – 8	NA	NA	NA			
-	8 – 10		NA	NA			
	10 – 12		NA	NA			
	12 – 14	NA	NA	NA			
	14 – 16		NA	NA.			
	16 – 18	NA	NA	NA			
	18 – 20		NA	NA			
-	20 – 22		NA	NA			
23 <u></u> 24 <u></u>	22 – 24	NA	NA	NA			
	24 – 26		NA	Sand and gravel.			
-	26 – 28	42″	NA	Sand and gravel.			
	28 – 30		NA	Sand and gravel.			
Notes:				PID Headspace (H/S) Readings Grab/Composite Samples			

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):27ft	0-2"	NA	Sample Time:	NA	
	2"-2	NA	Sample ID:	NA	
PID only conducted – Was conducted at previous soil boring at the	2-4	NA			
same location.	4-6	NA	Interval:	2" – 2'	
SB-19BO2 was an additional offset soil boring.	6-8	NA	Sample Time:	10:29	
	8-10	NA	Sample ID:	SB-19 BO2	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'	
	14-16	NA	Sample Time:	10:50	
SB-19 BO2 – Full analysis (no TAL metals or SVOCs).	16-18	NA	Sample ID:	SB-19 CO	
SB-19 CO – Full analysis (no TAL metals or SVOCs).	18-20	NA			
	20-22	NA			
	22-24	NA			
	24-26	NA			
	26-28	NA			
	28-30	NA			
DATE: 7/31/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Boring Log				
BORING LOCATION: SB-19 O			0 0		
Envirospec Engineering , PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		PROJECT #:E17-1600		
ENCINEERING, PLIC		PROJ	ECT MANAGER: Gi	anna Aiezza	

Soil Boring: SB-19 surface (offset)

Donth	Comula	Recovery	PID	Description
Depth (ft)	Sample Interval (ft)	(in)	Screen (ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; $D = dry$, $S = saturated$, $M = moist$
1	0 – 2″ 2″ – 2		NA	Fill, rock, gravel, and brick.
	2 – 4	NA	NA	NA
5 6	4 - 6		NA	NA
7 <u> </u>	6 – 8	NA	NA	NA
Ũ	8 – 10		NA	NA
-	10 – 12		NA	NA
	12 – 14	NA	NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
	18 – 20		NA	NA
	20 – 22		NA	NA
23 <u> </u>	22 – 24	NA	NA	NA
	24 – 26		NA	NA
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	NA	NA	NA
29 <u> </u>	28 – 30		NA	NA

Notes:	PID Headspace	(H/S) Readings	Grab/Composite Samples		
Performed By: Envirospec	Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):NA	0-2"	0.2	Sample Time:	8:45	
	2"-2	NA	Sample ID:	SB-19 AO	
	2-4	NA			
	4-6	NA	Interval:	NA	
	6-8	NA	Sample Time:	NA	
	8-10	NA	Sample ID:	NA	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	NA	
	14-16	NA	Sample Time:	NA	
SB-19 AO – Full analysis (no TAL metals or SVOC).	16-18	NA	Sample ID:	NA	
	18-20	NA			
	20-22	NA	Interval:	NA	
	22-24	NA	Sample Time:	NA	
	24-26	NA	Sample ID:	NA	
	26-28	NA			
	28-30	NA	_		
DATE: 8/8/2017	LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Boring Log				
BORING LOCATION: SB-19					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600		
Albany, NY 12204		PRO	JECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		NA	Fill, clay, brick, gavel, and soil.
3	2 – 4	~24″	NA	Fill, clay, brick, and gavel
5	4 - 6		NA	Fill, clay, brick, and gavel.
7 <u> </u>	6 – 8	~24″	NA	Fill, clay, brick, and gavel. Black layer from 7'-9'.
9 <u> </u>	8 – 10		NA	Fill, clay and sand. Black layer from 7'-9'.
-	10 – 12		NA	Fill, clay and sand.
	12 – 14	~18″	NA	Fill, clay and sand.
	14 – 16		NA	Sand, fill, and gravel.
-	16 – 18	~18″	NA	Sand, fill, and gravel.
	18 – 20		NA	Sand, fill, and gravel.
-	20 – 22		NA	Clay.
	22 – 24	~36″	NA	Clay.
	24 – 26		NA	Clay.
	26 – 28	~18″	NA	Clay.
29 <u></u> 30 <u></u>	28 – 30		NA	Clay.

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2"	
Groundwater Interface (▼):28ft	0-2"	NA	Sample Time:	1:45	
	2"-2	NA	Sample ID:	SB-21 A	
PID measurements NA due to moisture causing inaccurate readings.	2-4	NA			
	4-6	NA	Interval:	2" – 2'	
SB-19 BO was an offset soil boring.	6-8	NA	Sample Time:	1:50	
	8-10	NA	Sample ID:	SB-19 BO	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'	
	14-16	NA	Sample Time:	1:40	
SB-19 A – TAL metals.	16-18	NA	Sample ID:	SB-19 C	
SB-19 BO – TAL metals.	18-20	NA			
SB-19 C – TAL metals.	20-22	NA			
	22-24	NA			
	24-26	NA			
	26-28	NA			
	28-30	NA			
DATE: 7/24/2017	LOCATION: 1 Osgoo	d Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef	Soil Paring Log				
BORING LOCATION: SB-19	Soil Boring Log				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC		IECT #:E17-1600		
Albany, NY 12204		PRO	PROJECT MANAGER: Gianna Aiezza		

Soil Boring: SB-20 Offset (revisit)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		NA	Fill.
3	2 – 4	12″	NA	Fill.
5 ——	4 - 6		NA	Fill and brick.
7 <u> </u>	6 – 8	12″	NA	Fill and brick.
9 <u> </u>	8 – 10		NA	Fill and brick.
-	10 – 12		NA	Fill.
	12 – 14	18″	NA	Fill.
	14 – 16		NA	Fill.
	16 – 18	16″	NA	Fill.
	18 – 20		NA	Fill.
	20 – 22		NA	Fill and clay.
	22 – 24	36″	NA	Fill and clay.
	24 – 26		NA	Clay.
	26 – 28	60″	NA	Clay.
29 <u> </u>	28 – 30		NA	Clay.

Notes:	PID Headspace	(H/S) Readings	Grab/Composite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2"
Groundwater Interface (▼):27ft	0-2"	NA	Sample Time:	7:20
	2"-2	NA	Sample ID:	SB-20 AO
PID only conducted – Was conducted at previous soil boring at the	2-4	NA		<u>.</u>
same location.	4-6	NA	Interval:	2" – 2'
SB-20 BO2 was an additional offset soil boring.	6-8	NA	Sample Time:	6:45
	8-10	NA	Sample ID:	SB-20 BO2
	10-12	NA		
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'
	14-16	NA	Sample Time:	7:20
SB-20 AO – Full analysis (no TAL metals or SVOCs).	16-18	NA	Sample ID:	SB-20 CO
SB-20 BO2 – Full analysis (no TAL metals or SVOCs).	18-20	NA		
SB-20 CO – Full analysis (no TAL metals or SVOCs).	20-22	NA		
	22-24	NA		
	24-26	NA		
	26-28	NA		
	28-30	NA		
DATE: 7/31/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY	
LOGGED BY: Rachel Farnum	Soil Boring Log			
BORING LOCATION: SB-20 O				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600	
ENGINEERING, PLLC		PRO	ECT MANAGER: Gi	anna Aiezza

Depth	Sample	Recovery	PID	Description
(ft)	Interval (ft)	(in)	Screen (ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Fill and gravel.
3 4	2 – 4	21″	0.0	Fill and gravel.
5 —— 6 ——	4 - 6		0.0	Fill and gravel.
7	6 – 8	21″	0.0	Fill and gravel.
9 <u> </u>	8 – 10		0.0	Fill and gravel.
	10 – 12		0.0	Fill and gravel.
	12 – 14	18″	0.0	Fill and gravel.
	14 – 16		0.0	Fill and gravel.
	16 – 18	22″	0.0	Fill and gravel.
	18 – 20		0.0	Fill and gravel.
	20 – 22		0.0	Clay.
	22 – 24	30″	0.0	Clay.
	24 – 26		0.0	Clay with small gravel layer.
	26 – 28	46″	0.0	Clay.
29 <u></u> 30 <u></u>	28 – 30		0.0	Clay.

Notes:		PID Headspace	(H/S) Readings	Grab/Composite Samples		
Performed By: Cascade		Interval	PID H/S	Interval:	0 - 2"	
Groundwater Interface (▼):28ft		0-2"	0.7	Sample Time:	8:37	
		2"-2	0.7	Sample ID:	SB-20 A	
SB-20 BO was an offset soil boring.		2-4	0.7			
		4-6	0.7	Interval:	2" – 2'	
		6-8	0.7	Sample Time:	8:29	
		8-10	0.7	Sample ID:	SB-20 BO	
		10-12	0.6			
Composite Sample Notes:		12-14	0.6	Interval:	25' – 30'	
		14-16	0.4	Sample Time:	8:27	
SB-20 A – TAL Metals.		16-18	0.4	Sample ID:	SB-20 C	
SB-20 BO – TAL Metals.		18-20	0.4			
SB-20 C – TAL Metals.		20-22	0.4			
		22-24	0.4			
		24-26	0.4			
		26-28	0.4			
		28-30	0.4			
DATE: 7/27/2017		LOCATION: 1 Osgoo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Rachel Farnum		Soil Boring Log				
BORING LOCATION: SB-20						
envirospec	CLIENT: South Island Apartments, LLC		ECT #:E17-1600			
ENGINEERING, PLLC	349 Northern Blvd., Suite 3 Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		NA	Soil, fill and gravel.
3	2 – 4	~30″	NA	Clay, fill, brick and ash.
5	4 - 6		NA	Clay, fill, brick and ash.
7	6 – 8	~18″	NA	Clay, wood, brick and ash.
°,	8 – 10		NA	Clay, wood, brick and ash.
	10 – 12		NA	Fill with a black layer. Petroleum odor. This layer has previously been sampled.
	12 – 14	~12″	NA	Fill with a black layer. Petroleum odor. This layer has previously been sampled.
	14 – 16		NA	NA
	16 – 18	0	NA	NA
-	18 – 20		NA	NA
	20 – 22		NA	Clay and gravel. Petroleum odor. This layer has previously been sampled.
	22 – 24	~12″	NA	Clay and gravel. Petroleum odor. This layer has previously been sampled.
24 <u></u> 25 <u></u> 26 <u></u>	24 – 26		NA	Gravel, sand and clay. Petroleum odor.
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~12″	NA	Gravel, sand and clay. Petroleum odor.
29 <u></u> 30 <u></u>	28 – 30		NA	Gravel, sand and clay. Petroleum odor.

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2"
Groundwater Interface (▼):29ft	0-2"	NA	Sample Time:	2:05
	2"-2	NA	Sample ID:	SB-21 A
SB-21 BO was an offset soil boring.	2-4	NA		
	4-6	NA	Interval:	2" – 2'
PID measurements NA due to moisture causing inaccurate readings.	6-8	NA	Sample Time:	2:07
	8-10	NA	Sample ID:	SB-21 BO
	10-12	NA		
Composite Sample Notes:	12-14	NA	Interval:	25' – 30'
	14-16	NA	Sample Time:	2:30
SB-21 A – TAL metals.	16-18	NA	Sample ID:	SB-21 C
SB-21 BO – TAL metals.	18-20	NA		
SB-21 C – TAL metals.	20-22	NA		
	22-24	NA		
	24-26	NA		
	26-28	NA		
	28-30	NA		
DATE: 7/24/2017	LOCATION: 1 Osgo	od Avenue, Town c	f Green Island, NY	
LOGGED BY: Charlotte Verhoef and Ross Carpinello				
BORING LOCATION: SB-21	Soil Boring Log			
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600	
ENCINEERING, PLLC Albany, NY 12204		PROJE	ECT MANAGER: Gi	anna Aiezza

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Soil, gravel, and fill.
3	2 – 4	18″	0.0	Gravel, fill, and ash.
5	4 - 6		0.0	Fill and ash.
7 <u> </u>	6 – 8	12″	0.0	Fill and brick.
9 <u> </u>	8 – 10		0.0	Ash and gravel.
-	10 – 12		0.0	Fill and ash.
	12 – 14	30″	0.0	Gravel, clay, and rock.
	14 – 16		0.0	Silt and clay.
-	16 – 18	12″	0.0	Rocks and soil.
	18 – 20		0.0	Soil.
-	20 – 22		0.9	Soil and gravel.
	22 – 24	36″	12.2	Fill and Clay. Strong odor.
	24 – 26		59.0	Gravel. Strong odor.
-	26 – 28	36″	4.1	Clay and gravel. Strong odor.
	28 – 30		17.3	Silt, Clay, and gravel. Strong odor.

Notes:		PID Headspace	(H/S) Readings	Grab/Composite Samples		
Performed By: Cascade		Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):29ft		0-2"	2.4	Sample Time:	12:35	
		2"-2	1.5	Sample ID:	SB-22 A	
		2-4	1.5			
		4-6	1.5	Interval:	2" – 2'	
		6-8	1.3	Sample Time:	12:40	
		8-10	1.3	Sample ID:	SB-22 B	
		10-12	2.0			
Composite Sample Notes:		12-14	2.0	Interval:	25' – 30'	
		14-16	1.5	Sample Time:	1:15	
SB-22 A- TAL metals.		16-18	2.9	Sample ID:	SB-22 C	
SB-22 BO – TAL metals.		18-20	2.9			
SB-22 C – TAL metals.		20-22	4.0	Interval:	25'-27'	
SB-22 D– VOCs and TPH.		22-24	192.8	Sample Time:	1:20	
		24-26	134.6	Sample ID:	SB-22 D	
		26-28	134.6			
		28-30	5.8			
DATE: 7/26/2017		LOCATION: 1 Osgoo	d Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef		Soil Boring Log				
BORING LOCATION: SB-22						
envirospec	CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600			
	349 Northern Blvd., Suite 3 Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza		

Soil Boring: SB-23 surface (offset)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		NA	Soil, roots, and wood.
	2 – 4	NA	NA	NA
	4 - 6		NA	NA
	6 – 8	NA	NA	NA
-	8 – 10		NA	NA
-	10 – 12		NA	NA
	12 – 14	NA	NA	NA
15 <u>15</u>	14 – 16		NA	NA
	16 – 18	NA	NA	NA
	18 – 20		NA	NA
	20 – 22		NA	NA
23 <u> </u>	22 – 24	NA	NA	NA
	24 – 26		NA	NA
	26 – 28	NA	NA	NA
29 <u> </u>	28 – 30		NA	NA

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Envirospec		Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):NA		0-2"	NA	Sample Time:	7:25	
		2"-2	NA	Sample ID:	SB-23 AO	
		2-4	NA			
		4-6	NA	Interval:	NA	
		6-8	NA	Sample Time:	NA	
		8-10	NA	Sample ID:	NA	
		10-12	NA			
Composite Sample Notes:		12-14	NA	Interval:	NA	
		14-16	NA	Sample Time:	NA	
SB-23 AO – TAL metals.		16-18	NA	Sample ID:	NA	
		18-20	NA	· · · · · · · · · · · · · · · · · · ·		
		20-22	NA	Interval:	NA	
		22-24	NA	Sample Time:	NA	
		24-26	NA	Sample ID:	NA	
		26-28	NA			
		28-30	NA			
DATE: 8/8/2017		LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum		Soil Boring Log				
BORING LOCATION: SB-23						
envirospec	Envirospec Engineering, PLLC	CLIENT: South Island Apartments, LLC		PROJECT #:E17-1600		
	349 Northern Blvd., Suite 3 Albany, NY 12204			PROJECT MANAGER: Gianna Aiezza		
			PRU	JECT WANAGER: G	ianna Alezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist	
1	0 – 2″ 2″ – 2		0.0	Fill, rocks and gravel.	
3	2 – 4	33″	0.0	Fill, rocks and gravel.	
5 <u> </u>	4 - 6		0.0	Fill, some clay, rocks and gravel.	
7 <u> </u>	6 – 8	13″	0.0	Fill with some black material.	
9 <u> </u>	8 – 10		0.0	Fill and gravel.	
-	10 – 12	23″	0.3	Fill and gravel.	
	12 – 14		0.3	Fill and gravel.	
	14 – 16		0.0	Fill and gravel.	
	16 – 18	18″	0.0	Fill and gravel.	
-	18 – 20		0.0	Fill and gravel.	
-	20 – 22		4.7	Fill.	
	22 – 24	18″	18″	4.7	Fill.
25 —— 26 ——	24 – 26		4.7	Fill.	
	26 – 28	20″	85.0	Fill, lots of rocks and gravel.	
29 —— 30 ——	28 – 30		85.0	Fill, lots of rocks and gravel.	

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):27ft	0-2"	0.5	Sample Time:	NA	
	2"-2	0.5	Sample ID:	NA	
SB-23 BO was an offset soil boring.	2-4	0.5			
	4-6	1.4	Interval:	2" – 2'	
	6-8	1.4	Sample Time:	1:14	
	8-10	1.4	Sample ID:	SB-23 BO	
	10-12	1.3			
Composite Sample Notes:	12-14	1.3	Interval:	25' – 30'	
	14-16	2.3	Sample Time:	1:40	
SB-7 BO – Full Analysis.	16-18	2.3	Sample ID:	SB-23 C	
SB-7 C – TAL metals, VOCs, SVOCs and TPH (not enough recovery	18-20	2.3			
to do Full Analysis).	20-22	40.0			
	22-24	40.0			
	24-26	150.0			
	26-28	150.0			
	28-30	150.0			
DATE: 7/27/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Boring Log				
BORING LOCATION: SB-23					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENCINEERING, PLIC		PROJ	ECT MANAGER: Gi	anna Aiezza	

Soil Boring: SB-24 surface (offset)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		NA	Soil, rocks and roots.
	2 – 4	NA	NA	NA
-	4 - 6		NA	NA
-	6 – 8	NA	NA	NA
°	8 – 10		NA	NA
	10 – 12	NA	NA	NA
	12 – 14		NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
19 <u> </u>	18 – 20		NA	NA
	20 – 22		NA	NA
23 <u></u> 24 <u></u>	22 – 24	NA	NA	NA
	24 – 26		NA	NA
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	NA	NA	NA
29 <u> </u>	28 – 30		NA	ΝΑ

Notes:	PID Headspace	(H/S) Readings	Grab/Composite Samples		
Performed By: Envirospec	Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):NA	0-2"	0.3	Sample Time:	8:32	
	2"-2	NA	Sample ID:	SB-24 AO	
	2-4	NA			
	4-6	NA	Interval:	NA	
	6-8	NA	Sample Time:	NA	
	8-10	NA	Sample ID:	NA	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	NA	
	14-16	NA	Sample Time:	NA	
SB-24 AO – Full analysis, No TAL metal.	16-18	NA	Sample ID:	NA	
	18-20	NA			
	20-22	NA	Interval:	NA	
	22-24	NA	Sample Time:	NA	
	24-26	NA	Sample ID:	NA	
	26-28	NA			
	28-30	NA			
DATE: 8/8/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Rachel Farnum	Soil Poring Log				
BORING LOCATION: SB-24	Soil Boring Log				
Envirospec Engineering , PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENCINEERING, PLLC Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Soil.
3	2 – 4	~18″	0.0	Soil.
5 <u> </u>	4 - 6		0.0	Soil.
7 <u> </u>	6 – 8	~18″	0.0	Brick, fill and sand.
9 <u> </u>	8 – 10		0.0	Brick, fill and sand.
-	10 – 12		0.0	Soil, gravel and brick.
	12 – 14	<1″	0.0	Soil, gravel and brick.
	14 – 16		0.0	Soil, gravel and brick.
17 <u>17</u> 18 <u>18</u>	16 – 18	~24″	0.0	Soil, gravel, sand and brick.
	18 – 20		0.0	Soil, gravel, sand and brick.
20 <u></u> 21 <u></u> 22 <u></u>	20 – 22		0.0	Soil, gravel, sand, clay and brick.
22 <u></u> 23 <u></u> 24 <u></u>	22 – 24	~60″	0.0	Soil, gravel, sand, clay and brick.
24 <u></u> 25 <u></u> 26 <u></u>	24 – 26		0.0	Soil, gravel, sand, clay and brick.
26 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~60″	0.2	Fill and brick. At 28-29 feet white granular powder.
29 <u></u> 30 <u></u>	28 – 30		0.0	Fill and brick.

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2"	
Groundwater Interface (▼):29ft	0-2"	2.4	Sample Time:	8:50	
	2"-2	2.0	Sample ID:	SB-24 A	
SB-24 BO was an offset soil boring.	2-4	20			
A Duplicate sample was taken from SB-24 A at 9:00 to be analyzed	4-6	0.8	Interval:	2" – 2'	
for TAL Metals.	6-8	0.8	Sample Time:	8:55	
	8-10	0.8	Sample ID:	SB-24 BO	
	10-12	1.2			
Composite Sample Notes:	12-14	1.2	Interval:	25' – 30'	
	14-16	1.4	Sample Time:	9:00	
SB-24 A – TAL Metals.	16-18	1.4	Sample ID:	SB-24 C	
SB-24 BO – TAL Metals.	18-20	1.2			
SB-24 C – TAL Metals.	20-22	0.0			
	22-24	0.0			
	24-26	1.8			
	26-28	0.2			
	28-30	0.6			
DATE: 7/24/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Charlotte Verhoef and Ross Carpinello	Soil Boring Log				
BORING LOCATION: SB-24					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENCINEERING, PLIC Albany, NY 12204	PROJECT MANAGER: Gianna A			anna Aiezza	

		Recovery	PID	Description
Depth (ft)	Sample Interval (ft)	(in)	Screen (ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		NA	Fill, ash and gravel. No odor or visual petroleum.
3	2 – 4	~36″	NA	Fill, ash and gravel. No odor or visual petroleum.
5 <u> </u>	4 - 6		NA	Fill, ash and gravel. No odor or visual petroleum.
7 <u> </u>	6 – 8	~24″	NA	Fill, ash and gravel. Black layer at 7-9 feet. Odor present but no visual petroleum.
9 <u> </u>	8 – 10		NA	Fill, ash and gravel. Black layer at 7-9 feet. Odor present but no visual petroleum.
	10 – 12		NA	Ash, gravel and shells. Odor present but no visual petroleum.
. –	12 – 14	~24″	NA	Ash, gravel and shells. Odor present but no visual petroleum.
	14 – 16		NA	Ash, gravel and shells. Odor present but no visual petroleum.
17 <u>17</u>	16 – 18	~12″	NA	Sand, ash and brown/black layer. Odor present but no visual petroleum.
	18 – 20		NA	Sand, ash and brown/black layer. Odor present but no visual petroleum.
21	20 – 22		NA	Sand, gravel and wood. No odor or visual petroleum.
	22 – 24	~24″	NA	Sand, gravel and wood. No odor or visual petroleum.
24 <u> </u>	24 – 26		NA	Sand and gravel. No odor or visual petroleum.
26 —— 27 ——	26 – 28	~48″	NA	Sand and gravel. No odor or visual petroleum.
28 —— 29 —— 30 ——	28 – 30		NA	Sand and gravel. No odor or visual petroleum.
·				1

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):30ft	0-2"	NA	Sample Time:	NA	
	2"-2	NA	Sample ID:	NA	
SB-25 BO was an offset soil boring.	2-4	NA			
	4-6	NA	Interval:	2" – 2'	
PID measurements NA due to moisture causing inaccurate readings.	6-8	NA	Sample Time:	9:45	
	8-10	NA	Sample ID:	SB-25 BO	
	10-12	NA		-	
Composite Sample Notes:	12-14	NA	Interval:	25' - 30'	
	14-16	NA	Sample Time:	10:10	
SB-25 BO – TAL metals.	16-18	NA	Sample ID:	SB-25 C	
SB-25 C – TAL metals.	18-20	NA			
	20-22	NA			
	22-24	NA			
	24-26	NA			
	26-28	NA			
	28-30	NA			
DATE: 7/25/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Charlotte Verhoef	Soil Boring Log				
BORING LOCATION: SB-25					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islar Apartments, LLC		ECT #:E17-1600		
Albany, NY 12204		PROJ	OJECT MANAGER: Gianna Aiezza		

		D	PID					
Depth (ft)	Sample Interval (ft)	Recovery (in)	Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist				
1	0 – 2" 2" – 2		NA	Fill, brick, soil, ash and gravel. No odor or visual petroleum.				
3	2 – 4	~30″	NA	Fill, brick, soil, ash and gravel. No odor or visual petroleum.				
5	4 - 6		NA	Fill, brick, soil, ash and gravel. No odor or visual petroleum.				
7 <u> </u>	6 – 8	~18″	NA	Fill, brick, soil, ash and gravel. No odor or visual petroleum.				
9 <u> </u>	8 – 10		NA	Fill, brick, soil, ash and gravel. No odor or visual petroleum.				
	10 – 12		NA	Ash, gravel, brick and clay. No odor or visual petroleum.				
. –	12 – 14	~18″	NA	Ash, gravel, brick and clay. No odor or visual petroleum.				
	14 – 16		NA	Ash, gravel, brick and clay. No odor or visual petroleum.				
-	16 – 18	~18″ NA		Ash, gravel and gravel. No odor or visual petroleum.				
	18 – 20		NA	Ash, gravel and gravel. No odor or visual petroleum.				
	20 – 22		NA	Gravel and clay. No odor or visual petroleum.				
	22 – 24	~30″	NA	Gravel and clay. No odor or visual petroleum.				
	24 – 26		NA	Gravel and clay. No odor or visual petroleum.				
	26 – 28	~48″ NA		Gravel and clay. No odor or visual petroleum.				
29 <u></u> 30 <u></u>	28 – 30		NA	Gravel and clay. No odor or visual petroleum.				

Notes:	PID Headspace	(H/S) Readings	Grab/Composite Samples		
Performed By: Cascade	Interval	PID H/S	Interval:	0-2"	
Groundwater Interface (▼):29ft	0-2"	NA	Sample Time:	8:00	
	2"-2	NA	Sample ID:	SB-26A	
At SB-26 A MS/MSD was taken at 8:45.	2-4	NA			
SB-26 BO was an offset soil boring.	4-6	NA	Interval:	2" – 2'	
	6-8	NA	Sample Time:	8:10	
PID measurements NA due to moisture causing inaccurate readings.	8-10	NA	Sample ID:	SB-26 BO	
	10-12	NA			
Composite Sample Notes:	12-14	NA	Interval:	28' - 30'	
	14-16	NA	Sample Time:	8:25	
SB-26 A – Full Analysis.	16-18	NA	Sample ID:	SB-26 C	
SB-26 BO – Full Analysis.	18-20	NA			
SB-26 C – Full Analysis.	20-22	NA			
	22-24	NA			
	24-26	NA			
	26-28	NA			
	28-30	NA			
DATE: 7/25/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef	Soil Boring Log				
BORING LOCATION: SB-26					
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		JECT #:E17-1600		
ENCINEERING, PLLC Albany, NY 12204		PRO	JECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		0.0	Gavel and soil.
2 3	2 – 4	31″	0.0	Fill, clay, and white rocks.
4 —— 5 ——	4 - 6		0.0	Gravel, sand, and black/ash layer.
7 <u> </u>	6 – 8	23″	0.0	Gravel, soil, and fill. Black layer from 7' - 9'
-	8 – 10		0.0	Gravel.
-	10 – 12		1.8	Black layer.
	12 – 14	26″	0.7	Clay and rocks.
	14 – 16		0.6	Fill and clay.
-	16 – 18	12″	0.2	Clay and gravel.
-	18 – 20		0.4	Clay and white rocks.
-	20 – 22		0.8	Gravel and clay.
23 —	22 – 24	18″	0.8	Gravel and clay.
	24 – 26		NA	NA
-	26 – 28	NA	NA	NA
29 —— 30 ——	28 – 30		NA	NA

Notes:	PID Headspace	(H/S) Readings		Grab/Compo	osite Samples	
Performed By: Cascade	Interval	PID H/S		Interval:	2" – 2'	
Groundwater Interface (▼):25ft	0-2"	0.0		Sample Time:	8:30	
	2"-2	0.0		Sample ID:	SB-27 B	
SB-27 DO and SB-27 DO2 were offset soil borings.	2-4	1200				
	4-6	1200		Interval:	26' – 27'	
	6-8	130.0		Sample Time:	88:32	
	8-10	130.0		Sample ID:	SB-27 C	
	10-12	70.0				
Composite Sample Notes:	12-14	70.0		Interval:	4' - 5'	
	14-16	122.0		Sample Time:	8:35	
SB-27 B – TAL metals.	16-18	122.0		Sample ID:	SB-27 DO	
SB-27 C – TAL metals.	18-20	1071				
SB-27 DO- VOCs and TPH	20-22	1071		Interval:	18' - 20'	
SB-27 DO2- VOCs and THP	22-24	147.0		Sample Time:	9:11	
	24-26	147.0		Sample ID:	SB-27 DO2	
	26-28	NA				
	28-30	NA				
DATE: 7/21/2017	LOCATION: 1 Osgo	od Avenue, Towr	n of G	Freen Island, NY		
LOGGED BY: Charlotte Verhoef		Soil Poring Log				
BORING LOCATION: SB-27		- Soil Boring Log				
Envirospec Engineering, PLL 349 Northern Blvd., Suite 3	c CLIENT: South Islan Apartments, LLC		DJECT	Г #:E17-1600		
ENCINEERING, PLLC		PRC	PROJECT MANAGER: Gianna Aiezza			

Depth	Sample	Recovery	PID	Description
(ft)	Interval (ft)	(in)	Screen (ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		0.0	Fill.
3	2 – 4	35″	0.0	Fill.
5 —— 6 ——	4 - 6		0.0	Fill.
7 <u> </u>	6 – 8	32″	8.5	Fill and brick.
U	8 – 10		0.3	Fill and brick.
	10 – 12	20″	4.6	Brick and clay. Black layer with strong odor.
	12 – 14		69.8	Brick and clay. Black layer with strong odor.
	14 – 16		57.6	Brick and clay. Black layer with strong odor.
	16 – 18	31″	57.6	Brick and clay. Black layer with strong odor.
	18 – 20		57.6	Brick and clay. Black layer with strong odor.
-	20 – 22		127.6	Clay.
23 <u></u> 24 <u></u>	22 – 24	24″	0.3	Clay.
	24 – 26		2.9	Clay.
	26 – 28	48″	2.9	Clay.
29 <u></u> 30 <u></u>	28 – 30		2.9	Clay.

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples		
Performed By: Cascade		Interval	PID H/S	Interval:	NA		
Groundwater Interface (▼):29ft		0-2"	0.1	Sample Time:	NA		
		2"-2	0.1	Sample ID:	NA		
SB-28 BO2 was an additional offset soil bor	ing.	2-4	0.1				
		4-6	3.9	Interval:	2" – 2'		
		6-8	3.9	Sample Time:	7:43		
		8-10	3.9	Sample ID:	SB-28 BO		
		10-12	23.2				
Composite Sample Notes:		12-14	23.2	Interval:	25' – 30'		
		14-16	58.9	Sample Time:	8:07		
SB-28 BO – Full analysis.		16-18	58.9	Sample ID:	SB-28 C		
SB-28 C – Full analysis.		18-20	257				
		20-22	257				
		22-24	0.1				
		24-26	0.1				
		26-28	9.0				
		28-30	9.0				
DATE: 7/28/2017		LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY			
LOGGED BY: Rachel Farnum			Soil Bo	ring Log			
BORING LOCATION: SB-28							
	irospec Engineering, PLLC	CLIENT: South Islan Apartments, LLC	-	PROJECT #:E17-1600			
	Northern Blvd., Suite 3 ny, NY 12204		PRO	JECT MANAGER: Gi	anna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%;
(11)			(ppm)	D = dry, S = saturated, M = moist
1 —— 2 ——	0 – 2″ 2″ – 2		0.3	Sand, gravel and fill.
3	2 – 4	36″	0.3	Sand, gravel and fill.
5 —— 6 ——	4 - 6		0.3	Clay.
7 <u> </u>	6 – 8	12″	0.3	Fill and gravel.
-	8 – 10		0.3	Fill and gravel.
	10 – 12		NA	Fill and gravel.
	12 – 14	<1″	NA	Fill and gravel.
	14 – 16		0.1	Fill and gravel.
	16 – 18	13″	0.1	Fill and gravel.
	18 – 20		0.1	Fill and gravel.
-	20 – 22		0.1	Fill and clay.
	22 – 24	16″	0.1	Fill and clay.
	24 – 26		0.1	Clay.
	26 – 28	60″	0.1	Clay.
	28 – 30		0.1	Clay.

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):29ft	0-2"	0.8	Sample Time:	NA	
	2"-2	0.8	Sample ID:	NA	
SB-29 BO was an offset soil boring.	2-4	0.8			
	4-6	4.1	Interval:	2" – 2'	
	6-8	4.1	Sample Time:	9:40	
	8-10	4.1	Sample ID:	SB-29 BO	
	10-12	4.2			
Composite Sample Notes:	12-14	4.2	Interval:	25' – 30'	
	14-16	4.2	Sample Time:	10:10	
SB-29 BO – Full analysis (Duplicate taken at 9:50 – SB-29 BO	16-18	1.9	Sample ID:	SB-29 C	
Duplicate).	18-20	1.9			
SB-29 C – Full analysis	20-22	1.5			
	22-24	1.5			
	24-26	0.8			
	26-28	0.8			
	28-30	0.8			
DATE: 7/28/2017	LOCATION: 1 Osgoo	od Avenue, Town (of Green Island, NY		
LOGGED BY: Rachel Farnum		Soil Boring Log			
BORING LOCATION: SB-29			ing Log		
Envirospec Engineering, P 349 Northern Blvd., Suite 3			ECT #:E17-1600		
349 Northern Blvd., Suite 3 Albany, NY 12204	3	PROJ	ECT MANAGER: Gi	anna Aiezza	

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		0.0	Rocks and ash.
3	2 – 4	18″	0.0	Sand.
5 <u> </u>	4 - 6		0.0	Brick.
7 <u> </u>	6 – 8	12″	0.0	Fill and Rocks.
9 <u> </u>	8 – 10		0.0	Clay.
-	10 – 12		25.0	Brick. Strong odor.
	12 – 14	30″	29.0	Clay. Strong odor.
	14 – 16		8.5	Clay. Strong odor.
	16 – 18	12″	0.1	Brick and clay. Strong odor.
	18 – 20		86.2	Clay and silt. Strong odor.
	20 – 22		512.0	Brick and fill. Strong odor.
23 —— 24 ——	22 – 24	36″	320.0	Clay. Strong odor.
25 <u></u> 26 <u></u>	24 – 26		437.0	Clay. Strong odor.
20 27 28	26 – 28	36″	157.0	Silt and clay. Strong odor.
29 —— 30 ——	28 – 30		22.6	Clay. Strong odor.

Notes:		PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade		Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):28ft		0-2"	0.3	Sample Time:	NA	
		2"-2	0.3	Sample ID:	NA	
		2-4	0.3			
		4-6	0.3	Interval:	2" – 2'	
		6-8	0.3	Sample Time:	7:50	
		8-10	0.3	Sample ID:	SB-30 B	
		10-12	0.4			
Composite Sample Notes:		12-14	45.9	Interval:	25' – 30'	
		14-16	1.9	Sample Time:	8:20	
SB-30 B – TAL metals.		16-18	1250	Sample ID:	SB-30 C	
SB-30 C – TAL metals.		18-20	989.6			
SB-30 D– VOCs and TPH.		20-22	322.1	Interval:	18'-20'	
		22-24	989.6	Sample Time:	8:30	
		24-26	330.1	Sample ID:	SB-30 D	
		26-28	330.1			
		28-30	93.6			
DATE: 7/26/2017		LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Charlotte Verhoef		Soil Boring Log				
BORING LOCATION: SB-30				ing Log		
envirospec	Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENGINEERING, PLLC	Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Brick, clay and ash.
3 —— 4 ——	2 – 4	~6"	0.0	Brick, clay and ash.
5	4 - 6		0.0	Brick, clay and ash.
7 <u> </u>	6 – 8	~10″	0.0	Brick, clay and ash.
9 <u> </u>	8 – 10		0.0	Brick, clay and ash.
11 <u>11</u>	10 – 12		0.0	Brick, clay and ash.
13	12 – 14	~24"	0.0	Brick, clay and ash.
14 <u>15</u> <u>16</u>	14 – 16		0.0	Brick, clay and ash.
10 <u> </u>	16 – 18	~18″	0.0	Brick, clay and ash.
10 <u> </u>	18 – 20		1.8	Brick, clay and ash.
20 <u></u> 21 <u></u> 22 <u></u>	20 – 22		0.0	Clay.
22 <u></u> 23 <u></u> 24 <u></u>	22 – 24	~18″	0.0	Clay.
25 <u></u> 26 <u></u>	24 – 26		130.0	Clay.
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~48″	86.8	Clay.
20 <u></u> 29 <u></u> 30 <u></u>	28 – 30		36.5	Clay.
30 <u> </u>	30 - 32		0.3	Clay and gravel.
33 —— 34 35 ——	33 - 35	~48"	0.3	Clay and gravel.

Soil Boring: SB-31 (continued)

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):33ft	0-2"	45.0	Sample Time:	NA	
	2"-2	45.0	Sample ID:	NA	
Duplicate was taken from SB-31 C at 12:40.	2-4	45.0			
	4-6	26.4	Interval:	1' – 3'	
	6-8	26.4	Sample Time:	11:10	
	8-10	26.4	Sample ID:	SB-31 B	
	10-12	14.6			
Composite Sample Notes:	12-14	14.6	Interval:	30' – 35'	
	14-16	14.6	Sample Time:	12:35	
SB-31 B – Full analysis (no VOCs and TPH).	16-18	4922.0	Sample ID:	SB-31 C	
SB-31 C – TAL Metals.	18-20	4922.0		•	
SB-31 D – VOCs and TPH.	20-22	452.0	Interval:	19'-20'	
	22-24	452.0	Sample Time:	12:05	
	24-26	90.1	Sample ID:	SB-31 D	
	26-28	90.1			
	28-30	48.5			
	30-32	48.5			
	33-35	48.5			
DATE: 7/21/2017	LOCATION: 1 Osgoo	d Avenue, Town o	of Green Island, NY		
LOGGED BY: Charlotte Verhoef and Ross Carpinello		Soil Bor	ina I oa		
BORING LOCATION: SB-31					
Envirospec Engineering , P 349 Northern Blvd., Suite 3	LLC Apartments LLC	CLIENT: South Island Apartments, LLC PROJECT #:E17-1600			
ENCINEERINC, PLLC Albany, NY 12204		PROJ	PROJECT MANAGER: Gianna Aiezza		

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Fill, sand, glass, and shells.
3	2 – 4	18″	0.0	Soil and brick.
5	4 - 6		0.0	Soil and brick.
7 <u> </u>	6 – 8	30″	0.0	Clay.
-	8 – 10		0.0	Clay.
	10 – 12		1.8	Clay, brick, and gravel.
	12 – 14	24″	0.7	Clay, brick, and gravel.
	14 – 16		0.6	Clay, brick, and gravel.
	16 – 18	0″		No Recovery.
	18 – 20			No Recovery.
	20 – 22			Gravel and clay.
23 <u> </u>	22 – 24	>12″		Gravel and clay.
	24 – 26			Clay.
	26 – 28	60″		Clay.
29 <u></u> 30 <u></u>	28 – 30			Clay.
Notes:	1			PID Headspace (H/S) Readings Grab/Composite Samples

Notes:	PID Headspace	e (H/S) Readings	Grab/Comp	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	0 – 2"
Groundwater Interface (▼):25ft	0-2"	67.6	Sample Time:	2:20
	2"-2	3.5	Sample ID:	SB-32 A
Duplicate sample was taken at SB-32 A on 2:30 for PCB/PEST and	2-4	3.5		
SPLP RCRA metals.	4-6	1.7	Interval:	2" – 2'
	6-8	1.7	Sample Time:	1:32
	8-10	1.7	Sample ID:	SB-32 B
	10-12	10.9		
Composite Sample Notes:	12-14	1.9	Interval:	25' - 30'
	14-16	10.9	Sample Time:	1:40
SB-32 A- Full analysis.	16-18	NA	Sample ID:	SB-32 C
SB-32 B – Full analysis.	18-20	NA		
SB-32 C – Full analysis.	20-22	11.5		
	22-24	11.5		
	24-26	11.5		
	26-28	30.5		
	28-30	30.5		
DATE: 7/21/2017	LOCATION: 1 Osgo	ood Avenue, Town	of Green Island, NY	
LOGGED BY: Charlotte Verhoef	Soil Boring Log			
BORING LOCATION: SB-32				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islar Apartments, LLC		JECT #:E17-1600	
ENCINEERING, PLIC Albany, NY 12204		PRO	IECT MANAGER: Gi	anna Aiezza

Soil Boring: SB-33 surface (offset)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		NA	Soil, roots, and some rocks.
	2 – 4	NA	NA	NA
	4 - 6		NA	NA
7 <u> </u>	6 – 8	NA	NA	NA
9 <u> </u>	8 – 10		NA	NA
-	10 – 12		NA	NA
	12 – 14	NA	NA	NA
	14 – 16		NA	NA
	16 – 18	NA	NA	NA
	18 – 20		NA	NA
	20 – 22		NA	NA
23 <u></u> 24 <u></u>	22 – 24	NA	NA	NA
	24 – 26		NA	NA
20 <u> </u>	26 – 28	NA	NA	NA
29 <u></u> 30 <u></u>	28 – 30		NA	NA

Notes:	PID Headspace	e (H/S) Readings	Grab/Comp	osite Samples
Performed By: Envirospec	Interval	PID H/S	Interval:	0-2"
Groundwater Interface (▼):NA	0-2"	NA	Sample Time:	7:34
	2"-2	NA	Sample ID:	SB-33 AO
	2-4	NA		
	4-6	NA	Interval:	NA
	6-8	NA	Sample Time:	NA
	8-10	NA	Sample ID:	NA
	10-12	NA		
Composite Sample Notes:	12-14	NA	Interval:	NA
	14-16	NA	Sample Time:	NA
SB-33 AO – TAL metals.	16-18	NA	Sample ID:	NA
	18-20	NA		
	20-22	NA	Interval:	NA
	22-24	NA	Sample Time:	NA
	24-26	NA	Sample ID:	NA
	26-28	NA		
	28-30	NA		
DATE: 8/8/2017	LOCATION: 1 Osgo	ood Avenue, Town o	of Green Island, NY	
LOGGED BY: Rachel Farnum		Soil Bor	ing Log	
BORING LOCATION: SB-33				
CONVIRONDE C A Envirospec Engineering, P	CLIENT: South Islan			
envirospec Engineering, P 349 Northern Blvd., Suite 3		PROJ	ECT #:E17-1600	
ENGINEERING, PLLC Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza

Depth	Sample	Recovery	PID Screen	Description
(ft)	Interval (ft)	(in)	(ppm)	Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Fill, rocks and bricks.
3	2 – 4	34″	0.0	Fill, rocks and bricks.
5 —— 6 ——	4 - 6		0.0	Fill, rocks and bricks.
7 <u> </u>	6 – 8	11″	0.0	Fill and gravel.
9 <u> </u>	8 – 10		0.0	Fill and gravel.
-	10 – 12		0.5	Fill, some clay and brick.
	12 – 14	27″	0.5	Fill, some clay and brick.
	14 – 16		0.0	Fill and clay.
	16 – 18	29″	0.0	Fill and clay.
	18 – 20		0.0	Fill and clay.
-	20 – 22		0.0	Fill and clay.
	22 – 24	29″	0.0	Fill and clay.
	24 – 26		0.0	Fill and clay.
-	26 – 28	36″	0.1	Sand and clay.
	28 – 30		0.1	Sand and clay.

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):27ft	0-2"	1.4	Sample Time:	NA	
	2"-2	1.4	Sample ID:	NA	
SB-33 BO was an offset soil boring.	2-4	1.4			
SB-33 D was sampled at 2:47 from 25'-30' interval.	4-6	0.7	Interval:	2" – 2'	
	6-8	0.7	Sample Time:	2:13	
	8-10	0.7	Sample ID:	SB-33 BO	
	10-12	0.9			
Composite Sample Notes:	12-14	0.9	Interval:	25' – 30'	
	14-16	0.4	Sample Time:	2:40	
SB-33 BO – TAL metals.	16-18	0.4	Sample ID:	SB-33 C	
SB-33 C – TAL metals.	18-20	0.4			
SB-33 D – PCBs, Pesticides and SPLP.	20-22	0.4	Interval:	25'-30'	
	22-24	0.4	Sample Time:	2:47	
	24-26	0.4	Sample ID:	SB-33 D	
	26-28	0.3			
	28-30	0.3			
DATE: 7/27/2017	LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY		
LOGGED BY: Rachel Farnum		Soil Bor	ring Log		
BORING LOCATION: SB-33		Soil Boring Log			
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC	-	JECT #:E17-1600		
Albany, NY 12204		PRO	JECT MANAGER: Gi	anna Aiezza	

Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
0 – 2" 2" – 2		0.0	Soil, gravel, and fill.
2 – 4	~18″	0.0	Soil, gravel, and fill.
4 - 6		0.0	Gravel, silt and fill.
6 – 8	~18″	0.0	Gravel, silt and fill.
8 – 10		0.0	Black soil layer.
10 – 12		0.0	Sand, coarse gravel.
12 – 14	~24″	0.0	Sand, coarse gravel with an additional black layer.
14 – 16		0.0	Black layer.
16 – 18	~24″	0.0	Grey gravel with silt.
18 – 20		0.0	Grey gravel with silt.
20 – 22		0.0	Soil, gravel with fill.
22 – 24	~6″	0.0	Soil, gravel with fill.
24 – 26		0.0	Clay.
26 – 28	~6″	85.0	Clay and gravel.
28 – 30		85.0	Clay and gravel.
	Interval (ft) 0 - 2'' - 2 2 - 4 4 - 6 6 - 8 8 - 10 10 - 12 12 - 14 14 - 16 16 - 18 18 - 20 20 - 22 22 - 24 24 - 26 26 - 28	Sample Interval (ft) (in) $0 - 2''$ \sim 18" $2'' - 2$ \sim 18" $4 - 6$ \sim 18" $4 - 6$ \sim 18" $4 - 6$ \sim 18" $10 - 12$ \sim 24" $12 - 14$ \sim 24" $14 - 16$ \sim 24" $18 - 20$ \sim 6" $20 - 22$ \sim 6" $24 - 26$ \sim 6"	Sample Interval (ft)(in)Screen (ppm) $0-2"2"-2~18"0.02-4~18"0.04-60.04-60.06-8~18"0.08-100.010-1212-14-24"0.012-14-24"0.014-160.016-1820-22-24"0.020-2222-240.022-240.024-260.026-28-6"85.0$

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples	
Performed By: Cascade	Interval	PID H/S	Interval:	NA	
Groundwater Interface (▼):29ft	0-2"	0.5	Sample Time:	NA	
	2"-2	0.5	Sample ID:	NA	
SB-34 BO was an offset soil boring.	2-4	0.5		-	
SB-34 D taken from black layer at 7-9-feet at 1:28.	4-6	50	Interval:	0 – 2 feet	
	6-8	15	Sample Time:	2:03	
	8-10	15	Sample ID:	SB-34 BO	
	10-12	5.0		-	
Composite Sample Notes:	12-14	5.0	Interval:	28' - 30'	
	14-16	5.0	Sample Time:	2:02	
SB-34 BO – TAL metals.	16-18	1.5	Sample ID:	SB-34 C	
SB-34 C – TAL metals.	18-20	1.5			
SB-34 D – PCBs and pesticides.	20-22	9.5			
	22-24	9.5			
	24-26	9.5			
	26-28	10.7			
	28-30	10.7			
DATE: 7/20/2017	LOCATION: 1 Osgo	od Avenue, Town o	of Green Island, NY		
LOGGED BY: Charlotte Verhoef					
BORING LOCATION: SB-34	Soil Boring Log				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600		
ENGINEERING, PLIC Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza	

Soil Boring: SB-35 Offset (revisit)

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		NA	NA
3	2 – 4	NA	NA	NA
5	4 - 6		NA	NA
7 <u> </u>	6 – 8	NA	NA	NA
9 <u> </u>	8 – 10		NA	NA
10 <u> </u>	10 – 12		NA	NA
12 <u> </u>	12 – 14	NA	NA	NA
15	14 – 16		NA	NA
-	16 – 18	NA	NA	NA
	18 – 20		NA	NA
20 <u></u> 21 <u></u> 22 <u></u>	20 – 22		NA	NA
23 <u> </u>	22 – 24	NA	NA	NA
24 <u></u> 25 <u></u> 26 <u></u>	24 – 26		NA	Sand and gravel.
20 <u></u> 27 <u></u> 28 <u></u>	26 – 28	~24″	NA	Sand and gravel.
28 <u></u> 29 <u></u> 30 <u></u>	28 – 30		NA	Sand and gravel.
Notes:		1		PID Headspace (H/S) Readings Grab/Composite Samples

Notes:	PID Headspace	(H/S) Readings	Grab/Compo	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	NA
Groundwater Interface (▼):26ft	0-2"	NA	Sample Time:	NA
	2"-2	NA	Sample ID:	NA
SB-35 CO2 is an offset soil boring.	2-4	NA		
Only sampled TAL metals due to poor recovery.	4-6	NA	Interval:	NA
	6-8	NA	Sample Time:	NA
	8-10	NA	Sample ID:	NA
	10-12	NA		
Composite Sample Notes:	12-14	NA	Interval:	26' - 27'
	14-16	NA	Sample Time:	7:44
SB-35 CO2 – TAL metals.	16-18	NA	Sample ID:	SB-35 CO2
	18-20	NA		
	20-22	NA		
	22-24	NA		
	24-26	0.0		
	26-28	50.2		
	28-30	50.2		
DATE: 7/21/2017	LOCATION: 1 Osgo	od Avenue, Town	of Green Island, NY	
LOGGED BY: Charlotte Verhoef	Soil Boring Log			
BORING LOCATION: SB-35				
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Islan Apartments, LLC		ECT #:E17-1600	
ENGINEERING, PLLC Albany, NY 12204		PROJ	ECT MANAGER: Gi	anna Aiezza

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2″ 2″ – 2		2.4	Gravel.
_	2 – 4	~24″	1.8	Fill and brick.
5 6	4 - 6		5.4	Black layer.
7 <u> </u>	6 – 8	~36″	6.0	Some gravel and a black layer.
-	8 – 10		6.0	Some gravel and a black layer.
	10 – 12		10.0	Clay.
	12 – 14	~12″	3.0	Clay.
	14 – 16		0.0	Clay.
-	16 – 18	~30	1.5	Silt and sand.
-	18 – 20		0.0	Silt and sand.
-	20 – 22		0.0	Clay.
23 —	22 – 24	~18″	1.7	Fill and gravel.
	24 – 26		0.9	Fill and gravel.
	26 – 28	NA	NA	NA
	28 – 30		NA	NA

Notes:	PID Headspace	(H/S) Readings	Grab/Comp	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	NA
Groundwater Interface (▼):25ft	0-2"	20.3	Sample Time:	NA
	2"-2	20.3	Sample ID:	NA
SB-35 BO was an offset soil boring.	2-4	237.0		
Sample SB35-CO2 was taken the following day in an offset boring.	4-6	29.6	Interval:	2" – 2'
	6-8	29.6	Sample Time:	3:04
	8-10	328.0	Sample ID:	SB-35 BO
	10-12	177.0		-
Composite Sample Notes:	12-14	177.0	Interval:	NA
	14-16	13.5	Sample Time:	NA
SB-35 BO – Full analysis.	16-18	13.8	Sample ID:	NA
SB-35 D – Full analysis.	18-20	55		
	20-22	180	Interval:	8' - 10'
	22-24	80.0	Sample Time:	2:27
	24-26	12.5	Sample ID:	SB-35 D
	26-28	NA		
	28-30	NA		
DATE: 7/20/2017	LOCATION: 1 Osgoo	od Avenue, Town	of Green Island, NY	
LOGGED BY: Rachel Farnum		Soil Boi	ing Log	
BORING LOCATION: SB-35			ing Log	
Envirospec Engineering, PLLC 349 Northern Blvd., Suite 3	CLIENT: South Island Apartments, LLC	-	JECT #:E17-1600	
349 Northern Blvd., Suite 3 Albany, NY 12204	Aparimento, LLO			anna Aiezza

Depth (ft)	Sample Interval (ft)	Recovery (in)	PID Screen (ppm)	Description Include color, texture, structure, odor, etc.; Trace 0-10%, Little 10-20%, Some 20-35%, And 35-50%; D = dry, S = saturated, M = moist
1	0 – 2" 2" – 2		0.0	Large brick layer, gravel and fill.
3	2 – 4	32″	0.0	Large brick layer, gravel and fill.
5	4 - 6		0.0	Large brick layer, gravel and fill.
7 <u> </u>	6 – 8	16″	0.0	Fill.
9 <u> </u>	8 – 10		0.0	Fill, small black layer.
-	10 – 12		0.0	Fill and gravel.
	12 – 14	23″	0.0	Fill and gravel.
	14 – 16		0.0	Fill, gravel and clay.
-	16 – 18	25″	0.0	Fill and gravel.
	18 – 20		0.0	Clay.
	20 – 22		2.5	Fill and clay.
	22 – 24	40″	2.5	Fill and clay.
	24 – 26		2.5	Clay.
-	26 – 28	38″	0.0	Clay.
	28 – 30		0.0	Clay.

Notes:	PID Headspace (H/S) Readings	Grab/Compo	osite Samples
Performed By: Cascade	Interval	PID H/S	Interval:	NA
Groundwater Interface (▼):29ft	0-2"	0.1	Sample Time:	NA
	2"-2	0.1	Sample ID:	NA
SB-36 BO was an offset soil boring.	2-4	0.1		
	4-6	1.5	Interval:	2" – 2'
	6-8	1.5	Sample Time:	7:08
	8-10	1.5	Sample ID:	SB-36 BO
	10-12	0.2		
Composite Sample Notes:	12-14	0.2	Interval:	25' - 30'
	14-16	0.2	Sample Time:	7:25
SB-36 BO – TAL metals.	16-18	6.1	Sample ID:	SB-36 C
SB-36 C – Full analysis (due to good recovery).	18-20	6.1		
	20-22	5.6		
	22-24	5.6		
	24-26	1.3		
	26-28	1.3		
	28-30	1.3		
DATE: 7/28/2017	LOCATION: 1 Osgoo	d Avenue, Town o	of Green Island, NY	
LOGGED BY: Rachel Farnum		Soil Bor	ing Log	
BORING LOCATION: SB-36				
envirospec Engineering, Pl 349 Northern Blvd., Suite 3			ECT #:E17-1600	
Structure Struct		PROJ	ECT MANAGER: Gi	anna Aiezza

APPENDIX C GROUNDWATER SAMPLING LOGS

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

WELL NO	M	[W-13	
Date(s)	9/	12/17	
Weath	er	T	emperature
Cloudy		High Low	
		. –	

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	cation Green Island, NY		

Well Info

Well #:	MW-13	Well Location:	
Well Diameter (in):		Well Condition:	
A. Total Well Depth (ft bgs):	33.9' Top of casing	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	26.35 Top of Casing	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	7.55	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	1.23	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	3.69	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:		Pump/Method:	
Purge Start Time:	1:29	Approx Flow Rate:	0.234 ml/min
Purge Stop Time:	2:27	Approx Volume Removed:	4 gallons
Did well dry out?			

Sampling

Date:		pH		
Time:	2:30	Temp (°C)		
Sample ID:	MW-13	Conductivity (mS/cm)		
Sample Method:		TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Comments:

MW-13 sample at 2:30

Well Sampling Field R		349 Northern Blvd Suite 3 Albany, NY 12204 Phone: 518.453.2203 Fax: 518.689.4800 www.envirospeceng.com	WELL NO Date(s)		MW-E 12/17	
			Weather		Temperature	
			Clear		Higl Low	
Project	South Island Apartments Brownfields	Project		Project N	۱o.	E17-1600
Location	Location Green Island, NY					

Well Info

Well #:	UMW-D	Well Location:		
Well Diameter (in):		Well Condition:		
A. Total Well Depth (ft bgs):	32.6' Top of casing	Depth to Bedrock (ft):		
B. TOC to Grade (ft):		TOC Elevation (ft):		
C. Depth to Water TOC (ft):	26.15 Top of Casing	G. Volume Factors:	2-inch well =	0.163 gal/ft
D. Water Column Height (ft):	6.45	= (A + B) - C	4-inch well =	0.653 gal/ft
E. Total Well Volume (gal):	1.05	=D*G	6-inch well =	1.468 gal/ft
F. Purge (3 volumes) (gal):	3.15	=E*3	8-inch well =	2.609 gal/ft
	11.9 L			

Purge

Purge Date:	9/12/17	Pump/Method:	
Purge Start Time:	8:36	Approx Flow Rate:	0.2 l/min
Purge Stop Time:	9:36	Approx Volume Removed:	4 gallons
Did well dry out?	No		

Sampling

Date:	9/12/17	pH		
Time:	9:40	Temp (°C)		
Sample ID:	UMW-D	Conductivity (mS/cm)		
Sample Method:	Low flow	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Comments:

DUP - 10:40 MS - 11:20 MSD - 11:50

WELL NO	Ν	1W-7		
Date(s)	9/	13/1	7	
Weath	er	Temperature		
Cloudy		Hig Lov		
	Project N	lo.	E17-1600	

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-7	Well Location:	
Well Diameter (in):	4"	Well Condition:	
A. Total Well Depth (ft bgs):	32.5'	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	26.25	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	6.25	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	4.08	$=D^*G$	6-inch well = $1.468 gal/ft$
F. Purge (3 volumes) (gal):	12.24	=E*3	8-inch well = 2.609 gal/ft

Purge

1 41 50			
Purge Date:	9/13/17	Pump/Method:	
Purge Start Time:	1:01	Approx Flow Rate:	0.23 ml/min
Purge Stop Time:		Approx Volume Removed:	
Did well dry out?			

Sampling

Date:	9/13/17	pH		
Time:		Temp (°C)		
Sample ID:		Conductivity (mS/cm)		
Sample Method:		TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Comments:

WELL NO	Ν	4W-2		
Date(s)	9/13/17			
Weath	er	Temperature	-	
Clear		High Low		

Well Sampling Field Record

Project	South Island Apartments Brownfields Project		E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-2	Well Location:		
Well Diameter (in):	4"	Well Condition:		
A. Total Well Depth (ft bgs):	38.4'	Depth to Bedrock (ft):		
B. TOC to Grade (ft):		TOC Elevation (ft):		
C. Depth to Water TOC (ft):	28.65' to top of casing	G. Volume Factors:	2-inch well =	0.163 gal/ft
D. Water Column Height (ft):	9.75'	= (A + B) - C	4-inch well =	0.653 gal/ft
E. Total Well Volume (gal):	6.4	=D*G	6-inch well =	1.468 gal/ft
F. Purge (3 volumes) (gal):	19.1	=E*3	8-inch well =	2.609 gal/ft

Based on parameters leveling out

Purge		• 0	
Purge Date:	9/13/17	Pump/Method:	Peristaltic Pump
Purge Start Time:	10:12	Approx Flow Rate:	0.25 ml/min
Purge Stop Time:	11:10	Approx Volume Removed:	
Did well dry out?			

Sampling

Date:	9/13/17	pH		
Time:	11:10	Temp (°C)		
Sample ID:		Conductivity (mS/cm)		
Sample Method:	Peristaltic and Bailer (VOCs)	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Clear

Comments:

WELL NO	М	W-14	
Date(s)	9/13/17		
Weath	er	Temperature	
Clear		High Low	

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-14	Well Location:		
Well Diameter (in):	4"	Well Condition:		
A. Total Well Depth (ft bgs):	33.2'	Depth to Bedrock (ft):		
B. TOC to Grade (ft):		TOC Elevation (ft):		
C. Depth to Water TOC (ft):	27.6' to top of case	G. Volume Factors:	2-inch well =	0.163 gal/ft
D. Water Column Height (ft):	5.6'	= (A + B) - C	4-inch well =	0.653 gal/ft
E. Total Well Volume (gal):	0.9128	=D*G	6-inch well =	1.468 gal/ft
F. Purge (3 volumes) (gal):	2.74	=E*3	8-inch well =	2.609 gal/ft

Based on parameters leveling out

Purge			
Purge Date:	9/13/17	Pump/Method:	
Purge Start Time:	7:58	Approx Flow Rate:	0.279 L/min
Purge Stop Time:		Approx Volume Removed:	2.5-3 gallons
Did well dry out?			

Sampling

Date:	9/13/17	pH		
Time:	8:36	Temp (°C)		
Sample ID:	MW-14	Conductivity (mS/cm)		
Sample Method:		TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Clear

Comments

Albany, Phone: Fax: 512			WELL NO Date(s)		MW-7 9/14/17	
			Weath	ner	Temperature	
			Cloudy		Hig Lov	
Project	South Island Apartments Brownfields	Project		Project N	۱o.	E17-1600
Location	Green Island, NY					

Well Info

Well #:	MW-7	Well Location:	
Well Diameter (in):	4"	Well Condition:	
A. Total Well Depth (ft bgs):	32.5'	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	28.15	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	4.35	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	2.84	$=D^*G$	6-inch well = $1.468 gal/ft$
F. Purge (3 volumes) (gal):	8.5	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	9/14/17	Pump/Method:	Peristaltic
Purge Start Time:	7:52	Approx Flow Rate:	0.2 ml/min
Purge Stop Time:	8:37	Approx Volume Removed:	3 gallons
Did well dry out?	No		

Sampling

B				
Date:	9/14/17	pH		
Time:	8:40 pm	Temp (°C)		
Sample ID:	MW-7	Conductivity (mS/cm)		
Sample Method:	Peristaltic and Bailer (VOCs)	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Clear

Comments:

WELL NO	М	W-1	1		
Date(s)	9/14/17				
Weath	ner		Te	emperature	
Cloudy		Hig	h	70	
		Lov	N	68	
	Droject N		E	17 1600	

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-11	Well Location:	
Well Diameter (in):	2"	Well Condition:	
A. Total Well Depth (ft bgs):	30.55'	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	26.15	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	4.4	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	0.72	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	2.2	=E*3	8-inch well = 2.609 gal/ft

Purge

I uige			
Purge Date:	9/14/17	Pump/Method:	
Purge Start Time:		Approx Flow Rate:	0.158 ml/min turning up to 0.2 ml/min
Purge Stop Time:		Approx Volume Removed:	
Did well dry out?			

Sampling

Date:		pH		
Time:	1:40 pm	Temp (°C)		
Sample ID:		Conductivity (mS/cm)		
Sample Method:		TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

There was oil on sensor earlier but is clean now. Water has odor and a slight sheen

Comments

PID -> 6.7 ppm

Well Info

Well #:	MW-3	Well Location:			
Well Diameter (in):	4"	Well Condition:			
A. Total Well Depth (ft bgs):	37.60'	Depth to Bedrock (ft):			
B. TOC to Grade (ft):		TOC Elevation (ft):			
C. Depth to Water TOC (ft):	29.20	G. Volume Factors:	2-inch well = 0.163 gal/ft		
D. Water Column Height (ft):	8.4	=(A+B) - C	4-inch well = 0.653 gal/ft		
E. Total Well Volume (gal):	5.485	$=D^*G$	6-inch well = $1.468 gal/ft$		
F. Purge (3 volumes) (gal):	16.46	=E*3	8-inch well = 2.609 gal/ft		

Purge

Purge Date:	9/14/17	Pump/Method:	Perastaltic Pump
Purge Start Time:	10:14	Approx Flow Rate:	0.2 l/min
Purge Stop Time:	11:09	Approx Volume Removed:	
Did well dry out?	No		

Sampling

Date:	9/14/17	pH		
Time:	11:10 pm	Temp (°C)		
Sample ID:	MW-3	Conductivity (mS/cm)		
Sample Method:	Perastaltic pump and Bailer (VOCs)	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Clean

Comments:

WELL NO	MW-4			
Date(s)	9/	9/14/17		
Weath	ner Temperature			
	Hiệ Lo		·	
	Project No.		E17-1600	

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-4	Well Location:	
Well Diameter (in):	4"	Well Condition:	Casing Damaged
A. Total Well Depth (ft bgs):	36'	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	29.15	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	6.85	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	4.47	$=D^*G$	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	13.419	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	9/11/17	Pump/Method:	Perastaltic
Purge Start Time:	3:04	Approx Flow Rate:	0.15 l/min
Purge Stop Time:	3:59	Approx Volume Removed:	2 gallons
Did well dry out?	No		

Sampling

Sumpling				
Date:	9/14/17	pH		
Time:	4:00 pm	Temp (°C)		
Sample ID:		Conductivity (mS/cm)		
Sample Method:		TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Comments

29.05' ->Oil ->29.15'

WELL NO	М	1	
Date(s)	9/	15/1	7
Weath	er Temperature		
		Hig Lov	
	Project N	lo.	E17-1600

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-21	Well Location:	
Well Diameter (in):	4"	Well Condition:	
A. Total Well Depth (ft bgs):	31	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	27.7	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	3.3	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	2.15	$=D^*G$	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	6.46	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	9/15/17	Pump/Method:	
Purge Start Time:		Approx Flow Rate:	
Purge Stop Time:		Approx Volume Removed:	
Did well dry out?			

Sampling

Date:	pH		
Time:	Temp (°C)		
Sample ID:	Conductivity (mS/cm)		
Sample Method:	TDS (ppm)		
	ORP (mV)		
	Turbidity (NTU)		
	DO (mg/L)		

Appearance

Comments:

WELL NO	MW-9)
Date(s)	9/	15/1	7
Weath	ner Temperature		
		High Low	
	Project N	lo.	E17-1600

Well Sampling Field Record

Project	South Island Apartments Brownfields Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-9	Well Location:	
Well Diameter (in):	2"	Well Condition:	
A. Total Well Depth (ft bgs):	30	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	27.7	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	2.3	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	0.375	$=D^*G$	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	1.13	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	Pump/Method:	
Purge Start Time:	Approx Flow Rate:	90 ml/min
Purge Stop Time:	Approx Volume Removed:	
Did well dry out?		

Sampling

Date:	pH	
Time:	Temp (°C)	
Sample ID:	Conductivity (mS/cm)	
Sample Method:	TDS (ppm)	
	ORP (mV)	
	Turbidity (NTU)	
	DO (mg/L)	

Appearance

Comments

PID – 6.7ppm

Э

Well Sampling Field Record

Project	South Island Apartments Brownfields Project		E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-27	Well Location:	
Well Diameter (in):	4"	Well Condition:	
A. Total Well Depth (ft bgs):	34	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	29	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	5'	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	3.265	=D*G	6-inch well = $1.468 gal/ft$
F. Purge (3 volumes) (gal):	9.795	=E*3	8-inch well = 2.609 gal/ft

Purge

1 41 50			
Purge Date:	9/15/17	Pump/Method:	
Purge Start Time:		Approx Flow Rate:	
Purge Stop Time:		Approx Volume Removed:	
Did well dry out?			

Sampling

Date:		pH		
Time:		Temp (°C)		
Sample ID:		Conductivity (mS/cm)		
Sample Method:		TDS (ppm)		
· · · · · · · · · · · · · · · · · · ·		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Dark Grey Color, Odor, Sheen

Comments:

PID 23.7 ppm

WELL NO	М	W-1()
Date(s)	9/	15/1	7
Weath	er		Temperature
Hazy			h v
	Ducient		

Well Sampling Field Record

Project	South Island Apartments Brownfields Project		E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-10	Well Location:	
Well Diameter (in):		Well Condition:	
A. Total Well Depth (ft bgs):	30.35'	Depth to Bedrock (ft):	
B. TOC to Grade (ft):		TOC Elevation (ft):	
C. Depth to Water TOC (ft):	27.92'	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	2.43'	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	0.396	=D*G	6-inch well = $1.468 gal/ft$
F. Purge (3 volumes) (gal):	1.19	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	9/15/17	Pump/Method:	Perastaltic Pump
Purge Start Time:	8:05	Approx Flow Rate:	0.2 l/min
Purge Stop Time:	8:45	Approx Volume Removed:	
Did well dry out?			

Sampling

Date:	9/15/17	pH	
Time:	8:45	Temp (°C)	
Sample ID:		Conductivity (mS/cm)	
Sample Method:		TDS (ppm)	
		ORP (mV)	
		Turbidity (NTU)	
		DO (mg/L)	

Appearance

Oil at 27.9-27.92'

Comments

PID – 5.9 ppm

Sheen and odor

Well location	UMW-D
Date	9/12/2017

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)		Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
5							26.1
10					1.14		26.1
15					1.189		
20					1.76		26
25					1.88		
30				12.7	1.91		26
35					2.01	184.5	25.95
40		1.135	13.17	11.2	2.13	192.6	
45				11.3	2.24		
50	7.02			10.5	2.41	208.8	25.85
55	7.02	1.118		10.5	2.47	214.6	25.85
60	7	1.115	13.32	10.3	2.6	220.5	25.78

Well location	MW-13		
Date	9/12/2017		

Time (min)	pН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
5	•				0.4		
10	7.99				0.3		
15	7.6		14.28	53.3	0.25		26.6
20	7.3		14.28				26.55
25	7.16	0.852	14.32	41.4	0.19	-146.9	26.6
30	7.04	0.853	14.33	38.8	0.22	-136.4	26.6
35	6.95	0.854	14.12	36.2	0.19	-128.7	26.6
40	6.97	0.852	14.09	29.6	0.17	-126.6	26.65
45	6.86	0.85	14.09	25.8	0.15	-119.7	26.65
50	6.8	0.849	14.14	19	0.14	-114	26.74
55	6.79	0.849	14.14	17.4	0.16	-113.3	26.78

Well location	MW-14
Date	9/13/2017

Time (min)	pН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen	ORP	Depth to Water (ft)
5					4.62		
10					4.31		27.45
15					4.32		27.4
20	8.2				4.24		27.4
25							27.35
30	7.83				4.27		27.3
35	7.69	0.576	12	7.9	4.16	150.5	
40	7.53	0.576	11.99	7.8	3.88	164.6	27.2
Low flow rate				l			

Well location	MW-2
Date	9/13/2017

Time (min)	pН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
5			15.14		4.09		
10					3.45		
15					3.74		
20					3.6		28.32
25		0.655	15.04	5.3	3.78	262.8	
30	6.95	0.657	15.27	5.5	3.27	300.9	28.2
35	6.89	0.652	15.38	5.6	3.39	321.5	28.2
40	6.97	0.658	15.47	4.6	3.58	339.4	28.2
45	6.89	0.654	15.35	4.9	3.44	366.9	28.2
50	6.89	0.654	15.63	4.6	3.31	375.3	28.2
55	6.86	0.654	15.7	4.6	3.38	386.9	28.2
60	6.83	0.652	15.8	4.8	3.25	396.8	28.22

Well location	
---------------	--

Date

MW-7 9/13/2017 and 9/14/2017

9/13 tide going out well not recharging

				notreenarging				
Time (min)		pН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)		Depth to Water (ft)
9/13/17	5	6.45				1.19		26.95
	10	6.4	0.848			1.22		27.6
	15	6.33				1.17		28
	20	6.36				0.6		28.6
	25	6.42	0.845		1	0.62	1	28.75
9/14/17	5	8.85	0.835	14	54.6	0.47	-139.7	29
	10	8.55	0.831	14.05	44.9	0.42	-117.2	29.3
	15	8.06	0.831	13.82	54.6	0.35	-92.1	29.6
	20	7.86	0.83	13.85	45.3	0.31	-78.1	29.9
	25	7.58	0.827	13.81	37.2	0.34	-59.7	30
	30	7.39	0.829	13.81	29.8	0.31	-52.3	30.2
	35	7.24	0.832	13.71	21	0.26	-52.6	30.2
	40	7.22	0.831	13.69	15.2	0.23	-58.9	30.22
	45	7.18	0.83	13.7	13.7	0.23	-54.9	30.23

Well location	MW-11			
Date	9/14/2017			

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
5	8.18	1.336	15.67	12.5			
10		1.325	15.44	10.5	0.26	-204.6	
15		1.318	15.4	9.8	0.23	-186.1	26.08
20		1.316	15.4	9.6	0.21		26.08
25		1.311	15.44	8.9	0.19		26.1
30	7.11	1.307	15.36		0.18		26.2
35		1.305	15.31	8.3	0.17	-150.4	26.3
40	6.99	1.305	15.28	9.5	0.17	-147.7	26.3

Well location	MW-3
Date	9/14/2017

 . /		Specific Conductance	-	-	Dissolved oxygen		Depth to Water
Time (min)	pН	(mS/cm)				ORP	(ft)
5		1.042	15.62	202.1	0.5		29.1
10		1.038	15.43				29.2
15		1.033	15.42	135			29.05
20		1.029	15.56		0.2		29
25		1.028	15.58	94.8 78			28.95
30 35		1.023 1.02	15.49				28.9 28.8
40		1.017	15.47 15.35	73.9 66.2	0.23	-49.4	28.8
40		1.017	15.75				28.8
		1.017	16				28.7
55		1.012	16.16		0.23		28.7

Well location	MW-4
Date	9/14/2017

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
5					0.44		29.2
10					0.3		
15							
20			15.29		0.24		
25	7.63	1.011	15.31	11.2	0.22	0.22	29.35
30	7.38	1.013	15.29	10.8	0.21	0.21	29.4
35	7.38	1.008	15.5	9.9	0.2	0.2	29.45
40	7.19	1.008	15.48	9.5	0.19	0.19	29.5
45	7.01	1.007	15.66	10	0.19	0.19	29.55
50	6.96	1.009	15.45	9.6	0.18	0.18	29.55
55	6.94	1.008	15.56	9.8	0.18	0.18	29.6
	loss than 10.0 m						

Well location	MW-10
Date	9/15/2017

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (ma/L)	ORP	Depth to Water (ft)
5					1.45		
10					1.84		29.05
15					1.91		29
20					1.8		29
25					1.55		
30				1	1.26		
35				15.9	1.96		29.3
40			14.5		1.96		29.35

Well location	MW-27
Date	9/15/2017

me (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Wate (ft)
5							
10							
15							
20							
25							
30							
35							
40							
45							
50							
55							
	1						

Low flow rate less than 10.0 ml/min

Well location	MW-9
Date	9/15/2017

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
5							
10	8.03		18.1		5.69		
15							
20							
25							
30							
				<u> </u>			<u> </u>

Low flow rate less than 10.0 ml/min

WELL NO	U			
Date(s)	10/25/17			
Weath	er	Т	emperature	_
		High	66	
Mostly cloudy	1	Low	53	
				-

Well Sampling Field Record

Project	South Island Apartments Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	UMW-D	Well Location:	-
Well Diameter (in):	2	Well Condition:	-
A. Total Well Depth (ft bgs):	32.6	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	25.25	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	7.35	=(A+B)-C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	1.198	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	3.59	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	10/25/17	Pump/Method:	Geosub Pump
Purge Start Time:	7:49am	Approx Flow Rate:	1.2L/min
Purge Stop Time:	7:59am	Approx Volume Removed:	4gal
Did well dry out?	No		

Sampling

Date:	10/25/17	pH		
Time:	8:20am	Temp (°C)		
Sample ID:	UMW-D	Conductivity (mS/cm)		
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Not documented.

Comments:

PID = 0ppm

MS @ 8:50am MSD @ 9:05am

A CONTROLOGIO AND A CONTROL AN		349 Northern Blvd Suite 3 Albany, NY 12204			IW-1. /25/1	
			Weather		Temperature	
	Well Sampling Field Record		Mostly cloudy	ldy Low		
Project	South Island Apartments Project			Project N	۱o.	E17-1600
Location	Green Island, NY					

Well Info

Well #:	MW-13	Well Location:	-
Well Diameter (in):	2	Well Condition:	-
A. Total Well Depth (ft bgs):	34.1	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	25.3	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	8.8	=(A+B)-C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	1.43	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	4.3	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	10/25/17	Pump/Method:	Geosub Pump
Purge Start Time:	10:00am	Approx Flow Rate:	600mL/min
Purge Stop Time:	10:03am	Approx Volume Removed:	5gal
Did well dry out?	No		

Sampling

Date:	10/25/17	pH		
Time:	10:10am	Temp (°C)		
Sample ID:	MW-13	Conductivity (mS/cm)		
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance Not documented.

Comments:

PID = 0ppm

		W-14 /25/17	
Weather		Te	emperature
Mostly cloudy		High Low	66 53

Well Sampling Field Record

Project	South Island Apartments Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-14	Well Location:	-
Well Diameter (in):	2	Well Condition:	-
A. Total Well Depth (ft bgs):	33.0	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	26.25	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	6.75	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	1.1	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	3.3	=E*3	8-inch well = 2.609 gal/ft

Purge

I ui gu			
Purge Date:	10/25/17	Pump/Method:	Geosub Pump
Purge Start Time:	11:04am	Approx Flow Rate:	0.55L/min
Purge Stop Time:	11:12am	Approx Volume Removed:	3.3gal
Did well dry out?	No		

Sampling

Date:	10/25/17	pH	
Time:	11:20am	Temp (°C)	
Sample ID:	MW-14	Conductivity (mS/cm)	
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)	
		ORP (mV)	
		Turbidity (NTU)	
		DO (mg/L)	

Appearance

Not documented.

Comments:

PID = 0.0ppm Sampling flow rate = 0.45L/min

 WELL NO
 MW-2

 Date(s)
 10/25/17

 Weather
 Temperature

 Mostly cloudy
 High 66

 Low 53
 53

Well Sampling Field Record

Project	South Island Apartments Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-2	Well Location:	-
Well Diameter (in):	4	Well Condition:	-
A. Total Well Depth (ft bgs):	37.1	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	29.45	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	7.65	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	5.0	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	15.0	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	10/25/17	Pump/Method:	Geosub Pump
Purge Start Time:	1:12pm	Approx Flow Rate:	0.6L/min
Purge Stop Time:	1:39pm	Approx Volume Removed:	15gal
Did well dry out?	No		

Sampling

Date:	10/25/17	pH		
Time:	1:46pm	Temp (°C)		
Sample ID:	MW-2	Conductivity (mS/cm)		
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Not documented.

Comments:

PID = 0.0ppm Sampling flow rate = 0.375L/min

WELL NO	/W-3
Date(s) 10	/26/17
Weather	Temperature
Scattered rain	High <u>54</u> Low <u>49</u>

Well Sampling Field Record

Project	South Island Apartments Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-3	Well Location:	-
Well Diameter (in):	4	Well Condition:	Casing damaged.
A. Total Well Depth (ft bgs):	38	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	29.05	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	7.35	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	4.79	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	14.4	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	10/26/17	Pump/Method:	Geosub Pump
Purge Start Time:	9:15am	Approx Flow Rate:	0.5L/min
Purge Stop Time:	10:27am	Approx Volume Removed:	12gal
Did well dry out?	No		

Sampling

Date:	10/26/17	pH	
Time:	10:40	Temp (°C)	
Sample ID:	MW-3	Conductivity (mS/cm)	
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)	
		ORP (mV)	
		Turbidity (NTU)	
		DO (mg/L)	

Appearance

Rusty

Comments

PID = 0.0ppm

Sampling flow rate = 0.3L/min

Aenvirospec		349 Northern Blvd Suite 3 Albany, NY 12204	WELL NO Date(s)	MW-4 10/26/17		
ENGINE ERING. PLLC	Phone: 518.453.2203 Fax: 518.689.4800 www.envirospeceng.com	Weath	ner		Temperature	
Well Sampling Field		Scattered rain		Hig Lov	·	
Project	South Island Apartments Project			Project N	۱o.	E17-1600
Location	Green Island, NY					

Well Info

Well #:	MW-4	Well Location:	-
Well Diameter (in):	4	Well Condition:	Damaged.
A. Total Well Depth (ft bgs):	35.9	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	29.1	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	6.8	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	4.44	=D*G	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	13.3	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	10/26/17	Pump/Method:	Geosub Pump
Purge Start Time:	11:39am	Approx Flow Rate:	0.7L/min
Purge Stop Time:	12:10pm	Approx Volume Removed:	9gal
Did well dry out?	No		

Sampling

Date:	10/26/17	pH		
Time:	12:15pm	Temp (°C)		
Sample ID:	MW-4	Conductivity (mS/cm)		
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Black, odor \rightarrow purged to clear

Comments:

PID = 1.9ppm Sample flow rate: 0.3L/min

WELL NO	MW-11			
Date(s)	10/27/17			
Weath	er		Te	emperature
Partly cloudy		Hig Lov		60 42
	Project N	lo	F	17-1600

Well Sampling Field Record

Project	South Island Apartments Project		E17-1600
Location	Green Island, NY		

Well Info

Well #:	MW-11	Well Location:	-
Well Diameter (in):	2	Well Condition:	-
A. Total Well Depth (ft bgs):	29.9	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	27.9	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	2	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	0.326	=D*G	6-inch well = $1.468 gal/ft$
F. Purge (3 volumes) (gal):	1	=E*3	8-inch well = 2.609 gal/ft

Purge

I uige			
Purge Date:	10/27/17	Pump/Method:	Geosub Pump
Purge Start Time:	8:37am	Approx Flow Rate:	0.35L/min
Purge Stop Time:	8:56am	Approx Volume Removed:	2.7gal
Did well dry out?	No		

Sampling

Date:	10/27/17	pH		
Time:	9:10am	Temp (°C)		
Sample ID:	MW-11	Conductivity (mS/cm)		
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Not documented.

Comments

NA

Well Info

Well #:	MW-7	Well Location:	-
Well Diameter (in):	4	Well Condition:	-
A. Total Well Depth (ft bgs):	33.4	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	27.4	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	6	= (A + B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	39.18	=D*G	6-inch well = $1.468 gal/ft$
F. Purge (3 volumes) (gal):	~12	=E*3	8-inch well = 2.609 gal/ft

Purge

<u> </u>			
Purge Date:	10/26/17 & 10/27/17	Pump/Method:	Geosub Pump
Purge Start Time:	-	Approx Flow Rate:	0.6L/min
Purge Stop Time:	-	Approx Volume Removed:	5gal
Did well dry out?	Well purged dry both days		

Sampling

Date:	No	pH		
Time:	Sample	Temp (°C)		
Sample ID:	Collected	Conductivity (mS/cm)		
Sample Method:	-	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Not documented.

Comments:

Sample flow rate: 0.3L/min.. NO SAMPLE COLLECTED.. Purged dry twice

PID = 0.1 ppm

Т

WELL NO M		W-10		
Date(s)	10	/27/17		
Weath	er	Te	emperature	
Partly cloudy		High Low	60 42	

Well Sampling Field Record

Project	South Island Apartments Project	Project No.	E17-1600
Location	Green Island, NY		

Well Info

WCII IIII0			
Well #:	MW-10	Well Location:	-
Well Diameter (in):	2	Well Condition:	-
A. Total Well Depth (ft bgs):	30.35	Depth to Bedrock (ft):	-
B. TOC to Grade (ft):	-	TOC Elevation (ft):	-
C. Depth to Water TOC (ft):	28	G. Volume Factors:	2-inch well = 0.163 gal/ft
D. Water Column Height (ft):	1.65	=(A+B) - C	4-inch well = 0.653 gal/ft
E. Total Well Volume (gal):	0.269	$=D^*G$	6-inch well = 1.468 gal/ft
F. Purge (3 volumes) (gal):	0.8	=E*3	8-inch well = 2.609 gal/ft

Purge

Purge Date:	10/27/17	Pump/Method:	Geosub Pump
Purge Start Time:	11:14am	Approx Flow Rate:	0.3L/min
Purge Stop Time:	11:30am	Approx Volume Removed:	1.25
Did well dry out?	Yes (well recharged fast though)		

Sampling

I U				
Date:	10/27/17	pH		
Time:	12:35pm	Temp (°C)		
Sample ID:	MW-10	Conductivity (mS/cm)		
Sample Method:	Geosub Pump, Bailer for VOCs	TDS (ppm)		
		ORP (mV)		
		Turbidity (NTU)		
		DO (mg/L)		

Appearance

Sheen, odor, product.

Comments

PID = 4.6ppm

Well location	UMW-D
Date	10/25/2017

Time (min)	pН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
7:49							
7:50					4.2	139.2	
7:54	6.78	0.751	14.21	89.4	5.27	137.1	
7:57	6.82	0.762	14.11	57.3	6.84	132	
7:59	6.79	0.764	14.11	34.4	5.3	130.1	
Low flow rate		(purge)					

Low flow rate 1.2L/min (purge)

Well location	MW-13
Date	10/25/2017

īme (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Wate (ft)
10:00							
10:02							
10:03			13.75				

Low flow rate 600mL/min (purge)

Well location	MW-14
Date	10/25/2017

īme (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Wate (ft)
11:08			13.52			88.4	
11:10							
11:12			13.23				
							ļ

Low flow rate 0.55L/min (purge)

Well location	MW-2
Date	10/25/2017

Γime (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
1:14	7.01	0.458				65.7	
1:18	6.9	0.447	16.09	11	6.27	74.3	30.2
1:22	6.93	0.442	16	7.4	6.66	69.5	30
1:26	6.91	0.443	15.81	4.8	6.77	75.6	30
1:29	6.92	0.44	15.82	5.5	6.96	79.8	30.
1:33	6.98	0.443	15.85	4.8	6.97	78.8	30
1:37	6.98	0.445	15.22	3.2	6.95	81.4	30
							ļ

Low flow rate 0.6L/min (purge)

Well location	MW-3
Date	10/26/2017

Time (min)	рH	Specific Conductance (mS/cm)	Temperature (°C)		Dissolved oxygen (mg/L)		Depth to Water (ft)
9:19		0.366	13.77	671.8			29.22
9:23	6.84	0.370	13.98	410.8	4.05	-4.5	29.22
9:28	6.82	0.362	13.98	269.1	3.96	-15.7	29.15
9:34	6.79	0.355	13.88	179.3	3.22	-17.5	29.15
9:59	6.75	0.339	13.97	151.7	3.24	-19.9	29.15
10:05	6.81	0.336	13.95	115.4	3.27	-22.9	29.05
10:10	6.83	0.332	13.92	85.4	3.39	-22.2	29.03
10:14	6.78	0.325	13.88	66.9	3.22	-21.6	29.05
10:18	6.83	0.330	13.95	55.5	3.36	-22.9	29.05
10:23	6.83	0.326	13.96	53.6	3.36	-25.2	29.10
10:27	6.84	0.315	13.97	44.8	3.46	-22.5	28.70
ow flow rate		(purgo)					

Low flow rate 0.5L/min (purge)

Well location	MW-4	
Date	10/26/2017	

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)		Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)	
11:42	.75	0.62	13.55	9.9	2.13	-86.7	NA	oil covers sensor
11:47	6.77	0.355	13.66	4.3	2.87	-90.7	29.37	
11:51	6.77	0.35	13.74	4.1	2.86	-87.2	29.4	
11:55	6.77	0.345	13.73	4.2	2.85	-87.6	29.4	
12:00	6.77	0.340	13.73	2.7	2.62	-92.6	29.45	
12:05	6.77	0.332	13.70	2.1	2.86	-90.2	29.50	
12:10	6.77	0.332	13.72	2.6	2.76	-86.9	29.50	
]

Low flow rate 0.7L/min

(purge)

Well location	MW-11
Date	10/27/2017

Time (min)	pН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
8:42		0.444	13.65	996.5	3.00	-77.4	NA
8:46		0.449	14.36	121.2	3.33	-81.7	NA
8:50	6.76		14.31	81.5	3.13	-85.9	NA
8:56	6.75	0.413	14.45	14.8	3.10	-72.2	NA

Low flow rate 0.35L/min (purge)

Well location	MW-7	
Date	10/26/2017 & 10/27/17	

Time (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Water (ft)
8:33	6.54	0.378	13.70			13.3	29.8
8:37	6.43	0.351	13.40	252.7	2.81	14.8	-
8:41	6.45	0.444	13.05	116.0	4.04	5.5	-
8:45	PURGED DRY	-	-	-	-	-	-
10/27/2017	,						
10:25	6.88	0.315	14.12	192.2	4.30	19.3	29.15
	PURGED DRY						
I ow flow rate	0.6L/min						

Low flow rate 0.6L/min

(purge)

Well location	MW-10
Date	10/27/2017

ïme (min)	рН	Specific Conductance (mS/cm)	Temperature (°C)	Turbidity (NTU)	Dissolved oxygen (mg/L)	ORP	Depth to Wate (ft)
11:16	6.98						
11:20	6.96	0.698	14.46	24.8	3.03	-105.8	NA
11:25	7	0.720	14.46	9.3	3.12		

Low flow rate 0.3L/min (purge)

APPENDIX D PHOTO LOGS

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

	Er	ivirospec Engineering,PLLC Photographic Record	;
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/20/2017			
Direction:			
Comments:	Participation and		
Location: SB-13	BRA	and a lite	
Photographer:	VA VERSE	A TING	NY STANK
RC			
Date:7/20/2017			
Direction:	Tioloca		
Comments:	SB IS B:25	A CARE	
Location: SB-15 0	-5 ft	1	

		Envirospec Engineering,PLL(Photographic Record	C
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC		VITOOL	
Date:7/20/2017			
Direction:		2	AL SUPERIOR
Comments:	Ziploc		
Location: SB-15 5ft-10ft	5515 9:27 5-10 Fr		
Photographer: RC			
Date:7/20/2017			and the second
Direction:	A MARINE A		A STATE OF THE STA
Comments:			AND
Location: SB-15			

	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer	
RC	
Date:7/20/2017	
Direction:	
Comments:	
Location: SB-18	
Photographer	
RC	
Date:7/20/2017	
Direction:	
Comments:	
Location: SB-34	

	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer	
RC	and the second of the second s
Date:7/21/2017	
Direction:	
Comments:	AREA TO THE AREA T
Location: SB-1	O C
Photographer RC	
Date: 7/21/201	7
Direction:	
Comments:	
Location: SB-2	

	Er	nvirospec Engineering,PLL Photographic Record	c
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/24/2017			
Direction:			
Comments: Location:			
SB-17			
(left to right)			
25'-30'			1 A Marks
20'-25'			Contraction of the second s
15'-20'	The second state	NAS CO	A CARE
10'-15' 5'-10'			
0-5'			KINE TEL
0-5 0-2'(offset)			
Photographer: RC			
Date: 7/24/201	7		All and a second s
Direction:			
Comments:		SAVER BUILD	A REAL PROPERTY AND A REAL
Location:	LACE LACE	AND MALE NOT COMPANY OF	
SB-19 (front to		And Marked and Antonio	A CONSTRUCTION OF THE OWNER OWNE
back)	A CONTRACTOR OF	AND A REAL PROPERTY AND A	and the second second
0-2'(offset) 0-5'	- AND THE A DECK	ST MAN KENNE TIME	and the second se
5'-10'		MULTING AND	
10'-15'	The second second second		A Maria San San A
15'-20' 20'-25'	the base and	· Transford All	
20-25 25'-30	2 Pro fr	and the second second	

	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer:	
RC	
Date:7/24/2017	
Direction:	
Comments: Location:	
SB-21 (front to back)	
0-2'(offset)	
0-5'	
5'-10' 10'-15'	
15'-20'	
20'-25'	
Photographer: RC	
Date: 7/24/2017	
Direction:	
Comments:	
Location: SB-24	

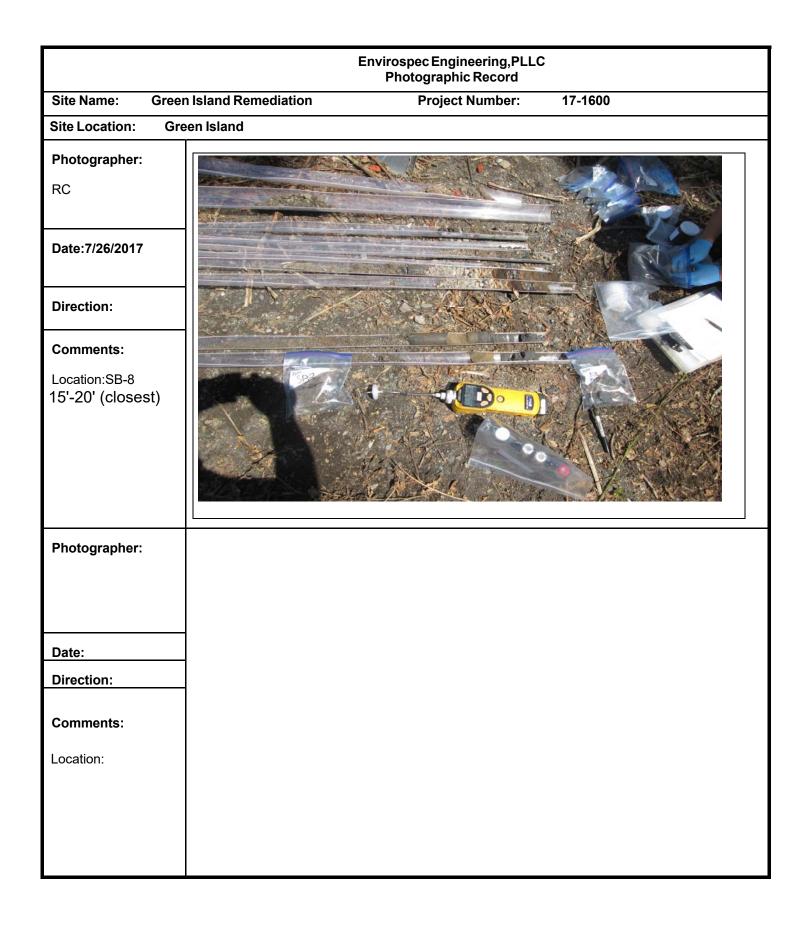
		Envirospec Engineering,PLLC Photographic Record	0
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/25/2017			
Direction:			
Comments: Location: SB-12 (left to right) 25'-30' 20'-25' 15'-20' 10'-15' 5'-10' 0-5' 0-2' (offset)			
Photographer: RC			
Date:7/25/2017			
Direction:		TALLA	Constant Constant of the
Comments: Location: SB-16 (front to back) 0-5' 5'-10' 10'-15' 15'-20' 20'-25' 25'-30'			

		Envirospec Engineering,PLL Photographic Record	C
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/25/2017			A A A A A A A A A A A A A A A A A A A
Direction:		Contraction of the second	
Comments:		ALS ANDARS	Carl Carl Carl
Location: SB-26			AN YARD
(From front to back		the second	
25'-30';20'-25'			A CARE AND A CAR
15'-20';10'-15'		C. RO-MAR ala	
5'-10';0-5'		TRA STALL	
0-2'(offset)			
Photographer:			
RC	A MARY		A LINE
Date:7/25/2017			The second se
Direction:	and the second		
Comments:	The second s	R R R R R R R R R R R R R R R R R R R	A CONTRACTOR OF A CONTRACTOR
Location: SB-25	TA CONTRACT AND	A CONTRACTOR OF THE OWNER	
(from front to back)	A CHARLE DID MANNES LINE COM	the state of the s	
30'-25';20'-25'			Contraction and a series
15'-20';10'-15'			AND THE REAL OF
5'-10';0-5'			HE AT ST TAY IST
0-2' (offset)			

	Envirospec Engineering,PLLC Photographic Record
Site Name: Gro	een Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer : RC	
Date: 7/26/2017	
Direction:	
Comments:	
Location: SB-30 (left to	
right)	
20'-25'	
15'-20' 10'-15'	
5'-10'	
0-5'	

		Envirospec Engineering,P Photographic Record	LLC
Site Name: Green	Island Remediation	Project Number	17-1600
Site Location: Gre	en Island		
Photographer:			
RC		1217	Stat Da
Date:7/26/2017			STONE 1
Direction:			K / Mar
Comments: Location:SB-11 5'-10' (left) 0-5' (center) 0-2' _(offset) (right)			
Photographer: RC			
Date:7/26/2017			
Direction:			1520
Comments: Location:SB-11 (from left to right) 25'-30' 20'-25' 15'-20' 10'-15' 5'-10' 0-5'			

	Er	Envirospec Engineering,PLLC Photographic Record		
Site Name:	Green Island Remediation	Project Number:	17-1600	
Site Location:	Green Island			
Photographer	A A A			
RC				
Date:7/26/2017				
Direction:				
Comments:				
Location:SB-11 30'-35' (left)		11		
Photographer: RC				
Date:7/26/2017				
Direction:		A A A A		
Comments:		Dist Dist		
Location:SB-9 0-5 ft _(offset)				


Envirospec Engineering,PLLC Photographic Record				
Site Name: Gr	een Island Remediation Project Number: 17-1600			
Site Location:	Green Island			
Photographer:				
Date:				
Direction:				
Comments:				
Location:				
Photographer:				
RC				
Date:7/26/2017				
Direction:				
Comments:				
Location:SB-9				
(left to right)				
20'-25'	Contraction of the second seco			
15'-20'				
10'-15'				
5'-10' 0-5'				

		Envirospec Engineering,PLLC Photographic Record		
Site Name:	Green Island Remediation	Project Number:	17-1600	
Site Location:	Green Island			
Photographer:			Contract States and the	
RC			1	
Date:7/26/2017				A Difference
Direction:				ATHER .
Comments:				1
Location:SB-9 25'-30' 20'-25' 10'-15' 5'-10'	N/N/			and the second
Photographer: RC				
Date:7/26/2017				
Direction:	- Core			
Comments: Location:SB-22 2"-2'(offset)		En-SET		

	Envirospec Engineering,PLLC Photographic Record		
Site Name: Gree	n Island Remediation	Project Number:	17-1600
Site Location: Gro	een Island		
Photographer:	SI STRAT		
RC	SAL.		
Date:7/26/2017			
Direction:	A Caller		
Comments:			
Location:SB-22 (from left to right) 15'-20' 10'-15' 5'-10' 2"-5'			
Photographer: RC			
Date:7/26/2017	1 A Carl		
Direction:			
Comments: Location:SB-22 (from left to right) 20'-25' 15'-20' 10'-20' 5'-10' 2"-5'			

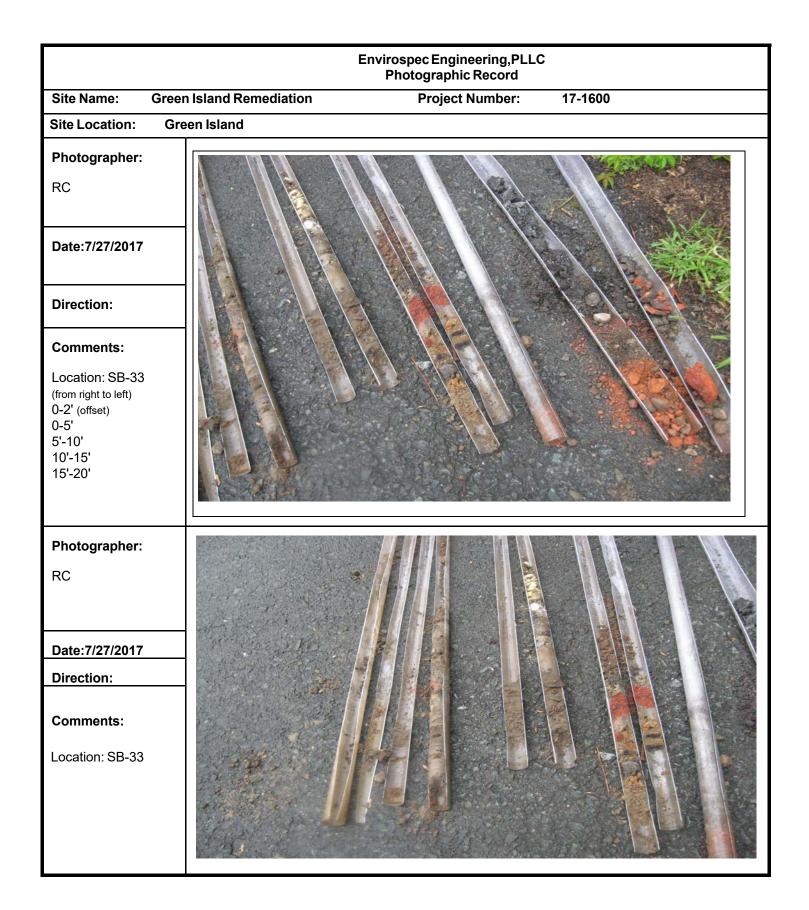
		Envirospec Engineering,PLL(Photographic Record	c
Site Name: Green	n Island Remediation	Project Number:	17-1600
Site Location: Gre	en Island		
Photographer:		3. / Car	
RC			
Date:7/26/2017			
Direction:	La Part		
Comments:			
Location:SB-22	the see		
(from left to right)			
25'-30' (left)			
20'-25'	the second		
15'-20'	All and a second		
10'-15'			
5'-10'			
Photographer:			
Date:			
Direction:			
Comments: Location:			

	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer:	
Date:	
Direction:	
Comments:	
Location:	
Photographer: RC	
Date:7/26/2017	
Direction:	
Comments:	
Location:SB-8	
(from left to right) 10'-15'	
5'-10'	
0-5'	
2"-2'(offset)	

		Envirospec Engineering,PL Photographic Record	LLC
Site Name: Green	Island Remediation	Project Number:	17-1600
Site Location: Gre	en Island		
Photographer:		「「「「「「「」」」」」	
RC			
Date:7/26/2017			
Direction:			
Comments:	20 × 80		
Location:SB-5 (in order form left to right) 25'-30' 20'-25'			
15'-20' 10'-15' 5'-10' 0-5' 2"-2' _(offset)			
Photographer: RC			
Date:7/26/2017			The second second
Direction:	100 mart 100		
Comments:			
Photo of the Geoprobe that was used.			

	Envir	rospec Engineering,PLLC Photographic Record	
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/27/2017			
Direction:			
Comments:	Side and		
Location:SB-20			
0'-5'(right)		Ziploc	
5'-10'(center)		5B-20	
10'-15'(left)		5.01	Zpi
Photographer:			
RC			
Date:7/27/2017			
Direction:			
Comments:	Zipio: 16-20' 8:4		
Location:SB-20		Ziploc 58-20, 10-15,	
15'-20'(left)		10-15	
10'-15'(right)			

	Envii	rospec Engineering,PLL(Photographic Record	C
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/27/2017			
Direction:			
Comments:	12.3		15.20 8.9
Location:SB-20			
20'-25'			
Photographer:			
RC		CZ.	
Date:7/27/2017			
Direction:			
Comments:	1820		
Location:SB-20 25'-30'			


		Envirospec Engineering,PLL Photographic Record	с
Site Name: Gre	en Island Remediation	Project Number:	17-1600
Site Location: G	reen Island		
Photographer:			
RC	Contraction of the second s		
Date:7/27/2017			
Direction:			
Comments:	TASA ELAST MA		325
Location:SB-20		None Part	
0-2' _(offset) Photographer:			
Date:	_		
Direction:	4		
Comments:			
Location:			

	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer:	
Date:	
Direction:	
Comments:	
Location:	
Photographer:	
RC	
Date:7/27/2017	
Direction:	
Comments:	
Location:SB-1	
(from left to right	
10'-15'	
5'-10'	
0-5'	
0-2'(offset)	

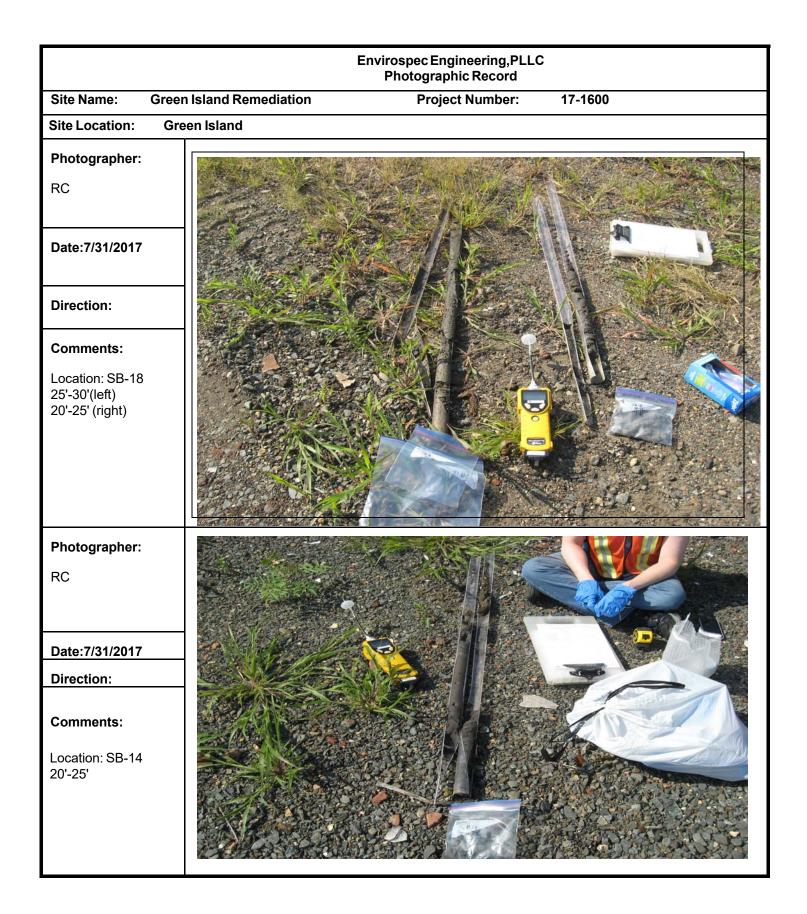
		Envirospec Engineering,PLL Photographic Record	.C	
Site Name:	Green Island Remediation	Project Number:	17-1600	
Site Location:	Green Island			
Photographer:				
RC				
Date:7/26/2017				
Direction:				
Comments:				
Location: SB-1	The second product			
(from left to right)				
25'-30' 20'-25'				
20-25 15'-20'				
10'-15'			The set	
Photographer:	1. 1 M & W & W	TY BERHALLS		18 - 28 M
RC				
Date:7/26/2017				
Direction:				X
Comments:				
Location: SB-4 (from left to right) 0-2' (offset) 0-5' 5'-10' 10'-15'				A A A A A A A A A A A A A A A A A A A

		Envirospec Engineering,PLL Photographic Record	.C
Site Name: G	reen Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer: RC			
Date:7/26/2017	Tot		
Direction:	Direction of the		La r Can
Comments: Location: SB-4 15'-20'			
Photographer: RC			
Date:7/26/2017			
Direction:			
Comments: Location: SB-7 (from left to right) 0-2' (offset) 0-5' 5-10'			TouchNTulf

		Envirospec Engineering,PLLC Photographic Record	;
Site Name: Gre	en Island Remediation	Project Number:	17-1600
Site Location: G	ireen Island		
Photographer:			
RC			
Date:7/27/2017			
Direction:			
Comments:			
Location: SB-23 (from left to right) 0-2' (offset) 0-5' 5-10' 10'-15'			
Photographer:			
Date:			
Direction:			
Comments:			
Location:			

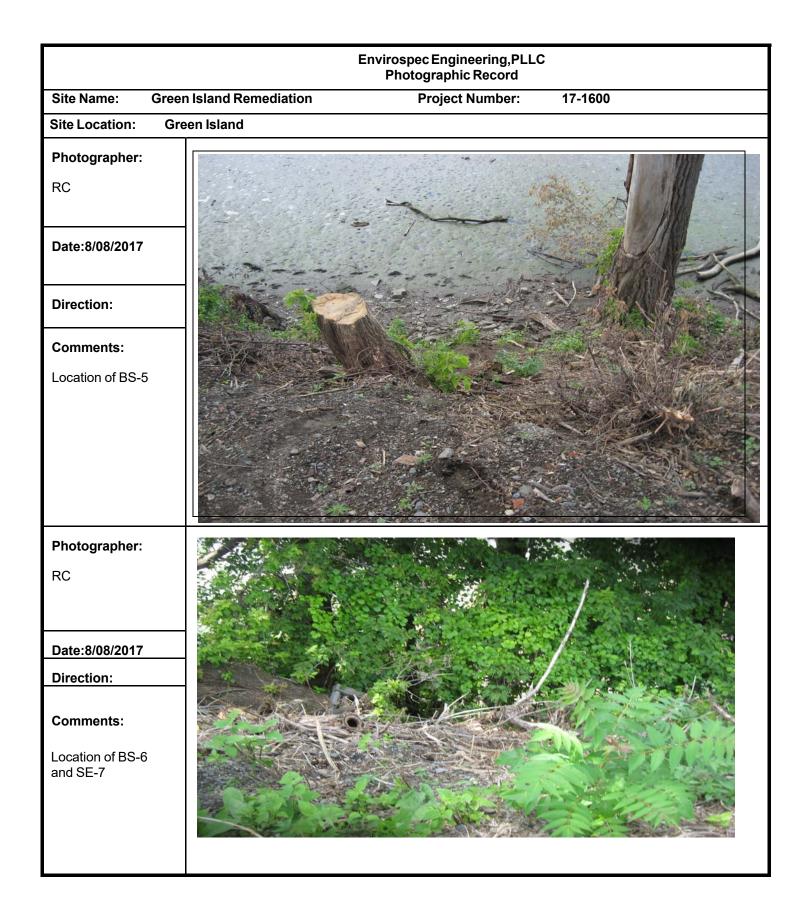
	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer:	
Date:	
Direction:	
Comments:	
Location:	
Photographer: RC	
Date:7/28/2017	
Direction:	
Comments:	
Location:SB-36	
(from left to right)	
15'-20'	
10'-15'	
5'-10'	
0-5'	
0-2' (offset)	

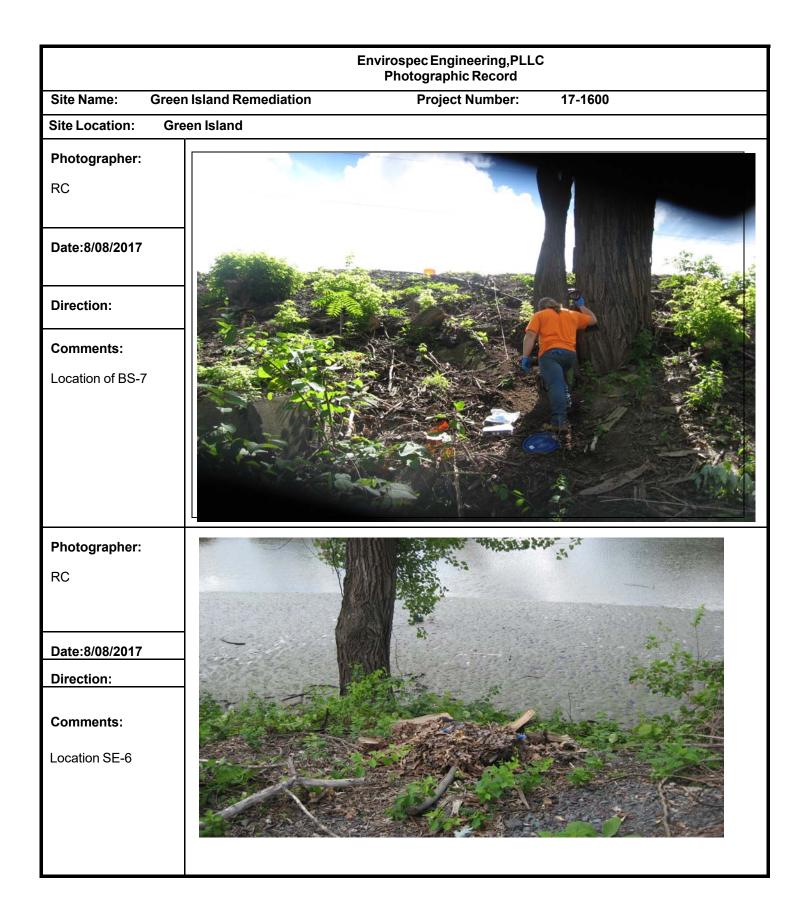
		Envirospec Engineering,PLL Photographic Record	С
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC		1000	
Date:7/28/2017			
Direction:			
Comments:	10000 M	The second second	and the state of the
Location:SB-29	100 0720	26 AT A TOTAL	of the statement of the
0-2' (offset)			
Photographer: RC			
Date:7/28/2017	and the second		
Direction:		Care Care	CAN HAVA
Comments: Location:SB-2 5'-10'(farthest) 0-5' (closest)	Distant And		


	Env	irospec Engineering,PLLC Photographic Record	
Site Name: Gro	een Island Remediation	Project Number:	17-1600
Site Location: 0	Green Island		
Photographer:			
RC			
Date:7/28/2017			
Direction:			
Comments:			1 23 3- 29
Location:SB-29	A CARE		
(from left to right)			
20'-25'	Selfer and s		
15'-20'		1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10'-15'			
Photographer:			
Date:			
Direction:			
Comments:			
Location:			

	Envirospec Engineering,PLLC Photographic Record
Site Name:	Green Island Remediation Project Number: 17-1600
Site Location:	Green Island
Photographer:	
Date:	
Direction:	
Comments:	
Location:	
Photographer:	
RC	
Date:7/28/2017	
Direction:	
Comments:	
Location:SB-28	
(right to left)	
0-2'(offset)	
0-5'	
5'-10'	
10'-15'	

		Envirospec Engineering,PLL Photographic Record	c
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:7/28/2017			
Direction:			
Comments: Location: SB-28 (from left to right) 25'-30' 20'-25' 15'-20' 10'-15'			
Photographer: RC			
Date:7/28/2017			
Direction:			
Comments: Location: SB-2 5'-10' (left) 0-5'(center 0-2' _(offset)			


		Envirospec Engineering,PLLC Photographic Record	
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:		2	
RC			
Date:7/28/2017		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	
Direction:			
Comments:	20 200		
Location: SB-2	11. 12		
15'-20'(left)			

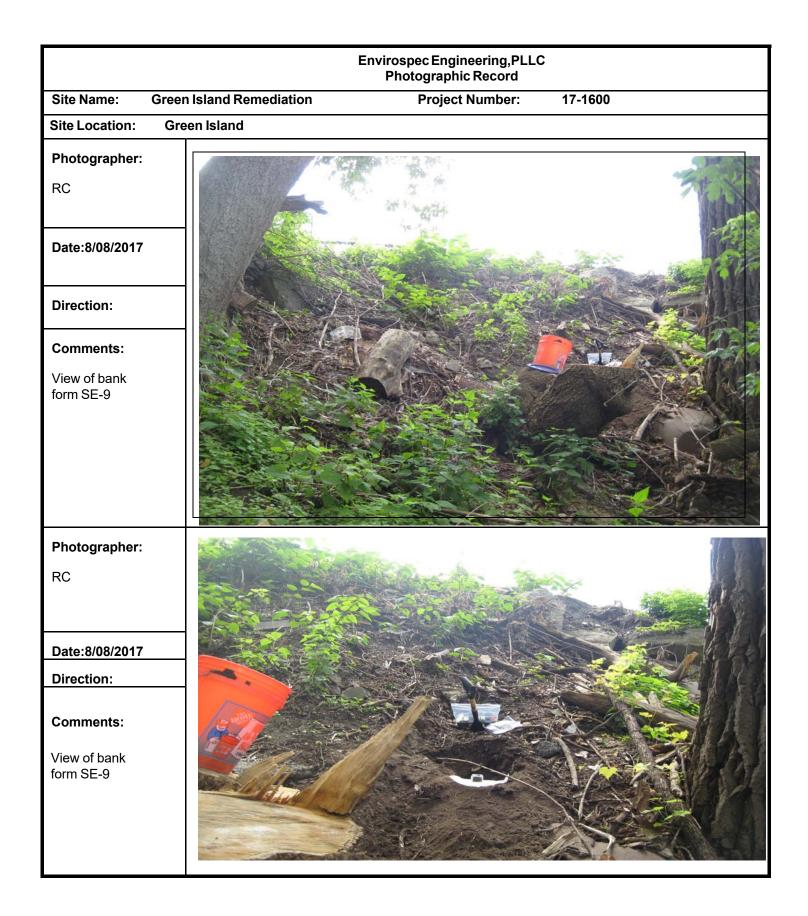

		Envirospec Photog	Engineering,PLLC raphic Record	;
Site Name:	Green Island Remediation	Pr	oject Number:	17-1600
Site Location:	Green Island			
Photographer:		and and		
RC				
Date: 7/31/2017				
Direction:		11/1		is all a
Comments:	A REAL PROPERTY AND A REAL	A CONTRACT NO.	Min Pro	39 C
Location: SB-15 20'-25'				
Photographer:				
Date:				
Direction:				
Comments:				
Location:				

	Envirospec Engineering,PLLC Photographic Record			
Site Name:	Green Island Remediation	Project Number:	17-1600	
Site Location:	Green Islandand			
Photographe	r:			
RC				
Date:8/03/201	7			
Direction:				
Comments:				
Location: BS-3	A A	2 4 1 / C -		
Photographe RC	r:			
Date:8/03/201	7			
Direction:				
Comments:				
Location: BS-3	BB I			

		Envirospec Engineering,PLL0 Photographic Record	C
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer			
RC		A star	
Date:8/03/2017			Same UV
Direction:			
Comments:		2 All	
Location: BS-4	в	AT ALL BENER	
Photographer	:		
Date:			
Direction:			
Comments:			

		Envirospec Engineering,PLL(Photographic Record	C
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:	COLOR MANDA		
CV			
Date:8/08/2017			
Direction:			
Comments:			
Location SB-9			
Photographer:			
cv			
Date:8/08/2017		A. A.	a the second second
Direction:		राम्मातना अन्	The second second
Comments:			
Location SB-9			

		Envirospec Engineering,PLLC Photographic Record	
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
Date:			
Direction:			
Comments:			
Location:			
Photographer:			
RC			
Date:8/08/2017	and the second s	al de Carrier	
Direction:			
Comments:			
Area between S and SE-10	E-9		


	Envirospec Engineering,PLLC Photographic Record			
Site Name: Gre	een Island Remediation	Project Number:	17-1600	
Site Location: 0	Breen Island			
Photographer:	and the second			
RC		ARTIN		
Date:8/08/2017				
Direction:	A A A	To Aller		
Comments: Pore water sample trench				
Photographer: RC				
Date:8/08/2017	· · · · ·	mail and the		
Direction:		12 3 2 - 4 -		
Comments:	Jul 10	V BOOM		
Pore water sample trench				

		Envirospec Engineering,PLLC Photographic Record	
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
Date:			
Direction:			
Comments:			
Photographer: RC			
Date:8/08/2017			
Direction:			
Comments: water pore sam	ple		

		Envirospec Engineering,PLL Photographic Record	c
Site Name: Greer	Island Remediation	Project Number:	17-1600
Site Location: Gre	en Island		
Photographer:			
RC			
Date:8/08/2017			
Direction:			
Comments:			
Location of pore water sample trench			
Photographer:			
Date:			
Direction:			
Comments:			

		Envirospec Engineering,PLLC Photographic Record	
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer: RC			
Date:8/08/2017			
Direction:			
Comments:			
Location SE-8 Photographer:			
Date:			
Direction:			
Comments:			

		Envirospec Engineering,PLL Photographic Record	C
Site Name: G	Freen Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:8/08/2017			
Direction:			7. 200
Comments:			
Location of BS-8 and SE-9			
Photographer: RC			
Date:8/08/2017			
Direction:	a state a	12 2 HZ	
Comments:			
Location SE-10		12 % 1.05	

		Envirospec Engineering,PLI Photographic Record	LC
Site Name:	Green Island Remediation	Project Number:	17-1600
Site Location:	Green Island		
Photographer:			
RC			
Date:8/08/2017			
Direction:			
Comments:			
View of bank form SE-9			
Photographer:			
CV			
Date:8/08/2017			a the
Direction:			
Comments:			
View of bank from SE-10			

APPENDIX E TABLES OF SAMPLE RESULTS

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

TABLE 13. Soil Analytical Results

								SB-13 D BLACK									SB-34 D BLACK
					Sample ID	SB-13 B	SB-13 C	LAYER	SB-14 BO	SB-14 C	SB-15 C	SB-15 O	SB-18 C	SB-18 O1	SB-34 BO	SB-34 C	LAYER
					Depth	1'-2'	25'-30'	7'-9'	3'-5'	15'-20'	15'-20'	0-2'	15'-20'	0-2'	1'-2'	28'-30'	7'-9'
	Sample Date						7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017
	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial												
Contaminants			. toordorman		induction												
Metals						9910	8970	4070	8610	7700	7140	8640	7910	7470	9450	5340	NA*
Aluminum Antimony						2.1 J	ND	4070 ND	ND	ND	ND	ND	ND	4.9	2.6 J	ND	NA*
Arsenic		13	16	16	16	14.3	5.7	7.9	16.2	3.4	2.9	6.4	3.5	30.1	20.3	4.3	NA*
Barium		350	400	400	10000	235	78.1	52.8	73.5	51.1	42.3	51.5	46.7	203	349	32.8	NA*
Beryllium		7.2	72		2700	0.29	0.20 J	ND	ND	0.15 J	0.070 J	0.15 J	0.13 J	1.2	0.52	0.11 J	NA*
Cadmium Calcium		2.5	4.3	9.3	60	1.3 9830	0.28 2860	0.77 3690	1.3 19200	0.22 3690	0.19 3790	0.22 2040	0.26 4220	1.6 8020	0.9 13900	0.12 J 968	NA* NA*
Chromium (1)		1	110	140	800	18.60	13.70	ND	7.50	7.40	6.70	5.40	7.40	20.20	15.40	4.40	NA*
Cobalt			110	110	000	10.8	7.9	10.5	16.2	7.4	6.8	4.9	7.5	10.3	12.1	4.6	NA*
Copper		50	270	270	10000	118	26.2	102	33.7	10.7	8.5	18.2	11.7	173	156	8.7	NA*
Iron						34900	20300	57900	66500	16700	15000	18900	16600	33000	22400	14300	NA*
Lead		63	400	1000	3900	711	71.8	342	60.4	9.8	6.2	49.1	6.3	<u>687</u>	2290	6.4	NA*
Magnesium Manganese		1600	2000	10000	10000	3340 656	3650 281	1220 371	6480 1450	4000 342	3940 142	1790 252	4190 207	2150 495	2070 392	2940 391	NA* NA*
Nickel		30	310		10000	25.2	17.5	18.6	30.9	15.5	13.5	10.2	15.5	36.1	29.1	10.3	NA*
Potassium						1960	1340	925	1370	1090	970	884	1070	1540	2290	675	NA*
Selenium		3.9	180	1500	6800	1.2	0.35 J	1.9	1.4	ND	0.37 J	0.34 J	ND	1.3	1.8	ND	NA*
Silver		2	180	1500	6800	4.5	2.5	6.4	7	2	1.8	2.2	2	4.5	3.3	1.8	NA*
Sodium						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*
Thallium Vanadium						ND 24.8	ND 16.6	ND 11.5	0.50 J 31.1	ND 14.7	ND 13.5	ND 16.4	ND 15.4	ND 24.5	ND 28.5	ND 7.6	NA* NA*
Zinc		109	10000	10000	10000	474	80.1	53.1	53.9	48.8	42.4	90.1	49.8	558	530	32.6	NA*
Mercury		0.18	0.81	2.8	5.7	2.6	0.14	6.9	0.067	ND	0.012 J	0.018 J	ND	1.1	11.6	ND	NA*
Metals, SPLP																	
Arsenic	0.025					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Barium	1					NA*	NA*	0.011 J	0.0066 J	0.021 J	NA*	NA*	0.0094 J	0.022 J	NA*	NA*	NA*
Cadmium Chromium	0.005					NA* NA*	NA* NA*	ND 0.0020 J	ND 0.0024 J	ND 0.0053 J	NA* NA*	NA* NA*	0.000078 J 0.0094 J	0.000061 J 0.0091 J	NA* NA*	NA* NA*	NA* NA*
Lead	0.05					NA NA*	NA*	0.0020 J	0.0024 J 0.011 J	0.0053 J 0.0044 J	NA*	NA*	0.0094 J 0.0043 J	0.00913	NA*	NA NA*	NA*
Selenium	0.01					NA*	NA*	ND	ND	ND	NA*	NA*	ND	0.0064 J	NA*	NA*	NA*
Silver	0.05					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Mercury	0.0007	,				NA*	NA*	0.00024	ND	ND	NA*	NA*	ND	0.00031	NA*	NA*	NA*
Pesticides				11													
4,4'-DDD		0.0033	13	02	180	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
4,4'-DDE 4.4'-DDT	-	0.0033	8.9 7.9		120 94	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
Aldrin		0.005	0.097	0.68	1.4	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Dieldrin		0.005	0.2		2.8	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Endosulfan I		2.4	24		920	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Endosulfan II	_	2.4	24		920	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Endosulfan sulfate		2.4 0.014	24 11	200 89	920 410	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
Endrin Endrin aldehyde		0.014	11	89	410	NA*	NA*	NA*	ND ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Endrin ketone	1					NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Heptachlor		0.042	2.1	15	29	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Heptachlor epoxide						NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Methoxychlor						NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
Toxaphene		0.00	0.40	2.4	6.0	NA*	NA*	NA*	ND	ND	NA*	NA* NA*	ND	ND	NA*	NA* NA*	ND
alpha-BHC alpha-Chlordane	-	0.02	0.48		6.8 17	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA^ NA*	ND ND	ND ND	NA* NA*	NA^ NA*	ND ND
beta-BHC		0.034	4.2		14	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
delta-BHC		0.04	100	-	1000	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
gamma-BHC (Lindane)		0.1	1.3	9.2	23	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
gamma-Chlordane						NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND

TABLE 13. Soil Analytical Results

				Sample ID	SB-13 B	SB-13 C	SB-13 D BLACK LAYER	SB-14 BO	SB-14 C	SB-15 C	SB-15 O	SB-18 C	SB-18 O1	SB-34 BO	SB-34 C	SB-34 D BLACK LAYER
				Depth	1'-2'	25'-30'	7'-9'	3'-5'	15'-20'	15'-20'	0-2'	15'-20'	0-2'	1'-2'	28'-30'	7'-9'
				Sample Date	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017
	Part 703 6 NYCRR- Groundwater A 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)												
Contaminants	Standard (3) Unrestricted Use	Residential	Commercial	Industrial												
PCBs																
PCB-1016 (Aroclor 1016)	0.1	1	1	25	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
PCB-1221 (Aroclor 1221)	0.1		1	25	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242)	0.1		1	25	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
PCB-1248 (Aroclor 1248)	0.1	1	1	25	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
PCB-1254 (Aroclor 1254)	0.1	1	1	25	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
PCB-1260 (Aroclor 1260)	0.1	1	1	25	NA*	NA*	NA*	ND	ND	NA*	NA*	ND	ND	NA*	NA*	ND
VOCs		400	E00	1000	NA*	NIA*	ND	ND	ND	NA*	NA*	ND		ΝΙΛ*	NA*	NA*
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	0.68	5 100	006	1000	NA" NA*	NA* NA*	ND	ND ND	ND ND	NA" NA*	NA" NA*	ND ND	ND ND	NA* NA*	NA" NA*	NA" NA*
1,1,2-Trichloroethane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,1,2-Trichlorotrifluoroethane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,1-Dichloroethane	0.27	7 26	240 500		NA*	NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
1,1-Dichloroethene	0.33	5 100	500	10000	NA*	NA* NA*	ND	ND	ND ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,2-Dibromo-3-chloropropane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,2-Dibromoethane (EDB)					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,2-Dichlorobenzene	1.1	100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,2-Dichloroethane 1,2-Dichloropropane	0.02	2 3.1	30	60	NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
1.3-Dichlorobenzene	2.4	49	280	560	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
1,4-Dichlorobenzene	1.8	3 13	130	250	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2-Butanone (MEK)	0.12	2 100	500	1000	NA*	NA*	0.0604	ND	ND	NA*	NA*	0.0447	ND	NA*	NA*	NA*
2-Hexanone 4-Methyl-2-pentanone (MIBK)					NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Acetone	0.05	5 100	500	1000	NA*	NA*	0.22	0.0323	ND	NA*	NA*	0.205	0.0049	NA*	NA*	NA*
Benzene	0.06	6 4.8	44	89	NA*	NA*	0.0343	0.0044	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Bromodichloromethane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Bromoform	l				NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Bromomethane Carbon disulfide					NA* NA*	NA* NA*	ND 0.0044	ND ND	ND ND	NA* NA*	NA* NA*	ND 0.0014 J	ND ND	NA* NA*	NA* NA*	NA* NA*
Carbon tetrachloride	0.76	6 2.4	22	44	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Chlorobenzene	1.1	100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Chloroethane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Chloroform Chloromethane	0.37	7 49	350	700	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Cyclohexane	<u> </u>	1		<u>† </u>	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Dibromochloromethane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Dichlorodifluoromethane	<u>↓ </u>				NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Ethylbenzene Isopropylbenzene (Cumene)		1 41	390	780	NA* NA*	NA* NA*	0.0091 0.0116	0.0012 J ND	ND 0.617	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Methyl acetate	<u> </u>	<u> </u>		<u>† </u>	NA*	NA*	ND	ND	0.134 J	NA*	NA*	ND	ND	NA*	NA NA*	NA*
Methyl-tert-butyl ether	0.12	2 100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Methylcyclohexane					NA*	NA*	0.114	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Methylene Chloride	0.05	5 100	500	1000	NA* NA*	NA*	ND ND	ND	ND ND	NA* NA*	NA* NA*	ND ND	ND	NA* NA*	NA*	NA*
Styrene Tetrachloroethene	1.3	3 19	150	300	<u>NA^</u> NA*	NA* NA*	ND ND	ND ND	ND ND	NA^ NA*	NA^ NA*	ND ND	ND ND	NA^ NA*	NA* NA*	NA* NA*
Toluene	0.7	7 100	500		NA*	NA*	0.0188	0.0072	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Trichloroethene	0.47	7 21	200	400	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Trichlorofluoromethane					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Vinyl chloride Xylene (Total) (2)	0.02	2 0.9 6 100	13 500	27 1000	NA*	NA* NA*	ND 0.0347	ND 0.0111	ND ND	NA* NA*	NA* NA*	ND ND	ND 0.0028 J	NA* NA*	NA* NA*	NA* NA*
cis-1,2-Dichloroethene	0.25	5 100	500	1000	NA*	NA*	0.0347 ND	ND	ND ND	NA*	NA*	ND	0.0028 J ND	NA*	NA NA*	NA NA*
cis-1,3-Dichloropropene					NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
trans-1,2-Dichloroethene	0.19	9 100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
trans-1,3-Dichloropropene					NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*

					Sample ID	SB-13 B	SB-13 C	SB-13 D BLACK LAYER	SB-14 BO	SB-14 C	SB-15 C	SB-15 O	SB-18 C	SB-18 O1	SB-34 BO	SB-34 C	SB-34 D BLACK LAYER
					Depth	1'-2'	25'-30'	7'-9'	3'-5'	15'-20'	15'-20'	0-2'	15'-20'	0-2'	1'-2'	28'-30'	7'-9'
					Sample Date	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017
	Part 703	6 NYCRR-	6 NYCRR-	6 NYCRR-	6 NYCRR-												
	Groundwater A Standard (3)	375.6.8(b) Unrestricted Use	375.6.8(b) Residential	375.6.8(b) Commercial	375.6.8(b) Industrial												
Contaminants																	
SVOCs 1.2.4-Trichlorobenzene				1		NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2,2'-Oxybis(1-chloropropane)						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2,4,5-Trichlorophenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2,4,6-Trichlorophenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2,4-Dichlorophenol 2,4-Dimethylphenol						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
2,4-Dinitrophenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2,4-Dinitrotoluene						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2,6-Dinitrotoluene						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2-Chloronaphthalene						NA*	NA*	ND	ND	ND	NA* NA*	NA*	ND	ND	NA*	NA*	NA*
2-Chlorophenol 2-Methylnaphthalene						NA* NA*	NA* NA*	ND 0.37	ND ND	ND ND	NA^ NA*	NA* NA*	ND ND	ND 0.17	NA* NA*	NA* NA*	NA* NA*
2-Methylphenol(o-Cresol)		0.33	100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2-Nitroaniline						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
2-Nitrophenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
3&4-Methylphenol(m&p Cresol)		0.33	100	500	1000	NA*	NA*	0.0987 ND	ND	ND	NA* NA*	NA* NA*	ND ND	ND ND	NA*	NA* NA*	NA*
3,3'-Dichlorobenzidine 3-Nitroaniline						NA* NA*	NA* NA*	ND	ND ND	ND ND	NA*	NA*	ND ND	ND	NA* NA*	NA*	NA* NA*
4,6-Dinitro-2-methylphenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
4-Bromophenylphenyl ether						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
4-Chloro-3-methylphenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
4-Chloroaniline						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
4-Chlorophenylphenyl ether 4-Nitroaniline						NA*	NA*	ND	ND ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
4-Nitrophenol						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Acenaphthene		20	100	500	1000	NA*	NA*	0.119	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Acenaphthylene		100	100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Acetophenone Anthracene		100	100	500	1000	NA* NA*	NA* NA*	ND 0.172	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	0.0904 ND	NA* NA*	NA* NA*	NA* NA*
Atrazine		100	100	500	1000	NA*	NA*	0.172 ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Benzaldehyde						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Benzo(a)anthracene		1	1	5.6	11	NA*	NA*	0.342	ND	ND	NA*	NA*	ND	0.292	NA*	NA*	NA*
Benzo(a)pyrene		1	1	1	1.1	NA*	NA*	0.211	ND	ND	NA*	NA*	ND	0.362	NA*	NA*	NA*
Benzo(b)fluoranthene Benzo(g,h,i)perylene		100	1 100	5.6		NA* NA*	NA* NA*	0.342	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	0.728 0.206	NA* NA*	NA* NA*	NA* NA*
Benzo(k)fluoranthene		0.8	3.9	56	110	NA*	NA*	0.129	ND	ND	NA*	NA*	ND	0.322	NA*	NA*	NA*
Biphenyl (Diphenyl)						NA*	NA*	0.103	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Butylbenzylphthalate						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Caprolactam Carbazole						NA* NA*	NA* NA*	ND 0.0911	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Carbazole Chrysene		1	3.9	56	110	NA*	NA*	0.523	ND ND	ND	NA*	NA*	ND	0.422	NA*	NA*	NA*
Di-n-butylphthalate		· · · · · · · · · · · · · · · · · · ·	0.0			NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Di-n-octylphthalate						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Dibenz(a,h)anthracene		0.33	0.33	0.56		NA*	NA*	ND	ND	ND	NA*	NA*	ND	0.0936	NA*	NA*	NA*
Dibenzofuran Diethylphthalate		7	59	350	1000	NA* NA*	NA* NA*	0.123 ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Dimethylphthalate						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Fluoranthene		100	100	500	1000	NA*	NA*	0.566	0.116	ND	NA*	NA*	ND	0.451	NA*	NA*	NA*
Fluorene		30	100	500	1000	NA*	NA*	0.249	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Hexachloro-1,3-butadiene		0.00	4.0	~	10	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Hexachlorobenzene Hexachlorocyclopentadiene		0.33	1.2	6	12	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Hexachloroethane						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Indeno(1,2,3-cd)pyrene		0.5	0.5	5.6	11	NA*	NA*	0.101	ND	ND	NA*	NA*	ND	0.209	NA*	NA*	NA*
Isophorone						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
N-Nitroso-di-n-propylamine				+		NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
N-Nitrosodiphenylamine Naphthalene		12	100	500	1000	NA* NA*	NA* NA*	ND 0.336	ND ND	ND ND	NA* NA*	NA* NA*	ND 0.136	ND 0.143	NA* NA*	NA* NA*	NA* NA*
Nitrobenzene		12	100		1000	NA*	NA*	0.330 ND	ND	ND	NA*	NA*	ND	0.143 ND	NA*	NA*	NA*
	1			1		11/7					11/7	11/7				1 11/21	

					Sample ID	SB-13 B	SB-13 C	SB-13 D BLACK LAYER	SB-14 BO	SB-14 C	SB-15 C	SB-15 O	SB-18 C	SB-18 O1	SB-34 BO	SB-34 C	SB-34 D BLACK LAYER
					Depth	1'-2'	25'-30'	7'-9'	3'-5'	15'-20'	15'-20'	0-2'	15'-20'	0-2'	1'-2'	28'-30'	7'-9'
					Sample Date	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017	7/20/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial												
Pentachlorophenol		0.8	6.7	6.7	55	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Phenanthrene		100	100	500	1000	NA*	NA*	0.883	ND	ND	NA*	NA*	ND	0.286	NA*	NA*	NA*
Phenol		0.33	100	500	1000	NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
Pyrene		100	100	500	1000	NA*	NA*	0.537	0.0863	ND	NA*	NA*	ND	0.825	NA*	NA*	NA*
bis(2-Chloroethoxy)methane						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
bis(2-Chloroethyl) ether						NA*	NA*	ND	ND	ND	NA*	NA*	ND	ND	NA*	NA*	NA*
bis(2-Ethylhexyl)phthalate						NA*	NA*	ND	ND	ND	NA*	NA*	ND	0.344	NA*	NA*	NA*
ТРН			·														
Total Petroleum Hydrocarbons						NA*	NA*	381	140	268	NA*	NA*	167	723	NA*	NA*	NA*

Notes:

(1) Standards based on Chromium, hexavalent.

(2) Standards based on Xylene (mixed).

(3) Groundwater standards only provided for those metals for which SPLP analyses were completed.

(4) 'ND' = Not Detected

(5) 'NA*' = Not Analyzed

(6) All results in ppm

(7) Results exceeding Groundwater A Standard's are RED

(8) Results exceeding unrestricted use SCOs are ORANGE

(9) Results exceeding residential SCOs are RED

(10) Results exceeding commercial SCOs are BLUE

(11) Results exceeding industrial SCOs are GREEN

					Sample ID	SB-10B	SB-10C	SB-10C DUP	SB-27 DO	SB-27 DO2	SB-27B	SB-27C	SB-31 D	SB-31B	SB-31C	SB-31C DUP	SB-32A DUP	SB-32A	SB-32B	SB-32C	SB-35 BO	SB-35 CO2	SB-35 D
					Depth	1'-3'	28'-30'	28'-30'	4'-5'	18'-20'	2'-3'	26'-27'	19'-20'	1'-3'	30'-35'	30'-35'	0-2"	0-2"	2"-2'	25'-30'	2'-4'	26'-27'	5'-10'
					Sample Date	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/20/2017	7/21/2017	7/20/2017
	Part 703 Groundwater A	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)					112112011			112112011	112112011		112112011							1120/2011
Contaminants	Standard (3)	Inrestricted Use	Residential	Commercial	Industrial																		
Metals																							
Aluminum						15500	8870	8060	NA*	NA*	15000	8780	NA*	11700	7550	7060	NA*	12000	9510	7950	9240	7760	9410
Antimony						ND	ND	ND	NA*	NA*	ND	ND	NA*	ND	ND	ND	NA*	ND	ND	ND	ND	ND	ND
Arsenic		13	16	16	16	13.2 249	3.7 62.9	3.8 41.4	NA* NA*	NA* NA*	8.1 116	3.4 39.4	NA* NA*	17 286	4.1 35.1	2.4 32.3	NA* NA*	15.1 358	11.5 150	3.6 47.6	11.8 133	3.9 57.7	6.7 84.7
Barium Beryllium		300	400	400	2700	0.36	02.9 0.19 J	41.4 0.12 J	NA*	NA*	0.52	0.065 J	NA*	0.5	0.037 J	32.3 0.077 J	NA*	8.4	0.65	47.6 0.11 J	ND	0.13 J	84.7 ND
Cadmium		2.5	4.3	9.3	60	0.92	0.15 J	0.12 J	NA*	NA*	0.49	0.19	NA*	0.91	0.25	0.10 J	NA*	2.4	1.4	0.14 J	1	0.15 J	0.84
Calcium						41300	4990	4260	NA*	NA*	7770	1250	NA*	32900	3290	3210	NA*	8110	9360	4680	2980	1640	3510
Chromium (1)		1	110	140	800	16.7	7.9	7	NA*	NA*	13.9	5.6	NA*	21.1	3.8	4.5	NA*	75.8	21.9	6.5	16.7	7.5	4.8
Cobalt						10.8	7.8	7.2	NA*	NA*	11.5	6.6	NA*	8.7	7.5	6.2	NA*	20.9	10.4	6.9	12.1	6.2	11.2
Copper	+	50	270	270	10000	111 43900	12.6	10.1	NA*	NA*	32.4	9.9 19100	NA* NA*	<u>115</u> 41400	12.8	7.9	NA*	569 60000	389 40600	13.8	87.1	12.2	45.4 56400
Iron Lead	+ +	63	100	1000	3000	43900	17700 8.9	16300 6.9	NA* NA*	NA* NA*	30500 17	19100 5.7	NA*	41400 521	35500 47.9	15200 5.1	NA* NA*	60000 1030	40600	20900 30.9	61200 198	17700 9.1	128
Magnesium		05	400	1000	3900	5640	4650	4150	NA*	NA*	6810	5240	NA*	3830	3830	3970	NA*	4290	3860	4130	2460	3670	2430
Manganese		1600	2000	10000	10000	1040	247	146	NA*	NA*	776	309	NA*	576	427	280	NA*	666	495	361	747	200	654
Nickel		30	310	310	10000	32.4	17.9	15.7	NA*	NA*	25.9	15.2	NA*	22	15.8	13.3	NA*	122	36.3	14.7	24.8	13.4	19.3
Potassium						2780	1460	1520	NA*	NA*	1950	830	NA*	2260	1400	1240	NA*	2570	1880	1440	1480	1270	1720
Selenium		3.9	180	1500	6800	1.1	0.37 J	0.39 J	NA*	NA*	0.41 J	ND	NA*	1.8	ND	ND	NA*	1.6	1.2	ND	1.1	ND	1.1
Silver Sodium		2	180	1500	6800	3.9 1290	1.9 ND	1.8 ND	NA* NA*	NA* NA*	3.4 ND	2.3 ND	NA* NA*	4.2 325 J	3.2 ND	1.7 ND	NA* NA*	6.3 ND	3.8 ND	1.9 ND	ND	2.2 ND	6.3 ND
Thallium						0.21 J	ND	ND	NA*	NA*	ND ND	ND	NA*	325 J ND	0.31 J	ND	NA*	0.44 J	ND	ND	ND	ND	ND
Vanadium						25.6	17.4	16.4	NA*	NA*	22	12	NA*	27.5	15.6	11.7	NA*	27.7	24.8	14.2	30.8	13.3	21.8
Zinc		109	10000	10000	10000	289	54.7	50.6	NA*	NA*	82.7	47.7	NA*	405	41.8	43.9	NA*	1820	438	51.8	179	43.1	104
Mercury		0.18	0.81	2.8	5.7	2.6	ND	ND	NA*	NA*	0.066	0.052	NA*	1.5	0.042	ND	NA*	2.5	0.93	ND	0.65	ND	0.49
Metals, SPLP																							
Arsenic	0.025					NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	0.029
Barium	1					NA* NA*	0.0079 J	NA* NA*	NA*	NA* NA*	NA*	NA*	NA* NA*	0.037 J	NA* NA*	NA* NA*	0.021 J ND	0.022 J ND	0.013 J	0.0067 J ND	0.054 J ND	NA* NA*	0.010 J ND
Cadmium Chromium	0.005					NA*	ND 0.0043 J	NA*	NA* NA*	NA NA*	NA*	NA* NA*	NA*	ND 0.011	NA*	NA*	0.0091 J	0.0087 J	0.000070 J 0.0050 J	0.0026 J	0.03	NA*	0.0042 J
Lead	0.025					NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	0.15	NA*	NA*	0.00913	0.087	0.0030 3	ND	0.035	NA*	0.0042 J
Selenium	0.01					NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Silver	0.05					NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Mercury	0.0007					NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	0.00064	NA*	NA*	0.00035	0.00037	0.00024	ND	0.00028	NA*	ND
Pesticides																							
4,4'-DDD		0.0033	13	92	180	NA* NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
4,4'-DDE 4.4'-DDT	+ +	0.0033	8.9 7 Q	62	120	NA" NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND 0.0203	NA* NA*	NA* NA*	ND ND	ND 0.0054	ND ND	ND ND	ND ND	NA* NA*	ND ND
Aldrin	+ +	0.005	0.097	0.68	1.4	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	0.0203 ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Dieldrin		0.005	0.2	1.4	2.8	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Endosulfan I		2.4	24	200	920	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Endosulfan II		2.4	24	200	920	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	0.0192	ND	ND	ND	ND	NA*	ND
Endosulfan sulfate	+	2.4	24	200	920	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA* NA*	NA*	ND ND	ND ND	ND ND	ND	ND ND	NA*	ND ND
Endrin Endrin aldehyde	+ +	0.014	11	89	410	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
Endrin ketone						NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	0.0044	ND	ND	ND	NA*	ND
Heptachlor		0.042	2.1	15	29	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Heptachlor epoxide						NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Methoxychlor						NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
Toxaphene						NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
alpha-BHC	Ⅰ	0.02	0.48	3.4	6.8	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND ND	NA*	NA*	0.0028	ND	ND	ND	ND	NA*	ND
alpha-Chlordane beta-BHC	+ +	0.094	4.2	24	4/	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
delta-BHC	+ +	0.036	100	500	14	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
gamma-BHC (Lindane)		0.1	1.3	9.2	23	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
gamma-Chlordane		0.1	1.0	0.2	20	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
5				1															=				=

					Sample ID	SB-10B	SB-10C	SB-10C DUP	SB-27 DO	SB-27 DO2	SB-27B	SB-27C	SB-31 D	SB-31B	SB-31C	SB-31C DUP	SB-32A DUP	SB-32A	SB-32B	SB-32C	SB-35 BO	SB-35 CO2	SB-35 D
					Depth	1'-3'	28'-30'	28'-30'	4'-5'	18'-20'	2'-3'	26'-27'	19'-20'	1'-3'	30'-35'	30'-35'	0-2"	0-2"	2"-2'	25'-30'	2'-4'	26'-27'	5'-10'
					Sample Date	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/20/2017	7/21/2017	7/20/2017
O stantsta	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial																		
Contaminants PCBs	(-7																						
PCBS PCB-1016 (Aroclor 1016)		0.1	1	1	25	5 NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
PCB-1221 (Aroclor 1221)		0.1	1	1	25	NA*	ND	NA NA*	NA*	NA NA*	NA NA*	NA*	NA NA*	ND	NA*	NA NA*	ND	ND	ND	ND	ND	NA*	ND
PCB-1232 (Aroclor 1232)		0.1	1	1	25	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
PCB-1242 (Aroclor 1242)		0.1	1	1	25	5 NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
PCB-1248 (Aroclor 1248)		0.1	1	1	25	5 NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
PCB-1254 (Aroclor 1254)		0.1	1	1	25	NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
PCB-1260 (Aroclor 1260) VOCs		0.1	1	1	25	5 NA*	ND	NA*	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND
		0.00	400	500	1000	ND	ND	ND	ND	ND	NIA *	N14*	ND	NIA*	N14*	NIA *	NA*	ND	ND	ND	ND	NIA*	ND
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		0.68	100	500	1000) ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
1,1,2-Trichloroethane				1		ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,1,2-Trichlorotrifluoroethane						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,1-Dichloroethane		0.27	26	240	480) ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,1-Dichloroethene		0.33	100	500	1000) ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,2,4-Trichlorobenzene						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,2-Dibromo-3-chloropropane						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene		11	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
1,2-Dichloroethane		0.02	3.1	30	60	ND ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,2-Dichloropropane		0.02	0.1			ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,3-Dichlorobenzene		2.4	49	280	560) ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
1,4-Dichlorobenzene		1.8	13	130	250) ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2-Butanone (MEK)		0.12	100	500	1000	ND	ND	ND	0.0584	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	0.0513	NA*	ND
2-Hexanone						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
4-Methyl-2-pentanone (MIBK)		0.05	400	500	1000	ND	ND	ND ND	ND	ND	NA* NA*	NA*	ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND	ND	ND	NA*	ND
Acetone Benzene		0.05	100	500	1000	0.0076 ND	ND ND	ND ND	0.258 ND	0.0629 ND	NA" NA*	NA* NA*	0.0103 ND	NA" NA*	NA" NA*	NA* NA*	NA* NA*	ND ND	0.0025 ND	0.0138 ND	0.158 0.0014 J	NA* NA*	ND ND
Bromodichloromethane		0.00	4.0	44	05	ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	0.0014 J ND	NA*	ND
Bromoform						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Bromomethane						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Carbon disulfide						ND	ND	ND	ND	ND	NA*	NA*	0.0017 J	NA*	NA*	NA*	NA*	ND	ND	ND	0.0019 J	NA*	ND
Carbon tetrachloride		0.76	2.4	22	44	ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Chlorobenzene		1.1	100	500	1000) ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Chloroethane		0.27	40	250	700	ND ND	ND ND	ND ND	ND ND	ND	NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
Chloroform Chloromethane		0.37	49	300	700	ND ND	ND	ND	ND	ND ND	NA* NA*	NA*	ND	NA*	NA*	NA*	NA*	ND ND	ND	ND	ND	NA*	ND
Cyclohexane				1	1	ND	1.34	3.4	0.0026 J	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	0.372
Dibromochloromethane						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Dichlorodifluoromethane						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Ethylbenzene		1	41	390	780	ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	0.0025	NA*	0.408
Isopropylbenzene (Cumene)					ł	ND	4.18	2.57	0.0049	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	0.0022 J	NA*	0.235 J
Methyl acetate		0.40	100	500	1000	ND ND	0.902 ND	1.85 ND	ND 0.0071	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	0.503 ND
Methyl-tert-butyl ether Methylcvclohexane		0.12	100	500	1000	ND ND	6.91	12.1	0.0071	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND ND	ND	ND	0.0106	NA*	1.27
Methylene Chloride		0.05	100	500	1000	ND ND	ND	ND	0.0125 ND	ND	NA NA*	NA*	ND	NA*	NA*	NA NA*	NA*	ND	ND	ND	0.0100 ND	NA*	ND
Styrene		0.00		500		ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Tetrachloroethene		1.3	19	150	300	ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Toluene		0.7	100	500	1000) ND	ND	ND	ND	0.0011 J	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	0.0019 J	NA*	0.16 J
Trichloroethene		0.47	21	200	400	ND ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Trichlorofluoromethane						ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Vinyl chloride		0.02	0.9	13	27	ND ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND 0.0002	NA*	ND
Xylene (Total) (2) cis-1.2-Dichloroethene		0.26	100	500	1000) ND) ND	ND ND	ND ND	0.0019 J ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	0.0062 ND	NA* NA*	0.802 ND
cis-1,2-Dichloroethene		0.25	100	500	1000	ND ND	ND	ND ND	ND ND	ND ND	NA" NA*	NA" NA*	ND ND	NA" NA*	NA" NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA" NA*	ND ND
trans-1.2-Dichloroethene		0 19	100	500	1000	ND ND	ND	ND	ND	ND	NA NA*	NA*	ND	NA*	NA*	NA NA*	NA*	ND	ND	ND	ND	NA*	ND
trans-1,3-Dichloropropene		0.10	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
				l	1										. 47 \								

	1																	1	1			
				Sample ID	SB-10B	SB-10C	SB-10C DUP	SB-27 DO	SB-27 DO2	SB-27B	SB-27C	SB-31 D	SB-31B	SB-31C	SB-31C DUP	SB-32A DUP	SB-32A	SB-32B	SB-32C	SB-35 BO	SB-35 CO2	SB-35 D
				Depth	n 1'-3'	28'-30'	28'-30'	4'-5'	18'-20'	2'-3'	26'-27'	19'-20'	1'-3'	30'-35'	30'-35'	0-2"	0-2"	2"-2'	25'-30'	2'-4'	26'-27'	5'-10'
				Sample Date	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/21/2017	7/20/2017	7/21/2017	7/20/2017
	Part 703 Groundwater A	6 NYCRR- 6 NYCF 375.6.8(b) 375.6.8	(b) 375.6.8(b)	. ,																		
Contaminants	Standard (3)	Unrestricted Use Resider	itial Commercia	al Industrial																		
SVOCs 1,2,4-Trichlorobenzene	r	1 I			ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2,2'-Oxybis(1-chloropropane)					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2,4,5-Trichlorophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2,4,6-Trichlorophenol 2,4-Dichlorophenol	ł				ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
2,4-Dimethylphenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2,4-Dinitrophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2,4-Dinitrotoluene 2.6-Dinitrotoluene					ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
2-Chloronaphthalene					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2-Chlorophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND 0.45	ND	ND	ND	NA*	ND
2-Methylnaphthalene 2-Methylphenol(o-Cresol)		0.33	100	500 1000	0.0807 ND	ND ND	ND ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	0.15 ND	ND ND	ND ND	0.628 ND	NA* NA*	3.26 ND
2-Nitroaniline		0.00		1000	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
2-Nitrophenol		0.00	100	500 4000	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
3&4-Methylphenol(m&p Cresol) 3,3'-Dichlorobenzidine	}	0.33	100	1000) ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
3-Nitroaniline					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
4,6-Dinitro-2-methylphenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
4-Bromophenylphenyl ether 4-Chloro-3-methylphenol					ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
4-Chloroaniline					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
4-Chlorophenylphenyl ether					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
4-Nitroaniline 4-Nitrophenol					ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND
Acenaphthene		20	100	500 1000	ND ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.0956	ND	ND	0.325	NA*	ND
Acenaphthylene		100	100	500 1000) ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.137	ND	ND	0.374	NA*	ND
Acetophenone		100	100	500 1000	ND ND	ND 0.89	ND 1.92	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	ND	NA* NA*	NA* NA*	NA*	ND 0.247	ND 0.106	ND ND	ND 0.933	NA* NA*	ND 0.075
Anthracene Atrazine		100	100	500 1000	ND ND	0.89 ND	1.92 ND	NA* NA*	NA* NA*	NA*	NA" NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	0.347 ND	0.106 ND	ND	0.933 ND	NA" NA*	0.275 ND
Benzaldehyde					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.178	ND	ND	ND	NA*	ND
Benzo(a)anthracene		1	1	5.6 11	0.254	ND	0.164	NA*	NA*	NA*	NA*	NA*	0.113	NA*	NA*	NA*	1.69	0.456	ND	2.37	NA*	ND
Benzo(a)pyrene Benzo(b)fluoranthene	ł	1	1	1 1.1 56 11	0.268	ND ND	ND ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	0.103 0.201	NA* NA*	NA* NA*	NA* NA*	1.74 2.49	0.446	ND ND	2.04 3.21	NA* NA*	ND 0.101
Benzo(g,h,i)perylene		100		500 1000	0.162	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.822	0.268	ND	0.616	NA*	ND
Benzo(k)fluoranthene		0.8	3.9	56 110	0.252	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	1.14	0.333	ND	1.5	NA*	ND
Biphenyl (Diphenyl) Butylbenzylphthalate					ND ND	ND ND	ND ND	NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND 0.261	ND ND	ND ND	0.117 ND	NA* NA*	ND ND
Caprolactam					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Carbazole					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.121	ND	ND	0.397	NA*	ND
Chrysene Di p butulphthalato		1	3.9	56 110	0.353 ND	ND ND	0.411 ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	0.187 ND	NA* NA*	NA* NA*	NA* NA*	1.86 ND	0.527 ND	ND ND	2.21 ND	NA* NA*	0.0983 ND
Di-n-butylphthalate Di-n-octylphthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Dibenz(a,h)anthracene		0.33		0.56 1.1	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.25	0.0873	ND	0.21	NA*	ND
Dibenzofuran Diethylphthalate		7	59	350 1000) ND ND	ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	0.328	NA* NA*	ND ND
Diethylphthalate Dimethylphthalate					ND	ND ND	ND ND	NA*	NA ⁻ NA*	NA*	NA" NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND	ND	ND	ND ND	NA" NA*	ND ND
Fluoranthene		100	100	500 1000	0.406	ND	0.612	NA*	NA*	NA*	NA*	NA*	0.154	NA*	NA*	NA*	2.92	0.8	ND	4.26	NA*	0.183
Fluorene	<u> </u>	30	100	500 1000) ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.102	ND	ND	0.587	NA*	1.31
Hexachloro-1,3-butadiene Hexachlorobenzene	1	0.33	1.2	6 12	ND 2 ND	ND ND	ND ND	NA*	NA* NA*	NA*	NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA^ NA*	ND ND
Hexachlorocyclopentadiene		0.00		- 12	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Hexachloroethane			0.5	5.0	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Indeno(1,2,3-cd)pyrene Isophorone	}	0.5	0.5	<u>5.0</u> 11	0.107 ND	ND ND	ND ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	0.884 ND	0.26 ND	ND ND	0.697 ND	NA* NA*	ND ND
N-Nitroso-di-n-propylamine	1				ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
N-Nitrosodiphenylamine			100		ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
Naphthalene Nitrobenzene	<u> </u>	12	100	500 1000) ND ND	ND ND	6.24 ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	0.128 ND	ND ND	ND ND	0.391 ND	NA* NA*	1.2 ND
Pentachlorophenol		0.8	6.7	6.7 55	ND 5 ND	ND ND	ND ND	NA*	NA ⁻ NA*	NA*	NA" NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND	ND	ND	ND	NA" NA*	ND ND
Phenanthrene		100	100	500 1000	0.433	4.84	7.69	NA*	NA*	NA*	NA*	NA*	0.182	NA*	NA*	NA*	1.72	0.521	ND	4.8	NA*	3.72
Phenol	<u> </u>	0.33		500 1000 500 1000	ND 0.840	ND	ND 2.02	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND 2.50	ND 0.889	ND	ND 3.86	NA*	ND
Pyrene bis(2-Chloroethoxy)methane	1	100	100	500 1000	0.849 ND	1.58 ND	2.02 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.183 ND	NA* NA*	NA* NA*	NA* NA*	3.59 ND	0.889 ND	ND ND	3.86 ND	NA* NA*	0.313 ND
bis(2-Chloroethyl) ether	<u> </u>				ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	ND	ND	ND	ND	NA*	ND
bis(2-Ethylhexyl)phthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	NA*	0.111	ND	ND	0.0939	NA*	ND
TPH Total Datralaum Hudraaarbana	r	, <u>,</u>			407	7400	0000	260	440	N1 A *	N1 A *	050	N1 A *	KIA *	N1 A *	K1A *	400	477	000	070	N1 A *	4000
Total Petroleum Hydrocarbons	1	L L			197	7490	2860	269	116	NA*	NA*	353	NA*	NA*	NA*	NA*	182	177	269	873	NA*	1390

Notes:

(1) Standards based on Chromium, hexavalent.
 (2) Standards based on Xylene (mixed).
 (3) Groundwater standards only provided for those metals for which SPLP analyses were completed
 (4) All units in ppm
 (5) 'ND' = Not Detected
 (6) 'NA** = Not Analyzed

(7) Results exceeding Groundwater A Standard's are RED
(8) Results exceeding unrestricted use SCOs are ORANGE
(9) Results exceeding residential SCOs are RED
(10) Results exceeding commercial SCOs are BLUE
(11) Results exceeding industrial SCOs are GREEN

	1]
					SB-19A	SB-19BO	SB-19C	SB-21A	SB-21BO	SB-21C	SB-24A	SB-24A DUP	SB-24BO	SB-24C	SB-6A	SB-6BO	SB-6C
					0-2"	2"-2'	25'-30'	0-2"	2"-2'	25'-30'	0-2"	0-2"	2"-2'	29'-30'	0-2"	2"-2'	25'-30'
					7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017
	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial													
Contaminants	Officied Use	Residential	Commercial	muustnai													
Metals						1					1	1		1	r	1	
Aluminum					12600	12000	7950	12600	8240	4220	11800	11500	14000	6900	11900	9850	7040
Antimony	12	16	16	16	3.2 J 17.4	3.5 J 19	ND 4.6	5.7 8	1.3 J 18.8	2.6 J 14.6	ND 16.7	ND 13.7	ND 11.6	ND 5	ND 12.8	ND 9.3	ND 3.3
Arsenic Barium	350	400	400	10000	395	360	41.8	252	206	59.8	166	148	105	43.6	273	123	36.1
Beryllium	7.2	72	590	2700	1.6	0.57	0.13 J	0.51	0.39	ND	ND	ND	ND	0.11 J	0.39	0.25 J	0.10 J
Cadmium	2.5	4.3	9.3	60	2.3	2.6	0.27	0.52	1.4	1.3	2	1.8	1.4	0.15	1.5	0.54	0.12 J
Calcium					6280	5270	2670	4640	3620	1660	19200	21200	23700	1190	8640	6470	4790
Chromium (1)	1	110	140	800	33	23.2	4.9	7.7	11	64.5	35.4	36.5	41.7	2.8	32.2	9.1	4.8
Cobalt	50	070	070	40000	16.8	11.4	5.7	12.3	8.2	7.1	9.4	10.1	10.7	6.4	11.8	9.5	5.2
Copper Iron	50	270	270	10000	<u>327</u> 59700	<u>361</u> 55000	21 17200	48.2 34000	163 30900	53.8 69600	91.5 40700	78.7 36300	<u>68.6</u> 37600	17.8 29800	129 39700	65.2 29200	8.5 15900
Lead	63	400	1000	3900	1330	1340	39.7	175	1670	740	40700	407	254	48.2	<u>637</u>	29200	11.3
Magnesium					3610	2720	3240	5190	2060	1620	4360	4880	4700	3750	5070	4470	3280
Manganese	1600	2000	10000	10000	613	499	270	1010	496	268	472	471	565	392	745	719	162
Nickel	30	310	310	10000	79.8	38.2	13.9	25.2	24.2	19.3	39.8	41.3	37.2	15.1	33	23.2	12.5
Potassium Solonium	2.0	180	1500	6800	2310 2.8	2120 2.3	1050 0.52 J	1750 0.52 J	1740 2.7	1130 3.9	2310 3.7	2070 3.4	1890 1.1	1180 0.28 J	2490 0.88	1870 0.61	1230 ND
Selenium Silver	3.9	180	1500	6800	2.8	4.6	<u> </u>	0.52 J 2.3	2.7	4.9	3.9	3.4	3.1	0.28 J 2.7	3.9	2.7	1.6
Sodium	2	100	1000	0000	317	258 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium					0.67	0.55 J	ND	1.2	0.72	0.34 J	ND	ND	ND	0.29 J	0.36 J	0.6	D
Vanadium					31	54.7	13.6	19.9	30.9	13.9	91.4	91.7	67.6	11.3	38.6	23.8	12.9
Zinc	109	10000	10000	10000	1090	922	96.1	368	364	478	432	403	313	43.1	470	174	40.3
Mercury	0.18	0.81	2.8	5.7	5.9	14.1	0.024 J	0.36	0.9	0.34	0.44	0.4	0.24	0.46	4.5	1.6	ND
SVOCs					ND	ND	ND	N14 *	N14 *	NA*	NA*	NA*	NA*	NA*	NA*	NA*	N14 *
1,2,4-Trichlorobenzene 2,2'-Oxybis(1-chloropropane)					ND	ND	ND ND	NA* NA*	NA* NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA* NA*
2,4,5-Trichlorophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2,4,6-Trichlorophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2,4-Dichlorophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2,4-Dimethylphenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2,4-Dinitrophenol 2,4-Dinitrotoluene					ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
2,6-Dinitrotoluene					ND	ND	ND ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2-Chloronaphthalene					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2-Chlorophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2-Methylnaphthalene					0.134	0.118	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2-Methylphenol(o-Cresol)	0.33	100	500	1000	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
2-Nitroaniline 2-Nitrophenol	╂────┼				ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
3&4-Methylphenol(m&p Cresol)	0.33	100	500	1000	ND	ND	ND ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA NA*	NA*
3,3'-Dichlorobenzidine					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
3-Nitroaniline					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
4,6-Dinitro-2-methylphenol	┨─────┤				ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
4-Bromophenylphenyl ether 4-Chloro-3-methylphenol	╂────┼				ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
4-Chloroaniline	<u> </u>				ND	ND	ND ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
4-Chlorophenylphenyl ether	1				ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
4-Nitroaniline					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
4-Nitrophenol					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Acenaphthene	20	100	500	1000	0.0804	0.202	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Acenaphthylene Acetophenone	100	100	500	1000	0.0936 ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Acetophenone Anthracene	100	100	500	1000	0.267	0.623	ND ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Atrazine	100	100	000	1000	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Benzaldehyde					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(a)anthracene	1	1	5.6	11	1.43	2.21	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(a)pyrene	1	1	1	1.1	1.47	2.09	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(b)fluoranthene	1	1 100	5.6 500	11 1000	2.3 0.661	3.22 0.77	0.0881 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Benzo(g,h,i)perylene	100	100	006	1000	0.001	0.77	ND	INA	INA	INA	INA.	INA	INA	INA	INA	INA	INA

					SB-19A	SB-19BO	SB-19C	SB-21A	SB-21BO	SB-21C	SB-24A	SB-24A DUP	SB-24BO	SB-24C	SB-6A	SB-6BO	SB-6C
					0-2"	2"-2'	25'-30'	0-2"	2"-2'	25'-30'	0-2"	0-2"	2"-2'	29'-30'	0-2"	2"-2'	25'-30'
					7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017	7/24/2017
Contaminants	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial													
Benzo(k)fluoranthene	0.8	3.9	56	110	0.861	1.84	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Biphenyl (Diphenyl)					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Butylbenzylphthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Caprolactam					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Carbazole					0.0992	0.254	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Chrysene	1	3.9	56	110	1.68	2.39	0.082	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Di-n-butylphthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Di-n-octylphthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Dibenz(a,h)anthracene	0.33	0.33	0.56	1.1	0.206	0.216	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Dibenzofuran	7	59	350	1000	ND	0.156	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Diethylphthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Dimethylphthalate					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Fluoranthene	100	100	500	1000	2.29	3.7	0.118	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Fluorene	30	100	500	1000	0.0824	0.24	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Hexachloro-1,3-butadiene					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Hexachlorobenzene	0.33	1.2	6	12	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Hexachlorocyclopentadiene					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Hexachloroethane					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	0.741	0.735	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Isophorone					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
N-Nitroso-di-n-propylamine	1				ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
N-Nitrosodiphenylamine	1				ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Naphthalene	12	100	500	1000	0.228	0.144	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Nitrobenzene					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Pentachlorophenol	0.8	6.7	6.7	55	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Phenanthrene	100	100	500	1000	1.29	3.14	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Phenol	0.33	100	500	1000	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Pyrene	100	100	500	1000	2.84	4.34	0.107	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
bis(2-Chloroethoxy)methane					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
bis(2-Chloroethyl) ether					ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
bis(2-Ethylhexyl)phthalate					0.118	0.145	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*

Notes:

(1) Standards based on Chromium, hexavalent.

(2) Groundwater standards only provided for those metals for which SPLP analyses were completed.

(3) All results in ppm

(4) 'ND' = Not Detected

(5) 'NA*' = Not Analyzed

(6) Results exceeding Groundwater A Standard's are RED

(7) Results exceeding unrestricted use SCOs are ORANGE

(8) Results exceeding residential SCOs are RED

(9) Results exceeding commercial SCOs are BLUE

(10) Results exceeeding industrial SCOs are GREEN

					Sample ID	SB-16BO	SB-16C	SB-17A	SB-17BO	SB-17C	SB-25BO	SB-25C	SB-26A MS/MSD	SB-26BO	SB-26C
					Depth	2"-2'	28'-30'	0-2"	2"-2'	28'-30'	2"-2'	25'-30'	0-2"	2"-2'	28'-30'
					Sample Date	7/25/2017	7/25/2017	7/24/2017	7/24/2017	7/24/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017
	Part 703 Groundwater A	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)										
Contaminants	Standard (3)	Unrestricted Use	Residential	Commercial	Industrial										
Metals															
Aluminum						12600	7020	8390	4390	5780	7220	9400	11000	9970	5160
Antimony						ND	ND	4.8	4.7	0.95 J	3.9 J	ND	ND	ND	ND
Arsenic		13	16	16	16	11	4.1	14.6	45.1	7.5	16	4.5	9.4	10.2	56.6
Barium		350	400	400	10000	414	48.3	295	231	75	153	97.9	197	261	24.7
Beryllium		7.2	72	590	2700	0.48	0.12 J	0.47	0.042 J	0.19 J	0.76	0.20 J	0.29 J	0.32	ND
Cadmium		2.5	4.3	9.3	60	0.74	0.15	0.97	0.58	0.2	0.43	0.25	1.2	1.5	1.3
Calcium						9530	1420	3680	2220	4960	1880	2600	16200	24000	1250
Chromium (1)		1	110	140	800	9.9	3.8	15	17.8	8.9	8.6	5.7	25.6	66.8	77.6
Cobalt						12.3	5.8	9.7	5.9	9.6	9.1	10.1	11.3	10.8	30.9
Copper		50	270	270	10000	51	12.1	146	85.1	59.5	91.2	14.7	81.9	107	49.7
Iron				1005		39400	16800	31300	44900	14600	27800	28000	35700	30800	102000
Lead		63	400	1000	3900	240	16.9	1090	524	197	1010	29.3	454	751	6.8
Magnesium	_	1000		40000	10000	6930	3330	1820	957	2170	359	5840	6570	5890	2360
Manganese		1600	2000	10000	10000	698	545	357	152	156	212	890	578	583	290
Nickel		30	310	310	10000	30.1	13.7	26.6	18.8	16	28	17.7	54.4	50.4	72.9
Potassium		2.0	100	1500	6900	1980	973	1740	2460	1090	1310	1270 0.46 J	2170	2100	1020 1.9
Selenium		3.9	180 180	1500 1500	6800 6800	0.76	0.45 J	2.3 3	11 3.6	1.4	1.9		1.2	1.5	7.5
Silver		2	160	1000	0000	3.1 ND	1.6 ND	ND	ND	1.4 ND	2.5 ND	1.9 ND	ND	<u>2.8</u> 495	V.5 ND
Sodium Thallium						0.68	0.55 J	0.43 J	7.5	ND	ND	0.91	0.49 J	0.54 J	ND
Vanadium						24.6	12.8	37.7	29.9	20.5	26.3	13.8	102	99.8	8.9
Zinc		109	10000	10000	10000	311	50	576	254	124	20.3	51.8	324	404	33.9
Mercury		0.18	0.81	2.8	5.7	0.51	ND ND	1.4	1.6	0.18	0.53	ND	0.67	0.73	0.016 J
Metals, SPLP		0.10	0.01	2.0	0.1	0.01	ND	1.7	1.0	0.10	0.00		0.07	0.70	0.0100
Arsenic	0.025					ND	ND	ND	0.0098 J	ND	NA*	NA*	ND	ND	ND
Barium	0.023					0.010 J	0.015 J	0.0075 J	0.0098 J	0.011 J	NA*	NA*	0.0093 J	0.031 J	0.020 J
Cadmium	0.005					ND	0.013 J	0.00020 J	0.00081 J	ND	NA*	NA*	ND	0.031.5 ND	0.020 J 0.00013 J
Chromium	0.003					0.0031 J	0.0044 J	0.0020 J	0.0030 J	0.0018 J	NA*	NA*	0.0040 J	0.0098 J	0.0038 J
Lead	0.025					0.0086	0.019	0.038	0.031	0.0039 J	NA*	NA*	0.0040 J	0.098	0.033
Selenium	0.023					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Silver	0.05					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Mercury	0.0007					ND	ND	ND	0.0021	ND	NA*	NA*	ND	0.00025	ND
Pesticides	0.0007	1							5.0021					0.00020	
4,4'-DDD		0.0033	13	92	180	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4,4'-DDE		0.0033	8.9	62	120	ND	ND	ND	ND	ND	NA*	NA*	0.0062	ND	ND
4,4'-DDT		0.0033	7.9	47	94	ND	ND	ND	ND	ND	NA*	NA*	0.0307	0.0165	ND
Aldrin		0.005	0.097	0.68	1.4	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Dieldrin		0.005	0.037	1.4		ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Endosulfan I		2.4	24	200	920	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Endosulfan II	1	2.4	24	200	920	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Endosulfan sulfate		2.4	24	200	920	ND	ND	ND	ND	ND	NA*	NA*	ND	0.0149	ND
Endrin	1	0.014	11	89	410	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Endrin aldehyde		0.014		50		ND	ND	ND	ND	ND	NA*	NA*	ND	0.0075	ND
Endrin ketone	1					ND	ND	ND	0.0091	ND	NA*	NA*	ND	ND	ND
Heptachlor		0.042	2.1	15	29	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Heptachlor epoxide						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Methoxychlor	1					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Toxaphene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
		0.02	0.48	3.4		ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND

				Sample ID	SB-16BO	SB-16C	SB-17A	SB-17BO	SB-17C	SB-25BO	SB-25C	SB-26A MS/MSD	SB-26BO	SB-26C
				Depth	2"-2'	28'-30'	0-2"	2"-2'	28'-30'	2"-2'	25'-30'	0-2"	2"-2'	28'-30'
				Sample Date	7/25/2017	7/25/2017	7/24/2017	7/24/2017	7/24/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017
	Part 703 6 NYCRR- Groundwater A 375.6.8(b)	375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)										
Contaminants	Standard (3) Unrestricted Use	Residential C	Commercial	Industrial										
alpha-Chlordane	0.094	4.2	24	47	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
beta-BHC	0.036	0.36	3	14	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
delta-BHC	0.04	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
gamma-BHC (Lindane)	0.1	1.3	9.2	23	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
gamma-Chlordane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
PCBs														
PCB-1016 (Aroclor 1016)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
PCB-1221 (Aroclor 1221)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
PCB-1232 (Aroclor 1232)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
PCB-1242 (Aroclor 1242)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
PCB-1248 (Aroclor 1248)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
PCB-1254 (Aroclor 1254)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	ND	0.059	ND
PCB-1260 (Aroclor 1260)	0.1	1	1	25	ND	ND	ND	ND	ND	NA*	NA*	0.0982	0.0746	ND
VOCs														
1,1,1-Trichloroethane	0.68	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,1,2,2-Tetrachloroethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,1,2-Trichloroethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,1,2-Trichlorotrifluoroethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,1-Dichloroethane	0.27	26	240	480	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,1-Dichloroethene	0.33	100	500	10000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,2,4-Trichlorobenzene					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,2-Dibromo-3-chloropropane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,2-Dibromoethane (EDB)				1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,2-Dichlorobenzene	1.1	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,2-Dichloroethane	0.02	3.1	30	60	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
1,2-Dichloropropane	2.4	49	200	FCO	ND	ND	ND	ND	ND	NA*	NA* NA*	ND	ND	ND
1,3-Dichlorobenzene	2.4	49	280	560	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA*	ND ND	ND	ND ND
1,4-Dichlorobenzene 2-Butanone (MEK)	0.12	10	130 500	250 1000	ND ND	ND ND	ND ND	0.143 J	ND	NA*	NA*	ND	ND ND	ND
2-Butanone	0.12	100	500	1000	ND ND	ND	ND	0.143 J ND	ND	NA*	NA*	ND	ND ND	ND
4-Methyl-2-pentanone (MIBK)					ND ND	ND	ND ND	ND	ND	NA*	NA*	ND	ND ND	ND
Acetone	0.05	100	500	1000	0.0064	0.0229	ND	ND	0.0393	NA*	NA*	0.0025 J	ND	ND
Benzene	0.06	4 8	44	89	ND	ND	ND	ND	ND	NA*	NA*	0.0023 3 ND	ND	ND
Bromodichloromethane	0.00	1.0		00	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Bromoform					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Bromomethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Carbon disulfide					ND	ND	ND	ND	0.0033	NA*	NA*	ND	ND	ND
Carbon tetrachloride	0.76	2.4	22	44	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Chlorobenzene	1.1	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Chloroethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Chloroform	0.37	49	350	700	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Chloromethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Cyclohexane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Dibromochloromethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Dichlorodifluoromethane					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Ethylbenzene	1	41	390	780	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Isopropylbenzene (Cumene)					ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Methyl acetate					ND	ND	ND	0.228	ND	NA*	NA*	ND	ND	ND
Methyl-tert-butyl ether	0.12	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Methylcyclohexane					ND	ND	ND	0.111 J	ND	NA*	NA*	ND	ND	ND
Methylene Chloride	0.05	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	0.0016 J	ND	ND

					Sample ID	SB-16BO	SB-16C	SB-17A	SB-17BO	SB-17C	SB-25BO	SB-25C	SB-26A MS/MSD	SB-26BO	SB-26C
					Depth	2"-2'	28'-30'	0-2"	2"-2'	28'-30'	2"-2'	25'-30'	0-2"	2"-2'	28'-30'
					Sample Date	7/25/2017	7/25/2017	7/24/2017	7/24/2017	7/24/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017
	Part 703 Groundwater A	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)										
Contaminants	Standard (3)	Unrestricted Use	Residential	Commercial	Industrial										
Styrene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Tetrachloroethene		1.3	19	150	300	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Toluene		0.7	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Trichloroethene		0.47	21	200	400	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Trichlorofluoromethane						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Vinyl chloride		0.02	0.9	13	27	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Xylene (Total) (2)		0.26	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
cis-1,2-Dichloroethene		0.25	100	500	1000	ND ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
cis-1,3-Dichloropropene trans-1,2-Dichloroethene		0.19	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND
trans-1,2-Dichloropropene		0.19	100	500	1000	ND	ND	ND	ND	ND ND	NA*	NA NA*	ND	ND ND	ND
SVOCs		I				=									
1,2,4-Trichlorobenzene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,2'-Oxybis(1-chloropropane)						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,4,5-Trichlorophenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,4,6-Trichlorophenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,4-Dichlorophenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,4-Dimethylphenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,4-Dinitrophenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,4-Dinitrotoluene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2,6-Dinitrotoluene						ND ND	ND	ND ND	ND ND	ND	NA* NA*	NA* NA*	ND	ND	ND ND
2-Chloronaphthalene 2-Chlorophenol						ND ND	ND ND	ND	ND	ND ND	NA*	NA*	ND ND	ND ND	ND
2-Methylnaphthalene						ND	ND	0.304	0.118	ND	NA*	NA*	0.129	0.407	ND
2-Methylphenol(o-Cresol)		0.33	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2-Nitroaniline		0.00	100	000	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
2-Nitrophenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
3&4-Methylphenol(m&p Cresol)		0.33	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	0.0809	ND
3,3'-Dichlorobenzidine						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
3-Nitroaniline						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4,6-Dinitro-2-methylphenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4-Bromophenylphenyl ether						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4-Chloro-3-methylphenol						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4-Chloroaniline						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4-Chlorophenylphenyl ether						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4-Nitroaniline						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
4-Nitrophenol Acenaphthene		20	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND 0.12	ND 0.529	ND ND
Acenaphthylene		20	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA*	NA*	0.12	0.529	ND ND
Acetophenone		100	100	500	1000	ND ND	ND	ND	0.109	ND	NA*	NA*	ND	0.899 ND	ND
Anthracene		100	100	500	1000	0.0873	ND	0.116	ND	0.12	NA*	NA*	0.317	2.32	ND
Atrazine		100	100	000	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Benzaldehyde						ND	ND	ND	0.372	ND	NA*	NA*	0.251	ND	ND
Benzo(a)anthracene		1	1	5.6	11	0.381	ND	0.416	ND	0.311	NA*	NA*	0.856	5.84	ND
Benzo(a)pyrene		1	1	1	1.1	0.409	ND	0.462	0.138	0.265	NA*	NA*	0.834	6.09	ND
Benzo(b)fluoranthene		1	1	5.6	11	0.581	0.0575 J	0.719	0.347	0.281	NA*	NA*	1.17	9.21	ND
Benzo(g,h,i)perylene		100	100	500	1000	0.258	ND	0.221	0.144	0.155	NA*	NA*	0.423	3.99	ND
Benzo(k)fluoranthene		0.8	3.9	56	110	0.301	ND	0.291	ND	0.125	NA*	NA*	0.519	6.31	ND
Biphenyl (Diphenyl)						ND	ND	ND	ND	ND	NA*	NA*	ND	0.149	ND
Butylbenzylphthalate						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Caprolactam						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Carbazole						ND	ND	ND	ND	ND	NA*	NA*	0.183	1.3	ND
Chrysene		1	3.9	56	110	0.413	ND	0.547	0.825	0.28	NA*	NA*	0.977	7.21	ND

					Sample ID	SB-16BO	SB-16C	SB-17A	SB-17BO	SB-17C	SB-25BO	SB-25C	SB-26A MS/MSD	SB-26BO	SB-26C
					Depth	2"-2'	28'-30'	0-2"	2"-2'	28'-30'	2"-2'	25'-30'	0-2"	2"-2'	28'-30'
					Sample Date	7/25/2017	7/25/2017	7/24/2017	7/24/2017	7/24/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017	7/25/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial										
Di-n-butylphthalate						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Di-n-octylphthalate						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Dibenz(a,h)anthracene		0.33	0.33	0.56	1.1	ND	ND	ND	ND	ND	NA*	NA*	0.134	1.04	ND
Dibenzofuran		7	59	350	1000	ND	ND	ND	ND	ND	NA*	NA*	0.0951	0.75	ND
Diethylphthalate						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Dimethylphthalate						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Fluoranthene		100	100	500	1000	0.65	0.128	1.1	0.373	0.753	NA*	NA*	1.79	14	0.141
Fluorene		30	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	0.11	0.938	ND
Hexachloro-1,3-butadiene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Hexachlorobenzene		0.33	1.2	6	12	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Hexachlorocyclopentadiene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Hexachloroethane						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Indeno(1,2,3-cd)pyrene		0.5	0.5	5.6	11	0.265	ND	0.199	0.0882	0.134	NA*	NA*	0.361	3.84	ND
Isophorone						0.276	ND	0.755	0.581	ND	NA*	NA*	ND	ND	ND
N-Nitroso-di-n-propylamine						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
N-Nitrosodiphenylamine						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Naphthalene		12	100	500	1000	ND	ND	0.225	0.0924	ND	NA*	NA*	0.141	0.983	ND
Nitrobenzene						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Pentachlorophenol		0.8	6.7	6.7	55	ND	ND	D	ND	ND	NA*	NA*	ND	ND	ND
Phenanthrene		100	100	500	1000	0.379	0.104	0.471	0.208	0.337	NA*	NA*	1.42	11.5	0.155
Phenol		0.33	100	500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
Pyrene		100	100	500	1000	0.698	0.0952	0.748	0.262	0.49	NA*	NA*	1.61	13	0.105
bis(2-Chloroethoxy)methane						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
bis(2-Chloroethyl) ether						ND	ND	ND	ND	ND	NA*	NA*	ND	ND	ND
bis(2-Ethylhexyl)phthalate						ND	ND	0.0883 J	0.116	ND	NA*	NA*	0.122	0.122	ND
ТРН															
Total Petroleum Hydrocarbons						ND	232	252	284	221	NA*	NA*	253	596	403

Notes:

(1) Standards based on Chromium, hexavalent.

(2) Standards based on Xylene (mixed).(3) Groundwater standards only provided for those metals for which SPLP analyses were completed.

(4) 'ND' = Not Detected

(5) 'NA*' = Not Analyzed

(6) All results in ppm

(7) Results exceeding Groundwater A Standard's are RED

(8) Results exceeding unrestricted use SCOs are ORANGE

(9) Results exceeding residential SCOs are RED

(10) Results exceeding commercial SCOs are BLUE

(11) Results exceeding industrial SCOs are GREEN

					Sample ID Depth	SB-11B DUP	SB-11A 0-2"	SB-11B 2"-2'	SB-11C 30'-32'	SB-11D 30'-36'	SB-12 BO 2"-2'	SB-12C 25'-30'	SB-12D 8'-10'	SB-22A 0-2"	SB-22B 2"-2'	SB-22C 25'-30'	SB-22D 25'-27'	SB-30 B 2"-2'	SB-30 C 25'-30'	SB-30 D 18'-20'	SB-8A 0-2"	SB-8B 2"-2'	SB-8C 28'-30'	SB-9B 2"-2'	SB-9C 25'-30'	SB-9D 7'-8'
					Sample Date	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/25/2017	7/25/2017	7/25/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017
	Part 703 Groundwater A	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)																					
Contaminants		Unrestricted Use		Commercial	Industrial																					
Metals Aluminum						10400 ND	10600 0.58 J	8670 ND	9620 ND	NA* NA*	7440 3.8 J	9370 ND	NA* NA*	7630 3.3	8250 ND	8270 ND	NA* NA*	7760 16.2	5480 ND	NA* NA*	27100 4	12000	6680 ND	9850 ND	7010 ND	NA* NA*
Antimony Arsenic		13	16	16 400	16 10000	10.6 158	8.1 133	12.5	6.5 73.9	NA* NA*	16 309	6.9 45.5	NA* NA*	29.9 315	19.4	5.4 45.5	NA* NA*	11.9 242	4.1 22.6	NA* NA*	4 13.2 409	18.3 368	8.4 101	8.6 145	3.4 30.4	NA* NA*
Barium Beryllium		7.2	72	400 590 9.3	2700	0.37	0.22 J	0.32	0.36	NA*	0.17 J	0.17 J	NA*	0.18 J	263 0.26 J	0.13 J	NA*	0.61	ND	NA*	0.72	1.4	ND	0.54	0.080 J	NA*
Cadmium Calcium		2.5	4.3	0.0	60	1.1 18600	1.3 21600	1.1 13700	0.15 J 3970	NA* NA*	1.9 36300	0.17 J 4500	NA* NA*	6970	2.3 8360	0.16 1390	NA* NA*	1.2 3160	0.051 J 1670	NA* NA*	1.6 10100	1.8 12200	0.38 3100	0.39 2560	0.070 J 1300	NA* NA*
Chromium(1) Cobalt		1	110	140		9.1	25.5 8.9	18.2 8.9	10.7 7.6	NA* NA*	23.7 7.8	11 8.6	NA* NA*	36.1 12.1	52.4 11.5	9.2 6.2	NA* NA*	18.1 8.2	5.4 4.4	NA* NA*	65.6 15.8	51.7 14.2	11 6.4	12.8 8.3	6.1 4.4	NA* NA*
Copper Iron		50	270	270	10000	84.6 26800	64.9 21400	186 27500	18.2 19100	NA* NA*	1740 44900	17.3 20600	NA* NA*	216 108000	226 62100	153 19600	NA* NA*	150 24200	5.1 12000	NA* NA*	143 54800	282 41900	35.6 27300	294 22700	6.4 14100	NA* NA*
Lead Magnesium		63	400	1000	3900	369 4720	456 5630	469 3250	70.7 3650	NA* NA*	2200 1650	7.7 4770	NA* NA*	1150 2410	963 2770	28.1 3790	NA* NA*	1060 2020	3.6 2470	NA* NA*	1260 2930	1230 3630	481 2780	116 3100	3.8 3300	NA* NA*
Manganese Nickel		1600 30	2000 310	10000 310	10000 10000	459 25.4	567 23.5	478 21.2	249 15.4	NA* NA*	366 23.2	193 18	NA* NA*	613 44.6	566 30.1	199 15.2	NA* NA*	349 29.2	109 9	NA* NA*	1480 38.5	580 63.5	231 13.8	326 23.3	108 9.9	NA* NA*
Potassium Selenium		3.9	180	1500	6800	1700 0.76	2000 0.59 J	1570 0.46 J	1370 0.40 J	NA* NA*	2340 1.8	1380 1	NA* NA*	1870 1.7	1920 1.6	1100 0.50 J	NA* NA*	1560 1	861 ND	NA* NA*	4080 1.6	2370 1.8	1090 1.4	1500 0.83	874 0.42 J	NA* NA*
Silver Sodium		2	180	1500	6800	ND ND	0.19 J ND	0.25 J ND	ND ND	NA* NA*	0.54 J ND	ND ND	NA* NA*	15.9 ND	ND ND	0.16 J ND	NA* NA*	0.45 J ND	ND ND	NA* NA*	0.12 J ND	0.49 J ND	ND ND	ND ND	ND ND	NA* NA*
Thallium Vanadium						ND 27.6	ND 33.2	ND 25	ND 20.7	NA* NA*	ND 22.9	ND 18.7	NA* NA*	ND 22.3	ND 29.6	ND 16.5	NA* NA*	ND 25.6	ND 10.6	NA* NA*	ND 54.6	ND 31.3	ND 12.1	ND 26.5	ND 10.3	NA* NA*
Zinc Mercury		109 0,18	10000 0.81	10000 2.8	10000 5.7	0 315 0.84	385 0.52	310 1.1	59.9 ND	NA* NA*	873 19.3	47.9 0.048	NA* NA*	615 4.6	823 2	78.6 0.059	NA* NA*	432 1.1	29.3 ND	NA* NA*	645 1.6	897 8.5	193 0.51	177	32.5 ND	NA* NA*
Metals, SPLP Arsenic	0.025					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	- NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
Barium	1					0.014 J	0.012 J 0.00014 J	0.016 J	0.0089 J	NA*	NA*	NA* NA*	NA* NA*	NA*	NA*	NA* NA*	NA* NA*	NA* NA*	NA*	NA* NA*	0.012 J	0.022 J	0.024 J	NA*	NA* NA*	NA* NA*
Cadmium Chromium	0.005					0.00021 J 0.0053 J	0.0035 J	0.00021 J 0.0046 J	0.00013 J 0.0028 J	NA* NA*	NA* NA*	NA*	NA*	NA* NA*	NA* NA*	NA*	NA*	NA*	NA* NA*	NA*	0.00024 J 0.0049 J	0.00019 J 0.0079 J	0.000086 J 0.0043 J	NA* NA*	NA*	NA*
Lead Selenium Silver	0.025					0.061 ND	0.022 ND	0.068 ND	0.0058 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.044 ND	0.064 ND	0.062 ND	NA* NA*	NA* NA*	NA* NA*
Silver Mercury	0.05					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND 0.00049	ND 0.00022	NA* NA*	NA* NA*	NA* NA*
Pesticides 4,4'-DDD		0.0033	13	92	180	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
4,4'-DDE 4,4'-DDT		0.0033	8.9 7.9	62 47	120 94	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Aldrin Dieldrin		0.005	0.097	0.68	1.4	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Endosulfan I Endosulfan II		2.4 2.4	24 24	200 200	920 920	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Endosulfan sulfate Endrin		2.4 0.014	24 11	200 89	<u>920</u> 410	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Endrin aldehyde Endrin ketone						ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Heptachlor Heptachlor epoxide		0.042	2.1	15	29	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Methoxychlor Toxaphene						ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
alpha-BHC alpha-Chlordane		0.02	0.48	3.4 24	6.8 47	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
beta-BHC delta-BHC		0.036	0.36	3 500	14 1000	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
gamma-BHC (Lindane) gamma-Chlordane		0.1	1.3	9.2	23	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
PCBs PCB-1016 (Aroclor 1016)		01	1	1	25	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
PCB-1221 (Aroclor 1221) PCB-1232 (Aroclor 1232)		0.1	1	1	25 25	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)		0.1	1	1	25 25	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)		0.1	1	1	25	ND	ND	ND	ND 0.171	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
VOCs		0.1	100	500	20		ND		0.171	1973	i va	10/3			1963		114		104	104	ND	ND	ND	100	100	
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		0.68	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane						ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
1,1-Dichloroethane 1,1-Dichloroethene		0.27	26 100	240 500	480 10000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane						ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene		1.1	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
1,2-Dichloroethane 1,2-Dichloropropane		0.02	3.1	30	60	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene		2.4 1.8	49 13	280 130	560 250	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
2-Butanone (MEK) 2-Hexanone		0.12	100	500	1000	ND ND	ND ND	ND ND	ND ND	0.106 ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
4-Methyl-2-pentanone (MIBK) Acetone		0.05	100	500	1000	ND ND	ND 0.0015 J	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
Benzene Bromodichloromethane		0.06	4.8	44	89	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	0.176 ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	0.0243 ND
Bromoform Bromomethane						ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
Carbon disulfide Carbon tetrachloride		0.76	2.4	22	44	ND ND	ND ND	ND ND	ND ND	0.0129 ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	0.0017 J ND
Chlorobenzene Chloroethane		1.1	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
Chloroform Chloromethane		0.37	49	350	700	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
Cyclohexane Dibromochloromethane						ND ND	ND ND ND	ND ND	5.87 ND	0.0887 ND	NA* NA*	NA* NA*	ND ND	NA*	NA* NA*	NA* NA*	ND ND ND	NA* NA*	NA* NA*	3.66 ND	ND ND	ND ND	0.232 ND	NA* NA*	NA* NA*	0.0111 ND
Dichlorodifluoromethane Ethylbenzene		4		390	790	ND ND 0.003	ND ND 0.0013 J	ND ND 0.0026 J	ND ND ND	ND ND 0.0015 J	NA* NA*	NA* NA*	ND ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND 6.06	ND ND ND	ND ND ND	ND ND ND	NA* NA*	NA* NA*	ND 0.0013 J
Isopropylbenzene (Cumene)			41	390	780	0.003 0.0043 ND	0.0013 J ND ND	0.0026 J ND ND	2.01 ND	0.0015 J 0.0436 ND	NA* NA*	NA* NA*	0.329	NA* NA*	NA* NA*	NA* NA*	3.06 ND	NA* NA*	NA* NA*	0.06 1.12 ND	ND ND ND	ND ND ND	0.772	NA* NA*	NA* NA*	0.0013 J 0.0031 ND
Methyl acetate Methyl-tert-butyl ether Methylcyclohexane		0.12	100	500	1000) ND	ND	ND	ND	ND	NA*	NA*	0.0976 J ND	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	NA*	NA*	ND
		0.05	100	500	1000	0.0037 0.0019 J	ND 0.0015 J	ND 0.0018 J	21.5 ND	0.225 ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	3.81 ND	ND 0.0015 J	ND 0.0019 J	2.04 ND	NA* NA*	NA* NA*	0.0247 0.0014 J
Methylene Chloride Styrene		0.05	100			ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	NA*	NA*	ND

				Sample ID	SB-11B DUP	SB-11A	SB-11B	SB-11C	SB-11D	SB-12 BO	SB-12C	SB-12D	SB-22A	SB-22B	SB-22C	SB-22D	SB-30 B	SB-30 C	SB-30 D	SB-8A	SB-8B	SB-8C	SB-9B	SB-9C	SB-9D
				Depth	2"-2'	0-2"	2"-2'	30'-32'	30'-36'	2"-2'	25'-30'	8'-10'	0-2"	2"-2'	25'-30'	25'-27'	2"-2"	25'-30'	18'-20'	0-2"	2"-2'	28'-30'	2"-2'	25'-30'	7'-8'
		_		Sample Date	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/25/2017	7/25/2017	7/25/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017	7/26/2017
	Part 703 6 NYCRR- Groundwater A 375.6.8(b) Standard (3) Unrestricted Us	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial																					
Contaminants	Standard (5) Unrestricted 03	7 10	Commercial 500	1000	ND	ND	ND	ND	0.0014 1	NA*	NA*	ND	NA*	NA*	NA*	ND	NAt	NA*	0.0408.1	ND	ND	ND	NA*	NA*	0.0012 J
Toluene Trichloroethene	0.4	7 2	1 200	400	ND	ND ND	ND ND	ND ND	0.0014 J ND	NA* NA*	NA*	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	0.0498 J ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND
Trichlorofluoromethane					ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	NA*	NA*	ND
Vinyl chloride Xylene (Total) (2)	0.2	6 10	0 500	1000	ND ND	ND ND	ND ND	ND ND	ND 0.0078	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA*	ND 0.0643 J	NA*	NA* NA*	ND 0.641	ND ND	ND ND	ND 0.147 J	NA* NA*	NA* NA*	ND 0.0019 J
cis-1,2-Dichloroethene	0.2	5 10	0 500	1000	ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	NA*	NA*	ND
cis-1,3-Dichloropropene trans-1,2-Dichloroethene	0.1	9 10	0 500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	ND ND
trans-1,3-Dichloropropene					ND	ND	ND	ND	ND	NA*	NA*	ND	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	ND	ND	NA*	NA*	ND
SVOCs 1,2,4-Trichlorobenzene		1	1	-	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
2,2'-Oxybis(1-chloropropane)					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
2,4,5-Trichloropheno					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
2,4,6-Trichlorophenol 2,4-Dichlorophenol					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
2,4-Dimethylphenol					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
2,4-Dinitrophenol 2,4-Dinitrotoluene		-	+		ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
2,6-Dinitrotoluene				1	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
2-Chloronaphthalene					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
2-Chlorophenol 2-Methylnaphthalene					0.135	0.0821	ND	0.158	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	0.0939	ND	NA*	NA*	NA*
2-Methylphenol(o-Cresol)	0.3	3 10	0 500	1000	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
2-Nitroaniline 2-Nitrophenol					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
3&4-Methylphenol(m&p Cresol)	0.3	3 10	0 500	1000	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
3,3'-Dichlorobenzidine 3-Nitroaniline					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
4,6-Dinitro-2-methylphenol					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
4-Bromophenylphenyl ether					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
4-Chloro-3-methylphenol 4-Chloroaniline					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
4-Chlorophenylphenyl ether					ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
4-Nitroaniline 4-Nitrophenol					ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Acenaphthene	2	0 10	0 500	1000	ND	ND	ND	0.913	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	0.27	ND	NA*	NA*	NA*
Acenaphthylene	10	0 10	0 500	1000	0.0996 ND	0.0891 ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Acetophenone Anthracene	10	0 10	0 500	1000	0.243	0.202	0.129	0.714	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	0.115	0.587	ND	NA*	NA*	NA*
Atrazine					ND ND	ND 0.152	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	NA* NA*	NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Benzaldehyde Benzo(a)anthracene		1	1 5.6	11	0.831	1.43	0.595	0.221	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	0.64	1.48	ND	NA*	NA*	NA*
Benzo(a)pyrene		1	1 1	1.1	1.1	1.66	0.689	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	0.723	1.33	ND	NA*	NA*	NA*
Benzo(b)fluoranthene Benzo(g,h,i)perylene	10	1 10	1 5.6 0 500	11	1.7 0.517	2.71 0.728	0.964	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	1.02 0.334	1.81 0.549	ND ND	NA* NA*	NA* NA*	NA* NA*
Benzo(k)fluoranthene	0	8 3.	9 56	110	0.755	1.33	0.396	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	0.476	0.942	ND	NA*	NA*	NA*
Biphenyl (Diphenyl) Butylbenzylphthalate					ND ND	ND 0.16	ND 0.109	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Caprolactam					ND	ND	0.306	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
Carbazole		1 21		110	0.158	0.152	0.0976	ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	NA* NA*	NA*	ND	0.292	ND ND	NA* NA*	NA* NA*	NA*
Chrysene Di-n-butylphthalate		3.	5 56	110	1.26 ND	1.68 ND	0.72 ND	0.65 ND	NA* NA*	NA*	NA* NA*	NA*	NA^ NA*	NA*	NA*	NA*	NA* NA*	NA*	NA* NA*	0.733 ND	1.59 ND	ND	NA*	NA*	NA* NA*
Di-n-octylphthalate			0		ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
Dibenz(a,h)anthracene Dibenzofuran	0.3	a 0.3 7 5	3 0.56 9 350	1.1	0.144 ND	0.23 ND	0.111 ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.112 ND	0.163 0.253	ND ND	NA* NA*	NA* NA*	NA* NA*
Diethylphthalate			500		ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
Dimethylphthalate Fluoranthene	11	0 10	0 500	1000	ND 2.24	ND 2.59	ND 1.37	ND 0.395	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND 1.45	ND 3.54	ND ND	NA* NA*	NA* NA*	NA* NA*
Fluorene		0 10	0 500	1000	ND	ND	ND	1.23	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	0.295	ND	NA*	NA*	NA*
Hexachloro-1,3-butadiene		a	2	40	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Hexachlorobenzene Hexachlorocyclopentadiene	0.3	1.	<u> </u>	12	ND	ND ND	ND ND	ND	NA* NA*	NA*	NA*	NA*	NA^ NA*	NA*	NA*	NA*	NA*	NA*	NA* NA*	ND	ND	ND	NA*	NA*	NA* NA*
Hexachloroethane		-			ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
Indeno(1,2,3-cd)pyrene Isophorone	0	5 0.	5.6	11	0.48 ND	0.683 ND	0.446 ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.4 ND	0.64 ND	ND ND	NA* NA*	NA* NA*	NA* NA*
N-Nitroso-di-n-propylamine				1	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
N-Nitrosodiphenylamine		2 40	0 500	1000	ND 0.119	ND ND	ND 0.0828	ND 0.207	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	NA* NA*	NA*	ND ND	ND 0.208	ND ND	NA* NA*	NA* NA*	NA* NA*
Naphthalene Nitrobenzene		- 10	0 500	1000	ND	ND	0.0828 ND	0.207 ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	0.208 ND	ND	NA*	NA*	NA*
Pentachlorophenol	0	8 6.	7 6.7	55	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
Phenanthrene Phenol	0.3	0 10 3 10	0 500 0 500	1000	1.47 ND	0.841 ND	0.871 ND	3.68 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.696 ND	2.85 ND	ND ND	NA* NA*	NA* NA*	NA* NA*
Pyrene	10	0 10	0 500	1000	2.07	2.24	1.12	0.963	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	1.32	2.9	ND	NA*	NA*	NA*
bis(2-Chloroethoxy)methane bis(2-Chloroethyl) ether			+		ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*
bis(2-Ethylhexyl)phthalate					0.0846	0.277	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	ND	ND	ND	NA*	NA*	NA*
ТРН	1	1		· · · ·																					
Total Petroleum Hydrocarbons		1	1		535	883	364	5620	403	NA*	NA*	1210	NA*	NA*	NA*	1310	NA*	NA*	270	268	322	265	NA*	NA*	3590

Notes:

 (1) Standards based on Chromium, hexavalent.

 (2) Standards based on Xylene (mixed).

 (3) Groundwater standards only provided for those metals for which SPLP analyses were completed

 (4) All results in ppm

 (5) 'ND' = Not Detected

 (6) 'NA" = Not Analyzed

 (7) Results exceeding Groundwater A Standard's are RED

 (8) Results exceeding unrestricted use SCOs areORANGE

 (9) Results exceeding residential SCOs areRED

 (10) Results exceeding industrial SCOs areGRENE

 (11) Results exceeding industrial SCOs areGRENE

					Sample ID	SB-1BO	SB-1C	SB-20A	SB-20BO	SB-20C	SB-23BO	SB-23C	SB-33BO	SB-4BO	SB-4C	SB-5A	SB-5BO	SB-5C	SB-7BO	SB-7BO DUP	SB-7C
					Depth	2"-2'	25'-30'	0-2"	2"-3'	25'-30'	2"-2'	25'-30'	2"-2'	2"-2'	25'-30'	0-2"	2"-2'	25'-30'	2"-2'	2"-2'	25'-30'
		6 NYCRR-			Sample Date	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/26/2017	7/26/2017	7/26/2017	7/27/2017	7/27/2017	7/27/2017
	Part 703 Groundwater A	375.6.8(b) Unrestricted	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)																
Contaminants	Standard (3)	Use	Residential	Commercial	Industrial																
Metals Aluminum	1					14100	6070	12400	11300	6850	12800	8680	13600	10500	8310	8760	8530	6170	11600	12400	7590
Antimony	1					ND	ND	ND	ND	ND	ND	ND	11.3	ND	ND	ND	505	ND	ND	0.26 J	ND
Arsenic		13	16	16	16	13.8	6.1	19.1	19.7	5.7	13.9	5.6	16	17.9	7.7	12.1	42.6	6.5	23.5	19.2	4.6
Barium		350	400	400		196	26.2	257	300	49	192	45.7	274	476	43.2	182	1740	60.1	308	408	31.4
Beryllium Cadmium		7.2	4.3	590 9.3	2700	0.34 0.65	0.12 J 0.057 J	0.59 1.1	0.67 1.3	0.24 J 0.14 J	0.29	ND 0.21	0.86 0.5	0.55 1.9	0.27 J 0.26	0.44	ND 6.6	0.21 J 0.17	0.39	0.24 J 1.1	0.22 J 0.13 J
Calcium	1	2.0		0.0	00	77800	2610	3490	6340	6230	36600	14600	122000	29000	6170	2960	20900	3100	15700	35200	5440
Chromium (1)		1	110	140	800	12.2	5.4	20	18.6	7.4	13	9.5	4.9	26.2	11.2	17.2	28.5	6.9	20.5	13	7.8
Cobalt						8.3	5.8	13.9	10.1	6.8	8.8	5	5.4	9.9	7.5	9.8	9.6	5.6	10.2	8.2	6.7
Copper		50	270	270	10000	37.5 25700	<u>10.4</u> 15400	242 42800	185 33900	<u> </u>	63.7 34000	13.5 21000	1990 28800	302 36400	18.1 16100	98 34500	556 109000	32.4 16000	<u>357</u> 60100	724 36300	9.9 16300
Iron Lead	1 1	63	400	1000	3900	476	15400	42800 746	1310	14000	34000	50.3	<u> </u>	1290	26.9	54500 521	6520	158	1820	867	16.8
Magnesium						8880	3120	4630	3090	3670	8450	3300	7140	3990	4900	3220	2590	2680	4360	4790	4450
Manganese		1600	2000	10000	10000	605	298	830	476	322	943	585	2190	1930	285	531	1500	381	719	964	423
Nickel Potassium		30	310	310	10000	18.7 2340	11.9 1020	49 2360	24.1 2290	13.2 1100	41.1 2860	10.5 1260	9.6 2360	27 2620	14.5 1350	24.1 1610	33 3960	12.7 948	25 2720	16.8 2530	14.6 1260
Selenium	1 1	3.9	180	1500	6800	0.35 J	0.35 J	1.6	2290	0.51 J	1.1	ND	2360 ND	2.6	0.36 J	1.2	7	0.38 J	2.5	2550	ND
Silver		2	180	1500	6800	1.3	0.91	2.6	2.3	0.88	1.8	1.2	1.5	3.1	0.99	2.2	5.3	1	3.7	2.4	0.96
Sodium						781	ND	ND	ND	ND	277	ND	986	246 J	ND	ND	ND	ND	ND	569	ND
Thallium Vanadium						ND 33	ND 12.3	0.30 J 34.5	ND 32.1	ND 13.9	ND 28.5	ND 17.8	ND 16.7	0.52 J 24.1	ND 15.2	ND 18.5	0.68 20.8	ND 12.7	0.29 J 23.9	ND 22.6	ND 13
Zinc		109	10000	10000	10000	267	39.5	569	612	79	20.5	45	10.7	<u>948</u>	86.1	384	20.8	92.7	<u> </u>	540	61.9
Mercury		0.18	0.81	2.8	5.7	0.89	0.096	6.7	25.1	0.23	0.57	0.031 J	1	2.3	0.95	2.1	2.1	0.32	5	39.4	0.033 J
Metals, SPLP									•			•					•				-
Arsenic	0.025					NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Barium Cadmium	1 0.005					NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.016 J 0.00010 J	NA* NA*	NA* NA*	0.022 J 0.00027 J	0.017 J 0.00020 J	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Chromium	0.005				-	NA*	NA*	NA*	NA*	NA*	0.0053 J	NA*	NA*	0.027	0.0067 J	NA*	NA*	NA*	NA*	NA*	NA*
Lead	0.025					NA*	NA*	NA*	NA*	NA*	0.017	NA*	NA*	0.12	0.035	NA*	NA*	NA*	NA*	NA*	NA*
Selenium	0.01					NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Silver Mercury	0.05					NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Pesticides	0.0007					NА	110	NА	ΝA	INA.	ND		INA	ND	ND	110		INA	NА	NA	
4,4'-DDD		0.0033	13	92	180	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4,4'-DDE		0.0033	8.9	62	120	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4,4'-DDT		0.0033	7.9	47	94	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Aldrin Dieldrin	1 1	0.005	0.097	0.68	1.4	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Endosulfan I	1 1	2.4	24	200	920	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Endosulfan II		2.4	24			NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Endosulfan sulfate	┦────┤	2.4	24	200		NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Endrin Endrin aldehyde	┨────┤	0.014	11	89	410	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Endrin ketone	1 1					NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Heptachlor		0.042	2.1	15	29	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Heptachlor epoxide	┨────┤				├	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Methoxychlor Toxaphene	1					NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
alpha-BHC	1	0.02	0.48	3.4	6.8	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
alpha-Chlordane		0.094	4.2	24	47	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
beta-BHC	┦────┤	0.036	0.36	3	14	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
delta-BHC gamma-BHC (Lindane)	┨────┤	0.04	100	500 9.2		NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
gamma-Chlordane	1 1	0.1	1.3	9.2	23	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
PCBs	-								·						·		·	I		·	
PCB-1016 (Aroclor 1016)		0.1	1	1	25	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
PCB-1221 (Aroclor 1221)		0.1	1	1	25	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
PCB-1232 (Aroclor 1232) PCB-1242 (Aroclor 1242)	┨────┤	0.1	1	1	25	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)	1 1	0.1	1	1	25	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
PCB-1254 (Aroclor 1254)		0.1	1	1	25	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
PCB-1260 (Aroclor 1260)		0.1	1	1	25	NA*	NA*	NA*	NA*	NA*	ND	NA*	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*

					Sample ID	SB-1BO	SB-1C	SB-20A	SB-20BO	SB-20C	SB-23BO	SB-23C	SB-33BO	SB-4BO	SB-4C	SB-5A	SB-5BO	SB-5C	SB-7BO	SB-7BO DUP	SB-7C
					Depth	2"-2'	25'-30'	0-2"	2"-3'	25'-30'	2"-2'	25'-30'	2"-2'	2"-2'	25'-30'	0-2"	2"-2'	25'-30'	2"-2'	2"-2'	25'-30'
					Sample Date	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/27/2017	7/26/2017	7/26/2017	7/26/2017	7/27/2017	7/27/2017	7/27/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial																
VOCs		000																li.			
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		0.68	100	500	1000	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
1,1,2-Trichloroethane						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,1,2-Trichlorotrifluoroethane						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,1-Dichloroethane		0.27	26	240	480	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,1-Dichloroethene	-	0.33	100	500	1000	NA* NA*	NA*	NA* NA*	NA*	NA* NA*	ND	ND ND	NA* NA*	ND	ND ND	NA* NA*	NA* NA*	NA*	NA* NA*	NA* NA*	NA* NA*
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane	_					NA*	NA* NA*	NA*	NA* NA*	NA*	ND ND	ND	NA*	ND ND	ND ND	NA*	NA*	NA* NA*	NA*	NA*	NA*
1,2-Dibromoethane (EDB)						NA*	NA NA*	NA*	NA*	NA*	ND	ND	NA NA*	ND	ND	NA NA*	NA*	NA NA*	NA*	NA NA*	NA*
1,2-Dichlorobenzene		1.1	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,2-Dichloroethane		0.02	3.1	30	60	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,2-Dichloropropane						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,3-Dichlorobenzene		2.4	49	280	560	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
1,4-Dichlorobenzene		1.8	13	130	250	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Butanone (MEK)		0.12	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Hexanone						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Methyl-2-pentanone (MIBK	.)	0.05	100	500	1000	NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Acetone Benzene		0.05	4.8	500	1000	NA*	NA*	NA*	NA*	NA*	ND ND	ND	NA*	ND	ND ND	NA*	NA*	NA*	NA*	NA*	NA*
Bromodichloromethane		0.00	4.0	44	09	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Bromoform						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Bromomethane						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Carbon disulfide				-		NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Carbon tetrachloride		0.76	2.4	22	44	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Chlorobenzene		1.1	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Chloroethane						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Chloroform		0.37	49	350	700	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Chloromethane						NA* NA*	NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND 9.74	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Cyclohexane Dibromochloromethane						NA*	NA* NA*	NA*	NA*	NA*	ND ND	9.74 ND	NA*	ND	ND ND	NA*	NA*	NA*	NA*	NA*	NA*
Dichlorodifluoromethane						NA*	NA NA*	NA*	NA*	NA*	ND	ND	NA NA*	ND	ND	NA NA*	NA*	NA NA*	NA*	NA NA*	NA*
Ethylbenzene		1	41	390	780	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Isopropylbenzene (Cumene)						NA*	NA*	NA*	NA*	NA*	ND	1.2	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Methyl acetate						NA*	NA*	NA*	NA*	NA*	0.0082	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Methyl-tert-butyl ether		0.12	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Methylcyclohexane						NA*	NA*	NA*	NA*	NA*	ND	30.2	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Methylene Chloride		0.05	100	500	1000	NA*	NA*	NA*	NA*	NA*	0.0024 J	ND	NA*	0.0023 J	0.0014 J	NA*	NA*	NA*	NA*	NA*	NA*
Styrene		4.0	10	450	000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Tetrachloroethene Toluene		1.3	19 100	150 500	300	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Trichloroethene		0.7	100	200	1000	NA*	NA*	NA*	NA*	NA*	ND ND	ND	NA*	ND	ND ND	NA*	NA*	NA*	NA*	NA*	NA*
Trichlorofluoromethane		0.47	21	200	400	NA*	NA NA*	NA*	NA*	NA*	ND	ND	NA NA*	ND	ND	NA NA*	NA*	NA NA*	NA*	NA NA*	NA*
Vinvl chloride		0.02	0.9	13	27	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Xylene (Total) (2)		0.26	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
cis-1,2-Dichloroethene		0.25	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
cis-1,3-Dichloropropene						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
trans-1,2-Dichloroethene		0.19	100	500	1000	NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
trans-1,3-Dichloropropene						NA*	NA*	NA*	NA*	NA*	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*

					Sample ID	SB-1BO	SB-1C	SB-20A	SB-20BO	SB-20C	SB-23BO	SB-23C	SB-33BO	SB-4BO	SB-4C	SB-5A	SB-5BO	SB-5C	SB-7BO	SB-7BO DUP	SB-7C
					Depth Sample Date	2"-2' 7/27/2017	25'-30' 7/27/2017	0-2"	2"-3' 7/27/2017	25'-30' 7/27/2017	2"-2' 7/27/2017	25'-30' 7/27/2017	2"-2' 7/27/2017	2"-2' 7/27/2017	25'-30' 7/27/2017	0-2"	2"-2' 7/26/2017	25'-30' 7/26/2017	2"-2' 7/27/2017	2"-2' 7/27/2017	25'-30' 7/27/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial	112112011	112112011	112112011			112112011	112112011		112112011	112112011	1120/2011	112012011	1120/2011	112112011	112112011	112112011
SVOCs	-			-	1			· · -													
1,2,4-Trichlorobenzene 2,2'-Oxybis(1-chloropropane)						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
2,4,5-Trichlorophenol						NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
2,4,6-Trichlorophenol 2,4-Dichlorophenol						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
2,4-Dimethylphenol						NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
2,4-Dinitrophenol 2,4-Dinitrotoluene						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
2,6-Dinitrotoluene						NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
2-Chloronaphthalene						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
2-Chlorophenol 2-Methylnaphthalene						NA*	NA*	0.109	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA NA*	ND
2-Methylphenol(o-Cresol)		0.33	100	500	1000	NA*	NA*	ND	ND	ND ND	ND ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND ND
2-Nitroaniline 2-Nitrophenol	1					NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
3&4-Methylphenol(m&p Cresol)	0.33	100	500	1000	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
3,3'-Dichlorobenzidine 3-Nitroaniline						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
4,6-Dinitro-2-methylphenol						NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
4-Bromophenylphenyl ether 4-Chloro-3-methylphenol						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
4-Chloroaniline						NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
4-Chlorophenylphenyl ether						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
4-Nitroaniline 4-Nitrophenol						NA*	NA*	ND	ND	ND	ND	ND ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA NA*	ND
Acenaphthene		20	100	500	1000	NA*	NA*	ND	0.12	ND	ND	2.7	NA*	0.183	0.129	NA*	NA*	NA*	NA*	NA*	ND
Acenaphthylene Acetophenone		100	100	500	1000	NA* NA*	NA* NA*	0.113 ND	0.0973 ND	ND ND	ND ND	ND ND	NA* NA*	0.112 ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Anthracene		100	100	500	1000	NA* NA*	NA* NA*	0.195 ND	0.369 ND	ND ND	0.13 ND	1.2 ND	NA* NA*	0.481	0.234 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.948 ND
Atrazine Benzaldehyde						NA*	NA*	0.146	ND	ND	ND	ND	NA*	ND ND	ND	NA*	NA*	NA*	NA*	NA*	ND
Benzo(a)anthracene		1	1	5.6	11	NA* NA*	NA* NA*	0.499 0.589	1.76 1.71	0.147 0.124	0.573 0.578	ND ND	NA* NA*	1.83 1.9	0.417 0.324	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	0.185 ND
Benzo(a)pyrene Benzo(b)fluoranthene		1	1	5.6	1.1	NA*	NA*	1.09	2.65	0.124	0.934	ND	NA*	2.77	0.324	NA*	NA*	NA*	NA*	NA*	ND
Benzo(g,h,i)perylene		100	100	500	1000	NA*	NA*	0.235	0.543	ND	0.156	ND	NA*	0.746	0.153	NA*	NA*	NA*	NA*	NA*	ND
Benzo(k)fluoranthene Biphenyl (Diphenyl)		0.8	3.9	66	110	NA* NA*	NA* NA*	0.485 ND	1.34 ND	0.07 J ND	0.495 ND	ND ND	NA* NA*	1.16 ND	0.191 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Butylbenzylphthalate						NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
Caprolactam Carbazole						NA* NA*	NA* NA*	ND 0.109	ND 0.14	ND ND	ND ND	ND ND	NA* NA*	ND 0.148	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Chrysene		1	3.9	56	110	NA*	NA*	0.773	1.78	0.145	0.593	ND	NA*	1.89	0.4	NA*	NA*	NA*	NA*	NA*	0.488
Di-n-butylphthalate Di-n-octylphthalate						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Dibenz(a,h)anthracene		0.33	0.33	0.56	1.1	NA*	NA*	ND	0.18	ND	ND	ND	NA*	0.194	ND	NA*	NA*	NA*	NA*	NA*	ND
Dibenzofuran Diathula bib alata		7	59	350	1000	NA*	NA*	ND	0.0911	ND	ND	ND	NA*	0.0849	ND	NA*	NA*	NA*	NA*	NA*	ND
Diethylphthalate Dimethylphthalate						NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Fluoranthene		100	100	500	1000	NA*	NA*	1.38	3.27	0.294	0.973	0.797	NA*	3.26	0.969	NA*	NA*	NA*	NA*	NA*	0.615
Fluorene Hexachloro-1,3-butadiene	ł	30	100	500	1000	NA* NA*	NA* NA*	ND ND	0.121 ND	ND ND	ND ND	4.18 ND	NA* NA*	0.2 ND	0.135 ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	3.93 ND
Hexachlorobenzene		0.33	1.2	6	12	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
Hexachlorocyclopentadiene Hexachloroethane	<u> </u>					NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Indeno(1,2,3-cd)pyrene	<u> </u>	0.5	0.5	5.6	11	NA*	NA*	0.197	0.674	ND	0.201	ND	NA*	0.795	0.163	NA*	NA*	NA*	NA*	NA*	ND
Isophorone N-Nitroso-di-n-propylamine	<u>-</u>				<u>_</u>	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	0.158 ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
N-Nitrosodiphenylamine	<u> </u>	<u> </u>				NA*	NA*	ND	ND	ND	ND ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
Naphthalene		12	100	500	1000	NA*	NA*	0.0953	0.104	ND ND	ND ND	0.938	NA*	0.0912	ND	NA*	NA*	NA*	NA*	NA*	ND ND
Nitrobenzene Pentachlorophenol	1	0.8	6.7	6.7	55	NA* NA*	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Phenanthrene		100	100	500		NA*	NA*	1.07	1.82	0.19	0.519	6.32	NA*	2.83	0.628	NA*	NA*	NA*	NA*	NA*	6.35
Phenol Pyrene	<u> </u>	0.33	100	500	1000	NA* NA*	NA* NA*	ND 1.55	ND 4.22	ND 0.251	ND 1.17	ND 1.38	NA* NA*	ND 5.17	ND 0.793	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND 1.33
bis(2-Chloroethoxy)methane		100	100	500	1000	NA*	NA*	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	ND
bis(2-Chloroethyl) ether bis(2-Ethylhexyl)phthalate	<u>-</u>				<u>_</u>	NA* NA*	NA* NA*	ND 0.119	ND 0.0771	ND ND	ND ND	ND ND	NA* NA*	ND 0.0922	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	ND ND
Dis(2-Ethylnexyl)phthalate	I	1		I	1	INA	INA	0.119	0.0771	שא		טא	INA"	0.0922	טא	INA	INA [*]	INA	INA"	INA	עא
Total Petroleum Hydrocarbons Notes:						NA*	NA*	NA*	NA*	NA*	5630	7970	NA*	410	1090	NA*	NA*	NA*	NA*	NA*	NA*

 I otal Petroleum Hydrocarbons

 Notes:

 (1) Standards based on Chromium, hexavalent.

 (2) Standards based on Xylene (mixed).

 (3) Groundwater standards only provided for those metals for which SPLP analyses were completed.

 (4) All results in ppm

 (5) 'ND' = Not Detected

 (6) 'NA** = Not Analyzed

(7) Results exceeding Groundwater A Standard's are RED
(8) Results exceeding unrestricted use SCOs are ORANGE
(9) Results exceeding residential SCOs are RED
(10) Results exceeding commercial SCOs are BLUE
(11) Results exceeding industrial SCOs are GREEN

					Sample ID	SB-28 BO	SB-28 C	SB-29 BO	SB-29 BO DUP	SB-29 C	SB-3 BO	SB-36 BO	SB-36C	SB-3C	SB-3D	SB2 BO	SB2A	SB2C	SB33-C	SB33-D	SB4A
					Depth	2"-2'	28'-30'	2"-2'	2"-2'	25'-30'	2"-2'	2"-2'	25'-30'	25'-30'	5'-10'	2"-2'	0-2"	25'-30'	25'-30'	25'-30'	0-2"
		6 NYCRR-			Sample Date	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/27/2017	7/27/2017	7/28/2017
	Part 703 Groundwater A	375.6.8(b) Unrestricted	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)	6 NYCRR- 375.6.8(b)																
Contaminants	Standard (3)	Use	Residential	Commercial	Industrial																
Metals	1					10200	7250	0460	9440	8320	12000	17000	9670	6720	NIA*	11500	10200	8030	0240	NIA*	12000
Aluminum Antimony						12300 ND	7250 ND	9460 ND	8440 ND	8320 ND	13000 ND	17900 ND	8670 ND	6720 ND	NA* NA*	11500 ND	10200 ND	8020 ND	9340 ND	NA* NA*	12900 ND
Arsenic		13	16	16	16	8.4	3	12.2	12.9	3.9	20.9	8.3	4.9	3.1	NA*	12.3	3.8	4.7	9.2	NA*	3.3
Barium		350	400	400	10000	169	40	154	109	49.6	198	211	52.5	32.8	NA*	423	186	52	64	NA*	362
Beryllium		7.2	72	590	2700	0.54	0.19 J	0.31	0.22 J	0.25 J	0.37	0.54	0.25 J	0.14 J	NA*	0.62	0.94	0.23 J	0.26 J	NA*	0.81
Cadmium		2.5	4.3	9.3	60	0.31	0.033 J	2.1	1.2	0.16 J	0.79	0.39	0.11 J	0.091 J	NA*	1.4	0.41	0.22	0.26	NA*	0.33
Calcium Chromium (1)		1	110	140	800	7770 8.2	1450 3.8	5000	3790	5650 7.9	13800 11.3	30700	6420 7.8	3730 5	NA* NA*	18600 15.7	29400 9.9	2670	5110	NA* NA*	8120 11.7
Cobalt		1	110	140	800	10.1	5.3	6.2 8.8	3.5 8.7	6.2	10.1	10.4	8	5.4	NA*	9.1	11.1	6	8.7	NA*	12.7
Copper		50	270	270	10000	46.7	6.6	216	265	14.6	135	119	16.4	8.9	NA*	126	36.2	19.7	26.4	NA*	24.1
Iron						26000	13400	39200	47100	14300	29800	20100	18500	12900	NA*	25600	22500	17600	23100	NA*	27900
Lead		63	400	1000	3900	246	4.5	388	560	17.6	1080	575	16.5	10.5	NA*	1370	52.3	40.3	86.9	NA*	21.5
Magnesium		1000	0000	10000	40000	6030	2840	3910	3470	3940	5240	6230	4310	3460	NA*	4000	6220	3000	4400	NA*	6230
Manganese Nickel		1600	2000	10000	10000	<u>684</u> 23.4	167 11.4	503 21	311 24.7	316 13.5	606 23.8	491 20.4	294 15.7	178 11.5	NA* NA*	517 47.3	947 27.5	291 13.1	574 17.2	NA* NA*	1020 25.7
Potassium			510	510	10000	2440	1300	2150	1910	1540	2780	1860	1400	1220	NA*	2780	1970	1480	1500	NA*	2160
Selenium		3.9	180	1500	6800	0.41 J	ND	2.4	1.9	0.38 J	2.8	1.4	0.49 J	ND	NA*	1.6	0.67	0.37 J	0.49 J	NA*	0.28 J
Silver		2	180	1500	6800	1.8	0.94	3.2	3.4	1.2	2.4	1.6	1.2	0.94	NA*	2.5	1.8	1.5	1.4	NA*	2.1
Sodium						ND	ND	227 J	ND	ND	ND	ND	ND	ND	NA*	690	ND	ND	ND	NA*	ND
Thallium						0.77	ND	0.26 J	ND 10.0	ND	0.37 J	ND	ND	ND	NA*	0.28 J	0.44 J	ND	0.58	NA*	0.57
Vanadium Zinc		100	10000	10000	10000	21.5 138	12 40.7	19.5 973	19.3 830	<u>14.4</u> 47.2	27.2 452	22 260	16.4 53.5	12.6 39.5	NA* NA*	26 823	8.7 161	12.8 71.2	15.7 102	NA* NA*	12.2 82
∠inc Mercury		0.18	0.81	2.8	5.7	0.31	0.014 J	0.58	0.34	0.34	1.5	0.55	0.1	0.071	NA*	5.9	0.099	0.035 J	0.32	NA*	0.069
Metals, SPLP													•••								
Arsenic	0.025					ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	NA*	ND	NA*
Barium	1					0.011 J	0.0073 J	0.018 J	0.014 J	0.012 J	0.014 J	NA*	0.015 J	0.0055 J	NA*	0.021 J	NA*	NA*	NA*	0.018 J	NA*
Cadmium	0.005					0.00013 J	0.000087 J	ND	0.00018 J	0.00034 J	ND	NA*	0.00012 J	ND	NA*	0.00015 J	NA*	NA*	NA*	0.00029 J	NA*
Chromium Lead	0.05					0.0051 J 0.0098	0.0031 J 0.0092	0.0046 J 0.034	0.0041 J 0.039	0.0044 J 0.0064	0.0033 J 0.042	NA* NA*	0.0058 J 0.011	ND ND	NA* NA*	0.0058 J 0.07	NA* NA*	NA* NA*	NA* NA*	0.0043 J 0.028	NA* NA*
Selenium	0.01					ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	NA*	ND	NA*
Silver	0.05					ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	NA*	ND	NA*
Mercury	0.0007					ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	0.0002	NA*	NA*	NA*	ND	NA*
Pesticides 4,4'-DDD		0.0033	13	92	180	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
4,4'-DDE		0.0033	8.9	62	120	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
4,4'-DDT		0.0033	7.9	47	94	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Aldrin		0.005	0.097	0.68	1.4	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Dieldrin		0.005	0.2	1.4		ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Endosulfan I		2.4	24	200	920	ND ND	ND ND	ND	ND	ND	ND	NA*	ND ND	ND	NA*	ND ND	NA*	NA* NA*	ND	ND ND	NA*
Endosulfan II Endosulfan sulfate		2.4	24	200	920	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND	ND ND	NA* NA*	ND	NA* NA*	NA*	ND ND	ND ND	NA* NA*
Endrin	1	0.014	11	89	410	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Endrin aldehyde						ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Endrin ketone						ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Heptachlor		0.042	2.1	15	29	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
Heptachlor epoxide Methoxychlor						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*
Toxaphene						ND ND	ND	ND	ND ND	ND ND	ND	NA*	ND	ND ND	NA*	ND	NA*	NA*	ND ND	ND	NA*
alpha-BHC		0.02	0.48	3.4	6.8	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
alpha-Chlordane		0.094	4.2	24	47	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
beta-BHC		0.036	0.36	3	14	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
delta-BHC		0.04	100	500	1000	ND	ND	ND	ND ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
gamma-BHC (Lindane) gamma-Chlordane		0.1	1.3	9.2	23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*
PCBs	1					שא			שא	NU	שא	IN/A	שא	שא	11/4		11/4	11/4	שא		
PCB-1016 (Aroclor 1016)		0.1	1	1	25	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
PCB-1221 (Aroclor 1221)		0.1	1	1	25	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
PCB-1232 (Aroclor 1232)		0.1	1	1	25	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
PCB-1242 (Aroclor 1242)		0.1	1	1	25	ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	ND	ND	NA*
PCB-1248 (Aroclor 1248)		0.1	1	1	25	ND	ND	ND	ND ND	ND	ND	NA*	ND ND	ND	NA*	ND	NA*	NA*	ND	ND ND	NA*
PCB-1254 (Aroclor 1254) PCB-1260 (Aroclor 1260)		0.1 0.1	1	1	25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	NA* NA*	NA* NA*	ND ND	ND ND	NA* NA*
1200 (AIUCIUI 1200)		U. I	I	I	20	ND	IND	ND	ND	ND	שאו	INA	NU	UN	INA	UND	INA	NA	שא	ND	AVI

																	1				
					Sample ID	SB-28 BO	SB-28 C	SB-29 BO	SB-29 BO DUP	SB-29 C	SB-3 BO	SB-36 BO	SB-36C	SB-3C	SB-3D	SB2 BO	SB2A	SB2C	SB33-C	SB33-D	SB4A
					Depth	2"-2'	28'-30'	2"-2'	2"-2'	25'-30'	2"-2'	2"-2'	25'-30'	25'-30'	5'-10'	2"-2'	0-2"	25'-30'	25'-30'	25'-30'	0-2"
					Sample Date	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/27/2017	7/27/2017	7/28/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial																
VOCs																					
1,1,1-Trichloroethane		0.68	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,1,2,2-Tetrachloroethane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
1,1-Dichloroethane		0.27	26	240	480	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA NA*	NA*	NA NA*	NA*
1,1-Dichloroethene		0.33	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,2,4-Trichlorobenzene		0.00				ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,2-Dibromo-3-chloropropane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,2-Dibromoethane (EDB)						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,2-Dichlorobenzene		1.1	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,2-Dichloroethane		0.02	3.1	30	60	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,2-Dichloropropane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,3-Dichlorobenzene		2.4	49	280	560	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
1,4-Dichlorobenzene		1.8	13	130	250	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
2-Butanone (MEK)		0.12	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	0.0301	0.0093	0.212 J	ND	NA*	NA*	NA*	NA*	NA*
2-Hexanone						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
4-Methyl-2-pentanone (MIBK) Acetone		0.05	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND 0.0175	ND ND	NA* NA*	ND 0 169	ND 0.032	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Benzene		0.05	4.8	500 44	1000	ND	ND	ND	ND	0.0175 ND	ND	NA*	ND	0.032 ND	0.476	ND	NA*	NA NA*	NA*	NA NA*	NA*
Bromodichloromethane		0.00	4.0	44	09	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Bromoform						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Bromomethane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Carbon disulfide						ND	ND	ND	ND	ND	ND	NA*	ND	0.0018 J	0.178 J	ND	NA*	NA*	NA*	NA*	NA*
Carbon tetrachloride		0.76	2.4	22	44	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Chlorobenzene		1.1	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Chloroethane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Chloroform		0.37	49	350	700	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Chloromethane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Cyclohexane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Dibromochloromethane Dichlorodifluoromethane						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
Ethylbenzene		1	Л1	300	780	ND ND	ND ND	ND	ND	ND	ND	NA*	ND	ND	0.407	ND	NA*	NA*	NA*	NA*	NA*
Isopropylbenzene (Cumene)		1	41	390	100	ND	0.129 J	ND	ND	ND	ND	NA*	0.0014 J	ND	0.407	ND	NA*	NA*	NA*	NA*	NA*
Methyl acetate						ND	0.123 0	ND	ND	ND	ND	NA*	ND	ND	1.01	ND	NA*	NA*	NA*	NA*	NA*
Methyl-tert-butyl ether		0.12	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Methylcyclohexane						ND	ND	ND	ND	ND	ND	NA*	ND	ND	0.228	ND	NA*	NA*	NA*	NA*	NA*
Methylene Chloride		0.05	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Styrene						ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Tetrachloroethene		1.3	19	150	300	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Toluene		0.7	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	0.258	ND	NA*	NA*	NA*	NA*	NA*
Trichloroethene		0.47	21	200	400	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Trichlorofluoromethane						ND	ND	ND	ND	0.0022 J	ND	NA*	0.0019 J	0.0014 J	ND	0.0026 J	NA*	NA*	NA*	NA*	NA*
Vinyl chloride		0.02	0.9	13	27	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
Xylene (Total) (2)		0.26	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	1.42	ND	NA*	NA*	NA*	NA*	NA*
cis-1,2-Dichloroethene		0.25	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
cis-1,3-Dichloropropene trans-1,2-Dichloroethene		0 10	100	500	1000	ND ND	ND	ND ND	ND ND	ND ND	ND	NA*	ND ND	ND	ND ND	ND	NA*	NA*	NA*	NA*	NA*
trans-1,3-Dichloropropene		0.19	100	500	1000	ND	ND	ND	ND	ND	ND	NA*	ND	ND	ND	ND	NA*	NA*	NA*	NA*	NA*
				1						ND	ND	11/3					11/3	13/73	11/1	11/1	11/1

Image: Sector																						
Image: Second						Sample ID	SB-28 BO	SB-28 C	SB-29 BO	SB-29 BO DUP	SB-29 C	SB-3 BO	SB-36 BO	SB-36C	SB-3C	SB-3D	SB2 BO	SB2A	SB2C	SB33-C	SB33-D	SB4A
		D t. 700	6 NYCRR-				7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	7/28/2017	//2//2017	7/27/2017	7/28/2017
Description		Groundwater A	. ,	375.6.8(b)	375.6.8(b)	375.6.8(b)																
	Contaminants	Standard (3)		Residential	Commercial	Industrial																
Charactering Control Contro Control Control							ND	ND	ND	ND	ND	ND	ΝΔ*	ND	ND	ΝΔ*	ND	ΝΔ*	ΝΔ*	ΝΔ*	ΝΔ*	ΝΔ*
CALCENCY CALC CO CO CO CO <t< td=""><td>2,2'-Oxybis(1-chloropropane)</td><td></td><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td></td><td></td><td></td><td>ND</td><td>ND</td><td></td><td></td><td></td><td>NA*</td><td>NA*</td><td></td><td>NA*</td></t<>	2,2'-Oxybis(1-chloropropane)						ND		ND					ND	ND				NA*	NA*		NA*
Sch Abor	2,4,5-Trichlorophenol																					
	_, .,•						=															
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,4-Dimethylphenol																					
Sector Sector<	2,4-Dinitrophenol																					
Second prime Second prim Second prime Second prime </td <td>· ·</td> <td></td>	· ·																					
	2-Chloronaphthalene																					
	2-Chlorophenol	T																				
Number Number<	2-Methylnaphthalene 2-Methylphenol(o-Cresol)	+ +	0.33	100	500	1000																
	2-Nitroaniline				500		ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	NA*	NA*	NA*
Shore is a section of a sectin of a section of a section of a section of a section of		,	0.00	400	500	1000																
Number		/	0.33	100	500	1000																
Somethy into and any and any and any and any and any and any	3-Nitroaniline						ND	ND	ND	ND	ND	ND	NA*	ND	ND	NA*	ND	NA*	NA*	NA*	NA*	NA*
Characteristic Characteristic Control Contro Control Control <td>4,6-Dinitro-2-methylphenol</td> <td>T</td> <td></td>	4,6-Dinitro-2-methylphenol	T																				
Sheepen in the set of		+ +																				
Minimi Minimi<	4-Chloroaniline																					
Integrate <td>4-Chlorophenylphenyl ether</td> <td></td>	4-Chlorophenylphenyl ether																					
consistenceconsisten																						
cardphone Image No No <td>Acenaphthene</td> <td></td> <td>20</td> <td>100</td> <td>500</td> <td>1000</td> <td></td>	Acenaphthene		20	100	500	1000																
crinkation<	Acenaphthylene		100	100	500	1000																
memo			100	100	500	1000																
ampaintmap apprintmap apprintmap apprintmap 	Atrazine		100	100	500	1000		=														
marking/mem mark	Benzaldehyde																					
mach mach <th< td=""><td></td><td></td><td>1</td><td>1</td><td>5.6</td><td>11</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			1	1	5.6	11						-										
analy length10101000.09880.09880.09880.09880.0088N0NVN0N0NVN0NVN0NV	Benzo(b)fluoranthene		1	1	5.6	11																
plandplandplandplandmod </td <td>Benzo(g,h,i)perylene</td> <td></td> <td>100</td> <td>100</td> <td>500</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td>	Benzo(g,h,i)perylene		100	100	500				-			-										
uppercentime image			0.8	3.9	56	110						-										
and a condentcondentcondentND <td>Butylbenzylphthalate</td> <td></td>	Butylbenzylphthalate																					
invesse Invesse <t< td=""><td>Caprolactam</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Caprolactam											-										
u-backgroup Index Index ND			1	3.0	56	110																
in-oct:phthaline Image: Phthaline Image: Phthaline Image: Phthaline Image: Phthaline	Di-n-butylphthalate	1 1	1	5.9	50	110	-															
bible 1 9 350 100 ND	Di-n-octylphthalate																					
iertylphthalte (methylphthalte) (methylphthalte) (methylphthalte) (mothylphthalte) (Dibenz(a,h)anthracene	+ +	0.33	0.33	0.56	1.1																
nimelyinghinghalate less less ND ND ND ND ND NA* ND NA*	Diethylphthalate		· · · · · · · · · · · · · · · · · · ·			1000																
Image 100 500 ND ND ND ND ND ND NA* ND NA* ND NA* ND NA*	Dimethylphthalate					1055																
learchinop-13-butadiene Image: Mode of the standard constraints of the standard constraint of th	Fluoranthene Fluorene	+ +	100	100	500																	
lexachlorogrighteding image image ND ND ND ND ND ND NA* ND NA*	Hexachloro-1,3-butadiene				500	1000																
lexachinore/hrane mode mo	Hexachlorobenzene		0.33	1.2	6	12																
den(1,2,3-od)prene 0.5 0.5 5.6 11 ND ND <t< td=""><td>Hexachlorocyclopentadiene Hexachloroethane</td><td>+ +</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Hexachlorocyclopentadiene Hexachloroethane	+ +																				
Nitroso-din-propylamineImage: second sec	Indeno(1,2,3-cd)pyrene		0.5	0.5	5.6	11	ND	ND	0.104		ND	0.841	NA*	ND	ND	NA*	ND	NA*	NA*	NA*	NA*	NA*
-NitosodiplenylamineImageImageND </td <td>Isophorone</td> <td></td>	Isophorone																					
Appthale 12 100 500 1000 ND ND 0.187 ND ND 1.15 NA* ND ND NA* NA* <th< td=""><td></td><td>+ +</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		+ +																				
IntrodenzameIntrodenzameIntrodenzameND <t< td=""><td>Naphthalene</td><td></td><td>12</td><td>100</td><td>500</td><td>1000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Naphthalene		12	100	500	1000																
henanthrene 100 100 500 1000 0.146 ND 0.203 0.121 ND 2.08 NA* ND NA* NA* <td>Nitrobenzene</td> <td></td>	Nitrobenzene																					
henol 0.3 100 500 1000 ND ND ND ND NA* ND NA*	Pentachlorophenol Phenanthrene	+ +	0.8	011	011	55																
yrene 100 100 500 1000 0.159 ND 0.117 0.212 ND 2.27 NA* ND ND ND NA* ND NA*	Phenol	1 1	0.33	100																		
is(2-Chloroethyl) ether Image: Mathematical stress of the stres of t	Pyrene		100	100	500	1000																
is(2-Ethylhexyl)phthalate 1 0 1 0 1 ND ND ND ND ND ND ND NA* ND NA* ND NA*	bis(2-Chloroethoxy)methane	+ +																				
PH	bis(2-Ethylhexyl)phthalate	1																				
otal Petroleum Hydrocarbons 128 179 213 321 475 247 NA* 206 383 6870 315 NA* NA* NA* NA* NA* NA* NA*	ТРН	• • • • • •			·	·	·	·	·						·	·	·	·	·		·	
	Total Petroleum Hydrocarbons						128	179	213	321	475	247	NA*	206	383	6870	315	NA*	NA*	NA*	NA*	NA*

Notes:

(1) Standards based on Chromium, hexavalent.

(4) All results in ppm (2) Standards based on Xylene (mixed). (3) Groundwater standards only provided for those metals for which SPLP analyses were completed. (6) 'NA*' = Not Analyzed (7) Results exceeding Groundwater A Standard's are RED
(8) Results exceeding unrestricted use SCOs are ORANGE
(9) Results exceeding residential SCOs are RED

(10) Results exceeding commercial SCOs are BLUE(11) Results exceeding industrial SCOs are GREEN

					Somalo ID	SB 14 CO	SB 15 B02	SB 15 CO	SB 18 CO	SB 19 BO2	SB 19 CO	SB 20 A0	SB 20 C0	SB 20B02
					Sample ID									
					Depth	25'-30'	2"-2'	25'-30'	25'-30'	2"-2'	25'-30'	0-2"	25'-30'	2"-2'
					Sample Date	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
Metals								I	I			I		
Aluminum						5660	NA*	7130	6920	NA*	NA*	NA*	NA*	NA*
Antimony						ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*
Arsenic		13	16	16	16	3.4	NA*	4.2	3.3	NA*	NA*	NA*	NA*	NA*
Barium		350	400	400	10000	19.7	NA*	37.4	35	NA*	NA*	NA*	NA*	NA*
Beryllium		7.2	72	590	2700	0.11 J	NA*	0.13 J	0.10 J	NA*	NA*	NA*	NA*	NA*
Cadmium		2.5	4.3	9.3	60	0.037 J	NA*	0.11 J	0.071 J	NA*	NA*	NA*	NA*	NA*
Calcium Chramium (1)			440	440	000	1180	NA*	4540	2020	NA*	NA*	NA*	NA*	NA*
Chromium (1)		1	110	140	800	2.4	NA*	4.3	3.7	NA*	NA*	NA*	NA*	NA*
Cobalt		50	070	070	10000	5	NA*	7.2	6.1	NA*	NA* NA*	NA*	NA*	NA*
Copper		50	270	270	10000	8.5 13900	NA* NA*	9.8 17900	11.7 19300	NA* NA*	NA*	NA* NA*	NA* NA*	NA* NA*
Iron Lead		63	400	1000	3900	4.8	NA*	5.9	19300	NA*	NA*	NA*	NA*	NA* NA*
Magnesium		03	400	1000	3900	3060	NA*	4320	3580	NA*	NA*	NA*	NA*	NA*
Magnesium		1600	2000	10000	10000	137	NA*	178	204	NA*	NA*	NA*	NA*	NA*
Nickel		30	310	310	10000	11.1	NA*	15.1	13.9	NA*	NA*	NA*	NA*	NA*
Potassium		00	010	010	10000	696	NA*	922	848	NA*	NA*	NA*	NA*	NA*
Selenium		3.9	180	1500	6800	ND	NA*	0.44 J	0.58 J	NA*	NA*	NA*	NA*	NA*
Silver		2	180	1500	6800	0.95	NA*	1.2	1.4	NA*	NA*	NA*	NA*	NA*
Sodium						ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*
Thallium						ND	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*
Vanadium						8.6	NA*	14.8	12.1	NA*	NA*	NA*	NA*	NA*
Zinc		109	10000	10000	10000	35.4	NA*	46.7	48.2	NA*	NA*	NA*	NA*	NA*
Mercury		0.18	0.81	2.8	5.7	0.017 J	NA*	ND	0.021 J	NA*	NA*	NA*	NA*	NA*
Metals, SPLP							•							
Arsenic	0.025					ND	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1					0.038 J	0.075 J	0.046 J	0.054 J	0.077 J	0.038 J	0.025 J	0.0074 J	0.016 J
Cadmium	0.005					ND	0.00018 J	ND	ND	0.000063 J	ND	0.00012 J	ND	ND
Chromium	0.05					0.0051 J	0.01	0.0021 J	0.0034 J	0.0069 J	0.0029 J	0.0062 J	0.0021 J	0.0038 J
Lead	0.025					0.0030 J	0.057	0.0020 J	0.0032 J	0.041	0.01	0.083	0.0075	0.058
Selenium	0.01					ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	0.05					ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	0.0007					ND	0.00029	ND	ND	0.00043	ND	0.00095	ND	0.0024
Pesticides														
4,4'-DDD		0.0033	13	92	180	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
4,4'-DDE		0.0033	8.9	62	120	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
4,4'-DDT		0.0033	7.9	47	94	NA*	ND	ND	NA*	0.0084	ND	ND	ND	ND
Aldrin		0.005	0.097	0.68	1.4	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Dieldrin		0.005	0.2	1.4	2.8	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Endosulfan I		2.4	24	200	920	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Endosulfan II		2.4	24	200	920	NA*	ND	ND	NA*	ND	ND	ND	ND	0.0068
Endosulfan sulfate		2.4	24	200	920	NA*	ND	ND	NA*	ND	ND	ND	ND	0.0107
Endrin Endrin		0.014	11	89	410	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Endrin aldehyde						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Endrin ketone						NA*	ND	ND	NA*	ND	ND	ND	ND	0.0246
Heptachlor		0.042	2.1	15	29	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Heptachlor epoxide						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Methoxychlor						NA*	ND	ND	NA*	ND	ND	ND	ND	ND

1 L					Sample ID	SB 14 CO	SB 15 B02	SB 15 CO	SB 18 CO	SB 19 BO2	SB 19 CO	SB 20 A0	SB 20 C0	SB 20B02
í L					Depth	25'-30'	2"-2'	25'-30'	25'-30'	2"-2'	25'-30'	0-2"	25'-30'	2"-2'
					Sample Date	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
Toxaphene						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
alpha-BHC		0.02	0.48	3.4	6.8	NA*	ND	ND	NA*	ND	ND	ND	ND	0.0069
alpha-Chlordane		0.094	4.2	24	47	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
beta-BHC		0.036	0.36	3	14	NA*	ND	ND	NA*	ND	ND	ND	ND	0.008
delta-BHC		0.04	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
gamma-BHC (Lindane)		0.1	1.3	9.2	23	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
gamma-Chlordane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
PCBs											-			
PCB-1016 (Aroclor 1016)		0.1	1	1	25	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
PCB-1221 (Aroclor 1221)		0.1	1	1	25	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
PCB-1232 (Aroclor 1232)		0.1	1	1	25	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
PCB-1242 (Aroclor 1242)		0.1	1	1	25	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
PCB-1248 (Aroclor 1248)		0.1	1	1	25	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
PCB-1254 (Aroclor 1254)		0.1	1	1	25	NA*	ND ND	ND	NA*	ND	ND	ND	ND	ND
PCB-1260 (Aroclor 1260)		0.1	1	1	25	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
VOCs		0.00	100	500	1000	NIA 4	ND		N14*					
1,1,1-Trichloroethane		0.68	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane						NA* NA*	ND ND	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane		0.27	26	240	480	<u> </u>	ND	ND	NA*	ND	ND	ND	ND	ND
1,1-Dichloroethene		0.27	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene		0.00	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	, 					NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,2-Dichlorobenzene		1.1	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,2-Dichloroethane		0.02	3.1	30	60	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,2-Dichloropropane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,3-Dichlorobenzene		2.4	49	280	560	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
1,4-Dichlorobenzene		1.8	13	130	250	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
2-Butanone (MEK)		0.12	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	0.0111	ND
2-Hexanone						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
4-Methyl-2-pentanone (MIBK))					NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Acetone		0.05	100	500	1000	NA*	ND	ND	NA*	ND	0.0217	ND	ND	0.0112
Benzene		0.06	4.8	44	89	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Bromodichloromethane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Bromoform						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Bromomethane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Carbon disulfide		0.70				NA*	ND	0.0076	NA*	ND	ND	ND	0.0111	ND
Carbon tetrachloride		0.76	2.4	22	44	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Chlorobenzene		1.1	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND ND
Chloroethane Chloroform		0.37	49	350	700	NA* NA*	ND ND	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND
Chloromethane		0.37	49	350	700	NA*	ND ND	ND ND	NA*	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorometnane Cyclohexane						NA*	ND ND	ND ND	NA*	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane						NA NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Dichlorodifluoromethane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Ethylbenzene		1	41	390	780	NA*	ND	ND	NA*	ND	ND	ND	ND	ND

					Sample ID	SB 14 CO	SB 15 B02	SB 15 CO	SB 18 CO	SB 19 BO2	SB 19 CO	SB 20 A0	SB 20 C0	SB 20B02
					Depth	25'-30'	2"-2'	25'-30'	25'-30'	2"-2'	25'-30'	0-2"	25'-30'	2"-2'
					Sample Date	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
Isopropylbenzene (Cumene)						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Methyl acetate						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Methyl-tert-butyl ether		0.12	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Methylcyclohexane						NA*	ND	0.0105	NA*	ND	ND	ND	ND	ND
Methylene Chloride		0.05	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Styrene						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Tetrachloroethene		1.3	19	150	300	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Toluene		0.7	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Trichloroethene		0.47	21	200	400	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Trichlorofluoromethane						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Vinyl chloride		0.02	0.9	13	27	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
Xylene (Total) (2)		0.26	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene		0.25	100	500	1000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene		0.40	100	500	4000	NA*	ND	ND	NA*	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene		0.19	100	500	1000	NA*	ND	ND	NA*	ND	ND ND	ND	ND	ND
trans-1,3-Dichloropropene						NA*	ND	ND	NA*	ND	ND	ND	ND	ND
SVOCs						N 1 A 4			N14		N1 4 4			N.4.4
1,2,4-Trichlorobenzene	\					NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2,2'-Oxybis(1-chloropropane) I					NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2,4,5-Trichlorophenol						NA*	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*	NA* NA*
2,4,6-Trichlorophenol 2,4-Dichlorophenol						NA* NA*	ND ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2,4-Dimethylphenol						NA*	ND	ND	NA*	NA*	NA*	NA NA*	NA*	NA*
2,4-Dinitrophenol						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2,4-Dinitrotoluene						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2,6-Dinitrotoluene						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Chloronaphthalene						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Chlorophenol						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Methylnaphthalene						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Methylphenol(o-Cresol)		0.33	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Nitroaniline						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
2-Nitrophenol						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
3&4-Methylphenol(m&p Cres	sol)	0.33	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
3,3'-Dichlorobenzidine						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
3-Nitroaniline						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4,6-Dinitro-2-methylphenol						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Bromophenylphenyl ether						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Chloro-3-methylphenol						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Chloroaniline						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Chlorophenylphenyl ether						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Nitroaniline						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
4-Nitrophenol						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Acenaphthene		20	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Acenaphthylene		100	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Acetophenone						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Anthracene		100	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Atrazine						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Benzaldehyde						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*

					Sample ID	SB 14 CO	SB 15 B02	SB 15 CO	SB 18 CO	SB 19 BO2	SB 19 CO	SB 20 A0	SB 20 C0	SB 20B02
					Depth	25'-30'	2"-2'	25'-30'	25'-30'	2"-2'	25'-30'	0-2"	25'-30'	2"-2'
					Sample Date	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017	7/31/2017
	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
Contaminants			rtooldontidi		induction									
Benzo(a)anthracene		1	1	5.6	11	NA*	0.106	ND	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(a)pyrene		1	1	1	1.1	NA*	0.0957	ND	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(b)fluoranthene		1	1	5.6	11	NA*	0.132	ND	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(g,h,i)perylene		100	100	500	1000	NA*	0.131	ND	NA*	NA*	NA*	NA*	NA*	NA*
Benzo(k)fluoranthene		0.8	3.9	56	110	NA*	0.055 J	ND	NA*	NA*	NA*	NA*	NA*	NA*
Biphenyl (Diphenyl)						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Butylbenzylphthalate						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Caprolactam						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Carbazole						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Chrysene		1	3.9	56	110	NA*	0.133	ND	NA*	NA*	NA*	NA*	NA*	NA*
Di-n-butylphthalate						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Di-n-octylphthalate						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Dibenz(a,h)anthracene		0.33	0.33	0.56	1.1	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Dibenzofuran		7	59	350	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Diethylphthalate						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Dimethylphthalate						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Fluoranthene		100	100	500	1000	NA*	0.246	ND	NA*	NA*	NA*	NA*	NA*	NA*
Fluorene		30	100	500	1000	NA*	0.0928	ND	NA*	NA*	NA*	NA*	NA*	NA*
Hexachloro-1,3-butadiene						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Hexachlorobenzene		0.33	1.2	6	12	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Hexachlorocyclopentadiene				-		NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Hexachloroethane						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Indeno(1,2,3-cd)pyrene		0.5	0.5	5.6	11	NA*	0.106	ND	NA*	NA*	NA*	NA*	NA*	NA*
Isophorone						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
N-Nitroso-di-n-propylamine						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
N-Nitrosodiphenylamine						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Naphthalene		12	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Nitrobenzene		12	100	500		NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Pentachlorophenol		0.8	6.7	6.7	55	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Phenanthrene		100	100	500	1000	NA*	0.257	ND	NA*	NA*	NA*	NA*	NA*	NA*
Phenol		0.33	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
Pyrene		100	100	500	1000	NA*	0.31	ND	NA*	NA*	NA*	NA*	NA*	NA*
bis(2-Chloroethoxy)methane	I	100	100	500	1000	NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
bis(2-Chloroethyl) ether						NA*	ND	ND	NA*	NA*	NA*	NA*	NA*	NA*
bis(2-Ethylhexyl)phthalate						NA*	ND	0.547	NA*	NA*	NA*	NA*	NA*	NA*
TPH						11/4		0.047	11/7		11/4	11/4	IN/A	11/71
	20	1	I	1		N14*	170	647	N1 ^ *	246	075	244		015
Total Petroleum Hydrocarbo	ns					NA*	178	647	NA*	316	275	244	ND	815

Notes:

(1) Standards based on Chromium, hexavalent.

(2) Standards based on Xylene (mixed).

(3) Groundwater standards only provided for those metals for which SPLP analyses were completed.

(4) All results in ppm

(5) 'ND' = Not Detected

(6) 'NA*' = Not Analyzed

(7) Results exceeding Groundwater A Standard's are RED

(8) Results exceeding unrestricted use SCOs are ORANGE

(9) Results exceeding residential SCOs are RED

(10) Results exceeding commercial SCOs are BLUE

(11) Results exceeeding industrial SCOs are GREEN

					Sample ID	BS-1A	BS-1B	BS-2A	BS-2B	BS-3A	BS-3B	BS-4A	BS-4B	BS-4B DUP
					Description	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	6"-2'
					Sample Date	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
Metals														
Aluminum						7070	6580	9920	8260	9770	8610	10300	11200	10500
Antimony						5	0.23 J	3.2 J	ND	0.78 J	2.6 J	ND	ND	ND
Arsenic		13	16	16	16	12.3	15.9	18	22.6	10.8	11.8	10.5	14.1	11.6
Barium		350	400	400	10000	208	818	279	150	163	200	154	153	144
Beryllium		7.2	72	590	2700	0.47	0.55	0.43	0.45	0.38	0.34	0.44	0.72	0.42
Cadmium Calcium		2.5	4.3	9.3	60	0.8 7130	1.1 11200	2.2 12400	0.84	1.3 14000	1.2 23000	1 37800	1.1 8940	0.98 13900
Chromium (1)		1	110	140	800	11.8	12.6	12400	11	21.9	23000	9.6	10.8	9.5
Cobalt		· · · · · · · · · · · · · · · · · · ·	110	140	000	6.5	8.1	9.8	8.4	9.3	9.1	30.2	22.1	20
Copper		50	270	270	10000	166	139	101	57.7	73.7	382	47.3	63.3	55.6
Iron						14000	15000	41000	19800	31100	29700	33500	36200	34600
Lead		63	400	1000	3900	802	989	982	2300	514	24800	306	348	311
Magnesium						1260	1530	4500	3300	5080	3610	5020	4770	4540
Manganese		1600	2000	10000	10000	255	276	596	645	535	575	842	698	644
Nickel		30	310	310	10000	18.1	17.7	25.1	19.3	23.7	21.8	45.4	40.6	27.9
Potassium		3.9	180	1500	6800	1400 1.7	1360 3	1990 2.3	1830 2.4	2180 1.4	7010 1.3	1390 0.47 J	1360 0.85	1260 0.76
Selenium Silver		3.9	180	1500	6800	2.2	2.1	<u>2.3</u>	3.8	3.2	4.3	0.47 J 2.9	3.3	0.76 3.1
Sodium		۷	100	1500	0000	ND	ND	ND	ND	ND	4.5 192 J	ND	ND	ND
Thallium						ND	ND	0.24 J	0.62	ND	ND	0.30 J	0.31 J	0.23 J
Vanadium						31.2	29.3	24.5	23.3	23.1	25.6	16.5	18.9	17.3
Zinc		109	10000	10000	10000	327	442	635	314	352	427	248	250	216
Mercury		0.18	0.81	2.8	5.7	1.9	1.4	ND	2.8	1.5	1.7	1.8	1.5	1.3
Metals, SPLP							-						-	
Arsenic	0.025					0.0073 J	ND	ND	ND	ND	ND	ND	ND	ND
Barium	1					0.075 J	0.068 J	0.072 J	0.092 J	0.13 J	0.13 J	0.085 J	0.087 J	0.098 J
Cadmium	0.005					ND	0.00011 J	0.000080 J	ND	ND	0.000060 J	ND	0.000066 J	ND
Chromium Lead	0.05					0.0036 J 0.14	0.0075 J 0.044	0.0035 J 0.047	0.0053 J 0.11	0.0088 J 0.079	0.0098 J 0.11	0.0034 J 0.038	0.0045 J 0.024	0.0064 J 0.035
Selenium	0.023					ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	0.01					ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	0.0007					0.00024	ND	0.00044	0.00023	ND	0.00044	ND	ND	0.00024
Pesticides														
4,4'-DDD		0.0033	13	92	180	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE		0.0033	8.9	62	120	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT		0.0033	7.9	47	94	ND	ND	ND	ND	ND	ND	ND	ND	0.011
Aldrin		0.005	0.097	0.68	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin Frada sulfan I	-	0.005	0.2	1.4	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I Endosulfan II		2.4	24	200 200	920	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endosulfan II Endosulfan sulfate	+	2.4	24 24	200	920 920	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Endrin		0.014	24 11	89	<u>920</u> 410	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin aldehyde		0.014			-10	0.0086	ND	ND	ND	ND	ND	ND	ND	ND
Endrin ketone						ND	ND	0.008	0.0078	ND	0.0061	ND	ND	0.0113
Heptachlor		0.042	2.1	15	29	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide						ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor						ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene						ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-BHC		0.02	0.48	3.4	6.8	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-Chlordane		0.094	4.2	24	47	ND	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC delta-BHC		0.036	0.36	3	14	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND
gamma-BHC (Lindane)	+	0.04	100 1.3	500 9.2	1000 23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND
gamma-BHC (Lindane)	+	0.1	1.3	9.2	23	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
yanıma-oniordane						NU	טא				IND	שא		

					Sample ID	BS-1A	BS-1B	BS-2A	BS-2B	BS-3A	BS-3B	BS-4A	BS-4B	BS-4B DUP
					Description	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	6"-2'
					Sample Date	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
PCBs														
PCB-1016 (Aroclor 1016)		0.1	1	1	25	ND								
PCB-1221 (Aroclor 1221)		0.1	1	1	25	ND								
PCB-1232 (Aroclor 1232)		0.1	1	1	25	ND								
PCB-1242 (Aroclor 1242)		0.1	1	1	25	ND								
PCB-1248 (Aroclor 1248)		0.1	1	1	25	ND								
PCB-1254 (Aroclor 1254)		0.1	1	1	25	ND								
PCB-1260 (Aroclor 1260)		0.1	1	1	25	ND								
VOCs														
1,1,1-Trichloroethane		0.68	100	500	1000	ND								
1,1,2,2-Tetrachloroethane						ND								
1,1,2-Trichloroethane						ND								
1,1,2-Trichlorotrifluoroethane						ND								
1,1-Dichloroethane		0.27	26	240	480	ND								
1,1-Dichloroethene		0.33	100	500	1000	ND								
1,2,4-Trichlorobenzene						ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)						ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND
1,2-Dichlorobenzene		1.1	100	500	1000	ND ND	ND							
1,2-Dichloroethane		0.02	3.1	30	60	ND								
1,2-Dichloropropane		0.02	0.1	00	00	ND								
1,3-Dichlorobenzene		2.4	49	280	560	ND								
1,4-Dichlorobenzene		1.8	13	130	250	ND								
2-Butanone (MEK)		0.12	100	500	1000	ND								
2-Hexanone						ND								
4-Methyl-2-pentanone (MIBK)						ND								
Acetone		0.05	100	500	1000	ND								
Benzene		0.06	4.8	44	89	ND								
Bromodichloromethane						ND	ND ND	ND						
Bromoform Bromomethane						ND ND	ND	ND ND						
Carbon disulfide						ND ND	ND							
Carbon tetrachloride		0.76	2.4	22	44	ND								
Chlorobenzene		1.1	100	500	1000	ND								
Chloroethane						ND								
Chloroform		0.37	49	350	700	ND								
Chloromethane						ND								
Cyclohexane						ND								
Dibromochloromethane						ND								
Dichlorodifluoromethane						ND								
Ethylbenzene		1	41	390	780	ND								
Isopropylbenzene (Cumene) Methyl acetate		<u> </u>				ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Methyl-tert-butyl ether		0.12	100	500	1000	ND ND								
Methylcyclohexane		0.12	100	500	1000	ND ND	ND							
Methylene Chloride		0.05	100	500	1000	0.0031 J	0.003 J	0.0022 J	ND	0.0026 J	0.0021 J	0.0018 J	ND	0.0014 J
Styrene		0.00	100	000	1000	ND								
Tetrachloroethene		1.3	19	150	300	ND								
Toluene		0.7	100	500	1000	ND								
Trichloroethene		0.47	21	200	400	ND								
Trichlorofluoromethane						ND								
Vinyl chloride		0.02	0.9	13	27	ND								
Xylene (Total) (2)		0.26	100	500	1000	ND								
cis-1,2-Dichloroethene		0.25	100	500	1000	ND								
cis-1,3-Dichloropropen€		0.40	400	500	4000	ND								
trans-1,2-Dichloroethene		0.19	100	500	1000	ND								
trans-1,3-Dichloropropene	I					ND								

International system Internati						Sample ID	BS-1A	BS-1B	BS-2A	BS-2B	BS-3A	BS-3B	BS-4A	BS-4B	BS-4B DUP
Instrum Function Statuce						•									
Draw Barton (1) 197/200 (1)						•		8/3/2017	8/3/2017		8/3/2017	8/3/2017		8/3/2017	
Data Description Description <thdescription< th=""> <thde< td=""><td></td><td>Groundwater A 375.6</td><td>.8(b)</td><td>375.6.8(b)</td><td>375.6.8(b)</td><td>6 NYCRR- 375.6.8(b)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thde<></thdescription<>		Groundwater A 375.6	.8(b)	375.6.8(b)	375.6.8(b)	6 NYCRR- 375.6.8(b)									
12 Arbitroscore12 Arbitroscore12 ArbitroscoreND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Sizegram Sizegram Sizegram AlgoNoND<									× * ===					· · ·	
Add Delangementmathematical basemathematical base2450/1001/1001/1001/1001/1001/1001/1001/1															
34.1Add. forspannerMod															
24 Objecnsymbol No NO <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
X-AllengepronNo <td></td>															
24.0montage No	· · · · · · · · · · · · · · · · · · ·														
ZebmissionaneND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td> <td>ND</td>							ND	ND	ND	ND	ND	ND	ND	ND	ND
SchoosphradneNND <td>2,4-Dinitrotoluene</td> <td></td> <td>ND</td> <td></td> <td></td> <td>ND</td>	2,4-Dinitrotoluene											ND			ND
SchledgrightNND	1 -														
SabelympinaliseND<															
Skatesystems()Csear) NO ND ND <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td>															
SkilleningND			0 33	100	500	1000					=				
2 Main plane and the set of			0.00	100	500	1000									
384-Methylanoling Commi 2.3 100 500 NO ND ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Shiftmanime Image: Shiftmanime Image: Shiftmanime ND ND ND ND ND<	3&4-Methylphenol(m&p Cresol)		0.33	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND
4 Construction image	3,3'-Dichlorobenzidine						ND		ND	ND		ND	ND		ND
4-Bornophenylehnylehn Image: Market Mar	-														
4C-Disco-simbly period ND ND<	,- ,- ,-														
4C-Nbrowning- Achtogong/sphry/ether Image: Second Sec															
4.Chioopherycherycherycherycherycherycherycheryc															
4 Nicosinaré Image: construinté Image: construinté ND N	_														
4+Nieopheni Image															
Acenaphthyme (mod)															
Acetsopherone Image ND			20	100	500	1000	0.206	ND			ND			ND	
Anthracene (10) (10) (10) (100) (110) <			100	100	500	1000	0.492	0.117	0.0788	0.568	ND	0.107	ND	ND	ND
Artazine Image															
Benzalehyde Image: Constraint of the state			100	100	500	1000									
Benzoglaphthacene Image: style s															
Benzolphymen Image: second biographymen Image: second			1	1	5.6	11		-							
Benzolphuranthene Image: state of the state			1	1	5.0									-	
Benzed(ph)perviene 100 100 100 100 100 100 197 0.47 0.631 1.83 0.75 0.307 0.117 0.146 0.16 Benzed(ph)pervi) Image (Diphervi) Image (Diphervi) Image (Diphervi) ND ND <td></td> <td></td> <td>1</td> <td>1</td> <td>5.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00</td> <td></td> <td></td> <td>-</td> <td></td>			1	1	5.6						00			-	
Benzok/Huoranthene 0.8 3.9 56 110 3.67 0.879 1.14 3.08 0.133 0.78 0.118 0.21 0.239 Biphenyl (Diphenyl) ND	Benzo(g,h,i)perylene		100	100											
Butyberzylphthalate Image: Mark Mark Mark Mark Mark Mark Mark Mark	Benzo(k)fluoranthene		0.8	3.9			3.67	0.879	1.14	3.08	0.133	0.578	0.118	0.21	0.239
Caprolatam Image: Caprolatam ND															
Carbazole Image: Carbazole	Butylbenzylphthalate														
Chrysene 1 3.9 56 110 6.04 1.24 2.09 7.25 0.245 0.844 0.201 0.307 0.298 Din-butylphthalate ND															
Di-n-butylphthalate Image: Bold Stress of the				2.0	F 0	440									
Din-octyphthalate Image: Constraint of the c			1	3.9	dc	110									
Dibenz(a,h)anthracene 0.33 0.33 0.36 1.1 0.674 0.161 0.222 0.631 ND 0.0989 ND ND ND Dibenzofuran (1) 7 59 350 1000 0.447 ND 0.112 0.381 ND															
Dibenzofuran Image: Constraint of the constr			0.33	0.33	0.56	1.1									
Dimetry Image: Notice of the system Image: Notice of the system ND	Dibenzofuran		7			1000		ND	0.112		ND	ND		ND	ND
Fluorantene 100 100 500 1000 22.2 2.06 3.38 14.1 0.394 1.04 0.285 0.452 0.442 Fluorene 30 100 500 1000 0.98 0.0805 0.146 0.678 ND ND <td></td>															
Fluorene3010050010000.980.08050.1460.678NDNDNDNDNDNDHexachloro-1,3-butadiene000ND	Dimethylphthalate														
Hexachloro-1,3-butadieneImage: Second Se		ļ													
Hexachlorobenzene0.331.2612NDNDNDNDNDNDNDNDNDHexachlorocyclopentadieneND			30	100	500	1000									
HexachlorocyclopentadieneImage: Second S			0.00	4.0		40									
Hexachloroethane Image: Constraint of the co			0.33	1.2	6	12									
Indeno(1,2,3-cd)pyrene 0.5 0.5 5.6 11 2.34 0.497 0.699 2.02 0.152 0.307 0.0905 0.135 0.153 Isophorone Isophorone ND ND <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
Isophorone Isophorone ND			0.5	0.5	5.6	11									
N-Nitroso-di-n-propylamine ND			0.0	0.0	0.0										
							ND	ND			ND	ND		ND	ND
in-initiosouppenyramine ND	N-Nitrosodiphenylamine						ND	ND	ND	ND	ND	ND	ND	ND	ND

					Sample ID	BS-1A	BS-1B	BS-2A	BS-2B	BS-3A	BS-3B	BS-4A	BS-4B	BS-4B DUP
					Description	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	6"-2'
					Sample Date	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017	8/3/2017
Contaminants	Part 703 Groundwater A Standard (3)	6 NYCRR- 375.6.8(b) Unrestricted Use	6 NYCRR- 375.6.8(b) Residential	6 NYCRR- 375.6.8(b) Commercial	6 NYCRR- 375.6.8(b) Industrial									
Naphthalene		12	100	500	1000	ND								
Nitrobenzene						ND								
Pentachlorophenol		0.8	6.7	6.7	55	ND								
Phenanthrene		100	100	500	1000	19.2	1.19	2.02	9.01	0.181	0.543	0.182	0.354	0.282
Phenol		0.33	100	500	1000	ND								
Pyrene		100	100	500	1000	18	2.73	4.75	13.5	0.391	1.57	0.46	0.706	0.49
bis(2-Chloroethoxy)methane						ND								
bis(2-Chloroethyl) ether						ND								
bis(2-Ethylhexyl)phthalate						0.106	ND	ND	0.106	ND	ND	ND	ND	ND
TPH														
Total Petroleum Hydrocarbon:						167	211	189	ND	219	143	151	421	228

Notes:

(1) Standards based on Chromium, hexavalent.

(2) Standards based on Xylene (mixed).

(3) Groundwater standards only provided for those metals for which SPLP analyses were completed.

(4) All results in ppm

(5) 'ND' = Not Detected

(6) 'NA*' = Not Analyzed

(7) Results exceeding Groundwater A Standard's areRED

(8) Results exceeding unrestricted use SCOs areORANGE

(9) Results exceeding residential SCOs areRED

(10) Results exceeding commercial SCOs areBLUE

(11) Results exceeeding industrial SCOs areGREEN

Sample ID BS-5A BS-5A BS-6A BS-6B BS-7A BS-7B BS-8A BS-9B BS-9B SB19A SB19AO SB23AO Depth 0-6° 6°-2′ 0-6°	SB24AO SB3AO SB7AO SE-10 SE-6 SE-7 SE-8 SE-9 E	
	0-2" 0-2" 0-6" 0-6" 0-6" 0-6" 0-6	
Sample Date 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017 8/8/2017	8/8/2017 8/8/20017 8/8/2017 8/8/2017 8/8/2017 8/2017 8/2017 8/8/2017 8/8/20	
Part 703 Class C SGV 6 NYCRR-		
Groundwater A Standard (3) Groundwater A (10) Groundwater A (10) Groundwater A Unrestricted Use Groundwater A Residential Groundwater A Commercial Groundwater A Industrial		
Metals Aluminum 8510 8500 9230 11000 8560 9160 9280 8210 11200 13100 8410 NA* 17400	NA* 12300 9210 6610 9520 6690 7180 612) 7490
Antimony ND ND ND ND ND ND ND NA* 0.53 J Arsenic 33 13 16 16 16 9.2 9.3 9.1 14.6 7 7.1 7.5 6.8 12.3 10.7 14.7 NA* 9.3	NA* ND	ND
Barium 350 400 400 10000 178 139 190 290 78.3 85.2 107 97.3 143 168 297 NA* 189 Beryllium 7.2 72 590 2700 0.43 0.355 1.1 1.2 0.36 0.41 0.41 0.34 1 0.67 0.98 NA* 1.1	NA* 116 98.1 46.6 87 72 57.6 50.1 NA* 1.7 0.36 0.26 J 0.44 0.30 J 0.28 J 0.23	60.6
Cadmium 5 2.5 4.3 9.3 60 1.5 1.2 1.1 1.5 0.95 1.5 0.95 0.68 1.6 2.2 1.6 NA* 0.89 Calcium 24000 10700 8570 9590 19900 19700 17700 9150 27700 45200 9850 NA* 66900	NA* 0.35 0.57 0.45 0.66 0.61 0.49 0.43 NA* 55600 11300 16500 22200 15900 23100 1880	0.54
Chromium(1) 110 140 800 18.8 16.5 28.8 36.2 15.5 13.3 24.6 18.6 16.9 8.9 40.3 NA* 5.2 Cobalt <th>NA* 4.3 7.8 9.6 12 13 10.3 8.4 NA* 2.9 J 9 7.1 9.6 7.2 7.6 6.3</th> <th>10.2</th>	NA* 4.3 7.8 9.6 12 13 10.3 8.4 NA* 2.9 J 9 7.1 9.6 7.2 7.6 6.3	10.2
Copper 150 50 270 270 1000 71.9 79.2 143 180 32.7 51.8 38 39.4 60.6 58.6 393 NA* 26.5 Iron 20700 21200 21400 28200 18100 19200 19600 38100 17300 44400 NA* 18100	NA* 14.7 37.7 20.2 35.2 42.9 22.8 20.3 NA* 7390 19700 14700 20400 14900 15800 1390	
Lead 130 63 400 1000 3900 284 318 436 813 37 71 69.7 107 242 308 722 NA* 112 Magnesium 0 0 0 5510 4930 3410 4000 6050 5540 6050 3690 6070 5740 3140 NA* 6970	NA* 34.9 76.5 16.7 43.3 142 20.2 15 NA* 11200 5140 7090 6670 5300 7390 593	22.8 0 7460
Manganese 1600 2000 10000 551 564 455 560 531 549 673 496 780 1130 505 NA* 2150 Nickel 49 30 310 10000 21.8 21.4 61.4 57.5 20.1 35.4 21.9 18.1 30.1 13.6 125 NA* 10.7	NA* 803 463 331 685 350 395 350 NA* 7.5 23.4 15.4 21.7 16.4 16.7 13.0	17.2
Potassium General 1830 1380 1650 1980 1590 1670 1750 1340 1800 2050 1580 NA* 2320 Selenium 3.9 180 1500 6800 1.9 1.2 1.7 1.7 0.53 J 0.95 0.72 0.69 1.5 0.52 J 1.5 NA* 0.89	NA* 1130 1460 1030 1550 1150 1160 1011 NA* ND 0.45 J ND ND ND ND ND	ND
Silver 2.2 2 180 1500 6800 2.1 2.1 2.2 2.9 1.5 1.6 1.7 1.5 2.3 1.6 3.7 NA* 1.4 Sodium ND ND <t< th=""><th>NA* ND 1.9 1.3 1.8 1.3 1.4 1.2 NA* 1030 ND ND ND ND ND ND</th><th></th></t<>	NA* ND 1.9 1.3 1.8 1.3 1.4 1.2 NA* 1030 ND ND ND ND ND ND	
Thallium 0.56 J 0.65 J 0.60 J 0.57 J 0.50 J 0.87 J 0.46 J 0.55 J 0.49 J NA* 0.81 J Vanadium 18.8 18.3 19.5 28.6 17.3 17.6 19.2 17.6 25 24.6 20.1 NA* 23.3	NA* ND 0.31 J ND 0.89 0.32 J ND 0.44 NA* 10.3 19.7 14 20 14.9 15.9 13.3 NA* 0.0 0.4 400 14.9 15.9 13.3	16.2
Zinc 460 109 10000 10000 451 335 522 669 173 363 184 159 472 3200 800 NA* 209 Mercury 1 0.18 0.81 2.8 5.7 1 1.3 2.6 0.11 0.11 0.23 0.46 0.64 0.61 3 NA* 0.23	NA* 95.5 162 81 106 141 83 70.9 NA* 0.069 0.14 0.12 0.12 0.65 0.050 J 0.035	
Metals, SPLP Arsenic 0.025 ND ND <th>ND NA* ND NA* NA* NA* NA* NA</th> <th></th>	ND NA* ND NA* NA* NA* NA* NA	
Barium 1 0.086 J 0.10 J 0.094 J 0.089 J 0.10 J 0.095 J 0.11 J 0.078 J 0.072 J NA* 0.077 J NA* Cadmium 0.005 ND ND ND 0.000 J 0.00010 J 0.00027 J ND 0.00008 J ND NA* 0.0011 J NA*	0.078 J NA* 0.13 J NA* NA* NA* NA* NA* 0.000084 J NA* ND NA* NA* NA* NA* NA 0.000084 J NA* ND NA* NA* NA* NA* NA	NA*
Chromium 0.05 0.0303J 0.0034J 0.0036J 0.0031J 0.0037J 0.0052J 0.0073J 0.0033J 0.004J NA* 0.0080J NA* Lead 0.025 0.044 0.026 ND ND ND 0.011 0.001 0.0064J NA* 0.0080J NA* Selenium 0.011 ND ND ND ND ND ND ND ND ND NA ND NA*	0.0028 J NA* 0.0052 J NA* NA* NA* NA* NA 0.017 NA* ND NA* NA* NA* NA* NA ND NA* ND NA* NA* NA* NA* NA	NA*
Selenium 0.01 ND NA* ND NA* Silver 0.0007 0.0007 ND ND 0.00026 ND ND ND ND ND ND NA* 0.0007 NA*	ND NA* NA NA* NA* NA ND NA* ND NA* NA* NA* NA* ND NA* NA NA* NA* NA* NA* NA* ND NA* NA NA* NA* NA* NA	NA*
Pesticides 0.0033 13 92 180 ND ND ND ND ND ND ND NA 0.0007 NA	ND NA* 0.0041 ND ND <t< th=""><th></th></t<>	
4,4-DDE 0.0033 7.9 62 100 ND ND ND ND ND ND NA ND NA 4,4-DDE 0.0033 7.9 47 94 ND 0.0088 ND 0.016 0.0049 ND 0.0043 NA* ND NA*	ND INA 0.0041 ND ND ND ND ND NA* 0.0145 ND ND ND ND ND 0.0358 NA* 0.0123 ND ND ND ND ND	ND
Addrin 0.005 0.005 0.007 0.68 1.4 ND ND ND ND ND ND ND ND NA* ND NA* Dieldrin 780 0.005 0.2 1.4 2.8 ND	ND NA* ND	ND
Endosulfan I 20 2.4 24 200 920 ND ND ND ND ND ND ND NA* ND NA* Endosulfan I 20 2.4 24 200 920 ND ND ND ND ND ND ND NA* ND NA*	ND ND ND ND ND ND ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND	ND
Endocultarin sulfate 2.0 2.4 2.0 3.20 ND NA* ND NA* Endocultaria 2.20 0.014 11 89 410 ND ND ND ND ND ND ND NA* ND NA*	ND ND ND ND ND ND ND ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND	ND
Endimately/de Control	ND ND ND ND ND ND ND ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND	ND
Heptachlor 1000 0.042 2.1 15 29 0.0035 ND NA* ND NA* Heptachlor epoxide 2100 ND	ND NA* ND	ND
Methoxychlor O O ND NA* ND NA* Toxaphene 250 0 0 ND NA* ND NA*	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND
alpha-BHC 0.02 0.48 3.4 6.8 ND NA* ND NA* alpha-Chlordane 0.094 4.2 24 47 ND ND ND ND ND ND ND ND ND NA* ND NA*	ND ND ND ND ND ND ND NA* ND ND ND ND ND	
beta-BHC 0.036 0.36 3 14 ND 0.0026 0.0055 ND ND ND ND ND ND ND NA ND NA* delta-BHC 0.04 100 500 1000 ND ND ND ND ND ND ND NA* 0.0035 NA*	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND
gamma-BHC (Lindane) 78 0.1 1.3 9.2 23 0.003 ND NA* ND NA* gamma-Chlordane 38000 ND ND ND ND ND ND ND NA* ND NA*	ND NA* ND	
PCBs PCB-1016 (Aroclor 1016) (11) 1000 0.1 1 1 25 ND ND ND ND ND ND ND ND NA* ND NA*	ND NA* ND ND ND ND ND ND	
PCB-1221 (Aroclor 1221) (11) 1000 0.1 1 1 25 ND NA* ND NA* PCB-1232 (Aroclor 1232) (11) 1000 0.1 1 1 25 ND ND ND ND ND ND ND ND NA* ND NA*	ND ND ND ND ND ND ND NA* ND ND ND ND ND ND	
PCB-1242 (Arocior 1242) (11) 1000 0.1 1 1 25 ND ND ND 0.059 ND 0.0218 J ND ND NA* ND NA* PCB-1242 (Arocior 1242) (11) 1000 0.1 1 1 25 ND ND ND ND ND ND ND NA* ND NA*	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND	
PCB-1254 (Arocior 1254) (11) 1000 0.1 1 125 ND 0.0285 J 0.0364 J 0.0354 J 0.0248 J ND ND ND ND NA* ND NA* PCB-1254 (Arocior 1254) (11) 1000 0.1 1 125 ND ND ND ND ND ND NA* ND NA*	0.111 NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND	
VOCs 1,1,1-Trichloroethane (12) 3500 0.68 100 500 1000 ND ND ND ND ND ND ND NA* ND NA*	ND NA* ND ND ND ND ND ND ND	
1,1,2,2-Tetrachloroethane 5400 ND NA* ND NA* 1,1,2-Trichloroethane(12) 3500 ND ND ND ND ND ND ND ND NA ND NA*	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND
1,1,2-Trichlorotifluoroethane O V ND ND <t< th=""><th>ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND</th><th>ND</th></t<>	ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND	ND
1,1-Dichloroethene 4700 0.33 100 500 1000 ND ND <th< th=""><th>ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND</th><th>ND</th></th<>	ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND	ND
1,2-Dibrone-3-chloropropane C ND ND <th< th=""><th>ND NA* ND ND</th><th>ND</th></th<>	ND NA* ND	ND
1,2-Dichlorobenzene 2500 1.1 100 500 1000 ND ND <th< th=""><th>ND NA* ND ND</th><th>ND</th></th<>	ND NA* ND	ND
1.2-Dichloropropane ND NA* ND NA* 1.3-Dichlorobenzene 7100 2.4 49 280 560 ND NA* ND NA* 14-Dichlorobenzene 3300 18 13 130 250 ND ND ND ND ND ND NA* ND NA*	ND NA* ND	ND
1.4-Dichlorobenzene 3300 1.8 13 130 250 ND NA* ND NA* 2-Butanone (MEK) 0.12 100 500 1000 ND ND ND ND ND ND ND ND ND NA* ND NA* 2-Hexanone ND NA* ND NA*	ND NA* ND	ND
2-Hexanone MD ND	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND
Account 0.00 0.00 0.00 ND	ND ND<	ND
Bromoferm ND NA ND NA Bromoferm ND NA ND NA Bromofermane ND NA ND NA	ND ND<	ND
Order ND NA* Carbon tetrachloride 9600 0.76 2.4 22 44 ND ND ND ND ND ND ND ND ND NA* ND NA*	ND ND<	ND
Chloroberane 100 500 500 100 <t< th=""><th>ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND</th><th>ND</th></t<>	ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND
Chloroform 0.37 49 350 700 ND NA* ND NA* Chloromethane ND	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND ND
Cyclohexane Image: Cyclohexane ND ND <t< th=""><th>ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND</th><th>ND</th></t<>	ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND	ND
Dichlorodifiluoromethane Image: Constraint of the system Image: Constraint of the system ND ND<	ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND	ND
Isopropylbenzene (Cumene) 1800 ND ND ND ND ND ND ND ND NA* ND NA* Methyl acetate ND ND ND ND ND ND ND ND ND NA* ND NA*	ND NA* ND ND ND ND ND ND NA* ND ND ND ND ND ND	ND
Methyl-tert-butyl ether 0.12 100 500 1000 ND	ND NA* ND ND ND ND ND ND ND NA* ND ND ND ND ND ND ND	ND
Methylene Chloride 0.05 100 500 1000 0.0023 J 0.0019 J 0.0019 J 0.0023 J 0.0021 J 0.0021 J 0.0017 J 0.002 J 0.0016 J NA* 0.002 J NA* Styrene ND <	0.0022 J NA* 0.0015 J 0.0019 J 0.0018 J 0.0021 J 0.0018 J 0.002 ND NA* ND ND<	

					Sample ID	BS-5A	BS-5B	BS-6A	BS-6B	BS-7A	BS-7B	BS-8A	BS-8B	BS-9A	BS-9B	SB15A	SB19AO	SB23AO	SB24AO	SB33AO	SB7AO	SE-10	SE-6	SE-7	SE-8	SE-9 DUP	SE-9
					Depth	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	0-6"	6"-2'	0-2"	0-2"	0-2"	0-2"	0-2"	0-2"	0-6"	0-6"	0-6"	0-6"	0-6"	0-6"
					Sample Date		8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017	8/8/2017
	Part 703 Class C SGV 6 NYC		6 NYCRR-	6 NYCRR-	6 NYCRR-	0/0/2011	0.012011	0,0,2011	0002011	0.012011	0/0/2011	0/0/2011	0002011	0.012011	0/0/2011	0/0/2011	0/0/2011	0/0/2011	0/0/2011	0/0/2011	0/0/2011	0002011	01012011	0/0/2011	0/0/2011	0/0/2011	01012011
Contaminants	Groundwater A (10) 375.6. Standard (3) Unrestrict		375.6.8(b) Residential	375.6.8(b) Commercial	375.6.8(b) Industrial																						
Tetrachloroethene	57000	1.3	19	150	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	ND	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Toluene Trichloroethene	4500	0.7	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.4 J ND	NA* NA*	ND ND	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane	8000	0.47	21	200	400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	ND	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	5000	0.02	0.9	13	27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	ND	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Xylene (Total) (2) cis-1.2-Dichloroethene	5200	0.26	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	ND	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
rans-1,2-Dichloroethene rans-1,3-Dichloropropene	11000	0.19	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	ND ND	NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
SVOCs						ND	nb	ND	ND	ND	ND	ND	ND	ND	ND	100	ND	n A	ND ND		ND	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	55000					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
2,2'-Oxybis(1-chloropropane) 2,4,5-Trichlorophenol						ND ND	ND ND	ND 0.0812	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-Trichlorophenol						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4-Dimethylphenol 2,4-Dinitrophenol						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene						ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene 2-Chloronaphthalene	+ + +					ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Chlorophenol						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene 2-Methylphenol(o-Cresol)	+ + +	0,33	100	500	1000	ND ND	ND ND	0.0765 ND	0.1 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	0.604 ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2-Nitroaniline						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	<u> </u>	0.33	100	500	1000	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
3&4-Methylphenol(m&p Cresol) 3,3'-Dichlorobenzidine		0.33	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol 4-Bromophenylphenyl ether						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Chloro-3-methylphenol						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline 4-Chlorophenylphenyl ether						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
4-Nitroaniline						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol			400	500	4000	ND ND	ND	ND	ND 0.400	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Acenaphthene Acenaphthylene		100	100	500	1000	ND	ND ND	ND 0.0754	0.199 ND	ND ND	ND ND	ND ND	ND ND	ND 0.111	ND ND	NA* NA*	NA* NA*	NA* NA*	0.699 ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Acetophenone						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Anthracene Atrazine		100	100	500	1000	0.2 ND	0.13 ND	0.109 0.0803	0.666 ND	ND ND	ND ND	ND ND	ND ND	0.143 ND	0.0734 ND	NA* NA*	NA* NA*	NA* NA*	0.353 ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzaldehyde						0.223	0.0947	0.106	0.109	ND	ND	0.114	ND	0.177	ND	NA*	NA*	NA*	0.699	NA*	0.321	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene		1	1	5.6	11	0.89	0.419 0.476	0.235 0.25	2.51 2.35	0.123 0.135	0.12 0.14	0.111 0.104	0.14 0.13	0.535 0.607	0.336	NA* NA*	NA* NA*	NA* NA*	0.819 0.772	NA* NA*	0.346 0.417	0.192 0.187	ND ND	ND ND	ND ND	ND ND	ND ND
Benzo(a)pyrene Benzo(b)fluoranthene		1	1	5.6	11	0.743	0.701	0.25	3.17	0.199	0.229	0.153	0.176	1.22	0.685	NA*	NA*	NA*	3.99	NA*	0.763	0.187	0.0933 J	ND	ND	ND	ND
Benzo(g,h,i)perylene		100	100	500	1000	0.526	0.26	0.17	0.996	ND	0.0826	0.0908	0.0851	0.314	0.215	NA*	NA*	NA*	0.368	NA*	0.202	0.128	ND	ND	ND	ND	ND
Benzo(k)fluoranthene Biphenyl (Diphenyl)		8.0	3.9	56	110	0.626 ND	0.331 ND	0.227 ND	1.2 ND	0.128 ND	0.101 ND	0.0793 J ND	0.0817 ND	0.523 ND	0.289 ND	NA* NA*	NA* NA*	NA* NA*	0.527 ND	NA* NA*	0.312 ND	0.14 ND	0.0494 J ND	ND ND	ND ND	ND ND	ND ND
Butylbenzylphthalate						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Caprolactam						ND ND	ND ND	0.298 0.076	ND 0.131	ND ND	ND ND	0.22 ND	0.236 ND	0.406 ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND 0.199	NA* NA*	ND ND	0.256 ND	ND ND	ND ND	ND ND	0.154 ND	ND ND
Carbazole Chrysene		1	3.9	56	110	0.496	0.473	0.257	2.75	0.165	0.143	0.138	0.155	0.67	0.392	NA*	NA*	NA*	0.798	NA*	0.444	0.233	ND	ND	ND	ND	ND
Di-n-butylphthalate						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Di-n-octylphthalate Dibenz(a,h)anthracene		0.33	0.33	0.56	1.1	ND ND	ND 0.0821	0.0891 0.0881	ND 0.322	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND 0.404	NA* NA*	ND 0.079	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibenzofuran		7	59	350	1000	ND	ND	0.0754	0.136	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	0.912	NA*	ND	ND	ND	ND	ND	ND	ND
Diethylphthalate Dimethylphthalate				+		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Fluoranthene		100	100	500	1000	0.886	0.787	0.399	4.61	0.215	0.234	0.185	0.254	1.02	0.538	NA*	NA*	NA*	6.29	NA*	0.527	0.32	0.177	ND	ND	ND	ND
Fluorene Hexachloro-1.3-butadiene	12000	30	100	500	1000	ND ND	ND ND	0.0764 ND	0.231 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA*	0.145 ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Hexachloro-1,3-butadiene Hexachlorobenzene	12000	0.33	1.2	6	12	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	NA* NA*	NA*	NA^ NA*	ND ND	NA*	ND ND	ND ND	ND	ND	ND ND	ND ND	ND
Hexachlorocyclopentadiene	8100					ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane Indeno(1,2,3-cd)pyrene		0.5	0.5	5.6	11	ND 0.5	0.213	ND 0.171	ND 1.06	ND ND	ND ND	ND ND	ND 0.0835	0.271	0.207	NA* NA*	NA* NA*	NA* NA*	ND 0.318	NA* NA*	ND 0.206	ND 0.118	ND ND	ND ND	ND ND	ND ND	ND ND
Isophorone			2.0	2.0		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine						ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA* NA*	NA* NA*	NA* NA*	ND ND	NA* NA*	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Naphthalene		12	<u>1</u> 00	500	1000	ND	0.0864	0.0788	0.0965	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	0.756	NA*	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	10000			0		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol Phenanthrene	19000	100	6.7 100	6.7 500	1000	ND 0.864	ND 0.542	ND 0.272	ND 3.26	ND 0.106	ND 0.107	ND 0.102	ND 0.17	ND 0.639	ND 0.311	NA* NA*	NA* NA*	NA* NA*	ND 6.89	NA* NA*	ND 0.22	ND 0.164	ND 0.121	ND ND	ND ND	ND ND	ND ND
Phenol		0.33	100	500	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
Pyrene bis(2-Chloroethoxy)methane		100	100	500	1000	1.71 ND	1.01 ND	0.403 ND	5.25 ND	0.218 ND	0.251 ND	0.176 ND	0.239 ND	1.57 ND	0.613 ND	NA* NA*	NA* NA*	NA* NA*	4.88 ND	NA* NA*	1.02 ND	0.331 ND	0.172 ND	ND ND	ND ND	ND ND	ND ND
ois(2-Chloroethyl) ether						ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA*	NA*	NA*	ND	NA*	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate						ND	0.292	0.117	0.111	ND	0.0835	ND	ND	0.164	ND	NA*	NA*	NA*	ND	NA*	0.0922	ND	0.268	ND	ND	ND	ND
TPH Total Petroleum Hydrocarbons		1				4220	404	234	500	1/5	504	1/2	4350	003	461	NA*	ND	NA*	539	N^*	2850	1100	3390	852	ND	1500	053
TOC						4220	404	204	300	140	304	142	4300	990	401	INA		INA	009	INA	2000	1100	3390	002	שא	1090	900
otal Organic Carbon						NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	12500	29200	33200	16200	23300	24700

Notes:

 (1) Standards based on Chromium, hexavalent.

 (2) Standards based on Xylene (mixed).

 (3) Groundwater standards only provided for those metals for which SPLP analyses were completed.

 (4) All results in ppm

 (5) 'ND' = Not Detected

 (6) 'NA" = Not Analyzed

 (7) Results exceeding Groundwater A Standard's are RED

 (8) Results exceeding unrestricted use SCOs areORANGE

 (9) Results exceeding residential SCOs areRED

 (10) Results exceeding industrial SCOs areGREN

 (11) Results exceeding industrial SCOs areGREN

 (12) SGVs are from NYSDEC Screening and Assessment of Contaminated Sediment (June 2014).

 (13) PCB SGVs apply to total PCBs.

 (14) 1,1,1-Trichloroethane and 1,1,2-Trichloroethane SGVs apply to the sum of both isomers.

Table 14. Pore Water Analytical Results

Contaminants	Part 703 Groundwater A Standard	Part 703 Surface Water Class C Aquatic, Chronic Standard	WP-1
Total Metals			
Aluminum			525
Antimony	3		ND
Arsenic	25		ND
Barium	1000		140 J
Beryllium			ND
Cadmium	5		ND
Calcium Chromium	50		66100 2.6 J
Cobalt	50		2.0 J ND
Copper	200		2.6 J
Lead	25		3.5 J
Iron	300		3460
Magnesium			7280
Manganese	300		812
Nickel	100		ND
Potassium			2470 J
Selenium	10		ND
Silver	50		ND
Sodium	20000		22300
Thallium			ND
Vanadium Zinc			1.3 J
	0.7		7.8 J
Mercury Dissolved Metals	U. <i>1</i>	l	ND
		100	
Aluminum, Dissolved	3	100	ND
Antimony, Dissolved Arsenic, Dissolved		150	ND ND
Barium, Dissolved	25 1000	150	102 J
Beryllium, Dissolved	1000	1100	ND
Cadmium, Dissolved	5	3.5	ND
Calcium, Dissolved		0.0	65500
Chromium, Dissolved	50	11	ND
Cobalt, Dissolved		5	ND
Copper, Dissolved	200	15.7	ND
Iron, Dissolved	300		30.3 J
Lead, Dissolved	25	2.4	1.4 J
Magnesium, Dissolved			7130
Manganese, Dissolved	300		12.4
Nickel, Dissolved	100	90.8	ND
Potassium, Dissolved	10	1.0	1670 J
Selenium, Dissolved	<u> </u>	4.6	ND
Silver, Dissolved Sodium, Dissolved	20000	0.1	ND 22000
Thallium, Dissolved	20000	8	ND
Vanadium, Dissolved		14	ND
Zinc, Dissolved		144.5	ND
Mercury, Dissolved	0.7	0.77	ND
Pesticides			=
4,4'-DDD	0.3		ND
4,4'-DDE	0.2		ND
4,4'-DDT	0.2		ND
Aldrin	ND		ND
Dieldrin	0.004		ND
Endosulfan I		0.009	ND
Endosulfan II			ND
Endosulfan sulfate			ND
Endrin	ND	0.036	ND
Endrin aldehyde	5		ND
Endrin ketone	5		ND
Heptachlor	0.04		ND
Heptachlor epoxide	0.03	0.02	
Methoxychlor	35	0.03	
Toxaphene alpha-BHC	0.06	0.005	ND ND
alpha-Chlordane	0.01		ND ND
beta-BHC	0.04		ND
delta-BHC	0.04		ND
gamma-BHC (Lindane)	0.04	<u> </u>	ND

Couch White Green Island, NY

Prepared By: Envirospec Engineering, PLLC.

Table 14. Pore Water Analytical Results

Contaminants	Part 703 Groundwater A Standard	Part 703 Surface Water Class C Aquatic, Chronic Standard	WP-1
PCBs		0.00.100.10	
PCB-1016 (Aroclor 1016) (1)	0.09		ND
PCB-1221 (Aroclor 1221) (1)	0.09		ND
PCB-1232 (Aroclor 1232) (1)	0.09		ND
PCB-1242 (Aroclor 1242) (1)	0.09		ND
PCB-1248 (Aroclor 1248) (1)	0.09		ND
PCB-1254 (Aroclor 1254) (1)	0.09		ND
PCB-1260 (Aroclor 1260) (1)	0.09		ND
VOCs			
1,1,1-Trichloroethane	5		ND
1,1,2,2-Tetrachloroethane	5		ND
1,1,2-Trichloroethane	1 5		ND ND
1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane	5		ND ND
1,1-Dichloroethene	5		ND
1,2,4-Trichlorobenzene	5		ND
1,2-Dibromo-3-chloropropane	0.04		ND
1,2-Dibromoethane (EDB)	0.0006		ND
1,2-Dichlorobenzene	3		ND
1,2-Dichloroethane	0.6		ND
1,2-Dichloropropane	1		ND
1,3-Dichlorobenzene	3		ND
1,4-Dichlorobenzene	3		ND
2-Butanone (MEK)			ND
2-Hexanone			ND
4-Methyl-2-pentanone (MIBK)			ND
Acetone Benzene	1		12.4 ND
Bromodichloromethane	1		ND
Bromoform			ND
Bromomethane	5		ND
Carbon disulfide	60		ND
Carbon tetrachloride	5		ND
Chlorobenzene	5	5	ND
Chloroethane	5		ND
Chloroform	7		ND
Chloromethane	5		ND ND
Cyclohexane Dibromochloromethane			ND ND
Dichlorodifluoromethane	5		ND
Ethylbenzene	5		ND
Isopropylbenzene (Cumene)	5		ND
Methyl acetate			ND
Methyl-tert-butyl ether			ND
Methylcyclohexane			ND
Methylene Chloride	5		ND
Styrene	5		ND
Tetrachloroethene	5		ND
Toluene	5		ND
Trichloroethene Trichlorofluoromothano	5 5		
Trichlorofluoromethane Vinyl chloride	5 2		ND ND
Xylene (Total)	5		ND
cis-1,2-Dichloroethene	5		ND
cis-1,3-Dichloropropene (2)	0.4		ND
trans-1,2-Dichloroethene	5		ND
trans-1,3-Dichloropropene (2)	0.4		ND
SVOCs			
2,2'-Oxybis(1-chloropropane)	5		ND
2,4,5-Trichlorophenol			ND
2,4,6-Trichlorophenol			ND
2,4-Dichlorophenol (3)	1		ND
2,4-Dimethylphenol (3)	1		ND
2,4-Dinitrophenol (3)	1		ND
2,4-Dinitrotoluene	5		ND
2,6-Dinitrotoluene	5		ND
2-Chloronaphthalene			
2-Chlorophenol	+		ND ND
	1	1	שאי
2-Methylnaphthalene 2-Methylphenol(o-Cresol)			ND
2-Methylphenol(o-Cresol) 2-Nitroaniline	5		ND ND

Couch White Green Island, NY

Prepared By: Envirospec Engineering, PLLC.

	Part 703 Groundwater A Standard	Part 703 Surface Water Class C Aquatic, Chronic	WP-1
Contaminants	Standard	Standard	
3&4-Methylphenol(m&p Cresol)			ND
3,3'-Dichlorobenzidine	5		ND
3-Nitroaniline	5		ND
4,6-Dinitro-2-methylphenol			ND
4-Bromophenylphenyl ether			ND
4-Chloro-3-methylphenol			ND
4-Chloroaniline	5		ND
4-Chlorophenylphenyl ether	_		ND
4-Nitroaniline	5		ND
4-Nitrophenol			ND
Acenaphthene			ND
Acenaphthylene			ND
Acetophenone Anthracene			ND
Anthracene	7.5		ND ND
Benzaldehyde	7.0		ND
Benzo(a)anthracene			ND
Benzo(a)pyrene	ND		ND
Benzo(b)fluoranthene			ND
Benzo(g,h,i)perylene			ND
Benzo(k)fluoranthene			ND
Biphenyl (Diphenyl)	5		ND
Butylbenzylphthalate	Ŭ		ND
Caprolactam			ND
Carbazole			ND
Chrysene			ND
Di-n-butylphthalate	50		ND
Di-n-octylphthalate			ND
Dibenz(a,h)anthracene			ND
Dibenzofuran			ND
Diethylphthalate			ND
Dimethylphthalate			ND
Fluoranthene			ND
Fluorene			ND
Hexachloro-1,3-butadiene	0.5	1	ND
Hexachlorobenzene	0.04		ND
Hexachlorocyclopentadiene	5	0.45	ND
Hexachloroethane	5		ND
Indeno(1,2,3-cd)pyrene			ND
Isophorone			ND
N-Nitroso-di-n-propylamine			ND
N-Nitrosodiphenylamine			ND
Naphthalene			ND
Nitrobenzene	0.4		ND
Pentachlorophenol (3)	1		ND
Phenanthrene			ND
Phenol (3)	1		ND
Pyrene			ND
bis(2-Chloroethoxy)methane	5		ND
bis(2-Chloroethyl) ether	1	~ ~ ~	ND
bis(2-Ethylhexyl)phthalate	5	0.6	ND
TPH	1		
Total Petroleum Hydrocarbons			ND

Table 14. Pore Water Analytical Results

Notes:

(1) PCB groundwater standard is based on total PCBs.

(2) Groundwater standard of 0.4 ppb is the total of cis and trans-1,3-dichloropropene

(3) Groundwater standard applies to total phenols

(4) All results are in ppb

(5) ND = Not Detected

Couch White Green Island, NY

Prepared By: Envirospec Engineering, PLLC.

		M	N-2	MV	N-3	M	V-4	MW-7	MV	V-10	MM	V-11	MM	/-13	MV	V-14	MW-14 DUP	UM	W-D	UMW-D DUP
Analyte	Part 703 Groundwater	9/13/17	10/25/17	9/14/17	10/26/17	9/14/17	10/26/17	9/14/17	9/15/17	10/27/17	9/14/17	10/27/17	9/12/17	10/25/17	9/13/17	10/25/17	10/25/17	9/12/17	10/25/17	9/12/17
_	A Standard																			
Total Metals																				
Aluminum	-	ND	ND	ND	ND	66J	ND	ND	ND	700	ND	130J	11J	67J	95J	ND	ND	ND	1000	81J
Antimony	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	25	ND 07.0	ND	5.9	6	1.6	1.4	2.8	35.5	22	0.99J	1.7	10.9	4.1	ND	ND	ND 101	ND 05.0	0.63J	ND
Barium	1000	87.8 ND	89.2 ND	146 ND	119 ND	207 ND	200 0.043J	172 ND	298 ND	340 0.085J	171 ND	174 ND	216 0.03J	287 ND	111 ND	99.3 ND	104 ND	95.2	116.0 0.037J	94.9 ND
Beryllium Cadmium	5	ND ND	ND ND	ND	ND	ND ND	0.043J ND	ND ND	ND	0.065J ND	ND	ND	0.03J 0.083J	ND	ND ND	ND	ND ND	ND ND	0.037J ND	ND ND
Calcium	5	90800	95500	162000	123000	134000	127000	124000	208000	211000	186000	192000	102000	112000	80300	68700	67800	145000	145000	141000
Chromium	50	90000 ND	0.51JB	ND	ND	ND	0.39J	ND	200000 ND	2.4	ND	0.99J	0.66J	ND	1.6	ND	ND	0.40	143000	ND
Cobalt		0.12J	0.2J	0.35	0.45	0.24J	0.38	0.3	0.43	1.1	0.54	0.87	0.73	1.5	0.13J	0.14J	0.14J	0.25J	0.84	0.26J
Copper	200	0.45J	1	ND	0.38J	0.34J	0.38J	ND	1.5	6.7	0.29J	1	0.37J	0.52J	0.73J	0.65J	0.66J	0.86	2.50	1.1
Iron	300	ND	88	8500	7400	42600	42000	7600	52500	53500	28500	32300	33800	10400	120	57	20J	74	1600	130
Lead	25	0.36J	4.3	0.34J	1.1	1	0.94J	0.3J	0.26J	4.8	0.99J	2.7	0.43J	0.47J	0.44J	ND	ND	ND	0.84J	ND
Magnesium		12300	12900	16100	12000	16500	15000	10000	39300	42500	13100	13700	13500	14400	10900	9600	9400	15400	17400	14900
Manganese	300	ND	1.5	654	507	3330	2780	898	3400	2840	1700	1650	4470	2170	1.7	1.6	1.4	2.2	21.0	8.5
Mercury	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nickel	100	2.7	3.7	3.7	5.5	2.7	4.7	2.8	4.5	9.1	4.3	7.5	2.4	4.5	2.2	2.8	2.8	4.0	7.4	4.3
Potassium		3600	3700	10900B	8700	10900	10800	4600B	15300	16100	26600B	25100	9700	8200	3200	3000	2900	6400	7900	6300
Selenium	10	3.2	3.2	ND	ND	ND	ND	ND	ND	ND	ND	3.1J	ND	ND	4.6	3.7	4	ND	0.64J	ND
Silver	50	ND 10000	ND 10500	ND 10000	ND 47000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	20000	16000 ND	16500	19300	17900	27700	27400	22700	262000	271000	40800	38200	17200 ND	24400	13400	14100	13800	53200	62800	51200
Thallium Vanadium		ND ND	0.035J ND	ND ND	0.036J ND	ND ND	0.025J ND	ND ND	0.026J ND	0.035J 1.7J	ND ND	ND ND	ND	0.11J ND	ND ND	0.053J ND	0.042J ND	ND ND	0.14J 1.2J	ND ND
Zinc		8.4J	10.8	ND	3.6J	ND	ND	ND	ND	20.2	ND	ND	5.9J	2.9J	ND	5.8J	3.9J	ND	6.2J	ND
Dissolved Metals		0.45	10.0	NB	0.00	ND	ND	ND	ND	20.2	ND	ND	0.00	2.00	ND	0.00	0.00	ND	0.20	ND
Aluminum, Dissolved		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	62	ND	ND
Antimony, Dissolved	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47J
Arsenic, Dissolved	25	ND	ND	2.8	3.7	1.5	1.3	2.7	35.3	20.1	1.1	1.6	14.5	3.5	ND	ND	ND	0.31J	0.32J	ND
Barium, Dissolved	1000	93.4	82	134	125B	221	215B	169	329	331	178	177	197	264	107	94	95.9	99.6	108.0	100
Beryllium, Dissolved		ND	ND	ND	ND	ND	ND	ND	ND	0.045J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium, Dissolved	5	ND	ND	ND	0.074JB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Calcium, Dissolved		93000	84800	152000	116000	127000	121000	111000	214000	176000	167000	173000	107000	104000	77000	69100	64500	142000	130000	144000
Chromium, Dissolved	50	ND	ND	1.1J	ND	2.7	ND	ND	ND	0.45J	ND	0.54J	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt, Dissolved		0.092J	0.16J	0.34	0.42	0.25J	0.3	0.43	0.45	0.68	0.52	0.77	0.71	1.3	0.061J	0.32	0.13J	0.25J	0.36	0.24J
Copper, Dissolved	200	1.9	1.1	0.71J	0.6JB	ND	0.37JB	0.75J	1.4	3.2	0.38J	0.66J	0.29J	0.37J	1.1	1.4	1	1.1	1.8	0.8J
Iron, Dissolved	300	ND	ND	5500B	4700	40100	41600	6800B	53000	46400	26000B	29600	41600	9100	ND	ND	20J	40J	27J	ND
Lead, Dissolved	25	ND 12600	0.27J 11700	ND	ND	0.7J	0.85JB 14900	ND 0100	ND 39900	ND	0.83J	1.1 12700	ND	ND	ND 10500	ND	ND	ND	ND	ND 15400
Magnesium, Dissolved Manganese, Dissolved	300		0.83J	15100 638	11500 487B	15700 3210	2700B	9100 1060	39900 3430	36100 2820	11900 2020	12700	14300	13600 3050	ND	9700	9200	16100.0	15400	
Manganese, Dissolved Mercury, Dissolved	0.7	ND ND	0.83J ND	ND	ND	3210 ND	ND	ND	3430 ND	2820 ND	2020 ND	ND	5080 ND	3050 ND	ND ND	4.5 ND	1.6 ND	3.7 ND	2.8 ND	1.2 ND
Nickel, Dissolved	100	2.8	4.1	3.9	4.4B	2.9	3.4B	5.1	4.4	8.9	4	7.8	4.4	4.2	2.2	3.1	3	3.8	6.6	4
Potassium, Dissolved	100	3500	3300	10700B	8700	10300	11000	4300B	15800	15400		26600	10500	7400	2900	2800	2700	7000.0	6400	6200
Selenium, Dissolved	10	3.5	2.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.3	3.4	3.5	ND	0.6J	ND
Silver, Dissolved	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium, Dissolved	20000	16300	13800	19300	17600	26200	27400	21400	268000	243000	37800	40900	16300	21800	13000	13400	12500	66400.0	54900	48700
Thallium, Dissolved		ND	ND	ND	ND	ND	ND	ND	0.052J	ND	ND	ND	ND	ND	ND	ND	ND	0.034J	ND	0.019J
Vanadium, Dissolved		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Zinc, Dissolved		10.4	9.7J	ND	4.9J	ND	ND	7.6J	3 J	ND	ND	ND	3.8J	ND	ND	4.5J	3.1J	ND	3.6J	ND
Pesticides																				
4,4'-DDD	0.3	ND	ND	ND	ND	ND	0.0054	0.00057J	ND	ND	ND	0.0011J	ND	ND	0.00024 J		ND	ND	0.0015	ND
4,4'-DDE	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aldrin	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00086	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha-BHC	0.01	ND	ND	ND	ND	ND	ND	ND	ND	0.0025J	ND	0.0015	ND	ND	ND	ND	ND	ND	ND	ND
alpha-Chlordane	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.02	ND	ND	ND	ND	ND	ND	ND	ND
beta-BHC	0.04	ND	ND	ND	ND	0.017	ND	ND	ND	ND	ND	0.02	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND
delta-BHC Dieldrin	0.04	ND ND	ND ND	ND ND	ND ND	ND ND	0.0098 ND	ND ND	0.0043 ND	0.0028J ND	ND ND	0.0047 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	0.004	UVI	UVI I	UND	U M	ND	שא	ND	UN	שא	UN		UN	UND.	ND	<u> </u>	ND	ND	ND	UN

Anys. Pert May Pert May Pert Max Pert Max <t< th=""><th></th><th></th><th>MV</th><th>N-2</th><th>MV</th><th>V-3</th><th>MV</th><th>V-4</th><th>MW-7</th><th>MV</th><th>V-10</th><th>MM</th><th>V-11</th><th>MM</th><th>V-13</th><th>MV</th><th>V-14</th><th>MW-14 DUP</th><th>UM</th><th>W-D</th><th>UMW-D DUP</th></t<>			MV	N-2	MV	V-3	MV	V-4	MW-7	MV	V-10	MM	V-11	MM	V-13	MV	V-14	MW-14 DUP	UM	W-D	UMW-D DUP
integration	Analyte	Groundwater	9/13/17	10/25/17	9/14/17	10/26/17	9/14/17	10/26/17	9/14/17	9/15/17	10/27/17	9/14/17	10/27/17	9/12/17	10/25/17	9/13/17	10/25/17	10/25/17	9/12/17	10/25/17	9/12/17
minimini minimi minim	Endosulfan I	A Stanuaru	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
endocrime INI NU NU <																					
Edit Des No LS2 No No D2644 No No <thno< th=""> No No <</thno<>																					
Exist sprove S NO		ND													=						
enderskeinis 6. N.0 N.0 <thn.0< th=""> N.0 <thn.0< th=""> <thn.< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thn.<></thn.0<></thn.0<>																					
games Ask Line MO MO MO <	,	5									ND	ND	ND	ND	ND	ND			ND	ND	ND
image-band imag	gamma-BHC (Lindane)	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0079	ND	ND	ND	ND	ND	ND	ND	ND
information point D3 N0	gamma-Chlordane	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bith bith ND ND <th< td=""><td>Heptachlor</td><td>0.04</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td></th<>	Heptachlor	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ioagnine 6.68 NO NO NO <	Heptachlor epoxide	0.03		ND		ND		ND		ND	ND	0.0027	ND	ND	ND	ND		ND	ND	=	
egg No														ND							
NCB-105(2) ND ND <		0.06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dec:3-12.12 MO MO MO MO MO MO NO																					
C6-1-32 (j) ND																					
PCE-1424 (2) NO																					
PCG-1548 (j) ND																					
DCG:1524 (2) ND O.22 ND O.16 ND																					
PCS-1620 (2) NO 0.23 NO 0.23 NO 0.23 NO 0.23 NO 0.24 NO 0.25 0.26 NO NO <th< td=""><td></td><td>ļ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		ļ																			
PCE-162g (g) ND																				-	
PCE-182(2) ND						-												-			
Polychornyk, Total 0.9 N.D 0.43 N.D 0.13 N.D 0.85 0.45 N.D 0.16 N.D 0.45 0.46 N.D 0.48 0.49 N.D 0.23 N.D 1.1.1-Trichoroshane 5 N.D																					
VioCs VioCs <th< td=""><td></td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		0.00																			
1,1-1:Telinoidonational 5 ND ND<		0.09	ND	0.45	ND	0.3	ND	0.13	ND	0.85	0.45	ND	0.078	ND	0.16	ND	0.45	0.40	ND	0.32	ND
1,1,2-2-freatenet/score/hame 5 ND ND <t< td=""><td></td><td></td><td></td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td><td>ND</td><td></td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td></td><td>ND</td><td>ND</td></t<>					ND		ND	ND	ND			ND		ND		ND		ND		ND	ND
11,2-Trichloroschare 5 ND		5																			
11,2-Trichloroethane 1 ND	, , ,																				
1,1-Dehtoroethame 5 ND		1																			
11-Decknoemberne 5 ND		5																			
12,4-Trichhordsenzane 5 ND ND <td>,</td> <td>_</td> <td></td>	,	_																			
12-Dibromo-3-Chiloropopane 0.04 ND <	1	5												ND	ND						
12-Dichloroberzene 3 ND	1,2-Dibromo-3-Chloropropane	0.04	ND	ND					ND	ND		ND	ND	ND	ND	ND		ND	ND	ND	
12-Dicklorogename 0.6 ND N	1,2-Dibromoethane	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12-Dichloropropane 1 ND	1,2-Dichlorobenzene	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13-Dichloroberzene 3 ND		0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-Dicklorobenzene 3 ND ND <td></td> <td>1</td> <td>ND</td> <td></td> <td></td> <td></td> <td>ND</td> <td>ND</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td>ND</td> <td></td> <td></td>		1	ND				ND	ND						ND		ND		ND	ND		
2±Butanone (MEK) ND	•																				
2+Hexanne ND	,	3																			
4-Methyl-2-pentanone (MIBK) ND ND <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																					
Action ND ND <th< td=""><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		<u> </u>																			
Benzene 1 ND ND ND 0.19J 6.1 7.9 ND 0.21J 0.53 0.62 0.94 ND ND 0.0 ND ND </td <td>· ····································</td> <td><u> </u></td> <td></td>	· ····································	<u> </u>																			
BromodichloromethaneND <th< td=""><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		4																			
BromoformND <th< td=""><td></td><td>I</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		I					-														
Brommethane5ND <t< td=""><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		+																			
Carbon disulfide60ND<		5																			
Carbon tetrachloride5NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDChlorobenzene5ND<		-																			
Chlorobenzene5ND																					
Chloroethane5ND<		•																			
Chloroform7ND <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																					
Chloromethane5ND		7																			
cis-1,2-Dichloroethene5NDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDNDND0.31JNDcis-1,3-Dichloropropene (3)0.4ND </td <td></td> <td>5</td> <td></td>		5																			
Cis-1,3-Dichloropropene (3)0.4ND		5																			
CyclohexaneNDNDNDND2124ND13155158ND<		0.4																			
Dichlorodifluoromethane 5 ND			ND								15			ND	ND			ND	ND	ND	ND
	Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Ethylbenzene 5 ND	Dichlorodifluoromethane	5		ND				ND		ND		ND	ND	ND	ND			ND			ND
	Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		MV	N-2	MV	V-3	MV	N-4	MW-7	MV	V-10	MM	V-11	MM	V-13	MV	/-14	MW-14 DUP	UM	W-D	UMW-D DUP
Analyte	Part 703 Groundwater	9/13/17	10/25/17	9/14/17	10/26/17	9/14/17	10/26/17	9/14/17	9/15/17	10/27/17	9/14/17	10/27/17	9/12/17	10/25/17	9/13/17	10/25/17	10/25/17	9/12/17	10/25/17	9/12/17
Isopropylbenzene	A Standard	ND	ND	ND	ND	1.1	0.99	ND	8.7	ND	4.1	3.3	ND	ND	ND	ND	ND	ND	ND	ND
Methyl acetate	5	ND	ND	ND	ND	ND	0.99 ND	ND	ND	ND	A.T ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether		ND	ND	0.3J	0.31J	0.17J	ND	ND	ND	ND	0.71	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylcyclohexane		ND	ND	0.33 ND	ND	24	20	ND	9.5	7.5	62	57	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	5	ND	ND	0.21J	ND	ND	ND 20	ND	9.5 ND	ND	ND	ND	ND	0.46J	ND	ND	ND	ND	0.32J	ND
Styrene	5	ND	ND	0.215 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.400 ND	ND	ND	ND	ND	0.323 ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	0.36J	1	1.1	ND	0.37J	0.53	1.1	1.1	ND	1.3	ND	0.99	0.74J	ND	1	ND
trans-1.2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1.3-Dichloropropene (3)	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes, Total	5	ND	ND	ND	ND	1.6	1.9	ND	1.1	1.1	2.1	3.2	ND	0.33J	ND	ND	ND	ND	ND	ND
SVOCs	5					1.0	1.3		1.1	1.1	2.1	0.2		0.000		שא				
2,4,5-Trichlorophenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
2,4,6-Trichlorophenol 2,4-Dichlorophenol (1)	4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	1									ND	ND	ND	ND	ND		ND			ND	ND
2,4-Dimethylphenol (1) 2,4-Dinitrophenol (1)	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
2.4-Dinitropliend (1)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.6-Dinitrotoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene		ND	0.062JB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.072J	ND	ND	ND	ND	ND
2-Methylphenol		ND	0.002JB ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0723 ND	ND	ND	ND	ND	ND
2-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3.3'-Dichlorobenzidine	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl phenyl ether		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
4-Chloroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl phenyl ether	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene		ND	ND	ND	ND	ND	2.2J	ND	5 J	2.2J	2.6J	3.4J	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	2.03 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetophenone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene		ND	ND	ND	ND	4.4J	ND	ND	3.4 J	1.1J	0.37J	0.91J	ND	ND	ND	ND	ND	ND	ND	ND
Atrazine	7.5	ND	ND	ND	ND	-4.43 ND	ND	ND	ND	ND	0.373 ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzaldehyde	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(b)fluoranthene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Biphenyl	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis (2-chloroisopropyl) ether	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethoxy)methane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-chloroethyl)ether	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-ethylhexyl) phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butyl benzyl phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Caprolactam		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Oniyache		טא	שא		טא											טא				טא

		MV	N-2	M۱	N-3	M۱	N-4	MW-7	MM	V-10	MM	V-11	MV	V-13	MV	V-14	MW-14 DUP	UM	W-D	UMW-D DUP
Analyte	Part 703 Groundwater A Standard	9/13/17	10/25/17	9/14/17	10/26/17	9/14/17	10/26/17	9/14/17	9/15/17	10/27/17	9/14/17	10/27/17	9/12/17	10/25/17	9/13/17	10/25/17	10/25/17	9/12/17	10/25/17	9/12/17
Dibenz(a,h)anthracene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran		ND	ND	ND	ND	4.8J	1.6J	ND	3.1 J	2.2J	2.2J	3.5J	ND	ND	ND	ND	ND	ND	ND	ND
Diethyl phthalate		0.081J	ND	0.082J	0.087J	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13J	ND	ND	0.081J	ND	0.084J
Dimethyl phthalate		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene		ND	ND	ND	ND	ND	3.4J	ND	7.9 J	4.7J	4.2J	6.4J	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno(1,2,3-cd)pyrene		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene		ND	0.24JB	ND	0.09JB	ND	ND	ND	ND	ND	ND	ND	ND	0.12JB	ND	0.13JB	0.17JB	ND	0.2JB	ND
Nitrobenzene	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodi-n-propylamine		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol (1)	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene		ND	ND	ND	ND	15B	ND	ND	8 J B	3.9J	1.4JB	3.1J	ND	ND	ND	ND	ND	ND	ND	ND
Phenol (1)	1	ND	0.26J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18J	ND	0.29J	0.18J	ND	1.5	ND
Pyrene		ND	ND	ND	ND	7.7J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TPH																				
GRO (C6-C10)		ND	ND	ND	ND	390B	290	ND	350B	690	780B	2600	ND	8.3J	ND	5.8J	ND	ND	7.7J	ND
DRO (C10-C28)		ND	ND	ND	ND	9200	5000	ND	69000	3400	3900	20000	ND	ND	ND	ND	ND	ND	ND	ND

(1) Based on total phenols standard
 (2) See total standard
 (3) cis and trans-1,3-dichloropropene standard is total
 (4) All results in ppb.

Table 16. Soil Vapor Analytical Results

1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 2,2,4-trimethylpentane	$\begin{array}{c} 0.82 \\ 1 \\ 0.82 \\ 0.61 \\ 0.59 \\ 1.1 \\ 0.74 \\ 1.2 \\ 0.9 \\ 0.61 \\ 0.69 \\ 0.74 \\ 0.33 \\ 0.9 $		ND ND ND ND 5.3 ND ND ND ND	ND ND ND ND ND 7.5 ND ND	ND ND ND ND ND 4.3	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND	ND ND ND
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropenzene 1,3-Drimethylbenzene 1,3-Drimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dickane 2,2,4-trimethylpentane	$\begin{array}{c} 0.82 \\ \hline 0.61 \\ \hline 0.59 \\ \hline 1.1 \\ \hline 0.74 \\ \hline 1.2 \\ \hline 0.9 \\ \hline 0.61 \\ \hline 0.69 \\ \hline 0.74 \\ \hline 0.33 \\ \hline 0.9 \\ \end{array}$		ND ND ND 5.3 ND ND ND	ND ND ND 7.5 ND	ND ND ND ND	ND ND ND	ND ND	ND ND	ND ND	ND	ND	
1,1-Dichloroethane 1,1-Dichloroethene 1,2-A-Trichlorobenzene 1,2-Dibhomoethane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropenzene 1,2-Dichloropenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dicklorobenzene 1,4-Dicklorobenzene 2,2,4-trimethylpentane	$\begin{array}{c} 0.61 \\ 0.59 \\ 1.1 \\ 0.74 \\ 1.2 \\ 0.9 \\ 0.61 \\ 0.69 \\ 0.74 \\ 0.33 \\ 0.9 \end{array}$		ND ND 5.3 ND ND ND	ND ND 7.5 ND	ND ND ND	ND ND	ND	ND	ND			ND
1,1-Dichloroethene 1,2,4-Trinethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroptnane 1,2-Dichloroptnane 1,2-Dichloroptnane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dickane 2,2,4-trimethylpentane	0.59 1.1 0.74 1.2 0.9 0.61 0.69 0.74 0.33 0.9		ND ND 5.3 ND ND ND	ND ND 7.5 ND	ND ND	ND				ND		
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibiromoethane 1,2-Dichlorobenzene 1,2-Dichloroptnane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dixane 2,2,4-trimethylpentane	$\begin{array}{c} 1.1 \\ 0.74 \\ 1.2 \\ 0.9 \\ 0.61 \\ 0.69 \\ 0.74 \\ 0.33 \\ 0.9 \end{array}$		ND 5.3 ND ND ND	ND 7.5 ND	ND		ND	ND			ND	ND
1,2,4-Trimethylbenzene 1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloropethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dixane 2,2,4-trimethylpentane	0.74 1.2 0.9 0.61 0.69 0.74 0.33 0.9		5.3 ND ND ND	7.5 ND		ND		11D	ND	ND	ND	ND
1,2-Dibromoethane 1,2-Dichlorobenzene 1,2-Dichloroethane 1,2-Dichloropropane 1,3-Trimethylbenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dixane 2,2,4-trimethylpentane	1.2 0.9 0.61 0.69 0.74 0.33 0.9		ND ND ND	ND	4.3	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene 1,2-Dichloropenane 1,2-Dichloropropane 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Linxane 2,2,4-trimethylpentane	0.9 0.61 0.69 0.74 0.33 0.9		ND ND			4.5	ND	ND	ND	ND	3.2	1.1
1,2-Dichloroethane 1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dickane 2,2,4-trimethylpentane	0.61 0.69 0.74 0.33 0.9		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dickane 2,2,4-trimethylpentane	0.69 0.74 0.33 0.9			11D	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene 1,3-butadiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dixane 2,2,4-trimethylpentane	0.74 0.33 0.9			0.73	ND	ND	ND	ND	ND	ND	ND	ND
1,3-butadiene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2,4-trimethylpentane	0.33 0.9		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dioxane 2,2,4-trimethylpentane	0.9		1.1	1.5	0.88	0.98	2.3	1.6	2.3	ND	0.79	ND
1,4-Dichlorobenzene 1,4-Dioxane 2,2,4-trimethylpentane			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane 2,2,4-trimethylpentane	0.0		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2,4-trimethylpentane	0.9		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1.1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	0.7		ND	ND	0.75	0.98	ND	0.7	ND	ND	ND	ND
4-ethyltoluene	0.74		1	1.7	1	1	2.5	1.9	2.9	ND	0.84	ND
Acetone	0.71		47	58	54	46	560	81	840	500	100	39
Allyl chloride	0.47		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	0.48		0.73	1.3	1	1	9.6	1.1	13	15	0.93	0.45J
Benzyl chloride	0.86		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	1.6		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	0.58		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	0.47		0.56	0.87	1	1.1	19	0.81	72	5.4	1.5	ND
Carbon tetrachloride	0.94		ND	ND	ND	ND	ND	ND	ND	ND	ND	0.63J
Chlorobenzene	0.69		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	0.4		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.73		ND	1.4	0.63J	0.59J	1.8	ND	0.93	1.5	ND	ND
Chloromethane	0.31		1.3	1.7	2.9	1.4	ND	ND	ND	ND	ND	1.3
cis-1,2-Dichloroethene	0.59		ND	ND	0.4J	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.68		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cyclohexane	0.52		0.62	1.8	0.96	0.76	8.3J	0.55	15	3.6	ND	ND
Dibromochloromethane	1.3		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethyl acetate	0.54		1.1	2	1.2	1.2	ND	0.83	17	ND	1.2	ND
Ethylbenzene	0.65		4	16	5.9	5.8	9	6.4	15	33	2.9	ND
Freon 11	0.84		1.7	1.9	1.7	1.7	2.1	1.7	3.4	ND	1.6	2
Freon 113	1.1		ND	ND	ND	ND	0.92J	0.77J	ND	ND	0.84J	0.77J
Freon 114	1		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Freon 12	0.74		2.7	3.1	2.9	2.8	ND	2.6	ND	1.6	ND	3.2
Heptane	0.61		16	31	5.9	5.9	18	2.3	34	22	ND	0.45J
Hexachloro-1,3-butadiene	1.6		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexane	0.53		1.1	1.4	1.4	1.6	23	0.95	50	46	0.88	0.56
Isopropyl alcohol	0.37		3.6	3.3	3.2	1.8	9.3	1.3	5	ND	1.7	1.8
m&p-Xylene	1.3		13	36	15	14	27	17	37	76	6.9	0.52J
Methyl Butyl Ketone	1.2		1.8	4.5	4.9	3.9	11J	18J	32	ND	8.5	ND
Methyl Ethyl Ketone	0.88		11J	19	20	17	75	75	130	66	25	1.9
Methyl Isobutyl Ketone	1.2		4	ND	2.3	1.6	2	0.61J	2.7	ND	ND	ND
Methyl tert-butyl ether	0.54		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	0.52	60	3.8	2.7	1.7	2.4	5.3	2.5	4.1	4.2	5.1	5.7
o-Xylene	0.65		5.7	14	6.3	6.1	13	7.3	17	24	3.4	ND
Propylene	0.26		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	0.64		4.6	22	9.4	9.4	16	14	26	ND	5.3	ND
Tetrachloroethylene	1	30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrahydrofuran	0.44		0.35J	0.83	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	0.57		120	160	55	56	51	20	49	35	9.8J	1.2
trans-1,2-Dichloroethene	0.59		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.68		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.81	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	0.53	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Bromide	0.66		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	0.38		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

^a = From Table 3.1 in NYSDOH "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", October 2006.

APPENDIX F HUMAN HEALTH EXPOSURE ASSESSMENT (HHEA)

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

HUMAN HEALTH EXPOSURE ASSESSMENT (HHEA)

South Island Apartments Site 1 Osgood Avenue/Center Island, Town of Green Island, Albany County, New York BCP Site # C401074

November 2017

Prepared for: South Island Apartments, LLC c/o Couch White, LLP 540 Broadway, 7th Floor Albany, New York 12201-2222

Prepared by:

349 Northern Blvd. STE 3 Albany, NY 12205

Envirospec Engineering Project E17-1600

Unauthorized alteration or addition to this Document is a violation of Section 7209 Subdivision 2 of the New York State Education Law

© Copyright 2009 Envirospec Engineering

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	CONTAMINANTS OF CONCERN	1
3.0	CHEMICAL FATE AND TRANSPORT	3
	3.1 Metals	3
	3.2 SVOCs	3
	3.3 VOCs	3
	3.4 PCBs and Pesticides	4
	3.5 LNAPL	
4.0	EXPOSURE PATHWAYS AND ROUTES OF EXPOSURE	4
т.0	4.1 Surface Soil	
	4.2 Subsurface Soil	
	4.2.1 Dermal Exposure	
	4.2.2 Incidental Ingestion	
	4.2.3 Inhalation of Particulates	5
	4.3 Groundwater	5
	4.3.1 Ingestion of Groundwater	
	4.3.2 Dermal Contact	
	4.3.3 Inhalation Exposure	6
	4.4 Air	6
5.0	RECEPTOR POPULATIONS	7
6.0	SUMMARY AND CONCLUSIONS	8

TABLES

Table 1	Summary of Compounds Detected
---------	-------------------------------

- Table 2LNAPL thickness in well locations
- Table 3Summary of Human Health Exposure Assessment

1.0 INTRODUCTION

A Qualitative Human Health Exposure Assessment was completed based on the data collected during the Remedial Investigation (RI). The assessment was completed based on the final remedy and development plan for the site, which will include an engineered cover for the site. The cover system will include a retaining wall, building foundations, at least two feet of clean fill and an asphalt cover. The details of the human health exposure assessment are discussed in the following sections.

2.0 CONTAMINANTS OF CONCERN

The primary contaminants of concern (COCs) at this site based on historical data and the 2017 RI investigation are metals, specifically lead, mercury, and arsenic, and SVOCs. There were isolated exceedances in groundwater for some VOCs, one location with PCBs, and three locations with low levels of pesticides. During the second sampling round, exceedances for total PCBs were observed in seven (7) wells. Total PCBs, however, were also detected at a similar level in the field equipment blank. This indicates possible contamination of equipment from the lab. Alternatively, the low levels could be attributed to the quality of the Hudson River, as PCBs were not a contaminant of concern across the site. Table 1 provides a list of compounds, including whether exceedances were detected above groundwater standards, RRSCOs, and/or CSCOs.

Analyte	Exceedance(s) of Part 703 Groundwater Standard	Exceedance(s) of RRSCO	Exceedance(s) of CSCO			
	Metals					
Arsenic	Yes	Yes	Yes			
Barium	No	Yes	Yes			
Cadmium	No	Yes	No			
Copper	No	Yes	Yes			
Lead	No	Yes	Yes			
Manganese	Yes	Yes	No			
Mercury	No	Yes	Yes			
SVOCs						
Benzo(a)anthracene	No	Yes	Yes			

Table 1. Summary of Compounds Detected

Benzo(a)pyrene	No	Yes	Yes			
Benzo(b)fluoranthene	No	Yes	Yes			
Benzo(k)fluoranthene	No	Yes	No			
Chrysene	No	Yes	No			
Dibenz(a,h)anthracene	No	Yes	Yes			
Indeno(1,2,3-cd)pyrene	No	Yes	No			
	VOCs					
Benzene	Yes	No	No			
Isopropylbenzene	Yes	No	No			
	SVOCs					
Phenol	Yes	No	No			
PCBs and Pesticides						
Aldrin	Yes	No	No			
Endrin	Yes	No	No			
Total PCBs	Yes	No	No			

Wells in the former loading rack area of the site are also impacted by Light Non-Aqueous Phase Liquid (LNAPL). Drawing R-6 in the RI Report shows the result of the data collected with the oil-water interface probe during the RI. The thicknesses of LNAPL for impacted wells are also summarized in Table 2.

Well	Thickness of LNAPL layer (ft)
MW-4	0.01
MW-5	1.23
MW-8	0.1
MW-9	0.1
MW-10	0.1
MW-11	0.1
MW-12	0.05
MW-16	0.05
MW-17	0.2
MW-18	0.45
MW-20	0.1

Table 2. LNAPL thickness in well locations

MW-21	0.1
MW-22	3.7
MW-23	1
MW-24	0.35
MW-25	2.1
MW-26	0.85
MW-27	0.2
MW-28	1.2

3.0 CHEMICAL FATE AND TRANSPORT

Based on the RI investigation, the primary concerns at this site in evaluating chemical fate and transport are metals, SVOCs, VOCs, and LNAPL. PCBs and pesticides are not considered a concern as they were not detected in soil above residential cleanup standards and are not considered to be associated with the fill at the site. Although VOCs were not detected above cleanup standards, they are evaluated here due to the former use of the site as a petroleum terminal. Each of these contaminant groups are discussed in the following sections.

3.1 Metals

Exceedances of RRSCOs and CSCOs for metals are primarily found in surface and subsurface soils with very few encountered in the deeper soil samples collected at the groundwater interface. There were no exceedances of groundwater standards for lead or mercury in the onsite monitoring wells sampled during the RI. The data collected to date does not indicate that migration of metals to groundwater is a significant transport pathway at this site, and contamination appears to be confined to the shallow soils.

3.2 SVOCs

Exceedances of RRSCOs and CSCOs for SVOCs are observed in surface and shallow subsurface soils. No exceedances were observed in soils sampled at the groundwater interface, and only one very low level exceedance of phenol was observed in one well during the second groundwater sampling event. Based on these results, SVOCs appear to be associated with fill material with no significant migration to other environmental media observed.

3.3 VOCs

No exceedances of soil cleanup objectives were observed for VOCs. Two groundwater exceedances were observed in the former loading rack area, one for benzene and one for isopropylbenzene. One location outside of the former loading rack area (MW-13) also showed an

exceedance for benzene in groundwater during the second sampling round. Both of these compounds are likely associated with historical usage of this area of the site. Soil vapor sampling across the site indicated the presence of BTEX (shown in Drawing R-7), which indicates that volatilization of BTEX from subsurface media is a complete migration pathway at this site.

3.4 PCBs and Pesticides

No exceedances of soil cleanup objectives were observed for PCBs or pesticides at this site. During the first groundwater sampling round, one exceedance of total PCBs and one exceedance for endrin were observed in MW-10, which is located near the loading rack area. During the second groundwater sampling round, seven (7) locations showed exceedances for total PCBs, three (3) locations showed exceedances for endrin, and one (1) location showed an exceedance for aldrin.

These detections are not consistent with soil data collected at this site. The PCB exceedances are likely due to the proximity to the Hudson River and intrusion of Hudson River water into groundwater due to tidal influences. There are no other indications at this site that PCBs are a contaminant of concern. The exceedances of aldrin and endrin were very low and did not correlate to soil data.

3.5 LNAPL

As shown in Table 2 and Drawing R-6, some wells onsite show a significant amount of LNAPL based on measurements completed with the oil-water interface probe and visual observations. The presence of LNAPL is further supported by elevated TPH data in soil samples near the former loading area and near MW-5.

There was no indication of LNAPL seeps in the Hudson River near the former loading rack area based on the sediment pore water sample data, so migration of LNAPL offsite does not appear to be a significant transport pathway. Some elevated TPH readings were also observed in soil borings in the former containment area of the site, including SB-3.

4.0 EXPOSURE PATHWAYS AND ROUTES OF EXPOSURE

The potential exposure pathways and routes of exposure are summarized in Table 3 and discussed for each exposure medium in the following sections. The conclusions regarding the potential for exposure are based on the development plan for the site where an engineered cover system will be installed across the entire site, including the banks. A Site Management Plan (SMP) will be developed and implemented long term that will address ground intrusive activities

following completion of remedial activities.

4.1 Surface Soil

The potential exposure routes considered for surface soils include dermal exposure, incidental ingestion, and inhalation of particulates. However, given that an engineered cover system will be installed across the site in all areas where contaminated surface soils could be exposed, the surface soils would not be contaminated after development and the exposure routes would not be relevant.

4.2 Subsurface Soil

The potential exposure routes considered for subsurface soils include dermal exposure, incidental ingestion, and inhalation of particulates.

4.2.1 Dermal Exposure

Potential dermal exposure to subsurface soils would be limited to onsite workers involved in ground-intrusive activities. This risk would be minimized through proper training of workers completing the work, the use of proper PPE during work activities, and use of appropriate decontamination procedures.

4.2.2 Incidental Ingestion

Potential incidental ingestion of subsurface soils would be limited to onsite workers involved in ground-intrusive activities. This risk would be minimized through proper training of workers completing the work, the use of proper PPE during work activities, and use of appropriate decontamination procedures.

4.2.3 Inhalation of Particulates

There is a potential for inhalation of particulates from contaminated subsurface soils during ground-intrusive activities. This risk would be addressed through air monitoring during any excavation or other ground-intrusive work and implementation of dust mitigation approaches, such as the usage of water trucks, as necessary.

4.3 Groundwater

The potential exposure routes for groundwater considered in this assessment include ingestion, dermal contact, and inhalation exposure. The primary areas of concern for groundwater would be the former loading rack area and along the roadway extending north from the former loading

rack to MW-5.

4.3.1 Ingestion of Groundwater

Groundwater at this site is not being used as a drinking water source. There is no plan to install private wells on the property and an environmental easement will be placed on the site prohibiting groundwater use. There is a potential risk for incidental ingestion of groundwater during ground-intrusive activities if deep excavations are completed (greater than a depth of approximately 22 ft bgs) or if groundwater were actively being pumped from the subsurface. These risks would be minimized through proper training of workers completing the work, the use of proper PPE during work activities, and the use of appropriate decontamination procedures.

4.3.2 Dermal Contact

The potential risk for direct dermal contact with groundwater at the site would be during active pumping of groundwater from onsite wells or during deep excavations, as discussed in Section 4.3.1. These risks would be minimized through proper training of workers completing the work, the use of proper PPE during work activities, and the use of appropriate decontamination procedures.

4.3.3 Inhalation Exposure

The potential risk for direct dermal contact with groundwater at the site would be during active pumping of groundwater from onsite wells or during deep excavations, as discussed in Section 4.3.1. Based on the results of groundwater monitoring, the areas of primary concern for inhalation risks would be the areas impacted by LNAPL, which are shown in Drawing R-6. These risks would be minimized through proper training of workers completing the work and the use of proper PPE during work activities.

4.4 Air

The exposure route of concern for air is the potential for inhalation due to soil vapor intrusion impacts to onsite buildings. Soil vapor sampling was completed at this site, which indicated the presence of contaminants, such as BTEX, that are consistent with the historical usage of the site. As a proactive measure, mitigation systems will be installed in any onsite buildings. Buildings that have parking garages below grade will be equipped with active ventilation systems in the garages that will minimize exposure to potential contamination from subsurface vapors onsite. Any background contamination present in the parking garages due to the operation of vehicles is outside the scope of this exposure assessment. Buildings to be installed on grade will be designed and constructed with a sub slab depressurization system (SSDS). The SSDS will be an

active system designed to mitigate potential soil vapor intrusion.

Exposure Media and Route	Human Exposure Assessment		
Direct contact with surface soils and	People will not come into contact with		
incidental ingestion	contaminated surface soils after installation of		
	engineered cover.		
Direct contact with subsurface soils and	Potential risk for contact when ground-		
incidental ingestion	intrusive work is completed onsite.		
Ingestion of groundwater	Contaminated groundwater is not being used		
	for drinking water or ancillary uses. Private		
	wells will not be installed on the property.		
	Potential of incidental ingestion during		
	handling of groundwater during site activities.		
Direct contact with groundwater	Potential risk for contact (via dermal and/or		
	inhalation exposure) only if actively pumping/		
	removing groundwater from onsite wells or		
	during deep excavations. Risk of contact		
	during other ground-intrusive activities would		
	be minimal given range of depth to		
	groundwater of 22 to 32.7 feet bgs.		
Inhalation of air (exposures related to soil	A mitigation system will be installed in any		
vapor intrusion)	onsite buildings as a proactive measure.		
	Buildings with parking garages below grade		
	will be equipped with active ventilation		
	systems. Buildings on grade will be		
	constructed with active SSDSs,		
Inhalation of particulates	Potential risk during ground-intrusive work.		
	Air monitoring will be completed during		
	excavation and other ground intrusive		
	activities, as necessary.		

 Table 3. Summary of Human Health Exposure Assessment.

5.0 RECEPTOR POPULATIONS

Based on the evaluation of the potential exposure pathways and routes at this site, the primary potentially exposed receptor populations include the following:

- Residential exposures, including potential exposure risks due to vapor intrusion and potential inhalation of particulates during ground-intrusive activities
- Onsite workers, including potential exposures during ground-intrusive activities

The planned mitigation of these exposure risks were discussed in Section 4.0 of this exposure assessment.

Other potential receptor populations could include patrons of commercial establishments onsite and people involved in recreational activities. However, the duration of exposure would be significantly shorter than onsite residents and would be mitigated through the same actions as discussed for potential residential exposures.

6.0 SUMMARY AND CONCLUSIONS

The primary COCs at this site are metals, including lead, mercury, and arsenic, and SVOCs. The presence of LNAPL in the loading rack area is also a concern in evaluating potential exposure routes. Given the plan to install an engineered cover of two (2) feet of clean fill across the site and the depth to groundwater of at least 22 feet bgs, potential human exposure risks to contamination at this site would be minimal and limited to potential soil vapor intrusion exposure, which will be addressed through installation of mitigation systems, and potential exposures during onsite ground-intrusive work, which will be addressed through air monitoring and proper training and health and safety procedures.

APPENDIX G FISH AND WILDLIFE RESOURCE IMPACT ANALYSIS (FWRIA)

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)

FISH AND WILDLIFE RESOURCE IMPACT ANALYSIS (FWRIA)

South Island Apartments Site 1 Osgood Avenue/Center Island, Town of Green Island, Albany County, New York BCP Site # C401074

August 2018

Prepared for: South Island Apartments, LLC c/o Couch White, LLP 540 Broadway, 7th Floor Albany, New York 12201-2222

Prepared by:

349 Northern Blvd. STE 3 Albany, NY 12205

Envirospec Engineering Project E17-1600

Unauthorized alteration or addition to this Document is a violation of Section 7209 Subdivision 2 of the New York State Education Law

© Copyright 2009 Envirospec Engineering

TABLE OF CONTENTS

1.0	INTRODUCTION	. 1
2.0	SITE MAPS	. 1
	2.1 Topographic Map	
	2.1.1 Habitats supporting rare, threatened or endangered species	
	2.1.2 NYS-regulated wetlands	
	2.1.3 Waterways	
	2.1.4 State Forests and Nature Preserves	. 1
	2.2 Covertype Maps	. 1
	2.2.1 Terrestrial Habitats	. 2
	2.2.2 Freshwater Habitats	. 2
	2.2.3 Rare NYS Ecological Communities	. 2
3.0	FISH AND WILDLIFE RESOURCES	. 2
	3.1 Cover Types and Vegetative Species	. 2
	3.2 Fish and Wildlife Species	
	3.3 Observations of Stress	
	3.4 Fish or Wildlife Consumption Advisories	
	3.5 Ability to Support Fish and Wildlife	
	3.6 Use of Resources by Humans	
4.0	PATHWAY ANALYSIS	1
5.0	CONTAMINANTS OF ECOLOGICAL CONCERN	
	5.1 Comparison to Relevant Standards	
	5.2 Contaminants Relevant to Exposure Pathways	
	5.2.1 Subsurface Soils	
	5.2.2 Bank Samples	
	5.2.3 Sediment Samples	
	5.3 Potential Effects on Fish and Wildlife	
	5.3.1 Metals	
	5.3.2 SVOCs	10
	5.3.3 Pesticides	11
6.0	SUMMARY AND CONCLUSIONS	12
7.0	REFERENCES	12

TABLES

Table 1Review of Potential Exposure Pathways	
Table 2Comparison of soil data to Ecological Soil Cleanup	Objectives
Table 3Comparison to Sediment Guidance Values	
Table 4 Contaminants Exceeding Standards or Guidance Val	lues
Table 5Summary of Potential Effects of Contaminants on fi	sh and wildlife.

FIGURES

- Figure 1 National Wetlands Inventory Map
- Figure 2 Significant Natural Communities Map
- Figure 3 Rare Species Locations Map

1.0 INTRODUCTION

A Fish and Wildlife Resources Impact Analysis (FWRIA) was completed for the site. Potential exposure pathways and potential impact on nearby resources was evaluated. The supporting information used to complete the analysis and form the conclusions regarding the potential for impacts are addressed in the following sections.

2.0 SITE MAPS

2.1 Topographic Map

The topographic maps of the site are provided in Figures 1 and 2. The maps illustrate areas on the National Wetlands Inventory and other significant habitats and waterways within one-half (1/2) mile of the site.

2.1.1 Habitats supporting rare, threatened or endangered species

According to Environmental Resource Mapper, habitats in the area include riverine, freshwater forested, and shrub wetland areas.

2.1.2 NYS-regulated wetlands

There are no NYS-regulated wetlands. However, there are two areas and a perimeter of a third freshwater forested/ shrub wetlands on the national inventory of wetlands.

2.1.3 Waterways

The primary waterway within one-half mile of the site is the Hudson River, which is Classification C. According to the Environmental Resource Mapper, there is also a Classification D stream and a Classification C stream within the one-half mile distance. The Hudson River is also a significant coastal fish and wildlife habitat area.

2.1.4 State Forests and Nature Preserves

There are no state forests or nature preserves located within one-half mile of the site.

2.2 Covertype Maps

The covertype maps are provided in Figure 1, 2, and 3 and focus on habitat areas within one-half mile of the site.

2.2.1 Terrestrial Habitats

The site is located in an urban environment. There are trees and shrubs in the area but mostly for privacy/scenery.

2.2.2 Freshwater Habitats

Freshwater habitats within one-half mile of the site include freshwater tidal swamps and wetlands on the national inventory that are not state-regulated.

2.2.3 Rare NYS Ecological Communities

Environmental Resource Mapper indicates that the entire area around the site contains rare ecological communities. Specific plant and animal species expected in this area are discussed in Section 3.0.

3.0 FISH AND WILDLIFE RESOURCES

3.1 Cover Types and Vegetative Species

The soil on the site is essentially bare, with the exception of the bank areas that have trees and understory plants. The soil on site consists mainly of a historic fill material with rocks, broken glass, bricks, debris and gravel. The surrounding area of the site is primarily an urban environment. However, the plant species that could be expected within one-quarter mile of the site, given the proximity to the Hudson River, are summarized below (USFWS 1997):

- Endangered:: Hudson River water nymph, American waterwort, blunt-lobe grape fern
- <u>Threatened</u>: Estuary beggar-ticks, golden seal, and heartleaf plantain
- <u>Rare</u>: Bickell's Sedge, Davis Sedge, Glaucous Sedge, Mock-pennyroyal, Schweinitz's flatsedge, and Weak Stellate Sedge
- <u>Other vegetative species</u>: water milfoil, water celery, water chestnut, common reed, narrow-leaved cattail, pondweeds, bur-reed, red maple, black ash, slippery elm, alders, arrowwood, poison ivy, ferns, knotweeds, and spotted jewelweed

3.2 Fish and Wildlife Species

The types of fish and wildlife species expected within one-quarter mile of the site include the following (USFWS 1997):

- <u>Endangered</u>: Peregrine falcons, shortnosed sturgeon, atlantic sturgeon, Indiana Bat, Karner blue butterfly, and short-eared owl
- <u>Threatened</u>: American bald eagle, Northern Harrier, and Upland sandpiper
- <u>Species of special concern</u>: Spotted turtle, wood turtle, Cooper's hawk, common nighthawk, vesper sparrow
- <u>Other fish and wildlife species</u>: American shad, American eel, beetles, black bass, black crappie, black ducks, blue herring, brown billhead, caddisfly, Canadian geese, Carolina locusts, clams, common carp, coyote, crayfish, gnats, goldfish, herons, mallards, mayflies, midges, mosquitoes, mussels, northern pike, passerine birds, pumpkinseed, raptors, rodents, shore birds, smallmouth bass, snails, spiders, squirrels, striped bass, stoneflies, sunfish, true flies, waterfowl, white catfish, white sucker, yellow perch.

3.3 Observations of Stress

There are potential observations of stress based on limited plant growth and the condition of trees previously present on the banks of the site. This is likely due to the general condition of the fill material, which includes a significant amount of gravel and brick. This material is not conducive to healthy plant growth.

3.4 Fish or Wildlife Consumption Advisories

The Hudson River in the area of the site has a fish consumption advisory related to PCBs. The details of this advisory are as follows (NYSDOH 2017):

- Women under 50 and children under 15 should not eat any fish from the Hudson River.
- Men over 15 and Women over 50 one meal per month of one of the following species: alewife, blue herring, rock bass, or yellow perch. They should not consume any other species of fish from this section of the Hudson River.

3.5 Ability to Support Fish and Wildlife

The area is known to be able to support fish and wildlife based on field observations of American bald eagles, coyotes, rabbits, raccoons and squirrels in the area. The Hudson River is a known habitat area for aquatic species.

3.6 Use of Resources by Humans

The site area will be developed for mixed commercial and residential use, and hunting will not be occurring on the property. The Hudson River is used for recreational activities and fishing, though there are limitations on fish consumption in this area, as discussed in Section 3.4.

4.0 PATHWAY ANALYSIS

Potential ecological exposure pathways are summarized in Table 1. The table summarizes whether a pathway could be complete at this site. No conclusions are provided in this table regarding the potential for adverse impacts or the significance of potential exposure.

Medium	Exposure	Route of	Pathway	Pathway Potentially
	L	Exposure		Complete
Surface Soil	Direct Contact	Ingestion	Ingestion of soils containing contaminants by wildlife and soil organisms	No. The site will have an engineered cover system. Surface soils post development will not be contaminated.
Surface Soil	Direct Contact	Dermal	Dermal contact with soil containing contaminants by wildlife and soil organisms.	No. The site will have an engineered cover system. Surface soils post development will not be contaminated.
Subsurface Soil	Direct Contact	Ingestion	Ingestion of soils containing contaminants by wildlife and soil organisms	Yes. Ingestion is possible by soil macro-organisms and micro- organisms.
Subsurface Soil	Direct Contact	Dermal	Dermal contact with soil containing contaminants by wildlife and soil organisms.	Yes. Dermal contact with contaminated soil is possible by soil macro-organisms and micro- organisms.
Bank Surface Soils	Direct Contact	Ingestion	Ingestion of soils containing contaminants by wildlife and soil organisms	No. The site will have an engineered cover system. Surface soils post development will not be contaminated.
Bank Surface Soils	Direct Contact	Dermal	Dermal contact with soil containing contaminants by wildlife and soil organisms.	No. The site will have an engineered cover system. Surface soils post development will not be contaminated.
Bank Subsurface Soils	Direct Contact	Ingestion	Ingestion of soils containing contaminants by wildlife and soil organisms.	Yes. Ingestion is possible by soil macro-organisms and micro- organisms.
Bank Subsurface Soils	Direct Contact	Dermal	Dermal contact with soil containing contaminants by wildlife and soil organisms.	Yes. Dermal contact with contaminated soil is possible by soil macro-organisms and micro- organisms.
Sediments	Direct Contact	Ingestion	Ingestion of sediments containing contaminants by wildlife and fish.	Yes. Ingestion of contaminants in sediment by wildlife and fish is possible

Table 1. Review of Potential Exposure Pathways.

Medium	Exposure	Route of	Pathway	Pathway Potentially
		Exposure		Complete
Sediments	Direct Contact	Dermal	Dermal contact with sediments containing contaminants by wildlife and fish.	Yea. Dermal contact with sediments containing contaminants by wildlife and fish.
Plants	Soil to Plants that grow below cover (Bio- concentration)	Ingestion	Plants incorporating contaminants from soil are ingested by wildlife and soil organisms.	Yes. Wildlife and soil organisms may ingest contaminated plant biomass.
Soil Fauna	Soil to Soil Fauna (Bio- concentration)	Ingestion	Soil fauna (e.g. insects, worms, etc.) which have incorporated contaminants from soil are consumed by wildlife.	Yes. Soil fauna having incorporated contaminants from contaminated soil may be ingested by wildlife.
Sediment Fauna	Sediment to Sediment Fauna (Bio- concentration)	Ingestion	Sediment fauna which have incorporated contaminants from the sediment are consumed by wildlife.	Yes. Sediment fauna which have incorporated the contaminants from the sediment may be consumed by terrestrial and aquatic wildlife.
Prey Animals	Plants to Prey Animals (Bio- Magnification) Mercury	Ingestion	Prey animals which have ingested contaminants from land and aquatic plants are consumed by predators.	Yes. Prey animals which have ingested the contaminants from the land and aquatic plants may be consumed by predators.
Prey Animals	Soil Fauna to Prey Animals (Bio- concentration)	Ingestion	Prey animals which have ingested soil fauna containing the contaminants may be consumed by predators.	Yes. Prey animals which have ingested soil fauna containing the contaminants may be consumed by predators.
Prey Animals	Sediment Fauna to Prey Animals (Bio- magnification) Mercury	Ingestion	Prey animals which have ingested sediment fauna containing contaminants are consumed by predators.	Yes. Prey animals which have ingested sediment fauna containing contaminants may be consumed by predators.

Surface soils, both on the main part of the site and the bank, will be covered with at least two (2) feet of clean fill, a retaining wall, building foundations or an asphalt cover. Therefore, direct contact with soils will not be a concern post development.

The potentially complete pathways that could lead to bioaccumulation of contaminants through the terrestrial food chain include the following:

- Ingestion of soil organisms that have consumed contaminants

- Ingestion of plants that have accumulated contaminants through root systems that extend below the two feet of clean fill material.
- Direct ingestion of contaminated sediment.
- Ingestion of sediment fauna that have consumed contaminated sediment
- Predators consuming prey that has ingested contaminants through ingestion of soil organisms, sediment, sediment fauna, and/or plants

The potential for exposure related to these pathways, with the exception of contaminated sediments, would be minimized or eliminated by the installation of the engineered cover across the site. However, soil organisms and some plant root systems can be exposed to soils below two feet into the subsurface, so these pathways cannot be completely eliminated

The potentially complete pathways that could lead to bioaccumulation of contaminants through the aquatic food chain include the following:

- Direct ingestion of contaminated sediments
- Ingestion of sediment fauna that have ingested contaminated sediments
- Predators consuming prey that has ingested contamination through ingestion of sediment and/or sediment fauna

To determine the significance of these pathways, the specific contaminants, their environmental fate, and toxicity need to be considered. These considerations are discussed further in Section 5.0.

5.0 CONTAMINANTS OF ECOLOGICAL CONCERN

To determine the potential contaminants of ecological concern and the likelihood of a potential adverse impact, site data were first compared to relevant standards. The exceedances were then evaluated in the context of the exposure pathways of concern at the site, which were discussed in Section 4, and the toxicity of the contaminants to determine the potential for adverse impacts to fish and wildlife. The results of this evaluation are discussed in the following sections.

5.1 Comparison to Relevant Standards

The data for surface soil, subsurface soil, bank, and sediment samples were compared to the relevant ecological standards. Soil and bank samples were compared to the NYCRR Part 375 SCOs for Protection of Ecological Resources and CP-51 Supplemental SCOs for Protection of Ecological Resources. The results of this comparison are provided in Table 2.

The contaminants at the site are consistent with those found in historical fill. There were no

source areas of metals or SVOC contamination identified. LNAPL was identified in the former loading rack and MW-5 areas of the site, which was addressed through the DEC-approved IRM.

Sediment sample results were compared to the SGVs from the NYSDEC *Screening and Assessment of Contaminated Sediment* (NYSDEC 2014) document. Sediment samples only showed exceedances of SGVs for metals, which are summarized in Table 3. Lead exceeded the Class C SGV (130 mg/kg) at SE-7, where it was detected at 142 mg/kg. The toxic effects of PAHs are expected to be additive, and the sum of the concentrations of PAHs needs to be compared to the SGV of 4 mg/kg. None of the sampling locations exceeded this total value for PAHs.

Analyte	Exceeds Ecological SCO in 0 to 6" bank sample(s)?	Exceeds Ecological SCO in 6" to 2' bank sample(s)?	Exceeds Ecological SCO in surface soils sample(s)?	Exceeds Ecological SCO in subsurface soils sample(s)?
		Metals		
Aluminum	Yes (2)	Yes (3)	Yes (13)	Yes (18)
Antimony	No	No	No	Yes (2)
Arsenic	Yes (1)	Yes (4)	Yes (8)	Yes (20)
Barium	No	Yes (1)	No	Yes (2)
Cadmium	No	No	No	Yes (1)
Calcium	Yes (7)	Yes (7)	Yes (7)	Yes (18)
Chromium	Yes (9)	Yes (9)	Yes (18)	Yes (36)
Cobalt	Yes (1)	Yes (1)	Yes (2)	No
Copper	Yes (6)	Yes (4)	Yes (11)	Yes (31)
Lead	Yes (8)	Yes (9)	Yes (15)	Yes (33)
Manganese	No	No	Yes (1)	Yes (2)
Mercury	Yes (7)	Yes (8)	Yes (13)	Yes (28)
Nickel	Yes (3)	Yes (3)	Yes (9)	Yes (13)
Selenium	No	No	No	Yes (2)
Silver	Yes (7)	Yes (6)	Yes (12)	Yes (25)
Thallium	No	No	No	Yes (1)
Vanadium	No	No	Yes (3)	Yes (3)
Zinc	Yes (9)	Yes (9)	Yes (16)	Yes (29)
SVOCs				•

Table 2. Comparison of soil data to Ecological Soil Cleanup Objectives.

Analyte	Exceeds Ecological SCO in 0 to 6" bank sample(s)?	Exceeds Ecological SCO in 6" to 2' bank sample(s)?	Exceeds Ecological SCO in surface soils sample(s)?	Exceeds Ecological SCO in subsurface soils sample(s)?
Benzo(a)pyrene	Yes (1)	Yes (1)	No	Yes (1)
Di-n-butylphthalate	Yes (2)	No	No	No
Pesticides				
4,4'-DDD	Yes (3)	Yes (6)	Yes (3)	Yes (3)
4,4'-DDE	No	No	Yes (2)	Yes (1)
4,4'-DDT	Yes (4)	Yes (7)	Yes (5)	Yes (4)
Dieldrin	No	No	Yes (1)	Yes (1)

Table 3. Comparison to Sediment Guidance Values

Analyta	Within Class B SGV	Class C
Analyte	Range?	Exceedances
Copper	Yes, 2 locations	No
Lead	Yes, 1 location	Yes, 1 location
Mercury	Yes, 1 location	No
Silver	Yes, 5 locations	No
Zinc	Yes, 1 location	No

5.2 Contaminants Relevant to Exposure Pathways

The contaminants relevant to the potential exposure pathways in each media are discussed in the following sections for soils, bank samples, and sediments.

Exposure Medium	Potentially relevant pathways	Contaminants Exceeding Relevant Standards or Guidance Values
Subsurface Soils	- Direct ingestion of contaminants by soil	- Metals: aluminum, antimony, arsenic,
	organisms	barium, cadmium, calcium, chromium,
	- Dermal contact with contaminants by soil	cobalt, copper, lead, manganese, mercury,
	organisms	nickel, selenium, silver, thallium, vanadium,
	- Accumulation in plants with roots extending	and zinc
	below the two (2) foot layer of clean fill	- <u>SVOCs</u> : Benzo(a)pyrene
	- Ingestion of soil organisms by wildlife	- <u>Pesticides</u> : 4,4'-DDD, 4,4'-DDE, 4,4'-
	- Ingestion of plants with roots extending below	DDT, and dieldrin
	the two (2) foot layer of clean fill by wildlife	

Table 4. Contaminants Exceeding Standards or Guidance Values

Exposure Medium	Potentially relevant pathways	Contaminants Exceeding Relevant Standards or Guidance Values
	- Predators consuming prey that has ingested	
	soil organisms and/or plants	
Bank Subsurface Soils	- Direct ingestion of contaminants by soil	- Metals: aluminum, arsenic, barium,
	organisms	calcium, chromium, cobalt, copper, lead,
	- Dermal contact with contaminants by soil	mercury, nickel, silver, and zinc
	organisms	- SVOCs: Benzo(a)pyrene and di-n-
	- Accumulation in plants with roots extending	butylphthalate
	below the two (2) foot layer of clean fill	- Pesticides: 4,4'-DDD and 4,4'-DDT
	- Ingestion of soil organisms by wildlife	
	- Ingestion of plants with roots extending below	
	the two (2) foot layer of clean fill by wildlife	
	- Predators consuming prey that has ingested	
	soil organisms and/or plants	
Sediment	- Ingestion of sediments containing	- <u>Metals</u> : Lead
	contaminants by wildlife and fish.	
	- Dermal contact with sediments containing	
	contaminants by wildlife and fish.	
	- Sediment fauna which have incorporated	
	contaminants from the sediment are consumed	
	by wildlife.	

5.2.1 Subsurface Soils

Soils currently at the surface of the site would be covered by at least two (2) feet of clean fill after development or an alternate engineered cover. Therefore, the surface soils after installation of the engineered cover would be clean, and the exceedances observed for surface soils data collected during the RI should only be considered relevant to the subsurface soil exposure pathways, which are summarized in Table 4. The potential contaminants that could be relevant to these pathways are also included in the table. The list of contaminants is based on the exceedances summarized in Table 2 for surface and subsurface sampling data from the RI.

5.2.2 Bank Samples

Soils currently at the surface of the bank would also be covered with at least two (2) feet of clean fill or an alternate engineered cover after development. Therefore, as for the soils across the rest of the site, only the subsurface soil exposure pathways are potentially complete at this site, which are also provided in Table 4. The list of contaminants is based on the exceedances summarized in Table 2 for surface and subsurface bank sampling data from the RI.

5.2.3 Sediment Samples

As discussed in Section 5.1, the Class C SGV for lead was exceeded at one location, and some locations showed metals concentrations within the Class B SGV ranges. Potentially relevant pathways for the sediment at this site are summarized in Table 4.

Direct comparison of sediment concentrations to SGV values has limitations, as discussed in the SGV guidance, and should not be used as the only indicator of the potential for adverse effects. The bioavailability of metals is correlated more to the concentrations in interstitial pore water (NYSDEC 2014).

One pore water sample was collected at this site, and no exceedances of the Class C aquatic chronic NYCRR 703.5 surface water standards were observed.

5.3 Potential Effects on Fish and Wildlife 5.3.1 Metals

An overview of the potential effects of the metals listed in Table 4 on fish and wildlife species is provided in Table 5. Effects in the aquatic food chain are only included for lead because no other metals exceeded the Class C SGV.

As discussed in Section 5.2.3, the potential for adverse effects of metals is dependent on the bioavailability of a given metal. The availability of a given metal in the environment is dependent on many factors, such as speciation, the ability of the metal to form complexes or to sorb strongly to subsurface soils or sediments, pH, and redox conditions. Therefore, the potential for toxic effects to fish and wildlife cannot be solely based on comparison to SCOs. The lead levels at the site are consistent with lead levels found in historic fill. No source area of lead was identified. With the engineered cover, the risk to fish and wildlife will be minimized.

5.3.2 SVOCs

An overview of the potential effects of benzo(a)pyrene and di-n-butylphthalate on fish and wildlife species is provided in Table XX5. Though some bioaccumulation in some aquatic species have been observed for both of these compounds, biomagnification in terrestrial food chains is not expected. Bioaccumulation through aquatic food chains is not relevant to these compounds at this site given the lack of exceedances of SGVs. A limited source area of SVOCS was identified at the site. However, the area was small and levels were not significant risk to fish and wildlife.

5.3.3 Pesticides

An overview of potential effects of 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and dieldrin on fish and wildlife species is provided in Table 5. Though DDD, DDE, DDT, and dieldrin are known to bioaccumulate and biomagnify through aquatic food chains, this pathway is not relevant at this site given that exceedances were only observed in soils. There are some indications of bioavailability of DDD, DDE, and DDT to some plants. Dieldrin is known to biomagnify through terrestrial food chains. No source area of pesticides was identified at the site. The levels found were low and pesticides were not identified as a contaminant of concern for this site. Therefore, the risk to fish and wildlife is minimal.

Analyte	Potential Effects of Contaminant on Fish and Wildlife	References
Aluminum	Does not bioaccumulate to a significant extent.	ATSDR 2008
Antimony	Can accumulate through plant root systems.	ATSDR 2017
Arsenic	Plants can accumulate, but generally at low levels	ATSDR 2007
Barium	Very little accumulation observed in terrestrial plant species.	ATSDR 2007a
Cadmium	Bioaccumulates terrestrial species and plants. Evidence for biomagnification is inconclusive.	ATSDR 2012
Chromium	Not expected to bioaccumulate or biomagnify significantly through terrestrial food chain.	ATSDR 2012a
Cobalt	Can accumulate in roots of plants, but not likely to translocate from root to the above ground plant to significant extent.	ATSDR 2004
Copper	Little evidence of bioaccumulation in low levels of the terrestrial food chain. Biomagnification in the food chain is not expected.	ATSDR 2004a
Lead	Bioconcentration may occur in aquatic species and terrestrial plants and animals, but biomagnification is not expected.	ATSDR 2007b
Mercury	Can accumulate in plants but the availability of mercury to organisms through terrestrial exposure is inconclusive. Can accumulate in earthworms.	WHO 1989
Nickel	Some accumulation in plants has been observed but biomagnification terrestrial food chains not expected.	ATSDR 2005

Table 5. Summary of Potential Effects of Contaminants on fish and wildlife.

Analyte	Potential Effects of Contaminant on Fish and Wildlife	References
Selenium	Uptake by plants may be observed.	ATSDR 2003
Silver	Uptake by plants is low. Biomagnification is not expected.	WHO 2002
Thallium	Some accumulation in plants may be observed.	ATSDR 1992
Vanadium	Some accumulation in terrestrial plant roots, with relatively little in aboveground parts of plants. Human studies suggest that biomagnification is unlikely.	ATSDR 2012b
Zinc	Essential nutrient that occurs in tissues of organisms. Biomagnification is not expected.	ATSDR 2005a
Benzo(a)pyrene	Uptake to plants and subsequent biomagnification is low. May be some accumulation through ingestion of soil or soil organisms in terrestrial food chain.	ATSDR 1995
Di-n-butylphthalate	Biomagnification in terrestrial animals is unlikely given ability to metabolize it.	WHO 1997
4,4'-DDD	Bioavailable to plants.	ATSDR 2002a
4,4'-DDE	Bioavailable to plants.	ATSDR 2002a
4,4'-DDT	Bioavailable to plants. Soil bound DDT is bioavailable to earthworms.	ATSDR 2002a
Dieldrin	Dieldrin Bioconcentrates and biomagnifies in terrestrial food chains.	

6.0 SUMMARY AND CONCLUSIONS

Though potentially complete pathways were identified in the FWRIA, there were no source areas of contamination identified at the site during the RI. Levels of metals identified were expected, as the site consists primarily of historical fill material. The final remedy for the site will be an engineered cover system which will eliminate the most probable route of exposure for fish and wildlife. Impacts from source contamination to the Hudson River from the site were not identified, as there were no source areas found. The impacts to the Hudson River are those associated with the historical fill and do not require mitigation. Based on these findings, no additional ecological assessment is needed.

7.0 REFERENCES

ATSDR. 1990. Toxicological Profile for Silver. https://www.atsdr.cdc.gov/toxprofiles/tp146.pdf

ATSDR. 1992. Toxicological Profile for Thallium. https://www.atsdr.cdc.gov/toxprofiles/tp54.pdf

ATSDR. 1995. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf

ATSDR. 1999. Toxicological Profile for Mercury. https://www.atsdr.cdc.gov/toxprofiles/tp46.pdf

ATSDR. 2002. Toxicological Profile for Aldrin/ Dieldrin. https://www.atsdr.cdc.gov/toxprofiles/tp1.pdf

ATSDR. 2002a. Toxicological Profile for DDT, DDE, and DDD. https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf

ATSDR. 2003. Toxicological Profile for Selenium. https://www.atsdr.cdc.gov/toxprofiles/tp92.pdf

ATSDR. 2004. Toxicological Profile for Cobalt. https://www.atsdr.cdc.gov/toxprofiles/tp33.pdf

ATSDR. 2004a. Toxicological Profile for Copper. https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf

ATSDR. 2005. Toxicological Profile for Nickel. https://www.atsdr.cdc.gov/toxprofiles/tp15.pdf

ATSDR. 2005a. Toxicological Profile for Zinc. https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf

ATSDR. 2007. Toxicological Profile for Arsenic. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf

ATSDR. 2007a. Toxicological Profile for Barium and Barium Compounds. https://www.atsdr.cdc.gov/toxprofiles/tp24.pdf

ATSDR. 2007b. Toxicological Profile for Lead. https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf

ATSDR. 2008. Toxicological Profile for Aluminum. https://www.atsdr.cdc.gov/toxprofiles/tp22.pdf

ATSDR. 2012. Toxicological Profile for Cadmium. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf

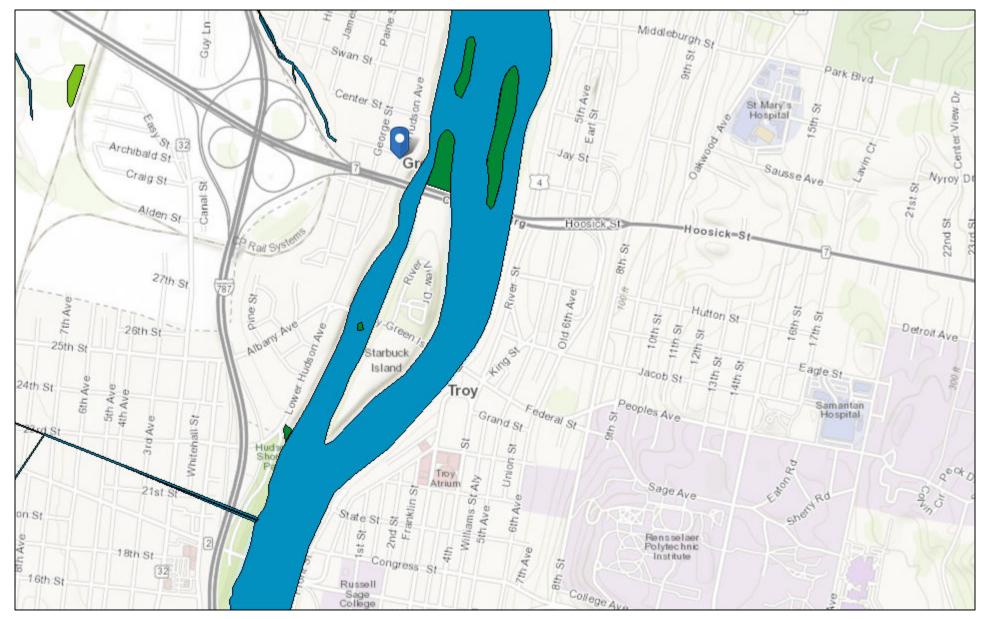
ATSDR. 2012a. Toxicological Profile for Chromium. https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf

ATSDR. 2012b. Toxicological Profile for Vanadium. https://www.atsdr.cdc.gov/toxprofiles/tp58.pdf

ATSDR. 2017. Toxicological Profile for Antimony and Compounds. Draft for Public Comment. https://www.atsdr.cdc.gov/toxprofiles/tp23.pdf

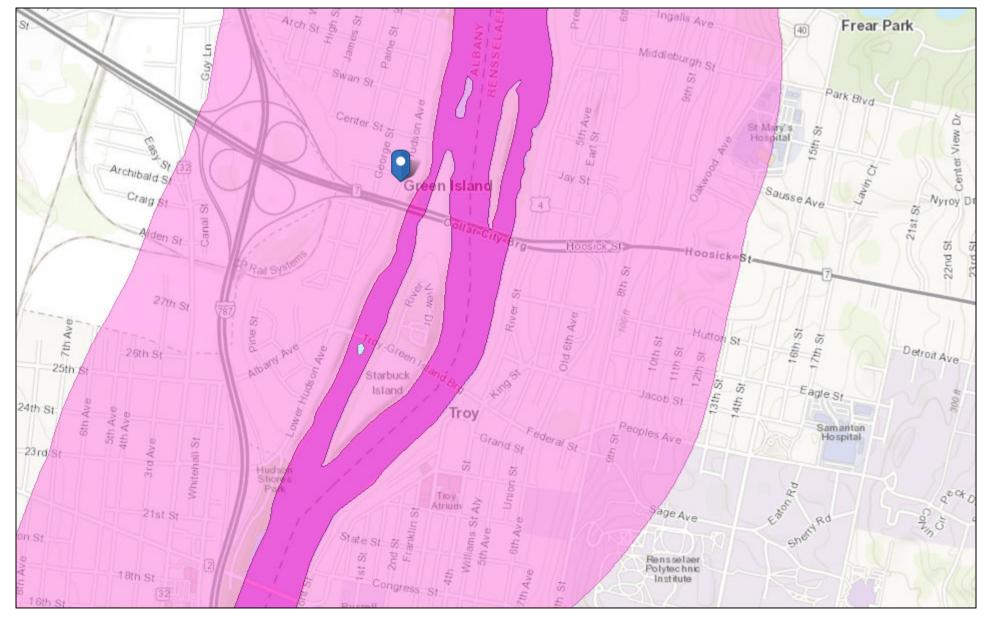
NYSDEC. 2014. Screening and Assessment of Contaminated Sediment. http://www.dec.ny.gov/docs/fish_marine_pdf/screenasssedfin.pdf

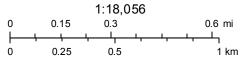
NYSDOH. 2017. Hudson River: Health Advise on Eating Fish You Catch. https://www.health.ny.gov/publications/2794.pdf U.S. Fish and Wildlife Service (USFWS). 1997. Significant Habitats and Habitat Complexes of the New York Bight Watershed, Upper Hudson River Estuary Complex #33, *Upper Hudson River Estuary – National Conservation Training Center*, https://nctc.fws.gov/pubs5/web_link/text/upp_hud.htm


WHO. 1989. Environmental Health Criteria 86. Mercury – Environmental Aspects. http://www.inchem.org/documents/ehc/ehc/ehc086.htm

WHO. 1997. Environmental Health Criteria 189. Di-n-butyl Phthalate. http://www.inchem.org/documents/ehc/ehc/ehc189.htm

WHO. 2002. Concise International Chemical Assessment Document 44. Silver and Silver Compounds: Environmental Aspects. <u>http://www.who.int/ipcs/publications/cicad/en/cicad44.pdf</u>

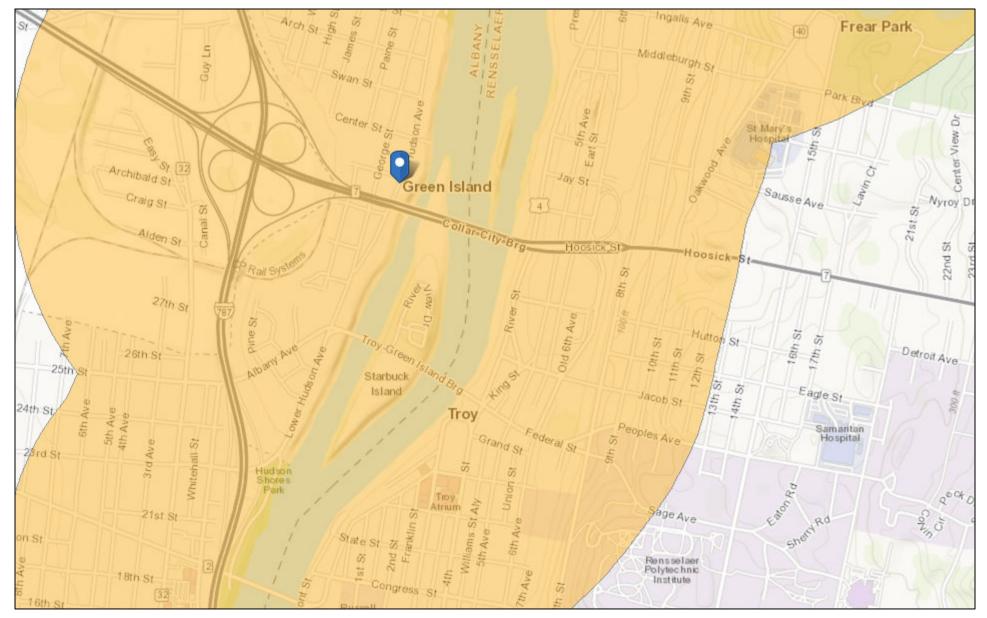

Figure 1 - Environmental Resource Mapper - National Wetlands Inventory

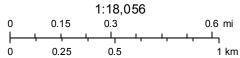


- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine

Sources: Esri, HERE, DeLorne, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

Figure 2 - Environmental Resource Mapper - Significant Natural Communities


Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,


Significant Natural Communities

Natural Communities Near This Location

NYS Department of Environmental Conservation Not a legal document

Figure 3 - Environmental Resource Mapper - Rare Species Locations

Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

NYS Department of Environmental Conservation Not a legal document

APPENDIX H DATA USABILITY SUMMARY REPORT (DUSR) (SEPARATE ELECTRONIC FILE)

349 Northern Boulevard Suite 3• Albany, NY 12204 • Phone: 518.453.2203 • Fax: 518.453.2204 A Woman Owned Business Enterprise (WBE)