October 5, 2005

Ecology & Environment 368 Pleasantview Drive Lancaster, NY 14086 Attn: Mr. Jon Nickerson

RE: Client Project: Old Troy Landfill

Lab Work Order #: D1004

Dear Mr. Nickerson:

Enclosed please find the data report of the required analyses for the samples associated with the above referenced project.

If you have any questions regarding this report, please call me.

We appreciate your business.

Sincerely,

Agnes R. Ng

CLP Project Manager

* Data Summary Pack *

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: Old Troy Landfill

SDG: **D1004**

			Ar	nalytical Requi	rements	
Customer <u>Sample ID</u>	Laboratory <u>Sample ID</u>	VOA GC/MS <u>Method #</u>	SVOA GC/MS <u>Method #</u>	Pest/PCB Method #	<u>Metals</u>	<u>Other</u>
SB-RB-W-R	D1004-01	ASP	ASP	ASP	ASP	SEE DATA
MW12-W-0	D1004-02		ASP	ASP	ASP	SEE DATA
MW12-O-0805	D1004-03					SEE DATA
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
				<u></u>		
		<u> </u>				
			_			
					· · · · · · · · · · · · · · · · · · ·	

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Volatile (VOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Date <u>Collected</u>	Date Received by Lab	Date <u>Extracted</u>	Date <u>Analyzed</u>
D1004-01A	AQ	08/24/2005	08/25/2005	NA	08/26/2005
		· ·			
		:			
<u> </u>		<u> </u>			

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Semivolatile (SVOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Date <u>Collected</u>	Date Received by Lab	Date Extracted	Date <u>Analyzed</u>
D1004-01C	AQ	08/24/2005	08/25/2005	08/29/2005	09/13/2005
D1004-02B	AQ	08/24/2005	08/25/2005	08/29/2005	09/13/2005
				:	

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Pesticides/PCB Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Date <u>Collected</u>	Date Received by Lab	Date <u>Extracted</u>	Date <u>Analyzed</u>
D1004-01C	AQ	08/24/2005	08/25/2005	08/29/2005	09/21/2005
D1004-02B	AQ	08/24/2005	08/25/2005	08/29/2005	09/21/2005

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Volatile (VOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory <u>Sample ID</u>	<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Low/Medium <u>Level</u>	Dil/Conc <u>Factor</u>
D1004-01A	AQ	ASP	NA	Low	1

		-			
					- <u> </u>

,,,,,					
					
		3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3			
					···

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Semivolatile (SVOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Auxiliary <u>Cleanup</u>	Dil/Conc <u>Factor</u>
D1004-01C	AQ	ASP	3520C	NA	1
D1004-02B	AQ	ASP	3520C	NA NA	1
	<u> </u>	<u> </u>			
					
A					

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Pesticides/PCB Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Auxiliary Cleanup	Dil/Conc <u>Factor</u>
D1004-01C	AQ	ASP	3510C	Florisil/Sulfur	1
D1004-02B	AQ	ASP	3510C	Florisil/Sulfur	1

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Inorganic Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory <u>Sample ID</u>	<u>Matrix</u>	Metals <u>Requested</u>	Date Received by Lab	Date <u>Analyzed</u>
D1004-01D	AQ	ASP	08/25/2005	9/2/05 - 9/15/05
D1004-02A	AQ	ASP	08/25/2005	9/2/05 - 9/15/05
	483-4			

Analytical Data Package for Ecology & Environment

Client Project No.: Old Troy Landfill

Mitkem Work Order ID: D1004

October 5, 2005

Prepared For:

Ecology & Environment 368 Pleasantview Drive Lancaster, NY 14086 Attn: Mr. Jon Nickerson

Prepared By:

Mitkem Corporation

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

(.01) .5= 5 .00

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Ecology & Environment's Old Troy project. Under this deliverable, analysis results are presented for one aqueous sample that was received on August 26, 2005. Analyses were performed per specifications in the project's contract and the chain of custody forms. Due to the limitations in CLP data reporting software, client sample IDs were shortened. A table of full ID, shortened ID and laboratory ID follows this narrative, along with the Mitkem Work Order.

The analyses were performed and reported per NYSDEC ASP (2000 update) requirement for Category B deliverable with the exception of hardness, TKN, ammonia, nitrate, chemical oxygen demand, total organic carbon, total dissolved solids, alkalinity, color, bromide, chloride and sulfate. The analysis results for hardness, TKN, ammonia, nitrate, chemical oxygen demand, total organic carbon, total dissolved solids, alkalinity, color, bromide, chloride and sulfate are reported in the standard Mitkem format with supporting raw data.

The following observation and/or deviations are observed for the following analyses:

1. Overall observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Trap used for instrument V6: OI Analytical #10 trap containing 8 cm each of Tenax, silica gel and carbon molecular sieve.

GC column used: 30 m x 0.25 mm id (1.4 um film thickness) DB-624 capillary column.

The aqueous sample was not acid preserved; pH 7.

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

3. Semivolatile Analysis:

GC column: 30 m x 0.25 mm id (0.5 um film thickness) DB-5MS capillary column

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of high recovery of 4-nitrophenol.

Sample analysis: no other unusual observation was made for the analysis.

4. Pesticides/PCB Analysis:

GC column used: 30 m x 0.53 mm id (0.5 um film thickness) CLPPest and 30 m x 0.53 mm id (0.42 um film thickness) CLPPestII megabore columns

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

5. Metals Analysis:

Mercury was analyzed using a Perkin Elmer Model 100 FIMS cold vapor atomic absorption analyzer. The other elements were analyzed using either a Perkin Elmer Model 3100XL Optima or a Perkin Elmer Model 4300DV ICAP.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on sample SB-RB-W-R. Spike recoveries were within the QC limits with the exception of lead. Lead is flagged with a "N" on the data report forms. A post digest spike was performed for lead.

Matrix duplicate: matrix duplicate was performed on sample SB-RB-W-R. Replicate RPDs were within the QC limits with the exception of iron. Iron is flagged with an "*" on the data report forms.

Sample analysis: serial dilution was performed on sample SB-RB-W-R. Replicate RPDs within the QC. No other unusual observation was made for the analysis.

6. Cyanide Analysis:

The cyanide samples were prepared using minidistill apparatus by Kontes. The resultant distillates were analyzed using a Lachat QuikChem 8000 autoanalyzer.

Lab control sample: spike recovery was within the QC limits.

Matrix spike: matrix spike was performed on sample SB-RB-W-R. Spike recovery was within the QC limits.

Matrix duplicate: matrix duplicate was performed on sample SB-RB-W-R. Replicate RPD was within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

7. Wet Chemistry Analyses:

Lab control sample: spike recovery was within the QC limits for nitrate-nitrite, total organic carbon, ammonia and TKN.

Sample analysis: TKN was detected in the method blank above the PQL. The concentration of TKN in the associated samples will be qualified with a "B". No other unusual observation was made for the analysis.

8. BOD and Phenol Analyses:

The BOD analyses were subcontracted to RI Analytical Laboratories of Warwick, RI. The RIAL report is submitted following the wet chemistry data.

Phenols were performed by sub-contract laboratory, STL Connecticut of Shelton, CT. The entire STL Connecticut report, including any notes on these analyses, is included following the Last Page of the Mitkem data report. The STL report is paginated separately from the Mitkem data report.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Ng

CLP Project Manager

10/05/05

Mitkem and Client Sample ID Summary Report*

Mitkem Workorder: D1004

Client Name: Ecology and Environm

Mitkem Sample ID	Reported Client Sample ID	Full Client Sample ID
D1004-01A	SB-RB-W-R	OTMI-SB-RB-W-R
D1004-01B	SB-RB-W-R	OTMI-SB-RB-W-R
D1004-01C	SB-RB-W-R	OTMI-SB-RB-W-R
D1004-01D	SB-RB-W-R	OTMI-SB-RB-W-R
D1004-02A	MW12-W-O	OTMI-MW12-W-O-0805
D1004-02B	MW12-W-O	OTMI-MW12-W-O-0805
D1004-03A	MW12-W-O-0805	OTMI-MW12-W-O-0805
D1004-03B	MW12-W-O-0805	OTMI-MW12-W-O-0805
D1004-03C	MW12-W-O-0805	OTMI-MW12-W-O-0805
D1004-03B	MW12-W-O-0805	OTMI-MW12-W-O-0805

^{*} If client sample ID has not been truncated, the full client sample ID is listed in the column labeled "Reported Client Sample ID"

WorkOrder: D1004	
12/Sep/05 11:25	
Mitkem Corporation	

09/16/05 Report Level: ASP-B EDD: ADAPT HC Due: PO: TN 000699.NV26.02 Case: SDG: Project: Old Troy Landfill Client ID: ENE Comments: N/A Location:

Iold MS SEL Storage □ VOA M \mathbf{z} **B**2 **B**2 **B**2 **B**2 **B**2 **B**2 Ξ \square Fax Due: OLM, NYS-Add LCS Lab Test Comments ILM5.3 plus boron ILM5.3 plus boron OLM4.2_SVOA_W OLM4.2_SVOA_W OLM4.2_VOA_W E353.2_NO2NO3 OLM4.2_PP_W OLM4.2 PP W ILM5.3_ICP_W ILM5.3 HG W ILM5.3_CN_W ILM5.3 CN W Test Code Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Aqueous Collection Date Date Received Matrix 08/25/05 08/25/05 08/25/05 08/25/05 08/26/05 08/25/05 08/25/05 08/24/05 8:15 08/24/05 8:15 08/24/05 8:15 08/24/05 8:15 08/24/05 7:45 08/24/05 7:45 08/25/05 7:35 MW12-W-O-0805 Client Sample ID SB-RB-W-R MW12-W-O MW12-W-0 SB-RB-W-R SB-RB-W-R SB-RB-W-R

D1004-01C

D1004-01B

D1004-01A

Sample ID

D1004-01D

D1004-02A

D1004-02B

D1004-03A

Client Rep: Benjamin F Dodge

1 of 2 Page

召 E2

SM4500_TKN_W

SM4500_NH3_W

00007

WorkOrder: D1004	
12/Sep/05 11:25	
Mitkem Corporation	

		F420.1	Agneons	50/96/80	50/96/80 55:2 50/56/80	WW12-W-0-0805	D1004-03C
ans 🗆 🗆		E405.1_5	Aqueous	08/26/05	08/25/05 7:35 08/26/05	D1004-03B MW12-W-O-0805	D1004-03B
fold MS SEL Storage	Lab Test Comments told	Test Code	eived Matrix	Date Rec	Collection Date Date Received Matrix	Client Sample ID	Sample ID
	Fax Due:					Comments: N/A	Сошше
09/16/05	HC Due:	PO: TN 000699.NV26.02	PO			ion:	Location:
ADAPT	EDD:		SDG:			Project: Old Troy Landfill	Proj
ASP-B	Report Level: ASP-B		Case:			Client ID: ENE	Client

Page 2 of 2

Client Rep: Benjamin F Dodge

Client: Ecology and Environment

Client Sample ID: MW12-W-O-0805

Lab ID: D1004-03

Date: 04-Oct-05

Project: Old Troy Landfill

Collection Date: 08/25/05 07:35

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
NITROGEN (NITRATE) BY AUTOMATED CD REDUCTION		E353.2_NO2I	NO3	
Nitrogen, Nitrate-Nitrite	4.5	0.50 mg/L	10 09/16/2005 13:18	20011
NITROGEN (AMMONIA) BY NESSLERIZATION METHOD		SM4500 NH3	3_W	
Ammonia-N	0.30	0.20 mg/L	1 09/12/2005 12:00	19920
NITROGEN (ORGANIC) BY MICRO-KJELDAHL METHOD		SM4500_TKM	1_W	
TKN-N	0.35 B	0.20 mg/L	1 09/03/2005 12:00	19820

R - RPD outside accepted recovery limits

E - Value above quantitation range

Ecology and Environment D1004 Work Order: CLIENT:

Old Troy Landfill

Project:

ANALYTICAL QC SUMMARY REPORT

Date: 04-Oct-05

TestCode: E353.2_NO2NO3

Sample ID MB-20011	SampType: MBLK	TestCoc	TestCode: E353.2_NO2NO3	52NO3		Prep Date: 09/16/2005	Prep Date: 09/16/2005	92	Run ID: LACHA	Run ID: LACHAT1_050916B	16B
Client ID: MB-20011 Analyte	Batch ID: 20011 Result	PQL 1	Units: mg/L L SPK value	mg/L. SPK value SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	lighLimit F	RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Nitrogen, Nitrate-Nitrite	QN	0:050									
Sample ID LCS-20011	SampType: LCS Batch ID: 20011	TestCo	TestCode: E353.2_NO2NO3 Units: mg/L	D2NO3	•	Prep Date: 09/16/2005 Analysis Date: 09/16/2005	Prep Date: 09/16/2005 alysis Date: 09/16/2005	05	Run (D: LACHA SeqNo: 397417	Run (D: LACHAT1_060916B SeqNo: 397417	16B
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	lighLimit P	Ref Val	%RPD	%RPD RPDLimit	Qual
Nitrogen, Nitrate-Nitrite	5.266	0.50	5,46	0	96.5	36.2	153		0		

CLIENT: Ecology and Environment

Work Order: D1004

Project: Old Troy Landfill

ANALYTICAL QC SUMMARY REPORT

TestCode: SM4500_NH3_W

Sample ID MB-19920 Client ID: MB-19920	SampType: MBLK Batch ID: 19920	TestCoc	TestCode: SM4500_NH3_W Units: mg/L	4H3_W	•	Prep Date: 09/10/2005 Analysis Date: 09/12/2005	Prep Date: 09/10/2005 alysis Date: 09/12/2005	105	Run ID: SPEC2 SeqNo: 389666	Run ID: SPEC2_050912A SeqNo: 389666	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Ammonia-N	QN	0.20									
Sample ID LCS-19920 Client ID: LCS-19920	SampType: LCS Batch ID: 19920	TestCoc	TestCode: SM4500_NH3_W Units: mg/L	WH3_W		Prep Date: 09/10/2005 Analysis Date: 09/12/2005	Prep Date: 09/10/2005		Run ID: SPEC2 SeqNo: 389667	Run ID: SPEC2_050912A SeqNo: 389667	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Ammonia-N	0.842	0.20	0.766	0	110	82.6	126	0	0		

J - Analyte detected below quantitation limits

Ecology and Environment CLIENT:

D1004 Work Order:

Old Troy Landfill Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SM4500_TKN_W

Sample ID MB-19820	SampType: MBLK	TestCod	TestCode: SM4500_TKN_W	TKN_W		Prep Date:	Prep Date: 09/02/2005	rð.	Run ID: SPE	Run ID: SPEC2_060903B	m
Client ID: MB-19820	Batch ID: 19820	, Cuit	Units: mg/L		•	Analysis Date: 09/03/2006	09/03/200	īĐ.	SeqNo: 389218	218	
Analyte	Result	Pal	SPK value	SPK value SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	lighLimit R	PD Ref Val	%RPD	%RPD RPDLimit	Qual
N-NXL	0.246	0.20									
Sample ID LCS-19820	SampType: LCS	TestCod	TestCode: SM4500_TKN_W	TKN_W		Prep Date:	Prep Date: 09/02/2005	δ.	Run ID: SPI	Run ID: SPEC2_050903B	m
Client ID: LCS-19820	Batch ID: 19820	5	Units: mg/L		•	Analysis Date: 09/03/2005	09/03/200	Ω	Sedino: 369219	AL7	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	%REC LowLimit HighLimit RPD Ref Val	HighLimit R	PD Ref Val	%RPD	%RPD RPDLimit	Qual
TKN-N	0.724	0.20	0.674	0	107	80	120	0	0		8

B - Analyte detected in the associated Method Blank

Date: 04-Oct-05

Client: Ecology and Environment

Client Sample ID: MW12-W-O-0805

Lab ID: D1004-03

Project: Old Troy Landfill

Collection Date: 08/25/05 7:35

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
BIOLOGICAL OXYGEN DEMAND (5 DAY) Biochemical Oxygen Demand	4.2	E405.1_5 3.0 mg/L	1 08/26/2005 0:00	SUBBED

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quanititation limits

B - Analyte detected in the associated Method Blank

DF - Dilution Factor

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

RL - Reporting Limit

00013

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Co.	ntract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D1004-01A
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8027
Level: (low/med) <u>LOW</u>	Date Received: 08/25/05
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

75-71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	<u>י</u>
75-01-4	Vinyl Chloride	10	Ū
74-83-9	Bromomethane	10	Ū
75-00-3	Chloroethane	10	Ū
75-69-4	Trichlorofluoromethane	10	Ū
75-35-4	1,1-Dichloroethene	10	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	U
79-20-9	Methyl Acetate	10	Ū
75-09-2	Methylene Chloride	10	Ū
156-60-5	trans-1,2-Dichloroethene	10	U
1634-04-4	Methyl tert-Butyl Ether	10	ט
75-34-3	1,1-Dichloroethane	10	Ū
156-59-2	cis-1,2-Dichloroethene	10	บ
78-93-3	2-Butanone	10	Ū
67-66-3	Chloroform	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
110-82-7	Cyclohexane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	Ū

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D1004-01A
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8027
Level: (low/med) <u>LOW</u>	Date Received: 08/25/05
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L O

(ug/L or ug/Kg) UG/L Q

79-01-6	Trichloroethene	10 U
108-87-2	Methylcyclohexane	10 U
78-87-5	1,2-Dichloropropane	10 U
75-27-4	Bromodichloromethane	10 U
10061-01-5	cis-1,3-Dichloropropene	10 U
108-10-1	4-Methyl-2-Pentanone	10 U
108-88-3	Toluene	10 U
10061-02-6	trans-1,3-Dichloropropene	10 U
79-00-5	1,1,2-Trichloroethane	10 U
127-18-4	Tetrachloroethene	10 Ü
591-78-6	2-Hexanone	10 U
124-48-1	Dibromochloromethane	. 10 U
106-93-4	1,2-Dibromoethane	10 U
108-90-7	Chlorobenzene	10 U
100-41-4	Ethylbenzene	10 U
1330-20-7	Xylene (Total)	
100-42-5	Styrene	
75-25-2	Bromoform	
98-82-8	Isopropylbenzene	
79-34-5	1,1,2,2-Tetrachloroethane	
541-73-1	1,3-Dichlorobenzene	10 U
106-46-7	1,4-Dichlorobenzene	10 U
95-50-1	1,2-Dichlorobenzene	10 U
96-12-8	1,2-Dibromo-3-chloropropane	10 U
120-82-1	1,2,4-Trichlorobenzene	10 U
100-41-4 1330-20-7 100-42-5 75-25-2 98-82-8 79-34-5 541-73-1 106-46-7 95-50-1 96-12-8	Xylene (Total) Styrene Bromoform Tsopropylbenzene 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dibromo-3-chloropropane	10 U

1F

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION	Contract:	SB-RB-W-R
Lab Code: MITKEM Case No.:	_ SAS No.: SDG No.:	MD1004
Matrix: (soil/water) WATER	Lab Sample ID: <u>D100</u>	4-01A
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D80	27
Level: (low/med) <u>LOW</u>	Date Received: 08/2	5/05
% Moisture: not dec.	Date Analyzed: 08/2	6/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.	<u>o</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume	:(uL)
Number TTCs found: 0	CONCENTRATION UNITS	•

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.				====
2.				
3.				
4.				
5.				
6.				
7.				
8.				
9.	1			
10.				
11. 12. 13.				
13				
14.				
15.		-		
16.				
17.				<u> </u>
18.		····		
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28. 29.				
30.				

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: LCS-19680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8023
Level: (low/med) LOW	Date Received:
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

75-71-8 Dichlorodifluoromethane 10 U 74-87-3 Chloromethane 10 U 75-01-4 Vinyl Chloride 10 U 74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 44 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U 75-15-0 Carbon Disulfide 10 U
75-01-4 Vinyl Chloride 10 U 74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 44 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U
74-83-9 Bromomethane 10 U 75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 44 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U
75-00-3 Chloroethane 10 U 75-69-4 Trichlorofluoromethane 10 U 75-35-4 1,1-Dichloroethene 44 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U
75-69-4
75-35-4
76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 U 67-64-1 Acetone 10 U
67-64-1 Acetone 10 U
0, 01 1 110000110
75 15 0 Carbon Digulfido
75 25 0 002501 52501
79-20-9 Methyl Acetate 10 U
75-09-2 Methylene Chloride 10 U
156-60-5 trans-1,2-Dichloroethene 10 U
1634-04-4 Methyl tert-Butyl Ether 10 U
75-34-3
156-59-2 cis-1,2-Dichloroethene 10 U
78-93-3 2-Butanone 10 U
67-66-3 Chloroform 10 U
71-55-6
110-82-7 Cyclohexane 10 U
56-23-5 Carbon Tetrachloride 10 U
71-43-2 Benzene 45
107-06-2 1,2-Dichloroethane 10 U

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

V6YLCS

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: LCS-19680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8023
Level: (low/med) LOW_	Date Received:
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

79-01-6	Trichloroethene	47	
108-87-2	Methylcyclohexane	10	Ū
		10	- - - - - -
78-87-5	1,2-Dichloropropane	10	- U
75-27-4	Bromodichloromethane		"
10061-01-5	cis-1,3-Dichloropropene	10	
108-10-1	4-Methyl-2-Pentanone	10	Ŭ
108-88-3	Toluene	49	
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	Ū
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	Ū
124-48-1	Dibromochloromethane	10	Ū
106-93-4	1,2-Dibromoethane	10	Ū
108-90-7	Chlorobenzene	50	
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (Total)	10	Ŭ
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	Ŭ
98-82-8	Isopropylbenzene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ü
95-50-1	1,2-Dichlorobenzene	10	U
96-12-8	1,2-Dibromo-3-chloropropane	10	ט
120-82-1	1,2,4-Trichlorobenzene	10	Ū

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM COR	PORATION	Contract:	MW12-W-O
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.: <u>MD1004</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	D1004-02B
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: §	S1E5939
Level: (low/med)	LOW	Date Received:	08/25/05
% Moisture:	Decanted: (Y/N)_	Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (u	nL) Date Analyzed:	09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor	: <u>1.0</u>
GPC Cleanup: (Y/N)	<u>N</u> pH: _	Extraction:	(Type) <u>CONT</u>
CAS NO. COMPOUNI)		TION UNITS: ng/Kg) <u>UG/L</u> Q

100-52-7	Benzaldehyde	10 U
108-95-2	Phenol	10 U
111-44-4	bis(2-Chloroethyl)Ether	10 U
95-57-8	2-Chlorophenol	10 U
95-48-7	2-Methylphenol	10 U
108-60-1	2,2'-oxybis(1-Chloropropane)	10 U
98-86-2	Acetophenone	10 U
106-44-5	4-Methylphenol	10 U
621-64-7	N-Nitroso-di-n-propylamine	10 U
67-72-1	Hexachloroethane	10 U
98-95-3	Nitrobenzene	10 U
78-59-1	Isophorone	10 U
88-75-5	2-Nitrophenol	10 U
105-67-9	2,4-Dimethylphenol	10 U
111-91-1	bis(2-Chloroethoxy)methane	10 U
120-83-2	2,4-Dichlorophenol	10 U
91-20-3	Naphthalene	10 U
106-47-8	4-Chloroaniline	10 U
87-68-3	Hexachlorobutadiene	10 U
105-60-2	Caprolactam	10 U
59-50-7	4-Chloro-3-Methylphenol	10 U
91-57-6	2-Methylnaphthalene	10 U
77-47-4	Hexachlorocyclopentadiene	10 U
88-06-2	2,4,6-Trichlorophenol	10 U
95-95-4	2,4,5-Trichlorophenol	25 U
92-52-4	1,1'-Biphenyl	10 U
91-58-7	2-Chloronaphthalene	10 U
88-74-4	2-Nitroaniline	25 U
131-11-3	Dimethylphthalate	10 U
606-20-2	2,6-Dinitrotoluene	10 U
208-96-8	Acenaphthylene	10 U
99-09-2	3-Nitroaniline	25 U
83-32-9	Acenaphthene	10 U

1D SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORA	ATION Contract	::	MW12-W-O
Lab Code: MITKEM Case	e No.: SAS	No.: SI	OG No.: MD1004
Matrix: (soil/water) <u>WA</u>	TER	Lab Sample ID: [01004-02B
Sample wt/vol: 100	00 (g/mL) <u>ML</u>	Lab File ID: S1	LE5939
Level: (low/med) <u>LO</u>	<u> </u>	Date Received: 0	08/25/05
% Moisture: Dec	canted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract Vol	lume: 1000 (uL)	Date Analyzed: 0)9/13/0 <u>5</u>
Injection Volume: 2	.0 (uL)	Dilution Factor:	: 1.0
GPC Cleanup: (Y/N) N		Extraction: (T	Type) <u>CONT</u>
CAS NO. COMPOUND		CONCENTRATI (ug/L or ug	ION UNITS: g/Kg) <u>UG/L</u> Q

51-28-5	2,4-Dinitrophenol	25	Ŭ
100-02-7	4-Nitrophenol	25	Ū
132-64-9	Dibenzofuran	10	Ū
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	Ū
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
100-01-6	4-Nitroaniline	25	Ū
534-52-1	4,6-Dinitro-2-methylphenol	25	Ū
86-30-6	N-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ŭ
1912-24-9	Atrazine	10	U
87-86-5	Pentachlorophenol	25	Ū
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	Ū
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	Ŭ
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b) fluoranthene	10	U
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a) pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ü
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION Contract	:
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D1004-02B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5939
Level: (low/med) LOW	Date Received: 08/25/05
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) <u>CONT</u>
Number TICs found: 1	CONCENTRATION UNITS: (ug/L or ug/Kq) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=====================================	UNKNOWN	21.01	3	J=====
2.				
2. 3.				
4.				
5.				
6.				
7.				
8.				
9. 10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				:
19.				
20.				
21.	<u></u>	<u> </u>		
22.				
24.		<u></u>		
25.		<u> </u>	<u> </u>	<u> </u>
26.			<u> </u>	
27.		<u> </u>		
28.				
29.				
30.		İ		

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB-RB-W-R

Lab Name: MITKEM CORE	PORATION C	ontract:	SB-RB-W-R
			(
Lab Code: MITKEM	Case No.:	SAS No.: SD	G No.: MD1004
Matrix: (soil/water)	WATER	Lab Sample ID: D	1004-01C
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: <u>S1</u>	E5938
Level: (low/med)	LOW	Date Received: 0	8/25/05
% Moisture:	Decanted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (uL) Date Analyzed: <u>0</u>	9/13/05
Injection Volume:	2.0 (uL)	Dilution Factor:	1.0
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (T	ype) <u>CONT</u>
CAS NO. COMPOUNI	0	CONCENTRATI (ug/L or ug	ON UNITS: //Kg) UG/L Q

(ug/L or ug/Kg) UG/L Q

100-52-7 Benzaldehyde 10 U 108-95-2 Phenol 10 U U 111-44 bis (2-Chloroethyl) Ether 10 U 95-57-8 2-Chlorophenol 10 U 95-57-8 2-Chlorophenol 10 U 95-48-7 2-Methylphenol 10 U U 98-86-1 2,2' oxybis (1-Chloropropane) 10 U U 108-60-1 2,2' oxybis (1-Chloropropane) 10 U U 106-44-5 4-Methylphenol 10 U U 106-44-5 4-Methylphenol 10 U 0 0 0 0 0 0 0 0				-
108-95-2 Phenol 10 U 111-44-4 bis(2-chloroethyl)Ether 10 U 95-57-8 2-Chlorophenol 10 U 95-57-8 2-Chlorophenol 10 U 95-48-7 2-Methylphenol 10 U 108-60-1 2,27-oxybis(1-chloropropane) 10 U U 108-60-1 2,27-oxybis(1-chloropropane) 10 U U 106-44-5 4-Methylphenol 10 U 106-44-5 4-Methylphenol 10 U 0 0 0 0 0 0 0 0	100-52-7	Benzaldehyde	10	U
95-57-8 2-Chlorophenol 10 U 95-48-7 2-Methylphenol 10 U 108-86-1 2,2'-oxybis(1-Chloropropane) 10 U 98-86-2 Acetophenone 10 U 106-44-5 4-Methylphenol 10 U 621-64-7 N-Nitroso-di-n-propylamine 10 U 67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis(2-Chloroethoxy)methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 91-57-6 2-Methylnaphthalene 10 U 97-57-6	108-95-2	Phenol	10	U
95-57-8 2-Chlorophenol 10 U 95-48-7 2-Methylphenol 10 U 108-86-1 2,2'-oxybis(1-Chloropropane) 10 U 98-86-2 Acetophenone 10 U 106-44-5 4-Methylphenol 10 U 621-64-7 N-Nitroso-di-n-propylamine 10 U 67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis(2-Chloroethoxy)methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 91-57-6 2-Methylnaphthalene 10 U 97-57-6	111-44-4	bis(2-Chloroethyl)Ether	10	Ū
95-48-7 2-Methylphenol 10 U 108-60-1 2,2'-oxybis(1-Chloropropane) 10 U 98-86-2 Acetophenone 10 U 106-44-5 4-Methylphenol 10 U 621-64-7 M-Nitroso-di-n-propylamine 10 U 67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis(2-Chloroethoxy)methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 105-67-8 4-Chloroaniline 10 U 105-60-2 Caprolactam 10 U 105-60-7 4-Chloro-3-Methylphenol 10 U 105-60-7 4-Chloro-3-Methylphenol 10 U 105-60-2 2-Methylnaphthalene 10 U 10 10 10 10 10 10	95-57-8		10	U
98-86-2 Acetophenone 10 U 106-44-5 4-Methylphenol 10 U 621-64-7 N-Nitroso-di-n-propylamine 10 U 67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Direndeny)methane 10 U 111-91-1 bis (2-Chloroethoxy)methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 92-52-4 1,1'-Biphenyl 10 U 98-06-2	95-48-7	2-Methylphenol	10	Ū
106-44-5	108-60-1	2,2'-oxybis(1-Chloropropane)	10	
621-64-7 N-Nitroso-di-n-propylamine 10 U 67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis (2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 91-57-6 2-Methylnaphthalene 10 U 91-57-6 2-Methylnaphthalene 10 U 88-06-2 2,4,6-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 92-52-4 1,1'-Biphenyl 10 U 98-74-4	98-86-2	Acetophenone	10	
67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis(2-Chloroethoxy)methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 98-74-4 2-Nitroaniline 25 U 131-11-3 Dimethy	106-44-5		10	-
67-72-1 Hexachloroethane 10 U 98-95-3 Nitrobenzene 10 U 78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis (2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroan	621-64-7	N-Nitroso-di-n-propylamine	10	
78-59-1 Isophorone 10 U 88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis (2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 74-74-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2	67-72-1		10	-
88-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis (2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 <td>98-95-3</td> <td>Nitrobenzene</td> <td>10</td> <td></td>	98-95-3	Nitrobenzene	10	
105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis(2-Chloroethoxy)methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 <td></td> <td>Isophorone</td> <td>10</td> <td></td>		Isophorone	10	
111-91-1 bis(2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U			10	_
120-83-2 2,4-Dichlorophenol 10 U 91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		2,4-Dimethylphenol	10	
91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 25 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		bis(2-Chloroethoxy)methane	10	
106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	120-83-2		10	_
87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		Naphthalene	10	
105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		4-Chloroaniline		_
59-50-7 4-Chloro-3-Methylphenol 10 U 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		Hexachlorobutadiene		
91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				
77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		4-Chloro-3-Methylphenol	the state of the s	
88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				_
95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				_
92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				_
91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				
88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		1,1'-Biphenyl		, –
131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				
606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		2-Nitroaniline	25	-
208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U		4 4		
99-09-2 3-Nitroaniline 25 U				_
		Acenaphthylene		-
83-32-9 Acenaphthene 10 U				
	83-32-9	Acenaphthene	10	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

					SB-RB-W-R
Lab	Name:	MITKEM	CORPORATION	Contract:	
T.ab	Code	мтткем	Case No.:	SAS No.:	SDG No.: MD1004

Matrix: (soil/water) WATER Lab Sample ID: D1004-01C

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S1E5938}}$

Level: (low/med) Low Date Received: 08/25/05

% Moisture: Decanted: (Y/N) Date Extracted: 08/29/05

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/13/05

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

CAS NO. COMPOUND

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

(alb 110.		, <u>, , , , , , , , , , , , , , , , , , </u>	
51-28-5	2,4-Dinitrophenol	25	Ū
100-02-7	4-Nitrophenol	25	U
132-64-9	Dibenzofuran	10	U
121-14-2	2,4-Dinitrotoluene	10	Ū
84 - 66-2	Diethylphthalate	10	U
86-73-7	Fluorene	10	U
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
100-01-6	4-Nitroaniline	25	Ŭ
534-52-1	4,6-Dinitro-2-methylphenol	25	U
86-30-6	N-Nitrosodiphenylamine (1)	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
1912-24-9	Atrazine	10	U
87-86-5	Pentachlorophenol	25	Ü
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	Ŭ
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ü
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	Ū
56-55 - 3	Benzo (a) anthracene	10	Ū
218-01-9	Chrysene	10	U
117-81-7	bis(2-Ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	Ü
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū

(1) - Cannot be separated from Diphenylamine

1G

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB-RB-W-R

Lab Name: MITKEM CORPORATION Contract	:
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: MD1004
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: D1004-01C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5938
Level: (low/med) <u>LOW</u>	Date Received: 08/25/05
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) CONT
Number TICs found: 2	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 96-76-4	PHENOL, 2,4-BIS(1,1-DIMETHYL			N.T
2.	UNKNOWN	16.77	2	NJ J
3.		20177	_	
4.				
5.				
6.				
7.				
8.				
9.			-	
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract:	S1BLCS
Lab Name: MITKEM CORPORATION Contract:	
Lab Code: MITKEM Case No.: SAS No.: SD	OG No.: MD1004
Matrix: (soil/water) WATER Lab Sample ID: Lab Sampl	CS-19698
Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1	E5928
Level: (low/med) <u>LOW</u> Date Received: _	
% Moisture: Decanted: (Y/N) Date Extracted:	08/29/05
Concentrated Extract Volume: 1000 (uL) Date Analyzed: 0	09/13/05
Injection Volume: 2.0 (uL) Dilution Factor:	1.0
GPC Cleanup: (Y/N) N pH: Extraction: (T	Type) <u>CONT</u>

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

100-35-2 Phenol 59			10	TT
111-44-4 bis(2-Chloroethyl)Ether 10 U 95-57-8 2-Chlorophenol 62 95-48-7 2-Methylphenol 10 U U 108-60-1 2,2'-oxybis(1-Chloropropane) 10 U 108-60-1 2,2'-oxybis(1-Chloropropane) 10 U 106-64-5 4-Methylphenol 10 U 106-44-5 4-Methylphenol 40 U	100-52-7	Benzaldehyde	10	U
111-91 1 1 1 1 1 1 1 1 1				
35 3				U
108-60-1 2,2'-oxybis(1-Chloropropane) 10 U 106-44-5 Acetophenone 10 U 106-44-5 A-Methylphenol 10 U 106-44-5 A-Methylphenol 10 U 106-44-5 A-Methylphenol 10 U 106-44-5 A-Methylphenol 10 U 10 10 10 10 10 10				
100 100	95-48-7	2-Methylphenol		
106-44-5	108-60-1	2,2'-oxybis(1-Chloropropane)		
100-42-3	98-86-2	Acetophenone		
10	106-44-5			<u> </u>
10		N-Nitroso-di-n-propylamine		
T8-59-1 Tsophorone 10 U	67-72-1	Hexachloroethane		
188-75-5 2-Nitrophenol 10 U 105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis (2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 120-83-2 2,4-Dichlorophenol 10 U 106-47-8 4-Chloroaniline 10 U 106-47-8 4-Chloroaniline 10 U 105-60-2 Caprolactam 10 U 105-60-2 Caprolactam 10 U 105-60-2 Caprolactam 10 U 105-7-6 2-Methylphenol 62 10 U 10 10 10 10 10 10	98-95-3	Nitrobenzene		
105-67-9 2,4-Dimethylphenol 10 U 111-91-1 bis (2-Chloroethoxy) methane 10 U 120-83-2 2,4-Dichlorophenol 10 U 106-47-8 4-Chloroaniline 10 U 106-47-8 4-Chloroaniline 10 U 105-60-2 Caprolactam 10 U 105-60-2 Caprolactam 10 U 105-50-7 4-Chloro-3-Methylphenol 62 10 U 105-50-7 4-Chloro-3-Methylphenol 62 10 U 10	78-59-1	Isophorone		
10	88-75-5			
120-83-2 2,4-Dichlorophenol 10	105-67-9	2,4-Dimethylphenol	I	
91-20-3	111-91-1	bis(2-Chloroethoxy)methane		
91-20-3 Naphthalene 10 U 106-47-8 4-Chloroaniline 10 U 87-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 62 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 25 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	120-83-2	2,4-Dichlorophenol		
100-47-8 4 Chlorodutadiene 10 U 105-68-3 Hexachlorobutadiene 10 U 105-60-2 Caprolactam 10 U 10 U 105-60-2 4 - Chloro-3 - Methylphenol 62 10 U 10 U		Naphthalene		
105-60-2 Caprolactam 10 U 59-50-7 4-Chloro-3-Methylphenol 62 91-57-6 2-Methylnaphthalene 10 U	106-47-8	4-Chloroaniline		
103-00-2 Caprolatetan 59-50-7 4-Chloro-3-Methylphenol 62 91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	87-68-3	Hexachlorobutadiene		
91-57-6 2-Methylnaphthalene 10 U 77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	105-60-2	Caprolactam		U_
77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	59-50-7			
77-47-4 Hexachlorocyclopentadiene 10 U 88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	91-57-6	2-Methylnaphthalene		
88-06-2 2,4,6-Trichlorophenol 10 U 95-95-4 2,4,5-Trichlorophenol 25 U 92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	77-47-4	Hexachlorocyclopentadiene		
92-52-4 1,1'-Biphenyl 10 U 91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	88-06-2			_
91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	95-95-4	2,4,5-Trichlorophenol		
91-58-7 2-Chloronaphthalene 10 U 88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	92-52-4	1,1'-Biphenyl		-
88-74-4 2-Nitroaniline 25 U 131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				
131-11-3 Dimethylphthalate 10 U 606-20-2 2,6-Dinitrotoluene 10 U 208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U				_
208-96-8 Acenaphthylene 10 U		Dimethylphthalate		
208-96-8 Acenaphthylene 10 U 99-09-2 3-Nitroaniline 25 U	606-20-2	2,6-Dinitrotoluene		
99-09-2 3-Nitroaniline 25 U				
				U
	83-32-9	Acenaphthene	40	

1D

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPO	ORATION Cont	ract:	S1BLCS
Lab Code: MITKEM Ca		SAS No.:SI	OG No.: MD1004
Matrix: (soil/water) [WATER	Lab Sample ID: I	CS-19698
Sample wt/vol:	1000 (g/mL) <u>ML</u>	Lab File ID: Si	LE5928
Level: (low/med)	LOW	Date Received:	
% Moisture:	Decanted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract	Volume: <u>1000</u> (uL)	Date Analyzed: 9	09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor	: 1.0
GPC Cleanup: (Y/N)	N pH:	Extraction: (Type) <u>CONT</u>
CAS NO. COMPOUND		CONCENTRAT: (ug/L or us	ION UNITS: g/Kg) <u>UG/L</u> Q

51-28-5	2,4-Dinitrophenol	25	U
100-02-7	4-Nitrophenol	68	
132-64-9	Dibenzofuran	10	G
121-14-2	2,4-Dinitrotoluene	43	
84-66-2	Diethylphthalate	10	U
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	U
100-01-6	4-Nitroaniline	25	Ū
534-52-1	4,6-Dinitro-2-methylphenol	25	Ü
86-30-6	N-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	U
1912-24-9	Atrazine	10	U
87-86-5	Pentachlorophenol	62	<u></u>
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	ט
86-74-8	Carbazole	10	Ŭ
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	40	
85-68-7	Butylbenzylphthalate	10	U
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ü
117-81-7	bis(2-Ethylhexyl)phthalate	5	J_
117-84-0	Di-n-octylphthalate	3	J
205-99-2	Benzo(b)fluoranthene	10	UU
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ŭ
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a,h)anthracene	10	U
191-24-2	Benzo(q,h,i)perylene	10	U

(1) - Cannot be separated from Diphenylamine

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D1004-02B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2408F
% Moisture: Decanted: (Y/N)	Date Received: <u>08/25/05</u>
Extraction: (Type) <u>SEPF</u>	Date Extracted: 08/29/05
Concentrated Extract Volume: 10000 (1	LL) Date Analyzed: 09/21/05
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup: (Y/N) Y

CAS	NO.	COMPOUND
- Ju	110.	COLIT COLIT

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	ט
58-89-9	gamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ŭ
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	Ü
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	2.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U.
11096-82-5	Aroclor-1260	1.0	U

EPA SAMPLE NO.

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION Contract: SB-RB-W-R

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

Matrix: (soil/water) WATER Lab Sample ID: D1004-01C

% Moisture: ____ Decanted: (Y/N) ___ Date Received: 08/25/05

Sample wt/vol: 1000 (g/mL) ML

Extraction: (Type) SEPF Date Extracted: 08/29/05

Concentrated Extract Volume: 10000(uL) Date Analyzed: 09/21/05

Injection Volume: 1.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y

CONCENTRATION UNITS:

Lab File ID: <u>E5C2407F</u>

CAS NO. COMPOUND (ug/L or ug/Kg) $\underline{\text{UG/L}}$ Q

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	ט
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	ט
72-55-9	4,4'-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	ט
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	ש
12672-29-6	Aroclor-1248	1.0	ט
11097-69-1	Aroclor-1254	1.0	Ŭ
11096-82-5	Aroclor-1260	1.0	Ū

1 INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

MW12-W-0

Lab Name: Mitkem Corporation

Contract: TN 000699

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Lab Sample ID: D1004-02

Level (low/med):

MED

Date Received: 08/25/05

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M.
	Cyanide	10.0	Ü	i	CA

Comme	ents:					

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699

SDG No.: MD1004

Lab Code: MITKEM

% Solids:

Case No.

SAS No.:

Lab Sample ID: D1004-01

Matrix (soil/water): WATER

Date Received: 08/25/05

Level (low/med):

<u>MED</u> 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	21.8	J		P
7440-36-0	Antimony	60.0	Ü		P
7440-38-2	Arsenic	10.0	Ü		P
7440-39-3	Barium	5.3	J		P
7440-41-7	Beryllium	5.0	Ü		P
7440-42-8	Boron	44.0			P
7440-43-9	Cadmium	0.11	J		P
7440-70-2	Calcium	278	J		P
7440-47-3	Chromium	10.0	Ü		P
7440-48-4	Cobalt	0.31	J		P
7440-50-8	Copper	25.0	Ū		P
7439-89-6		62.4	J	*	P
7439-92-1	Lead	0.88	J	N	P
7439-95-4	Magnesium	5000	U		P
7439-96-5	Manganese	3.4	J		P
7440-02-0	Nickel	40.0	Ü		P
7440-09-7	Potassium	5000	U		P
7782-49-2	Selenium	1.0	J		P
7440-22-4	Silver	10.0	υ		P
7440-23-5	Sodium	179	J		P
7440-28-0	Thallium	1.5	J		P
7440-62-2	Vanadium	50.0	U		P
7440-66-6	Zinc	3.4	I		P
7439-97-6	Mercury	0.27	Ü		CV
	Cyanide	10.0	U		CA
			Ī —		1

•	Before: After:	COLORLES C	_	CLEAR CLEAR	Texture:
Comme	nts:				
_	-				
_				 	

7 LABORATORY CONTROL SAMPLE

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Solid LCS Source:

Aqueous LCS Source:

LCS-19953

	Aque	ous (ug/L)			٤	Solid (1	ng/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	9100.0	9870.53						
Antimony	455.0	515.44						
Arsenic	455.0	503.33	110.6					
Barium	9100.0	10298.60						
Beryllium	227.0	255.12						
Boron	2250.0	2483.44						}
Cadmium	227.0	255.12						
Calcium	22700.0	25113.10					j	
Chromium	910.0	991.94	109.0					1
Cobalt	2270.0	2557.33						
Copper	1130.0	1251.59	110.8					
Iron	4550.0	4993.09						
Lead	455.0	512.60						
Magnesium	22700.0	25234.29						
Manganese	2270.0	2565.84	113.0					
Nickel	2270.0	2531.10	111.5					
Potassium	22700.0	24976.10						
Selenium	455.0	505.86	111.2					
Silver	1130.0	1306.71	115.6			 		
Sodium	22700.0	26299.09	115.9					
Thallium	455.0	503.83	110.7					
Vanadium	2270.0	2513.60	110.7					Ì
Zinc	2270.0	2539.70	111.9	1				

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab	Name:	MITKEM	CORPORATION	_ Contract:	
Lab	Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MD1004

EPA	SMC1	SMC2	SMC3	OTHER	TOT
SAMPLE NO.	(TOL)#	(BFB)#	(DCE)#		OUT
====================================	98	92	========= . 89		
2 V6YLCS	109	100	98		(
3 SB-RB-W-R	108	108	96		(
4 VHBLK6Y	106	105	95		(
5					
6					
78					
<u>ှိ</u>					
ó					-
1					
2					
3					
4					
5					
6 7					
8					
9					
o -					
1					
2					
3					
4	ļ			-	
5					
6 7					·
8					
9					
ó					

SMC1 (TOL) = Toluene-d8 (88-110) SMC2 (BFB) = Bromofluorobenzene (86-115) SMC3 (DCE) = 1,2-Dichloroethane-d4 (76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab	Name:	MITKEM	CORPORATION	Contract:			
Lab	Code:	MITKEM	Case No.:	SAS No.:	SDG	No.:	MD1004

	·					<u> </u>		· · · · · · · · · · · · · · · · · · ·		· ı
	EPA	S1	S2	S3	S4	S5	S6	S 7	S8	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#	(PHL)#	(2FP)#	(TBP)#	(2CP)#	(DCB)#	OUT
		=====	=====	=====	=====	=====	=====	=====	=====	===
01	SBLK1B	84	78	81	78	80	83	79	64	0
02	S1BLCS	81	76	73	78	80	85	81	67	0
03	SB-RB-W-R	81	76	79	79	85	85	82	63	0
04	MW12-W-O	83	74	85	82	85	84	83	65	ō
05							***************************************	·	·	
06		-								
07				:						
08										
09										
10										_
11										
12										
13										
14						ĺ			-	
15	-, · · · · · · · · · · · · · · · · · · ·									
16										
17										
18	-									
19										
20										
21										
21 22										
23										
24										
25										
26										
27										
28										I
29										
30	· · · · · · · · · · · · · · · · · · ·								-	
										L I

				QC LIMITS	
S1	(NBZ)	=	Nitrobenzene-d5	(35-114)	
S2	(FBP)	=	2-Fluorobiphenyl	(43-116)	
			Terphenyl-d14	(33-141)	
S4	(PHL)	=	Phenol-d5	(10-110)	
S5	(2FP)	=	2-Fluorophenol	(21-110)	
S6	(TBP)	=	2,4,6-Tribromophenol	(10-123)	
S 7	(2CP)	=	2-Chlorophenol-d4	(33-110)	(advisory)
S8	(DCB)	=	1,2-Dichlorobenzene-d4	(16-110)	(advisory)

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogate diluted out

2E WATER PESTICIDE SURROGATE RECOVERY

Lab	Name:	MITKEM	CORPORA	<u> </u>	Contract:			
Lab	Code:	MITKEM	Case	No.:	SAS No.:	SDG	No.:	<u>MD1004</u>
GC (Column	(1): CLE	PPEST	ID: 0.53	(mm) GC Colu	ımn(2):CLPPES	TIIID:	0.53 (mm)

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
	=========	=====	=====	=====	=====	=====	=====	===
01	PBLK5R	.112	81	92	94			0
02	P5RLCS	81	80	95	96			0
03	SB-RB-W-R	70	69	76	78			0
04	MW12-W-O	98	75	84	86			0
05								
06								
07								
80								
09					,			
10								
11								
12								<u> </u>
13	 				-	···		
14 15 16								
16							 	
1 7					-	i i		
18			•					
19								
20								_
$\overline{21}$	· · · · · · · · · · · · · · · · · · ·		*******					
22		-						_
22 23								
24	· · · · · · · · · · · · · · · · · · ·							-
25 26								
26								
27								
28								
29								
30								

QC LIMITS (30-150)

(TCX) = Tetrachloro-m-xylene (DCB) = Decachlorobiphenyl

(30-150)

Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

FORM 3 WATER VOLATILE LAB CONTROL SAMPLE

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM

Case No.:

SAS No.:

SDG No.: MD1004

Matrix Spike - Sample No.: V6YLCS

COMPOUND	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
1,1-Dichloroethene Benzene Trichloroethene Toluene Chlorobenzene	50 50 50 50 50 50		44 45 47 49 50	88 90 94 98	====== 61-145 76-127 71-120 76-125 75-130

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 0 outside limits

Spike Recovery: 0 out of 5 outside limits

COMMENTS:			

FORM 3 WATER SEMIVOLATILE LAB CONTROL SAMPLE

Lab N	lame:	MITKEM	CORPORATION	Contract: _		
Lab C	ode:	MITKEM	Case No.:	SAS No.: _	SDG	No.: MD1004
Matri	x Spi	ike - S	Sample No.:	S1BLCS		

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	ક	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
=======================================	=======	=========	=========	=====	=====
Phenol	75		59	79	12-110
2-Chlorophenol	75		62	83	27-123
N-Nitroso-di-n-prop.(1)	50		40	80	41-116
4-Chloro-3-Methylphenol	75		62	83	23- 97
Acenaphthene	50		40	80	46-118
4-Nitrophenol	75		68	91*	10- 80
2,4-Dinitrotoluene	50		43	86	24- 96
Pentachlorophenol	75		62	. 83	9-103
Pyrene	50		40	80	26-127

(1) N-Nitroso-di-n-propylamine

<pre># Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits</pre>	
RPD: 0 out of 0 outside limits Spike Recovery: 1 out of 9 outside limits	
COMMENTS:	

FORM 3 WATER PESTICIDE LAB CONTROL SAMPLE

Lab Name:	MITKEM	CORPORATION	Contract:	
Lab Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MD1004
Matrix Sp	ike - S	Sample No.:	P5RLCS	

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC #	QC. LIMITS REC.
	=======		=========	=====	=====
gamma-BHC (Lindane)	0.50		0.31	62	56-123
Heptachlor	0.50		0.40		40-131
Aldrin	0.50		0.41	82	40-120
Dieldrin	1.0		0.95	95	52-126
Endrin	1.0		1.1	110	56-121
4,4'-DDT	1.0		0.82	82	38-127

- # Column to be used to flag recovery and RPD values with an asterisk
- * Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 6 outside limits

COMMENTS:	

5A SPIKE SAMPLE RECOVERY EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699.N

SDG No.: MD1004

Lab Code: MITKEM

Case No.

SAS No.:

Level (low/med): MED

Matrix (soil/water): WATER

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	Control		2		0.21			
	Limit	Spiked Sample	Sample		Spike			
Analyte	%R	Result (SSR) C	Result (SR)	С	Added (SA)	%R	Q	M
Cyanide	75-125	111.6495	10.0000	Ū	100.00	111.6		CA

Commo	nts:	

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699.N

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Level (low/med): MED

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): $\underline{\text{UG/L}}$

Analyte	Control Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Aluminum	75-125	2192.1872	21,7616	J	2000.00	108.5		P
Antimony	75-125	107.2315	60.0000	Ü	100.00	107.2		P
Arsenic	75-125	42.6789	10.0000	Ü	40.00	106.7		P
Barium	75-125	2396.8063	5.3174	J	2000.00	119.6		P
Beryllium	75-125	57.5345	5.0000	Ū	50.00	115.1		P
Boron	75-125	2435.3242	43.9917	J	2250.00	106.3		P
Cadmium	75-125	56.4941	0.1145	J	50.00	112.8		₽
Chromium	75-125	226.7479	10.0000	U	200.00	113.4		P
Cobalt	75-125	601.5433	0.3129	J	500.00	120.2		P
Copper	75-125	295.0285	25.0000	U	250.00	118.0		P
Iron	75-125	1180.3319	62.4074	J	1000.00	111.8		P
Lead	75-125	28.1178	0.8811	J	20.00	136.2	N	P
Manganese	75-125	611.2738	3.4439	J	500.00	121.6		P
Nickel	75-125	598.4501	40.0000	Ū	500.00	119.7		P
Selenium	75-125	59.7040	1.0320	J	50.00	117.3		P
Silver	75-125	58.5522	10.0000	U	50.00	117.1		P
Thallium	75-125	58.0560	1.4829	J	50.00	113.1		P
Vanadium	75-125	564.5119	50.0000	ប	500.00	112.9		P
Zinc	75-125	594.5817	3.4263	J	500.00	118.2		P

Comments:		

5B POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699.N

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Level (low/med): MED

Concentration Units: ug/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	: C	Sam Result	-	С	Spi Added		%R	Q	М
Lead		21.27			0.88	J		20.0	102.0		P

Comments:			
	 	 	

DUPLICATES

EPA SAMPLE NO

Contract: TN 000699.N

SB-RB-W-R

Lab Name: Mitkem Corporation

SDG No.: MD1004

Lab Code: MITKEM

Case No.

SAS No.:

Matrix (soil/water): WATER

% Solids for Sample: 0.0

Level (low/med): MED

10 (10 (10 (10 (1) (1) (1) (1) (1) (1) (1)

% Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	Control				·				
Analyte	Limit	Sample (S)	c	Duplicate (D)	С	RPD	Q	М	
Aluminum		21.7616	J	22.8069	J	4.7		Р	
Antimony		60.0000	ט	1.6479	J	200.0		P	ĺ
Arsenic		10.0000	U	10.0000	ט			P	
Barium		5.3174	J	4.9739	J	6.7		P	
Beryllium		5.0000	ן ט	5.0000	ן ט			P	ĺ
Boron		43.9917	J	500.0000	ן ט	200.0		P	
Cadmium		0.1145	J	5.0000	ט	200.0		P	
Calcium]	278.1198	J	349.0531	J	22.6		P	
Chromium		10.0000	ן ט	0.6465	J	200.0		P	
Cobalt]	0.3129	J	0.2156	J	36.8		P	
Copper		25.0000	ן ט	25.0000	ן ט			P	
Iron	100.0	62.4074	J	389.0848		144.7	*	P	
Lead		0.8811	J	10.0000	ן ט	200.0		P	
Magnesium		5000.0000	ן ט	25.6268	J	200.0		P	
Manganese		3.4439	J	5.4385	J	44.9	İ	P	
Nickel		40.0000	ט	40.0000	U			P	
Selenium		1.0320	J	35.0000	ן ט	200.0		P	
Silver		10.0000	ט	10.0000	U			P	ı
Sodium		178.7198	J	183.4179	J	2.6		P	
Thallium		1.4829	J	25.0000	ן ט	200.0		P	
Vanadium]	50.0000	ט	50.0000	ט			P	İ
Zinc		3.4263	J	4.7276	J	31.9		P	ĺ
Cyanide		10.0000	U	10.0000	ט			CA	

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

VBLK6Y

		VDII(O)
Lab Name: MITKEM CORPORATION	Contract:	
Lab Code: MITKEM Case No.:	SAS No.: SDG	No.: MD1004
Lab File ID: V6D8022	Lab Sample ID: MB-1968	30
Date Analyzed: 08/26/05	Time Analyzed: 1048	_
GC Column: DB-624 ID: 0.25 (mm)	Heated Purge: (Y/N) N	
Instrument ID: V6		
		_

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========	=======================================		=======
01	V6YLCS	LCS-19680	V6D8023	1134
02	SB-RB-W-R	D1004-01A	V6D8027	1336
03	VHBLK6Y	VHBLK6Y	V6D8036	1758
04				
05				
06				
07				
08		,		
09				
10				
11				
12			•	
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:	

page 1 of 1

FORM IV VOA

OLM04.3

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION C	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: MB-19680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8022
Level: (low/med) <u>LOW</u>	Date Received:
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

75-71-8	Dichlorodifluoromethane	10	Ŭ
74-87-3	Chloromethane	10	<u>U</u>
75-01-4	Vinyl Chloride	10	Ŭ
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	ש
75-69-4	Trichlorofluoromethane	10	U
75-35-4	1,1-Dichloroethene	10	ซ
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	U
75-15-0	Carbon Disulfide	10	U
79-20-9	Methyl Acetate	10	Ŭ
75-09-2	Methylene Chloride	10	Ū
156-60-5	trans-1,2-Dichloroethene	10	Ŭ
1634-04-4	Methyl tert-Butyl Ether	10	U
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	U
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	U
110-82-7	Cyclohexane	10	บ
56-23-5	Carbon Tetrachloride	10	Ū
71-43-2	Benzene	10	U
107-06-2	1,2-Dichloroethane	10	Ū

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: VBLK6Y
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: MB-19680
Sample wt/vol: <u>5.000</u> (g/mL) <u>ML</u>	Lab File ID: V6D8022
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

CAS NO. COMPOUND

			l rr
79-01-6	Trichloroethene	10	ט
108-87-2	Methylcyclohexane	10	U
78-87-5	1,2-Dichloropropane	10	บ
75-27-4	Bromodichloromethane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ü
108-88-3	Toluene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	ט
79-00-5	1,1,2-Trichloroethane	10	Ū
127-18-4	Tetrachloroethene	10	Ü
591-78-6	2-Hexanone	10	Ū
124-48-1	Dibromochloromethane	10	U
106-93-4	1,2-Dibromoethane	10	U
108-90-7	Chlorobenzene	1.0	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (Total)	10	Ü
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U
98-82-8	Isopropylbenzene		U
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	U
95-50-1	1,2-Dichlorobenzene	10	Ū
96-12-8	1,2-Dibromo-3-chloropropane	10	U
120-82-1	1,2,4-Trichlorobenzene	10	ט

1F

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION	Contract:	ARPK6 A
Lab Code: MITKEM Case No.:		MD1004
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: MB-1	.9680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D80	22
Level: (low/med) <u>LOW</u>	Date Received:	
% Moisture: not dec	Date Analyzed: 08/2	<u>:6/05</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.	<u>o</u>
Soil Extract Volume:(uL)	Soil Aliquot Volume	::(uL)
Number TTCs found 0	CONCENTRATION UNITS	

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1.				
2.				
3.				
4.				
5. 6.		 		
7.				
8.				
9.				
10.				
11.				
12.				
13. 14. 15.				
14.				
16.				
17.			l	
18.				
19.		<u> </u>		
20.				
21.				
22.				
23.	·			
24. 25.		 		
25. 26.				
27.		 		
28.				
29.		 		
30.				

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: VHBLK6Y
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8036
Level: (low/med) LOW	Date Received: 08/25/05
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: DB-624 ID: 0.25 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

75 - 71-8	Dichlorodifluoromethane	10	U
74-87-3	Chloromethane	10	ט
75-01-4	Vinyl Chloride	10	U
74-83-9	Bromomethane	10	U
75-00-3	Chloroethane	10	U
75-69-4	Trichlorofluoromethane	10	Ū
75-35-4	1,1-Dichloroethene	10	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	Ū
79-20-9	Methyl Acetate	10	Ū
75-09-2	Methylene Chloride	10	Ū
156-60-5	trans-1,2-Dichloroethene	10	Ū
1634-04-4	Methyl tert-Butyl Ether	10	Ū
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	Ū
78-93-3	2-Butanone	10	Ü
67-66-3	Chloroform	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
110-82-7	Cyclohexane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
71-43-2	Benzene	10	Ū
107-06-2	1,2-Dichloroethane	10	Ū

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: VHBLK6Y
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: VHBLK6Y
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8036
Level: (low/med) LOW	Date Received: 08/25/05
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

79-01-6	Trichloroethene	10	U
108-87-2	Methylcyclohexane	10	Ū
78-87-5	1,2-Dichloropropane	10	U
75-27-4	Bromodichloromethane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-Pentanone	10	ט
108-88-3	Toluene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	<u></u> ד
127-18-4	Tetrachloroethene	10	ט
591-78-6	2-Hexanone	10	Ü
124-48-1	Dibromochloromethane	10	U
106-93-4	1,2-Dibromoethane	10	Ū
108-90-7	Chlorobenzene	10	Ū
100-41-4	Ethylbenzene	10	Ū
1330-20-7	Xylene (Total)	10	Ü
100-42-5	Styrene	10	Ū
75-25-2	Bromoform	10	Ŭ
98-82-8	Isopropylbenzene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ü
96-12-8	1,2-Dibromo-3-chloropropane	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ü

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION	Contract: VHBLK6Y
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: VHBLK6Y
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8036
Level: (low/med) LOW	Date Received: 08/25/05

% Moisture: not dec. _____

Soil Extract Volume: ____(uL)

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

Date Analyzed: 08/26/05 Dilution Factor: 1.0

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

Number TICs found: 0	(1	g/L or ug/	Kg) ug/L	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1. 2.				
3.				L
4.				
5.				
6.				
7.		-		<u> </u>
8. 9.			· · · · · · · · · · · · · · · · · · ·	
10.				
11.				
12.				
12. 13.				
14.				
15.				ļ
16.				·
17.				
18.				
19.				
20.		 		<u> </u>
21.				I
23.		- 		
24.		1		
25.				
26.				
27.				
28.				
29.				

4B SEMIVOLATILE METHOD BLANK SUMMARY

SBLK1B

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Lab File ID: S1E5927	Lab Sample ID: MB-19698
Instrument ID: S1	Date Extracted: 08/29/05
Matrix: (soil/water) WATER	Date Analyzed: 09/13/05
Level:(low/med) LOW	Time Analyzed: 1202

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	I — — — — — — — — — — — — — — — — — — —			
	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=========			
01	S1BLCS	LCS-19698	S1E5928	09/13/05
02	SB-RB-W-R	D1004-01C	S1E5938	09/13/05
03	MW12-W-O	D1004-02B	S1E5939	09/13/05
04				
05				
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				-
				
21				
22			-	
23				
24				
25				
26				
27				
28	· · · · · · · · · · · · · · · · · · ·	• •		
29				
30				

COMMENTS:	
	•

page 1 of 1

FORM IV SV

OLM04.3

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORI	PORATION Cor	itract:	SBLK1B
Lab Code: MITKEM	Case No.:	SAS No.:SI	DG No.: MD1004
Matrix: (soil/water)	WATER	Lab Sample ID: [MB-19698
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: S	1E5927
Level: (low/med)	LOW	Date Received:	<u> </u>
% Moisture:	Decanted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor	: <u>1.0</u>
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type) <u>CONT</u>
CAS NO. COMPOUNI)	CONCENTRAT: (ug/L or u	ION UNITS: g/Kg) <u>UG/L</u> Q

100-52-7	Benzaldehyde	10	Ū
108-95-2	Phenol	10	Ū
111-44-4	bis(2-Chloroethyl)Ether	10	Ū
95-57-8	2-Chlorophenol	10	Ŭ
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
98-86-2	Acetophenone	10	Ū
106-44-5	4-Methylphenol	10	Ü
621-64-7	N-Nitroso-di-n-propylamine	10	Ū
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ū
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	Ü
111-91-1	bis(2-Chloroethoxy)methane	10	Ū
120-83-2	2,4-Dichlorophenol	10	Ū
91-20-3	Naphthalene	10	Ū
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	Ŭ
105-60-2	Caprolactam	10	Ū
59-50-7	4-Chloro-3-Methylphenol	1.0	Ū
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ŭ
95-95-4	2,4,5-Trichlorophenol	25	Ū
92-52-4	1,1'-Biphenyl	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	25	U
131-11-3	Dimethylphthalate	10	Ū
606-20-2	2,6-Dinitrotoluene	10	U
208-96-8	Acenaphthylene	10	Ü
99-09-2	3-Nitroaniline	25	U
83-32-9	Acenaphthene	10	U

1D EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Tala Mana MITHIEM CORD	SBLK1B		
Lab Name: MITKEM CORP	ORATION CONTra	ct:	
Lab Code: MITKEM C	ase No.: SA	S No.: SI	OG No.: MD1004
Matrix: (soil/water)	WATER	Lab Sample ID: 1	∕B-19698
Sample wt/vol:	1000 (g/mL) <u>ML</u>	Lab File ID: S	lE5927
Level: (low/med)	LOW	Date Received:	
% Moisture:	Decanted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor	: 1.0
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type) <u>CONT</u>

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

51-28-5	2,4-Dinitrophenol	25	Ū
100-02-7	4-Nitrophenol	25	Ū
132-64-9	Dibenzofuran	10	Ū
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	Ū
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
100-01-6	4-Nitroaniline	25	Ū
534-52-1	4,6-Dinitro-2-methylphenol	25	Ü
86-30-6	N-Nitrosodiphenylamine (1)	10	ש
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
1912-24-9	Atrazine	10	Ū
87-86-5	Pentachlorophenol	25	Ū
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ŭ
86-74-8	Carbazole	10	Ü
84-74-2	Di-n-butylphthalate	. 10	ַ
206-44-0	Fluoranthene	10	ט
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	Ü
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	bis(2-Ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	U
205-99-2	Benzo(b)fluoranthene	10	Ü
207-08-9	Benzo(k)fluoranthene	10	U
50-32-8	Benzo(a)pyrene	10	Ü
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū

(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SBLK1B

Lab Name: MITKEM CORPORATION Contract	:
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: MD1004
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: MB-19698
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5927
Level: (low/med) LOW	Date Received:
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) CONT
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
-	====================================			
$\frac{1}{2}$.				
3.		1		
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.		 		
25.				
26.				
27.				
28.	W. (1)			
29.				
30.				

4C PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PBLK5R

·				
Lab Name: MITKEM CORPORATION	Contract:			
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004			
Lab Sample ID: MB-19699	Lab File ID: E5C2405F			
Matrix (soil/water) WATER	Extraction: (Type) SEPF			
Sulfur Cleanup (Y/N) Y	Date Extracted: 08/29/05			
Date Analyzed (1): 09/21/05	Date Analyzed (2): 09/21/05			
Time Analyzed (1): 0032	Time Analyzed (2): 0032			
Instrument ID (1): <u>E5</u>	Instrument ID (2): E5			
GC Column (1): <u>CLPPEST</u> ID: <u>0.53</u> (mm)	GC Column (2): CLPPESTII ID: 0.53 (mm)			

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
	=========	=========	========	=======
01	P5RLCS	LCS-19699	09/21/05	09/21/05
02	SB-RB-W-R	D1004-01C	09/21/05	09/21/05
03	MW12-W-O	D1004-02B	09/21/05	09/21/05
04				
05				
06				
07				
80			• •	
09				
10 11	-			
12				
13				
14				
15				i
16				
17				
18				
19				-
20				
21				
22				
23				
24				
25				
26				

COMMENTS:		

1E PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MI	ITKEM CORPORATION CO	PBLK5R ontract:
Lab Code: MI	TTKEM Case No.:	SAS No.: SDG No.: <u>MD1004</u>
Matrix: (soi	il/water) <u>WATER</u>	Lab Sample ID: MB-19699
Sample wt/vo	ol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: E5C2405F
% Moisture:	Decanted: (Y/N)	Date Received:
Extraction:	(Type) SEPF	Date Extracted: 08/29/05
Concentrated	d Extract Volume: 10000 (uL)	Date Analyzed: <u>09/21/05</u>
Injection Vo	olume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup: (Y/N) Y
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q
319-84-6	alpha-BHC	0.050 U
319-85-7		0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9		0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Hentachlor epoxide	0.050 U

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	U
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	Ü
7421-93-4	Endrin aldehyde	0.10	Ü
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	2.0	U
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	Ū

Lab Name: MITKEM CORPORATION	Contract: PIBLKA2
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKA2
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2363F
% Moisture: Decanted: (Y/N) _	Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (u	L) Date Analyzed: 09/17/05
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N_
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

319-84-6	alpha-BHC	0.050	Ū
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	U
11104-28-2	Aroclor-1221	2.0	U
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ü
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	U

1EPESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MI	TKEM CORPORATION Con	tract:	PIBLKA	1 2
Lab Code: MI	TKEM Case No.:	SAS No.:	EDG No.: MD	L004
Matrix: (soi	1/water) <u>WATER</u>	Lab Sample ID:	PIBLKA2	
Sample wt/vo	ol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: E	5C2363R	
% Moisture:	Decanted: (Y/N)	Date Received: _		
Extraction:	(Type)	Date Extracted:		
Concentrated	Extract Volume: 10000 (uL)	Date Analyzed:	09/17/05	
Injection Vo	olume: 1.0 (uL)	Dilution Factor	: <u>1.0</u>	
GPC Cleanup:	(Y/N) <u>N</u> pH:	Sulfur Cleanup): (Y/N) <u>N</u>	- .
CAS NO.	COMPOUND		TION UNITS: 1g/Kg) <u>UG/L</u>	Q
319-84-6	alpha-BHC		0.050	
319-85-7	beta-BHC		0.050	
319-86-8	delta-BHC		0.050	ט
58-89-9	gamma-BHC (Lindane) Heptachlor Aldrin		0.050	כ
76-44-8	Heptachlor		0.050	Ū
			0.050	Ū
1024-57-3	Heptachlor epoxide		0.050	U
959-98-8	Endosulfan I		0.050	
60-57-1	Dieldrin		0.10	Ū
72-55-9	4,4'-DDE		0.10	U
	Endrin		0.10	ש
	Endosulfan II		0.10	Ŭ
72-54-8 1031-07-8	4,4'-DDD		0.10	Ŭ
TOOT 0, 0	Endosulfan sulfate	· .	0.10	ָ ט
50-29-3			0.10	Ü
/2-43-5	Methoxychlor		0.50	
	Endrin ketone		0.10	ם ם
	Endrin aldehyde		0.10	U
	alpha-Chlordane		0.050	
5103-74-2	gamma-Chlordane		0.050	U
8001-35-2 12674-11-2	Toxaphene Aroclor-1016		5.0 1.0	U
11104-28-2	Aroclor-1016 Aroclor-1221		2.0	Ū
11104-28-2	Aroclor-1221 Aroclor-1232		1.0	Ū
53469-21-9	Aroclor-1232		1.0	Ü
12672-29-6	Aroclor-1242 Aroclor-1248		1.0	Ü
11097-69-1	Aroclor-1254		1.0	Ü
11096-82-5	Aroclor-1260		1.0	Ü

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION	Contract: PIBLKAB
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKAB
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2383F
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/20/05
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9	gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor epoxide	0.050 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4,4'-DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72-54-8	4,4'-DDD	0.10 U
1031-07-8	Endosulfan sulfate	0.10 U
50-29-3	4,4'-DDT	0.10 U
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin ketone	0.10 U
7421-93-4	Endrin aldehyde	0.10 U
5103-71-9	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
8001-35-2	Toxaphene	5.0 U
12674-11-2	Aroclor-1016	1.0 U
11104-28-2	Aroclor-1221	2.0 U
11141-16-5	Aroclor-1232	1.0 U
53469-21-9	Aroclor-1242	1.0 U
12672-29-6	Aroclor-1248	1.0 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Inh Name : Mi	CONTRACTOR CONTRACTOR	ntragt.	PIBLKAB
LaD Name: MI	ITKEM CORPORATION CO	mcract:	<u> </u>
Lab Code: MI	ITKEM Case No.:	SAS No.: S	DG No.: <u>MD1004</u>
Matrix: (so	il/water) <u>WATER</u>	Lab Sample ID:	PIBLKAB
Sample wt/vo	ol: <u>1000</u> (g/mL) <u>ML</u>	Lab File ID: \underline{E}	5C2383R
% Moisture:	Decanted: (Y/N)	Date Received:	
	(Type)	Date Extracted:	
micracian.	(1)20/	Date Enteraction.	
Concentrated	d Extract Volume: 10000 (uL)	Date Analyzed:	09/20/05
Injection Vo	olume: 1.0 (uL)	Dilution Factor	: <u>1.0</u>
GPC Cleanup:	: (Y/N) <u>N</u> pH:	Sulfur Cleanup	: (Y/N) <u>N</u>
	•		ION UNITS:
CAS NO.	COMPOUND	(ug/L or u	g/Kg) <u>UG/L</u> Q
319-84-6	alpha-BHC		0.050 U
319-85-7	beta-BHC		0.050 U
319-86-8	delta-BHC		0.050 U
58-89-9	gamma-BHC (Lindane)		0.050 U
76-44-8	Heptachlor		0.050 U
309-00-2	Aldrin		0.050 U
1024-57-3			0.050 U
959-98-8	Endosulfan I		0.050 U
60-57-1	Dieldrin	·	0.10 U
72-55-9	4,4'-DDE Endrin		0.10 U
72-20-8			0.10 U
	Endosulfan II		0.10 U
72-54-8			0.10 U
1031-07-8	Endosulfan sulfate		0.10 U
50-29-3	4,4'-DDT Methoxychlor	· ·	0.10 U
72-43-5	Methoxychlor		0.50 U
53494-70-5	Endrin ketone		0.10 U
7421-93-4	Endrin aldehyde		0.10 U
5103-71-9	alpha-Chlordane		0.050 U
5103-74-2	gamma-Chlordane		0.050 U
8001-35-2	Toxaphene		5.0 U
12674-11-2	Aroclor-1016		1.0 U
11104-28-2	Aroclor-1221		2.0 U
11141-16-5	Aroclor-1232		1.0 U
53469-21-9	Aroclor-1242		1.0 U
12672-29-6	Aroclor-1248		1.0 U
11097-69-1	Aroclor-1254		1.0 U

11096-82-5 Aroclor-1260

1.0 U

						PIBLKAC
Lab	Name:	MITKEM	CORPORATION	Contract:	<u> </u>	l

 Lab Code:
 MITKEM
 Case No.:
 SAS No.:
 SDG No.:
 MD1004

 Matrix:
 (soil/water)
 WATER
 Lab Sample ID:
 PIBLKAC

 Sample wt/vol:
 1000 (g/mL)
 ML
 Lab File ID:
 E5C2393F

 % Moisture:
 Decanted:
 (Y/N)
 Date Received:

 Extraction:
 (Type)
 Date Extracted:

Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/20/05

Injection Volume: 1.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) <u>N</u> pH: ____ Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

319-84-6	alpha-BHC	0.050	Ū
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	מ
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	ט
72-55-9	4,4'-DDE	0.10	מ
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	ט
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	Ū
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	ם
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	ט
11096-82-5	Aroclor-1260	1.0	Ū

1E PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		PIBLKAC
: MITKEM CORPORATION	Contract:	

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKAC
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2393R
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/20/05
Injection Volume: 1.0(uL)	Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____ Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

		J. J. <u>——</u>	
319-84-6	alpha-BHC	0.050	Ū
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	Ŭ
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ü
959-98-8	Endosulfan I	0.050	מ
60-57-1	Dieldrin	0.10	U
72-55-9	4,4'-DDE	0.10	ט
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	כ
1031-07-8	Endosulfan sulfate	0.10	ם
50-29-3	4,4'-DDT	0.10	ט
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	כ
5103-71-9	alpha-Chlordane	0.050	ט
5103-74-2	gamma-Chlordane	0.050	Ŭ
8001-35-2	Toxaphene	5.0	Ü
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	ש
53469-21-9	Aroclor-1242	1.0	Ŭ
12672-29-6	Aroclor-1248	1.0	מ
11097-69-1	Aroclor-1254	1.0	ם
11096-82-5	Aroclor-1260	1.0	Ū

EPA SAMPLE NO.

		PIBLKAD
EM CODDODATITAN	Contract.	

Lab Name: MITKEM CORPORATION Co	ontract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKAD
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: <u>E5C2414F</u>
% Moisture: Decanted: (Y/N)	_ Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: <u>09/21/05</u>
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

		. J. J. <u></u>	-
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ŭ
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	บ
72-55-9	4,4'-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4'-DDD	0.10	Ü
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	ប
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	Ü
12674-11-2	Aroclor-1016	1.0	Ü
11104-28-2	Aroclor-1221	2.0	Ŭ
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	Ŭ
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	Ū

1E PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION	Contract: PIBLKAD
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKAD
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2414R
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/21/05
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: _	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	U
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4,4'-DDT	0.10	Ü
72-43-5	Methoxychlor	0.50	Ü
53494-70-5	Endrin ketone	0.10	Ū
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ü
8001-35-2	Toxaphene	5.0	Ü
12674-11-2	Aroclor-1016	1.0	Ü
11104-28-2	Aroclor-1221	2.0	ט
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	Ū

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION Co	ontract: P5RLCS
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: LCS-19699
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2406F
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) <u>SEPF</u>	Date Extracted: 08/29/05
Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/21/05
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.31	
76-44-8	Heptachlor	0.40	
309-00-2	Aldrin	0.41	
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.95	
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	1.1	
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ü
50-29-3	4,4'-DDT	0.82	
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	Ū
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	Ū

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg): $\underline{\text{UG/L}}$

Analyte	Initial Calib. Blank (ug/L)	С	C 1		ing Cal ank (uc	librati g/L) C	on 3	С	Prepa- ration Blank	С	М
Mercury	0.20	0 0	0.20	ט סכ	0.2	00 0	0.20	ט סכ	0.20	ם ס	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Cc		ing Cal		on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	С	Blank	C	М
Cyanide	10.0	U	10.	ט ס	10	.0 U	10.	ט ס.	10.00	0 U	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		C		ing Cal		on		Prepa- ration		
Analyte	(ug/L)	c	1	С	2	С	3	c	Blank	C	M
Boron	54.	8 J	41.	2 J	500	.0 บ	500	.0 ט	500.00	Ū 0	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Con		nuing Calib Blank (ug/L		tion		Prepa- ration			
Analyte	(ug/L)	С	1	С	2	С	3	C	Blank	C	H	M
Aluminum	200.0	Ü	200.0	U	200.0	ט	200.0	ט	200.000	U	\sqcap	
Antimony	20.0	J	2.5	J	20.0	J	1.9	J	20.000	J	11	
Barium	200.0	Ü	200.0	Ū	200.0	U	200.0	U	4.536	J	1	
Beryllium	0.2	J	5.0	Ü	5.0	U	5.0	U	5.000	บ	1	
Cadmium	5.0	U	5.0	U	5.0	ָט	5.0	U	5.000	บ	1	
Calcium	-41.7	J	800.0	J	-68.2	J	800.0	J	132.303	J	1	
Chromium	0.4	J	0.4	J	0.4	J	0.4	J	10.000	J	1	
Cobalt	0.2	J	0.2	J	50.0	บ	0.3	J	0.399	J	1	
Copper	30.0	U	30.0	υ	30.0	ט	30.0	U	30.000	ַ	1	
Iron	200.0	Ū	200.0	Ū	200.0	บ	200.0	Ų	32.391	J	1	
Lead	0.5	J	0.5	J	0.5	J	0.5	J	0.748	J	1	
Magnesium	500.0	J	500.0	J	500.0	J	500.0	J	500.000	J	1	
Manganese	50.0	Ū	50.0	Ū	50.0	U	50.0	U	2.868	J	1	
Nickel	0.6	J	0.6	J	0.6	J	0.6	J	40.000	J	1	
Selenium	-1.8	J	1.4	J	7.3	J	3.5	J	5.846	J		
Silver	3.6	J	30.0	Ū	30.0	U	30.0	U	1.476	J		
Vanadium	0.5	J	0.5	J	0.5	J	0.5	J	50.000	บ	Н	
Zinc	50.0	J	50.0	J	50.0	J	50.0	J	2.458	J		

3 BLANKS

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg): $\underline{\text{UG/L}}$

	Initial Calib. Blank		Con		uing Cal Lank (ug		.on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	C	Blank	С	М
Sodium	5000.0	U	5000.0	ט	5000	. 0 U	5000.	ט ס	5000.00	ט ס	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		Co		ing Cal ank (ug		_on		Prepa- ration		
Analyte	(ug/L)	С	1	C	2	С	3	C	Blank	Ç	М
Sodium			5000.	ט 0	5000	.0 U	5000.0	U			P

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		С		ing Cal		on		Prepa- ration		
Analyte	(ug/L)	C	1	С	2	С	3	c	Blank	C	M
Sodium			5000.	. O U			-				P

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Co		ing Cal		on		Prepa- ration			
Analyte	(ug/L)	С	1	С	2	С	3	С	Blank	C	M	1
Potassium	5000.0	O U	5000.	ט ס	5000	.0 U	5000.	. O U	5000.00)O U		

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		С	ontinu: Bla	ing Cal		.on		Prepa- ration		
Analyte	(ug/L)	С	1	C	2	С	3	С	Blank	C	М
Potassium			5000.	ַ ט 0.	5000	. 0 ט	5000.	υ 0.			P

BLANKS

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		C		ing Cal	librati g/L)	on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	.c	Blank	C	M
Potassium			5000	. 0 U							P

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Con		ing Cal: ank (ug,		on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	C	3	С	Blank	С	M
Arsenic Thallium	10.0	1 1	10.0 2.0			. 0 U	10. 3.	0 U	10.000 25.000		

8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
EPA Sample No. (VSTD050##): VSTD0506Y	Date Analyzed: 08/26/05
Lab File ID (Standard): V6D8021	Time Analyzed: 1010
Instrument ID: V6	Heated Purge: (Y/N) N

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

	ı ————————————————————————————————————	TOT /BOW					
		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========	======	========	======	=======	======
	12 HOUR STD	303314	4.71	1715816	5.79	1689863	9.28
	UPPER LIMIT	606628	5.21	3431632	6.29	3379726	9.78
	LOWER LIMIT	151657	4.21	857908	5.29	844932	8.78
		========	======	========	======	=======	
	EPA SAMPLE						
			======		======	========	======
01	VBLK6Y	313245	4.71	1739133	5.79	1670004	9.29
02	V6YLCS	275446	4.71	1567130	5.79	1503588	9.29
03	SB-RB-W-R	257266	4.71	1475679	5.80	1413121	9.29
04	VHBLK6Y	225139	4.71	1264005	5.79	1223366	9.29
05							
06							
07							
08							
09							
10		-					
11							
12	· · · · · · · · · · · · · · · · · · ·						
13							
14							
15						· · · · · · · · · · · · · · · · · · ·	
16							
17							
18							· · · · · · · · · · · · · · · · · · ·
19							
20							
21							
22							
22							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
EPA Sample No. (SSTD050##): SSTD0501A	Date Analyzed: 09/13/05
Lab File ID (Standard): <u>S1E5926</u>	Time Analyzed: 1112
Instrument ID: S1	GC Column: DB-5MS ID:0.25(mm)

	ı 			· · · · · · · · · · · · · · · · · · ·			
		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	•
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========		======		======		======
	12 HOUR STD	294923	8.00	1272717	10.00	721605	12.89
	UPPER LIMIT	589846	8.50	2545434	10.50	1443210	13.39
	LOWER LIMIT	147462	7.50	636359	9.50	360803	12.39
			======		======	========	======
	EPA SAMPLE			,			
	NO.						
	========						======
01	SBLK1B	283376	8.00	1129906	10.00	666774	12.88
02	S1BLCS	279913	8.00	1163309	10.00	683334	12.89
03	SB-RB-W-R	283921	8.00	1180682	10.00	682371	12.88
04	MW12-W-O	280155	8.00	1159342	10.00	690101	12.88
05							
06							
07							
08							
09							
10					:		
11							
12				The state of the s	·		
13							
14							
15							
16		-					
17					-		
18							
19	<u> </u>				-		
20	-						
21							
22				-	-	· ·	
21 21	l]

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8
IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

PT UPPER LIMIT = + 0.50 minutes of internal standard in

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

* Values outside of QC limits

[#] Column used to flag values outside QC limits with an asterisk.

8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
EPA Sample No. (SSTD050##): SSTD0501A	Date Analyzed: 09/13/05
Lab File ID (Standard): <u>S1E5926</u>	Time Analyzed: 1112
Instrument ID: S1	GC Column: DB-5MS ID:0.25 (mm)

		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	=========	=======	=	========	======	=======	======
	12 HOUR STD	1260099	15.35	1109443	19.75	841480	22.25
	UPPER LIMIT	2520198	15.85	2218886	20.25	1682960	22.75
	LOWER LIMIT	630050	14.85	554722	19.25	420740	21.75
		========	======	========	======		======
	EPA SAMPLE						
	NO.						
	=======================================	=======	======	=======	======	========	======
01	SBLK1B	1196728	15.35	1050406	19.73	843829	22.24
02	S1BLCS	1189180	15.35	1066288	19.74	816914	22.25
03	SB-RB-W-R	1183370	15.35	1019894	19.73	754592	22.25
04	MW12-W-O	1156584	15.35	928597	19.73	670653	22.24
05							
06						_	
07							
80							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19		-					
20							
21							
22							

(PHN) = Phenanthrene-dl0

IS5 (CRY) = Chrysene-d12(PRY) = Perylene-d12 IS6

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area
RT UPPER LIMIT = + 0.50 minutes of internal standard RT
RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits

New York State Department of Environmental Conservation Sample Identification and Analytical Requirements Summary

Project Name: Old Troy Landfill

SDG: **D1004**

		Analytical Requirements					
Customer <u>Sample ID</u>	Laboratory <u>Sample ID</u>	VOA GC/MS Method #	SVOA GC/MS <u>Method</u> #	Pest/PCB Method #	<u>Metals</u>	<u>Other</u>	
SB-RB-W-R	D1004-01	ASP	ASP	ASP	ASP	SEE DATA	
MW12-W-0	D1004-02	<u> </u>	ASP	ASP	ASP	SEE DATA	
MW12-O-0805	D1004-03		!			SEE DATA	
				*			
			118				
	****					***	
		711		· · · · · · · · · · · · · · · · · · ·			
·							
F-117-							
		:	··· <u>.</u>		· 		
	<u> </u>						

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Volatile (VOA) Analyses

Project Name:

Old Troy Landfili

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Date <u>Collected</u>	Date Received by Lab	Date <u>Extracted</u>	Date <u>Analyzed</u>
D1004-01A	AQ	08/24/2005	08/25/2005	NA	08/26/2005

		<u> </u>			
				· · · · · · · · · · · · · · · · · · ·	
,					
	<u> </u>				
		<u> </u>			
			<i>;</i> "-		

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Semivolatile (SVOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Date <u>Collected</u>	Date Received by Lab	Date Extracted	Date <u>Analyzed</u>
D1004-01C	AQ	08/24/2005	08/25/2005	08/29/2005	09/13/2005
D1004-02B	AQ	08/24/2005	08/25/2005	08/29/2005	09/13/2005
	7 2 2170				
					, <u>.</u>
		<u> </u>			
		· .			

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Pesticides/PCB Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Date <u>Collected</u>	Date Received by Lab	Date Extracted	Date Analyzed
D1004-01C	AQ	08/24/2005	08/25/2005	08/29/2005	09/21/2005
D1004-02B	AQ	08/24/2005	08/25/2005	08/29/2005	09/21/2005

		·			
				.,.	

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Volatile (VOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Low/Medium <u>Level</u>	Dil/Conc <u>Factor</u>
AQ	ASP	NA	Low	1
		_		
- "		-		
· · · · · · · · · · · · · · · · · · ·	· /			· · · · · · · · · · · · · · · · · · ·
				AVA.
		· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·		··		
	<u> </u>			
				
	AQ			AQ ASP NA Low

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Semivolatile (SVOA) Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Auxiliary <u>Cleanup</u>	Dil/Conc <u>Factor</u>
D1004-01C	AQ	ASP	3520C	NA	1
D1004-02B	AQ	ASP	3520C	NA NA	1
· · · · · · · · · · · · · · · · · · ·	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1				
(teat or a second			14 P 14 P 1 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A 2 A		
		maurous.			

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Pesticides/PCB Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Analytical <u>Protocol</u>	Extraction <u>Method</u>	Auxiliary <u>Cleanup</u>	Dil/Conc <u>Factor</u>
D1004-01C	AQ	ASP	3510C	Florisil/Sulfur	1
D1004-02B	AQ	ASP	3510C	Florisil/Sulfur	1
					100

New York State Department of Environmental Conservation

Sample Preparation and Analyses Summary Inorganic Analyses

Project Name:

Old Troy Landfill

SDG: **D1004**

Laboratory Sample ID	<u>Matrix</u>	Metals Requested	Date Received by Lab	Date <u>Analyzed</u>
D1004-01D	AQ	ASP	08/25/2005	9/2/05 - 9/15/05
D1004-02A	AQ	ASP	08/25/2005	9/2/05 - 9/15/05
			00/20/2000	0,2,00
		1-11W-1-		

Analytical Data Package for Ecology & Environment

Client Project No.: Old Troy Landfill

Mitkem Work Order ID: D1004

October 5, 2005

Prepared For:

Ecology & Environment 368 Pleasantview Drive Lancaster, NY 14086 Attn: Mr. Jon Nickerson

Prepared By:

Mitkem Corporation

175 Metro Center Boulevard

Warwick, RI 02886 (401) 732-3400

SDG Narrative

Mitkem Corporation submits the enclosed data package in response to Ecology & Environment's Old Troy project. Under this deliverable, analysis results are presented for one aqueous sample that was received on August 26, 2005. Analyses were performed per specifications in the project's contract and the chain of custody forms. Due to the limitations in CLP data reporting software, client sample IDs were shortened. A table of full ID, shortened ID and laboratory ID follows this narrative, along with the Mitkem Work Order.

The analyses were performed and reported per NYSDEC ASP (2000 update) requirement for Category B deliverable with the exception of hardness, TKN, ammonia, nitrate, chemical oxygen demand, total organic carbon, total dissolved solids, alkalinity, color, bromide, chloride and sulfate. The analysis results for hardness, TKN, ammonia, nitrate, chemical oxygen demand, total organic carbon, total dissolved solids, alkalinity, color, bromide, chloride and sulfate are reported in the standard Mitkem format with supporting raw data.

The following observation and/or deviations are observed for the following analyses:

1. Overall observation:

Where needed, manual integrations were performed to improve data quality. The corrections were reviewed and associated hardcopies generated and reported as required. Manual integrations are coded to provide the data reviewer justification for such action. The codes are labeled on the ion chromatogram signal (GC/MS signal) and chromatogram for GC based analysis as follows:

- M1 peak tailing or fronting.
- M2 peak co-elution.
- M3 rising or falling baseline.
- M4 retention time shift.
- M5 miscellaneous under this category, the justification is explained.

The enclosed report includes the originals of all data with the exception of logbook pages and certain initial calibrations. Photocopies of logbook pages are included, with the originals maintained on file at the laboratory. The originals of initial calibrations that are shared among several cases are maintained on file at the laboratory, with photocopies included in the data package.

2. Volatile Analysis:

Trap used for instrument V6: OI Analytical #10 trap containing 8 cm each of Tenax, silica gel and carbon molecular sieve.

GC column used: 30 m x 0.25 mm id (1.4 um film thickness) DB-624 capillary column.

The aqueous sample was not acid preserved; pH 7.

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

3. Semivolatile Analysis:

GC column: 30 m x 0.25 mm id (0.5 um film thickness) DB-5MS capillary column

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits with the exception of high recovery of 4-nitrophenol.

Sample analysis: no other unusual observation was made for the analysis.

4. Pesticides/PCB Analysis:

GC column used: 30 m x 0.53 mm id (0.5 um film thickness) CLPPest and 30 m x 0.53 mm id (0.42 um film thickness) CLPPestII megabore columns

Surrogate recovery: recoveries were within the QC limits.

Lab control sample: spike recoveries were within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

5. Metals Analysis:

Mercury was analyzed using a Perkin Elmer Model 100 FIMS cold vapor atomic absorption analyzer. The other elements were analyzed using either a Perkin Elmer Model 3100XL Optima or a Perkin Elmer Model 4300DV ICAP.

Lab control sample: spike recoveries were within the QC limits.

Matrix spike: matrix spike was performed on sample SB-RB-W-R. Spike recoveries were within the QC limits with the exception of lead. Lead is flagged with a "N" on the data report forms. A post digest spike was performed for lead.

Matrix duplicate: matrix duplicate was performed on sample SB-RB-W-R. Replicate RPDs were within the QC limits with the exception of iron. Iron is flagged with an "*" on the data report forms.

Sample analysis: serial dilution was performed on sample SB-RB-W-R. Replicate RPDs within the QC. No other unusual observation was made for the analysis.

6. Cyanide Analysis:

The cyanide samples were prepared using minidistill apparatus by Kontes. The resultant distillates were analyzed using a Lachat QuikChem 8000 autoanalyzer.

Lab control sample: spike recovery was within the QC limits.

Matrix spike: matrix spike was performed on sample SB-RB-W-R. Spike recovery was within the QC limits.

Matrix duplicate: matrix duplicate was performed on sample SB-RB-W-R. Replicate RPD was within the QC limits.

Sample analysis: no unusual observation was made for the analysis.

7. Wet Chemistry Analyses:

Lab control sample: spike recovery was within the QC limits for nitrate-nitrite, total organic carbon, ammonia and TKN.

Sample analysis: TKN was detected in the method blank above the PQL. The concentration of TKN in the associated samples will be qualified with a "B". No other unusual observation was made for the analysis.

8. BOD and Phenol Analyses:

The BOD analyses were subcontracted to RI Analytical Laboratories of Warwick, RI. The RIAL report is submitted following the wet chemistry data.

Phenols were performed by sub-contract laboratory, STL Connecticut of Shelton, CT. The entire STL Connecticut report, including any notes on these analyses, is included following the Last Page of the Mitkem data report. The STL report is paginated separately from the Mitkem data report.

All pages in this report have been numbered consecutively, starting with the title page and ending with a page saying only "Last Page of Data Report".

I certify that this data package is in compliance, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Agnes Ng

CLP Project Manager

10/05/05

Mitkem and Client Sample ID Summary Report*

Mitkem Workorder: D1004

Client Name: Ecology and Environm

Mitkem Sample ID	Reported Client Sample ID	Full Client Sample ID	
D1004-01A	SB-RB-W-R	OTMI-SB-RB-W-R	
D1004-01B	SB-RB-W-R	OTMI-SB-RB-W-R	
D1004-01C	SB-RB-W-R	OTMI-SB-RB-W-R	
D1004-01D	SB-RB-W-R	OTMI-SB-RB-W-R	
D1004-02A	MW12-W-O	OTMI-MW12-W-O-0805	
D1004-02B	MW12-W-O	OTMI-MW12-W-O-0805	
D1004-03A	MW12-W-O-0805	OTMI-MW12-W-O-0805	
D1004-03B	MW12-W-O-0805	OTMI-MW12-W-O-0805	
D1004-03C	MW12-W-O-0805	OTMI-MW12-W-O-0805	

^{*} If client sample ID has not been truncated, the full client sample ID is listed in the column labeled "Reported Client Sample ID"

WorkOrder: D1004	0 03V 1 4
12/Sep/05 11:25	
Mitkem Corporation	

Sample ID	Client Sample ID	Collection Date Date Received Matrix	Date Received	1 Matrix	Test Code	Lab Test Comments	iold MS SEL Storage
D1004-01A	SB-RB-W-R	08/24/05 8:15	08/25/05	Aqueous	OLM4.2_VOA_W	OLM, NYS-Add LCS	□ □ □ voA
D1004-01B	SB-RB-W-R	08/24/05 8:15	08/25/05	Aqueous	ILM5.3_CN_W		
D1004-01C	SB-RB-W-R	08/24/05 8:15	08/25/05	Aqueous	OLM4.2_PP_W	OLM, NYS-Add LCS	
					OLM4.2_SVOA_W	OLM, NYS-Add LCS	
D1004-01D	SB-RB-W-R	08/24/05 8:15	08/25/05	Aqueous	ILM5.3_HG_W	ILM5.3 plus boron	
					ILM5.3_ICP_W	ILM5.3 plus boron	M1
D1004-02A	MW12-W-O	08/24/05 7:45	08/25/05	Aqueous	ILM5.3_CN_W		
D1004-02B	MW12-W-0	08/24/05 7:45	08/25/05	Aqueous	OLM4.2_PP_W	OLM, NYS-Add LCS	
					OLM4.2_SVOA_W	OLM, NYS-Add LCS	
D1004-03A	MW12-W-O-0805	08/25/05 7:35	08/26/05	Aqueous	E353.2_NO2NO3		23
			1		SM4500_NH3_W		
					SM4500_TKN_W		

Client Rep: Benjamin F Dodge

Page

1 of 2

WorkOrder: D100	
12/Sep/05 11:25	
Mitkem Corporation	

Case: Report Level: ASP-B	y Landfill SDG: EDD: ADAPT	PO: TN 000699.NV26.02 HC Due: 09/16/05	Fax Due:
Client ID: ENE	Project: Old Troy Landfill	Location:	Comments: N/A

Sample ID	Client Sample ID	Collection Date Date Received Matrix	Date Received	Matrix	Test Code	Lab Test Comments	lold MS SEL Storage
D1004-03B	01004-03B MW12-W-O-0805	08/25/05 7:35 08/26/05	08/26/05	Aqueous	E405.1_5		C C SUB
D1004-03C	01004-03C MW12-W-O-0805	08/25/05 7:35 08/26/05	08/26/05	Aqueous	E420.1		

Page 2 of 2

Client Rep: Benjamin F Dodge

Sample Transmittal Documentation

CITY/ST/ZIP

ADDRESS

NAME

COMPANY

(401) 732-3400 • Fax (401) 732-3499 Warwick, Rhode Island 02886-1755 175 Metro Center Boulevard

CHAIN-OF-CUSTODY RECORD

TURNAROUND TIME\$ 34 COOLER TEMP: Depth: 27-4.8 bys COMMENTS 707 of FedEX 8468 3885 3730 ADDITIONAL REMARKS: PHONE FAX PINK: CLIENT'S COPY 8-3-18:40 DATE/TIME A SWA ය જ YELLOW: REPORT COPY CITY/ST/ZIP COMPANY ADDRESS 'n ACCEPTED BY NAME # OF CONTAINERS Bro 8.25-00 FAX 716 684 CRYLY -47-02 CLIENT PO#: 10-80 LAB ID PHONE 84 8060 WHITE: LABORATORY COPY LARNV26,02 OTHER が下げ TIOS DATE/TIME email: mitkem@mitkem.com 7 WATER 3 los Pleasandriew Dr GKYBcooleant Environment TO THE PROPERTY OF COMPOSITE 7,075 othi-mw65-61-0 | slaylor 1209 DATE/TIME SAMPLED STAIL-SB-RB-W-R 1810-10815 Old Tray MUNIC INCIN CLIENT PROJECT NAME: VQUISHED BY OTMI-AWIS-W-D-COSS SPAUS SAMPLE IDENTIFICATION

00010

175 Metro Center Boulevard Warwick, Rhode Island 02886-1755 (401) 732-3400 • Fax (401) 732-3499 email: mitkem@mitkem.com

CHAIN-OF-CUSTODY RECORD

Page of

LAB PROJECT #:	4	7,1004	TURNAROUND TIME:	Standard	,		COMMENTS														
PHONE		FAX			DIESTED ANALYSES												ADDITIONAL REMARKS:	阳野	SLC 5880 8948		DINE CTIENT'S CODY
PANDICE BY O				90	53/2	MANA STATES	TO TO SOUTH										DATE/TIME	B		,	
	Same	NAME	ADDRESS	CITY/ST/ZIP	ł			2	5311							3	ACCEPTED BY	75			VELLOW: DEDOPT COBY
ONOME AND ANY	नार ध्यम श्राफ	4480 489 AK+	•	0	#: CLIENT P.O.#	720	SOIL SOIL	6	7									8/8			TSUCO ASSOCIATION
	Meyri		ed Or	98071 TU	CLIENT PROJECT #:	699,NVZ6,02	COMPOSITE GRAB WATER	7	7			_	100	1/2/0			DATE/TIME	3/2/2/1502			VACO VACOTA ACATA T TERMA
S L	74 TAVION	Nickerson	368 Pleasantive J.	Lawaster n		MIC. ÍMCM.	DATE/TIME SAMPLED	x 12/4/0135	\$ 15. SS 55.		1			/	4	2	ECOUISHED BY	328			
ANYONO	COMPANY PROBACY PAULON MON	NAME JOY	ADDRESS 368	CITY/ST/ZIP LAW	CLIENT PROJECT NAME:	Old Tilay Munie. Incin.	SAMPLE	ASSACRATION OF THE PROPERTY OF	0-16-18-MM-19-0								TSE#	8		9001	1

MITKEM CORPORATION Sample Condition Form

Page \ of \ am x 3105

Received By: 355	Reviewed E	y ALH		Date 8	25-05	MITKE	M Project	# 1003	71004
Client Project: OH Tray		00		Client:				Soil Headspace or Air Bubbles ≥ 1/4"	
		1 - 1- 0	-l- ID	HNO	Preserva				
		Lab Sam		HNO ₃	H₂SO₄	HCI	NaOH	Matrix	
Cooler Sealed (Yes / No		DIOCES	-01	42			7/2		
Ů		4	-02				712		
1) Custody Seal(s)	Present / Absent	,			_				
	Coolers / Bottles								
\	Intact Broken							/	/ <u> </u>
		,							
2) Custody Seal Number(s)	410								
2, 000,000, 000, 110,110,110,110,110,110,						. <u>.</u>		/	
		····						-	
			1			<u> </u>			
							/	<u>-</u>	
		<u> </u>		<u> </u>			/		
3) Chain-of-Custody	Present/ Absent					 	<u> </u>		· · · · · · · · · · · · · · · · · · ·
	400		<u> </u>			 / 			
4) Cooler Temperature	40					/			
Coolant Condition	<u>LLE</u>			 		<u> </u>			
		-		<u> </u>					
5) Airbill(s)	Present Absent								
Airbill Number(s)	846828852730								
				<u> </u>	/		-		
				17					
6) Sample Bottles	Intact/Broken/Leakin			/					
o campic bottles	THE COURT OF COURT		1 /	1		 			
7) Date Besived	8-75-05		 						
7) Date Received	8-25-05		 			<u>.</u>	<u></u>		
	8:40		+/-	 	1		A - 4-i- 1/- 1/- 1		
8) Time Received	18/10		/	-		•	//atrix Key		
		<u> </u>	4		4	1	•		
Preservative Name/Lot No:		 		-	1		•		
					<u> </u>	1			
]	N = N	aHSO₄	M =MeO	H
			<u> </u>						
Can Cample Cond	lition Natification/Come	ative Action	Earm	VOC VEC	3				
See Sample Cond	lition Notification/Corre	GLIVE ACTION	FUIII	yes (no	7	Rad C	K yes/n	0	
							,	-	00012

MITKEM CORPORATION Sample Condition Form

Page 1 of 1 Dloo4

Received By: 3FD	Reviewed B	3y: 12 1sp		Date 8/26/6 MITKEM Project #: 25/86					
Client Project: Old Tray				Client: EFE					Soil Headspace
				Preservation (pH)				VOA	or Air Bubbles
		Lab Sam		HNO ₃		HCI	NaOH	Matrix	≥ 1/4"
Cooler Sealed (Yes) No		D1004	03		42				
	\sim								b
1) Custody Seal(s)	Present / Absent							/	<u> </u>
17 Substay South(5)	Coolers / Bottles							/	
\	Intact// Broken								
· ·	Intact/ Broken			 				/	
	A.(A			1				/ —	·
2) Custody Seal Number(s)	<u>AN</u>		<u> </u>				/		
			 						-
							/		
			-				/		
	~						/		
3) Chain-of-Custody	Presenty Absent					. /			
,						/			
4) Cooler Temperature	506					7			
Coolant Condition	7/6					/·			
Coolant Condition				 	/				
			<u> </u>		/				
5) Airbill(s)	Present DAbsent			1	/				, , , , , , , , , , , , , , , , , , ,
Airbill Number(s)				<u> </u>	 / 	<u> </u>			
	84682885275	1		ļ	/				
					<u> </u>				
			-	1/					
6) Sample Bottles	Intact/Broken/Leakin			/					
``				/					
7) Date Received	8-26-05 81.50		 	1					
7) Date Received	8 80 V J		1/			l		<u> </u>	
	GITX		+/-	-		<u></u>	A (2 17		
8) Time Received	8,20		/	 		VOA Matrix Key:			
		<u> </u>				US = Unpreserved Soil A = Air			
Preservative Name/Lot No:				UA = Unpreserved Aqueo H = HCI					
	/		1	M/N= MeOH & NaHSO ₄ E = Encore					
				N = NaHSO ₄ M =MeOH					
				./					
See Sample Cond	ition Notification/Corre	ective Action	Form	yes //no	2/	Dad C	NK veele	10	
				_		rag C	K yes/r	<u> </u>	<u>—</u> —ааатз—

Bill To:

INVOICE

Ecology and Environment

Attn: REBECCA HUMPHREY

368 Pleasantview Drive Lancaster, NY 14086

Number: **D1004

Date:

Client Rep: Rebecca Humphrey

Work Order: D1004

PO Number: TN 000699.NV26.02

Date Received: 08/26/2005

Project No:

Project Name: Old Troy Landfill

Case No:

SDG No:

Test	Remarks	Matrix	Qty	Price	Test Total
E353.2 NO2NO3		Aqueous	1	\$12.00	\$12.00
E405.1 5		Aqueous	1	\$20.00	\$20.00
E420.1		Aqueous	1	\$15.00	\$15.00
ILM5.3 CN W		Aqueous	2	\$20.00	\$40.00
ILM5.3 INORGANICS_W	ILM5.3	Aqueous	1	\$80.00	\$80.00
OLM4.2 PP_W		Aqueous	2	\$110.00	\$220.00
OLM4.2 SVOA W		Aqueous	2	\$155.00	\$310.00
OLM4.2_VOA_W		Aqueous	1	\$70.00	\$70.00
SM4500 NH3 W		Aqueous	1	\$12.00	\$12.00
SM4500_TKN_W		Aqueous	1	\$15.00	\$15.00
	·				

Subtotal:	\$794.00
Discount:	0.00%
Surcharge:	0.00%
Misc Charges:	\$0.00

Payment Received: **INVOICE Total:**

\$0.00 \$794.00

All invoices are due and payable net 30 days from receipt.

2A WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab	Name:	MITKEM	CORPORATION	Contract:		
Lab	Code:	MITKEM	Case No.:	SAS No.:	SDG No.:	MD1004

SAMPLE NO. (TOL)# (BFB)# (DCE)# OUT VBLKGY		EPA	SMC1	SMC2	SMC3	OTHER	TOT
Name			(TOL)#	(BFB)#	(DCE)#	0111111	
02 V6YLCS 109 100 98 0 0 03 SB-RB-W-R 108 108 96 0 05 06 07 08 09 09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						=========	=========
SB-RB-W-R	01	VBLK6Y			89		<u> </u>
04 VHBLK6Y 106 105 95 0 06 07 08 09		VEYLCS					0
05		SB-RB-W-R					
06		VHBLK6Y	106	105	95		0
07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29							
08							
09							
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29							
11							
12							· · · · · · · · · · · · · · · · · · ·
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	12						
14 15 16 17 18 19 20 21 21 22 23 24 25 26 27 28 29 29	13						
15	14						
16 17	15						
18 19 20 21 22 23 24 25 26 27 28 29	16						
19							
20							
21	19		-		'		
22	20						
23	21						
24	22			<u> </u>			
25	23			<u> </u>			
26 27 28 29	24						
27 28 29	25						
28 29	27						
29	28						
	29						
30							

QC LIMITS

SMC1 (TOL) = Toluene-d8 (88-110) SMC2 (BFB) = Bromofluorobenzene (86-115) SMC3 (DCE) = 1,2-Dichloroethane-d4 (76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

FORM 3 WATER VOLATILE LAB CONTROL SAMPLE

Lab Name: MITKEM CORPORATION

Contract:

Lab Code: MITKEM Case No.:

SAS No.:

SDG No.: MD1004

Matrix Spike - Sample No.: V6YLCS

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC #	QC. LIMITS REC.
	=======	=========	=========	=====	=====
1,1-Dichloroethene	50		44	88	61-145
Benzene	50		45	90	76-127
Trichloroethene	50	1	47	94	71-120
Toluene	50		49	98	76-125
Chlorobenzene	50		50	100	75-130

Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	ο£	QC	limita
---	--------	---------	----	----	--------

RPD: 0 out of 0 outside limits

Spike Recovery: 0 out of 5 outside limits

COMMENTS:			

4A VOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

					VBLK6Y
Lab Name:	Lab Name: MITKEM CORPORATION			,	
Lab Code:	MITKEM Cas	se No.:	SAS No.:	SDG	No.: MD1004
Lab File :	Lab File ID: <u>V6D8022</u>		Lab Sample II	D: <u>MB-1968</u>	10
Date Analy	yzed: <u>08/26/0</u>	<u>5</u>	Time Analyzed	d: <u>1048</u>	_
GC Column	: <u>DB-624</u>	ID: <u>0.25</u> (mm)	Heated Purge:	: (Y/N) <u>N</u>	_
Instrument	t ID: <u>V6</u>				
THIS	METHOD BLANK	APPLIES TO THE	FOLLOWING SAMPI	LES, MS, a	nd MSD:
	EPA SAMPLE NO.	· ·	LAB FILE ID	TIME ANALYZEI	
01	V6YLCS	LCS-19680	V6D8023	1134	: =
02		D1004-01A	V6D8027	1336	-
	VHBLK6Y	VHBLK6Y	V6D8036	1758	-
04					_
05					
06				_	_
07					_
08					_
09 1 0					_
11					-
12					-
13					-
14					_
15					<u> </u>
16					
17					_
18					
19 20					-
21					
22					-
23					-
24		·			<u> </u>
25					
26					_
27					
28 29			1		-
30					[
50	1				- '
COMMENTS:					

page 1 of 1

FORM IV VOA

OLM04.3

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: MITKEM CORPORATION	Contract:	
Lab Code: MITKEM Case No.:	SAS No.:	SDG No.: MD1004
Lab File ID: V6D7990	BFB	Injection Date: 08/25/05
Instrument ID: V6	BFB	Injection Time: 1020
GC Column: <u>DB-624</u> ID: <u>0.25</u> (m	m) .	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
======		=======================================	
50	8.0 - 40.0% of mass 95		21.0
75	30.0 - 66.0% of mass 95	-	53.0
95	Base Peak, 100% relative abundance		100.0
96	5.0 - 9.0% of mass 95		7.0
173	Less than 2.0% of mass 174		0.6 (0.7)1
174	50.0 - 120.0% of mass 95		85.3
175	4.0 - 9.0% of mass 174		6.0 (7.0)1
176	93.0 - 101.0% of mass 174		84.1 (98.6)1
177	5.0 - 9.0% of mass 176		5.3 (6.3)2
	1-Value is % mass 174	2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
		=======================================			
01	VSTD0506X	VSTD0506X	V6D7991	08/25/05	1045
02	VSTD0106X	VSTD0106X	V6D7993	08/25/05	1157
03	VSTD1006X	VSTD1006X	V6D7994	08/25/05	1228
04	VSTD2006X	VSTD2006X	V6D7995	08/25/05	1303
05	VSTD0206X	VSTD0206X	V6D7996	08/25/05	1334
06					
07					
80					
09					
10					·
11					····
12					
13					
14					
15				_	
16					
17					
18					
19					
20					
21					
22					

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: MITKEM CORPORATION	Contract:	
Lab Code: MITKEM Case No.:	SAS No.:	SDG No.: MD1004
Lab File ID: V6D8020	BFB	Injection Date: 08/26/05
Instrument ID: V6	BFB	Injection Time: 0947
GC Column: DB-624 ID: 0.25	(mm)	

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE	
======			=========
50	8.0 - 40.0% of mass 95		22.8
75	30.0 - 66.0% of mass 95		55.3
95	Base Peak, 100% relative abundance	•	100.0
96	5.0 - 9.0% of mass 95	·	7.0
173	Less than 2.0% of mass 174		0.5 (0.6)1
174	50.0 - 120.0% of mass 95		81.6
175	4.0 - 9.0% of mass 174		6.1 (7.4)1
176	93.0 - 101.0% of mass 174		79.2 (97.1)1
177	5.0 - 9.0% of mass 176		5.0 (6.3)2
-	1-Value is % mass 174	2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

1	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	========		==========	=======	=======
01	VSTD0506Y	VSTD0506Y	V6D8021	08/26/05	1010
02	VBLK6Y	MB-19680	V6D8022	08/26/05	1048
03	V6YLCS	LCS-19680	V6D8023	08/26/05	1134
04	SB-RB-W-R	D1004-01A	V6D8027	08/26/05	1336
05	VHBLK6Y	VHBLK6Y	V6D8036	08/26/05	1758
06					
07				·	
08					
09					
10					
11	<u> </u>				
12				-	
13					
14	ļ 				
15					
16					 -
17			ļ		 -
18					
19					
20					
21					
22	l 				

VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
EPA Sample No. (VSTD050##): VSTD0506Y	Date Analyzed: 08/26/05
Lab File ID (Standard): V6D8021	Time Analyzed: 1010
Instrument ID: V6	Heated Purge: (Y/N) N
GC Column: <u>DB-624</u> ID: 0.25 (mm)	

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========	======	========	======	=======	======
	12 HOUR STD	303314	4.71	1715816	5.79	1689863	9.28
	UPPER LIMIT	606628	5.21	3431632	6.29	3379726	9.78
	LOWER LIMIT	151657	4.21	857908	5.29	844932	8.78
			======		======	========	======
	EPA SAMPLE				•		
			======		======	=========	======
01	VBLK6Y	313245	4.71	1739133	5.79	1670004	9.29
02	V6YLCS	275446	4.71	1567130	5.79	1503588	9.29
03	SB-RB-W-R	257266	4.71	1475679	5.80	1413121	9.29
04	VHBLK6Y	225139	4.71	1264005	5.79	1223366	9.29
05							
06							:
07							
80							
09							
10 11			<u>-</u>				
12							
13							
14	-			<u> </u>			
15							
16	-						
17			· · · · · · · · · · · · · · · · · · ·				
18							
19							
20							
21							
22							
44							

IS1 (BCM) = Bromochloromethane IS2 (DFB) = 1,4-Difluorobenzene IS3 (CBZ) = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SB-RB-W-R Lab Name: MITKEM CORPORATION Contract: SAS No.: SDG No.: MD1004 Lab Code: MITKEM Case No.: Matrix: (soil/water) WATER Lab Sample ID: D1004-01A Sample wt/vol: 5.000 (g/mL) ML Lab File ID: V6D8027 Level: (low/med) LOW Date Received: <u>08/25/05</u> % Moisture: not dec. _____ Date Analyzed: 08/26/05 Dilution Factor: 1.0 GC Column: DB-624 ID: 0.25 (mm) Soil Aliquot Volume: (uL)

Soil Extract Volume: (uL)

CAS NO. COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u> Q

75-71-8	Dichlorodifluoromethane	10	Ū
74-87-3	Chloromethane	10	U
75-01-4	Vinyl Chloride	10	Ū
74-83-9	Bromomethane	10	Ŭ
75-00-3	Chloroethane	10	Ū
75-69-4	Trichlorofluoromethane	10	Ū
75-35-4	1,1-Dichloroethene	10	Ū
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	U
79-20-9	Methyl Acetate	10	Ū
75-09-2	Methylene Chloride	10	U
156-60-5	trans-1,2-Dichloroethene	10	ט
1634-04-4	Methyl tert-Butyl Ether	10	Ū
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	Ū
67-66 - 3	Chloroform	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
110-82-7	Cyclohexane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
71-43-2	Benzene	10	Ū
107-06-2	1,2-Dichloroethane	10	Ū

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D1004-01A
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8027
Level: (low/med) LOW	Date Received: 08/25/05
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume: (uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

79-01-6	Trichloroethene	10	Ū
108-87-2	Methylcyclohexane	10	Ū
78-87-5	1,2-Dichloropropane	10	Ü
		10	Ü
75-27-4	Bromodichloromethane		Ū
10061-01-5	cis-1,3-Dichloropropene	10	
108-10-1	4-Methyl-2-Pentanone	10	U
108-88-3	Toluene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	U
79-00-5	1,1,2-Trichloroethane	10	U
127-18-4	Tetrachloroethene	10	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U
106-93-4	1,2-Dibromoethane	10	Ū
108-90-7	Chlorobenzene	10	Ū
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (Total)	10	Ū
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	U
98-82-8	Isopropylbenzene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	U
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
96-12-8	1,2-Dibromo-3-chloropropane	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ū
1		<u> </u>	

1F

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EDA	SAMPLE	NO.

Lab Name: MITKEM CORPORATION	Contract:	SB-RB-W-R
Lab Code: MITKEM Case No.:	_ SAS No.: SDG No.:	MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D100	04-01A
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D80)27
Level: (low/med) <u>LOW</u>	Date Received: 08/2	25/05
% Moisture: not dec	Date Analyzed: 08/2	<u>26/05</u>
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.	<u>o</u> ·
Soil Extract Volume:(uL)	Soil Aliquot Volume	e:(uL)
	CONCENTRATION UNITS	S:

Number TICs found: 0

(ug/L or ug/Kg) ug/L

COMPOUND NAME	RT =======	EST. CONC.	Q =====
			<u> </u>
			
			
		<u></u>	
			-
			
		<u> </u>	
•			

-2-3 뭐. -볶 . 다 \\AVOGADRO\ORGANICS\organic\voa\V6.i\O50826.B\V6D8027.D Operator: SB SRC: LIM Column diameter: 0.25 4 Srcmofluorobenzene (10,839) Min 10 Chlorobenzene-d5 (9,287) ·w (184.7) 8b-eneuloT (367,4) eneznedoroultid-4,1--T.2-Dichloroethane-d4 (5,309) - Bromochloromethane (4,713) Column phase; DB-624 • 0.6-4.4 4.0 6.9 0.7-...4 0.2 2.0-1,5-1,4-1,3 1.2-. 3-2,3 2,2 2,1-.6+1 9.4 1.6-00þ25 (9~0TX) X

SRC: LIMS

Instrument: V6.i

Data File: \\AVOCADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8027.D

Sample Info: 5ml, D1004-01A,, 19680

Purge Volume: 5.0

Date : 26-AUG-2005 13:36 Client ID: SB-RB-W-R Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8027.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8027.D

Lab Smp Id: D1004-01A

Client Smp ID: SB-RB-W-R

Inst ID: V6.i

Inj Date : 26-AUG-2005 13:36

Operator : SB SRC: LIMS

Smp Info : 5ml, D1004-01A, ,19680

Misc Info: ,3

Comment

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.mv

Meth Date : 31-Aug-2005 15:21 mtl Quant Type: ISTD

Cal Date : 26-AUG-2005 10:10 Cal File: V6D8021.D 🗸

Als bottle: 7

Dil Factor: 1.00000

Compound Sublist: CLP4.sub Integrator: HP RTE

Target Version: 4.03

Name	Value	Description
DF U£	1.000	Dilution Factor ng unit correction factor
Vo	5.000	Sample Volume purged (mL)

							CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
C	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=	=======================================		==			=======		
*	18 Bromochloromethane	128	4.713	4.708	(1.000)	257266	50.0000	
\$	23 1,2-Dichloroethane-d4	65	5.309	5.304	(1.127)	719841	48.0159	48
*	26 1,4-Difluorobenzene	114	5.795	5.791	(1.000)	1475679	50.0000	
\$	33 Toluene-d8	98	7.481	7.482	(0.805)	1922048	53.8620	. 54
*	42 Chlorobenzene-d5	117	9.287	9.283	(1.000)	1413121	50.0000	
\$	50 Bromofluorobenzene	95	10.839	10.840	(1.167)	742809	53.8847	54

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8027.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8027.D

Lab Smp Id: D1004-01A

Client Smp ID: SB-RB-W-R

Inj Date : 26-AUG-2005 13:36

Operator : SB SRC: LIMS Inst ID: V6.i

Smp Info : 5ml, D1004-01A, , 19680

Misc Info: ,3

Comment

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m Meth Date : 31-Aug-2005 15:21 mtl Quant Type: ISTD

Cal Date : 26-AUG-2005 10:10 Cal File: V6D8021.D

Als bottle: 7

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03

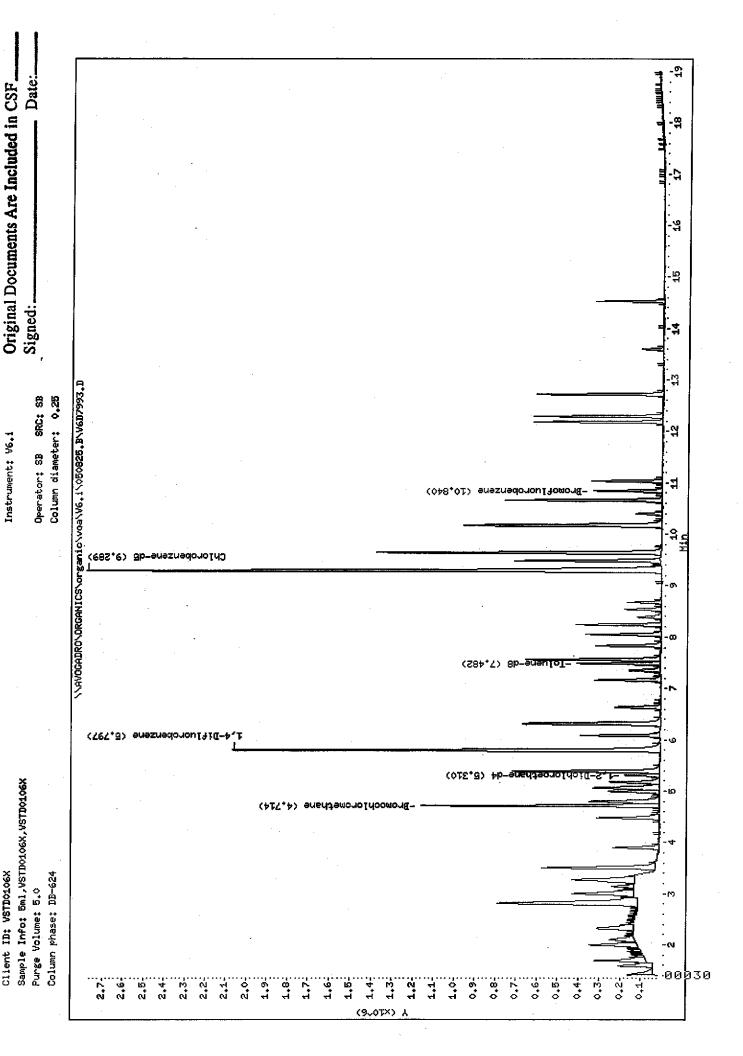
⁻ NO TENTATIVELY IDENTIFIED COMPOUNDS -

6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: MITKEM CORPORATIO	ON Contract:
Lab Code: MITKEM Case No	o.: SAS No.: SDG No.: MD1004
Instrument ID: V6	Calibration Date(s): 08/25/05 08/25/05
Heated Purge: (Y/N) N	Calibration Times: 1045 1334
CC Column, DR C24 TD, O	25 /mm)

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

LAB FILE ID: RRF10	= V6D	7993	RRF20	= V6	D7996		
RRF50 = V6D7991 RRF100	V6D[*]	7994	RRF20		07995		
					- -		
	1	l	Ī	1			જ
COMPOUND	RRF10	RRF20	RRF50	RRF100	RRF200	RRF	RSD
=======================================	=====	=====	======	======	=====	=====	=====
Dichlorodifluoromethane	2.273	2.191	2.294	2.516	2.531	2.361	6.5
Chloromethane	3.585	3.865	3.648	3.862	3.858	3.764	3.6
Vinyl Chloride *	4.829	4.917	4.529	5.147	5.064	4.897	4.9*
Bromomethane *	3.519	3.869	3.451	4.108	3.710	3.731	7.2*
Chloroethane	2.788	2.820	2.481	2.809	2.535	2.687	6.1
Trichlorofluoromethane	5.209	6.334	5.295	7.552	7.738	6.426	18.7
1,1-Dichloroethene *	4.876	5.376	5.162	5.699	5.900	5.403	7.6*
1,1,2-Trichloro-							
1,2,2-trifluoroethane	4.501	4.727	4.749	5.391	5.370	4.948	8.2
Acetone	1.820	1.708	1.687	1.664	1.581	1.692	5.1
Carbon Disulfide	13.193			15.068		14.127	6.4
Methyl Acetate	2.411	2.266	2.069	2.260	2.176	2.236	5.6
Methylene Chloride	5.139	5.160	4.620	4.995	5.013	4.985	4.4
trans-1,2-Dichloroethene	2.138	2.244	2.186	2.609	3.027	2.441	15.4
Methyl tert-Butyl Ether	6.290	6.705	6.322	7.214	7.696	6.845	8.8
1,1-Dichloroethane *	1 3.000	3.848	3.780	4.073	4.196	3.939	4.7*
cis-1,2-Dichloroethene	2.034	2.126	2.075	2.247	2.488	2.194	8.3
2-Butanone	1.535	1.498	1.440	1.501	1.616	1.518	4.3
Chloroform *	1	3.852	3.817	3.983	4.206	3.934	4.2*
1,1,1-Trichloroethane *	0.002	0.542	0.514	0.561	0.589	0.542	6.5*
Cyclohexane	0.577	0.611	0.622	0.703	0.774	0.657	12.2
Carbon Tetrachloride *	1 0 4 4 3 7	0.468	0.485	0.538	0.598	0.509	11.5*
Benzene *	1 1.505	1.472	1.398	1.546	1.622	1.484	6.8*
1,2-Dichloroethane *	7.770	3.499	3.429	3.778	4.022	3.613	7.8*
Trichloroethene *	1 0.303	0.383	0.369	0.403	0.469	0.397	10.8*
Methylcyclohexane	0.540	0.578	0.594	0.736	0.856	0.661	20.0


^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

6B VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: MITKEM CORPORATION	Contract:	
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD100	4
Instrument ID: <u>V6</u> Calibrat	tion Date(s): <u>08/25/05</u> <u>08/25/05</u>	
Heated Purge: (Y/N) N Calibrat	tion Times: 1045 1334	
GC Column: DB-624 TD: 0.25 (mm)		

LAB FILE ID: RRF10) =	= V6D'	7993	RRF20		77996		
RRF50 = V6D7991 RRF10	0=	= V6D'	7994	RRF200)= V61	07995		
				-				
			·					જ
COMPOUND	1	RRF10	RRF20	RRF50	RRF100	RRF200	RRF	RSD
_======================================	=		=====	=====	=====	=====	=====	=====
1,2-Dichloropropane		0.387	0.411	0.395	0.448		0.432	12.6
Bromodichloromethane	*	0.439	0.463	0.475	0.508		0.488	9.3*
cis-1,3-Dichloropropene	*	0.541	0.580	0.579	0.609		0.594	7.4*
4-Methyl-2-Pentanone		0.434	0.460	0.417	0.421	0.429	0.432	4.0
Toluene	*	1.508	1.601	1.484	1.626	1.535	1.551	3.9*
trans-1,3-Dichloropropene	*	0.560	0.567	0.578	0.604	0.653	0.592	
1,1,2-Trichloroethane	*	0.327	0.339	0.326	0.342	0.388	0.344	7.4*
Tetrachloroethene	*	0.297	0.317	0.317	0.361	0.411	0.341	13.5*
2-Hexanone		0.349	0.407	0.361	0.362	0.376	0.371	6.1
Dibromochloromethane	*	0.298	0.322	0.348	0.375	0.443	0.357	15.7*
1,2-Dibromoethane		0.380	0.402	0.377	0.406	0.427	0.398	5.1
Chlorobenzene	*	1.030	1.102	1.033	1.124	1.179	1.094	5.8*
Ethylbenzene	*	0.512	0.546	0.538	0.614	0.704	0.583	13.3*
Xylene (Total)	*	0.635	0.686	0.673	0.809	0.975	0.756	18.4*
Styrene	*	0.815	0.883	0.866	1.001	1.164	0.946	14.8*
Bromoform	*	0.185	0.208	0.230	0.250	0.319	0.238	21.5*
Isopropylbenzene		1.571	1.675	1.651	1.824	1.671	1.678	5.5
	*	0.508	0.525	0.494	0.524	0.552	0.521	4.2*
1,3-Dichlorobenzene	*	0.777	0.857	0.894	0.965	1.101	0.919	13.3*
1,4-Dichlorobenzene	*	0.761	0.878	0.914	0.999	1.128	0.936	14.7*
	*	0.729	0.836	0.856	0.931	1.054	0.881	13.7*
1,2-Dibromo-3-chloropropane		0.074	0.080	0.091	0.086	0.097		10.5
1,2,4-Trichlorobenzene	*	0.270	0.412	0.504	0.479	0.711	0.475	33.7*
	=	=====	=====	=====	=====	=====	=====	=====
Toluene-d8		0.865	1.217	1.258	1.387	1.366	1.219	17.3
Bromofluorobenzene	*	0.354	0.463	0.510	0.531	0.611	0.494	19.2*
1,2-Dichloroethane-d4		2.245	2.667	2.914	2.988	3.182	2.799	12.9

^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

COPY

Instrument: V6.1

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.1\050825.B\V6D7993.D

Date : 25-AUG-2005 11:57 Client ID: VSTD0106X Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7993.D

Report Date: 26-Aug-2005 10:18

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7993.D Lab Smp Id: VSTD0106X Client Smp ID: VSTD0106X

Inj Date : 25-AUG-2005 11:57

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, VSTD0106X, VSTD0106X

Misc Info : ,1,1

Comment :

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\v6clp4s.m

Meth Date: 25-Aug-2005 14:02 mtl Quant Type: ISTD

Cal Date : 25-AUG-2005 10:45 Cal File: V6D7991.D Calibration Sample, Level: 1

Dil Factor: 1.00000 Integrator: HP RTE

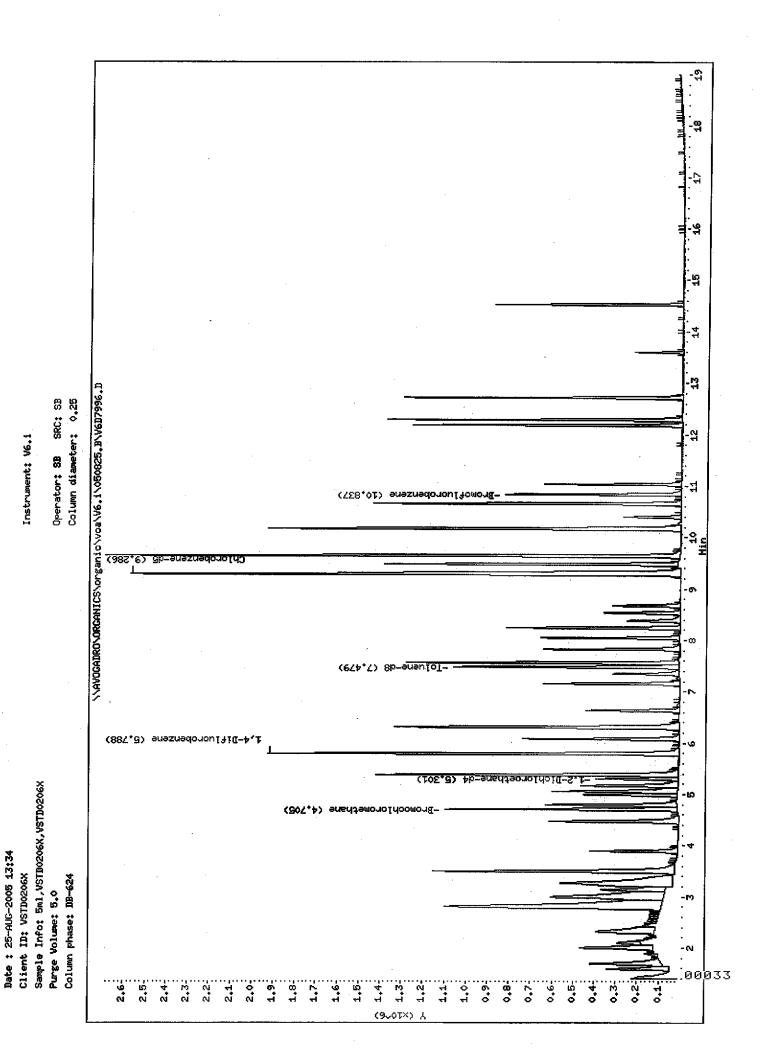
Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03
Processing Host: TARGET3

Name	Value	Description
DF		Dilution Factor
Uf	1.000	ng unit correction factor
Vo	5.000	Sample Volume purged (mL)

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	response	(ug/L)	(ug/L)
		Mb will had held	***					
1 Dic	hlorodifluoromethane	85	1.435	1.427	(0.304)	160738	10.0000	10
2 Chl	oromethane	50	1.581	1.585	(0.335)	253551	10.0000	10
3 Vin	yl Chloride	62	1.685	1.683	(0.357)	341552	10.0000	10
4 Bro	momethane	94	1.995	1.993	(0.423)	248860	10.0000	10
5 Chl	oroethane	64	2.098	2.096	(0.445)	197186	10.0000	11
6 Tri	chlorofluoromethane	101	2.323	2.321	(0.493)	368377	10.0000	10
7 1,1	-Dichloroethene	96	2.804	2.796	(0.595)	344855	10.0000	10
8 1,1	,2-Trichloro-1,2,2-trifluo	101	2,816	2.814	(0.597)	318347	10.0000	10
9 Acet	tone	43	2.822	2.814	(0.599)	128719	10.0000	10
10 Carl	bon Disulfide	76	2.999	2.997	(0.636)	933017	10.0000	10
11 Meth	hyl Acetate	43	3.145	3.136	(0.667)	170511	10.0000	11
12 Metl	hylene Chloride	84	3.272	3.264	(0.694)	363428	10.0000	11
13 tran	ns-1,2-Dichloroethene	96	3.491	3.489	(0.741)	151229	10.0000	10
14 Meth	hyl tert-Butyl Ether	73	3.510	3.502	(0.744)	444824	10.0000	10
15 1,1-	-Dichloroethane	63	3.899	3.891	(0.827)	268752	10.0000	10
17 cis-	-1,2-Dichloroethene	96	4.477	4.469	(0.950)	143826	10.0000	10

•		CO	PY		•
Original l	Documents	Are	Included	in	CSF
Signed:	<u> </u>				Date: nnnn31


Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7993.D Report Date: 26-Aug-2005 10:18

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	Mass	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==		====	==		=====	2222244 24224		242223
	16 2-Butanone	43	4.489		(0.952)	108526	10.0000	10
*	18 Bromochloromethane	128	4.714		(1.000)	353614	50.0000	
	19 Chloroform	83	4.799		(1.018)	269602	10.0000	10
	20 1,1,1-Trichloroethane	97	4.994		(0.861)	196535	10,0000	10
	21 Cyclohexane	56	5.061	5.059	(0.873)	225762	10.0000	10
	22 Carbon Tetrachloride	117	5.170	5.168	(0.892)	178807	10.0000	10
\$	23 1,2-Dichloroethane-d4	65	5.310	5.302	(1.126)	158738	10.0000	9 (a)
	25 Benzene	78	5.377	5.375	(0.928)	541389	10.0000	10
	24 1,2-Dichloroethane	62	5.389	5.387	(1,143)	236094	10.0000	10
*	26 1,4-Difluorobenzene	114	5.797	5.789	(1.000)	1957532	50.0000	
	27 Trichloroethene	130	6.083	6.081	(1.049)	142093	10.0000	10
	28 Methylcyclohexane	83	6.308	6.300	(1.088)	211591	10.0000	10
	29 1,2-Dichloropropane	63	6.326	6.318	(1.091)	151701	10.0000	10
	30 Bromodichloromethane	83	6.636	6.628	(1.145)	171720	10.0000	10
	31 cis-1,3-Dichloropropene	75	7.160	7.158	(1,235)	211846	10.0000	10
	32 4-Methyl-2-Pentanone	43	7.354	7.346	(0.792)	165484	10.0000	10
\$	33 Toluene-d8	98	7.482	7.480	(0.805)	329934	10.0000	8 (a)
	34 Toluene	91	7,561	7.559	(0.814)	575417	10.0000	10
	35 trans-1,3-Dichloropropene	75	7.829	7.827	(1.351)	219093	10.0000	10
	36 1,1,2-Trichloroethane	97	8.048	8.046	(1.388)	128215	10.0000	10
	37 Tetrachloroethene	164	8.236	8.241	(0.887)	113189	10.0000	10
	38 2-Hexanone	43	8.383	8.374	(0.902)	132991	10.0000	10
	39 Dibromochloromethane	129	8.535	8.539	(1.472)	116743	10.0000	9 (a)
	40 1,2-Dibromoethane	107	8.675	8.672	(0.934)	145094	10.0000	10
*	42 Chlorobenzene-d5	117	9.289	9.281 ((1.000)	1907269	50.0000	
	43 Chlorobenzene	112	9.319	9.323 ((1.003)	392911	10.0000	10
	44 Ethylbenzene	106	9.484	9.482 ((1.021)	195353	10.0000	10
	45 m,p-Xylene	106	9.642	9.640 ((1.038)	501264	20.0000	19
	46 o-Xylene	106	10.165	10.169 ((1.094)	242249	10.0000	10
	47 Styrene	104	10.183	10.181 ((1.096)	310712	10.0000	10
	48 Bromoform	173	10.402	10.400 ((1.794)	72275	10.0000	9 (a)
	49 Isopropylbenzenè	105	10.658	10.656 ((1.147)	599159	10.0000	10
\$	50 Bromofluorobenzene	95	10.840	10.838 ((1.167)	134870	10.0000	8 (a)
	51 1,1,2,2-Tetrachloroethane	. 83	11.035	11.033 ((1.188)	193632	10.0000	10
M	41 Xylene (Total)	106				743513	10.0000	29
	52 1,3-Dichlorobenzene	146	12.185	12.177 ((1.312)	296329	10.0000	9(a)
	53 1,4-Dichlorobenzene	146	12.288	12.286 ((1.323)	290177	10.0000	9 (a)
	54 1,2-Dichlorobenzene	146	12.714	12.718 ((1.369)	277986	10.0000	9 (a)
	55 1,2-Dibromo-3-chloropropane	75	13.602	13.600 {	(1.464)	28056	10.0000	9 (a)
	56 1,2,4-Trichlorobenzene	180	14.527	14.525 ((1.564)	103021	10.0000	7 (a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.1\050825.B\V6D7996.D

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7996.D

Report Date: 26-Aug-2005 10:18

Mitkem Corporation -

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7996.D Lab Smp Id: VSTD0206X Client Smp ID: VSTD0206X Inj Date: 25-AUG-2005 13:34

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, VSTD0206X, VSTD0206X

Misc Info: ,1,2

Comment

: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\v6clp4s.m Method

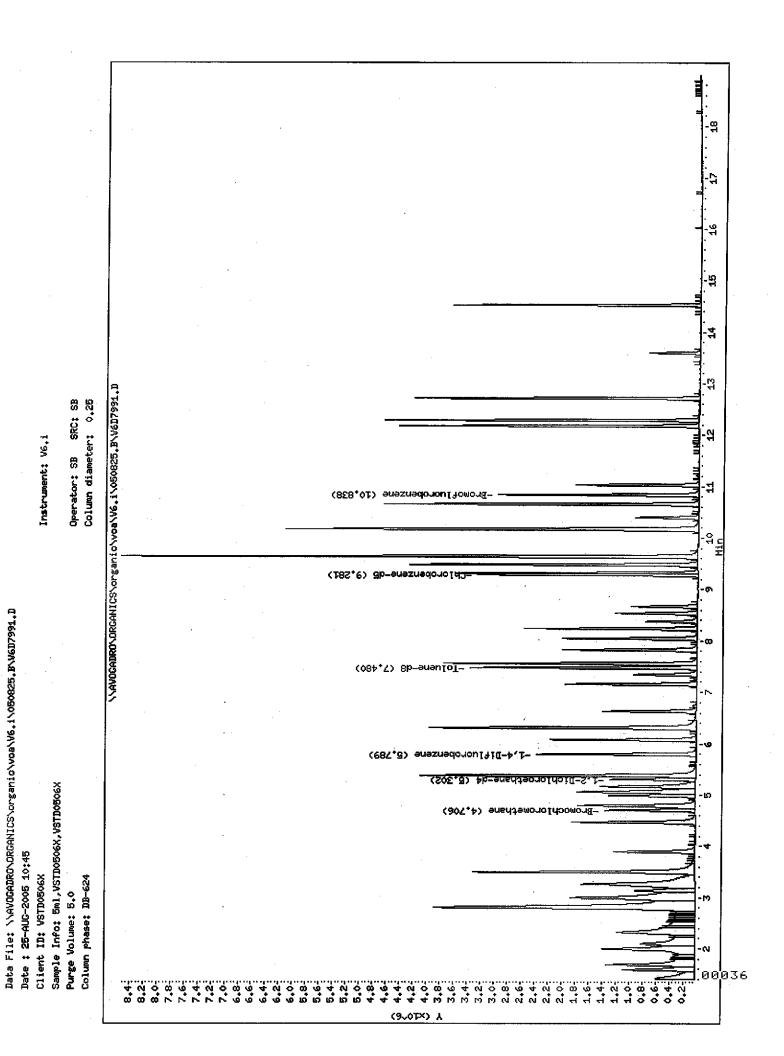
Meth Date: 25-Aug-2005 14:02 mtl Quant Type: ISTD Cal File: V6D7991.D Cal Date : 25-AUG-2005 10:45

Als bottle: 6 Calibration Sample, Level: 2

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: Processing Host: TARGET3


Name	Value	Description
DF Uf Vo		Dilution Factor ng unit correction factor Sample Volume purged (mL)

				•		AWOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	Mass	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
	====						
1 Dichlorodifluoromethane	85	1.432	1.427	(0.304)	288175	20.0000	19
2 Chloromethane	50	1.591	1.585	(0.338)	508291	20.0000	21
3 Vinyl Chloride	62	1.694	1.683	(0.360)	646618	20.0000	20
4 Bromomethane	94	1.998	1.993	(0.424)	508851	20.0000	21
5 Chloroethane	64	2.108	2.096	(0.447)	370861	20.0000	21,
6 Trichlorofluoromethane	101	2.321	2.321	(0.493)	833069	20.0000	20
7 1,1-Dichloroethene	96	2.801	2.796	(0.595)	707090	. 20.0000	20
8 1,1,2-Trichloro-1,2,2-trifluo	101	2.807	2,814	(0.596)	621737	20.0000	19
9 Acetone	43	2.819	2.814	(0.598)	224655	20.0000	20
10 Carbon Disulfide	76	2.996	2.997	(0.636)	1875606	20.0000	20
11 Methyl Acetate	43	3.136	3.136	(0.666)	297980	20.0000	20
12 Methylene Chloride	84	3.270	3.264	(0.694)	678636	20.0000	21
13 trans-1,2-Dichloroethene	96	3.495	3.489	(0.742)	295155	20.0000	. 18
14 Methyl tert-Butyl Ether	73	3.507	3.502	(0.744)	881777	20.0000	20
15 1,1-Dichloroethane	63	3.890	3.891	(0.826).	506088	20.0000	.20
17 cis-1,2-Dichloroethene	96	4.468	4.469	(0.948)	279647	20.0000	19

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7996.D Report Date: 26-Aug-2005 10:18

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
C	Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
=	1205C23523222222222222444	====	==				======	
	16 2-Butanone	43	4.486	4.481	(0.952)	197049	20.0000	20
*	18 Bromochloromethane	128	4.711	4.706	(1.000)	328789	50.0000	•
	19 Chloroform	83	4.797	4.797	(1.018)	506597	20.0000	20
	20 1,1,1-Trichloroethane	97	4.991	4.986	(0.862)	390262	20.0000	20
	21 Cyclohexane	56	5.058	5.059	(0.874)	439656	20.0000	19
	22 Carbon Tetrachloride	117	5.168	5.168	(0.893)	336405	20.0000	18
\$	23 1,2-Dichloroethane-d4	65	5.301	5.302	(1.125)	350710	20.0000	19
	25 Benzene	78	5.374	5.375	(0.929)	1058973	20.0000	20
	24 1,2-Dichloroethane	62	5.387	5.387	(1.143)	460134	20.0000	19
*	26 1,4-Difluorobenzene	114	5.788	5.789	(1.000)	1798854	50.0000	
	27 Trichloroethene	130	6.080	6.081	(1.050)	275789	20.0000	19
	28 Methylcyclohexane	83	6.305	6.300	(1.089)	415721	20.0000	17
	29 1,2-Dichloropropane	63	6.317	6.318 ((1.091)	295460	20.0000	19
	30 Bromodichloromethane	83	6.634	6.628 ((1.146)	333067	20.0000	19
	31 cis-1,3-Dichloropropene	75	7.157	7.158 ((1.236)	417419	20.0000	20
	32 4-Methyl-2-Pentanone	43	7.346	7.346 ((0.791)	315123	20.0000	. 21
\$	33 Toluene-d8	. 98	7.479	7.480 ((0.805)	833546	20.0000	20
	34 Toluene	91	7.558	7.559 (0.814)	1096519	20.0000	. 21
	35 trans-1,3-Dichloropropene	75	7.826	7.827 (1.352)	408047	20.0000	19
	36 1,1,2-Trichloroethane	97	8.045	8.046 (1.390)	243724	20.0000	20
	37 Tetrachloroethene	164	8.240	8.241 (0.887)	217285	20.0000	19
	38 2-Hexanone	43	8.374	8.374 (0.902)	279001.	20.0000	22
	39 Dibromochloromethane	129	8.538	8.539 (1.475)	231567	20.0000	18
	40 1,2-Dibromoethane	107	8.672	8.672 (0.934)	275333	20.0000	20
#	42 Chlorobenzene-d5	117	9.286	9.281 (1.000)	1711747	50.0000	•
	43 Chlorobenzene	112	9.323	9.323 (1.004)	754276	20.0000	20
	44 Ethylbenzene	106	9.481	9.482 (1.021)	373887	20.0000	19
	45 m,p-Xylene	106	9.639	9.640 (1.038)	989504	40.0000	38
	46 o-Xylene	106	10.168	10.169 (1.095)	469723	20.0000	18
	47 Styrene	104	10.180	10.181 (1.096)	604581	20.0000	19
	48 Bromoform	173	10.399	10.400 (1.797)	149823,	20.0000 .	17
	49 Isopropylbenzene	105	10.661	10.656 (1.148)	1146578	20.0000	20
\$	50 Bromofluorobenzene	95	10.837	10.838 (1.167)	316826	20.0000	. 19
	51 1,1,2,2-Tetrachloroethane	83	11.032	11.033 (1.188}	359694	20.0000	20
М	41 Xylene (Total) .	106	•			1459227	20.0000	56
	52 1,3-Dichlorobenzene	146	12.182	12.177 (1.312)	586471	20.0000	19
	53 1,4-Dichlorobenzene	146	12.285	12.286 (1.323)	601216	20.0000	19
	54 1,2-Dichlorobenzene	146	12.717	12.718 (1.369)	572480	20.0000	. 19
	55 1,2-Dibromo-3-chloropropane	75 ्	. 13.599	13.600 (1.464)	54835	20.0000	19
	56 1,2,4-Trichlorobenzene	180	14.524	14,525 (1.564)	281943	20.0000	17

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7991.D

Report Date: 26-Aug-2005 10:18

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7991.D Lab Smp Id: VSTD0506X Client Smp ID: VSTD0506X Inj Date: 25-AUG-2005 10:45

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, VSTD0506X, VSTD0506X

Misc Info: ,2

Comment

: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\v6clp4s.m Method

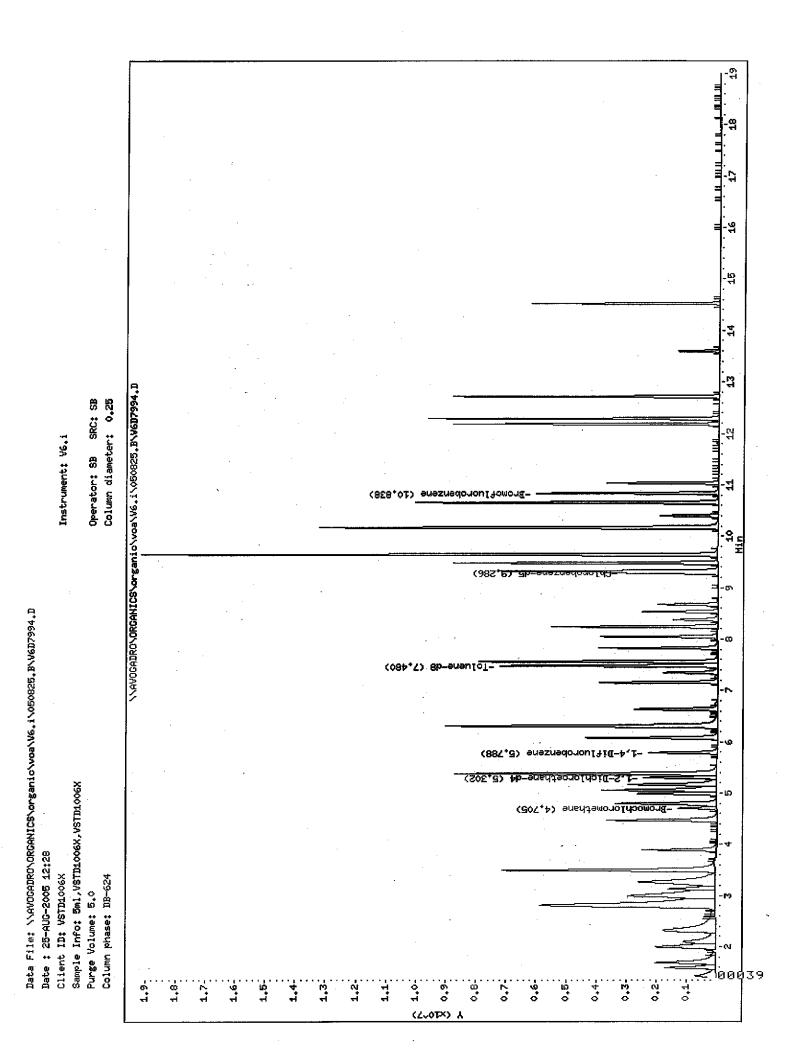
Meth Date : 25-Aug-2005 14:02 mtl Cal Date : 25-AUG-2005 10:45 Quant Type: ISTD Cal File: V6D7991.D

Als bottle: 1 Calibration Sample, Level: 3

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03 Processing Host: TARGET3


Name	Value	Description
DF Uf	1.000	
Vo	5.000	Sample Volume purged (mL)

						AMOUN	TS
	QUANT SIG				•	CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
		==	======	***			======
1 Dichlorodifluoromethane	85	1.427	1.427	(0.303)	894919	50.0000	50
2 Chloromethane	50	1.585	1.585	(0.337)	1423529	50.0000	50
3 Vinyl Chloride	62	1.683	1.683	(0.358)	1767093	50.0000	50
4 Bromomethane	94	1.993	1.993	(0.423)	1346483	50.0000	50
5 Chloroethane	64	2.096	2.096	(0.445)	968153	50.0000	50
6 Trichlorofluoromethane	101	2,321	2.321	(0.493)	2065914	50.0000	50
7 1,1-Dichloroethene	96	2.796	2.796	(0.594)	2013918	50.0000	50
8 1,1,2-Trichloro-1,2,2-trifluo	101	2.814	2.814	(0.598)	1853154	50.0000	50
9 Acetone	43	2.814	2,814	(0.598)	658425	50.0000	50
10 Carbon Disulfide	76	2.997	2.997	(0.637)	5148054	50.0000	50
11 Methyl Acetate	43	3.136	3.136	(0.666)	807254	50.0000	50
12 Methylene Chloride	84	3.264	3.264	(0.694)	1802664	50.0000	50
13 trans-1,2-Dichloroethene	96	3.489	3.489	(0.741)	853084	50.0000	50
14 Methyl tert-Butyl Ether	73	3.502	3.502	(0.744)	2466702	50.0000	50
15 1,1-Dichloroethane	63	3.891	3.891	(0.827)	1474761	50.0000	50
17 cis-1,2-Dichloroethene	96	4.469	4.469	(0.950)	809479	50.0000	50

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7991.D Report Date: 26-Aug-2005 10:18

	•					AMOU	NTS
		QUANT SIG				CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
=:		====	==		=======	. ======	======
	16 2-Butanone	43	4.481	4.481 (0.952)	561691	50.0000	50
*	18 Bromochloromethane	128	4.706	4.706 (1.000)	390179	50.0000	
	19 Chloroform	83	4.797	4.797 (1.019)	1489401	50.0000	50
	20 1,1,1-Trichloroethane	97	4.986	4.986 (0.861)	1139261	50.0000	50
	21 Cyclohexane	56	5.059	5.059 (0.874)	1378831	50.0000	50
	22 Carbon Tetrachloride	117	5.168	5.168 (0.893)	1076205	50.0000	50
\$	23 1,2-Dichloroethane-d4	65	5.302	5.302 (1.127)	1136889	50.0000	50
	25 Benzene	78,	5.375	5.375 (0.929)	3100072	50.0000	50
	24 1,2-Dichloroethane	62	5.387	5.387 (1.145)	1337834	50.0000	50
*	26 1,4-Difluorobenzene	114	5.789	5.789 (1.000)	2217994	50.0000	
	27 Trichloroethene	130	6.081	6.081 (1.050)	817508	50.0000	50
	28 Methylcyclohexane	83	6.300	6.300 (1.088)	1317625	50.0000	50
	29 1,2-Dichloropropane	63	6.318	6.318 (1.091)	875522	50.0000	50
	30 Bromodichloromethane	83	6.628	6,628 (1,145)	1054020	50.0000	50
	31 cis-1,3-Dichloropropene	75	7.158	7.158 (1.236)	1284684	50.0000	. 50
	32 4-Methyl-2-Pentanone	43	7.346	7.346 (0.792)	899280	50.0000	50
\$	33 Toluene-d8	98	7.480	7.480 (0.806)	2714974	50.0000	50
	34 Toluene	91	7.559	7.559 (0.814)	3202175	50.0000	50
	35 trans-1.3-Dichloropropene	75	7.827	7.827 (1.352)	1282261	50.0000 -	. 50
	36 1,1,2-Trichloroethane	97	8.046	8.046 (1.390)	722135	50.0000	50
	37 Tetrachloroethene	164	8,241	8.241 (0.888)	682929	50.0000	50
	38 2-Hexanone	43	8.374	8.374 (0.902)	778088	50.0000	50
	39 Dibromochloromethane	129	8.539	8.539 (1.475)	772250	50.0000	50
	40 1,2-Dibromoethane	107	8.672	8.672 (0.934)	8130 9 3	50.0000	50
*	42 Chlorobenzene-d5	117	9.281	9.281 (1.000)	2157389	50.0000	
	43 Chlorobenzene	112	9.323	9.323 (1.005)	2228948	50.0000	50
	44 Ethylbenzene	106	9.482	9.482 (1.022)	1159996	50.0000	50
	45 m,p-Xylene	106	9.640	9.640 (1.039)	3098468	100.000	100
	46 o-Xylene	106	10.169	10.169 (1.096)	1452684	50.0000	50
	47 Styrene	104	10.181	10.181 (1.097)	1868158	50.0000	50
	48 Bromoform	173	10.400	10.400 (1.797)	509235	50.0000	50
	49 Isopropylbenzene	105	10.656	10.656 (1.148)	3560860	50.0000	50
\$	50 Bromofluorobenzene	95	10.838	10.838 (1.168)	1100899	50.0000	50
	51 1,1,2,2-Tetrachloroethane	83	11.033	11.033 (1.189)	1064921	50.0000	50
M	41 Xylene (Total)	106			4551152	50.0000	150
	52 1,3-Dichlorobenzene	146	12.177	12.177 (1.312)	1927862	50.0000	50
	53 1,4-Dichlorobenzene	146	12.286	12.286 (1.324)	1972484	50.0000	50
	54 1,2-Dichlorobenzene	146	12.718	12.718 (1.370)	1845726	50.0000	50
	55 1,2-Dibromo-3-chloropropane	75	13.600	13.600 (1.465)	195384	50.0000	. 50
	56 1,2,4-Trichlorobenzene	180	14.525	14.525 (1.565)	1087942	50.0000	50

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7994.D

Report Date: 26-Aug-2005 10:18

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7994.D

Lab Smp Id: VSTD1006X

Client Smp ID: VSTD1006X

Inj Date : 25-AUG-2005 12:28

Inst ID: V6.i Operator : SB SRC: SB

Smp Info : 5ml, VSTD1006X, VSTD1006X

Misc Info: ,1,4

Comment

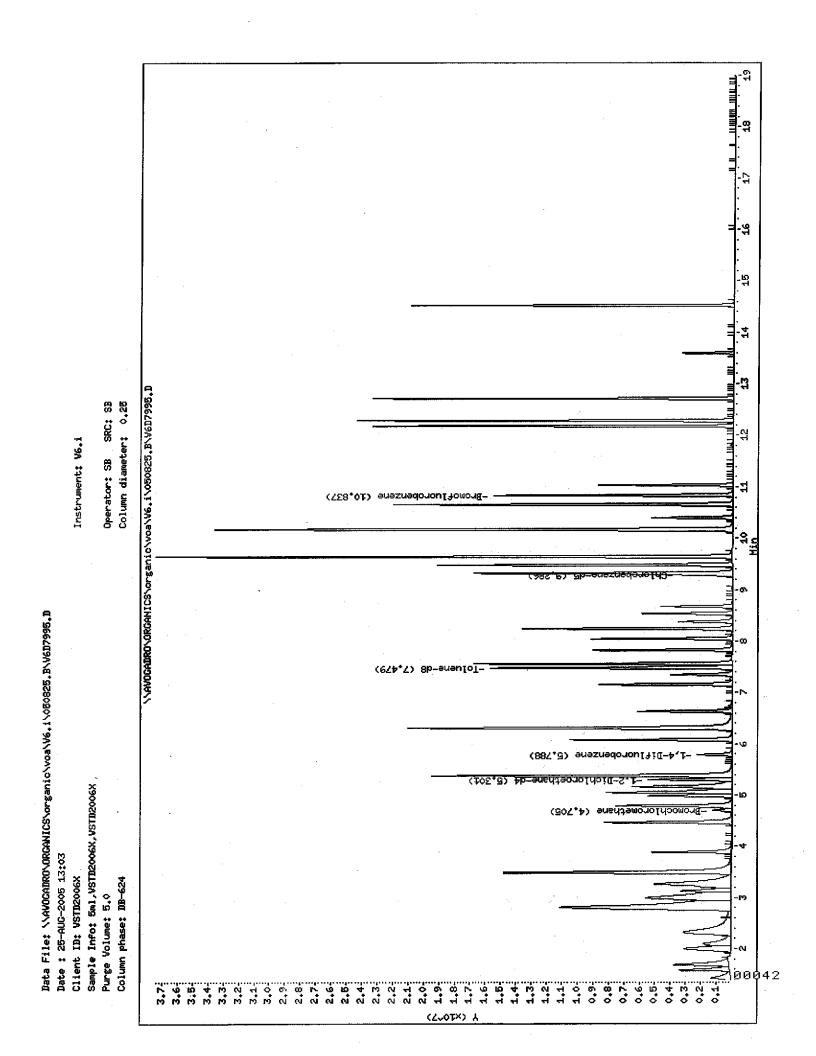
Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\v6clp4s.m Meth Date : 25-Aug-2005 14:02 mtl Quant Type: ISTD

Cal Date : 25-AUG-2005 10:45 Cal File: V6D7991.D Als bottle: 4 Calibration Sample, Level: 4

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03 Processing Host: TARGET3


Name	Value	Description
DF Uf	1.000	Dilution Factor ng unit correction factor
Vo		Sample Volume purged (mL)

						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
*********	====	==	=====	=====	*******	*======	
1 Dichlorodifluoromethane	85	1.433	1.427	(0.304)	1819529	100.000	110
2 Chloromethane	50	1.585	1.585	(0.336)	2793676	100.000	100
3 Vinyl Chloride	62	1.688	1.683	(0.358)	3723266	100.000	` 110
4 Bromomethane	94	1.992	1.993	(0.423)	2971671	100.000	110
5 Chloroethane	64	2.102	2.096	(0.446)	2032043	.100.000	100
6 Trichlorofluoromethane	101	2.321	2.321	(0.493)	5462727	100.000	130
7 1,1-Dichloroethene	96	2.801	2.796	(0.595)	4122055	100.000	110
8 1,1,2-Trichloro-1,2,2-trifluo	101	2.801	2.814	(0.595)	3899512	100.000	110
9 Acetone	43	2.813	2.814	(Ó.597)	1203712	100.000	97
10 Carbon Disulfide	76	2.996	2.997	(0.636)	10899097	100.000	110
11 Methyl Acetate	43	3.130	3.136	(0.664)	1634868	100.000	100
12 Methylene Chloride	84	3.270	3.264	(0.694)	3612894	100.000	100
13 trans-1,2-Dichloroethene	96	3.489	3.489	(0.740)	1886984	100.000	110
14 Methyl tert-Butyl Ether	73	3.501	3.502	(0.743)	5218266	100.000	110
15 1,1-Dichloroethane	63	3.890	3.891	(0.826)	2945748	100.000	100
17 cis-1,2-Dichloroethene	96	4.468	4.469	(0.948)	1625459	100.000	110

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7994.D Report Date: 26-Aug-2005 10:18

						AMOUN	TS .
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
	====	==	*				
16 2-Butanone	43	4.487	4.481	(0.952)	1085690	100.000	100
* 18 Bromochloromethane	128	4.712	4.706	(1.000)	361661	50.0000	
19 Chloroform	83	4.797	4.797	(1.018)	2881111	100.000	100
20 1,1,1-Trichloroethane	97	4.985	4.986	(0.861)	2307532	100.000	110
21 Cyclohexane	56	5.058	5.059	(0.874)	2887985	100.000	110
22 Carbon Tetrachloride	117	5.168	5.168	(0.893)	2209912	100.000	110
\$ 23 1,2-Dichloroethane-d4	65	5.308	5.302	(1.127)	2161105	100.000	110
25 Benzene	78	5.375	5.375	(0.929)	6356198	100.000	110
24 1,2-Dichloroethane	62	5.387	5.387	(1.143)	2732736	100.000	110
* 26 1,4-Difluorobenzene	114	5.788	5.789	(1.000)	2055482	50.0000	
27 Trichloroethene	130	6.080		(1.050)	1656957	100.000	110
28 Methylcyclohexane	83	6.299	6.300	(1.088)	3024495	100.000	120
29 1,2-Dichloropropane	63	6.311	6,318	(1,090)	1839779	100.000	110
30 Bromodichloromethane	83	6.634		(1.146)	2089815	100.000	110
31 cis-1,3-Dichloropropene	75	7.157		(1.236)	2503966	100.000	110
32 4-Methyl-2-Pentanone	43	7.346	7.346		1668271	100.000	99
\$ 33 Toluene-d8	98	7,479	7.480		5501404	100.000	120
34 Toluene	91	7.559	7.559		6447661	100.000	110
35 trans-1,3-Dichloropropene	75	7.826	7.827		2484257	100.000	100
36 1,1,2-Trichloroethane	97	8.045	8.046	-	1407644	100.000	100
37 Tetrachloroethene	164	8.240	8.241		1431493	100.000	110
38 2-Hexanone	43	8.374	8.374		1433891	100.000	100
39 Dibromochloromethane	129	8.532	8.539		1540308	100.000	110
40 1,2-Dibromoethane	107	8.672	8.672		1611397	100.000	100
* 42 Chlorobenzene-d5	117	9.286	9.281		1982851	50.0000	
43 Chlorobenzene	112	9.323	9.323		4457248	100.000	110
44 Ethylbenzene	106	9.481	9.482		2433405	100.000	110
45 m,p-Xylene	106	9.639	9.640		6856210	200.000	230
46 o-Xylene	106	10.162	10.169		3207240	100.000	110
47 Styrene	104	10.181	10.181		3969362	100.000	110
48 Bromoform	173	10.400	10.400		1026043	100.000	110
49 Isopropylbenzene	105	10.655	10.656		7235383	100.000	110
\$ 50 Bromofluorobenzene	95	10.838	10.838		2105624	100.000	110
51 1,1,2,2-Tetrachloroethane	83	11.032	11.033 ((1.188)	2078069	100.000	100
M 41 Xylene (Total)	106		10 1 1	/	10063450	100.000	350
52 1,3-Dichlorobenzene	146	12.176	12.177 (3827234	100.000	110
53 1,4-Dichlorobenzene	146	12.285	12.286 (3961489	100.000	110
54 1,2-Dichlorobenzene	146	12.717	12.718 (3690616	100.000	110
55 1,2-Dibromo-3-chloropropane	. 75	13.600	13.600 (341405	100.000	100
56 1,2,4-Trichlorobenzene	180	14.524	14.525 ((1.56 4]	1899807	100.000	110

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7995.D

Report Date: 26-Aug-2005 10:18

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7995.D Lab Smp Id: VSTD2006X Client Smp ID: VSTD2006X

Inj Date : 25-AUG-2005 13:03

Inst ID: V6.i Operator : SB SRC: SB

Smp Info : 5ml, VSTD2006X, VSTD2006X

Misc Info: ,1,5

Comment

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\v6clp4s.m Meth_Date : 25-Aug-2005 14:02 mtl Quant Type: ISTD Cal Date : 25-AUG-2005 10:45 Cal File: V6D7991.D

Als bottle: 5 Calibration Sample, Level: 5

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03 Processing Host: TARGET3

Name	Value	Description
DF		Dilution Factor
Uf	1.000	ng unit correction factor
Vo	5.000	Sample Volume purged (mL)

						AMOUN	ITS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	response	(ug/L)	(ug/L)
	====					2000226	======
1 Dichlorodifluoromethane	85	1.432	1.427	(0.304)	3775803	200.000	210 (A)
2 Chloromethane	50	1.584	1.585	(0.337)	5755511	200.000	210 (A)
3 Vinyl Chloride	62	1.687	1.683	(0.359)	7554014	200.000	210 (A)
4 Bromomethane	94	1.998	1.993	(0.425)	5534438	200.000	200
5 Chloroethane	64	2.101	2.096	(0.447)	3782260	200.000	190
6 Trichlorofluoromethane	101	2.320	2.321	(0.493)	11543706	200.000	240 (A)
7 1,1-Dichloroethene	96	2.801	2.796	(0.595)	8801036	200.000	220 (A)
8 1,1,2-Trichloro-1,2,2-trifluo	101	2.801	2.814	(0.595)	8010884	200.000	210 (A)
9 Acetone	43	2,813	2.814	(0.598)	2357804	200.000	190
10 Carbon Disulfide	76	3.002	2.997	(0.638)	22253791	200.000	210 (A)
11 Methyl Acetate	43	3.129	3.136	(0.665)	3245353	200.000	200
12 Methylene Chloride	84	3.269	3.264	(0.695)	7478077	200.000	200
13 trans-1,2-Dichloroethene	96	3.482	3.489	(0.740)	4514839	200.000	240 (A)
14 Methyl tert-Butyl Ether	73	3.500	3.502	(0.744)	11481090	200.000	220 (A)
15 1,1-Dichloroethane	63	3.890	3.891	(0.827)	6259452	200.000	210 (A)
17 cis-1,2-Dichloroethene	96	4.468	4.469	(0.950)	3711431	200.000	230 (A)

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7995.D Report Date: 26-Aug-2005 10:18

					AMOUN	TS .
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ug/L)	(ug/L)
**************************************	====	==			======	======
16 2-Butanone	43	4.480	4.481 (0.952)	2410622	200.000	210 (A)
* 18 Bromochloromethane	128	4.705	4.706 (1.000)	372938	50.0000	
19 Chloroform	83	4.796	4.797 (1.019)	6274262	200.000	210 (A)
20 1,1,1-Trichloroethane	97	4.985	4.986 (0.861)	4875427	200.000	220 (A)
21 Cyclohexane	56	5.052	5.059 (0.873)	6399280	200.000	230 (A)
22 Carbon Tetrachloride	117	5.167	5.168 (0.893)	4943476	200.000	230 (A)
\$ 23 1,2-Dichloroethane-d4	65	5.301	5.302 (1.127)	4746202	200.000	220 (A)
25 Benzene	78	5.374	5.375 (0.929)	13415231	200.000	220 (A)
24 1,2-Dichloroethane	62	5.380	5.387 (1.144)	5999517	200.000	220 (A)
* 26 1,4-Difluorobenzene	114	5.788	5.789 (1.000)	2067636	50.0000	
27 Trichloroethene	130	6.080	6.081 (1.050)	3879921	200.000	230 (A)
28 Methylcyclohexane	83	6.305	6.300 (1.089)	7080842	200.000	250 (A)
29 1,2-Dichloropropane	63	6.317	6.318 (1.091)	4300104	200.000 /	240 (A)
30 Bromodichloromethane	83	6.633	6.628 (1.146)	4593242	200,000	220 (A)
31 cis-1,3-Dichloropropene	75	7.157	7.158 (1.237)	5450926	200.000	220 (A)
32 4-Methyl-2-Pentanone	43	7.345	7.346 (0.791)	3618217	200.000	200
\$ 33 Toluene-d8	98	7.479	7.480 (0.805)	11516270	.200:000	220 (A)
34 Toluene	91	7.558	7.559 (0.814)	12939723	200.000	200
35 trans-1,3-Dichloropropene	75	7.826	7.827 (1.352)	5397465	200.000	220 (A)
36 1,1,2-Trichloroethane	97	8.045	8.046 (1.390)	3208032	200.000	220 (A)
37 Tetrachloroethene	164	8.239	8.241 (0.887)	3465775	200.000	240 (A)
38 2-Hexanone	43	8.373	8.374 (0.902)	3168717	200.000	210 (A)
39 Dibromochloromethane	129	8.537	8.539 (1.475)	3665854	200.000	240 (A)
40 1,2-Dibromoethane	107	8.671	8.672 (0.934)	3596256	200.000	210 (A)
* 42 Chlorobenzene-d5	117	9.286	9.281 (1.000)	2107763	50.0000	
43 Chlorobenzene	112	9.322	9.323 (1.004)	9936878	200.000	220 (A)
44 Ethylbenzene	106	9.480	9.482 (1.021)	5932838	200.000	240 (A)
45 m,p-Xylene	106	9.645	9.640 (1.039)	14738308	400.000	450 (A)
46 o-Xylene	106	10.168	10.169 (1.095)	8223233	200.000	250 (A)
47 Styrene	104	10.180	10.181 (1.096)	9810326	200.000	240 (A)
48 Bromoform	173	10.399	10.400 (1.797)	2634906	200.000	260 (A)
49 Isopropylbenzene	105	10.661	10.656 (1.148)	14086392	200.000	200
\$ 50 Bromofluorobenzene	95	10.837	10.838 (1.167)	5154887	200.000	240 (A)
51 1,1,2,2-Tetrachloroethane	83	11.032	11.033 (1.188)	4651266	200.000	210 (A)
M 41 Xylene (Total)	106			22961541	200.000	700
52 1,3-Dichlorobenzene	146	12.181	12.177 (1.312)	9278558	200.000	240 (A)
53 1,4-Dichlorobenzene	146	12.285	12.286 (1.323)	9507910	200.000	240 (A)
54 1,2-Dichlorobenzene	146	12.717	12.718 (1.370)	8887548	200.000	240 (A)
55 1,2-Dibromo-3-chloropropane	75	13.599	13.600 (1.464)	815106	200.000	220 (A)
56 1,2,4-Trichlorobenzene	180	14.524	14.525 (1.564)	5992223	200.000	290 (A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

VOLATILE CONTINUING CALIBRATION CHECK

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Instrument ID: V6	Calibration Date: 08/26/05 Time: 1010
Lab File ID: V6D8021	<pre>Init. Calib. Date(s): 08/25/05 08/25/05</pre>
EPA Sample No. (VSTD050##): VSTD0506Y	Init. Calib. Times: <u>1045</u> <u>1334</u>

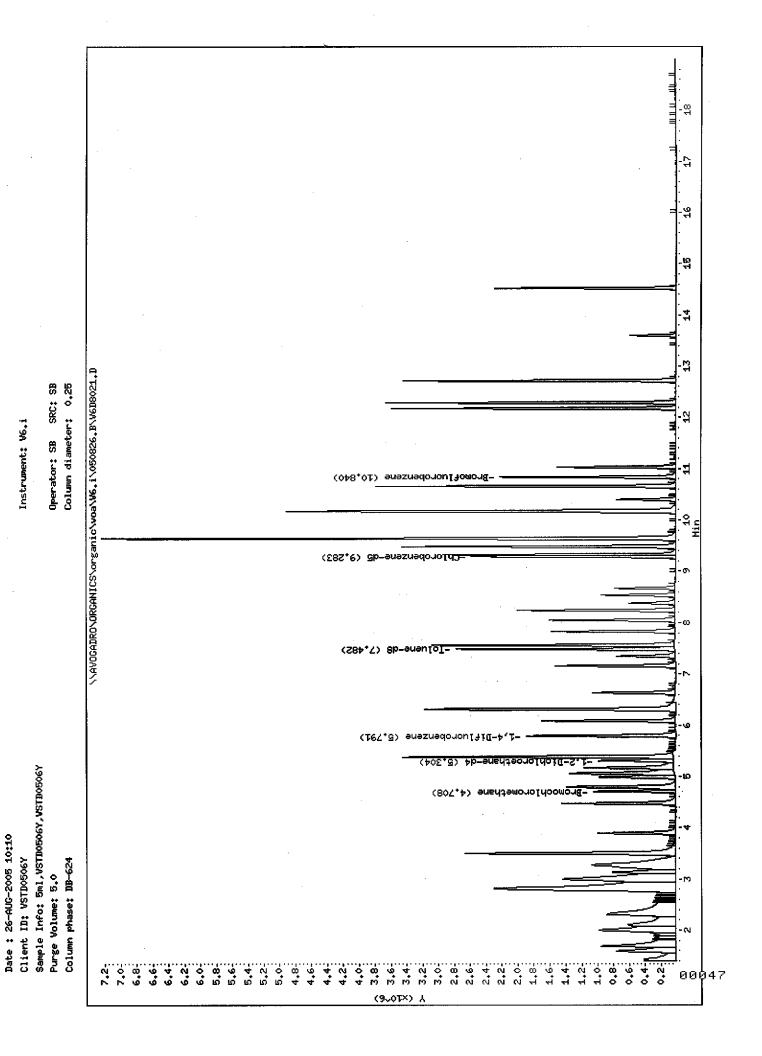
Heated Purge: (Y/N) N

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

		MIN		MAX
RRF	RRF50	RRF	%D	%D
======	======		=====	=====
2.361	2.494		5.6	
4.897		0.100	13.1	25.0
3.731		0.100		25.0
2.687	3.037		13.0	
6.426	7.055		9.8	
5.403	5.849	0.100	8.3	25.0
4.948	4.920		-0.6	
1.692	1.933		14.2	
14.127	15.353		8.7	
2.236	2.444		9.3	
4.985	5.134		3.0	
2.441	2.247		-7.9	
6.845	6.506		-5.0	
3.939	3.894	0.200	-1.1	25.0
2.194	2.106		-4.0	
1.518	1.496	:	-1.4	
3.934	3.843	0.200	-2.3	25.0
0.542	0.503	0.100	-7.2	25.0
0.657	0.623		-5.2	
0.509	0.482	0.100		25.0
1.484	1.462	0.500	-1.5	25.0
3.613	3.689	0.100	2.1	25.0
0.397	0.371	0.300	-6.5	25.0
0.661	0.592		-10.4	
	3.764 4.897 3.731 2.687 6.426 5.403 4.948 1.692 14.127 2.236 4.985 2.441 6.845 3.939 2.194 1.518 3.934 0.542 0.657 0.509 1.484 3.613 0.397	2.361 2.494 3.764 4.217 4.897 5.538 3.731 4.366 2.687 3.037 6.426 7.055 5.403 5.849 4.948 4.920 1.692 1.933 14.127 15.353 2.236 2.444 4.985 5.134 2.441 2.247 6.845 6.506 3.939 3.894 2.194 2.106 1.518 1.496 3.934 3.843 0.542 0.503 0.657 0.623 0.509 0.482 1.484 1.462 3.613 3.689 0.397 0.371	RRF RRF50 RRF 2.361 2.494 3.764 4.217 4.897 5.538 0.100 3.731 4.366 0.100 2.687 3.037 6.426 7.055 5.403 5.849 0.100 4.948 4.920 1.692 1.933 14.127 15.353 2.236 2.444 4.985 5.134 2.441 2.247 6.845 6.506 3.939 3.894 0.200 2.194 2.106 1.518 1.496 3.934 3.843 0.200 0.542 0.503 0.100 0.657 0.623 0.100 0.509 0.482 0.100 1.484 1.462 0.500 3.613 3.689 0.100 0.397 0.371 0.300	RRF RRF50 RRF %D 2.361 2.494 5.6 3.764 4.217 12.0 4.897 5.538 0.100 13.1 3.731 4.366 0.100 17.0 2.687 3.037 13.0 6.426 7.055 9.8 5.403 5.849 0.100 8.3 4.948 4.920 -0.6 1.692 1.933 14.2 14.127 15.353 8.7 2.236 2.444 9.3 4.985 5.134 3.0 2.441 2.247 -7.9 6.845 6.506 -5.0 3.939 3.894 0.200 -1.1 2.194 2.106 -4.0 1.518 1.496 -1.4 3.934 3.843 0.200 -2.3 0.542 0.503 0.100 -7.2 0.657 0.623 -5.2 0.509 0.482 <td< td=""></td<>

All other compounds must meet a minimum RRF of 0.010.

7B VOLATILE CONTINUING CALIBRATION CHECK


Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Instrument ID: V6	Calibration Date: 08/26/05 Time: 1010
Lab File ID: V6D8021	<pre>Init. Calib. Date(s): 08/25/05 08/25/05</pre>
EPA Sample No.(VSTD050##): VSTD0506Y	Init. Calib. Times: <u>1045</u> <u>1334</u>
Hostod Durgo, (V/N) N	

Heated Purge: (Y/N) N

GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
	======	======	======	=====	=====
1,2-Dichloropropane	0.432	0.412		-4.6	
Bromodichloromethane	0.488	0.478	0.200		25.0
cis-1,3-Dichloropropene	0.594	0.560	0.200		25.0
4-Methyl-2-Pentanone	0.432	0.429		-0.7	
<u>Toluene</u>	1.551	1.526	0.400		25.0
trans-1,3-Dichloropropene	0.592	0.588	0.100	-0.7	25.0
1,1,2-Trichloroethane	0.344	0.333	0.100	-3.2	25.0
Tetrachloroethene	0.341	0.318	0.200	-6.7	25.0
2-Hexanone	0.371	0.356		-4.0	
Dibromochloromethane	0.357	0.342	0.100	-4.2	25.0
1,2-Dibromoethane	0.398	0.379		-4.8	
Chlorobenzene	1.094	1.039	0.500	-5.0	25.0
Ethylbenzene	0.583	0.542	0.100	-7.0	25.0
Xylene (Total)	0.756	0.697	0.300		25.0
Styrene	0.946	0.890	0.300		25.0
Bromoform	0.238	0.230	0.100		25.0
Isopropylbenzene	1.678	1.652		-1.5	
1,1,2,2-Tetrachloroethane	0.521	0.504	0.300	-3.3	25.0
1,3-Dichlorobenzene	0.919	0.904	0.600		25.0
1,4-Dichlorobenzene	0.936	0.911	0.500		25.0
1,2-Dichlorobenzene	0.881	0.853	0.400		25.0
1,2-Dibromo-3-chloropropane	0.086	0.086		0.0	
1,2,4-Trichlorobenzene	0.475	0.413	0.200	-13.1	25.0
	======	======	======	=====	=====
Toluene-d8	1.219	1.263		3.6	
Bromofluorobenzene	0.494	0.488	0.200		25.0
1,2-Dichloroethane-d4	2.799	2.914		4.1	

All other compounds must meet a minimum RRF of 0.010.

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8021.D

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8021.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8021.D Lab Smp Id: VSTD0506Y Client Smp ID: VSTD0506Y

Inj Date : 26-AUG-2005 10:10

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, VSTD0506Y, VSTD0506Y

Misc Info : , 2

Comment

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m Meth Date : 31-Aug-2005 15:21 mtl Quant Type: ISTD

Cal Date : 26-AUG-2005 10:10 Cal File: V6D8021.D

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version:

Name	Value	Description				
DF Uf		Dilution Factor ng unit correction factor				
Vo		Sample Volume purged (mL)				

							AMOUNTS	
		QUANT SIG					CAL-AMT	ON-COL
Compounds		MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
		====	==			=======		
1	Dichlorodifluoromethane	85	1.441	1.441	(0.306)	756539	50.0000	53
2	Chloromethane	50	1.593	1.593	(0.338)	1279094	50.0000	56
3	Vinyl Chloride	62	1.690	1.690	(0.359)	1679716	50.0000	57
4	Bromomethane	94	2.001	2.001	(0.425)	1324409	50.0000	59
5	Chloroethane	64	2.104	2.104	(0.447)	921059	50.0000	57
6	Trichlorofluoromethane	101	2.311	2.311	(0.491)	2139857	50.0000	55
7	1,1-Dichloroethene	96	2.804	2.804	(0.596)	1774020	50.0000	54
8	1,1,2-Trichloro-1,2,2-trifluo	101	2.804	2.804	(0.596)	1492256	50.0000	50
9	Acetone	43	2.816	2.816	(0.598)	586376	50.0000	57
10	Carbon Disulfide	76	2.998	2.998	(0.637)	4656784	50.0000	54
11	Methyl Acetate	43	3.138	3.138	(0.667)	741301	50.0000	55
12	Methylene Chloride	84	3.266	3.266	(0.694)	1557359	50.0000	51
13	trans-1,2-Dichloroethene	96	3.491	3.491	(0.742)	681531	50.0000	46
14	Methyl tert-Butyl Ether	73	3.503	3.503	(0.744)	1973492	50.0000	48
15	1,1-Dichloroethane	63	3.893	3.893	(0.827)	1181000	50.0000	49
17	cis-1,2-Dichloroethene	96	4.471	4.471	(0.950)	638868	50.0000	48
16	2-Butanone	43	4.483	4.483	(0.952)	453746	50.0000	49

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8021.D Report Date: 14-Sep-2005 13:37

			AMOUNTS					
	•	QUANT SIG					CAL-AMT	ON-COL
C	ompounds	Mass	RT	EXP RT	REL RT	RESPONSE	. (ug/L)	(ug/L)
=		====	==	=====		=======	****	
*	18 Bromochloromethane	128	4.708	4.708	(1.000)	303314	50.0000	
	19 Chloroform	83	4.799	4.799	(1.019)	1165727	50.0000	49
	20 1,1,1-Trichloroethane	97	4.988	4.988	(0.861)	862342	50.0000	46
	21 Cyclohexane	56	5.061	5.061	(0.874)	1068103	50.0000	47
	22 Carbon Tetrachloride	117	5.164	5.164	(0.892)	827761	50.0000	47
\$	23 1,2-Dichloroethane-d4	65	5.304	5.304	(1.127)	883755	50.0000	52
	25 Benzene	78	5.377	5.377	(0.929)	2507887	50.0000	49
	24 1,2-Dichloroethane	62	5.383	5.383	(1.143)	1118832	50.0000	51
*	26 1,4-Difluorobenzene	114	5.791	5.791	(1.000)	1715816	50.0000	
	27 Trichloroethene	130	6.077	6.077	(1.049)	636762	50.0000	47
	28 Methylcyclohexane	. 83	6.302	6.302	(1.088)	1016433	50.0000	45
	29 1,2-Dichloropropane	63	6.320	6.320	(1.091)	706705	50.0000	48
	30 Bromodichloromethane	83	6.630	6.630	(1.145)	820899	50.0000	49
	31 cis-1,3-Dichloropropene	75	7.159	7.159	(1.236)	961672	50.0000	47
	32 4-Methyl-2-Pentanone	43	7.348	7.348	(0.792)	724233	50.0000	50
\$	33 Toluene-d8	98	7.482	7.482	(0.806)	2133652.	50.0000	52
	34 Toluene	91	7.561	7.561	(0.815)	2579260	50.0000	49
	35 trans-1,3-Dichloropropene	75	7.829	7.829	(1.352)	1008773	50.0000	50
	36 1,1,2-Trichloroethane	97	8.048	8.048	(1.390)	572007	50.0000	48
	37 Tetrachloroethene	164	8.236	8.236	(0.887)	537024	50.0000	47
	38 2-Hexanone	43	8.376	8.376	(0.902)	601543	50.0000	48
	39 Dibromochloromethane	129	8.534	8.534	(1.474)	586367	50.0000	48
	40 1,2-Dibromoethane	107	8.674	8.674	(0.934)	640559	50.0000	48
*	42 Chlorobenzene-d5	117	9.283	9.283	(1.000)	1689863	50.0000	
	43 Chlorobenzene	1.12	9,319	9.319	(1.004)	1756548	50.0000	48
	44 Ethylbenzene	106	9.483	9.483	(1.022)	915069	50.0000	46
	45 m,p-Xylene	106	9.641	9.641	(1.039)	2468816	100.000	95
	46 o-Xylene	106	10.165	10.165	(1.095)	1177005	50,0000	46
	47 Styrene	104	10.183	10.183	(1.097)	1504506	50.0000	47
	48 Bromoform	173	10.402	10.402	(1.796)	395165	50.0000	48
	49 Isopropylbenzene	105	10.657	10.657	(1.148)	2791230	50.0000	49
\$	50 Bromofluorobenzene	95	10.840	10.840	(1.168)	824241	50.0000	49
	51 1,1,2,2-Tetrachloroethane	83	11.035	11.035	(1.189)	852008	50.0000	48
M	41 Xylene (Total)	106				3645821	50.0000	140
	52 1,3-Dichlorobenzene	146	12.178	12.178	(1.312)	1527419	50.0000	49
	53 1,4-Dichlorobenzene	146	12.288	12.288	(1.324)	1538822	50.0000	49
	54 1,2-Dichlorobenzene	146	12.714	12.714	(1.370)	1440868	50.0000	48
	55 1,2-Dibromo-3-chloropropane	75	13.602	13.602	(1.465)	144772	50.0000	50

14.526 14.526 (1.565)

180

56 1,2,4-Trichlorobenzene

-10 Glidos

50.0000

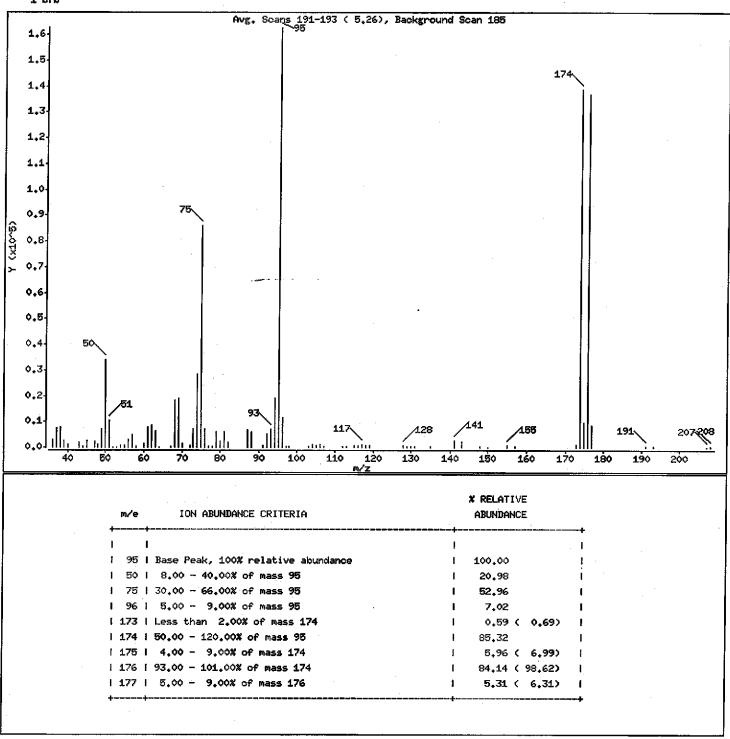
698115

43

Date : 25-AUG-2005 10:20

Client ID: BFB6X

Instrument: v6.i


Sample Info: 2ul, BFB6X, BFB6X

Operator: SB

Column phase: DB-624

Column diameter: 0.25

1 bfb

COPY Original Documents Are Included in CSF_	a50
Signed: Date:	·

Date : 25-AUG-2005 10:20

Client ID: BFB6X

Instrument: v6.i

Sample Info: 2ul,BFB6X,BFB6X

Operator: SB

Column phase: DB-624

Column diameter: 0.25

Data File: V6D7990.D

Spectrum: Avg. Scans 191-193 (5.26), Background Scan 185

Location of Maximum: 95.00 Number of points: 82

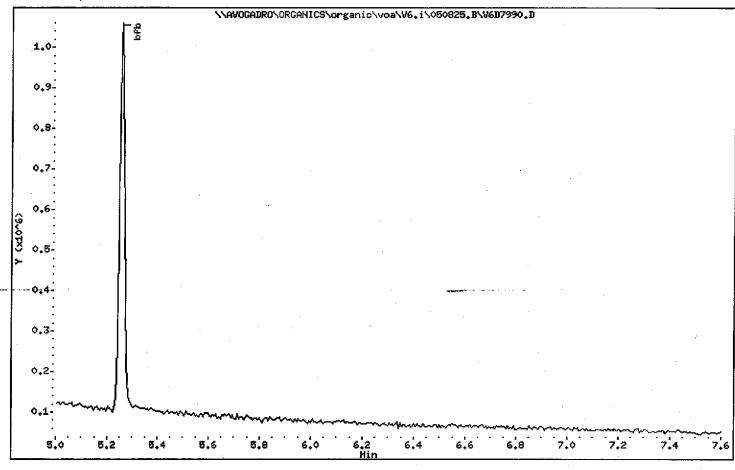
	m/z	Y	m/z	Y	m/z	Y	m/z	Y
ı	36,00	3002	61,00	7899	91.00	641	1 129,00	340
J	37,00	7614	62.00	8760	92,00	5066	130.00	517
1	38.00	7891	63,00	6497	93,00	7233	131.00	213
ł	39.00	2614	1 64.00	63	94.00	18976	1 135,00	447
1	40.00	953	1 67.00	443	95.00	162624	1 141,00	2592
1	43,00	1770	I 68,00	18368	96.00	11421	1 143,00	2256
ı	44,00	216	1 69.00	18912	97,00	256	148,00	482
1	45,00	2737	70,00	1398	98,00	245	150.00	186
ı	47,00	2254	72,00	683	103,00	382	155.00	601. 1
1	48.00	1289	73,00	7182	104.00	1126	157.00	213
+-	49.00	7196	1 74.00	20576	105.00	976	+ 173.00	952 1
:	50.00	7196 34120	- · · · · ·	26036 86128	-		1 174.00	138752 I
1	51.00	10631		7239			*	
:	52.00	88		493 I			175.00 176.00	9699 I 1368 3 2 I
:	53.00	83			113.00		177.00	8631 I
+	53,00	00			113,00	504		TC90
ı	54,00	834	79.00	5883	115,00	684	191.00	413
1	55.00	845	80.00	2150	116.00	683	193,00	192 (
1	56.00	2919	81.00	6069 1	117,00	1297	207,00	111
1	57,00	4897	82,00	1841 (118,00	784	208.00	552 I
l	58,00	197	87,00	6799 1	119.00	915	1	1
+- ·	60.00	1647	88.00	5951 I	128,00	840		

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050825.B\V6D7990.D

Page 1

Date : 25-AUG-2005 10:20

Client ID: BFB6X


Instrument: v6.i

Sample Info: 2u1,BFB6X,BFB6X

Operator: SB

Column phase: DB-624

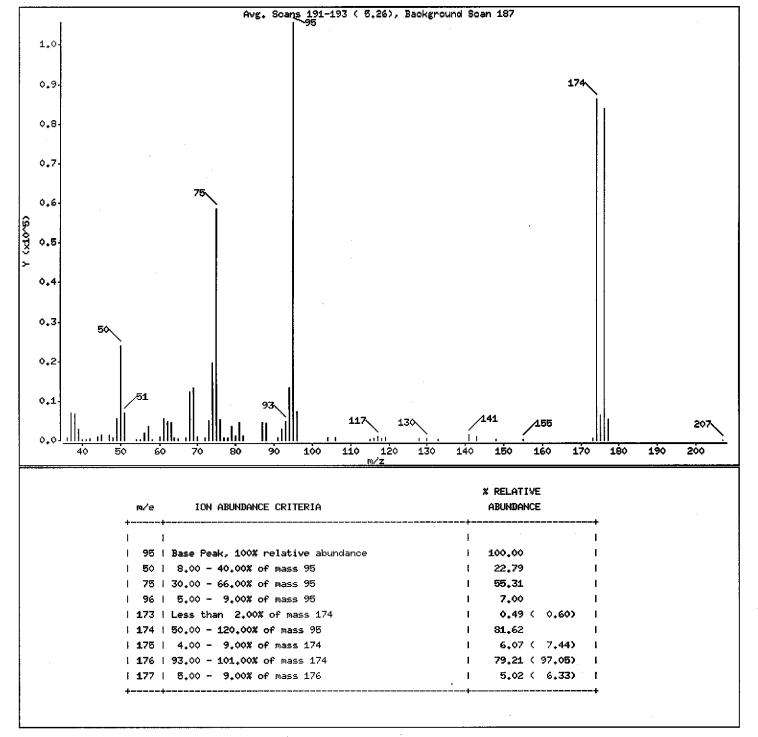
Column diameter: 0.25

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8020.D

Date : 26-AUG-2005 09:47

Client ID: BFB6Y

Instrument: v6.i


Sample Info: 2ul, BFB6Y, BFB6Y

Operator: SB

Column phase: DB-624

Column diameter: 0.25

1 bfb

Data File: \\AVOCADRO\ORGANICS\organio\voa\V6.i\050826.B\V6D8020.D

Date : 26-AUG-2005 09:47

Client ID: BFB6Y

Instrument: v6.i

Sample Info: 2ul, BFB6Y, BFB6Y

Operator: SB

Column phase: DB-624

Column diameter: 0.25

Data File: V6D8020.D

Spectrum: Avg. Scans 191-193 (5.26), Background Scan 187

Location of Maximum: 95.00 Number of points: 68

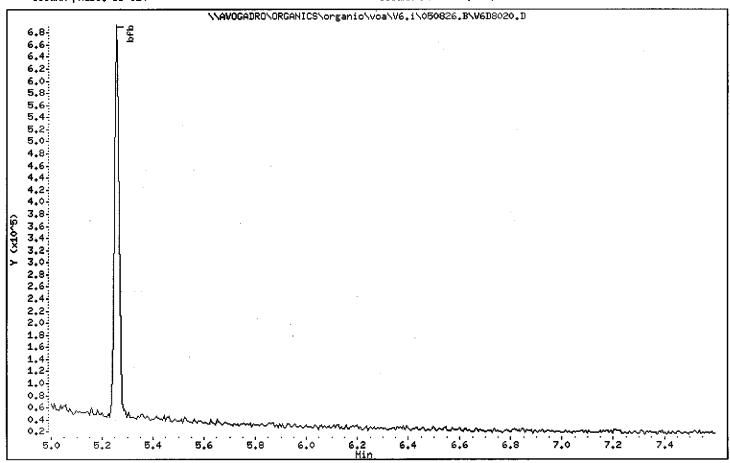
Y	m/z	Υ.	m/z	Υ.	m/z	Υ .	Y	m/z
693	119.00	3596 l	79.00	212	58,00	32 I	682	36.00
499	128.00	1224 I	80.00	1053 l	60.00	19 I	7049	37.00
508	130.00	4643 I	81,00	5590 I	61.00	60 I	6860	38,00
178	133,00	1197 I	82,00	4925 l	62,00	37 I	3037	39,00
1488	141.00	4614 l	87.00	4561 l	63.00	35 I	255	40.00
1088	143.00	+	88.00	742 I	64.00	+-	233	41.00
197		831	91.00	378 I	65.00	-	233 534	42.00
196		2999	92.00	759	67.00		968	44.00
516	173,00	4863 I	93.00	12377 I	68.00	l6 I	1346	45.00
86272	174.00	13431	94.00	13273 I	69.00	9 I	1369	47,00
6415	175.00	105704	95.00	975 I	70.00	+- 23 I	723	48.00
83728	176.00	7396 I	96.00	633 I	72.00	I2 I	5642	49.00
5302	177.00	759 1	104,00	5198 I	73,00	38 I	24088	50.00
38	207.00	699 I	106,00	19672 I	74,00	26 I	6926	51.00
		175 I	115.00	584 64	75,00	37 I	187	54,00
		 550 l	116.00		 76.00	+- 86 I	336	55.00
		860 I	117.00		77.00		1903	56.00
		459 I	118.00		78.00		3620	57.00

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8020.D

Page 1

Date : 26-AUG-2005 09:47

Client ID: BFB6Y


Instrument: v6.i

Sample Info: 2u1,BFB6Y,BFB6Y

Operator: SB

Column phase: DB-624

Column diameter: 0.25

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: VBLK6Y
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: MB-19680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8022
Level: (low/med) <u>LOW</u>	Date Received:
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

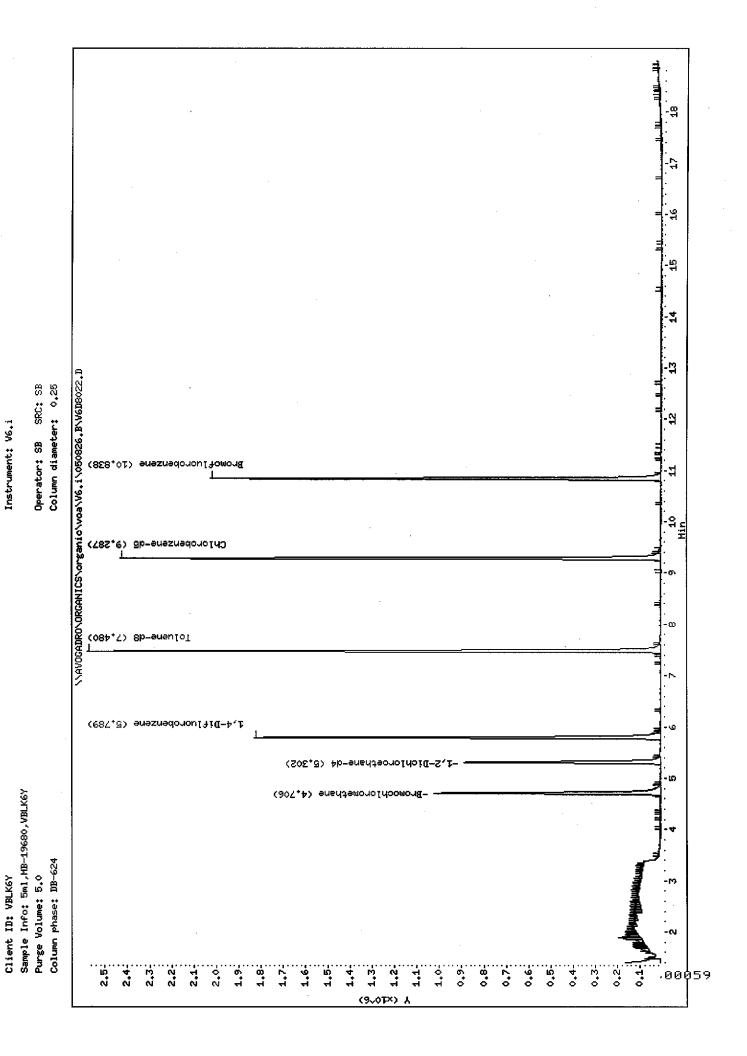
Dichlorodifluoromethane	10	Ū
Chloromethane	10	Ü
Vinyl Chloride	10	Ū
Bromomethane	10	Ū
Chloroethane	10	Ū
Trichlorofluoromethane	10	Ū
1,1-Dichloroethene	10	Ū
1,1,2-Trichloro-1,2,2-trifluoroethane	10	Ū
Acetone	10	Ū
Carbon Disulfide	10	Ū
Methyl Acetate	10	מ
Methylene Chloride	10	Ū
trans-1,2-Dichloroethene	10	ט
Methyl tert-Butyl Ether	10	Ū
1,1-Dichloroethane	10	U
cis-1,2-Dichloroethene	10	Ū
2-Butanone	10	Ū
Chloroform	10	Ū
1,1,1-Trichloroethane	10	ט
Cyclohexane	10	Ū
Carbon Tetrachloride	10	Ū
Benzene	10	Ū
1,2-Dichloroethane	10	Ū
	Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane Acetone Carbon Disulfide Methyl Acetate Methylene Chloride trans-1,2-Dichloroethene Methyl tert-Butyl Ether 1,1-Dichloroethane cis-1,2-Dichloroethene 2-Butanone Chloroform 1,1,1-Trichloroethane Cyclohexane Carbon Tetrachloride Benzene	Chloromethane 10 Vinyl Chloride 10 Bromomethane 10 Chloroethane 10 Trichlorofluoromethane 10 1,1-Dichloroethene 10 1,1,2-Trichloro-1,2,2-trifluoroethane 10 Acetone 10 Carbon Disulfide 10 Methyl Acetate 10 Methyl Acetate 10 Methylene Chloride 10 trans-1,2-Dichloroethene 10 Methyl tert-Butyl Ether 10 1,1-Dichloroethane 10 cis-1,2-Dichloroethene 10 2-Butanone 10 Chloroform 10 1,1,1-Trichloroethane 10 Cyclohexane 10 Carbon Tetrachloride 10 Benzene 10

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: MB-19680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8022
Level: (low/med) <u>LOW</u>	Date Received:
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:


CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

1			
79-01-6	Trichloroethene	10	U
108-87-2	Methylcyclohexane	10	ש
78-87-5	1,2-Dichloropropane	10	Ū
75-27-4	Bromodichloromethane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ū
108-88-3	Toluene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
127-18-4	Tetrachloroethene	10	Ū
591-78-6	2-Hexanone	10	Ū
124-48-1	Dibromochloromethane	10	Ū
106-93-4	1,2-Dibromoethane	10	Ū
108-90-7	Chlorobenzene	10	Ū
100-41-4	Ethylbenzene	10	Ü
1330-20-7	Xylene (Total)	10	Ū
100-42-5	Styrene	10	Ū
75-25-2	Bromoform	10	Ū
98-82-8	Isopropylbenzene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
541-73-1	1,3-Dichlorobenzene	10	Ū
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	ט
96-12-8	1,2-Dibromo-3-chloropropane	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ū

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: MITKEM CORPORATION Contract	t:
Lab Code: MITKEM Case No.: SAS No	.: SDG No.: <u>MD1004</u>
Matrix: (soil/water) WATER	Lab Sample ID: MB-19680
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8022
Level: (low/med) LOW_	Date Received:
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	=======================================	====
1. 2.			,	
3				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11.				
12.				
13.				
14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.			,	
22.				
23.				
24.				 _
25.				
26.				<u> </u>
27.				<u> </u>
28.				ļ
29.		<u> </u>		<u> </u>
30.			1	l

Data File: \\AWOGADRO\ORGANICS\organic\voa\W6.i\050826.B\W6D8022.D

Date : 26-AUG-2005 10:48

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8022.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8022.D

Lab Smp Id: MB-19680 Client Smp ID: VBLK6Y

Inj Date : 26-AUG-2005 10:48

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, MB-19680, VBLK6Y

Misc Info: ,3

Comment :

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m

Meth Date: 31-Aug-2005 15:21 mtl Quant Type: ISTD Cal Date: 26-AUG-2005 10:10 Cal File: V6D8021.D QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03

Concentration Formula: Amt * DF * Uf * 5/Vo

Name	Value	Description
DF Uf		Dilution Factor ng unit correction factor
Vo	5.000	

						CONCENTRA	ATIONS	
		QUANT SIG					ON-COLUMN	FINAL
Co	mpcunds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
==	2515303232228022222222	====	==			======		
*	18 Bromochloromethane	128	4.706	4.708	(1.000)	313245	50.0000	
\$	23 1,2-Dichloroethane-d4	65	5.302	5.304	(1.127)	816648	44.7385	45
*	26 1,4-Difluorobenzene	114	5.789	5.791	(1.000)	1739133	50.0000	
\$	33 Toluene-d8	98	7.480	7.482	(0.805)	2071307	49.1162	49
*	42 Chlorobenzene-d5	117	9.287	9.283	(1.000)	1670004	50.0000	
\$	50 Bromofluorobenzene	95	10.838	10.840	(1.167)	750096	46.0433	46

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8022.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8022.D

Lab Smp Id: MB-19680 Client Smp ID: VBLK6Y

Inj Date : 26-AUG-2005 10:48

Inst ID: V6.i

Operator : SB SRC: SB Smp Info : 5ml, MB-19680, VBLK6Y

Misc Info: ,3 Comment

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m Meth Date : 31-Aug-2005 15:21 mtl Quant Type: ISTD

Cal Date : 26-AUG-2005 10:10 Cal File: V6D8021.D Als bottle: 2 QC Sample: BLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03

⁻ NO TENTATIVELY IDENTIFIED COMPOUNDS -

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: VHBLK6Y
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: VHBLK6Y
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8036
Level: (low/med) LOW	Date Received: 08/25/05
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

75-71-8 Dichlorodifluoromethane 10 Ū 74-87-3 Chloromethane 10 Ū Vinyl Chloride 75-01-4 10 U 74-83-9 Bromomethane 10 Ū 75-00-3 Chloroethane 10 Ū 75-69-4 Trichlorofluoromethane 10 Ū 75-35-4 1,1-Dichloroethene 10 Ü 76-13-1 1,1,2-Trichloro-1,2,2-trifluoroethane 10 Ū 10 67-64-1 Ū Acetone 75-15-0 Carbon Disulfide 10 Ü 79-20-9 Methyl Acetate 10 Ū 75-09-2 Methylene Chloride 10 Ū 156-60-5 U trans-1,2-Dichloroethene 10 1634-04-4 Methyl tert-Butyl Ether 10 U 1,1-Dichloroethane 75-34-3 10 Ū 156-59-2 cis-1,2-Dichloroethene Ū 10 78-93-3 2-Butanone 10 Ū 67-66-3 Chloroform Ū 10 1,1,1-Trichloroethane Cyclohexane 71-55-6 Ū 10 110-82-7 10 Ū 56-23-5 Carbon Tetrachloride Ū 10 71-43-2 10 Ū Benzene 107-06-2 1,2-Dichloroethane Ū 10

1B VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

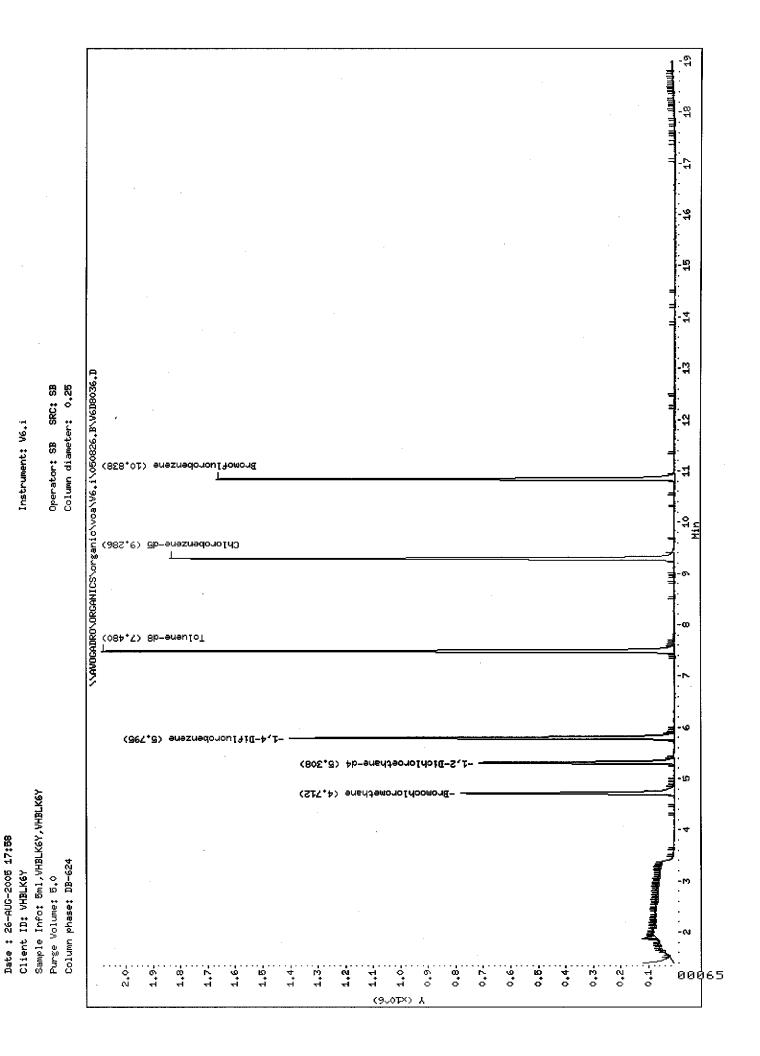
Lab Name: MITKEM CORPORATION	Contract: VHBLK6Y
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: VHBLK6Y
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8036
Level: (low/med) <u>LOW</u>	Date Received: 08/25/05
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q

CAS NO.

79-01-6	Trichloroethene	10	Ŭ
108-87-2	Methylcyclohexane	10	U
78-87-5	1,2-Dichloropropane	10	ט
75-27-4	Bromodichloromethane	10	<u></u>
10061-01-5	cis-1,3-Dichloropropene	10	Ū
108-10-1	4-Methyl-2-Pentanone	10	Ū
108-88-3	Toluene	10	Ŭ
10061-02-6	trans-1,3-Dichloropropene	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
127-18-4	Tetrachloroethene	10	Ū
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	U
106-93-4	1,2-Dibromoethane	10	Ū
108-90-7	Chlorobenzene	10	U
100-41-4	Ethylbenzene	10	U
1330-20-7	Xylene (Total)	10	ש
100-42-5	Styrene	10	Ü
75-25-2	Bromoform	. 10	ซ
98-82-8	Isopropylbenzene	10	Ü
79-34-5	1,1,2,2-Tetrachloroethane	. 10	Ū
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
96-12-8	1,2-Dibromo-3-chloropropane	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	U


1F

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	CAL	VIDT	.D	NO
DEA	$-\infty$	VIP L	ır.	INC

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: VHBLK6Y
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: V6D8036
Level: (low/med) LOW_	Date Received: 08/25/05
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.		=======		Q
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.		l		=====
3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.				
4. 5. 6. 7. 8. 9. 10. 11. 12.				
5. 6. 7. 8. 9. 10. 11. 12.				
6. 7. 8. 9. 10. 11. 12.				
7. 8. 9. 10. 11. 12.				
8. 9. 10. 11. 12. 13.				
9. 10. 11. 12.				
10. 11. 12.				
11. 12. 13.				i
12. 13.				
13.				
14.				
15				
±-J+				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				<u> </u>
27.				
28.				
29. 30.		i	• ,	4

Data File: \\AVOCADRO\ORGANICS\organic\voa\V6.i\O50826.B\V6D8036.D

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8036.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8036.D

Lab Smp Id: VHBLK6Y Client Smp ID: VHBLK6Y

Inj Date : 26-AUG-2005 17:58

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, VHBLK6Y, VHBLK6Y

Misc Info : ,3

Comment :
Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m

Meth Date: 31-Aug-2005 15:21 mtl Quant Type: ISTD

Als bottle: 16 QC Sample: STORAGEBLANK

Dil Factor: 1.00000 Integrator: HP RTE

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03

Concentration Formula: Amt * DF * Uf * 5/Vo

Name	Value	Description
DF U£	1.000	Dilution Factor ng unit correction factor
Vo	5.000	Sample Volume purged (mL)

						CONCENTRA	ATIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
	====						======
* 18 Bromochloromethane	128	4.712	4.708	(1.000)	225139	50.0000	
\$ 23 1,2-Dichloroethane-d4	65	5.308	5.304	(1,127)	624897	47.6309	48
* 26 1,4-Difluorobenzene	114	5.795	5.791	(1.000)	1264005	50.0000	
\$ 33 Toluene-d8	98	7.480	7.482	(0.805)	1640579	53.1054	53
* 42 Chlorobenzene-d5	117	9.286	9.283	(1.000)	1223366	50.0000	
\$ 50 Bromofluorobenzene	95	10.838	10.840	(1.167)	625404	52.4049	52

(Papalor

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8036.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8036.D

Lab Smp Id: VHBLK6Y Client Smp ID: VHBLK6Y

Inj Date : 26-AUG-2005 17:58

Operator : SB SRC: SB Inst ID: V6.i

Smp Info : 5ml, VHBLK6Y, VHBLK6Y

Misc Info : ,3 Comment :

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m

Meth Date : 31-Aug-2005 15:21 mtl Quant Type: ISTD Cal Date : 26-AUG-2005 10:10 Cal File: V6D8021.D

Als bottle: 16 QC Sample: STORAGEBLANK

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version: 4.03

⁻ NO TENTATIVELY IDENTIFIED COMPOUNDS -

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

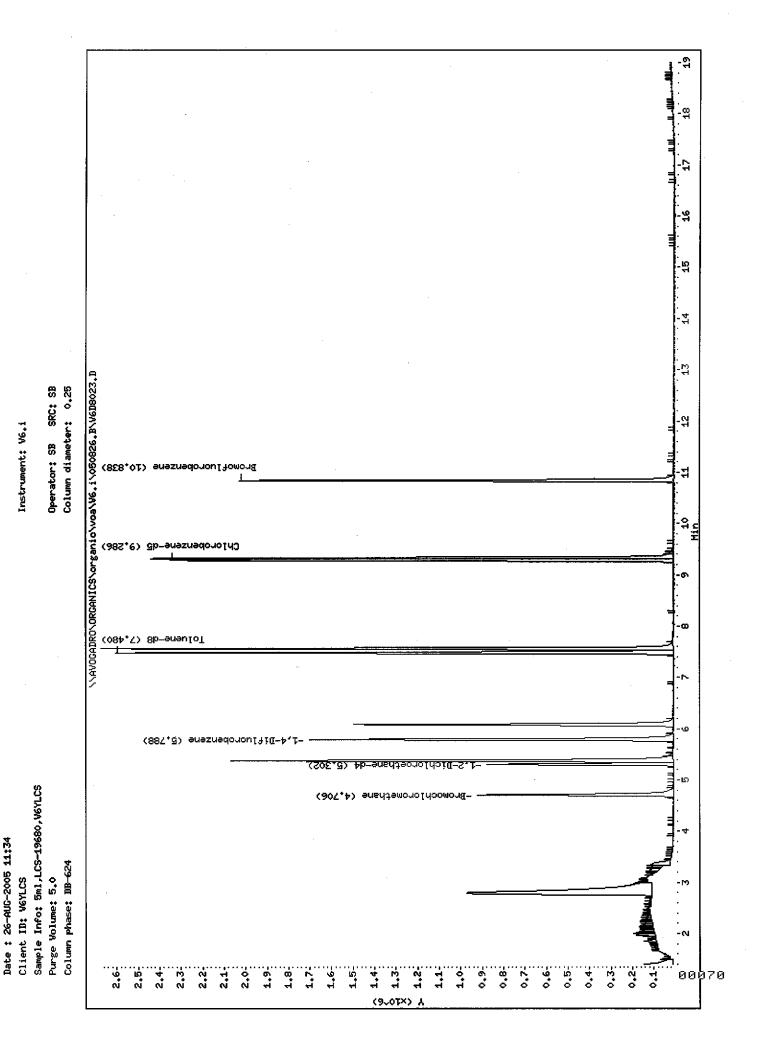
Lab Name: MITKEM CORPORATION	Contract:V6YLCS
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: LCS-19680
Sample wt/vol: <u>5.000</u> (g/mL) <u>ML</u>	Lab File ID: V6D8023
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

CAS NO. COMPOUND

75-71-8	Dichlorodifluoromethane	10	Ū
74-87-3	Chloromethane	· 10	Ū
75-01-4	Vinyl Chloride	10	Ū
74-83-9	Bromomethane	10	ט
75-00-3	Chloroethane	10	Ū
75-69-4	Trichlorofluoromethane	10	Ū
75-35-4	1,1-Dichloroethene	44	
76-13-1	1,1,2-Trichloro-1,2,2-trifluoroethane	10	IJ
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	ט
79-20-9	Methyl Acetate	10	ט
75-09-2	Methylene Chloride	10	Ū
156-60-5	trans-1,2-Dichloroethene	10	Ū
1634-04-4	Methyl tert-Butyl Ether	10	ט
75-34-3	1,1-Dichloroethane	10	U
156-59-2	cis-1,2-Dichloroethene	10	U
78-93-3	2-Butanone	10	บั
67-66-3	Chloroform	10	U
71-55-6	1,1,1-Trichloroethane	10	Ü
110-82-7	Cyclohexane	10	Ü
56-23-5	Carbon Tetrachloride	10	U
71-43-2	Benzene	45	
107-06-2	1,2-Dichloroethane	10	Ū

1B VOLATILE ORGANICS ANALYSIS DATA SHEET


EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract: V6YLCS
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: LCS-19680
Sample wt/vol: <u>5.000</u> (g/mL) <u>ML</u>	Lab File ID: V6D8023
Level: (low/med) <u>LOW</u>	Date Received:
% Moisture: not dec	Date Analyzed: 08/26/05
GC Column: <u>DB-624</u> ID: <u>0.25</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

79-01-6	Trichloroethene	47	
108-87-2	Methylcyclohexane	10	U
78-87-5	1,2-Dichloropropane	10	Ŭ
75-27-4	Bromodichloromethane	10	U
10061-01-5	cis-1,3-Dichloropropene	10	U
108-10-1	4-Methyl-2-Pentanone	10	U
108-88-3	Toluene	49	
10061-02-6	trans-1,3-Dichloropropene	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
127-18-4	Tetrachloroethene	. 10	U
591-78-6	2-Hexanone	10	U
124-48-1	Dibromochloromethane	10	Ū
106-93-4	1,2-Dibromoethane	10	Ū
108-90-7	Chlorobenzene	50	
100-41-4	Ethylbenzene	10	ט
1330-20-7	Xylene (Total)	10	Ū
100-42-5	Styrene	10	U
75-25-2	Bromoform	10	Ū
98-82-8	Isopropylbenzene	10	U
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
541-73-1	1,3-Dichlorobenzene	10	U
106-46-7	1,4-Dichlorobenzene	10	Ū
95-50-1	1,2-Dichlorobenzene	10	Ū
96-12-8	1,2-Dibromo-3-chloropropane	10	Ū
120-82-1	1,2,4-Trichlorobenzene	10	Ū

Data File: \\AWOGADRO\ORGANICS\organic\voa\V6.i\\550826.B\V6D8023.D

Data File: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8023.D

Report Date: 14-Sep-2005 13:37

Mitkem Corporation

CLP OLM4.X - Water and Medium Soils

Data file: \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\V6D8023.D

Lab Smp Id: LCS-19680 Client Smp ID: V6YLCS

Inj Date : 26-AUG-2005 11:34

: SB Operator SRC: SB Inst ID: V6.i

Smp Info : 5ml, LCS-19680, V6YLCS

Misc Info: ,3

Comment

Method : \\AVOGADRO\ORGANICS\organic\voa\V6.i\050826.B\v6clp4s.m

Meth Date : 31-Aug-2005 15:21 mtl Quant Type: ISTD Cal Date : 26-AUG-2005 10:10 Cal File: V6D8021.D QC Sample: LCS

Als bottle: 3 Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: CLP4.sub

Target Version:

Concentration Formula: Amt * DF * Uf * 5/Vo

Name	Value	Description
DF Uf		Dilution Factor ng unit correction factor
Vo	5.000	Sample Volume purged (mL)

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Cor	npounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ug/L)	(ug/L)
	=======================================	====	==					
	7 1,1-Dichloroethene	96	2.795	2.804	(0.594)	1416229	43.9543	44
*	18 Bromochloromethane	128	4.705	4.708	(1.000)	275446	50.0000	
\$	23 1,2-Dichloroethane-d4	65	5.302	5.304	(1,127)	787119	49.0383	49
	25 Benzene	78	5.375	5.377	(0.929)	2082099	45.4495	45
*	26 1,4-Difluorobenzene	114	5.788	5.791	(1.000)	1567130	50.0000	
	27 Trichloroethene	130	6.080	6.077	(1.050)	545732	46.9178	47
\$	33 Toluene-d8	98	7.480	7.482	(0.805)	2060334	54.2634	54
	34 Toluene	91	7.559	7.561	(0.814)	2235926	48.7141	49
*	42 Chlorobenzene-d5	117	9.286	9.283	(1.000)	1503588	50.0000	
	43 Chlorobenzene	112	9.323	9.319	(1.004)	1551952	49.6490	. 50
\$	50 Bromofluorobenzene	95	10.B38	10.B40	(1.167)	731248	49.8544	- 50

MITKEM CORPORATION: VOLATILES RECEIVING LOGBOOK

				CLIVING LOGB	
VOA Log-In Date	Workorder	Client	Sample Numbers	Relinquished By	Comments
8/24/05	D0994	VRS	Do 994 01-63	g) 14	£10
8/24/05	76986	ETE	05	<i>ज</i> भ	Freezet F-10 Mult R-10
8/24/05	D0996	TT (EPA)	01-06	JJH	FREEZET FID neOH 12-10
8 24/05	१७९९७	TT (EPA)	17-20	171 1+	Meezet F-16 NeOH R-10
8.24.05	D0988	RIERC	01-02	OTH	HCR R-4
8.25.05	D1000	EARTH tech	01-66	<i>5H</i>	Ha R-4
8-25.05	D 1001	TRC	01-05	JH	HU R-4
8.25.05	D1004	左+巨	10	VH	HCP R-400
8:25-01	Do 986	E+E	06	7H	Acol K-4 Flecte P-4
8.25.65	10909	RIRRC (GZA)	01-05	VH	R-10
8.25.05	21002	CH21/41//	01-03, 16-16	574	# R-10
8-25.05	D1003	Tetratech	01-05	VA !	ACI RIS
8.25.05	Po 999	RIRRE	06-11	TH é	26 H R-10 7-11 U. Enpos.
8/26/05	D0299	RIRAC	12-13	E	R10
8/26/05	D0986	6E	-07	Œ	F4/R4
8/26/05		fetra-GPA	-11	E	R10
8/26/05	D1003	feta-GA	-06 →08	E	R13
8/26/05	D1007	uns	01,02	E	RIO
8/200/05	D0796	Jeta-60A	07-710	h	F10 (K10
8/26/05	D1002	CHZM-HII	11->14	. 3	RIO

Logbook ID 90.0191-04/05

Reviewed By: To

00072

METHOD: VGCIPUS ANALYST: (8B) CALID: VW056818C-SID INITIAL CAL: 8/25/05 IS/SS ID: VW0508 25A - 15 ARCHIVE: VW050825B-SS **COMMENTS:** 0W0508 25C - LCS SAMPLE FILE MITKEM ID CLIENT ID SIZE DIL COMMENTS IS pН **Injection Log** irectory: o:\ORGANIC\VOA\V6.i\050825.B FileName Multiplier SampleName Misc Info Injected V6D7990.D IS/SS 1. 2ul,BFB6X,BFB6X ~ o≮ 25 Aug 2005 10:20 V6D7991.D 1. 5ml, VSTD0506X, VSTD0506X 25 Aug 2005 10:25 25 Aug 2005 11:30 25 Aug 2005 11:57 25 Aug 2005 12:28 V6D7992.D 1. 5ml, VSTD0206X, VSTD0206X - N/A ocm, 1,2 5ml,VSTD0206X,VSTD0206X 5ml,VSTD0106X,VSTD1006X 5ml,VSTD1006X,VSTD2006X 5ml,VSTD2006X,VSTD0206X 5ml,VSTD0206X,VSTD0206X V6D7993.D AQ,1,1 ICAL,1,4 1. V6D7994.D 1. V6D7995.D 1. ,1,5 ,1,2 25 Aug 2005 13:03 V6D7996.D 1. 25 Aug 2005 13:34 V6D7997.D 1. 5ml,MB-19661,VBLK6X - ok ,3 ,3 25 Aug 2005 14:10 V6D7998.D 1. pH 5ml,LCS-19661,V6XLCS - ok 25 Aug 2005 14:43 V6D7999.D **<2** 5ml,D0993-16A,,19661 - 0K **ಀಁಀಁಀಁಀಁಀಁಀಁಀಁಀಁಀಁ** 25 Aug 2005 15:20 V6D8000.D 1. 5ml,D0976-01A,,19661- ok 25 Aug 2005 15:55 V6D8001,D 1. 5ml,D0976-08A,,19661 - ok 25 Aug 2005 16:24 V6D8002,D 1. 5ml,D0976-04A,,19661 - o≮ 25 Aug 2005 16:53 V6D8003.D 1. 5m1,D0976-05A,,19661- ok 25 Aug 2005 17:21 V6D8004.D 5ml,D0976-06A,,19661 - 0K 1. ✓ 25 Aug 2005 17:51 ✓ #2↑ 25 Aug 2005 18:19 5ml,D0976-06AMSD,,19661 - ok 5ml,D0976-06AMSD,,19661 - ok V6D8005.D 1. V6D8006.D 1. 25 Aug 2005 18:47 V6D8007,D 5ml,D0976-07A,,19661 - RR 1 <2 25 Aug 2005 19:16 V6D8008.D 1. 5ml,D0898-16ADL,,19661,300X - 0K 25 Aug 2005 19:44 (PCE: 123) V6D8009.D 1. 5ml,D0898-11ADL,,19661,1000X - ok (PCE 112) 25 Aug 2005 20:13 V6D8010.D 5ml, D0898-15AMSD, 19661, 40X - N/a 1. (PCE: 887) 25 Aug 2005 20:42 V6D8011.D 1. 5ml,VHBLK6X,VHBLK6X - k(4 25 Aug 2005 21:11 au baub V6D8012.D 1. 5ml, VHBLK6X, VHBLK6X - ula 25 Aug 2005 21:39 **√** 2↑ 8/26/05 Y62/26/05

METHOD: VOCIPYS

CAL ID: VW050826C- 870

ANALYST: (38)

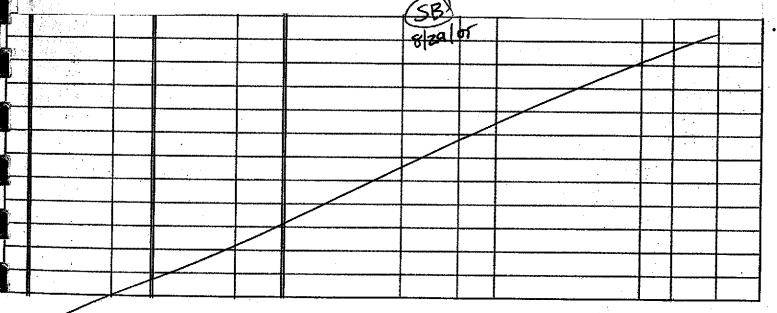
INITIAL CAL: 8/25/05

IS/SS ID: VW050825 A - 15

ARCHIVE:

COMMENTS:

VW050825B-53


VW050825C-LCS

		· · · · · · · · · · · · · · · · · · ·	SAMPLE					
FILE	MITKEM ID	CLIENT ID	SIZE	DIL	COMMENTS	IS	SS	pН
A service of the serv			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 			

Injection Log

rectory: O:\ORGANIC\VOA\V6.i\050826.B

FileName	Multiplier	SampleName	Misc Info	IS/SS	Injected
V6D8020.D V6D8021.D V6D8022.D V6D8023.D V6D8024.D V6D8025.D V6D8026.D V6D8027.D V6D8028.D	1. 1. 1. pH 1. v2 1. v2 1. v7	2ul,BFB6Y,BFB6Y - OK 5ml,VSTD0506Y,VSTD0506Y - OK 5ml,MB-19680,VBLK6Y - OK 5ml,LCS-19680,V6YLCS - OK 5ml,D0976-07A,,19680 - OK 5ml,D1003-06A,,19680 - OK 5ml,D1003-03A,,19680 - OK 5ml,D1003-01B,,19680 - OK	,3,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26 Aug 2005 09:47 26 Aug 2005 10:10 26 Aug 2005 10:48 26 Aug 2005 11:34 26 Aug 2005 12:10 26 Aug 2005 12:39 26 Aug 2005 13:08 26 Aug 2005 13:36 26 Aug 2005 14:06
V6D8029.D V6D8030.D V6D8031.D V6D8032.D V6D8033.D V6D8034.D V6D8035.D V6D8036.D V6D8037.D	1. 1. 1. 4 1. 4 2 1. 4 1. 1. 1. 1.	5ml,D1003-02B,,19680 - ok 5ml,D1003-02BMS,,19680 - ok 5ml,D1003-02BMSD,,19680 - ok 5ml,D1003-04B,,19680 - ok 5ml,D1003-05B,,19680 - ok 5ml,VHBLK6Y,VHBLK6Y - ok 5ml,VHBLK6Y,VHBLK6Y - ok 5ml,VHBLK6Y,VHBLK6Y - ok	,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	26 Aug 2005 14:34 26 Aug 2005 15:03 26 Aug 2005 15:33 26 Aug 2005 16:02 26 Aug 2005 16:31 26 Aug 2005 17:00 26 Aug 2005 17:29 26 Aug 2005 17:58 26 Aug 2005 18:28

Logbook ID 90.0200-3/02

Reviewed By: 10 9/14/25

Logbook page:

0074

00074

2C WATER SEMIVOLATILE SURROGATE RECOVERY

Lab	Name:	MITKEM	CORPORATION	Contract:	
Lab	Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MD1004

	EPA	S1	S2	S3	S4	S5	S6	S7	S8	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#	(PHL)#	(2FP)#	(TBP)#	(2CP)#	(DCB)#	OUT
	========	=====	======		=====	=====	=====	======	=====	===
01	SBLK1B	84	78	81	78	80	83	79	64	0
02	S1BLCS	81	76	73	78	80	85	81	67	0
03	SB-RB-W-R	81	76	79	79	85	85	82_	63	0
04	MW12-W-O	83	74	85	82	85	84	83	65	0
05										
06										
07										
80										
09										
10										
11										
12										
13								<u> </u>		
14										
15										
16										
17										
18										
19										
20								i		
21		-				· · · ·				
22										
23	 					·				· · · · · · · · · · · · · · · · · · ·
24										i — I
24 25 26 27									· -	
26	<u></u>							-		
27			 					· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
28		 	l		 				· · · ·	
29		 	 -				-	 	 	
30						 		 		
20		<u> </u>	<u> </u>	1	L		· · · · · · · · · · · · · · · · · · ·	I	·	اا

```
QC LIMITS
S1 (NBZ) = Nitrobenzene-d5
                                    (35-114)
S2 (FBP) = 2-Fluorobiphenyl
                                    (43-116)
S3 (TPH) = Terphenyl-d14
                                    (33-141)
S4 (PHL) = Phenol-d5
                                    (10-110)
S5 (2FP) = 2-Fluorophenol
                                    (21-110)
S6 (TBP) = 2,4,6-Tribromophenol
                                    (10-123)
S7 (2CP) = 2-Chlorophenol-d4
                                    (33-110)
                                              (advisory)
S8 (DCB) = 1,2-Dichlorobenzene-d4
                                    (16-110)
                                              (advisory)
```

Column to be used to flag recovery values

D Surrogate diluted out

^{*} Values outside of contract required QC limits

FORM 3 WATER SEMIVOLATILE LAB CONTROL SAMPLE

Lab	Name:	MITKEM	CORPORATION	Contract:	
Lab	Code:	MITKEM	Case No.:	SAS No.:	SDG No.: MD1004
Mati	rix Sp:	ike - S	Sample No.:	S1BLCS	

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	LCS CONCENTRATION (ug/L)	LCS % REC #	QC. LIMITS REC.
Phenol	75		59	79	12-110
2-Chlorophenol	75 75		62	83	27-123
N-Nitroso-di-n-prop.(1)	50		40	80	41-116
4-Chloro-3-Methylphenol	75		62	83	23- 97
Acenaphthene	50		40	80	46-118
4-Nitrophenol	75		68	91*	10- 80
2,4-Dinitrotoluene	50		43	86	24- 96
Pentachlorophenol	75		62	83	9-103
Pyrene	50		40	80	26-127

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk * Values outside of QC limits

RPD: 0 out of 0 outside limits Spike Recovery: 1 out of 9 outside limits

COMMENTS:	

4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Lab File ID: S1E5927	Lab Sample ID: MB-19698
Instrument ID: S1	Date Extracted: 08/29/05
Matrix: (soil/water) WATER	Date Analyzed: 09/13/05
Level:(low/med) LOW	Time Analyzed: 1202

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS, and MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
			=======================================	========
01	S1BLCS	LCS-19698	S1E5928	09/13/05
02	SB-RB-W-R	D1004-01C	S1E5938	09/13/05
03	MW12-W-O	D1004-02B	S1E5939	09/13/05
04				
05				
06				
07 08				
09				
10				
11				
12				
13		.		
14				
15				
16				
17				
18				
19				
20 21				
22				
23		-		
24			<u> </u>	
25				
26			· · · · · · · · · · · · · · · · · · ·	
27				
28				
29				
30				

COMMENTS:		

page 1 of 1

FORM IV SV

OLM04.3

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Lab File ID: <u>S1E5792</u>	DFTPP Injection Date: 08/31/05
Instrument ID: S1	DFTPP Injection Time: 1105

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
======		=======================================
51	30.0 - 80.0% of mass 198	40.5
68	Less than 2.0% of mass 69	0.0 (0.0)1
69	Mass 69 relative abundance	56.1
70	Less than 2.0% of mass 69	0.4 (0.7)1
127	25.0 - 75.0% of mass 198	48.4
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.0
275	10.0 - 30.0% of mass 198	21.8
365	Greater than 0.75% of mass 198	2.87
441	Present, but less than mass 443	14.6
442	40.0 - 110.0% of mass 198	99.7
443	15.0 - 24.0% of mass 442	19.6 (19.7)2
I	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

				- 122	
	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	=========			=======	
01	SSTD0501Q	SSTD0501Q	S1E5793	08/31/05	1130
02	SSTD1601Q	SSTD1601Q	S1E5794	08/31/05	1212
03	SSTD0201Q	SSTD0201Q	S1E5795	08/31/05	1253
04	SSTD0801Q	SSTD0801Q	S1E5796	08/31/05	1335
05	SSTD12010	SSTD1201Q	S1E5797	08/31/05	1417
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					
21					
22					

5B

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: MITKEM CORPORATION	Contract:	,
Lab Code: MITKEM Case No.:	_ SAS No.:	SDG No.: MD1004
Lab File ID: S1E5925	DFTPP	Injection Date: 09/13/05
Instrument ID: S1	DFTPP	Injection Time: 1053

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
======		
51	30.0 - 80.0% of mass 198	49.7
68	Less than 2.0% of mass 69	0.2 (0.3)1
69	Mass 69 relative abundance	62.9
70	Less than 2.0% of mass 69	0.2 (0.3)1
127	25.0 - 75.0% of mass 198	49.5
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.5
275	10.0 - 30.0% of mass 198	21.4
365	Greater than 0.75% of mass 198	3.04
441	Present, but less than mass 443	6.5
442	40.0 - 110.0% of mass 198	64.0
443	15.0 - 24.0% of mass 442	11.5 (17.9)2
	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
			=======================================		=======
01	SSTD0501A	SSTD0501A	S1E5926	09/13/05	1112
02	SBLK1B	MB-19698	S1E5927	09/13/05	1202
03	S1BLCS	LCS-19698	S1E5928	09/13/05	1241
04	SB-RB-W-R	D1004-01C	S1E5938	09/13/05	1856
05	MW12-W-O	D1004-02B	S1E5939	09/13/05	1933
06					
07					
08					
09					
10					
11					
12					
13					
14					
15					
16				,	
17					
18					
19					
20					
21			_		
22					
	l 	<u> </u>	L		!

8B SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
EPA Sample No. (SSTD050##): SSTD0501A	Date Analyzed: 09/13/05
Lab File ID (Standard): S1E5926	Time Analyzed: 1112
Instrument ID: S1	GC Column: DB-5MS ID:0.25(mm)

		IS1 (DCB)		IS2 (NPT)		IS3 (ANT)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	===========	=========	======		======	=======	======
	12 HOUR STD	294923	8.00	1272717	10.00	721605	12.89
	UPPER LIMIT	589846	8.50	2545434	10.50	1443210	13.39
	LOWER LIMIT	147462	7.50	636359	9.50	360803	12.39
		=========			======	========	======
	EPA SAMPLE NO.		:				
		========	=======		======	========	
01	SBLK1B	283376	8.00	1129906	10.00	666774	12.88
02	S1BLCS	279913	8.00	1163309	10.00	683334	12.89
03	SB-RB-W-R	283921	8.00	1180682	10.00	682371	12.88
04	MW12-W-O	280155	8.00	1159342	10.00	690101	12.88
05							
06							
07					"		
80							
09							
10							
11			-				
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22					<u> </u>	l	<u> </u>

IS1 (DCB) = 1,4-Dichlorobenzene-d4 IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits

8C SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
EPA Sample No. (SSTD050##): SSTD0501A	Date Analyzed: 09/13/05
Lab File ID (Standard): S1E5926	Time Analyzed: 1112
Instrument ID: S1	GC Column: DB-5MS ID:0.25(mm)

		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		========	======	========	======		======
	12 HOUR STD	1260099	15.35	1109443	19.75	841480	22.25
	UPPER LIMIT	2520198	15.85	2218886	20.25	1682960	22.75
	LOWER LIMIT	630050	14.85	554722	19.25	420740	21.75
		========	======		======		======
	EPA SAMPLE NO.						
	========	========	======	========	======	=======	======
01	SBLK1B	1196728	15.35	1050406	19.73	843829	22.24
02	S1BLCS	1189180	15.35	1066288	19.74	816914	22.25
03	SB-RB-W-R	1183370	15.35	1019894	19.73	754592	22.25
04	MW12-W-O	1156584	15.35	928597	19.73	670653	22.24
05							
06							
07							
08							
09							
10							
11							
12							
13							
14							
15							<u> </u>
16							<u> </u>
17							l
18							
19							<u> </u>
20							
21							
22					<u> </u>		<u> </u>

IS4 (PHN) = Phenanthrene-dl0

IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area
AREA LOWER LIMIT = - 50% of internal standard area

RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

Column used to flag values outside QC limits with an asterisk.

* Values outside of QC limits

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Cor	ntract: MW12-W-O
Lab Code: MITKEM Case No.:	
Matrix: (soil/water) WATER	Lab Sample ID: D1004-02B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5939
Level: (low/med) <u>LOW</u>	Date Received: 08/25/05
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) CONT
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

100-52-7	Benzaldehyde		10	U
108-95-2	Phenol		10	Ū
111-44-4	bis(2-Chloroethyl)Ether		10	Ū
95-57-8	2-Chlorophenol	- region	10	Ü
95-48-7	2-Methylphenol		10	U
108-60-1	2,2'-oxybis(1-Chloropropane)		10	Ū
98-86-2	Acetophenone		10	Ŭ
106-44-5	4-Methylphenol		10	U
621-64-7	N-Nitroso-di-n-propylamine		10	U
67-72-1	Hexachloroethane		10	Ü
98-95-3	Nitrobenzene		10	U
78-59-1	Isophorone		10	U
88-75-5	2-Nitrophenol		10	U
105-67-9	2,4-Dimethylphenol		10	Ū
111-91-1	bis(2-Chloroethoxy)methane		10	U
120-83-2	2,4-Dichlorophenol		10	U
91-20-3	Naphthalene	· .	10	Ū
106-47-8	4-Chloroaniline		10	Ū
87-68-3	Hexachlorobutadiene		10	Ū
105-60-2	Caprolactam		10	U
59-50-7	4-Chloro-3-Methylphenol		10	Ū
91-57-6	2-Methylnaphthalene		10	Ū
77-47-4	Hexachlorocyclopentadiene		10	U
88-06-2	2,4,6-Trichlorophenol		10	Ū
95-95-4	2,4,5-Trichlorophenol		25	U
92-52-4	1,1'-Biphenyl		10	U
91-58-7	2-Chloronaphthalene		10	U
88-74-4	2-Nitroaniline		25	Ü
131-11-3	Dimethylphthalate		10	Ū
606-20-2	2,6-Dinitrotoluene		10	Ŭ
208-96-8	Acenaphthylene		10	Ŭ
99-09-2	3-Nitroaniline		25	Ū
83-32-9	Acenaphthene		10	Ū

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

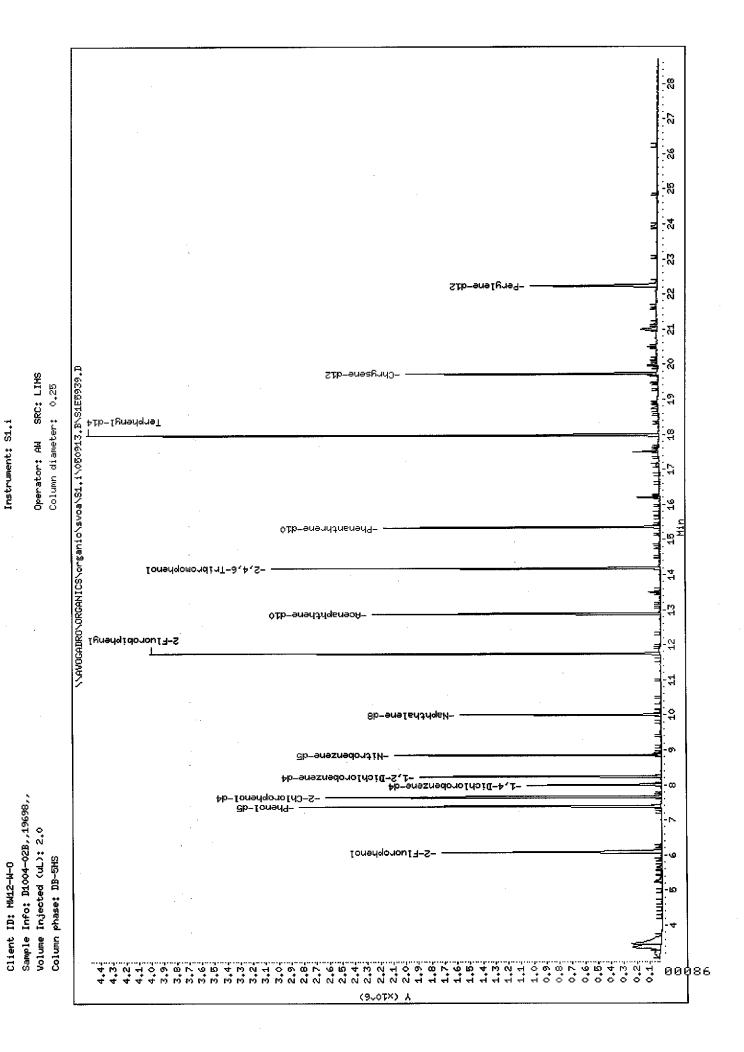
Lab Name: MITKEM CORE	PORATION (Contract:	MW12-W-O
Lab Code: MITKEM	Case No.:	SAS No.:S	DG No.: MD1004
Matrix: (soil/water)	WATER	Lab Sample ID:	D1004-02B
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: S	1E5939
Level: (low/med)	LOW	Date Received:	08/25/05
% Moisture:	Decanted: (Y/N)	_ Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (ul	L) Date Analyzed:	09/13/05
Tuisetian Walama.	2.0(11)	Dilution Factor	. 1 0

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

	O 4 Dissipance	36	TT
51-28-5	2,4-Dinitrophenol	25	U U
100-02-7	4-Nitrophenol	25	
132-64-9	Dibenzofuran	10	כ
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	Ü
86-73-7	Fluorene	10	Ŭ
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
100-01-6	4-Nitroaniline	25	Ū
534-52-1	4,6-Dinitro-2-methylphenol	25	Ŭ
86-30-6	N-Nitrosodiphenylamine (1)	10	U
101-55-3	4-Bromophenyl-phenylether	10	U
118-74-1	Hexachlorobenzene	10	ប
1912-24-9	Atrazine	10	U
87-86-5	Pentachlorophenol	25	Ü
85-01-8	Phenanthrene	10	U
120-12-7	Anthracene	10	U
86-74-8	Carbazole	10	U
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	U
129-00-0	Pyrene	10	U
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	Ū
56-55-3	Benzo(a) anthracene	10	U
218-01-9	Chrysene	10	Ū
117-81-7	bis(2-Ethylhexyl)phthalate	10	Ŭ
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b) fluoranthene	10	Ū
207-08-9	Benzo(k) fluoranthene	10	Ū
50-32-8	Benzo(a) pyrene	10	Ū
193-39-5	Indeno (1, 2, 3-cd) pyrene	10	Ü
53-70-3	Dibenzo (a, h) anthracene	10	U
191-24-2	Benzo(g,h,i)perylene	10	Ū
			•


(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

MW12-W-O

Lab Name: MITKEM CORPORATION Contract	:
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: D1004-02B
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5939
Level: (low/med) <u>LOW</u>	Date Received: 08/25/05
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) <u>CONT</u>
Number TICs found: 1	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
 	UNKNOWN	21.01	3	J
2.				
3.				
4.				L
5.				
6.				<u> </u>
7.				
8.				-
9.				
10.				
11.				
12.				
13.				
14. 15.				
16.				
17.		-		
18.				<u> </u>
19.		<u> </u>		
20.				
21.				
22.				
23.				
24.				ļ
25.				
26.				
27.				<u> </u>
28.				
29.		ļ <u>.</u>		<u> </u>
30.		<u> </u>		<u> </u>

Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\o50913.B\S1E5939.D

Date : 13-SEP-2005 19:33

Data File: S1E5939.D

Report Date: 16-Sep-2005 13:26

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5939.D

Lab Smp Id: D1004-02B Inj Date : 13-SEP-2005 19:33 Client Smp ID: MW12-W-O

Operator : AW SRC: LIMS Inst ID: S1.i

Smp Info : D1004-02B, 19698,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1 olm4 2 S.m

Meth Date: 13-Sep-2005 11:56 mtl Quant Type: ISTD Cal Date : 13-SEP-2005 11:12 Cal File: S1E5926.D

Als bottle: 14

Dil Factor: 1.00000 Integrator: HP RTE

Compound Sublist: OLM4.sub

Target Version: 4.03 Processing Host: TARGET11

Concentration Formula: Amt * DF * Uf*(Vt/Vi)*(1/Vo)

_	Name	Value	Description
_	DF Uf Vt Vi Vo	1.000 1000.000 2.000	Dilution Factor GPC Correction Factor Volume of final extract (uL) Volume injected (uL) Volume of sample extracted (mL)

	• • • • • • • • • • • • • • • • • • • •	•		4			CONCENTRA	ATIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ug/L)
==	=======================================	M = 11					======	======
\$	1 2-Fluorophenol	112	6.077	6.058	(0.760)	1213879	127.412	64
\$	3 Phenol-d5	99	7.395	7.376	(0.924)	1674600	122.810	61
\$	6 2-Chlorophenol-d4	132	7.654	7.646	(0.957)	1366148	124.826	62
*	B 1,4-Dichlorobenzene-d4	152	8.000	8.003	(1.000)	280155	40.0000	
\$	9 1,2-Dichlorobenzene-d4	152	8.238	8.240	(1.030)	475809	65.1864	33
\$	16 Nitrobenzene-d5	82	8.853	8.845	(0.885)	985214	83.4589	42
*	23 Naphthalene-d8	136	9.998	10.001	(1.000)	1159342	40.0000	
\$	33 2-Fluorobiphenyl	172	11.749	11.751	(0.912)	1857502	74.3846	37
*	41 Acenaphthene-d10	164	12.883	12.886	(1.000)	690101	40.0000	
\$	53 2,4,6-Tribromophenol	330	14.190	14.182	(0.925)	552104	125.372	63
*	58 Phenanthrene-d10	188	15.346	15.349	(1.000)	1156584	40.0000	
\$	65 Terphenyl-d14	244	17.982	17.974	(0.911)	2108499	84.5406	42
*	69 Chrysene-d12	240	19.733	19.746	(1.000)	928597	40.0000	
*	76 Perylene-dl2	264	22.239	22.252	(1.000)	670653	40.0000	

Data File: S1E5939.D

Report Date: 19-Sep-2005 16:50

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5939.D

Client Smp ID: MW12-W-O Lab Smp Id: D1004-02B

Inj Date : 13-SEP-2005 19:33

Inst ID: S1.i Operator : AW SRC: LIMS

Smp Info : D1004-02B,,19698,,

Misc Info:

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1_olm4_2_S.m

Meth Date : 13-Sep-2005 11:56 mtl Quant Type: ISTD

Cal Date : 13-SEP-2005 11:12 Cal File: S1E5926.D

Als bottle: 14

Dil Factor: 1.00000

Compound Sublist: OLM4.sub Integrator: HP RTE

Target Version: 4.03 Processing Host: TARGET11

Concentration Formula: Amt * DF * Uf*(Vt/Vi)*(1/Vo)

Name	Value	Description
DF Uf Vt Vi	1.000 1000.000 2.000	Dilution Factor GPC Correction Factor Volume of final extract (uL) Volume injected (uL) Volume of sample extracted (mL)
Vo	T000.000	AOTHUR OF SUMPTE EXCLUSION (MIT)

ISTD	RT	AREA	AMOUNT
======	====	=====	=====
* 76 Pervlene-d12	22.239	2486496	40.000

		CON	CENT	RATIONS			Q	UANT	
RT	AREA	ON-COL (ng)	FINAL (ug/L)	LAUQ	LIBRARY	LIB ENTRY	CPND #
====	====				=====			=======	
Unknown						CAS	#:		
21.007	412677	6.6386915	6		3	0		0	76

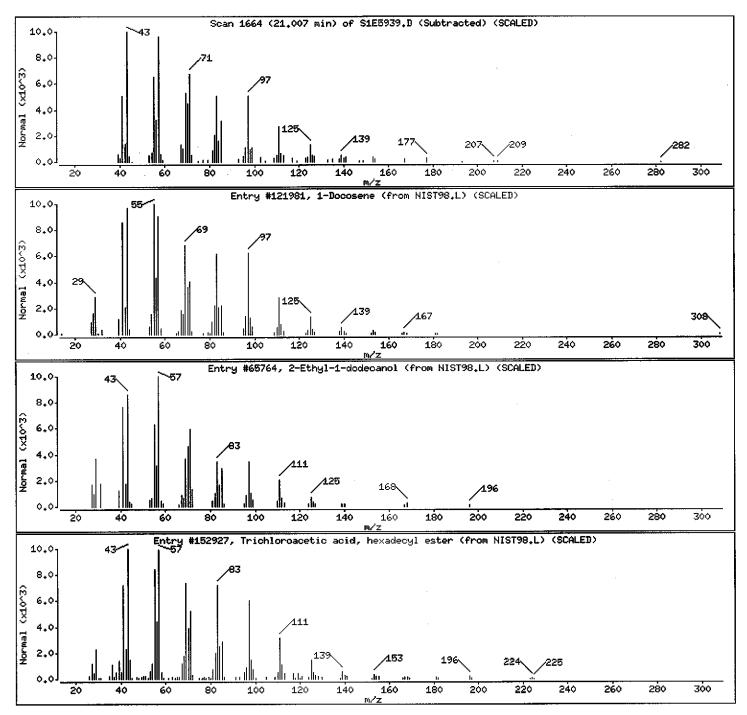
Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5939.D

Date : 13-SEP-2005 19:33

Client ID: MW12-W-O

Column phase: DB-5MS

Instrument: S1.i


Sample Info: D1004-02B,,19698,,

Volume Injected (uL): 2.0

Operator: AW SRC: LIMS

Column diameter: 0.25

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Unknown 1-Docosene	1599-67-3	NIST98.L	121981	76	C22H44	308
2-Ethyl-1-dodecanol	19780-33-7	NIST98.L	65764	74	C14H300	214
Trichloroacetic acid, hexadecyl ester	74339-54-1	NIST98.L	152927	. 70	C18H33C1302	3 86

EPA SAMPLE NO.

Lab Name: MITKEM CORPORATION Contract:

	Lab Co	de: MITKEM	Case No.:	SAS No.:	SDG No.: MD1004
--	--------	------------	-----------	----------	-----------------

Matrix: (soil/water) WATER Lab Sample ID: D1004-01C

Sample wt/vol: $\underline{1000}$ (g/mL) $\underline{\text{ML}}$ Lab File ID: $\underline{\text{S1E5938}}$

Level: (low/med) LOW Date Received: 08/25/05

% Moisture: Decanted: (Y/N) Date Extracted: 08/29/05

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/13/05

Injection Volume: 2.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____ Extraction: (Type) CONT

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

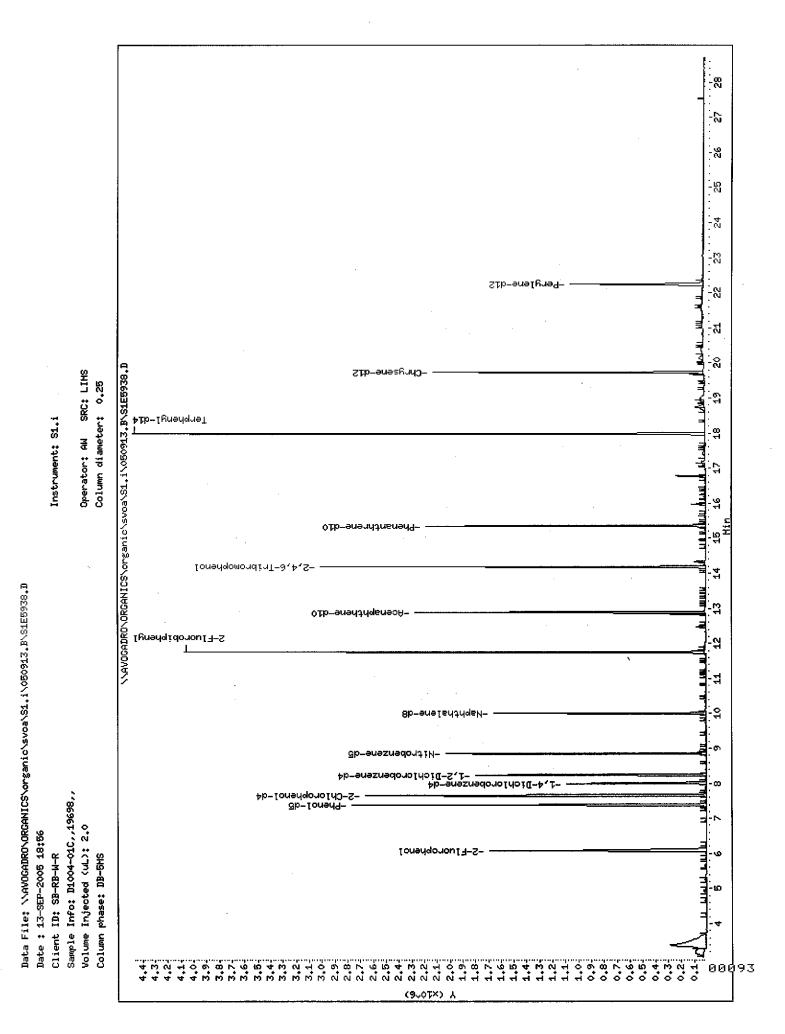
100-52-7	Benzaldehyde	10 U
108-95-2	Phenol	10 U
111-44-4	bis(2-Chloroethyl)Ether	10 Ü
95-57-8	2-Chlorophenol	10 U
95-48-7	2-Methylphenol	10 U
108-60-1	2,2'-oxybis(1-Chloropropane)	10 U
98-86-2	Acetophenone	10 U
106-44-5	4-Methylphenol	10 U
621-64-7	N-Nitroso-di-n-propylamine	10 U
67-72-1	Hexachloroethane	10 U
98-95-3	Nitrobenzene	10 U
78-59-1	Isophorone	10 U
88-75-5	2-Nitrophenol	10 U
105-67-9	2,4-Dimethylphenol	10 U
111-91-1	bis(2-Chloroethoxy)methane	10 U
120-83-2	2,4-Dichlorophenol	10 U
91-20-3	Naphthalene	10 Ü
106-47-8	4-Chloroaniline	10 Ü
87-68-3	Hexachlorobutadiene	10 U
105-60-2	Caprolactam	10 U
59-50-7	4-Chloro-3-Methylphenol	10 U
91-57-6	2-Methylnaphthalene	10 U
77-47-4	Hexachlorocyclopentadiene	10 U
88-06-2	2,4,6-Trichlorophenol	10 U
95-95-4	2,4,5-Trichlorophenol	25 U
92-52-4	1,1'-Biphenyl	10 U
91-58-7	2-Chloronaphthalene	10 U
88-74-4	2-Nitroaniline	25 Ü
131-11-3	Dimethylphthalate	10 U
606-20-2	2,6-Dinitrotoluene	10 U
208-96-8	Acenaphthylene	10 U
99-09-2	3-Nitroaniline	25 U
83-32-9	Acenaphthene	10 U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

SB-RB-W-R Lab Name: MITKEM CORPORATION Contract: SAS No.: SDG No.: MD1004 Lab Code: MITKEM Case No.: ____ Lab Sample ID: D1004-01C Matrix: (soil/water) WATER Sample wt/vol: 1000 (g/mL) ML Lab File ID: S1E5938 Level: (low/med) LOW Date Received: 08/25/05 % Moisture: ____ Decanted: (Y/N)___ Date Extracted: 08/29/05 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 09/13/05 Injection Volume: 2.0 (uL) Dilution Factor: 1.0 Extraction: (Type) <u>CONT</u> GPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/L</u> Q

1			
51-28-5	2,4-Dinitrophenol	25	Ü
100-02-7	4-Nitrophenol	25	U
132-64-9	Dibenzofuran	10	Ū
121-14-2	2,4-Dinitrotoluene	10	U
84-66-2	Diethylphthalate	10	U
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ü
100-01-6	4-Nitroaniline	25	ซ
534-52-1	4,6-Dinitro-2-methylphenol	25	U
86-30-6	N-Nitrosodiphenylamine (1)	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	บ
118-74-1	Hexachlorobenzene	10	U
1912-24-9	Atrazine	10	ט
87-86-5	Pentachlorophenol	25	Ū
85-01-8	Phenanthrene	10	Ŭ
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ü
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	Ū
56-55-3	Benzo(a)anthracene	10	U
218-01-9	Chrysene	10	Ū
117-81-7	bis(2-Ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo (a) pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	U
53-70-3	Dibenzo(a, h) anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū
	<u> </u>		

(1) - Cannot be separated from Diphenylamine


SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

SB-RB-W-R

Lab Name: MITKEM CORPORATION Contract	:
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: <u>MD1004</u>
Matrix: (soil/water) WATER	Lab Sample ID: D1004-01C
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5938
Level: (low/med) LOW	Date Received: 08/25/05
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) CONT
Number TICa found, 2	CONCENTRATION UNITS:

Number TICs found: 2 (ug/L or ug/kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 96-76-4	PHENOL, 2,4-BIS(1,1-DIMETHYL	12.84	3	NJ
2.	UNKNOWN	16.77	2	J
3.				
4.				
5.				
6.				
7.				
8.				
9.				
10.				
11. 12.		,		<u> </u>
12.				
13.				
14.				
15.				<u> </u>
16.				<u> </u>
17.				
18.				
19.				
20.				
22.				
23.				
24.				
25.				—
26.				
27.				
28.				
29.				
30.				

Data File: S1E5938.D

Report Date: 16-Sep-2005 13:26

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5938.D Lab Smp Id: D1004-01C Client Smp ID: SB-RB-W-R

Inj Date : 13-SEP-2005 18:56

Operator : AW SRC: LIMS

Inst ID: S1.i

Smp Info : D1004-01C, 19698,,

Misc Info : Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1 olm4 2 S.m

Quant Type: ISTD

Meth Date: 13-Sep-2005 11:56 mtl
Cal Date: 13-SEP-2005 11:12
Als bottle: 13
Dil Factor: 1.00000 Cal File: S1E5926.D

Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03

Processing Host: TARGET11

Concentration Formula: Amt * DF * Uf*(Vt/Vi)*(1/Vo)

Name	Value	Description
DF Uf Vt	1.000	Dilution Factor GPC Correction Factor Volume of final extract (uL)
Vi Vo	2.000	Volume injected (uL) Volume of sample extracted (mL)

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ug/L)
		====	==		=====			
\$	1 2-Fluorophenol	112	6.078	6.058	(0.760)	1229422	127.332	64
\$	3 Phenol-d5	99	7,385	7.376	(0.923)	1639494	118.641	59
\$	6 2-Chlorophenol-d4	132	7.656	7.646	(0.957)	1368090	123.346	62
*	8 1,4-Dichlorobenzene-d4	152	8.001	8.003	(1.000)	283921	40.0000	
\$	9 1,2-Dichlorobenzene-d4	152	8,239	8.240	(1.030)	467238	63.1631	32
\$	16 Nitrobenzene-d5	82	8.855	8.845	(0.885)	976241	81.2041	41
*	23 Naphthalene-d8	136	10.000	10.001	(1.000)	1180682	40.0000	
\$	33 2-Fluorobiphenyl	172	11.750	11.751	(0.912)	1881131	76.1842	38
*	41 Acenaphthene-d10	164	12.884	12.886	(1.000)	682371	40.0000	
\$	53 2,4,6-Tribromophenol	330	14.192	14.182	(0.925)	576279	127.900	64
*	58 Phenanthrene-dl0	188	15.348	15.349	(1.000)	1183370	40.0000	
\$	65 Terphenyl-d14	244	17,984	17.974	(0.911)	2158914	78.8133	39
*	69 Chrysene-d12	240	19.734	19.746	(1.000)	1019894	40.0000	
*	76 Perylene-d12	264	22.251	22.252	(1.000)	754592	40.0000	

Data File: S1E5938.D

Report Date: 19-Sep-2005 16:51

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5938.D

Lab Smp Id: D1004-01C

Client Smp ID: SB-RB-W-R

Inj Date : 13-SEP-2005 18:56

Operator : AW SRC: LIMS

Inst ID: S1.i

Smp Info : D1004-01C,,19698,,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1_olm4_2_S.m Meth_Date : 13-Sep-2005 11:56 mtl Quant Type: ISTD

Cal Date : 13-SEP-2005 11:12 Cal File: S1E5926.D

Als bottle: 13

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03 Processing Host: TARGET11

Concentration Formula: Amt * DF * Uf*(Vt/Vi)*(1/Vo)

Name	Value	Description
DF		Dilution Factor
Uf	1.000	GPC Correction Factor
Vt	1000.000	Volume of final extract (uL)
Vi	2.000	Volume injected (uL)
Vo	1000.000	Volume of sample extracted (mL)

IS ==	TD =====	RT ====	AREA	AMOUNT
*	41 Acenaphthene-d10	12.884	3027678	40.000
*	58 Phenanthrene-d10	15.348	3212524	40.000

OHANT

		CO	74/1714 17	CALIONS		20,	LUTA T	
RT	AREA	ON-COL (ng)	FINAL(ug/L)	QUAL	LIBRARY	LIB ENTRY	CPND #
====	====							
Phenol, 2,	4-bis(1,1	l-dimethyl	ethyl)	-	CAS	3 #: 96-76-4		
12.841	472171	6.238060	98	3	94	NIST98.L	60209	41
Unknown					CAS	3 #:		
16.774	330076	4.109865	02	2	0		0	58

CONCENTRATIONS

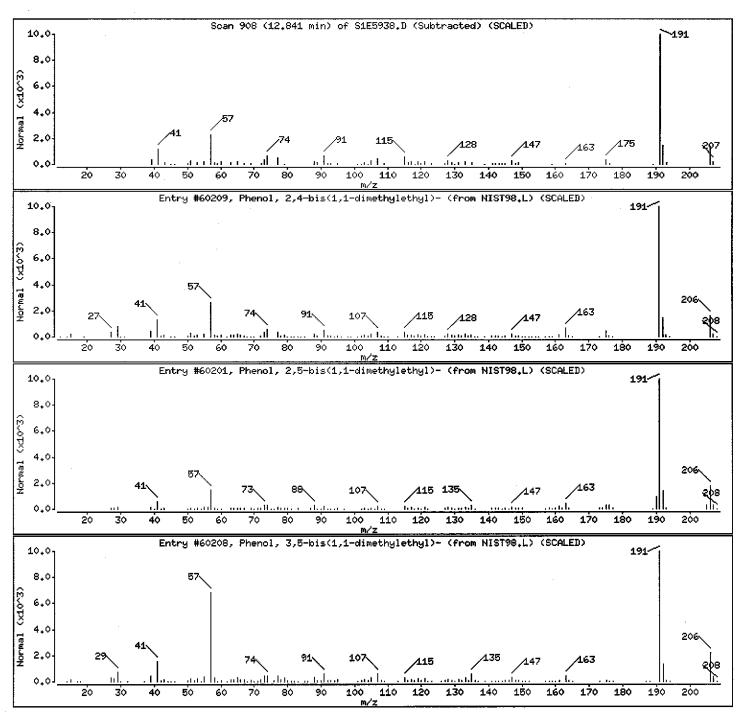
Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5938.D

Date : 13-SEP-2005 18:56

Client ID: SB-RB-W-R

Instrument: S1.i

Sample Info: D1004-010,,19698,,


Volume Injected (uL): 2.0

Operator: AW SRC: LIMS

Column phase: DB-5MS

Column diameter: 0.25

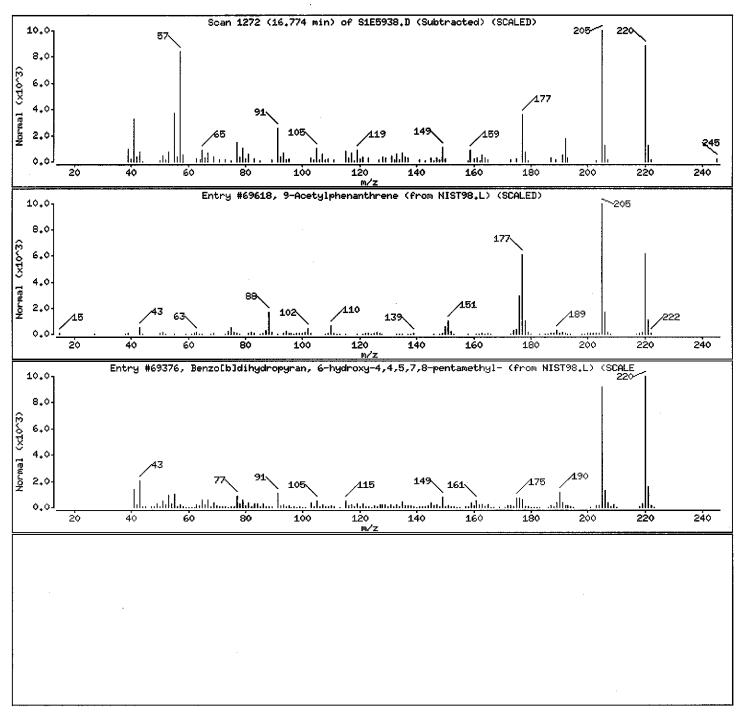
Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Phenol, 2.4-bis(1.1-dimethylethyl)-	96-76-4	NIST98.L	60209	94	C14H22O	206
Phenol, 2,5-bis(1,1-dimethylethyl)-	5875-45-6	NIST98.L	60201	90	C14H220	206
Phenol, 3,5-bis<1,1-dimethylethyl)-	1138-52-9	NIST98.L	60208	90	C14H22O	206

Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5938.D

Date : 13-SEP-2005 18:56

Client ID: SB-RB-W-R

Instrument: S1.i


Sample Info: D1004-01C,,19698,,

Volume Injected (uL): 2.0

Operator: AW SRC: LIMS

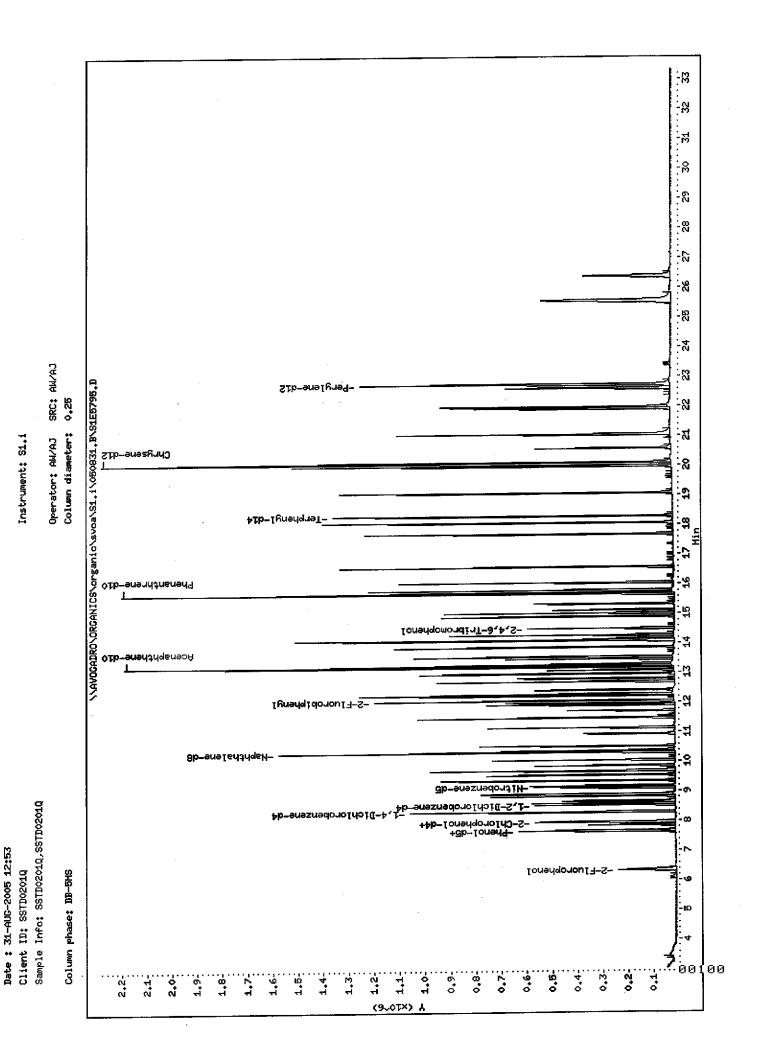
Column phase: DB-5MS Column diameter: 0.25

Library Search Compound Match	CAS Number	Library	Entry	Quality	Formula	Weight
Unknown						
9-Acetylphenanthrene	2039-77-2	NIST98.L	6 9 618	72	C16H12O	220
Benzo[b]dihydropyran, 6-hydroxy-4,4,5,7,	50442-70-1	NIST98.L	69376	68	C14H2002	220

6C SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab	Name:	MITKEM	CORPORA	rion	Contract:			
Lab	Code:	MITKEM	Case	No.:	SAS No.:		SDG No.:	MD1004
Inst	rument	: ID: <u>S1</u>		_ Cal	ibration Date(s)	: 08/31/05	08/31,	/05
				Cal	ibration Times:	1130	1417	

LAB FILE ID: RRF20 RRF80 = S1E5796 RRF120		5795 5797	RRF50 RRF160		E5793 E5794		
COMPOUND	RRF20	RRF50	RRF80	RRF120	RRF160	RRF	RSD
Benzaldehyde	0.175	0.197		0.267		0.238	31.4
Phenol *	1.793	1.817	1.646	1.893	1.547	1.739	8.1*
bis(2-Chloroethyl)Ether *	1.415	1.442	1.366	1.496	1.270	1.398	6.1*
2-Chlorophenol *	1.464	1.449	1.308	1.565	1.336	1.424	7.3*
2-Methylphenol *	1.339	1.331	1.221	1.458	1.199	1.310	8.0*
2,2'-oxybis(1-Chloropropane)	1.895	1.960	1.712	2.024	1.665	1.851	8.4
Acetophenone	2.069	2.056	1.789	2.051	1.691	1.931	9.2
4-Methylphenol *	1.427	1.423	1.322	1.532	1.271	1.395	7.3*
N-Nitroso-di-n-propylamine *	1.083	1.058	0.947	1.086	0.875	1.010	9.3*
Hexachloroethane *	0.656	0.671	0.619	0.718	0.612	0.655	6.6*
Nitrobenzene *	0.412	0.375	0.374	0.422	0.331	0.383	9.4*
Isophorone *	0.766	0.716	0.679	0.834	0.651	0.729	10.0*
2-Nitrophenol *	0.230	0.209	0.206	0.235	0.183	0.213	9.7*
2,4-Dimethylphenol *	0.351	0.333	0.323	0.367	0.295	0.334	8.3*
bis(2-Chloroethoxy)methane *	0.478	0.450	0.438	0.481	0.367	0.443	10.4*
2,4-Dichlorophenol *	0.322	0.301	0.300	0.340	0.269	0.306	8.7*
Naphthalene *	1.111	1.045	0.967	1.084	0.916	1.025	8.0*
4-Chloroaniline	0.133	0.131	0.119	0.129	0.067	0.116	23.9
Hexachlorobutadiene	0.195	0.182	0.177	0.208	0.170	0.186	8.0
Caprolactam	0.152	0.143	0.142	0.164	0.132	0.147	8.3
4-Chloro-3-Methylphenol *	0.338	0.320	0.307	0.385	0.304	0.331	10.1*
2-Methylnaphthalene *	0.729	0.670	0.645	0.722	0.598	0.673	8.1*
Hexachlorocyclopentadiene	0.291	0.331	0.330	0.375	0.333	0.332	9.0
2,4,6-Trichlorophenol *	0.412	0.397	0.391	0.444	0.387	0.406	5.7*
2,4,5-Trichlorophenol *		0.450	0.408	0.471	0.427	0.439	6.3*
1,1'-Biphenyl	1.521	1.401	1.324	1.582	1.290	1.424	8.8
2-Chloronaphthalene *	1.181	1.148	1.087	1.207	1.026	1.130	6.5*
2-Nitroaniline		0.377	0.361	0.413	0.355	0.377	7.0
Dimethylphthalate	1.505	1.502	1.395	1.591	1.306	1.460	7.6
2,6-Dinitrotoluene *	0.377	0.359	0.324	0.404	0.328	0.358	9.3*
Acenaphthylene *	1.900	1.882	1.704	1.901	1.695	1.816	5.9*
3-Nitroaniline		0.348	0.343	0.385	0.317	0.348	8.0
Acenaphthene *	1.137	1.133	1.044	1.145	1.051	1.102	4.5*
2,4-Dinitrophenol		0.153	0.188	0.227	0.202	0.193	16.1
4-Nitrophenol		0.208	0.204	0.244	0.211	0.217	8.4
Dibenzofuran *	1.682	1.663	1.560	1.768	1.529	1.640	5.9*


^{*} Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

6D SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab	Name:	MITKEM	CORPORATIO	ON	Contract:			
Lab	Code:	MITKEM	Case No	o.:	_ SAS No.:		SDG No.:	MD1004
Insi	trumen	t ID: <u>S</u> 1	· -	Calibrat	ion Date(s)	: <u>08/31/05</u>	08/31	/05
				Calibrat	ion Times:	1130	1417	

LAB FILE ID: RRF20 = S1E5795 RRF50 = S1E5793									
RRF80 = S1E5796 RRF12			5797	RRF16		35794			
								ૄ	
COMPOUND		RRF20	RRF50	RRF80	RRF120	RRF160	$\overline{\mathtt{RRF}}$	RSD	
	i	=====	======	=====	======	=====	======	======	
2,4-Dinitrotoluene	*	0.475	0.481	0.470	0.526	0.452	0.481	5.7*	
Diethylphthalate		1,572	1.575	1.483	1.651	1.457	1.548	5.1	
Fluorene	*	1.368	1.312	1.247	1.417	1.239	1.317	5.8*	
4-Chlorophenyl-phenylether	*	0.705	0.690	0.629	0.755	0.657	0.687	7.0*	
4-Nitroaniline			0.351	0.349	0.396	0.343	0.360	6.8	
4,6-Dinitro-2-methylphenol			0.160	0.178	0.217	0.170	0.181	13.9	
N-Nitrosodiphenylamine (1)		0.516	0.517	0.489	0.577	0.417	0.503	11.5	
4-Bromophenyl-phenylether	*	0.258	0.235	0.239	0.279	0.234	0.249	7.7*	
Hexachlorobenzene	*	0.301	0.281	0.271	0.318	0.257	0.286	8.5*	
Atrazine		0.110	0.104	0.104	0.118	0.085	0.104	11.5	
Pentachlorophenol	*		0.174	0.178	0.220	0.177	0.187	11.7*	
Phenanthrene	*	1.175	1.129	1.096	1.314	1.060	1.155	8.5*	
Anthracene	*	1.117	1.083	1.070	1.191	0.962	1.085	7.7*	
Carbazole		1.079	0.956	0.926	1.060	0.844	0.973	10.0	
Di-n-butylphthalate		1.782	1.608	1.593	1.853	1.494	1.666	8.8	
Fluoranthene	*	1.252	1.171	1.158	1.301	1.102	1.197	6.6*	
Pyrene	*	1.513	1.348	1.429	1.783	1.469	1.508	11.0*	
Butylbenzylphthalate		0.853	0.812	0.811	0.983	0.825	0.857	8.5	
3,3'-Dichlorobenzidine		0.297	0.294	0.286	0.341	0.252	0.294	10.9	
Benzo (a) anthracene	*	1.275	1.267	1.253	1.524	1.314	1.327	8.5*	
Chrysene	*	1.340	1.250	1.103	1.528	1.284	1.301	11.9*	
bis(2-Ethylhexyl)phthalate		1.159	1.083	1.105	1.405	1.223	1.195	10.8	
Di-n-octylphthalate		2,152	2.159	2.148	2.558	2.270	2.257	7.8	
Benzo (b) fluoranthene	*	1.384	1.413	1.414		1.563	1.492	8.7*	
Benzo(k) fluoranthene	*	1.638	1.545	1.465	1.826	1.487	1.592	9.2*	
Benzo(a) pyrene	*	1.235	1.235	1.200	1.426	1.184	1.256	7.8*	
Indeno(1,2,3-cd)pyrene	*	1.318	1.365	1.300	1.578	1.370	1.386	8.0*	
Dibenzo (a, h) anthracene	*	1.090	1.138	1.077	1.300	1.156	1.152	7.7*	
Benzo(g,h,i)perylene	*	1.070	1.147	1.064	1.301	1.110	1.138	8.5*	
	=	=====	=====	=====	======	=====	=====	=====	
Nitrobenzene-d5	*	0.445	0.416	0.410	0.469	0.373	0.423	8.7*	
2-Fluorobiphenyl	*	1.406	1.399	1.303		1.274	1.369	5.7*	
Terphenyl-d14	*	1.110	1.073	1.083	1.304	1.136	1.141	8.2*	
Phenol-d5	*	1.764	1.788	1.634		1.546	1.727	8.0*	
2-Fluorophenol	*	1.391	1.411	1.346		1.390	1.441	8.9*	
2,4,6-Tribromophenol		0.181	0.182	0.182	0.213	0.177	0.187	7.8	
2-Chlorophenol-d4	*	1.561	1.570	1.417	1.726	1.442	1.543	8.0*	
1,2-Dichlorobenzene-d4	*	1.008	0.994	0.901	1.075	0.883	0.972	8.2*	

⁽¹⁾ Cannot be separated from Diphenylamine * Compounds with required minimum RRF and maximum %RSD values. All other compounds must meet a minimum RRF of 0.010.

Data File; \\AVOGADRO\ORGANICS\organio\svoa\S1.i\050831.B\S1E5795.D

Data File: S1E5795.D

Report Date: 01-Sep-2005 13:36

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5795.D

Lab Smp Id: SSTD02010

Client Smp ID: SSTD0201Q

Inj Date : 31-AUG-2005 12:53

Operator : AW/AJ SRC: AW/AJ Smp Info : SSTD0201Q,SSTD0201Q Misc Info : 1,1,SSTD020,3 Inst ID: S1.i

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\s1_olm4_2_S.m Meth Date : 31-Aug-2005 16:23 mtl Quant Type: ISTD

Cal File: S1E5793.D Cal Date : 31-AUG-2005 11:30

Calibration Sample, Level: 1 Als bottle: 3

Dil Factor: 1.00000 Compound Sublist: OLM4.sub Integrator: HP RTE

Target Version: 4.03 Processing Host: TARGET11

						AMOUN	TS
		OUANT SIG				CAL-AMT	ON-COL
Co	mpounds	Mass	RT	EXP RT REL RT	response	(ng)	(ng)
==		====	==	******	======	=======	
Ś	1 2-Fluorophenol	112	6.336	6.347 (0.764)	226663	20.0000	20
*	2 Benzaldehyde	77	7.644	7.644 (0.922)	28486	20.0000	14
Ś	3 Phenol-d5	99	7.644	7.655 (0.922)	287422	20.0000	21
*	4 Phenol	94	7,665	7.676 (0.924)	292070	20.0000	21
	5 bis(2-Chloroethyl)Ether	93	7.849	7.860 (0.947)	230579	20.0000	21
ŝ	6 2-Chlorophenol-d4	132	7.946	7.936 (0.958)	254378	20.0000	20
7	7 2-Chlorophenol	128	7.968	7.968 (0.961)	238560	20.0000	21
*	8 1,4-Dichlorobenzene-d4	152	8.292	8.303 (1.000)	325858	40.0000	
Ś	9 1.2-Dichlorobenzene-d4	152	8.540	8.303 (1.030)	164165	20.0000	21
*	10 2-Methylphenol	108	8.605	8.605 (1.038)	218240	20.0000	21
	11 2,2'-oxybis(1-Chloropropane)	45	8.670	8.681 (1.046)	308733	20.0000	21
	12 Acetophenone	105	8.897	8.908 (1.073)	337096	20.0000	21
	13 4-Methylphenol	108	8.832	8.854 (1.065)	232496	20.0000	21
	14 N-Nitroso-di-n-propylamine	70	8.875	8.886 (1.070)	176486	20,0000	22
	15 Hexachloroethane	117	9.091	9.102 (1.096)	106881	20.0000	20
ŝ	16 Nitrobenzene-d5	82	9.145	9.156 (0.887)	283438	20.0000	. 22
*	17 Nitrobenzene	77	9.178	9.178 (0.890)	262184	20.0000	22
	18 Isophorone	82	9.534	9.545 (0.925)	487810	20.0000	22
	19 2-Nitrophenol	139	9.675	9.686 (0.938)	146255	20.0000	22
	20 2,4-Dimethylphenol	107	9.685	9.697 (0.939)	223778	20.0000	22
	21 bis (2-Chloroethoxy) methane	93	9.858	9.858 (0.956)	304784	20.0000	22
	22 2.4-Dichlorophenol	162	10.042	10.053 (0.974)	205154	20.0000	. 22
*	23 Naphthalene-d8	136	10.312	10.312 (1.000)	1273944	40.0000	
	24 Naphthalene	128	10.344	10.345 (1.003)	707648	20.0000	22
	25 4-Chloroaniline	127	10.388	10.399 (1.007)	84950	20.0000	24
	26 Hexachlorobutadiene	225	10.517	10.528 (1.020)	123982	20.0000	21

Data File: S1E5795.D Report Date: 01-Sep-2005 13:36

						AMOU	NTS
		QUANT SIG				CAL-AMT	ON-COL
Compo	unds	MASS	RT	EXP RT REL	RT RESPONSE	(ng)	(ng)
32322		====	==			======	
27	Caprolactam	113	10.939	10.982 (1.06	1) 96811	20.0000	21
28	4-Chloro-3-Methylphenol	107	11.144	11.155 (1.08	1) 215023	20,0000	21
29	2-Methylnaphthalene	142	11.468	11.468 (1.11	2) 464620	20.0000	22
30	Hexachlorocyclopentadiene	237	11.716	11.717 (0.88	8) 108885	.20.0000	18
31	2,4,6-Trichlorophenol	196	11.900	11.911 (0.90	2) 153994	20.0000	21
32	2,4,5-Trichlorophenol	196	11.965	11.976 (0.90	7) 158960	20.0000	19
\$ 33	2-Fluorobiphenyl	172	12.051	12.052 (0.91	3) 526070	20.0000	21
34	1,1'-Biphenyl	154	12.224	12.235 (0.92	6) 569059	20.0000	22
35	2-Chloronaphthalene	162	12.267	12.279 (0.93	0) 441750	20.0000	21
36	2-Nitroaniline	65	12.408	12.419 (0.94	0) 132287	20,0000	19
37	Dimethylphthalate	163	12,689	12.711 (0.96	2) 562952	20.0000	21
38	2,6-Dinitrotoluene	165	12.808	12.819 (0.97	1) 140884	20.0000	21
39	Acenaphthylene	152	12.959	12.970 (0.98	2) 711044	20.0000	21
40	3-Nitroaniline	138	13.089	13.100 (0.99	2) 132712	20.0000	21
* 41	Acenaphthene-d10	164	13.197	13.208 (1.00	0) 748347	40.0000	
42	Acenaphthene	153	13.251	13.262 (1.00	4) 425331	20.0000	21
43	2,4-Dinitrophenol	184	13.251	13.272 {1.00	4) 42283	20.0000.	13
44	4-Nitrophenol	109	13.305	13.326 (1.00	8) 77965	20.0000	20
45	Dibenzofuran	168	13.532	13.543 (1.02	5) 629444	20.0000	21
46	2,4-Dinitrotoluene	165	13.467	13.489 (1.02	0) 177833	20.0000	20
47	Diethylphthalate	149	13.856	13.867 (1.05	0) 588344	20.0000	20
48	Fluorene	. 166	14.104	14.115 (1.06	9) 511964	20.0000	21
49	4-Chlorophenyl-phenylether	204	14.082	14.083 (1.06	7) 263770	20.0000	21
50	4-Nitroaniline	138	14.104	14.115 (1.06	9) 137508	20.0000	21
51	4,6-Dinitro-2-methylphenol	198	14,147	14.158 (0.90	86295	20.0000	17
52	N-Nitrosođiphenylamine	169	14.266	14.277 (0.91	326800	20.0000	21
\$ 53	2,4,6-Tribromophenol	330	14.493	14.504 (0.92	5) 114369	20.0000	20
54	4-Bromophenyl-phenylether	248	14.893	14.904 (0.95	163386	20:0000	21
55	Hexachlorobenzene	284	15.012	15.023 (0.95	3) 190843	20.0000	22
56	Atrazine	200	15.120	15.141 (0.969	5) 69424	20.0000	22
57	Pentachlorophenol	266	15.325	15.325 (0.978	3) 110786	20.0000	20
* 58	Phenanthrene-d10	188	15.671	15.671 (1.000	1265988	40.0000	
59	Phenanthrene	178	15.703	15.714 (1.00	744049	20.0000	21
60	Anthracene	178	15.789	15.800 (1.008	3) 707019	20.0000	21
61	Carbazole	167	16.038	16.049 (1.023	8) 683205	20.0000	22
	Di-n-butylphthalate	149	16.567	16.568 (1.057	•	20.0000	22
63	Fluoranthene	202	17.680	17.691 (1.128		20.0000	21
64	Pyrene	202	18.069	18.080 (0.90)	.) 863543	20.0000	21
\$ 65	Terphenyl-d14	244	18.285	18.285 (0.912	633671	20,0000	20
	Butylbenzylphthalate	149	19.063	19.063 (0.950		20.0000	21
	3,3'-Dichlorobenzidine	252	19,960			20.0000	21
	Benzo (a) anthracene	228	20.035	20.046 (0.999	•	20.0000	20
	Chrysene-d12	240	20.057	20.068 (1.000		40.0000	
	Chrysene	228	20.100	20.111 (1.002		20.0000	21
	bis(2-Ethylhexyl)phthalate	149	19.981	19.981 (0.996		20.0000	. 20
72 1	Di-n-octylphthalate	149	21.040	21.040 (0.925) 1121748	20.0000	20
73 1	Benzo(b)fluoranthene	252	21.915	21.926 (0.964	721200	20.0000	19

Data File: S1E5795.D Report Date: 01-Sep-2005 13:36

							MIOON	10
		QUANT SIG					CAL-AMT	ON-COL
Co	ompounds	MASS	RT	EXP RT	REL RT	response	(ng)	(ng)
==	;=====================================	====	==	5====	****	=======		=====*
	74 Benzo(k)fluoranthene	252	21.969	21.991	(0.966)	853809	20.0000	21
	75 Benzo(a)pyrene	252	22,606	22.618	(0.994)	643785	20.0000	20
*	76 Perylene-d12	264	22.736	22.736	(1.000)	1042448	40.0000	-
	77 Indeno(1,2,3-cd)pyrene	276	25.534	25,556	(1,123)	686924	20.0000	20
	78 Dibenzo(a,h)anthracene	278	25.567	25.589	(1.124)	568191	20.0000	19
	79 Benzo(g.h.i)pervlene	276	26.388	26.420	(1.161)	557805	20.0000	. 19

MATINITE

-12 -N -25 -∾ . 29--8 2 -8 -K -2 SRC: AW/AJ N. \\AVOGABRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5793.D -Kergiene-di2 N Column diameter: -۲ Operator: AW/AJ -8 -5 terphenyl-dia -8 -: 18 IoneriqomondinT-8.2.2-7 -6 짂. Ignadqidonoui7-5 # Sh-ono Ledidqek: **-**\$ Gb-enaznadorit i M= Sample Info: SSTD05010,SSTD05010 -S-Fluorophenol Column phase: DB-5MS -E2 0 0 0 M S T T (9~0TX) X

Instrument: S1.i

Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5793.D

Date : 31-AUG-2005 11:30

Client ID: SSTD0501Q

Data File: S1E5793.D

Report Date: 01-Sep-2005 13:36

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5793.D Lab Smp Id: SSTD0501Q Client Smp ID: SSTD0501Q Inj Date: 31-AUG-2005 11:30 Operator: AW/AJ SRC: AW/AJ Inst ID: S1.i

Smp Info : SSTD0501Q, SSTD0501Q

Misc Info: 2,3,SSTD050,3

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\s1_olm4_2_S.m Method

Quant Type: ISTD Meth Date: 31-Aug-2005 16:23 mtl

Cal File: S1E5793.D

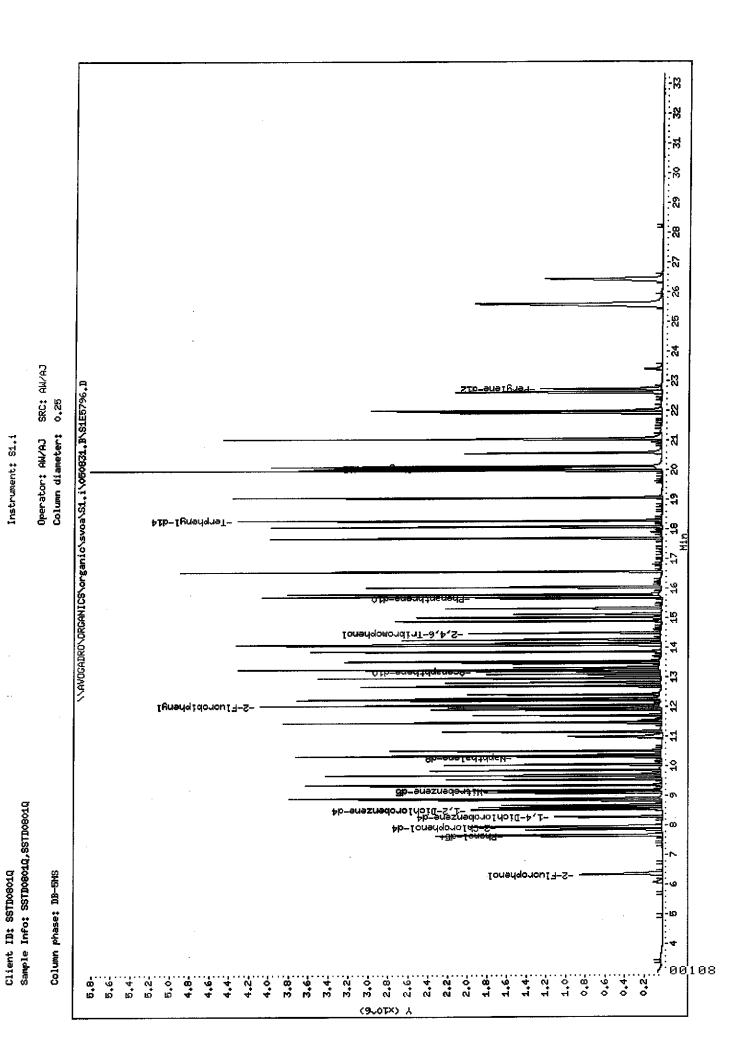
Cal Date : 31-AUG-2005 11:30 Calibration Sample, Level: 2

Als bottle: 1

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03 Processing Host: TARGET11

								AMOUN	TS		
		· · · · · · · · · · · · · · · · · · ·	QUANT SIG					CAL-AMT	OM-	COL	
Co	nno)	unds	Mass	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)	
	~		====	== '	±====	=====	##======	======	===	====	
\$		2-Fluorophenol	112	6.338	6.347	(0.764)	567868	50.0000		50	
7		Benzaldehyde	77	7.634	7.644	(0.921)	79436	50.0000		50	
s	_	Phenol-d5	99	7.645	7.655	(0.922)	719205	50.0000		50	
•		Phenol	94	7.666	7.676	(0.924)	731180	50.0000		50	
	5	bis(2-Chloroethyl)Ether	93	7.850	7.860	(0.947)	580014	50.0000		50	
Š	_	2-Chlorophenol-d4	132	7.936	7.936	(0.957)	631712	50.0000		50	
*	_	2-Chlorophenol	128	7.969	7.968	(0.961)	582827	50.0000		50	
*	,	1.4-Dichlorobenzene-d4	152	8.293	8.303	(D.000)	321860	40.0000			
s	9	1.2-Dichlorobenzene-d4	152	8.531	8.303	(1.029)	399837	50.0000		50	
7	10	2-Methylphenol	108	8.595	8.605	(1.036)	535386	50.0000		50	
		2,2'-oxybis(1-Chloropropane)	45	8.671	8.681	(1.046)	788397	50.0000		50	
		Acetophenone	105	8.898	8.908	(1.073)	827356	50,0000		50	
		4-Methylphenol	108	8.833	8.854	(1.065)	572418	50.0000		50	
	14	N-Nitroso-di-n-propylamine	70	8.876	8.886	(1.070)	425675	50.0000		50	
	15	Hexachloroethane	117	9.092	9.102	(1.096)	269926	50.0000		50	
ŝ	16	Nitrobenzene-d5	82	9.146	9.156	(0.B88)	685770	50.0000		50	
•	17	Nitrobenzene	77	9.179	9.178	(0.891)	618623	50.0000		50	,
	18	Isophorone	82	9.535		(0.926)	1181273	50.0000		50	
	19	2-Nitrophenol	139	9.676		(0.939)	344142	50.0000		50	
	20	2,4-Dimethylphenol	107	9.687		(0.940)	549422	50.0000		50	
	21	bis(2-Chloroethoxy)methane	93	9.860	-	(0.957)	742817	50.0000		50	
	22	2,4-Dichlorophenol	162	10.043	10.053	(0.975)	496008	50.0000		50	
*	23	Naphthalene-d8	136	10.302		(1,000)	1320334	40.0000			
	24	Naphthalene	128	10.346		(1.004)	1724380	50.0000		50	
	25		127	10.389		(1.008)	216684	50.0000		50	
	26	Hexachlorobutadiene	225	10.519	10.528	(1.021)	300515	50.0000		50	


Data File: S1E5793.D Report Date: 01-Sep-2005 13:36

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
_		MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
	mpounds	===*		==== *	======	========		======
==	27 Caprolactam	113	10.962	10.982	(1.064)	235572	50.0000	50
	28 4-Chloro-3-Methylphenol	107	11.145	11.155	(1.082)	528952	50.0000	50
	29 2-Methylnaphthalene	142	11.458	11.468	(1.112)	1105340	50.0000	50
	30 Hexachlorocyclopentadiene	237	11.707	11,717	(0.887)	296608	50.0000	50
	31 2,4,6-Trichlorophenol	196	11.901	11.911	(0.902)	355638	50.0000	50
	32 2,4,5-Trichlorophenol	196	11.966	11.976	(0.907)	402585	50.0000	50
\$	33 2-Fluorobiphenyl	172	12.053	12.052	(0.913)	1252696	50.0000	50
4	34 1,1'-Biphenyl	154	12.226	12.235	(0.926)	1254423	50.0000	50
	35 2-Chloronaphthalene	162	12.280	12.279	(0.930)	1028256	50.0000	50
	36 2-Nitroaniline	65	12.420	12.419	(0.941)	337514	50.0000	50
	37 Dimethylphthalate	163	12.701	12.711	(0.962)	1344643	50.0000	50
	38 2,6-Dinitrotoluene	165	12.809	12.819	(0.971)	321672	50.0000	50
	39 Acenaphthylene	152	12.971	12.970	(0.983)	1685186	50.0000	50
	40 3-Nitroaniline	138	13.090	13.100	(0.992)	311387	50.0000	50
*	41 Acenaphthene-d10	164	13.198	13.208	(1.000)	716337	40.0000	
	42 Acenaphthene	153	13.252	13.262	(1.004)	1014381	50.0000	50
	43 2,4-Dinitrophenol	184	13.263	13.272	(1.005)	136600	50.0000	50
	44 4-Nitrophenol	109	13.317	13.326	(1.009)	186149	50.0000	50
	45 Dibenzofuran	168	13.533	13,543	(1.025)	1488734	50.0000	50
	46 2,4-Dinitrotoluene	165	13.479	13.489	(1.021)	430787	50.0000	50
	47 Diethylphthalate	149	13.857	13.867	(1.050)	1409992	50.0000	50
	48 Fluorene	166	14.105	14.115	(1.069)	1175095	50.0000	50
	49 4-Chlorophenyl-phenylether	204	14.084	14.083	(1.067)	617800	50.0000	50
	50 4-Nitroaniline	138	14.116	14.115	(1.070)	314345	50.0000	50
	51 4,6-Dinitro-2-methylphenol	198	14.159	14.158	(0.903)	245291	50.0000	50
	52 N-Nitrosodiphenylamine	169	14.267	14.277	(0.910)	794075	50.0000	50
\$	53 2,4,6-Tribromophenol	330	14.494	14.504	(0.925)	280486	50.0000	50
٠	54 4-Bromophenyl-phenylether	248	14.894	14.904	(0, 950)	361934	50.0000	50
	55 Hexachlorobenzene	284	15.013	15.023	(0,958)	431766	50.0000	50
	56 Atrazine	200	15.132	15,141	(0.966)	159799	50.0000	50
	57 Pentachlorophenol	266	15.326	15.325	(0.978)	266938	50.0000	50
*	58 Phenanthrene-d10	188	15.672	15.671	(1,000)	1229787	40.0000	
	59 Phenanthrene	178	15.715	15.714	(1.003)	173565 7	50.0000	50
	60 Anthracene	178	15.791	15.800	(1.008)	1665589	50.0000	50
	61 Carbazole	167	16.039	16.049	(1.023)	1469196	50.0000	50
	62 Di-n-butylphthalate	149	16.569	16.568	(1.057)	2471239	50.0000	50
	63 Fluoranthene	202	17.692	17.691	(1.129)	1799432	50.0000	50
	64 Pyrene	202	18.070	18.080	(0.900)	1812563	50.0000	50
s		244	18.286	18,285	(0.911)	1443763	50.0000	50
7	66 Butylbenzylphthalate	149	19.064	19.063	(0.950)	1091778	50.0000	50
	67 3,3'-Dichlorobenzidine	252	19.961	19.971	(0.995)	395554	50.0000	50
	68 Benzo(a)anthracene	228	20.047	20.046	(0.999)	1704176	50.0000	50
*	69 Chrysene-dl2	240	20.069	20.068	(1.000)	1075949	40.0000	
	70 Chrysene	228	20.112	20.111	(1.002)	1681725	50.0000	. 50
	71 bis(2-Ethylhexyl)phthalate	149	19.982	19.981	(0.996)	1456184	50.0000	50
	72 Di-n-octylphthalate	149	21.041	21.040	(0.925)	2635174	50.0000	50
	73 Benzo (b) fluoranthene	252	21.916	21.926	(0.964)	1724934	50.0000	50

Data File: S1E5793.D Report Date: 01-Sep-2005 13:36

						AMOUN	TS .
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
	===#	===	======	,======	======	======	-
74 Benzo(k) fluoranthene	252	21.981	21.991	(0.967)	1885038	50.0000	50
75 Benzo(a)pyrene	252	22,619	22.618	(0.995)	1507347	50.0000	50
* 76 Perylene-d12	264	22.737	22.736	(1.000)	976358	40.0000	
77 Indeno(1,2,3-cd)pyrene	276	25.546	25.556	(1.124)	1666491	50.0000	50
78 Dibenzo(a,h)anthracene	278	25.590	25.589	(1.125)	1388480	50.0000	50
79 Benzola h ilmerulene	276	26.421	26.420	(1,162)	1399529	50.0000	50

Data File: \\AVOGADRO\ORGANICS\organic\svoa\81.i\050831.B\S1E5796.D

Date : 31-AUG-2005 13;35

Data File: S1E5796.D

Report Date: 01-Sep-2005 13:36

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

AMOUNTED

Data file : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5796.D

Client Smp ID: SSTD0801Q Lab Smp Id: SSTD0801Q

Inj Date : 31-AUG-2005 13:35

Inst ID: S1.i Operator : AW/AJ SRC: AW/AJ

Smp Info : SSTD0801Q, SSTD0801Q

Misc Info: 1,3,SSTD080,3

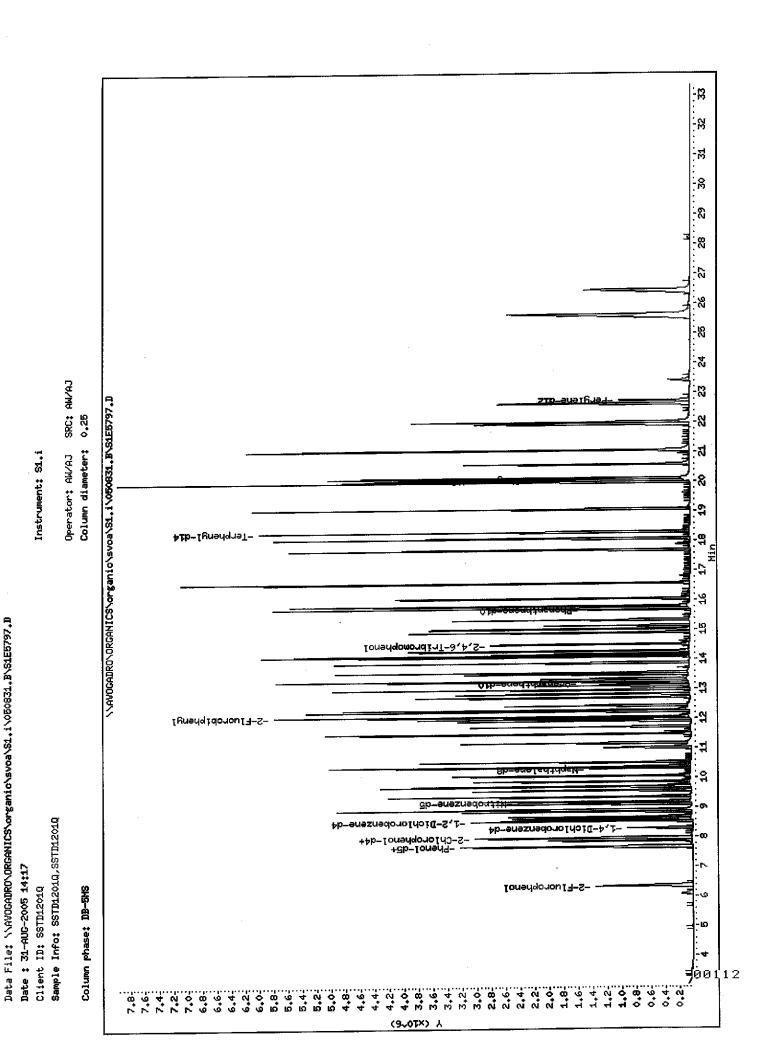
Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\s1_olm4_2_S.m Meth Date : 31-Aug-2005 16:23 mtl Quant Type: ISTD Cal Date : 31-AUG-2005 11:30 Cal File: S1E5793.D

Calibration Sample, Level: 3 Als bottle: 4

Dil Factor: 1.00000

Compound Sublist: OLM4.sub Integrator: HP RTE

Target Version: 4.03 Processing Host: TARGET11


								AMOUNTS		
			QUANT SIG					CAL-AMT	ON-COL	
Ço	mpo	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)	
==	-==		경부로드	==		=====	=======	======		
\$	1	2-Fluorophenol	112	6.340	6.347	(0.764)	890909	80.0000	78	
	2	Benzaldehyde	77	7.648	7.644	(0.922)	128498	80.0000	67	
\$	3	Phenol-d5	99	7.658	7.655	(0.923)	1081763	80.0000	78	
	4	Phenol	94	7.680	7.676	(0.926)	1089526	B0.0000	77	
	5	bis(2-Chloroethyl)Ether	93	7.864	7.860	(0.948)	903994	80.0000	80	
\$	6	2-Chlorophenol-d4	132	7.950	7.936	(0.958)	937982	80.0000	76	
	7	2-Chlorophenol	128	7.972	7.968	(0.961)	865789	80.0000	75	
*	8	1,4-Dichlorobenzene-d4	152	8.296	8.303	(1.000)	330947	40.0000		
\$	9	1,2-Dichlorobenzene-d4	152	8.544	8.303	(1.030)	596064	80.0000	76	
	10	2-Methylphenol	108	8.609	8.605	(1,038)	808287	80.0000	. 77	
	11	2,2'-oxybis(1-Chloropropane)	45	8.674	8.681	(1.046)	1133091	80.0000	76	
	12	Acetophenone	105	8.912	8.908	(1.074)	1183870	80.0000	75	
	13	4-Methylphenol	108	8.847	8.854	(1,066)	874862	.80.0000	78	
	14	N-Nitroso-di-n-propylamine	70	8.901	8.886	(1.073)	626762	80.0000	76	
	15	Hexachloroethane	117	9.095	9.102	(1.096)	409466	80.0000	77	
\$	16	Nitrobenzene-d5	82	9.149	9.156	(0.887)	1064084	80.0000	80	
	17	Nitrobenzene	77	9.182	9.178	(0.890)	971095	80.0000	80	
	18	Isophorone	B2	9.549	9.545	(0.926)	1761967	80.0000	77	
	19	2-Nitrophenol	139	9.679	9.686	(0.938)	534772	80.0000	80	
	20	2,4-Dimethylphenol	107	9.700	9.697	(0.940)	838203	80.0000	79	
	21	bis(2-Chloroethoxy)methane	93	9.862	9.858	(0.956)	1136272	80.0000	81	
	22	2,4-Dichlorophenol	162	10.057	10.053	(0.975)	778062	80.0000	80	
*	23	Naphthalene-dB	136	10.316	10.312	(1.000)	1298031	40.0000		
	24	Naphthalene	128	10.349	10.345	(1,003)	2510344	80.0000	77	
	25	4-Chloroaniline	127	10.392	10.399	(1.007)	307 87 0	80.0000	84	
	26	Hexachlorobutadiene	225	10.521	10.528	(1.020)	459835	80.0000	78	

Data File: S1E5796.D Report Date: 01-Sep-2005 13:36

							AMOUN	TS
		QUANT SIG					CAL-AMT	ON-COL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
	=======================================	. ====	==	====#			======	
	27 Caprolactam	113	10.997	10.982	(1.066)	368972	80.0000	80
	28 4-Chloro-3-Methylphenol	107	11.159	11.155	(1.082)	795996	80.0000	77
	29 2-Methylnaphthalene	142	11.472	11.468	(1.112)	1674986	80.0000	78
	30 Hexachlorocyclopentadiene	237	11.710	11.717	(0.887)	481816	80.0000	82
	31 2.4.6-Trichlorophenol	196	11.915	11.911	(0.903)	571985	80.0000	79
	32 2,4,5-Trichlorophenol	196	11.980	11.976	(0.908)	596037	80,0000	76
\$	33 2-Fluorobiphenyl	172	12.055	12.052	(0.913)	1903815	80.0000	77
v	34 1,1'-Biphenyl	154	12.228	12.235	(0.926)	1935245	80.0000	77
	35 2-Chloronaphthalene	162	12.282	12.279	(0.930)	1589231	80.0000	78
	36 2-Nitroaniline	65	12.423	12.419		528107	80.0000	79
	37 Dimethylphthalate	163	12.704	12.711	-	2038826	80.0000	78
	38 2,6-Dinitrotoluene	165	12.823	12.819		473908	80.0000	75
	39 Acenaphthylene	152	12.974	12.970	(0.983)	2490825	80,0000	76
	40 3-Nitroaniline	138	13.103		(0.993)	501213	80.0000	82
	41 Acenaphthene-dl0	164	13.201	13.208		730691	40.0000	
-	42 Acenaphthene	153	13.255	13.262		1526407	80,0000	77
	43 2,4-Dinitrophenol	184	13.265	13.272		274292	80.0000	83
	44 4-Nitrophenol	109	13.330	13.326		297932	80.0000	79
	45 Dibenzofuran	168	13.546	13,543		2279933	80.0000	78
	46 2,4-Dinitrotoluene	165	13.492	13.489		686374	80.0000	80
	47 Diethylphthalate	149	13.870	13.867		2167956	80.0000	78
	48 Fluorene	166	14.108	14.115		1822697	80.0000	77
	49 4-Chlorophenyl-phenylether	204	14.087	14.083		918539	80.0000	75
	50 4-Nitroaniline	138	14.130	14,115		509679	80,0000	80
	51 4.6-Dinitro-2-methylphenol	198	14.162	14.158	•	431790	80.0000	84
	52 N-Nitrosodiphenylamine	169	14.281	14.277		1184664	80.0000	81
_	53 2.4,6-Tribromophenol	330	14.508	14.504		442157	80,0000	81
ş	54 4-Bromophenyl-phenylether	248	14.908	14.904		578975	80.0000	79
	55 Hexachlorobenzene	284	15.026	15.023		657633	80.0000	78
	56 Atrazine	200	15.134	15.141		253276	80.0000	. 83
		266	15.329	15.325		431270	80.0000	81
J.C.	57 Pentachlorophenol 58 Phenanthrene-d10	188	15.675	15.671		1212204	40.0000	
*	59 Phenanthrene	178	15.718		(1.003)	2657514	80.000 0	79
	60 Anthracene	178	15.804	15.800		2595156	80.0000	81
	61 Carbazole	167	16.042		(1.023)	2245233	80.0000	78
	62 Di-n-butylphthalate	149	16.571	16.568		3861926	80.0000	79
	= -	202	17.695	17.691		2807741	80.0000	79
	63 Fluoranthene	202	18.084			2963220	80.0000	79
	64 Pyrene 65 Terphenyl-d14	244	18.289		(0.911)	2245663	80.0000	79
\$	- -	149	19.067		(0.950)	1680714	80.0000	79
	66 Butylbenzylphthalate 67 3,3'-Dichlorobenzidine	252	19.974	19,971		592558	80.0000	81
		228	20.050		(0.999)	2597360	80.0000	78
	68 Benzo (a) anthracene	240	20.072		(1.000)	1036481	40.0000	
•	69 Chrysene-d12	228	20.072		(1.002)	2285490	80.0000	71
	70 Chrysene	149	19.985		(0.996)	2291179	80.0000	.77
	71 bis(2-Ethylhexyl)phthalate 72 Di-n-octylphthalate	149	21.044		(0.925)	4146258	80.0000	79
		252	21.930	21.926		2730337	BO.0000	78
	73 Benzo (b) fluoranthene	434	- L - 3 - 3 U	22.720	(0.202)	_,,		

Data File: S1E5796.D Report Date: 01-Sep-2005 13:36

	•					AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
	====	==	=====	======	=======	======	======
74 Benzo(k) fluoranthene	252	21.995	21.991	(0.967)	2827845	80.0000	76
75 Benzo(a)pyrene	252	22.632	22.618	(0.995)	2316424	80.0000	79
* 76 Perylene-dl2	264	22.740	22,736	(1.000)	965125	40.0000	
77 Indeno(1,2,3-cd)pyrene	276	25.571	25.556	(1.124)	2509229	80.0000	78
78 Dibenzo(a,h)anthracene	278	25.614	25.589	(1.126)	2079502	80.0000	77
79 Benzo(g.h.i)pervlene	276	26.446	26.420	(1.163)	2053923	80.0000	78

Data File: S1E5797.D

Report Date: 01-Sep-2005 13:36

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5797.D

Lab Smp Id: SSTD1201Q

Client Smp ID: SSTD12010

Inj Date : 31-AUG-2005 14:17 Operator : AW/AJ SRC: AW/AJ Smp Info : SSTD1201Q,SSTD1201Q

Inst ID: S1.i

Misc Info: 1,4,SSTD120,3

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\s1_olm4_2_S.m Method

Quant Type: ISTD Meth Date : 31-Aug-2005 16:23 mtl

Cal File: S1E5793.D Cal Date : 31-AUG-2005 11:30

Calibration Sample, Level: 4 Als bottle: 5

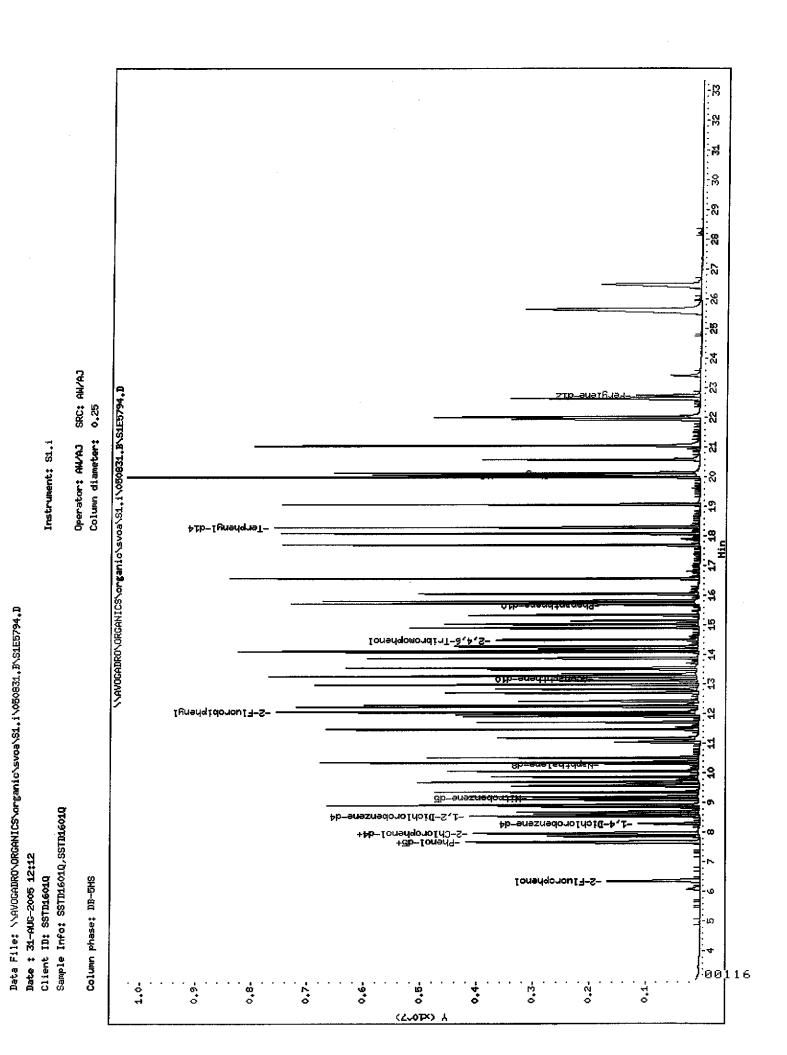
Dil Factor: 1.00000

Compound Sublist: OLM4.sub Integrator: HP RTE

Target Version: 4.03 Processing Host: TARGET11

							AMOUNTS		
		QUANT SIG					CAL-AMT	ON-COL	
Co	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)	
	**************************************	====		=====	=====	=======	======		
\$	1 2-Fluorophenol	112	6.347	6.347	(0.764)	1380629	120.000	140	
•	2 Benzaldehyde	77	7.644	7.644	(0.921)	220801	120.000	130	
\$	3 Phenol-d5	99	7.665	7.655	(0.923)	1574825	120.000	130	
	4 Phenol	94	7.687	7.676	(0.926)	1568082	120.000	130	
	5 bis(2-Chloroethyl)Ether	93	7.871	7.860	(0.948)	1239503	120.000	130	
\$	6 2-Chlorophenol-d4	132	7.957	7.936	(0.958)	1429948	120.000	130	
	7 2-Chlorophenol	128	7.979	7.968	(0.961)	1296407	120.000	130	
*	8 1,4-Dichlorobenzene-d4	152	8.303	8.303	(1.000)	276101	40.0000		
\$	9 1,2-Dichlorobenzene-d4	152	8.540	8.303	(1.029)	890035	120.000	130	
	10 2-Methylphenol	108	8,616	8.605	(1.038)	1207687	120.000	130	
	11 2,2'-oxybis(1-Chloropropane)	45	8.681	8.681	(1.046)	1676644	120.000	130	
	12 Acetophenone	105	8.919	8.908	(1.074)	1698912	120.000	130	
	13 4-Methylphenol	108	8.865	8.854	(1,068)	1269138	120.000	130	
	14 N-Nitroso-di-n-propylamine	70	8.908	8.886	(1.073)	899283	120,000	130	
	15 Hexachloroethane	117	9.102	9.102	(1.096)	595070	120,000	130	
\$	16 Nitrobenzene-d5	82 .	9.167	9.156	(0.889)	1563474	120.000	130	
	17 Nitrobenzene	77	9.200	9.178	(0.892)	1404554	120.000	130	
	18 Isophorone	82	9.567	9.545	(0.928)	2779255	120.000	140	
	19 2-Nitrophenol	139	9,686	9.686	(0.939)	782569	120.000	130	
	20 2,4-Dimethylphenol	107	9.707	9.697	(0.941)	1223966	120.000	130	
	21 bis(2-Chloroethoxy)methane	93	9.869	9.858	(0.957)	1602219	120.000	130	
	22 2,4-Dichlorophenol	162	10.064	10.053	(0.976)	1133494	120.000	130	
*	23 Naphthalene-d8	136	10.312	10.312	(1.000)	1110330	40.0000		
	24 Naphthalene	128	10.356	10.345	(1.004)	3611321	120.000	130	
	25 4-Chloroaniline	127	10.399	10.399	(1.008)	429412	120.000	130	
	26 Hexachlorobutadiene	225	10.528	10.528	(1.021)	691229	120.000	130	

Data File: S1E5797.D Report Date: 01-Sep-2005 13:36


						AMOUN	TS
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
		==	=====			======	======
27 Caprolactam	113	11.025	10.982	(1.069)	546038	120.000	130
28 4-Chloro-3-Methylphenol	107	11.177	11.155	(1.084)	1284044	120.000	140
29 2-Methylnaphthalene	142	11.479	11.468	(1.113)	2405080	120.000	130
30 Hexachlorocyclopentadiene	237	11.717	11.717	(0.888)	714187	120,000	140
31 2,4,6-Trichlorophenol	196	11.922	11.911	(0.903)	845029	120.000	130
32 2,4,5-Trichlorophenol	196	11.987	11.976	(0.908)	896911	120.000	130
\$ 33 2-Fluorobiphenyl	172	12.062	12.052	(0.914)	2783010	120.000	130
34 1,1'-Biphenyl	154	12.246	12.235	(0.928)	3010319	120.000	130
35 2-Chloronaphthalene	162	12.289	12.279	(0.931)	2297003	120.000	130
36 2-Nitroaniline	65	12.441	12.419	(0.943)	786394	120.000	130
37 Dimethylphthalate	163	12.711	12,711	(0.963)	3027439	120.000	130
38 2,6-Dinitrotoluene	165	12.830	12.819	(0.972)	767899	120.000	, 140
39 Acenaphthylene	152	12.981	12.970	(0.984)	3617083	120.000	130
40 3-Nitroaniline	138	13.121	13.100	(0.994)	732966	120.000	130
* 41 Acenaphthene-dl0	164	13.197	13.208	(1.000)	634098	40.0000	
42 Acenaphthene	153	13.262	13.262	(1.005)	2178969	120.000	120
43 2,4-Dinitrophenol	184	13.283	13.272	(1.007)	430927	120.000	140
44 4-Nitrophenol	109	13.348	13.326	(1.011)	463525	120.000	130
45 Dibenzofuran	168	13.553	13.543	(1.027)	3364055	120.000	130
46 2,4-Dinitrotoluene	165	13.499	13.489	(1.023)	999963	120.000	130
47 Diethylphthalate	149	13.877	13.867	(1.052)	3141200	120.000	130
48 Fluorene	166	14.115	14.115	(1.070)	2694800	120.000	130
49 4-Chlorophenyl-phenylether	204	14.094	14.083	(1.068)	1436242	120.000	130
50 4-Nitroaniline	138	14.148	14.115	(1.072)	753094	120.000	130
51 4,6-Dinitro-2-methylphenol	198	14.180	14.158	(0.904)	675116	120.000	140
52 N-Nitrosodiphenylamine	169	14.288		(0.911)	1792541	120.000	140
\$ 53 2,4,6-Tribromophenol	330	14.515		(0.926)	661796	120.000	140
54 4-Bromophenyl-phenylether	248	14.915	14.904		865855	120.000	130
55 Hexachlorobenzene	284	15.033		(0.959)	987592	120.000	130
56 Atrazine	200	15.142		(0.966)	366244	120.000	140
57 Pentachlorophenol	266	15.336		(0.978)	683839	120.000	140
* 58 Phenanthrene-d10	188	15.682	15.671	-	1036230	40.0000	
59 Phenanthrene	178	15.725		(1.003)	4084158	120.000	140
60 Anthracene	178	15.811	15.800		3703441	120.000	130
61 Carbazole	167	15.060		(1.024)	3294554	120.000	130 130
62 Di-n-butylphthalate	149	16.578	16.568		5759925	120.000	130
63 Fluoranthene	202	17.702	17.691		4042970	120.000	
64 Pyrene	202	18.091		(0.901)	4375861	120.000	140
\$ 65 Terphenyl-d14	244	18.296		(0.911)	3199356	120.000	140 140
66 Butylbenzylphthalate	149	19.074		(0.950)	2411451	120.000	140
67 3,3'-Dichlorobenzidine	252	19.981		(0.995)	837649	120.000	140
68 Benzo(a)anthracene	228	20.057		(0.999)	3740144	120.000 40.0000	140
* 69 Chrysene-dl2	240	20.079		(1.000)	817851	120.000	140
70 Chrysene	228	20.122		(1.002)	3749261	120.000	140
71 bis(2-Ethylhexyl)phthalate	149	19.992		(0.996)	3447128 5885713	120.000	140
72 Di-n-octylphthalate	149	21.051		(0.925)	3881728	120.000	14D
73 Benzo(b) fluoranthene	252	21.948	21.726	(0.965)	3001150	120.000	

Data File: S1E5797.D

Report Date: 01-Sep-2005 13:36

						AMOUN	TS .
	QUANT SIG					CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
=======================================		**		=====		======	
74 Benzo(k) fluoranthene	252	22.013	21.991	(0.968)	4201985	120.000	140
75 Benzo(a) pyrene	252	22.650	22.618	(0.996)	3280424	120.000	140
* 76 Perylene-d12	264	22.747	22.736	(1.000)	766992	40.0000	
77 Indeno(1,2,3-cd)pyrene	276	25.599	25.556	(1.125)	3630828	120.000	140
78 Dibenzo(a,h)anthracene	278	25.643	25.589	(1,127)	2990898	120,000	140
79 Benzo(g.h.i)pervlene	276	26.474	26.420	(1.164)	2993569	120,000	140

09/01/01

Data File: S1E5794.D

Report Date: 01-Sep-2005 13:36

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5794.D Lab Smp Id: SSTD1601Q Client Smp ID: SSTD1601Q Inj Date: 31-AUG-2005 12:12

Inst ID: S1.i Operator : AW/AJ SRC: AW/AJ

Smp Info : SSTD1601Q, SSTD1601Q

Misc Info: 1,5,SSTD160,3

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\s1_olm4_2_S.m Method

Meth Date: 31-Aug-2005 16:23 mtl Quant Type: ISTD

Cal File: S1E5793.D Cal Date : 31-AUG-2005 11:30

Als bottle: 2 Calibration Sample, Level: 5

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03 Processing Host: TARGET11

								AMOUNTS		
			QUANT SIG					CAL-AMT	ON-COL	
Co:	ogn	un ds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)	
		======================================	====	==		** E===	=======	======	======	
\$	1	2-Fluorophenol	112	6,350	6.347	(0.766)	1840129	160.000	160	
	2	Benzaldehyde	77	7.647	7.644	(0.922)	471750	160.000	210 (7	
\$	3	Phenol-d5	99	7.668	7.655	(0.924)	2046622	160.000	150	
	4	Phenol	94	7.690	7.676	(0.927)	2047490	160.000	150	
	5	bis(2-Chloroethyl)Ether	93	7.874	7.860	(0.949)	1681833	160.000	150	
•	6	2-Chlorophenol-d4	132	7.960	7.936	(0.960)	1908458	160.000	150	
	7	2-Chlorophenol	128	7.982	7.968	(0.962)	1768423	160.000	150	
,	8	1,4-Dichlorobenzene-d4	152	8.295	8.303	(1,000)	330981	40.0000		
	9	1,2-Dichlorobenzene-d4	152	8,543	8.303	(1.030)	1169455	160.000	150	
	10	2-Methylphenol	108	8.619	8.605	(1.039)	1587154	160.000	150	
	11	2,2'-oxybis(1-Chloropropane)	45	8.684	8.681	(1.047)	2204247	160.000	150	
	12	Acetophenone	105	8.922	8.908	(1.076)	2238811	160.000	140	
	13	4-Methylphenol	108	8.868	8.854	(1.069)	1682489	160.000	150	
	14	N-Nitroso-di-n-propylamine	70	8.922	8.886	(1.076)	1158864	160.000	140	
	15	Hexachloroethane	117	9.105	9.102	(1.098)	810368	160.000	150	
	16	Nitrobenzene-d5	82	9.170	9.156	(0.889)	2086157	160.000	150	
	17	Nitrobenzene	77	9.203	9.178	(0.892)	1852964	160.000	150	
	18	Isophorone	82	9.570	9.545	(0.928)	3646540	160.000	150	
	19	2-Nitrophenol	139	9.689	9.686	(0.939)	1025718	160.000	150	
	20	2,4-Dimethylphenol	107	9.710	9.697	(0.941)	1651152	160.000	150	
	21	bis(2-Chloroethoxy)methane	93	9.872	9.858	(0.957)	2056358	160.000	140	
	22	2,4-Dichlorophenol	162	10.067	10.053	(0.976)	1507166	160.000	150	
	23	Naphthalene-d8	136	10.315	10.312	(1.000)	1399646	40.0000		
	24	Naphthalene	128	10.358	10.345	(1.004)	5126399	160.000	150	
	25	4-Chloroaniline	127	10.402	10.399	(1.008)	377 7 23	160.000	110	
	26	Hexachlorobutadiene	225	10.521	10.528	(1.020)	951465	160.000	150	

Data File: S1E5794.D Report Date: 01-Sep-2005 13:36

						AMOUNTS		
_	_	QUANT SIG				CAL-AMT	ON-COL	
Compounds		Mass	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)	
		====	==		======	****	= S = H = S =	
	7 Caprolactam	113	11.050	10.982 (1.071)	736396	160.000	150	
	8 4-Chloro-3-Methylphenol	107	11.190	11.155 (1.085)	1700093	160.000	160	
	9 2-Methylnaphthalene	142	11.482	11.468 (1.113)	3350680	160.000	150	
	0 Hexachlorocyclopentadiene	237	11.720	11.717 (0.888)	978722	160.000	160 (A)	
	1 2,4,6-Trichlorophenol	196	11.925	11.911 (0.903)	1138082	160.000	160	
	2 2.4.5-Trichlorophenol	196	11.990	11.976 (0.908)	1255097	160.000	160	
	3 2-Fluorobiphenyl	172	12.065	12.052 (0.914)	3743093	160.000	150	
	4 1,1'-Biphenyl	154	12,249	12.235 (0.928)	3790684	160.000	150	
	5 2-Chloronaphthalene	162	12.292	12.279 (0.931)	3014331	160.000	150	
	6 2-Nitroaniline	65	12.444	12.419 (0.943)	1041728	160.000	160	
	7 Dimethylphthalate	163	12.724	12.711 (0.964)	3838079	160.000	150	
	8 2,6-Dinitrotoluene	165	12.843	12.819 (0.973)	965060	160.000	150	
	9 Acenaphthylene	152	12.984	12.970 (0.984)	4981336	160.000	150	
	0 3-Nitroaniline	138	13.124	13.100 (0.994)	932400	160.000	150	
	1 Acenaphthene-d10	164	13.200	13.208 (1.000)	734563	40.0000		
	2 Acenaphthene	153	13.265	13.262 (1.005)	3087680	160.000	150	
	3 2,4-Dinitrophenol	184	13.286	13.272 (1.007)	593985	160.000	180 (A)	
	4 4-Nitrophenol	109	13.362	13.326 (1.012)	620557	160.000	160 (A)	
	5 Dibenzofuran	168	13.556	13.543 (1.027)	4491739	160.000	150	
	2,4-Dinitrotoluene	165	13.502	13.489 (1.023)	1328069	160.000	160	
	7 Diethylphthalate	149	13.880	13.867 (1.052)	4279601	160.000	150	
	3 Fluorene	166	14.129	14.115 (1.070)	3639635	160.000	160	
49		204	14.097	14.083 (1.068)	1929243	160.000	160	
	4-Nitroaniline	138	14.161	14.115 (1.073)	1006489	160.000	160	
	4,6-Dinitro-2-methylphenol	198	14.194	14.158 (0.906)	861030	160.000	170 (A)	
	N-Nitrosodiphenylamine	169	14.291	14.277 (0.912)	2113653	160.000	140	
	2,4,6-Tribromophenol	330	14.518	14.504 (0.926)	898736	160.000	160	
	4-Bromophenyl-phenylether	248	14.918	14.904 (0.952)	1185214	160.000	160	
	Hexachlorobenzene	284		15.023 (0.959)	1300247	160.000	150	
	Atrazine	200	15.144	15.141 (0.966)	432164	160.000	140	
	Pentachlorophenol Phenanthrene-dl0	266	15.339	15.325 (0.979)	898474	160.000	160 (A)	
	Phenanthrene	188		15.671 (1.000)	1266448	40.0000		
	Anthracene	178	15.728	15.714 (1.003)	5367899	160.000	150	
	Carbazole	178 167		15.800 (1.009)	4873678	160.000	150	
	Di-n-butylphthalate			16.049 (1.025)	4276441	160.000 160.000	150	
	Fluoranthène	149		16.568 (1.058)	7570282		150	
	Pyrene	202		17.691 (1.130)	5584056	160.000	160	
	Terphenyl-d14	202		18.080 (0.901)	5684570	160.000	170 (A)	
	Butylbenzylphthalate	244		18.285 (0.911)	4397392	160.000	160 (A)	
	3,3'-Dichlorobenzidine	149		19.063 (0.950)	3193733	160.000	160 (A)	
	Benzo (a) anthracene	252 228		19.971 (0.995)	974980	160.000	150	
	Chrysene-dl2			20.046 (0.999)	5086101	160.000	160 (A)	
	Chrysene Chrysene	240		20.068 (1.000) 20.111 (1.003)	967719	40.0000	100(3)	
	bis(2-Ethylhexyl)phthalate	228 149			4970531	160.000	160 (A)	
	Di-n-octylphthalate	149		19.981 (0.996) 21.040 (0.925)	4732330	160.000	170 (A)	
	Benzo(b) fluoranthene	252			8016340	160.000	160 (A)	
13	POISO (D) LIGOTATICHERE	232	41.321	21.926 (0.965)	5517712	160.000	170 (A)	

Data File: S1E5794.D Report Date: 01-Sep-2005 13:36

					AMOUNTS			
	QUANT SIG		•		CAL-AMI	ON-COL		
Compounds	MASS	RT	EXP RT REL RT	RESPONSE	(ng)	(ng)		
	コガネギ	==	m===== =====			======		
74 Benzo(k) fluoranthene	252	22.016	21.991 (0.968)	5249021	160.000	160		
75 Benzo(a)pyrene	252	22.653	22.618 (0.996)	4179335	160.000	160		
* 76 Perylene-dl2	264	22.750	22.736 (1.000)	882763	40.0000			
77 Indeno(1,2,3-cd)pyrene	276	25.624	25.556 (1.126)	4838114	160.000	160 (A)		
78 Dibenzo(a,h)anthracene	278	25.667	25,589 (1,128)	4082257	160.000	160 (A)		
79 Renzola h ilpervlene	276	26.499	26.420 (1.165)	3920862	160.000	160		

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: MITKEM CORPORATION	Contract:					
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004					
Instrument ID: S1	Calibration Date: 09/13/05 Time: 1112					
Lab File ID: S1E5926	Init. Calib. Date(s): 08/31/05 08/31/05					
EPA Sample No.(SSTD050##): SSTD0501A	Init. Calib. Times: 1130 1417					

GC Column: $\underline{DB-5MS}$ ID: $\underline{0.25}$ (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D	
=======================================	======	======	======	=====	=====	l
Benzaldehyde	0.238	0.272		14.3		
Phenol	1.739	1.931	0.800		25.0	
bis(2-Chloroethyl)Ether	1.398	1.481	0.700		25.0	
2-Chlorophenol	1.424	1.487	0.800		25.0	
2-Methylphenol	1.310	1.352	0.700		25.0	
2,2'-oxybis(1-Chloropropane)	1.851	2.383		28.7		
Acetophenone	1.931	2.233		15.6		
4-Methylphenol	1.395	1.466	0.600	5.1	25.0	
N-Nitroso-di-n-propylamine	1.010	1.175	0.500	16.3	25.0	
Hexachloroethane	0.655	0.709	0.300	8.2	25.0	
Nitrobenzene	0.383	0.407	0.200	6.3	25.0	
Isophorone	0.729	0.761	0.400	4.4	25.0	
2-Nitrophenol	0.213	0.217	0.100	1.9	25.0	
2,4-Dimethylphenol	0.334	0.229	0.200	-31.4	25.0	<
bis(2-Chloroethoxy)methane	0.443	0.448	0.300	1.1	25.0	
2,4-Dichlorophenol	0.306	0.312	0.200	2.0	25.0	
Naphthalene	1.025	1.085	0.700	5.9	25.0	
4-Chloroaniline	0.116	0.051		-56.0		
Hexachlorobutadiene	0.186	0.186		0.0		
Caprolactam	0.147	0.152		3.4		
4-Chloro-3-Methylphenol	0.331	0.351	0.200		25.0	
2-Methylnaphthalene	0.673	0.725	0.400	7.7	25.0	
Hexachlorocyclopentadiene	0.332	0.221		-33.4		
2,4,6-Trichlorophenol	0.406	0.399	0.200		25.0	
2,4,5-Trichlorophenol	0.439	0.461	0.200	5.0		
1,1'-Biphenyl	1.424	1.500	1	5.3		
2-Chloronaphthalene	1.130	1.175	0.800	4.0	25.0	
2-Nitroaniline	0.377	0.420		11.4		
Dimethylphthalate	1.460	1.575		7.9		l
2,6-Dinitrotoluene	0.358	0.370	0.200	3.4	25.0	1
Acenaphthylene	1.816	1.867	0.900		25.0	
3-Nitroaniline	0.348	0.333		-4.3		
Acenaphthene	1.102	1.197	0.900		25.0	1
2,4-Dinitrophenol	0.193	0.209	T	8.3	 	
4-Nitrophenol	0.217	0.221		1.8		
Dibenzofuran	1.640	1.754	0.800		25.0	
						1

All other compounds must meet a minimum RRF of 0.010.

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: <u>MD1004</u>
Instrument ID: <u>S1</u>	Calibration Date: 09/13/05 Time: 1112
Lab File ID: <u>S1E5926</u>	Init. Calib. Date(s): 08/31/05 08/31/05
EPA Sample No (SSTD050##): SSTD0501A	Init Calib Times: 1130 1417

GC Column: DB-5MS ID: 0.25 (mm)

COMPOUND	RRF	RRF50	MIN RRF	%D	MAX %D
2,4-Dinitrotoluene	0.481	0.495	0.200	2.9	25.0
Diethylphthalate	1.548	1.653		6.8	
Fluorene	1.317	1.482	0.900	12.5	25.0
4-Chlorophenyl-phenylether	0.687	0.700	0.400	1.9	25.0
4-Nitroaniline	0.360	0.397		10.3	
4,6-Dinitro-2-methylphenol	0.181	0.179		-1.1	
N-Nitrosodiphenylamine(1)	0.503	0.455		-9.5	
4-Bromophenyl-phenylether	0.249	0.249	0.100	0.0	25.0
Hexachlorobenzene	0.286	0.259	0.100	-9.4	25.0
Atrazine	0.104	0.080		-23.1	
Pentachlorophenol	0.187	0.180	0.050	-3.7	25.0
Phenanthrene	1.155	1.125	0.700	-2.6	25.0
Anthracene	1.085	1.060	0.700	-2.3	25.0
Carbazole	0.973	1.077		10.7	
Di-n-butylphthalate	1.666	1.767		6.1	
Fluoranthene	1.197	1.254	0.600	4.8	25.0
Pyrene	1,508	1.514	0.600	0.4	25.0
Butylbenzylphthalate	0.857	0.872		1.8	
3,3'-Dichlorobenzidine	0.294	0.179		-39.1	
Benzo (a) anthracene	1.327	1.335	0.800		25.0
Chrysene	1.301	1.088	0.700	-16.4	25.0
bis(2-Ethylhexyl)phthalate	1.195	1.264		5.8	
Di-n-octylphthalate	2.257	2.803		24.2	
Benzo(b) fluoranthene	1.492	1.629	0.700		25.0
Benzo(k) fluoranthene	1.592	1.879	0.700	18.0	
Benzo (a) pyrene	1.256	1.279	0.700	1.8	
Indeno(1,2,3-cd)pyrene	1.386	1.378	0.500		25.0
Dibenzo(a,h)anthracene	1.152	1.154	0.400	0.2	25.0
Benzo(g,h,i)perylene	1.138	1.061	0.500	-6.8	
Nitrobenzene-d5	0.423	0.407	0.200	-3.8	25.0
2-Fluorobiphenyl	1.369	1.447	0.700	5.7	
Terphenyl-d14	1.141	1.074	0.500	-5.9	
Phenol-d5	1.727	1.947	0.800	12.7	
2-Fluorophenol	1.441	1.360	0.600	-5.6	25.0
2,4,6-Tribromophenol	0.187	0.152		-18.7	
2-Chlorophenol-d4	1.543	1.563	0.800		25.0
1,2-Dichlorobenzene-d4	0.972	1.042	0.400	7.2	25.0

(1) Cannot be separated from Diphenylamine All other compounds must meet a minimum RRF of 0.010.

-8 -2 8 S 4 -8 zтр⊸aua⊺<u>ƙыад⊸</u>; Ŋ ম \\AVOCADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5926.D Operator: AW SRC: AW Column diameter: 0.25 -8 Instrument: S1.i ę, 19 +tb-fyneddieTr. - Oth-enendthenedd-먑 Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5926.D IonadqomondinT-8.4.S-4 -<u>哈</u> Oth-anadidgenane--업 [gnedqidonoul7-S-8b-eneleditageN-**-**0 gp=auazuadout th -1,4-Dichlorobenzene-d4 -1,4-Dichlorobenzene-d4 Sample Info: SSTDO501A,SSTD0501A ω -Ehenol-d9 -Phenol-d9 Date : 13-SEP-2005 11:12 Client ID: SSTD0501A Column phase: DB-5MS [onedqonoul]=2-ی. **-**10 (9-0TX) X

<u>۱</u>-۳

-R

Data File: S1E5926.D

Report Date: 13-Sep-2005 11:57

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5926.D Lab Smp Id: SSTD0501A Client Smp ID: SSTD0501A Client Smp ID: SSTD0501A

Inj Date : 13-SEP-2005 11:12

Operator : AW SRC: AW Inst ID: S1.i

Smp Info : SSTD0501A, SSTD0501A

Misc Info : 2,3,SSTD050,3

Comment

Method: \AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1_olm4_2_S.m

Meth Date: 13-Sep-2005 11:56 mtl Quant Type: ISTD

Cal Date: 13-SEP-2005 11:12 Cal File: S1E5926.D

Als bottle: 1 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03 Processing Host: TARGET11

								AMOUN	TS
			QUANT SIG					CAL-AMT	ON-COL
Co	oqm	unds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
==			====	==					##=####
\$	1	2-Fluorophenol	112	6.058	6.058	(0.757)	501471	50.0000	. 47
	2	Benzaldehyde	77	7.344	7.344	(0.918)	100138	50.0000	57
\$	3	Phenol-d5	99	7.376	7.376	(0.922)	717724	50.0000	56
	4	Phenol	94	7.398	7.398	(0.924)	712020	50.0000	56
	5	bis(2-Chloroethyl)Ether	93	7.570	7.570	(0.946)	545910	50.0000	53
\$	6	2-Chlorophenol-d4	132	7.646	7.646	(0.955)	576066	50.0000	51
	7	2-Chlorophenol	128	7.678	7.678	(0.960)	548119	50.0000	. 52
*	8	1,4-Dichlorobenzene-d4	152	8.003	8.003	(1.000)	294923	40.0000	
\$	9	1,2-Dichlorobenzene-d4	152	8.240	8.240	(1.030)	384198	50.0000	54
	10	2-Methylphenol	108	8.316	8,316	(1.039)	498562	50.0000	. 52
	11	2,2'-oxybis(1-Chloropropane)	45	8.381	8.381	(1.047)	878561	50.0000	. 64
	12	Acetophenone	105	8.608	8.608	(1.076)	823256	50.0000	58
	13	4-Methylphenol	108	8.564	8.564	(1.070)	540435	50.0000	53
	14	N-Nitroso-di-n-propylamine	70	8.597	8.597	(1.074)	433101	50.0000	58
	15	Hexachloroethane	117	8.791	8.791	(1,099)	261313	50.0000	54
\$	16	Nitrobenzene-d5	82	8.845	8.845	(0.884)	647960	50.0000	48
	17	Nitrobenzene	77	8.878	8.878	(0.888)	646961	50.0000	53
	18	Isophorone	82	9.245	9.245	(0.924)	1210631	50.0000	52
	19	2-Nitrophenol	139	9.375	9.375	(0.937)	345559	50.0000	51
	20	2,4-Dimethylphenol	107	9.407	9.407	(0.941)	364182	50.0000	34
	21	bis(2-Chloroethoxy)methane	93	9.569	9.569	(0.957)	712128	50.0000	51
	22	2,4-Dichlorophenol	162	9.753	9.753	(0.975)	496764	50.0000	51.
*	23	Naphthalene-d8	136	10.001	10.001	(1.000)	1272717	40.0000	
	24	Naphthalene	128	10.044	10.044	(1.004)	1725824	50.0000	53
	25	4-Chloroaniline	127	10.098	10.098	(1.010)	80786	50.0000	22
	26	Hexachlorobutadiene	225	10.217	10.217	(1.022)	296222	50.0000	50

Data File: S1E5926.D Report Date: 13-Sep-2005 11:57

					AMOUN	TS
	QUANT SIG				CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT REL RT	response	(ng)	(ng)
		==				
27 Caprolactam	113	10.682	10.682 (1.068)	241877	50.0000	52
28 4-Chloro-3-Methylphenol	107	10.866	10.866 (1.086)	558268	50.0000	53
29 2-Methylnaphthalene	142	11.157	11.157 (1.116)	1153997	50.0000	54
30 Hexachlorocyclopentadiene	237	11.406	11.406 (0.885)	199658	50.0000	33 (T)
31 2,4,6-Trichlorophenol	196	11.611	11.611 (0.901)	360227	50.0000	49
32 2,4,5-Trichlorophenol	196	11.665	11.665 (0.905)	415594	50.0000	52
\$ 33 2-Fluorobiphenyl	172	11.751	11.751 (0.912)	1305581	50.0000	53
34 1,1'-Biphenyl	154	11.924	11.924 (0.925)	1352563	50.0000	53
35 2-Chloronaphthalene	162	11.967	11.967 (0.929)	1059645	50.0000	52
36 2-Nitroaniline	65	12,119	12.119 (0.940)	378484	50.0000	56
37 Dimethylphthalate	163	12.410	12.410 (0.963)	1420801	50.0000	54
38 2,6-Dinitrotoluene	165	12.518	12.518 (0.971)	334040	50.0000	52
39 Acenaphthylene	152	12.659	12.659 (0.982)	1683906	50.0000	51
40 3-Nitroaniline	138	12.799	12.799 (0.993)	300318	50.0000	48
* 41 Acenaphthene-d10	164	12.886	12.886 (1.000)	721605	40.0000	
42 Acenaphthene	153	12.940	12.940 (1.004)	1079730	50.0000	54
43 2,4-Dinitrophenol	184	12,961	12.961 (1.006)	188489	50.0000	54
44 4-Nitrophenol	109	13.037	13.037 (1.012)	199751	50.0000	51
45 Dibenzofuran	168	13.231	13.231 (1.027)	1582005	50.0000	53
46 2,4-Dinitrotoluene	165	13.177	13.177 (1.023)	446182	50.0000	51
47 Diethylphthalate	149	13.566	13.566 (1.053)	1490865	50.0000	53
48 Fluorene	166	13.793	13.793 (1.070)	1336729	50.0000	56
49 4-Chlorophenyl-phenylether	204	13.782	13.782 (1.070)	631425	50.0000	51
50 4-Nitroaniline	138	13.815	13.815 (1.072)	358054	50.0000	55
51 4,6-Dinitro-2-methylphenol	198	13.858	13.858 (0.903)	282519	50.0000	49
52 N-Nitrosodiphenylamine	169	13.966	13.966 (0.910)	716005	50.0000	45
\$ 53 2,4,6-Tribromophenol	330	14.182	14.182 (0.924)	239893	50.0000	41
54 4-Bromophenyl-phenylether	248	14.593	14.593 (0.951)	391463	50.0000	50
55 Hexachlorobenzene	284	14.701	14.701 (0.958)	407438	50.0000	45
56 Atrazine	200	14.830	14.830 (0.966)	126706	50.0000	39
57 Pentachlorophenol	266	15.014	15.014 (0.978)	283591	50.0000	48
* 58 Phenanthrene-d10	188	15.349	15.349 (1.000)	1260099	40.0000	
59 Phenanthrene	178	15.392	15.392 (1.003)	1772631	50.0000	49
60 Anthracene	178	15.479	15.479 (1.008)	1669033	50.0000	49
61 Carbazole	167	15.727	15.727 (1.025)	1696432	50.0000	55
62 Di-n-butylphthalate	149	16.267	16.267 (1.060)	2783745	50.0000	53
63 Fluoranthene	202	17.369	17.369 (1.132)	1975760	50.0000	52
64 Pyrene	202	17.747	17.747 (0.899)	2099944	50.0000	50
\$ 65 Terphenyl-d14	. 244	. 17,974	17.974 (0.910)	1489896	50.0000	47
66 Butylbenzylphthalate	149	√ 18.763	18.763 (0.950)	1208914	50.0000	51
67 3,3'-Dichlorobenzidine	252	19.649	19.649 (0.995)	248485	50.0000	30
68 Benzo(a)anthracene	228	19.724	19.724 (0.999)	1851893	50.0000	50
* 69 Chrysene-dl2	240	19.746	19.746 (1.000)	1109443	40.0000	
70 Chrysene	228	19.789	19.789 (1.002)	1508912	50.0000	42
71 bis(2-Ethylhexyl)phthalate	149	√ 19.681		1752605	50.0000	53
72 Di-n-octylphthalate	149	20.718	20.718 (0.931)	2947939	50.0000	62
73 Benzo(b)fluoranthene	252	21.507		1713831	50.0000	55

Data File: S1E5926.D Report Date: 13-Sep-2005 11:57

						NUOMA	NTS
	QUANT SIG		-			CAL-AMT	ON-COL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ng)
		==	=====		======	======	
74 Benzo(k)fluoranthene	252	21.561	21.561	(0.969)	1976234	50.0000	59
75 Benzo(a)pyrene	252	22.144	22.144	(0.995)	1345269	50.0000	51
* 76 Perylene-d12	264	22.252	22.252	(1.000)	841480	40.0000	
77 Indeno(1,2,3-cd)pyrene	276	24.835	24.835	(1.116)	1449578	50.0000	50
78 Dibenzo(a,h)anthracene	278	24.867	24.867	(1.117)	1213636	50.0000	50
79 Benzo(g,h,i)perylene	276	25.623	25,623	(1.151)	1115731	50.0000	47

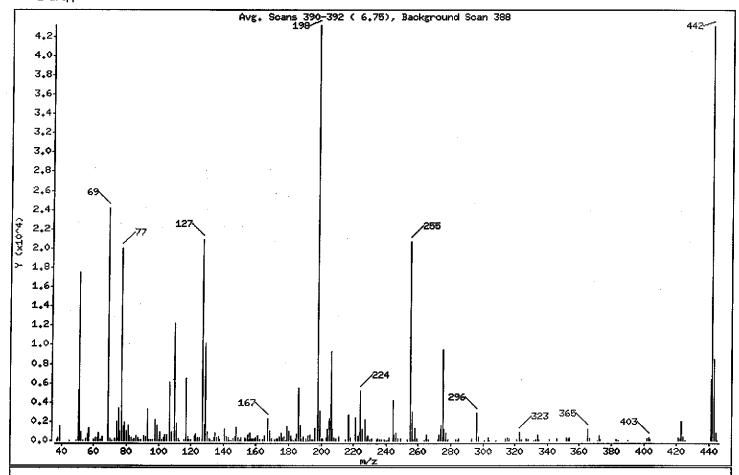
QC Flag Legend

T - Target compound detected outside RT window.

Date : 31-AUG-2005 11:05

Client ID: DFTPP1Q

Instrument: S1.i


Sample Info: DFTPP1Q,DFTPP1Q

Operator: AW/AJ

Column phase: DB-5MS

Column diameter: 0.25

m/e	ION ABUNDANCE CRITERIA	# RELATIVE ABUNDANCE	
1	!		+ 1
l 198	Base Peak, 100% relative abundance	I 100.00	1
1 51	30.00 - 80.00% of mass 198	1 40,47	- 1
68	Less than 2.00% of mass 69	1 0,00 (0,00)	- 1
I 69	l Mass 69 relative abundance	1 56.07	1
I 70	l Less than 2,00% of mass 69	(0,41 (0,73)	1
1 127	25.00 - 75.00% of mass 198	I 48,39	I
l 197	Less than 1.00% of mass 198	I 0.00	I
1 199	l 5.00 - 9. 00% of mass 198	l 7₊05	1
1 275	10.00 - 30.00% of mass 198	l 21.82	i
1 365	Greater than 0.75% of mass 198	1 2,87	- 1
1 441	Present, but less than mass 443	l 14,64	1
I 442	40.00 - 110.00% of mass 198	i 99.70	F
1 443	15.00 - 24.00% of mass 442	l 19,63 (19,69)	- 1

Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050831.B\S1E5792.D

Date : 31-AUG-2005 11:05

Client ID: DFTPP1Q

Instrum**ent:** S1.i

Sample Info: DFTPP1Q,DFTPP1Q

Operator: AW/AJ

Column phase: DB-5MS

Column diameter: 0.25

Data File: S1E5792.D

Spectrum: Avg. Scans 390-392 (6.75), Background Scan 388

Location of Maximum: 198.00 Number of points: 231

	m/z	Y	m/z	Y	m/z	Y	m/z	Y +
+ 	37.00	105	116.00	146	182.00	54 i	265.00	574 l
ŧ	38.00	265	117.00	6494	183.00	38 I	266.00	59 I
i	39.00	1445	118.00	420 (184.00	175 (272,00	52 I
i	45.00	42	119.00	76 (185.00	719 (273.00	580 i
ı	49.00	37	120.00	61 (186.00	55 06	274,00	1629 I
+- I	50,00		122,00	519	187.00		275.00	9419 1
1	51.00	17464	123.00	708	188.00		276.00	1198
1	52,00	863	124,00	319	189,00		277.00	820 1
ı	53,00	39	125.00	253	191.00		278.00	121
l	55.00	211	127.00 	20880	192,00	475 	283.00	91
+- I	56,00	727	128.00	1737	193.00	562	284.00	42
1	57.00	1297	129,00	10162	194,00	127	285.00	15¢
1	60.00	138	130.00	874	195.00		293,00	189 I
ı	61.00	261	131.00	164	196.00	1258	296 .00	28 5 0 l
ı	62,00	307	132.00	79	198.00	43160	297 .00 	384
+-	63.00	827	I 133.00	19	199.00	3 042	301.00	39
1	64,00	128	134.00	264	200.00		303.00	258
ì	65.00	405	135.00	771	201,00		304.00	49
1	69.00	241 92	1 136.00		203,00		308.00	35 I
1	70,00	176	137.00	353	1 204.00	123 2	314,00 	151 +
+- 	71.00	23	1 138,00	91	205.00		315.00	290 I
ı	73.00	193	141,00		206 .00	=	316.00	162 1
ı	74.00	1965	142,00		1 207 .00	•	321.00	92 I
ï	75,00	3333	143.00	270	1 208.00		323,00	895 I
ı	76.00	975	144.00	45	20 9.00 	175	324.00 +	134
1	77,00	20024	145.00	41	211.00		327.00	196
ı	78.00	1513	1 146,00	217	1 215,00		1 328.00	59 I
•	79.00	1843	147.00	446	1 217,00		332 , 00	36 I
1	80,00	1035	148.00	1429	1 218.00		333,00	61 I
ı	81,00	1551	149.00	343	1 221,00	2431	334.00 	550
1	82,00	471	150.00	108	1 223,00		335.00	105 I
i	83.00	283	151.00	259	1 224.00		1 341.00	133 l
1	84,00	137	153.00	287	1 225.00		1 346.00	188 I
1	85,00	237	154.00	247	227.00		I 352 , ≎≎	273
I	86,00	492	155.00	580	1 228,00	320	1 353.00	213

Date : 31-AUG-2005 11:05

Client ID: DFTPP1Q

Instrument: \$1.i

Sample Info: DFTPP1Q,DFTPP1Q

Operator: AW/AJ

Column phase: DB-5MS

Column diameter: 0.25

Data File: S1E5792.D

Spectrum: Avg. Scans 390-392 (6.75), Background Scan 388

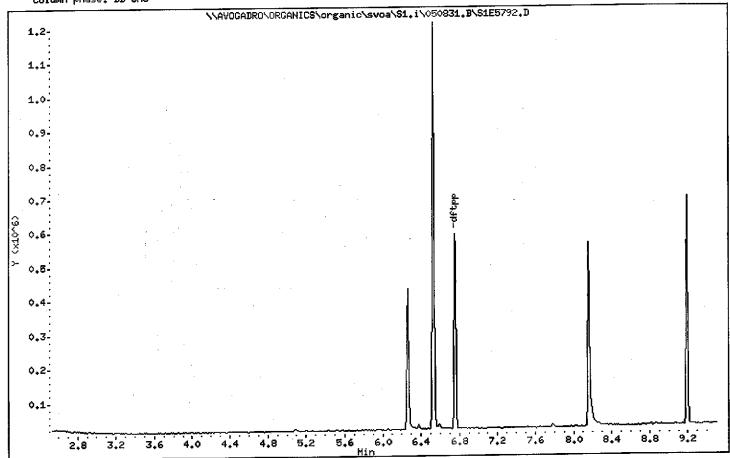
Location of Maximum: 198.00 Number of points: 231

	m/z	, У	m/z	Υ	m/z	Y	m/z	Υ
1	87.00	254	156.00	832	1 229,00	470	1 354,00	278 I
1	88,00	106	1 157.00	188	230.00	70	1 365.00	1240 I
١	89.00	76	158,00	186	231,00	167	1 366,00	190 i
j	91.00	485	1 159.00	162	234.00	131	371.00	45
1	92.00	420	1 160,00	313	235.00	151	372.00	496
·	93,00	3234	1 161.00	467	236.00	105	1 373.00	109
- !	94.00	76	1 162.00	121	237,00	146	J 383.00	119
1	95.00	83	1 164,00	105	239,00	83	I 384.00	36 1
- 1	96,00	91	I 165,00	456 l	240,00	46	390.00	40 1
1	98.00	2195	I 167.00	2242	241,00	129	402.00	237
Ī	99,00	1616	168.00	974	242,00	261	403,00	291 I
1	100.00	128	169.00	166 I	244.00	4213	404,00	96 I
ı	101.00	889	171.00	84 I	245.00	593	421,00	298
ı	102,00	82	172,00	201. 1	246.00	774	422,00	233 I
1	103.00	270	1 173,00	215 I	247,00	159	423,00	2024
1	104,00	559	174.00	404 1	249.00	168	424.00	. 1 E8E
1	105.00	576	175.00	818 I	253,00	80 (425.00	34 I
1	107.00	6103	1 176.00	266	255.00	20696	441.00	6320
ı	108.00	935	1 177.00	386 I	256.00	3005	442.00	43032 1
ا د	110.00	12186	178,00	44	257,00	111 l	443.00	8473
	111.00	1833	179,00	1534	258.00	1285 (444.00	746 I
i	112.00	219	180,00	1015	259,00	166	445.00	41 I
1	113,00	41 (181,00	481 I	264.00	40		1
+-			 			+		+

Data File: \\AVOGADRO\QRGANICS\organic\svoa\\$1.i\050831.B\\$1E5792.D

Date : 31-AUG-2005 11:05

Client ID: BFTPP1Q


Instrument: S1.i

Sample Info: DFTPP1Q,DFTPP1Q

Operator: AW/AJ

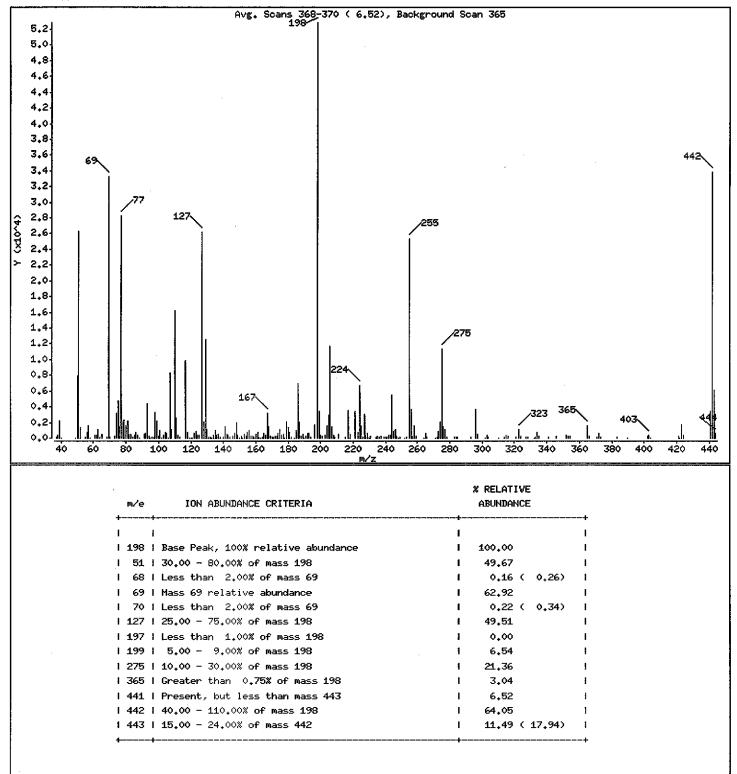
Column phase: DB-5MS

Column diameter: 0.25

Date : 13-SEP-2005 10:53

Client ID: DFTPP1A

Instrument: S1.i


Sample Info: DFTPP1A,DFTPP1A

Operator: AW

Column phase: DB-5M8

Column diameter: 0.25

1 dftpp

Data File: \\AVOGADRO\ORGANICS\organio\svoa\S1.i\050913,B\S1E5925.D

Date : 13-SEP-2005 10:53

Client ID: DFTPP1A

Instrument: S1.i

Sample Info: DFTPP1A,DFTPP1A

Operator: AW

Column phase: DB-5MS Column diameter: 0.25

Data File: S1E5925.D

Spectrum: Avg. Scans 368-370 (6.52), Background Scan 365

Location of Maximum: 198.00 Number of points: 236

	m/z	Y	m/z	Y	m/z	Y	m/z	Υ
1	37.00	70	119.00	33	182,00	124	1 264.00	41
ı	38.00	426	120.00	47	184,00	52	1 265,00	646 l
1	39.00	2139	121.00	40	185.00	985	1 266.00	8¢ I
ı	40.00	57	122,00	613	186.00	6920	1 271,00	43 I
1	49,00	60	123.00	861	187.00	2025	272.00 -	107
1	50.00	7877	 124.00	389	188.00	275	1 273.00	871 I
1	51,00	26248	125.00	313	189,00	497	1 274.00	2067 I
ı	52,00	1306	127,00	26160	190,00	55	1 275,00	11 289
1	55,00	164	128,00	2080	191,00	202	1 276,00	1445 I
1	56,00	771	129,00	12541	192.00	654	I 277.00	1046
1	57,00	1624	130,00	1092	193,00	637	I 278.00	178 I
1	58,00	47	131,00	145	194.00	112	1 283,00	120 I
1	61.00	329	132,00	83	196.00	1648	I 284,00	80 I
1	62,00	336	133,00	45	198.00	52848	1 285,00	170 I
1	63.00	1045	134. 00	337	199.00	3459	1 293.00	177 l
1	64.00	114	135.00	929	200 .00	341	I 296.00	3601 I
1	65,00	431	136,00	362	201.00	217	I 297. ≎≎	512 l
1	68.00	87	137,00	499	203.00	346	1 302,00	41 l
1	69,00	33256	138.00	70	204,00	1637	I 303.00	330 I
1	70,00	114	140.00	91	205.00	2869	I 304.00 	91
ı	73.00	293	141.00	1407	206.00	11683	310.00	36 I
1	74.00	3167	142.00	464	207,00	1510	I 314.00	139 i
ı	75.00	4804	143.00	344	208.00	391	I 315.00	306 I
ı	76.00	1476	144.00	122	209,00	179	1 316,00	242 I
1	77.00	281 9 2	146.00 	287	211.00	466 	321.00 	109
i	78.00		147.00		215.00		1 323.00	1046 I
ı	79,00	2327	148,00	1917	217,00	3490	1 324.00	225 I
1	80.00	1591	149,00	388	218,00	445	327,00	177 I
1	81,00	2199	150,00	55	221,00	3354	1 328.00	123 I
 +-	82,00	516 	151.00 	232	223,00	702	1 332 .00	36
i	83.00	466	152.00		224.00		333 .00	112
ı	84,00	167	153.00	490	225,00	1592	334,00	7 1 5 I
1	85,00	403	154.00	294	226,00	75	335,00	183 I
ı	86,00	726	155,00	759	227,00	2984	341,00	124
I	87,00	306	156.00	1024	228.00	403	346,00	295 1

Date : 13-SEP-2005 10:53

Client ID: DFTPP1A

Instrument: 81.i

Sample Info: DFTPP1A,DFTPP1A

Operator: AW

Column phase: DB-5MS

Column diameter: 0.25

Data File: S1E5925.D

Spectrum: Avg. Scans 368-370 (6.52), Background Scan 365

Location of Maximum: 198,00 Number of points: 236

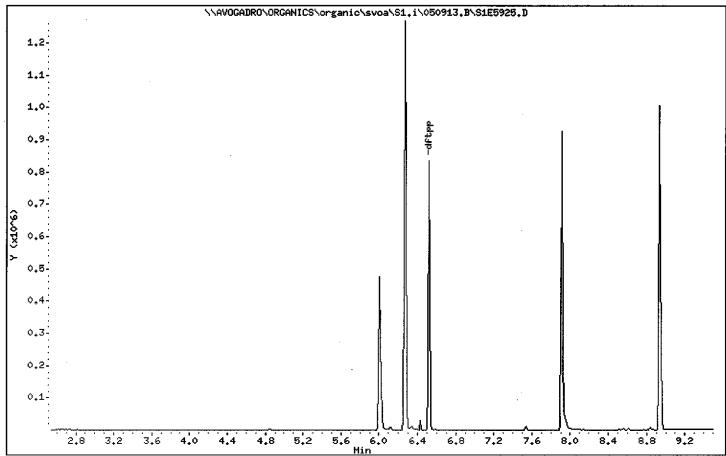
Υ	m/z	Υ	m/z	Υ	m/z	Υ	m/z
328	352.00	649 1	229.00	196	157,00	57 I	88,00
227	353.00	52 1	230,00	296 I	158,00	474	91,00
287	354.00	203 1	231,00	17 5	159,00	560 I	92,00
1608	365.00	158	234.00	484	160.00	4364 I	93.00
214	366.00	207 1	235.00	703 I	161.00	276	94.00
104	371.00	129	236,00	170 i	162.00	42	95.00
605	372,00	242	237.00	44 1	163.00	167	96.00
72	373.00	105	239.00	67 1	164.00	78 1	97.00
165	383.00	77 I	240.00	550 I	165,00	3253 (98.00
38	390.00	160 l	241,00	414 I	166.00	2200 1	99.00
202	402,00	392 i	242.00	3184 I	167.00	217	100.00
344	403.00	379 1	243,00	1476 I	168,00	917 I	101.00
46	404.00	5426 (244,00	189 I	169,00	47	102.00
219	421.00	826 (245,00	90 1	170.00	404 I	103,00
43	422,00	1156	246,00	102 i	171.00	707 I	104.00
1651	423,00	203 (247,00	233 J	172,00	616	105.00
392	424,00	40 1	248,00	296 I	173.00	43 I	106.00
3446	441.00	159 I	249,00	607 I	174.00	8240 I	107.00
33848	442,00	38 (252,00	1069 I	175,00	1093 I	108.00
6074	443,00	124 I	253,00	322 I	176,00	16151 I	110.00
556	444.00	25280 I	255,00	441 I	177.00	2608	111.00
		3663 1	256,00	34 I	178,00	313 I	112,00
		293 1	257.00	2065 I	179.00	83 I	113.00
		1642 I	258,00	1336 I	180,00	9910 I	117.00
		260 1	259,00	680 I	181.00	683 I	118.00

Data File: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5925.D

Page 1

Date : 13-SEP-2005 10:53

Client ID: DFTPP1A


Instrument: S1.i

Sample Info: DFTPP1A,DFTPP1A

Operator: AW

Column phase: DB-5MS

Column diameter: 0.25

1C

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM COR	PORATION Contrac	:t:	SBLK1B
-	Case No.: SAS		OG No.: <u>MD1004</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	MB-19698
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: S	1E5927
Level: (low/med)	TOM	Date Received: _	<u> </u>
% Moisture:	Decanted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor	: <u>1.0</u>
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type) <u>CONT</u>
CAS NO. COMPOUNI	D	CONCENTRATI	ION UNITS: g/Kg) <u>UG/L</u> Q

100-52-7	Benzaldehyde	10	U
108-95-2	Phenol	10	U
111-44-4	bis(2-Chloroethyl)Ether	10	Ü
95-57-8	2-Chlorophenol	10	U
95-48-7	2-Methylphenol	10	U
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
98-86-2	Acetophenone	10	U
106-44-5	4-Methylphenol	10	U
621-64-7	N-Nitroso-di-n-propylamine	10	U
67-72-1	Hexachloroethane	10	Ū
98-95-3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ū
88-75 - 5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	Ū
111-91-1	bis(2-Chloroethoxy)methane	10	Ū
120-83-2	2,4-Dichlorophenol	10	U
91-20-3	Naphthalene	10	Ū
106-47-8	4-Chloroaniline	10	U
87-68-3	Hexachlorobutadiene	10	U
105-60-2	Caprolactam	10	Ū
59-50-7	4-Chloro-3-Methylphenol	10	Ū
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	U
88-06-2	2,4,6-Trichlorophenol	10	U
95-95-4	2,4,5-Trichlorophenol	25	Ū
92-52-4	1,1'-Biphenyl	10	U
91-58-7	2-Chloronaphthalene	10	U
88-74-4	2-Nitroaniline	25	U
131-11-3	Dimethylphthalate	10	U
606-20-2	2,6-Dinitrotoluene	10_	ט
208-96-8	Acenaphthylene	10	U
99-09-2	3-Nitroaniline	25	Ū
83-32-9	Acenaphthene	10	Ū

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORI	PORATION C	Contract:	SBLK1B
Lab Code: MITKEM	Case No.:	SAS No.:S	DG No.: <u>MD1004</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	MB-19698
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: S	1E5927
Level: (low/med)	LOW	Date Received:	
% Moisture:	Decanted: (Y/N)	Date Extracted:	08/29/05
Concentrated Extract	Volume: 1000 (uI	Date Analyzed:	09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor	: <u>1.0</u>
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type) <u>CONT</u>
CAS NO. COMPOUNI)	CONCENTRAT (ug/L or u	ION UNITS: g/Kg) <u>UG/L</u> Q

1 51 00 5	D 4 D 2 - 1 - 1 - 1 - 1		
51-28-5	2,4-Dinitrophenol	25	U
100-02-7	4-Nitrophenol	25	U
132-64-9	Dibenzofuran	10	Ū
121-14-2	2,4-Dinitrotoluene	10	Ū
84-66-2	Diethylphthalate	10	U
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
100-01-6	4-Nitroaniline	25	Ū
534-52-1	4,6-Dinitro-2-methylphenol	25	Ū
86-30-6	N-Nitrosodiphenylamine (1)	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
1912-24-9	Atrazine	10	Ū
87-86-5	Pentachlorophenol	25	<u></u> ד
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	Ū
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	10	Ū
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	U
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	bis(2-Ethylhexyl)phthalate	10	Ū
117-84-0	Di-n-octylphthalate	10	Ū
205-99-2	Benzo(b) fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	Ū
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ü
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ū
/11 0-	man be seemed from Dishauding	· · · · · · · · · · · · · · · · · · ·	


(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

	SBLK1B	
:	MD1004	

Lab Name: MITKEM CORPORATION Contract	:
Lab Code: MITKEM Case No.: SAS No.	: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: MB-19698
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: S1E5927
Level: (low/med) LOW_	Date Received:
% Moisture: Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume: 2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Extraction: (Type) CONT
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.				
2.				
3.				
4. 5.				
6.				
7.				
8.				
9.		<u> </u>		
10.				
11.				<u> </u>
12.				
13. 14.				
15.				
16.				
17.				
18.				
19.				
20.				
21.				
22.				
23.				
24.				
25.				
26.				
27.				
28.				
29.				
30.				

Data File: S1E5927.D

Report Date: 16-Sep-2005 13:22

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5927.D

Lab Smp Id: MB-19698 Client Smp ID: SBLK1B

Inj Date : 13-SEP-2005 12:02

Operator : AW SRC: LIMS Inst ID: S1.i

Smp Info : MB-19698,SBLK1B,19698

Misc Info : Comment :

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1 olm4 2 S.m

Meth Date: 13-Sep-2005 11:56 mtl Quant Type: ISTD Cal Date: 13-SEP-2005 11:12 Cal File: S1E5926.D QC Sample: BLANK

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03

Concentration Formula: Amt * DF * Uf*(Vt/Vi)*(1/Vo)

Name	Value	Description
DF Uf Vt Vi Vo	1.000 1000.000 2.000	Dilution Factor GPC Correction Factor Volume of final extract (uL) Volume injected (uL) Volume of sample extracted (mL)

							CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
Co	mpounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ug/L)
==		====	==			=======	======	
\$	1 2-Fluorophenol	112	6.067	6.058	(0.758)	1158394	120.206	60
\$	3 Phenol-d5	99	7.375	7.376	(0.922)	1611616	116.848	58
\$	6 2-Chlorophenol-d4	132	7.656	7.646	(0.957)	1306178	117.990	59
*	8 1,4-Dichlorobenzene-d4	152	8.001	8.003	(1.000)	283376	40.0000	
\$	9 1,2-Dichlorobenzene-d4	152	8.239	8.240	(1.030)	471923	63.9192	32
\$	16 Nitrobenzene-d5	. 82	8.844	8.845	(0.884)	961107	83.5378	42
*	23 Naphthalene-d8	136	10.000	10.001	(1,000)	1129906	40.0000	
\$	33 2-Fluorobiphenyl	172	11.750	11.751	(0.912)	1893908	78.4958	39
*	41 Acenaphthene-d10	164	12.884	12.886	(1.000)	666774	40.0000	
\$	53 2,4,6-Tribromophenol	330	14.192	14.182	(0.925)	568371	124.736	62
*	58 Phenanthrene-d10	188	15.348	15.349	(1.000)	1196728	40.0000	
\$	65 Terphenyl-d14	244	17.984	17.974	(0.911)	2287490	81.0814	41
*	69 Chrysene-d12	240	19.734	19.746	(1.000)	1050406	40.0000	
*	76 Perylene-d12	264	22.240	22,252	(1.000)	843829	40.0000	

9/16/05

Data File: S1E5927.D

Report Date: 16-Sep-2005 13:22

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5927.D Lab Smp Id: MB-19698 Client Smp ID: SRIKIR

Inj Date : 13-SEP-2005 12:02

Operator : AW SRC: LIMS Inst ID: S1.i

Smp Info : MB-19698, SBLK1B, 19698

Misc Info : Comment

: \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1 olm4 2 S.m Method

Meth Date : 13-Sep-2005 11:56 mtl Quant Type: ISTD Cal Date : 13-SEP-2005 11:12 Cal File: S1E5926.D Als bottle: 2 QC Sample: BLANK

Dil Factor: 1.00000 Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03

⁻ NO TENTATIVELY IDENTIFIED COMPOUNDS -

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM COR	PORATION (Contract:	SIBLCS
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.: MD1004
Matrix: (soil/water)	WATER	Lab Sample ID:	LCS-19698
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	S1E5928
Level: (low/med)	LOW	Date Received:	
% Moisture:	Decanted: (Y/N)	_ Date Extracted	: <u>08/29/05</u>
Concentrated Extract	Volume: 1000 (ul	L) Date Analyzed:	09/13/05
Injection Volume:	2.0 (uL)	Dilution Facto	r: <u>1.0</u>
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction:	(Type) CONT
CAS NO. COMPOUN	D		TION UNITS: ug/Kg) <u>UG/L</u> Q

1 - 100 - 50 - 50		10	TT
100-52-7	Benzaldehyde	10	Ū
108-95-2	Phenol	59	· ·
111-44-4	bis(2-Chloroethyl)Ether	10	Ū
95-57-8	2-Chlorophenol	62	
95-48-7	2-Methylphenol	10	Ū
108-60-1	2,2'-oxybis(1-Chloropropane)	10	Ū
98-86-2	Acetophenone	10	Ū
106-44-5	4-Methylphenol	10	Ū
621-64-7	N-Nitroso-di-n-propylamine	40	
67-72-1	Hexachloroethane	10	Ū
98-95 - 3	Nitrobenzene	10	Ū
78-59-1	Isophorone	10	Ŭ
88-75-5	2-Nitrophenol	10	Ū
105-67-9	2,4-Dimethylphenol	10	Ū
111-91-1	bis(2-Chloroethoxy)methane	10	Ū
120-83-2	2,4-Dichlorophenol	10	U
91-20-3	Naphthalene	10	U
106-47-8	4-Chloroaniline	10	Ū
87-68-3	Hexachlorobutadiene	10	Ü
105-60-2	Caprolactam	10	U
59-50-7	4-Chloro-3-Methylphenol	62	
91-57-6	2-Methylnaphthalene	10	U
77-47-4	Hexachlorocyclopentadiene	10	Ū
88-06-2	2,4,6-Trichlorophenol	10	Ü
95-95-4	2,4,5-Trichlorophenol	· 25	Ū
92-52-4	1,1'-Biphenyl	10	Ū
91-58-7	2-Chloronaphthalene	10	Ū
88-74-4	2-Nitroaniline	25	Ü
131-11-3	Dimethylphthalate	10	ט
606-20-2	2,6-Dinitrotoluene	10	Ü
208-96-8	Acenaphthylene	10	Ū
99-09-2	3-Nitroaniline	25	Ū
83-32-9	Acenaphthene	40	

1D SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

SIBLCS

Lab Name: MITKEM CORI	PORATION Contrac	t:
Lab Code: MITKEM	Case No.: SAS	No.: SDG No.: MD1004
Matrix: (soil/water)	WATER	Lab Sample ID: LCS-19698
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: S1E5928
Level: (low/med)	LOW	Date Received:
% Moisture:	Decanted: (Y/N)	Date Extracted: 08/29/05
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed: 09/13/05
Injection Volume:	2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	<u>N</u> pH:	Extraction: (Type) CONT
CAS NO. COMPOUNI	D	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

51-28-5	2,4-Dinitrophenol	25	U
100-02-7	4-Nitrophenol	68	
132-64-9	Dibenzofuran	10	Ü
121-14-2	2,4-Dinitrotoluene	43	
84-66-2	Diethylphthalate	10	U
86-73-7	Fluorene	10	Ū
7005-72-3	4-Chlorophenyl-phenylether	10	Ū
100-01-6	4-Nitroaniline	25	Ū
534-52-1	4,6-Dinitro-2-methylphenol	25	Ū
86-30-6	N-Nitrosodiphenylamine (1)	10	Ū
101-55-3	4-Bromophenyl-phenylether	10	Ū
118-74-1	Hexachlorobenzene	10	Ū
1912-24-9	Atrazine	10	Ū
87-86-5	Pentachlorophenol	62	
85-01-8	Phenanthrene	10	Ū
120-12-7	Anthracene	10	Ū
86-74-8	Carbazole	10	Ū
84-74-2	Di-n-butylphthalate	10	U
206-44-0	Fluoranthene	10	Ū
129-00-0	Pyrene	40	
85-68-7	Butylbenzylphthalate	10	Ū
91-94-1	3,3'-Dichlorobenzidine	10	Ü
56-55-3	Benzo(a)anthracene	10	Ū
218-01-9	Chrysene	10	Ū
117-81-7	bis(2-Ethylhexyl)phthalate	5	J
117-84-0	Di-n-octylphthalate	3	J
205-99-2	Benzo(b)fluoranthene	10	Ū
207-08-9	Benzo(k)fluoranthene	10	Ū
50-32-8	Benzo(a)pyrene	10	Ŭ
193-39-5	Indeno(1,2,3-cd)pyrene	10	Ū
53-70-3	Dibenzo(a,h)anthracene	10	Ū
191-24-2	Benzo(g,h,i)perylene	10	Ŭ

(1) - Cannot be separated from Diphenylamine

Ų. S 19 19 4 M Sib-enelyne9-N -ম Operator: AW SRC: LIMS Column diameter: 0.25 8 Stb-enezynd2~ . Instrument: S1.i <u>위</u> 0 Ĥ Oth-enenthrened9- -P R Data File: \\AVOGADRO\ORGANICS\organio\svoa\S1.i\050913.B\S1E5928.D IonedqomondinT-8,4,S--12 P-Fluorobiphenyl 얶 -되 . 유 <u>vaphenatenche</u> ٠o٠ Zb−eneznedontiN~ Sample Info: LCS-19698, S1BLCS, 19698 +b-eneznedonoldoid-S.1-- w Chierophenoi-de -Breroi-d<u>e</u> Volume Injected (uL): 2.0 Date : 13-SEP-2005 12:41 Column phase: DB-5MS -2-Fluorophenol S Client ID: SIBLCS 8.0 4 4 4 -9*0 00142 (9~0T×) X

Ŕ

-6,

8

Data File: S1E5928.D

Report Date: 16-Sep-2005 13:22

Mitkem Corporation

CLP OLM04.1 QUANTITATION REPORT

Data file : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\S1E5928.D

Lab Smp Id: LCS-19698 Client Smp ID: S1BLCS

Inj Date : 13-SEP-2005 12:41

Operator : AW SRC: LIMS Inst ID: S1.i

Smp Info : LCS-19698, S1BLCS, 19698

Misc Info :

Comment :

Method : \\AVOGADRO\ORGANICS\organic\svoa\S1.i\050913.B\s1_olm4_2_S.m

Meth Date: 13-Sep-2005 11:56 mtl Quant Type: ISTD Cal Date: 13-SEP-2005 11:12 Cal File: S1E5926.D Als bottle: 3 QC Sample: LCS

Dil Factor: 1.00000

Integrator: HP RTE Compound Sublist: OLM4.sub

Target Version: 4.03
Processing Host: TARGET11

Concentration Formula: Amt * DF * Uf*(Vt/Vi)*(1/Vo)

Name	Value	Description
DF Uf Vt Vi Vo	1.000 1000.000 2.000	Dilution Factor GPC Correction Factor Volume of final extract (uL) Volume injected (uL) Volume of sample extracted (mL)

						CONCENTRA	TIONS
	QUANT SIG					ON-COLUMN	FINAL
Compounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ug/L)
		CE 100					
\$ 1 2-Fluorophenol	112	6.070	6.058	(0.758)	1144469	120.230	60
\$ 3 Phenol-d5	99	7.388	7.376	(0.923)	1589211	116.649	58
4 Phenol	94	7.409	7.398	(0.926)	1593967	117.935	59
\$ 62-Chlorophenol-d4	132	7.658	7.646	(0.957)	1328322	121.475	61
7 2-Chlorophenol	128	7.679	7.678	(0.960)	1287712	123.766	62
* 8 1,4-Dichlorobenzene-d4	152	8.004	8.003	(1.000)	279913	40.0000	(Q)
\$ 91,2-Dichlorobenzene-d4	152	8.241	8.240	(1.030)	490119	67.2050	34
14 N-Nitroso-di-n-propylamine	70	8.587	8.597	(1.073)	663895	80.7543	40 (Q)
\$ 16 Nitrobenzene-d5	82	8.846	8.845	(0.884)	962353	81.2443	41
* 23 Naphthalene-d8	136	10.002	10.001	(1.000)	1163309	40.0000	
28 4-Chloro-3-Methylphenol	107	10.856	10.866	(1.085)	1256580	123.127	62
\$ 33 2-Fluorobiphenyl	172	11.752	11.751	(0.912)	1871488	75.6868	38
* 41 Acenaphthene-d10	164	12.887	12.886	(1,000)	683334	40.0000	
42 Acenaphthene	153	12.941	12.940	(1.004)	1642344	80.3130	40

Data File: S1E5928.D

Report Date: 16-Sep-2005 13:22

	•						CONCENTRA	TIONS
		QUANT SIG					ON-COLUMN	FINAL
C	ompounds	MASS	RT	EXP RT	REL RT	RESPONSE	(ng)	(ug/L)
=		====	==		=====	=======	======	======
	44 4-Nitrophenol	109	13.049	13.037	(1.013)	512764	135.539	68 (R)
	46 2,4-Dinitrotoluene 🗸	165	13.189	13,177	(1.023)	723320	85.5962	43
\$	53 2,4,6-Tribromophenol	330	14.194	14.182	(0.925)	580303	128.163	64
	57 Pentachlorophenol	266	15.015	15.014	(0.978)	665050	124.248	62
*	58 Phenanthrene-d10	188	15.350	15.349	(1.000)	1189180	40.0000	
	64 Pyrene	202	17.759	17.747	(0.900)	3214498	79.6354	40
ş	65 Terphenyl-d14	244	17.986	17.974	(0.911)	2093723	73.1078	37
*	69 Chrysene-d12	240	19.736	19.746	(1.000)	1066288	40.0000	
	71 bis(2-Ethylhexyl)phthalate	149	19.682	19.681	(0.997)	352517	10.4640	5 (a)
	72 Di-n-octylphthalate	149	20.719	20.718	(0.931)	298464	5.21448	3 (a)
*	75 Perulene-dl2	254	22 253	22 252	(1 000)	916914	40 0000	

QC Flag Legend

- a Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

 Q - Qualifier signal failed the ratio test.

 R - Spike/Surrogate failed recovery limits.

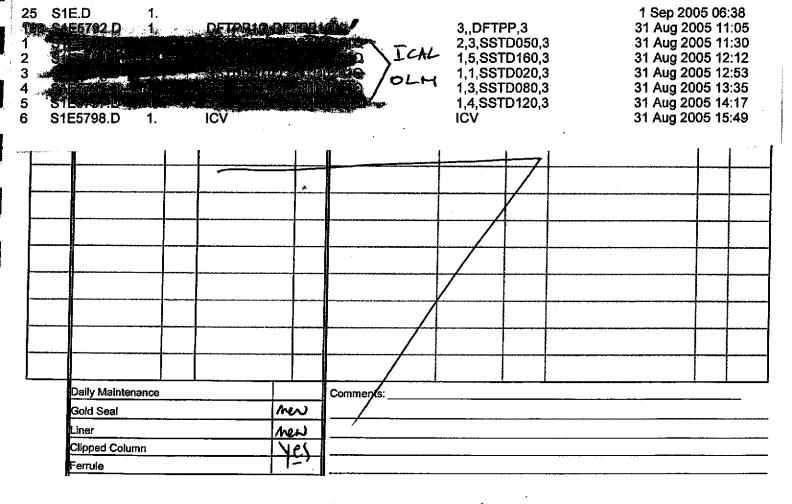
		13, 01004,	GPC Batch #	-		Solution		≥	اد_	7 WILLIAM N						T.	> ;	1 mg 03/12/05 1	1								
		Project(s) 1/4003,	, [-		- T	, , ,	_	-}-	7. A.M.	-					1		+	\prod		-	+		4		6	KL 9/16/0)
		Project(ted: 9:34	KD after GPC	Ana	1		-		13 ·	-		_					3/3/							rafure:	Yes (Rig	2
		Soil	Time Started; 8:30	KD	Date	रुवा <u>क</u> रुवाहर	03100	00 00 00 00 00 00 00 00 00 00 00 00 00	2,4000	<u>श्चित्र</u>	+	-		-	-		> 7	93/31gX	**						th Tempe	Tuned:	By:
	20	CAGTOOM.	Ouner:	C													(Water Bath Temperature:	Sonicator Tuned:	Reviewed By:
	mvolatil	Sample (1# 6	GPC	Date/Analyst																-		+			6	j uli ij
	- CLP Semvolatiles		Wellz	Vol. pre	ر اد				12.	*															*	4	
	PREP.	er:	Solvent Lot #		ž.						6) 	*	\downarrow			\parallel		+	1	-	+			J-106	942 A	
· ************************************	TION: ORGANIC PREP	Lid Other:	•	KD prior to GPC	Date/Allaryst						+	-		+	\uparrow	+	#			$\frac{1}{1}$		-	-	H	Lot#: ONP OKOGOT	050942	
CA; ···→	N. ORC	4520C(Lig/Light)	Witness: 46	Initial KI	1	-					-	-	_	+			7		+	4	-		-	$\prod_{i=1}^{n}$	i our	OMR	27
	RATIO	E X	Wit		1 1						8	200					27		-	20		+	-	$\prod_{i=1}^{n}$	ate Lot		
	MITKEM CORPORA	AQ: 3510C(SepF)	Spiker: _ 64	Matrix Spike Added	'	8hilasorso	1				8hi Lasomso	OSWOSO TIMB	76/202							8/29/03					Sodium Sulfate		÷
	MITKE	od & JP#	2	zate Added	05W0508018												8108018 508018										÷
		We.	Analyst			 				_	1/4						8108050m50				\						
		MON	86	Wt/Vol Extracted	GOOML	-					_			-		7	1000ml					\setminus		s			
		Analysis CLM 5 VOA	19698	Client ID			910	118	OIC	0%	DACMS	OSCNSD.	240	0.50	27	OIC.	OSB							Comments			
The second secon		Date 8/29/05	8 <i>69</i> 61	Lab ID	MB- 19698	86961-571	DO 993	9660(D1003					\	D 1003	40010	1004							a de la companya de l			0014
e !			0	La	MAB	7		9	Δ)						-	9	7										.

о о т Logbook_TD: 50.0173-07/05

Injected

		0644, 2 08/31/0r IS-SPORO802A	STD ID: <u>SMOT</u> SMOTO8:	304 - L2 F - L4 E - L3 C - L7	_	ANALYST:				
AS#	FILE	MITKEM ID	CLIENT ID	METHOD	DIL	COMMENTS	IS	SS		
					· · · · · · · · · · · · · · · · · · ·					

Injection Log


Misc Info

Directory: O:\ORGANIC\SVOA\S1.i\050831.B

SampleName

Multiplier

Vial FileName

Logbook ID 70.0167-06/05

Reviewed By: KC 9/16/05

00146

Mitkem Corporation Instrument S1 Injection Log SemiVolatiles Laboratory anorasion-tune METHOD: 820 01 08 31 01 SHOTOGIOTA-L2 au 4.2 STD ID: SNOTORISB tue ANALYST:____ EMV: 2047 DATE: 09 13 01 **COMMENTS:** DATE PRINTED: IS- SPOROSOZA DATE LOADED:__ METHOD DIL **COMMENTS** IS SS CLIENT ID AS# FILE MITKEM ID 10:53 OK LCS-196/98 Ispile out, de D0996-118 D14471 ok ok D0993-01B D12926 D1003-014455 31 02471456 **3**2 45 D144T6 MS 33 Ispile out ok ac 01447649) Ispike act, OK gψ 35 SYC. OK 36 01003 ~ oglylor AL

Daily Maintenance Comments:

Gold Seal Comments:

Liner Clipped Column

Ferrute

Logbook ID 70.0167-06/05

Reviewed By: _____

00147

Sample Receiving Logbook Workorder No. D 1004 Client Name: ____E*& Storage Locations: WA, B2,MI Date Recv'd 8/35/05 Sample #s 01,02 Storage Locations: £2 03 Date Recv'd Sample #s_ Storage Locations: Date Recv'd Sample #s Date Recv'd_____ Sample #s Storage Locations: Date Recv'd____ Storage Locations: Sample #s Date Recy'd Sample #s **Storage Locations:**

Date Recv'd	Sam	ple #s		Storage	Storage Locations:						
	C)UT				IN					
Relingu	ished By	R	eceived By	Reline	quished By	Re	ceived By				
Date: 8 29/05	Init: JS	Date: 8/2	9/05 Init: B4	Date: 4/29	os Init: 33	Date: 8/29	63 Init: B4				
Samp. #s	1,2	•			ln	ipty '					
Date: 8 30 05	Init: 35	Date: 8/3	05 Init: B A	Date: 8/30	of Init: 53	Date: 8/30	Tnit: B4				
Samp. #s	1,2	ŧ			empt	7					
Date: 8/31/05	Init: $\mathcal{B}^{\mathcal{V}}$	Date: 8/3/	Init: KB	Date: 8/3	1/05 _{Init:} Bl	Date: 9/3//	IX Init: KB				
Samp. #s		2 <i>-3</i>			1-3		gas				
Date: 9/2/05	Init: 8/	Date: 9/2	Jut Init: KB	Date: 9/2.	/05 Init: Bb	Date: 9/2/	os Init: KB				
Samp. #s	3		·		3		, r				
Date: 9/13/55	Init: BV	Date: 9//	3/55 Init: KB	Date: 9/13	los _{Init:} BV	Date: 9/13/	os Init: KB				
Samp. #s	/				1						
Date: 9/15/15	Init: 🔥	Date: 9/15	v5 Init: 82	Date:	Init:	Date:	Init:				
Samp. #s	3	`									
Date:	Init:	Date:	Init:	Date:	Init:	Date:	Init:				
Samp. #s	~										
Date:	Init:	Date:	Initi	Date:	Init:	Date:	Init:				
Såmp.#s∌											

Please record analyst's initials, date, and sample #s removed. Add any comments if necessary (broken bottles, empty jars, etc.)

Logbook ID: 30.0287-07/05

Comments:

Reviewed: KL 9/16/08

MITI	KEM CORPORA	TION E	XTRACT TRA	NSFER LO	GBOOK: SEMI	VOLATILE ANALYSIS
Date Transferred from Prep Lab	Lab ID		Transferred By	Received By	Storage Location	Comments
09/109/05	<i>७</i> ०९९३	tro	UG	V	P 7	
	١	130		~	}	
		40		V		
		150		~		
		ach		✓		
	1	78D	/	~		
V	V	130	V	V	7	
09/09/05	\$0993	200	KG .	√	27	
09/10/05	NB-19862		W	AW	0)	
3.4	165-19862		1/	<	,	
V	LGD-1986Z		V	✓		
09/10/05	prono	17A	Ub	V	V	
09110105	48-19698		WG	/	n7	,
	LCS-13698		1,	<i>-</i>	<u> </u>	
V	100993	ળાઝ	V	V	l l	
09/10/05	00996	MB	KG	\sim	k٦	
20151/160	48-19793		46	KLL	RZU	
	165-19739			1	(415
	1650-19799				\	
V	NO1053	৩ 6გ	V			1
09/12/05	D1023	०२१७	W	$\Psi_{\mathcal{J}}$	<u>V</u>	
	m814907	-	SP	KLV	Rn	
and green Stages	LCS 19907					
reservance	D1023	010				
		020		1		
		<u>م 3 ه</u>		1		
		040		1		
****		<u>65</u> D		4		
****		09 D		/		
		10 D				
	,*	li D				
	,	12 D			ı	
a//	<u> </u>	13 D	<u> </u>		/	
1/12/05	01023	14 0	5 7		V	

Logbook ID 70.0141-08/05

Reviewed By: KL 9/16/05

	MIT	KEM CORPORA	TION E	XTRACT T	TRA	NSFER LO	GBOOK: SEM	IIVOLATILE ANALYSIS
	ansferred rep Lab	i Lab ID		Transferred	Bv	Received By	Storage Location	Comments
091131	nΚ	NB-19698					Diorago Docaro	on Comments
V/1/13		165-13898						
09/13	10<	Ø 1003	ON C	ИG		1W.	R ₁	
03 (1)	10,	1 4	026			7		
	ļ		ozens			V		
	1-		020450					
	 		on C			V	7,	
			os c		\dashv	V		
	1/	\$0 1003	OFC			J I		
	Ψ	81004	010	1		- 	1	
09/17	70	21004	02 B	166-		UK V	7	· · · · · · · · · · · · · · · · · · ·
	701	MB -19726	1000	KG-		t _	R7	
<u>. اد.</u>	(()	LUS- 19726		1		1/4	 	,
		USD-19776					- 	
		191003	OLC	<u> </u>		\overline{v}		
		1	07.6		\dashv	V		
į,			02(95			V		
			OSCHID			V		-,
	,	,	046		7	Ŭ,		
V		V	osC	V		de	-/	· · · · · · · · · · · · · · · · · · ·
09)13	०८	Ø 1003	ac	46		11	. Ř7	
1		mB 19426		57	Ì	4 1)	R7	
		LC5 14426		1		V ₁	,	
		245019926				レー		
		Dio37 msp	OŹPRE			V		
		m819776 ·				V		
		665 19776				V		
		LCSD14776				V		
		LCS 19777				√ \	,	
		LCS019777				√		
		D1023 /	668			V		
/		D1023	טאנט	/		V V	V	
<u> V</u>		01024	OIB			UAV	RT	
1/3/0	√ [MR 14774		કર		AW	\mathcal{D}	

Logbook ID 70.0141-08/05

Reviewed By: KL 9/16/07

2E WATER PESTICIDE SURROGATE RECOVERY

Lab	Name:	MITKEM	CORPORAT	rion		_ c	ontract:					
Lab	Code:	MITKEM	Case	No.:	:		SAS No.:		SDG	No.:	MD1004	Ē
GC ·	Column	(1): CLE	PEST	ID:	0.53	(mm)	GC Colı	ımı (2) :	CLPPEST	TIID:	0 . 53 (n	nm '

	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
	==========	=====	=====		=====	=====	=====	===
01	PBLK5R	112	81	92	94			0
02	P5RLCS	81	80	95	96			Ö
03	SB-RB-W-R	70	69	76	78			0
04	MW12-W-O	98	75	84	86			0
05								
06								
07								
80				_	·			
09								
10								
11 12				******				<u> </u>
13								
14								
15								
16								
17					-		· · · · · · · · · · · · · · · · · · ·	——I
18								
19				_			-	
20								
21								
22						-		
23								
24								
25								
26								
27							-	
28				-				
29			· · · · · · · · · · · · · · · · · · ·				-	
30	· · · · · · · · · · · · · · · · · · ·							

QC LIMITS

(TCX) = Tetrachloro-m-xylene (DCB) = Decachlorobiphenyl (30-150)(30-150)

Column to be used to flag recovery values
* Values outside of QC limits
D Surrogate diluted out

WATER PESTICIDE LAB CONTROL SAMPLE

Lab Name:	MITKEM CORPO	RATION (Contract:		
Lab Code:	MITKEM Ca	se No.:	SAS No.:	SDG No.:	MD1004
Matrix Sp	ike - Sample	No.: P5RLC	CS	• •	

	SPIKE	SAMPLE	LCS	LCS	QC.
	ADDED		CONCENTRATION	ò	LIMITS
COMPOUND	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
	=======	=========	=========	=====	=====
gamma-BHC (Lindane)	0.50		0.31	62	56-123
Heptachlor	0.50		0.40	80	40-131
Aldrin	0.50		0.41	82	40-120
Dieldrin	1.0		0.95	95	52-126
Endrin	1.0		1.1	110	56-121
4,4'-DDT	1.0		0.82	82	38-127

Column to be used to flag recovery and RPD values with an asterisk

*	Values	outside	of	QC	limits
---	--------	---------	----	----	--------

RPD: 0 out of 0 outside limits Spike Recovery: 0 out of 6 outside limits

COMMENTS:		
	 	· · · · · · · · · · · · · · · · · · ·

4C PESTICIDE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PBLK5R

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Lab Sample ID: MB-19699	Lab File ID: E5C2405F
Matrix (soil/water) WATER	Extraction: (Type) SEPF
Sulfur Cleanup (Y/N) Y	Date Extracted: 08/29/05
Date Analyzed (1): 09/21/05	Date Analyzed (2): 09/21/05
Time Analyzed (1): 0032	Time Analyzed (2): 0032
Instrument ID (1): E5	Instrument ID (2): E5
GC Column (1): CLPPEST ID: 0.53 (mm)	GC Column (2): CLPPESTII ID: 0.53 (mm)
THIS METHOD RIANK APPLIES TO THE E	OLLOWING SAMPLES MS and MSD

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
		=======================================	========	=======
01	P5RLCS	LCS-19699	09/21/05	09/21/05
02	SB-RB-W-R	D1004-01C	09/21/05	09/21/05
03	MW12-W-O	D1004-02B	09/21/05	09/21/05
04				
05				
06				
07				
80				
09				
10				
11				
12				
13 14				
15				· · · · · · · · · · · · · · · · · · ·
16				
17				
18			· · · · · · · · · · · · · · · · · · ·	
19				
20				
21				
22	·			
23				
24		<u> </u>		
25				
26				

COMMENTS:		

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION Contract:	MW12-W-O
Lab Code: MITKEM Case No.: SAS No.: SI	OG No.: MD1004
Matrix: (soil/water) WATER Lab Sample ID: I	01004-02B
Sample wt/vol: 1000 (g/mL) ML Lab File ID: E	5C2408F
% Moisture: Decanted: (Y/N) Date Received: 08/	/25/05
Extraction: (Type) <u>SEPF</u> Date Extracted:	08/29/05
Concentrated Extract Volume: 10000 (uL) Date Analyzed:	09/21/05
Injection Volume: 1.0 (uL) Dilution Factors	: <u>1.0</u>
GPC Cleanup: (Y/N) N pH: Sulfur Cleanup:	: (Y/N) <u>Y</u>
CONCENTRATI	ION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

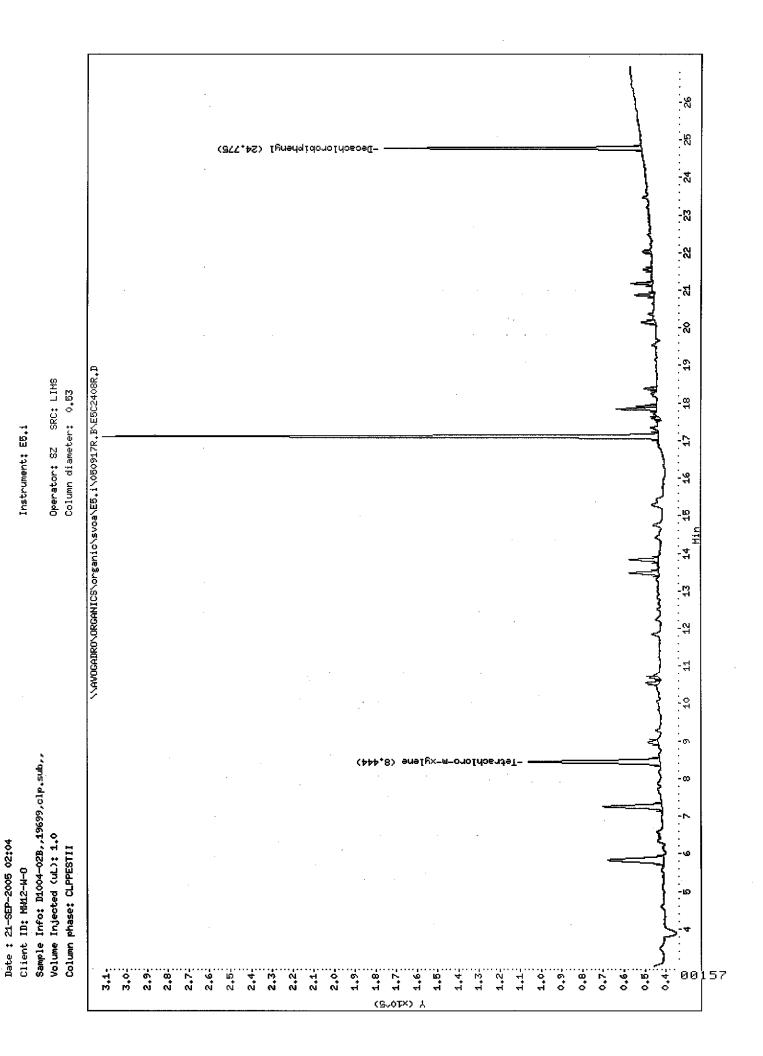
319-84-6	alpha-BHC	0.050	Ū
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	Ū
58-89-9	qamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	U
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	ט
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	Ü
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	U
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	U
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	ש
11096-82-5	Aroclor-1260	1.0	U

17 18 19 20 21 22 23 24 25 26 -Becachlorobiphenyl (22,279) \\AVOGABRO\ORGANICS\organic\svoa\E5.i\O50917F.B\E5C2408F.D Column diameter: 0.53 16 10 11 12 13 14 15 Column phase: CLPPest ั<mark>ห</mark>ื้00 (56 0.5 0.4 3,4 3,1-3.0-2,7 , r. 2,3 2,2 2,1-2,0 1.9 1.8 1,7 1.6-1.4 1,3 1,0-... 6*0 80 0.7 1,1 (9-0TX) X

SRC: LIMS

Operator: SZ

Instrument: E5.i


Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\o50917F.B\E5C2408F.D

Sample Info; Id004-02B,,19699,clp,sub,,

Date : 21-SEP-2005 02:04

Client ID: MW12-W-O

Volume Injected (uL): 1.0

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2408R.D

Data File: E5C2408F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2408F.D Lab Smp Id: D1004-02B Client Smp ID: MW12-W-O

Inj Date : 21-SEP-2005 02:04

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : D1004-02B,,19699,clp.sub,,

Misc Info : Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Meth Date: 27-Sep-2005 14:21 mtl Quant Type: ESTD Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D

Als bottle: 29

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF		Dilution Factor
U£	1.000	Correction factor
Vt		Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==		********	======		
\$ 1	Tetrachloro-m-xylene	=	CAS #:	877-09-8	
6.26	6.28 -0.020	408372 0.01970	0.20		
\$. 2	Decachlorobiphenyl		CAS #:	2051-24-3	
22.3	22.3 0.000	619853 0.01673	0.17		

W.

Data File: E5C2408R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2408R.D.

Lab Smp Id: D1004-02B Client Smp ID: MW12-W-O

Inj Date : 21-SEP-2005 02:04

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : D1004-02B,,19699,clp.sub,,

Misc Info : Comment :

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Als bottle: 29

Dil Factor: 1.00000 Integrator: Falcon

Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF U f		Dilution Factor Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1,000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L) TARGET RANGE	RATIO	
==	=======================================			====	
\$ 1	Tetrachloro-m-xylene		CAS #: 877-09-8		
8.44	8.45 -0.010	320740 0.01504	0.15		ghalson
\$3	Decachlorobiphenyl		CAS #: 2051-24-3		•
24.8	24.8 0.000	381327 0.01716	0.17		

Lab File ID: E5C2407F

 Lab Name:
 MITKEM CORPORATION
 Contract:
 SB-RB-W-R

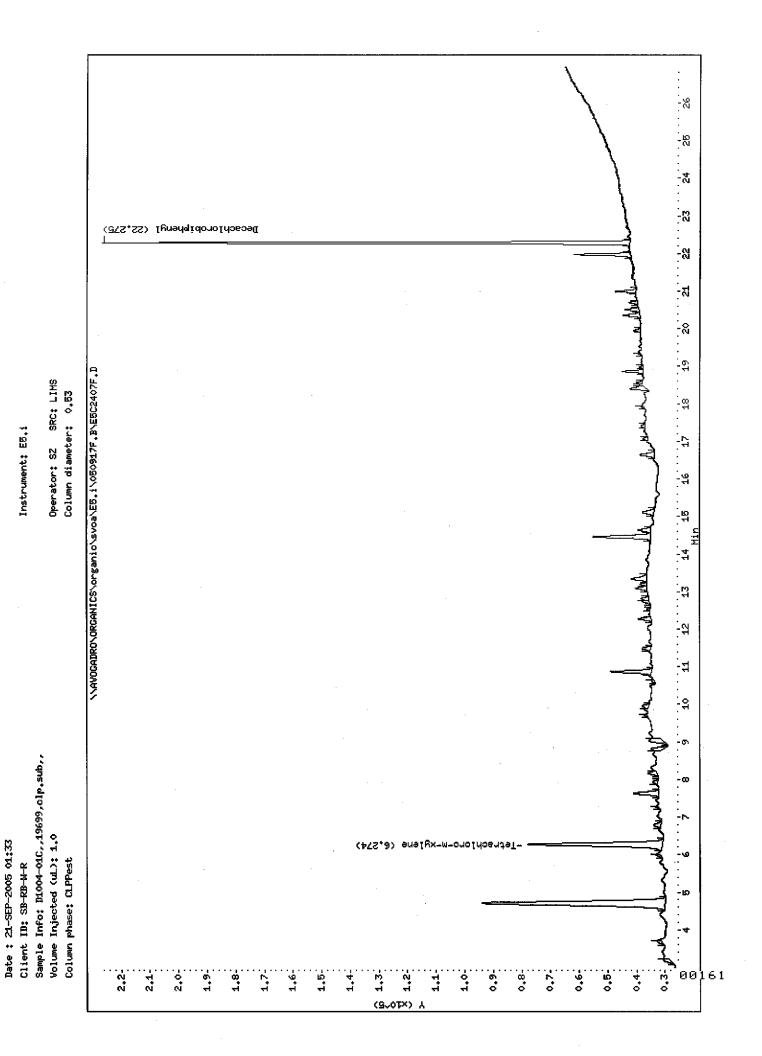
 Lab Code:
 MITKEM
 Case No.:
 SAS No.:
 SDG No.: MD1004

Matrix: (soil/water) WATER Lab Sample ID: D1004-01C

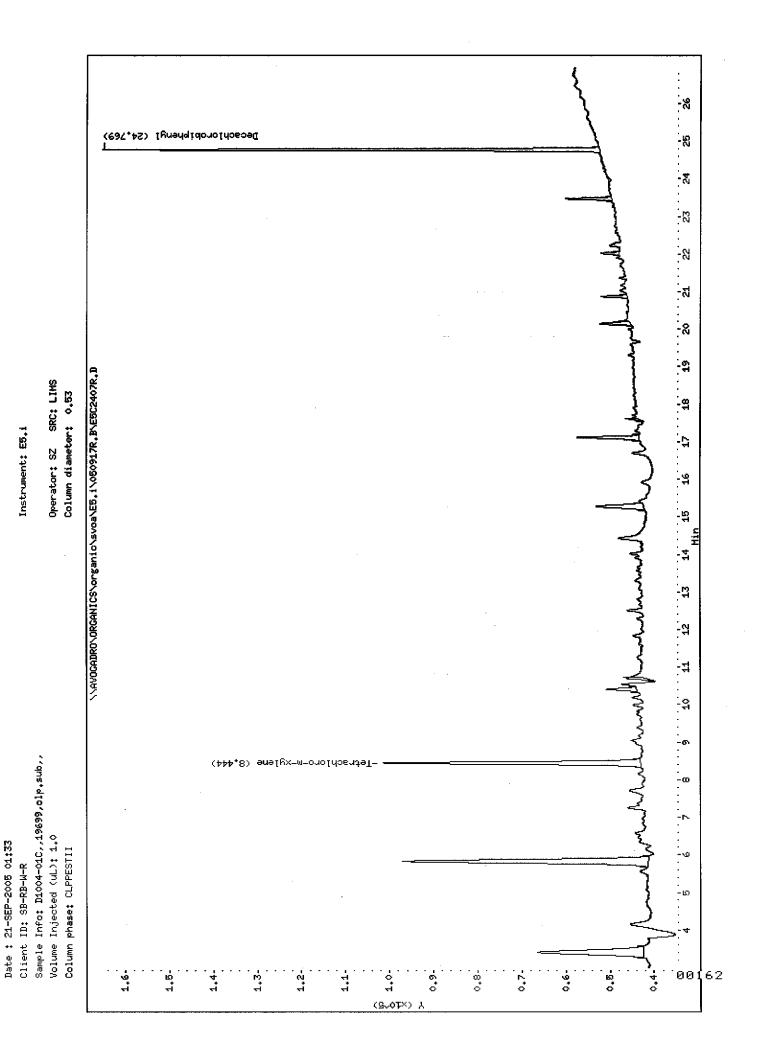
% Moisture: Decanted: (Y/N) Date Received: 08/25/05

Sample wt/vol: 1000 (g/mL) ML

Extraction: (Type) SEPF Date Extracted: 08/29/05


Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/21/05

Injection Volume: 1.0 (uL) Dilution Factor: 1.0


GPC Cleanup: (Y/N) <u>N</u> pH: ____ Sulfur Cleanup: (Y/N) <u>Y</u>

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	Ü
319-86-8	delta-BHC	0.050	∵ Ü•
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ü
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ŭ
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ü
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	Ŭ
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	Ū
			•

Data File: \\AWOGADRO\ORGANICS\organio\svoa\E5.i\050917F.B\E5C2407F.D

Data File: \\AVOGADRO\ORGANICS\organio\svoa\E5.i\050917R.B\E5C2407R.D

Data File: E5C2407F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2407F.D

Lab Smp Id: D1004-01C Client Smp ID: SB-RB-W-R

Inj Date : 21-SEP-2005 01:33

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : D1004-01C, 19699, clp.sub, ,

Misc Info:

Comment : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Meth Date : 27-Sep-2005 14:21 mtl Cal Date : 17-SEP-2005 21:18 Quant Type: ESTD

Cal File: E5C2362F.D

Als bottle: 28

Dil Factor: 1.00000

Compound Sublist: clp.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
U£	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
ŔŤ	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
5 1	Tetrachloro-m-xylene		CAS #:	877-09-8	
5.27	6.28 -0.010	290232 0.01400	0.14		
2	Decachlorobiphenyl		CAS #:	2051-24-3	*****
22.3	22.3 0.000	566412 0.01528	0.15		

Data File: E5C2407R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2407R.D

Lab Smp Id: D1004-01C Client Smp ID: SB-RB-W-R

Inj Date : 21-SEP-2005 01:33

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : D1004-01C,,19699,clp.sub,,

Misc Info : Comment

\$ 8.

\$

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date : 27-Sep-2005 14:23 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 28

Dil Factor: 1.00000

Compound Sublist: clp.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
	*******				#==##
1	Tetrachloro-m-xylene		CAS #:	877-09-8	
.44	8.45 -0.010	294003 0.01378	0.14		
3	Decachlorobiphenyl		CAS #:	2051-24-3	
4.8	24.8 0.000	346135 0.01557	0.16		

abolism

6E PESTICIDE INITIAL CALIBRATION OF SINGLE COMPONENT ANALYTES

Lab Name:	MITKEM	CORPORATION		Contract			
Lab Code:	MITKEM	Case No.:		_ SAS No.:	:	SDG No.:	<u>MD1004</u>
Instrument	t ID: <u>E</u>	Lev	rel (x	low): low	1.0 mid	4.0 hi	gh <u>16.0</u>
CC Column	· CLPPES	TD: 0.53	(mm)	Date(s)	Analyzed.	09/17/05	09/17/05

	RT OI	STANDA	ARDS	MEAN	RT W	INDOW
COMPOUND	LOW	MID	HIGH	RT	FROM	TO
=======================================	=====	=====	=====	=====	=====	======
alpha-BHC	8.32				8.27	8.37
beta-BHC	9.81	9.81				
delta-BHC	10.32	10.32	10.32	10.32	10.27	10.37
gamma-BHC (Lindane)	9.40	9.40	9.41	9.40	9.35	9.45
Heptachlor	10.91	10.91	10.91	10.91	10.86	10.96
Aldrin	11.79	11.79	11.79	11.79	11.74	11.84
Heptachlor epoxide	13. 72	13.72	13.72	13.72	13.65	13.79
Endosulfan I	14.90	14.90	14.90	14.90	14.83	14.97
Dieldrin	16.07	16.07	16.07	16.07	16.00	16.14
4,4'-DDE	15.14	15.14	15.14	15.14	15.07	15.21
Endrin	16.95	16.95	16.95	16.95	16.88	17.02
Endosulfan II	17.53	17.53	17.53	17.53	17.46	17.60
4,4'-DDD	17.44	17.44	17.44	17.44	17.37	17.51
Endosulfan sulfate	19.51	19.51	19.51	19.51	19.44	19.58
4,4'-DDT	18.08	18.08	18.08		18.01	18.15
Methoxychlor	19.32	19.32	19.32	19.32	19.25	
Endrin ketone	20.04	20.04	20.04	20.04	19.97	
Endrin aldehyde	18.55	18.55	18.55	18.55	18.48	18.62
alpha-Chlordane	14.51	14.51	14.51	14.51	14.44	14.58
gamma-Chlordane	14.09	14.09	14.09	14.09	14.02	14.16
	=====	=====	=====	=====	=====	=====
Tetrachloro-m-xylene	6.27	6.27	6.29		6.23	6.33
Decachlorobiphenyl	22.28	22.28	22.28	22.28	22.18	22.38

^{*} Surrogate retention times are measured from Standard Mix A analyses.

Retention time windows are +/- 0.05 minutes for all compounds that elute before Heptachlor epoxide, +/- 0.07 minutes for all other compounds, except +/- 0.10 minutes for Decachlorobiphenyl.

6E

PESTICIDE INITIAL CALIBRATION OF SINGLE COMPONENT ANALYTES

Lab	Name:	MITKEM	CORPORAT	TION		Conti	ract	P			
Lab	Code:	MITKEM	Case	No.:		SAS	No.		SDG No	>.: <u>I</u>	MD1004
Inst	crument	: ID: <u>E</u> 5	5	_ Lev	el (x	low):	low	1.0 mid	4.0	high	n <u>16.0</u>
GC (Column:	CLPPES	TII ID:	0.53	(mm)	Date	e(s)	Analyzed:	09/17/	<u>/05 (</u>	09/17/05

	RT O	F STANDA	ARDS	MEAN	RT W	INDOW
COMPOUND	LOW	MID	HIGH	RT	FROM	TO
	=====	=====	=====	=====		=====
alpha-BHC	10.81	10.81	10.81	10.81	10.76	10.86
beta-BHC	12.44	12.44	12.44	12.44	12.39	12.49
delta-BHC	13.36	13.37	13.36	13.36	13.31	13.41
gamma-BHC (Lindane)	12.05	12.05	12.05	12.05	12.00	12.10
Heptachlor	13.43	13.43	13.44	13.43	13.38	13.48
Aldrin	14.41	14.41	14.41	14.41	14.36	14.46
Heptachlor epoxide	17.05	17.05	17.05	17.05	16.98	17.12
Endosulfan I	17.99	17.99	18.00	17.99	17.92	18.06
Dieldrin	18.66	18.66	18.66	18.66	18.59	18.73
4,4'-DDE	18.48	18.48	18.48	18.48	18.41	18.55
Endrin	19.33	19.33	19.33	19.33	19.26	19.40
Endosulfan II	19.83	19.83	19.82	19.83	19.76	19.90
4,4'-DDD	19.78	19.78	19.79	19.78	19.71	19.85
Endosulfan sulfate	21.18	21.18	21.17	21.18	21.11	21.25
4,4'-DDT	20.45	20.45	20.45	20.45	20.38	20.52
Methoxychlor	21.96	21.96	21.96	21.96	21.89	22.03
Endrin ketone	22.23	22.22	22.22	22.22	22.15	22.29
Endrin aldehyde	20.59	20.59	20.59	20.59	20.52	20.66
alpha-Chlordane	17.92	17.92	17.92	17.92	17.85	17.99
gamma-Chlordane	17.55	17.55	17.55	17.55	17.48	17.62
	=====	=====	=====	=====	=====	
Tetrachloro-m-xylene	8.44					8.50
Decachlorobiphenyl	24.77	24.78	24.78	24.78	24.68	24.88

^{*} Surrogate retention times are measured from Standard Mix A analyses.

Retention time windows are +/- 0.05 minutes for all compounds that elute before Heptachlor epoxide, +/- 0.07 minutes for all other compounds, except +/- 0.10 minutes for Decachlorobiphenyl.

PESTICIDE INITIAL CALIBRATION OF SINGLE COMPONENT ANALYTES

Lab Name:	ab Name: MITKEM CORPORATION		Contr	act:	:					
Lab Code:	MITKEM	Case	No.: _		_ SAS	No.	:	SDG No.	. : <u>M</u>	D1004
Instrumen	t ID: E	5	Leve	ı (x	low):	low	1.0 mid	<u>4.0</u> ł	uigh	16.0
GC Column	: CLPPES	T ID:	0.53	(mm)	Date	(s)	Analyzed:	09/17/0)5 0	9/17/05

COMPOUND	LOW	MID	HIGH	MEAN	%RSD
	=======		=======	========	=====
alpha-BHC	45668200	39349550	43182925	42733558	7.4
beta-BHC	18874800	17442900	16986650	17768117	5.5
delta-BHC	39450200	42077000	45192088	42239763	6.8
gamma-BHC (Lindane)	47293800	39671950	42417400	43127717	9.0
Heptachlor	57969400	46611100	48285950	50955483	12.0
Aldrin	40483800	41041250	43301850	41608967	3.6
Heptachlor epoxide	42821400	41393350	42454013	42222921	1.8
Endosulfan I	50372000	40369750	40839925	43860558	12.9
Dieldrin	47061800	40063475	43182706	43435994	8.1
4,4'-DDE	34936600	36689275	39693538	37106471	6.5
Endrin	35864700	30403325	32270625	32846217	8.5
Endosulfan II	37480900	34481000	37133213	36365038	4.5
4,4'-DDD	39016800	33522600	34890106	35809835	8.0
Endosulfan sulfate	35656500	35287650	36263944	35736031	1.4
4,4'-DDT	41182100	35384550	37175988	37914213	7.8
Methoxychlor	22583520	17888740	16415138	18962466	17.0
Endrin ketone	38924000	38958675	39329244	39070640	0.6
Endrin aldehyde	29536600	27572825	27885631	28331685	3.7
alpha-Chlordane	41239600	38851150	39285900	39792217	3.2
gamma-Chlordane	44032400	42330700	43409688	43257596	2.0
	=======	========			=====
Tetrachloro-m-xylene	26288200	20732400	20894025	22638208	14.0
Decachlorobiphenyl	48808600	37057750	35663288	40509879	17.8

 $[\]mbox{\scriptsize \star}$ Surrogate calibration factors are measured from Standard Mix A analyses.

PESTICIDE INITIAL CALIBRATION OF SINGLE COMPONENT ANALYTES

Lab Name:	MITKEM	CORPORAT	MOI		Contract			
Lab Code:	MITKEM	Case	No.:		SAS No.	:	SDG No.:	MD1004
Instrument	ID: <u>E5</u>	<u> </u>	_ Leve	el (x	low): low	1.0 mid	4.0 hi	gh <u>16.0</u>
GC Column:	CLPPES	TII ID:	0.53	(mm)	Date(s)	Analyzed:	09/17/05	09/17/05

					 -
		CALIBRATIO		•	_
COMPOUND	LOW	MID	HIGH	MEAN	%RSD
	========	=========	=======	========	=====
alpha-BHC	38464600	32374650	35695413	35511554	8.6
beta-BHC	15086000	13828500	13184075	14032858	6.9
delta-BHC	29574200	30038200	33013888	30875429	6.0
gamma-BHC (Lindane)	36866600	30519400	32703950	33363317	9.7
Heptachlor	39051600	30715750	31481600	33749650	13.7
Aldrin	26421600	25615450	26944200	26327083	2.5
Heptachlor epoxide	28159200	25740700	26286788	26728896	4.7
Endosulfan I	33190400	26102350	26093663	28462138	14.4
Dieldrin	32522900	27031675	28836338	29463638	9.5
4,4'-DDE	24009400	24216650	26355794	24860615	5.2
Endrin	24074300	19677800	21043638	21598579	10.4
Endosulfan II	25222400	22324850	24508813	24018688	6.3
4,4'-DDD	25539700	21232250	22676488	23149479	9.5
Endosulfan sulfate	23919500	22685650	23601225	23402125	2.7
4,4'-DDT	26573900	22164025	23999263	24245729	9.1
Methoxychlor	14926460	11703915	11463514	12697963	15.2
Endrin ketone	26510500	25645775	26689938	26282071	2.1
Endrin aldehyde	19008700	17569900	18031713	18203438	4.0
alpha-Chlordane	26884000	24787100	25151200	25607433	4.4
gamma-Chlordane	28057600	26266700	27004863	27109721	3.3
=======================================	========	=======	========	========	=====
Tetrachloro-m-xylene	27377400	21331700	21082075	23263725	15.3
Decachlorobiphenyl	29949600	22226075	21249269	24474981	19.5

^{*} Surrogate calibration factors are measured from Standard Mix A analyses.

6G PESTICIDE INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Lab	Name:	MITKEM	CORPORATION	Contract	t:		
Lab	Code:	MITKEM	Case No.:	SAS No		SDG No.:	<u>MD1004</u>
Inst	trument	t ID: <u>E</u>	5	Date(s)	Analyzed:	09/17/05	09/17/05

GC Column: <u>CLPPEST</u> ID: <u>0.53</u> (mm)

	AMOUNT	1		RT W	INDOW	CALIBRATION
COMPOUND	(ng)	PEAK1	RT	FROM	TO	FACTOR
===========	=== =====	=====	=====	=====	=====	========
Toxaphene	0.50	1	18.77	18.70	18.84	2155560
- .		2	19.22	19.15	19.29	2778102
		3	19.38	19.31	19.45	3968458
		4				
		5				
Aroclor-1016	0.10	1	8.95	8.88	9.02	1053960
		2	9.59	9.52	9.66	761940
		3	10.45	10.38	10.52	2478700
		4				
		5				
Aroclor-1221	0.20	1	7.09	7.02	7.16	258535
		2	7.62	7.55	7.69	177825
		3	7.75	7.68	7.82	690055
		4			·	
		5				
Aroclor-1232	0.10	1	9.58	9.51	9.65	337780
		2	10.45	10.38	10.52	1093460
		3	12.14	12.07	12.21	482740
		4				
		5		10 0=	10.01	0.10100
Aroclor-1242	0.10	1	12.14	12.07		940120
		2	13.15	13.08	13.22	387620
•		3	13.42	13.35	13.49	745690
		4_				
71 1040	0.10	5	12 15	12 00	10.00	503100
Aroclor-1248	0.10	1	13.15	13.08	13.22	593100
		2	14.05	13.98 15.42	14.12	1121130
		3 4	15.49	15.42	15.56	719610
		5				<u> </u>
Aroclor-1254	0.10	1	16.80	16.73	16.87	1469630
MIOCIOI-1224	<u> </u>	2	17.31	17.24	17.38	1423160
		$\frac{2}{3}$	17.95	17.88	18.02	2004230
		4	11.73	11.00	10.07	2004230
		- 4 5	<u> </u>			
Aroclor-1260	0.10	1	19.46	19.39	19.53	3048890
ALOCIOI-1200	1 0.10	2	20.05	19.39	20.12	1781530
	İ	3	21.35	21.28	21.42	908180
		$\frac{3}{4}$	21.33	21.20	21.42	300100
		5				
						<u> </u>

¹ At least 3 peaks for each column are required for identification of multicomponent analytes.

PESTICIDE INITIAL CALIBRATION OF MULTICOMPONENT ANALYTES

Lab N	Name:	MITKEM	CORPORATION	Contrac	t:	<u>.</u>	
Lab C	Code:	MITKEM	Case No.:	SAS No	.:	SDG No.	<u>MD1004</u>
Instr	rument	ID: E5	;	Date(s)	Analyzed:	09/17/05	09/17/05

GC Column: CLPPESTII ID: 0.53 (mm)

COMPOUND (ng) PEAK1 RT FRCM TO FACTOR Toxaphene 0.50 1 20.02 19.95 20.09 1495052 2 20.61 20.54 20.68 1375758 3 21.64 21.57 21.71 2373648 4 5 10.30 10.44 450920 2 21.76 11.69 11.83 890890 3 12.44 12.37 12.51 254620 4 2 10.76 11.69 11.83 890890 3 12.44 12.37 12.51 254620 4 2 10.17 10.10 10.24 159935 3 10.37 10.30 10.44 45920 4 2 10.17 10.10 10.24 159935 3 10.37 10.30 10.44 497760 4 2 11.76 11.69 11.83 342116 4 10		AMOUNT			ਹਾ ਪ	INDOW	CALIBRATION
Toxaphene	COMPOLINID		ראגיםם	יים			
Toxaphene		(119)	i	!			!
Aroclor-1221	Toxanhene	0.50	i i	ì l			
Aroclor-1212	·	0.50			20.54	20.68	
Aroclor-1016							
Aroclor-1016 S							
Aroclor-1016		•					
Aroclor-1221	Aroclor-1016	0.10		10.37	10.30	10.44	450920
Aroclor-1221	· • • •		2				890890
Aroclor-1221	`		3	12.44	12.37	12.51	254620
Aroclor-1221	·				÷		·
Aroclor-1242	·	_	5				
Aroclor-1232	Aroclor-1221	0.20					
Aroclor-1232							
Aroclor-1232	,			10.37	10.30	10.44	625820
Aroclor-1232							
Aroclor-1242 Aroclor-1242 Aroclor-1244 Aroclor-1248 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Ar	·						
Aroclor-1242	Aroclor-1232	0.10					
Aroclor-1242 0.10 1 13.22 13.15 13.29 1519110 2 13.65 13.58 13.72 602200 3 13.96 13.89 14.03 355660 4 5 Aroclor-1248 0.10 1 15.32 15.25 15.39 704590 2 16.86 16.79 16.93 449240 3 17.07 17.00 17.14 931860 4 5 Aroclor-1254 0.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060							
Aroclor-1242				13.22	13.15	13.29	855090
Aroclor-1242 0.10 1 13.22 13.15 13.29 1519110 2 13.65 13.58 13.72 602200 3 13.96 13.89 14.03 355660 4 5 Aroclor-1248 0.10 1 15.32 15.25 15.39 704590 2 16.86 16.79 16.93 449240 3 17.07 17.00 17.14 931860 4 5 Aroclor-1254 0.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060							
Aroclor-1248 Aroclor-1248 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260 Ar						10.00	454644
Aroclor-1248	Aroclor-1242	0.10				13.29	
Aroclor-1248							602200
Aroclor-1248 O.10 1 15.32 15.25 15.39 704590 2 16.86 16.79 16.93 449240 3 17.07 17.00 17.14 931860 Aroclor-1254 O.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 O.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060				13.96	13.89	14.03	355660
Aroclor-1248							
Aroclor-1254 Aroclor-1254 Aroclor-1260 Ar	71240	0.10		1 7 7 7	76 56	15 20	704500
Aroclor-1254 0.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060	Aroctor-1248	0.10					
Aroclor-1254 0.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060					17.00		
Aroclor-1254 0.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060				17.07	17.00	17.14	331000
Aroclor-1254 0.10 1 17.17 17.10 17.24 867520 2 17.67 17.60 17.74 1036750 3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060							
Aroclor-1260	Aroclor-1254	0.10		17 17	17 10	17 24	867520
3 18.73 18.66 18.80 1360890 4 5 Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060	11100101 1204	0.10					
Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060	.]						
Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060					10.00		2500050
Aroclor-1260 0.10 1 19.18 19.11 19.25 1157880 2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060		-					<u> </u>
2 19.95 19.88 20.02 441600 3 20.42 20.35 20.49 1951060 4 1951060	Aroclor-1260	0.10		19.18	19.11	19.25	1157880
3 20.42 20.35 20.49 1951060 4 1							
4							
	· · ·						

¹ At least 3 peaks for each column are required for identification of multicomponent analytes.

6Н PESTICIDE ANALYTE RESOLUTION SUMMARY

G----

ran Name: ī	TIKEM CORPO	RAITON	_ Con	Lract:		
Lab Code: N	MITKEM Ca	se No.:	SA	S No.:	SDG	No.: MD100
GC Column	(1): <u>CLPPES</u>	ID: <u>0.53</u>	(mm)	Instrument ID	(1):	<u>E5</u>
EPA Sample	No. (RESC##): <u>RESCAl</u>		Lab Sample ID	(1):	RESCA1
Date Analyz	zed (1) · 09,	17/05		Time Analyzed	(1).	1339

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	========
01	Tetrachloro-m-xylene	6.26	100.0
02	gamma-Chlordane	14.09	100.0
03	Endosulfan I	14.90	97.8
04	4,4'-DDE	15.14	100.0
05	Dieldrin	16.07	100.0
06	Methoxychlor	19.32	100.0
07	Endosulfan sulfate	19.51	100.0
80	Endrin ketone	20.04	100.0
09	Decachlorobiphenyl	22.28	

GC Column (2): <u>CLPPESTII</u> ID: <u>0.53</u> (mm) Instrument ID (2): <u>E5</u> Lab Sample ID (2): RESCA1 EPA Sample No. (RESC##): RESCA1 Time Analyzed (2): 1339

Date Analyzed (2): 09/17/05

RESOLUTION ANALYTE RT(왕) ______ ===== -----01 Tetrachloro-m-xylene 8.44 100.0 02 gamma-Chlordane 17.55 100.0 03 Endosulfan I 17.99 100.0 04 4,4'-DDE 05 Dieldrin 06 Endosulfan sulfate 18.48 100.0 18.65 100.0 21.18 100.0 21.96 07 Methoxychlor 100.0 08 Endrin ketone 22.22 100.0 09 Decachlorobiphenyl 24.77

Lab Name: MITKEM CORPORATION			ontract:	·	w.
Lab Code:	MITKEM Cas	se No.:	SAS No.:	SDG	No.: MD1004
GC Column	(1): CLPPEST	ID: <u>0.53</u> (mm)) Instrument ID	(1):	<u>E5</u>
EPA Sample	e No. (PEM##):	PEMA1	_ Lab Sample ID	(1):	PEMA1
Date Analy	yzed (1): <u>09/1</u>	7/05	Time Analyzed	(1):	1410

			RESOLUTION
	ANALYTE	RT	(왕)
	=======================================	=====	========
01	Tetrachloro-m-xylene	6.26	100.0
02		8.31	100.0
03	gamma-BHC (Lindane)	9.40	100.0
04	beta-BHC	9.81	100.0
05	Endrin	16.95	100.0
06	4,4'-DDT	18.08	100.0
07	Methoxychlor	19.32	100.0
80	Decachlorobiphenyl	22.28	

GC Column (2): CLPPESTII ID: 0.53 (mm) Instrument ID (2): E5

EPA Sample No. (PEM##): PEMA1 Lab Sample ID (2): PEMA1

Date Analyzed (2): 09/17/05 Time Analyzed (2): 1410

			RESOLUTION
	ANALYTE	RT	(움)
	=======================================	=====	=======
01	Tetrachloro-m-xylene	8.44	100.0
02	alpha-BHC	10.81	100.0
03	gamma-BHC (Lindane)	12.05	100.0
04	beta-BHC	12.44	100.0
05	Endrin	19.33	100.0
06	4,4'-DDT	20.45	100.0
07	Methoxychlor	21.96	100.0
80	Decachlorobiphenyl	24.78	

Lab Name:	MITKEM COI	RPORATION	_ Con	tract:		
Lab Code:	MITKEM	Case No.:	SA	S No.:	SDG	No.: MD100
GC Column	(1): <u>CLPP</u>	EST ID: 0.53	(mm)	Instrument ID	(1):	E 5
EPA Sample	e No. (PEM	##): <u>PEMA2</u>		Lab Sample ID	(1):	PEMA2
Date Analy	yzed (1): (09/17/05		Time Analyzed	(1):	2219

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	=======
01	Tetrachloro-m-xylene	6.27	100.0
02	alpha-BHC	8.31	100.0
03	gamma-BHC (Lindane)	9.40	100.0
04	beta-BHC	9.81	100.0
05	Endrin .	16.95	100.0
06	4,4'-DDT	18.07	100.0
07	Methoxychlor	19.32	100.0
08	Decachlorobiphenyl	22.28	;

GC Column (2): CLPPESTII ID: 0.53 (mm) Instrument ID (2): E5

EPA Sample No. (PEM##): PEMA2 Lab Sample ID (2): PEMA2

Date Analyzed (2): 09/17/05 Time Analyzed (2): 2219

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	
01	Tetrachloro-m-xylene	8.44	100.0
02	alpha-BHC	10.80	100.0
03	gamma-BHC (Lindane)	12.05	100.0
04	beta-BHC	12.44	100.0
05	Endrin	19.33	100.0
06	4,4'-DDT	20.44	100.0
07	Methoxychlor	21.96	100.0
08	Decachlorobiphenyl	24.77	

Lab Name:	MITKEM CORPORA	rion	Cont	ract:		
Lab Code:	MITKEM Case	No.:	SAS	No.:	SDG	No.: <u>MD1004</u>
GC Column	(1): <u>CLPPEST</u>	ID: <u>0.53</u>	(mm)	Instrument ID	(1):	<u>E5</u>
EPA Sample	e No. (PEM##):]	PEMAB		Lab Sample ID	(1):	PEMAB
Date Analy	yzed (1): <u>09/20</u>	/05		Time Analyzed	(1):	1351

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	=======
01	Tetrachloro-m-xylene	6.27	100.0
02	alpha-BHC	8.32	100.0
03	gamma-BHC (Lindane)	9.40	100.0
04	beta-BHC	9.81	100.0
05	Endrin	16.95	100.0
06	4,4'-DDT	18.08	100.0
07	Methoxychlor	19.32	100.0
80	Decachlorobiphenyl	22.28	

 GC Column (2): CLPPESTII ID: 0.53 (mm)
 Instrument ID (2): E5

 EPA Sample No. (PEM##): PEMAB
 Lab Sample ID (2): PEMAB

 Date Analyzed (2): 09/20/05
 Time Analyzed (2): 1351

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	=======
01	Tetrachloro-m-xylene	8.45	100.0
02	alpha-BHC	10.81	100.0
03	gamma-BHC (Lindane)	12.05	100.0
04	beta-BHC	12.44	100.0
05	Endrin	19.33	100.0
06	4,4'-DDT	20.45	100.0
07	Methoxychlor	21.96	100.0
80	Decachlorobiphenyl	24.78	

Lab Name:	MITKEM COR	PORATION	_ Cont	ract:		
Lab Code:	MITKEM	Case No.:	SAS	5 No.:	SDG	No.: MD100
GC Column	(1): <u>CLPPE</u>	ST ID: 0.53	(mm)	Instrument ID	(1):	<u>E5</u>
EPA Sample	e No. (PEM#	#): PEMAD		Lab Sample ID	(1):	PEMAD
Date Anala		0/21/05		Time Analyzed	(1).	0537

			RESOLUTION
	ANALYTE	RT	(왕)
	=======================================	=====	======
01	Tetrachloro-m-xylene	6.27	100.0
02	alpha-BHC	8.31	100.0
03	gamma-BHC (Lindane)	9.40	100.0
04	beta-BHC	9.80	100.0
05	Endrin	16.95	100.0
06	4,4'-DDT	18.08	100.0
07	Methoxychlor	19.32	100.0
80	Decachlorobiphenyl	22.28	

 GC Column (2): CLPPESTII ID: 0.53 (mm)
 Instrument ID (2): E5

 EPA Sample No. (PEM##): PEMAD
 Lab Sample ID (2): PEMAD

 Date Analyzed (2): 09/21/05
 Time Analyzed (2): 0537

			RESOLUTION
	ANALYTE	RT	(왕)
			========
01	Tetrachloro-m-xylene	8.44	100.0
02	alpha-BHC	10.81	100.0
03	gamma-BHC (Lindane)	12.05	100.0
04	beta-BHC	12.44	100.0
05	Endrin	19.33	100.0
06	4,4'-DDT	20.45	100.0
07	Methoxychlor	21.96	100.0
80	Decachlorobiphenyl	24.78	

6J INDIVIDUAL STANDARD MIXTURE A

Lab Name:	MITKEM CORE	PORATION	_ Con	tract:		
Lab Code:	MITKEM (ase No.:	SA	S No.:	SDG	No.: MD1004
GC Column	(1): <u>CLPPES</u>	T ID: 0.53	(mm)	Instrument ID	(1):	<u>E5</u>
EPA Sample	e No. (INDAN	##): INDAMA1		Lab Sample ID	(1):	INDAMA1
Date Analy	yzed (1): <u>09</u>	/17/05		Time Analyzed	(1):	1946

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	=======
01	Tetrachloro-m-xylene	6.27	100.0
02	alpha-BHC	8.31	100.0
03	gamma-BHC (Lindane)	9.40	100.0
04	Heptachlor	10.91	100.0
05	Endosulfan I	14.90	100.0
06	Dieldrin	16.07	100.0
07	Endrin	16.95	100.0
80	4,4'-DDD	17.44	100.0
09	4,4'-DDT	18.08	100.0
10	Methoxychlor	19.32	100.0
11	Decachlorobiphenyl	22.28	

GC Column (2): <u>CLPPESTII</u> ID: <u>0.53</u> (mm) Instrument ID (2): <u>E5</u>

EPA Sample No. (INDAM##): <u>INDAMA1</u> Lab Sample ID (2): <u>INDAMA1</u>

Date Analyzed (2): <u>09/17/05</u> Time Analyzed (2): <u>1946</u>

			RESOLUTION
	ANALYTE	RT	(왕)
		=====	
01	Tetrachloro-m-xylene	8.44	100.0
02		10.81	100.0
03	gamma-BHC (Lindane)	12.05	100.0
04	Heptachlor	13.43	100.0
05		17.99	100.0
06	Dieldrin	18.66	100.0
07	Endrin	19.33	100.0
08	4,4'-DDD	19.78	100.0
09	4,4'-DDT	20.45	100.0
10	Methoxychlor	21.96	100.0
11	Decachlorobiphenyl	24.78	

6K INDIVIDUAL STANDARD MIXTURE B

Lab Name: MITKEM CORPORATION			_ Con	tract:		
Lab Code:	MITKEM Cas	se No.:	SA	S No.:	SDG	No.: MD1004
GC Column	(1): CLPPEST	ID: <u>0.53</u>	(mm)	Instrument ID	(1):	<u>E5</u>
EPA Sample	e No. (INDBM#): INDBMA1		Lab Sample ID	(1):	INDBMA1
Date Analy	yzed (1): 09/	L7/05		Time Analyzed	(1):	2017

			RESOLUTION
	ANALYTE	RT	(왕)
	=======================================	=====	=======
01	Tetrachloro-m-xylene	6.29	100.0
02	beta-BHC	9.81	100.0
03	delta-BHC	10.32	100.0
04	Aldrin	11.79	100.0
05	Heptachlor epoxide	13.72	100.0
06	gamma-Chlordane	14.09	100.0
07	alpha-Chlordane	14.51	100.0
80	4,4'-DDE	15.14	100.0
09	Endosulfan II	17.53	100.0
10	Endrin aldehyde	18.55	100.0
11	Endosulfan sulfate	19.51	100.0
12	Endrin ketone	20.04	100.0
13	Decachlorobiphenyl	22.28	

GC Column (2): CLPPESTII ID: 0.53 (mm) Instrument ID (2): E5

EPA Sample No. (INDBM##): INDBMA1 Lab Sample ID (2): INDBMA1

Date Analyzed (2): 09/17/05 Time Analyzed (2): 2017

			RESOLUTION
	ANALYTE	RT	(%)
		=====	========
01	Tetrachloro-m-xylene	8.45	100.0
02	beta-BHC	12.44	100.0
03	delta-BHC	13.37	100.0
04	Aldrin	14.41	100.0
05	Heptachlor epoxide	1 7.05	100.0
06	gamma-Chlordane	17.55	100.0
07	alpha-Chlordane	17.92	100.0
08	4,4'-DDE	18.48	100.0
09	Endosulfan II	19.82	100.0
10	Endrin aldehyde	20.59	100.0
11	Endosulfan sulfate	21.18	100.0
12	Endrin ketone	22.22	100.0
13	Decachlorobiphenyl	24.77	

Lab	Name:	MITKEM CORP	ORATION	 	Cont	tract:		
Lab	Code:	MITKEM C	ase No.:		sas	No.:	_ SDG No.	.: <u>MD1004</u>
GC	Column:	CLPPEST	ID: <u>0.53</u>	(mm)	Init.	Calib. Dat	e(s): <u>09/1</u> 7	7/05 09/17/05
EPA	Sample	No.(PIBLK#	#):			Date	Analyzed :	:
Lab	Sample	ID (PIBLK)	:			Time	Analyzed :	
EPA	Sample	: No. (PEM##)	: PEM	A1	_	Date	Analyzed :	: <u>09/17/05</u>
Lab	Sample	ID (PEM) :	PEMA1			Time	Analyzed :	: 1410

		RT W	INDOW	CALC	NOM	
PEM	RT	FROM	TO	AMOUNT	AMOUNT	%D
COMPOUND				(ng)	(ng)	
	=====	=====	=====	======	======	=====
alpha-BHC	8.31	8.27	8.37	0.009	0.010	-10.0
beta-BHC	9.81	9.76	9.86	0.011	0.010	10.0
gamma-BHC (Lindane)	9.40	9.35	9.45	0.009	0.010	-10.0
Endrin	16.95	16.88	17.02	0.059	0.050	18.0
4,4'-DDT	18.08	18.01	18.15	0.102	0.10	2.0
Methoxychlor	19.32	19.25	19.39	0.238	0.25	-4.8

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 4.40

Combined % Breakdown (1): 4.40

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
GC Column: <u>CLPPESTII</u> ID: <u>0.53</u> (mm	n) Init. Calib. Date(s): 09/17/05 09/17/05
EPA Sample No.(PIBLK##):	Date Analyzed :
Lab Sample ID (PIBLK) :	Time Analyzed :
EPA Sample No.(PEM##) : PEMA1	Date Analyzed : 09/17/05
Lab Sample ID (PEM) : PEMA1	Time Analyzed: 1410

PEM COMPOUND	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
=======================================	=====	=====	=====	=======	=======	=====
alpha-BHC	10.81	10.76	10.86	0.009	0.010	-10.0
beta-BHC	12.44	12.39	12.49	0.011	0.010	10.0
gamma-BHC (Lindane)	12.05	12.00	12.10	0.010	0.010	0.0
Endrin	19.33	19.26	19.40	0.058	0.050	16.0
4,4'-DDT	20.45	20.38	20.52	0.103	0.10	3.0
Methoxychlor	21.96	21.89	22.03	0.238	0.25	-4.8

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 3.20

Combined % Breakdown (1): 3.20

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: SAS No.: SDG No.: MD1004

GC Column: CLPPEST ID: 0.53 (mm) Init. Calib. Date(s): 09/17/05 09/17/05

EPA Sample No. (PIBLK##): PIBLKA2 Date Analyzed: 09/17/05

Lab Sample ID (PIBLK) : PIBLKA2 Time Analyzed : 2148

EPA Sample No. (PEM##) : PEMA2 Date Analyzed : 09/17/05

Lab Sample ID (PEM) : PEMA2 Time Analyzed : 2219

PEM COMPOUND	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	&D
=======================================	=====	=====	=====	=======	=======	=====
alpha-BHC	8.31	8.27	8.37	0.009	0.010	-10.0
beta-BHC	9.81	9.76	9.86	0.011	0.010	10.0
gamma-BHC (Lindane)	9.40	9.35	9.45	0.009	0.010	-10.0
Endrin	16.95	16.88	17.02	0.058	0.050	16.0
4,4'-DDT	18.07	18.01	18.15	0.102	0.10	2.0
Methoxychlor	19.32	19.25	19.39	0.239	0.25	-4.4

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 5.83

Combined % Breakdown (1): 5.83

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: CLPPESTII ID: 0.53 (mm) Init. Calib. Date(s): 09/17/05 09/17/05

EPA Sample No.(PIBLK##): PIBLKA2 Date Analyzed: 09/17/05

EPA Sample No.(PEM##): PEMA2 Date Analyzed: 09/17/05

Lab Sample ID (PEM) : PEMA2 Time Analyzed : 2219

PEM COMPOUND	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
	=====	=====	=====	======	======	=====
alpha-BHC	10.80	10.76	10.86	0.009	0.010	-10.0
beta-BHC	12.44	12.39	12.49	0.011	0.010	10.0
gamma-BHC (Lindane)	12.05	12.00	12.10	0.010	0.010	0.0
Endrin	19.33	19.26	19.40	0.057	0.050	14.0
4,4'-DDT	20.44	20.38	20.52	0.104	0.10	4.0
Methoxychlor	21.96	21.89	22.03	0.242	0.25	-3.2

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 9.50

Combined % Breakdown (1): 9.50

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: CLPPEST ID: 0.53 (mm) Init. Calib. Date(s): 09/17/05 09/17/05

EPA Sample No.(PIBLK##): PIBLKAB Date Analyzed: 09/20/05

Lab Sample ID (PIBLK) : PIBLKAB Time Analyzed : 1321

EPA Sample No.(PEM##): PEMAB Date Analyzed: 09/20/05

Lab Sample ID (PEM) : PEMAB Time Analyzed : 1351

PEM COMPOUND	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
_======================================	=====	=====	=====	=======	======	=====
alpha-BHC	8.32	8.27	8.37	0.009	0.010	-10.0
beta-BHC	9.81	9.76	9.86	0.011	0.010	10.0
gamma-BHC (Lindane)	9.40	9.35	9.45	0.009	0.010	-10.0
Endrin	16.95	16.88	17.02	0.058	0.050	16.0
4,4'-DDT	18.08	18.01	18.15	0.100	0.10	0.0
Methoxychlor	19.32	19.25	19.39	0.234	0.25	-6.4

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 4.42

Combined % Breakdown (1): 4.42

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: <u>CLPPESTII</u> ID: <u>0.53</u> (mm) Init. Calib. Date(s): <u>09/17/05</u> <u>09/17/05</u>

EPA Sample No.(PIBLK##): PIBLKAB Date Analyzed: 09/20/05

Lab Sample ID (PIBLK): PIBLKAB Time Analyzed: 1321

EPA Sample No.(PEM##): PEMAB Date Analyzed: 09/20/05

Lab Sample ID (PEM) : PEMAB Time Analyzed : 1351

PEM COMPOUND	RT	RT WI FROM	NDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
	======	=====	=====	======	======	=====
alpha-BHC	10.81	10.76	10.86	0.009	0.010	-10.0
beta-BHC	12.44	12.39	12.49	0.011	0.010	10.0
gamma-BHC (Lindane)	12.05	12.00	12.10	0.010	0.010	0.0
Endrin	19.33	19.26	19.40	0.057	0.050	14.0
4,4'-DDT	20.45	20.38	20.52	0.101	0.10	1.0
Methoxychlor	21.96	21.89	22.03	0.235	0.25	-6.0

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 3.17

Combined % Breakdown (1): 3.17

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: <u>CLPPEST</u> ID: <u>0.53</u> (mm) Init. Calib. Date(s): <u>09/17/05</u> <u>09/17/05</u>

EPA Sample No. (PIBLK##): PIBLKAD Date Analyzed: 09/21/05

Lab Sample ID (PIBLK): PIBLKAD Time Analyzed: 0507

EPA Sample No.(PEM##) : PEMAD Date Analyzed : 09/21/05

Lab Sample ID (PEM) : PEMAD Time Analyzed : 0537

PEM COMPOUND	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
	=====	=====	=====	=======	=======	=====
alpha-BHC	8.31	8.27	8.37	0.009	0.010	-10.0
beta-BHC	9.80	9.76	9.86	0.011	0.010	10.0
gamma-BHC (Lindane)	9.40	9.35	9.45	0.010	0.010	0.0
Endrin	16.95	16.88	17.02	0.061	0.050	22.0
4,4'-DDT	18.08	18.01	18.15	0.103	0.10	3.0
Methoxychlor	19.32	19.25	19.39	0.241	0.25	-3.6

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 4.60

Combined % Breakdown (1): 4.60

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: CLPPESTII ID: 0.53 (mm) Init. Calib. Date(s): 09/17/05 09/17/05

EPA Sample No. (PIBLK##): PIBLKAD Date Analyzed: 09/21/05

Lab Sample ID (PIBLK): PIBLKAD Time Analyzed: 0507

EPA Sample No. (PEM##) : PEMAD Date Analyzed : 09/21/05

Lab Sample ID (PEM) : PEMAD Time Analyzed : 0537

PEM COMPOUND	RT	RT WI FROM	INDOW TO	CALC AMOUNT (ng)	NOM AMOUNT (ng)	%D
	-=====	=====	=====	======	======	=====
alpha-BHC	10.81	10.76	10.86	0.009	0.010	-10.0
beta-BHC	12.44	12.39	12.49	0.011	0.010	10.0
gamma-BHC (Lindane)	12.05	12.00	12.10	0.010	0.010	0.0
Endrin	19.33	19.26	19.40	0.060	0.050	20.0
4,4'-DDT	20.45	20.38	20.52	0.103	0.10	3.0
Methoxychlor	21.96	21.89	22.03	0.238	0.25	-4.8

4,4'-DDT % Breakdown (1): 0.00 Endrin % Breakdown (1): 7.70

Combined % Breakdown (1): 7.70

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: CLPPEST ID: 0.53 (mm) Init. Calib. Date(s): 09/17/05 09/17/05

EPA Sample No.(PIBLK##): PIBLKAC Date Analyzed: 09/20/05

Lab Sample ID (PIBLK) : PIBLKAC Time Analyzed : 1826

EPA Sample No.(INDAM##) : INDAMAC Date Analyzed : 09/20/05

Lab Sample ID (INDAM) : INDAMAC Time Analyzed : 1856

		דיים היים	MINORE	CALC	NOM	
INDIVIDUAL MIX A COMPOUND	RT	RT WI FROM	TO	AMOUNT (ng)	AMOUNT (ng)	%D
	=====	=====	=====	======	=======	=====
alpha-BHC	8.31	8.27	8.37	0.020	0.020	0.0
gamma-BHC (Lindane)	9.40	9.35	9.45	0.020	0.020	0.0
Heptachlor	10.91	10.86	10.96	0.020	0.020	0.0
Endosulfan I	14.90	14.83	14.97	0.020	0.020	0.0
Dieldrin	16.07	16.00	16.14	0.039	0.040	-2.5
Endrin	16.95	16.88	17.02	0.040	0.040	0.0
4,4'-DDD	17.44	17.37	17.51	0.039	0.040	-2.5
4,4'-DDT	18.08	18.01	18.15	0.039	0.040	-2.5
Methoxychlor	19.32	19.25	19.39	0.20	0.20	0.0
Tetrachloro-m-xylene	6.27	6.23	6.33	0.020	0.020	0.0
Decachlorobiphenyl	22.28	22.18	22.38	0.040	0.040	0.0

EPA Sample No.(INDBM##) : INDBMAC Date Analyzed : 09/20/05

Lab Sample ID (INDBM) : INDBMAC Time Analyzed : 1927

		RT W.	NDOW	CALC	NOM	
INDIVIDUAL MIX B	RT	FROM	OT	AMOUNT	AMOUNT	%D
COMPOUND				(ng)	(ng)	
=======================================	======	=====	=====	======	=======	=====
beta-BHC	9.81	9.76	9.86	0.019	0.020	-5.0
delta-BHC	10.31	10.27	10.37	0.020	0.020	0.0
Aldrin	11.79	11.74	11.84	0.019	0.020	-5.0
Heptachlor epoxide	13.72	13.65	13.79	0.020	0.020	0.0
4,4'-DDE	15.14	15.07	15.21	0.039	0.040	-2.5
Endosulfan II	17.53	17.46	17.60	0.040	0.040	0.0
Endosulfan sulfate	19.51	19.44	19.58	0.040	0.040	0.0
Endrin ketone	20.04	19.97	20.11	0.039	0.040	-2.5
Endrin aldehyde	18.55	18.48	18.62	0.040	0.040	0.0
alpha-Chlordane	14.51	14.44	14.58	0.020	0.020	0.0
gamma-Chlordane	14.09	14.02	14.16	0.020	0.020	0.0
Tetrachloro-m-xylene	6.27	6.23	6.33	0.023	0.020	15.0
Decachlorobiphenyl	22.28	22.18	22.38	0.039	0.040	-2.5

Lab Name: MITKEM CORPORATION Contract:

Lab Code: MITKEM Case No.: _____ SAS No.: ____ SDG No.: MD1004

GC Column: CLPPESTII ID: 0.53 (mm) Init. Calib. Date(s): 09/17/05 09/17/05

EPA Sample No.(PIBLK##): PIBLKAC Date Analyzed: 09/20/05

Lab Sample ID (PIBLK) : PIBLKAC Time Analyzed : 1826

EPA Sample No.(INDAM##) : INDAMAC Date Analyzed : 09/20/05

Lab Sample ID (INDAM) : INDAMAC Time Analyzed : 1856

		RT W	MDOW	CALC	NOM	
INDIVIDUAL MIX A	RT	FROM	TO	AMOUNT	AMOUNT	%D
COMPOUND				(ng)	(ng)	
	=====	=====	=====	======	=======	=====
alpha-BHC	10.81	10.76	10.86	0.020	0.020	0.0
gamma-BHC (Lindane)	12.05	12.00	12.10	0.020	0.020	0.0
Heptachlor	13.43	13.38	13.48	0.020	0.020	0.0
Endosulfan I	17.99	17.92	18.06	0.020	0.020	0.0
Dieldrin	18.65	18.59	18.73	0.039	0.040	-2.5
Endrin	19.33	19.26	19.40	0.041	0.040	2.5
4,4'-DDD	19.78	19.71	19.85	0.039	0.040	-2.5
4,4'-DDT	20.45	20.38	20.52	0.040	0.040	0.0
Methoxychlor	21.96	21.89	22.03	0.20	0.20	0.0
Tetrachloro-m-xylene	8.45	8.40	8.50	0.020	0.020	0.0
Decachlorobiphenyl	24.77	24.68	24.88	0.040	0.040	0.0

EPA Sample No.(INDBM##) : INDBMAC Date Analyzed : 09/20/05

Lab Sample ID (INDBM) : <u>INDBMAC</u> Time Analyzed : <u>1927</u>

		RT W	INDOW	CALC	NOM	
INDIVIDUAL MIX B	RT	FROM	TO	TRUOMA	AMOUNT	%D
COMPOUND				(ng)	(ng)	
=======================================	=====	=====	=====	======	======	=====
beta-BHC	12.44	12.39	12.49	0.020	0.020	0.0
delta-BHC	13.37	13.31	13.41	0.020	0.020	0.0
Aldrin	14.41	14.36	14.46	0.020	0.020	0.0
Heptachlor epoxide	17.05	16.98	17.12	0.020	0.020	0.0
4,4'-DDE	18.48	18.41	18.55	0.040	0.040	0.0
Endosulfan II	19.83	19.76	19.90	0.040	0.040	0.0
Endosulfan sulfate	21.18	21.11	21.25	0.040	0.040	0.0
Endrin ketone	22.22	22.15	22.29	0.040	0.040	0.0
Endrin aldehyde	20.59	20.52	20.66	0.040	0.040	0.0
alpha-Chlordane	17.92	17.85	17.99	0.020	0.020	0.0
gamma-Chlordane	17.55	17.48	17.62	0.020	0.020	0.0
Tetrachloro-m-xylene	8.45	8.40	8.50	0.020	0.020	0.0
Decachlorobiphenyl	24.77	24.68	24.88	0.039	0.040	-2.5

8D PESTICIDE ANALYTICAL SEQUENCE

Lab Name:	MITKEM CO	RPORATION		Contract:	
Lab Code:	MITKEM	Case No.:		SAS No.:	SDG No.: MD1004
GC Column	: CLPPEST	_ ID: <u>0.53</u>	(mm) Init	. Calib. Date(s)	: <u>09/17/05</u> <u>09/17/05</u>
Instrument	t ID: <u>E5</u>	<u> </u>			
THE ANALY	TICAL SEQU	ENCE OF PE	RFORMANCE	EVALUATION MIXTU	RES, BLANKS,

SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURRO	SATE RT FROM DCB:		IBRATION		
		·	· · · · · · · · · · · · · · · · · · ·			
	EPA	LAB	DATE	TIME	TCX	DCB
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
	=========	=======================================	==========		=======	======
01	RESCA1	RESCA1	09/17/05	1339	6.26	22.28
02	PEMA1	PEMA1	09/17/05	1410	6.26	22.28
03	AR1660A1	AR1660A1	09/17/05	1440	6.26	22.28
04	AR1221A1	AR1221A1	09/17/05	1542	6.29	22.29
05	AR1232A1	AR1232A1	09/17/05	1613	6.26	22.28
06	AR1242A1	AR1242A1	09/17/05	1643	6.27	22.28
07	AR1248A1	AR1248A1	09/17/05	1714	6.26	22.28
08	AR1254A1	AR1254A1	09/17/05	1744	6.27	22.28
09	TOXAPHA1	TOXAPHA1	09/17/05	1815	6.27	22.28
10	INDALA1	INDALA1	09/17/05	1845	6.27	22.28
11	INDBLA1	INDBLA1	09/17/05	1916	6.27	22.28
12	INDAMA1	INDAMA1	09/17/05	1946	6.27	22.28
13	INDBMA1	INDBMA1	09/17/05	2017	6.29	22.28
14	INDAHA1	INDAHA1	09/17/05	2047	6.29	22.28
15	INDBHA1	INDBHA1	09/17/05	2118	6.28	22.28
16	PIBLKA2	PIBLKA2	09/17/05	2148	6.28	22.28
17	PEMA2	PEMA2	09/17/05	2219	6.27	22.28
18	PIBLKAB	PIBLKAB	09/20/05	1321	6.27	22.28
19	PEMAB	PEMAB	09/20/05	1351	6.27	22.28
20	PIBLKAC	PIBLKAC	09/20/05	1826	6.27	22.28
21	INDAMAC	INDAMAC	09/20/05	1856	6.27	22.28
22	INDBMAC	INDBMAC	09/20/05	1927	6.27	22.28
23	PBLK5R	MB-19699	09/21/05	0032	6.27	22.28
24	P5RLCS	LCS-19699	09/21/05	0103	6.27	22.28
25	SB-RB-W-R	D1004-01C	09/21/05	0133	6.27	22.28
26	MW12-W-O	D1004-02B	09/21/05	0204	6.26	22.28
27	PIBLKAD	PIBLKAD	09/21/05	0507	6.27	22.28
28	PEMAD	PEMAD	09/21/05	0537	6.27	22.28
29						
30						
-31						
32		<u> </u>	L			

QC LIMITS

TCX = Tetrachloro-m-xylene DCB = Decachlorobiphenyl

(+/- 0.05 MINUTES) (+/- 0.10 MINUTES)

[#] Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

PESTICIDE ANALYTICAL SEQUENCE

Lab Name:	MITK	MITKEM CORPORATION				Contract:				
Lab Code:	MITK	<u>em</u>	Case	No.:			SAS	No.:	SDG No	o.: <u>MD1004</u>
GC Column	: CLP	PESTII	ID:	0.53	(mm)	Init.	Calib.	Date(s):	09/17/05	09/17/05
Instrument	t ID:	<u>E5</u>								
ייט דאוא דיי	ጥ ተረጎአተ	CECTE	N7C'E' /	ישמ שר	DECEM!	אורים פי	דייי אדו דא <i>ו</i>	כאז אדעייים	בים בים אונים	<u>.</u>

THE ANALYTICAL SEQUENCE OF PERFORMANCE EVALUATION MIXTURES, BLANKS, SAMPLES, AND STANDARDS IS GIVEN BELOW:

	MEAN SURROOTCX: 8.45	GATE RT FROM DCB: 2		BRATION		
		T 3 53	D3.000		more I	
	EPA	LAB	DATE	TIME	TCX	DCB #
	SAMPLE NO.	SAMPLE ID	ANALYZED	ANALYZED	RT #	RT #
01	RESCA1	RESCA1	09/17/05	1339	8.44	24.77
02	PEMA1	PEMA1	09/17/05	1410	8.44	24.78
03	AR1660A1	AR1660A1	09/17/05	1440	8.44	24.77
04	AR1221A1	AR1221A1	09/17/05	1542	8.44	24.78
05	AR1232A1	AR1232A1	09/17/05	1613	8.44	24.78
06	AR1242A1	AR1242A1	09/17/05	1643	8.44	24.77
07	AR1248A1	AR1248A1	09/17/05	1714	8.44	24.78
08	AR1254A1	AR1254A1	09/17/05	1744	8.44	24.78
09	TOXAPHA1	TOXAPHA1	09/17/05	1815	8.44	24,77
10	INDALA1	INDALA1	09/17/05	1845	8.44	24.77
11	INDBLA1	INDBLA1	09/17/05	1916	8.45	24.78
12	INDAMA1	INDAMA1	09/17/05	1946	8.44	24.78
13	INDBMA1	INDBMA1	09/17/05	2017	8.45	24.77
14	INDAHA1	INDAHA1	09/17/05	2047	8.45	24.78
15	INDBHA1	INDBHA1	09/17/05	2118	8.45	24.77
16	PIBLKA2	PIBLKA2	09/17/05	2148	8.45	24.77
17	PEMA2	PEMA2	09/17/05	2219	8.44	24.77
18	PIBLKAB	PIBLKAB	09/20/05	1321	8.45	24.78
19	PEMAB	PEMAB	09/20/05	1351	8.45	24.78
20	PIBLKAC	PIBLKAC	09/20/05	1826	8.44	24.78
21	INDAMAC	INDAMAC	09/20/05	1856	8.45	24.77
22	INDBMAC	INDBMAC	09/20/05	1927	8.45	24.77
23	PBLK5R	MB-19699	09/21/05	0032	8.44	24.77
24	P5RLCS	LCS-19699	09/21/05	0103	8.45	24.77
25	SB-RB-W-R	D1004-01C	09/21/05	0133	8.44	24.77
26	MW12-W-O	D1004-02B	09/21/05	0204	8.44	24.77
27	PIBLKAD	PIBLKAD	09/21/05	0507	8.45	24.77
28	PEMAD	PEMAD	09/21/05	0537	8.44	24.78
29						
30						
31						
32						

[#] Column used to flag retention time values with an asterisk.
* Values outside of QC limits.

PESTICIDE FLORISIL CARTRIDGE CHECK

Lab Name:	MITKEM C	ORPORATION	Contract:				
Lab Code:	MITKEM	Case No.:	SAS No.:	SDG	No.: M	D1004	
Florisil	Cartridge	Lot Number:	AMFLX-3B Date	of Analysis:	06/28/	05	
GC Column	(1): CLP	PEST ID:	0.53 (mm) GC Col	umun (2): CLPI	PESTII	ID: 0.53	(mm)

	SPIKE	SPIKE RECOVERED	%	00
COMPOUND	ADDED (ng)	(ng)	REC #	QC LIMITS
	=======	=======	=====	======
alpha-BHC	0.010	0.0083	83	80-120
gamma-BHC (Lindane)	0.010	0.0089	89	80-120
Heptachlor	0.010	0.0092	92	80-120
Endosulfan I	0.010	0.01	104	80-120
Dieldrin	0.020	0.02	101	80-120
Endrin	0.020	0.023	113	80-120
4,4'-DDD	0.020	0.019	96	80-120
4,4'-DDT	0.020	0.019	95	80-120
Methoxychlor	0.10	0.11	108	80-120
Tetrachloro-m-xylene	0.010	0.0088	88	80-120
Decachlorobiphenyl	0.020	0.023	114	80-120
2,4,5-Trichlorophenol	0.050	0.	0	<5

[#] Column to be used to flag recovery with an asterisk.
* Values outside of QC limits.

THIS CARTRIDGE LOT APPLIES TO THE FOLLOWING SAMPLES, BLANKS, MS, AND MSD:

	EPA	LAB	DATE	DATE
	SAMPLE NO.	SAMPLE ID	ANALYZED 1	ANALYZED 2
	=========		========	
01	PBLK5R	MB-19699	09/21/05	09/21/05
02	P5RLCS	LCS-19699	09/21/05	09/21/05
03	SB-RB-W-R	D1004-01C	09/21/05	09/21/05
04	MW12-W-O	D1004-02B	09/21/05	09/21/05
05				
06				
07				
08				
09				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
,				·

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

E	FOR SIN	GLE	COMPONENT	ANALYI	ES			
						ł	P5RLCS	
****	~~~~~	3 m T A	3.T	~				

Lab Name: MITKEM CORPORATION	Contract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Lab Sample ID: LCS-19699	Date(s) Analyzed: 09/21/05 09/21/05
Instrument ID (1): E5	Instrument ID (2): E5
GC Column(1): CLPPEST ID: 0.53(mm)	GC Column(2): CLPPESTII ID: 0.53(mm

		RT WINDOW				
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D
	===			======	=======================================	=====
gamma-BHC (Lindane)	1	9.40	9.35	9.45	0.31	
	2	12.05	12.00	12.10	0.31	0.0
Heptachlor	1	10.90	10.86	10.96	0.43	
	2	13.43	13.38	13.48	0.40	7.5
Aldrin	1	11.79	11.74	11.84	0.41	
	2	14.41	14.36	14.46	0.41	0.0
Dieldrin	1	16.07	16.00	16.14	0.95	
	2	18.65	18.59	18.73	0.95	0.0
Endrin	1	16.95	16.88	17.02	1.1	
	2	19.33	19.26	19.40	1.1	0.0
4,4'-DDT	1	18.07	18.01	18.15	0.82	
4,4 -DD1	2	20.45	20.38	20.52	0.82	0.0
	1					
	2					
	1					
	2					
- ···						

page 1 of 1

. 56 . M - Decachlorobipenyl (24,773) 4 : :8 Hethoxychior (21,958) -Endrin Ketone (22,224) -8 -Endosulfan sulfate (21,176) <u>-</u>ম -8 : <u>-</u>\$ \\AVGGADRO\DRGANICS\organio\svoa\E5.i\O50917R.B\E5C2348R.D -11610Fin (18*654) Operator: SZ SRC: SZ Column diameter: 0.53 -**≅** -Endosulfan I (17,993) -`₽ 3 14 15 13 -27 -য় -≏ **-** \$ - Φ Volume Injected (uL): 1.0 Column phase: CLPPESTII --40 - LO - 4 (\$~07X) A

Instrument: E5.i

Data File: \\AVGGADRO\GRGANICS\organio\svoa\E5.i\o50917R.B\E5C2348R.D

Sample Info: RESCA1, RESCA1, resc.sub.,

Date : 17-SEP-2005 13:39

Client ID; RESCA1

15.4 15 15 15.2 4.4-000 15,1 ms L. S HP6890 GC Data, ECD1A.CH: 14.401 to 15.401 Min 15.0 8.9cm 14.9 Min I nellueobri - 97.8% 14.8 8-9 Cm 14.7 Resolution = 14,6 -14,5 00)194 ٠. م .4.0 9.0 0.7 1.5 4.1 뉴. 1.2-1,1-1.0 0.6 9.0 (×10₂2)

Data File: \\AVDGADRD\DRCANICS\organic\svoa\E5.1\O50917F.B\E5C2348F.D Injection Date: 17-5EP-2005 13:39 Instrument: E5.1 Client Sample ID: RESCA1

Data File: E5C2348F.D

Report Date: 20-Sep-2005 09:36

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2348F.D

Client Smp ID: RESCA1 Lab Smp Id: RESCA1

Inj Date : 17-SEP-2005 13:39

Inst ID: E5.i

Operator : SZ SRC: SZ Smp Info : RESCA1, RESCA1, resc.sub,,

Misc Info : 3,, RESOLUTION, 1,,

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 20-Sep-2005 09:35 mtl Quant Type: ESTD

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18 QC Sample: RESOLUTION Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: resc.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf		Dilution Factor Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COT	FINAL	•	
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L) TARGET RANGE	RATIO	,
==			林氏CEC CC 型型元本二号号字正在二台	<u>=</u> ====	Xo
11	gamma-Chlordane		CAS #: 5103-74-2		•
14.1	14.1 0.000	424356 0.01002	0.10	(R)	09734
10	Endosulfan I		CAS #: 959-98-8		ŕ
14.9	14.9 0.000	394312 0.00977	0.098	(R)	
13	4,4'-DDE		CAS #: 72-55-9		
15.1	15.1 0.000	739921 0.02017	0.20	(R)	
14	Dieldrin		CAS #: 60-57-1		
16.1	16.1 0.000	793510 0.01981	0.20	(R)	

Data File: E5C2348F.D Report Date: 20-Sep-2005 09:36

CONCENTRATIONS

		ON-COL	FINAL	
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L) TARGET RANG	e ratio
-				
20 5	ndosulfan sulfate		CAS #: 1031-07-8	
		711777 0.02017		(R)
				
	andrin ketone		CAS #: 53494-70-5	
		810986 0.02082		(R)
			••	
21 M	lethoxychlor		CAS #: 72-43-5	
	•	1864842 0.10425		(R)
	etrachloro-m-xylene		CAS #: 877-09-8	
6.26	6.28 -0.020	418466 0.02018		(RR)
	ecachlorobiphenyl		CAS #: 2051-24-3	
22.3	22.3 0.000	766702 0.02069		(RR)
				

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

Data File: E5C2348R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2348R.D Lab Smp Id: RESCA1 Client Smp ID: RESCA1

Inj Date : 17-SEP-2005 13:39

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : RESCAl, RESCAl, resc. sub,,

Misc Info : 3,, RESOLUTION, 1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Meth Date : 20-Sep-2005 10:22 mtl Cal Date : 17-SEP-2005 21:18 Quant Type: ESTD Cal File: E5C2362R.D QC Sample: RESOLUTION Als bottle: 1

Dil Factor: 1.00000

Compound Sublist: resc.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER 4.03 Target Version:

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

DF 1.000 Dilution Factor Uf 1.000 Correction factor Vt 10000.000 Volume of final extract (uL) Vo 1000.000 Volume of sample extracted (mI	Name	Value	Description
vi 1.000 volume injected (ull)	U£ Vt	1.000 10000.000 1000.000	Correction factor

CONT	ENT	דידים	ONG

		ON-COL	LINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==	非异乙二二苯 亚巴巴巴二亚亚州				=====
			cm a 4.	5103-74-2	
12	gamma-Chlordane		CAS #:	5103-74-2	
17.5	17.5 0.000	268158 0.01021	0.10		(R)
11	Endosulfan I		CAS #:	959-98-8	
18 0	18.0 0.000	259863 0.00996	0.100		(R)
14	4.4'-DDE		CAS #:	72-55-9	
	*				(7)
18.5	18.5 0.000	502854 0.02076			(R)
15	Dieldrin		CAS#:	60-57-1	
18.7	18.7 0.000	545984 0.02020	0.20		(R)

Data File: E5C2348R.D Report Date: 20-Sep-2005 10:23

CONCENTRATIONS

				ON-COL	FINAL		
RT E	XP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO
** =	=====	医医室室管护室		** *******	-		x=2£5
21 End	osulfa	n sulfate			CAS #:	1031-07-8	
		0.000					(R)
23 End						53494-70-5	
		0.000					(R)
22 Met						72-43-5	
22.0	22.0	0.000	1214319 0	.10375	1.0		(R)
		ro-m-xylene				877-09-8	
		-0.010					(RR)
\$ 3 Dec						2051-24-3	
24.8	24.8	0.000	462950 0	.02083	0.21		(RR)

QC Flag Legend

R - Spike/Surrogate failed recovery limits.

(9~0T×) A

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\o60917F.B\E5C2349F.D

Date : 17-SEP-2005 14:10

Data File: E5C2349F.D

Report Date: 20-Sep-2005 09:32

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2349F.D Lab Smp Id: PEMA1 Client Smp ID: PEMA1

: 17-SEP-2005 14:10 Inj Date

Inst ID: E5.i : SZ SRC: SZ Operator

: PEMA1, PEMA1, , pem. sub, pem. spk, Smp Info

Misc Info : 3,, PEM, 1,, 1000

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Quant Type: ESTD Meth Date : 20-Sep-2005 09:31 mtl

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

QC Sample: PEM Als bottle: 2

Dil Factor: 1.00000 Integrator: Falcon Subtraction File: \\AVOGADRO\ORGANICS Compound Sublist: pem.sub

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

RT =≠	EXP RT	DLT RT	RESPONS	ON-	ng)		(د)	TARGET RANGE	RATIO
		co-m-xylene -0.020	414099	0.0	L997			877-09-8	
	alpha-BHC 8.32	-0.010	355752	0.0	904	-		319-84-6	
	gamma-BHC 9.40		375113	0.00	946		#:	58-89-9	.
	beta-BHC 9.81	0.000	192342	0.01	103		#:	319-85-7	-

6,9238

Data File: E5C2349F.D

Report Date: 20-Sep-2005 09:32

					NTRATIONS			
					L F INA I			
R7	EXP RT	DLT RT	RESPONS	E (n	g) (ug/I	.)	TARGET RANGE	RATIO
# .	. 305626	======	0 0000000	, #6#E	== =====	==	西班异产二巴亚宝宝 亚 罗语	######################################
15	Endrin				CAS	#:	72-20-8	
17.0	17.0	0.000	1789580	0.05886	0.059			
					CAS	#:	50-29-3	
	4,4'-DDT	0.000	2618751	0 10227				
18.1	10.1							
1:	Endrin al	dehyde			CAS	#:	7421-93-4	
		0.100			0.0022			(a.)
					CAS	#:	72-43-5	
	L Methoxych	D.000	4261223					
19.3	17.3	*						
s :	2 Decachlor						2051-24-3	
		0.000	748287	0.02019	0.020			
			 -					

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lorsy

Data File: E5C2349R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2349R.D

Client Smp ID: PEMA1 Lab Smp Id: PEMA1

Inj Date : 17-SEP-2005 14:10

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : PEMA1, PEMA1, pem. sub, pem. spk,

Misc Info : 3,,PEM,1,,1000

QC Sample: PEM Als bottle: 2

Dil Factor: 1.00000

Compound Sublist: pem.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER 4.03 Target Version:

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 1000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

CONCENTRATIONS

				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO
==		*=====			工事产品产品品		## # ###
	Tetrachlor		430962 (0.020	877-09-8	·
	alpha-BHC		299730 0		CAS#:	319-84-6	. .
	gamma-BHC		299539	0.00981		58-89-9	
_	beta-BHC	0.000	155490 0	.01124		319-85-7	

Data File: E5C2349R.D

Report Date: 20-Sep-2005 10:23

CONCENTRATIONS

RT	EXP RT DLT RT	ON-COL RESPONSE (ng)		TARGET RANGE	RATIO
	Endrin 19.3 0.00D	1144041 0.05814		72-20-8	
	4,4'-DDT 20.4 0.000	2285135 0,10310		50-29-3	
	Endrin aldehyde 20.5 0.000	28088 0.00160	CAS #:	7421-93-4	(a)
	Methoxychlor 22.0 0.000		0.24	72-43-5	.
\$ 3 24.8	Decachlorobiphenyl 24.8 0.000	449007 0.02020	CAS #:	2051-24-3	

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

4000

.8 -12 -2 -<u>M</u> - Decechiorobiphenyl (22,278) ा स्थापा स -8 (415.61) Action(317) -**읔** -Endrin aldehyde (19,550) \\AVDGADRO\ORGANICS\organic\svoa\E5.i\ofo917F.B\E6C2364F (ETO.81) TOU-14,4 <u>.</u>9 Operator: SZ SRC: SZ Column diameter: 0.83 -Instrument: E5.1 (9+6*9T) ui-mu--9 -땈 <u>-</u>n Data File; \\AVOGADRO\ORGANICS\organic\svoa\E5.i\oSo917F.B\E5C2364F.D -4 -ដ - 3 -pef9-BHC (8*801) (¢¢+6) (ansbril) 3HE-emmeg -O Sample Info; PEMA2,PEMA2,pem.sub.pem.spk, -97649-BHC (8*208) - 00 (ITS.8) enaigx-m-onoidoentai-Volume Injected (uL): 1.0 Date : 17-SEP-2005 22:19 Column phase; CLPPest - LO Client ID: PEMA2 .00205 40. 0.1-0.5 4.0 m o 0.5

(9~0TX) A

-8 -8 . 않 -Decachlorobiphenyl (24,771) -4 -83 -Endrin ketone (22,224) -N Methoxychior (21,956) -ম (\$\$\$,0S) TQQ-~\$,4 <u>-</u>& - -Eughin (18°352) <u>-</u>9 \\AVOGADRO\ORGANICS\organio\svoa\E5.i\O50917R.B\E5C2364R.D -8 Operator: SZ SRC: SZ Column diameter: 0.53 -1 Instrument: E5.i -4 . 달 4. m Data File: \\AVOCADRO\ORGANICS\organic\svoa\E6.i\050917R.B\E5C2364R.D -Pef9-BHC (15*432) 2 (G+0.SI) (ensbril) JHE-smms3-= - -97bp9-BHC (10*803) -\$ -თ Sample Info: PEMAZ,PEMAZ,,pem.sub,pem.spk, Volume Injected (uL): 1.0 -Tetrachloro-m-xylene (8,444) **.** 00 - مه Date : 17-SEP-2005 22:19 Column phase: CLPPESTII -ເຄ Client ID; PEMA2 <u>0</u>0206

Data File: E5C2364F.D

Report Date: 20-Sep-2005 09:34

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2364F.D

Lab Smp Id: PEMA2
Inj Date: 17-SEP-2005 22:19
Operator: SZ SRC: SZ
Smp Info: PEMA2, PEMA2, pem. sub, pem. spk, Client Smp ID: PEMA2

Inst ID: E5.i

Misc Info : 3,, PEM, 1,, 1000

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Quant Type: ESTD Meth Date: 20-Sep-2005 09:34 mtl Cal File: E5C2362F.D

Cal Date : 17-SEP-2005 21:18

QC Sample: PEM Als bottle: 16

Dil Factor: 1.00000

Compound Sublist: pem.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT E	XP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
	医多层体管 医双唇管甲基苯	医医生管医征反应 计单位生态管理	2822225	****	西州青草兰
-	rachloro-m-xylene 6.28 -0.010	416790 0.02010		877-09-8	
8.31	oha-BHC 8.32 -0.010	355714 0.00904		319-84-6	
4 gan	mma-BHC (Lindane) 9.40 0.000	374140 0.00943		58-89-9	
7 bet	a-BHC 9.81 0.000	191146 0.01096		319-85-7	

Data File: E5C2364F.D

Report Date: 20-Sep-2005 09:34

CONCENTRATIONS

				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO
==	****				* ******		= = = = =
15	Endrin				CAS #:	72-20-8	
			1754903				
18	4.4'-DDT				CAS #:	50-29-3	
18.1	18.1	0.000	3622622	.10238	0.10		
19	Endrin al	idehyde			CAS #:	7421-93-4	
18.5	18.5	0.000	80414	0.00292	0.0029		(a)
			·				-
21 1	Methoxych	nlor			CAS #:	72-43-5	
19.3	19.3	0.000	4276708	23907	0.24		
		. -					
\$ 2	Decachlor	obiphenyl			CAS #:	2051-24-3	
22.3			755591	3.02039	0.020		

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

4334

Data File: E5C2364R.D

Report Date: 20-Sep-2005 10:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2364R.D

Client Smp ID: PEMA2 Lab Smp Id: PEMA2

Inj Date : 17-SEP-2005 22:19

Inst ID: E5.i SRC: SZ Operator : SZ

Smp Info : PEMA2, PEMA2, , pem. sub, pem. spk,

Misc Info: 3,,PEM,1,,1000

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Quant Type: ESTD Meth Date: 20-Sep-2005 10:23 mtl Cal File: E5C2362R.D Cal Date : 17-SEP-2005 21:18
Als bottle: 16
Dil Factor: 1.00000

QC Sample: PEM

Integrator: Falcon

Compound Sublist: pem.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03

Sample Matrix: WATER

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

DF 1.000 Dilution Factor Uf 1.000 Correction factor Vt 1000.000 Volume of final extract (uL) Vo 1000.000 Volume of sample extracted (volume of	(mL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
	**************************************	金型还在台湾市 下层电影光点	F=2568#	E=========	
\$ 1	Tetrachloro-m-xylene		CAS #:	877-09-8	
	8.45 -0.010	431228 0.02022	0.020		.
4	alpha-BHC		CAS #:	319-84-6	
	10.8 0.000	299177 0.00924	0.0092		
	gamma-BHC (Lindane)		CAS #:	58-89-9	
	12.1 -0.100	298559 0.00978	0.0098		
B	beta-BHC		CAS #:	319-85-7	
12.4	12.4 0.000	155130 0.01122	0.011		

Data File: E5C2364R.D

Report Date: 20-Sep-2005 10:25

CONCENTRATIONS

		CONCENTR	ALLONS		
		on-col			
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
		医阿里耳状腺二醇 医神经性神经			
				4	
96 1	ndrin	,	CAS #:	72-20-8	
10 3	19.3 0.000	1130793 0.05747	0.057		.
			CAS#:	50-29-3	
20.4	20.4 0.000	2308656 0.10416	0.10		
	Endrin aldehyde			7421-93-4	
20.6	20 6 0.000	40579 0.00231	0.0023		(a)
	Methoxychlor		CAS #:	72-43-5	
22.0	22.0 0.000	2828489 0.24167	0.24		
	Endrin ketone		CAS #:	53494-70-5	
22.2	22.2 0.000	62564 0.00244	0.0024		(a)
	Decachlorobiphenyl		CAS #:	2051-24-3	
24.8	24.8 0.000	461066 0.02074			

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

499

-8 -82 (977,42) IgnahqidoroIrlasəd— --4 - KG Wethoxychiom (21,959) (222,227) enotex ninbn3-- 🛃 . N -ম 4*4~-DD1 (S0*448) -8 -Eudrin (19,330) <u>-</u>6 \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2415R.D Operator: SZ SRC: SZ Column diameter: 0.53 <u>်</u>ရှ Instrument: E5.1 Ģ Operator: SZ -4 <u>ы</u> ; Data File: \\AVOCADRO\ORGANICS\crganic\svoa\E5.i\050917R.B\E5C2415R.D -다 -Pef9-BHC (15*436) q -gamma-BHC (Lindane) (12,048) . -뒦 -91pha-BHC (10,805) <u>-</u>유 -თ Sample Info; PEMAD,PEMAD,,pem.sub,pem.spk, - ω Volume Injected (uL): 1.0 Date : 21-SEP-2005 05:37 Column phase: CLPPESTII Client ID: PEMAD **-**ග 00212 Data File: E5C2415F.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2415F.D

Lab Smp Id: PEMAD Client Smp ID: PEMAD

Inj Date : 21-SEP-2005 05:37

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : PEMAD, PEMAD, , pem. sub, pem. spk,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D

Als bottle: 1 QC Sample: PEM

Dil Factor: 1.00000

9.81 0.000

Integrator: Falcon Compound Sublist: pem.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf		Dilution Factor Correction factor
Vt	1000.000	Volume of final extract (uL)
Vo Vi		Volume of sample extracted (mL) Volume injected (uL)

CONCENTRATIONS

0.011

				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO
			======			*********	
\$ 1	Tetrachlo	co-m-xylene			CAS #:	877-09-8	
6.27			432202 (
3	alpha-BHC			••••		319-84-6	
			368384				
	gamma-BHC					58-89-9	
9.40		0.000					
7	beta-BHC					319-85-7	

192140 0.01102

Data File: E5C2415F.D

Report Date: 27-Sep-2005 14:26

CONCENTRA:	TTONG

			ON-COL	FINAL				
RT	EXP RT	DLT RT	RESPONSE (ng)	{ ug/L}	TARGET RANGE	RATIO		
==	=====						•	
15	Endrin			CAS#:	72-20-8			
			1844516 0.06067					
					50-29-3			•
			3641750 0.10292					
	Endrin al							
18.6	18.5	0.100	63434 0.00230	0.0023		(a)		
	Methoxych							
19.3	19.3	0.000	4315210 0.24122	0.24				
		obiphenyl					• • • • •	
			770226 0.02078					

QC Flag Legend

Data File: E5C2415R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2415R.D

Lab Smp Id: PEMAD Client Smp ID: PEMAD

Inj Date : 21-SEP-2005 05:37

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : PEMAD, PEMAD, , pem. sub, pem. spk,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date : 27-Sep-2005 14:23 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 1 QC Sample: PEM

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: pem.sub

Subtraction File: \\AVOGADRO\ORGANICS

12.4 12.4 0.000 156555 0.01132 0.011

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Ŭ£	1.000	Correction factor
۷t	1000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

				ON-COL	FINAL			
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO	
				======		========	=====	
\$ 1	Tetrachlo	co-m-xylene			CAS #:	877-09-8		9/27/652
8.44	8.45	-0.010	438870 (0.02057	0.021			1,00
4	alpha-BHC				CAS #:	319-84-6		
10.8	10.8	0.000	303368 0.	.00937	0.0094			
5	gamma-BHC	(Lindane)			CAS #:	58-89-9		
12.0	12.1	-0.100	301720 (0.00989	0.0099			
8	beta-BHC				CAS #:	319-85-7		

Data File: E5C2415R.D

Report Date: 27-Sep-2005 14:26

CONCENTRATIONS

				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONS	E (ng)	(ug/L)	TARGET RANGE	RATIO
==	=====		222222				
16 1	Endrin				CAS #:	72-20-8	
			1172093				
19 4	4,4'-DDT				CAS #:	50-29-3	
20.4	20.4	0.000	2283222	0.10301	0.10		
20 I	Endrin al	dehyde			CAS #:	7421-93-4	
20.6	20.6	0.000	27312	0.00155	0.0016		(a)
22 1	Methoxych	lor			CAS #:	72-43-5	
22.0	22.0	0.000	2786922	0.23812	0.24		
23 1	Endrin ke	tone			CAS #:	53494-70-5	
22.2	22.2	0.000	58807	0.00229	0.0023		(a)
\$ 3 1	Decachlor	obiphenyl			CAS #:	2051-24-3	
24.8	24.8	0.000	464376	0.02089	0.021		

QC Flag Legend

(GVOTX) A

Data File: E5C2357F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2357F.D

Client Smp ID: INDALA1 Lab Smp Id: INDALA1

Inj Date : 17-SEP-2005 18:45
Operator : SZ SRC: SZ
Smp Info : INDALA1, INDALA1, inda.sub,, Inst ID: E5.i

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Method Quant Type: ESTD Meth Date: 20-Sep-2005 09:33 mtl

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 1 Als bottle: 10

Dil Factor: 1.00000

Compound Sublist: inda.sub

Integrator: Falcon
Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1.000 10000.000 1000.000 1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

				CAL	-AMT	ON-	COL			
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	TARGET RAI	NGE	RATIO
==					a===	==6		######################################	psd	*****
	Tetrachlor	co-m-xylene	131441	0.00	500			877-09-8		(a)
	alpha-BHC			-	 -	C:	AS #:	319-84-6		
	8.32	0.000	228341 0	.005	00	0.00	58 			(a)
4	gamma-BHC	(Lindane)				C	AS #:	58-89-9		
9.40	9.40		236469 0		00	0.00	60 			(a)
	Heptachlo							76-44-8		(a)
10.9	10.9	0.000	289847 0	.005	500 - -	0.00	62 -		 -	(a)

Data File: E5C2357F.D Report Date: 20-Sep-2005 09:33

AMOUNTS

		AMOUNTS	3		
		CAL-AMT			
or EXPRT DLT	RT RESPONS	E (ng)	(ng)	TARGET RANGE	RATIO
FG 500000 10000		= =====================================		***=======	p====
EB \$55000					
10 Endosulfan I			CAS #: :	959-98-8	
14.9 14.9 0.00	251060	0.00500 0	.0062		(a)
14.9 14.9 0.00	231860	0.00500			
			CAS #:		
14 Dieldrin	_			54·5/ Z	(a)
16.1 16.1 0.00	00 470618	0.01000	0.012		
16.1					
15 Endrin			CAS #:		,_,
17.0 17.0 0.00	358647	0.01000	0.012		(a)
17.0 17.0 070		·			
16 4.4'-DDD			CAS #:		
17.4 17.4 0.00	nn 390168	0.01000	0.012		(a)
11.4 11.4 0.00					
			CAS #:	50-29-3	
18 4,4'-DDT					(a)
18.1 18.1 0.00	00 411821	0.01000	0.010		
			CAS #:		
21 Methoxychlor					(a)
19.3 19.3 0.00	00 1129176	0.05000	0.063		
\$ 2 Decachlorobip	henyl			2051-24-3	
22.3 22.3 0.0	00 488086	0.01000	0.013		(a)
		- 			-

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: E5C2357R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2357R.D

Client Smp ID: INDALA1 Lab Smp Id: INDALA1

Inj Date : 17-SEP-2005 18:45

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDALA1, INDALA1, , inda. sub, ,

Misc Info : 1,1,,1,,

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m
Meth Date : 20-Sep-2005 10:23 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 10

Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: Falcon

Compound Sublist: inda.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03

Sample Matrix: WATER

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name Value Description	
DF 1.000 Dilution Factor Uf 1.000 Correction factor Vt 10000.000 Volume of final e Vo 1000.000 Volume of sample Vi 1.000 Volume injected (extract (uL) extracted (mL)

AMOUNTS

				CAL	-AMT	ON-	COL		
RŤ	EXP RT	DLT RT	RESPONS	E (ng)	(:	ng)	TARGET RANGE R	OITA
==			-			***	a==		****
•	Tetrachlor 8.45		136887	0.00	500			877-09-B	(a)
	alpha-BHC		192323	0.005	i00			319-84-6	(a)
5 12.1	gamma-BHC 12.1		184333	0.005	500			58-89-9	(a)
6	Heptachlor		195258	0.005	500	-		76-44-8	(a)

Data File: E5C2357R.D

Report Date: 20-Sep-2005 10:23

AMOUNTS CAL-AMT ON-COL RESPONSE (ng) (ng) TARGET RANGE RATIO RT EXP RT DLT RT 工作工作工作 医二甲基二甲基 化二苯乙二甲基 医二甲基苯甲二甲甲基 医红丁亚基 **30** ECTENT SESERESE CAS #: 959-98-8 ' 11 Endosulfan I 18.0 18.0 0.000 165952 0.00500 0.0064 ______ CAS #: 60-57-1 15 Dieldrin 18.7 18.7 0.000 325229 0.01000 0.012 ______ 16 Endrin CAS #: 72-20-8 19.3 19.3 0.000 240743 0.01000 0.012 (a) ------CAS #: 72-54-8 17 4.4'-DDD 19.8 19.8 0.000 255397 0.01000 0.012 CAS #: 50-29-3 19 4,4'-DDT 20.4 20.4 0.000 265739 0.01000 0.012 (a) CAS #: 72-43-5 22 Methoxychlor 22.0 22.0 0.000 746323 0.05000 0.064 CAS #: 2051-24-3 \$ 3 Decachlorobiphenyl

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

24.8 24.8 0.000 299496 0.01000 0.013

fo 692308

(a)

(9**√0T**×) Å

Instrument: E5.1

Data File; \\AVOGADRO\ORGANICS\organio\svoa\E5.i\o50917R.B\E5C2359R.D

Sample Info: INDAMA1, INDAMA1, inda.sub.

Date : 17-SEP-2005 19:46 Client ID: INDAMAL Data File: E5C2359F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2359F.D Lab Smp Id: INDAMA1 Client Smp ID: INDAMA1 Inj Date: 17-SEP-2005 19:46

Operator : SZ SRC: SZ

Smp Info : INDAMA1, INDAMA1, , inda. sub, ,

Misc Info : 1,2,,1,,

Comment : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Meth Date : 20-Sep-2005 09:33 mtl Quant Type: ESTD

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 2

Als bottle: 12
Dil Factor: 1.00000
Integrator: Falcon
Subtraction File: \\AVOGADRO\ORGANICS Compound Sublist: inda.sub

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

	Name	Value	Description
-	DF Uf Vt Vo Vi	1.000 1.000 10000.000 1000.000 1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

RT EXP RT DLT RT	CAL-AMT RESPONSE (ng)	ON-COL (ng) TARGET RANGE	RATIO
\$ 1 Tetrachloro-m-xyl	41464B 0.02000	CAS #: 877-09-8 0.020	(a)
3 alpha-BHC 8.31 8.32 -0.010	786991 0.02000	CAS #: 319-84-6 0.020	(a)
4 gamma-BHC (Lindar 9.40 9.40 0.000	ne) 793439 0.02000	CAS #: 58-89-9 0.020	(a)
5 Heptachlor 10.9 10.9 0.000	932222 0.02000	CAS #: 76-44-8 0.020	(a)

Data File: E5C2359F.D

Report Date: 20-Sep-2005 09:33

AMOUNTS

			ALIOUM.			
			CAL-AMT		•	
RT EXP RT	DLT RT	RESPONSE	(ng)	(ng)	TARGET RANGE	RATIO
프로 살셔트드=프					=======================================	#57F=
			•			
10 Endosulfa				CAS #:		
14.9 14.9	0.000	807395 0	.02000	0.020		(a)
14 Dieldrin					60-57-1	
16.1 16.1	0.000	1602539 0	.04000	0.040		(a)
15 Endrin				CAS #:	· -	(a)
17.0 17.0						
				CAS #:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
16 4,4'-DDD						(a)
17.4 17.4						
				CAS #:		
18 4,4'-DDT	0.000	1415202 0			35 27 0	(a)
18.1 18.1	0.000	1410302 0		·		
21 Methoxych				CAS #:		
19.3 19.3		3577748 0	.20000	0.20		(a)
17.3 17.3						
\$ 2 Decachlor			•	CAS #:	2051-24-3	
22.3 22.3		1482310 0	.04000	0.040		(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

6923N

Data File: E5C2359R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2359R.D

Client Smp ID: INDAMA1 Lab Smp Id: INDAMA1

Inj Date : 17-SEP-2005 19:46

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDAMA1, INDAMA1, , inda. sub, ,

Misc Info : 1,2,,1,,

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m
Meth Date : 20-Sep-2005 10:23 mtl Quant Type: ESTD Comment

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Calibration Sample, Level: 2 Als bottle: 12

Dil Factor: 1.00000

Compound Sublist: inda.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)
\/ T	. 1.000	ACTUME TILLECTOR (AD)

AMOUNTS

rt *=	EXP RT DLT RT	CAL-AMT RESPONSE (ng)	ON-COL	TARGET RANGE	RATIO
8.44	etrachloro-m-xylene 8.45 -0.010	426634 0.02000	"	877-09-B	(a)
4 a	lpha-BHC 10.8 0.000	647493 0.02000	***	319-84-6	(a)
5 g	amma-BHC (Lindane)	610388 0.02000		58-89-9	(a)
6 H	eptachlor 13.4 0.000	614315 0.02000		76-44-8	(a)

Data File: E5C2359R.D

Report Date: 20-Sep-2005 10:23

	AMOUN	TS	
	CAL-AMT	ON-COL	
RT EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE	RATIO
	=====## ======		無果生性配
11 Endosulfan I		CAS #: 959-98-8	
18.0 18.0 0.000	522047 0.02000	0.020	(a)
15 Dieldrin	•	CAS #: 60-57-1	
18.7 18.7 0.000	1081267 0.04000	0.040	(a)
16 Endrin		CAS #: 72-20-B	
19 3 19.3 0.000	787112 0.04000	0.040	(a)
17 4,4'-DDD		CAS #: 72-54-8	
19.8 19.8 0.000	849290 0.04000	0.040	(a)
19 4.4'-DDT		CAS #: 50-29-3	
20.4 20.4 0.000	886561 0.04000	0.040	(a)
			-
22 Methoxychlor		CAS #: 72-43-5	
	2340783 0.20000	0.20	(a)
22.0 22.0 0.000			
\$ 3 Decachlorobiphenyl		CAS #: 2051-24-3	
24 9 24 8 0 000	889043 0.04000	0.040	(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

49291

(9₂0T×) Å

Data File: E5C2361F.D

Report Date: 20-Sep-2005 09:34

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2361F.D

Lab Smp Id: INDAHA1 Client Smp ID: INDAHA1

Inj Date: 17-SEP-2005 20:47
Operator: SZ SRC: SZ
Smp Info: INDAHA1, INDAHA1, inda.sub,, Inst ID: E5.i

Misc Info: 1,3,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Quant Type: ESTD Meth Date: 20-Sep-2005 09:34 mtl

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 3 Als bottle: 14

Dil Factor: 1.00000

Compound Sublist: inda.sub

Integrator: Falcon
Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

		CAL-AMT	ON-COL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
==	**=====================================		*	ㅁ물왕포=으로ñ주=따라	#0===
\$ 1 6.29	Tetrachloro-m-xylene 6.28 0.010	1671522 0.08000		877-09-8	(A)
_	alpha-BHC 8.32 0.000	3454634 0.08000		319-84-6	(A)
9,41	gamma-BHC (Lindane) 9.40 0.010	3393392 0.08000		58-B9-9	(A)
5	Heptachlor	3862876 0.08000		76-44-8	(A)

Data File: E5C2361F.D

Report Date: 20-Sep-2005 09:34

RT EXP RT DLT RT	RESPONSE (ng)	ON-COL (ng) TARGET RANGE	RATIO
10 Endosulfan I 14.9 14.9 0.000	3267194 0.08000	CAS #: 959-98-8 0.081	(A)
14 Dieldrin	6909233 0.16000	CAS #: 60-57-1	(A)
15 Endrin 17.0 17.0 0.000		CAS #: 72-20-8	(A)
16 4,4'-DDD 17.4 17.4 0.000		CAS #: 72-54-8	(A)
18 4,4'-DDT 18.1 18.1 0.000	5948158 0.16000	CAS #: 50-29-3 0.17	(A)
21 Methoxychlor 19.3 19.3 0.000		CAS #: 72-43-5 0.73	
\$ 2 Decachlorobiphenyl 22.3 22.3 0.000	5706126 0.16000	CAS #: 2051-24-3	(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

60975N

Data File: E5C2361R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2361R.D Lab Smp Id: INDAHA1 Client Smp ID: INDAHA1

Inj Date : 17-SEP-2005 20:47

Inst ID: E5.i SRC: SZ Operator : SZ

Smp Info : INDAHA1, INDAHA1, , inda. sub, ,

Misc Info : 1,3,,1,,

Comment :
Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m
Meth Date : 20-Sep-2005 10:23 mtl Quant Type: ESTD
Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D
Als bottle: 14 Calibration Sample, Level: 3
Dil Factor: 1.00000
Integrator: Falcon
Subtraction File: \\AVOGADBO\ORGANICS

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi		Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

	CAL-AMT	ON-COL		
RT EXP RT DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
		======		金兰芒马里
\$ 1 Tetrachloro-m-xylene 8.45 8.45 0.000	1686566 0.08000		877-09-8	
4 alpha-BHC 10.8 10.8 0.000	2855633 0.08000		319-84-6	(A)
5 gamma-BHC (Lindane) 12.1 12.1 0.000	2616316 0.08000		58-89-9	(A)
6 Heptachlor 13.4 13.4 0.000	2518528 0.08000		76-44-8	(A)

Data File: E5C2361R.D Report Date: 20-Sep-2005 10:23

AMOUNTS

			PAROOM			
			CAL-AMT			
RT EXP RT	DLT RT	RESPONSE	(ng)	(ng)	TARGET RANGE	RATIO
	3 工 3 世 4 年 章	******	ERC====	z######	3条以二二二五五二二二二	
11 Endosulfan				CAS #:	959-98-8	
18.0 18.0	0.000	2087493 0	.08000	0.080		
15 Dieldrin				CAS #:		
18.7 18.7	0 000	4613814 0	.16000	0.17		(A)
18.7						
16 Endrin				CAS #:		
19.3 19.3	0.000	3366982 0	,16000	0.17		(A)
19.3						
17 4.4'-DDD				CAS #:		
19.8 19.8	0.000	3628238 0	.16000	0.17		(A)
19 4.4'-DDT				CAS #:		
20.4 20.4	0.000	3839882 0	.16000	0.17		(A)
		 -				
22 Methoxychl				CAS #:		
22.0 22.0	0.000	9170811 0	.80000	0.78		
				-		
\$ 3 Decachloro	biphenyl			CAS #:	2051-24-3	
24.8 24.8	0.000	3399883 0	.16000	0.15		(A)
					~	

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

(8~0TX) Y

Data File: E5C2358F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2358F.D

Client Smp ID: INDBLA1 Lab Smp Id: INDBLA1

Inj Date : 17-SEP-2005 19:16

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDBLA1, INDBLA1, , indb. sub, ,

Misc Info : 1,1,,1,,

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Meth Date : 20-Sep-2005 09:33 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D

Calibration Sample, Level: 1

Als bottle: 11 Dil Factor: 1.00000 Compound Sublist: indb.sub

Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1 000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

		CAL-AMT	ON-COL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
==	土在亚层产生 李在是是是是是	杂壳二苯酚甲二唑 医医杂苯苯磺基	2567C3M		pc cc cc cc cc
s 1	Tetrachloro-m-xylene		CAS #:	877-09-8	
	6.28 -0.010	108073 0.00500		*************	(a)
6	Aldrin		CAS #:	309-00-2	4-3
11.8	11.8 0.000	202419 0.00500			(a)
7	beta-BHC		CAS #:	319-85-7	
9.81	9.81 0.000	94374 0.00500	0.0054	_,	(a)
	delta-BHC		CAS #:	319-86-8	
10.3	10.3 0.000	197251 0.00500	0.0047		(a)

Data File: E5C2358F.D Report Date: 20-Sep-2005 09:33

AMOUNTS

					111001					
					- AMT					DATE!
RT	EXP RT DL	r RT	RESPONS	E (ng)	(пg)	TARGET RANGE	KATIO
		====	工品管在不安置	= ==:		## ## #	**==	=	医静仁仁己医医亚仁皮 酚匹	
	-		4							
9 He	eptachlor e	poxide				(AS	#:	1024-57-3	
13 7	13.7 0.4	000	214107	0.00	500	0.00	052			(a)
							- -			
11 ga	mma-Chlord	ane				•	CAS	#:	5103-74-2	
14 1	14 1 0	000	220162	0.00	500	0.00	052			(a)
17.1										
	lpha-Chlord					(CA5	#:	5103-71-9	
12 0.	14 E O	000	206198	0.00	500	0.0	053			(a)
14.2	14.5 0.									
							CAS	#:	72-55-9	
13 4	,4'-DDE	000	249366	0.01						(a)
15.1	15.1 0.	000	343300				-			
									33213-65-9	
	ndosulfan I			D 01	000					(a.)
17.5	17.5 0.	000	3/4847	0.01			·			
									7421-93-4	
19 E	ndrin aldeh	yde								(a)
18.6	18.5 0.	100	295366	0.01	000	0.	OTT			-
								4.	1031-07-8	
20 E	ndosulfan s	ulfate							1031-07-8	(a)
19.5	19.5 0.	000	356565	0.01	000	0.	010			
	 -									
	ndrin keton								53494-70-5	/- 3
20.0	20.0 0.	000 .	389240	0.01	000	0.0	100			(a)
\$ 2 D	ecachlorobi	phenyl	•						2051-24-3	
22.3	22.3 0.	000	399600	0.01	000	٥.	011			(a)
						- 				

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: E5C2358R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2358R.D

Client Smp ID: INDBLA1 Lab Smp Id: INDBLA1

Inj Date : 17-SEP-2005 19:16

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDBLA1, INDBLA1, , indb.sub, ,
Misc Info : 1,1,,1,,

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date : 20-Sep-2005 10:23 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 11

Calibration Sample, Level: 1

Dil Factor: 1.00000

Compound Sublist: indb.sub

Integrator: Falcon Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03

Sample Matrix: WATER

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

RT ==	EXP RT DLT RT	CAL-AMT RESPONSE (ng)		TARGET RANGE	RATIO
	V. 12 0.000	112404 0.00500		877-09-8	(a)
	Aldrin 14.4 0.000	132108 0.00500		309-00-2	(a)
	beta-BHC 12.4 0.000	75430 0.00500		319-85-7	(a)
9	delta-BHC 13.4 0.000	147871 0.00500	= **	319-86-8	(a)

Data File: E5C2358R.D

Report Date: 20-Sep-2005 10:23

AMOUNTS

				CAL-A	–				
RT EX	PRT D	LT RT	RESPONSE	: (n	g)	(ng	1)	TARGET RANGE	RATIO
-= F-		85-5F#8	=======				-		
			•						
		epoxide					#:	1024-57-3	
17.0	17.0 0	.000	140796 (.00500	0	.0055			(a.)
		dane					**	5103-74-2	(a)
17.5	17.5 0	1.000	140288 (0.00500	0	.0053			(4)
		 _						5103-71-9	
13 alph						-		.5103-71-5	(a)
17.9	17.9 0		134420 (. 00500		.0054			
								72-55-9	
14 4,4	-DDR	.000	340004 ((a)
18.5	18.5	,.uuu 	240074 ·						
		II						33213-65-9	
		0.000	252224 (0.01000		0.011			(a)
19.0			 -						
20 Endi	rin alde	hyde				CAS	#:	7421-93-4	
20.6	20.6 0	0.000	190087	0.01000		0.011			(a)
					-				
		sulfate						1031-07-8	
21.2	21.2	0.000	239195 (0.01000		0.011			(a)
23 Endi	rin keto	one						53494-70-5	(a)
22.2	22.2	0.000	265105	0.01000	,	0.010			
								2051-24-3	
\$ 3 Deca			044506					503T-74-3	(a)
24.8	24.8	0.000	∠44526 I	3.01000	' 	0.011	- 		
		-							

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

L. 9×34

-M Endrin ketone (22,224) -8 Endosulfan sulfate (21,175) -지 -Endrin aldehyde (20,589) -8 Endosulfan II (19,825) \\AVOGADRONDRGANICS\organic\svoa\E5.1\050917R.B\E5C2360R.D
\\A\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Delta\Office\Office\Delta\ -ବ . ₽ Operator: SZ SRC: SZ Column diameter: 0.53 - -sipha-Chlordane (17,919) -gamma-Chlordane (17,547) -;-Instrument: E5.1 Heptachlor epoxide (17.049) -4 -(TT+*+T) WI-PIH- * <u>.</u> -4e1fg-BHC (13*366) . 2 Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2360R.D -Pefg-BHC (15*436) <u>-</u>4 <u>:</u># : 역 -თ . Sample Info: INDBMA1,INDBMA1,,indb.sub,, (+G+4s) enelex-m-omoidosnisT-- **O** Volume Injected (uL): 1.0 Date : 17-SEP-2005 20:17 Column phase; CLPPESTII Client ID: INDBMA1 - IO -4 .do242 (9~0TX) Y

December (24,774)

. 80

. 당

-&

Data File: E5C2360F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2360F.D

Client Smp ID: INDBMA1 Lab Smp Id: INDBMA1

Inj Date : 17-SEP-2005 20:17

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDBMA1, INDBMA1, , indb. sub, ,

Misc Info : 1,2,,1,,

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 20-Sep-2005 09:33 mtl Quant Type: ESTD

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 2 Als bottle: 13

Dil Factor: 1.00000

Compound Sublist: indb.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF U£	1.000	Dilution Factor Correction factor
٧t	10000.000	Volume of final extract (uL)
Vo Vi	1000.000	Volume of sample extracted (mL) Volume injected (uL)

RT :	EXP RT DLT RT	CAL-AMT RESPONSE (ng)	ON-COL (ng)	TARGET RANGE	RATIO
•	trachloro-m-xylene 6.28 0.010	409345 0.02000		877-09-6	(a)
6 Al	11.8 0.000	820825 0.02000	0.020	309-00-2	(a)
	ta-BHC	348858 0.02000	CAS #:	319-85-7	(a)
·	lta-BHC 10.3 0.000	841540 0.02000		319-86-8	(a)

Data File: E5C2360F.D

Report Date: 20-Sep-2005 09:33

AMOUNTS

							^-		
						ON-C			
RT EX	PRT	DLT RT	RESPONSE	3 (ng)	(n	g)	TARGET RANGE	RATIO
			**=====	, www		==##=	==		
								,	
					*-	CAG	#.	1024-57-3	
		epoxide						1024 07 2	(a)
13.7	13.7	0.000	827867	0.020	00	0.020			
								·	
11 ganu	na-Chlo	ordane				CAS	#:	5103-74-2	
		0.000	846614 (0.020	000	0.020			(a)
14.1	T4.I	0.000	010011						
								5103-71-9	
12 alph								2703-17-2	(a)
14.5	14.5	0.000	777023 (0.020	100	0.020			
									
13 4.4	- ממם -					CAS	#:	72-55-9	_
		0.000	1467571	0.040	000	0.040	ı		(a)
15.1	13.1	0.000	14075.1						
								33213-65-9	
17 Endo								33213-65-3	(a)
17.5	17.5	0.000	1379240	0.040	000	0.040	l		
19 Ends	cin alc	iehyde				CAS	#:	7421-93-4	
			1102913	0.040	000	0.040)		(a)
18.5	10.5		1100710						
								1031-07-8	
		n sulfate						1031-01-0	(a)
19.5	19.5	0.000	1411506	0.040	000	0.040)		
									
22 Endi	rin ke:	tone				CAS	#:	53494-70-5	
		0.000	1558347	0.040	000	0.040)		(a)
20.0	20.0	0.000	13,002,						
					-			2051-24-3	
		obiphenyl					-	∇03T-7#-9	(-)
22.3	22.3	0.000	1444428	0.04	000	0.039	•		(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lynn

Data File: E5C2360R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2360R.D Lab Smp Id: INDBMA1 Client Smp ID: INDBMA1

Inj Date : 17-SEP-2005 20:17

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDBMA1, INDBMA1, , indb. sub, ,

Misc Info: 1,2,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Quant Type: ESTD Meth Date : 20-Sep-2005 10:23 mtl

Cal File: E5C2362R.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 2

Als bottle: 13 Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: indb.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

			CAL-AMT	ON-COL		
RT EXP RT D	LT RT	RESPONSE	(ng)	(ng)	TARGET RANGE	RATIO
22 ECF224 CC	222224	*****		#======		#====
\$ 1 Tetrachloro			.02000	0.020	877-09-8	(a)
7 Aldrin 14.4 14.4 (.02000	CAS #:	309-00-2	(a)
8 beta-BHC	0.000	276570 (0.02000		319-85-7	(a)
9 delta-BHC	0.000	600764	0.02000		319-86-8	(a)

Data File: E5C2360R.D

Report Date: 20-Sep-2005 10:23

AMOUNTS

					MUUMA	TS				
				CAL	-AMT	ON-	COL			
RT	EXP RT	DLT RT	RESPONSE	E (ng)	(ng)	TARGET	RANGE	RATIO
===			F=======			====		======		중무료보위
					٠.					
	Heptachlor							1024-57	-3	
17.0	17.0	0.000	514814 (0.020	00	0.02	D			(a)
		·			-					
12	gamma-Chlo	ordane				CA	s #:	5103-74	-2	
		0.000	525334 0	0.020	00	0.02	0			(a)
1,,,,				. 						
13	alpha-Chlo	ordane				CA	\$ ·#:	5103-71		
17.9	17.9	0.000	495742	0.020	00	0.02	0			(a)
							-			
14	4,4'-DDE					CA	s #:	72-55-9		
		0.000	968666 (0.040	00	0.04	0			(a)
							_			
	Endosulfa							33213-6		
19 8	19.8	0.000	892994 (0.040	00	0.04	10			(a)
							. 			
	Endrin alo							7421-93		
20.6	20.6	0.000	702796	0.040	00	0.04	10			(a)
							. -			
	Endosulfar							1031-07		
		0.000	907426 (0.040	00	0.04	10			(a)
21.2	21.2		******							
								53494-7		
	Endrin ket					-		2020.		(a)
22.2	22.2	0.000	1025831 (U.U&U	UU	0.44				
								2051-24		
		obiphenyl				_		2021-24	_ 2	(a)
		0.000					39			(a)
						- -				

QC Flag Legend

 Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). figasol

Instrument: E5.1

Data File: \\AVOGADRO\ORGANICS\organio\svoa\EB.i\o50917F.B\E5C2362F.D

Date : 17-SEP-2005 21:18 Client ID: INDBHA1

-% -% . 52-. December (25,772) . . -83 Endrin Ketone (22,224) Ŋ Endosuifan sulfate (21,175) **ત્ર** (C8G.oS) abbdable nimbn3- -Endosulfan II (19,825) . 유 <u>-</u>6 Operator: SZ SRC: SZ Column diameter: 0.53 (6T6*2T) ausprolugueudie- -(9+g*ZT) euspaoluj-ewwes-Instrument; E5.i -14 - Heptachlor epoxide (17,049) -4 -띩 -HIGHIN (It 4TO) - -qe]f9-BHC (73*36B) . : -Pef9-BHC (75*440) -짂 -ដ ·읔 - ب Sample Info; INDBHA1,INDBHA1,,indb.sub,, (T44.8) anelyx-m-onoidosatelω Wolume Injected (uL): 1.0 Column phase: CLPPESTII Date : 17-SEP-2005 21:18 و. Client ID; INDBHA1. -ග -4 Ø0248 .2. .4.0 1.0. -8-0 E. 1,1 (9-OTX) A

Data File: \\AVOGADRO\ORGANICS\organio\svom\E5.i\o50917R.B\E5C2362R.D

Data File: E5C2362F.D

Report Date: 20-Sep-2005 09:34

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2362F.D Lab Smp Id: INDBHA1 Client Smp ID: INDBHA1

Inj Date : 17-SEP-2005 21:18 Inst ID: E5.i SRC: SZ Operator : SZ

: INDBHA1, INDBHA1, , indb. sub, , Smp Info

Misc Info : 1,3,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Quant Type: ESTD Meth Date : 20-Sep-2005 09:34 mtl

Cal File: E5C2362F.D

Cal Date : 17-SEP-2005 21:18 Als bottle: 15 Calibration Sample, Level: 3

Dil Factor: 1.00000

Compound Sublist: indb.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

RT ==	EXP RT	DLT RT	RESPONSE	CAL-AMT	ON-COL (ng)	TARGET RANGE	RATIO
		co-m-xylene 0.000	1642322	0.08000		877-09-8	
•	Aldrin 11.8	0.000	3464148 (0.08000		309-00-2	(A)
•	beta-BHC 9.81	0.000	1358932 (0.08000	•	319-85-7	
8	delta-BHC	0.000	3615367 (0.08000	0.086	319-86-8	(A)

Data File: E5C2362F.D

Report Date: 20-Sep-2005 09:34

AMOUNTS

	AMOUN	its	
		on-col	
RT EXP RT DLT RF	RESPONSE (ng)	(ng) TARGET RANGE	RATIO
三雪 复数家二巴亚 医亚罗二苯苯苯苯		在 宣告的 正式	EFESE
•,			
9 Heptachlor epoxide		CAS #: 1024-57-3	
13 7 13.7 0.000	3396321 0.08000	0.082	(A)
11 gamma-Chlordane		CAS #: 5103-74-2	
14.1 0.000	3472775 0.08000	0.082	(A)
12 alpha-Chlordane		CAS #: 5103-71-9	
14.5 14.5 0.000	3142872 0.08000	0.081	(A)
13 4,4'-DDE	·	CAS #: 72-55-9	
15.1 15.1 0.000	6350966 0.16000	0.17	(A)
17 Endosulfan II		CAS #: 33213-65-9	
17.5 17.5 0.000	5941314 0.16000	0.17	(A)
19 Endrin aldehyde		CAS #: 7421-93-4	
18.5 18.5 0.000	4461701 0.16000	0.16	(A)
20 Endosulfan sulfate		CAS #: 1031-07-8	
19.5 19.5 0.000	5802231 0.16000	0.16	(A)
19.5 19.5 0.000			
22 Endrin ketone		CAS #: 53494-70-5	
20.0 20.0 0.000		0.16	(A)
\$ 2 Decachlorobiphenyl	•	CAS #: 2051-24-3	
22.3 22.3 0.000	5571149 0.16000	0.15	(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Lynn

Data File: E5C2362R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2362R.D

Client Smp ID: INDBHA1 Lab Smp Id: INDBHA1

Inj Date : 17-SEP-2005 21:18

Inst ID: E5.i SRC: SZ Operator : SZ

Smp Info : INDBHA1, INDBHA1, , indb. sub, ,

Misc Info : 1,3,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Quant Type: ESTD

Cal File: E5C2362R.D

Meth Date: 20-Sep-2005 10:23 mtl Cal Date: 17-SEP-2005 21:18 Calibration Sample, Level: 3

Als bottle: 15 Dil Factor: 1.00000 Compound Sublist: indb.sub

Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS Sample Matrix: WATER

Target Version: 4.03 Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

				CAI	TMA-L	ON-	COL		
RT	EXP RT	DLT RT	RESPONSI	3 (ng)	(ng)	TARGET RANGE	RATIO
==	**********		*****	===			IREE	=#====================================	
-		co-m-xylene	1649536 (0.080)00			877-09-8	
	Aldrin 14.4	0.000	2155536	0.08	000			309-00-2	(A)
	beta-BHC	0.000	1054726	0.08	000			319-85-7	
-	delta-BHC	0.000	2641111	0.080	30 0			319-86-B	(A)

Data File: E5C2362R.D

Report Date: 20-Sep-2005 10:23

AMOUNTS

			AMOUN.	10		
	RT DLT RT	response (ng)	OM-COL	TARGET RANGE	RATIO
	hlor epoxide	2102943 0.0	3000	0.082	1024-57-3	(A)
12 gamma- 17.5 17	Chlordane .5 0.000	2160389 0.0	8000	CAS #: 0.082	5103-74-2	(A)
13 alpha-	Chlordane .9 0.000	2012096 0.0	8000	CAS #:	5103-71-9	· (A)
14 4,4'-D		4216927 0.1	6000	CAS #:	72-55-9	(A)
18 Endosu		3921410 0.1	6000	CAS #:	33213-65-9	(A)
20 Endrin	aldehyde	2885074 0.1	6000	CAS #: 0.16	7421-93-4	(A)
21 Endosu 21.2 21	lfan sulfate	3776196 0.1	6000	CAS #:	1031-07-8	(A)
23 Endrin	ketone	4270390 0.1	6000	CAS #:	53494-70-5	(A)
\$ 3 Decach	lorobiphenyl	3326577 0.1		CAS #:	2051-24-3	(A)

QC Flag Legend

A - Target compound detected but, quantitated amount exceeded maximum amount.

Instrument; E5.1

Data File: \\AWOGADRO\ORGANICS\organio\svoa\E8.1\o50917F.B\E5C2360F.D

Date : 17-SEP-2005 14:40

Client 10; AR1660A1

Sample Info: AR1660A1, AR1660A1, ,ar1660.sub,,

(G-07X) A

Data File: \\AVOCADRO\CRGANICS\organic\svoa\E5.i\o50917R.B\E5C2350R.D

Data File: E5C2350F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2350F.D

Client Smp ID: AR1660A1 Lab Smp Id: AR1660A1

Inj Date : 17-SEP-2005 14:40

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1660A1, AR1660A1, , ar1660. sub, ,

Misc Info : 1,1,,1,,

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 20-Sep-2005 09:33 mtl Quant Type: ESTD

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 1 Als bottle: 3

Dil Factor: 1.00000

Compound Sublist: ar1660.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER 4.03 Target Version:

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL)
τζi	1.000	Volume injected (uL)

				CAL-AMT	ON-COL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ng)	TARGET RANGE	RATIO
==	####			=== =			**= = =
\$ 1 3	Tetrachlo	ro-m-xylen	9	·	CAS #:	877-09-8	
6.26	6.28	-0.020	411220 (.00500	0.020		(a)
23 1	Aroclor-1	.016			CAS#:	12674-11-2	
8.95	8.95	0.000	105396 0.	10000	0.10 BC	0.00- 120.00	100.00(a)
9.59	9.59	0.000	76194 0	10000	0.10 52	2.29- 92.29	72.29
10.4	10.4	0.000	247870 0	10000	0.10 215	3.18- 255.18	235.18
		Average of	Peak Amounts =	•	0.1		
							
\$ 21	Decachlor	obiphenyl			CAS #:	2051-24-3	
22.3	22.3	0.000	748624 0	01000	0.020		(a)
				. 			

Data File: E5C2350F.D

Report Date: 20-Sep-2005 09:33

AMOUNTS

RT EXP RT	DLT RT	RESPONSE	CAL-AMT	ON-CO) TAR	GET RANGE	RATIO	
29 Aroclor-	1260				#: 1109			
19.5 19.5	0.000	304889 0.	10000	0.10	80.00-	120.00	100.00(a)	,
20.0 20.0	0.000	178153 0.	10000	0.10	38.43-	78.43	58.43	
21.3 21.3	0.000	90818 0.	10000	0.10	9.79-	49.79	29.79	
	Average of Peak	Amounts =		0.	1			

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

(,4224)

Data File: E5C2350R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2350R.D

Client Smp ID: AR1660A1 Lab Smp Id: AR1660A1

Inj Date : 17-SEP-2005 14:40 Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : AR1660A1,AR1660A1,,ar1660.sub,,
Misc Info : 1,1,,1,,

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Meth Date : 20-Sep-2005 10:23 mtl Quant Type: ESTD

Cal File: E5C2362R.D

Cal Date : 17-SEP-2005 21:18 Calibration Sample, Level: 1 Als bottle: 3

Dil Factor: 1.00000 Compound Sublist: ar1660.sub

Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

			PROPONEE	CAL-AMT	ON-CC		RATIO
RT	EXP RT	DLT RT	response	(ng,			
-	======		有有工艺生活工 品	E=====		:= ====================================	 -
\$ 1 8.44		oro-m-xylene -0.010		0.00500		#: 877-09-8)	(a)
24	Aroclor-1	.016	•••		CAS	#: 12674-11-2	
10.4		0.000	45092 0	.10000	0.10	80.00- 120.00	100.00(a)
11.8	11.8		89089 0	.10000	0.10	177.57- 217.57	197.57
			25462 0		0.10	36.47- 76.47	56.47
12.4		_	Peak Amounts	-	0		_
s 3	Decachlor	cobiphenyl				#: 2051-24-3	
24.8		0.000	453875 0	.01000	0.020		(a)

Data File: E5C2350R.D

Report Date: 20-Sep-2005 10:23

AMOUNTS

		ALICO MA	115	
		CAL-AMT	ON-COL	
RT	EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE RATI	(0
==		二二三名章正比尔 医正子三合张三		-
30 A	roclor-1260		CAS #: 11096-82-5	
19.2	19.2 0.000	115788 0.10000	0.10 80.00- 120.00 100.00	(a)
19.9	19.9 0.000	44160 0.10000	0.10 18.14- 58.14 38.14	•
20.4	20.4 0.000	195106 0.10000	0.10 148.50- 188.50 168.50	
20.4	Average of Pea	k Amounts =	0.1	
				-

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Logring

Instrument: E5.i

Data File: \\AVOCADRO\ORGANICS\organio\svoa\E5.1\050917F.B\E5C2351F.D

Date : 17-SEP-2005 15:42

Client ID: AR1221A1

Instrument; E5.i

Data File: \\AVOGADRO\ORGANICS\organio\svoa\E6.i\o50917R.B\E5C2361R.D

Date : 17-SEP-2005 15:42

Data File: E5C2351F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2351F.D Lab Smp Id: AR1221A1 Client Smp ID: AR1221A1

Inj Date : 17-SEP-2005 15:42

Operator : SZ SRC: SZ

Inst ID: E5.i

Smp Info : AR1221A1, AR1221A1, ar1221.sub,,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Method Meth Date : 20-Sep-2005 09:33 mtl

Quant Type: ESTD

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Als bottle: 4
Dil Factor: 1.00000
Integrator: Falcon
Subtraction File: \\AVOGADRO\ORGANICS
Target Version: 4.03 Calibration Sample, Level: 1

Compound Sublist: ar1221.sub

Sample Matrix: WATER

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

DF 1.000 Dilution Factor Uf 1.000 Correction factor Vt 10000.000 Volume of final extract (uL) Vo 1000.000 Volume of sample extracted (victor) Vi 1.000 Volume injected (uL)	(m L)

AMO	EINTS

			CAL-AMT	ON-COL		
RT	EXP RT	DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
*=		<u> </u>		=======		****
\$ 1:	Tetrachlo	oro-m-xylene		CAS #:	877-09-8	
6.29	6.28	0.010	416623 0.00500	0.020		(a)
					. 	
24	Aroclor-1	221		CAS #:	11104-28-2	
7.09	7.09	0.000	51707 0.20000	0.20 80).00- 120.00	100.00(a)
7.62	7.62	0.000	35565 0.20000	0.20 48	3.78- 88.78	68.78
7.75	7.75	0.000	138011 0.20000	0.20 246	5.91- 286.91	266.91
,,,,		Average of Pea	k Amounts =	0.2		
\$ 2 !	Decachlor	obiphenyl		CAS #:	2051-24-3	
22.3	22.3	0.000	733911 0.01000	0.020		(a)

Data File: E5C2351F.D

Report Date: 20-Sep-2005 09:33

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lynn

Data File: E5C2351R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2351R.D Client Smp ID: AR1221A1

Lab Smp Id: AR1221A1

Inj Date : 17-SEP-2005 15:42

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1221A1, AR1221A1, ar1221.sub,,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Method Quant Type: ESTD

Meth Date : 20-Sep-2005 10:23 mtl Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 4

Calibration Sample, Level: 1

Dil Factor: 1.00000

Integrator: Falcon

Compound Sublist: ar1221.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Processing Host: TARGET2 Sample Matrix: WATER

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

			CAL-AMI	ON-COI	.	
RT	EXP RT	DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
==	F556±=				2	空音宗宣播
s 1 ?	retrachlo	ro-m-xylen	e	CAS	#: 87 7- 09-8	
8.44		-0.010	414180 0.00500	0.019		(a)
25 2	Aroclor-1	.221			#: 11104-28 -2	
9.67	9.67	0.000	47816 0.20000	0.20	80.00- 120.00	100.00(a)
	10.2		31987 0.20000	0.20	46.90- 86.90	66.90
10.4		0.000	125164 0.20000	0.20	241.76- 281.76	261.76
		Average of	Peak Amounts =	0.	2	
				CAS	#: 2051-24-3	
\$ 3 : 24.8		o,000	442294 0.01000	0.020		(a)
						

Data File: E5C2351R.D

Report Date: 20-Sep-2005 10:23

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lynn

20 21 22 23 24 25 26 Decachlorobiphenyl (22,284) . 19 NAVOGADRONICSNorganichsvoa\E5.1\050917F.B\E5C2362F.D - 6 Operator: SZ SRC: SZ Column diameter: 0.53 17 . -91 10 11 12 13 14 15 Sproolor-1232 (12,142) Shoolor-1232 (10,446) HLOC] OL-1535 (8*218) Sample Info; AR1232A1,AR1232A1,,ar1232,sub,, - œ Volume Injected (uL): 1.0 (+62.4a) enelex-m-omoinosateT-Column phaset CLPPest 00265 ចុំ 1.8-4.5 2 (9~0TX) Y

Instrument: E5.i

Data File: \\AVOGADRO\ORGANICS\organic\svoa\EG.i\o50917F.B\E5C2352F.D

Date : 17-SEP-2005 16:13

Client ID: AR1232A1

*			,,	[Rual		uo į vi			<u>_</u>	··	·	<u></u>	 <u>-</u>					7	24 25 26
												,							22 23 2
																		4	,
	28	0,53	2352R.D									-							
Instrument: E5.i	Operation: 87 SRC: 82	ter:	\\AVOGADRO\ORGANICS\organio\svoa\E5.1\050917R.B\E5C2352R.D															₩.	
Instr	. Teach	Colum	anio\svoa\E5.															**************************************	
			NORGANICSYOF											(\$224)	. 13 (73) (492*1		ocjov-7		
-			VARVOGADRO											¢	⊁9 £*¢∓>	- 1 525	no I bonA		3
	ar1232.sub,,				(T	ት ኮ*8) eus	ıf6x-l	joro-n	(dos4)	t∍T− .		 -, ** -						4
16:13	Sample Info: AR1232A1,AR1232A1,,ar1232.sub,,	.)‡ 1.0 ISTII				•													
Date : 17-8EP-2005 16:13 Client ID: AR1232A1	fo: AR1232	Volume Injected (uL): 1.0 Column phase: CLPPESTII																	

Data File: E5C2352F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2352F.D Client Smp ID: AR1232A1

Lab Smp Id: AR1232A1

Inj Date : 17-SEP-2005 16:13

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1232A1,AR1232A1,,ar1232.sub,,
Misc Info : 1,1,,1,,

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 20-Sep-2005 09:33 mtl Quant Type: ESTD

Cal File: E5C2362F.D

Cal Date : 17-SEP-2005 21:18 Calibration Sample, Level: 1

Dil Factor: 1.00000

Als bottle: 5 Compound Sublist: ar1232.sub

Integrator: Falcon Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

AMOUNTS

			HIV	ONIC	
			CAL-AM	r on-col	
RT	EXP RT	DLT RT	RESPONSE (ng)) (ng) TARGET RANGE	RATIO
==		在广河地产生产品	全型等位置的配工 医正二苯的异	工 医异中宫神理 合 二言言意之思哲言言言亦称	四排配尼亚
\$ 1	Tetrachlo	oro-m-xylen		CAS #: 877-09-8	(a)
6.26	6.28	-0.020	407068 0.00500	0.020	(4)
25	Aroclor-	 1232		CAS #: 11141-16-5	
9.58		0.000	33778 0.10000	0.10 80.00- 120.00	100.00(a)
10.4	10.4	0.000	109346 0.10000	0.10 303.72- 343.72	323.72
12.1	12.1	0.000	48274 0.10000	0.10 122.92- 162.92	142.92
		Average of	Peak Amounts =	0.1	
				CAS #: 2051-24-3	
\$ 2	Decachlo	robiphenyl			(a)
22.3	22.3	0.000	737892 0.01000	0.020	(a)

forms of

Data File: E5C2352F.D

Report Date: 20-Sep-2005 09:33

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lynn

Data File: E5C2352R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2352R.D

Client Smp ID: AR1232A1 Lab Smp Id: AR1232A1

Inj Date : 17-SEP-2005 16:13

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1232A1, AR1232A1, , ar1232. sub, ,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Quant Type: ESTD Meth Date: 20-Sep-2005 10:23 mtl

Cal File: E5C2362R.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 1 Als bottle: 5

Dil Factor: 1.00000

Compound Sublist: ar1232.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

a	M	٦ſ	IN	т	۹

				PURJUD	113		
				CAL-AMT	ON-COL	1	
RT	EXP RT	DLT RT	response	(ng)	(ng)	TARGET RANGE	RATIO
==		E				*****	
\$ 1	Tetrachlo	oro-m-xylen	te		CAS #	: 877-09-8	
8.44	8.45	-0.010	417575 (0.020		(a)
26	Aroclor-1				CAS #	: 11141-16-5	
10.4		0.000	49776 0	.10000	0.10	80.00- 120.00	100.00(a)
11.8	11.8	0.000	34211 0	.10000	0.10	48.73- 88.73	68.73
13.2	13.2	0.000	85509 0	.10000	0.10 1	51.79- 191.79	171.79
		_	Peak Amounts		0.1		
	 -	 -		· • • • • • • • • • • • • • • • • • • •			
\$ 3	Decachlo	robiphenyl			CAS #	: 2051-24-3	
24.8		0.000	447649 0				(a)

Data File: E5C2352R.D Report Date: 20-Sep-2005 10:23

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

25 26 20 21 22 23 24 Decechlorobiphenyl (S2,280) <u>-</u>9 \\AWOGADRO\ORGANICS\organio\svoa\E5.i\o50917F.B\E5C2363F.D 17 18 Operator: SZ SRC: SZ Column diameter: 0.53 13 14 15 16 9 10 11 12 HLOCION-TS45 (15*143) Sample Info: AR1242A1,AR1242A1,,ar1242.sub,, (SYS.a) ensign—m-onoinesate) Volume Injected (uL): 1.0 Column phase: CLPPest -IΩ 00271 1.0-.60 ... + + ÷ 4. £ 8. 1,6-1.5 in H 1,2 2.3 2,1-2,0-2,5-2.4 2.2 2,6-6,1 (G-0TX) A

Instrument: E5.i

Data File; \\AVOGADRO\ORGANICS\organio\svoa\E5.1\OGO917F.B\E5C2353F.D

Date : 17-SEP-2005 16:43

Client ID: AR1242A1

(요~OTX) <u>사</u>

Data File: E5C2353F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2353F.D

Client Smp ID: AR1242A1 Lab Smp Id: AR1242A1

Inj Date : 17-SEP-2005 16:43

Inst ID: E5.i : SZ SRC: SZ Operator

Smp Info : AR1242A1, AR1242A1, ar1242.sub,,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Method Quant Type: ESTD Meth Date : 20-Sep-2005 09:33 mtl

Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 1 Als bottle: 6

Dil Factor: 1.00000 Integrator: Falcon Subtraction File: \\AVOGADRO\ORGANICS Compound Sublist: ar1242.sub

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

			CAL-AMI	ON-COL		
RT	EXP RT	DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
==	==225=3	*=======	医巴拉里里蒙尔亚 美国巴巴巴亚亚	=====	쓴은 또 작 꾸 걸 등록 쓰 은 또 때	=====
\$ 1	Tetrachlo	oro-m-xylene			877-09-8	(a)
6.27	6.28	-0.010	404626 0.00500	0.020		(a,
26	Aroclor-	 1242			53469-21-9	
12.1		0.000	94012 0.10000	0.10 80	.00- 120.00	100.00(a)
13,1	13.1		38762 0.10000		23- 61.23	41.23
13.4	13.4	0.000	74569 0.10000	0.10 59	.32- 99.32	79.32
			Peak Amounts =	0.1		
s 2	Decachlo	robiphenyl			2051-24-3	
22.3		0.000	736687 0.01000	0.020		(a)

Data File: E5C2353F.D

Report Date: 20-Sep-2005 09:33

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

L . 12/1/

Data File: E5C2353R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2353R.D

Client Smp ID: AR1242A1 Lab Smp Id: AR1242A1

Inj Date : 17-SEP-2005 16:43

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1242A1, AR1242A1, ar1242.sub,,

Misc Info : 1,1,,1,,

Method: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date: 20-Sep-2005 10:23 mtl Quant Type: ESTD

Cal Date: 17-SEP-2005 21:18 Cal File: E5C2362R.D Calibration Sample, Level: 1

Als bottle: 6 Dil Factor: 1.00000 Compound Sublist: ar1242 sub

Integrator: Falcon
Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

PUMICMA

			AP	CONTR			
			CAL-A	MT ON-C	OL		
RT	EXP RT	DLT RT	response (n	g) (11	g) TARGE	T RANGE	RATIO
	=====			F# #E=E	ST BESS	==##====3	¥#==#
\$ 1	Tetrachlo	oro-m-xylen			#: 877-09	9-8	(a)
8.44	8.45	-D.010	413146 0.0050	0.01	.9 		· · · · · · · · · · · · · · · · · · ·
27	Aroclor-1	 L242		CAS	#: 53469-	21-9	
13.2	13.2	0.000	151911 0.10000		80.00- 1		100.00(a)
13.6	13.6	0.000	60220 0.10000	0.10	19.64-	59.64	
14.0	14.0	0.000	35566 0.10000	0.10	3.41-	43.41	23.41
		Average of	Peak Amounts =	ď	0.1		
		robiphenyl		CAS	#: 2051-2	24-3	- - -
\$ 3 24.8	24.8	_	449802 0.01000			_	(a)
				. -	- 		

Data File: E5C2353R.D

Report Date: 20-Sep-2005 10:23

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lognor

20 21 22 23 24 25 26 Decachlorobiphenyl (22,284) 9 10 11 12 13 14 15 16 17 18 19 \\AVOGADRO\GRGANICS\organio\svoa\E5.i\o50917F.B\E5C2354F.D Operator: 8Z SRC: 5Z Column diameter: 0.53 # 1264-610 (15.485) (050,41) 84S1-moloomA-HLOCION-1248 (13*142) Sample Info: AR1248A1,AR1248A1,,ar1248,sub,, Volume Injected (uL): 1.0 Column phase: CLPPest (#82.8) eneigx-m-onoidosyteT--10 .00277 0.7 9 1.6-1. 5 1.4-ਲ ਹ 1.8-2,1-2.0.4 1,7 (GVOTX) Y

Instrument: E5.1

Data File: \\AVOGADRO\ORGANICS\organio\svoa\E5.i\o80917F.B\E5C2354F.D

Date : 17-8EP-2005 17:14 Client ID: AR1248A1 Instrument: E5.1

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.1\050917R.B\E6C2354R.D

Date : 17-SEP-2006 17:14

Client ID: AR1248A1

Data File: E5C2354F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2354F.D

Client Smp ID: AR1248A1 Lab Smp Id: AR1248A1

Inj Date : 17-SEP-2005 17:14

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1248A1, AR1248A1, , ar1248. sub, ,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Method Quant Type: ESTD Meth Date: 20-Sep-2005 09:33 mtl

Cal File: E5C2362F.D

Cal Date : 17-SEP-2005 21:18 Als bottle: 7 Calibration Sample, Level: 1

Dil Factor: 1.00000

Compound Sublist: ar1248.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1 000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

RT		DLT RT	CAL-AMT RESPONSE (ng)	ON-COL	TARGET RANGE	RATIO
\$ 1 6.26		ro-m-xylene -0.020	399391 0.00500	CAS #:	877-09-8	(a)
27 13.1 14.1 15.5	14.1 15.5	0.000 0.000 0.000	59310 0.10000 112113 0.10000 71961 0.10000 Peak Amounts =	0.10 8 0.10 16	12672-29-6 0.00- 120.0D 9.03- 209.03 1.33- 141.33	100.00(a) 189.03 121.33
\$ 2 22.3	Decachlor 22.3	obiphenyl	735061 0.01000	CAS #:	2051-24-3	(a)

Data File: E5C2354F.D Report Date: 20-Sep-2005 09:33

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: E5C2354R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2354R.D

Client Smp ID: AR1248A1 Lab Smp Id: AR1248A1

Inj Date : 17-SEP-2005 17:14 Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : AR1248A1,AR1248A1,,ar1248.sub,,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Quant Type: ESTD Meth Date: 20-Sep-2005 10:23 mtl

Cal File: E5C2362R.D

Cal Date : 17-SEP-2005 21:18 Calibration Sample, Level: 1

Als bottle: 7 Dil Factor: 1.00000 Compound Sublist: ar1248.sub

Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

Δī	MOI	TN	тs

RT	EXP RT	DLT RT	CAL-AMT RESPONSE (ng)	ON-COL (ng)	TARGET RANGE	RATIO
\$ 1 8.44	8.45	ro-m-xylene	409511 0.00500	CAS #:	877-09-8	(a)
28 15.3 16.9 17.1	Aroclor-1 15.3 16.9 17.1	0.000 0.000 0.000	70459 0.10000 44924 0.10000 93186 0.10000 Peak Amounts =	0.10 8 0.10 4	12672-29-6 0.00- 120.00 3.76- 83.76 2.26- 152.26	100.00(a) 63.76 132.26
\$ 3 24.8		obiphenyl 0.000	445360 0.01000	CAS #:	2051-24-3	(a)

Data File: E5C2354R.D

Report Date: 20-Sep-2005 10:23

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Lynn

Data File; \\AVOGADRO\DRGANICS\organic\svoa\E5.1\050917F.B\E5C2355F.D

Date : 17-SEP-2005 17:44

Instrument; E5.i

Data File: \\AVGGADRO\ORGANICS\organio\svoa\E5.1\060917R.B\E5C2355R.D

Date : 17-SEP-2005 17:44 Client ID: AR1254A1 Data File: E5C2355F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2355F.D Client Smp ID: AR1254A1

Lab Smp Id: AR1254A1

Inj Date : 17-SEP-2005 17:44

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1254A1, AR1254A1, ar1254.sub,,

Misc Info : 1,1,,1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Method

Meth Date : 20-Sep-2005 09:33 mtl Cal Date : 17-SEP-2005 21:18 Quant Type: ESTD

Cal File: E5C2362F.D

Calibration Sample, Level: 1

Als bottle: 8 Dil Factor: 1.00000 Compound Sublist: ar1254.sub

Integrator: Falcon Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

				CAL	-AMT	ON-CC	L		
RT	EXP RT	DLT RT	RESPONSI	E (ng)	(ng) TARGE	T RANGE	RATIO
==	******	======		==		*=====		22555=0	
\$ 1 6.27		oro-m-xylene -0.010	392202	0.00	500		#: 877-09	-8	(a)
\$ 2 22.3	22.3	robiphenyl	722143		000	CAS 0.019	#: 2051-2	4-3	(a)
28	Aroclor-						#: 11097-		400 00/-1
16.8	16.8	0.000	146963	0.100	000		80.00- 1		100.00(a)
17,3	17.3	0.000	142316	0.100	000		76.84- 1		96.84
18.0	18.0	0.000	200423	0.100	000	0.10	116.38- 1	56.38	136.38
		Average of Peak	Amounts	-			.1 		

Data File: E5C2355F.D

Report Date: 20-Sep-2005 09:33

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

092508

Data File: E5C2355R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2355R.D

Lab Smp Id: AR1254A1

Client Smp ID: AR1254A1

Inj Date : 17-SEP-2005 17:44

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : AR1254A1,AR1254A1,,ar1254.sub,,
Misc Info : 1,1,,1,,

Calibration Sample, Level: 1

Als bottle: 8

Dil Factor: 1.00000

Compound Sublist: ar1254.sub

Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

4.03 Target Version:

Sample Matrix: WATER

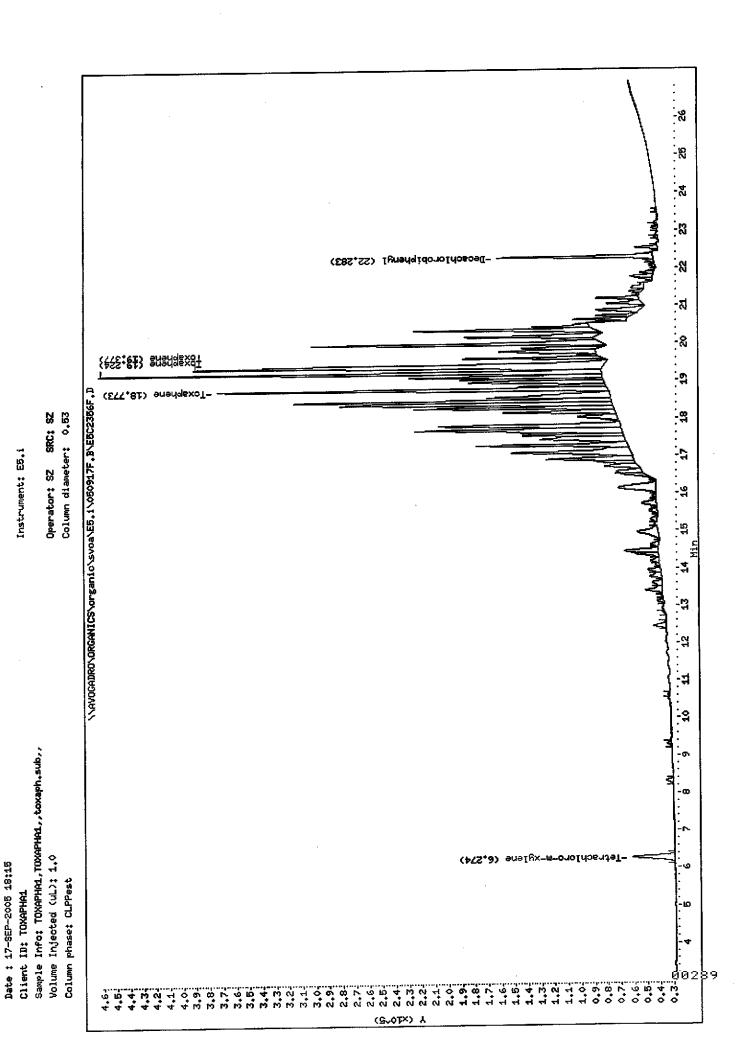
Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

			C	AL-AMT	OM-COL		
RT	EXP RT	DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
==		-====	#드르트등도 후 되	±257==	======	五二二十二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	EC=##
\$ 1	Tetrachlor				CAS #	: 877-09-8	(a)
8.44	8.45	-0.010	404641 0.	00500	0.017		
\$ 3	Decachloro	biphenyl			CAS #	: 2051-24-3	
24.B	24.8		434634 0.0	1000	0.020		(a)
29	Aroclor-12	 54			CAS #	: 11097-69-1	
17.2		0.000	86752 0.1	L 000 0	0.10	80.00- 120.00	100.00(a)
17.7	17.7	0.000	103675 0.3	L0000	0.10	99.51- 139.51	119.51
18.7		0.000	136089 0.	L0000	0.10 1	36.87- 176.87	156.87
	Ä	verage of	Peak Amounts =		0.1	•	


Data File: E5C2355R.D

Report Date: 20-Sep-2005 10:23

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

4,23.8

Data File; \\AVOGADRO\ORGANICS\organio\svoa\E5.i\o60917F.B\E5C2356F.D

Instrument; E5.i

Data File: \\AVOGADRO\QRGANICS\organic\svoa\EB.i\050917R.B\EBC2356R.D

Date : 17-SEP-2005 18:15

Client ID: TOXAPHA1

Data File: E5C2356F.D

Report Date: 20-Sep-2005 09:33

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2356F.D Client Smp ID: TOXAPHA1

Lab Smp Id: TOXAPHA1

Inj Date : 17-SEP-2005 18:15

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : TOXAPHA1, TOXAPHA1, , toxaph. sub, ,

Misc Info: 1,1,,1,,

Comment

Calibration Sample, Level: 1

Als bottle: 9 Dil Factor: 1.00000

Compound Sublist: toxaph.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

			AMOUN	TS		
		·	CAL-AMT	ON-COL		
RT	EXP RT	DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
===	###### #	======		==## = ==	产业金牌工工程是各产厂等	25025
\$ 1	Tetrachlor	o-m-xvlene	3	CAS #:	877-09-8	
6.27	6.28		194899 0.00500	0.0094		(a) ·
s 2	Decachloro	biphenyl	·	CAS #:	2051-24-3	
22.3	22.3		405832 0.01000	0.011		(a)
30	Toxaphene			CAS #:	8001-35-2	
18.8	18.8	0.000	1077780 0.50000	0.50 B	0.00- 120.00	100.00(a)
	19.2		1389051 0.50000	0.50 10	8.88- 148.88	128.88
19.4	19.4		1984229 0.50000	0.50 16	4.10- 204.10	184.10
17.4			Peak Amounts =	0.5		

Data File: E5C2356F.D

Report Date: 20-Sep-2005 09:33

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

492305

Data File: E5C2356R.D

Report Date: 20-Sep-2005 10:23

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2356R.D

Client Smp ID: TOXAPHA1 Lab Smp Id: TOXAPHA1

Inst ID: E5.i

Inj Date : 17-SEP-2005 18:15
Operator : SZ SRC: SZ In
Smp Info : TOXAPHA1, TOXAPHA1, toxaph.sub,,

Misc Info : 1,1,,1,,

Comment : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Quant Type: ESTD Meth Date : 20-Sep-2005 10:23 mtl

Cal File: E5C2362R.D Cal Date : 17-SEP-2005 21:18

Calibration Sample, Level: 1

Als bottle: 9 Dil Factor: 1.00000 Compound Sublist: toxaph.sub

Integrator: Falcon Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

	CAL-AM	T ON-COL		
DLT RT	RESPONSE (ng) (ng)	TARGET RANGE	RATIO
=========	亚亚金加亚生产名 医医子耳氏管	# ======	****	,
oro-m-xylene	203648 0.00500		: 877-09-8	(a)
orobiphenyl	244256 0.01000	CAS #	: 2051-24-3	(a)
0.000 0.000 0.000	747526 0.50000 687879 0.50000 1186824 0.50000	0.50 0.50	80.00- 120.00 72.02- 112.02	100.00(a) 92.02 158.77
	oro-m-xylene -0.010	oro-m-xylene -0.010 203648 0.00500 robiphenyl 0.000 244256 0.01000 ee 0.000 747526 0.50000 687879 0.50000	DLT RT RESPONSE (ng) (ng)	DLT RT RESPONSE (ng) (ng) TARGET RANGE

Data File: E5C2356R.D

Report Date: 20-Sep-2005 10:23

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

6425.04

26 25 4 83 -Decachlorobiphenyl (22,282) N য -8 Methoxychior (19,323) <u>-</u>ଶ \\AVOGADRO\ORGANICS\organio\svoa\E5.i\050917F.B\E5C2384F.D -Endrin aldehyde (18,555) (620***8**T) **100-.+'**+ Operator: SZ SRC: SZ Column diameter: 0.53 . -ရှ -;--Eughtin (16,954) Operator: SZ . 9 <u>-</u>튑 -4 - 12 잌 -뒦 -perg-BHC (9,809) (EO+.Q) (ensbril) OHE-smmsgσ, -91649-BHC (8*316) -00 Volume Injected (uL): 1.0 -Tetrachloro-m-xylene (6.274) ی: Column phase; CLPPest -10 4 4.4 4.3 -6.0 0.7-4.0 4. 00295 1,1 (9~0T×) 人

Instrument: E5.i

Data File: \\AVOCADRO\ORGANICS\organio\svoa\E5.i\050917F.B\E5C2384F.D

Sample Info; PEMAB,PEMAB,,pem.sub,pem.spk,

Date : 20-SEP-2005 13:51

Client ID; PEMAB

8 - Ki - Decachlorobiphenyl (24,776) -4 N (Sae,ts) holinckxonteM -8 -ম 4'4'-DDT (20,449) <u>(TAG*62) əpRuəpje utupuq</u> -8 -Eughtin (19,332) -61 \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2384R.D Operator: SZ SRC: SZ Column diameter: 0.53 9 Instrument: E5.i <u>.</u> <u>.</u>9 -땈 4 Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2384R.D -M -**P6f9-BHC** (#5*445) -9 (160,S1) (enebnil) O**Ha-smmeg**-퍾 -916Pa-BHC (10,807) - 😭 - თ Sample Info; PEMAB,PEMAB,,pem.sub,pem.spk, -ω -1~ Volume Injected (uL): 1.0 Date : 20-SEP-2005 13:51 Column phase: CLPPESTII <u>ن</u>-Client ID: PEMAB -15 - 4

(G-0T×) X

Data File: E5C2384F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2384F.D

Lab Smp Id: PEMAB Client Smp ID: PEMAB

Inj Date : 20-SEP-2005 13:51

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : PEMAB, PEMAB, , pem. sub, pem. spk,

Misc Info : 3,,PEM,1,,1000

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D

QC Sample: PEM Als bottle: 1

Dil Factor: 1.00000

7 beta-BHC

9.81 9.81 0.000 191358 0.01097 0.011

Compound Sublist: pem.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

	Name	Value	Description
_	DF Uf Vt Vo	1.000 1000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)
	V I	I.000	VOI UNIC III JOCOCCA (UII)

CONCENTRATIONS

CAS #: 319-85-7

				ON-	COL	FINAL			
RT	EXP RT	DLT RT	respons	E (ng)	(ug/L)	TARGET	RANGE	RATIO
	=======================================	===±±==							#####
\$ 1	Tetrachlor	o-m-xylene				CAS #:	877-09-8	3	
6.27	6.28	-0.010	414790	0.02	001	0.020			
3	alpha-BHC					CAS #:	319-84-6	 5	
8.32	8.32		354059						
4	gamma-BHC				• • • • •		58-89-9		
9.40	9.40	0.000	371597	0.009	37 (0.0094			

Data File: E5C2384F.D

Report Date: 27-Sep-2005 14:25

CONCENTRATIONS

RT EXP RT DLT RT RESPONSE (ng) (ug/L) TARGET RANGE RATIO = = ================================			ON-COL	FINAL		
15 Endrin CAS #: 72-20-8 17.0 17.0 0.000 1764201 0.05803 0.058 18 4,4'-DDT CAS #: 50-29-3 18.1 18.1 0.000 3559312 0.10059 0.10 19 Endrin aldehyde CAS #: 7421-93-4 18.6 18.5 0.100 60942 0.00221 0.0022 (a) 21 Methoxychlor CAS #: 72-43-5 19.3 19.3 0.000 4192799 0.23438 0.23	RT EX	P RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
17.0 17.0 0.000 1764201 0.05803 0.058 18 4,4'-DDT CAS #: 50-29-3 18.1 18.1 0.000 3559312 0.10059 0.10 19 Endrin aldehyde CAS #: 7421-93-4 18.6 18.5 0.100 60942 0.00221 0.0022 (a) 21 Methoxychlor CAS #: 72-43-5 19.3 19.3 0.000 4192799 0.23438 0.23	== ==					
17.0 17.0 0.000 1764201 0.05803 0.058 18 4,4'-DDT CAS #: 50-29-3 18.1 18.1 0.000 3559312 0.10059 0.10 19 Endrin aldehyde CAS #: 7421-93-4 18.6 18.5 0.100 60942 0.00221 0.0022 (a) 21 Methoxychlor CAS #: 72-43-5 19.3 19.3 0.000 4192799 0.23438 0.23						
18 4,4'-DDT	15 Endr	in		CAS #:	72-20-8	
18.1 18.1 0.000 3559312 0.10059 0.10 19 Endrin aldehyde CAS #: 7421-93-4 18.6 18.5 0.100 60942 0.00221 0.0022 (a) 21 Methoxychlor CAS #: 72-43-5 19.3 19.3 0.000 4192799 0.23438 0.23	17.0	17.0 0.000	1764201 0.05803	0.058		
18.1 18.1 0.000 3559312 0.10059 0.10 19 Endrin aldehyde CAS #: 7421-93-4 18.6 18.5 0.100 60942 0.00221 0.0022 (a) 21 Methoxychlor CAS #: 72-43-5 19.3 19.3 0.000 4192799 0.23438 0.23						
19 Endrin aldehyde CAS #: 7421-93-4 18.6	18 4,4'	-DDT		CAS #:	50-29-3	
18.6	18.1	18.1 0.000	3559312 0.10059	0.10		
18.6						
21 Methoxychlor CAS #: 72-43-5 19.3 19.3 0.000 4192799 0.23438 0.23	19 Endr	in aldehyde		CAS #:	7421-93-4	
19.3 19.3 0.000 4192799 0.23438 0.23	18.6	18.5 0.100	60942 0.00221	0.0022		(a)
19.3 19.3 0.000 4192799 0.23438 0.23						
	21 Meth	oxychlor		CAS #:	72-43-5	
	19.3	19.3 0.000	4192799 0.23438	0.23	•	
4				·		
\$ 2 Decachlorobiphenyl CAS #: 2051-24-3	\$ 2 Deca	chlorobiphenyl		CAS #:	2051-24-3	
22.3 22.3 0.000 743544 0.02006 0.020	22.3	22.3 0.000	743544 0.02006	0.020		

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Data File: E5C2384R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2384R.D

Lab Smp Id: PEMAB Client Smp ID: PEMAB

Inj Date : 20-SEP-2005 13:51

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : PEMAB, PEMAB, , pem. sub, pem. spk,

Misc Info : 3,, PEM, 1,, 1000

Comment

Method: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date: 27-Sep-2005 14:23 mtl Quant Type: ESTD

Cal Date: 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 1 QC Sample: PEM

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: pem.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt	1.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL)
Vo		Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==	===== ===±±±=	=======================================		========	

\$ 1	Tetrachloro-m-xylene		CAS #: 877-09-8	
8.45	8.45 0.000	427795 0.02005	0.020	

4 alpha-BHC CAS #: 319-84-6

10.8 10.8 0.000 294678 0.00910 0.0091 5 gamma-BHC (Lindane) CAS #: 58-89-9

12.1 12.1 0.000 293455 0.00962 0.0096

8 beta-BHC CAS #: 319-85-7 12.4 12.4 0.000 153733 0.01112 0.011

Data File: E5C2384R.D

Report Date: 27-Sep-2005 14:26

CONCENTRATIONS

					ON-	COL	FINAL	1		
	RT	EXP RT	DLT RT	RESPON	SE (ng)	(ug/L	(۱	TARGET RANG	E RATIO
		3555		=====				-		
	16	Endrin					CAS	# :	72-20-8	
19.	3	19.3	0.000	1123633	0.057	10	0.057			
	19	4,4'-DDT					CAS	#:	50-29-3	
20.	4	20.4	0.000	2246635	0.101	36	0.10			
	20	Endrin al	ldehyde				CAS	#:	7421-93-4	
20.	6	20.6	0.000	27873	0.0019	59	0.0016			(a)
	22	Methoxych	nlor				CAS	#:	72-43-5	
22,	0	22.0	0.000	2749866	0.2349	95	0.23			
\$	3	Decachlor	obipheny]	ı̂			CAS	#:	2051-24-3	
24.	8	24.8	0.000	450602	0.020	27	0.020			

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Instrument: E5.i

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\o50917F.B\E5C2394F.D

Sample Info; INDAMAC,INDAMAC,,inda.sub,,

Date : 20-SEP-2005 18:56

Client ID: INDAMAC

-82 . 당 (STT.#S) IgneholdonoIdosped- --≱ -83 Methoxychlor (21,957) -8 -ম --4,4'-DDT (20,445) -& (182°45) (100-/6°45) -Endrin (19,328) -<u>S</u> \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2394R.D (460,81) nimbleid- -Operator: SZ SRC: SZ Column diameter: 0.53 -8 -Endosulfan I (17,993) <u>-</u>; -9 . 답 - # -Heptechior (13,431) -gamma-BHC (Lindane) (12,048) -4 := -alpha-BHC (10,807) -유 -თ œ -1~ Volume Injected (uL): 1.0 Column phase: CLPPESTII - LO - 4 (9~0T×) X

Instrument: E5,i

Data File: \\AVGGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2394R.D

Sample Info; INDAMAC, INDAMAC, , inda, sub,,

Date : 20-SEP-2005 18:56

Client ID: INDAMAC

Data File: E5C2394F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2394F.D

Lab Smp Id: INDAMAC Client Smp ID: INDAMAC

Inj Date : 20-SEP-2005 18:56

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : INDAMAC, INDAMAC, , inda.sub, ,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D

Als bottle: 2

Continuing Calibration Sample Dil Factor: 1.00000

Integrator: Falcon

Compound Sublist: inda.sub Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

AMOUNTS

	CAL-AMT	ON-COL		
RT EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE	RATIO	
			x = x ==	
\$ 1 Tetrachloro-m-xylene		CAS #: 877-09-8		
6.27 6.28 -0.010	413273 0.02000	0.020	(a)	
3 alpha-BHC		CAS #: 319-84-6		`
8.31 8.32 -0.010	784825 0.02000	0.020	(a)	à
4 gamma-BHC (Lindane)		CAS #: 58-89-9		
9.40 9.40 0.000			(a)	
5 Heptachlor		CAS #: 76-44-8		
10.9 10.9 0.000			(a)	
*				

ghalum

Sample Matrix: WATER

Data File: E5C2394F.D

Report Date: 27-Sep-2005 14:25

AMOUNTS

		CAL-AMT	ON-COL	
RT	EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE	E RATIO
==			======= ===============================	=====
10 E	ndosulfan I		CAS #: 959-98-8	
14.9	14.9 0.000	792293 0.02000	0.020	(a)
14 D	ieldrin		CAS #: 60-57-1	
16.1	16.1 0.000	1570616 0.04000	0.039	(a)
15 E	ndrin		CAS #: 72-20-8	
		1231303 0.04000		(a)
	, 4'-DDD		CAS #: 72-54-8	
		1317759 0.04000		(a)
	, 4 ' -DDT		CAS #: 50-29-3	
		1394614 0.04000		(a)
		• • • • • • • • • • • • • • • • • • • •		
	ethoxychlor		CAS #: 72-43-5	
		3557435 0.20000		(a)
			G1G # D0G1 04 3	
-	ecachlorobiphenyl	*******	CAS #: 2051-24-3	(-)
22.3	22.3 0.000	1463866 0.04000	0.040	(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). Data File: E5C2394R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2394R.D

Lab Smp Id: INDAMAC Client Smp ID: INDAMAC

Inj Date : 20-SEP-2005 18:56

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : INDAMAC, INDAMAC, , inda.sub, ,

Misc Info : Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date : 27-Sep-2005 14:23 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 2 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: inda.sub

Subtraction File: \\AVOGADRO\ORGANICS Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf		Dilution Factor Correction factor
٧t		Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

AMOUNTS

		CAL-AMT	ON-COL .		
RT	EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE	RATIO	
==	=======================================		*******	=====	
\$ 1	Tetrachloro-m-xylene	•	CAS #: 877-09-8		
8.45	8.45 0.000	423584 0.02000	0.020	(a)	
	alpha-BHC 10.8 0.000	637910 0.02000	CAS #: 319-84-6 0.020	(a)	ما د
	gamma-BHC (Lindane) 12.1 -0.100	600168 0.02000	CAS #: 58-89-9 0.020	(a)	9/27/5-
	Heptachlor 13.4 0.000	602286 0.02000	CAS #: 76-44-8	(a) .	

Data File: E5C2394R.D

Report Date: 27-Sep-2005 14:26

AMOUNTS

		CAL-AMT	ON-COL			
RT	EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE	RATIO	•	
	Endosulfan I		CAS #: 959-98-8		•	
	18,0 0.000			(a)	•	
	Dieldrin		CAS #: 60-57-1			
18.7	18.7 0.000			(a)		
16	Endrin	·	CAS #: 72-20-B		•	
	19.3 0.000			(a)	+	
17	4,4'-DDD		CAS #: 72-54-8		•	
19.8	19.8 0.000	838623 0.04000	0.039	(a)		
	4,4'-DDT		CAS #: 50-29-3		•	
	20.4 0.000			(a)	•	
	Methoxychlor		CAS #: 72-43-5			
	22,0 0.000			(a)		
-	Decachlorobiphenyl		CAS #: 2051-24-3			
24.8	24.8 0.000	885362 0.04000	0.040	(a)		

QC Flag Legend

25 26 Decachlorobiphenyl (24,772) -\$ -83 Endrin ketone (SS*SS4) . -8 Endosulfan sulfate (21,176) -มี (886,02) abdahable nimbn3-Endosulfan II (19,826) -8 -61 Operator: SZ SRC: SZ Column diameter: 0.53 -8 (126,71) enebroid3-sdqis- — ((Z+G*ZT) auepuo[4]==ewwe2= -Instrument: E5.i -1 (8+0,\t) ebixoqe noidostqeH- --9 <u>-</u>달 - -UIGNIN (Id*41S) -qeffa-BHC (13,365) Data File: \\AVOGADRO\ORGANICS\organio\svoa\E5.i\050917R.B\E5C2395R.D <u>.</u> -Refs-BHC (15'441) -읶 -ដ -4 - D Sample Info: INDBMAC,INDBMAC,,indb.sub,, -ω -1~ Volume Injected (uL): 1.0 Date : 20-SEP-2005 19:27 phase: CLPPESTII Client ID: INDBMAC -ធា Column (9-0TX) A

Data File: E5C2395F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2395F.D

Lab Smp Id: INDBMAC Client Smp ID: INDBMAC

Inj Date : 20-SEP-2005 19:27

Operator : SZ Inst ID: E5.i SRC: SZ

Smp Info : INDBMAC, INDBMAC, , indb.sub, ,

Misc Info:

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D

Als bottle: 3 Continuing Calibration Sample

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: indb.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf		Dilution Factor Correction factor
Vt		Volume of final extract (uL)
Vo		Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

AMOUNTS

RT	EXP RT	DLT RT	RESPONSE		-AMT ng)	ON-	COL	TARGET RANG	E RATIO
==	======	======			====			========	
		ro-m-xylene -0.010	470992	0.02	000			877-09-8	(a)
_	Aldrin 11.8	0.000	761094 0	0.020	00	_		309-00-2	(a)
-	beta-BHC 9.81	0.000	338167 (0.020	00		,, .	319-85-7	(a)
-	delta-BHC		843397 (0.020	00	C7 0.02		319-86-8	(a)

alahar

Data File: E5C2395F.D

Report Date: 27-Sep-2005 14:25

AMOUNTS

	LT RT RESPONSE		ng)	TARGET RANGE	RATIO
	.000 817044 0	0.02000 0.			(a)
11 gamma-Chlore 14.1 14.1 0	dane .000 834424 (0.02000 0.	CAS #: 5	103-74-2	(a)
12 alpha-Chlore		0.02000 0.	CAS #: 5	103-71-9	(a)
	.000 1448866 (0.04000 0.			(a).
	II .000 1362179 (0.04000 0.	040	3213-65-9	(a)
	hyde .100 1095814 (0.04000 0.	040	421-93-4	(a)
	sulfate .000 1400179 (0.04000 0.			(a)
	ne .000 1538682 (0.04000 0.	039	3494-70-5	(a)
	iphenyl .000 1432761 (0.04000 0.	039	051-24-3	(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ). Data File: E5C2395R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2395R.D

Lab Smp Id: INDBMAC Client Smp ID: INDBMAC

Inj Date : 20-SEP-2005 19:27

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : INDBMAC, INDBMAC, , indb.sub, ,

Misc Info :

Comment

Continuing Calibration Sample

Als bottle: 3 Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: indb.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF		Dilution Factor
Uf	1.000	Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

AMOUNTS

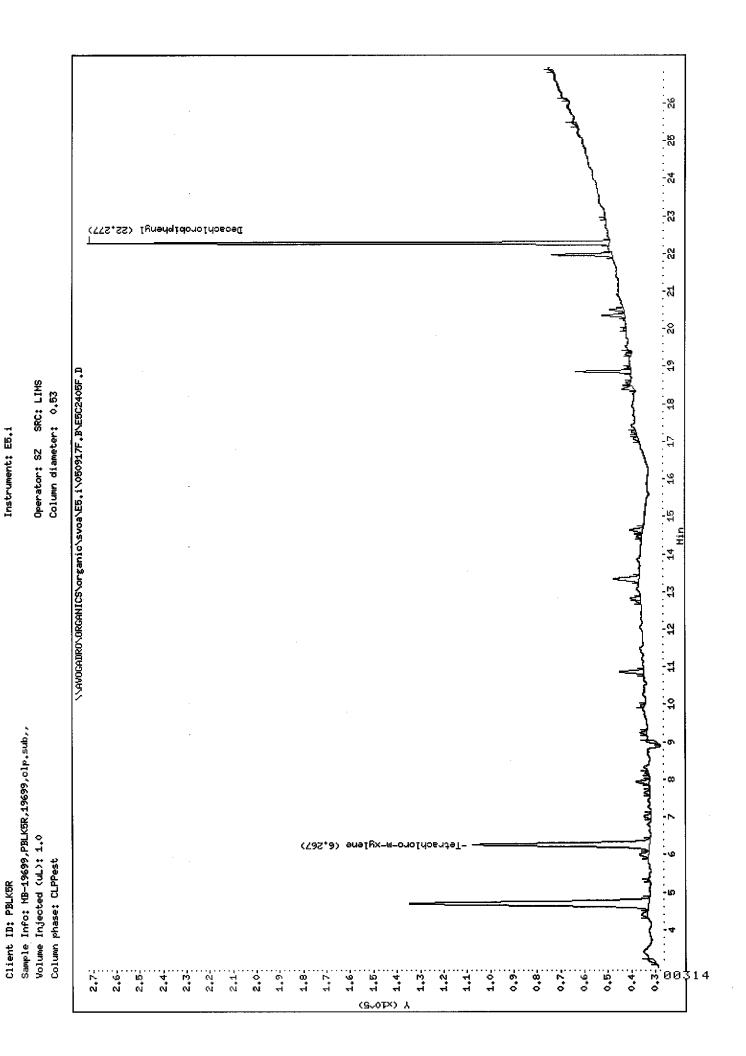
		=		
	CAL-AMT	ON-COL		
RT EXP RT DLT RT	RESPONSE (ng)	(ng) TARGET RANGE	RATIO	
22 22222 222222	********			
•				
\$ 1 Tetrachloro-m-xylene		CAS #: 877-09-8		
8.45 B.45 0.000			(a)	
7 Aldrin		CAS #: 309-00-2		. •
Aldrin		CAS #: 309-00-2		
14.4 14.4 0.000		0.020	(a)	•
B beta-BHC		CAS #: 319-85-7		
12.4 12.4 0.000	273470 0 02000	0.020	(a)	
		·····		
9 delta-BHC		CAS #: 319-86-B		
13.4 13.4 0.000	596359 0.02000	0.020	(a)	•

alabsr

Data File: E5C2395R.D

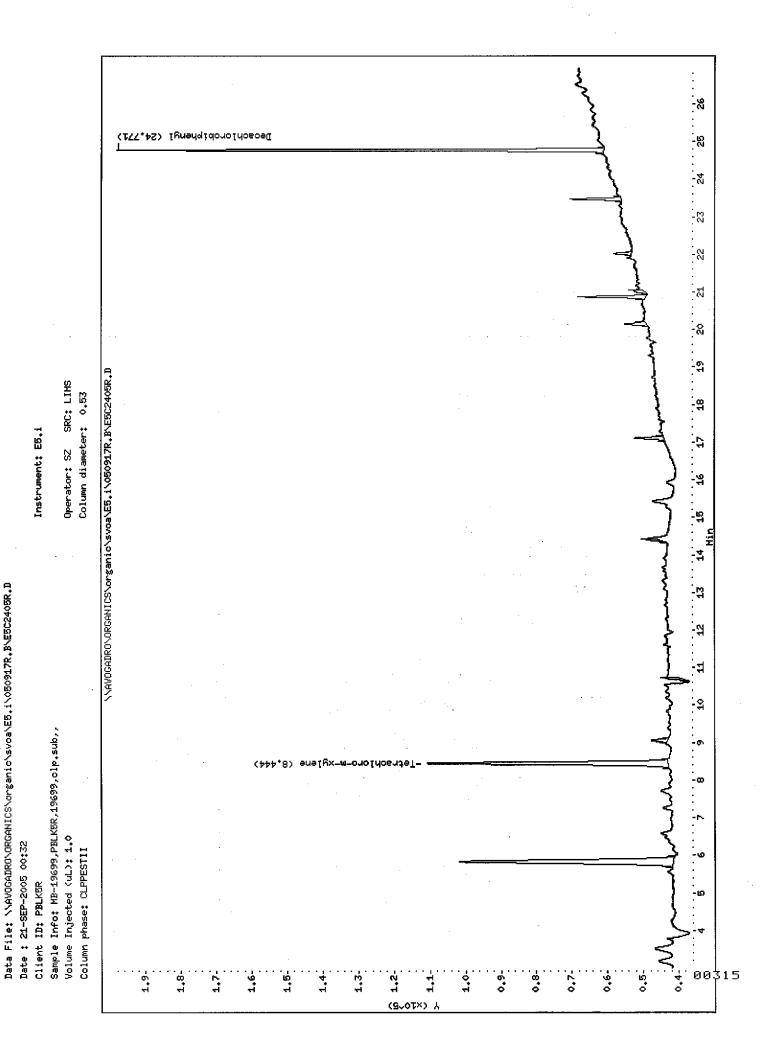
Report Date: 27-Sep-2005 14:26

AMOUNTS


RT EXP RT DLT RT		ON-COL (ng) TARGET RANGE	
10 Heptachlor epoxide 17.0 17.0 0.000	511312 0.02000		(a)
12 gamma-Chlordane 17.5 17.5 0.000	522879 0.02000	CAS #: 5103-74-2 0.020	(a) .
13 alpha-Chlordane 17.9 17.9 0.000	493574 0.02000	CAS #: 5103-71-9	(a)
14 4,4'-DDE 18.5 18.5 0.000	964474 0.04000	CAS #: 72-55-9 0.040	(a)
18 Endosulfan II 19.8 19.8 0.000	888970 0.04000	CAS #: 33213-65-9 0.040	(a) :
20 Endrin aldehyde 20.6 20.6 0.000	703427 0.04000	CAS #: 7421-93-4	(a)
21 Endosulfan sulfate 21.2 21.2 0.000	904226 0.04000	CAS #: 1031-07-8 0.040	(a)
23 Endrin ketone 22.2 22.2 0.000	1019627 0.04000	CAS #: 53494-70-5	(a)
\$ 3 Decachlorobiphenyl 24.8 24.8 0.000	861988 0.04000	CAS #: 2051-24-3	(a)

QC Flag Legend

PESTICIDE ORGANICS ANALYSIS DATA SHEET


Lab Name: MITKEM CORPORATION	Contract: PBLK5R
Lab Code: MITKEM Case No.:	
Matrix: (soil/water) WATER	Lab Sample ID: MB-19699
Sample wt/vol: 1000 (g/mL) MI	L Lab File ID: E5C2405F
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type) <u>SEPF</u>	Date Extracted: 08/29/05
Concentrated Extract Volume: 10000	O(uL) Date Analyzed: 09/21/05
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) Y
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L O

319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	0.050 U
319-86-8	delta-BHC	0.050 U
58-89-9	gamma-BHC (Lindane)	0.050 U
76-44-8	Heptachlor	0.050 U
309-00-2	Aldrin	0.050 U
1024-57-3	Heptachlor epoxide	0.050 U
959-98-8	Endosulfan I	0.050 U
60-57-1	Dieldrin	0.10 U
72-55-9	4,4'-DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72-54-8	4,4'-DDD	0.10 U
1031-07-8	Endosulfan sulfate	0.10 U
50-29-3	4,4'-DDT	0.10 U
72-43-5	Methoxychlor	0.50 U
53494-70-5	Endrin ketone	0.10 U
7421-93-4	Endrin aldehyde	0.10 U
5103-71-9	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
8001-35-2	Toxaphene	5.0 U
12674-11-2	Aroclor-1016	1.0 U
11104-28-2	Aroclor-1221	2.0 U
11141-16-5	Aroclor-1232	1.0 U
53469-21-9	Aroclor-1242	1.0 U
12672-29-6	Aroclor-1248	1.0 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

Data File: \\AVOGADRO\ORCANICS\organic\svoa\E5.i\050917F.B\E5C2405F.D

Date : 21-SEP-2005 00:32

Data File: E5C2405F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2405F.D

Lab Smp Id: MB-19699 Client Smp ID: PBLK5R

Inj Date : 21-SEP-2005 00:32

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : MB-19699, PBLK5R, 19699, clp. sub,,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D QC Sample: BLANK Als bottle: 26

Dil Factor: 1.00000

Compound Sublist: clp.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF		Dilution Factor
Ū£	1.000	Correction factor
۷t	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==			*****		
\$ 17	Petrachloro-m-xylene		CAS#:	877-09-8	
6.27	6.28 -0.010	464002 0.02238	0.22		
\$ 2 1	Decachlorobiphenyl		CAS #:	2051-24-3	
22.3	22.3 0.000	682676 0.01842	0.18		

drypen

Data File: E5C2405R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2405R.D

Lab Smp Id: MB-19699 Client Smp ID: PBLK5R

Inj Date : 21-SEP-2005 00:32

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : MB-19699, PBLK5R, 19699, clp. sub, ,

Misc Info : Comment :

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date: 27-Sep-2005 14:23 mtl Quant Type: ESTD Cal Date: 17-SEP-2005 21:18 Cal File: E5C2362R.D Als bottle: 26 QC Sample: BLANK

Dil Factor: 1.00000
Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf		Dilution Factor Correction factor
Vt	10000.000	Volume of final extract (uL)
Vo Vi		Volume of sample extracted (mL) Volume injected (uL)

CONCENTRATIONS

	*	ON-COL	FINAL	
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L) TARGET RANGE	RATIO
==				====
\$ 1	Tetrachloro-m-xylene		CAS #: 877-09-8	lar
8.44	8.45 -0.010	347203 0.01628	0.16	glarber
\$ 3	Decachlorobiphenyl		CAS #: 2051-24-3	 ·
24.8	24.8 0.000	416699 0.01875	0.19	

Lab Name: MITKEM CORPORATION Contract:	PIBLKA2
Lab Code: MITKEM Case No.: SAS No.:	SDG No.: MD1004
Matrix: (soil/water) WATER Lab Sample ID	: PIBLKA2
Sample wt/vol: 1000 (g/mL) ML Lab File ID:	E5C2363F
% Moisture: Decanted: (Y/N) Date Received:	
Extraction: (Type) Date Extracted	d:
Concentrated Extract Volume: 10000 (uL) Date Analyzed	: <u>09/17/05</u>
Injection Volume: 1.0 (uL) Dilution Fact	or: <u>1.0</u>
GPC Cleanup: (Y/N) N pH: Sulfur Clean	up: (Y/N) <u>N</u>

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

£ ************************************			
319-84-6	alpha-BHC	0.050	Ū
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ũ
33213-65-9	Endosulfan II	0.10	Ü
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	Ū
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	Ū

	PIBLKA2
Lab Name: MITKEM CORPORATION Cor	ntract:
Lab Code: MITKEM Case No.:	SAS No.: SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKA2
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2363R
% Moisture: Decanted: (Y/N)	Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/17/05
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N_

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	Ū.
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	U
72-55-9	4,4'-DDE	0.10	U
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	Ū
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	U
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	U

		Decechiorobiphenyl (22,278)	26 26 56 66 66 66 66 66 66 66 66 66 66 66 66
Instrument: E5.i Operator: SZ SRC: SZ Column diametent of E7			00 00 00 00 00 00 00 00 00 00 00 00 00
Date : ISEF-2008 21198. Client ID: PIBLKA2 Sample Info; PIBLKA2, olp, sub,, Volume Injected (uL): 1.0	Column prase; crrrasc	(6,289) enelyx—m—oficentel———————————————————————————————————	

17 18 19 20 21 22 23 24 25 26 Jecschlorobiphenyl (24,772) \\AVOGADRO\ORGANICS\organio\svoa\E5.i\o50917R.B\E5C2363R.D Operator: SZ SRC: SZ Column diameter: 0.53 -4 6 7 8 9 10 11 12 13 14 15 -Tetrachloro-m-xylene (8,449) Volume Injected (uL): 1.0 Column phase: CLPPESTII -ID 00321 9.0 . . -6.0 0.7 1,1-1.0 8 2.0 1.6. . . 1.9 1.7 (\$\\0\TX)_\

Instrument: E5.i

Data File: \\AVDCADRO\DRGANICS\organio\svoa\E5.i\O50917R.B\E5C2363R.D

Sample Info: PIRIKAZ, PIBLKAZ, Jolp.sub,

Date : 17-SEP-2005 21:48 Client ID: PIBLKA2 Data File: E5C2363F.D

Report Date: 20-Sep-2005 09:34

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2363F.D

Client Smp ID: PIBLKA2 Lab Smp Id: PIBLKA2

Inj Date : 17-SEP-2005 21:48

Operator : SZ SRC: SZ

Smp Info : PIBLKA2, PIBLKA2,, clp.sub,, Inst ID: E5.i

Misc Info : 3,, INSTBLANK, 1,,

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 20-Sep-2005 09:34 mtl Quant Type: ESTD Cal File: E5C2362F.D Cal Date : 17-SEP-2005 21:18 QC Sample: INSTBLANK

Als bottle: 100

Dil Factor: 1.00000 Compound Sublist: clp.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS
Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

CONCENTRATIONS

		二甲基苯基苯基基 医二甲基苯二二	****		====*
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
		ON-COL	FINAL		

CAS #: 877-09-8 \$ 1 Tetrachloro-m-xylene 0.20 6.28 6.28 0.000 418460 0.02018

-----CAS #: 2051-24-3 \$ 2 Decachlorobiphenyl

771421 0.02082 0.21 Data File: E5C2363R.D

Report Date: 20-Sep-2005 10:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2363R.D

Client Smp ID: PIBLKA2 Lab Smp Id: PIBLKA2

Inj Date : 17-SEP-2005 21:48
Operator : SZ SRC: SZ
Smp Info : PIBLKA2, PIBLKA2, clp.sub,, Inst ID: E5.i

Misc Info : 3,, INSTBLANK, 1,,

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method Meth Date : 20-Sep-2005 10:23 mtl Quant Type: ESTD

Cal File: E5C2362R.D Cal Date : 17-SEP-2005 21:18 QC Sample: INSTBLANK

24.8 24.8 0.000

Als bottle: 100
Dil Factor: 1.00000
Integrator: Falcon
Subtraction File: \\AVOGADRO\ORGANICS Compound Sublist: clp.sub

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET2

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

	CONCENTE	RATIONS	
	ON-COL	FINAL	
RT EXP RT DLT RT	RESPONSE (ng)	(ug/L) TARGET RANGE	RATIO
	工艺学的基件工二 工艺艺艺的第三	三位字中四字列 五字二工作录点之名或其中	****
\$ 1 Tetrachloro-m-xylene		CAS #: 877-09-8	
8.45 8.45 0.000	430188 0.02017	0.20	
\$ 3 Decachlorobiphenyl		CAS #: 2051-24-3	

470418 0.02117 0.21

Lab	Name:	MITKEM	CORPORATION	Contract:	PIBLKAB
Lab	Code:	MTTKEM	Case No.:	SAS No.:	SDG No.: MD1004

Matrix: (soil/water) WATER Lab Sample ID: PIBLKAB

Sample wt/vol: 1000 (g/mL) ML Lab File ID: E5C2383F

% Moisture: ____ Decanted: (Y/N) ___ Date Received: ____

Extraction: (Type) ____ Date Extracted: ____

Concentrated Extract Volume: 10000 (uL) Date Analyzed: 09/20/05

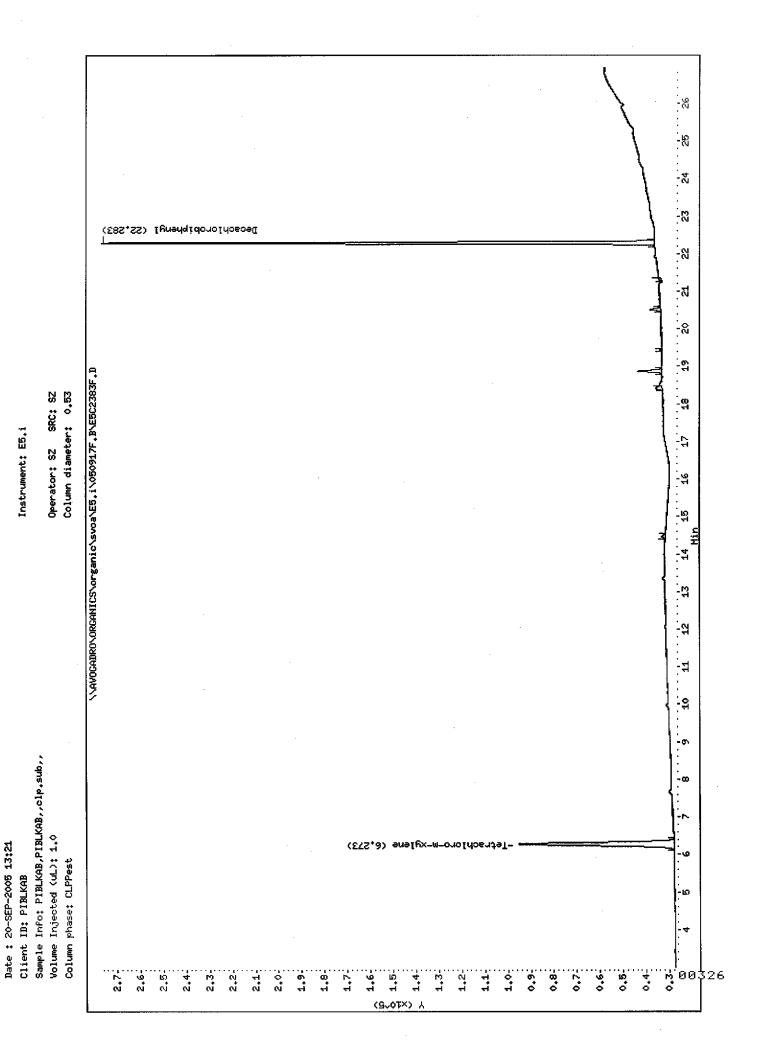
Injection Volume: 1.0 (uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) N

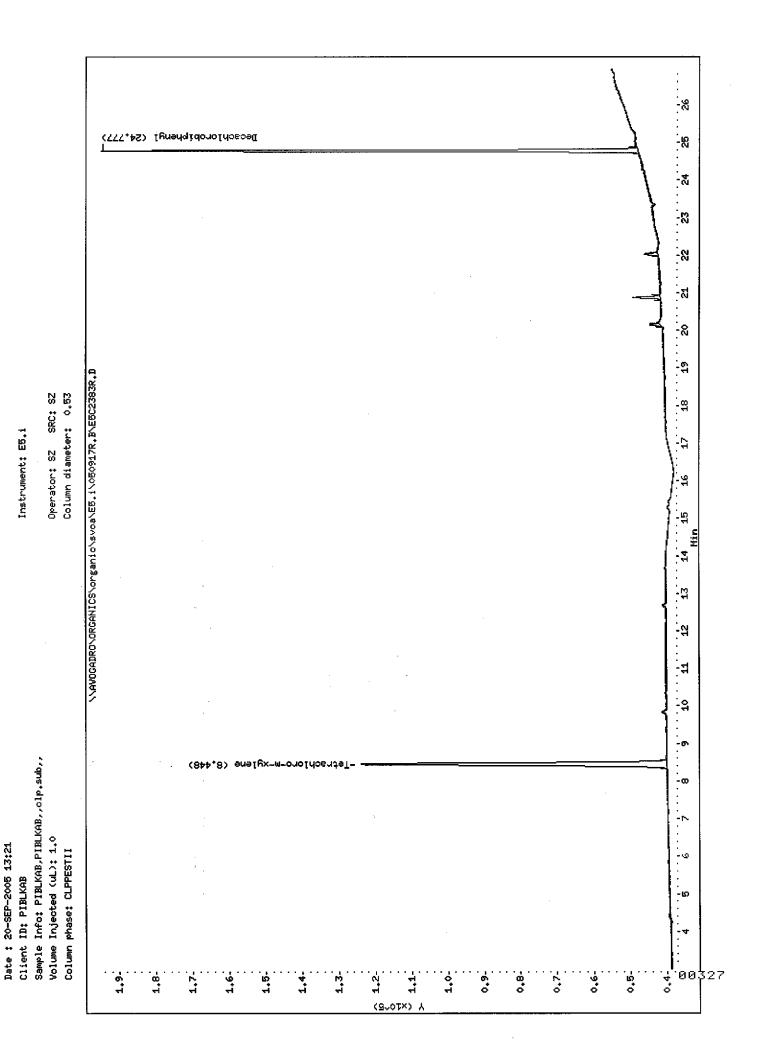
CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

	0.050	Ŭ
beta-BHC	0.050	ש
delta-BHC	0.050	U
gamma-BHC (Lindane)	0.050	Ŭ
Heptachlor	0.050	ש
	0.050	ט
Heptachlor epoxide	0.050	Ū
Endosulfan I		Ū
Dieldrin	0.10	Ū
4,4'-DDE	0.10	Ū
Endrin	0.10	U
Endosulfan II	0.10	Ū
4,4'-DDD	0.10	Ū
Endosulfan sulfate	0.10	Ū
4,4'-DDT	0.10	Ū
Methoxychlor	0.50	U
Endrin ketone	0.10	Ū
Endrin aldehyde	0.10	Ū
alpha-Chlordane	0.050	U
gamma-Chlordane	0.050	Ū
Toxaphene	5.0	U
Aroclor-1016	1.0	Ū
Aroclor-1221	2.0	U
Aroclor-1232	1.0	Ū
Aroclor-1242	1.0	Ū
Aroclor-1248	1.0	Ū
Aroclor-1254	1.0	Ū
Aroclor-1260	1.0	Ū
	gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I Dieldrin 4,4'-DDE Endrin Endosulfan II 4,4'-DDD Endosulfan sulfate 4,4'-DDT Methoxychlor Endrin ketone Endrin aldehyde alpha-Chlordane gamma-Chlordane Toxaphene Aroclor-1211 Aroclor-1232 Aroclor-1248 Aroclor-1254	beta-BHC 0.050 delta-BHC 0.050 gamma-BHC (Lindane) 0.050 Heptachlor 0.050 Aldrin 0.050 Heptachlor epoxide 0.050 Endosulfan I 0.050 Endrin 0.10 Endrin 0.10 Endosulfan II 0.10 4,4'-DDD 0.10 Endosulfan sulfate 0.10 4,4'-DDT 0.10 Methoxychlor 0.50 Endrin ketone 0.10 Endrin aldehyde 0.10 alpha-Chlordane 0.050 gamma-Chlordane 0.050 Toxaphene 5.0 Aroclor-1212 2.0 Aroclor-1232 1.0 Aroclor-1248 1.0 Aroclor-1254 1.0

PESTICIDE ORGANICS ANALYSIS DATA SHEET


Lab Name: MITKEM COR	PORATION	Contract:	PIBLKAB
Lab Code: MITKEM	Case No.:	SAS No.:	SDG No.: <u>MD1004</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	PIBLKAB
Sample wt/vol:	1000 (g/mL) ML	Lab File ID: I	E5C2383R
% Moisture:	Decanted: (Y/N) _	Date Received:	<u>-</u>
Extraction: (Type)	<u> </u>	Date Extracted	·
Concentrated Extract	Volume: 10000 (u	L) Date Analyzed:	09/20/05

Injection Volume: 1.0 (uL) Dilution Factor: 1.0


GPC Cleanup: (Y/N) N pH: ____ Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

319-84-6	alpha-BHC	0.050	Ŭ
319-85-7	beta-BHC	0.050	Ü
319-86-8	delta-BHC	0.050	Ü
58-89-9	gamma-BHC (Lindane)	0.050	ប
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	U
959-98-8	Endosulfan I	0.050	U
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	U
33213-65-9	Endosulfan II	0.10	Ü
72-54-8	4,4'-DDD	0.10	Ü
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	U
53494-70-5	Endrin ketone	0.10	U
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	U
11141-16-5	Aroclor-1232	1.0	Ū.
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0.	U

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\O50917F.B\E5C2383F.D

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2383R.D

Data File: E5C2383F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2383F.D

Lab Smp Id: PIBLKAB Client Smp ID: PIBLKAB

Inj Date : 20-SEP-2005 13:21

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : PIBLKAB, PIBLKAB, , clp. sub, ,

Misc Info: 3,, INSTBLANK, 1,,

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D Als bottle: 100 QC Sample: INSTBLANK

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)
· • • • • • • • • • • • • • • • • • • •	T + 000	roading arrived (UII)

CONCENTRATIONS

				ON-	COL	FINAL		
RT	EXP RT	DLT RT	RESPONSI	₃ (ng)	(ug/L)	TARGET RANGE	RATIO
==	========						=========	=====
\$ 1	Tetrachlor	o-m-xylene				CAS #:	877-09-8	
5.27	6.28	-0.010	410204	0.01	979	0.20		
\$ 2	Decachloro	biphenyl				CAS #:	2051-24-3	
22.3	22.3	0.000	745525	0.020	12	0.20		

glilar

Data File: E5C2383R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2383R.D Lab Smp Id: PIBLKAB Client Smp ID: PIBLKAB

Inj Date : 20-SEP-2005 13:21

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : PIBLKAB, PIBLKAB, , clp.sub, ,

Misc Info: 3,,INSTBLANK,1,,

Comment

Method: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date: 27-Sep-2005 14:23 mtl Quant Type: ESTD

Cal Date: 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 100 QC Sample: INSTBLANK

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET7

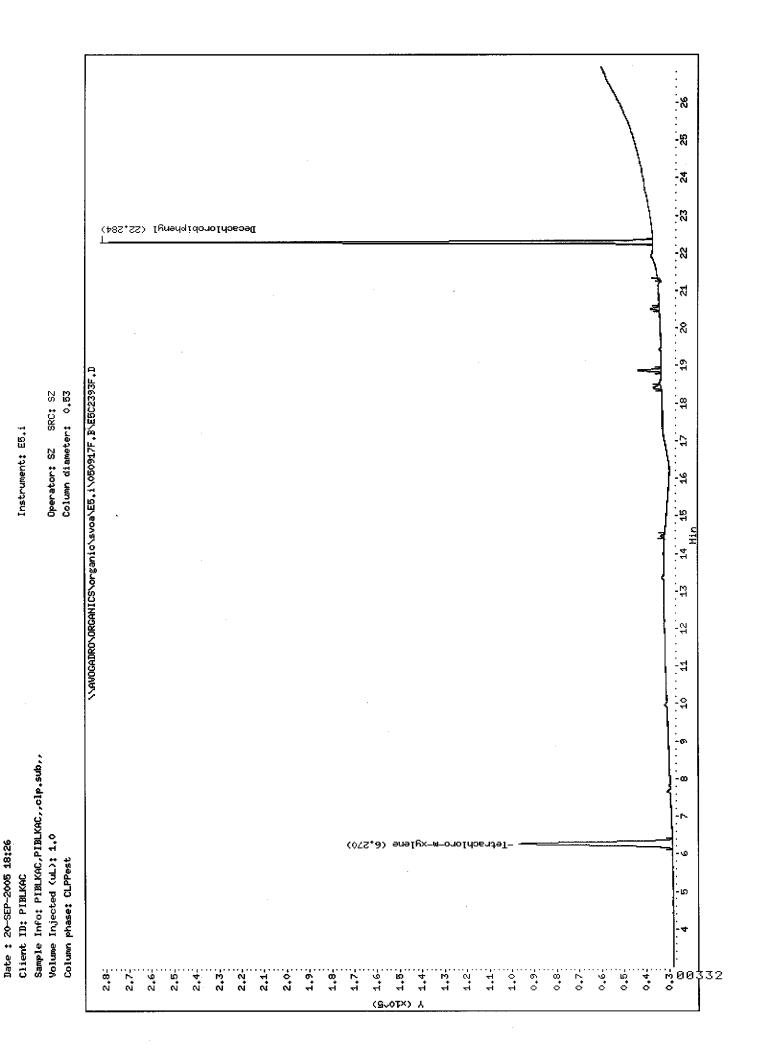
Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf	1.000	Dilution Factor Correction factor Volume of final extract (uL)
Vt Vo		Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==	=======================================		TRETTE		
\$ 13	Tetrachloro-m-xylene		CAS #:	877-09-8	
8.45	8.45 0.000	423234 0.01984	0.20		
		-+			
\$ 3 1	Decachlorobiphenyl		CAS #:	2051-24-3	
24.8	24.8 0.000	452533 0.02036	0.20		

alulusi


Lab Name: MITKEM CORPORATION Contract	PIBLKAC
Lab Code: MITKEM Case No.: SAS	
	
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKAC
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2393F
% Moisture: Decanted: (Y/N) Date:	ate Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (uL)	Date Analyzed: 09/20/05
Injection Volume: 1.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u> Q

212 24 6	3 1 5		r
319-84-6	alpha-BHC	0.050	Ŭ
319-85-7	beta-BHC	0.050	ַ <u>"</u>
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	U
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	U
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	ט
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	U
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	U
11097-69-1	Aroclor-1254	1.0	מ
11096-82-5	Aroclor-1260	1.0	Ū

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: MITKEM CORPORATION	Contract:	PIBLKAC
Lab Code: MITKEM Case No.:	SAS No.:	SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample	ID: PIBLKAC
Sample wt/vol: 1000 (g/mL)	ML Lab File II	D: <u>E5C2393R</u>
% Moisture: Decanted: ()	//N) Date Received	i:
Extraction: (Type)	Date Extra	cted:
Concentrated Extract Volume: 10	0000 (uL) Date Analyz	zed: <u>09/20/05</u>
Injection Volume: 1.0(uL)	Dilution Fa	actor: 1.0
GPC Cleanup: (Y/N) N r	OH: Sulfur Cle	eanup: (Y/N) N
CAS NO COMPOUND		TRATION UNITS:

,			
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	Ū
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.050	U
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	Ū
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	Ū
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	Ū

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\o50917F.B\E5C2393F.D

22 23 24 25 26 Jecschlorobiphenyl (24,777) 20...2 -61 \\AVOGADRO\ORGANICS\organio\svoa\E5.i\050917R.B\E5C2393R.D Operator: SZ SRC: SZ Column diameter: 0.53 17 18 . 유 -달 13 9 10 11 12 . - co Volume Injected (uL): 1.0 Column phase: CLPPESTII - დ . . 4 -6.0 7 4.0 1.5 1,3 1-1-1.0-8 9.0 ខេខដុំ១១ 1.9-1.8-1.7 (9-0TX) X

Instrument: E5.i

Data File: \\AVOGADRO\ORGANICS\organio\svoa\E5.i\050917R.B\E5C2393R.D

Sample Info; PIBLKAC, PIBLKAC, , clp.sub, ,

Date : 20-SEP-2005 18:26

Client ID; PIBLKAC

Data File: E5C2393F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2393F.D

Lab Smp Id: PIBLKAC Client Smp ID: PIBLKAC

Inj Date : 20-SEP-2005 18:26

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : PIBLKAC, PIBLKAC, , clp.sub, ,

Misc Info:

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Meth Date : 27-Sep-2005 14:21 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362F.D Als bottle: 100 QC Sample: INSTBLANK

Dil Factor: 1.00000 Compound Sublist: clp.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF		Dilution Factor
Uf		Correction factor
Vt Vo		Volume of final extract (uL) Volume of sample extracted (mL)
Vi Vi		Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL	•		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO	
w za			=======		====	
\$ 17	etrachloro-m-xylene		CAS #:	877-09-8		
6.27	6.28 -0.010	416400 0.02008	0.20			
\$ 2 1	ecachlorobiphenyl		CAS #:	2051-24-3		
22.3	22.3 0.000	757514 0.02044	0.20			

delph

Data File: E5C2393R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2393R.D Lab Smp Id: PIBLKAC Client Smp ID: PIBLKAC

Inj Date : 20-SEP-2005 18:26

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : PIBLKAC, PIBLKAC, , clp.sub, ,

Misc Info:

Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Meth Date: 27-Sep-2005 14:23 mtl Quant Type: ESTD Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D QC Sample: INSTBLANK

Als bottle: 100 Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

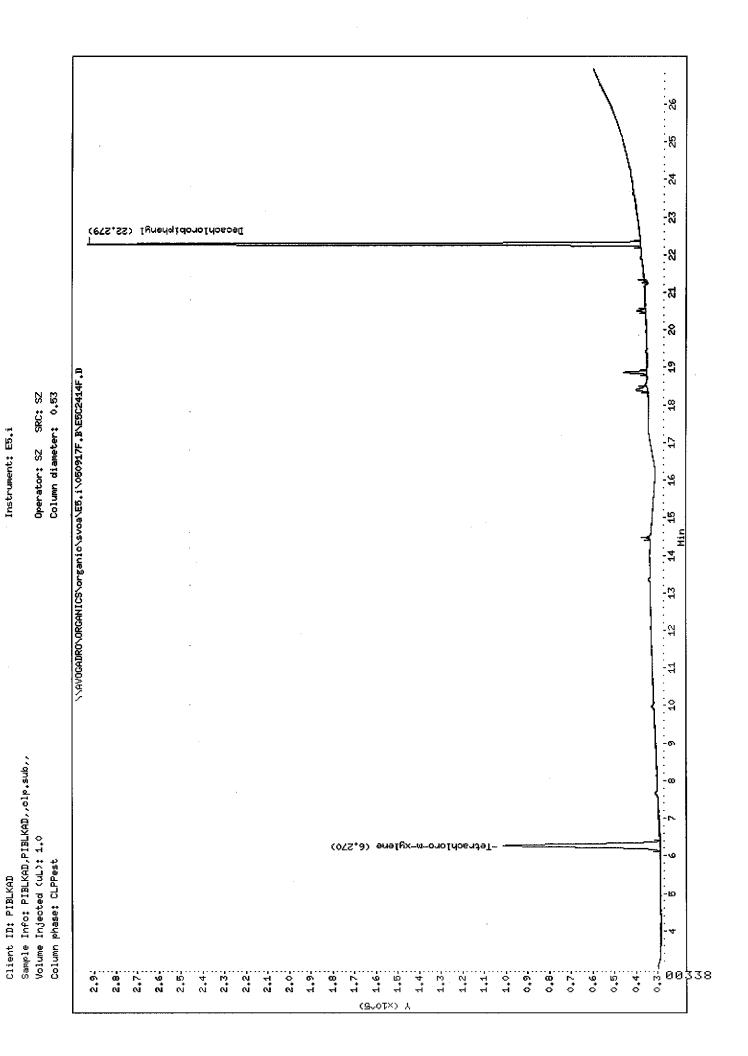
Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 10000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

RT	EXP RT DLT RT	ON-COL RESPONSE (ng)	FINAL (ug/L) TARGET RANGE	RATIO
	=======	*******		====
\$ 1	Tetrachloro-m-xylene		CAS #: 877-09-8	
8.44	8.45 -0.010	428810 0.02010	0.20	al 27 like
\$ 3	Decachlorobiphenyl		CAS #: 2051-24-3	A(D)
24.8	24.8 0.000	460809 0.02073	0.21	


Lab Name: MITKEM CORPORATION	Contract:PIBLKAD
Lab Code: MITKEM Case No.:	SAS No.:SDG No.: MD1004
Matrix: (soil/water) WATER	Lab Sample ID: PIBLKAD
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: E5C2414F
% Moisture: Decanted: (Y/N) _	Date Received:
Extraction: (Type)	Date Extracted:
Concentrated Extract Volume: 10000 (1	L) Date Analyzed: 09/21/05
Injection Volume: 1.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

319-84-6	alpha-BHC	0.050	Ū
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	Ū
58-89-9	gamma-BHC (Lindane)	0.050	Ū
76-44-8	Heptachlor	0.050	Ū
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ū
60-57-1	Dieldrin	0.10	Ū
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	0.10	Ū
33213-65-9	Endosulfan II	0.10	Ū
72-54-8	4,4'-DDD	0.10	Ū
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.10	U
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	Ü
7421-93-4	Endrin aldehyde	0.10	U
5103-71-9	alpha-Chlordane	0.050	Ū
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ū
11104-28-2	Aroclor-1221	2.0	Ū
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5	Aroclor-1260	1.0	Ū
-			

Lab Name: MITKEM CORPORATION Contract:	PIBLKAD
Lab Code: MITKEM Case No.: SAS No.: SI	DG No.: MD1004
Matrix: (soil/water) WATER Lab Sample ID: 1	PIBLKAD
Sample wt/vol: 1000 (g/mL) ML Lab File ID: E	5C2414R
% Moisture: Decanted: (Y/N) Date Received:	
Extraction: (Type) Date Extracted:	
Concentrated Extract Volume: 10000 (uL) Date Analyzed:	09/21/05
Injection Volume: 1.0 (uL) Dilution Factor	: 1.0
GPC Cleanup: (Y/N) N pH: Sulfur Cleanup:	: (Y/N) <u>N</u>
CAS NO. COMPOUND CONCENTRATE (ug/L or ug	ION UNITS: g/Kg) <u>UG/L</u> Q

319-85-7 beta-BHC 0.050 U 319-86-8 delta-BHC 0.050 U 58-89-9 gamma-BHC (Lindane) 0.050 U 58-89-9 gamma-BHC (Lindane) 0.050 U 0.0	I			
319-86-8 delta-BHC 0.050 U	319-84-6	alpha-BHC	0.050	
58-89-9 gamma-BHC (Lindane) 0.050 U 76-44-8 Heptachlor 0.050 U 309-00-2 Aldrin 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 959-98-8 Endosulfan I 0.050 U 60-57-1 Dieldrin 0.10 U 72-55-9 4,4'-DDE 0.10 U 72-20-8 Endrin 0.10 U 32213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016		beta-BHC	0.050	
76-44-8 Heptachlor 0.050 U 309-00-2 Aldrin 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 959-98-8 Endosulfan I 0.050 U 60-57-1 Dieldrin 0.10 U 72-55-9 4,4'-DDE 0.10 U 72-20-8 Endrin 0.10 U 33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221			0.050	U
309-00-2 Aldrin 0.050 U 1024-57-3 Heptachlor epoxide 0.050 U 959-98-8 Endosulfan I 0.050 U	I	gamma-BHC (Lindane)	0.050	Ū
1024-57-3 Heptachlor epoxide 0.050 U 959-98-8 Endosulfan I 0.050 U 60-57-1 Dieldrin 0.10 U 72-55-9 4,4'-DDE 0.10 U 72-20-8 Endrin 0.10 U 33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11141-16-5 Aroclor-1221 2.0 U 53469-21-9 Aroclor-1242 1.0 U		Heptachlor	0.050	Ū
959-98-8 Endosulfan I 0.050 U 60-57-1 Dieldrin 0.10 U 72-55-9 4,4'-DDE 0.10 U 72-20-8 Endrin 0.10 U 33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin ketone 0.050 U 5103-74-9 alpha-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	309-00-2	Aldrin	0.050	Ū
60-57-1 Dieldrin 0.10 U 72-55-9 4,4'-DDE 0.10 U 72-20-8 Endrin 0.10 U 33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11141-16-5 Aroclor-1221 2.0 U 53469-21-9 Aroclor-1242 1.0 U	1024-57-3	Heptachlor epoxide	0.050	Ū
72-55-9 4,4'-DDE 0.10 U 72-20-8 Endrin 0.10 U 33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	959-98-8	Endosulfan I	0.050	Ū
72-20-8 Endrin 0.10 U 33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11141-16-5 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	60-57-1	Dieldrin	0.10	Ū
33213-65-9 Endosulfan II 0.10 U 72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	72-55-9	4,4'-DDE	0.10	Ū
72-54-8 4,4'-DDD 0.10 U 1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221 2.0 U 1141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	72-20-8	Endrin	0.10	Ū
1031-07-8 Endosulfan sulfate 0.10 U 50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	33213-65-9	Endosulfan II	0.10	Ū
50-29-3 4,4'-DDT 0.10 U 72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221 2.0 U 1141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	72-54-8	4,4'-DDD	0.10	Ū
72-43-5 Methoxychlor 0.50 U 53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221 2.0 U 1141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	1031-07-8	Endosulfan sulfate	0.10	Ū
53494-70-5 Endrin ketone 0.10 U 7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 1104-28-2 Aroclor-1221 2.0 U 1141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U		4,4'-DDT	0.10	Ü
7421-93-4 Endrin aldehyde 0.10 U 5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U		Methoxychlor	0.50	Ū
5103-71-9 alpha-Chlordane 0.050 U 5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	53494-70-5	Endrin ketone	0.10	Ū
5103-74-2 gamma-Chlordane 0.050 U 8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U		Endrin aldehyde	0.10	U
8001-35-2 Toxaphene 5.0 U 12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	5103-71-9	alpha-Chlordane	0.050	Ū
12674-11-2 Aroclor-1016 1.0 U 11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	5103-74-2	gamma-Chlordane	0.050	Ü
11104-28-2 Aroclor-1221 2.0 U 11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U		Toxaphene	5.0	Ū
11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U	12674-11-2	Aroclor-1016		U
11141-16-5 Aroclor-1232 1.0 U 53469-21-9 Aroclor-1242 1.0 U		Aroclor-1221	2.0	U
53469-21-9 Aroclor-1242 1.0 Ü	11141-16-5	Aroclor-1232		Ū
	53469-21-9	Aroclor-1242		Ū
1.0 U	12672-29-6	Aroclor-1248	1.0	Ū
11097-69-1 Aroclor-1254 1.0 U	11097-69-1	Aroclor-1254	1.0	Ū
11096-82-5 Aroclor-1260 1.0 U	11096-82-5	Aroclor-1260		<u>ט</u>

Data File: \\AVOCADRO\ORGANICS\organio\svoa\E5.i\050917F.B\E5C2414F.D

Date : 21-SEP-2005 05:07

																- 5e - 5e
			(27.	1 (S 4 *)	(Rueyd to	ouothoe	Bec								<u></u>	24 25
															1	-22
															}	-53
																- 22
													-			 -ਹ
		•														-8
			A	٠												-19
	;	2 2	2414R.													18
- -	į	Uperator: SZ SRC: SZ Column diameter: 0.53	8\E5C2													}
t: E5.	;	S2 ameter	917R													12
Instrument; E5,i	-	Operator: SZ Column diamet	1.050													7-9
Inst	•	Colu	oa\E5													15
			nic\sv													4.
			\\AVGGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2414R.D													13
			HICS													1
			RO\OR(12-
			WOGAD													-ដ
			>													2 0
																-2
	sub,,				· · · · · ·	(8 ⁺ 446	aua เหx≟เ	yo⊾o-w	Tetrach	_		 		 		-
	Sample Info: PIBLKAD,PIBLKAD, olp.sub,															""
	KKAD,	o,														- -
	AD, PII	L); 1, ESTII														ی-
ВСКА	PIBLK	ed Cu							•							-150
Client ID: PIBLKAD	Info:	Volume Injected (uL): 1.0 Column phase: CLPPESTII														-4
int]	le l	Volume I Column p							•							400

Data File: E5C2414F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2414F.D

Lab Smp Id: PIBLKAD Client Smp ID: PIBLKAD

Inj Date : 21-SEP-2005 05:07

Operator : SZ SRC: SZ Inst ID: E5.i

Smp Info : PIBLKAD, PIBLKAD, , clp.sub, ,

Misc Info :

Comment :

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

Meth Date: 27-Sep-2005 14:21 mtl Quant Type: ESTD
Cal Date: 17-SEP-2005 21:18 Cal File: E5C2362F.D
Als bottle: 100 QC Sample: INSTBLANK

Dil Factor: 1.00000 Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
 DF	1.000	Dilution Factor
Uf	1.000	Correction factor
Vt		Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==	355555 2555555		F178858		=====
		•			
\$ 1	Tetrachloro-m-xyle	ne	CAS #:	877-09-8	
6.27	6.28 -0.010	436081 0.02103	0.21		
\$ 2	Decachlorobiphenyl		CAS #:	2051-24-3	
22.3	22.3 0.000	792520 0.02139	0.21		

glilism

Data File: E5C2414R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2414R.D Lab Smp Id: PIBLKAD Client Smp ID: PIBLKAD

Inj Date : 21-SEP-2005 05:07

Inst ID: E5.i Operator : SZ SRC: SZ

Smp Info : PIBLKAD, PIBLKAD, clp.sub, ,

Misc Info : Comment

: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m Method

Meth Date : 27-Sep-2005 14:23 mtl
Cal Date : 17-SEP-2005 21:18
Als bottle: 100 Quant Type: ESTD Cal File: E5C2362R.D QC Sample: INSTBLANK

Dil Factor: 1.00000 Compound Sublist: clp.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo	1.000 10000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

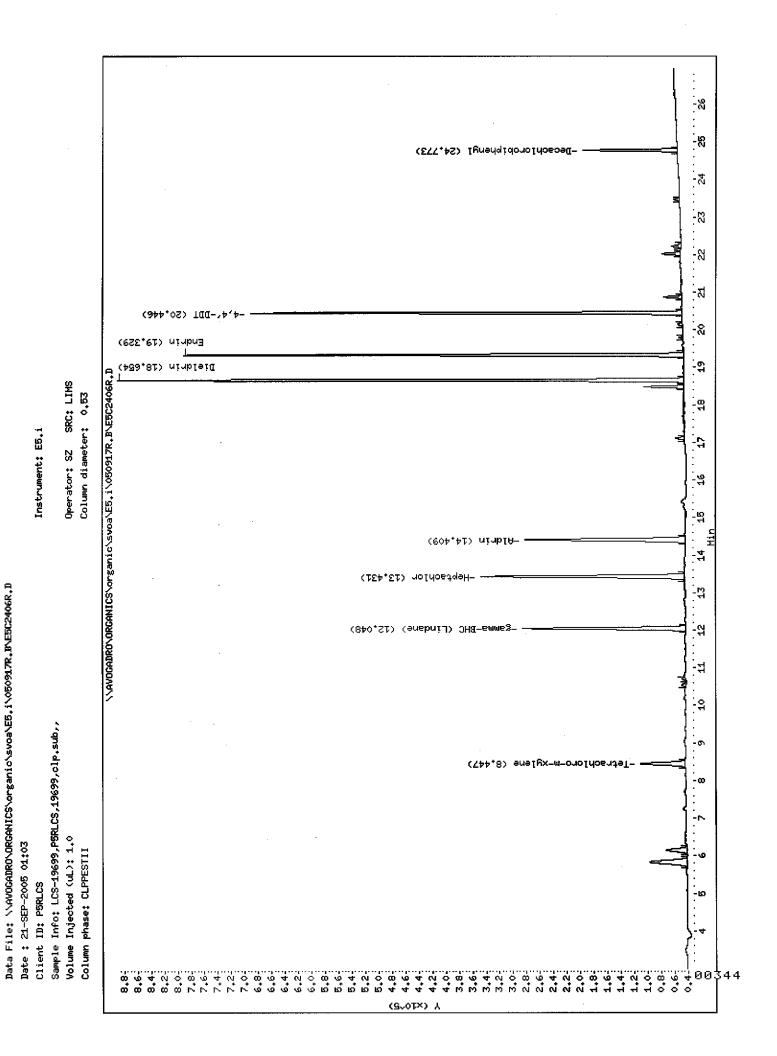
		ON-COL	FINAL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==					=====
\$ 1'	Tetrachloro-m-xylene		CAS #:	877-09-8	
8.45	8.45 0.000	442792 0.02076	0.21		
\$ 3	Decachlorobiphenyl		CAS #:	2051-24-3	
24.8	24.8 0.000	480213 0.02161	0.22		

glirkr

P5RLCS Lab Name: MITKEM CORPORATION Contract: Lab Code: MITKEM Case No.: ____ SAS No.: _____ SDG No.: MD1004 Matrix: (soil/water) WATER Lab Sample ID: LCS-19699 Sample wt/vol: 1000 (g/mL) ML Lab File ID: E5C2406F % Moisture: ____ Decanted: (Y/N) Date Received: Extraction: (Type) SEPF Date Extracted: 08/29/05 Concentrated Extract Volume: 10000(uL) Date Analyzed: 09/21/05 Injection Volume: 1.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: Sulfur Cleanup: (Y/N) Y

CAS NO. COMPOUND CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q


210 04 6	alaba BUC	0.050	1 77
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	0.050	U
319-86-8	delta-BHC	0.050	U
58-89-9	gamma-BHC (Lindane)	0.31	
76-44-8	Heptachlor	0.40	
309-00-2	Aldrin	0.41	
1024-57-3	Heptachlor epoxide	0.050	Ū
959-98-8	Endosulfan I	0.050	Ü
60-57-1	Dieldrin	0.95	
72-55-9	4,4'-DDE	0.10	Ū
72-20-8	Endrin	1.1	
33213-65-9	Endosulfan II	0.10	ΰ
72-54-8	4,4'-DDD	0.10	U
1031-07-8	Endosulfan sulfate	0.10	Ū
50-29-3	4,4'-DDT	0.82	
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone	0.10	Ü
7421-93-4	Endrin aldehyde	0.10	Ū
5103-71-9	alpha-Chlordane	0.050	U
5103-74-2	gamma-Chlordane	0.050	Ū
8001-35-2	Toxaphene	5.0	Ū
12674-11-2	Aroclor-1016	1.0	Ü
11104-28-2	Aroclor-1221	2.0	Ŭ
11141-16-5	Aroclor-1232	1.0	Ū
53469-21-9	Aroclor-1242	1.0	Ū
12672-29-6	Aroclor-1248	1.0	Ü
11097-69-1	Aroclor-1254	1.0	U
11096-82-5	Aroclor-1260	1.0	Ū

Instrument: E5.1

Data File: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2406F.D

Date : 21-SEP-2005 01:03

Client ID: PSRLCS

Data File: E5C2406F.D

Report Date: 27-Sep-2005 14:25

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\E5C2406F.D

Lab Smp Id: LCS-19699 Client Smp ID: P5RLCS

Inj Date : 21-SEP-2005 01:03

Operator : SZ SRC: LIMS Inst ID: E5.i

Smp Info : LCS-19699,P5RLCS,19699,clp.sub,,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917F.B\clp-e5f.m

 Meth Date : 27-Sep-2005 14:21 mtl
 Quant Type: ESTD

 Cal Date : 17-SEP-2005 21:18
 Cal File: E5C2362F.D

Als bottle: 27 QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03 Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf	1.000	Dilution Factor Correction factor
Vt		Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

				ON-	COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO
***	22222			===				
\$ 1	Tetrachlo:	ro-m-xylene				CAS #:	877-09-8	
6.27	6.28	-0.010	335090	0.01	616	0.16		
\$ 2	Decachlor	obiphenyl				CAS #:	2051-24-3	
22.3	22.3	0.000	707107 0	.019	808	0.19		
4	gamma-BHC	(Lindane)				CAS #:	: 58-89-9	
9.40	9.40	0.000	1219898 0	.030	175	0.31		
5	Heptachlo:	r				CAS #:	76-44-8	
10.9	10.9	0.000	1991958 0	.042	74	0.43		

9/27/29

Data File: E5C2406F.D Report Date: 27-Sep-2005 14:25

CONCENTRATIONS

			ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE (ng)	(ug/L)	TARGET RANGE	RATIO
==	=====					
_	Aldrin				309-00-2	
11.8	11.8	0.000	1662965 0.04052	0.41		
14	Dieldrin			CAS #:	60-57-1	
16.1	16.1	0.000	3812936 0.09517	0.95		
15	Endrin			CAS #:	72-20-8	
17.0	17.0	0.000	3393081 0.11160	1.1		
18	4,4'-DDT			CAS #:	50-29-3	
18.1	18.1	0.000	2906986 0.08215	0.82		

Data File: E5C2406R.D

Report Date: 27-Sep-2005 14:26

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\E5C2406R.D

Lab Smp Id: LCS-19699

Client Smp ID: P5RLCS

Inj Date : 21-SEP-2005 01:03

Inst ID: E5.i Operator : SZ SRC: LIMS

Smp Info : LCS-19699, P5RLCS, 19699, clp. sub, ,

Misc Info :

Comment

Method : \\AVOGADRO\ORGANICS\organic\svoa\E5.i\050917R.B\clp-e5r.m

Meth Date : 27-Sep-2005 14:23 mtl Quant Type: ESTD

Cal Date : 17-SEP-2005 21:18 Cal File: E5C2362R.D

Als bottle: 27

QC Sample: LCS

Dil Factor: 1.00000

Integrator: Falcon

Compound Sublist: clp.sub

Subtraction File: \\AVOGADRO\ORGANICS

Target Version: 4.03

Sample Matrix: WATER

Processing Host: TARGET7

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF	1.000	Dilution Factor
Uf	1.000	Correction factor
٧t	10000.000	Volume of final extract (uL)
Vo	1000.000	Volume of sample extracted (mL)
Vi	1.000	Volume injected (uL)

CONCENTRATIONS

				ON-	COL	FINAL				
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	RATIO		
				===		======	========			
\$ 1	Tetrachlo	ro-m-xylene				CAS #:	877-09-8			
		0.000								
	Decachlor	obiphenyl	* - -				2051-24-3			
24.8			425935 0							
	gamma-BHC						58-89-9	,-		
12.0	12.1	-0.100	950206	0.03	113	0.31				
	Heptachlo	 r					76-44-8			

13.4 0.000 1241160 0.04041

Data File: E5C2406R.D

Report Date: 27-Sep-2005 14:26

CONCENTRATIONS

				ON-COL	FINAL		
RT	EXP RT	DLT RT	RESPONSE	(ng)	(ug/L)	TARGET RANGE	OITAS
==							=====
			*	•			
7	Aldrin			-	CAS #:	309-00-2	
14.4	14.4	0.000	1057258 0	.04127	0.41	•	
15	Dieldrin		• •		CAS #:	60-57-1	
18.7	18.7	0.000	2558372 0	.09464	0.95		
16	Endrin				CAS #:	72-20-8	
19.3	19.3	0.000	2219271 0	.11278	1.1		
	•						
19	4,4'-DDT				CAS #:	50-29-3	
20.4	20.4	0.000	1027612 0	09246	0.03		

Data File: E1F0663F.D

Report Date: 15-Jul-2005 13:47

Mitkem Corporation

Inst ID: E4.i

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\FLORISIL\AMFLX-3B\E1F0663F.D Lab Smp Id: AMFLX-3B Client Smp ID: AMFLX-3B

Inj Date : 28-JUN-2005 19:18

Operator : SZ

Smp Info : FLOWAMFLX-3B,,,,

Misc Info :

Comment

Method: \AVOGADRO\ORGANICS\organic\svoa\FLORISIL\AMFLX-3B\CLPFLO-F.m

Meth Date: 29-Jun-2005 17:41 mtl Quant Type: ESTD

Cal Date: 28-JUN-2005 17:46 Cal File: E1F0660F.D

QC Sample: FLORISIL Als bottle: 34 Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: florisil.sub

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

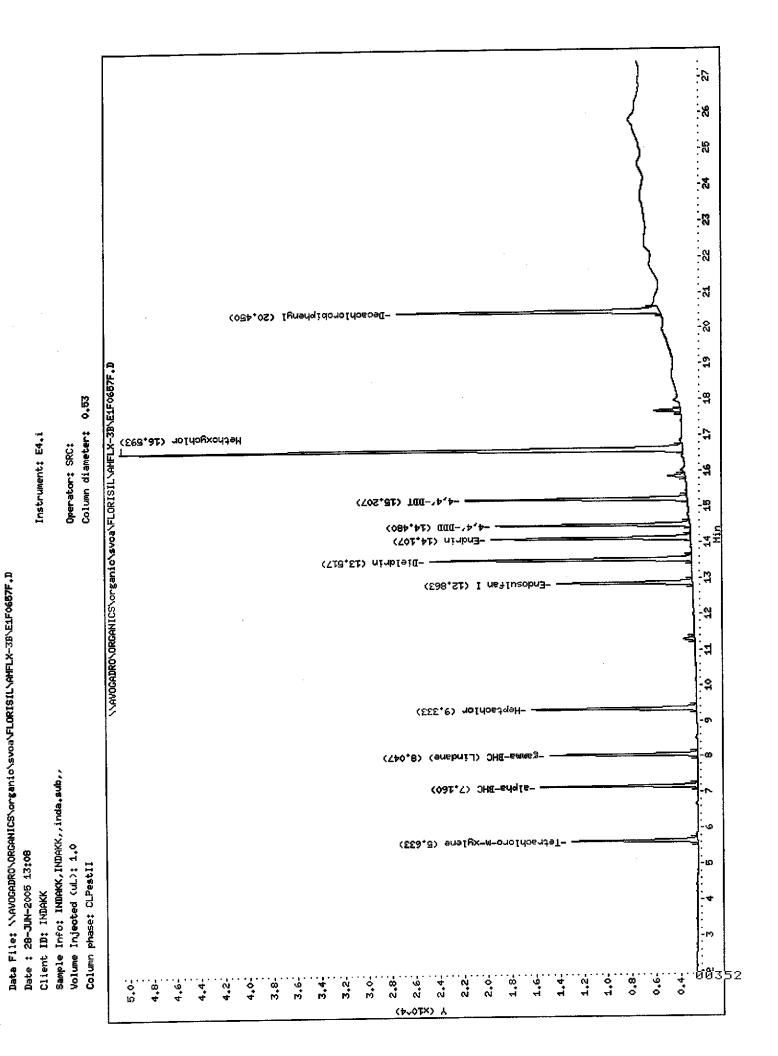
Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 1000.000 1000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

CONCENTRATIONS

		ON-COL	FINAL		
RT	EXP RT DLT RT	response (ng) (ng)	TARGET RANGE	RATIO
==		电电路符号电压 医光线电流	= =====		e====
\$ 1	Tetrachloro-m-xylene			877-09-8	
5.64	5.63 0.010	15830 0.00882	0.0088 		-
3	alpha-BHC			319-84-6	
7.16	7.16 0.000	16730 0.00830	0.0083		
4	gamma-BHC (Lindane)			58-89-9	
8.05	8.05 0.000	17604 0.00894	0.0089		
5	Heptachlor			76-44-8	
9.33	9.33 0.000	23047 0.00921	0.0092		


ड्रा गाडिक

Data File: E1F0663F.D Report Date: 15-Jul-2005 13:47

CONCENTRATIONS

		CONCENT	RATIONS		
		ON-COL	FINAL		
RT EXP	RT DLT RT	response (ng)	(ng)	TARGET RANGE	RATIO

		•			
10 Endos	ulfan I		CAS #:	959-98-8	
		22078 0.01036			
14 Dield			"	60-57-1	
		40739 0.02026			
15 Endri			CAS #:	72-20-8	
		35176 0.02260			
				72-54-8	
16 4,4'-				72-54-0	
		27923 0.01922			
		·		50-29-3	
18 4,4'-		32895 0.01910	"	••	
		32833 0.01910		»	
21 Metho				72-43-5	
		103940 0.10751	0.11		
	hlorobiphenyl			2051-24-3	
		55584 0.02285	0.023		

Data File: E1F0657F.D

Report Date: 15-Jul-2005 13:47

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file : \\AVOGADRO\ORGANICS\organic\svoa\FLORISIL\AMFLX-3B\E1F0657F.D

Client Smp ID: INDAKK Lab Smp Id: INDAKK

Inj Date : 28-JUN-2005 13:08

Inst ID: E4.i

Operator : SRC: Smp Info : INDAKK, INDAKK, , inda.sub, ,

Misc Info : 2,,,1

Comment : \\AVOGADRO\ORGANICS\organic\svoa\FLORISIL\AMFLX-3B\CLPFLO-F.m

Method Quant Type: ESTD Meth Date: 29-Jun-2005 17:41 mtl

Cal File: E1E8517F.D Cal Date : 05-JAN-2005 12:52

Calibration Sample, Level: 2 Als bottle: 29

Dil Factor: 1.00000 Integrator: Falcon

Compound Sublist: inda.sub

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name	Value	Description
DF Uf Vt Vo Vi	1.000 10000.000	Dilution Factor Correction factor Volume of final extract (uL) Volume of sample extracted (mL) Volume injected (uL)

AMOUNTS

		CAL-AMT	ON-COL		
RT	EXP RT DLT RT	RESPONSE (ng)	(ng)	TARGET RANGE	RATIO
==	=======================================		******	医查拉尔亚亚巴尔尔马克	=#==#
\$ 1	Tetrachloro-m-xylene	25075 D 02000		877-09-8	(a)
	5.63 0.000				
	alpha-BHC		CAS #:	319-84-6	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40330 0.02000			(a)
•	nug (I dadana)			58-89-9	
8.05	gamma-BHC (Lindane) 8,05 0.000		0.020		(a)
- -5	Heptachlor		CAS #:	76-44-8	
	9.33 0.000	50068 0.02000			(a)
				959-98-8	
10 12.9	12.3 0.00-	42623 0.02000	0.020		(a)

5207/15/09

Data File: E1F0657F.D

Report Date: 15-Jul-2005 13:47

AMOUNTS

			thru.			
				T ON-COL		
RT	EXP RT	DLT RT	response (ng) (ng)	TARGET RANGE	RATIÓ
==		*****	EGG=23=2 ======			
14	Dieldrin			CAS #:	60-57-1	
13.5	13.5	0.000	80413 0.04000	0.040		(a)
				- -		
	Endrin			CAS #:		
14.1	14.1	0.000	62249 0.04000	0.040		(a)
	4.4'-DDD			CAS #:		
			58107 0.04000	0.040		(a)
18	4.4'-DDT			CAS #:	50-29-3	
			68892 0.04000	0.040		(a)
	Methoxyc				72-43-5	
			193359 0.20000	0.20		(a)
		robiphenyl			2051-24-3	
			97316 0.04000	0.040		(a)

QC Flag Legend

a - Target compound detected but, quantitated amount Below Limit Of Quantitation(BLOQ).

Instrument; E4.i Operator; GML Column diameter; 0.53				M 3 14 15 16 17 18 19 20 21 22 23 24 25 26 27
	\\AVOGADRO\O RGA VICS\orga			40 40 43

Data File: E1F0660F.D

Report Date: 15-Jul-2005 13:47

Mitkem Corporation

NYASP Pesticide Quantitation Report

Data file: \\AVOGADRO\ORGANICS\organic\svoa\FLORISIL\AMFLX-3B\E1F0660F.D Lab Smp Id: 245-TCP Client Smp ID: 245-TCP

Inj Date : 28-JUN-2005 17:46

Inst ID: E4.i Operator : GML

Smp Info : 245-TCP, 245-TCP, , , ,

Misc Info :

Comment : \\AVOGADRO\ORGANICS\organic\svoa\FLORISIL\AMFLX-3B\CLPFLO-F.m Method

Quant Type: ESTD Meth Date: 29-Jun-2005 17:41 mtl

Cal File: E1F0660F.D Cal Date : 28-JUN-2005 17:46

Calibration Sample, Level: 1

Als bottle: 31 Dil Factor: 1.00000

Compound Sublist: 245TCP.sub Integrator: Falcon

Subtraction File: \\AVOGADRO\ORGANICS

Sample Matrix: WATER Target Version: 4.03

Processing Host: TARGET9

Concentration Formula: Amt * DF * Uf * Vt/(Vo * Vi)

Name Value Description	•
DF 1.000 Dilution Factor Uf 1.000 Correction factor Vt 10000.000 Volume of final extraction Vo 1000.000 Volume of sample extraction Vi 1.000 Volume injected (uL)	t (uL) cted (mL)

AMOUNTS

RT	EXP RT DLT RT	CAL-AMT RESPONSE (ng)	ON-COL (ng)	TARGET RANGE	RATIO
32 2 3.28	,4,5-Trichlorophenol	806970 0.10000	CAS #:		

st oilligor

MITKEM CORPORATION: ORGANIC PREP - CLP Pesticides/PCB	Analysis Method & AQ: 3510C(Sept.) 3520C(Liq/Liq) Other: SQP # Soil: 3540C(Soxhlet) 3550B(Sonic)	LCS ID Analyst: 84 Spiker: 84 Witness: 16 Sqvent Lot # Acid Lot # Time Started: 8:30 GPG	Wt/Vol Surrogate Matrix Spike KD prior to GPC Vol. pre GPC KD after GPC Added Added DH Date/Analyst GPC Date/Analyst Date/Analyst Date/Analyst	9699 1000ML 01-2013A - 7 - 10 MILLO 101 101 101 101 101 101 101 101 101 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 70	O28 ICOMC OPMOSOTIZE 7	TAMEN TO A STATE OF THE STATE O				20 Oc-1						Comments: Sonicator Tuned?	Yes (NO)
	Date 6/20/oc	Blank ID 1 9699	Lab ID	66961 -9W	16961-507	DIGOH	hooid			:							1	Comment	

Hexane Lot #: 4 46E 58

Reviewed By: KC 9/20/11

20

Sodium Sulfate Lot #: ONO 0509 12 B Engbook 10 50.0188-05/05

	Sequence 55		ORPORAT	Met	hod	02 X 1	ICAL D	ate ? / 1 7	105	
Date	Sample ID		Client ID	File N		Dilution	F	R	Comments	Analyst
lille	Sec.	AII	BESLA	たち	23	KE	+	+	PW05060/A	1Xo
	PEM	1	PEM	-	سب	7.6	4	+	PW 050913A	
 	R 1660		AR166:		T	50			PW 050 718B	
	1 1221		124			3 1			PW 050 917 A	\coprod
7	1232		1232						B	
	1242		1242			<i>y</i> 3			, c	
-	1248	T	1248			\$4			PW US G17 D	
1.	PR 1254		AK 1254			# 5			PW 050824 B	
1	TUXAP4		TUXADA			<i>41</i>			pwoto 504A	
1	INDAL		INVAL			\$ 2			pw oto 5/0 F	
	INDBL		INPBI		/	34			PW 050 613 B	
 	INDAM		INUAM			31	+	+	PWeto t/O D	
	LATOBAL		INDEM		١	60	+	4	246-613 C	
	INDAH		INDAM			61			pwotos10B	
1	INDBA	V	HOBH A			62			PW of ubl3 A	
		42	A2			62	<	>	21.48 . 9/17/4	11
J			Az	250	113	A	+	#		<u> </u>
1	MR-15700			7		65	ζ.	/		
	Les-19700					66				
ı	7/603-0/0					67				
-	1 -02					68	V			
	-0201	115				69	V			
	-02ch					70	\	١,		
	-04:					71	V			
	1 -050					72	1			
1	1003-070	,				73	\			
	20993-01 R			1	<u> </u>	74		1/		
J	Po 996- 11 B	3		7250	[2]	717				
Comment	s		Standard ID's	- IN	M = DAM DBH	= PWofo = Pwofo 1= Pwofo	5,10D	c C		
Logboo					101	9/28/eV				. 003

			CORPORAT			T/PC	B RUN				UMENT E	5	
	Sequence たらの	50	720	М - —	ethod <u>Cy</u> a	02 X			ete 9 / (7 /	1.5			
Date	Sample ID		Client ID		Name		Dilution	F	R	(Comments		Analys
/w/or	1 200 200 200 200 200 200 200 200 200 20	AB	PIBIR AB	ふちく	. 2 ;	23		V	V		13:21	.9/20	L
1	The second second second second	N.C.	PAM AG			SIL	1	V	~				١
1	MB-1976					85		V	$\sqrt{}$				
	LCS-1975					86							
	D0986-0	bc	,			87		U					
	7 -07	C				88		1					
	1 -070	MS				ક્લ		>	/	14 NOS	urr. Non	spied	
	V -07c	150		<u> </u>	<u> </u>	96		4	/				
	PIBLL					91							
	PIBLLE				<u> </u>	92	2			<u> </u>			
	spellige.	Ac	MRLKAC			173		V	V		18.26.	9/2	
	MOATA		THUMAC			ξų.		V/	<u> </u>				
	7N.08M	V	DUDBAC			175	Ĭ	V	V				
	MB-19-9	<u> </u>				96		7					
	[cc-19798					97		Ň	/				
	2/026-02			1	/	98	. <u></u>						
	7-02	BAIS		250	<u> </u>	१९			/				1_
1 1	-02B	MSD		rs	cry	00		\	/				
\bot	~63	<u> </u>			<u> </u>	01		·	//				
1	-04				 	67							
	1 -05				ļ	63		•	/ 			<u></u>	
	D1026-06		·			04		Y					
	Meg-in (c)		PBLKSK	a/w.		.51					···		_
-	CA - 19 (51	p.	P5RLCS			06,		<u> </u>	/				
	12407-0/0	,	SB-12B-W-R		or Heatherness	10/4		. \	/			\longrightarrow	
	Mary - 02 13		MW12-W-0			68		<u> </u>					
	PIBLUL	ħ		,		σς '	-		-				
<u> </u>	AR1242	/} C	Standard ID's	5	04	10							₩
			Standard ID'S	100	1=	Pw	5-091	3/4					
				100	2/H11 -		Johr 5,						
			•	1/6	10 pri	<u> </u>	10050 6	130					
mments	;										•	,	
												•	

00359 086

Page:

Logbook ID: 60.0225-12/04

Reviewed____

	Sequence です。			Method			ICAL E	Date 9 /	17/65	
Date	Sample ID		Client ID	File Name		Dilution	F	R	Comments	Analys
9/20/05		Ac		26 (24						4
	AR 1254	11-		·.	17					-
	45 1660	y		<u> </u>	13			-	; 7 0/ 1	
	PIBLL	AP	PIBLEA		14	<u> </u>	7	1	5:07. 9h1	
4_	PAJMA	Au	PEMAD	2	15		V	V		-
<u> </u>	PIBIL			55(24	0					/
										
										
				,						
				\ \						
					\Box					
										e ^{rin}
						<i>;</i>				
					- 1	, 9/2	407	-	2 "	
	i						,			
										
			<u> </u>							
							,			
			Standard ID's	Pè	۸۸.	ρ	Wof	0912		
		-								
			····	/N \c	<u>/A/ </u> () (}~	<u> </u>	pwuf pwuj	8 1013	~ (
Comments	6		<u> </u>			1		- 4.7		
		<u> </u>					_			
				<i>l.</i> .	نسد					.= -
.ogboo	k ID: 60.0225-	12/04	Reviewed	KC	9/	ipher			Page:	00

087

Sample Receiving Logbook

Workorder No 0 100	4	_		, v , ·					
Client Name: Ex	<u> </u>								
Date Recv'd 8 35 05	Sample #	s 01,	9.7	Storage	Locations:_	, Adv	B2,MI		
Date Recv'd	Sample #	s <u>03</u>		Storage	Locations:_	£2			
Date Recv'd	Sample #	s	 	Storage Locations:					
Date Recv'd	Sample #	s	<u> </u>	Storage	Locations:_				
Date Recv'd	Sample #	s	•	Storage	Locations:_				
Date Recv'd	Sample #	s		Storage	Locations:_		·		
·	OU ⁻			:	· · · · · · · · · · · · · · · · · · ·	IN			
Relinquished B	y	Rec	eived By	Relin	quished By		Received By		
Date: 8 29/05 Init:	JS I	Date: 8/29/	& Init: B4	Date: 8/2	9/05 Init: IS	Date: 8	5/2963 Init: B4		
Samp. #s 1, Z		/	P		lu	1 6			
Date: \$ 30 05 Init:	35 I	Date: 8/30/0	5 Init: 8 4	Date: 8/3	0/05 Init: T3	Date:	8/30/8 Init: 84		
Samp. #s 1, 2		1			emp	•			
Date: 8/3//05 Init:	BV I	oate: 8/31/6	5 Init: KB	Date: 8/3	1/05 Init: 13	Date:	131/10 Init: KB		
Samp. #s	1-2-	3			1-3		d.		
Date: 9/2/05 Init:	<i>B</i> V [ate: 9/2/	Finit: KB	Date: 9/2	os Init: B	Date: 9	Alos Init: KB		
Samp. #s	3				3		•		
Date: 9/13/55 Init:	βV D	ate: 9/13/	of Init: KB	Date: 9/13	105 Init: Bl	Date: 9	/13/05 Init: KB		
Samp. #s	1				1				
Date: 915 VS Init:	KB D	ate: 9/15/u	5 Init: S→	Date:9115	UT Init: Sal	Date: 4	11 Jow Init: KB		
Samp. #s	3					3			
Date: Init:	D	ate:	Init:	Date:	Init:	Date:	Init:		
Şamp. #s									
Date; Init:	D	ate:	Init:	Date	Init:	Date:	Init:		
Samp. #s				1					
Comments:		,					<u>.</u>		
Please record analyst's initia	ıls, date, and s	ample #s re	moved. Add a	ny comments	if necessary (broken bo	ttles, empty jars, et		

94

Reviewed:__

Logbook ID: 30.0287-07/05

MITKEM CO	RPORATION E	XTRACT	S TRANSFER	LOGBOOK: P	ESTICIDES/PCB	ANALYSIS
Date Transferred from Prep Lat			Transferred by	Received by	Storage Location	Comments
20/01/60	ploud	09A	UG	6	12.11	
29/17/05	MB-19700		KG-	KLV	RII	
	45-19700					
<u> </u>	00093	OIB	V			
09/12/05	200996	418	KG	4/		
	mg 19919		SP.	KU	RII	
	CC519919			V	ſ	·
	LCSD19G18			1. 10		
W	D1043	OIA	V			
9/2/05	D1043	02A	5R	47		
20/5/100	@1034	AFK	46	KC 1	RII) 1.16
	101035	128	1	, ,		S Perbil /PLB
	V	138	V	/		
09/12/05	81032	143	46		J)
09/13/05	MB-19699		. KG	V	RU	
	LCS-19699		/	V		P
V	<i>ত</i> 1004	210	V			
9 13 05	01004	OB B	le	レノ	V	
9/14/05	MB-19795		KG-	KLV	RII	
	US- 19816					
	LGD-19816					
	D1008	OLA				
	- K-	OR A		/		
		03A				
		104 M		/		
	V	OSA	V	/	,	
9/14/02	800100	06A	lo			
9/14/05	MB-19779		Ub	Ker	pi)	
	16-19779			/		
V	L(SD-19779		V	//		
9/14/05/	LCS- 19780		UG	4	y	

Logbook ID: 60.0132 - 06/05

Reviewed by KC 9/2/2

00362

MITKEM CORPORATION

* Metals/Cyanide *

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: Mitkem Corporation Contract: TN 000699.N

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

SOW No.: ILM05.3

EPA Sample No. Lab Sample ID.

 MW12-W-O
 D1004-02

 SB-RB-W-R
 D1004-01

 SB-RB-W-RD
 D1004-01DUP

 SB-RB-W-RS
 D1004-01MS

Were ICP interelement corrections applied?

Were ICP background corrections applied?

If yes-were raw data generated before application of background corrections?

Comments:

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature ,

Signature: ,

XVIIIMN SAUMER

Name:

itle: The Douge

Date:

Title:

ILM05.3

1

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

MW12-W-O

Lab Name: Mitkem Corporation

Contract: <u>TN 000699</u>

Lab Code: MITKEM Case No. SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Lab Sample ID: D1004-02

Level (low/med):

MED

Date Received: 08/25/05

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	M _.
	Cyanide	10.0	Ū		CA

Comme	ents:			
	 			

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Lab Sample ID: D1004-01

Level (low/med):

MED

Date Received: 08/25/05

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	21.8	J		P
7440-36-0	Antimony	60.0	Ü		₽
7440-38-2	Arsenic	10.0	Ū		₽
7440-39-3	Barium	5.3	J	!	P
7440-41-7	Beryllium	5.0	Ū		P
7440-42-8	Boron	44.0	J		P
7440-43-9	Cadmium	0.11	J		Р
7440-70-2	Calcium	278	J		Р
7440-47-3	Chromium	10.0	U		P
7440-48-4	Cobalt	0.31	J		P
7440-50-8	Copper	25.0	U		P
7439-89-6	Iron	62.4	J	*	P
7439-92-1	Lead	0.88	J	N	P
7439-95-4	Magnesium	5000	U		P
7439-96-5	Manganese	3.4	J		P
7440-02-0	Nickel	40.0	U		P
7440-09-7	Potassium	5000	Ū		P
7782-49-2	Selenium	1.0	J		P
7440-22-4	Silver	10.0	U		Р
7440-23-5	Sodium	179	J		P
7440-28-0	Thallium	1.5	J		P
7440-62-2	Vanadium	50.0	Ū		P
7440-66-6	Zinc	3.4	J		P
7439-97-6	Mercury	0.27	U		CV
	Cyanide	10.0	Ū		CA

Color Before:	<u>COLORLES</u> Clarity Before:	CLEAR	Texture:
Color After:	COLORLES Clarity After:	CLEAR	Artifacts:
Comments:			
			· · · · · · · · · · · · · · · · · · ·

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibra	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Mercury	2.0	1.85	92.6	5.0	4.88	97.6	5.20	104.0	c	CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Mercury	,			5.0	5.36	107.2				CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibra	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Cyanide	250.0	284.19	113.7	200.0	228.78	114.4	226.89	113.4		CA

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No. SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	lal Calibr	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М	
Cyanide				200.0	229.31	114.7			CA	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibra	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		M
Boron	2500.0	2455.08	98.2	2500.0	2426.61	97.1	2435.25	97.4		Р

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initial Calibration			Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Boron				2500.0	2431.13	97.2				P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

<u> </u> 	Initial Calibration			Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		M
Aluminum	15000.0	14775.31	98.5	10000.0	9874.93	98.7	9853.80	98.5	E	Ρ.
Antimony	750.0	781.60	104.2	500.0	521.52	104.3	521.68	104.3	E	>
Barium	15000.0	15331.96	102.2	10000.0	10483.09	104.8	10560.29	105.6	E	₽
Beryllium	375.0	385.87	102.9	250.0	258.88	103.6	260.97	104.4	E	2
Cadmium	375.0	376.97	. 100.5	250.0	258.74	103.5	258.33	103.3	E	2
Calcium	37500.0	38242.35	102.0	25000.0	25491.24	102.0	25385.25	101.5	E	2
Chromium	1500.0	1502.40	100.2	1000.0	1005.05	100.5	1003.98	100.4	F	>
Cobalt	3750.0	3774.74	100.7	2500.0	2562.43	102.5	2569.95	102.8	E	>
Copper	1875.0	1868.46	99.7	1250.0	1255.82	100.5	1264.42	101.2	E	2
Iron	7500.0	7388.49	98.5	5000.0	5015.65	100.3	4998.03	100.0	E	2
Lead	750.0	766.51	102.2	500.0	522.05	104.4	520.70	104.1	E	2
Magnesium	37500.0	37519.25	100.1	25000.0	25322.77	101.3	25497.80	102.0	E	?
Manganese	3750.0	3802.27	101.4	2500.0	2573.38	102.9	2597.22	103.9	E	?
Nickel	3750.0	3767.54	100.5	2500.0	2550.02	102.0	2545.39	101.8	E	2
Selenium	750.0	752.94	100.4	500.0	507.14	101.4	517.32	103.5	F	2
Silver	1875.0	1993.86	106.3	1250.0	1301.47	104.1	1309.82	104.8	E	2
Vanadium	3750.0	3766.95	100.5	2500.0	2552.52	102.1	2570.63	102.8	E	2
Zinc	3750.0	3789.52	101.1	2500.0	2590.89	103.6	2586.10	103.4	F	ָּ

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

	Initi	al Calibr	ation		Continui	ng Calib	ration		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum				10000.0	9799.29	98.0			Р
Antimony				500.0	524.61	104.9			P
Barium				10000.0	10539.07	105.4			P
Beryllium				250.0	259.56	103.8			P
Cadmium				250.0	254.19	101.7			P
Calcium				25000.0	25536.55	102.1			P
Chromium				1000.0	1002.32	100.2			P
Cobalt				2500.0	2553.02	102.1		l i	P
Copper				1250.0	1269.50	101.6			P
Iron				5000.0	4975.33	99.5			P
Lead				500.0	520.34	104.1		1	P
Magnesium				25000.0	25501.72	102.0			P
Manganese				2500.0	2595.21	103.8			P
Nickel				2500.0	2527.97	101.1			P
Selenium				500.0	517.48	103.5		1	P
Silver				1250.0	1310.52	104.8			P
Vanadium				2500.0	2559.32	102.4			P
Zinc				2500.0	2560.33	102.4			P
			l						نـــــــــــــــــــــــــــــــــــــ

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi				Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М	
Sodium	37500.0	39566.08	105.5	25000.0	26359.93	105.4	26697.12	106.8		P	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: <u>Mitkem Corporation</u>

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No. SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Sodium				25000.0	26494.30	106.0	26908.48	107.6	P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Sodium				25000.0	26982.08	107.9	26935.10	107.7		P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Sodium				25000.0	26516.02	106.1				P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibra	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		M
Potassium	37500.0	37615.35	100.3	25000.0	24730.63	98.9	25159.40	100.6		P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M	
Potassium				25000.0	24666.90	98.7	24511.08	98.0	P	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ration	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		M
Potassium				25000.0	24876.12	99.5	24714.20	98.9		P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	M
Potassium				25000.0	24943.21	99.8			P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initia	al Calibra	ation	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Arsenic	750.0	764.28	101.9	500.0	511.69	102.3	513.94	102.8	P
Thallium	750.0	751.30	100.2	500.0	511.87	102.4	512.26	102.5	P
		Ì							<u>_</u>

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Initial Calibration Verification Source:

Continuing Calibration Verification Source:

Concentration Units: ug/L

	Initi	al Calibr	ation	Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)		М
Arsenic Thallium				500.0 500.0	513.65 503.89					P P

2B CRDL STANDARD FOR AA AND ICP

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.0

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

AA CRDL Standard Source:

ICP CRDL Standard Source:

	CRDL S	Standard fo	or AA		CRDL St	andard	for ICP	
			ĺ	Ini	tial		Final	
Analyte	True	Found	%R	True	Found	%R	Found	%R
Mercury	0.2	0.19 J	96.1	1				
Mercury	0.2	0.18 J	89.4					

2B CRDL STANDARD FOR AA AND ICP

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.0

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

AA CRDL Standard Source:

ICP CRDL Standard Source:

	CRDL S	Standard f	for AA		CRDL St	andard f	or ICP	
				Ini	tial		Final	
Analyte	True	Found	%R	True	Found	%R	Found	%R
Antimony				60.0	60.43	100.7	56.43 J	94.1
Beryllium		•		5.0	5.14	102.8	5.13	102.7
Cadmium				5.0	5.26	105.2	5.24	104.9
Chromium				10.0	10.37	103.7	10.31	103.1
Cobalt				50.0	53.92	107.8	54.12	108.2
Copper				25.0	26.02	104.1	25.15	100.6
Lead				10.0	11.13	111.3	10.62	106.2
Manganese				20.0	16.83	84.2	16.93	84.7
Nickel				40.0	42.49	106.2	42.47	106.2
Selenium				35.0	38.22	109.2	41.02	117.2
Silver				10.0	12.34	123.4	10.41	104.1
Vanadium				50.0	52.26	104.5	52.65	105.3
Zinc				60.0	74.76	124.6	74.69	124.5

2В CRDL STANDARD FOR AA AND ICP

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.0

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

AA CRDL Standard Source:

ICP CRDL Standard Source:

	CRDL	Standard :	for AA		CRDL St	andard :	for ICP	
				Ini [.]	tial		Final	
Analyte	True	Found	%R	True	Found	%R	Found	%R
Arsenic				10.0	8.82 J	88.2	11.57	115.7
Thallium				25.0	28.41	113.6	28.69	114.8

3 BLANKS

Lab Name: <u>Mitkem Corporation</u>

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С	Con-		uuing Calib Blank (ug/L 2		tion 3	С	Prepa- ration Blank	С	М
Mercury	0.200	U	0.200	Ū	0.200	Ü	0.200	U	0.200	ΰ	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Con		nuing Calib Blank (ug/L		tion		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	C.	Blank	С	М
Cyanide	10.0	Ü	10.0	U	10.0	U	10.0	U	10.000	ט	

BLANKS

Lab Name: <u>Mitkem Corporation</u>

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Con		uing Cal: lank (ug,		on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	C	Blank	С	М
Boron	54.8	J	41.2	J	500.	0 0	500.	0 0	500.00	0 0	

BLANKS

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): $\underline{\text{UG/L}}$

	Initial Calib. Blank		Con		nuing Calib Blank (ug/L		Prepa- ration				
Analyte	(ug/L)	С	1	C	2	С	3	С	Blank	С	M
Aluminum	200.0	U	200.0	ט	200.0	U	200.0	Ū	200.000	U	
Antimony	20.0	J	2.5	J	20.0	J	1.9	J	20.000	J	
Barium	200.0	U	200.0	U	200.0	Ü	200.0	υ	4.536	J	
Beryllium	0.2	Ĵ	5.0	U	5.0	U	5.0	υ	5.000	U	
Cadmium	5.0	U	5.0	υ	5.0		5.0	บ	5.000	U	
Calcium	-41.7	J	800.0	J	-68.2	J	800.0	J	132.303	J	
Chromium	0.4	J	0.4	J	0.4		0.4	J	10.000	J	
Cobalt	0.2	J	0.2	J	50.0	Ü	0.3	J	0.399	J	
Copper	30.0	Ū	30.0	U	30.0	Ü	30.0	Ū	30.000	ט	
Iron	200.0	U	200.0	U	200.0	U	200.0	Ū	32.391	J	İ
Lead	0.5	J	0.5	J	0.5	J	0.5	J	0.748	J	
Magnesium	500.0	J	500.0	J	500.0	J	500.0	J	500.000	J	
Manganese	50.0	U	50.0	U	50.0	U	50.0	Ū	2.868	J	
Nickel	0.6	J	0.6	J	0.6	J	0.6	J	40.000	J	
Selenium	-1.8	J	1,4	J	7.3	J	3.5	J	5.846	J	
Silver	3.6	J	30.0	U	30.0	U	30.0	Ū	1.476	J	
Vanadium	0.5	J	0.5	J	0.5	J	0.5	J	50.000	บ	
Zinc	50.0	J	50.0	J	50.0	J	50.0	J	2.458	J	

BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		Con		iing Calib ank (ug/L		cion		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	С	Blank	С	М
Sodium	5000.0	ט	5000.0	U	5000.0	U	5000.0	Ū	5000.000	Ū	

BLANKS

Lab Name: <u>Mitkem Corporation</u>

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		c		ing Cal ank (uç		.on		Prepa- ration		
Analyte	(ug/L)	С	1	C D1.	2	,, ш, С	3	С	Blank	С	М
Sodium			5000.	.0 U	5000	.0 U	5000.	ָט ס.			P

BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		С		ing Cal	librati g/L)	on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	С	Blank	C	M
Sodium			5000	. O U							P

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank		С	Continu:	ing Cal		on		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	С	3	c	Blank	С	M
Potassium	5000.	0 U	5000	.0 U	5000	ט 0.0	5000.	. ס ט	5000.00	0 0	

3 BLANKS

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		Co		ing Cal ank (ug		on.		Prepa- ration		
Analyte	(ug/L)	С	1	С	2	, _, C	3	С	Blank	С	М
Potassium			5000.	ס ט	5000	.0 U	5000.	ט ס.			P

3 BLANKS

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water):

	Initial Calib. Blank		С		ing Cal	librati g/L)	on		Prepa- ration		
Analyte	(ug/L)	C	1	C	2	С	3	С	Blank	С	M
Potassium			5000	ט 0.							P

3 BLANKS

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): $\underline{\text{UG/L}}$

	Initial Calib. Blank		Con	Prepa- ration	ration							
Analyte	(ug/L)	С	1	С	2	С	3	С	Blank	С		М
Arsenic Thallium	10.0 4.2	i t	10.0	U J	10.0		10.0 3.0	Ŭ J	10.000 25.000			

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA2

ICS Source:

	Tri	ue	Ini	tial Four	nd	F	inal Foun	đ
Analyte	Sol.	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	%R
Boron	0	0	197	189		171	172	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA2

ICS Source:

i							,	
	l Tru	ıe	Ini	tial Fou	nd	Fi	nal Foun	d
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	%R	A	AB	%R
Aluminum	500000	500000	480000	472000	94.5	481000	477000	95.4
Antimony	0	600	42.0	530	88.3	46.0	526	87.7
Barium	0	500	-17	465	92.9	-17	465	93.0
Beryllium	0	500	0	472	94.4	0	474	94.7
Cadmium	0	1000	-2.0	896	89.6	-2.0	901	90.1
Calcium	500000	500000	502000	490000	97.9	497000	498000	99.7
Chromium	0	500	7.0	453	90.6	6.0	462	92.3
Cobalt	0	500	-14	420	84.0	-14	425	85.0
Copper	o	500	-9.0	458	91.6	-11	465	92.9
Iron	200000	200000	176000	172000	86.0	174000	174000	87.1
Lead	o	50.0	3.0	53.8	107.6	4.0	57.6	115.2
Magnesium	500000	500000	469000	462000	92.3	470000	465000	93.0
Manganese	0	500	oi	460	92.0	-2.0	467	93.3
Nickel	0	1000	-5.0	865	86.5	-6.0	876	87.6
Selenium	o	50.0	-20	58.0	116.0	19.0	41.8	83.6
Silver	o	200	-2.0	203	101.4	-3.0	205	102.3
Vanadium	0	500	5.0	476	95.2	4.0	480	96.1
Zinc	o	1000	-14	847	84.7	-14	848	84.8

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA3

ICS Source:

	Tr	ue	Ini	tial Four	nd	Fi	nal Found	i
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	%R	A	AB	%R
Sodium	0	0	88.0	61.8		143	120	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA3

ICS Source:

	Tr	ue	In	itial Fou	nd	F	inal Foun	d
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	%R	A	AB	%R
Sodium	0	0	115	47.5		114	80.0	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA3

ICS Source:

	Tr	ue	Ini	tial Fou	nd	F:	inal Foun	d
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	%R	A	AB	%R
Potassium	0	0	118	74.9		126	71.1	

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA3

ICS Source:

·	Tr	ue	Ini	tial Fou	nd	F	inal Found	i
Analyte	Sol.	Sol. AB	Sol. A	Sol. AB	%R	Sol.	Sol. AB	%R
Potassium	0	0	43.0	67.4		376		

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.02</u>

Lab Code: MITKEM Case No. SAS No.:

SDG No.: MD1004

ICP ID Number: OPTIMA3

ICS Source:

	Trı	ue	Ini	tial Fou	nd	Final Found				
Analyte	Sol.	Sol. AB	Sol.	Sol. AB	%R	Sol. A	Sol. AB	%R		
Arsenic Thallium	0	100	17.0	91.8 97.2	91.8 97.2	1.0	89.9 98.7	89.9 98.7		

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699.N

Lab Code: MITKEM

Case No.

SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Level (low/med): MED

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	Control Limit	Spiked Sample	Sample		Spike			
Analyte	%R	Result (SSR) (Result (SR)	С	Added (SA)	%R	Q	М
Cyanide	75-125	111.6495	10.0000	U	100.00	111.6		CA

Comme	ents:					

5A SPIKE SAMPLE RECOVERY

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation

Contract: TN 000699.N

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Matrix (soil/water): WATER

Level (low/med): MED

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): <u>UG/L</u>

	Control	Guidhead Gannala		g) -		g., 11			
	Limit	Spiked Sample		Sample		Spike			
Analyte	%R	Result (SSR)	С	Result (SR)	С	Added (SA)	%R	Q	M
Aluminum	75-125	2192.1872		21.7616	J	2000.00	108.5		P
Antimony	75-125	107.2315		60.0000	U	100.00	107.2		P
Arsenic	75-125	42.6789		10.0000	Ü	40.00	106.7		P
Barium	75-125	2396.8063		5.3174	J	2000.00	119.6		P
Beryllium	75-125	57.5345		5.0000	υ	50.00	115.1		P
Boron	75-125	2435.3242		43.9917	J	2250.00	106.3	-	P
Cadmium	75-125	56.4941		0.1145	J	50.00	112.8		P
Chromium	75-125	226.7479		10.0000	Ū	200.00	113.4		P
Cobalt	75-125	601.5433		0.3129	J	500.00	120.2		P
Copper	75-125	295.0285		25.0000	Ū	250.00	118.0		P
Iron	75-125	1180.3319		62.4074	J	1000.00	111.8		P
Lead	75-125	28.1178		0.8811	J	20.00	136.2	N	P
Manganese	75-125	611.2738		3.4439	J	500.00	121.6		P
Nickel	75-125	598.4501		40.0000	Ū	500.00	119.7		P
Selenium	75-125	59.7040		1.0320	J	50.00	117.3		P
Silver	75-125	58.5522		10.0000	Ũ	50.00	117.1		P
Thallium	75-125	58.0560		1.4829	J	50.00	113.1		P
Vanadium	75-125	564.5119		50.0000	Ų	500.00	112.9		P
Zinc	75-125	594.5817		3.4263	J	500.00	118.2		P
l	L	l		l	l	l	1	l.	1 1

CORUME	ents:			

5B

POST DIGEST SPIKE SAMPLE RECOVERY

EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation Contract: TN 000699.N

Lab Code: MITKEM Case No. SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

Level (low/med): MED

Analyte	Control Limit %R	Spiked Sample Result (SSR)	c	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
Lead		21.27		0.88	J	20.0	102.0		P

ents:			

6 DUPLICATES EPA SAMPLE NO

SB-RB-W-R

Lab Name: Mitkem Corporation Contract: TN 000699.N

Lab Code: MITKEM Case No. SAS No.:

SDG No.: MD1004

Matrix (soil/water): WATER

% Solids for Sample: 0.0

% Solids for Duplicate: 0.0

Level (low/med): MED

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	M	
Aluminum		21.7616	J	22.8069	J	4.7		P	
Antimony		60.0000	U	1.6479	J	200.0		P	
Arsenic		10.0000	U	10.0000	ប			P	
Barium		5.3174	J	4.9739	J	6.7		P	
Beryllium		5.0000	U	5.0000	ប			P	
Boron		43.9917	J	500.0000	U	200.0		P	
Cadmium		0.1145	J	5.0000	Ü	200.0		P	
Calcium		278.1198	J	349.0531	J	22.6		P	
Chromium		10.0000	U	0.6465	J	200.0		P	
Cobalt		0.3129	J	0.2156	J	36.8		P	
Copper		25.0000	บ	25.0000	U			P	
Iron	100.0	62.4074	J	389.0848		144.7	*	P	
Lead		0.8811	J	10.0000	บ	200.0		P	
Magnesium		5000.0000	ט	25.6268	J	200.0		P	
Manganese		3.4439	J	5.4385	J	44.9		P	
Nickel		40.0000	ע	40.0000	ע	1		P	
Selenium		1.0320	J	35.0000	U	200.0		P	
Silver]	10.0000	U	10.0000	U			P	
Sodium		178.7198	J	183.4179	J	2.6		P	
Thallium		1.4829	J	25.0000	U	200.0		P	
Vanadium		50.0000	ט	50.0000	U			P	
Zinc		3.4263	J	4.7276	J	31.9		P	
Cyanide		10.0000	U	10.0000	U			CA	

7 LABORATORY CONTROL SAMPLE

Lab Name: Mitkem Corporation

Contract: <u>TN 000699.NV26.</u>

Lab Code: MITKEM Case No. SAS No.:

SDG No.: MD1004

Solid LCS Source:

Aqueous LCS Source:

LCS-19953

	Aque	eous (ug/L) .		S	Solid	(mg/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	9100.0	9870.53	108.5					
Antimony	455.0	515.44	113.3					
Arsenic	455.0	503.33	110.6					
Barium	9100.0	10298.60	113.2				ĺ	
Beryllium	227.0	255.12	112.4					
Boron	2250.0	2483.44	110.4	:				
Cadmium	227.0	255.12	112.4					
Calcium	22700.0	25113.10	110.6					
Chromium	910.0	991.94	109.0					
Cobalt	2270.0	2557.33	112.7					
Copper	1130.0	1251.59	110.8					
Iron	4550.0	4993.09	109.7					
Lead	455.0	512.60	112.7					
Magnesium	22700.0	25234.29	111.2					
Manganese	2270.0	2565.84	113.0					
Nickel	2270.0	2531.10	111.5				•	
Potassium	22700.0	24976.10	110.0					
Selenium	455.0	505.86	111.2					
Silver	1130.0	1306.71	115.6					
Sodium	22700.0	26299.09						İ
Thallium	455.0		110.7					
Vanadium	2270.0	2513.60			•			
Zinc	2270.0	2539.70						

8 ICP SERIAL DILUTIONS

Lab Name: Mitkem Corporation Contract: TN 000699.N SB-RB-W-R

Lab Code: MITKEM Case No.

SDG No.: MD1004

Matrix (soil/water): WATER

Level (low/med): MED

Concentration Units: ug/L

SAS No.:

				Serial	ĺ	8		
	Initial Sample			Dilution	İ	Differ-		
Analyte	Result (I)	С		Result (S)	С	ence	Q	М
Aluminum	21.76	В		1000.00	U	100.0		Р
Antimony	60.00	Ū		300.00	ט			P
Arsenic	10.00			50.00	ט			P
Barium	5.32	В		1000.00	U	100.0		P
Beryllium	5.00	U		25.00	U			P
Boron	43.99	В		2500.00	ט	100.0		₽
Cadmium	0.11	В		25.00	ט	100.0		P
Calcium	278.12	В		361.91	В	30.1		P
Chromium	10.00	ט		50.00	U			P
Cobalt	0.31	В		0.91	В	193.5		P
Copper	25.00	ŭ	Н	130.00			li	P
Iron	62.41	В		500.00		100.0		P
Lead	0.88	_		50.00		100.0		P
Magnesium	5000.00	U		25000.00	U			P
Manganese	3.44	В		75.00	ט	100.0		P
Nickel	40.00	U		200.00	ט			P
Selenium	1.03	В		7.04	В	583.5		P
Silver	10.00	U		50.00	ט			P
Sodium	178.72	В		25000.00	ט	100.0		P
Thallium	1.48	В		12.00	В	710.8		P
Vanadium	50.00	ן ט		250.00	ן ט			P
Zinc	3.43	В		300.00	ט	100.0		P

METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.: SDG No.: MD1004

ICP ID Number:

Date: 07/01/05

Flame AA ID Number:

FIMS1

TestCode: ILM5.3 HG W

Analyte	Wave- length (nm)	Back- ground	CRDL (UG/L)	MDL (UG/L)	М
Mercury	0.00		0.2	0.05	CV

Comme	ents:		

METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.: SDG No.: MD1004

ICP ID Number:

Date: <u>07/01/05</u>

Flame AA ID Number: LACHAT1

TestCode: <u>ILM5.3 CN W</u>

Analyte	Wave- length (nm)	Back- ground	CRDL (UG/L)	MDL (UG/L)	м
Cyanide			10	9.1	CA

Comme	ents:				
•		 	MANAGEM TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO	0 A 2 10 7 8 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

9 METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA2 Date: 07/01/05

Flame AA ID Number: TestCode: $\underline{\text{ILM5.3 ICP W}}$

	Wave-				
	length	Back-	CRDL	MDL	
Analyte	(nm)	ground	(UG/L)	(UG/L)	М
Aluminum	308.21		200	14	P
Antimony	206.83		60	1.2	Р
Barium	233.53		200	2.1	P
Beryllium	313.11		5.0	0.15	P
Boron	123.45		500	39	P
Cadmium	226.50		5.0	0.10	P
Calcium	227.54		5000	33	P
Chromium	267.72		10	0.38	Ρ
Cobalt	228.62		50	0.15	Ρ
Copper	324.75		25	6.3	P
Iron	273.96		100	19	Ρ
Lead	220.35		10	0.46	P
Magnesium	279.08		5000	20	P
Manganese	257.61		15	1.8	₽
Nickel	231.60		40	0.59	P
Selenium	196.03		35	0.98	P
Silver	328.07		10	0.91	₽
Vanadium	292.40		50	0.47	P
Zinc	206.20		60	2.3	P

Comme	ents:				
		 			 -
		 		•	

METHOD DETECTION LIMITS (ANNUALLY)

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.: SDG No.: MD1004

ICP ID Number:

OPTIMA3

Date: 07/01/05

Flame AA ID Number:

TestCode: ILM5.3 ICP W

	Wave- length	Back-	CRDL	MDL	
	Tenden	Dack-			
Analyte	(nm)	ground	(UG/L)	(UG/L)	M
_		_			
Arsenic	188.98		10	1.6	Р
Potassium	766.49		5000	160	Р
Sodium	589.59		5000	130	P
Thallium	190.80		25	1.2	P

Comme	ents:		

10A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: Mitkem Corporation

Contract: TN 000699.NV

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number:

OPTIMA2

Date: <u>3/30/05</u>

	Wave-		Interelement Correction Factors for:				
Analyte	length (nm)	Al	Ca	Fe	Mg	Cr	
				I	· · · · · · · · · · · · · · · · · · ·		
Aluminum	308.21		0.0000000		0.0000000	0.0000000	
Antimony	206.83	0.0174150	-0.0031006	0.1190830	0.0081035	5.7478200	
Arsenic	188.97	0.0728007	0.0000000	0.0111660	0.0111660	-5.3346900	
Barium	233.52	0.0046014	0.0068611	0.1471710	0.0036820	0.0000000	
Beryllium	313.10	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Cadmium	226.50	-0.0035740	0.0000000	0.0664913	0.0000000	0.0000000	
Calcium	227.54	-0.5000390		12.8307000	0.0000000	5.5746300	
Chromium	267.71	0.0000000	0.0000000	0.0000000	0.0000000		
Cobalt	228.61	0.0000000	0.0000000	0.0250613	0.0000000	-0.0557816	
Copper	324.75	0.0072906	0.0039852	-0.1106930	0.0033097	0.1265570	
Iron	273.95	0.0000000	0.0000000		0.0000000	0.0000000	
Lead	220.35	-0.2678550	-0.0170279	-0.0228521	0.0021432	-0.1462470	
Magnesium	279.07	0.0000000	0.0000000	-0.3250520		0.0000000	
Manganese	257.61	-0.0388603	0.0047481	-0.5591400	0.0077324	-0.5826900	
Nickel	231.60	0.0000000	0.0000000	0.0000302	0.0000000	0.0000000	
Selenium	196.02	-0.0555964	-0.0182908	-0.0004092	-0.0058448	-0.0625148	
Silver	328.06	0.3719790	0.5376300	-0.0000575	0.0509589	0.1291050	
Sodium	330.24	0.3088000	0.5913160	-1.5536100	0.0000000	0.0000000	
Thallium	190.80	0.0623562	-0.0110972	0.0000000	0.0062609	0.1560700	
Vanadium	292.40	0.0000000	0.0000000	-0.0108800	-0.0030049	-1.6625200	
Zinc	206.2	0.0105770	0.0063648	0.0243549	0.0478891	-2.4316200	
		1					

Comme	ents:					
				·		
		 	•			

10A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: Mitkem Corporation

Contract: TN 000699.NV

Lab Code: MITKEM

Case No.

SAS No.: SDG No.: MD1004

ICP ID Number:

OPTIMA2

Date: <u>3/30/05</u>

	Wave- length		Interelement	Correction	Factors for:	
Analyte	(nm)	Cu	Mn	Ni	Tl	Ti
Aluminum	308.21	0.0000000	3.5113200	0.0000000	0.0000000	7.7972300
Antimony	206.83	0.0635122	0.0000000	-0.6345370	0.0000000	0.0000000
Arsenic	188.97	0.0950247	0.0943115	0.0353420	0.0000000	0.0000000
Barium	233.52	0.0000000	0.0000000	0.0363350	0.0000000	0.0000000
Beryllium	313.10	0.0000000	0.0000000	0.0000000	0.0000000	-1.3160900
Cadmium	226.50	0.0000000	0.0000000	-0.2330110	0.0000000	0.0000000
Calcium	227.54	15.2080000	4.8753100	26.9670000	0.0000000	9.7776700
Chromium	267.71	0.3955010	0.5395740	0.0680176	0.1064640	0.3212980
Cobalt	228.61	0.0000000	0.0000000	0.1294980	0.0000000	1.6297500
Copper	324.75		0.7489700	0.1716190	0.2134400	0.6450550
Iron	273.95	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.35	-0.0913612	0.0505016	-0.6345370	0.0000000	-0.5608130
Magnesium	279.07	0.0000000	-17.7574000	0.0000000	0.0000000	-7.9278400
Manganese	257.61	0.0000000		0.0224954	0.1603130	0.4882460
Nickel	231.60	0.0000000	0.0000000		0.9385730	1.7139400
Selenium	196.02	0.0619276	0.6810920	0.0000000	0.0000000	0.0000000
Silver	328.06	0.1111620	0.0927470	0.0262930	0.0894754	0.0000000
Sodium	330.24	-11.2798000	0.0000000	0.0000000	0.0000000	-588.4260000
Thallium	190.80	0.0000000	-1.3575900	-0.0201988		0.5053050
Vanadium	292.40	0.0000000	-0.0678184	0.0000000	0.0000000	0.2716680
Zinc	206.2	0.0000000	0.1280170	0.0329218	0.2110700	0.5658720

Comm	ents:			
				2000 - 100 Maria - 100 Maria - 100 Maria - 100 Maria - 100 Maria - 100 Maria - 100 Maria - 100 Maria - 100 Maria

10A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA2 Date: 3/30/05

	Wave-		Interelement	Correction	Factors for:	
	length					
Analyte	(nm)	V				
Aluminum	308.21	14.9737000				
Antimony	206.83	-1.4152400	j			
Arsenic	188.97	0.0696804				
Barium	233.52	0.5825770				
Beryllium	313.10	0.0000000				
Cadmium	226.50	0.0000000				
Calcium	227.54	42.7958000				
Chromium	267.71	-0.1479760				
Cobalt	228.61	0.0000000				
Copper	324.75	-0.2133690				
Iron	273.95	58.8950000				
Lead	220.35	-0.0935740				
Magnesium	279.07	-1.7446300				
Manganese	257.61	-0.1035920				
Nickel	231.60	0.1378080				
Selenium	196.02	0.2808450				
Silver	328.06	-1.0256500				
Sodium	330.24	0.0000000				
Thallium	190.80	2.1012200				
Vanadium	292.40					
Zinc	206.2	0.0217066				

Comme	ents:		

10A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA3 Date: 3/30/05

	Wave- length	-	Interelement	Correction	Factors for:	
Analyte	(nm)	Al	Ca	Fе	Mg	Cr
Aluminum	308.21		0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.83	0.0000000	0.0000000	-0.0517312	0.0000000	15.4803000
Arsenic	188.97	0.0045356	0.0024744	-0.0285871	0.0092064	0.1871210
Barium	233.52	0.0025226	0.0068006	0.0333679	0.0000000	0.0000000
Beryllium	313.10	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0411486	0.0000000	0.0000000
Calcium	227.54	0.0000000		27.1137000	0.2574310	4.3574700
Chromium	267.71	0.0000000	0.0021322	-0.0049863	0.0000000	
Cobalt	228.61	0.0000000	0.0000000	0.0222111	0.0000000	-0.0728049
Copper	324.75	0.0134956	0.0000000	-0.2539560	-0.0033103	-0.0915122
Iron	273.95	0.0000000	0.0000000		0.0000000	0.0000000
Lead	220.35	-0.0876746	-0.0229064	0.0293723	0.0033855	-0.0939601
Magnesium	279.07	0.0000000	0.0000000	0.6940750		0.0000000
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.0238222	-0.0405452
Nickel	231.60	0.0000000	0.0031128	0.0185769	0.0000000	0.0000000
Selenium	196.02	-0.0296877	-0.0209754	-0.1962320	-0.0169028	0.0432675
Silver	328.06	0.3670370	0.5515260	0.0549539	0.0058626	0.0000000
Sodium	330.24	0.0721289	1.6032800	-1.5017600	-0.0869609	10.6933000
Thallium	190.80	0.0000000	0.0099136	-0.0481012	-0.0155318	0.2873470
Vanadium	292.40	0.0000000	0.0000000	0.0000000	0.0000000	-2.5362100
Zinc	206.2	0.0055655	0.0000000	0.0134116	0.0450133	-3.7838400

me:	nts:	:												
-				 	 									
-														-

10A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA3 Date: 3/30/05

	Wave- length		Interelement	Correction	Factors for:	
Analyte	(nm)	Cu	Mn	Ni	Tl	Ti
Aluminum	308.21	0.0000000		0.0000000	0.0000000	
Antimony	206.83	0.0782287		-0.8122530	0.0000000	
Arsenic	188.97	0.0000000	0.0000000	0.0186825	-0.0952024	0.0000000
Barium	233.52	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.10	0.0000000	0.0000000	0.0000000	0.0000000	-1.1853200
Cadmium	226.50	0.0000000	0.0000000	-0.2560290	0.0000000	0.0000000
Calcium	227.54	9.2404200	4.8478000	45.3181000	0.0000000	6.0943300
Chromium	267.71	0.0000000	0.2669770	0.0000000	0.0000000	0.1082320
Cobalt	228.61	0.0000000	0.0000000	0.0935109	0.0000000	2.1801300
Copper	324.75		0.0000000	0.0000000	0.0865919	0.1871190
Iron	273.95	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.35	0.2515750	0.1073900	0.0000000	0.0000000	-0.1902580
Magnesium	279.07	0.0000000	-3.4112600	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000		0.0000000	0.1517340	0.5352630
Nickel	231.60	0.0000000	0.0507419		0.2032970	0.0014408
Selenium	196.02	-0.0634704	0.8209090	0.0315190	-0.1350020	-0.1919800
Silver	328.06	0.0000000	0.0774532	-0.0602150	-0.0850740	0.3390440
Sodium	330.24	-4.8099800	0.0000000	2.6787200	-4.5025700	380.7280000
Thallium	190.80	0.0000000	-2.3409500	0.0450492		0.7407530
Vanadium	292.40	0.0000000		0.0000000	0.0000000	
Zinc	206.2	0.0000000	0.3582140	0.0000000	0.1493410	0.4049780

Comme	ents:				
		· 			

10A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA3 Date: 3/30/05

	Wave-		Interelement	Correction	Factors for:	
	length					
Analyte	(nm)	V				
Aluminum	308.21	-24.1150000				_ .
Antimony	206.83	-0.1104220				
Arsenic	188.97	0.1568980				
Barium	233.52	-0.6748410				
Beryllium	313.10	-0.0346689				
Cadmium	226.50	0.0000000				
Calcium	227.54	58.0892000	:			
Chromium	267.71	-0.3813230				
Cobalt	228.61	0.0000000				
Copper	324.75	-0.1314340				
Iron	273.95	30.6163000				
Lead	220.35	-0.0674069				
Magnesium	279.07	0.0000000				
Manganese	257.61	-0.0342472				
Nickel	231.60	0.0000000	•			
Selenium	196.02	-0.0783879				
Silver	328.06	-5.7249500				
Sodium	330.24	3.2989700				
Thallium	190.80	0.0000000				
Vanadium	292.40		•			
Zinc	206.2	0.0000000				

Comme	ents:			
		 	 	 <u></u>

11 ICP LINEAR RANGES (QUARTERLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA2 Date: 07/01/2005

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	М
Aluminum	0.20	500000	P
Antimony	0.20	25000	P
Barium	0.20	50000	₽
Beryllium	0.20	1000	P
Boron	0.20	0	P
Cadmium	0.20	10000	-
Calcium	0.20	500000	P
Chromium	0.20	50000	P
Cobalt	0.20	50000	-
Copper	0.20	25000	P
Iron	0.20	300000	P
Lead	0.20	100000	₽
Magnesium	0.20	500000	P
Manganese	0.20	25000	P
Nickel	0.20	100000	P
Selenium	0.20	25000	P
Silver	0.20	2500	P
Vanadium	0.20	100000	P
Zinc	0.20	25000	P
I	I		l

Comments	3:	

ICP LINEAR RANGES (QUARTERLY)

Lab Name: Mitkem Corporation Contract: TN 000699.NV26.02

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

ICP ID Number: OPTIMA3

Date: <u>07/01/2005</u>

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	М
Arsenic Potassium Sodium Thallium	0.20 0.20 0.20 0.20	25000 250000 250000 25000	P P

Comme	ents:		

12 PREPARATION LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.: SDG No.: MD1004

Method: <u>CA</u>

EPA			
Sample	Preparation	Weight	Volume
No.	Date	(gram)	(mL)
MW12-W+0	08/31/05		50
PBW	08/31/05		50
SB-RB-W-R	08/31/05		50
SB-RB-W-RD	08/31/05		50
SB-RB-W-RS	08/31/05		50

12 PREPARATION LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Method: \underline{P}

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
LCSW	09/13/05		50
PBW	09/13/05		50
SB-RB-W-R	09/13/05		50
SB-RB-W-RD	09/13/05		50
SB-RB-W-RS	09/13/05		50

PREPARATION LOG

Lab Name: Mitkem Corporation Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Method: <u>CV</u>

EPA Sample No.	Preparation Date	Weight (gram)	Volume (mL)
PBW	09/13/05		100
SB-RB-W-R	09/13/05	_	136

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Instrument ID Number: FIMS1 Method: CV

Start Date: 09/14/2005 End Date: 09/14/2005

EPA															Aı	nal	yt	es										
Sample	D/F	Time	કુ	R	A	s	Α	В	В	С	С	С	С	С	F	Р	М	М	Н	N	K	S	Α	N	Т	V	Z	С
No.					L	В	S	A	E	D	A	0	R	U	E	В	G	N	G	I		E	G	Α	L		N	N
50	1.00	0956											-		ļ				Х				<u> </u>					
S0.2	1.00	0958												i					Х									
S1.0	1.00	0959												<u> </u>			!		Х									
S2.0	1.00	1000																	Х									
S5.0	1.00	1002																	Х									П
\$10.0	1.00	1003																	Х									
22222	1.00	1004																				<u> </u>						
ZZZZZZ	1.00	1006																										
ZZZZZZ	1.00	1007																										
ICV	1.00	1010			ļ						 								Х									Г
ICB	1.00	1011			ļ .			-											Х				ļ					Г
CRA	1.00	1013																	Х				1					Г
ccv	1.00	1014			†								-			-			Х				}					ļ
CCB	1.00	1015																	Х			-						
PBW	1.00	1017			T^-														Х									
ZZZZZZ	1.00	1018								-				<u> </u>	-					-					-			
ZZZZZZ	1.00	1019									-				 										-			<u> </u>
ccv	1.00	1021			†														Х									
ССВ	1.00	1022																	Х									
22222	1.00	1023		-								Ė		T						ļ								\vdash
ZZZZZZ	1.00	1025															-											
222222	1.00	1026															<u>: </u>]					-			
22222	1.00	1027				-				T							 	Ì										_
22222	1.00	1029	-			-														i								
ZZZZZZ	1.00	1030												1														<u> </u>
222222	1.00	1031			 								 						<u> </u>	\vdash		 			 			
SB-RB-W-R	1.00	1033			<u> </u>	 		-		 									Х									\vdash
ZZZZZZ	1.00	1033								1										_								
CRA	1.00	1036				\vdash		1			1			†		<u> </u>		 	Х		 	 	 		-			†
ccv	1.00	1037			 	 -	 	†	 	 	1	1		 	 	<u> </u>	-	_	X									\vdash
ССВ	1.00	1039																	Х									\vdash

13 ANALYSIS RUN LOG

Lab Name: <u>Mitkem Corporation</u>

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.: SDG No.: MD1004

Instrument ID Number: <u>LACHAT1</u>

Start Date: 09/02/2005

Method: <u>CA</u>

End Date: 09/02/2005

EPA											· · · · ·				Aı	nal	yt	es										
Sample	D/F	Time	욹	R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	S	A	N	Т	v	Z	С
No.	-, -				L	В	s	A	E	D	A	o	R	ט	E	В	G	N	G	I		E	G	Α	L		N	N
					-	-	_			_		-		_		-	-		_	-		; –	-		_			
50	1.00	1012																			_	<u> </u>	-					Х
\$0.01	1.00	1014														Г												Х
S0.025	1.00	1017																										Х
S0.05	1.00	1019																										X
S0.10	1.00	1022			1																							Х
S0.20	1.00	1024																										Х
S0.40	1.00	1027																						-				X
ICV	1.00	1030													_													Х
ICB	1.00	1033		,			···																			Ì		Х
CRA	1.00	1035																										Х
ccv	1.00	1038																										Х
CCB	1.00	1041																- '										X
ZZZZZZ	1.00	1043																								ĺ		
ZZZZZZ	1.00	1046																										
PBW	1.00	1048																										X
SB-RB-W-R	1.00	1051			Ì																							Х
CCV	1.00	1053																										Х
ССВ	1.00	1056																										Х
SB-RB-W-RD	1.00	1058					<u> </u>													-								Х
SB-RB-W-RS	1.00	1101																		İ								Х
MW12-W-O	1.00	1103														ļ												Х
ZZZZZZ	1.00	1106			ļ																							
ZZZZZZ	1.00	1108																										
22222	1.00	1111																	5									
ZZZZZZ	1.00	1113			T							····																
ZZZZZZ	1.00	1116																										
ccv	1.00	1119																										Х
CCB	1.00	1121			T-	T	1	1									1			T						T		Х

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Instrument I	D Numbe	r: <u>C</u>	PTIMA	2						M	etl	nod	1:	<u>P</u>	·												
Start Date:	09/14/	2005		B			305			E	nd	Da	ite	:		<u>09</u>	/14	1/2	00	<u>5</u>							
						Poli	יז.																				
EPA				B	46	/								Ar	nal	yt.	25										
Sample	D/F	Time	% R	P	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	S	A	N	Т	V	Z	С
No.	1			Æ	В	s	A	E	D	A	0	R	U	E	В	G	N	G	I		E	G	Α	L		N	N
so	1.00	1512		x																							
S1	1.00			X										-													П
Š2	1.00	1516		X							-				T				Ι.	····		厂					П
\$3	1.00	1519		X																							П
ZZZZZZ	1.00	1521											 														\Box
icv	1.00	1523	 	X														-									П
ICB	1.00	1526		X										1													П
ICSA	1.00	1528																									
ICSAB	1.00	1530		X																	 						
ccv	1.00	1533		X										· · · · ·													П
CCB	1.00	1535		X																				 -			П
PBW	1.00	1537		$\sqrt{\mathbf{v}}$																							П
LCSW	1.00	1540		Ŷ														_									П
SB-RB-W-R	1.00	1542																									П
SB-RB-W-RD	1.00	1544		X										i —		-	-										П
SB-RB-W-RS	1.00	1546		X										İ						<u> </u>		<u> </u>					
SB-RB-W-RL	5.00	1549		∇																							П
ZZZZZZ	1.00	1551		7															-								
ZZZZZZ	1.00	1553		1																							
ZZZZZZ	1.00	1556					-																				П
ZZZZZŻ	1.00	1558		***************************************																							
ccv	1.00	1600		X																							
CCB	1.00	1603		X	_																						П
ZZZZZZ	1.00	1605																			ļ						
ZZZZZZ	1.00	1607)																						П
ZZZZZZ	1.00	1610																									
ZZZZZZ	1.00	1612																				ļ.,					
ZZZZZZ	1.00	1615		1																							
ZZZZZZ	5.00	1617						ļ			<u> </u>		-	l													
ICSA	1.00	1619		X																	-						
ICSAB	1.00	1621		文			ļ -		ļ	<u> </u>		 -	1	 					Γ	Τ							П
ccv	1.00	1624		X									ļ														\Box
ССВ	1.00	1626		X																							П

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Instrument ID Number: OPTIMA2

Method: <u>P</u>

Start Date: 09/14/2005

End Date: 09/14/2005

Sample D/F No. 1.00 so 1.00 st 1.00 ICV 1.00 ICB 1.00 ICSA 1.00 ICSAB 1.00 CCV 1.00 CCB 1.00 PBW 1.00 LCSW 1.00 SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RB 1.00 SB-RB-W-RA 1.00 SB-RB-W-RA 1.00 222222 1.00 CCV 1.00	1024 1028 1039 1044 1048 1050 1053 1058 1102	% R	X X X X X X	S B X X X X X	AS	B X X X X	B E X X X	C D X X X	C A X X	C O X X	C R X X	C U X X	F E X	P B X	M G X	M N X	H G	N I X	К	S E X X	A G X	N A	T	X X	Z N X	СИ
SO 1.00 S1 1.00 S1 1.00 ICV 1.00 ICB 1.00 ICB 1.00 ICSA 1.00 ICSA 1.00 ICSAB 1.00 ICSAB 1.00 ICSAB 1.00 ICSAB 1.00 ICSAB 1.00 ICSB 1.00	1024 1028 1039 1044 1048 1050 1053 1058 1102		X X X X X X	X X X X X	s	X X X	X X X	X X X	X X X	X	X	X	Х	X	Х	Х	G	Х		Х	Х	A	L		х	N
S1	1024 1028 1039 1044 1048 1050 1053 1058 1102		X X X X X X	X X X X		X X	X X	X	X	Х	Х	Х				_									_	
ICV 1.00 ICB 1.00 CRI 1.00 ICSA 1.00 ICSA 1.00 ICSA 1.00 CCV 1.00 CCB 1.00 CCB 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00 SB-RB-W-R 1.00	1028 1039 1044 1048 1050 1053 1058 1102	}	X X X X	X X X		X	X	Χ	Х				Х	Х	X	х	1	X		Х	Х			X	Y	
ICB	1039 1044 1048 1050 1053 1058 1102		X X X	X X		Х	Х			¥						:					47	- 1	(Δ.	
CRI 1.00 ICSA 1.00 ICSAB 1.00 CCV 1.00 CCB 1.00 PBW 1.00 LCSW 1.00 SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00 SB-RB-W-RD 1.00	1044 1048 1050 1053 1058 1102		X X X	X				Х		22	Х	Х	Х	Х	Х	Х		Х		Х	Χ			Х	Х	
ICSA	1048 1050 1053 1058 1102		X	Х		v	¥		X	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х			Х	Х	
1.00 1.00	1050 1053 1058 1102		X			v	2.	Х		Х	Х	Х		Χ		Х		Х		Х	Х			Х	Х	
CCV 1.00 CCB 1.00 PBW 1.00 LCSW 1.00 SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RS 1.00 SB-RB-W-RS 1.00 SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 ZZZZZZZ 1.00	1053 1058 1102		Х	Х			Х	Х	X	Х	Х	Х	Х	Х	X	Х		Х		Х	Х			Х	Х	
CCB 1.00 PBW 1.00 LCSW 1.00 SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RS 1.00 SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 SB-RB-W-RA 1.00 SB-RB-W-RA 1.00	1058 1102					Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х		Х		Х	Х			Х	X	
PBW 1.00 LCSW 1.00 SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RS 1.00 SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 ZZZZZZZ 1.00	1102			X		Х	Х	Х	Х	Х	Х	Χ	Х	Х	Χ	Х		Х		Х	Х			Х	Х	
LCSW 1.00 SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RS 1.00 SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 ZZZZZZZ 1.00			X	Х		Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х		Х		X	X			Х	Х	\neg
SB-RB-W-R 1.00 SB-RB-W-RD 1.00 SB-RB-W-RS 1.00 SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 ZZZZZZ 1.00	1106	1	Х	Х		Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х		Х		Χ	Х			Х	Х	
SB-RB-W-RD		† · · · · · · · · · · · · · · · · · · ·	X	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х			Х	Х	-
SB-RB-W-RS	1110	<u> </u>	X	X		Х	Х	Х	Х	Х	Х	X	Х	X	Х	Х		Х		Х	Х			Х	Х	\neg
SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 222222 1.00	1114		Х	Х		Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х		Х		Х	Х			X	Х	\neg
SB-RB-W-RL 5.00 SB-RB-W-RA 1.00 222222 1.00	1118		X	Х		Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х		Х		X	Х			x	Х	
222222 1.00			X	Х		Х	Х	Х	Х	Х		X	X	X	Х	Х		Х		Х	Х			X	Х	\neg
222222 1.00	1126													Х	-							-				
ccv 1 no																									_	\neg
			X	X		Х	Х	Х	Х	Х	X	Х	X	Х	Х	Х		Х		Х	Х			Х	Х	\dashv
CCB 1.00			Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X		Х		X	X			Х	X	\dashv
222222 1.00																			-							\dashv
222222 1.00			+									-													\neg	\dashv
222222 1.00			1																-						\neg	\dashv
222222 1.00		1	+														_					_				
ZZZZZZZ 1.00		†					-																		\rightarrow	
CRI 1.00			1	Х			Х	X		Х	X	Х		Х		$\overline{\mathbf{x}}$		Х		Х	Х			X	Х	\dashv
ICSA 1.00			X	X		Х	X	Х	Х	Х	Х	Х	Х	X	Х	X		X		Х	X		_	Х	X	
ICSAB 1.00		<u> </u>	X	X		Х	X	X	Х	X	Х	Х	Х	Х	X	X		X		Х	X			X	X	
ccv 1.00			X	X		X	X	Х	X	Х	X	X	X	X	X	X	_	X		Х	Х			X	X	\dashv
CCB 1.00			X	X		Х	Х	Х	X	X	Х	_	x	X	X	X	$\neg \dagger$	X		Х	X			X	X	-

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Instrument ID Number: $\underline{\text{OPTIMA3}}$ Method: \underline{P}

Start Date: 09/14/2005 End Date: 09/14/2005

EPA															Ar	nal	yt	es										
Sample	D/F	Time	용	R	A	S	A	В	В	С	С	С	С	С	F	Р	М	М	Н	N	K	S	Α	N	Т	V	z	С
No.					L	В	s	Α	E	D	A	0	R	U	E	В	G	N	G	I		E	G	Α	L		N	N
S0	1.00	1340															-	-	-		-			Х				
S1	1.00	1342																						Х				\vdash
ICV	1.00	1345								-													_	X				\vdash
ICB	1.00	1347				!												<u> </u>					_	Х				\vdash
ICSA	1.00	1349	<u> </u>			<u> </u>			 															Х			<u> </u>	
ICSAB	1.00				<u> </u>	_											_					<u> </u>		Х				\vdash
ccv	1.00	1354																					_	Х		-		
ССВ	1.00	1356			1																			Х				
ZZZZZZ	1.00	1359							<u> </u>																			\vdash
22222	1.00	1401							† 																			\vdash
22222	1.00	1403																					-					\vdash
ZZZZZZ	1.00	1406							ļ -						 													
222222	1.00	1408			 																	-						\vdash
ZZZZZZ	5.00	1410															_											<u> </u>
ZZZZZZ	1.00	1413			1																							
ZZZZZZ	5.00	1415						-							 		-											
ZZZZZZ	1.00	1417																										
ZZZZZZ	1.00	1420																										
ccv	1.00	1422	· · · · · · · · · · · · · · · · · · ·									•												Х				
ССВ	1.00	1425													Ι.									X				
ZZZZZZ	1.00	1427			<u> </u>																						_	
ZZZZZZ	5.00	1429																										
222222	1.00	1432															 											
ZZZZZZ	1.00	1434															į											
ZZZZZZ	1.00	1436														_												
ZZZZZZ	1.00	1439																										
ZZZZZZ	1.00	1441	·											<u> </u>	İ													
ICSA	1.00	1443							<u> </u>						-		_							Х				
ICSAB	1.00	1446													1									X				
ccv	1.00	1448	-								-						Ì							Х	-			
ССВ	1.00	1451							<u> </u>							_								Х				
22222	5.00	1453			 			<u> </u>				-											-					
ZZZZZZ	1.00	1455													 											<u> </u>		
ZZZZZZ	1.00	1458				ļ		İ -																	 		<u> </u>	†
ZZZZZZ	1.00	1500			—										†	<u> </u>												

FORM XIII - IN

<u>ILM05.3</u>

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Instrument ID Number: $\underline{\text{OPTIMA3}}$ Method: $\underline{\text{P}}$

Start Date: 09/14/2005

End Date: 09/14/2005

EPA															Aı	nal	yt	es										
Sample	D/F	Time	્ર	R	A	S	A	В	В	C	С	С	С	C	F	Р	М	М	Н	N	K	S	A	N	Т	V	Z	С
No.	2,1	110	Ť	- `	L	В	s	A	E	D	A	0	R	Ü	E	В	G	N	G	I	1	E	G	A	L	•	N	N
110.					, ,	-	-	17	٦		17		1	ľ	"	-	~	1	_	-	İ	-	~	11	_		1	11
222222	1.00	1502			i											_		<u> </u>						-				
ZZZZZZ	1.00	1505																										
ZZZZZZ	1.00	1507					i																					
ZZZZZZ	1.00	1509						5					,															
ZZZZZZ	1.00	1512																ļ				ļ						
ZZZZZZ	1.00	1514								,																		
ccv	1.00	1516																						Х			_	
CCB	1.00	1519																						Х				
22222	1.00	1521												<u> </u>														
ZZZZZZ	1.00	1523														-												
ZZZZZZ	1.00	1526									·																	<u> </u>
ŽZZZZZ	1.00	1528																								·		
ZZZZZZ	1.00	1531					-							i														
ZZZZZZ	1.00	1533																										
ZZZZZZ	1.00	1535																_								_		
ICSA	1.00	1538												i										Х				
ICSAB	1.00	1540																					<u> </u>	X				
ccv	1.00	1542										•												Х				
ССВ	1.00	1545																						Х			ļ	<u> </u>
222322	1.00																											
PBW	1.00										-						-							Х				
LCSW	1.00																							Х				
SB-RB-W-R	1.00																							Х			П	
SB-RB-W-RD	1.00														-									Х				
SB-RB-W-RL	5.00																							Х				
ZZZZZZ	1.00																											
ZZZZZZ	1.00			·····		-																						<u> </u>
ZZZZZZ	1.00														ĺ													
222222	1.00	1608	-							<u> </u>					 	 		<u> </u>										H
ccv	1.00																			_				Х			_	
ССВ	1.00	1613						}										_					-	X				
ZZZZZZ	1.00		-												 	\vdash		 						F-				\vdash
ZZZZZZ	1.00							-							 	·····			<u> </u>									
ZZZZZZ	1.00	1620																 	<u> </u>		-	<u> </u>						
ZZZZZZ	1.00				<u> </u>	1	 																					\vdash

FORM XIII - IN

<u>ILM05.3</u>

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.: SDG No.: MD1004

Instrument ID Number: OPTIMA3

Method: \underline{P}

Start Date: <u>09/14/2005</u>

End Date: 09/14/2005

EPA															Ar	nal	уtе	25										
Sample	D/F	Time	용	R	Α	S	А	В	В	С	С	С	С	С	F	Р	М	М	Н	N	K	S	Α	N	Т	V	Z	С
No.					L	В	s	Ą	Е	D	A	0	R	Ū	E	В	G	N	G	I		E	G	Α	L		N	N
222222	1.00	1625																								-		+
ZZZZZZ	5.00	1627		•																								\top
ZZZZZZ	1.00	1630						-	-												,							1
222222	1.00	1632																										\top
ICSA	1.00	1634																						Х				\top
ICSAB	1.00	1637																						Х		ļ		Τ-
ccv	1.00	1639																			-			Х				\top
CCB	1.00	1641			<u> </u>																			Х				\top

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Instrument ID Number: $\underline{\text{OPTIMA3}}$ Method: $\underline{\text{P}}$

Start Date: 09/14/2005 End Date: 09/14/2005

EPA															Ar	nal	yt	es										
Sample	D/F	Time	용	R	A	S	A	В	В	С	С	Ç	C	С	F	P	M	М	Н	N	K	S	Α	N	Т	V	Z	С
No.					L	В	S	Α	E	D	A	0	R	U	Е	В	G	N	G	I		E	G	Α	L		И	N
so	1.00	1723		•		<u>.</u>															X					<u> </u>		
S1	1.00	1726				_															Х							Т
ICV	1.00	1728													 		 	<u> </u>			Х							1
ICB	1.00	1730																		-	Х							
ICSA	1.00	1733																			Х							
ICSAB	1.00	1735																	!		Х							
ccv	1.00	1738																			Х							
ССВ	1.00	1740																			Х							
ZZZZZZ	1.00	1742																		i								
ZZZZZZ	1.00	1745																										
ZZZZZZ	1.00	1747			<u> </u>																							
ZZZZZZ	1.00	1749																										
ZZZZZZ	1.00	1752								ļ																		
222222	5.00	1754			1		· · · ·																		· ·			
22222	1.00	1756		-																								
ZZZZZZ	5.00	1759																										
22222	1.00	1801						_																				
Z22222	1.00	1803																										
ccv	1.00	1806															İ				Х							
ССВ	1.00	1808																			Х					†		_
22222	1.00	1810														,												
ZZZZZZ	5.00	1813														1												
ZZZZZZ	1.00	1815																								<u> </u>		
22222	1.00	1818																								T		
ZZZZZZ	1.00	1820																										
ZZZZZZ	1.00	1822																										
Z2ZZ2Z	1.00	1825								T	<u> </u>																	<u> </u>
ICSA	1.00	1827																			Х							
ICSAB	1.00	1829			_				1											1	Х							
ccv	1.00	1832									Γ.										Х		ļ					
ССВ	1.00	1834																			Х							
ZZZZZZ	5.00	1836							İ								ľ											
222222	1.00	1839							1											ļ								T
22222	1.00																											
ZZZZZZ	1.00								ļ -																			

FORM XIII - IN

<u>ILM05.3</u>

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No. SAS No.: SDG No.: MD1004

Instrument ID Number: OPTIMA3 Method: P

Start Date: 09/14/2005

End Date: 09/14/2005

EPA				T				,							Aı	nal	yt	e <i>s</i>										
Sample	D/F	Time	% R		A	S	А	В	В	С	С	С	С	С	F	Р	М	М	Н	N	К	S	А	N	T	V	Z	С
No.					L	В	s	A	E	D	A	0	R	U	E	В	G	N	G	I		E	G	A	L		N	N
ZZZZZZ	1.00	1846								Ì	-	i	ļ															Ī
222222	1.00	1848																										
222222	1.00	1850																			-							
ZZZZZZ	1.00	1853													İ													
ZZZZZZ	1.00	1855												;														
22222	1.00	1857		1										į														
ccv	1.00	1900																			Х							П
ССВ	1.00	1902																			Х							
222222	1.00	1905		T	\neg		ļ																					
22222	1.00	1907			\dashv	_																						
ZZZZZZ	1.00	1909																										
22222	1.00	1912			$\neg \uparrow$												<u> </u>	-										<u> </u>
22222	1.00	1914		7	+						<u> </u>						-											_
ZZZZZZ	1.00	1916		\top	寸				1								i											
ZZZZZZ	1.00	1919		1	\dashv												;											
ICSA	1.00	1921		1					T	\vdash	1						1	 			Х			l				
ICSAB	1.00	1923	••••••••••••••••••••••••••••••••••••••	+	- †																Х							 -
ccv	1.00	1926			一											1					Х							
ССВ	1.00	1928		1	1										_						Х				·····			
ZZZZZZ	1.00	1930			_		_		†																			1
PBW	1.00	1933		1	1										_						Х							\vdash
LCSW	1.00	1935			-													_			Х			<u> </u>				
SB-RB-W-R	1.00	1937		+	T	_			\vdash								 	 -			X			_				
SB-RB-W-RD	1.00	1940		\dagger										1							Х							_
SB-RB-W-RL	5.00	1942		+										<u> </u>				1			Х							<u> </u>
ZZZZZZ	1.00	1945		\top	_																							\vdash
ZZZZZZ	1.00	1947													 													+
22222	1.00	1949		-						\vdash						 					 					\vdash		
ZZZZZZ	1.00	1952		\dashv	\dashv		-		 	†	<u> </u>	-	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>		<u> </u>									
ccv	1.00	1954		1																	Х		H					
ССВ	1.00	1956		1	-				 	†	†		 		 		-	 			Х		\vdash					-
222222	1.00	1959	L	+	+				i	<u> </u>			<u> </u>			<u> </u>										-		+
ZZZZZZ	1.00	2001		+	_				1				1										\vdash				\vdash	+
222222	1.00	2003		+				ļ —	 	1	j	-	\vdash	<u> </u>			-	-		<u> </u>						\vdash	\vdash	+
222222	1.00	2006		+	-		-		+	1									-					-			-	+

FORM XIII - IN

ILM05.3

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Instrument ID Number: OPTIMA3

Method: \underline{P}

Start Date: <u>09/14/2005</u>

End Date: 09/14/2005

EPA															Αr	ıal	yte	25			-			•				
Sample	D/F	Time	용	R	А	S	Α	В	В	С	С	С	С	С	F	₽	М	М	Н	N	K	S	A	N	T	V	Z	C
No.					L	В	s	A	E	D	Α	0	R	Ū	Ē	В	G	N	G	Ι		E	G	Α	L		N	N
ZZZZZZ	1.00	2008						ļ																				
ZZZZZZ	5.00	2010		•	T		<u>-</u>	Ι.																			Ī	
ZZZZZZ	1.00	2013	· ·																									
ZZZZZZ	1.00	2015																										
ICSA	1.00	2017		•															Ţ,		Х							
ICSAB	1.00	2020																			Х							
ccv	1.00	2022																			Х							1
CCB	1.00	2025																			Х							

13 ANALYSIS RUN LOG

Lab Name: Mitkem Corporation

Contract: TN 000699.NV26

Lab Code: MITKEM Case No.

SAS No.:

SDG No.: MD1004

Instrument ID Number: OPTIMA3

Method: \underline{P}

Start Date: 09/15/2005

End Date: 09/15/2005

EPA														Ar	nal	yt	es										
Sample	D/F	Time	} 8 R	A	s	A	В	В	Ċ	C	С	С	С	F	Р	М	М	Н	N	K	S	Α	N	Т	v	Z	C
No.				L	В	S	А	Ē	D	A	0	R	ט	E	В	G	N	G	I		E	G	A	L		N	N
so	1.00	0922			-	Х		-			-						<u> </u>			<u></u>				Х			\Box
S1	1.00	0925			T	Х																		Х			
ICV	1.00	0928				Х																		Х		İ	
ICB	1.00	0930				Х																		Х			
CRI	1.00	0934				Х	-																	Х		 	
ICSA	1.00	0937				Х																		Х			
ICSAB	1.00	0940				Х																		Х			
ccv	1.00	0943		Ī	į	Х																		Х			
ССВ	1.00	0946				Х																		Х		 	
PBW	1.00	0956				Х																		Х			
LCSW	1.00	0959				Х																		Х			
SB-RB-W-R	1.00	1002				Х														•				Х			\Box
SB-RB-W-RD	1.00	1005				Χ																		Х			П
SB-RB-W-RS	1.00	1008	-	1		Х				-											-			Х			П
SB-RB-W-RL	5.00	1011		1		X																		Х			П
22222	1.00	1014				İ																					
222222	1.00	1018		1																							
ZZZZZZ	1.00	1021			1																						
ZZZZZZ	1.00	1024																									
ccv	1.00	1027				Х																		Х			
CCB	1.00	1030				X																		Х			
ZZZZZZ	1.00	1033																								i	
ZZZZZZ	1.00	1037																									
ZZZZZZ	1.00	1040																									
ZZZZZZ	1.00	1043		1										Ì													
ZZZZZZ	1.00	1046		<u> </u>	\vdash																						\Box
ZZZZZZ	1.00	1049			T-				-																		
CRI	1.00	1052				Х																		Х			
ICSA	1.00	1055				Х																		Х			
ICSAB	1.00	1059			Г	Х																		X		 I	П
ccv	1.00	1102				Х					<u> </u>			 		l	-							X			\Box
ССВ	1.00	1105				Х																		Х		 	

Instrument Raw Data

- ICP
- ☑ Mercury

Analysis Begun

Start Time: 9/14/05 3:12:11 PM Plasma On Time: 9/14/05 8:25:50 AM

Logged In Analyst: optima2 Technique: ICP Continuous Autosampler Model: AS-91 Spectrometer Model: Optima 3100 XL

Sample Information File: D:\pe\administrator\Sample Information\B-RUN.sif

Results Data Set: A05091404

Results Library: D:\pe\administrator\Results\Results.mdb

Method Loaded

Method Name: B 6010 Method Last Saved: 9/22/03 1:12:22 PM

IEC File: MSF File:

Method Description: Working method

Sequence No.: 1

Sample ID: SO Date Collected: 9/14/05 3:12:11 PM

Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original

Mean Data: SO

Mean Corrected Calib

Intensity Std.Dev. RSD Conc. Units -6533.7 5.45 0.08% [0.00] mg/L Conc. Units Analyte B 249.772

Sequence No.: 2

Sample ID: S1 Date Collected: 9/14/05 3:14:29 PM

Analyst: Sample Wt:

Sample Prep Volume:

Autosampler Location: 9

Autosampler Location: 1

Dilution: Data Type: Original

Mean Data: S1

Mean Corrected

Calib Intensity Std.Dev. RSD 848772.6 6015.07 0.71% Conc. Units [5.0] mg/L Analyte B 249.772

Sequence No.: 3

Sample ID: S2 Date Collected: 9/14/05 3:16:48 PM

Analyst: Sample Wt:

Sample Prep Volume:

Autosampler Location: 10

Dilution: Data Type: Original

Mean Data: S2

Mean Corrected Calib

Intensity Std.Dev. RSD 432478.5 1718.69 0.40% Conc. Units Analyte B 249.772 [2.5] mg/L

Sequence No.: 4 Sample ID: S3

Autosampler Location: 11

Date Collected: 9/14/05 3:19:06 PM

Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original

Mean Data: S3

Mean Corrected Calib

Intensity Std.Dev. RSD Analyte Conc. Units B 249.772 91482.4 192.53 0.21% [0.5] mg/L

Method: B 6010 Page Date: 9/14/05 3:33:09 PM

Calibration Summary

B 249.772 Stds. Intercept Slope Equation Curvature Corr. Coef. Reslope Lin Thru 0 0.0 170500 0.00000 0.999950

Sequence No.: 5 Autosampler Location: 9

Sample ID: CHECK Date Collected: 9/14/05 3:21:24 PM

Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original

Mean Data: CHECK

Mean Corrected Calib Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 860093.1
 5.0445 mg/L
 0.02466
 5.0445 mg/L
 Analyte Conc. Units RSD Std.Dev. B 249.772 0.02466 0.49%

Sequence No.: 6

Autosampler Location: 3 Sample ID: ICV Date Collected: 9/14/05 3:23:44 PM

Analyst:

Sample Wt: Sample Prep Volume: Dilution: Data Type: Original

Mean Data: ICV

Sample

Mean Corrected Conc. Units Std.Dev. Intensity Conc. Units 418594.6 2.4551 mg/L Conc. Units Analyte Std.Dev. RSD B 249.772 0.05270 2.4551 mg/L 0.05270 2.15%

Sequence No.: 7

Autosampler Location: 4 Sample ID: ICB Date Collected: 9/14/05 3:26:04 PM

Analyst: Sample Wt: Dilution:

Sample Prep Volume:

Data Type: Original

Mean Data: ICB

Calib Mean Corrected Sample Conc. Units Analyte

Intensity Conc. Units 9349.9 0.0548 mg/L
 Std.Dev.
 Conc. Units

 0.00104
 0.0548 mg/L
 Std.Dev. RSD B 249.772 0.00104 1.90%

Autosampler Location: 5

Sequence No.: 8

Sample ID: ICSA Date Collected: 9/14/05 3:28:25 PM

Analyst: Sample Wt:

Sample Prep Volume:

Dilution: Data Type: Original

Mean Data: ICSA

Mean Corrected Calib Sample

Conc. Units Conc. Units Intensity Conc. Units 33568.0 0.1969 mg/L Analyte Std.Dev. Std.Dev. RSD 0.00137 0.1969 mg/L B 249.772 0.00137 0.69%

Autosampler Location: 6

Sequence No.: 9

Sample ID: ICSAB Date Collected: 9/14/05 3:30:46 PM

Analyst:

Sample Wt: Sample Prep Volume:

Dilution: Data Type: Original

Mean Data: ICSAB

Mean Corrected Calib Sample Conc. Units Analyte Intensity Std.Dev. Conc. Units Std.Dev. RSD B 249.772 32183.9 $0.1888 \, \text{mg/L}$ 0.00114 0.1888 mg/L 0.00114 0.61%

00440

Method: B 6010 Page Date: 9/14/05 3:45:50 PM

Sequence No.: 10

Sample ID: CCV

Analyst: Sample Wt: Dilution:

Autosampler Location: 3

Date Collected: 9/14/05 3:33:08 PM

Sample Prep Volume: Data Type: Original

Mean Data: CCV

B 249.772

Mean Corrected

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 413741.2
 2.4266 mg/L
 0.00174
 2.4266 mg/L

Conc. Units Std. Dev.

Sample

RSD 0.07%

Calib

Sequence No.: 11

Sample ID: CCB **Analyst:**

Sample Wt: Dilution:

Analyte

Autosampler Location: 4

Date Collected: 9/14/05 3:35:29 PM

Sample Prep Volume: Data Type: Original

Mean Data: CCB

Mean Corrected

Intensity Conc. Units Std.Dev. Conc. Units 7021.6 0.0412 mg/L 0.00098 0.0412 mg/L Analyte B 249.772

Calib

Conc. Units Std.Dev. 0.0412 mg/L 0.00098

Sample

RSD 2.37%

Sequence No.: 12

Sample ID: MB-19953,19953

Analyst:

Sample Wt: Dilution:

Autosampler Location: 40

Date Collected: 9/14/05 3:37:50 PM

Sample Prep Volume: Data Type: Original

Mean Data: MB-19953,19953

Mean CorrectedCalibSampleIntensityConc. UnitsStd.Dev.Conc. Units6090.30.0357 mg/L0.000630.0357 mg/L Analyte B 249.772

Std.Dev. RSD 0.00063 1.77%

Sequence No.: 13

Sample ID: LCS-19953,19953

Analyst: Sample Wt:

Dilution:

Autosampler Location: 41

Date Collected: 9/14/05 3:40:05 PM

Sample Prep Volume: Data Type: Original

Mean Data: LCS-19953,19953

 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 B 249.772
 423429.8
 2.4834 mg/L
 0.01476
 2.4834 mg/L
 0.01476

RSD 0.59%

Sequence No.: 14 Autosampler Location: 42

Sample ID: D1004-01D,19953

Analvst: Sample Wt: Dilution:

Date Collected: 9/14/05 3:42:23 PM

Sample Prep Volume: Data Type: Original

Mean Data: D1004-01D,19953

 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 B 249.772
 7500.7
 0.0440 mg/L
 0.00065
 0.0440 mg/L

Std.Dev. RSD 0.00065 1.48%

Sequence No.: 15

Sample ID: D1004-01DDUP,19953

Analyst: Sample Wt: Dilution:

Autosampler Location: 43

Date Collected: 9/14/05 3:44:40 PM

Sample Prep Volume: Data Type: Original

Mean Data: D1004-01DDUP,19953 Mean Corrected Calib Sample Intensity Conc. Units Conc. Units Analvte Std.Dev. Std.Dev. RSD B 249.772 5394.9 0.0316 mg/L 0.00017 0.0316 mg/L 0.00017 0.53% _______ Sequence No.: 16 Autosampler Location: 44 Sample ID: D1004-01DMS, 19953 Date Collected: 9/14/05 3:46:57 PM Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: D1004-01DMS,19953 Mean Corrected Calib Sample Intensity Analyte Conc. Units Std.Dev. Conc. Units Std.Dev. RSD B 249.772 415226.7 2.4353 mg/L 0.02927 2.4353 mg/L 0.02927 1.20% Sequence No.: 17 Autosampler Location: 45 Sample ID: D1004-01DSD,19953 Date Collected: 9/14/05 3:49:16 PM Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: D1004-01DSD,19953 Mean Corrected Calib Sample Intensity Conc. Units Analyte Conc. Units Std.Dev. Std.Dev. RSD 0.0387 mg/L B 249.772 0.0387 mg/L 6602.4 0.00173 0.00173 4.47% MB-19935, 19953 9/14/05 our Sequence No.: 18 Autosampler Location: 47 Sample ID: MB-19935,19935 Date Collected: 9/14/05 3:51:35 PM Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: MB-19935,19935 Mean Corrected Calib Sample Conc. Units Analyte Intensity Std.Dev. Conc. Units Std.Dev. RSD 0.00000 $0.0343 \, \text{mg/L}$ B 249.772 5844.9 0.0343 mg/L 0.00000 0.01% Sequence No.: 19 Autosampler Location: 48 Sample ID: D1045-02C,19953 Date Collected: 9/14/05 3:53:54 PM Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original _____ Mean Data: D1045-02C,19953 Mean Corrected Calib Sample Conc. Units Intensity Std.Dev. Analyte Conc. Units Std.Dev. RSD 0.0930 mg/L B 249.772 15852.4 0.00084 0.0930 mg/L 0.00084 0.91% Sequence No.: 20 Autosampler Location: 49 Ow Sample ID: D1045-03C, 19953 Date Collected: 9/14/05 3:56:14 PM 9/14/05 Analvst: D1045-04F, 19953 Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: D1045-03C,19953 Mean Corrected Calib Sample Conc. Units Intensity Conc. Units Analyte Std.Dev. Std.Dev. RSD B 249.772 78833.7 0.4624 mg/L 0.00030 0.4624 mg/L 0.00030 0.06%

DIO45-05F, 19953 Dw 9/4/05 Sequence No.: 21 Autosampler Location: 50 Sample ID: D1045-04F,19953-Date Collected: 9/14/05 3:58:35 PM Analyst: Sample Prep Volume: Sample Wt: Dilution: Data Type: Original Mean Data: D1045-04F,19953 Mean Corrected Calib Sample Conc. Units Std.Dev. Conc. Units Analyte Intensity Std.Dev. RSD B 249.772 78279.8 0.4591 mg/L 0.00028 0.4591 mg/L0.00028 0.06% Sequence No.: 22 Autosampler Location: 3 Date Collected: 9/14/05 4:00:56 PM Sample ID: CCV Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: CCV Mean Corrected Calib Sample Analyte Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 2.4352 mg/L B 249.772 415213.4 2.4352 mg/L 0.03242 0.03242 1.33% _______ Sequence No.: 23 Autosampler Location: 4 Sample ID: CCB Date Collected: 9/14/05 4:03:16 PM Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: CCB Mean Corrected Calib Sample Conc. Units Std.Dev. Conc. Units RSD Analyte Intensity Std.Dev. 0.0360 mg/L 0.00084 B 249.772 6136.2 0.00084 0.0360 mg/L 2.32% _____ Sequence No.: 24 Autosampler Location: 51 D1045-06F, 19953, DW 9/4/05 Sample ID: D1045-05F,19953 Date Collected: 9/14/05 4:05:37 PM Analyst: Sample Prep Volume: Sample Wt: Dilution: Data Type: Original Mean Data: D1045-05F,19953 Mean Corrected Calib Sample Intensity Conc. Units Analyte Std.Dev. Conc. Units Std.Dev. RSD 0.0506 mg/LB 249:772 8630.8 0.00201 0.0506 mg/L0.00201 3.96% Sequence No.: 25 Autosampler Location: 52 DW 9/14/05 Sample ID: D1045-06F,19953 Date Collected: 9/14/05 4:07:58 PM D1045-07F/19953 Analyst: Sample Wt: Sample Prep Volume: Dilution: Data Type: Original Mean Data: D1045-06F,19953 Mean Corrected Calib Sample Conc. Units Conc. Units RSD Analyte Intensity Std.Dev. Std.Dev. B 249.772 85624.7 0.5022 mg/L 0.00034 0.5022 mg/L 0.00034 0.07% Sequence No.: 26 Autosampler Location: 53

Sample ID: D1045-07F,19953

Analyst: Sample Wt: Dilution:

Date Collected: 9/14/05 4:10:20 FM

Sample Prep Volume: Data Type: Original

Method: B 6010		P	age 6		Date: 9	/14/05 4:23	:10 PM
	D1045	5-08F, 19953	Dw 9/1	4105			
Mean Data: D1045	-077.19953						
	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RŞD
B 249.772	11125.2	0.0652 mg/L	0.00025	0.0652	mg/L	0.00025	0.38
			Autosampler Lo	cation: 5	 4		
Sample ID: D1045	-08 F 19953	Ow, _	Date Collected	: 9/14/05	4:12:43	PM	
Analyst:		20-2 9/14/05					
Sample Wt:	1	7737	Sample Frep Vo.				
Dilution:	D1045-41.	9953 9/14/05	Data Type: Ori	ginal			
Mean Data: D1045							
/	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
B 249.772	6776.2	0.0397 mg/L	0.00061	0.0397	mg/L	0.00061	1.53
	/		Autosampler Lo				
Sample ID: D1045	-0 % F,19953	8-W	Date Collected	: 9/14/05	4:15:05	PM	
Analyst:		= m//	,				
Sample Wt:	D1045-1141	19952 7/4/05	Sample Prep Vo.	lume:			
Dilution: /	D1045~117	•	Data Type: Ori	ginal			
/	·						
							
Mean Data: D1045.	-09F,19953						
•	Mean Corrected	Calib			Sample		
Analyte	Intensity	Conc. Units	Std.Dev.		Units	Std.Dev.	RSD
B 249.772	6492.2	0.0381 mg/L	0.00071	0.0381	mg/L	0.00071	1.869
Sequence No.: 29	i		Autosampler Lo	cation: 5	 6		
Sample ID: D1045	-1141,19953	3	Date Collected			PM	
Analyst:		D1995)					
Sample Wt:	-114,19953 Dio45-1145		Sample Prep Vo.	lume:			
Dilution:	/ //	0-W.	Data Type: Orig	ginal			
<i>-</i>	/ 	9/14/05					
Mean Data: D1045-	-11H,19953	Calib			C1-		
Analyte	Mean Corrected	Conc. Units	Std.Dev.	Conc	Sample Units	Std.Dev.	RSD
B 249.772	Intensity 3215.4	0.0189 mg/L	0.00054	0.0189		0.00054	2.88
		•			-	0.00004	2.001
Sequence No.: 30	====== ==============================		Autosampler Lo				
Sample ID: ICSA			Date Collected		4.10.2F	DM	
Analyst:			Pare COTTERCORD	. 3/14/03	~.±3:33	ELA	
Sample Wt:			Sample Prep Vo.	luma.	•		
Dilution:			Data Type: Orio				
				arnar			
Mean Data: ICSA	· · ·						
2 m n 2 nah s	Mean Corrected	Calib	AL 3 -	_	Sample	a	
Analyte	Intensity	Conc. Units	Std.Dev.		Units	Std.Dev.	RSD
B 249.772		0.1712 mg/L	0.00194		mg/L	0.00194	1.139
sequence No.: 31			Autosampler Lo				
	1		Date Collected	: 9/14/05	4:21:57	PM	
Sample ID: ICSAB							

Sample Wt: Dilution:

Sample Prep Volume: Data Type: Original

Mean Data: ICSAB

Analyte B 249.772

Mean Corrected
Intensity
29344.7

Conc. Units
0.1721 mg/L Mean Corrected

Std.Dev. 0.00106

Sample Conc. Units 0.1721 mg/L

Std.Dev. 0.00106

RSD 60444 Method: B 6010

Page

Date: 9/14/05 4:28:00 PM

Sequence No.: 32

Sample ID: CCV

Analyst: Sample Wt: Dilution:

Analyte B 249.772 Autosampler Location: 3

Date Collected: 9/14/05 4:24:20 PM

Sample Prep Volume: Data Type: Original

Mean Data: CCV

Mean Corrected

Intensity Conc. Units 414511.9 2.4311 mg/L

Calib

 Std.Dev.
 Conc. Units

 0.01276
 2.4311 mg/L

Sample Conc. Units

Std Dev. 0.01276

0.52%

_____ Sequence No.: 33

Sample ID: CCB Analyst: Sample Wt: Dilution:

Autosampler Location: 4

Date Collected: 9/14/05 4:26:40 PM

Sample Prep Volume: Data Type: Original

Mean Data: CCB

B 249.772

Mean Corrected Analyte

Calib Intensity Conc. Units
4830.0 0.0283 mg/L

Sample
 Std.Dev.
 Conc. Units
 Std.Dev.

 0.00014
 0.0283 mg/L
 0.00014

RSD 0.51%

Reprocessing Begun

Logged In Analyst: optima2 Technique: ICP Continuous

Results Data Set (original): A05091403

Results Library (original): D:\pe\administrator\Results\Results.mdb

Results Data Set (reprocessed): A05091403B

Results Library (reprocessed): D:\pe\administrator\Results\Results.mdb

Sequence No.: 1 Sample ID: SO Analyst: Autosampler Location: 1
Date Collected: 9/14/05 10:20:31 AM

_

Sample Wt: Sample Prep Volume:
Dilution: Data Type: Reprocessed on 9/14/05 6:38:31 PM,

Mean Corrected Calib Conc. Units Intensity Std.Dev. RSD Analyte -8653.3 56.19 0.65% [0.00] mq/LAg 328.068 [0.00] mg/LAl 308.215 15771.7 33.62 0.21% 1.84 1.96% 6.89 5.24% 16.41 2.06% 5.27 4.97% -93.8 [0.00] mg/LAs 188.979 131.5 [0.00] mg/L Ba 233.527 [0.00] mg/L -795.1 Be 313.107 -106.0 [0.00] mg/L Co 228.616 1.93 0.07% [0.00] mg/L 2911.2 Cr 267.716 85.34 0.69% [0.00] mg/L12303.0 Cu 324.752 9.37 0.34% 72.33 0.40% 14.16 0.58% -2780.0[0.00] mg/L Fe 273.955 Mg 279.077 [0.00] mg/L-18245.6 [0.00] mg/L -2440.8 Mn 257.610 7.12 6.08% [0.00] mg/L -117.0Ni 231.604 -91.2 5.36 5.87% [0.00] mg/LPb 220.353 [0.00] mg/L 0.98 0.40% Sb 205.836 246.8 1.25 0.95% 0.18 0.38% 131.9 [0.00] mg/L Se 196.026 [0.00] mg/LTl 190.801 48.4 50.71 8.74% [0.00] mg/L 580.2 V 292.402 9.08 2.85% -319.0 [0.00] mg/LZn 206.200 213.83 37.44% [0.00] mg/L -571.1 Na 330.237 [0.00] mg/L 7.71 5.74% Cd 226.502 -134.3 90.84 6.30% [0.00] mg/L 1441.2 Ti 334.940 90.84 6.30% 5.42 0.19% [0.00] mg/L Ca 227.546 -2921.8

Sequence No.: 2 Sample ID: S1 Analyst: Sample Wt:

Autosampler Location: 2

Date Collected: 9/14/05 10:24:35 AM

Sample Prep Volume:

Dilution: Data Type: Reprocessed on 9/14/05 6:38:32 PM,

Mean Data: S1					
	Mean Corrected				Calib
Analyte	Intensity	Std.Dev.	RSD		Units
Ag 328.068	1116573.3	5009.21	0.45%	[2.5]	mg/L
Al 308.215	793834.8	2051.91	0.26%	[20]	mg/L
As 188.979	884.3	4.73	0.54%	[1]	mg/L
Ba 233.527	1512369.4	4898.42	0.32%	[20]	mg/L
Be 313.107	3330559.7	50058.95	1.50%	[0.5]	mg/L
Co 228.616	112690.9	281.11	0.25%	[5]	mg/L
Cr 267.716	372271.8	1598.11	0.43%	[2]	mg/L
Cu 324.752	930341.5	2394.79	0.26%	[2.5]	mg/L
Fe 273.955	423109.5	986.64	0.23%	[10]	mg/L
Mg 279.077	2033014.1	7212.02	0.35%	[50]	mg/L
Mn 257,610	2791161.0	22345.86	0.80%	[5]	mg/L
Ni 231.604	336278.3	1054.75	0.31%	[5]	mg/L
Pb 220.353	9762.0	26.17	0.27%	[1]	mg/L
Sb 206.836	1634.9	28.90	1.77%	[1]	mg/L
Se 196.026	1451.8	0.04	0.00%	[1]	mg/L
Tl 190.801	816.4	5.71	0.70%	[1]	mg/L

Method: CLP	·		Page	2		Date:	9/14/05	6:38:34	PM
V 292.402 Zn 206.200 Na 330.237 Cd 226.502 Ti 334.940 Ca 227.546	1536283.5 199336.8 98056.1 75770.8 1404242.4 16384.6	3831.04 729.21 229.43 122.22 5160.19 14.63	0.25% 0.37% 0.23% 0.16% 0.37% 0.09%	[5] [50] [0.5] [1]	mg/L mg/L mg/L mg/L mg/L				

Analyte	Stds.	Equation	Intercept	Slope	Curvature	Corr. Coef.	Reslope
Ag 328.068	3 cas.	Lin Thru 0	0.0	446600	0.00000	1.000000	
A1 308.215	1	Lin Thru 0	0.0	39690	0.00000	1.000000	
As 188.979	1	Lin Thru 0	0.0	884.3	0.00000	1.000000	
Ba 233.527	1	Lin Thru 0	0.0	75620	0.00000	1.000000	
	, T	Lin Thru 0	0.0	6661000	0.00000	1.000000	
Be 313.107	1	Lin Thru 0	0.0	22540	0.00000	1.000000	
Co 228.616	1		0.0	186100	0.00000	1.000000	
Cr 267.716		Lin Thru 0	0.0	372100	0.00000	1.000000	
Cu 324.752	Ţ	Lin Thru 0	0.0	42310	0.00000	1.000000	
Fe 273.955	1	Lin Thru 0		40660	0.00000	1.000000	
Mg 279.077	1	Lin Thru 0	0.0		0.00000	1.000000	
Mn 257.610	1	Lin Thru 0	0.0	558200		1.000000	
Ni 231.604	1	Lin Thru 0	0.0	67260	0.00000		
Pb 220.353	1	Lin Thru O	0.0	9762	0.00000	1.000000	
sb 206.836	1	Lin Thru 0	0.0	1635	0.00000	1.000000	
Se 196.026	1	Lin Thru 0	0.0	1452	0.00000	1.000000	
Tl 190.801	1	Lin Thru 0	0.0	816.4	0.00000	1.000000	
V 292.402	1	Lin Thru 0	0.0	307300	0.00000	1.000000	
Zn 206.200	ī	Lin Thru 0	0.0	39870	0.00000	1.000000	
Na 330.237	1	Lin Thru 0	0.0	1961	0.00000	1.000000	
Cd 226.502	1	Lin Thru 0	0.0	151500	0.00000	1.000000	
Ti 334.940	1	Lin Thru 0	0.0	1404000	0.00000	1.000000	
TT 334.740	#	73-77 TIT-A A	0.0				

0.0

Lin Thru 0

Lin Thru 0

1

Sequence No.: 3 Sample ID: ICV Analyst: Sample Wt:

Ti 334.940

Ca 227.546

Dilution:

Calibration Summary

Autosampler Location: 9 Date Collected: 9/14/05 10:28:51 AM

0.00000

1.000000

Sample Prep Volume:

327.7

Data Type: Reprocessed on 9/14/05 6:38:33 PM,

Mean Data: ICV	se downsaled	Calib		Sample		
	Mean Corrected	Conc. Units	Std.Dev.	Conc. Units	Std.Dev.	RSD
Analyte	Intensity 889666.6	1.9939 mg/L	0.66138	1.9939 mg/L	0.66138	33.17%
Ag 328.068		14.775 mg/L	0.1701	14.775 mg/L	0.1701	1.15%
Al 308.215	589224.8	0.7783 mg/L	0.00328	0.7783 mg/L	0.00328	0.42%
As 188.979	675.5	15.332 mg/L	0.1472	15.332 mg/L	0.1472	0.96%
Ba 233.527	1159676.1		0.00728	0.3859 mg/L	0.00728	1.89%
Be 313.107	2570292.3	0.3859 mg/L	0.05062	3.7747 mg/L	0.05062	1.34%
Co 228.616	85089.2	3.7747 mg/L	0.02340	1.5024 mg/L	0.02340	1.56%
Cr 267.716	280129.1	1.5024 mg/L	0.02340	1.8685 mg/L	0.03102	1.66%
Cu 324.752	696067.6	1.8685 mg/L		7.3885 mg/L	0.08818	1.19%
Fe 273.955	321993.7	7.3885 mg/L	0.08818	37.519 mg/L	0.4166	1.11%
Mg 279.077	1522432.0	37.519 mg/L	0.4166	•	0.04781	1.26%
Mn 257.610	2121163.2	3.8023 mg/L	0.04781	3.8023 mg/L	0.04669	1.24%
Ni 231.604	253496.3	3.7675 mg/L	0.04669	3.7675 mg/L	0.00044	0.06%
Pb 220.353	7436.0	0.7665 mg/L	0.00044	0.7665 mg/L		0.00%
Sb 206.836	1297.9	0.7816 mg/L	0.00084	0.7816 mg/L	0.00084	0.11%
Se 196.026	1103.1	0.7529 mg/L	0.00011	0.7529 mg/L	0.00011	
T1 190.801	622.9	0.7558 mg/L	0.01058	0.7558 mg/L	0.01058	1.40%
V 292.402	1156511.3	3.7669 mg/L	0.02947	3.7669 mg/L	0.02947	0.78%
Zn 206.200	151053.9	3.7895 mg/L	0.02725	3.7895 mg/L	0.02725	0.72%
Na 330.237	72029.5	36.735 mg/L	0.7286	36.735 mg/L	0.7286	1.98%
Cd 226.502	57023.5	0.3770 mg/L	0.00222	$0.3770~\mathrm{mg/L}$	0.00222	0.59%
Ti 334.940	1411.6	0.0022 mg/L	0.00008	0.0022 mg/L	0.00008	3.42%
Ca 227.546	12665.5	38.242 mg/L	0.0643	38.242 mg/L	0.0643	0.17%

Sequence No.: 4 Sample ID: ICB

Autosampler Location: 4 Date Collected: 9/14/05 10:39:54 AM Analyst: Sample Wt: Dilution:

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:34 PM,

Mean Data: ICB							
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Ag 328.068	1615.8	0.0036	mg/L	0.00092	0.0036	mg/L	0.00092 25.44%
Al 308.215	13.4	0.0003	mg/L	0.00393	0.0003	mg/L	0.00393 >999.9%
As 188.979	-2.0	-0.0022	mg/L	0.00281	-0.0022	mg/L	0.00281 125.51%
Ba 233.527	24.3	0.0003	mg/L	0.00007	0.0003	mg/L	0.00007 20.47%
Be 313.107	210.8	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 37.12%
Co 228.616	3.3	0.0001	mg/L	0.00010	0.0001	mg/L	0.00010 69.29%
Cr 267.716	13.4	0.0001	mg/L	0.00015	0.0001	mg/L	0.00015 207.30%
Cu 324.752	425.8	0.0011	mg/L	0.00061	0.0011	mg/L	. 0.00061 53,11%
Fe 273.955	44.9	0.0011	mg/L	0.00047	0.0011	mg/L	0.00047 44.52%
Mg 279.077	-19.4	-0.0005	mg/L	0.00495	-0.0005	mg/L	0.00495 >999.9%
Mn 257.610	54.5	0.0001	mg/L	0.00003	0.0001	mg/L	0.00003 27.20%
Ni 231.604	10.2	0.0002	mg/L	0.00001	0.0002	mg/L	0.00001 8.66%
Pb 220.353	-1.7	-0.0002	mg/L	0.00016	-0.0002	mg/L	0.00016 87.63%
Sb 206.836	-0.9	-0.0006	mg/L	0.00099	-0.0006	mg/L	0.00099 177.66%
Se 196.026	-2.6	-0.0018	mg/L	0.00385	-0.0018	mg/L	0.00385 212.87%
T1 190.801	-3.4	-0.0041	mg/L	0.00047	-0.0041	mg/L	0.00047 11.33%
V 292.402	-11.8	0.0000	mg/L	0.00010	0.0000	mg/L	0.00010 257.34%
Zn 206.200	12.6	0.0003	mg/L	0.00013	0.0003	mg/L	0.00013 40.68%
Na 330.237	-173.2	-0.0883	mg/L	0.17598	-0.0883		0.17598 199.40%
Cd 226.502	5.4	0.0000	mg/L	0.00003	0.0000	-	0.00003 93.34%
Ti 334.940	61.4	0.0000	mg/L	0.00010	0.0000	mg/L	0.00010 225.70%
Ca 227.546	-13.7	-0.0417	mg/L	0.02203	-0.0417	mg/L	0.02203 52.79%

Sequence No.: 5 Sample ID: CRI

Analyst: Sample Wt: Dilution: Autosampler Location: 7

Date Collected: 9/14/05 10:44:03 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:35 PM,

Mean Data: CRI	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	5657.1	0.0123		0.00045	0.0123	mg/L	0.00045	3.61%
Al 308.215	8376.1	0.2102	-	0.00330	0.2102	-	0.00330	1.57%
As 188.979	8.7	0.0100		0.00253	0.0100	-	0.00253	25.32%
Ba 233.527	16602.1	0.2194		0.00012	0.2194	•	0.00012	0.06%
Be 313.107	34242.4	0.0051	-	0.00002	0.0051	_	0.00002	0.33%
Co 228.616	1215.5	0.0539	-	0.00003	0.0539	•	0.00003	0.06%
Cr 267.716	1933.1	0.0104	-	0.00033	0.0104	-	0.00033	3.21%
Cu 324.752	9694.3	0.0260	-	0.00026	0.0260	- ·	0.00026	1.00%
Fe 273.955	4614.1	0.1060	_	0.00045	0.1060	-	0.00045	0.43%
Mg 279.077	209814.8	5.1606	-	0.00149	5.1606	-	0.00149	0.03%
Mn 257.610	9413.9	0.0168	-	0.00002	0.0168	-	0.00002	0.10%
Ni 231.604	2860.1	0.0425	-	0.00010	0.0425	-	0.00010	0.23%
Pb 220.353	107.4	0.0111	-	0.00040	0.0111	-	0.00040	3.64%
Sb 206.836	99.0	0.0604	_	0.00143	0.0604	_	0.00143	2.36%
Se 196.026	5 5.4	0.0382	-	0.00276	0.0382	-	0.00276	7.21%
T1 190.801	21.6	0.0263	-	0.00174	0.0263		0.00174	6.63%
V 292.402	16047.5	0.0523	-	0.00015	0.0523	-	0.00015	0.29%
Zn 206.200	2988.3	0.0748		0.00002	0.0748	_	0.00002	0.03%
	8453.4	4.3081	-	0.18161	4.3081		0.18161	4.22%
Na 330.237 Cd 226.502	795.7	0.0053	-	0.00006	0.0053	-	0.00006	1.21%
Ti 334.940	229.0	0.0003	-	0.00003	0.0003	_	0.00003	8.72%
Ca 227.546	1597.2	4.8687	_	0.04539	4.8687	•	0.04539	0.93%

Sequence No.: 6
Sample ID: ICSA

Analyst: Sample Wt: Dilution: Autosampler Location: 5

Date Collected: 9/14/05 10:48:13 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:36 PM,

Mean Data: ICSA								
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
Ag 328.068	-12121.1	-0.0024	mg/L	0.00117	-0.0024	mg/L	0.00117	48.26%
Al 308.215	19034840.7	479.57	mg/L	4.220	479.57	mg/L	4.220	0.88%
As 188.979	-218.3	-0.0054	mg/L	0.01027	-0.0054	mg/L	0.01027	189.07%
Ba 233.527	1234.3	-0.0170	mg/L	0.00073	-0.0170	mg/L	0.00073	4.30%
Be 313.107	-109.6	0.0000	mg/L	0.00000	0.0000	mg/L	0.00000	7.95%
Co 228.616	-226.3	-0.0144	mg/L	0.00049	-0.0144	mg/L	0.00049	3.39%
Cr 267.716	1311.1	0.0071	mg/L	0.00007	0.0071	mg/L	0.00007	0.98%
Cu 324.752	-9951.6	-0.0094	mg/L	0.00026	-0.0094	mg/L	0.00026	2.81%
Fe 273.955	7443804.3	175.93	mg/L	0.288	175.93	mg/L	0.288	0.16%
Mg 279.077	19070277.8	469.07	mg/L	3.573	469.07	mg/L	3.573	0.76%
Mn 257.610	-9155.2	-0.0009	mg/L	0.00069	-0.0009	mg/L	0.00069	77.33%
Ni 231.604	219.4	-0.0054	mg/L	0.00001	-0.0054	mg/L	0.00001	0.16%
Pb 220.353	-482.7	0.0030	mg/L	0.00048	0.0030	mg/L	0.00048	16.11%
Sb 206.836	510.4	0.0419	mg/L	0.00736	0.0419	mg/L	0.00736	17.57%
Se 196.026	173.1	-0.0198	mg/L	0.01647	-0.0198	mg/L	0.01647	83.11%
Tl 190.801	120.0	0.0073	mg/L	0.00509	0.0073	mg/L	0.00509	69.39%
V 292.402	528.9	0.0051	mg/L	0.00020	0.0051	mg/L	0.00020	3.91%
Zn 206.200	800.7	-0.0139	mg/L	0.00030	-0.0139	mg/L	0.00030	2.13%
Na 330.237	-676.3	-0.5246	mg/L	0.20803	-0.5246	mg/L	0.20803	39.65%
Cd 226.502	39.0	-0.0025	mg/L	0.00022	-0.0025	mg/L	0.00022	8.90%
Ti 334.940	-15674.2	0.0072	mg/L	0.00015	0.0072	mg/L	0.00015	2.05%
Ca 227.546	165222.5	502.18	mg/L	2.155	502.18	mg/L	2.155	0.43%

Sample ID: ICSAB

Analyst: Sample Wt: Dilution: Autosampler Location: 6

Date Collected: 9/14/05 10:50:58 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:36 PM,

Mean Data: ICSAB						•		
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	
Ag 328.068	79330.7	0.2028	mg/L	0.00024	0.2028	_	0.00024	0.12%
Al 308.215	18747137.7	472.31	mg/L	2.030	472.31		2.030	0.43%
As 188.979	-134.9	0.0874	mg/L	0.01538	0.0874	mg/L	0.01538	17.60%
Ba 233.527	37616.2	0.4646	mg/L	0.00640	0.4646	mg/L	0.00640	1.38%
Be 313.107	3145548.5	0.4722	mg/L	0.00063	0.4722	mg/L	0.00063	0.13%
Co 228.616	9562.7	0.4199	mg/L	0.00605	0.4199	mg/L	0.00605	1.44%
Cr 267.716	84421.4	0.4531	mg/L	0.00190	0.4531	mg/L	0.00190	0.42%
Cu 324.752	164287.3	0.4578	mg/L	0.00201	0.4578	mg/L	0.00201	0.44%
Fe 273.955	7279073.9	172.01	mg/L	0.575	172.01	mg/L	0.575	0.33%
Mg 279.077	18767376.1	461.63	mg/L	1.680	461.63	mg/L	1.680	0.36%
Mn 257.610	248466.2	0.4600	mg/L	0.00232	0.4600	mg/L	0.00232	0.50%
Ni 231.604	58729.3	0.8646	mg/L	0.00480	0.8646	mg/L	0.00480	0.56%
Pb 220.353	14.6	0.0538	mg/L	0.00042	0.0538	mg/L	0.00042	0.78%
sb 206.836	1304.0	0.5296	mg/L	0.00389	0.5296	mg/L	0.00389	0.73%
Se 196.026	284.3	0.0580	mg/L	0.00984	0.0580	mg/L	0.00984	16.96%
Tl 190.801	190.8	0.0957	mg/L	0.03484	0.0957	mg/L	0.03484	36.41%
V 292.402	145084.6	0.4762	mg/L	0.00162	0.4762	mg/L	0.00162	0.34%
Zn 206.200	35064.2	0.8472	mg/L	0.00967	0.8472	mg/L	0.00967	1.14%
Na 330.237	348.0	0.0068	mg/L	0.06326	0.0068	mg/L	0.06326	929.93%
Cd 226.502	136206.2	0.8964	mg/L	0.00416	0.8964	mg/L	0.00416	0.46%
Ti 334.940	-15077.4	0.0071	mg/L	0.00015	0.0071	mg/L	0.00015	2.10%
Ca 227.546	161122.7	489.66	mg/L	1.324	489.66	mg/L	1.324	0.27%

Sequence No.: 8 Sample ID: CCV

Analyst: Sample Wt: Dilution: Autosampler Location: 3
Date Collected: 9/14/05 10:53:48 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:37 PM,

Mean Data: CCV

Method: CLP Page 5 Date: 9/14/05 6:38:39 PM

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	580680.9	1.3015	mg/L	0.00475	1.3015	mg/L	0.00475	0.36%
Al 308.215	393827.5	9.8749	mg/L	0.05723	9.8749	mg/L	0.05723	0.58%
As 188.979	458.8	0.5285	mg/L	0.00899	0.5285	mg/L	0.00899	1.70%
Ba 233.527	792916.2	10.483	mg/L	0.0300	10.483	mg/L	0.0300	0.29%
Be 313.107	1724455.2	0.2589	mg/L	0.00058	0.2589	mg/L	0.00058	0.22%
Co 228.616	57761.6	2.5624	mg/L	0.01136	2.5624	mg/L	0.01136	0.44%
Cr 267.716	187400.0	1.0051	mg/L	0.00187	1.0051	mg/L	0.00187	0.19%
Cu 324.752	467834.6	1.2558	mg/L	0.00883	1.2558	mg/L	0.00883	0.70%
Fe 273.955	218572.5	5.0156	mg/L	0.03150	5.0156	mg/L	0.03150	0.63%
Mg 279.077	1027524.6	25.323	mg/L	0.0766	25.323	mg/L	0.0766	0.30%
Mn 257.610	1435592.3	2.5734	mg/L	0.01243	2.5734	mg/L	0.01243	0.48%
Ni 231.604	171576.9	2.5500	mg/L	0.00622	2.5500	mg/L	0.00622	0.24%
Pb 220.353	5064.9	0.5221	mg/L	0.00106	0.5221	mg/L	0.00106	0.20%
Sb 206.836	866.0	0.5215	mg/L	0.00195	0.5215	mg/L	0.00195	0.37%
Se 196.026	742.9	0.5071	mg/L	0.00744	0.5071	mg/L	0.00744	1.47%
Tl 190.801	425.9	0.5169	mg/L	0.00159	0.5169	mg/L	0.00159	0.31%
V 292.402	783670.3	2.5525	mg/L	0.00531	2.5525	mg/L	0.00531	0.21%
Zn 206.200	103276.6	2.5909	mg/L	0.01419	2.5909	mg/L	0.01419	0.55%
Na 330.237	46962.9	23.951	mg/L	0.0419	23.951	mg/L	0.0419	0.18%
Cd 226.502	39139.9	0.2587	mg/L	0.00118	0.2587	mg/L	0.00118	0.46%
Ti 334.940	779.5	0.0014	mg/L	0.00004	0.0014	mg/L	0.00004	3.22%
Ca 227.546	8443.9	25.491	mg/L	0.0533	25.491	mg/L	0.0533	0.21%

Sequence No.: 9 Autosampler Location: 4

Sample ID: CCB

Analyst: Sample Wt: Dilution: Date Collected: 9/14/05 10:58:01 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:38 PM,

Mean Data: CCB							
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Ag 328.068	289.0	0.0006	mg/L	0.00045	0.0006	mg/L	0.00045 69.63%
Aľ 308.215	302.6	0.0076	mg/L	0.00841	0.0076	mg/L	0.00841 110.36%
As 188.979	0.9	0.0011	mg/L	0.00407	0.0011	mg/L	0.00407 386.21%
Ba 233.527	42.6	0.0006	mg/L	0.00016	0.0006	mg/L	0.00016 27.65%
Be 313.107	107.0	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 63.68%
Co 228.616	4.5	0.0002	mg/L	0.00011	0.0002	mg/L	0.00011 53.81%
Cr 267.716	-13.0	-0.0001	mg/L	0.00024	-0.0001	mg/L	0.00024 344.68%
Cu 324.752	654.3	0.0018	mg/L	0.00084	0.0018	mg/L	. 0.00084 47.54%
Fe 273.955	249.2	0.0059	mg/L	0.00105	0.0059	mg/L	0.00105 17.94%
Ma 279.077	423.3	0.0104	mg/L	0.00138	0.0104	mg/L	0.00138 13.20%
Mn 257.610	85.7	0.0002	mg/L	0.00007	0.0002	mg/L	0.00007 42.28%
Ni 231.604	21.6	0.0003	mg/L	0.00007	0.0003	mg/L	0.00007 23.21%
Pb 220.353	-0.9	-0.0001	mg/L	0.00085	-0.0001	mg/L	0.00085 974.36%
sb 206.836	4.2	0.0025	mg/L	0.00152	0.0025	mg/L	0.00152 59.85%
Se 196.026	. 2.0	0.0014	mg/L	0.00577	0.0014	mg/L	0.00577 427.26%
Tl 190.801	4.1	0.0050	mg/L	0.00282	0.0050	mg/L	0.00282 56.15%
V 292.402	73.3	0.0002	mg/L	0.00024	0.0002	mg/L	0.00024 98.86%
Zn 206.200	18.4	0.0005	mg/L	0.00011	0.0005	mg/L	0.00011 24.09%
Na 330.237	23.1	0.0118	mg/L	0.02592	0.0118		0.02592 220.10%
Cd 226.502	14.2	0.0001	mg/L	0.00006	0.0001		0.00006 60.00%
Ti 334.940	-28.1	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 62.02%
Ca 227.546	2.0	0.0060	mg/L	0.09827	0.0060	mg/L	0.09827 >999.9%

Sequence No.: 10

Sample ID: MB-19953,19953

Analyst: Sample Wt: Autosampler Location: 40
Date Collected: 9/14/05 11:02:08 AM

Sample Prep Volume:

Dilution: Data Type: Reprocessed on 9/14/05 6:38:39 PM,

Mean Data: MB-19953,19953 Calib Sample Mean Corrected Conc. Units Intensity Conc. Units Std.Dev. Std.Dev. RSD Analyte 0.00068 46.02% 00450 0.0015 mg/L0.00068 0.0015 mg/L665.6 Ag 328.068

Method: CLP		Page	6		Date:	9/14/05 6:38	:41 PM
				0 0114	/*	0.00221	20 049
Al 308.215 45	4.5 0.0114	_	0.00331	0.0114		0.00331	28.94%
As 188.979 -	1.2 -0.0013	mg/L	0.00146	-0.0013		0.00146	
Ba 233.527 34	3.4 0.0045	mg/L	0.00016	0.0045	-	0.00016	3.47%
Be 313.107 16	3.3 0.0000	mg/L	0.00000	0.0000	mg/L	0.00000	20.02%
	9.0 0.0004	mg/L	0.00001	0.0004	mg/L	0.00001	3.37%
	4.4 0.0000	mcr/L	0.00077	0.0000	mg/L	0.00077	>999.9%
01 2011120	8.0 0.0022	mq/L	0.00055	0.0022	mg/L	0.00055	24.96%
0u 02:07=	0.7 0.0324	-	0.00022	0.0324	mg/L	0.00022	0.69%
10 270.000	7.5 0.0098		0.00288	0.0098	mg/L	0.00288	29.28%
Mn 257.610 159		-	0.00003	0.0029	mg/L	0.00003	1.16%
1111 20	6.0 0.0004	_	0.00021	0.0004	mg/L	0.00021	54.98%
112 201.001	7.3 0.0007		0.00022	0.0007	_	0.00022	29.85%
Pb 220.353	0.6 0.0003	_	0.00129	0.0003		0.00129	370.18%
Sb 206.836	8.5 0.0058	-	0.00017	0.0058		0.00017	2.97%
Se 196.026	4.2 0.0051	-	0.00292	0.0051	-	0.00292	56.96%
Tl 190.801			0.00001	0.0001		0.00001	14.70%
, 2,2,,,,,		_	0.00047	0.0025		0.00047	19.13%
211 200121	98.2 0.0025	- 711.			-		874.60%
the course.	10.8 -0.0207	•	0.18130	-0.0207	-	•	49.43%
04 22014-	4.1 0.0001	-	0.00005	0.0001		0.00005	
Ti 334.940 23	31.6 0.0002	-	0.00005	0.0002	-	0.00005	27.74%
Ca 227.546	13.5 0.1323	mg/L	0.04743	0.1323	mg/L	0.04743	35.85%

Sample ID: LCS-19953,19953

Analyst: Sample Wt: Dilution: Autosampler Location: 41

Date Collected: 9/14/05 11:06:11 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:40 PM,

Mean Data:	LCS-19953,19953							
220011 22021	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	583017.7	1.3067	mg/L	0.00093 1	.3067	mg/L	0.00093	0.07%
A1 308.215	393628.7	9.8705	mg/L	0.04304 9	.8705	mg/L	0.04304	0.44%
As 188.979	448.6	0.5168	mg/L	0.00386 0	.5168	mg/L	0.00386	0.75%
Ba 233.527	778962.8	10.299	mg/L	0.0085 1	0.299	mg/L	0.0085	0.08%
Be 313.107	1699385.4	0.2551	mg/L	0.00005	.2551	mg/L	0.00005	0.02%
Co 228.616	57646.7	2.5573	mg/L	0.01668 2	.5573	mg/L	0.01668	0.65%
Cr 267.716	184958.8	0.9919	mg/L	0.00717 0	.9919	mg/L	0.00717	0.72%
Cu 324.752	466264.0	1.2516	mg/L	0.00030 1	.2516	mg/L	0.00030	0.02%
Fe 273.955	217520.9	4.9931	mg/L	0.01411 4	.9931	mg/L	0.01411	0.28%
Mg 279.077	1023935.9	25.234	mg/L	0.0211 2	5.234	mg/L	0.0211	0.08%
Mn 257.610	1431395.6	2.5658	mg/L	0.00217 2	2.5658	mg/L	0.00217	0.08%
Ni 231.604	170305.4	2.5311	mg/L	0.01011 2	2.5311	mg/L	0.01011	0.40%
Pb 220.353	4972.9	0.5126	mg/L	0.00007	.5126	mg/L	0.00007	0.01%
Sb 206.836	856.0	0.5154	mg/L).5154	•	0.00120	0.23%
Se 196.026	741.1	0.5059	mg/L).5059	-	0.00662	1.31%
Tl 190.801	444.0	0.5391	mg/L).5391	-	0.00045	0.08%
V 292.402	771718.1	2.5136	mg/L		2,5136	· .	0.00041	0.02%
Zn 206.200	101236.8	2.5397	mg/L		2.5397		0.00155	0.06%
Na 330.237	47025.2	23.983	mg/L		23.983		0.2605	1.09%
Cd 226.502	38592.1	0.2551	mg/L).2551	•	0.00029	0.11%
Ti 334.940		0.0009	mg/L		0.0009	-	0.00002	2.46%
Ca 227.546		25.113	mg/L	0.0690	25.113	mg/L	0.0690	0.27%

Sequence No.: 12

Sample ID: D1004-01D,19953

Analyst: Sample Wt: Dilution: Autosampler Location: 42

Date Collected: 9/14/05 11:10:22 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:41 PM,

Mean Data: D1004-	01D,19953 Mean Corrected		Calib			Sample		
Analyte Ag 328.068 Al 308.215 As 188.979 Ba 233.527	Intensity 272.0 864.5 -2.7 403.0	Conc. 0.0006 0.0218 -0.0031 0.0053	Units mg/L mg/L mg/L	Std.Dev. 0.00036 0.00321 0.00101 0.00015	Conc. 0.0006 0.0218 -0.0031 0.0053	mg/L mg/L	Std.Dev. 0.00036 0.00321 0.00101 0.00015	RSD 62.70% 14.77% 33.08% 2.84% 00451

Method: CLP		Pag	e 7	Date:	9/14/05 6:38:42 PM
Be 313.107	224.1	0.0000 mg/L	0.00002	0.0000 mg/L	0.00002 47.30%
Co 228.616	7.1	0.0003 mg/L	0.00010	0.0003 mg/L	0.00010 30.49%
Cr 267.716	30.5	0.0002 mg/L	0.00019	0.0002 mg/L	0.00019 115.86%
Cu 324.752	1575.3	0.0042 mg/L	0.00120	0.0042 mg/L	0.00120 28.19%
Fe 273.955	2641.3	0.0624 mg/L	0.00019	0.0624 mg/L	0.00019 0.31%
Mg 279.077	780.0	0.0193 mg/L	0.00376	0.0193 mg/L	0.00376 19.52%
Mn 257.610	1905.5	0.0034 mg/L	0.00000	0.0034 mg/L	0.00000 0.14%
Ni 231.604	37.8	0.0006 mg/L	0.00021	0.0006 mg/L	0.00021 37.31%
Pb 220.353	8.6	0.0009 mg/L	0.00041	0.0009 mg/L	0.00041 46.27%
Sb 206.836	1.2	0.0007 mg/L	0.00125	0.0007 mg/L	0.00125 171.72%
Se 196.026	1.5	0.0010 mg/L	0.00021	0.0010 mg/L	0.00021 20.57%
T1 190.801	0.8	0.0010 mg/L	0.00508	0.0010 mg/L	0.00508 506.00%
V 292.402	98.1	0.0003 mg/L	0.00026	0.0003 mg/L	0.00026 79.80%
Zn 206.200	137.0	0.0034 mg/L	0.00027	0.0034 mg/L	0.00027 7.79%
Na 330.237	175.3	0.0894 mg/L	0.03414	0.0894 mg/L	0.03414 38.16%
Cd 226.502	17.8	0.0001 mg/L	0.00009	0.0001 mg/L	0.00009 76.79%
Ti 334.940	242.2	0.0002 mg/L	0.00001	0.0002 mg/L	0.00001 3.70%
Ca 227.546	91.4	0.2781 mg/L	0.06882	0.2781 mg/L	0.06882 24.75%

Sample ID: D1004-01DDUP,19953

Analyst: Sample Wt: Dilution: Autosampler Location: 43

Date Collected: 9/14/05 11:14:25 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:41 PM,

Mean Data: D10	04-01DDUP,19953							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	
Aq 328.068	152.7	0.0003	mg/L	0.00023	0.0003	mg/L	0.00023	67.99%
Al 308.215	906.2	0.0228	mg/L	0.00454	0.0228	_	0.00454	19.90%
As 188.979	0.2	0.0003	mg/L	0.00309	0.0003	mg/L		>999.9%
Ba 233.527	380.7	0.0050	mg/L	0.00006	0.0050	mg/L	0.00006	1.11%
Be 313.107	105.1	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001	47.51%
Co 228.616	5.1	0.0002	mg/L	0.00008	0.0002	mg/L	0.00008	37.33%
Cr 267.716	121.0	0.0006	mg/L	0.00008	0.0006	mg/L	0.00008	12.67%
Cu 324.752	657.1	0.0019	mg/L	0.00011	0.0019	mg/L	0.00011	5.79%
Fe 273.955	16463.2	0.3891	mg/L	0.00068	0.3891	mg/L	0.00068	0.18%
Mg 279.077	1033.0	0.0256	mg/L	0.00387	0.0256	mg/L	0.00387	15.11%
Mn 257.610	2915.2	0.0054	mg/L	0.00004	0.0054	mg/L	0.00004	0.69%
Ni 231.604	34.1	0.0005	mg/L	0.00003	0.0005	mg/L	0.00003	5.65%
Pb 220.353	-4.8	-0.0005	mg/L	0.00050	-0.0005	mg/L	0.00050	
Sb 206.836	2.8	0.0016	mg/L	0.00065	0.0016	mg/L	0.00065	39.68%
Se 196.026	1.0	0.0008	mg/L	0.00282	0.0008	mg/L	0.00282	351.16%
Tl 190.801	-1.5	-0.0019	mg/L	0.00236	-0.0019	mg/L	0.00236	127.09%
V 292.402	75.1	0.0002	mg/L	0.00001	0.0002	mg/L	0.00001	4.05%
Zn 206.200	190.5	0.0047	mg/L	0.00032	0.0047	mg/L	0.00032	6.84%
Na 330.237	89.2	0.0460	mg/L	0.04544	0.0460	mg/L	0.04544	
Cd 226.502	6.7	0.0000	mg/L	0.00009	0.0000	mg/L		361.67%
Ti 334.940	389.5	0.0003	mg/L	0.00002	0.0003	mg/L	0.00002	
Ca 227.546	116.0	0.3491	mg/L	0.03054	0.3491	mg/L	0.03054	8.75%

Sequence No.: 14

Sample ID: D1004-01DMS,19953

Analyst: Sample Wt: Dilution: Autosampler Location: 44

Date Collected: 9/14/05 11:18:29 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:42 PM,

	Mean Corrected	Calib	>		Sample		
Analyte	Intensity	Conc. Units	s Std.Dev.	Conc.	Units	Std.Dev	
Ag 328.068	25830.2	0.0586 mg/L	0.00053	0.0586	mg/L	0.00053	0.90%
Al 308.215	87432.2	2.1922 mg/L		2.1922	mg/L	0.01961	0.89%
As 188.979	42.2	0.0500 mg/L	0.00161	0.0500	mg/L	0.00161	3.22%
Ba 233.527	181283.9	2.3968 mg/L	√ 0.02621	2.3968	mg/L	0.02621	1.09%
Be 313.107	383241.8	0.0575 mg/L	✓ 0.00087	0.0575	mg/L	0.00087	1.51%
Co 228.616	13559.9	0.6015 mg/L	√ 0.00101	0.6015	mg/L	0.00101	0.17%
Cr 267.716	42282.8	0.2267 mg/L		0.2267	mg/L	0.00090	0.39%
01 2011111		· •			_		00452

Method: CLP		Pag	Date:	9/14/05 6:38	:44 PM	
Cu 324.752	109890.6	0.2950 mg/L v	0.00251	0.2950 mg/L	0.00251	0.85%
Fe 273.955	51346.6	1.1803 mg/L -	0.01156	1.1803 mg/L	0.01156	0.98%
Mg 279.077	-85.4	0.0101 mg/L	0.00081	0.0101 mg/L	0.00081	7.96%
Mn 257.610	340959.2	0.6113 mg/L /	0.00484	0.6113 mg/L	0.00484	0.79%
Ni 231.604	40264.0	0.5985 mg/L-	0.00651	0.5985 mg/L	0.00651	1.09%
≠ Pb 220.353	268.1	0.0281 mg/L	0.00008	0.0281 mg/L	0.00008	0.29%
Sb 206.836	178.3	0.1072 mg/L	0.00002	0.1072 mg/L	0.00002	0.02%
Se 196,026	88.4	0.0597 mg/L	0.00170	0.0597 mg/L	0.00170	2.84%
Tl 190.801	73.1	0.0885 mg/L	0.00276	0.0885 mg/L	0.00276	3.11%
V 292.402	173317.3	0.5645 mg/L	0.00816	0.5645 mg/L	0.00816	1.44%
Zn 206.200	23692.6	0.5946 mg/L	0.00667	0.5946 mg/L	0.00667	1.12%
Na 330.237	904.7	0.4657 mg/L	0.02616	0.4657 mg/L	0.02616	5.62%
Cd 226.502	8545.2	0.0565 mg/L	0.00011	0.0565 mg/L	0.00011	0.19%
Ti 334.940	380.7	0.0003 mg/L	0.00002	0.0003 mg/L	0.00002	8.70%
Ca 227.546	185.5	0.5025 mg/L	0.05971	0.5025 mg/L	0.05971	11.88%

Sample ID: D1004-01DSD,19953

Analyst: Sample Wt: Dilution: Autosampler Location: 45

Date Collected: 9/14/05 11:22:36 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:43 PM,

Mean Data:	D1004-01DSD,19953		Calib			Sample	
31	Mean Corrected Intensity	Conc.	Calib	Std.Dev.	Conc.	_	Std.Dev. RSD
Analyte	8.1	0.0000		0.00001	0.0000		0.00001 106.98%
Ag 328.068 Al 308.215	528.9	0.0133	-	0.00428	0.0133	-	0.00428 32.13%
As 188.979	-0.4	-0.0004	-	0.00149	-0.0004	_	0.00149 339.98%
Ba 233.527	41.0	0.0005	_	0.00010	0.0005	-	0.00010 18.31%
Be 313.107	64.3	0.0000	_	0.00001	0.0000	-	0.00001 83.82%
Co 228.616	4.1	0.0002	-	0.00003	0.0002		0.00003 18.25%
Cr 267.716	54.2	0.0003	-	0.00006	0.0003		0.00006 19.71%
Cu 324.752	185.8	0.0005		0.00027	0.0005		0.00027 53.97%
	564.9	0.0134	-	0.00043	0.0134	_	0.00043 3.25%
Fe 273.955 Mg 279.077	247.9	0.0061		0.00211	0.0061	-	0.00211 34.46%
-	492.6	0.0009	- ·	0.00005	0.0009	-	0.00005 5.80%
Mn 257.610	15.1	0.0003	_	0.00003	0.0002	_	0.00003 13.47%
Ni 231.604	0.4	0.0002	_	0.00005	0.0000		0.00026 564.60%
Pb 220.353	1.9	0.0000	-	0.00050	0.0011	-	0.00050 43.51%
Sb 206.836	2.0	0.0011	-	0.00036	0.0014	-	0.00116 82.52%
Se 196.026	0.5	0.0014	_	0.00062	0.0007	-	0.00062 92.23%
T1 190.801	-2.8	0.0000	_	0.00042	0.0000	-	0.00042 >999.9%
V 292.402	40.5	0.0010		0.00042	0.0010	-	0.00002 2.31%
Zn 206.200		-0.0122	-	0.00002	-0.0122	-	0.02331 190.60%
Na 330.237	-24.0		-	0.02331	0.0000	_	0.00002 180.52%
Cd 226.502		0.0000				-	0.00002 100.32%
Ti 334.940		0.0001		0.00003	0.0001	-	0.00003 64.92%
Ca 227.546	23.8	0.0724	mg/L	0.03302	0.0724	mg/L	0.03302 43.636

Sequence No.: 16

Sample ID: D1004-01DPDS,19953

Analyst: Sample Wt: Dilution: Autosampler Location: 46

Date Collected: 9/14/05 11:26:42 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:44 PM,

•	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Aq 328.068	9488.6	0.0206	mg/L	0.00035	0.0206	mg/L '	0.00035	1.70%
Al 308.215	16686.0	0.4187	mg/L	0.00753	0.4187	mg/L	0.00753	1.80%
As 188.979	13.1	0.0150	mg/L	0.00169	0.0150	mg/L	0.00169	11.31%
Ba 233.527	33261.7	0.4397	mg/L	0.00662	0.4397	mg/L	0.00662	1.51%
Be 313.107	69993.8	0.0105	mq/L	0.00014	0.0105	mg/L	0.00014	1.33%
Co 228.616	2407.7	0.1068	mq/L	0.00001	0.1068	mg/L	0.00001	0.01%
Cr 267.716	3946.3	0.0212	mg/L	0.00007	0.0212	mq/L	0.00007	0.35%
Cu 324.752	19526.0	0.0524	-	0.00096	0.0524	mq/L	0.00096	1.838
Fe 273.955	11126.0	0.2568	mq/L	0.00016	0.2568	mg/L	0.00016	0.06%
Mg 279.077	419662.9	10.322	-	0.1337	10.322	mg/L	0.1337	1.30%
g =	• • • • • • • • • • • • • • • • • • • •					-		00453

9 Date: 9/14/05 6:38:46 PM Method: CLP Page 0.00071 19717.7 Mn 257.610 0.0353 mg/L 0.0353 mg/L0.00071 2.00% 0.0830 mg/L 0.0830 mg/L 0.00008 Ni 231.604 5589.2 0.00008 0.09% √Pb 220.353 205.2 0.0213 mg/L 0.00036 0.0213 mg/L 0.00036 1.68% 0.1055 mg/L1.13% 0.1055 mg/L 0.00119 0.00119 Sb 206.836 172.9 111.0 $0.0765 \, \text{mg/L}$ 0.00410 0.0765 mg/L 0.00410 Se 196.026 5.36% 0.0538 mg/L 0.0538 mg/L 0.00044 Tl 190.801 44.1 0.00044 0.82% 32299.5 0.1052 mg/L 0.00168 0.1052 mg/L V 292.402 0.00168 1.60% Zn 206.200 5364.5 0.1342 mg/L0.00012 0.1342 mg/L0.00012 0.09% 8.8692 mg/L 8.8692 mg/L 17403.0 0.12187 1.37% Na 330.237 0.12187 0.0104 mg/L 0.0104 mg/LCd 226.502 1570.7 0.00002 0.00002 0.19% 0.00000 0.0007 mg/L Ti 334.940 457.4 0.0007 mg/L 0.00000 0.14% 9.9007 mg/L 9.9007 mg/L Ca 227.546 3248.0 0.02739 0.02739 0.28%

Sequence No.: 17

Sample ID: MB-19935,19935

Analyst: Sample Wt:

Date Collected: 9/14/05 11:30:48 AM

Sample Prep Volume: Data Type: Reprocessed on 9/14/05 6:38:45 PM, Dilution:

Mean Data:	MB-19935,19935						
	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Ag 328.068	104.8	0.0002	mg/L	0.00001	0.0002	mg/L	0.00001 6.29%
Al 308.215	989.1	0.0249	mg/L	0.00200	0.0249	mg/L	0.00200 8.03%
As 188.979	-0.4	-0.0004	mg/L	0.00006	-0.0004	mg/L	0.00006 13.71%
Ba 233.527	441.0	0.0058	mg/L	0.00041	0.0058	mg/L	0.00041 7.07%
Be 313.107	25.9	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 235.12%
Co 228.616	4.9	0.0002	mg/L	0.00014	0.0002	mg/L	0.00014 65.04%
Cr 267.716	-43.9	-0.0002	mg/L	0.00050	-0.0002	mg/L	0.00050 209.29%
Cu 324.752	317.5	0.0009	mg/L	0.00004	0.0009	mg/L	0.00004 4.99%
Fe 273.955	1733.0	0.0410	mg/L	0.00021	0.0410	mg/L	0.00021 0.51%
Mg 279.077	382.3	0.0095	mg/L	0.00101	0.0095	mg/L	0.00101 10.67%
Mn 257.610	2015.0	0.0036	mg/L	0.00005	0.0036	mg/L	0.00005 1.31%
Ni 231.604	49.0	0.0007	mg/L	0.00012	0.0007	mg/L	0.00012 16.58%
Pb 220.353	35.6	0.0036	mg/L	0.00005	0.0036	mg/L	0.00005 1.47%
Sb 206.836	-1.3	-0.0008	mg/L	0.00078	-0.0008	mg/L	0.00078 92.76%
Se 196.026	4.4	0.0030	mg/L	0.00040	0.0030	mg/L	0.00040 13.11%
Tl 190.801	0.0	0.0000	mg/L	0.00371	0.0000	mg/L	0.00371 >999.9%
V 292.402	-106.8	-0.0003	mg/L	0.00010	-0.0003	mg/L	0.00010 27.78%
Zn 206.200	182.3	0.0046	mg/L	0.00010	0.0046	mg/L	0.00010 2.29%
Na 330.237	219.0	0.1122	mg/L	0.02338	0.1122	mg/L	0.02338 20.84%
Cd 226.502	31.0	0.0002	mg/L	0.00003	0.0002	mg/L	0.00003 16.53%
Ti 334.940	1259.0	0.0009	mg/L	0.00001	0.0009	mg/L	0.00001 1.64%
Ca 227.546	49.1	0.1494	mg/L	0.03495	0.1494	mg/L	0.03495 23.39%

Sequence No.: 18

Sample ID: CCV

Analyst: Sample Wt: Dilution:

Autosampler Location: 3

Autosampler Location: 47

Date Collected: 9/14/05 11:34:54 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:46 PM,

Mean Data: CCV	•							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Aq 328.068	584391.5	1.3098	mg/L	0.01529	1.3098	mg/L	0.01529	1.17%
Al 308.215	393002.9	9.8538	mg/L	0.04677	9.8538	mg/L	0.04677	0.47%
As 188.979	456.2	0.5255	mg/L	0.00321	0.5255	mg/L	0.00321	0.61%
Ba 233.527	798754.4	10.560	mg/L	0.0964	10.560	mg/L	0.0964	0.91%
Be 313.107	1738338.7	0.2610	mg/L	0.00180	0.2610	mg/L	0.00180	0.69%
Co 228.616	57931.2	2.5700	mg/L	0.01244	2.5700	mg/L	0.01244	0.48%
Cr 267.716	187203.0	1.0040	mg/L	0.00891	1.0040	mg/L	0.00891	0.89%
Cu 324.752	471041.4	1.2644	mg/L	0.01126	1.2644	mg/L	0.01126	0.89%
Fe 273.955	217872.2	4.9980	mg/L	0.01729	4.9980	mg/L	0.01729	0.35%
Ma 279.077	1034623.2	25.498	mg/L	0.1651	25.498	mg/L	0.1651	0.65%
Mn 257.610	1448900.3	2.5972	mg/L	0.02051	2.5972	mg/L	0.02051	0.79%
Ni 231.604	171265.1	2.5454	mg/L	0.01451	2.5454	mg/L	0.01451	0.57%
Pb 220.353	5051.7	0.5207	mg/L	0.00044	0.5207	mg/L	0.00044	0.08%
			-			-		00454

Method: CLP Page 10 Date: 9/14/05 6:38:47 PM 866.2 0.5217 mg/L 0.00073 0.5217 mg/L 0.00073 0.14% Sb 206.836 0.00116 0.5173 mg/L 0.00116 Se 196.026 757.7 0.5173 mg/L0.22% Tl 190.801 417.6 0.5067 mg/L 0.00019 0.5067 mg/L 0.00019 0.04% V 292.402 789235.6 2.5706 mg/L 0.01888 2.5706 mg/L 0.01888 0.73% 2.5861 mg/L 0.00453 2.5861 mg/L Zn 206.200 103086.1 0.00453 0.18% 24.040 mg/L 24.040 mg/L Na 330.237 47136.3 0.0614 0.0614 0.26% 0.00047 Cd 226.502 39079.1 0.2583 mg/L 0.2583 mg/L0.00047 0.18% 0.00005 0.00005 0.0014 mg/L 0.0014 mg/L 3.51% 765.3 Ti 334.940 25.385 mg/L Ca 227.546 8409.4 25.385 mg/L 0.0158 0.0158 0.06%

Sequence No.: 19 Sample ID: CCB Analyst: Sample Wt:

Dilution:

Autosampler Location: 4

Date Collected: 9/14/05 11:39:08 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:47 PM,

Mean Data: CCB							
Medii Data. CCD	Mean Corrected		Calib			Sample	•
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	_	Std.Dev. RSD
Aq 328.068	27.2	0.0001	mg/L	0.00001	0.0001	mg/L	0.00001 12.90%
AÍ 308.215	119.7	0.0030	mg/L	0.00231	0.0030	mg/L	0.00231 76.80%
As 188.979	-1.3	-0.0015	mg/L	0.00269	-0.0015	mg/L	0.00269 177.21%
Ba 233.527	20.8	0.0003	mg/L	0.00008	0.0003	mg/L	0.00008 30.02%
Be 313.107	88.8	0.0000	mg/L	0.00000	0.0000	mg/L	0.00000 1.78%
Co 228.616	0.7	0.0000	mg/L	0.00015	0.0000	mg/L	0.00015 489.28%
Cr 267.716	-46.6	-0.0003	mg/L	0.00011	-0.0003	mg/L	0.00011 43.14%
Cu 324.752	447.6	0.0012	mg/L	0.00053	0.0012	mg/L	0.00053 44.41%
Fe 273.955	89.7	0.0021	mg/L	0.00042	0.0021	mg/L	0.00042 19.90%
Mg 279.077	101.3	0.0025	mg/L	0.00540	0.0025	mg/L	0.00540 216.30%
Mn 257.610	80.7	0.0001	mg/L	0.00006	0.0001	mg/L	0.00006 42.82%
Ni 231.604	6.0	0.0001	mg/L	0.00009	0.0001	mg/L	0.00009 103.63%
Pb 220.353	1.8	0.0002	mg/L	0.00004	0.0002	mg/L	0.00004 22.46%
Sb 206.836	0.2	0.0001	mg/L	0.00026	0.0001	mg/L	0.00026 180.04%
Se 196.026	10.6	0.0073	mg/L	0.00239	0.0073	mg/L	0.00239 32.75%
Tl 190.801	0.3	0.0004	mg/L	0.00113	0.0004	mg/L	0.00113 271.95%
V 292.402	22.7	0.0001	mg/L	0.00016	0.0001	mg/L	0.00016 212.34%
Zn 206.200	22.0	0.0006	mg/L	0.00010	0.0006	mg/L	0.00010 18.11%
Na 330.237	-138.5	-0.0705	mg/L	0.01816	-0.0705	mg/L	0.01816 25.75%
Cd 226.502	-2.8	0.0000	mg/L	0.00004	0.0000		0.00004 196.39%
Ti 334.940	117.5	0.0001	mg/L	0.00002	0.0001	mg/L	0.00002 18.51%
Ca 227.546	-22.3	-0.0682	mg/L	0.01104	-0.0682	mg/L	0.01104 16.18%

Sequence No.: 20

Sample ID: D1045-02C,19953

Analyst: Sample Wt: Dilution:

Autosampler Location: 48

Date Collected: 9/14/05 11:43:15 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:47 PM,

Mean Data: D1045	-02C,19953							
	Mean Corrected		Calib	•		Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	-405.1	-0.0069	mg/L	0.00007	-0.0069	mg/L	0.00007	1.07%
Al 308.215	3285.3	0.0819	mg/L	0.00039	0.0819	mg/L	0.00039	0.48%
As 188.979	-8.7	-0.0094	mg/L	0.00129	-0.0094	mg/L	0.00129	13.65%
Ba 233.527	13052.2	0.1707	mg/L	0.00019	0.1707	mg/L	0.00019	0.11%
Be 313.107	38.2	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001	155.51%
Co 228.616	13.1	0.0003	mg/L	0.00001	0.0003	mg/L	0.00001	3.30%
Cr 267.716	- 201.0	0.0009	mg/L	0.00037	0.0009	mg/L	0.00037	39.70%
Cu 324.752	3484.4	0.0119	mg/L	0.00015	0.0119	mg/L	0.00015	1.28%
Fe 273.955	416960.7	9.8547	mg/L	0.04117	9.8547	mg/L	. 0.04117	0.42%
Mg 279.077	874976.4	21.527	mg/L	0.1229	21.527	mg/L	0.1229	0.57%
Mn 257.610	136729.3	0.2501	mg/L	0.00120	0.2501	mg/L	0.00120	0.48%
Ni 231.604	89.0	0.0008	mg/L	0.00007	0.0008	mg/L	0.00007	7.98%
Pb 220.353	135.8	0.0143	mg/L	0.00115	0.0143	mg/L	0.00115	8.09%
Sb 206.836	20.4	0.0113	mg/L	0.00285	0.0113	mg/L	0.00285	25.30%
Se 196.026	19.2	0.0168	mg/L	0.00225	0.0168	mg/L	0.00225	13.41%
Tl 190.801	. 1.3	0.0023	mg/L	0.00064	0.0023	mg/L	0.00064	27.20% 00455

Page 11 Date: 9/14/05 6:38:49 PM Method: CLP 0.00033 0.0001 mg/L -13.20.0001 mg/L 0.00033 224.82% V 292.402 0.2237 mg/L 0.00078 0.2237 mg/L 0.00078 0.35% Zn 206.200 9010.3 0.0960 10.237 mg/L 0.0960 0.94% Na 330.237 20113.0 10.237 mg/L -0.0005 mg/L0.00005 8.89% -4.3 -0.0005 mg/L0.00005 Cd 226.502 0.0020 mg/L -95.6 0.0020 mg/L 0.00018 8.82% 0.00018 Ti 334.940 58.028 mg/L 0.1500 58.028 mg/L 0.1500 19057.3 Ca 227.546 Autosampler Location: 49 Sequence No.: 21 Sample ID: D1045-03C,19953 Date Collected: 9/14/05 11:47:21 AM 9/15/05 00 Analyst: Sample Prep Volume: Sample Wt: Data Type: Reprocessed on 9/14/05 6:38:48 PM, Dilution:

Mean Data: D1045 0	3C,19953							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.		Std.Dev.	
Ag 328.068	389.7	-0.0134	mg/L	0.00013	-0.0134	mg/L	0.00013	0.94%
Al 308.215	221.6	0.0004	mg/L	0.00088	0.0004	mg/L	0.00088	
As 188.979	-4.7	-0.0056	mg/L	0.00146	-0.0056	mg/L	0.00146	26.02%
Ba 233.527	56389.9	0.7449	mg/L	0.01026	0.7449	mg/L	0.01026	1.38%
Be 313.107	9.0	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001	418.33%
Co 228.616	43.2	0.0019	mg/L	0.00015	0.0019	mg/L	0.00015	7.94%
Cr 267.716	231.1	0.0004	mg/L	0.00041	0.0004	mg/L	0.00041	93.63%
Cu 324.752	351.5	-0.0006	mg/L	0.00011	-0.0006	mg/L	0.00011	17.81%
Fe 273.955	4339.5	0.1026	mg/L	0.00037	0.1026	mg/L	0.00037	0.36%
Mg 279.077	603949.2	14.880	mg/L	0.2019	14.880	mg/L	0.2019	1.36%
Mn 257.610	829231.3	1.4849	mg/L	0.02136	1.4849	mg/L	0.02136	1.44%
Ni 231.604	. 288.8	0.0043	mg/L	0.00005	0.0043	mg/L	0.00005	1.11%
Pb 220.353	-9.7	0.0007	mq/L	0.00037	0.0007	mg/L	0.00037	49.61%
Sb 206.836	19.5	0.0121	mg/L	0.00192	0.0121	mg/L	0.00192	15.86%
Se 196.026	37.8	0.0271	mg/L	0.00008	0.0271	mg/L	0.00008	0.28%
Tl 190.801	1.2	0.0045	mg/L	0.00483	0.0045	mg/L	0.00483	107.95%
V 292.402	-148.0	-0.0003	mg/L	0.00024	-0.0003	mg/L	0.00024	71.56%
Zn 206.200	372.4	0.0080	mg/L	0.00018	0.0080	mg/L	0.00018	2.29%
Na 330.237	141398.3	72.036	mg/L	1.0681	72.036	mg/L	1.0681	1.48%
Cd 226.502	-53.9	-0.0004	mg/L	0.00001	-0.0004	mg/L	0.00001	2.80%
Ti 334.940	-3316.1	0.0016	mg/L	0.00003	0.0016	mg/L	0.00003	1.77%
Ca 227.546	35481.0	108.27	-	0.575	108.27	mg/L	0.575	0.53%

Sequence No.: 22

Sample ID: D1045-04F,19953

SE

Analyst:

Sample Wt:

Dilution:

9/15/05 am

Autosampler Location: 50

Date Collected: 9/14/05 11:51:29 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:49 PM,

Mean Data: I	D1045-04F,19953							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.		Units	Std.Dev.	
Ag 328.068	261.9	-0.0138	mg/L	0.00021	-0.0138	_	0.00021	1.56%
Al 308.215	630.9	0.0106	mg/L	0.00537	0.0106	_	0.00537	50.87%
As 188.979	-8.1	-0.0094	mg/L	0.00421	-0.0094	mg/L	0.00421	44.77%
Ba 233.527	57019.7	0.7532	mg/L	0.00683	0.7532	mg/L	0.00683	0.91%
Be 313.107	-112.5	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001	59.77%
Co 228.616	. 35.8	0.0016	mg/L	0.00007	0.0016	mg/L	0.00007	4.68%
Cr 267.716	242.3	0.0005	mg/L	0.00002	0.0005	mg/L	0.00002	3.45%
Cu 324.752	379.3	-0.0005	mg/L	0.00066	-0.0005	mg/L	0.00066	140.32%
Fe 273.955	18960.4	0.4481	mg/L	0.00027	0.4481	mg/L	0.00027	0.06%
Mg 279.077	618493.9	15.239	mg/L	0.1353	15.239	mg/L	0.1353	0.89%
Mn 257.610	853390.2	1.5284	mg/L	0.01452	1.5284	mg/L	0.01452	0.95%
Ni 231.604	320.6	0.0048	mg/L	0.00002	0.0048	•	0.00002	0.42%
Pb 220.353	-9.8	0.0007	mg/L	0.00004	0.0007	mg/L	0.00004	5.01%
Sb 206.836	16.3	0.0101	mg/L	0.00321	0.0101		0.00321	31.70%
Se 196.026	40.0	0.0287	mg/L	0.00166	0.0287	mg/L	0.00166	5.78%
Tl 190.B01	-3.2	-0.0008	mg/L	0.00424	-0.0008	mg/L	0.00424	499.61%
V 292.402	-118.3	-0.0002	mg/L	0.00011	-0.0002	mg/L	0.00011	46.93%
Zn 206.200	488.6	0.0108	mg/L	0.00003	0.0108	mg/L	0.00003	0.30%
Na 330.237	145401.0	74.077	mg/L	0.9242	74.077	mg/L	0.9242	1.25%
								00456

12 Date: 9/14/05 6:38:51 PM Page Method: CLP -0.0004 mg/L0.00000 0.00000 0.24% -59.1 -0.0004 mg/L Cd 226.502 0.72% -3125.6 0.0018 mg/L 0.00001 0.0018 mg/L 0.00001 Ti 334.940 109.27 mg/L 0.12% Ca 227.546 35809.9 109.27 mg/L 0.135 0.135

Sequence No.: 23

Sample ID: D1045-05F,19953

6F

Analyst: Sample Wt: Dilution:

9/15/-5 00

Autosampler Location: 51

Date Collected: 9/14/05 11:55:37 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:50 PM,

Mean	Data:	D1045-0#F,19953
		Mean Cor

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Aq 328.068	376.5	-0.0099	mg/L	0.00004	-0.0099	mg/L	0.00004	0.41%
Al 308.215	511.3	0.0128	mg/L	0.00549	0.0128	mg/L	0.00549	42.96%
As 188.979	-8.2	-0.0094	mg/L	0.00174	-0.0094	mg/L	0.00174	18.50%
Ba 233.527	8447.3	0.1111	mg/L	0.00055	0.1111	mg/L	0.00055	0.49%
Be 313.107	-152.1	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001	55.87%
Co 228.616	13.9	0.0006	mg/L	0.00009	0.0006	mg/L	0.00009	14.18%
Cr 267.716	-19.4	-0.0001	mg/L	0.00031	-0.0001	mg/L	0.00031	260.84%
Cu 324.752	189.2	0.0002	mg/L	0.00016	0.0002	mg/L	0.00016	100.90%
Fe 273.955	1173.0	0.0277	mg/L	0.00007	0.0277	mg/L	0.00007	0.25%
Mg 279.077	234826.1	5.7758	mg/L	0.01786	5.7758	mg/L	0.01786	0.31%
Mn 257.610	16695.5	0.0295	mg/L	0.00009	0.0295	mg/L	0.00009	0.31%
Ni 231.604	94.4	0.0014	mg/L	0.00001	0.0014	mg/L	0.00001	0.37%
Pb 220.353	-6.8	0.0006	mg/L	0.00038	0.0006	mg/L	0.00038	58.52%
Sb 206.836	10.1	0.0063	mg/L	0.00067	0.0063	mg/L	0.00067	10.64%
Se 196.026	14.9	0.0117	mg/L	0.00010	0.0117	mg/L	0.00010	0.81%
Tl 190.801	-0.0	0.0008	mg/L	0.01099	0.0008	mg/L	0.01099	>999.9%
V 292.402	110.7	0.0004	mg/L	0.00012	0.0004	mg/L	0.00012	32.42%
Zn 206.200	129.7	0.0026	mg/L	0.00003	0.0026	mg/L	0.00003	1.30%
Na 330.237	9468.6	4.7797	mg/L	0.15046	4.7797	mg/L	0.15046	3.15%
Cd 226.502	-34.0	-0.0002	mg/L	0.00001	-0.0002	mg/L	0.00001	3.70%
Ti 334.940	-2600.7	0.0011	mg/L	0.00005	0.0011	mg/L	0.00005	5.14%
Ca 227.546	26255.1	80.121	mg/L	0.0186	80.121	mg/L	0.0186	0.02%

Sequence No.: 24

Sample ID: D1045-0 F, 19953

Analyst: Dilution:

Sample Wt:

9/15/05 00

Autosampler Location: 52

Date Collected: 9/14/05 11:59:45 AM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:51 PM,

Mean Data: D1045-06F.19953

Mean Data: D1	045~0 % F,19953							
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	
Ag 328.068	551.4	-0.0175	mg/L	0.00002	-0.0175	mg/L	0.00002	0.14%
Al 308.215	683.1	0.0152	mg/L	0.00214	0.0152	mg/L	0.00214	14.09%
As 188.979	-11.2	-0.0130	mg/L	0.00267	-0.0130	mg/L	0.00267	20.48%
Ba 233.527	14362.0	0.1888	mg/L	0.00022	0.1888	mg/L	0.00022	0.11%
Be 313.107	-234.1	0.0000	mg/L	0.00000	0.0000	mg/L	0.00000	2.62%
Co 228.616	61.0	0.0027	mg/L	0.00017	0.0027	mg/L	0.00017	6.35%
Cr 267.716	82.4	0.0001	mg/L	0.00030	0.0001	mg/L	0.00030	231.38%
Cu 324.752	751.4	0.0009	mg/L	0.00046	0.0009	mg/L	0.00046	51.25%
Fe 273.955	693.8	0.0164	mg/L	0.00026	0.0164	mg/L	0.00026	1.59%
Mg 279.077	1314115.7	32.330	mg/L	0.0297	32.330	mg/L	0.0297	0.09%
Mn 257.610	322454.0	0.5767	mg/L	0.00152	0.5767	mg/L	0.00152	0.26%
Ni 231.604	687.8	0.0102	mg/L	0.00005	0.0102	mg/L	0.00005	0.45%
Pb 220.353	-9.5	0.0015	mg/L	0.00018	0.0015	mg/L	0.00018	12.14%
Sb 206.836	23.8	0.0148	mg/L	0.00027	0.0148	mg/L	0.00027	1.86%
Se 196.026	37.1	0.0281	mg/L	0.00172	0.0281	mg/L	0.00172	6.12%
Tl 190.801	-0.5	0.0015	mg/L	0.00289	0.0015	mg/L	0.00289	195.43%
V 292.402	24.4	0.0002	mg/L	0.00019	0.0002	mg/L	0.00019	85.35%
Zn 206.200	153.6	0.0018	mg/L	0.00011	0.0018	mg/L	0.00011	6.04%
Na 330.237	87609.5	44.584	mg/L	0.0511	44.584	mg/L	0.0511	0.11%
Cd 226.502	-46.4	-0.0003	mg/L	0.00003	-0.0003	mg/L	0.00003	9.37%
Ti 334.940	-4563.9	0.0021	mg/L	0.00004	0.0021	mg/L	0.00004	1.70%
Ca 227.546	48387.5	147.66	mg/L	0.533	147.66	mg/L	0.533	0.36%
			-			-		00457

Sample Wt:

Dilution:

Sequence No.: 25

Autosampler Location: 7

Sequence No.: 25 Sample ID: CRI Analyst:

Date Collected: 9/14/05 12:03:54 PM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:52 PM,

9/15/05 am

Mean Data: CRI								
•	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	4917.5	0.0107	mg/L	0.00017	0107.و		0.00017	1.64%
Al 308.215	8418.8	0.2113	mg/L	0.00471	0.2113	mg/L	0.00471	2.23%
- As 188.979	5.8	0.0067	mg/L	0.00115	0.0067	mg/L	0.00115	17.20%
Ba 233.527	16641.3	0.2200	mg/L	0.000,54	0.2200	mg/L	0.00054	0.25%
Be 313.107	34499.2	0.0052	mg/L	0.00002	0.0052	mg/L	0.00002	0.36%
Co 228.616	1225.6	0.0544	mg/L	ø.00027	0.0544	mg/L	0.00027	0.50%
Cr 267.716	1951.6	0.0105	mg/L	0.00006	0.0105	mg/L	0.00006	0.56%
Cu 324.752	9516.5	0.0255	mg/L /	0.00031	0.0255	mg/L	0.00031	1.23%
Fe 273.955	4731.7	0.1087	mg/1	0.00008	0.1087	mg/L	0.00008	0.07%
Mg 279.077	211725.5	5.2076		0.03749	5.2076	mg/L	0.03749	0.72%
Mn 257.610	9566.5	0.0172		0.00011	0.0171	mg/L	0.00011	0.63%
Ni 231.604	2858.8	0.0425		0.00004	0.0425	mg/L	0.00004	0.09%
Pb 220.353	99.5	0103.مر		0.00085	0.0103		0.00085	8.29%
Sb 206.836	95.9	0.0585	mg/L	0.00008	0.0585	mg/L	0.00008	0.13%
Se 196.026	58.2	0.0401	mg/L	0.00024	0.0401	mg/L	0.00024	0.60%
Tl 190.801	22. 9	0.0280	mg/L	0.00103	0.0280	mg/L	0.00103	3.68%
V 292.402	1,61113.7	0.0525	mg/L	0.00011	0.0525	mg/L	0.00011	0.20%
Zn 206.200	2994.5	0.0749	mg/L	0.00009	0.0749	mg/L	0.00009	0.12%
Na 330.237	8690.2	4.4288	mg/L	0.02571	4.4288		0.02571	0.58%
Cd 226.502	785.0	0.0052	mg/L	0.00001	0.0052		0.00001	0.20%
Ti 334.940 🦯	223.0	0.0003	mg/L	0.00002	0.0003		0.00002	6.86%
Ca 227.546	1601.6	4.8822	mg/L	0.02591	4.8822	mg/L	0.02591	0.53%

Sequence No.: 26 Sample ID: CRI Autosampler Location: 7

Date Collected: 9/14/05 12:08:03 PM

Analyst: Sample Wt: Dilution:

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:52 PM,

Mean Data: CRI				•				
•	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	4799.3	0.0104	mg/L	0.00026	0.0104	mg/L	0.00026	2.52%
Al 308.215	8436.5	0.2117	mg/L	0.00648	0.2117	mg/L	0.00648	3.06%
As 188.979	8.9	0.0101	mg/L	0.00127	0.0101	mg/L	0.00127	12.57%
Ba 233.527	16578.3	0.2191	mg/L	0.00034	0.2191		0.00034	0.16%
Be 313.107	34186.7	0.0051	mg/L	0.00000	0.0051	mg/L	0.00000	0.08%
Co 228.616	1219.9	0.0541	mg/L	0.00007	0.0541	mg/L	0.00007	0.13%
Cr 267.716	1921.9	0.0103	mg/L	0.00008	0.0103	mg/L	0.00008	0.80%
Cu 324.752	9370.1	0.0251	mg/L	0.00027	0.0251	mg/L	0.00027	1.08%
Fe 273.955	4702.5	0.1080	mg/L	0.00025	0.1080	mg/L	0.00025	0.23%
Mg 279.077	209349.0	5.1492	mg/L	0.04316	5.1492	mg/L	0.04316	0.84%
Mn 257.610	9468.8	0.0169	mg/L	0.00005	0.0169	mg/L	0.00005	0.30%
Ni 231.604	2859.1	0.0425	mg/L	0.00011	0.0425	mg/L	0.00011	0.25%
Pb 220.353	102.5	0.0106	mg/L	0.00037	0.0106	mg/L	0.00037	3.51%
Sb 206.836	92.5	0.0564	mg/L	0.00122	0.0564	mg/L	0.00122	2.15%
Se 196.026	59.5	0.0410	mg/L	0.00131	0.0410	mg/L	0.00131	3.18%
Tl 190.801	21.1	0.0257	mg/L	0.00247	0.0257	mg/L	0.00247	9.60%
V 292.402	16166.8	0.0527	mg/L	0.00029	0.0527	mg/L	0.00029	0.55%
Zn 206.200	2985.3	0.0747	mg/L	0.00010	0.0747	mg/L	0.00010	0.13%
Na 330.237	8292.7	4.2261	mg/L	0.05307	4.2261	mg/L	0.05307	1.26%
Cd 226.502	793.6	0.0052	mg/L	0.00003	0.0052	mg/L	0.00003	0.50%
Ti 334.940	252.5	0.0004	mg/L	0.00004	0.0004	mg/L	0.00004	10.27%
Ca 227.546	1620.0	4.9383	mg/L	0.02288	4.9383	mg/L	0.02288	0.46%

Method: CLP Page 14 Date: 9/14/05 6:38:55 PM

Sample ID: ICSA

Analyst: Sample Wt: Dilution: Date Collected: 9/14/05 12:12:14 PM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:53 PM,

Mean Data: ICSA	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Ag 328.068	-12637.5	-0.0028	mg/L	0.00079	-0.0028	mg/L	0.00079	28.26%
AĪ 308.215	19091207.0	480.99	mg/L	1.823	480.99	mg/L	1.823	0.38%
As 188.979	-205.5	0.0096	mg/L	0.01199	0.0096	mg/L	0.01199	124.44%
Ba 233.527	1221.7	-0.0169	mg/L	0.00022	-0.0169	mg/L	0.00022	1.33%
Be 313.107	-293.2	-0.0001	mg/L	0.00002	-0.0001	mg/L	0.00002	35.90%
Co 228.616	-206.8	-0.0135	mg/L	0.00149	-0.0135	mg/L	0.00149	10.98%
Cr 267,716	1197.8	0.0064	mg/L	0.00023	0.0064	mg/L	0.00023	3.59%
Cu 324.752	-10322.8	-0.0109	mg/L	0.00023	-0.0109	mg/L	0.00023	2.08%
Fe 273.955	7377849.6	174.37	mg/L	1.241	174.37	mg/L	1.241	0.71%
Mg 279.077	19094435.9	469.67	mg/L	1.401	469.67	mg/L	1.401	0.30%
Mn 257.610	-9032.5	-0.0018	mg/L	0.00074	-0.0018	mg/L	0.00074	41.60%
Ni 231.604	189.6	-0.0058	mg/L	0.00031	-0.0058	mg/L	0.00031	5.38%
Pb 220.353	-477.2	0.0037	mg/L	0.00069	0.0037	mg/L	0.00069	18.51%
Sb 206.836	518.3	0.0462	mg/L	0.03566	0.0462	mg/L	0.03566	77.25%
Se 196.026	231.0	0.0190	mg/L	0.02972	0.0190	mg/L	0.02972	156.26%
-T1 190.801	135.9	0.0263	mg/L	0.04143	0.0263	mg/L	0.04143	157.27%
V 292.402	362.0	0.0045	mg/L	0.00032	0.0045	mg/L	0.00032	7.06%
Zn 206.200	801.8	-0.0137	mg/L	0.00042	-0.0137	mg/L	0.00042	3.04%
Na 330.237	-487.3	-0.4278	mg/L	0.07293	-0.4278	mg/L	0.07293	17.05%
Cd 226.502	68.3	-0.0022	mg/L	0.00034	-0.0022	mg/L	0.00034	15.67%
Ti 334.940	-15510.2	0.0071	mg/L	0.00006	0.0071	mg/L	0.00006	0.82%
Ca 227.546	163419.1	496.70	mg/L	5.241	496.70	mg/L	5.241	1.06%

Sequence No.: 28

Sample ID: ICSAB

Analyst: Sample Wt: Dilution: Autosampler Location: 6

Date Collected: 9/14/05 12:14:59 PM

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:54 FM,

Mean Data: ICSAB							•	
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	80279.1	0.2046	mg/L	0.00140	0.2046	mg/L	0.00140	0.68%
Al 308.215	18937895.3	477.12	mg/L	4.226	477.12	mg/L	4.226	0.89%
As 188.979	-119.5	0.1073	mg/L	0.00782	0.1073	mg/L	0.00782	7.29%
Ba 233.527	37673.8	0.4649	mg/L	0.00321	0.4649	mg/L	0.00321	0.69%
Be 313.107	3154723.4	0.4736	mg/L	0.00336	0.4736	mg/L	0.00336	0.71%
Co 228.616	9682.4	0.4252	mg/L	0.00336	0.4252	mg/L	0.00336	0.79%
Cr 267.716	85989.6	0.4615	mg/L	0.00141	0.4615	mg/L	0.00141	0.31%
Cu 324.752	166766.5	0.4647	mg/L	0.00029	0.4647	mg/L	0.00029	0.06%
Fe 273.955	7373529.5	174.24	mg/L	0.181	174.24	mg/L	0.181	0.10%
Mg 279.077	18898511.8	464.86	mg/L	3.180	464.86	mg/L	3.180	0.68%
Mn 257.610	251994.6	0.4667	mg/L	0.00011	0.4667	mg/L	0.00011	0.02%
Ni 231.604	59478.3	0.8756	mg/L	0.00241	0.8756	mg/L	0.00241	0.28%
Pb 220.353	45.9	0.0576	mg/L	0.00304	0.0576	mg/L	0.00304	5.27%
Sb 206.836	1303.2	0.5263	mg/L	0.01218	0.5263	mg/L	0.01218	2.31%
Se 196.026	262.5	0.0418	mg/L	0.02417	0.0418	mg/L	0.02417	57.77%
Tl 190.801	178.9	0.0797	mg/L	0.04256	0.0797	mg/L	0.04256	53.42%
V 292.402	146303.2	0.4803	mg/L	0.00188	0.4803	mg/L	0.00188	0.39%
Zn 206.200	35098.9	0.8477	mg/L	0.00012	0.8477	mg/L	0.00012	0.01%
Na 330.237	336.7	-0.0021	mg/L	0.00165	-0.0021	mg/L	0.00165	77.00%
Cd 226.502	136960.4	0.9013	mg/L	0.00192	0.9013	mg/L	0.00192	0.21%
Ti 334.940	-15259.6	0.0073	mg/L	0.00002	0.0073	mg/L	0.00002	0.27%
Ca 227.546	163978.7	498.35	mg/L	1.047	498.35	mg/L	1.047	0.21%

Sequence No.: 29 Sample ID: CCV

Analyst: Sample Wt: Autosampler Location: 3

Date Collected: 9/14/05 12:17:49 PM

Sample Prep Volume:

Dilution:

Data Type: Reprocessed on 9/14/05 6:38:55 PM,

Mean Data: CCV								
	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Ag 328.068	584724.6	1.3105	mg/L	0.00637	1.3105	mg/L	0.00637	0.49%
Al 308.215	390832.4	9.7993	mg/L	0.06535	9.7993	mg/L	0.06535	0.67%
As 188.979	456.8	0.5261	mg/L	0.00466	0.5261	mg/L	0.00466	0.89%
Ba 233.527	797149.2	10.539	mg/L	0.0739	10.539	mg/L	0.0739	0.70%
Be 313.107	1728973.8	0.2596	mg/L	0.00180	0.2596	mg/L	0.00180	0.69%
Co 228.616	57549.5	2.5530	mg/L	0.00439	2.5530	mg/L	0.00439	0.17%
Cr 267.716	186894.6	1.0023	mg/L	0.00020	1.0023	mg/L	0.00020	0.02%
Cu 324.752	472931.3	1.2695	mg/L	0.00704	1.2695	mg/L	0.00704	0.55%
Fe 273.955	216883.4	4.9753	mg/L	0.00916	4.9753	mg/L	0.00916	0.18%
Mg 279.077	1034785.1	25.502	mg/L	0.1560	25.502	mg/L	0.1560	0.61%
Mn 257.610	1447784.6	2.5952	mg/L	0.01346	2.5952	mg/L	0.01346	0.52%
Ni 231.604	170093.5	2.5280	mg/L	0.00842	2.5280	mg/L	0.00842	0.33%
Pb 220.353	5048.3	0.5203	mg/L	0.00050	0.5203	mg/L	0.00050	0.10%
Sb 206.836	870. 9	0.5246	mg/L	0.00682	0.5246	mg/L	0.00682	1.30%
Se 196.026	757.9	0.5175	mg/L	0.00135	0.5175	mg/L	0.00135	0.26%
T1 190.801	423.4	0.5138	mg/L	0.00090	0.5138	mg/L	0.00090	0.18%
V 292.402	785761.1	2.5593	mg/L	0.01777	2.5593	mg/L	0.01777	0.69%
Zn 206.200	102058.9	2.5603	mg/L	0.01619	2.5603	mg/L	0.01619	0.63%
Na 330.237	46650.5	23.792	mg/L	0.2042	23.792	mg/L	0.2042	0.86%
Cd 226.502	38451.0	0.2542	mg/L	0.00226	0.2542	mg/L	0.00226	0.89%
Ti 334.940	728.6	0.0013	mg/L	0.00001	0.0013	mg/L	0.00001	0.80%
Ca 227.546	8458.6	25.537	mg/L	0.0120	25.537	mg/L	0.0120	0.05%

Sequence No.: 30 Sample ID: CCB

Analyst: Sample Wt: Dilution: Autosampler Location: 4

Date Collected: 9/14/05 12:22:02 PM

Sample Prep Volume:

lution: Data Type: Reprocessed on 9/14/05 6:38:56 PM,

Mean Data: CCB							
	Mean Corrected		Calib		•	Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD
Ag 328.068	147.4	0.0003	mg/L	0.00050	0.0003	mg/L	0.00050 148.95%
Al 308.215	530.0	0.0134	mg/L	0.00029	0.0134	mg/L	0.00029 2.16%
As 188.979	-3.0	-0.0033	mg/L	0.00039	-0.0033		0.00039 11.56%
Ba 233.527	11.6	0.0002	mg/L	0.00014	0.0002	mg/L	0.00014 93.55%
Be 313.107	61.9	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 94.36%
Co 228.616	7.1	0.0003	mg/L	0.00007	0.0003	mg/L	0.00007 22.63%
Cr 267.716	-51.1	-0.0003	mg/L	0.00031	-0.0003	mg/L	0.00031 113.87%
Cu 324.752	534.2	0.0014	mg/L	0.00054	0.0014	mg/L	0.00054 37.71%
Fe 273.955	272.3	0.0064	mg/L	0.00119	0.0064	mg/L	0.00119 18.52%
Mg 279.077	675.9	0.0166	mg/L	0.00356	0.0166	mg/L	0.00356 21.43%
Mn 257.610	102.5	0.0002	mg/L	0.00006	0.0002	mg/L	0.00006 31.85%
Ni 231.604	2.7	0.0000	mg/L	0.00011	0.0000	mg/L	0.00011 278.37%
Pb 220.353	2.0	0.0002	mg/L	0.00016	0.0002	mg/L	0.00016 76.21%
Sb 206.836	3.2	0.0019	mg/L	0.00035	0.0019	mg/L	0.00035 18.14%
Se 196.026	5.1	0.0035	mg/L	0.00215	0.0035	mg/L	0.00215 61.13%
T1 190.801	1.8	0.0022	mg/L	0.00128	0.0022	mg/L	0.00128 57.58%
V 292.402	-31.9	-0.0001	mg/L	0.00013	-0.0001	mg/L	0.00013 120.78%
Zn 206.200	25.9	0.0006	mg/L	0.00028	0.0006	mg/L	0.00028 43.68%
Na 330.237	-210.5	-0.1073	mg/L	0.10767	-0.1073	mg/L	0.10767 100.33%
Cd 226.502	1.5	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 124.95%
Ti 334.940	42.5	0.0000	mg/L	0.00006	0.0000	mg/L	0.00006 186.12%
Ca 227.546	-4.4	-0.0134	mg/L	0.04186	-0.0134	mg/L	0.04186 312.02%

Sequence No.: 31

Sample ID: D1045-07F,19953

Analyst: 3/o

Dilution:

11045-08F,19953 7

7/15/05 en

Autosampler Location: 53
Date Collected: 9/14/05 12:26:09 PM

• •

Sample Prep Volume:

Data Type: Reprocessed on 9/14/05 6:38:56 PM,

Analysis Begun Plasma On Time: 9/14/2005 8:15:54 AM Start Time: 9/14/2005 1:40:23 PM Technique: ICP Continuous Logged In Analyst: optima3 Spectrometer Model: Optima 4300 DV, S/N 077N3102302Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\NA993-CLP.sif

Batch ID:

Results Data Set: B05091403

Results Library: C:\pe\Administrator\Results\Results.mdb

Method Loaded

Method Name: Na CLP

Method Description: Na CLP

MSF File: IEC File:

Sequence No.: 1 Sample ID: S0

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 1

Date Collected: 9/14/2005 1:40:23 PM

Method Last Saved: 1/6/2005 10:16:27 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: SO Calib Mean Corrected

Analyte Na 589.592

Intensity Std.Dev. RSD Conc. Units 974.2 132.05 13.55% [0.00] mg/L

Conc. Units

Sequence No.: 2 Sample ID: S1

Analyst:

Initial Sample Wt:

Dilution:

Analyte

Autosampler Location: 2 Date Collected: 9/14/2005 1:42:43 PM Data Type: Original

Calib

Initial Sample Vol: Sample Prep Vol:

Mean Data: S1

Mean Corrected

Conc. Units

Intensity Std.Dev. RSD 374037.9 2665.94 0.71% [50] mg/L Na 589.592

Calibration Summary

Analyte Stds. Equation Intercept Slope Curvature Corr. Coef. Reslope
Na 589.592 1 Lin Thru 0 0.0 7481 0.00000 1.000000

Sequence No.: 3 Sample ID: ICV

Analyst: Initial Sample Wt:

Dilution:

Analyte

Autosampler Location: 9 Date Collected: 9/14/2005 1:45:05 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICV

Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 295984.3
 39.566 mg/L
 0.2187
 39.566 mg/L

Std.Dev. RSD 0.2187 0.55%

Sequence No.: 4 Sample ID: ICB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 4 Date Collected: 9/14/2005 1:47:26 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICB								
	Mean Corrected	Conc.	Calib	Std.Dev.	Conc.	Sample Units	Std.Dev.	RSD
nalyte a 589.592	134.5	0.0180	mg/L	0.00049	0.0180	mg/L	0.00049	2.74%
equence No.: 5		:=== == ==:		Autosampler Loc	ation: 5			
ample ID: ICSA				Date Collected: Data Type: Orig		JS 1.49.4	r FP4	
nalyst:				Initial Sample				
nitial Sample Wt:				Sample Prep Vol				
ilution:					- 			
lean Data: ICSA	Mean Corrected		Calib			Sample		
malyte	Intensity	Conc.	Units	Std.Dev.		Units		
a 589.592	Intensity 655.9	0.0877	mg/L			mg/L	0.00425	4.85%
sequence No.: 6		======		Autosampler Loc	ation: 6			
Sample ID: ICSAB				Date Collected:		05 1:52:0:	9 PM	
Analyst:				Data Type: Orig				
Initial Sample Wt: Dilution:				Sample Prep Vol				
D TOGAR								
Mean Data: ICSAB	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.		Units	Std.Dev.	RSD
Na 589.592	462.0		mg/L	0.00080		mg/L	0.00080	
 Sequence No.: 7			# # #####	Autosampler Loc Date Collected:	ation: 3			
Sample ID: CCV				Data Type: Orig		05 1.54.2	, 211	
Analyst:				Initial Sample				
Initial Sample Wt:				Sample Prep Vol				
Dilution:	. her							
				·				
Mean Data: CCV	·							
	Mean Corrected	_	Calib	n- 1 D	Conc.	Sample	Std.Dev.	RSD
Analyte	Intensity	Conc.	Units			mg/L	0.1186	0.45%
Na 589.592	197192.3	26.360		0.1186				
=======================================		======		Autosampler Loc				
				Date Collected	9/14/20	05 1:56:4	8 PM	
Sequence No.: 8 Sample ID: CCB				Date Collected	9/14/20	05 1:56:4	8 PM	
Sample ID: CCB Analyst:				Date Collected Data Type: Orio Initial Sample	: 9/14/20 ginal	05 1:56: 4	8 PM	
Sample ID: CCB Analyst: Initial Sample Wt:				Date Collected Data Type: Orio Initial Sample Sample Prep Vo.	: 9/14/20 ginal Vol: L:	1:56:4		
Sample ID: CCB				Date Collected Data Type: Orio Initial Sample Sample Prep Vo	: 9/14/20 ginal Vol: L:			
Sample ID: CCB Analyst: Initial Sample Wt: Dilution:			Calib	Date Collected Data Type: Originitial Sample Sample Prep Vo.	: 9/14/20 ginal Vol: L:	1:56:4		
Sample ID: CCB Analyst: Initial Sample Wt: Dilution:	Mean Corrected Intensity 119.6	Conc 0.016	Calib . Units) mg/L	Date Collected Data Type: Originitial Sample Sample Prep Vo. Std.Dev. 0.01012	9/14/20 yinal Vol: L: Cone. 0,0160	Sample Units Omyle	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592	Mean Corrected Intensity 119.6	Conc 0.016	Calib . Units) mg/L	Date Collected Data Type: Originated Initial Sample Sample Prep Vo. Std.Dev. 0.01012 Autosampler Lo	2 9/14/20 yinal Vol: L: Conc. 0.0160	Sample Units mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9	Mean Corrected Intensity 119.6	Conc 0.016	Calib . Units) mg/L	Date Collected Data Type: Originitial Sample Sample Prep Vo. Std.Dev. 0.01012 Autosampler Lo Date Collected	Conc. 0.0160	Sample Units mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9 Sample ID: MB-1992 Analyst:	Mean Corrected Intensity 119.6	Conc 0.016	Calib . Units) mg/L	Date Collected Data Type: Originitial Sample Sample Prep Vo. Std.Dev. 0.01012 Autosampler Lo Date Collected Data Type: Ori	Conc. 0.0160	Sample Units mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9 Sample ID: MB-1992 Analyst: Initial Sample Wt	Mean Corrected Intensity 119.6	Conc 0.016	Calib . Units) mg/L	Date Collected Data Type: Originitial Sample Sample Prep Vo. Std.Dev. 0.01012 Autosampler Lo Date Collected Data Type: Ori Initial Sample	Conc. 0.0160 cation: 4: 9/14/20 ginal Vol:	Sample Units mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9 Sample ID: MB-1992 Analyst: Initial Sample Wt Dilution:	Mean Corrected Intensity 119.6	Conc 0.0160	Calib . Units D mg/L	Std.Dev. 0.01012 Autosampler Lo Data Type: Original Sample Prep Vo. Std.Dev. 0.01012 Autosampler Lo Date Collected Data Type: Ori Initial Sample Sample Prep Vo.	Conc. 0.0160 	Sample Units mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9 Sample ID: MB-1992 Analyst: Initial Sample Wt	Mean Corrected Intensity 119.6 27,19927	Conc 0.016	Calib Units mg/L	Std.Dev. 0.01012 Autosampler Lo Date Collected Data Type: Original Sample Prep Vo.	Conc. 0.0160 	Sample Units) mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9 Sample ID: MB-1992 Analyst: Initial Sample Wt Dilution: Mean Data: MB-1992	Mean Corrected Intensity 119.6 27,19927 : 27,19927 Mean Corrected	Conc 0.016	Calib Units mg/L	Std.Dev. 0.01012 Autosampler Lo Data Type: Originatial Sample Prep Vo.	Conc. 0.0160 cation: 4: 9/14/20 ginal Vol: 1:	Sample Units mg/L	Std.Dev. 0.01012	RSD 63.31%
Sample ID: CCB Analyst: Initial Sample Wt: Dilution: Mean Data: CCB Analyte Na 589.592 Sequence No.: 9 Sample ID: MB-1992 Analyst: Initial Sample Wt Dilution:	Mean Corrected Intensity 119.6 27,19927	Conc 0.0160	Calib Units mg/L	Std.Dev. 0.01012 Autosampler Lo Data Type: Originatial Sample Prep Vo.	Conc. 0.0160 cation: 4: 9/14/20 ginal Vol: 1:	Sample Units) mg/L 1005 1:59:0	Std.Dev. 0.01012 	RSD 63.31%

Page Method: Na CLP Autosampler Location: 41 Sequence No.: 10 Date Collected: 9/14/2005 2:01:30 PM Sample ID: LCS-19927,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: LCS-19927,19927 Sample Mean Corrected Calib
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 2.3488 mg/L
 0.02777
 2.3488 mg/L
 0.02777
 1.18%
 Intensity Conc. Units 17570.9 2.3488 mg/L Analyte Na 589.592 Autosampler Location: 42 Sequence No.: 11 Date Collected: 9/14/2005 2:03:51 PM Sample ID: MB-19928,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: MB-19928,19928 9928,19926
Mean Corrected Calle
Conc. Units Sample Std.Dev. Conc. Units 0.03430 -0.0134 mg/L Std.Dev. RSD Intensity Conc. Units
-100.2 -0.0134 mg/L Analyte 0.03430 256.06% Na 589.592 Autosampler Location: 43 Sequence No.: 12 Date Collected: 9/14/2005 2:06:11 PM Sample ID: LCS-19928,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: LCS-19928,19928 Mean Corrected Calib
Intensity Conc. Units
2 162532.5 21.727 mg/L Sample Conc. Units Std.Dev. Std.Dev. Analyte 0.0178 0.08% 21.727 mg/L 0.0178 Na 589.592 Autosampler Location: 44 Sequence No.: 13 Date Collected: 9/14/2005 2:08:32 PM Sample ID: D0993-01D,19928 Data Type: Original Analyst: Initial Sample Vol:

Initial Sample Wt:

Dilution:

Mean Data: D0993-01D,19928

Mean Corrected Analyte

Na 589.592

7.2

Mean Corrected Calib
Intensity Conc. Units Std.Dev.
7.2 0.0010 mg/L 0.01709

Data Type: Original

Initial Sample Vol:

Sample Prep Vol:

Conc. Units 0.0010 mg/L

Sample

Std.Dev. RSD 0.01709 >999.9%

RSD

Autosampler Location: 45 Sequence No.: 14 Date Collected: 9/14/2005 2:10:52 PM

Sample ID: D0993-01DSD,19928

Analyst:

Initial Sample Wt:

Dilution:

Sample Prep Vol:

Mean Data: D0993-01DSD,19928 Mean Corrected Calib
Intensity Conc. Units
37.2 0.0050 mg/L Sample

Analyte Na 589.592

Std.Dev. 0.01248

Conc. Units $0.0050 \, \text{mg/L}$

Std.Dev. RSD 0.01248 250.91%

Sequence No.: 15

Sample ID: D0996-11D,19928

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 46

Date Collected: 9/14/2005 2:13:12 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Na 589.592

Mean Data: D0996-11D,19928 Sample Mean Corrected Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD -27.6 -0.0037 mg/L 0.00853 -0.0037 mg/L 0.00853 231.29% Calib Analyte Na 589.592 Autosampler Location: 47 Sequence No.: 16 Date Collected: 9/14/2005 2:15:33 PM Sample ID: D0996-11DSD,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-11DSD,19928 Sample
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 -181.7
 -0.0243 mg/L
 0.00262
 -0.0243 mg/L
 0.00262
 10.81%
 Çalib Na 589.592 Autosampler Location: 48 Sequence No.: 17 Date Collected: 9/14/2005 2:17:54 PM Sample ID: D1003-01D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: : 86 Mean Data: D1003-01D,19928 Sample Analyte Na 589.592 Autosampler Location: 49 Sequence No.: 18 Date Collected: 9/14/2005 2:20:16 PM Sample ID: D1003-02D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: . / S Mean Data: D1003-02D,19928
 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 Na 589.592
 862920.1
 115.35 mg/L
 0.065
 115.35 mg/L
 RSD Conc. Units Std.Dev. 0.065 0.06% Autosampler Location: 3 Sequence No.: 19 Date Collected: 9/14/2005 2:22:41 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Sample Mean Corrected Analyte Calib Std.Dev. Conc. Units RSD Std.Dev. Conc. Units Intensity Conc. Units 199714.7 26.697 mg/L 0.3685 0.3685 1.38% 26.697 mg/L Na 589.592 Autosampler Location: 4 Sequence No.: 20 Date Collected: 9/14/2005 2:25:02 PM Sample ID: CCB Data Type: Original Initial Sample Vol: Analyst: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB Sample Calib Mean Corrected Intensity Conc. Units Conc. Units Std.Dev. RSD Std.Dev. 0.0088 mg/L Conc. Units 0.02506 285.72% 00464 Analyte

0.02506

Autosampler Location: 50 Sequence No.: 21 Date Collected: 9/14/2005 2:27:23 PM Sample ID: D1003-02DDUP,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______
 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 Na 589.592
 834201.5
 111.51 mg/L
 0.085
 111.51 mg/L
 Mean Data: D1003-02DDUP,19928 Sample Conc. Units Std.Dev. RSD 0.085 0.08% Autosampler Location: 51 Sequence No.: 22 Date Collected: 9/14/2005 2:29:47 PM Sample ID: D1003-02DSD,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D1003-02DSD,19928
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 592
 180801.5
 24.169 mg/L
 0.3189
 24.169 mg/L
 0.3189
 1.324
 Sample Analyte 0.3189 1.32% Na 589.592 Autosampler Location: 52 Sequence No.: 23 Date Collected: 9/14/2005 2:32:08 PM Sample ID: D1003-04D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1003-04D,19928
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 308345.6
 41.218 mg/L
 0.3097
 41.218 mg/L
 0.3097
 0.75%
 0.3097 0.75% Na 589.592 Autosampler Location: 53 Sequence No.: 24 Date Collected: 9/14/2005 2:34:29 PM Sample ID: D1003-05D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1003-05D,19928 Sample
 Mean Corrected
 Calib
 Sample

 10
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 10
 301340.3
 40.282 mg/L
 0.0363
 40.282 mg/L
 0.0363
 RSD 0.0363 0.09% Na 589.592 Autosampler Location: 54 Sequence No.: 25 Date Collected: 9/14/2005 2:36:52 PM Sample ID: D1003-07D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1003-07D,19928 Mean Corrected Calib

e Intensity Conc. Units
.592 819915.7 109.60 mg/L Sample Std.Dev. Conc. Units 1.065 109.60 mg/L RSD Std.Dev.

Analyte

Na 589.592

1.065 0.97%

Sequence No.: 26

Sample ID: D0993-02E,19927

Analyst:

Initial Sample Wt:

Autosampler Location: 55

Date Collected: 9/14/2005 2:39:16 PM

Data Type: Original Initial Sample Vol:

Sample Prep Vol:

______ Mean Data: D0993-02E,19927

Mean Corrected Calib
Intensity Conc. Units
168340.3 22.503 mg/L Mean Corrected

Sample Conc. Units 22.503 mg/L

RSD Std.Dev.

Analyte Na 589.592

Dilution:

Std.Dev. 0.1880

0.1880 0.84%

Sequence No.: 27

Sample ID: D0993-02EDUP,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 56

Date Collected: 9/14/2005 2:41:38 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-02EDUP,19927

Analyte Na 589.592

1.5

Sequence No.: 28 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 2:43:59 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA

Sample

Analyte Na 589.592
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 1070.0
 0.1430 mg/L
 0.02577
 0.1430 mg/L
 0.02577
 18.02%

Sequence No.: 29 Sample ID: ICSAB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 6

Date Collected: 9/14/2005 2:46:21 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 900.8
 0.1204 mg/L
 0.00370
 0.1204 mg/L
 0.00370
 0.1204 mg/L
 0.00370
 3.07%

Sample

Analyte Na 589.592

Sequence No.: 30

Sample ID: CCV Analyst:

Initial Sample Wt: Dilution:

Autosampler Location: 3 Date Collected: 9/14/2005 2:48:39 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Mean Corrected

Calib Intensity Conc. Units Std.Dev. Conc. Units 198197.5 26.494 mg/L 0.1065 26.494 mg/L

Sample Conc. Units

Std.Dev. RSD

Analyte Na 589.592

0.1065 0.40%

Sequence No.: 31 Sample ID: CCB

Analyst: Initial Sample Wt:

Autosampler Location: 4 Date Collected: 9/14/2005 2:51:01 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB

Mean Corrected

Calib

Sample Conc. Units

Std.Dev. RSD 00466

Analyte

Dilution:

Intensity

Conc. Units Std.Dev.

Date: 9/14/2005 3:05:10 PM Page Method: Na CLP 0.00360 9.01% 0.0400 mg/L 298.9 0.0400 mg/L 0.00360 Na 589.592 Autosampler Location: 57 Sequence No.: 32 Date Collected: 9/14/2005 2:53:22 PM Sample ID: D0993-02ESD,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-02ESD,19927 Sample Calib Mean Corrected
 Conc. Units
 Std.Dev.
 Conc. Units

 5.0121 mg/L
 0.00306
 5.0121 mg/L
 Std.Dev. RSD Intensity Conc. Units 37494.1 5.0121 mg/L Conc. Units 0.00306 0.06% Analyte Na 589.592 Autosampler Location: 58 Sequence No.: 33 Date Collected: 9/14/2005 2:55:43 PM Sample ID: D0993-03E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-03E,19927 Sample Mean Corrected Calib RSD Conc. Units Std.Dev. Std.Dev. Conc. Units Intensity Conc. Units 25498.1 3.4085 mg/L Analyte 0.00615 0.18% 0.00615 3.4085 mg/L Na 589.592 Autosampler Location: 59 Sequence No.: 34 Date Collected: 9/14/2005 2:58:04 PM Sample ID: D0993-04E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: _______________ Mean Data: D0993-04E,19927 Mean Corrected Calib Conc. Units Sample Intensity RSD Std.Dev. Conc. Units Std.Dev. 0.02% Analyte 0.00125 0.00125 5.6278 mg/L 5.6278 mg/L 42100.5 Na 589.592 Autosampler Location: 60 Sequence No.: 35 Date Collected: 9/14/2005 3:00:26 PM Sample ID: D0993-05E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-05E,19927 Sample Mean Corrected Calib Cone. Units Std.Dev. Conc. Units RSD Std.Dev. Intensity Conc. Units Std.Dev. 31334.3 4.1887 mg/L 0.11601 0.11601 2.77% Analyte 4.1887 mg/L Na 589.592 Autosampler Location: 61 Sequence No.: 36 Date Collected: 9/14/2005 3:02:48 PM Sample ID: D0993-06E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D0993-06E,19927 Calib Sample

Mean Corrected Analyte Na 589.592

Mean Correction Conc. Unitensity Conc. 2.1467 mg/L Conc. Units

Conc. Units Std.Dev. Conc. Units 0.02475 2.1467 mg/L

Std.Dev. 0.02475 1.15%

Sequence No.: 37

Sample ID: D0993-07E,19927

Analyst:

Autosampler Location: 62 Date Collected: 9/14/2005 3:05:10 PM

Data Type: Original

Date: 9/14/2005 3:18:07 PM 8 Page Method: Na CLP

Initial Sample Wt:

Dilution:

Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-07E,19927

Mean Corrected

Calib Intensity Conc. Units 14552.1 1.9453 mg/L

Std.Dev. Conc. Units 0.00932 1.9453 mg/L

Sample

RSD Std.Dev.

Na 589.592

0.00932 0.48%

Sequence No.: 38

Sample ID: D0993-08E,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 63

Date Collected: 9/14/2005 3:07:31 FM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-08E,19927

Mean Corrected Calib
Intensity Conc. Units
9072.7 1.2128 mg/L

Sample

RSD Std.Dev.

Na 589.592

Std.Dev. Conc. Units
0.00420 1.2128 mg/L

0.00420 0.35%

Sequence No.: 39

Sample ID: D0993-09E,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 64

Date Collected: 9/14/2005 3:09:52 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-09E,19927

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 592
 13265.5
 1.7733 mg/L
 0.00073
 1.7733 mg/L
 Analyte

Conc. Units

RSD Std.Dev.

Na 589.592

0.00073 0.04%

Sequence No.: 40

Sample ID: D0993-10E,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 65

Date Collected: 9/14/2005 3:12:13 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-10E,19927

Analyte

Na 589.592

Calib

Conc. Units

Sample

RSD Std.Dev. 0.01198 0.64%

Sequence No.: 41

Sample ID: D0993-11E,19927

Initial Sample Wt:

Dilution:

Autosampler Location: 66

Date Collected: 9/14/2005 3:14:34 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-11E,19927

Mean Corrected
Analyte Intensity Conc. Units 16696.1 2.2319 mg/L Na 589.592

Calib

Std.Dev. 0.02855

Conc. Units 2.2319 mg/L

Sample

Std.Dev. RSD 0.02855 1.28%

Sequence No.: 42 Sample ID: CCV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 9/14/2005 3:16:55 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Mean Corrected

Calib

Sample

Date: 9/14/2005 3:31:02 PM Page Method: Na CLP Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 26.908 mg/L
 0.5667
 26.908 mg/L
 RSD Std.Dev. Conc. Units 0.5667 2.11% Analyte 201295.9 Na 589.592 Autosampler Location: 4 Sequence No.: 43 Date Collected: 9/14/2005 3:19:17 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB Sample
 Mean Corrected
 Calib
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 11.0
 0.0016 mg/L
 0.00644
 0.0016 mg/L
 0.00644 400.38%
 Analyte Na 589.592 Autosampler Location: 67 Sequence No.: 44 Date Collected: 9/14/2005 3:21:38 PM Sample ID: D0993-12E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D0993-12E,19927 Sample Na 589.592 Autosampler Location: 68 Sequence No.: 45 Date Collected: 9/14/2005 3:23:59 PM Sample ID: D0993-13E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-13E,19927 Mean Corrected Calib
Intensity Conc. Units Std.Dev.
592 7314.0 0.9777 mg/L 0.02383 Sample Conc. Units Std.Dev. RSD 0.9777 mg/L 0.02383 2.44% Analyte 0.9777 mg/L Na 589.592 Autosampler Location: 69 Sequence No.: 46 Date Collected: 9/14/2005 3:26:20 PM Sample ID: D0993-14E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-14E,19927
 Mean Corrected
 Calib
 Sample

 ce
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 0.592
 30543.8
 4.0830 mg/L
 0.02219
 4.0830 mg/L
 0.02219
 0.54%
 Na 589.592 Autosampler Location: 70 Sequence No.: 47 Date Collected: 9/14/2005 3:28:41 PM Sample ID: D0993-15E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-15E,19927

RSD Std.Dev. 0.01298

Sequence No.: 48

Analyte Na 589.592

Sample ID: D0993-17E,19927

Autosampler Location: 71 Date Collected: 9/14/2005 3:31:02 PM

Analyst:

Initial Sample Wt:

Dilution:

Analyst:

Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-17E,19927

Analyte Na 589.592

Sample

Sample

RSD Std.Dev. 0.00967 0.40%

Autosampler Location: 72 Sequence No.: 49

Date Collected: 9/14/2005 3:33:24 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-18E,19927

Sample ID: D0993-18E,19927

Mean Corrected Intensity Conc. Units 12546.9 1.6772 mg/L 12546.9 Na 589.592

 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 1.6772 mg/L
 0.03674
 1.6772 mg/L
 0.03674
 2.19%

 ${\tt Calib}$

Sequence No.: 50

Initial Sample Wt:

Sample ID: D0993-19E,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 73

Date Collected: 9/14/2005 3:35:46 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

. Mean Data: D0993-19E,19927

Analyte Na 589.592

Sequence No.: 51 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 3:38:08 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA
 Mean Corrected
 Calib
 sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 860.2
 0.1150 mg/L
 0.00084
 0.1150 mg/L
 0.00084
 0.73%
 Sample

Analyte Na 589.592

Autosampler Location: 6

Sequence No.: 52 Sample ID: ICSAB Analyst:

Initial Sample Wt: Dilution:

Date Collected: 9/14/2005 3:40:30 PM Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB Sample

Analyte Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 355.2
 0.0475 mg/L
 0.00210
 0.0475 mg/L

Conc. Units

Std.Dev. RSD 0.00210 4.42%

Autosampler Location: 3

Sequence No.: 53 Sample ID: CCV

Analyst: Initial Sample Wt:

Dilution:

Date Collected: 9/14/2005 3:42:48 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV 00470

Date: 9/14/2005 3:56:56 PM Page 11_ Method: Na CLP Sample Mean Corrected Calib Std.Dev. Conc. Units 0.2550 26.982 mg/L Std.Dev. RSD Intensity Conc. Units Conc. Units Analyte 0.2550 0.94% Na 589.592 Autosampler Location: 4 Sequence No.: 54 Date Collected: 9/14/2005 3:45:10 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 17.5
 0.0023 mg/L
 0.01589
 0.0023 mg/L
 Mean Corrected Conc. Units Analyte Std.Dev. RSD 0.01589 677.45% 17.5 Na 589.592 Autosampler Location: 74 Sequence No.: 55 Date Collected: 9/14/2005 3:47:31 PM Sample ID: D0993-20E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-20E,19927 Sample Mean Corrected Calib
Intensity Conc. Units
92 11935.9 1.5955 mg/L Std.Dev. Conc. Units 0.02266 1.5955 mg/L Std.Dev. RSD 0.02266 1.42% Analyte 11935.9 Na 589.592 Autosampler Location: 75 Sequence No.: 56 Date Collected: 9/14/2005 3:49:52 PM Sample ID: MB-19953,19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: MB-19953,19953 Calib Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD

592 -20.3 -0.0027 mg/L 0.00759 -0.0027 mg/L 0.00759 279.22% Sample Analyte Na 589.592 Autosampler Location: 76 Sequence No.: 57 Date Collected: 9/14/2005 3:52:13 PM Sample ID: LCS-19953,19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: LCS-19953,19953 Calib
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 196737.1
 26.299 mg/L
 0.1295
 26.299 mg/L
 Sample Conc. Units Std.Dev. RSD 26.299 mg/L 0.1295 0.49% RSD Analyte Na 589.592 Autosampler Location: 77 Sequence No.: 58 Date Collected: 9/14/2005 3:54:35 PM Sample ID: D1004-01D,19953 Data Type: Original Analyst: Initial Sample Vol:

Dilution:

Initial Sample Wt:

Mean Data: D1004-01D,19953

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 02
 1337.0
 0.1787 mg/L
 0.00490
 0.1787 mg/L
 0.00490
 0.1787 mg/L
 0.00490
 2.74%
 Analyte Na 589.592

Sample Prep Vol:

Autosampler Location: 78

Date: 9/14/2005 4:09:58 PM Page 12 Method: Na CLP

Sample ID: D1004-01DDUP,19953

Analyst: Initial Sample Wt:

Dilution:

Date Collected: 9/14/2005 3:56:56 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1004-01DDUP,19953

Mean Corrected Calib
Intensity Conc. Units
1372.1 0.1834 mg/L

Std.Dev. Conc. Units 0.00516 0.1834 mg/L

Sample

RSD Std.Dev.

Na $5\overline{8}9.592$

0.00516 2.81%

Sequence No.: 60

Sample ID: D1004-01DSD,19953

Analyst:

Initial Sample Wt:

Dilution: ______

Autosampler Location: 79

Date Collected: 9/14/2005 3:59:19 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1004-01DSD,19953

Analyte

Sample

Conc. Units Sta.Dev. 0.00613 20.79%

Na 589.592

Sequence No.: 61

Sample ID: MB-19935,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 80

Date Collected: 9/14/2005 4:01:39 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol: . «·

Mean Data: MB-19935,19953

Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units

393.2 0.0526 mg/L 0.00416 0.0526 mg/L Analyte

Calib

Sample

RSD Std.Dev.

Na 589.592

0.00416 7.91%

Sequence No.: 62

Sample ID: D1045-02C,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 81

Date Collected: 9/14/2005 4:04:00 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-02C,19953

Mean Corrected Calib
Intensity Conc. Units

Analyte Na 589.592

Intensity Conc. Units 92163.2 12.320 mg/L

Std.Dev. 0.1344

Conc. Units 12.320 mg/L

Sample

RSD Std.Dev. 0.1344 1.09%

Sequence No.: 63 Sample ID: D1045-04F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 82

Date Collected: 9/14/2005 4:06:21 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

_____ Mean Data: D1045-04F,19953 Analyte

Mean Corrected

Calib Conc. Units Intensity Conc. Units

Std.Dev. 0.0416

Conc. Units 80.714 mg/L

Sample

Std.Dev. RSD 0.05% 0.0416

Sequence No.: 64

Sample ID: D1045-05F,19953

Analyst:

Na 589.592

Initial Sample Wt:

Dilution:

Autosampler Location: 83

Date Collected: 9/14/2005 4:08:44 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Analyte

Na 589.592

Mean Data: D1045-05F,19953 Sample
 Sample
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 615576.8
 82.288 mg/L
 0.8332
 82.288 mg/L
 0.8332
 1.01%
 Mean Corrected 0.8332 1.01% Na 5B9.592 Autosampler Location: 3 Sequence No.: 65 Date Collected: 9/14/2005 4:11:07 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Calib Sample Mean Corrected Intensity Conc. Units Std.Dev. Conc. Units 201495.0 26.935 mg/L 0.0555 26.935 mg/L Conc. Units Std.Dev. RSD Analyte 0.0555 0.21% Na 589.592 Autosampler Location: 4 Sequence No.: 66 Date Collected: 9/14/2005 4:13:29 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 175.5
 0.0235 mg/L
 0.00273
 0.0235 mg/L
 0.00273
 11.62%
 Analyte Na 589.592 Autosampler Location: 84 Sequence No.: 67 Date Collected: 9/14/2005 4:15:50 PM Sample ID: D1045-06F,19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1045-06F,19953 Sample Analyte Na 589.592 Autosampler Location: 85 Sequence No.: 68 Date Collected: 9/14/2005 4:18:13 PM Sample ID: D1045-07F,19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ... Mean Data: D1045-07F,19953
 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 Na 589.592
 358989.6
 47.988 mg/L
 0.1777
 47.988 mg/L
 Conc. Units Std.Dev. RSD 0.1777 0.37% Autosampler Location: 86 Sequence No.: 69 Date Collected: 9/14/2005 4:20:36 PM Sample ID: D1045-08F19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1045-08F19953 Mean Corrected Sample Calib Conc. Units Conc. Units Std.Dev. Conc. Units 22.875 mg/L 0.0765 22.875 mg/L Std.Dev. RSD Intensity Conc. Units
171125.9 22.875 mg/L

0.0765 0.33%

Sample ID: D1045-09F,19953

Analyst:

Initial Sample Wt:

Dilution:

Analyte

Autosampler Location: 87

Date Collected: 9/14/2005 4:22:57 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

______ Mean Data: D1045-09F,19953

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 592
 46231.6
 6.1801 mg/L
 0.04510
 6.1801 mg/L
 0.04510
 0.73%

Calib

Sample

Na 589.592

Sequence No.: 71 Sample ID: D1045-11H,19953

Analyst:

Initial Sample Wt:

Dilution:

Analyte Na 589.592 Autosampler Location: 88

Date Collected: 9/14/2005 4:25:19 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-11H,19953

Mean Corrected Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 54277.3 7.2556 mg/L 0.12349 7.2556 mg/L 0.12349 1.70%

Calib

Sample

Sequence No.: 72

Sample ID: D1045-11HSD,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 89

Date Collected: 9/14/2005 4:27:41 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-11HSD,19953

-11HSD,19953

Mean Corrected

Intensity

Conc. Units

11021.9

Calib

Std.Dev.

Conc. Units

Std.Dev.

Conc. Units

1.4734 mg/L

0.01097

1.4734 mg/L

0.01097

0.748 Analyte Na 589.592

Sequence No.: 73

Sample ID: MB-19952,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 90

Date Collected: 9/14/2005 4:30:02 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: MB-19952,19952

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 629.8
 0.0842 mg/L
 0.00325
 0.0842 mg/L
 0.00325
 3.86%
 Na 589.592

Sequence No.: 74 Sample ID: LCS-19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 91

Date Collected: 9/14/2005 4:32:24 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: LCS-19952

Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 19106.9
 2.5541 mg/L
 0.01012
 2.5541 mg/L
 0.01012
 0.40%

Sample

Sequence No.: 75 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 4:34:44 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Method: Na CLP Mean Data: ICSA Sample Calib Mean Corrected Conc. Units RSD Intensity Conc. Units Std.Dev. 849.1 0.1135 mg/L 0.00183 Std.Dev. Analyte 0.00183 1.61% 0.1135 mg/L Na 589.592 Autosampler Location: 6 Sequence No.: 76 Date Collected: 9/14/2005 4:37:07 PM Sample ID: ICSAB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: _____ Mean Data: ICSAB Analyte Calib Sample Mean Corrected Std.Dev. RSD Intensity Conc. Units **Std.Dev.** 0.00787 Conc. Units Conc. Units 0.00787 9.83% 0.0800 mg/L Na 589.592 ________ Autosampler Location: 3 Sequence No.: 77 Date Collected: 9/14/2005 4:39:25 FM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Mean Corrected Conc. Units Sample Std.Dev. 0.0040 Std.Dev. RSD Conc. Units Intensity Conc. Units 198359.9 26.516 mg/L Analyte 0.0040 0.02% 26.516 mg/L Na 589.592 ______ Autosampler Location: 4 Sequence No.: 78 Date Collected: 9/14/2005 4:41:46 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB
 Mean Corrected
 Calib

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 165.2
 0.0221 mg/L
 0.01979
 0.0221 mg/L
 0.01979
 0.0221 mg/L
 Sample Analyte Na 589.592 Autosampler Location: 92 Sequence No.: 79 Date Collected: 9/14/2005 4:44:07 PM Sample ID: D0996-01E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-01E,19952 Mean Corrected Calib
Intensity Conc. Units
2 13670.8 1.8275 mg/L Sample
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 0.02397
 1.8275 mg/L
 0.02397
 1.31%
 Conc. Units 1.8275 mg/L Analyte Na 589.592 Autosampler Location: 93 Sequence No.: 80 Date Collected: 9/14/2005 4:46:29 PM Sample ID: D0996-02E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution:

Mean Data: D0996-02E,19952

Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 2
 37742.6
 5.0453 mg/L
 0.00481
 5.0453 mg/L
 0.00481
 Analyte

Sample

RSD 0.10%

Sequence No.: 81

Sample ID: D0996-03E,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 94

Date Collected: 9/14/2005 4:48:49 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0996-03E,19952

Analyte Na 589.592 Mean Corrected
Intensity Conc. Units
10591.0 1.4158 mg/L

Calib

 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 1.4158 mg/L
 0.00181
 1.4158 mg/L
 0.00181
 0.13%

Sample

Sequence No.: 82

Sample ID: D0996-04E,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 95

Date Collected: 9/14/2005 4:51:11 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0996-04E,19952

Mean Corrected Calib
Intensity Conc. Units

Intensity Conc. Units 16012.3 2.1405 mg/L

. ...

Std.Dev. 0.00156 2.1405 mg/L

Sample Conc. Units

RSD Std.Dev. 0.00156 0.07%

Sequence No.: 83

Sample ID: D0996-05E,19952

Analyst:

Analyte

Na 589.592

Initial Sample Wt:

Dilution:

Na 589.592

Autosampler Location: 96

Date Collected: 9/14/2005 4:53:32 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0996-05E,19952

| D0996-05E,19952 | Mean Corrected | Calib | | Intensity | Conc. Units | Std.Dev. | O2 | 28012.1 | 3.7445 mg/L | 0.08164 | Analyte

Sample Conc. Units 3.7445 mg/L

RSD Std.Dev.

0.08164 2.18%

Sequence No.: 84

Sample ID: D0996-05EDUP,19952

Analyst:

Initial Sample Wt:

Dilution:

Analyte

Na 589.592

Autosampler Location: 97

Date Collected: 9/14/2005 4:55:55 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0996-05EDUP,19952

Mean Corrected

Calib Intensity Conc. Units Std.Dev. 25567.6 3.4178 mg/L 0.01672

Conc. Units 3.4178 mg/L

Sample

Std.Dev. RSD 0.01672 0.49%

Sequence No.: 85

Sample ID: D0996-05ESD,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 99

Date Collected: 9/14/2005 4:58:17 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

_____ Mean Data: D0996-05ESD,19952

Mean Corrected Mean Correct
Intensity

5905.2

Calib Conc. Units 0.7894 mg/L

Std.Dev. 0.02198

Conc. Units 0.7894 mg/L

Sample

Std.Dev. RSD 0.02198 2.78%

Sequence No.: 86

Sample ID: D0996-07E,19952

Analyst:

Analyte

Na 589.592

Initial Sample Wt:

Dilution:

Autosampler Location: 101

Date Collected: 9/14/2005 5:00:39 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

0.0463 0.44% 00477

Analyte

Na 589.592

Mean Data: D0996-07E,19952 Mean Corrected
IntensityConc. Units
8.9696 mg/LStd.Dev.
0.03162Conc. Units
8.9696 mg/L RSD Std.Dev. 0.03162 0.35% Na 589.592 Autosampler Location: 3 Sequence No.: 87 Date Collected: 9/14/2005 5:03:02 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Intensity Conc. Units Std.Dev. Conc. Units 198720.2 26.564 mg/L 0.5330 26.564 mg/L Analyte Std.Dev. RSD 0.5330 2.01% Na 589.592 Autosampler Location: 4 Sequence No.: 88 Date Collected: 9/14/2005 5:05:23 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: - Con-Mean Data: CCB | Mean Corrected | Calib | Sample | Intensity | Conc. Units | Std.Dev. | Conc. Units | 2 | -4.5 | -0.0006 mg/L | 0.01621 | -0.0006 mg/L | Conc. Units Std.Dev. RSD -0 0006 mg/L 0.01621 >999.99 Analyte 0.01621 >999.9% Na 589.592 Autosampler Location: 102 Sequence No.: 89 Date Collected: 9/14/2005 5:07:44 PM Sample ID: D0996-08E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-08E,19952 Mean Corrected Calib Sample
Intensity Conc. Units Std.Dev. Conc. Units
92 75024.2 10.029 mg/L 0.1378 10.029 mg/L Conc. Units RSD Std.Dev. Analyte 0.1378 1.37% Na 589.592 Autosampler Location: 103 Sequence No.: 90 Date Collected: 9/14/2005 5:10:07 PM Sample ID: D0996-09E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-09E,19952 Mean Corrected Calib Samole Conc. Units Std.Dev. 17.035 mg/L 0.1875 Intensity Conc. Units 127434.6 17.035 mg/L Conc. Units Std.Dev. RSD Analyte 17.035 mg/L 0.1875 1.10% Na 589.592 Autosampler Location: 104 Sequence No.: 91 Date Collected: 9/14/2005 5:12:29 PM Sample ID: D0996-10E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-10E,19952 Mean Corrected Calib
Intensity Conc. Units
2 78250.9 10.460 mg/L Sample Std.Dev. Conc. Units 0.0463 10.460 mg/L Std.Dev. RSD

Sequence No.: 92 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 5:14:52 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA

Analyte Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 1376.7
 0.1840 mg/L
 0.02792
 0.1840 mg/L
 0.02792
 15.17%

Sequence No.: 93 Sample ID: ICSAB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 6

Date Collected: 9/14/2005 5:17:14 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB

 Mean Data:
 ICSAB

 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 Na 589.592
 350.4
 0.0468 mg/L
 0.01007
 0.0468 mg/L
 0.01007
 21.49%

Sequence No.: 94 Sample ID: CCV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 9/14/2005 5:19:32 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Analyte Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 199851.2
 26.715 mg/L
 0.2794
 26.715 mg/L
 0.2794
 1.05%

Sequence No.: 95 Sample ID: CCB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 4

Date Collected: 9/14/2005 5:21:53 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB

Analyte Na 589.592

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 155.6
 0.0208 mg/L
 0.00898
 0.0208 mg/L
 0.00898
 43.20%

Analysis Begun Plasma On Time: 9/14/2005 8:15:54 AM Start Time: 9/14/2005 5:23:43 PM Technique: ICP Continuous Logged In Analyst: optima3 Spectrometer Model: Optima 4300 DV, S/N 077N3102302Autosampler Model: AS-93plus Sample Information File: C:\pe\Administrator\Sample Information\NA993-CLP.sif Batch ID: Results Data Set: B05091404 Results Library: C:\pe\Administrator\Results\Results.mdb Method Loaded Method Last Saved: 1/6/2005 10:16:44 AM Method Name: K CLP MSF File: IEC File: Method Description: K CLP Autosampler Location: 1 Sequence No.: 1 Date Collected: 9/14/2005 5:23:43 PM Sample ID: SO Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: S0 Calib Mean Corrected Conc. Units Intensity; Std.Dev. RSD Conc. Units 1795.1 62.51 3.48% [0.00] mg/L Analyte к 766.490 Autosampler Location: 2 Sequence No.: 2 Date Collected: 9/14/2005 5:26:06 FM Sample ID: S1 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: S1 Calib Mean Corrected Intensity Std.Dev. RSD 166732.5 667.39 0.40% Conc. Units Analyte [50] mg/L K 766.490 Calibration Summary
 Analyte
 Stds.
 Equation
 Intercept
 Slope
 Curvature
 Corr. Coef.

 K 766.490
 1
 Lin Thru 0
 0.0
 3335
 0.00000
 1.000000
 Reslope Autosampler Location: 9 Sequence No.: 3 Date Collected: 9/14/2005 5:28:26 PM Sample ID: ICV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: ICV
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 125434.0
 37.615 mg/L
 0.5487
 37.615 mg/L
 Calib Conc. Units Std.Dev. RSD Analyte 0.5487 1.46% Autosampler Location: 4 Sequence No.: 4

Sample ID: ICB Analyst:

Initial Sample Wt:

Dilution:

Date Collected: 9/14/2005 5:30:54 PM Data Type: Original Initial Sample Vol:

| Sample | Sample | Std.Dev. | Conc. Units | Std.Dev. | RSD | | -74.2 | -0.0223 mg/L | 0.01239 | -0.0223 mg/L | 0.01239 | 55.64% Sample Mean Corrected Analyte к 766.490 _______________ Autosampler Location: 5 Sequence No.: 5 Date Collected: 9/14/2005 5:33:15 PM Sample ID: ICSA Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: ICSA Calib Sample Mean Corrected
 Mean Corrected
 Callb
 Std.Dev.
 Std.Dev.
 RSD

 Intensity
 Conc. Units
 Std.Dev.
 0.02609
 0.1178 mg/L
 0.02609
 0.1178 mg/L
 0.02609
 22.16%
 Analyte K 766.490 Autosampler Location: 6 Sequence No.: 6 Date Collected: 9/14/2005 5:35:42 PM Sample ID: ICSAB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: ICSAB
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 249.9
 0.0749 mg/L
 0.04210
 0.0749 mg/L
 0.04210
 56.18%
 Analyte K 766.490 Autosampler Location: 3 Sequence No.: 7 Date Collected: 9/14/2005 5:38:00 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Sample
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 82468.0
 24.731 mg/L
 0.1362
 24.731 mg/L
 RSD Std.Dev. 0.1362 0.55% K 766.490 Autosampler Location: 4 Sequence No.: 8 Date Collected: 9/14/2005 5:40:21 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB Mean Corrected Calib Sample
Intensity Conc. Units Std.Dev. Conc. Units
-80.1 -0.0240 mg/L 0.03664 70.0240 mg/L Calib Sample Std.Dev. RSD 0.03664 152.58% к 766.490 Autosampler Location: 40 Sequence No.: 9 Date Collected: 9/14/2005 5:42:42 PM Sample ID: MB-19927,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: MB-19927,19927
 Mean Corrected
 Calib
 Sample

 e
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 490
 -130.3
 -0.0391 mg/L
 0.04890
 -0.0391 mg/L
 0.04890
 -0.0391 mg/L
 0.04890
 125.11%
 Analyte K 766.490

Date: 9/14/2005 5:56:52 PM Page Method: K CLP _______ Autosampler Location: 41 Sequence No.: 10 Date Collected: 9/14/2005 5:45:03 PM Sample ID: LCS-19927,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: LCS-19927,19927 Sample Mean Corrected Calib Conc. Units RSD Intensity Conc. Units Std.Dev. 68871.7 20.653 mg/L 0.0119 Std.Dev. Std.Dev. Analyte 0.0119 0.06% 20.653 mg/L K 766.490 Autosampler Location: 42 Sequence No.: 11 Date Collected: 9/14/2005 5:47:24 PM Sample ID: MB-19928,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Calib
Conc. Units Std.Dev.
0.01652 Mean Data: MB-19928,19928 Sample Mean Corrected Conc. Units Std.Dev. Intensity Analyte 0.01652 17.23% -0,0959 mg/L -319.7 -0.0959 mg/L K 766.490 Autosampler Location: 43 Sequence No.: 12 Date Collected: 9/14/2005 5:49:48 PM Sample ID: LCS-19928,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: LCS-19928,19928 Mean Corrected Calib Sample Sample Std.Dev. Conc. Units Intensity Conc. Unite

Analyte к 766.490

0.1988 ____ 20.482 mg/L

Std.Dev. RSD 0.1988 0.97%

Sequence No.: 13

Sample ID: D0993-01D,19928

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 44

Date Collected: 9/14/2005 5:52:08 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-01D,19928

: D0993-01D,19928

Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD

-275.4 -0.0826 mg/L 0.03409 -0.0826 mg/L 0.03409 41.28% Analyte K 766,490

. :

Sequence No.: 14

Sample ID: D0993-01DSD,19928

Analyst:

Initial Sample Wt:

Dilution:

K 766.490

Autosampler Location: 45

Date Collected: 9/14/2005 5:54:32 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-01DSD,19928

 Mean Corrected
 Calib

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 -334.8
 -0.1004 mg/L
 0.00035
 -0.1004 mg/L
 0.00035
 0.35%
 Analyte

Sequence No.: 15

Sample ID: D0996-11D,19928

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 46

Date Collected: 9/14/2005 5:56:52 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Analyte

к 766.490

Mean Data: D0996-11D,19928 Calib Sample Mean Corrected Intensity Conc. Units
-303.8 -0.0911 mg/L Conc. Units Std.Dev. RSD Std.Dev. Analyte 0.04713 51.73% 0.04713 -303.8 -0.0911 mg/LK 766.490 Autosampler Location: 47 Sequence No.: 16 Date Collected: 9/14/2005 5:59:13 PM Sample ID: D0996-11DSD,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: 11DSD,19928

Mean Corrected Carry

T-tensity Conc. Units Std.Dev.

A A738 mg/L 0.01464 Mean Data: D0996-11DSD,19928 Sample Std.Dev. RSD Conc. Units Analyte 0.01464 19.83% -0.0738 mg/LK 766.490 Autosampler Location: 48 Sequence No.: 17 Date Collected: 9/14/2005 6:01:34 PM Sample ID: D1003-01D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D1003-01D,19928 Mean Corrected Calib
Intensity Conc. Units
-233.1 -0.0699 mg/L Sample Std.Dev. RSD Std.Dev. Conc. Units Analyte 0.00436 -0.0699 mg/L 0.00436 6.23% K 766.490 Autosampler Location: 49 Sequence No.: 18 Date Collected: 9/14/2005 6:03:56 PM Sample ID: D1003-02D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D1003-02D,19928 Mean Corrected Calib Sample Conc. Units Std.Dev. RSD Intensity Conc. Units 17230.5 5.1671 mg/L Std.Dev. Analyte 0.01591 0.31% 5.1671 mg/L 0.01591 17230.5 K 766.490 Autosampler Location: 3 Sequence No.: 19 Date Collected: 9/14/2005 6:06:18 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Mean Corrected Sample Calib Mean College Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD Analyte 0.50% 25.159 mg/L 0.1252 -25.159 mg/L 0.1252 83897.8 K 766.490 Autosampler Location: 4 Sequence No.: 20 Date Collected: 9/14/2005 6:08:38 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB Sample Calib Mean Corrected Intensity Conc. Units Conc. Units Std.Dev. RSD Std.Dev.

0.03998

-0.0358 mg/L

-119.5

-0.0358 mg/L

0.03998 111.56%

00482

Autosampler Location: 50 Sequence No.: 21 Date Collected: 9/14/2005 6:10:59 PM Sample ID: D1003-02DDUP,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1003-02DDUP,19928 Sample Calib Mean Corrected Intensity Conc. Units Std.Dev. Conc. Units 16858.4 5.0555 mg/L 0.05445 5.0555 mg/L Conc. Units Std.Dev. RSD 0.05445 1.08% K 766.490 Autosampler Location: 51 Sequence No.: 22 Date Collected: 9/14/2005 6:13:22 PM Sample ID: D1003-02DSD,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1003-02DSD,19928 Sample
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 3352.0
 1.0052 mg/L
 0.01238
 1.0052 mg/L
 0.01238
 Calib RSD 0.01238 1.23% к 766.490 Autosampler Location: 52 Sequence No.: 23 Date Collected: 9/14/2005 6:15:42 PM Sample ID: D1003-04D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1003-04D,19928 Sample Analyte K 766.490 Autosampler Location: 53 Sequence No.: 24 Date Collected: 9/14/2005 6:18:03 PM Sample ID: D1003-05D,19928 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ... Mean Data: D1003-05D,19928 Analyte K 766.490 Autosampler Location: 54 Sequence No.: 25 Date Collected: 9/14/2005 6:20:23 PM Sample ID: D1003-07D,19928 Data Type: Original Analyst: Analyst: Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Dilution: ______ Mean Corrected Calib
Conc. Units Std.Dev. Mean Data: D1003-07D,19928 Sample RSD Conc. Units Std.Dev. Analyte 14.125 mg/L 0.0233 0.16% K 766.490

Sequence No.: 26

Sample ID: D0993-02E,19927

Analyst:

Initial Sample Wt:

Autosampler Location: 55

Date Collected: 9/14/2005 6:22:43 PM

Data Type: Original Initial Sample Vol:

00483

Date: 9/14/2005 6:35:37 PM Page Method: K CLP

Dilution:

Sample Prep Vol:

Mean Data: D0993-02E,19927

K 766.490

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 0
 21938.6
 6.5790 mg/L
 0.01586
 6.5790 mg/L

Std.Dev. RSD 0.01586 0.24%

Sequence No.: 27

Sample ID: D0993-02EDUP,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 56

Date Collected: 9/14/2005 6:25:04 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-02EDUP,19927

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 20662.5
 6.1963 mg/L
 0.05360
 6.1963 mg/L
 0.05360
 0.86%

Analyte K 766.490

Sequence No.: 28 Sample ID: ICSA Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 6:27:24 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA

Analyte K 766.490

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 419.6
 0.1258 mg/L
 0.02560
 0.1258 mg/L
 0.02560
 20.34%

_____ Sequence No.: 29 Sample ID: ICSAB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 6

Date Collected: 9/14/2005 6:29:46 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB

Analyte K 766.490 Mean Corrected

Calib

Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD 236.9 0.0711 mg/L , 0.01431 0.0711 mg/L 0.01431 20.14%

Sequence No.: 30 Sample ID: CCV

Analvst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 9/14/2005 6:32:04 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Analyte K 766.490

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 82255.5
 24.667 mg/L
 0.2351
 24.667 mg/L
 0.2351

RSD 0.2351 0.95%

Sequence No.: 31 Sample ID: CCB

Analyst: Initial Sample Wt:

Dilution:

Autosampler Location: 4

Date Collected: 9/14/2005 6:34:25 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCB

Mean Corrected

Calib Conc. Units

Sample

Std.Dev. RSD 00484

Analyte

Intensity

Std.Dev. Conc. Units

Date: 9/14/2005 6:48:33 PM Method: K CLP Page

-28.3 -0.0085 mg/L

Sequence No.: 32

Sample ID: D0993-02ESD,19927

Analyst:

K 766.490

Initial Sample Wt:

Dilution:

Autosampler Location: 57

Date Collected: 9/14/2005 6:36:46 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-02ESD,19927

 Mean Data:
 D0993-UZESD,1392/
 Calib
 Sample

 Mean Corrected
 Conc. Units
 Std.Dev.
 Conc. Units

 K 766.490
 4836.7
 1.4504 mg/L
 0.00641
 1.4504 mg/L

0.02009 -0.0085 mg/L 0.02009 236.56%

RSD Std.Dev. 0.00641 0.44%

Autosampler Location: 58 Sequence No.: 33

Date Collected: 9/14/2005 6:39:07 FM Sample ID: D0993-03E,19927 Analyst:

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-03E,19927

Mean Corrected Calib

Intensity Conc. Units Std.Dev. Conc. Units 22705.8 6.8090 mg/L 0.07439 6.8090 mg/L Analyte K 766.490

Sample Conc. Units

RSD Std.Dev. 0.07439 1.09%

Sequence No.: 34

Initial Sample Wt:

Dilution:

Sample ID: D0993-04E,19927

Analyst:

Initial Sample Wt:

Dilution:

Analyte

K 766.490

Autosampler Location: 59

Date Collected: 9/14/2005 6:41:28 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

0.08131

Mean Data: D0993-04E,19927

Mean Corrected Calib
Intensity Conc. Units
23209.9 6.9602 mg/L

Sample Std.Dev.

Conc. Units

6.9602 mg/L

Std.Dev. RSD 0.08131 1.17%

Sequence No.: 35

Sample ID: D0993-05E,19927 Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 60

Date Collected: 9/14/2005 6:43:49 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-05E,19927

Calib Mean Corrected Intensity Analyte

Sample

Std.Dev. RSD

Conc. Units Std.Dev. Conc. Units 8.1352 mg/L 0.07018 8.1352 mg/L 27128.2 0.07018 0.86% K 766.490

Sequence No.: 36

Sample ID: D0993-06E,19927 Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 61

Date Collected: 9/14/2005 6:46:11 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

ELT.

Mean Data: D0993-06E,19927

Calib Mean Corrected Sample Std.Dev. Conc. Units 0.1518 12.103 mg/L Intensity Conc. Units 40360.6 12.103 mg/L Conc. Units Std.Dev. RSD 0.1518 1.25% Analyte K 766.490

Sequence No.: 37

Sample ID: D0993-07E,19927

Analyst:

Date Collected: 9/14/2005 6:48:33 PM

Data Type: Original

Autosampler Location: 62

00485

RSD

RSD

8 Page Method: K CLP Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-07E,19927 Calib Sample Mean Corrected Conc. Units Std.Dev. 10.527 mg/L 0.1073 Conc. Units Std.Dev. Intensity Conc. Units 35102.2 10.527 mg/L Analyte 0.1073 1.02% 10.527 mg/L K 766.490 Autosampler Location: 63 Sequence No.: 38 Date Collected: 9/14/2005 6:50:54 PM Sample ID: D0993-08E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D0993-08E,19927 Sample Calib Mean Corrected Conc. Units Std.Dev. Std.Dev. Intensity Conc. Units Std.Dev. 20240.5 6.0697 mg/L 0.02204 Conc. Units Analyte 0.02204 0.36% 6.0697 mg/L K 766.490 Autosampler Location: 64 Sequence No.: 39 Date Collected: 9/14/2005 6:53:15 PM Sample ID: D0993-09E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-09E,19927 Sample Calib Mean Corrected Intensity Conc. Units Std.Dev. RSD Std.Dev.... 0.03430 Conc. Units Analyte 0.03430 0.45% 7.6297 mg/L 7.6297 mg/L 25442.3 K 766.490 Autosampler Location: 65 Sequence No.: 40 Date Collected: 9/14/2005 6:55:36 PM Sample ID: D0993-10E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-10E,19927 Mean Corrected Calib
Intensity Conc. Units
75223.6 22.558 mg/L Sample Conc. Units Std.Dev. Std.Dev. Analyte 0.2099 0.2099 22.558 mg/L к 766.490 Autosampler Location: 66 Sequence No.: 41 Date Collected: 9/14/2005 6:57:57 PM Sample ID: D0993-11E,19927 Data Type: Original

Analyst:

Initial Sample Wt:

Dilution:

Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-11E,19927

Calib

Analyte K 766.490

Calib

Std.Dev. RSD 0.1330 0.90%

RSD

0.93%

Autosampler Location: 3 Sequence No.: 42 Date Collected: 9/14/2005 7:00:18 PM

Sample ID: CCV Analyst:

Initial Sample Wt:

Mean Data: CCV

Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Sample

Mean Corrected

Date: 9/14/2005 7:14:24 PM Page Method: K CLP Intensity RSD Conc. Units Std.Dev. Std.Dev. Conc. Units o.0169 Analyte 0.0169 0.07% 24.511 mg/L 81735.9 24.511 mg/LK 766.490 Autosampler Location: 4 Sequence No.: 43 Date Collected: 9/14/2005 7:02:39 FM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB Sample Calib Mean Corrected Conc. Units Std.Dev. RSD Conc. Units Std.Dev. Intensity Conc. Units
-307.6 -0.0923 mg/L 0.03050 33.06% 0.03050 -0.0923 mg/L K 766.490 Autosampler Location: 67 Sequence No.: 44 Date Collected: 9/14/2005 7:05:00 PM Sample ID: D0993-12E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-12E,19927 Mean Corrected Calib
Intensity Conc. Units Std.Dev.
0 23401.6 7.0177 mg/L 0.05008 Sample Conc. Units Std.Dev. RSD Analyte 0.05008 0.71% 0.05008 7.0177 mg/L K 766.490 Autosampler Location: 68 Sequence No.: 45 Date Collected: 9/14/2005 7:07:21 PM Sample ID: D0993-13E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-13E,19927
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 22347.5
 6.7016 mg/L
 0.01804
 6.7016 mg/L
 Sample Conc. Units Std.Dev. RSD Analyte 0.01804 0.27% K 766.490 Autosampler Location: 69 Sequence No.: 46 Date Collected: 9/14/2005 7:09:42 PM Sample ID: D0993-14E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-14E,19927 Mean Corrected Callb
Intensity Conc. Units Std.Dev. Sample RSD Conc. Units Std.Dev. Analyte 10.117 mg/L 1.93% 0.1948 K 766.490 Autosampler Location: 70 Sequence No.: 47 Date Collected: 9/14/2005 7:12:03 PM Sample ID: D0993-15E,19927 Data Type: Original Analvst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0993-15E,19927

Calib

Intensity Conc. Units
15724.4 4.7155 mg/L 0.00414 Analyte K 766.490

Mean Corrected

Autosampler Location: 71

Sample ID: D0993-17E,19927

Sequence No.: 48

Date Collected: 9/14/2005 7:14:24 PM

Sample

Conc. Units

4.7155 mg/L

RSD

Std.Dev.

0.00414

Analyst:

Analyte

K 766.490

Initial Sample Wt:

Dilution:

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-17E,19927

| Mean Corrected | Calib | | Intensity | Conc. Units | Std.Dev. | 34499.1 | 10.346 mg/L | 0.0470 |

Calib

Conc. Units 10.346 mg/L

Sample

Std.Dev. RSD 0.0470 0.45%

Sequence No.: 49

Sample ID: D0993-18E,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 72

Date Collected: 9/14/2005 7:16:46 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0993-18E,19927

Mean Corrected Analyte K 766.490

Calib Intensity Conc. Units Std.Dev. Conc. Units 80385.9 24.106 mg/L 0.3112 24.106 mg/L

Sample Conc. Units

Std.Dev. 0.3112 1.29%

Sequence No.: 50

Sample ID: D0993-19E,19927

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 73

Date Collected: 9/14/2005 7:19:09 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

_____ Mean Data: D0993-19E,19927

19E,1992/
Mean Corrected Calib
Intensity Conc. Units Analyte K 766.490

Intensity Conc. Units 25816.8 7.7420 mg/L

Sample
 Std.Dev.
 Conc. Units

 0.08023
 7.7420 mg/L
 Conc. Units

Std.Dev. RSD 0.08023 1.04%

Sequence No.: 51 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 7:21:31 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA

Analyt**e** К 766.490 Mean Corrected Calib
Intensity Conc. Units Std.Dev. Conc. Units
144.4 0.0433 mg/L 0.01293 0.0433 mg/L

RSD Std.Dev. 0.01293 29.85%

Sequence No.: 52 Sample ID: ICSAB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 6

Date Collected: 9/14/2005 7:23:53 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB

к 766.490

Mean Corrected Calib Sample
Intensity Conc. Units Std.Dev. Conc. Units
224.6 0.0674 mg/L 0.03003 0.0674 mg/L

Calib

Std.Dev. Conc. Units

Sample

Std.Dev. RSD 0.03003 44.59%

Sequence No.: 53 Sample ID: CCV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 9/14/2005 7:26:11 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Date: 9/14/2005 7:40:17 PM Page Method: K CLP Calib Sample Mean Corrected Conc. Units Std.Dev. RSD
 Std.Dev.
 Conc. Units

 0.0187
 24.876 mg/L
 Conc. Units Intensity 0.0187 0.08% Analyte 24.876 mg/L 82953.1 K 766.490 Autosampler Location: 4 Sequence No.: 54 Date Collected: 9/14/2005 7:28:32 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB Calib Sample Mean Corrected Std.Dev. RSD 0.00128 2.96% Conc. Units Std.Dev. Conc. Units
-0.0434 mg/L 0.00128 -0.0434 mg/L Conc. Units Intensity Analyte -144.7 к 766.490 Autosampler Location: 74 Sequence No.: 55 Date Collected: 9/14/2005 7:30:53 PM Sample ID: D0993-20E,19927 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Calib Mean Data: D0993-20E,19927 Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD

20365.5 6.1072 mg/L 0.14431 6.1072 mg/L 0.14431 2.36% к 766.490 Autosampler Location: 75 Sequence No.: 56 Date Collected: 9/14/2005 7:33:14 PM Sample ID: MB-19953,19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Mean Data: MB-19953,19953 a: MB-19953,19953

Mean Corrected Calib Std.Dev. Conc. Units Std.Dev. RSD

Intensity Conc. Units Std.Dev. -305.4 -0.0916 mg/L 0.05222 -0.0916 mg/L 0.05222 57.01% Analyte K 766.490 Autosampler Location: 76 Sequence No.: 57 Date Collected: 9/14/2005 7:35:35 PM Sample ID: LCS-19953,19953 Data Type: Original Analyst: Analyst: Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Dilution: ______ Mean Data: LCS-19953,19953

: LCS-19953,19953

Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD

83286.5 24.976 mg/L 0.1230 24.976 mg/L 0.1230 0.49% Analyte K 766.490

Autosampler Location: 77

Sequence No.: 58 Date Collected: 9/14/2005 7:37:56 PM

Sample ID: D1004-01D,19953

Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution:

Mean Data: D1004-01D,19953

Sample Analyte K 766.490

Autosampler Location: 78 Sequence No.: 59

Sample ID: D1004-01DDUP,19953 Analyst: Initial Sample Wt: Dilution:

Date Collected: 9/14/2005 7:40:17 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1004-01DDUP,19953

Sample

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 -295.1
 -0.0885 mg/L
 0.00285
 -0.0885 mg/L
 0.00285
 3.22%

Sequence No.: 60

Sample ID: D1004-01DSD,19953

Analyst:

Analyte к 766.490

Initial Sample Wt:

Dilution:

Autosampler Location: 79

Date Collected: 9/14/2005 7:42:39 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1004-01DSD,19953

-01DSD,19955
Mean Corrected Calib
Intensity Conc. Units Std.Dev. Conc. Units
-262.6 -0.0787 mg/L 0.00503 -0.0787 mg/L Analyte K 766.490

Conc. Units Std.Dev. 0.00503 6.39%

Sequence No.: 61

Sample ID: MB-19935,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 80

Date Collected: 9/14/2005 7:45:00 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: MB-19935,19953

Mean Corrected Calib

Analyte Intensity Conc. Units
K 766.490 -389.4 -0.1168 mg/L

Conc. Units Std.Dev. Conc. Units -0.1168 mg/L 0.02388 -0.1168 mg/L

Calib

Calib

Conc. Units

Sample

RSD Std.Dev. 0.02388 20.45%

Sequence No.: 62

Sample ID: D1045-02C,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 81

Date Collected: 9/14/2005 7:47:21 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-02C,19953

Mean Corrected
Analyte к 766.490

Intensity Conc. Units Std.Dev. Conc. Units 17294.7 5.1864 mg/L 0.09721 5.1864 mg/L

Cone. Units

Sample

RSD Std.Dev. 0.09721 1.87%

Sequence No.: 63

Sample ID: D1045-04F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 82

Date Collected: 9/14/2005 7:49:42 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-04F,19953

Mean Corrected Callo Analyte K 766.490

Intensity Conc. Units 21859.2 6.5552 mg/L

Std.Dev.

Conc. Units 0.11114 6.5552 mg/L

Sample

Std.Dev. RSD 1.70% 0.11114

Sequence No.: 64

Sample ID: D1045-05F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 83

Date Collected: 9/14/2005 7:52:03 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Page 13 Method: K CLP Mean Data: D1045-05F,19953
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 22097.8
 6.6267 mg/L
 0.04044
 6.6267 mg/L
 0.04044
 0.61%
 Analyte к 766.490 Autosampler Location: 3 Sequence No.: 65 Date Collected: 9/14/2005 7:54:25 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Sample Calib Mean Corrected Intensity Conc. Units Std.Dev. Conc. Units 82413.2 24.714 mg/L 0.2098 24.714 mg/L Std.Dev. RSD 0.2098 0.85% Analyte K 766.490 Autosampler Location: 4 Sequence No.: 66 Date Collected: 9/14/2005 7:56:46 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 -198.0
 -0.0594 mg/L
 0.00281
 -0.0594 mg/L
 0.00281
 4.73
 Sample Analyte K 766.490 Autosampler Location: 84 Sequence No.: 67 Date Collected: 9/14/2005 7:59:07 PM Sample ID: D1045-06F,19953 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D1045-06F,19953 к 766.490

Autosampler Location: 85 Sequence No.: 68

Date Collected: 9/14/2005 8:01:29 PM Sample ID: D1045-07F,19953

Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt:

Sample Prep Vol: Dilution:

Mean Data: D1045-07F,19953

Sample Conc. Units

 Mata: D1045-07F,19953
 Sample

 Mean Corrected
 Calib
 Std.Dev.
 Conc. Units

 490
 166014.9
 49.785 mg/L
 0.5300
 49.785 mg/L

 0.5300 1.06% K 766.490

Autosampler Location: 86 Sequence No.: 69

Date Collected: 9/14/2005 8:03:51 PM Sample ID: D1045-08F19953

Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt:

Sample Prep Vol: Dilution:

Mean Data: D1045-08F19953 Mean Corrected Calib

Totensity Conc. Units Sample Conc. Units Std.Dev. Std.Dev.

Intensity Conc. Units 41895.5 12.564 mg/L 0.0168 0.13% Analyte 0.0168 12.564 mg/L K 766.490

RSD

4.73%

Sequence No.: 70

Sample ID: D1045-09F,19953

Analvst:

Initial Sample Wt:

Dilution:

Analyte K 766.490 Autosampler Location: 87

Date Collected: 9/14/2005 8:06:12 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-09F,19953

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 10683.2
 3.2037 mg/L
 0.08880
 3.2037 mg/L
 0.08880
 2.77%

Calib

Sample

Sequence No.: 71

Sample ID: D1045-11H,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 88

Date Collected: 9/14/2005 8:08:34 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045-11H,19953

к 766.490

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 7556 3
 2.2660 mg/L
 0.02755
 2.2660 mg/L
 0.02755
 1.22%

Sequence No.: 72

Sample ID: D1045-11HSD, 19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 89

Date Collected: 9/14/2005 8:10:55 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

______ Mean Data: D1045-11HSD,19953

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 0
 1359.6
 0.4077 mg/L
 0.00553
 0.4077 mg/L
 0.00553
 0.4077 mg/L
 0.00553
 1.36%

Analyte K 766.490

Sequence No.: 73

Sample ID: MB-19952,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 90

Date Collected: 9/14/2005 8:13:16 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: MB-19952,19952

Calib
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 -128.5
 -0.0385 mg/L
 0.00193
 -0.0385 mg/L

Sample Conc. Units

Std.Dev. RSD

к 766.490

0.00193 5.02%

Sequence No.: 74 Sample ID: LCS-19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 91

Date Collected: 9/14/2005 8:15:37 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: LCS-19952

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.

 73557.3
 22.058 mg/L
 0.1215
 22.058 mg/L
 0.1215

Analyte K 766.490

0.1215 0.55%

Sequence No.: 75 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/14/2005 8:17:59 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

RSD

Method: K CLP Mean Data: ICSA Sample Calib Mean Corrected Intensity Conc. Units Std.Dev.
1254.8 0.3763 mg/L 0.01785 Conc. Units 0.3763 mg/L Std.Dev. RSD 0.01785 4.74% Analyte K 766.490 Autosampler Location: 6 Sequence No.: 76 Date Collected: 9/14/2005 8:20:23 PM Sample ID: ICSAB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: ICSAB Sample
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 572.3
 0.1716 mg/L
 0.01065
 0.1716 mg/L
 Mean Corrected Conc. Units Std.Dev. RSD Analyte 0.01065 6.21% 572.3 K 766.490 Autosampler Location: 3 Sequence No.: 77 Date Collected: 9/14/2005 8:22:43 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ._____ Mean Data: CCV Sample Mean Corrected Calib
Intensity Conc. Units Std.Dev.
83176.9 24.943 mg/L 0.0494 Calib Std.Dev. Conc. Units
0.0494 24.943 mg/L Std.Dev. RSD 0.0494 0.20% Analyte K 766.490 Autosampler Location: 4 Sequence No.: 78 Date Collected: 9/14/2005 8:25:04 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution:
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 19.2
 0.0058 mg/L
 0.02937
 0.0058 mg/L
 0.02937 510.26%
 Mean Data: CCB Analyte K 766.490 Autosampler Location: 92 Sequence No.: 79 Date Collected: 9/14/2005 8:27:25 PM Sample ID: D0996-01E,19952 Data Type: Original Analyst: Analyst: Initial Sample Wt: Initial Sample Vol: Sample Prep Vol: Dilution: : D0996-01E,19952

Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev. RSD

57424.3 17.220 mg/L 0.2376 17.220 mg/L 0.2376 1.38% Mean Data: D0996-01E,19952 Analyte к 766.490 Autosampler Location: 93 Sequence No.: 80 Date Collected: 9/14/2005 8:29:47 PM Sample ID: D0996-02E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution:

_____ Mean Data: D0996-02E,19952

Analyte

к 766.490

Mean Corrected

Calib Intensity Conc. Units
29283.4 8.7815 mg/L Conc. Units

Std.Dev. 0.03717 Sample

 Conc. Units
 Std.Dev.
 RSD

 8.7815 mg/L
 0.03717
 0.42%

00493

Autosampler Location: 94 Sequence No.: 81 Date Collected: 9/14/2005 8:32:08 PM Sample ID: D0996-03E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution:

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 30
 21372.0
 6.4091 mg/L
 0.09185
 6.4091 mg/L
 Std.Dev. RSD Analyte 0.09185 1.43% K 766.490

Sequence No.: 82

Sample ID: D0996-04E,19952

Mean Data: D0996-03E,19952

Analyst:

Initial Sample Wt:

Dilution:

Sample Prep Vol:

Mean Data: D0996-04E,19952 Calib Sample

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 17084.6
 5.1233 mg/L
 0.00140
 5.1233 mg/L
 0.00140
 0.03%
 Analyte K 766.490

Autosampler Location: 96

Sequence No.: 83

Sample ID: D0996-05E,19952

Analyst:

Initial Sample Wt:

Dilution:

Date Collected: 9/14/2005 8:36:51 PM Data Type: Original

Date Collected: 9/14/2005 8:34:30 PM

Initial Sample Vol: Sample Prep Vol:

Autosampler Location: 95

Data Type: Original

Initial Sample Vol:

Mean Data: D0996-05E,19952 Sample

Mean Corrected Calib
Intensity Conc. Units Std.Dev.
42028.0 12.603 mg/L 0.1782 Std.Dev. RSD Conc. Units Analyte

12.603 mg/L 0.1782 1.41% K 766.490

Sequence No.: 84

Sample ID: D0996-05EDUP,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 97 Date Collected: 9/14/2005 8:39:14 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0996-05EDUP,19952

 Mean Corrected
 Calib
 Sample

 Analyte
 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 K 766.490
 46281.0
 13.879 mg/L
 0.2060
 13.879 mg/L
 Std.Dev. 0.2060 1.48%

Sequence No.: 85

Sample ID: D0996-05ESD,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 99 Date Collected: 9/14/2005 8:41:36 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D0996-05ESD,19952

Mean Corrected Calib
Intensity Conc. Units Std.Dev. Conc. Units
2.5416 mg/L
0.01453 2.5416 mg/L Conc. Units Std.Dev. RSD 0.01453 0.57%

к 766.490

Sequence No.: 86

Sample ID: D0996-07E,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 101

Date Collected: 9/14/2005 8:43:58 PM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

.

00494

RSD

0.04667 0.49% 00495

Analyte

K 766.490

Mean Data: D0996-07E,19952 Sample
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 0
 26951.7
 8.0823 mg/L
 0.02419
 8.0823 mg/L
 Calib Std.Dev. RSD 0.02419 0.30% Analyte К 766.490 Autosampler Location: 3 Sequence No.: 87 Date Collected: 9/14/2005 B:46:21 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Sample Mean Corrected Calib Sample

Intensity Conc. Units Std.Dev. Conc. Units Std.Dev.

83240.5 24.962 mg/L 0.1839 24.962 mg/L 0.1839 Calib 0.1839 0.74% Analyte K 766.490 Autosampler Location: 4 Sequence No.: 88 Date Collected: 9/14/2005 8:48:41 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCB
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 -341.0
 -0.1023 mg/L
 0.01435
 -0.1023 mg/L
 0.01435
 14.03%
 к 766.490 Autosampler Location: 102 Sequence No.: 89 Date Collected: 9/14/2005 8:51:02 PM Sample ID: D0996-08E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-08E,19952
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units

 490
 23463.0
 7.0361 mg/L
 0.06553
 7.0361 mg/L
 Sample Conc. Units Std.Dev. 0.06553 0.93% Analyte K 766.490 Autosampler Location: 103 Sequence No.: 90 Date Collected: 9/14/2005 8:53:25 PM Sample ID: D0996-09E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: D0996-09E,19952 Mean Corrected Calib
Intensity Conc. Units Std.Dev.
31522.5 9.4530 mg/L 0.06287 Sample Conc. Units Std.Dev. RSD Analyte 0.06287 0.67% 9.4530 mg/L K 766.490 Autosampler Location: 104 Sequence No.: 91 Date Collected: 9/14/2005 8:55:47 PM Sample ID: D0996-10E,19952 Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: ______ Mean Data: D0996-10E,19952 Mean Corrected Sample Calib Std.Dev. RSD Intensity Conc. Units
31849.5 9.5511 mg/L

Conc. Units

Autosampler Location: 5 Sequence No.: 92 Date Collected: 9/14/2005 8:58:10 PM Sample ID: ICSA Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: ICSA
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 244.1
 0.0732 mg/L
 0.08097
 0.0732 mg/L
 0.08097
 0.0732 mg/L
 0.08097
 110.64%
 Analyte K 766.490 Autosampler Location: 6 Sequence No.: 93 Date Collected: 9/14/2005 9:00:32 PM Sample ID: ICSAB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: ICSAB Sample
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 309.2
 0.0927 mg/L
 0.00296
 0.0927 mg/L
 0.00296
 3.19%
 Analyte K 766.490 Autosampler Location: 3 Sequence No.: 94 Date Collected: 9/14/2005 9:02:51 PM Sample ID: CCV Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt: Sample Prep Vol: Dilution: Mean Data: CCV Sample Calib
 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 82107.4
 24.622 mg/L
 0.1875
 24.622 mg/L
 0.1875
 0.769
 Analyte 0.1875 0.76% K 766.490 Autosampler Location: 4 Sequence No.: 95 Date Collected: 9/14/2005 9:05:12 PM Sample ID: CCB Data Type: Original Analyst: Initial Sample Vol: Initial Sample Wt:

Dilution:

Sample Prep Vol:

Mean Data: CCB

Analyte к 766.490

 Mean Corrected
 Calib
 Sample

 Intensity
 Conc. Units
 Std.Dev.
 Conc. Units
 Std.Dev.
 RSD

 5.0
 0.0015 mg/L
 0.00233
 0.0015 mg/L
 0.00233 155.43%

Analysis Begun

Start Time: 9/15/2005 9:22:42 AM Plasma On Time: 9/15/2005 8:12:31 AM

Logged In Analyst: optima3 Technique: ICP Continuous
Spectrometer Model: Optima 4300 DV, S/N 077N3102302Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\CLP.sif

Batch ID:

Results Data Set: B05091501

Results Library: C:\pe\Administrator\Results\Results.mdb

Method Loaded

Method Name: CLP Method Last Saved: 9/13/2005 8:34:07 AM

IEC File: B05033102X.iec MSF File:

Method Description: working method for all elements

Sequence No.: 1 Sample ID: S0

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 1

Date Collected: 9/15/2005 9:22:43 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: SO Calib Mean Corrected Intensity Std.Dev. Conc. Units RSD 123.58 1.44% [0.00] mg/L Analyte Al 308.215 8563.1 0.81 10.12% [0.00] mg/L 8.0 As 188.979 [0.00] mg/L 65.0 0.15 0.22% Cr 267.716 24.37 1.08% 17.19 5.10% 33.00 2.23% 20.77 4.88% [0.00] mg/LCu 324.752 2262.5 337.4 [0.00] mg/LFe 273.955 1481.1 425.5 [0.00] mg/L Mg 279.077 [0.00] mg/LMn 257.610 3.22 50.18% 1.84 22.60% [0.00] mg/L -6.4 Ni 231.604 [0.00] mg/L -8.2 Tl 190.801 14.22 10.07% [0.00] mg/L 65.18 32.38% [0.00] mg/L 5.56 37.40% [0.00] mg/L 141.2 V 292.402 -201.3 Ti 334.940 Ca 227.546 14.9

Sequence No.: 2 Sample ID: S1

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 2

Date Collected: 9/15/2005 9:25:48 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: S1				4	a-125
	Mean Corrected			_	Calib
Analyte	Intensity	Std.Dev.	RSD		Units
Al 308.215	754520.5	1135.78	0.15%		mg/L
As 188.979	2641.7	31.97	1.21%	[1]	mg/L
Cr 267.716	130798.7	476.29	0.36%	[2]	mg/L
Cu 324.752	604176.7	1759.21	0.29%	[2.5]	mg/L
Fe 273.955	556445.7	759.13	0.14%	[10]	mg/L
Mg 279.077	1841608.4	2513.95	0.14%	[50]	mg/L
Mn 257 610	3497828.3	3107.96	0.09%	[5]	mg/L
Ni 231.604	159707.1	225.77	0.14%	[5]	mg/L
T1 190.801	2286.0	48.98	2.14%	[1]	mg/L
V 292.402	600254.7	1436.01	0.24%	[5]	mg/L
Ti 334.940	696412.0	1646.01	0.24%	[1]	mg/L
Ca 227.546	19314.9	44.43	0.23%	[50]	mg/L
Ca 227.546	19314.9	44.30	0.200	[00]	9, -

Calibration Summary

Analyte Stds. Equation Intercept Slope Curvature Corr. Coef. Reslope 00497

Date: 9/15/2005 9:35:55 AM 2 Page Method: CLP 37730 0.00000 1.000000 Lin Thru 0 0.0 Al 308.215 1 1.000000 2642 0.00000 0.0 Lin Thru 0 1 As 188.979 1.000000 0.00000 0.0 65400 Lin Thru O Cr 267.716 1.000000 241700 0.00000 0.0 Lin Thru 0 Cu 324.752 1 55640 0.00000 1.000000 Lin Thru 0 0.0 Fe 273.955 1 0.00000 1.000000 36830 Lin Thru 0 0.0 Mg 279.077 36830 699600 31940 1 1.000000 0.00000 0.0 Lin Thru O 1 0.00000 Mn 257.610 31940 1.000000 0.0 Lin Thru 0 Ni 231.604 1 2286 0.00000 1.000000 Lin Thru 0 Tl 190.801 0.0 1 1.000000 120100 0.00000 Lin Thru 0 Lin Thru 0 1 1 1 0.0 V 292.402 0.00000 1.000000 0.0 696400 Ti 334.940 Ca 227.546 0.00000 1.000000 386.3 Lin Thru O 0.0

Sequence No.: 3 Sample ID: ICV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 9 Date Collected: 9/15/2005 9:28:23 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICV	Mean Corrected	_	Calib	Ghd Dan	Cong	Sample Units	Std.Dev.	RSD
Analyte	Intensity		Units	Std.Dev.	15.329		0.0307	0.20%
Al 308.215	574801.4	15.329	-	0.0307		- '.	0.01084	1.42%
As 188.979	2021.8	0.7643		0.01084	0.7643	-	0.00213	0.14%
Cr 267.716	100695.9	1.5401	mg/L	0.00213	1.5401	J .		0.148
Cu 324.752	462600.6	1.9152	mg/L	0.00712	1.9152	-	0.00712	
Fe 273.955	433581.2	7.6741	mg/L	0.01768	7.6741	-	0.01768	0.23%
Mg 279.077	1409887.3	38.286	mq/L	0.0576	38.286	mg/L	0.0576	0.15%
Mn 257.610	2690871.5	3.8457	mg/L	0.00473	3.8457	mg/L	0.00473	0.12%
	122311.4	3.8293	-	0.00042	3.8293	mg/L	0.00042	0.01%
Ni 231.604	1723.9	0.7513	-	0.00115	0.7513	mg/L	0.00115	0.15%
Tl 190.801	462081.9	3.8532	-	0.00215	3.8532	mg/L	0.00215	0.06%
V 292.402	* *	0.0018	-	0.00030	0.0018	-	0.00030	16.90%
Ti 334.940	804.1 14950.6	38.041	_	0.3235	38.041	-	0.3235	0.85%

Sequence No.: 4 Sample ID: ICB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 4 Date Collected: 9/15/2005 9:30:57 AM

> Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICB Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077	Mean Corrected Intensity -221.9 0.7 -10.0 83.2 177.7 -72.7	Calib Conc. Units -0.0059 mg/L 0.0003 mg/L -0.0002 mg/L 0.0003 mg/L 0.0032 mg/L -0.0020 mg/L	Std.Dev. 0.00029 0.00061 0.00014 0.00000 0.00021 0.00322	Sample Conc. Units -0.0059 mg/L 0.0003 mg/L -0.0002 mg/L 0.0003 mg/L 0.0003 mg/L -0.0020 mg/L	Std.Dev. RSD 0.00029 4.87% 0.00061 215.74% 0.00014 89.25% 0.00000 0.88% 0.00021 6.56% 0.00322 163.07%
Mn 257.610 Ni 231.604 Tl 190.801 V 292.402 Ti 334.940 Ca 227.546	-94.9 2.5 9.6 47.8 56.7 4.5	-0.0001 mg/L 0.0001 mg/L 0.0042 mg/L 0.0004 mg/L 0.0001 mg/L 0.0115 mg/L	0.00003 0.00018 0.00162 0.00020 0.00004 0.03498	-0.0001 mg/L 0.0001 mg/L 0.0042 mg/L 0.0004 mg/L 0.0001 mg/L 0.0115 mg/L	0.00018 232.05% 0.00162 38.78% 0.00020 49.70% 0.00004 53.25% 0.03498 303.08%

Sequence No.: 5 Sample ID: CRI

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 7 Date Collected: 9/15/2005 9:34:03 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CRI

Mean Corrected

Calib

Sample

Conc. Units 0.5392 mg/L 0.0088 mg/L 0.0112 mg/L 0.0308 mg/L 0.1196 mg/L 5.5871 mg/L 0.0205 mg/L 0.0458 mg/L 0.0284 mg/L 0.0284 mg/L 0.0555 mg/L 0.0003 mg/L 5.3137 mg/L	Std.Dev. 0.00436 0.00089 0.00005 0.00002 0.00031 0.02473 0.00022 0.00007 0.00091 0.00008 0.002262	Conc. Units 0.5392 mg/L 0.0088 mg/L 0.0112 mg/L 0.0308 mg/L 0.1196 mg/L 5.5871 mg/L 0.0205 mg/L 0.0458 mg/L 0.0284 mg/L 0.0284 mg/L 0.0555 mg/L 0.0003 mg/L 5.3137 mg/L	Std.Dev. 0.00436 0.00089 0.00005 0.00002 0.00031 0.02473 0.00022 0.00007 0.00091 0.00008 0.00008	RSD 0.81% 10.04% 0.43% 0.26% 0.26% 0.44% 1.08% 0.14% 3.19% 0.14% 23.20% 0.43%
	0.5392 mg/L 0.0088 mg/L 0.0112 mg/L 0.0308 mg/L 0.1196 mg/L 5.5871 mg/L 0.0205 mg/L 0.0458 mg/L 0.0284 mg/L 0.0555 mg/L 0.0003 mg/L	0.5392 mg/L 0.00436 0.0088 mg/L 0.00089 0.0112 mg/L 0.00005 0.0308 mg/L 0.00002 0.1196 mg/L 0.00031 5.5871 mg/L 0.02473 0.0205 mg/L 0.00022 0.0458 mg/L 0.00007 0.0284 mg/L 0.00091 0.0555 mg/L 0.00008 0.0003 mg/L 0.00008	0.5392 mg/L 0.00436 0.5392 mg/L 0.0088 mg/L 0.0088 mg/L 0.00089 0.0088 mg/L 0.0112 mg/L 0.0112 mg/L 0.0308 mg/L 0.00005 0.0112 mg/L 0.1196 mg/L 0.00031 0.1196 mg/L 0.1196 mg/L 0.02473 5.5871 mg/L 0.0205 mg/L 0.00022 0.0205 mg/L 0.0458 mg/L 0.0007 0.0458 mg/L 0.0284 mg/L 0.00091 0.0284 mg/L 0.0555 mg/L 0.0008 0.0555 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L 0.0003 mg/L	O.5392 mg/L

Sequence No.: 6 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5 Date Collected: 9/15/2005 9:37:08 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA Sample Calib Mean Corrected Intensity Conc. 0.12 16677290.7 442.06 mg/L -2.7 0.0005 mg/L Conc. Units Std.Dev. RSD Std.Dev. Conc. Units 0.889 0.20% Analyte 0.889 0.00167 0.00003 0.00003 442.06 mg/L Al 308.215 0.00167 345.40% $0.0005~{
m mg/L}$ -2.7 As 188.979 -0.0006 mg/L -0.0131 mg/L 171.04 mg/L 0.00003 5.33% -0.0006 mg/L -27.5 Cr 267.716 0.00033 2.49% -4832.0 -0.0131 mg/L Cu 324.752 0.186 0.11% 171.04 mg/L 0.186 0.342 9517332.1 16188079.3 Fe 273.955 0.08% 0.342 439.39 mg/L 439.39 mg/L Mg 279.077 2.71% 0.00012 0.00012 -0.0043 mg/L -0.0043 mg/L Mn 257.610 Saturated outside survey window (code 6) 1.03% 0.00014 0.00014 0.00143 0.0133 mg/LNi 231.604 112.9 0.0133 mg/L Ti 190.801 -21.8 0.0171 mg/L 0.0171 mg/L 0.00143 8.37% Tl 190.801 3.35% 0.00022 0.0065 mg/L 0.00022 0.0065 mg/L 782.1 V 292.402 1.76% 0.00006 $0.0035 \, \text{mg/L}$ 0.00006 0.0035 mg/L -6879.8 Ti 334.940 1.628 0.35% 469.72 mg/L 1.628 469.72 mg/L 183289.4 Ca 227.546

Sequence No.: 7 Sample ID: ICSAB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 6 Date Collected: 9/15/2005 9:40:27 AM Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 Tl 190.801 V 292.402 Ti 334.940 Ca 227.546	Mean Corrected Intensity 16462631.1 239.1 29206.8 111273.8 9415712.5 15970990.0 320152.2 26778.4 163.5 55317.2 -6792.5 183398.2	Conc. U 436.38 m 0.0918 m 0.4465 m 0.4674 m 169.20 m 433.50 m 0.4473 m 0.8479 m 0.0972 m 0.4619 m 0.0035 m 469.98 m	ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Std.Dev. 0.580 0.00004 0.01116 0.01279 0.284 0.828 0.01007 0.01950 0.00564 0.00834 0.00018 7.561	Conc. 436.38 0.0918 0.4465 0.4674 169.20 433.50 0.4473 0.8479 0.0972 0.4619 0.0035	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	\$td.Dev. 0.580 0.00004 0.01116 0.01279 0.284 0.828 0.01007 0.01950 0.00564 0.00834 0.00018 7.561	RSD 0.13% 0.04% 2.50% 2.74% 0.17% 0.19% 2.25% 2.30% 5.80% 1.81% 5.22% 1.61%
--	---	---	--	--	---	---	---	---

Sequence No.: 8 Sample ID: CCV Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3 Date Collected: 9/15/2005 9:43:42 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV	Mean Corrected		Calib			Sample		
3	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Analyte	388460.3	10.359		0.0417	10.359	mg/L	0.0417	0.40%
Al 308.215	1353.6	0.5117	-	0.00068	0.5117	ma/L	0.00068	0.13%
As 188.979		1.0409		0.00335	1.0409	-	0.00335	0.32%
Cr 267.716	68057.3	1.2802	_	0.00463	1.2802	-	0.00463	0.36%
Cu 324.752	309222.5		-	0.00405	5.2004		0.01305	0.25%
Fe 273.955	293771.8	5.2004	-			-	0.0990	0.38%
Mg 279.077	952579.1	25.868		0.0990	25.868	•	0.01463	0.56%
Mn 257.610	1815648.8	2.5948	mg/L	0.01463	2.5948	_		•
Ni 231.604	82920.1	2.5960	mg/L	0.00806	2.5960		0.00806	0.31%
T1 190.801	1174.3	0.5119	mg/L	0.00212	0.5119	mg/L	0.00212	0.41%
V 292.402	309750.9	2.5829	ma/L	0.01154	2.5829	mg/L	0.01154	0.45%
	324.7	0.0009		0.00010	0.0009	mq/L	0.00010	10.70%
Ti 334.940 Ca 227.546	10057.3	25.589	_	0.0125	25.589	mg/L	0.0125	0.05%

Sequence No.: 9 Sample ID: CCB Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 4 Date Collected: 9/15/2005 9:46:51 AM
Data Type: Original
Initial Sample Vol:

Sample Prep Vol:

Mean Data: CCB	Mean Corrected		Calib			Sample	
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev. RSD
Al 308,215	223.2	0.0059	mg/L	0.01155	0.0059	mg/L	0.01155 195.18%
As 188.979	-1.1	-0.0004	mq/L	0.00034	-0.0004	mg/L	0.00034 81.27%
Cr 267.716	-0.8	0.0000	-	0.00005	0.0000	mg/L	0.00005 370.96%
	-37.3	-0.0002	-	0.00025	-0.0002	mg/L	0.00025 162.86%
Cu 324.752 Fe 273.955	283.5	0.0051		0.00112	0.0051	mq/L	0.00112 22.08%
	527.3	0.0143	-	0.02233	0.0143	mg/L	0.02233 156.05%
Mg 279.077	-133.9	-0.0002		0.00001	-0.0002	mg/L	0.00001 3.74%
Mn 257.610	7.0	0.0002	-	0.00040	0.0002	mg/L	0.00040 182.53%
Ni 231.604	4.6	0.0020	_	0.00186	0.0020	mg/L	0.00186 92.39%
T1 190.801	-6.4	-0.0001		0.00000	-0.0001	ma/L	0.00000 2.09%
V 292.402		0.0000	-	0.00014	0.0000	_	0.00014 652,54%
Ti 334.940 Ca 227.546	-15.3 13.4	0.0346	-	0.01309	0.0346	-	0.01309 37.87%

Analysis Begun

Start Time: 9/15/2005 9:56:06 AM Logged In Analyst: optima3

Plasma On Time: 9/15/2005 8:12:31 AM

Technique: ICP Continuous

Spectrometer Model: Optima 4300 DV, S/N 077N3102302Autosampler Model: AS-93plus Sample Information File: C:\pe\Administrator\Sample Information\NA993-CLP.sif

Batch ID:

Results Data Set: B05091501

Results Library: C:\pe\Administrator\Results\Results.mdb

Sequence No.: 1

Sample ID: MB-19953,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 75

Date Collected: 9/15/2005 9:56:06 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: MB-199	53,19953		Calib			Sample		
Analyte A1 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 Tl 190.801 V 292.402	Mean Corrected Intensity 230.3 -2.4 12.9 179.1 3264.5 -135.3 516.6 3.5 -1.0 13.6 101.6	0.0061 -0.0009 0.0002 0.0007 0.0587 -0.0037 0.0007	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00216 0.00141 0.00003 0.00042 0.00115 0.00147 0.00006 0.00013 0.00095 0.00015	Conc. 0.0061 -0.0009 0.0007 0.0587 -0.0037 0.0007 0.0001 -0.0004 0.0001	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00095	35.34% 153.51% 13.94% 56.17% 1.96% 39.56% 7.74% 117.40% 233.12% 127.22%
Ti 334.940 Ca 227.546	17.8	0.0446	-	0.00659	0.0446	mg/L	0.00659	14.79%

Sequence No.: 2

Sample ID: LCS-19953,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler, Location: 76

Date Collected: 9/15/2005 9:59:16 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 Tl 190.801 V 292.402	1793198.8 81947.0 1155.7 303614.1	Conc. 10.173 0.5033 1.0113 1.2729 5.1748 25.661 2.5627 2.5656 0.5038 2.5317	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.0437 0.00023 0.00287 0.00337 0.02737 0.1377 0.00233 0.00608 0.00377 0.0158	10.173 0.5033 1.0113 1.2729 5.1748 25.661 2.5627 2.5656 0.5038 2.5317	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.0437 0.00023 0.00287 0.00337 0.02737 0.1377 0.00233 0.00608 0.00377 0.01158	RSD 0.43% 0.05% 0.26% 0.53% 0.53% 0.09% 0.75% 0.46% 56.27%
V 292.402 Ti 334.940 Ca 227.546	-40.9	2.5317 0.0004 25.092	mg/L	0.01158 0.00020 0.0527	0.0004 25.092	mg/L	0.00020	56.27%

Sequence No.: 3

Sample ID: D1004-01D,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 77

Date Collected: 9/15/2005 10:02:25 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1004-01D,19953

Mean Corrected

Calib

Sample

Analyte	Intensity	Conc. Units	Std.Dev.	Conc. Units	Std.Dev. RS	
Al 308.215	265.1	0.0070 mg/L	0.00069	$0.0070 \mathrm{mg/L}$	0.0000	
As 188.979	-3.5	-0.0013 mg/L	0.00115	$-0.0013~\mathrm{mg/L}$	0.00115 86.4	
Cr 267.716	24.8	0.0004 mg/L	0.00019	0.0004 mg/L	0.00019 50.8	
	247.0	0.0010 mg/L	0.00026	0.0010 mg/L	0.00026 25.7	7₹
Cu 324.752	3105.4	0.0558 mg/L	0.00243	0.0558 mg/L	0.00243 4.3	15%
Fe 273.955	495.1	0.0134 mg/L	0.00430	0.0134 mg/L	0.00430 32.0)7 8
Mg 279.077	•••	0.00134 mg/L	0.00029	0.0012 mg/L	0.00029 24.8	35%
Mn 257.610	815.9		0.00029	0.0004 mg/L	0.00026 59.6	30%
Ni 231.604	13.8	0.0004 mg/L	0.00144	0.0015 mg/L	0.00144 97.3	198
Tl 190.801	3.4	0.0015 mg/L	• • •	0.0015 mg/L	0.00024 40.5	
V 292.402	70.4	0.0006 mg/L	0.00024		0.00016 80.4	
Ti 334.940	132.5	0.0002 mg/L	0.00016	0.0002~mg/L		
Ca 227.546	95.4	0.2454 mg/L	0.03867	0.2454 mg/L	0.03867 15.7	0.8
=======================================	#5#=========					

Sequence No.: 4

Sample ID: D1004-01DDUP,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 78

Date Collected: 9/15/2005 10:05:32 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: I	D1004-01DDUP,19953 Mean Corrected		Calib		_	Sample		202
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.		Std.Dev	
Al 308.215	290.2	0.0077	mg/L	0.00506	0.0077	mg/L	0.00506	
As 188.979	-2.6	-0.0010	ma/L	0.00138	-0.0010	mg/L	0.00138	142.57%
	31.7	0.0005	-	0.00010	0.0005	mg/L	0.00010	21.21%
Cr 267.716	208.4	0.0009	_	0.00022	0.0009	mg/L	0.00022	24.54%
Cu 324.752		0.4037	-	0.00310	0.4037	_	0.00310	0.77%
Fe 273.955	22461.9		-	0.00510	0.0069	-	0.00667	
Mg 279.077	265.8	0.0069		0.00007	0.0028	-	0.00002	
Mn 257.610	1949.4	0.0028		•		_	0.00002	
Ni 231.604	10.1	0.0003	-	0.00021	0.0003	-		
т1 190.801	-0.1	0.0000	mg/L	0.00270	0.0000	- ·		>999.9%
V 292.402	-59.9	-0.0005	mg/L	0.00002	-0.0005	-	0.00002	
Ti 334.940	43.8	0.0001	mg/L	0.00006	0.0001	_	0.00006	
Ca 227.546	89.5	0.2208	mg/L	0.01379	0.2208	mg/L	0.01379	6.25%

Sequence No.: 5

Sample ID: D1004-01DMS,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 120

Date Collected: 9/15/2005 10:08:39 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: I	D1004-01DMS,19953 Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Analyce Al 308.215	92857.3	2.4752		0.03259	2.4752	mg/L	0.03259	1.32%
	113.0	0.0427		0.00213	0.0427	mg/L	0.00213	4.99%
As 188.979	15775.5	0.2413		0.00458	0.2413	mq/L	0.00458	1.90%
Cr 267.716	74335.4	0.3077	-	0.00298	0.3077		0.00298	0.97%
Cu 324.752		1.2725	-	0.01639	1.2725		0.01639	1.29%
Fe 273.955	71781.7	-0.0161	-	0.00295	-0.0161	_	0.00295	18.29%
Mg 279.077	-640.3		- .	0.00255	0.6378	_	0.00451	0.71%
Mn 257.610	446167.2	0.6378		0.00431	0.6320	-	0.01585	2.51%
Ni 231.604	20185.1	0.6320	- 1	0.01383	0.0520	- ·	0.00395	6.80%
Tl 190.801	133.4	0.0581	-	•	-	-	0.01086	1.90%
V 292.402	68673.8	0.5727		0.01086	0.5727	-	0.00002	12.81%
Ti 334.940	137.4	0.0001	• .	0.00002	0.0001		+	
Ca 227.546	174.4	0.3476	mg/L	0.03613	0.3476	mg/L	0.03613	10.39%

Sequence No.: 6

Sample ID: D1004-01DSD,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 79

Date Collected: 9/15/2005 10:11:50 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1004-01DSD, 19953

	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev. RSD	
Al 308.215	140.4	0.0037	mg/L	0.00145	0.0037	mg/L	0.00145 38.96	g.
As 188.979	-3.1	-0.0012	mg/L	0.00231	-0.0012	mg/L	0.00231 196.80	8
Cr 267.716	1.0	0.0000	mg/L	0.00001	0.0000	mg/L	0.00001 80.15	윰
Cu 324.752	101.3	0.0004	mg/L	0.00004	0.0004	mg/L	0.00004 10.44	8
Fe 273.955	701.8	0.0126	mg/L	0.00029	0.0126	mg/L	0.00029 2.27	ક્ર
Mg 279.077	-103.6	-0.0028	mq/L	0.00231	-0.0028	mg/L	0.00231 81.82	ê
Mn 257.610	447.6	0.0006	mq/L	0.00004	0.0006	mg/L	0.00004 5.86	8
Ni 231.604	3.3	0.0001	mg/L	0.00014	0.0001	mg/L	0.00014 129.45	B
T1 190.801	5.5	0.0024	ma/L	0.00135	0.0024	mg/L	0.00135 56.27	8
V 292.402	-47.6	-0.0004		0.00009	-0.0004	mg/L	0.00009 23.67	욯
Ti 334.940	46.1	0.0001	-	0.00004	0.0001	mq/L	0.00004 55.05	ક
Ca 227.546	5.9	0.0150	-	0.05205	0.0150	mg/L	0.05205 348.09	용

Sequence No.: 7 Sample ID: MB-19935,19953 Analyst:

Initial Sample Wt:

Dilution: MB-19135, 8.W

Autosampler Location: 80

Date Collected: 9/15/2005 10:14:57 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: MB-1	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Al 308.215	1052.6	0.0279	mg/L	0.00040	0.0279	mg/L	0.00040	1.45%
As 188.979	0.5	0.0002	mg/L	0.00103	0.0002	mg/L	0.00103	494.32%
Cr 267.716	8.3	0.0001	mg/L	0.00006	0.0001	mg/L	0.00006	43.90%
Cu 324.752	163.6	0.0007	mq/L	0.0002B	0.0007	mg/L	0.00028	40.74%
Fe 273.955	1692.9	0.0304	mq/L	0.00127	0.0304	mg/L	0.00127	4.17%
Mg 279.077	102.4	0.0028	mg/L	0.00733	0.0028	mg/L	0.00733	265.26%
Mn 257.610	592.6	0.0008	mq/L	0.00000	0.0008	mg/L	0.00000	0.27%
Ni 231.604	11.1	0.0003	mq/L	0.00009	0.0003	mg/L	0.00009	25.32%
Tl 190.801	-1.4	-0.0006	mg/L	0.00064	-0.0006	mg/L	0.00064	103.79%
V 292.402	22.3	0.0002	mg/L	0.00045	0.0002	mg/L	0.00045	242.11%
Ti 334.940	622.4	0.0009	mg/L	0.00010	0.0009	mg/L	0.00010	10.84%
Ca 227.546	34.6	0.0888	ma/L	0.10802	0.0888	mg/L	0.10802	121.68%

Sequence No.: 8

Sample ID: D1045-02C,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 81

Date Collected: 9/15/2005 10:18:04 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D104!	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Al 308.215	2976.3	0.0789	mg/L	0.00015	0.0789	mg/L	0.00015	0.19%
As 188.979	2.2	0.0008	mg/L	0.00080	0.0008	mg/L	0.00080	101.88%
Cr 267.716	23.9	0.0002	mq/L	0.00006	0.0002	mg/L	0.00006	28.61%
Cu 324.752	2056.9	0.0091	mg/L	0.00001	0.0091	mg/L	0.00001	0.06%
Fe 273.955	559215.3	10.050	mg/L	0.0744	10.050	mg/L	0.0744	0.74%
Mg 279.077	809428.9	21.970	mg/L	0.1944	21.970	mg/L	0.1944	0.88%
Mn 257.610	171488.0	0.2446	mg/L	0.00033	0.2446	mg/L	0.00033	0.14%
Ni 231.604	28.2	0.0013	mg/L	0.00010	0.0013	mg/L	0.00010	7.43%
T1 190.801	-6.6	-0.0011	mq/L	0.00068	-0.0011	mg/L	0.00068	59.66%
V 292.402	52.1	0.0004	mg/L	0.00014	0.0004	mg/L	0.00014	30.21%
Ti 334.940	-173.9	0.0015	mq/L	0.00001	0.0015	mg/L	0.00001	0.78%
Ca 227.546	23673.3	61.003		0.1218	61.003	mg/L	0.1218	0.20%
User canceled a	nalysis.							

Analysis Begun

Plasma On Time: 9/15/2005 8:12:31 AM Start Time: 9/15/2005 10:21:26 AM

Technique: ICP Continuous Logged In Analyst: optima3 Spectrometer Model: Optima 4300 DV, S/N 077N3102302Autosampler Model: AS-93plus

Sample Information File: C:\pe\Administrator\Sample Information\NA993-CLP.sif

Batch ID:

Results Data Set: B05091501

Results Library: C:\pe\Administrator\Results\Results.mdb

Sequence No.: 1

Sample ID: D1045-04F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 82

Date Collected: 9/15/2005 10:21:26 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data:	D1045-04F,19953					_	i.	
	Mean Corrected		Calib	•		Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
Al 308.215	49.4	0.0013	mg/L	0.00570	0.0013	mg/L	0.00570	436.35%
As 188.979	6.6	0.0021	mg/L	0.00070	0.0021	mg/L	0.00070	33.56%
Cr 267.716	24.3	-0.0003	mg/L	0.00004	-0.0003	mg/L	0.00004	13.89%
Cu 324.752	199.4	0.0009	-	0.00025	0.0009	mg/L	0.00025	27.94%
Fe 273.955	5103.7	0.0917	-	0.00039	0.0917	mg/L	0.00039	0.42%
Mg 279.077	558132.3	15.158	mg/L	0.0733	15.158	mg/L	0.0733	0.48%
Mn 257.610	1042139.8	1.4893	mg/L	0.01003	1.4893	mg/L	0.01003	0.67%
Ni 231.604	110.0	0.0030	mg/L	0.00008	0,.0030	mg/L	0.00008	2.65%
T1 190.801	-4.2	0.0008	mg/L	0.00182	0.0008	mg/L	0.00182	228.44%
V 292,402	-21.3	-0.0001	mq/L	0.00003	-0.0001	mg/L	0.00003	26.68%
Ti 334.940	-1667.4	0.0007	-	0.00001	0.0007	mg/L	0.00001	2.06%
Ca 227.546	42738.4	110.62		0.826	110.62	mg/L	0.826	0.75%

Sequence No.: 2

Sample ID: D1045-05F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 83

Date Collected: 9/15/2005 10:24:33 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D104	45-05F,19953 Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev	. RSD
Al 308,215	584.1	0.0155	mg/L	0.00245	0.0155	mg/L	0.00245	15.83%
As 188.979	1.0	0.0000	mg/L	0.00049	0.0000	mg/L	0.00049	>999.9%
Cr 267.716	20.2	-0.0003	-	0.00015	-0.0003	mg/L	0.00015	44.66%
Cu 324.752	136.9	0.0006	_	0.00019	0.0006	mg/L	0.00019	29.50%
Fe 273.955	25115.8	0.4514	•	0.00264	0.4514	mg/L	0.00264	0.58%
Mg 279.077	566681.2	15.390	-	0.0185	15.390	mq/L	0.0185	0.12%
Mg 279.077 Mn 257.610	1074206.3	1.5352	_	0.00621	1.5352	mg/L	0.00621	0.40%
Ni 231.604	133.8	0.0038	-	0.00008	0.0038		0.00008	2.22%
	-5.8	0.0003	-	0.00116	0.0003	-	0.00116	439.60%
T1 190.801	-20.7	-0.0001		0.00009	-0.0001			104.68%
V 292.402	·	0.0010	-	0.00004	0.0010	-	0.00004	3.62%
Ti 334.940	-1497.9		-	0.00004	111.34	_	0.071	
Ca 227.546	43020.0	111.34	mg/r	0.0/1	111.24	my/L	0.071	0.003

Sequence No.: 3 Sample ID: CCV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3

Date Collected: 9/15/2005 10:27:41 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV

Mean Corrected

Calib

Sample

A1 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077	392022.5 10.4 1359.6 0.51 68651.7 1.05 312403.9 1.29 295269.0 5.22 958746.1 26.0 829760.9 2.61 83465.4 2.61 1175.4 0.51 313601.4 2.61 278.8 0.00	Units 4 mg/L 89 mg/L 80 mg/L 84 mg/L 85 mg/L 85 mg/L 80 mg/L 81 mg/L 82 mg/L 83 mg/L 84 mg/L 85 mg/L 86 mg/L 87 mg/L 88 mg/L 89 mg/L	0.00178 0.01151 0.02269 0.06690 0.3308 0.04590 0.03106 0.00643 0.02804	Conc. 10.454 0.5139 1.0500 1.2934 5.2264 26.035 2.6150 2.6131 0.5123 2.6150 0.0008 25.832	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	\$td.Dev. 0.1450 0.00178 0.01151 0.02269 0.06690 0.3308 0.04590 0.03106 0.00643 0.02804 0.00005 0.0271	RSD 1.39% 0.35% 1.10% 1.75% 1.28% 1.27% 1.76% 1.19% 1.25% 1.07% 5.50% 0.11%
--	--	--	--	---	---	--	---

Sequence No.: 4 Sample ID: CCB Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 4
Date Collected: 9/15/2005 10:30:50 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

				:				
Mean Data: CCB	Mean Corrected	c	alib	4		Sample	Dan	
Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 Tl 190.801 V 292.402 Ti 334.940	Mean Corrected Intensity -239.5 0.4 -0.2 92.6 77.8 -50.0 -95.9 7.2 7.1 -3.8 -13.4	Cone. U -0.0063 m 0.0001 m 0.0000 m 0.0014 m -0.0014 m -0.0014 m 0.0002 m 0.0002 m 0.0003 m 0.0000 m	mits ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	Std.Dev. 0.00184 0.00117 0.00013 0.00027 0.00075 0.00484 0.00001 0.00001 0.00030 0.00060 0.00004	Conc0.0063 0.0001 0.0000 0.0004 0.0014 -0.0014 -0.0001 0.0002 0.0031 0.0000	Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	\$td.Dev. RSD 0.00184 28.92' 0.00117 798.77' 0.00013 >999.9 0.00027 69.86 0.00075 53.54 0.00484 356.42 0.00001 10.21 0.00001 2.97 0.00030 9.63 0.00060 >999.9 0.00004 193.95 0.00062 2.41	04 04 04 04 04 04 04 04 04 04 04 04 04 0
Ca 227.546	-10.0	-0.0258 π	ng/L	0.00062	-0.0258	шд/г	0.00002 2.41	0

Sequence No.: 5

Sample ID: D1045-06F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 84
Date Collected: 9/15/2005 10:33:56 AM
Data Type: Original
Initial Sample Vol:

Mean Data: D1045-06F,19953 Mean Correct Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 T1 190.801 V 292.402 Ti 334.940 Cr 227.546 Correct Adam Correct Mean Correct Adam Correct	Conc. Units 0.0091 mg/L 0.0002 mg/L 0.0002 mg/L 0.0011 mg/L 0.0193 mg/L 0.0193 mg/L 0.0274 mg/L 0.0009 mg/L 0.0009 mg/L 0.0000 mg/L 0.0001 mg/L 0.0006 mg/L	Std.Dev. 0.00074 0.00003 0.00021 0.00024 0.00035 0.01610 0.00005 0.00014 0.00064 0.00000 0.00002 0.0982	Sample Conc. Units 0.0091 mg/L 0.0002 mg/L 0.0011 mg/L 0.0193 mg/L 0.0274 mg/L 0.0274 mg/L 0.0009 mg/L 0.0001 mg/L 0.0001 mg/L 0.0006 mg/L 84.776 mg/L	Std.Dev. RSD 0.00074 8.09% 0.00003 14.80% 0.00021 117.23% 0.00024 21.76% 0.00035 1.83% 0.01610 0.27% 0.00005 0.19% 0.00014 15.23% 0.00064 31.61% 0.00000 3.68% 0.00002 3.01% 0.0982 0.12
--	---	---	--	--

Sequence No.: 6

Sample ID: D1045-07F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 85 Date Collected: 9/15/2005 10:37:04 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Sample Prep Vol:

Mean Data: D1045-07F,19953

Analyte A1 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 T1 190.801 V 292.402 Ti 334.940	Mean Corrected Intensity 199.4 -1.2 5.0 738.5 758.0 1177540.0 398060.2 317.7 -1.4 63.3 -2188.4	Cone. 0.0053 -0.0011 -0.0004 0.0032 0.0136 31.972 0.5683 0.0095 -0.0003 0.0006	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dav. 0.00345 0.00088 0.00024 0.00029 0.00045 0.0516 0.00023 0.00034 0.00596 0.00006	Conc. 0.0053 -0.0011 -0.0004 0.0032 0.0136 31.972 0.5683 0.0095 -0.0003 0.0006	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00006 0.00002	65.18% 78.49% 61.96% 9.11% 3.29% 0.16% 0.04% 3.61% >999.9% 10.91%
Ti 334.940 Ca 227.546	57168.6	147.98		0.162	147.98	-	0.162	0.11%

Sequence No.: 7

Sample ID: D1045-08F19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 86

Date Collected: 9/15/2005 10:40:13 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D10	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.		Std.Dev	
Al 308.215	-3.1	-0.0001	mg/L	0.00063	-0.0001	mg/L	0.00063	
As 188.979	2.5	0.0002	ma/L	0.00169	0.0002	mg/L	0.00169	818.01%
Cr 267.716	-37.7	-0.0010		0.00015	-0.0010	mg/L	0.00015	16.01%
	244.6	0.0012	-	0.00016	0.0012	mg/L	0.00016	13.14%
Cu 324.752	691.8	0.0124		0.00039	0.0124	mq/L	0.00039	3.13%
Fe 273.955	2016035.0	54.73B	•	0.0218	54.738	mq/L	0.0218	0.04%
Mg 279.077	449407.9	0.6411	_	0.00155	0.6411		0.00155	0.24%
Mn 257.610	111.1	0.0031	~ .	0.00002	0.0031	-	0.00002	0.75%
Ni 231.604	-6.1	-0.0013	_	0.00328	-0.0013	-	0.00328	253.67%
Tl 190.801	• • • •	0.0001	- − .	0.00009	0.0001	-	0.00009	73.61%
V 292.402	10.5		-	0.00003	0.0006	_	0.00011	16.95%
Ti 334.940	-1477.9	0.0006	-	0.1048	98.494	•	0.1048	
Ca 227.546	38054.B	98.494	mg/ь	0.1040	90.494	mg/1	0.1040	5.110

Sequence No.: 8

Sample ID: D1045-09F,19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 87

Date Collected: 9/15/2005 10:43:22 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: 1	D1045-09F,19953 Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	
Al 308.215	778.7	0.0206		0.00029	0.0206	mg/L	0.00029	1.39%
As 188.979	5.1	0.0013	•	0.00083	0.0013	mg/L	0.00083	64.03%
Cr 267.716	-22.3	-0.0005	-	0.00008	-0.0005	mg/L	0.00008	15.41%
	222.7	0.0011	-	0.00025	0.0011	mg/L	0.00025	22.82%
Cu 324.752	1633.3	0.0293		0.00025	0.0293	mq/L	0.00025	0.84%
Fe 273.955	1711250.0	46.461	_	0.2277	46.461	mg/L	0.2277	0.49%
Mg 279.077	25153.8	0.0349	-	0.00036	0.0349	ma/L	0.00036	1.03%
Mn 257.610	73.6	0.0020		0.00011	0.0020	-	0.00011	5.51%
Ni 231.604	0.8	0.0003	_	0.00078	0.0003	-	0.00078	263.82%
Tl 190.801	13.0	0.0001		0.00004	0.0001	-	0.00004	36.27%
V 292.402		0.0001		0.00011	0.0007		0.00011	14.71%
Ti 334.940	-1169.1		•	0.1710	85.390		0.1710	0.20%
Ca 227.546	32990.9	85.390	mg/ tr	0.1710	00.000	mg, b	0.1110	

Sequence No.: 9

Sample ID: D1045-11H, 19953

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 88
Date Collected: 9/15/2005 10:46:30 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: D1045	-11H,19953 Mean Corrected		Calib	64.1.5	Conc.	Sample	Std.Dev.	RSD
Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752 Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 Tl 190.801 V 292.402 Ti 334.940 Ca 227.546	Intensity 22634.6 3.0 89.7 581.2 99151.9 237868.3 697145.1 99.4 1.9 125.7 4275.0 34570.3	Conc. 0.6000 0.0009 0.0025 1.7818 6.4603 0.9964 0.0029 0.0026 0.0011 0.0087 89.436	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Std.Dev. 0.00167 0.00012 0.00010 0.00000 0.00311 0.00010 0.00004 0.00011 0.00005 0.00011 0.00006 0.1028	0.6000 0.0009 0.0009 0.0025 1.7818 6.4603 0.9964 0.0029 0.0026 0.0011 0.0087 89.436	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.00167 0.00012 0.00010 0.00000 0.00311 0.00010 0.00001 0.000011 0.00005 0.00011 0.00006 0.1028	0.288 13.008 10.978 0.158 0.178 0.008 0.008 3.948 1.828 10.018 0.698 0.118

Sequence No.: 10

Sample ID: MB-19952,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 90

Date Collected: 9/15/2005 10:49:38 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: MB-1	Mean Corrected		Calib	Std.Dev.	Conc.	Sample	Std.Dev.	RSD
Analyte	Intensity		Units	· · ·	0.0880		0.00374	4.25%
Al 308.215	3317.7	0.0880	-	0.00374		-	0.00077	44.06%
As 188.979	-4.6	-0.0017	~ .	0.00077	-0.0017	J	0.00077	28.31%
Cr 267.716	54.4	0.0008	mg/L	0.00024	0.0008	- ·		14.09%
Cu 324.752	402.0	0.0017	mg/L	0.00023	0.0017	- .	0.00023	
Fe 273.955	2785.7	0.0500	mg/L	0.00104	0.0500	mg/L	0.00104	2.09%
= -	809.3	0.0219		0.00194	0.0219	mg/L	0.00194	8.83%
Mg 279.077	1604.2	0.0023	- .	0.00001	0.0023	mg/L	0.00001	0.52%
Mn 257.610		0.0009	- .	0.00001	0.0009	mg/L	0.00001	1.27%
Ni 231.604	27.2		• .	0.00007	-0.0025		0.00007	3.01%
Tl 190.801	-5.6	-0.0025	-	0.00015	0.0004	•	0.00015	33.44%
V 292.402	52.5	0.0004			0.0009		0.00027	30.74%
Ti 334.940	607.3	0.0009	-	0.00027		-	0.06935	51.94%
Ca 227.546	52.1	0.1335	mg/L	0.06935	0.1335	mg/L	0.00555	31.340

Sequence No.: 11 Sample ID: CRI

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 7

Date Collected: 9/15/2005 10:52:44 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: CRI Analyte Al 308.215 As 188.979 Cr 267.716 Cu 324.752	Mean Corrected Intensity 22247.4 30.7 740.6 7616.0 7188.7	Calib Conc. Units 0.5911 mg/L 0.0116 mg/L 0.0113 mg/L 0.0315 mg/L 0.1274 mg/L	Std.Dev. 0.00242 0.00060 0.00001 0.00007 0.00239	Sample Conc. Units 0.5911 mg/L 0.0116 mg/L 0.0113 mg/L 0.0315 mg/L 0.1274 mg/L	Std.Dev. 0.00242 0.00060 0.00001 0.00007 0.00239	RSD 0.41% 5.21% 0.09% 0.21% 1.88%
Fe 273.955 Mg 279.077 Mn 257.610 Ni 231.604 Tl 190.801 V 292.402 Ti 334.940 Ca 227.546	7188.7 209972.0 14644.4 1511.8 65.8 6890.1 132.0 2102.6	0.1274 mg/L 5.7008 mg/L 0.0208 mg/L 0.0473 mg/L 0.0287 mg/L 0.0574 mg/L 0.0003 mg/L 5.4320 mg/L	0.00239 0.00744 0.00002 0.00030 0.00049 0.00010 0.00007 0.02913	5.7008 mg/L 0.0208 mg/L 0.0473 mg/L 0.0287 mg/L 0.0574 mg/L 0.0003 mg/L 5.4320 mg/L	0.00744 0.00002 0.00030 0.00049 0.00010 0.00007	0.13% 0.11% 0.63% 1.71% 0.17% 20.85% 0.54%

Sequence No.: 12 Sample ID: ICSA

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 5

Date Collected: 9/15/2005 10:55:49 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSA Sample Calib Mean Corrected RSD Conc. Units Std.Dev. Conc. Units Std.Dev. Intensity Analyte 0.26% 448.11 mg/L 1.183 1.183 16905358.4 448.11 mg/LAl 308.215 0.00163 111.94% 0.00163 0.0015 mg/L 0.0015 mg/L-0.1 As 188.979 0.00001 -0.0004 mg/L0.00001 3,14% -0.0004 mg/L -16.0 Cr 267.716 3.30% 0.00044 0.00044 -0.0134 mg/L-0.0134 mg/L-4939.0 0.357 Cu 324.752 0.21% 0.357 1.076 172.87 mg/L 172.87 mg/L 9619114.5 Fe 273.955 443.13 mg/L 1.076 0.24% 16325844.3 443.13 mg/L Mg 279.077 1.84% 0.00008 -0.0043 mg/L 0.00008 -0.0043 mg/L4400.0 Mn 257.610 Saturated outside survey window (code 6) 0.00003 0.21% 0.0134 mg/L 0.0139 mg/L 0.00003 0.0134 mg/L 113.7 Ni 231.604 0.00076 5.47% 0.0139 mg/L 0.00076 -29.4 T1 190.801 0.00049 0.0067 mg/L0.00049 7.31% 0.0067 mg/L806.4 V 292.402 0.00003 0.80% 0.00003 0.0035 mg/L $0.0035 \, \text{mg/L}$ -7063.4 Ti 334.940 3.099 0.64% 482.48 mg/L 3.099 482.48 mg/L 188237.8 Ca 227.546

Sequence No.: 13 Sample ID: ICSAB

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 6

Date Collected: 9/15/2005 10:59:09 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: ICSAB	Mean Corrected		Calib			Sample		
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Al 308.215	16709611.6	442.93	ma/L	0.366	442.93	mg/L	0.366	0.08%
As 188.979	233.B	0.0899		0.00023	0.0899	mg/L	0.00023	0.26%
As 166.979 Cr 267.716	29659.2	0.4534	- .	0.00203	0.4534	mg/L	0.00203	0.45%
Cu 324.752	111589.2	0.4688		0.00436	0.4688	mg/L	0.00436	0.93%
Fe 273.955	9544996.6	171.52	_	0.040	171.52	mg/L	0.040	0.02%
	16169040.5	438.87	-	0.004	438.87	mg/L	0.004	0.00%
Mg 279.077 Mn 257.610	316782.5	0.4424		0.00623	0.4424	mg/L	0.00623	1.41%
Mn 237.610 Ni 231.604	27220.6	0.8619	_	0.00147	0.8619	mg/L	0.00147	0.17%
T1 190.801	166.1	0.0987		0.00188	0.0987	mg/L	0.00188	1.91%
V 292.402	56109.4	0.4686	-	0.00091	0.4686	mg/L	0.00091	0.20%
	-6995.5	0.0033	-	0.00014	0.0033	mq/L '	0.00014	4.27%
Ti 334.940 Ca 227.546	185084.8	474.29	_	0.594	474.29	mg/L	0.594	0.13%

Sequence No.: 14 Sample ID: CCV

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 3
Date Collected: 9/15/2005 11:02:24 AM
Data Type: Original

Initial Sample Vol: Sample Prep Vol:

Mean Data: CCV	Mean Corrected		Calib			Sample		
31	Intensity	Conc.	+ -	Std.Dev.	Conc.	Units	Std.Dev.	RSD
Analyte	393554.2	10.496		0.0996	10.496	mg/L	0.0996	0.95%
A1 308.215 As 188.979	1358.8	0.5136	_	0.00385	0.5136	mq/L	0.00385	0.75%
	69125.4	1.0573	-	0.00853	1.0573	mg/L	0.00853	0.81%
Cr 267.716 Cu 324.752	311313.3	1.2889		0.01955	1.2889	mg/L	0.01955	1.52%
Cu 324.752 Fe 273.955	298289.2	5.2798	•	0.05726	5.2798	mq/L	0.05726	1.08%
Mg 279.077	963734.0	26.171	-	0.2616	26.171	mq/L	0.2616	1.00%
Mg 2/9.077 Mn 257.610	1804975.2	2.5796	-	0.03145	2.5796	mq/L	0.03145	1.22%
	84577.2	2.6479	-	0.01354	2.6479	mg/L	0.01354	0.51%
Ni 231.604	1156.6	0.5039	-	0.00335	0.5039	mg/L	0.00335	0.67%
Tl 190.801	316932.4	2.6428	_	0.01145	2.6428	mq/L	0.01145	0.43%
V 292.402	345.2	0.0009	-	0.00014	0.0009	3 ·	0.00014	15.65%
Ti 334.940 Ca 227.546	10143.8	25.804	-	0.1561	25.804		0.1561	0.60%

Sequence No.: 15 Sample ID: CCB

Analyst:

Initial Sample Wt:

Autosampler Location: 4
Date Collected: 9/15/2005 11:05:33 AM

Data Type: Original Initial Sample Vol:

00508

Dilution:

Sample Prep Vol:

Mean Data: CCB	Mean Corrected		Calib			Sample	Std.Dev. RSD
Analyte	Intensity	Conc.		Std.Dev.	Conc.		0.00103 32.18%
Al 308.215	-120.6	-0.0032	mg/L	0.00103	-0.0032		3.44 <u>-</u>
As 188.979	-1.7	-0.0006	mg/L	0.00135	-0.0006		0.00135 208.12%
Cr 267.716	-2.4	0.0000	mg/L	0.00006	0.0000	mg/L	0.00006 165.60%
	70.5	0.0003	ma/L	0.00002	0.0003	mg/L	0.00002 6.88%
Cu 324.752 Fe 273.955	310.8	0.0056		0.00275	0.0056	mg/L	0.00275 49.22%
Mg 279.077	-109.0	-0.0030	· .	0.00063	-0.0030	mg/L	0.00063 21.24%
Mg 279.077 Mn 257.610	-130.8	-0.0002	mg/L	0.00004	-0.0002	mg/L	0.00004 23.37%
Ni 231.604	0.6	0.0000	mg/L	0.00007	0.0000	mg/L	0.00007 383.13%
T1 190.801	7.0	0.0030		0.00107	0.0030	mg/L	0.00107 35.15%
v 292.402	4.7	0.0000		0.00025	0.0000	mg/L	0.00025 633.88%
	-50.1	-0.0001		0.00009	-0.0001	mq/L	0.00009 128.76%
Ti 334.940 Ca 227.546	8.8	0.0226		0.02469	0.0226	-	0.02469 109.43%

Sequence No.: 16

Sample ID: LCS-19952,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 91

Date Collected: 9/15/2005 11:08:40 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data: LCS-	-19952,19952 Mean Corrected		Calib		_	Sample	A	500
Analyte	Intensity	Conc.	Units	$\mathtt{Std}.\mathtt{Dev}.$	Conc.		Std.Dev.	RSD
Al 308.215	2906629.8	77.074	mg/L	0.0125	77.074	mg/L	0.0125	0.02%
	2548.9	0.9678	•	0.01625	0.9678	mg/L	0.01625	1.68%
As 188.979	46237.9	0.7063	-	0.00040	0.7063	mq/L	0.00040	0.06%
Cr 267.716	217523.4	0.9050	-	0.00070	0.9050	ma/L	0.00070	0.08%
Cu 324.752		109.59	• .	0.001	109.59	-	0.001	0.00%
Fe 273.955	6100209.0		~	0.0146	28.324	-	0.0146	0.05%
Mg 279.077	1045425.5	28.324	-	0.0140	4.8611	_	0.01015	0.21%
Mn 257 610	3402263.5	4.8611		*		_	0.00898	1.57%
Ni 231.604	18081.0	0.5718	mg/L	0.00898	0.5718	-		
TI 190.801	4203.2	1.8598	mg/L	0.01821	1.8598	mg/L	0.01821	0.98%
V 292.402	143097.6	1.1924	ma/L	0.00667	1.1924	mg/L	0.00667	0.56%
	1821963.6	2.6171	-	0.00325	2.6171	mq/L	0.00325	0.12%
Ti 334.940 Ca 227.546	15373.8	36.672	-	0.3597	36.672	•	0.3597	0.98%

Sequence No.: 17

Sample ID: D0996-01E,19952

Analyst:

Initial Sample Wt:

Dilution:

Autosampler Location: 92

Date Collected: 9/15/2005 11:11:16 AM

Data Type: Original Initial Sample Vol: Sample Prep Vol:

Mean Data:	D0996-01E,19952 Mean Corrected		Calib		_	Sample	a s	D .00
Analyte	Intensity	Conc.	Units	Std.Dev.	Conc.		Std.Dev.	RSD
Al 308.215	4905725.0	130.04	mg/L	0.591	130.04	_	0.591	0.45%
As 188.979	30.0	0.0135	mg/L	0.00218	0.0135	mg/L	0.00218	16.17%
Cr 267.716		0.0765	ma/L	0.00024	0.0765	mg/L	0.00024	0.31%
•		0.1030	_	0.00044	0.1030	mg/L	0.00044	0.43%
Cu 324.752		71.459		0.3923	71.459	mg/L	0.3923	0.55%
Fe 273.955		27.262	-	0.1327	27,262	mg/L	0.1327	0.49%
Mg 279.077 Mn 257.610		1.7782		0.00223	1.7782	mg/L	0.00223	0.13%
	****	0.0689	-	0.00045	0.0689	mg/L	0.00045	0.65%
Ni 231.604		0.0115	-	0.00108	0.0115	mg/L	0.00108	9.39%
T1 190.801	25278.5	0.2092	-	0.00047	0.2092	mg/L	0.00047	0.22%
V 292.402		2.5317	₹ .	0.01554	2.5317	mq/L	0.01554	0.61%
Ti 334.940 Ca 227.546		55.321		0.2068	55.321	_	0.2068	0.37%

Sequence No.: 18

Sample ID: D0996-02E,19952

Analyst:

Date Collected: 9/15/2005 11:14:30 AM

Data Type: Original

Autosampler Location: 93

```
Element: Hg Seq. No.: 32 AS Loc.: 7 Date: 09/14/2005
Sample ID: ICV
_____
                                    Peak Time Peak
Height Stored
Repl SampleConc StndConc BlnkCorr Peak
# µg/L µg/L Signal Area Height Stor
1 0.25 0.25 0.0047 0.0279 0.0047 09:48:52 Yes
2 0.03 0.03 0.0006 0.0011 0.0005 09:49:21 Yes
Mean: 0.14 0.14 0.0026
SD : 0.158 0.158 0.0029
%RSD: 111.2 111.1974
QC failed, value less than lower limit for Hg.
Current analysis method being continued.
Element: Hg Seq. No.: 33 AS Loc.: 1 Date: 09/14/2005
Sample ID: ICB
              _____
_____
Repl
   SampleConc StndConc BlnkCorr Peak Peak Time
                                                  Peak
 # μg/L μg/L Signal Area Height
ILM5.3_Ag.
Method Name: Mercury-ILM
                               1003
                                         FIMS1_050914A
Method Description: Mercury
Element: Hg
                                D0993
Date: 09/14/2005
Technique: FI-MHS
                                         OK. Dw 9/14/05
Calibration Type:
Hg, Zero Intercept: Linear
Wavelength: 253.7 nm
Sample Info Name: QW.SIF
                             Results Data Set Name: H0509142
Element: Hg Seq. No.: 1 AS Loc.: 1 Date: 09/14/2005
Sample ID: S0
   SampleConc StndConc BlnkCorr Peak Peak Time Peak μg/L μg/L Signal Area Height Store 0.0000 0.0000 0.0000 09:56:19 Yes 0.0000 0.0000 0.0000 09:56:49 Yes
Repl
# μg/L μg/L
                                                  Stored
1
2
                       0.0000
Mean:
                       0.0000
SD :
                      12.9346
%RSD:
Auto-zero performed.
Element: Hg Seq. No.: 2
                     AS Loc.: 2 Date: 09/14/2005
Sample ID: S0.2
   SampleConc StndConc BlnkCorr Peak Peak Time Peak μg/L μg/L Signal Area Height Store 0.0037 0.0216 0.0037 09:57:40 Yes 0.0038 0.0222 0.0038 09:58:09 Yes
Repl
#
1
2
                       0.0037
Mean:
SD :
                       0.0001
%RSD:
                       1.5939
[Hg] Standard number 1 applied. [0.20]
                                     Slope: 0.01867
Correlation Coefficient: 1.00000
       ______
                     AS Loc.: 3 Date: 09/14/2005
Element: Hq Seq. No.: 3
Sample ID: S1.0
_____
     #
                                                  Stored
 1
                       0.0165 0.0999 0.0166 09:59:29 Yes
                                                              00510
 2
                       0.0162
Mean:
```

SD : 0.0005 3.0903 %RSD: [Hq] Standard number 2 applied. [1.00] Correlation Coefficient: 0.99860 Slope: 0.01629 Element: Hg Seq. No.: 4 AS Loc.: 4 Date: 09/14/2005 Sample ID: S2.0 _____ Repl SampleConc StndConc BlnkCorr Peak Peak Time Peak # µg/L Signal Area Height Stored 0.0339 0.1999 0.0339 10:00:20 Yes 0.0344 0.2035 0.0344 10:00:49 Yes 0.0342 Mean: SD : 0.0003 %RSD: 0.9628 [Hq] Standard number 3 applied. [2.00] Slope: 0.01692 Correlation Coefficient: 0.99918 ______ Element: Hg Seq. No.: 5 AS Loc.: 5 Date: 09/14/2005 Sample ID: S5.0 ______
 Repl
 SampleConc
 StndConc
 BlnkCorr
 Peak
 Peak
 Time
 Peak

 #
 μg/L
 μg/L
 Signal
 Area
 Height
 Stored

 1
 0.0792
 0.4694
 0.0792
 10:01:40 Yes

 2
 0.0788
 0.4671
 0.0789
 10:02:09 Yes
 Mean: 0.0790 0.0002 SD : %RSD: 0.3022 [Hg] Standard number 4 applied. [5.00] Correlation Coefficient: 0.99913 Slope: 0.01600 Element: Hg Seq. No.: 6 AS Loc.: 6 Date: 09/14/2005 Sample ID: S10.0
 Repl
 SampleConc
 StndConc
 BlnkCorr
 Peak
 Peak
 Time
 Peak

 #
 μg/L
 Signal
 Area
 Height
 Stored

 1
 0.1519
 0.8957
 0.1519
 10:03:01
 Yes

 2
 0.1509
 0.8843
 0.1509
 10:03:30
 Yes
 0.1514 Mean: SD : 0.0007 %RSD: 0.4531 [Hg] Standard number 5 applied. [10.00] Slope: 0.01535 Correlation Coefficient: 0.99925 ______ Calibration data for Hg Entered Calculated Entered Calculated

Mean Signal Concentration Concentration Standard

Standard ID (Pk Height) (µg/L) (µg/L) Deviation %RSD

SO 0.0000 -- -- --- --
SO.2 0.0037 0.20 0.24 0.000 1.6

S1.0 0.0162 1.00 1.05 0.001 3.1

S2.0 0.0342 2.00 2.23 0.000 1.0

S5.0 0.0790 5.00 5.15 0.000 0.3

S10.0 0.1514 10.00 9.86 0.001 0.5

Correlation Coefficient: 0.99925 Slope: 0.01535 ----Standard ID ______ Element: Hg Seq. No.: 7 AS Loc.: 7 Date: 09/14/2005 Sample ID: ICV Repl SampleConc StndConc BlnkCorr Peak Peak Time Peak # μg/L μg/L Signal Area Height Stored

```
1 1.94 1.94 0.0297 0.1799 0.0297 10:04:20 Yes 2 1.93 1.93 0.0296 0.1794 0.0296 10:04:49 Yes Mean: 1.93 1.93 0.0297 SD : 0.004 0.004 0.0001 %RSD: 0.2 0.2 0.2168
 QC value within specified limits.
 Element: Hg Seq. No.: 8 AS Loc.: 1 Date: 09/14/2005
 Sample ID: ICB
Repl SampleConc StndConc BlnkCorr Peak Peak Time Peak
# µg/L µg/L Signal Area Height Stored
1 0.02 0.02 0.0003 0.0013 0.0003 10:05:41 Yes
2 0.02 0.02 0.0002 0.0012 0.0003 10:06:10 Yes
Mean: 0.02 0.02 0.0002
SD : 0.001 0.001 0.0000
%RSD: 6.1 6.1 6.0508
 QC value within specified limits.
 Element: Hg Seq. No.: 9 AS Loc.: 9 Date: 09/14/2005
 Sample ID: CRA

        Repl
        SampleConc
        StndConc
        BlnkCorr
        Peak
        Peak
        Time
        Peak

        #
        μg/L
        μg/L
        Signal
        Area
        Height
        Store

        1
        0.27
        0.27
        0.0042
        0.0281
        0.0042
        10:07:00
        Yes

        2
        0.28
        0.28
        0.0043
        0.0310
        0.0043
        10:07:29
        Yes

        Mean:
        0.28
        0.28
        0.0042
        9/4/-5
        PW

        %RSD:
        2.0
        2.0
        1.9863

                                                                                                                                                                                       Stored
                                                                                   Element: Hg Seq. No.: 10/ AS Loc.: 10 Date: 09/14/2005
 Sample ID: CCV
 _____
 Repl SampleConc StndConc BlnkCorr Peak Peak Time Peak # µg/L µg/L Signal Area Height Store
 Element: Hg Seq. No.: 10 AS Loc.: 7 Date: 09/14/2005
 Sample ID: ICV

        Repl
        SampleConc
        StndConc
        BlnkCorr
        Peak
        Peak
        Time
        Peak

        #
        μg/L
        signal
        Area
        Height
        Store

        1
        1.87
        0.0287
        0.1728
        0.0287
        10:09:58
        Yes

        2
        1.84
        1.84
        0.0282
        0.1673
        0.0282
        10:10:30
        Yes

        Mean:
        1.85
        1.85
        0.0284

        SD:
        0.021
        0.021
        0.0003

        %RSD:
        1.1
        1.1
        1.1197

                                                                                                                                                                                       Stored
 QC value within specified limits.
 Element: Hg Seq. No.: 11 AS Loc.: 1 Date: 09/14/2005
 Sample ID: ICB

        Repl
        SampleConc
        StndConc
        BlnkCorr
        Peak
        Peak
        Time
        Peak

        #
        μg/L
        μg/L
        Signal
        Area
        Height
        Store

        1
        0.02
        0.02
        0.0002
        0.0015
        0.0003
        10:11:22
        Yes

        2
        0.01
        0.01
        0.0002
        0.0020
        0.0002
        10:11:51
        Yes

        Mean:
        0.01
        0.01
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002
        0.0002

 QC value within specified limits.
```

Page -192-

Element: Hg Seq. No.: 12 AS Loc.: 9 Date: 09/14/2005

Sample	ID: CRA							
Repl # 1 2 Mean: SD: %RSD:	SampleConc µg/L 0.18 0.17 0.18 0.008 4.3	StndCone µg/L 0.18 0.17 0.18 0.008 4.3	0.0028 0.0 0.0027 0.0 0.0027	Area Height 0172 0.0029	t 10:12:41			
_	ID: CCV	. No.: 13	AS Loc.	: 10 Date:	09/14/2005	======		
Repl # 1 2 Mean: SD: %RSD:	SampleConc µg/L 4.89 4.87	μg/L 4.89 4.87 4.88	Signal A 0.0750 0.4 0.0748 0.4 0.0749	Peak Peak Area Height 323 0.0750 301 0.0748	10:14:00			
Elemen Sample	t: Hg Seq ID: CCB	. No.: 14	AS Loc.	: 11 Date:	09/14/2005			
Repl # 1 2 Mean: SD : %RSD:	μg/L 0.01 0.00	μg/L 0.01 0.00 0.00 0.005	0.0001 0.0 0.0000 -0.0 0.0000	rea Height 0005 0.0001	10:15:20			
Elemen Sample	t: Hg Seq ID: MB-1995	. No.: 15 6	AS Loc.	: 12 Date:	09/14/2005	/	00ml	
Repl # 1 2 Mean: SD: %RSD:	SampleConc µg/L 0.01 0.01 0.01 0.002 24.9		0.0001 0.0	eak Peak rea Height 005 0.0001 009 0.0001	Ī.			
-	t: Hg Seq	. No.: 16	AS Loc.	: 13 Date:	09/14/2005		134 m	/ /
Repl # 1 2 Mean: SD : %RSD:	SampleConc µg/L 0.00 0.00 0.00 0.002	μg/L 0.00 0.00 0.00 0.002	Signal A 0.0000 -0.0 0.0000 0.0 0.0000	Peak Peak Lrea Height 1001 0.0000 1005 0.0001	10:17:58			
	t: Hg Seq		AS Loc.	: 14 Date:	09/14/2005	/	'34m1	
Repl # 1 2 Mean:	SampleConc µg/L 0.01 0.01 0.01	StndConc µg/L 0.01 0.01 0.01		Peak Peak Area Height 1011 0.0001 1008 0.0001	10:19:17			00513

SD : 0.001 0.000 0.0000 9.7 %RSD: 9.7 9.6789 _____ Element: Hg Seq. No.: 18 AS Loc.: 7 Date: 09/14/2005 Sample ID: CCV _____
 Repl
 SampleConc
 StndConc
 BlnkCorr
 Peak
 Peak
 Time
 Peak

 #
 μg/L
 μg/L
 Signal
 Area
 Height
 Stored

 1
 5.20
 5.20
 0.0799
 0.4612
 0.0799
 10:20:36 Yes

 2
 5.19
 5.19
 0.0797
 0.4569
 0.0797
 10:21:05 Yes

 Mean:
 5.20
 5.20
 0.0798

 SD:
 0.008
 0.008
 0.0001

 %RSD:
 0.2
 0.2
 0.1578
 QC value within specified limits. Element: Hg Seq. No.: 19 AS Loc.: 1 Date: 09/14/2005 Sample ID: CCB Repl SampleConc StndConc BlnkCorr Peak Peak Time Peak
" " " " Signal Area Height Store # µg/L µg/L Signal Area Height Stored One of the order of Stored QC value within specified limits. ______ Element: Hg Seq. No.: 20 AS Loc.: 15 Date: 09/14/2005 Sample ID: D1003-02DDUP
 Repl
 SampleConc
 StndConc
 BlnkCorr
 Peak
 Peak
 Time
 Peak

 #
 μg/L
 μg/L
 Signal
 Area
 Height
 Stored

 1
 0.00
 0.00
 0.0000
 -0.0001
 0.0000
 10:23:19
 Yes

 2
 0.01
 0.01
 0.0001
 0.0015
 0.0002
 10:23:48
 Yes

 Mean:
 0.00
 0.000
 0.0001
 0.0001
 0.0001
 SD
 164.8
 164.8
 164.8200
 Stored Element: Hg Seq. No.: 21 AS Loc.: 16 Date: 09/14/2005 Sample ID: D1003-02DMS ------Repl SampleConc StndConc BlnkCorr Peak Peak Time Peak
µg/L µg/L Signal Area Height Stored
1 0.84 0.84 0.0129 0.0722 0.0129 10:24:38 Yes
2 0.84 0.84 0.0129 0.0715 0.0129 10:25:07 Yes

Mean: 0.84 0.84 0.0129
SD : 0.001 0.001 0.0000
%RSD: 0.1 0.1 0.1216 Element: Hg Seq. No.: 22 AS Loc.: 17 Date: 09/14/2005 Sample ID: D1003-04D
 Repl
 SampleConc
 StndConc
 BlnkCorr
 Peak
 Peak
 Time
 Peak

 #
 μg/L
 μg/L
 Signal
 Area
 Height
 Stored

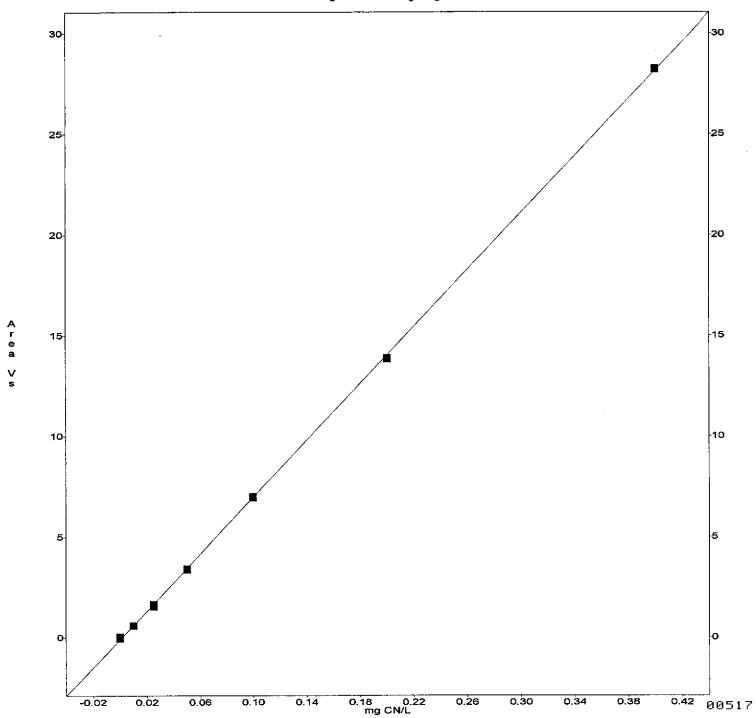
 1
 0.01
 0.01
 0.0001
 0.0008
 0.0001
 10:26:01
 Yes

 2
 0.01
 0.01
 0.0001
 0.0009
 0.0001
 10:26:31
 Yes

 Mean:
 0.001
 0.001
 0.0000
 0.0001
 0.0000
 SRSD:
 16.8
 16.8
 16.8311

Page -194-

Element: Hg Seq. No.: 23 AS Loc.: 18 Date: 09/14/2005


Sample	ID: D1003-0	5D 				136ml
Repl # 1 2 Mean: BRSD:	SampleConc µg/L 0.00 0.01 0.00 0.002 44.5	StndConc µg/L 0.00 0.01 0.00 0.002 44.5	BlnkCorr Peak Signal Area 0.0000 0.0004 0.0001 0.0008 0.0001 0.0000 44.4953	Peak Time Height 0.0001 10:27:21 0.0001 10:27:50		
	t: Hg Seq ID: D1003-0	. No.: 24	AS Loc.: 19	Date: 09/14/2005	======	136ml
Repl # 1 2 Mean: SD : RSD:	SampleConc µg/L 0.01 0.01 0.01 0.000 8.2	StndConc µg/L 0.01 0.01 0.01 0.000 8.2	BlnkCorr Peak Signal Area 0.0001 0.0007 0.0001 0.0009 0.0001 0.0000 8.1562	Peak Time Height 0.0001 10:28:40 0.0001 10:29:09		
Element Sample	======================================	. No.: 25 1D	AS Loc.: 20	Date: 09/14/2005		134~1
Repl # 1 2 Mean: BD : kRSD:	SampleConc µg/L 0.00 0.01 0.00 0.004 209.8	StndConc µg/L 0.00 0.01 0.00 0.004 209.8	BlnkCorr Peak Signal Area 0.0000 -0.0003 0.0001 0.0008 0.0000 0.0001 209.7786	Peak Time Height 0.0000 10:29:59 0.0001 10:30:28		
			AS Loc.: 21	Date: 09/14/2005	======	134~1
Repl # 1 2 Mean: SD : RSD:	SampleConc µg/L 0.01 0.00 0.00 0.001 28.1	StndConc µg/L 0.01 0.00 0.00 0.00 28.1	Signal Area 0.0001 0.0008 0.0001 0.0005 0.0001	Peak Time Height 0.0001 10:31:18 0.0001 10:31:47		
	: Hg Seq ID: D1004-0		AS Loc.: 22	Date: 09/14/2005	======	136m1
_	0.00	μg/L 0.01	Signal Area 0.0001 0.0003 0.0000 0.0006 0.0001 0.0000	Peak Time Height 0.0001 10:32:38 0.0001 10:33:07		
_	ID: CCV	. No.: 28	AS Loc.: 7	Date: 09/14/2005	======	
	SampleConc µg/L 5.27		0.0810 / 0.4639	Peak Time Height 0.0810 10:33:59	Peak Stored Yes	0051

	t: Hg Seq	. No.: 29	AS L	oc.: 7	Date: 09	/14/2005		
# 1 2 Mean: SD: %RSD: QC fai	SampleConc µg/L 0.19 0.20 0.19 0.006 3.0 led, value 1 t analysis m	μg/L 0.19 0.20 0.19 0.006 3.0 ess than 1	0.0030 0.0030 0.0001 3.0412 ower limit	Area 0.0125 0.0134 for Hg.		Time 10:36:07 10:36:37		
Elemen Sample	t: Hg Seq ID: 198 CC	. No.: 30 V 9/14/0	AS L 5 &W	oc.: 1	Date: 09	/14/2005		
	μg/L 5.34 5.37 5.36		0.0820 0.0824 0.0822 0.0003 0.3725 n upper li	Area 0.4711 0.4734 mit for		Time 10:37:29 10:37:58		
Elemen Sample	t: Hg Seq ID: CVA Cci	. No.: 31 3 9/14/05		oc.: 9	Date: 09	/14/2005		
Repl # 1 2 Mean: SD: %RSD:	SampleConc µg/L 0.00 0.00 0.00 0.000 20.9		0.0000 0.0000	Peak Area 0.0000 0.0001		Time 10:38:48 10:39:17		
Elemen Sample	======== t: Hg Seq ID: CCV	. No.: 32	AS L	oc.: 10	Date: 0	9/14/2005	;	
Repl #	SampleConc µg/L	StndConc µg/L	BlnkCorr Signal		Peak Height	Time	Peak Stored	

Lacher 50902A-Ilms.3 9 00986, D0996, D1604							schot	D 1609 Replic Replic		Residual
r1	Area	mg CN/L	Rep 1	Rep 2	Rep 3	Rep 4	Rep 5	STD	% RSD	1st Poly
	61889	0.000	61889	-31051				65718.4	426.2	
2	621074	0.010	621074	622440				966.3	0.2	1.5
3	1673260	0.025	1673260	1566147				75740.1	4.7	1.0
4	3423301	0.050	3423301	3397312				18377.2	0.5	0.9
5	7000876	0.100	7000876	6964592				25657.0	0.4	-0.2
6	13865067	0.200	13865067	13889224				17081.6	0.1	1.3
7	28258366	0.400	28258366	28223636				24557.B	0.1	-0.3

1st Order Poly Conc = 1.416e-008 Area + 1.057e-003 r = 1.0000

Scaling: None - Weighting: None

Printed: Friday, September 02, 2005 - 02:14 PM

OPERATOR: ACQ. TIME:

DATA FILENAME:

METHOD FILENAME: TRAY FILENAME:

kbadura

REGUTA
Sep 2, 2005 10:11:33
C:\OMNION\DATA\CN\SEPT05~1.DAT\C090205A.FDT
C:\OMNION\METHODS\CN\SEPT05.MET\C090205A.MET
C:\OMNION\TRAYS\CN\SEPT05.TRA\C090205A.TRA

TRAY DESCRIPTION:

Created: Modified:

ANALYSIS: CYANIDE DATA DESCRIPTION:

Created: Modifled: Sep 2, 2005 9:14:36 Sep 2, 2005 9:14:36 ANALYST: KB/MM

Sep 2, 2005 10:11:33 Sep 2, 2005 10:11:33

Multi-Channel Table
Type: Calibration Standards
Channel Range: 1 to 8 — Cup Range: 1 to 30

Cup	Sample ID	Sampling Date	Sampling Time	# of Reps	CN (uv-s)	Man Dil Factor	Weight Unit
1	S0	02 Sep 2005	10:12:11	2	15418.5977	1.0	1.00000 g
2	S0.01	02 Sep 2005	10:14:43	2	621756.7500	1.0	1.00000 g
3	\$0.025	02 Sep 2005	10:17:15	2	1619703.1875	1.0	1.00000 g
4	S0.05	02 Sep 2005	10:19:47	2	3410306.6250	1.0	1.00000 g
5	S0.10	02 Sep 2005	10:22:20	2	6982733.7500	1.0	1.00000 g
6	S0.20	02 Sep 2005	10:24:51	2	13877145.5000	1.0	1.00000 g
7	S0.40	02 Sep 2005	10:27:23	2	28241001.0000	1.0	1.00000 g

OPERATOR:

ACQ. TIME: DATA FILENAME: METHOD FILENAME: TRAY FILENAME:

kbadura

Sep 2, 2005 10:11:33

C:\OMNION\DATA\CN\SEPT05~1.DAT\C090205A.FDT
C:\OMNION\METHODS\CN\SEPT05.MET\C090205A.MET
C:\OMNION\TRAYS\CN\SEPT05.TRA\C090205A.TRA

TRAY DESCRIPTION: Created: Modified:

ANALYSIS: CYANIDE DATA DESCRIPTION: Created: Modified:

Sep 2, 2005 9:14:36 Sep 2, 2005 9:14:36 ANALYST: KB/MM

Sep 2, 2005 10:11:33 Sep 2, 2005 10:11:33

Multi-Channel Table Type: Unknowns Channel Range: 1 to 8 - Cup Range: 1 to 30

Cup	Sample ID	Sampling Date	Sampling Time	# of Reps	CN (mg CN/L)	Man Dil Factor	Weight Unit
• 1	ICV	02 Sep 2005	10:30:53	2	0.2842	1.0	1.00000 g 1 1 1/2
2	ICB	02 Sep 2005	10:33:25	2	0.0016	1.0	1.00000 g
* 3	CRA	02 Sep 2005	10:35:57	2	0.0112	1.0	1.00000 g (12%)
4	CCV	02 Sep 2005	10:38:29	2	0.2288	1.0	1.00000 ji44
5	CCB	02 Sep 2005	10:41:01	2	0.0016	1.0	1.00000 g
′ 6	STD @ 0.2	02 Sep 2005	10:43:33	2	0.2242	1.0	1.00000 g 112 /-
7	STD@ 0.1	02 Sep 2005	10:46:06	2	0.1009	1.0	1.00000 g 101 %
8	MB-19771	02 Sep 2005	10:48:37	2	0.0014	1.0	1.00000 g
9	D1004-01B	02 Sep 2005	10:51:09	2	0.0015	1.0	1.00000 g
10	CCA	02 Sep 2005	10:53:42	2	0.2269	1.0	1.00000g 113%
11	CCB	02 Sep 2005	10:56:13	2	0.0013	1.0	1.00000 g
12	D1004-01BDUP	02 Sep 2005	10:58:45	2	0.0018	1.0	1.00000 g
13	D1004-01BMS	02 Sep 2005	11:01:17	2	0.1116	1.0	1.00000 g 110 %
14	D1004-02A	02 Sep 2005	11:03:50	2	0.0023	1.0	1.00000 g
15	MB-19772	02 Sep 2005	11:06:22	2	0.0023	1.0	1.00000 g
-18-	LCS-19772	02 Sep 2005	11:08:54	2	0.1343	1.0	1.00000g T-MN
17	D1009-03C	02 Sep 2005	11:11:26	2	0.0019	1.0	1.00000 g
18	D1009-03CDUP	02 Sep 2005	11:13:57	2	0.0019	1.0	1.00000 g
19	D1009-03CMS	02 Sep 2005	11:16:29	2	0.1174	1.0	1.00000 g kt %
20	CCV	02 Sep 2005	11:19:01	2	0.2293	1.0	1.00000 g 1/5%
21	ССВ	02 Sep 2005	11:21:33	2	0.0016	1.0	1.00 0 00 g
22	MB-19797	02 Sep 2005	11:24:05	2	0.0014	1.0	1.00000 g
23	LCS-19797	02 Sep 2005	11:26:37	2	0.2411	10.0	1.00000g = 117.04 mg/
24	D0986-04B	02 Sep 2005	11:29:09	2	0.0015	1.0	1.00000 g
25	D0986-05B	02 Sep 2005	11:31:41	2	0.0025	1.0	1.00000 g
26	D0986-06B	02 Sep 2005	11:34:13	2	0.0028	1.0	1.00000 g
27	D0996-01E	02 Sep 2005	11:36:46	2	0.0016	1.0	1.00000 g
28	D0996-02E	02 Sep 2005	11:39:17	2	0.0020	1.0	1.00000 g
29	D0996-03E	02 Sep 2005	11:41:49	2	0.0023	1.0	1.00000 g
30	CCV	02 Sep 2005	11:44:21	2	0.2251	1.0	1.00000 g 115%

OPERATOR:

ACQ. TIME:

DATA FILENAME: METHOD FILENAME: TRAY FILENAME:

kbadura

RDBOUTS
Sep 2, 2005 10:11:33
C:\OMNION\DATA\CN\SEPT05~1.DAT\C090205A.FDT
C:\OMNION\METHODS\CN\SEPT05.MET\C090205A.MET
C:\OMNION\TRAYS\CN\SEPT05.TRA\C090205A.TRA

TRAY DESCRIPTION:

Created:

Modified: ANALYSIS: CYANIDE DATA DESCRIPTION:

Created: Modified: Sep 2, 2005 9:14:36 Sep 2, 2005 9:14:36 ANALYST: KB/MM

Sep 2, 2005 10:11:33 Sep 2, 2005 10:11:33

Multi-Channel Table Type: Unknowns Channel Range: 1 to 8 — Cup Range: 31 to 42

Cup	Sample ID	Sampling Date	Sampling Time	# of Reps	CN (mg CN/L)	Man Dil Factor	Weight	Unit ——	
31	CCB	02 Sep 2005	11:46:53	2	0.0014	1.0	1.00000	g	
32	D0996-04E	02 Sep 2005	11:49:25	2	0.0075	1.0	1.00000	g	
33	D0996-05E	02 Sep 2005	11:51:58	2	0.0041	1.0	1.00000	g	
34	D0996-05EDUP	02 Sep 2005	11:54:30	2	0.0037	1.0	1.00000	g	
- 35	D0990-06EMS	02 Sep 2005	11:57:01	2	0.1327	1.0	1.00000	9 min	7b≤
36	D0996-07E	02 Sep 2005	11:59:33	2	0.0050	1.0	1.00000		
37	D0996-08E	02 Sep 2005	12:02:05	2	0.0027	1.0	1.00000	g	
38	D0996-09E	02 Sep 2005	12:04:37	2	0.0024	1.0	1.00000	g	
39	D0996-10E	02 Sep 2005	12:07:10	2	0.0041	1.0	1.00000	g	
40	CCV.	02 Sep 2005	12:09:41	2	0.2199	1.0	1.00000	g 110%	
41	CCB.	02 Sep 2005	12:12:14	2	0.0016	1.0	1.00000	g	
42	SOLVENT	02 Sep 2005	12:14:46	2	0.0013	1.0	1.00000	g	

OPERATOR: ACQ. TIME:

DATA FILENAME:

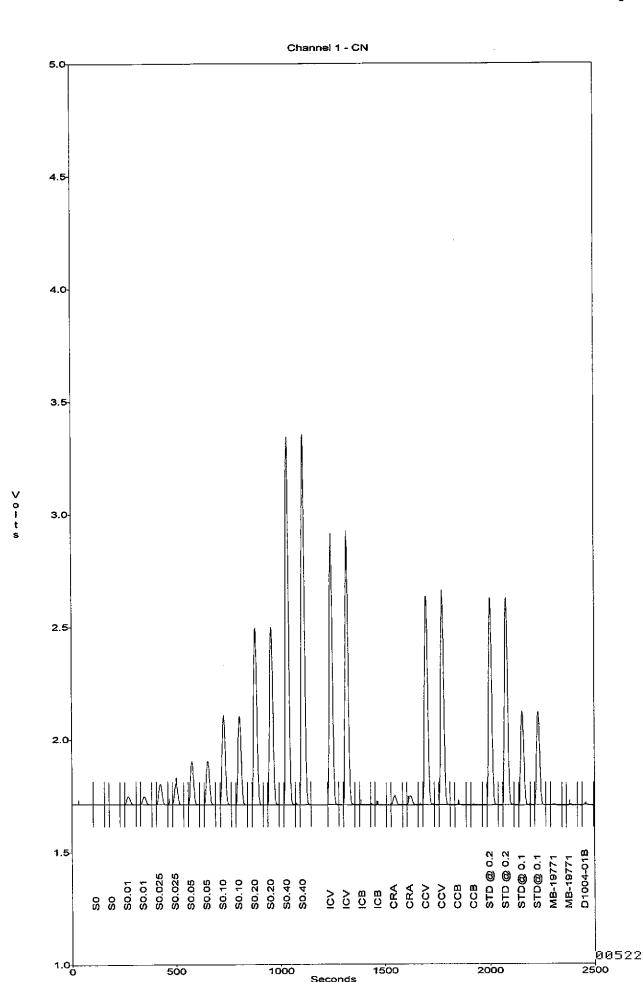
METHOD FILENAME: TRAY FILENAME:

kbadura

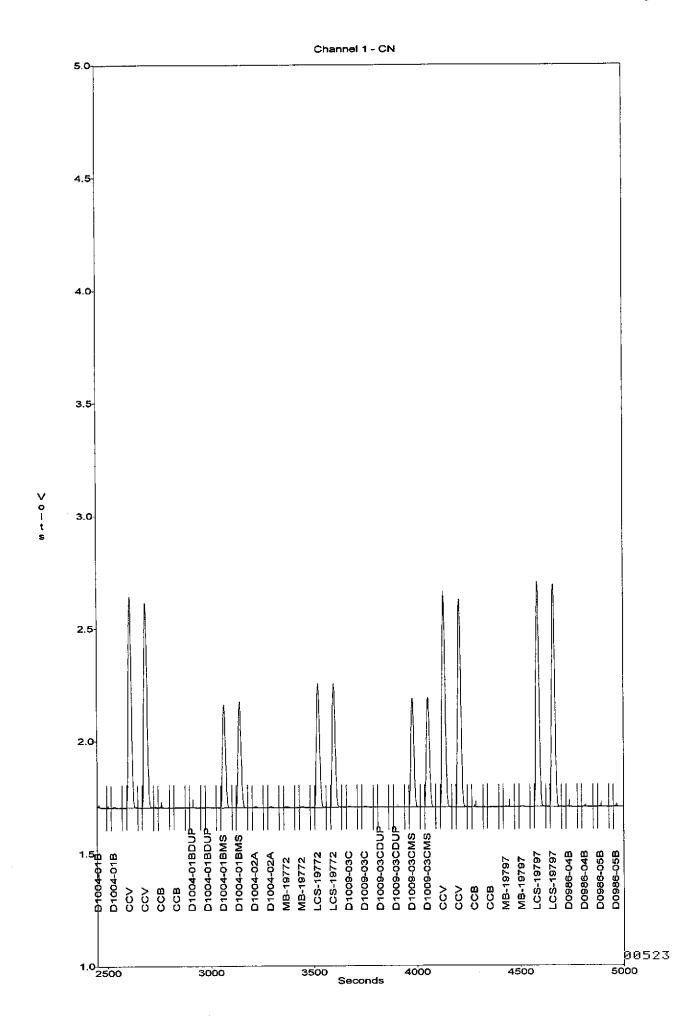
ROBOTORS
Sep 2, 2005 14:40:48
C:\OMNION\DATA\CN\SEPT05~1.DAT\C090205B.FDT
C:\OMNION\METHODS\CN\SEPT05.MET\C090205B.MET C:\OMNION\TRAYS\CN\SEPT05.TRA\C090205B.TRA

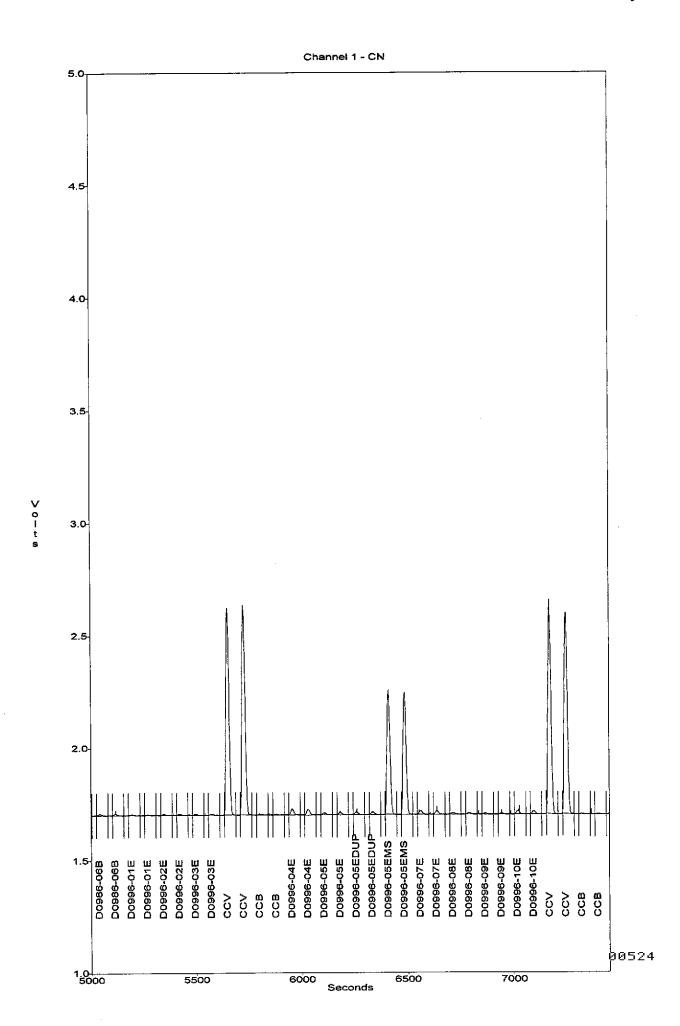
TRAY DESCRIPTION:

Created: Modified:

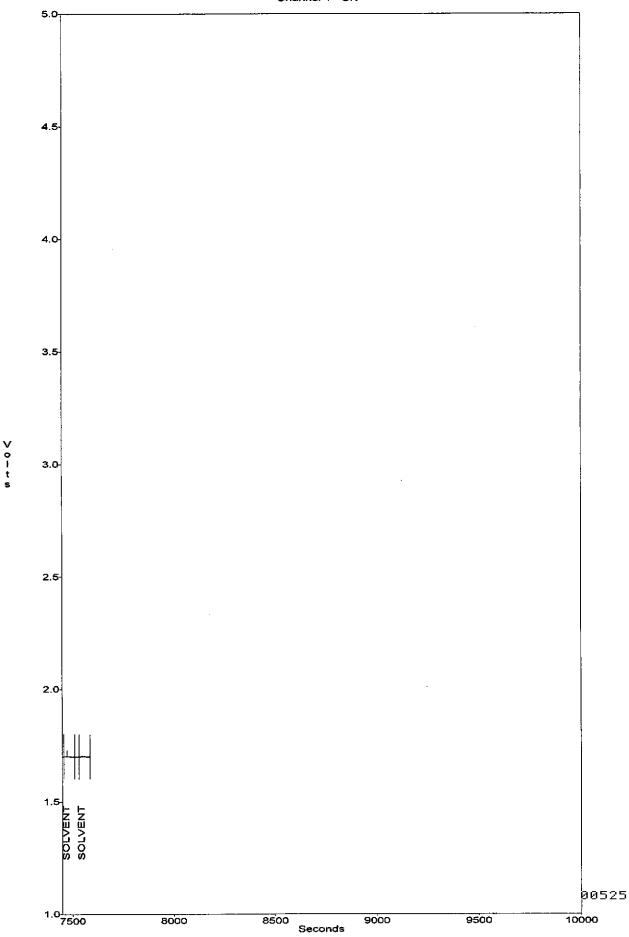

ANALYSIS: CYANIDE DATA DESCRIPTION:

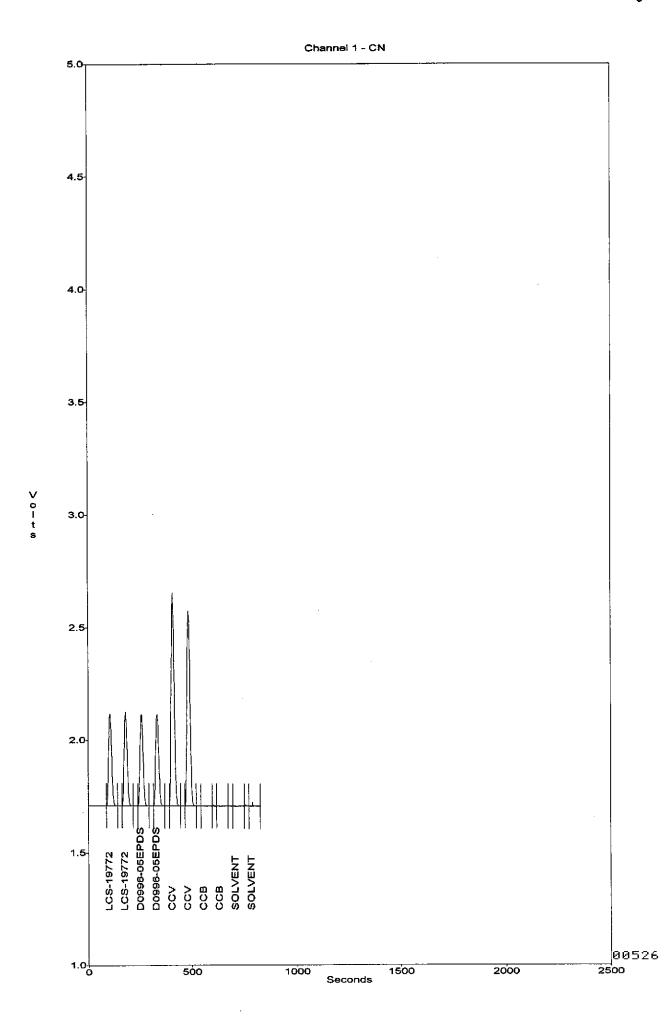
Created: Modified: Sep 2, 2005 14:35:09 Sep 2, 2005 14:35:09 ANALYST: KB/MM


Sep 2, 2005 14:40:48 Sep 2, 2005 14:40:48


Multi-Channel Table Type: Unknowns Channel Range: 1 to 8 -- Cup Range: 1 to 30

Cup	Sample ID	Sampling Date	Sampling Time	# of Reps	CN (mg CN/L)	Man Dil Factor	Weight Unit
1	LCS-19772	02 Sep 2005	14:41:09	2	0.1000	1.0	1.00000g 100%
2	D0996-05EPDS	02 Sep 2005	14:43:41	2	0.1005	1.0	1.00000g 101%
3	CCV	02 Sep 2005	14:46:13	2	0.2194	1.0	1.00000g 110 %
4	ССВ	02 Sep 2005	14:48:45	2	0.0010	1.0	1.00000 g
5	SOLVENT	02 Sep 2005	14:51:17	2	0.0017	1.0	1.00000 g




Seconds

Creator: kbadura

 Creation Date:
 Sep 2, 2005 9:14:36

 Last Modified:
 Sep 2, 2005 9:14:36

Description: ANALYSIS: CYANIDE ANALYST: KB/MM

Cup#	Sample ID	Manual Dilution	Sample Type	
1	S0	1.0000	CalStd	
2	S0.01	1.0000	CalStd	
3	S0.025	1.0000	CalStd	
4	S0.05	1.0000	CalStd	
5	S0.10	1.0000	CalStd	
6	\$0.20	1.0000	CalStd	
7	S0.40	1.0000	CalStd	
1	ICV	1.0000	Unknown	
2	ICB	1.0000	Unknown	
3	CRA	1.0000	Unknown	
4	CCV	1.0000	Unknown	
5	CCB	1.0000	Unknown	
6	STD @ 0.2	1.0000	Unknown	
7	STD@ 0.1	1.0000	Unknown	
8	MB-19771	1.0000	Unknown	
9	D1004-01B	1.0000	Unknown	
10	ccv	1.0000	Unknown	
11	CCB	1.0000	Unknown	
12	D1004-01BDUP	1.0000	Unknown	ALL MATERIAL CONTRACTOR CONTRACTO
13	D1004-01BMS	1.0000	Unknown	
14	D1004-02A	1.0000	Unknown	
15	MB-19772	1.0000	Unknown	
16	LCS-19772	1.0000	Unknown	
17	D1009-03C	1.0000	Unknown	
18	D1009-03CDUP	1.0000	Unknown	
19	D1009-03CMS	1.0000	Unknown	
20	CCV	1.0000	Unknown	
21	ССВ	1.0000	Unknown	
22	MB-19797	1.0000	Unknown	
23	LCS-19797	10.0000	Unknown	
24	D0986-04B	1.0000	Unknown	
25	D0986-05B	1.0000	Unknown	
26	D0986-06B	1.0000	Unknown	
27	D0996-01E	1.0000	Unknown	
28	D0996-02E	1.0000	Unknown	
29	D0996-03E	1.0000	Unknown	
30	CCV	1.0000	Unknown	
31	CCB	1,0000	Unknown	
32	D0996-04E	1.0000	Unknown	
33	D0996-05E	1.0000	Unknown	
34	D0996-05EDUP	1.0000	Unknown	00527
35	D0996-05EMS	1.0000	Unknown	88327_

Cup#	Sample ID	Manual Dilution	Sample Type	
36	D0996-07E	1.0000	Unknown	
37	D0996-08E	1.0000	Unknown	
38	D0996-09E	1.0000	Unknown	
39	D0996-10E	1.0000	Unknown	
40	CCV	1.0000	Unknown	
41	CCB	1.0000	Unknown	
42	SOLVENT	1.0000	Unknown	

Creator: kbadura

Creation Date: Sep 2, 2005 14:35:09 **Last Modified:** Sep 2, 2005 14:35:09

Description: ANALYSIS: CYANIDE ANALYST: KB/MM

Cup#	Sample ID	Manual Dilution	Sample Type	
1	S0	1.0000	CalStd	
2	S0.01	1.0000	CalStd	
3	\$0.025	1.0000	CalStd	
4	S0.05	1.0000	CalStd	
5	\$0.10	1.0000	CalStd	
6	S0.20	1.0000	CalStd	
7	\$0.40	1.0000	CalStd	
1	LCS-19772	1.0000	Unknown	
2	D0996-05EPDS	1.0000	Unknown	
3	CCV	1.0000	Unknown	
4	CCB	1.0000	Unknown	
5	SOLVENT	1.0000	Unknown	

E	MITKEM CORPORATION	RATI	No.	SAMPLE RUN LOG:		LACH	LACHAT INSTRUMENT			Date: 9.2.or			Analyst: Ka / hM
							* results in mg/L			Analyses: Channel 1:2(A Channel 2:	2	Channe	J 2:
AS Pos	Lab ID		AS Pos	Lab ID		AS POS	Lab ID		AS POS	Lab ID		AS POS	Lab ID
S	\$0.00		12	hack	OI B. Dub	32	D0996	Out	52			72	
S2	\$0.00		5	hoold	O18 HS	33		2so	53			73	
S3	\$0.02K		4	20010	420	34		<u>क्वज्र</u> ाठ	54	6.2		74	
84	so, ore		15	HB - 1972		35		WEN	55	6.7		75	
SS	\$6.10	-	16	2ttb1-577		36		эtо	56	7		76	
Se	50,20	<u> </u>	17	Poole	280	37		38€	25		Ø	77	
S7	O4'05		18	D1009	escoup	38	*	360	58		Ž.	78	
S8	4.8.00		19	boolg	03CH	39	20996	0.00	29			79	
Sg	X		20	ccu		40	Cev		8			80	
-	751		21	gras .		41	CCB		61			18	
2	5.58		22	total -gu		42	solveut		62			83	
33	CRA		23	16461-807		43	12tbl -527		63			83	
4	220		24	9860व	940	44	DOGGE	CREPDS	64			84	
5	#23		25		orB	45	/20		65			85	
9	20000	-	56	78600	B 20	46	3/2/2		99			86	
7	844 (20.1		27	J650T	OE	47	colvent		67			87	
8	14tb1 - 3rd		28	2646	310	48	6		88			88	_
6	1 HOGE	810	29	५०	380	49			69			89	/
5	CE		30	ccv		22	Ž.	4/	70			90	
11	ce		31	CCB		51			. 71			9	_
	*Report all results in mg/L	ts in mg	3/L		, -	Reage	Reagent Lots			Other			
DATA	DATA FILE NAME	000	2020602	5 0 A	-	Pyridin	Pyridine TA OTOROSO!			arve : Iduorogypol	04230		Curve on 4' or of
METH(METHOD FILE NAME		. <u>-</u>			NaOH	TR OTOPILO!	ļ		נכת: בוד פובפציים	O42,80		11 E
TRAY	TRAY FILE NAME					KH2PC	KH2PO4 TRUTOR 2302	<u></u>					= q
REPO	REPORT FILE NAME	200	cogosos a	10,6		Barbitu Chlorai	Barbituric Acid TROCOROSO Chloramine-T TROTO90201	1020					r= 1.000
										Company of the Compan			

680

Reviewed by SOLIOIY(0)

Logbook page

Logtஞok ID 100.0144-02/05 © S © ©

Prep Logbooks

I ICP

Cyanide

☐ Percent Solids

ICM 53 Ap.	MITKEM		CORPORATION: Aqueous Metals Preparation Logbook	ON: Aque	Ous Me	conc.	repara 1:1	tion Logb	ook Sample	Final	hao/00	h.
Client ID	Sample Vol (ml)	Hd	Color Before	Clarity Before	HNO ₃	II)	HCI	Sample Color After	Clarity After	Volume (ml)	Comments	Analyst
LAND 19953	50	}	Coloden	elar		2.5	1	coloulen	clear	20		26
	50	1	reforten	Klear		·	.,	colorlen	Rear	25		
OID SB-RB-1W-R	20	<3	colorlen	rlear				roloulen	Klear	S		
101004 010 NUSB-RB-W-R	95	とシ	Koloden	clar			-	noloden	clar	B		
10/004 DID HSB-RB-W-R	05 8	6 >	colorlen	clear				colorlen	Rear	2.0		
DO1045 MB 19935	50	23	colorlen	clar	,		- T.	colorlen	clar	50		
OAC RWOI-W-O	0.5	ペタ	colorlen	clar	The season			coloulen	clar	50		
04F MWB2-W-6	20	るへ	colorlan	clan				colorlen	den	S,		
05 F MWB3-W-0	B	ペペ	colorlen	clear				notorlen	dear	52		
06F MW 84-W-0	<i>05</i> 0	< 3	Kolodlin	ellar		. <u></u>		coloulen	clar	2		
07F MW85-W-0	8	<্প	colorlan	clar				Rolonban	clar	દ્ય		
0-M-98MW 180	05	<۶	colorlen	clar				rolulen	Allan	22		
0-W-18WM 780	20	K 3	cotorlen	clar	\rightarrow	-)	7	colorlen	eller	29		-)
11H MWB3-W-0	50	Ş	celalen	ellar	0.5	2.5	1	Colorlen	iclan	25		18
9/3/20												-
18,					į							
4/04/20	,			Method: ZLM5.3	172	45.3		· 	Diges	Digestion Temp:	25	ည္မ
LCSS/Suike ID: ZOSO4/2E	SecosaZ/		,	SOP#:	SOP#: 106.0009Mol	8	TOWE					1
0811/6 et	J608060Z/	<u>ر</u> پر	SOM	PET INOTIFICATED TO	HSIII	OT US		9/15/4 can	`			
MON MONTH	10101014 204017	100	·	Y TOTAL	ratero)	7			-		•	

Reviewed By:

MOSH-HICKOSOIT

29

Logbook ID 100.0125-08/05

Matrix:	Wa In: Out:	9/13/65	<u></u>			<				-							9/13/5	Date	*	
Matrix: Aqueous	Waters In: /O:30 Dut: /2:36	207	329	3322	120	JOW	226	115	314	315	39 A	1291	206	318BV	116	न्त्रह	9BW	Bottle No.		" ILM. 5.3
1/1s/os Du		52.0	51.0	50.2	50.0	201004	DO 996	50903	DO 1003	<u></u>					10/003	4537	PBW	Sample ID	a	Ao.
لح	in:					010	///	o/b	07)	050	bho	N GEO	og hou	osu	oj p				d	<i>75</i> -
Matrix:						SB-RB-W-R	11\$ \$14471	old diagab	D14462	DK1459	854410	954619 SM RED	954410 ANGE	114456	014458		19956	Client ID		M
Soil/Solid	Soils Out	100	100	B	B	8	100	100	100	100	100	100	100	100	100	BU	100	Sample Vol (ml)/ Wt (g)		MITKEM CORPORATION: Mercury Digestion Logbook
·		5	<u>(</u>													9//3/	2	Conc. Conc. H ₂ SO ₄ (ml) HNO ₃ (ml)		RPORATIC
Reviewed by:		2:5	<u>_</u>					- 1								05	2.5	Conc. HNO ₃ (ml	Re	N: Merc
i py	1 I	,	(22	5% KMnO ₄ (ml)	Reagents Added	ury Diges
, §	LCSS	đ	-							_					<u></u>		∞	5% K ₂ SO ₄ (ml)	dded	tion Logb
10/4/CX		1	<u>_</u>														(regia (ml)		ook
9/2/						/36											100	Final Volume (ml)		
KMn04 Lot # 9/07/40 K25208 Lot# 04/40 Method # 3 to 3/17 BU 9	Temp: H ₂ SO ₄ Lot # <u>3/04076</u> HNO ₃ Lot # <u>//050/0</u>	TOSO9/2A	ZOSO9/2A	II0509/2A														Comments		
13/05 1/13/05		BU	<u></u>														BV	Analyst	01)0/00;/

Waters 10:30 Out: 12:30 Matrix: Aqueous RELINQUISHED TO:				-				9/13/05 /9	9/13/5 3/3A	9/13/05/86	Date Bot	•	* 55
#5:30 /2:30 Aqueous								193	13A	4	Bottle No.		
9/15/0500		-						1CV	S/0.0	S5.0	Sample (D		
, <u>, , , , , , , , , , , , , , , , , , </u>													
Matrix:											Client ID		MIT
Soils but: Soil/Solid						0		100	/00	100	Sample Vol (ml)/ Wt (g)		KEM CO
					20/2			5	5	5	Conc. Conc. H ₂ SO ₄ (ml) HNO ₃ (ml)		MITKEM CORPORATION: Mercury Digestion Logbook
Reviewed by:			/9	18/				2.5	2-5	2.5	Conc. HNO ₃ (ml)	Rea	N: Mercu
by:			/					15	15	/5	5% KMnO ₄ (ml)	Reagents Added	ıry Diges
LCSS Spike								S	∞	8	5% K ₂ SO ₄	ded	tion Logbo
Splike <u>ZOSO9/14</u>				-				1	1	١	Aqua- regia (ml)		Ď.
400											Final Volume (ml)		
H ₂ SO ₄ Lot # 3/04090 H ₂ SO ₄ Lot # 3/04090 HNO ₅ Lot # 1/050/6 HO ₅ Lot # 4/04/30 KMnO4 Lot # 050967 KMS2S2O8 Lot# 04/40/ Method # 24/M 5.3								IL0509128	Tos 69/2A	Hoso9/2A	Comments		
95 °C						,		BV	BV	BV	Analyst	00	1534

		MITKE	M CO	RPORATIO	N:	CYA	VID	EC)IST	ΠLL	ATI	ON	LOGI	ВОС	K		·	
Date: X	131105	······································		Time On: 🕕					Tim	e Of	f: <u> </u>	<u> </u>	<u> </u>			Analy	'st:	<u>KB</u>
				Sample				Ac		IN	KI_		4N		. 6.7	۱ ,		- Cina
				Vol (ml)		nple							ulfamic	50		2.5 MgCl		Fina
Place #		Lab ID		Weight (g))H	(Y/	N)	(n	<u>nl)</u>	(Y/N) AC	cid (ml)			IVIGCI.	2 (1111)	VOIGI
1	101			50	_	-	1	/	_		M	ig	0.5		>	<u>a</u>		50
2	shd	0.1		90									1					50
3	PB:	ا ^ت ی	977	050								_		·		1		50
4	LCS			50										\Box				50
5	Dioa		01	1.11											<i>,</i>		_	50
6			011 nu	p 1.11											***		<u> </u>	50
7	1		OHAM	1 22														5C
8	D102		<u>ا</u> ده	1.05														50
9	D103		03A	1.00														50
10	PBW	-19	771	50		1												50
1	tes	or shot	0.2	50	-				_			ļ.,						5(
2	D 100	24 V	013	50	۸	13		<u> </u>					<u> </u>			<u> </u>		5(
3		V	0130	P 50	\ \	3_					<u> </u>	_						5(
4		V	pol Bm	50	1	13												51
5.	D104	N 14	OR A		\	14												5
6	Ploc	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ا دما	197728								1						5
7	LCS	ns"	9	500	_							\downarrow					-	5
8	710	09	030	50		13		_	\perp	_							-	5
9	1)10		0300		—	13	_	↓	_	<u>-</u>		_	4	- 5		 	<u> </u>	5
10	1)100	, ડે	osco	50	1	-13		\sim			h		0.5		5		004	5
	. •	te ntae	- -		_							_		LC	S ID:	Tu	, - (101

9	1 11005	10000	3/0	'				, ,			+
10	71009	osami	50	123	W	_	W	0.5	5	2	5
10	<u> </u>								LCS ID:	IUPOYI	105
Sulfam	ic Acid: TROFO	817-01		MgCl₂: <u>∑</u>	<u>८०१०</u> ६	1809			Spike ID:	THE OTO	<u>্</u>
Na ₂ AsC)2:			Cad. Cari	oonate:		-		ICV ID: _	INUCTO)SE3
H ₂ SO _{4:}	IR OTOX	1404		Temp: _t						TULL OT	
Logbo	ok ID: 100.0169-04	/05				Review	red By	: 561	10/41	105	

* Wet Chemistry *

Mitkem Corporation

Client: Ecology and Environment

Client Sample ID: MW12-W-O-0805

Lab ID: D1004-03

Date: 04-Oct-05

Project: Old Troy Landfill

Collection Date: 08/25/05 07:35

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
NITROGEN (NITRATE) BY AUTOMATED CD REDUCTION		E353.2_NO2	NO3	
Nitrogen, Nitrate-Nitrite	4.5	0.50 mg/L	10 09/16/2005 13:18	20011
NITROGEN (AMMONIA) BY NESSLERIZATION METHOD		SM4500_NH	3_W	
Ammonia-N	0.30	0.20 mg/L	1 09/12/2005 12:00	19920
NITROGEN (ORGANIC) BY MICRO-KJELDAHL METHOD		SM4500_TK	N W	
TKN-N	0.35 B	0.20 mg/L	1 09/03/2005 12:00	19820

00537

RL - Reporting Limit

R - RPD outside accepted recovery limits

E - Value above quantitation range

Mitkem Corporation

Ecology and Environment D1004 CLIENT:

Work Order:

Old Troy Landfill **Project:**

ANALYTICAL QC SUMMARY REPORT

Date: 04-Oct-05

TestCode: E353.2_NO2NO3

Sample ID MB-20011	SampType: MBLK	TestCo	TestCode: E353.2_NO2NO3	102NO3		Prep Date:	Prep Date: 09/16/2005		Run ID: LA	Run ID: LACHAT1_050916B	316B
Client ID: MB-20011	Batch ID: 20011	ร็	Units: mg/L		`	Analysis Date: 09/16/2005	09/16/2005		SeqNo: 397416	7416	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit High	%REC LowLimit HighLimit RPD Ref Val	ef Val	%RPD	%RPD RPDLimit Qual	Qua
Nitrogen, Nitrate-Nitrite	DN	0.050									
Sample ID LCS-20011	SampType: LCS	TestCo	TestCode: E363.2_NO2NO3	IO2NO3		Prep Date:	Prep Date: 09/16/2005		Run ID: LA	Run ID: LACHAT1_050916B	316B
Cilent ID: LCS-20011 Analyte	Batch ID: 20011 Result	집	onits: mg/L L SPK value	mg/L SPK value SPK Ref Val	, %REC	Analysis Date: 09/16/2005 LowLimit HighLimit RP	Analysis Date: 09/16/2005	of Val	Sequo: 39/41/ %RPD RP	NO: 39/41/ %RPD RPDLimit Qual	Qual
Nitrogen, Nitrate-Nitrite	5.266	09'0	5,46	0	96.5	36.2	153	0	0		

B - Analyte detected in the associated Method Blank

CLIENT: Ecology and Environment

Work Order: D1004

Project: Old Troy Landfill

ANALYTICAL QC SUMMARY REPORT

TestCode: SM4500_NH3_W

Sample ID MB-19920	SampType: MBLK	TestCoc	TestCode: SM4500_NH3_W	NH3_W		Prep Date	Prep Date: 09/10/2005	900	Run ID: SP	Run ID: SPEC2_050912A	4
Client ID: MB-19920	Batch ID: 19920	Car	hits: mg/L		•	Analysis Date: 09/12/2005	e: 09/12/2	900	SeqNo: 389666	9996	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Ammonia-N	QN	0.20									
Sample ID LCS-19920	SampType: LCS	TestCoc	TestCode: SM4500_NH3_W	W-SH3_W		Prep Date	Prep Date: 09/10/2005	906	Run ID: SP	Run ID: SPEC2_050912A	4
Client ID: LCS-19920	Batch ID: 19920	C	nits: mg/L		•	Analysis Date: 09/12/2005	a: 09/12/2(905	SeqNo: 389667	1996	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Ammonia-N	0.842	0.20	0.766	0	110	82.6	126	0	0		

CLIENT: Ecology and Environment

Work Order: D1004

Old Troy Landfill

Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: SM4500_TKN_W

Sample ID MB-19820 Client ID: MB-19820	SampType: MBLK Batch ID: 19820	TestCod	TestCode: SM4500_TKN_W Units. mg/L	TKN_W		Prep Date: 09/02/2005 Analysis Date: 09/03/2005	Prep Date: 09/02/2005 llysis Date: 09/03/2005	005 005	Run ID: SPEC2 SeqNo: 389218	Run ID: SPEC2_050903B SeqNo: 389218	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
TKN-N	0.246	0.20									
Sample ID LCS-19820 Client ID: LCS-19820	SampType: LCS Batch ID: 19820	TestCod	TestCode: SM4500_TKN_W Units: mg/L	TKN_W		Prep Date: 09/02/2005 Analysis Date: 09/03/2005	Prep Date: 09/02/2005	005 005	Run ID: SPEC2 SeqNo: 389219	Run ID: SPEC2_060903B SeqNo: 389219	
Analyte	Result	POL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	%REC LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
TKN-N	0.724	0.20	0.674	0	107	80	120	0	0		ш

]	Analysis
	Ammonia /(TKN)Analysis
]	Amn
]	SPRCA_ 050903B MITKEM CORPORATION
	2 05°
	SPRC6
1	MITKEN

		<u>.</u>					l				
Date	Sample ID	٥	Sample volume (ml)	ABSORB.	Calc, CONC (mg/l)	Dilution Factor	Result (mg/L)	% Recovery	Comments	Analyst	
9.3.0	0.08		ß	0.000	0,000	2	0.000			(m/m)	
	弘+4.08	_	10/m/01	0.0₹≄	O. 401	2	0,802	100 %			
	PB-4-19820		35	970.0	0.123	2	CIN				
	٥٥		3.2/n	0,040	0.362	$(c) \times c$	(1.25) 43.01 (1.25) 43.01	108%	71 day ht. 9 = 13		
	9960G	σЮ	ولا	880.0	0, 188	2	GN				
		020	25	125.0	64,1	2	37.8				
		0 80	38	0500	422.0	2	1 205 0	:	831 = 079)		
	- ₩	OSDDA	25	850'0	6,297	8	D SOU	GN-≃			
	99600	54,080	-35	0.173	0.924	72	1.848	84%			
	MOGHI	21C	35	0.084	0.439	2	ON				
		22C	25	0,060	0.308	2	N O Z				
	1200a	23C	35	6.063	0.324	2	ON				
	100 8 + M		20 mos	141.0	e. 448	2	1.499	84%			
-	10000	<i>2</i> 4€	32	680.0	૦. પુરક	2	ON			-	
9.3.Q	100997	OSE	o/vc	0.187	1.000	(05x x 8)	500.00			(m/m	
	Wavelength =	52h	م سه	+	+ Ind Osobota	***	20/41/105	= m = S0	0.1834		_
	Pathlength =	-	1.0 cm	Conç	Conç of Analyte = (Abs-b)/m			 Q	0.83r		
	MRL =	-	1 0 00	- 5 pik	44(2) 0.8 r	`-,	/F=20002805	.)	0.9993		

Curve made on: Nessier Reagent Lot Number: Oてのよるは~12

9.2.05 mm

©Logbook ID: 100,0030-07/05

7.13.05 0.9993

												,	1			
	Analyst	nd m)	w/ m/													
	Comments									/			O. 1834	0,0035	0, 9993	4.13.07
	% Recovery		31%							/			_m	n 0	2803 r=	Curve made on:
	Result (mg/L)	D. 354	2.18						,				109/12/105	-	toro hur	21-6
lysis	Dilution Factor	2	2				6						V FEO	Conc of Analyte = (Abs-b)/m	1/ × 1/ du 8	Nessler Reagent Lot Number: ਾਨਾਨਾਵਾ-।ਟ
Ammonia / (FKN)Analysis	Calc. CONC (mg/l)	0.174	1.09			0	\$7						+ IMP 0506074	of Analyte = (Al	ين ها معرد	gent Lot Num
Ammonia	ABSORB.	0,035	0.203			/							*	Conc	<i>ي</i> تر	Nessler Rea
	Sample volume (ml)		som/a										4125 Mm	1.0 cm	1.0 mp//	,
NO		03A		/							:		77.77	-		Y
MITKEM CORPORATION	Sample ID	109	51.2十世	/									Wavelength =	Pathlength =	MRL =	
MITKEM	Date	9.3.0r	\$ 3.0g													

(t)

ĮŲ.

Reviewed By: 56x 4||3||0

©Logbook ID: 100.0030-07/05 5 7 8 8

P. 3. DT (mm

MITK	MITKEM CORPORATION:(TKN) AND A	(TION:	KN AND A	MMONIA D	ISTILLATIO	MMONIA DISTILLATION LOGBOOK	اره (الهراد)	
Q.	Ol de l			Initial Sample Weight (g)	Initial Sample pH	Final Extract Volume (ml)	Comments	Analyst
(\$ 1	PRIM -	Q		J	المراجعة الأ	100		KB/MM
B,	20		3		₹ 27	100		
200	29604	00	200		2>	100		
ે જે	3	S. D.	26		27	100		
424		વજ્	8		۲۶	100		
34		ordico	B		22	§		
E.	D096C	O3DMS			22	8		
15 27	14800	عاد	25		<2	8		
A 70		zc.	25		22	100		
2 5		236	25		27	$\tilde{\mathcal{S}}$		
X4 1	14800	34C	8		22	Col		
ું	10997	ONE	25	-6	7>	001		
<u>0</u>	\$100H	05A	25)	77	001		KB mm
4								
2								
9								
7			7	2/05/4				
ဆ				- C/			1	
6					A			
10								
ŏq 6 05 4 3	ତ S Legbook #: 100.0035-07/05	ıo			26	Œ	Reviewed by SR 9 13 05	•

	Analyst	KB														3	ı	i	ı	ı
	Comments				Iduosogosol Tro J.Geyli)											Q	0. CO35	0 9993	7/13/02
, manufact, frieddings	% Recovery		102%		110%									45%			E	٠ ۵	L	Curve made on:
	Result (mg/L)	Q	0.40E	MD	8.પ્રુ	arrio é	ovelbe	acire	arine	00 pr	ork ink	OCRIDE	02 OR	0,761	0.368	O. 243	809/12/05	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Funovo8 3	84-12
lysis	Dilution Factor	ſ	1	- /	(a)									1	j	ر د		m/(q-sq	my 10 com	ber: 0507
// TKN Analysis	Calc. CONC (mg/l)	0.000	o.uoc	0.040	C.842 V									0.761	· 5% 76.00	0.24 3	4 InPososo 6074	Conc of Analyte = (Abs-b)/m	971601 @ O. Buyll or (Funox58300)	Nessler Reagent Lot Number: 050789~(2
Ammonia)/	ABSORB.	0.000	0.078	0.000	0.158							0,280		2 hl.O	140·0	O.O. O. O.	1+	ပိ		Nessler Rea
1721 b o	Sample volume (ml)	25	52/201	25	25/25	25	75	25	25	P 25	OUENS 25	25	35	32/20/08	25	25	nm.	1.0 Chu	16 mote amor	4/11/24 129
J OS NOI	۵			9	0	OCE	370	DSE	OHE	OUEDA	OUE	OSE	390	٦,	340	SE E	y2h	-	4	
MITKEM CORPORATION	Sample ID	0.0%	°, 7.0%	PBU-19920	CCS - (9920)	16609							18604	50. 8 + My 11	10900	10991	Wavelength ≖	Pathlength =	MRL =	10
MITKEN	Date	9/12/A	-													9/12/5				

© Logbook ID: 100.0030-07/05

Reviewed By: 7

MS | Dy on D0991-09: All OK 100 atta in the man of the contract of the point of the contract of the point of the contract of the point of the contract of the point of the contract of the contr

MITKE	MITKEM CORPORATION	NOI	Sample	Ammonia	/ TKN Analysis	lysis	:			
Date	Sample ID	□	volume (ml)	ABSORB.	Calc. CONC (mg/l)	Dilution Factor	Result (mg/L)	% Recovery	Comments	Analyst
4/2/05	100997	370	0.25 25			(co))	oce to p			T.
	86609	ole	0 K (25			((00))	SUPLOS			-
	83864	220	52)52.0			(100)	-aelop			
	D lood	O3A	25	DS0.0	0.297		0.292			
	(S)010	ر 2	35	8hO'O	0.243V	1	0.243			
		02C	35	0.059	0.303	•	0.303			
	→	200	25	0.068	43824	(0.352			
Se afterflox	D100/8/80010	Dyc	52	0.0%	o. 472	/ /	0,432			
P	S1.2 + mp1	د	20/2002	0.220	1.18	1	1.18	28%		
	10991	ON IC	111 ort 3 15 LS	0.410		(00)	OCR I DIE			
		<i>3</i> 70	57/57.0	0.530		(201)	20120			
		340 29E	52/520	6.(8%	1.00	ر (۵۵۱)	100.60			
		OHE		0.087	O.455 1	(00) 44S.BZ	45.52	7 RPD = 1.20%		
	f	ज़्ह ज़िल्	den osspr	0.08%	0.461 V	(00)	46.07			£
9/11/05	1000	OHEN	OUTEMS 0.25/ 8	0.22)	1.19	ر (د <i>ه</i> ا)	4118.59	1/16		KB
_	Wavelength =	124	425 nm		4+09 asolu 1+	A409a	80/2/15th	= w	O. (834	
	Pathlength ≖	0	O Com	_ Conc of	of Analyte = (Abs-b)/m	m/(q-sc	<u>.</u> [. = q	0.0035	

Reviewed By: _

8000

MRL =

Nessler Reagent Lot Number: ___

36

2) (2) 02 Ces

MITKE	MITKEM CORPORATION	NOI	\smile	Ammonia	Ammonia/ TKN Analysis	ılysis				
Date	Sample ID	۵	Sample volume	ABSORB.	Calc. CONC	Dilution Factor	Result (mg/L)	% Recovery	Comments	Analyst
4/12/5	16600	30E	25 25	0.202	v 80.1	((sol)	(108.23		11000	£.B
		1	12-5/25	七でつ	1. 1G V	ر (ھ)		F.5		
	F		22/2010	6.20g	1.08 0	/ (www) V	1 1 2 C			
	16604	OLE	0.1 125	0.225	ا. اع	(out)	299.21			
	1000 S	75	32/mon	080'0	±1100)	414.0	%40)		
	46604	OZE	2741.0	0.255	1.32	(csp) /	V479.14.			
	150993	210	0.1 (25	0.271	1,46	(2sp) 🗸	364.64			
	1090g	220	22)1	0.368	1.99	r (0se)	496.8G			
0/12/0	S 0.87	2	Selmon	0.149	0,793)	0.793	266		KB
+										
·						/ ""				
						1/1/02	S			
	·									
	Wavelength =	247	425 Tulm		+ July spec 74	फ€० १ स	10.9	m= 30/21/20		ı
	Pathlength =	- c	0 am	Conc	Conc of Analyte = (Abs-b)/m	c of Analyte = (Abs-b)/m	Tuno so	b= 8300/	0.9913	
	0) (1) (c) (c)			Nessler Reagent	agent Lot Nun	Lot Number: 0 (2)34 - 12	St - 12	nade	3/13/2	1 I

10 mg

Reviewed By:

©Logbook ID: 100.0030-07/05

MITKEM CORPORATION: TKN AND AMMONIA DISTILLATION LOGBOOK

20101/4

Analyst MM R P TU=766L 62 0.8 mg 1 Comments THROSPACIE 7 لكمانوء Final Extract Volume (ml) 5 B R B 2 8 B 2 8 8 2 8 3 2 8 8 8 B 2 2 Initial Sample pH 5.600 56-57 (2>95) (コンダ・ワ くみ 2 のこ 4239.5 (2 ~ 9.5 (2 395X 45.95 56000 <2>42 230CD 17295 (2295) いちゃせい 56A 7 くびゃのと くろうのく くなるぐ X 39.5 Initial Sample Weight (g) Initial Sample Volume (ml) 3 $\frac{\tau}{O}$ 55 8 දු 9 B S \mathcal{E} 5 5,0 8 රි વુ B 50 \mathcal{S} 8 35 ۾ STEPS OTENS onems 03C 03 A 0 240 20 92C 02C obe 085 OSE ORE 00 OSE 80 ORE 0,4 - 1992O 95 - 1993D Lab ID t660a 26600 Dodds 20010 1) (00 L 4699 2000 16600 78x Place # 9 9 œ 6 N N S ဖ ന Ŋ 9 ۲ œ O

Reviewed by My (W)

30

ର ଓ ⊑ Logbook #: 100.0035-07/05

Mitkem Corporation

Client: Ecology and Environment

Client Sample ID: MW12-W-O-0805

Lab ID: D1004-03

Date: 04-Oct-05

Project: Old Troy Landfill

Collection Date: 08/25/05 7:35

Analyses	Result Qual	RL Units	DF Date Analyzed	Batch ID
BIOLOGICAL OXYGEN DEMAND (5 DAY)		E405.1_5		
Biochemical Oxygen Demand	4.2	3.0 mg/L	1 08/26/2005 0:00	SUBBED

R.I. Analytical Laboratories, Inc.

CERTIFICATE OF ANALYSIS

Mitkem Corporation

Date Received: 8/26/05 Work Order #: 0508-14278

Approved by:

Data Reporting

Sample # 001 SAMPLE DESCRIPTION: D1004-03B

SAMPLE TYPE: **GRAB** **SAMPLE DATE/TIME:** 8/25/2005 @ 07:35

SAMPLE

RESULTS

DET.

METHOD

DATE

PARAMETER LIMIT UNITS **ANALYZED** ANALYST 4.2

BOD 5

2.0 mg/l EPA 405.1

8/26/05

EE

AR. I. A	nalytical
----------	-----------

D.O.C:AM Page D.O.C:PM Analyst Date In Incubator Biochemical Oxygen Demand Method (5210B) Time In Date Out 8/31/0 Time Out Nutrient Pillows Lot # A4212

Dilution Water Factor Seed Correction Factor Check for Residual Cl in carboy Minutes Aerated

Nitrification Inhibitor Lot # # 40/0

	Saletella Saletella January			Zedmilikie k Self Siesi Siesi Siesi	KATINAN DOM	miaiFina Transition allees 10	Separation of Factors and Fact	Calculated Popular Popular	E Properties :	
	14272-1	Z T	ø-S	8.0	1-0	7-0	0-1	6-9/4140	41000	10/5
	PH6.5	282	. 1	8-0	<u> </u>			<u> </u>		X
	1645	270	5	8-7	<1					
<u></u>		279	(0		21					
		11X	25	81 8-2	ci					
		706	50	8-2	۷1					
		284	25	8-1	6.9					
	P46-9	27316	50	8-7	6-8					H
<u> </u>	1646	768	/ov	8-3	6.8	\$ -5	0-/	1-4/4-2	(4.2)	
				0. #						
	14280-1	2851	0-5	8.7	7-8			<u> </u>		∥ .
	PH 6-5	2763 275		8.7	7.8	7 2		1102		/
	113		5	8.6	5.4	3.2	0-1	3-1/186	(190)M	l
		777	10	8.2	<1			1		
	14280-2	00.5		0.11	ــــــــــــــــــــــــــــــــــــــ					/
<u> </u>	PH 7-0	28 S	25	8-5	5.0 4.9	3.6		2 - / 11.5	9.9	K
	1727	281	75	9.0	2.4	6.6	0-1	3.5/14	12	ľ
	1,2,		200	1.0		6.0	0.0	6-6/9-9	12/102	
								1	-4/1/-	

Calculation: Bod5 day mg/l = ((Initial DO-Final DO) - Seed Corrector Factor) **300

Sample Vol

D.O.C=Dissolve Oxygen Calibration.

Std =(Difference-Factors) *50

Std and Spk = 6 mls of Glucose/ Glutamic acid should =200 mg/l BOD5

Spk = Difference-Factors-(Sample Difference)*50

for quelist add sample to spike recovery

Reviewed By: Date Reviewed:

RI Analytical Laboratories, Inc. QA/QC Report

Client: Mitkem Corporation WO #: 0508-14278

WO #: 0508-1427 **Date:** 09/21/05

-Method Blank Results-

Parameter	Units	Results	Date Analyzed
BOD 5 Day	mg/l	<3.0	08/26/2005

-LCS Results-

Parameter	Units	Spike Conc.	Detected Conc.	% Rec.	Date Analyzed
BOD 5 Day	mg/l	200	200	100	08/26/2005

-Replicate Sample Results-

Parameter	Units	Sample #	Rep 1 Conc.	Rep 2 Conc.	Mean Conc.	Reported Value	RPD	Date Analyzed
BOD 5 Day	mg/l	14308-1	140	150	145	140	7	08/26/2005

CHAIN-OF-CUSTODY RECORD

Mitkem Corporation

D1004

Warwick, RI 02886-1755 175 Metro Center Blvd

(401) 732-3400

Subcontractor:

RI Analytical Laboratory

41 Illinois Ave Warwick, RI 02886

737-8500	
(401) 73	

Aqueous

D1004-03B

Matrix

Sample ID

		Requested Tests	ests	
Collection Date	E405.1			
08/25/2005 07:35:00				

26-Aug-05

1) E405.1 or equivalent method for the analysis of BIOLOGICAL OXYGEN DEMAND (5 DAY)

Comments:

0508- 14278

Date/Time	1415	
	8/2/1/8	,
1	frank	
,,,	by: Call	by: (-/ //
	Received by: 7	Received by:
Date/Time	F-20-05	
	X	
	lby:	Pyr
	o Relinquished	Relinquished

CERTIFICATE OF ANALYSIS

Mitkem Corporation Attn: Data Reporting 175 Metro Center Blvd. Warwick, RI 02886-1755 **Date Received:** 8/26/05 **Date Reported:** 9/1/05

P.O. #:

Work Order #: 0508-14278

DESCRIPTION: PROJECT# D1004 (ONE AQUEOUS SAMPLE)

Subject sample(s) has/have been analyzed by our Warwick, R.I. laboratory with the attached results.

Reference: All parameters were analyzed by U.S. EPA approved methodologies and all NELAC

requirements were met. The specific methodologies are listed in the methods column

of the Certificate Of Analysis.

Data qualifiers (if present) are explained in full at the end of a given sample's analytical results.

Certification #: RI-033, MA-RI015, CT-PH-0508, ME-RI015

NH-253700 A & B, USDA S-41844, NY-11726

If you have any questions regarding this work, or if we may be of further assistance, please contact us.

Approved by:

Data Reporting

enc: Chain of Custody

Last Page of Data Report

ANALYTICAL REPORT

JOB NUMBER: 210663

Prepared For:

MITKEM 175 Metro Center Boulevard Warwick, RI 02886-1755

Project: D1004

Attention: Ben Dodge

Date: 09/16/2005

Signature

Name: Paul T. Hobart

Title: Project Manager

E-Mail: phobart@stl-inc.com

STL Connecticut

128 Long Hill Cross Road

Shelton, CT 06484

STL Report: 210663 MITKEM CORPORATION

Case Narrative

Sample Receipt – All samples were received in good condition and at the proper temperature.

Classical Chemistry - Listed below are the wet chemistry analyte methods and references for the samples analyzed in this SDG. No analytical problems were encountered.

Analyte	Method	Reference
Phenols	420.2	1

References:

1. Methods of Chemical Analysis of Water and Wastes, EPA 600, 1983.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in the case narrative.

SAMPLE INFORMATION
Date: 09/16/2005

Job Number.: 210663 Customer...: MITKEM Attn.....: Ben Dodge

Project Number.....: 20000832 Customer Project ID...: D1004 Project Description...: Phenols Analysis

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	fime Sampled	Date Received	Time Received
210663-1	D1004-03C	Water	08/25/2005	07:35	09/02/2005	09:20
						·
		·				
·						
			i.			
				🗴		_
						_

	\$20000000		37447		
			10.0	£ E	
			豐	1219	
-			DATE/TIME	09/09/05 1219 dtn	
			*5	50/60	
π	e g		Б		
2/200	Ben Dodge		BATCH	54465	
Date: 09/12/2005	125 (355)		8	2,4	
ate:	ATTN:		UNITS	mg/L	
			3	Ě	
			ğ		
			DILUTION	0.1	
		5			
		53-1 2/200 3	 ₽	0.005	
		210663-1 09/02/20 09:20			
n 		ë ::			
ν Ο Γ		aple		0.003	
⊼ Π 	8	y Sar ived ived	Ę.	6	
_	MLYS	ator Rece Rece			
_ n u	LS A	Laboratory Sample ID: 210663-1 Date Received: 09/02/2005 Time Received: 09:20			
-	PROJECT: PHENDLS ANALYSIS		FLAGS		
- -			Ġ	<u>EQ</u>	
_ ⊇ –	ROJE		SULT	0.005	
₹ ¥			E R		
D 10			SAMPLE RESULT		
ر ج					
			204.00		
			NO		
			CRIP		
			PARAMETER/TEST DESCRIPTION	Phenolics, Total Recoverable Phenolics, Total Recoverable	
		38	ATEST	Sover	
63		D1004-03C 08/25/2005 07:35 Water	ETER	l Rec	
√ob Number: 210663		01004- 08/25/ 07:35 Water	ARAM	Tota Tota	
: Jac		ë : : :		'ss'	·
E S	10.156	를 하고 Xi		enol	~ .
dot	CUSTOMER: MITKEN	Customer Sample ID: D1004. Date Sampled: 08/25, Time Sampled: 07:35 Sample Matrix: Water	*,***,***	둔춘	*
	174	stome te Sa ne Sa nple	TEST MET HOD		
	OMER	Cus Dat Tin San	(U) X	420.2	
	2		122	4	·

LABORATORY CHRONICLE

Job Number: 210663

Date: 09/16/2005

CUSTOMER: MITKEM

PROJECT: D1004

ATTN: Ben Dodge

Lab ID: 210663-1 METHOD

Client ID: D1004-03C

DESCRIPTION

Phenol Distillation Method

Date Recvd: 09/02/2005 Sample Date: 08/25/2005

RUN# BATCH# PREP BT #(S)

1 54404 DATE/TIME ANALYZED 09/07/2005 1453 DILUTION

1.0

Prep Method 420.2

Phenolics, Total Recoverable

54465 54404 09/09/2005 1219

QUALITY CONTROL RESULTS

Job Number.: 210663

Report Date : 09/12/2005

CUSTOMER: MITKEM

PROJECT: PHENOLS ANALYSIS

ATTN: Ben Dodge

Test Method 420.2	Batch 54465 Analystdtn
Method Description .: Phenolics, Total Recov	rerable Equipment Code: LACHET 3 Test Code.: PHENTR
Parameter Phenolics, Jotal Recov	

QC	Lab ID	Reagent	Units	QC Result	QC Result	True Value	Orig. Value	QC Calc. F	*	Limits	Date	Time
MD	54465-005 54404 -002 210579-17 210579-17		mg/L	0.00300 U 0.33029 0.00397 B 0.39885		0.32600	0.00337 B 0.00337 B	101 0.0006 99	%	85-115 0.0050 75-125	09/09/2005 09/09/2005 09/09/2005 09/09/2005	1214 1216

GUALITY ASSUBANCE NETHODS REFERENCES AND NOTES

REPORT COMMENTS

- 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
- Soil, sediment and sludge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently.
- 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if apolicable.
- 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. ID# 10604
- 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt.

Glossary of flags, qualifiers and abbreviation Inorganic Qualifiers (Q-Column)

- U Analyte was not detected at or above the reporting limit.
- Not detected at or above the reporting limit.
- J Result is less than the RL, but greater than or equal to the method detection limit.
- B Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL.
- S Result was determined by the Method of Standard Additions.

Inorganic Flags (Flag Column)

- ICV,CCV,IC8,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed th upper or lower control limits.
- * LCS, LCD, MD: Batch QC exceeds the upper or lower control limits.
- + MSA correlation coefficient is less than 0.995.
- 4 MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable.
- E SD: Serial dilution exceeds the control limits.
- M8, EB: Batch QC is greater than reporting limit or had a negative instrument reading lower than the absolute value of the reporting limit.
- N MS, MSD: Spike recovery exceeds the upper or lower control limits.
- W PS: Post-digestion spike was dutside 85-115% control limits.

Organic Qualifiers (Q - Column)

- U Analyte was not detected at or above the reporting limit.
- ND Compound not detected:
- J Result is an estimated value below the reporting limit or a tentatively identified compound (TIC).
- Q Result was qualitatively confirmed, but not quantified.
- C Pesticide identification was confirmed by GC/MS.
- The chromatographic response resembles a typical fuel pattern.
- The chromatographic response does not resemble a typical fuel pattern.
- E Result exceeded calibration range, secondary dilution required.

Organic Flags (Flags Column)

- MB,EB, MLE: Batch QC is greater than reporting limit.
- LCS, LCD, CCV, MS, MSD, Surrogate, RS:Batch QC exceeds the upper or lower control limits.
- A Concentration exceeds the instrument calibration range or below the reporting limit.
- B Compound was found in the blank.
- D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution will be flagged with a D.
- H Alternate peak selection upon analytical review
- I Indicates the presence of an interfence, recovery is not calculated.
- M Manually integrated compound.
- P The lower of the two values is reported when the % difference between the results of two GC columns is greater than 25%.

GUNLITE ASSURANCE METHODS REFERENCES AND MOTES

Abbreviations

```
Designation given to identify a specific extraction, digestion, preparation set, or analysis set
         Capillary Column
CAP
         Continuing Calibration Blank
CCB
         Continuing Calibration Verification
CCV
         Confirmation Analysis
CF
         Low Level Standard Check - GFAA; Mercury
CRA
         Low Level Standard Check - ICP
CR I
         Dilution Factor
Dil Fac
         Secondary dilution and analysis
۵L
         Detection Limit Factor
DLFac
         Distilled Standard - High Level
DSH
         Distilled Standard - Low Level
DSL
         Distilled Standard - Medium Level
DSM
         Extraction Blank
EB
         Initial Calibration Blank
I CB
         Initial Calibration Verification
ICV
         Instrument Detection Limit
ÌΟL
         Interference Check Sample A
ISA
          Interference Check Sample B
158
         The first six digits of the sample ID which refers to a specific client, project and sample group
Jab Na.
         An 8 number unique laboratory identification
Lab ID
         Laboratory Control Standard Duplicate
LCD
         Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest
LCS
         Method Blank or (PB) Preparation Blank
MВ
          Method Duplicate
MD
          Method Detection Limit
MDI
          Medium Level Extraction Blank
MLE
          Method Reporting Limit Standard
MRL
          Method of Standard Additions
MSA
MS
          Matrix Spike
          Matrix Spike Duplicate
MSD
          Not Detected
ND
          Packed Column
PACK
          Preparation factor used by the Laboratory's Information Management System (LIMS)
PREPF
PS
          Post Spike
          Post Spike Duplicate
PSD
          Re-analysis
RA
          Re-extraction and analysis
RE
          Reporting Limit
RΙ
          Relative Percent Difference of duplicate (unrounded) analyses
 RPD
          Relative Response Factor
 RRF
          Reference Standard
 RS.
          Retention Time
 RТ
          Retention Time Window
 RTW
 SampleID A 9 digit number unique for each sample, the first six digits are referred as the job number
          Seeded Control Blank
 SCB
          Serial Dilution
 SD
          Unseeded Control Blank
 UCB
```

One or a combination of these data qualifiers and abbreviations may appear in the analytical report.

STL-Connecticut Certification Summary (as of September 2005)

category of testing such as drinking water or wastewater analysis. The laboratory should be contacted directly if parameter-specific certification information The laboratory identification numbers for the STL-Connecticut laboratory are provided in the following table. Many states certify laboratories for specific parameters or tests within a category (i.e. method 325.2 for wastewater). The information in the following table indicates the lab is certified in a general is required.

Lab Nambel	PH-0497	CT023	CT023	2528	CT410	10602	A43	2032614458
Expiration III	12/31/06	04/18/06	90/06/90	08/29/06	90/06/90	04/01/06	12/30/06	05/31/06
Certification	Drinking Water, Wastewater	Drinking Water, Wastewater/Solid, Hazardous Waste	Potable/Non-Potable Water	Drinking Water, Wastewater	Drinking Water, Wastewater	CLP, Drinking Water, Wastewater, Solid/ Hazardous Waste NELAC	ChemistryNon- Potable Water and Wastewater	RCRA
Responsible Agency	Department of Health Services	Department of Health and Environmental Services	Department of Environmental Protection	Department of Environmental Services	Department of Environmental Protection	Department of Health	Department of Health	Department of Health
State	Connecticut	Maine	Massachusetts	New Hampshire	New Jersey	New York	Rhode Island	Utah

D1004

Mitkem Corporation

Warwick, RI 02886-1755 175 Metro Center Blvd (401) 732-3400

Subcontractor:

STL Connecticut

128 Long Hill Cross Road Shelton, CT 06484

(203) 929-8140

ASSED RAD SCREEN

Page 1 of 1

CHAIN-OF-CUSTODY RECORD

4.5°C

Requested Tests

A5530

Collection Date

Matrix

Sample ID

08/25/2005 07:35:00

Aqueous

D1004-03C

01-Sep-05

210663 MITKEM BEN DODGE PHENOLS ANALYSIS

09/14/2005

1) A5530 or equivalent method for the Analysis of PHENOLS BY 4-AMINOANTIPYRINE METHOD

Comments:

Ecology & Environment: Old Troy

9/02/05 0920 Date/Time (Loc Received by: Received by: Date/Time Relinquished by: Relinquished by:

9

Job Number: 210663 Location: 57207 Check List Number: 1 Description: Customer Job ID: Job Check List Date: Date of the Report.: 09/02/2005 Project Number: 20000832 Project Description: Phenols Analysis Project Manager: pth Customer: MITKEM Contact: Ben Dodge
Questions ? (Y/N) Comments
Chain-of-Custody Present? Y
!f "yes", completed properly? Y
Custody seal on shipping container? Y
If "yes", custody seal intact? Y
Custody seals on sample containers? N
[f "yes", custody seal intact?
Samples iced?Y
Temperature of cooler acceptable? (4 deg C +/- 2). Y 4.5C
Samples received intact (good condition)? Y
Volatile samples acceptable? (no headspace)
Correct containers used? Y
Adequate sample volume provided? Y
Samples preserved correctly? Y
Samples received within holding-time? Y
Agreement between COC and sample labels? Y
Radioactivity at or below background levels? Y
A Sample Discrepancy Report (SDR) was needed? N
Comments
If samples were shipped was there an air bill #? Y FE 8333 7762 8057 Blocker 0/02/05 Sample Custodian Signature/Date

Page 1

210663
MITKEM
BEN DODGE
PHENOLS ANALYSIS

STL/CT PRESERVATIVE RECORD

Date	26/18	4/40		\											
Initials	R			1											
Chlorine Residual	MM														
PH after Adjustment	WH									•		-			
Adjustment	#m					•	,	A DE							
hd	77								 7	4		-			
Preservative	#28081		-												
Lab Number	210063-01														

STL Form# SMF00203.CT

210663 MITKEM BEN DODGE PHENOLS ANALYSIS

09/14/2005

STL - Connecticut Internal Chain-of-Custody

Trip Blank: ______QC: ______Air:

.

FB:

Water: #0/

Soil:

Date Received: 09/02/

Sample #s:

Locations: MUSC D

Time	7	2														
Date	/0	イナ										,	-			
Accepted by	3)													
Relinquished by	Ţ	2	-						-						 •	
Reason	Distance for	2000			-			•								
Time	11:50	+					 -						+			
Date	7/6										,					
Accepted by	1.4												-			
Relinquished by	(3)							·							507.CT	•
Laboratory Sample #	Y									 *					STL Form# SMF00507.CT	