Phase II Environmental Site Assessment Report

20 Forbes Avenue

City of Rensselaer, NY

Rensselaer County, New York

October 1, 2021

21-26694-E DRAFT

DRAFT REPORT FOR CLIENT REVIEW

Prepared by:

ALPINE ENVIRONMENTAL SERVICES, INC. 438 NEW KARNER ROAD ALBANY, NEW YORK 12205

TABLE OF CONTENTS

- 1.0 SITE BACKGROUND
- 2.0 GROUND PENETRATING RADAR INVESTIGATION
- 3.0 VAPOR INTRUSION INVESTIGATION
- 4.0 SOIL AND GROUNDWATER INVESTIGATION
- 5.0 HISTORIC SUB STATION INVESTIGATION
- 6.0 STORMWATER SYSTEM INVESTIGATION
- 7.0 CONCLUSIONS

TABLES

- Table(s) 1A-1C Summary of Volatile Organic compounds Detected in Sub-Slab Soil Gas (EPA VISL Standards Comparison)
- Table 2 Summary of Volatile and Semi-volatile Organic Compounds Detected in Test Pit Soil Samples
- Table 3 Summary of Volatile and Semi-volatile Organic Compounds, PCB's, and Metals Detected in Soil Borings
- Table 4 Summary of Volatile and Semi-volatile Organic Compounds and Metals Detected in Groundwater Samples

FIGURES

Figure 1 – Site Location Map

Figures 2A - 2D GPR Underground Utility and Storage Tank Identified Locations Figure 3 – Sampling Locations

Figure 4 – Groundwater Elevation Contour Map

APPENDICES

Appendix A – EPA Residential and Commercial Vapor Intrusion Screening Levels Appendix B – Test Pit Logs

- Appendix C Soil Boring Logs
- Appendix D Laboratory Sample Analysis Reports

1.0 SITE BACKGROUND

The Subject Property (SP) is 6.1-acre land parcel in the City of Rensselaer, Rensselaer County, New York, known as 20 Forbes Avenue, formerly known as the Barnet Shoddy Mill and then as Hilton Center. The site contains nine industrial use buildings that covers a large portion of the tax parcel. The remainder of the parcel is a gravel surfaced land with an access roadway through the center of the buildings and a gravel surfaced roadway on railroad property along the west side of the SP.

A Phase I Environmental Site Assessment for the SP was performed by Alpine Environmental Services, Inc. (Alpine) in July of 2021 and identified Recognized Environmental Conditions (RECs) on the SP as follows:

1. The facility was originally constructed as a brewery but was then converted to a textile mill called William Barnet & Sons All Wool Shoddy Mill. This industrial use occurred from 1905 into the 1960's. The industrial use of the mill with extensive industrial equipment that had to be maintained throughout this timeframe required lubricating chemicals, solvents and other types of chemicals that had to be stored, used and disposed of. No accounting for how these materials were used, stored and disposed is known. It is presumed that spills or spills from storage or disposal could have occurred over this sixty years of industrial operations. Some testing of site soil and groundwater will be necessary to determine if adverse impacts to the subsurface have occurred.

2. Use of the SP by The Hilton Center for decades renting to industrial and commercial tenants has included manufacturing, automotive repair, and possible salvaging and other commercial and industrial uses that have stored and used large quantities of petroleum and other chemicals. Spills including discharge of oil to the ground, storage of large quantities of drummed chemicals and leaks in the storage areas have occurred and were documented by the City of Rensselaer and the New York State Department of Environmental Conservation in the 1980's and 1990's. Additional storage of chemicals in areas used to store, service, and repair vehicles has also occurred during the Hilton Center timeframe and these areas are not documented. Extensive soil and ground water sampling across the SP will be necessary to determine if the documented spills and other spills that may have occurred and not been documented, have degraded site soil and groundwater quality to the extent that current regulatory cleanup standards may be exceeded in the site subsurface.

3. Land filling has reportedly occurred in the northern end of the SP. CHA Consulting reported as a result of a 2013 site inspection, that an apparent dumping area for various debris was noted in the northern site area. A significant amount of construction and demolition type debris was noted in this area. CHA noted that based on appearances in this area in conjunction with past documented actions of the property owner (at that time), including the attempted burial of PCB-contaminated electrical transformers, "there is reason to suspect the dumping or burial of potentially hazardous waste materials in this area". CHA recommended that test pits should be completed in this area to evaluate subsurface conditions and the potential presence of buried debris. Alpine agrees with this recommendation to address this REC.

4. Multiple petroleum and chemical storage tanks have existed on the SP. Three tanks were registered with the DEC, two were reportedly closed, the third, a 550 gallon underground fuel

oil tank remains listed on the registration as "Active". The location of this tanks is not clearly identified in the PBS records obtained from the DEC. Other tanks referenced documents reviewed (i.e. spill reports, Sanborn maps, etc.) were not registered with the DEC. It is possible that any of these tanks may have leaked or that spills from filling the tanks could have occurred and contaminated site soil and groundwater quality. Any tanks still present must be properly registered and closed through the NYSDEC Petroleum Bulk Storage Program.

5. A vent that may be a petroleum storage tank vent is present along the south side of Building #1. The site owner did not know the purpose of this vent. This vent should be investigated to determine if a storage tank is still present in this area of the SP. If present, this tank will have to be investigated and properly closed in accordance with NYSDEC storage tank closure regulations.

6. According to historic mapping, a 100,000-gallon storage tank is present at or near the south end of Building 5 and "large vaults" were reported by NYSDEC to exist beneath portions of the mill buildings. These tanks could contain chemicals or chemical residue from manufacturing operations or petroleum or chemicals that may have leaked beneath the building floors from storage or use of these liquids within the buildings. Additionally, it is presumed that all floor drains observed within the mill buildings are likely to discharge to the stormwater system and ultimately to the river. Stormwater basins and other storm and floor drain structures may contain contaminants and would have to be inspected and sediments and liquids in them sampled to determine if contaminants remain within this system.

7. An electrical power substation is present along the west side of the SP, to the east of Building five where multiple PCB oil containing transformers are likely to have been present within this substation. If transformers within the substation leaked to the ground, PCB and petroleum contaminated soil may exist within or adjacent to the substation area.

8. Given the spills that have been documented on the SP by NYSDEC, including the uses and storage of drummed chemicals in the site buildings and evidence of spills from drummed chemicals, vapor intrusion from chemicals that may have leaked or spilled beneath the site buildings is possible. Vapor sampling should be completed beneath the lowest level building area floor slabs to determine if vapor mitigation will be necessary for re-use of any of the site buildings.

Alpine Environmental Services (Alpine) was retained by BBL Construction Services LLC and BBL Barnet LLC of Albany, NY, to conduct a Phase II Environmental Site Assessment (ESA) investigation as a follow up to the Phase I ESA study, to determine if contamination is present in soil, soil vapor, or groundwater as the result of the past use of the property.

This Phase II ESA was completed to address the recognized environmental conditions, and to determine if underground storage tanks are present, or if petroleum or other types of industrial chemical contamination is present in the subsurface as a result of the historic use of this property and conditions present on the property as indicated in the findings of the Phase I ESA. The investigation also served to determine if remedial actions may be warranted with respect to obtaining compliance with current New York State Department of Environmental Conservation cleanup standards, criteria and guidelines (SCGs) for soil, soil gas, and groundwater remediation, or may be of concern with respect to general ownership and use of the SP.

NOTE: The initial stages of this investigation confirmed the presence of two underground storage tanks south of Building 1 (20,000-gallon #6 fuel oil tank) and west of Building 5 (1,000-gallon oil/water separator tank). In addition, a petroleum spill was identified at the location of the 20,000-gallon fuel oil storage tank south of Building 1, when monitoring wells MW-1 an MW-2 were installed. This spill was reported to NYSDEC and is identified as NYSDEC petroleum spill # 2104385. The investigation and closure of these tanks was then separated from this Phase II ESA and is provided separately as an underground tank and spill investigation report.

2.0 GROUND PENETRATING RADAR SURVEY

A ground penetrating radar (GPR) survey was completed to screen the property for imaging evidence of the presence of underground storage tanks, and to clear areas of the SP for underground utilities, in the areas where test borings were proposed. The survey was completed with Alpine's sub-contractor, Bloodhound LLC on July 26 and 27, 2021. A cart mounted GPR unit with a 270 Mhz detection antenna was used to traverse accessible surfaces of the property. The survey was completed by performing perpendicular grid transects with a spacing of approximately 5 feet or less, where drilling locations and excavation test pits were proposed. An area along the south side of Building #1 was also explored to determine if an underground storage tank was present where an apparent tank vent was observed during the Phase I ESA. In areas where targets (subsurface anomalies) were detected, additional searching with the GPR was performed until the boundaries of the targets were determined, to the extent that they could be resolved with the equipment. Targets were marked on the ground surface with marking paint, measured to reference points and recorded for later reference. In addition to the GPR detections, a magnetic locator was used to further clarify and trace detected targets and determine if targets were ferro metallic in nature.

GPR Findings:

An anomaly, which appeared to be an underground storage tank (UST), was observed in the general area where a large vent pipe was observed along the southwest side of Building #1. The vent pipe was traced away from the building and an apparent underground storage tank was delineated in the gravel surfaced parking lot near the building. The apparent UST appeared to be between 30 and 35 feet in length, parallel with the building and at least 6-feet or more in diameter with the top of the structure approximately 3-feet below the parking lot surface. Piping to the building was apparent from the northern end of the UST, to the area where the vent was present.

A second potential UST was identified along the western side of Building #5. This area was delineated and marked for further exploration. No other UST's were evident in the areas of the SP explored during this survey.

The GPR detected evidence of multiple subsurface utilities, appearing to be piping or conduit throughout the proposed test boring installation areas to the west of the site buildings and along the service road between buildings on the east side of the property. These utility locations were marked with spray paint and mapped to assure those areas were avoided when test borings were installed. These areas were additionally cleared by the mark-out services for the utility companies. Apparent natural gas lines, sanitary and storm sewer lines, and water service lines were identified in areas where drilling was planned and all were marked at this time.

Based on the findings of the GPR survey, it appeared that two underground storage tanks USTs

were identified on the SP, southwest of Building #1, in the area where the vent pipe was identified during the Phase I ESA, and a second area west of Building #5. The approximate locations of the suspected UST subsurface structure identified during the GPR survey are provided on Figures 2 and 3 of this report. Subsurface utility piping locations are also identified on Figure 2.

3.0 VAPOR INTRUSION TESTING

This limited vapor intrusion testing was performed to generally determine if there was evidence of subsurface soil gas impacts on the SP, beneath the SP buildings, that suggest a potential future concern for indoor air quality impact, and which may require mitigation to meet current guidance. At the time of this investigation, the site buildings were not heated/cooled and extensive broken windows and other openings in the buildings prevented the ability to collect valid indoor air quality samples. The sub slab soil vapor (SV) testing was performed in general accordance with the New York State Department of Health (DOH), Guidance for Evaluating Soil Vapor Intrusion in the State of New York (DOH VI Guide; 2006 with 2017 matrix updates). However, since valid indoor air sampling could not be performed due to the unconditioned buildings with large openings, the matrix comparison evaluation in the NYS DOH guide could not be performed. Sub-slab vapor testing was performed through the concrete floor slabs from below the lowest level building slabs with comparison of detected VOCs to the US EPA Vapor Intrusion Screening Level (VISL), to evaluate the potential for vapor intrusion to exist beneath the site buildings.

The SV testing included two types of samples:

- 1. Sub-slab soil vapor samples collected beneath the basement or lower level floor slab in each of the nine on SP buildings, where conditions permitted.
- 2. One sample outside of the building as a reference ambient air sample.

On July 27, 2021, Alpine installed sub-slab soil vapor sample collection canisters in the SP buildings. A total of nine sub-slab soil vapor samplers were installed in the nine defined site buildings, one in each of the building sections previously identified as building areas 1 through 11. Prior to this investigation, buildings #2 and #3 had been demolished. One outdoor ambient air sample was collected along the east side of Building #8, in a central area between Building #8 and Building #11. In this study, the ambient air sample was used as a control sample to compare levels of chemicals detected or not detected in the ambient air, to those detected in soil samples beneath the buildings.

The sub slab samples were collected through the temporary installation of Cox Colvin Brass Vapor Pins with silicone sleeve gaskets. The concrete to vapor pin seal, as well as the seal of dedicated polytetrafluoroethylene (PTFE) transfer tubing to the vapor pin, were tested by connecting a photo-ionization detector (PID) to the tubing with the other end connected to the vapor pin. The PID (Rae Systems PPB-RAE 3000) was calibrated with a 10 PPM Isobutylene calibration gas standard and utilized a 10.6 eV detection bulb. An isopropyl alcohol tracer was applied to the seal test areas to provide a quantitative measure of sampling point tightness prior

to sampling. All PID readings were confirmed as zero parts per million, confirming an air-tight seal on the sampling point where it penetrated the concrete floor.

One-liter stainless steel sample canisters and control valves, pre-cleaned, calibrated for 8-hour sample collection and provided by the analysis laboratory, were connected to the vapor pin tubing by air-tight compression fittings. The canister valves were opened, and starting times and pressures were recorded on the chain of custody. The outside ambient air sample was similarly collected through calibrated 8-hour flow controller, at an area between the site buildings.

Air flow regulators on the samplers were set to collect air over a period of 8 hours and were stopped just short of the full 8-hour period to ensure that there was still some vacuum remaining within the canisters. Samples were analyzed via EPA Method TO-15 by Alpha Analytical, a NYS DOH ELAP certified laboratory. Samples were collected on July 27, 2021. The location of samples are provided on Figure 3 of this report.

An additional consideration of these studies is the potential influence of chemicals stored and/or used within the facility on the test results. At the time of this study, no obvious sources of chemical impacts to the subsurface were observed in site building areas where the sampling was performed. The buildings had been cleared of past industrial uses, including storage or use of petroleum or chemicals, prior to this sampling.

Laboratory results indicate that multiple VOCs were detected in each of the samples, including the outside ambient reference sample. The laboratory results are attached in Appendix D. The sample analysis results were evaluated to determine if mitigation actions may be required, through comparison of laboratory sample analysis results to EPA action levels.

The United States Environmental Protection Agency (EPA) Vapor Intrusion Screening Level (VISL) Calculator (Calculator Run Date 9/17/2021) was used to determine sub slab levels of concern were indicated by these EPA guidelines. The EPA VISL calculator provides screening level guidelines for a much larger number of VOCs and are used to evaluate the potential for soil vapor intrusion conditions for additional VOCs not addressed by the DOH VI Guide or when indoor air samples cannot be collected with use in the decision matrices in the DOH guide.

3.1 RESULTS OF TESTING: DOH VI GUIDE

At the time of this study, the site buildings were not heated/cooled and the buildings were substantially damaged with many windows broken and large air gaps in walls and doors, allowing outside air to free-flow through building areas. As a result of the building condition, Alpine determined that indoor air sampling could not be performed in a way that would allow for a valid comparison to the New York State Department of Health (NYSDOH) vapor intrusion study regulatory guidelines. In an effort to make some determination relative to the threat of vapor intrusion into future restored building areas, Alpine did perform subslab air quality sampling in representative lower level building areas and the results of this study are provided in 2.2. Should

the buildings become enclosed and heated in the future, sampling and comparison to NYSDOH vapor intrusion regulatory guidelines could be performed at that time.

3.2 RESULTS OF TESTING: EPA VISL GUIDE

The vapor test points installed to collect sub-slab vapor beneath Building 7 and Building 8 did not yield valid sample collection due to extremely shallow groundwater beneath the floor slabs at these locations. It is believed that saturated soil conditions exist beneath the slabs at these locations at or only slightly beneath the floor slabs, and that the saturated conditions resulted in a vacuum condition with no measurable flow into either canister over the 8-hour testing interval. The laboratory did not analyze these samples due to insufficient sample.

Multiple VOC compounds were detected in the sub-slab samples, with detected compounds and EPA VISL comparisons provided in Tables 1A and 1B below. The EPA screening level for sub slab and near source for each detected compound is provided for residential use, as the proposed future use of the SP is residential dwellings with some commercial tenants. The commercial screening levels are provided in parenthesis for additional comparison.

The following chemicals, as identified in Tables 1 (in yellow), were present in sub-slab soil vapor samples, in excess of the EPA screening level target concentrations for residential use. The outside reference ambient air sample had much lower concentrations of these compounds, suggesting that these VOC's are present at the reported elevated levels (greater than the ambient air control sample), due to some source of VOC's beneath the building areas identified.

ABLE 1A: Summary of Detected Compounds with comparison to US EPA Vapor Intrusion Screening Levels									
		SS-01	SS-02	SS-03	SS-04	US EPA VISL			
Sample ID:		Sub slab	Sub slab	Sub slab	Sub slab	Screening Level for			
		Building 01 Lab Id:	Building 04 Lab Id:	Building 05 Lab Id:	Building 06 Lab Id:	sub slab and near- source soil gas			
	Units	L2140488-01	L2140488-02	L2140488-03	L2140488-04	Residential			
		22140400 01	22140400 02	22140400 00	22140400 04	(Commercial)			
dichlorodifluoromethane	ug/m ³	1.94	2.13	1.82	2.15	348 (1,460)			
benzene	ug/m ³	5.30	10.8	11.0	10.4	12 (52.4)			
carbon disulfide	ug/m ³	1.21	4.20	2.27	3.39	2,430 (10,200)			
chlorobenzene	ug/m ³	ND	ND	2.04	ND	174 (730)			
chloromethane	ug/m ³	1.05	ND	ND	ND	313 (1,310)			
1,4-dioxane	ug/m ³	ND	0.735	15.5	ND	18.7 (81.8)			
ethanol	ug/m ³	26.4	507	154	47.1	NA			
acetone	ug/m ³	37.5	99.8	615	99.3	107,000 (451,000)			
trichlorofluoromethane	ug/m ³	1.87	1.87	1.80	2.82	NA			
methylene chloride	ug/m ³	ND	2.44	4.90	5.18	2,090 (8,760)			
1,1-dichloroethene	ug/m ³	ND	1.03	ND	ND	695 (2,920)			
2-butanone	ug/m ³	2.74	13.0	12.4	14.7	17,400 (73,000)			
chloroform	ug/m ³	ND	<mark>27.0</mark>	ND	3.39	4.07 (17.8)			
tert butyl alcohol	ug/m ³	4.43	18.4	24.0	15.6	NA			
tetrahydrofuran	ug/m ³	ND	26.0	ND	22.4	6,950 (29,200)			
toluene	ug/m ³	112	250	271	270	17,400 (73,000)			
trichloroethene	ug/m ³	ND	3.69	ND	ND	6.95 (29.2)			
ethylbenzene	ug/m ³	19.2	<mark>86.0</mark>	<mark>93.4</mark>	<mark>91.2</mark>	37.4 (164)			
4-ethyltoluene	ug/m ³	1.96	17.1	16.0	18.5	NA			
n-hexane	ug/m ³	6.48	12.1	11.9	13.6	2,430 (10,200)			
4-methyl-2-pentanone	ug/m ³	ND	2.22	2.65	ND	10,400 (43,800)			
cyclohexane	ug/m ³	5.68	10.5	10.7	10.4	20,900 (87,600)			
1,1,1-trichloroethane	ug/m ³	ND	69.8	110	5.15	17,400 (73,000)			
heptane	ug/m ³	13.2	24.4	27.6	24.7	1.390 (5,840)			
2,2,4-trimethylpentane	ug/m ³	7.19	12.1	13.2	12.8	NA			
1,2,4-trimethylbenzene	ug/m ³	6.98	73.3	73.3	84.6	209 (876)			
1,3,5-trimethylbenzene	ug/m ³	2.23	21.9	22.6	25.2	209 (876)			
p/m-xylene	ug/m ³	63.9	286	297	319	348 (1,460)			
o-xylene	ug/m ³	23.5	127	132	138	348 (1,460)			
carbon tetrachloride	ug/m ³	ND	10.3	ND	ND	15.6 (68.1)			
styrene	ug/m ³	ND	1.63	1.78	1.37	3,480 (14,600)			

TABLE 1A: Summary of Detected Compounds with comparison to US EPA Vapor Intrusion Screening Levels

Notes: US EPA Vapor Intrusion Screening Level Calculator Run Date 09/17/2021, (Target Cancer Risk = 1E-06; Target Hazard Quotient =0.1); **Highlighted** result indicates it exceeds the sub slab soil gas screening level for residential use; ND - Not Detected in sample

NA- No Level Provided

Sample ID: SS-07 Sub slab Building 09 Lab ld: L2140488-07 SS-08 Sub slab Building 10 Lab ld: L2140488-08 SS-09 Sub slab Building 10 Lab ld: L2140488-08 dichlorodifluoromethane ug/m³ 2.41 7.91 2.35 benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ 179 377.0 18.0 acetone ug/m³ 173 1,130.0 94.1	(Commerci 1.97 348 (1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	Level for nd near- gas l
Sample ID. Building 09 Lab Id: L2140488-07 Building 10 Lab Id: L2140488-08 Building 11 Lab Id: L2140488-09 dichlorodifluoromethane ug/m³ 2.41 7.91 2.35 benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	Lab Id: sub slab ar source soil 9 L2140488-10 Residential (Commerci 1.97 348 (1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	nd near- gas l ial) 1,460) 52.4) (10,200) 1,310) IA
Units Lab Id: L2140488-07 Lab Id: L2140488-08 Lab Id: L2140488-08 Lab Id: L2140488-08 dichlorodifluoromethane ug/m³ 2.41 7.91 2.35 benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	Lab Id: L2140488-10 source soil Residential (Commerci 2000 1.97 348 (1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	gas ial) 1,460) 52.4) (10,200) 1,310) IA
Units L2140488-07 L2140488-08 L2140488-09 dichlorodifluoromethane ug/m³ 2.41 7.91 2.35 benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	9 L2140488-10 Residential (Commerci 1.97 1.97 348 (1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	I ial) 1,460) 52.4) (10,200) 1,310) NA
dichlorodifluoromethane ug/m³ 2.41 7.91 2.35 benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	(Commerci 1.97 348 (1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	ial) 1,460) 52.4) (10,200) 1,310) NA
benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	1.97 348 (1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	1,460) 52.4) (10,200) 1,310) JA
benzene ug/m³ 29.5 31.8 14.7 carbon disulfide ug/m³ 3.52 6.82 4.11 chloromethane ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	1.52 12 (ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	52.4) (10,200) 1,310) JA
ug/m³ ND ND 0.803 ethanol ug/m³ 179 377.0 18.0	ND 2,430 (1.01 313 (ND N 17.1 107,000 ND N	(10,200) 1,310) JA
ug/m³ 179 377.0 18.0	1.01 313 (* ND N 17.1 107,000 ND N	1,310) NA
	17.1 107,000 ND ND	
acetone ug/m ³ 173 1.130.0 94.1	ND N	(451,000)
		· · · · · · · /
trichlorofluoromethane ^{ug/m³} 1.96 ND 1.75	ND 2.12	IA
1,3-butadiene ^{ug/m³} ND <mark>5.93</mark> ND	ND 3.12	(13.6)
2-butanone ^{ug/m³} 12.1 35.4 24.3	ND 17,400	(73,000)
chloroform ^{ug/m³} 1.31 ND ND	ND 4.07	(17.8)
tert butyl alcohol ^{ug/m³} 26.8 101 23.2	ND N	١A
tetrahydrofuran ^{ug/m³} 36.0 16.5 14.2	7.90 6,950 ((29,200)
ethylbenzene ^{ug/m3} 96.0 127.0 106.0	2.45 37.4	(164)
4-ethyltoluene ^{ug/m³} 11.1 12.7 16.3	ND N	١A
heptane ^{ug/m³} 34.6 70.1 35.4	2.17 1.390	(5,840)
n-hexane ^{ug/m³} 16.5 44.8 15.3	1.87 2,430 (10,200)
methylene chloride ^{ug/m³} ND 7.02 ND	ND 2,090	(8,760)
4-methyl-2-pentanone ^{ug/m³} 2.88 ND 3.29	, ,	(43,800)
cyclohexane ^{ug/m³} 15.7 30.6 12.1	0.792 20,900	(87,600)
1,1,1-trichloroethane ^{ug/m³} ND ND 4.27	ND 17,400	(73,000)
toluene ^{ug/m³} 312.0 663.0 357.0	60.7 17,400	(73,000)
2,2,4-trimethylpentane ^{ug/m³} 17.6 41.0 16.1	2.40 N	IA
tetrachloroethene ^{ug/m³} ND ND 12.3	ND 139	(584)
1,2,4-trimethylbenzene ^{ug/m³} 42.0 44.1 61.9	ND 209	(876)
1,3,5-trimethylbenzene ^{ug/m³} 13.5 14.1 18.7		(876)
p/m-xylene ^{ug/m³} 295 <mark>424.0</mark> 354.0		1,460)
o-xylene ^{ug/m³} 120 152.0 140.0	2.71 348 (*	1,460)
carbon tetrachloride ^{ug/m³} 17.0 13.9 ND		(68.1)
styrene ^{ug/m³} 2.01 ND 1.80	ND 3,480 (14,600)

TABLE 1B: Summary of Detected Compounds with comparison to US EPA Vapor Intrusion Screening Level

Notes: US EPA Vapor Intrusion Screening Level Calculator Run Date 09/17/2021, (Target Cancer Risk = 1E-06; Target Hazard Quotient =0.1); **Highlighted** result indicates it exceeds the sub slab soil gas screening level for residential use;

ND - Not Detected in sample

NA- No Level Provided

4.0 SOIL AND GROUNDWATER INVESTIGATION

On July 27, 2021, a series of eleven test pits were installed through an area on the north end of the SP where there was evidence of fill placement and where historic documents indicated that waste materials may have been placed during the filling operations. On August 9 through August 12, 2021, Alpine installed a series of test borings in potential areas of concern, and to generally evaluate soil and groundwater quality across the SP.

This investigation was performed to generally screen the overall property, to determine if there was evidence of subsurface soil or groundwater quality impacts on the SP, and to characterize shallow subsurface geologic conditions, to the extent possible, with Geoprobe push-tube shallow soil and groundwater sampling methods. Soil was screened on-site for volatile organic compounds (VOC's) during these investigation phases. Following the soil screening process, soil samples were selected from test pits and the test borings, where field screening suggested evidence of possible contaminant impacts, and were sent to an environmental analytical laboratory and analyzed to determine if they contained contaminants of concern. All test borings were finished as monitoring wells in the shallow unconsolidated aquifer to determine groundwater elevations and to allow for groundwater quality testing/analysis. This report section describes the soil and groundwater quality investigation conducted.

4.1 SOIL INVESTIGATION

4.1.1 Test Pit Investigation

On July 28, 2021, Alpine installed test pits within an area at the northern end of the SP where historic filling was identified during the Phase I ESA. At this time, eleven test pits were excavated in this area and soil and other fill materials were observed and logged by depth for each test pits. Test pit logs are provided in Appendix B of this report.

Test pits were excavated to depths of 10-12 feet below the existing grade and were generally observed and logged at 2-foot intervals, or at any intervals where the changes were observed in geology or the quality or type of fill materials. Locations of the test pits are indicated on Figure 2 of this report.

Soil samples were collected from each test boring, and were screened by ambient temperature headspace analysis, with a photo-ionization detector (PID), upon collection. Soil samples were screened with a handheld PPB-Rae-3000 photo-ionization detector meter (PID) for the general presence of total volatile organic compounds (VOCs). The PID was calibrated with a 10 PPM Isobutylene calibration gas standard and utilized a 10.6 eV. PID detection bulb. PID readings for all sample collection depth intervals (total VOC's by headspace analysis) are recorded on the soil boring logs in Appendix C.

The VOC headspace screening did indicate the presence of slightly elevated volatile organic compounds (VOC's), between 0.5 and 3.0 parts per million, in soil samples from test pits TP-1 (6-11 feet), TP-7 (8-10') and TP-11 (10-11').

In general the type of geology observed was medium to coarse sand and gravel (where fill was not present and covering fill) and often test pits were entirely a mixture of various fill materials

including bricks, wood, concrete, metal items and sand and gravel. No groundwater was observed in any test pits except TP-10 where groundwater entered the test pit at 6 feet below grade, this test pit was terminated at 9-feet below grade due to excessive groundwater infiltration. Of particular note were materials in test pits TP-1 and TP-11 (near TP-1) where both had strong odors, black stained soil/wastes (in TP-1) and elevated PID readings below 6-feet in TP-1 and at 10-feet in TP-11. Soil samples were selected for analysis based on the following observed conditions.

TP-1 Depths 6-8' and 8-10': Both of these depths had dark stained soils and very strong chemical odors and PID screening VOC headspace screening readings of 3.0 parts per million.

TP-7 at 11-feet of depth: This test pit had metal wastes in it and slightly elevated PID readings at the 10-11 foot depth

TP-9 at 8-9 feet of depth: This test pit had typical fill materials including wood, metal, sand and gravel and bricks.

TP-11 at 10 feet of depth: Odorous soil similar to TP-1 was encountered at 10–11 feet of depth.

Overall, the following conditions were noted as a result of the test pit screening and sample collection investigation.

- Strong odorous (chemical odors) conditions were noted in TP-1 from 6 feet to the bottom of the test pit at 11-feet and in test pit TP-11 at the 10-foot depth. Elevated PID readings were also recorded consistent with the 6-11 foot depth where stained soils were noted.
- Most of the test pits excavated contained fill materials including old rotting wood, bricks, metal waste items (including a vehicle axel in TP-9), concrete and sand & gravel.

4.1.2 Test Pit Laboratory Soil Sample Analysis

Soil field screening results were used as the basis for selecting and submitting test pit soil samples for laboratory analysis, in representative areas and at depths where contaminants were detected during field screening. The soil screening did identify the presence of VOC contaminated soil as well as visual and odorous evidence in the these test pits. Representative samples from three of the test pits indicating conditions of concern were submitted for laboratory analysis.

Soil samples were collected in 4-oz. laboratory-provided clean glass sample jars and were placed in a cooler with ice for preservation and transport for laboratory analysis. Samples were transported to a NYSDEC ELAP certified environmental testing laboratory for analysis under a chain-of-custody. Results of the chemical lab analyses are summarized below in Table 2.

A total of four soil samples from three test pits were laboratory analyzed for volatile organic compounds (VOC's) by EPA Method 8260, for the NYS CP-51 list of semi-volatile organic (SVOC) petroleum compounds by EPA Method 8270, for PCB's by EPA Method 8082, and for the RCRA list of heavy metals.

TABLE 2: SUMMARY OF COMPOUNDS DETECTED IN TEST PIT SOIL SAMPLES

Target Compounds Detected	TP-1 6-8 Ft (ug/kg) L2140625-01	TP-1, 8-10 Ft (ug/kg) L2140625-02	TP-9, 8-9 Ft (ug/kg) L2140625-03	TP-11 10 Ft (ug/kg) L2140625-04	NYS DEC Cleanup Objective (ug/kg)
VOCs via EPA 8260B					
Acetone	440	1,200	nd	nd	50
Benzene	nd	nd	nd	0.28	60
2-Butanone (MEK)	190	390	nd	nd	120
Carbon Disulfide	8.8	10	nd	nd	NS
Chloroform	11	12	0.21	0.19	370
Methyl Acetate	330	530	nd	nd	NS
Toluene	100	1,700	1.4	2.1	700
Semi-VOCs via EPA 8270C (CP-51 List)					
Anthracene	nd	nd	48	nd	100,000
Benzo(a)anthracene	nd	31	120	44	1,000
Benzo(a)pyrene	nd	nd	89	nd	1,000
Benzo(b)Fluoranthene	nd	62	120	61	1,000
Benzo(k)Fluoranthene	nd	nd	49	40	1,000
Chrysene	19	110	120	65	1,000
Benzo(ghi)perylene	nd	26	52	40	100,000
Fluoranthene	nd	44	240	64	100,000
Fluorene	nd	nd	19	nd	100,000
Ideno(1,2,3-cd)pyrene	nd	nd	56	36	500
Phenanthrene	nd	43	180	78	100,000
Pyrene	nd	45	190	57	100,000
PCB's					
Aroclor 1268	748	1,300	78.3	1,830	1,000
Total PCB's	748	1,300	78.3	1,830	1,000
Metals	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Arsenic	6.52	7.36	7.80	14.5	16 (16)
Barium	82.9	123.0	99.0	476.0	350 (400)
Cadmium	1.49	1.56	1.48	3.83	2.5 (7.5)
Chromium	86.3	105.0	31.8	277.0	36 (1500)
Mercury	0.22	0.45	0.18	0.26	0.73 (0.73)
Lead	75.3	158.0	81.6	552.0	400 (450)
Silver	0.53	0.81	< 0.37	2.76	8.3 (8.3)
Selenium	< 1.6	< 1.7	< 1.5	< 1.7	4 (4)

nd -indicates below the method detection limit

ug/kg -indicates micrograms of contaminant per kilogram of soil; mg/kg indicates milligrams of contaminant per kilogram of soil, 1 mg/kg = 1 part per million (ppm)

Highlighted result exceed NYS DEC Soil Cleanup Objectives / where indicated, residential clean up objective followed by commercial/industrial clean up objective in parentheses

SCOs for organic contaminants (volatile organic compounds, semi-volatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

NS = No NYSDEC standards or guidance values have been set for these compounds

Soil quality conditions were assessed based on soil cleanup objectives provided by NYSDEC under their CP-51 Soil Cleanup guidance document, and when applicable, the soil cleanup and re-use standards contained in NYSDEC Part 375, which are used to define the re-use of impacted soil in New York State under the Brownfields and hazardous waste cleanup programs. Laboratory analysis results for the soil samples are attached in Appendix D.

Volatile organic compounds were detected in both soil samples from test pit TP-1, above soil cleanup standards, criteria or guidelines (SCGs). Soil from 6-10 feet of depth in this test pit exceeded cleanup standards for acetone, MEK and toluene. Soil quality from the other two test pits did not exceed VOC cleanup standards.

PCB's (aroclor 1268) was also detected in the soil samples from TP-1 (8-10 foot depth) and from TP-11 at 10 feet of depth and in both cases exceeded cleanup standards for total PCB's.

Analysis for the RCRA list of heavy metals also indicated that soil samples from TP-1 at 6-10 feet failed cleanup standards for chromium and the soil sample from test pit TP-11 exceeded cleanup standards for barium, cadmium, chromium, and lead.

No cleanup standards were exceeded for the 8-9 foot depth in the soil sample collected from test pit TP-9.

4.2.1 Test Boring and Soil Sampling Investigation

A total of twenty (20) test borings were advanced with a Geoprobe hydraulic direct push rig on August 9 through August 12, 2021. Test boring locations are shown on Figure 2 of this report. Soil samples were collected in five-foot depth intervals using a 2-inch dual tube push sampler with polyethylene sampling tube inserts. The soil sample cores were then observed and the geology for each depth interval was logged. Soil samples were field screened by ambient temperature headspace analysis for the presence of volatile organic compounds with a photo-ionization detector meter (PID). The geologic sampling was limited to the depth interval at which a sufficient groundwater depth was present to set monitoring wells in the shallow unconfined site aquifer.

This investigation revealed that the shallow unconsolidated site geology at the SP was generally identified as medium to coarse sand and gravel in most areas with fine sand, silt and fine gravel fill materials prevalent in the upper 5-10 feet of depth in most borings. These findings are consistent with the USGS mapping of the SP area as Hoosic gravelly-sandy loam, transitioning to silty-clay udorthents from the SP west to the river basin. Groundwater was present in all site borings and varied from as shallow as 3-feet to as deep as 16 feet below the ground surface. Bedrock was not encountered in any test borings.

The SP surface grade slopes moderately across the property from east to west and has been substantially cut and graded to facilitate access around the site buildings. The grade generally varies from approximately 35 to 70-feet above mean sea level along the eastern side of the SP, sloping downward to 20 to 25 feet above MSL on the western side, where it meets the grade of a railroad bed. The Hudson River lies to the west of the railroad at a USGS mapped mean elevation of approximately 6-feet above MSL. The eastern side of the property appears to have been substantially cut into a steeply sloping hillside which rises upward to the east. Shallow groundwater flow across the SP is westward into the Hudson River Basin and appears to be substantially altered in some areas of the SP, likely due to the placement of buildings and drainage systems across the property. Groundwater elevations and a groundwater contour map are provided as Figure 4 of this report. The groundwater elevations and contours are based on the surveyed monitoring well depths and elevations are based on approximate ground elevations as provided on a site property contour map (Weston & Samson, April 14, 2014). Elevations were surveyed between wells and the vertical datum was approximated based on comparison to a mapped ground surface elevations.

Borings were advanced across the SP where the Phase I ESA indicated potential areas of concern as well as in a linear spaced pattern along the length of the property to provide a general overall profile of site geology and soil and groundwater quality. Boring locations were also confined to locations were underground utilities and site structures were not present.

Soil boring logs from this investigation are provided in Appendix C of this report. Test boring locations are shown on Figure 2 of this report.

4.2.2 PID Soil Screening Analysis for VOC's

Soil samples were collected from each test boring, and were screened upon collection by ambient temperature headspace analysis, with a photo-ionization detector (PID)..

Soil samples were screened with a handheld PPB-Rae-3000 PID for the general presence of total VOCs. The PID was calibrated with a 10 PPM Isobutylene calibration gas standard and utilized a 10.6 eV. PID detection bulb. PID readings for all sample collection depth intervals (total VOC's by headspace analysis) are recorded on the soil boring logs in Appendix C.

The VOC headspace screening did indicate the presence of low levels of VOC's in a select few soil samples from site test borings, these conditions are noted by depth on the soil borings logs in Appendix C. The detection of elevated VOC levels in soil was utilized as one of the criteria for selection of soil samples to be analyzed in the testing laboratory. Soil samples were also selected where petroleum sheens, odors or visual petroleum was observed in soil samples. Other than apparent indications of petroleum in a small number of test boring samples, no other chemical contaminant impacts were observed in soil boring samples.

4.2.3 Laboratory Soil Sample Analysis

Soil field screening results are typically used as the basis for selecting and submitting soil samples for laboratory analysis and to obtain a general distribution of data across the investigation area. The soil screening at the SP did identify the presence of VOC contaminated soil in a total of seven test borings. The soil depth sample from the depth interval with the highest reading and/or most visually contaminated depth from each of these seven soil borings was selected for laboratory analysis. Elevated PID readings and visual or odorous contamination was not noted in soil from any of the other 13 test borings. The following samples were selected for laboratory analysis as follows.

Sample Location	<u>Description</u>
B-1 @ 10-15 feet	Dark oily stained soil and elevated PID reading = 65 PPM
B-2 @ 10-15 feet	Dark oily stained soil and elevated PID reading = 53 PPM
B-7 @ 4-5 feet	Elevated PID reading = 2.8 PPM
B-8 @ 4-5 feet	Oily stained soil and elevated PID reading = 23 PPM
B-13 @ 10-15 feet	Elevated PID reading = 62 PPM
B-19 @ 15-20 feet	Dark gray stained soil and elevated PID reading = 4.0 PPM
B-20 @ 16-18 feet	Dark oily stained soil and elevated PID reading = 7.5 PPM

Soil samples were collected in 4-oz. laboratory-provided clean glass sample jars and were placed in a cooler with ice for preservation and transport for laboratory analysis. Samples were

transported to a certified environmental testing laboratory for analysis under a chain-of-custody. Results of the chemical lab analyses are provided in Appendix D.

The seven soil samples selected as described above, were analyzed for typical petroleum and industrial solvent volatile organic compounds (VOC's) by EPA Method 8260, by EPA Method 8270 for typical NYS regulated petroleum semi-volatile organic compounds, for PCB's by EPA Method 8082, and for the EPA RCRA list of eight heavy metals.

Soil quality conditions were assessed based on soil cleanup objectives provided by NYSDEC under their CP-51 Soil Cleanup guidance document, and the soil cleanup and re-use standards contained in NYSDEC Part 375, which are used to define the re-use of impacted soil in New York State under the Brownfields and hazardous waste cleanup programs. Laboratory analysis results for the soil samples are attached in Appendix D and summarized below in Table 3.

Volatile organic compounds were detected in only one soil sample, B-8 (4-5 foot depth) at or above soil cleanup standards, criteria or guidelines (SCGs). This sample marginally exceeded the soil cleanup objective for acetone, with acetone also identified in all but one of the other soil samples, below the cleanup standard. Acetone is a solvent frequently used in testing laboratories and is often introduced into the sampling process as a laboratory artifact at low concentrations. Given the limited soil sampling dataset and the fact that sample collection blanks were not utilized during this sampling process, it is not possible to determine if these low concentrations of acetone are a laboratory artifact or if it may actually be present in the site samples. Additional soil sampling at the SP with control and blank samples would be necessary to determine if acetone is present as site soil contaminant, in these areas of the site.

DEC CP-51 SVOCs were detected at trace levels in five of the seven samples, below the cleanup standards, and most prominently, in the sample from boring B-8. No obvious source area for petroleum or other SVOC contamination was identified in the areas of borings B-7, B-8, B-13 or B-19. Concentrations of the detected SVOC compounds are summarized in Table 3 Below.

Substantial petroleum oily contamination was identified in samples from borings B-1, B-2 and B-20, around building #1, the former facility boiler house and in the vicinity of a 20,000-gallon #6 fuel oil underground storage tank that was discovered during this investigation. The NYSDEC was notified of this finding during the investigation and the incident was assigned petroleum spill number 2104385. The closure of this storage tank, and a second 1,000-gallon oil/water separator tank, as well as a preliminary investigation onto the identified spill, were also performed in September 2021 with the property owners during the process of this investigation. These activities are documented in a petroleum spill investigation and storage tank closure report, separate from this Phase II ESA Investigation report.

Due to the presence of oily contamination identified in some areas of the SP, samples identified as potentially contaminated were additionally analyzed for the presence of polychlorinated biphenyls (PCB's). This analysis indicates the presence of PCB's and reports the results by concentration and by the PCB aroclors that are detected. Aroclors are mixtures of PCB congeners and are defined by mass percent of chloring in the PCB, with the heaviest aroclors being the most persistent, least likely to degrade in the environment and therefore more toxic to the ecosystem than the lighter aroclors.

TABLE 3A: SUMMARY OF DETECTED COMPOUNDS IN SOIL BORING SAMPLES

Target Compounds	B-1	B-2,	B-7,	B-8	NYS DEC
	10-15 Ft	10-15 Ft	4-5 Ft	4-5 Ft	Cleanup
	(ug/kg) L2144034-01	(ug/kg) L2144034-02	(ug/kg) L2144034-03	(ug/kg) L2144034-04	Objective (ug/kg)
VOCs via EPA 8260B					
Acetone	20	20	34	77	50
Benzene	0.73	nd	nd	nd	60
n-Butylbenzene	37	3.1	6.1	nd	12,000
sec-Butylbenzene	56	5.0	16	2.0	11,000
tert-Butylbenzene	8.8	0.73	2.2	0.79	5,900
1,2-Dichlorobenzene	1.3	0.16	1.0	nd	1,100
1,3-Dichlorobenzene	nd	nd	0.22	nd	2,400
1,4-Dichlorobenzene	nd	nd	0.35	nd	1,800
1,1-Dichloroethane	nd	nd	nd	0.40	270
Ethylbenzene	3.5	nd	0.31	nd	1,000
Isopropylbenzene	29	0.80	2.0	0.27	2,300
Naphthalene	70	1.9	6.4	14	12,000
p-Isopropyltoluene	13	0.25	0.28	nd	10,000
n-Propylbenzene	18	nd	nd	nd	3,900
Toluene	1.3	nd	0.87	nd	700
1,3,5-Trimethylbenzene	33	nd	0.57	0.52	8,400
1,2,4-Trimethylbenzene	160	0.40	3.0	0.76	3,600
p/m-Xylenes	5.4	nd	nd	nd	260
o-Xylene	1.4	nd	0.54	nd	260
Cyclohexane	7.7	3.1	0.6	0.72	NS
Methylcyclohexane	35	12	8.5	2.4	NS
Semi-VOCs via EPA 8270C					
Anthracene	120	nd	61	430	100,000
Acenaphthene	140	nd	70	330	20,000
Acenaphthylene	35	nd	nd	120	100,000
Benzo(a)anthracene	160	41	120	780	1,000
Benzo(a)pyrene	61	nd	54	430	1,000
Benzo(b)Fluoranthene	43	nd	37	880	1,000
Benzo(k)Fluoranthene	nd	nd	nd	220	800
Chrysene	240	60	250	1300	1,000
Benzo(ghi)perylene	42	nd	28	270	100,000
Dibenzo(a,h)anthracene	nd	nd	nd	100	330
Fluoranthene	55	nd	47	1200	100,000
Fluorene	150	34	130	nd	30,000
Ideno(1,2,3-cd)pyrene	nd	nd	310	320	500
Phenanthrene	730	88	150	1000	100,000
Pyrene	210	51	160	1300	100,000
PCB's					
Aroclor 1268	nd	nd	nd	15.8	1,000
Total PCB's	nd	nd	nd	15.8	1,000
Metals					Mg/KG
Arsenic	5.58	-	5.42	37.2	16 (16)
Barium	26.6	-	42.7	33.6	350 (500)
Cadmium	0.212	-	0.226	0.526	2.5 (7.5)

Chromium	11.2	-	13.3	21.2	36 (1500)
Mercury	nd	-	0.048	0.123	0.73 (0.73)
Lead	8.48	-	13.7	65.8	400 (450)
Silver	nd	-	nd	nd	8.3 (8.3)
Selenium	0.655	-	0.885	3.93	4 (4)

nd -indicates below the method detection limit

ug/kg -indicates micrograms of contaminant per kilogram of soil or parts per billion (ppb)

mg/kg -indicates milligrams of contaminant per kilogram of soil or parts per million (ppm)

BOLD result exceeds NYS DEC CP51 Recommended Soil Cleanup Objectives (Residential)

standard criteria and guidelines; SVOCs from CP51 list.

SCOs for organic contaminants (volatile organic compounds, semi-volatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

NS = No NYSDEC standards or guidance values have been set for these compounds

(-) in a results space indicates that this sample was not analyzed for this parameter

Target Compounds	B-13	B-19,	B-20,	NYS DEC
	10-15 Ft	15-20 Ft	16-18 Ft	Cleanup
	(ug/kg)	(ug/kg)	(ug/kg)	Objective
	L2144034-05	L2144034-06	L2144034-07	(ug/kg)
VOCs via EPA 8260B				
Acetone	nd	13	9.7	50
n-Butylbenzene	0.28	nd	nd	12,000
sec-Butylbenzene	nd	0.40	0.33	11,000
tert-Butylbenzene	nd	nd	0.58	5,900
Chlorobenzene	nd	nd	0.34	1,100
Ethylbenzene	nd	0.37	nd	1,000
Isopropylbenzene	nd	0.14	nd	2,300
Naphthalene	nd	nd	1.8	12,000
n-Propylbenzene	nd	0.22	nd	3,900
1,2,4-Trimethylbenzene	nd	0.34	0.44	3,600
Methylcyclohexane	nd	0.93	0.71	NS
Semi-VOCs via EPA 8270C				
Benzo(a)anthracene	nd	nd	76	1,000
Chrysene	nd	nd	96	1,000
Pyrene	nd	nd	99	100,000
PCB's				
Total PCB's	nd	nd	nd	1,000
Metals				mg/Kg
Arsenic	-	6.18	-	16 (16)
Barium	-	26.7	-	350 (500)
Cadmium	-	0.245	-	2.5 (7.5)
Chromium	-	13.4	-	36 (1500)
Mercury	-	nd	-	0.73 (0.73)
Lead	-	8.54	-	400 (450)
Silver	-	0.127	-	8.3 (8.3)
Selenium	-	0.616	-	4 (4)

nd -indicates below the method detection limit

ug/kg -indicates micrograms of contaminant per kilogram of soil or parts per billion (ppb)

mg/kg -indicates milligrams of contaminant per kilogram of soil or parts per million (ppm)

BOLD result exceeds NYS DEC CP51 Recommended Soil Cleanup Objectives (Residential)

standard criteria and guidelines; SVOCs from CP51 list.

SCOs for organic contaminants (volatile organic compounds, semi-volatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

 $\ensuremath{\mathsf{NS}}$ = No NYSDEC standards or guidance values have been set for these compounds

(-) in a results space indicates that this sample was not analyzed for this parameter

This analysis did identify the presence of PCB's, only in the sample from Boring B-8 and substantially below the 1,000 parts per billion cleanup standard, reported at 15.8 parts per billion (or ug/kg).

Four of the seven soil boring samples were additionally analyzed for the presence of the RCRA list of eight heavy metals. The RCRA-8 heavy metals are the most commonly heavy metals used and regulated in industry and are therefore a common group of metals used to determine if a heavy metals contamination issue exists in soil as compared to the typical background concentrations of these metals normally found in soils of the US. This analysis generally determined that the heavy metals concentrations were consistently below the normal background ranges of concentrations of the metals, typically found in non-contaminated soil conditions. The one exception to this was the concentration of arsenic found in the sample from boring B-8, reported as 37.2 PPM, as compared to the normal high concentration of 16 PPM typically found in uncontaminated soils. This same sample similarly had the highest concentrations of semi-volatile organic petroleum compounds (near but below cleanup standards) and also exceeded the VOC limit for acetone. As such, it is presumed that some industrial uses of the property in this area may have led to the elevated concentrations of these compounds in the boring B-8 area.

4.3.1 GROUNDWATER INVESTIGATION

Groundwater monitoring wells were installed in all twenty of the site test borings after the soil sampling was completed. Sampling points were constructed by installing 1-inch PVC well screen and riser into the boreholes to provide a screened water column for sample collection. Ten feet of 0.020" slotted one-inch PCV well screen with a bottom plug and solid 1-inch PVC riser was installed into each of the borings immediately following removal of the Geoprobe soil sampling tooling. Well screen was packed with silica sand in the annular space around the well screen and was sealed above the well screen with hydrated bentonite clay to prevent surface water infiltration into the wells. Wells were all completed at the ground surface with curb boxes cemented into the ground with a small concrete surface pad. Monitoring well locations are shown on Figure 2 of this report.

Groundwater was encountered in all of the test borings installed on the site. A survey of groundwater elevations for the twenty site monitoring wells confirms that the flow of groundwater across the site is generally westward toward the Hudson with some local variations as indicated on Figure 4.

All groundwater sampling points were sampled with the use of a peristaltic pump and dedicated tubing. Site monitoring wells were sampled approximately two weeks after installation by slowly purging a minimum of three or more well volumes of water from each well (until turbid silt conditions were not observed and the well water maintained clear water flow) and then collecting grab samples. For VOC analysis, samples were collected in laboratory provided 40mL VOA vials preserved with HCl acid, and the samples were then placed in a cooler and preserved with ice for transport to the testing laboratory. Dedicated clean tubing was used for each well to ensure against cross contamination between wells. Samples for SVOC analysis and metals, where indicated, were collected in containers provided from the laboratory for those specific analysis, and similarly preserved for transport to the laboratory.

4.3.2 Laboratory Sample Analysis

A total of twenty groundwater samples, one from each monitoring well, were collected and then analyzed in an environmental testing laboratory for VOCs by EPA Method 8260. Additional samples for semi-volatile petroleum compound analysis, PCB's and metals were also collected and analyzed as indicated in select wells where oil or other petroleum conditions were apparent during field screening. VOC analytes detected in the groundwater samples are summarized below in Tables 4A-4D. The following sampling/analysis, in addition to VOC's (performed in all monitoring wells) was performed.

<u>Monitoring Well</u>	Condition Observed
MW-2	Oily contamination in test boring soil samples (SVOC's and PCB's)
MW-11	Oily contamination in test boring soil samples (SVOC's and PCB's)
MW-17	Downgradient of historic electrical substation
MW-18	Downgradient of historic electrical substation

Target Compounds	MW-1 GW, L2146038-01 (ug/L)	MW-2 GW, L2146038-02 (ug/L)	MW-3 GW, L2146038-03 (ug/L)	MW-4 GW, L2147161-01 (ug/L)	MW-5 GW, L2146038-04 (ug/L)	NYS DEC Groundwater Standards (ug/L)
VOCs via EPA 8260						
Acetone	3.6	nd	nd	nd	nd	50
1,1-Dichloroethane	nd	nd	nd	4.7	nd	5
Isopropylbenzene	1.5	nd	nd	nd	nd	5
Toluene	nd	nd	nd	nd	0.70	5
1,1,1-Trichloroethane	nd	nd	nd	32	nd	5
Cyclohexane	3.9	1.8	nd	nd	nd	NS
Methyl Cyclohexane	4.7	0.92	nd	nd	nd	NS
Semi-VOCs via EPA 8270C						
Anthracene	-	0.30	-	-	-	50
Acenaphthene	-	0.70	-	-	-	5.3
Acenaphthylene	-	0.11	-	-	-	NS
Benzo(a)anthracene	-	0.33	-	-	-	0.002
Benzo(a)pyrene	-	0.20	-	-	-	ND
Benzo(b)Fluoranthene	-	0.14	-	-	-	0.002
Benzo(k)Fluoranthene	-	0.03	-	-	-	0.002
Chrysene	-	0.71	-	-	-	0.002
Benzo(ghi)perylene	-	0.12	-	-	-	NS
Dibenzo(a,h)anthracene	-	0.06	-	-	-	NS
Fluoranthene	-	0.17	-	-	-	50
Fluorene	-	0.86	-	-	-	50
Ideno(1,2,3-cd)pyrene	-	0.04	-	-	-	0.002
Naphthalene	-	0.17	-	-	-	13
Phenanthrene	-	0.89	-	-	-	50
Pyrene	-	0.61	-	-	-	50
PCB's						
Total PCB's	-	nd	-	-	-	0.09

TABLE 4A: SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER SAMPLES

TABLE 4B: SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER SAMPLES

Target Compounds	MW-6 GW, L2146038-05 (ug/L)	MW-7 GW, L2146038-06 (ug/L)	MW-8 GW, L2146038-07 (ug/L)	MW-9 GW, L2146038-08 (ug/L)	MW-10 GW, L2146038-09 (ug/L)	NYS DEC Groundwater Standards (ug/L)
VOCs via EPA 8260						
Acetone	nd	nd	nd	nd	1.6	50
Toluene	0.79	nd	nd	nd	nd	5
Cyclohexane	0.51	nd	nd	nd	nd	NS

TABLE 4C: SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER SAMPLES

Target Compounds	MW-11 GW, L2146038-10 (ug/L)	MW-12 GW, L2146038-11 (ug/L)	MW-13 GW, L2146038-12 (ug/L)	MW-14 GW, L2146038-13 (ug/L)	MW-15 GW, L2146038-14 (ug/L)	NYS DEC Groundwater Standards (ug/L)
VOCs via EPA 8260						
Acetone	nd	1.5	nd	nd	nd	50
Chloroform	nd	nd	nd	1.3	nd	7
Semi-VOCs via EPA 8270C						
Bis(2-ethylhexyl)phthalate	5.1	-	-	-	-	5
Phenanthrene	0.04	-	-	-	-	50
Dibenzo(a,h)anthracene	0.01	-	-	-	-	NS
Ideno(1,2,3-cd)pyrene	0.01	-	-	-	-	0.002
PCB's						
Total PCB's	nd	-	-	-	-	0.09

TABLE 4D: SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER SAMPLES

Target Compounds	MW-16 GW, L2146038-15 (ug/L)	MW-17 GW, L2146038-16 (ug/L)	MW-18 GW, L2146038-17 (ug/L)	MW-19 GW, L2146038-18 (ug/L)	MW-20 GW, L2146038-19 (ug/L)	NYS DEC Groundwater Standards (ug/L)
VOCs via EPA 8260						
Acetone	3.8	nd	nd	nd	2.7	50
Carbon disulfide	nd	nd	nd	nd	3.0	60
1,1,1-Trichloroethane	nd	nd	nd	0.71	nd	5
PCB's						
Total PCB's	-	nd	nd	-	-	0.09

ND = indicates that compounds were not detected

ug/kg -indicates micrograms of contaminant per Kilogram of Soil or Parts Per Billion

Highlighted result exceed NYS DEC Groundwater Quality Standards; SVOCs analyzed for CP51 list.

NS = No Standard

(-) in a results space indicates that this sample was not analyzed for this parameter

5.0 HISTORIC SUBSTATION INVESTIGATION

An electrical substation was historically present to the east of Building 5 and south of Building 11. Use of this substation was discontinued and apparently dismantled sometime after the mill operations left in the 1960's and during use of the subsequent use of the property as the Hilton Center, when transformers were installed on power utility poles and power was redirected directly to the site buildings via overhead low voltage lines. The foundation of the substation and concrete surface pads where transformers were mounted are still present in this area and soil/gravel is

present within the concrete foundation and around the transformer pads. As a screening to determine if there is evidence of PCB oil spills from historic transformers in this area, shallow soil samples were collected adjacent to transformer pads, within the foundation, one near a southern pad and one near a northern pad in the containment area. This area was heavily overgrown at the time of the sampling which substantially limited observation and access to the ground surface in the containment area.

Sampling was performed by had digging and collecting a 0-1 foot deep soil sample next to the western side of each of these transformer pads. No oily staining was obvious in the soil when collected. The samples were collected into laboratory provided soil jars, refrigerated for transport to the testing lab. Samples were analyzed for the presence of poly aromatic hydrocarbon (PAH) semi-volatile organic compounds (SVOC's) by EPA test method 8270, and for Polychlorinated Biphenyls (PCB's) be EPA test method 8082.

Laboratory Soil Sample Analysis

Sample analysis results for two soil samples collected from 0-1 foot of depth within the former electrical substation concrete enclosure did not indicate the presence of petroleum or PCB contamination. This sampling and analysis did not indicate impacts from historic PCB and petroleum transformer oil spills that can occur in these substation areas.

Target Compounds	SubSta-1 (ug/kg) L2144034-03	SubSta-2, (ug/kg) L2144034-04	NYS DEC Cleanup Objective (ug/kg)
VOCs via EPA 8260B			· · · ·
Trichloroethene	1.0	0.26	470
Semi-VOCs via EPA 8270C, CP51 List			
Anthracene	nd	nd	100,000
Benzo(a)anthracene	nd	nd	1,000
Benzo(a)pyrene	nd	nd	1,000
Benzo(b)Fluoranthene	nd	nd	1,000
Benzo(k)Fluoranthene	nd	nd	800
Chrysene	nd	nd	1,000
Benzo(ghi)perylene	nd	nd	100,000
Fluoranthene	nd	nd	100,000
Fluorene	nd	nd	30,000
Ideno(1,2,3-cd)pyrene	nd	nd	500
Phenanthrene	nd	nd	100,000
Pyrene	nd	nd	100,000
PCB's			
Total PCB's	nd	nd	1,000

TABLE 5: SUMMARY OF SVOC & PCB COMPOUNDS IN SOIL SAMPLES AT SUB-STATION

nd -indicates below the method detection limit;

ug/kg -indicates micrograms of contaminant per kilogram of soil or parts per billion (ppb)

BOLD result exceeds NYS DEC CP51 Recommended Soil Cleanup Objectives (Residential) standard criteria and guidelines; SVOCs from CP51 list.

6.0 STORMWATER SYSTEM INVESTIGATION

The site has an extensive network of storm drains that appear to interconnected and ultimately discharge to the Hudson River to the west of the SP. Multiple drain pipes reportedly traverse beneath the railroad to the west of the SP and daylight at the edge of the river. These pipes originate at catch basins along the west side of the westernmost site buildings and then discharge to the river. Multiple catch basins are present along the western and central site access roads. Floor drains are also present in most of the site buildings and it is believed, although not confirmed, that these floor drains discharge into the storm drain pipes and also ultimately into the river. A dye trace study was performed in January of 1989 for the NYSDEC at the SP in an effort to understand how some of these drains interconnect and how they discharge to the river. This study was performed to understand how oil found discharging into the river may have been originating from the Jelliff Corporation, then operating from the SP and using large quantities of oil within site Building #5. The study did identify some level of interconnection of building drains into the storm drainage system. In addition to this drainage system, a 100,000-gallon sub-grade concrete storage tank is present at the southwest corner of Building #5. It is also presumed that his tank is somehow interconnected with the storm drain system and sampling was also performed in this tank from a manhole on the top of the tank.

Sampling was performed as follows on September 10, 2021. Sampling locations are indicated on Figure 2 of this report.

The 100,000-gallon storage tank was accessed through a manhole at the southeast corner of the tank. Water within the tank was pumped out with a peristaltic pump and containers were filled for testing. Sediment testing within this tank was also proposed, but upon accessing the tank, no obvious accumulation of sediment was identified. Scrap metal pipes and other metal and concrete was piled on the bottom of the tank, obstructing access to the bottom, but no obvious sediment was observed. Water in the tank was measured at a depth of 6-feet from the top of the manhole. The water in the tank was estimated to be three to four feet deep, but the bottom could not be confirmed due to the presence of excess debris in the bottom. The water sample was designated as "SW-Tank".

One storm drain was sampled near the west side of Building #6 (Figure 2) and this drain was used as a spot sampling of drains along the west or downgradient of side of the site building complex. Multiple additional drains are also present along this side of the building, but most were not functional and were covered with upside down empty 55-gallon drums at the time of this investigation. Water and sediment samples were collected from this drain for laboratory analysis. Samples were designated as storm drain #1 or "SW-DR-1". Water within the drain was pumped out with a peristaltic pump and containers were filled for testing. Sediment was directly scooped out with a shovel and transferred into sample containers. Approximately one foot of water depth was present in the drain at approximately one-foot down from the surface grade, sediment therefore was approximately 2-feet deep from grade. Drain discharge piping was present above the sediment level.

A second storm drain is present near the northwest corner of Building #10 (Figure 2). Sediment from his drain was sampled in the same way as storm drain 1 (above) and was designated as SW-DR-2". No water was present in the drain at the time of sampling. The top of sediment was approximately three feet below ground level and drainage pipes were present in the side of the drain basin above the sediment.

Laboratory Soil Sample Analysis

Soil sample laboratory analysis results indicate the presence of low concentrations of VOC's and SVOC compounds in storm drain sediments. Minor exceedances of some SVOC compounds were identified in the storm drain sediments. Low concentrations of PCB's and heavy metals, below cleanup standards, were also present in these sediment samples. There was no visual or odorous evidence of contamination in these sediments.

Target Compounds	SW-DR-1,	SW-DR-2	NYS DEC
raiget compounds	(ug/kg)	(ug/kg)	Cleanup
	L2149063-02	L2149063-06	Objective
VOCs via EPA 8260B			(ug/kg)
Acetone	6.9	nd	50
Trichloroethene	nd	4.6	470
Semi-VOCs via EPA 8270C	nu	4.0	470
CP-51 List			
Acenaphthene	44	180	98,000
Naphthalene	39	290	12,000
Bis(2-ethylhexyl)phthalate	230	62	50,000
Butyl benzene phthalate	280	nd	100,000
Anthracene	140	370	100,000
Benzo(a)anthracene	420	1,100	1,000
Benzo(a)pyrene	390	1,000	1,000
Benzo(b)Fluoranthene	560	1,400	1,000
Benzo(k)Fluoranthene	150	420	800
Chrysene	420	1,000	1,000
Benzo(ghi)perylene	260	690	100,000
Fluoranthene	790	2,100	100,000
Fluorene	50	210	30,000
Dibenzo(a,h)anthracene	66	160	330
Ideno(1,2,3-cd)pyrene	290	750	500
Phenanthrene	550	1,700	100,000
Pyrene	630	1,800	100,000
Dibenzofuran	34	150	NS
2-Methylnaphthalene	nd	74	410
Carbazole	80	290	NS
PCB's			
Aroclor 1268	10.6	nd	1,000
Aroclor 1260	5.64	nd	1,000
Total PCB's	16.2	nd	1,000
Metals	mg/kg	mg/kg	mg/kg
Arsenic	5.01	3.08	16 (16)
Barium	51.3	50.6	350 (500)
Cadmium	1.02	nd	2.5 (7.5)
Chromium	18.8	11.1	36 (1500)
Mercury	0.136	nd	0.73 (0.73)
Lead	51.6	15.2	400 (450)
Silver	nd	0.130	8.3 (8.3)
Selenium	0.268	0.185	4 (4)

TABLE 6A: SUMMARY OF VOC, SVOC, & PCB COMPOUNDS IN STORM DRAIN SEDIMENT

TABLE 6B: SUMMARY OF DETECTED VOC, SVOC, & PCB COMPOUNDSIN STORM DRAIN WATER

Target Compounds	SW-TANK (ug/liter) L2149063-01	SW-DR-1, (ug/liter) L2149063-05	NYS DEC Cleanup Objective (ug/liter)
VOCs via EPA 8260B			
2-Butanone (MEK)	nd	1.9	120
Chloroform	nd	1.4	7
tetrachloroethylene	nd	0.28	5
PCBs			
Total PCB's	nd	-	0.09

nd -indicates below the method detection limit; - indicates sample not analyzed for the compound ug/kg -indicates micrograms of contaminant per kilogram of soil or parts per billion (ppb)

mg/kg -indicates milligrams of contaminant per kilogram of soil or parts per million (ppm) BOLD result exceeds NYS DEC CP51 Recommended Soil Cleanup Objectives (Residential)

standard criteria and guidelines; SVOCs from CP51 list.

SCOs for organic contaminants (volatile organic compounds, semi-volatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm. NS = No NYSDEC standards or guidance values have been set for these compounds

Stormwater in the large holding tank was free of VOC and SVOC contaminants, and levels of VOC contamination, substantially below groundwater quality standards, were detected in the DR-1 storm drain. None of these impacts suggest that the storm drain system is an ongoing source of site soil or groundwater contamination. Maintenance of these drains including removal and disposal of accumulated sediments, would serve to remove these remnant contaminants from the SP.

7.0 CONCLUSIONS

Alpine Environmental Services, Inc. has completed a Phase II ESA of soil, soil gas, and groundwater quality of shallow subsurface conditions in the above described areas of this Subject Property (SP), to determine if Recognized Environmental Conditions (REC's) identified during the Phase I ESA investigation have adversely impacted soil, soil gas, or groundwater on the SP. Issues of concern raised as Recognized Environmental Conditions in the Phase I ESAs were addressed during this Phase II ESA and the following conclusions are provided:

7.1 Soil Vapor Intrusion Investigation

The Soil Vapor Intrusion (SVI) investigation was performed to determine if concerns identified during the prior environmental assessment at the SP have adversely impacted soil vapor quality beneath the SP, and if those impacts are likely to impact the indoor air of SP building tenant spaces, and to determine if mitigation to reduce VOC's from entering the building from the soil vapor intrusion may be necessary.

NYSDOH Regulatory Guidelines

At the time of this assessment, the site buildings were not heated and the buildings were substantially damaged with many windows broken and large air gaps in walls and doors, allowing outside air to flow through building areas. As a result of the building condition, Alpine determined that indoor air sampling could not be performed in a way that would allow for a valid comparison

to the New York State Department of Health (NYSDOH) vapor intrusion study regulatory guidelines. In an effort to make some determination relative to the threat of vapor intrusion into future restored building areas, Alpine did perform sub-slab soil gas sampling in representative lower level building areas. Since indoor air samples were not collected, comparison to NYSDOH decision matrices for the eight listed VOCs could not be performed. Alternatively, soil gas results were compared to US EP Vapor Intrusion Screening Levels for sub slab and near slab soil gas for residential use.

EPA Vapor Intrusion Screening Levels (VISL)

Multiple VOC compounds were detected in the sub-slab soil gas samples, with most of the detected VOCs occurring below the target screening level. The following chemicals were present in sub-slab soil gas, in excess of the EPA VISL target concentrations for soil gas.

Building 1: No VOCs were detected above the target screening levels in the sub-slab soil gas in this building.

Building 4: Chloroform was detected at concentrations above both the residential and commercial target screening levels. Ethlybenzene was detected above the residential target screening level. This was the only building area where a commercial screening level was also exceeded.

Building 5: Ethlybenzene was detected above the residential target screening level.

Building 6: Ethlybenzene was detected above the residential target screening level.

Building 7: Shallow groundwater immediately beneath the building slab prevented collection of soil gas samples.

Building 8: Shallow groundwater immediately beneath the building slab prevented collection of valid soil gas samples.

Building 9: Benzene, ethylbenzene and carbon tetrachloride were detected above the residential target screening level.

Building 10: Benzene, 1,3-butadiene, ethylbenzene and p/m xylene were detected above the residential target screening level.

Building 11: Benzene, ethylbenzene and p/m xylene were detected above the residential target screening level.

Sub slab soil gas test results from Building 1 suggest residential use indoor air screening levels will not be exceeded in the building. Sub slab soil gas test results from Building 4, 5, 6, 9, 10, and 11 suggest vapor intrusion is likely to occur. Vapor mitigation in these buildings is likely necessary dependent on building usage (except Building 4). An engineered sub-slab depressurization system could be designed and installed during the building renovation process to ensure that vapor intrusion is minimized in each of the buildings with soil gas exceedances of the target screening levels.

Buildings 7 and 8 should be assumed to exceed the target screening level for VOCs in soil gas and treated accordingly when renovations occur. Additional considerations for shallow groundwater should be considered when planning renovations and vapor mitigation for these buildings as sub slab depressurization, the most common vapor mitigation technique, is incompatible with a near slab water table. Should the groundwater below these floor slabs be lowered, testing may be an option to further evaluate the potential for vapor intrusion in these two buildings.

7.2 Soil and Groundwater Quality Investigation

Analysis of some site soil samples indicated the presence of volatile organic compounds and semi-volatile organic compounds, most petroleum in nature, in multiple locations on the SP.

The following impacts to soil and groundwater quality are discussed by the area of the SP where the impacts were identified:

7.2.1 Building 1 Area: A #6 heating oil storage tank was identified along the southwest side of Building 1 (Figure 3). Oily contamination which appeared to be #6-heating fuel oil was observed in test borings and in monitoring wells MW-1 and MW-2 along the western or downgradient side of this tank as well as test boring/monitoring well MW-20, at the northeastern corner of this building. Free phase oil was observed in borings B-1 and B-2 and in excavations when this tank was removed. This condition was reported to the New York State Department of Environmental Conservation (NYSDEC) at the time of discovery and was assigned NYSDEC petroleum spill ID #2104385. The NYSDEC was present during the tank removal and indicated that the presence of free phase product (free oil in the soil and floating on the groundwater) is a condition that will require remedial action to, at the very least, remove the presence of the free phase product from the spill area. Additional exploration will be necessary in this area of the site to determine the size of the impacted area, and determine the extent of remedial actions, including the recovery of free phase oil from the ground, that will be necessary to meet NYSDEC cleanup objectives and close this spill. The closure (removal) of this storage tank and the steps to investigate and remediate this sill will be addressed subsequent to this Phase II ESA and will be addressed with separate reporting as this process progresses.

7.2.2 Fill Area North End of SP: A series of test pits were excavated in the northern end of the SP where fill was reportedly placed on the SP during historic site ownership. Soil was screened in these test pits and samples were submitted to a testing laboratory from test pits where evidence of petroleum or chemical impacts appeared evident through field screening. Soil samples were submitted from test pits TP-1, TP-9 and TP-11. No contaminants exceeding NYSDEC soil cleanup standards were identified in the soil sample analyzed from test pit TP-9. Test pits TP-1 and TP-11 are adjacent in this area and both were found to be impacted by odorous and oily contaminated soil conditions, generally below six feet of depth. Laboratory analysis of soil samples identified the presence of volatile organic compounds in this test pit area above cleanup standards for acetone, MEK and Toluene, PCBs, and heavy metals (barium, cadmium, chromium, and lead). Groundwater monitoring well MW-11 was placed in the vicinity of test pit TP-1 and the water sample was found to exceed NYSDEC groundwater quality standards for Bis-(2ethylhexyl)Phthalate, a semi-volatile organic compound. It appears that contaminated soil, or some source of waste that has contaminated the soil in this area, was buried in this portion of the fill area and has contaminated the deep soils to levels that are likely to require mitigative measures. This condition is also a reportable spill and must be reported to NYSDEC as a spill separate from the underground storage tank spill on the south end of the site. Additional sampling will be necessary to fully delineate the depth and aerial extent of this contamination and determine how the waste can be properly remediated. It is likely that the impacted materials will have to be excavated, characterized for disposal, and transported to a licensed waste disposal facility. If some source of leaking contaminant is discovered (examples are buried waste drums or transformers etc.), the source or sources must be identified and similarly contained and disposed.

7.2.3 Test Boring B-8 Area: Soil boring B-8 and Monitoring well MW-8 were placed along the west side of Buildings 6 and 7. Soil from this boring had oily staining and elevated PID readings, demonstrating concerns for the presence of volatile and semi-volatile organic petroleum or other similar contaminants. The sample was analyzed and concentrations of acetone, chrysene and

arsenic were all found to exist in the soil at concentrations above the NYSDEC cleanup standards for these contaminants. Other petroleum related semi-volatile petroleum compounds were also present at concentrations just below the cleanup standard, indicating the presence of some type of oily petroleum in the soil. This condition demonstrated a third area of the SP where a petroleum spill may have to be reported and investigated to determine if cleanup actions are necessary. Further investigation in this area will be necessary to determine the extent of this impact. If the extent of this impact is found to be more widespread, or soils with contaminants higher in concentration are discovered, a spill cleanup including excavation and disposal of contaminated soil may be required to meet NYSDEC spill cleanup standards.

7.2.4 Test Boring B-4 Area: Soil boring B-4 and monitoring well MW-4, and Boring B-19 and monitoring well MW-19, were installed in the area west and south of Building 4. A chlorinated volatile organic compound known as 1,1,1-trichloroethane (1,1,1-TCA) was detected in both of these wells. The groundwater quality standard for this compound is 5 parts per billion (ppb) and the standard was exceeded at 32 PPB in MW-4, and was present, but below the standard at 0.71 ppb in MW-19. Further investigation of groundwater quality in this area will be necessary to determine if there is an on-site source of this impact, or if the impact may be migrating onto the site from some up gradient off-site source. If an on-site source is found to be represent, some cleanup action may be necessary under NYSDEC regulatory oversight.

7.2.4 Historic Substation:

Sample analysis results for two soil samples collected from 0-1 foot of depth within the former electrical substation concrete enclosure did not indicate the presence of volatile organic compound or PCB contamination above current standards.

7.2.4 Storm Water System:

Soil sample analysis results indicate the presence of low concentrations of VOC's and SVOC compounds in storm drain sediments. Minor exceedances of some SVOC compounds were identified in the storm drain sediments. Low concentrations of PCB's and heavy metals, below cleanup standards, were also present in these sediment samples. There was no visual or odorous evidence of contamination in these sediments.

Stormwater in the large holding tank was free of VOC and SVOC contaminants and levels of VOC contamination, substantially below groundwater quality standards, were detected in the DR-1 storm drain. None of these impacts suggest that the storm drain system is an ongoing source of site soil or groundwater contamination. Maintenance of these drains including removal and disposal of accumulated sediments, would serve to remove these remnant contaminants from the SP.

All floor drains in site buildings should be cleaned of any residual waste that may be present in the drains and drain piping, and all drains must be either re-routed to appropriate and approved discharge locations (i.e. municipal sanitary sewer system) or abandoned by filling with concrete.

7.2.5 General Site Conditions:

This investigation was performed to assess specific areas of the SP where Recognized Environmental Conditions (RECs) were identified during the Phase I ESA, as well as to perform an overall screening of representative site areas to determine if there was evidence of typical

commercial and industrial petroleum and chemical contaminants. The assessment identified contaminant impacts in multiple areas as noted in these conclusions. Further assessment would be necessary to fully delineate the impacts in the areas identified. Because of the large scale and complexity of the property, and because of the extensive industrial history of use, there is some potential for localized impacts to areas between sampling points. If contaminated soil, groundwater, or subsurface tanks or structures impacted with contaminants are encountered during construction activities, it may be necessary to perform further focused assessments in these areas and to address localized conditions not meeting regulatory program requirements.

The two underground storage tanks identified, and the spill associated with the 20,000-gallon 6oil tank must be properly registered and fully closed through the NYSDEC petroleum bulk storage program and the spill must be addressed and mitigated to the satisfaction of NYSDEC. This process has been initiated with the removal and initial registration of both tanks by the site owner, and remedial actions for the spill have been initiated at this time. This process is ongoing at the time of this report and these actions are to be overseen and documented by Alpine through a separate UST and petroleum spill closure report.

Certification

This report is certified to, and is intended for the sole and exclusive use of representatives of The BBL Construction Services LLC and BBL Barnet LLC, and their assigns, and may not be used or relied upon by others unless stated in writing. The findings of the report are limited to those specifically expressed in the report.

Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the agreement, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to Alpine.

Limitations

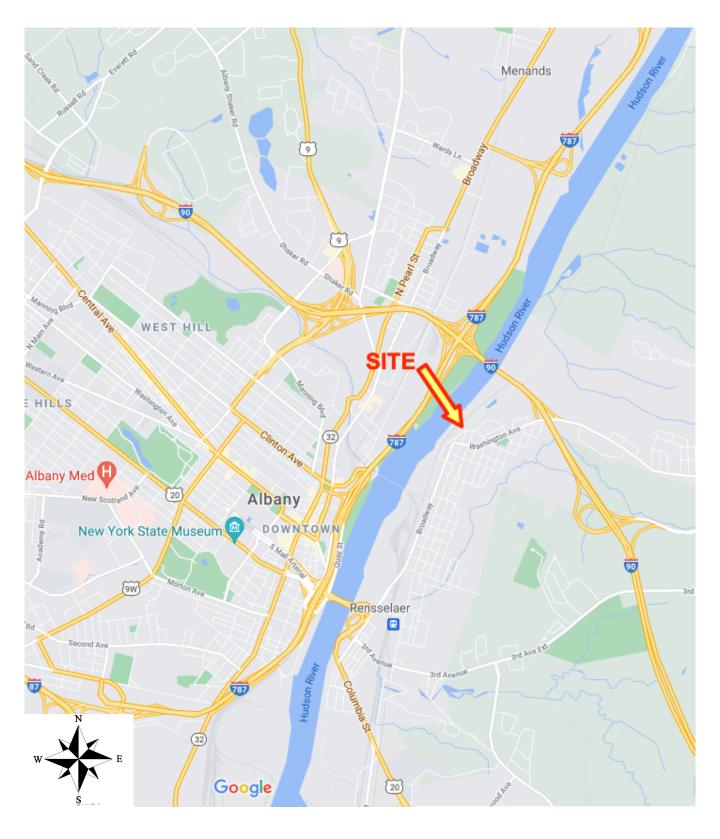
Our findings and conclusions are based on information obtained from on-site field exploration and analytical services performed under the contract in the location and depths the sample(s) were obtained. This Limited Site Investigation was performed in accordance with the Scope of Services agreed with BBL Construction Services LLC and BBL Barnet LLC. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this report may be found at the Investigation Parcel as expanded investigations are performed.

Alpine's services were performed in a manner consistent with generally accepted practices of environmental consulting services undertaken for a Limited Site Investigation for the property location and based on readily available information about the property. Alpine makes no warranty, expressed or implied, regarding the findings, conclusions or recommendations and Alpine does not warrant third party information such as testing laboratories. Alpine's and our subcontractor's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, Alpine

does not and cannot represent that the site contains no hazardous material, oil, or other latent condition beyond that observed by Alpine during its study.

Reasonable care was used in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

Closing


This Phase II Environmental Site Assessment was completed by a Qualified Environmental Professional as defined in The New York State Codes of Rules and Regulations (6 NYCRR) Part 375, which regulates the NYS Environmental Remediation Programs. The investigation was performed to address recognized environmental conditions and concerns raised during referenced prior Phase I Environmental Site Assessment conducted by Alpine, as referenced within the report.

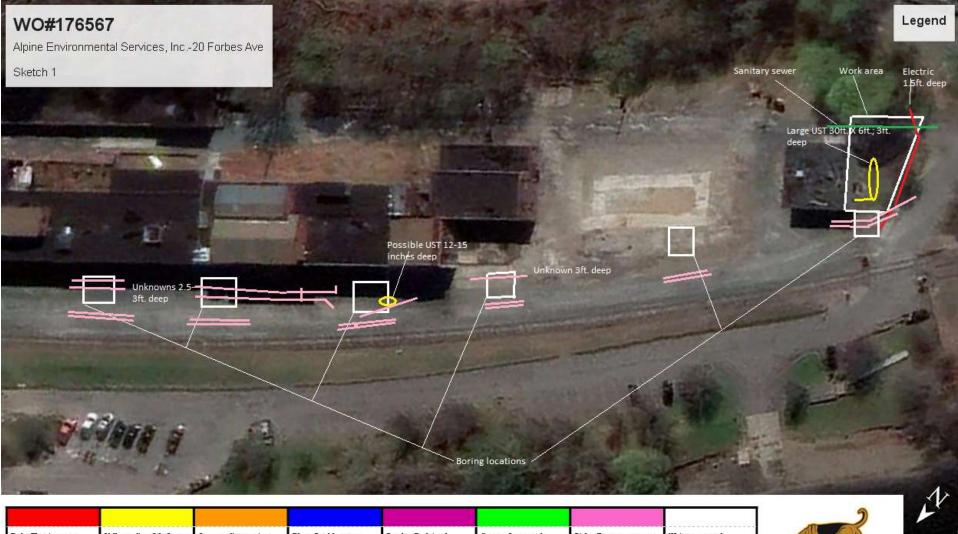
Prepared by:

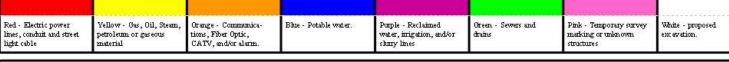
Kim L. Baines Alpine Environmental Services, Inc.

FIGURES

Project: Barnet Mill Phase II ESA DRAWING DATE SEPTEMBER, 2021 Project Number: 21-26694-E

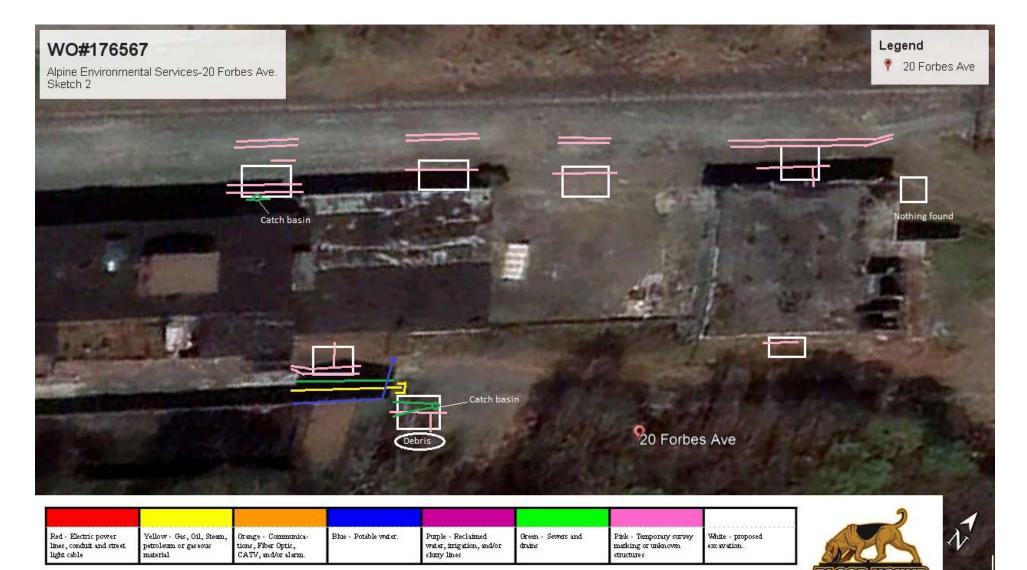
FIGURE – 1 SITE LOCATION




FIGURE – 2 GPR Survey Map

(ATTACHED)

Project: Barnet Mill Phase II ESA DRAWING DATE SEPTEMBER, 2021 Project Number: 21-26694-E



BLOOD HOUND Biderground Willity Locator

This is NOT to-scale

888-858-9830 / www.BHUG.com

This is NOT to-scale

888-858-9830 / www.BHUG.com

Undergr

ound Utility Locators

Red - Electric power lines, conduit and street light cable	Yellow - Gas, Oil, Steam, petroleum or gaseous material	Orange - Communica- tions, Fiber Optic, CATV, and/or alarm.	Bhie - Potable water.	Purple - Reclaimed water, irrigation, and/or sbury lines	Green - Sewers and drains	Pink - Temporary survey marking or unknown structures	White - proposed excavation.

This is NOT to-scale

888-858-9830 / www.BHUG.com

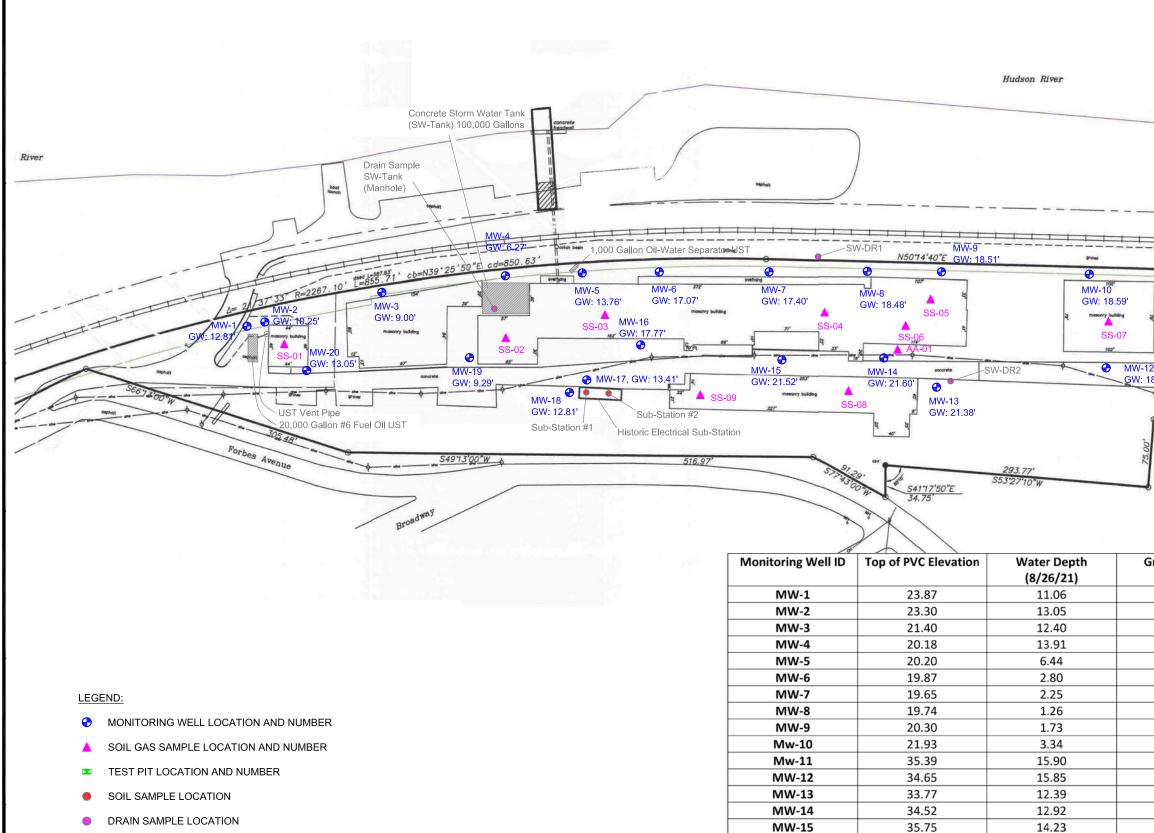

Red - Electric power lines, conduit and street light cable	Vellow - Gas, Oil, Steam, petroleum or gaseous material	Orange - Communica- tions, Fiber Optic, CATV, and/or alarm.	Bhie - Potable water.	Purple - Reclaimed water, irrigation, and/or shury lines	Green - Sewers and drains	Pink - Temporary survey marking or unknown structures	White - proposed excavation.
--	---	---	-----------------------	--	------------------------------	---	---------------------------------

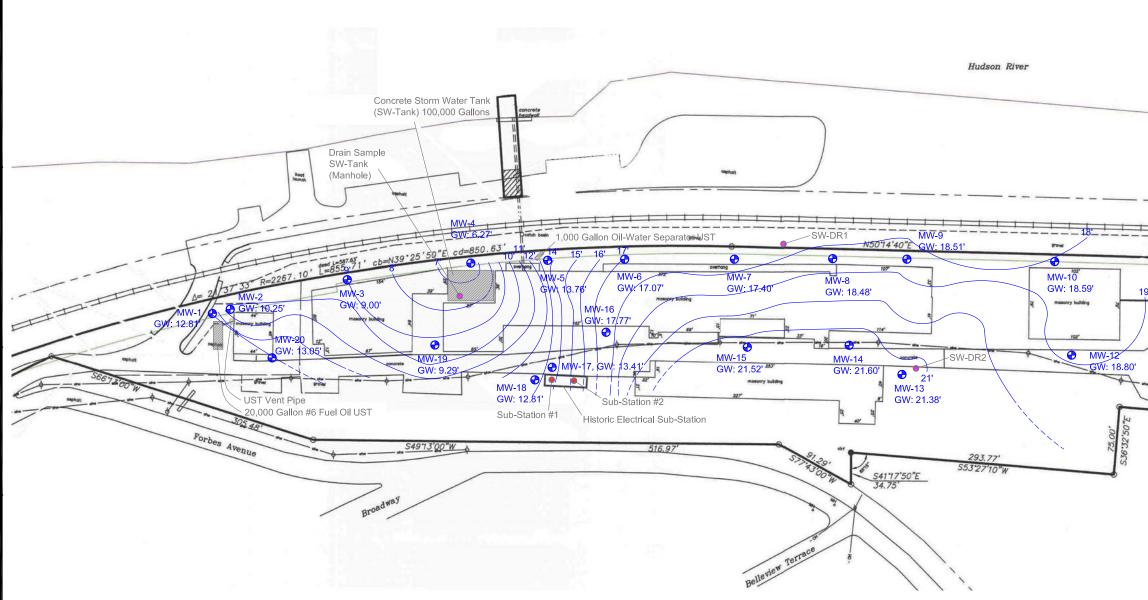
FIGURE – 3 SAMPLING LOCATIONS (ATTACHED)

Project: Barnet Mill Phase II ESA DRAWING DATE SEPTEMBER, 2021 Project Number: 21-26694-E

MW-16

MW-17 MW-18

MW-19


MW-20

	Hudson River			AENTAL SERVICES
MW-9 N50'14'40"F CW: 18 5				
N50'14'40"E GW: 18.5	1' Proved	689.61	0	
8' SS-05 SS-06 AA-01 .60' MW-13 GW: 21.38'	W-DR2	.59' TP-3 ■ TP-3 ■ TH MW-12 GW: 18.80' ■ TP-7 T27.40' 553'27'17240'	TP-8 TP-2 TP-11 TP-11 TP-1 MW-11 TP-1 MW-11 TP-1 SW: 19.49' N32'37'50'W 53.72' TP-5 TP-5 TP-5 TP-5 TP-6 TP-1 TP-6 TP-1 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-1 TP-6 TP-6 TP-1 TP-6 TP-7 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-6 TP-7 TP-6 TP-7 TP-6 TP-7 TP-6 TP-7 TP-6 TP-7	aputé
	293.77'	75.00'	2210 W	
	S53'27'10"W		/	
54117'50"E 34.75'	Water Depth	Groundwater		DATE: September 2021
PVC Elevation	Water Depth (8/26/21)	Elevation		
PVC Elevation 23.87	Water Depth (8/26/21) 11.06	Elevation 12.81		
PVC Elevation 23.87 23.30	Water Depth (8/26/21) 11.06 13.05	Elevation 12.81 10.25		
Statistics 34.75' PVC Elevation 23.87 23.30 21.40	Water Depth (8/26/21) 11.06 13.05 12.40	Elevation 12.81 10.25 9.00		September 2021
S4117 S0 E 34.75' PVC Elevation 23.87 23.30	Water Depth (8/26/21) 11.06 13.05	Elevation 12.81 10.25		September 2021
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80	Elevation 12.81 10.25 9.00 6.27 13.76 17.07		September 2021
Statistics 34.75' 34.75' PVC Elevation 23.87 23.30 21.40 20.18 20.20 19.87 19.65	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40		September 2021
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48		September 2021
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57		September 2021
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48		Barnet Mills Forbes Avenue Sselaer, New York
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59		September 2021
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38		Barnet Mills 20 Forbes Avenue Rensselaer, New York September 10, 2021
Strip Strip 34.75' 34.75' PVC Elevation 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 34.52	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60		Barnet Mills 20 Forbes Avenue Rensselaer, New York September 10, 2021
Start Start 34.75' 34.75' PVC Elevation 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 35.75	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92 14.23	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60 21.52		Barnet Mills 20 Forbes Avenue Rensselaer, New York September 10, 2021
Statistics 34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 35.75 27.94	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92 14.23 10.17	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60 21.52 17.77		Barnet Mills Forbes Avenue Sselaer, New York
Start Start 34.75' 34.75' PVC Elevation 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 35.75	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92 14.23	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60 21.52		Barnet Mills 20 Forbes Avenue Rensselaer, New York September 10, 2021
34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 35.75 27.94 27.16 21.90	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92 14.23 10.17 13.75 14.35 12.61	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60 21.52 17.77 13.41 12.81 9.29		Barnet Mills 20 Forbes Avenue 20 Forbes Avenue Rensselaer, New York DESCRIPTION: DATE: September 10, 2021
SA.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 35.75 27.94 27.16 27.16	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92 14.23 10.17 13.75 14.35	Elevation 12.81 10.25 9.00 6.27 13.76 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60 21.52 17.77 13.41 12.81		Sebtember 5051 Barnet Mills 20 Forbes Avenue 20 Forbes Avenue Bescription: DRAFT DESCRIPTION: DRAFT DETE: September 10, 2021 DATE: September 70, 2
34.75' 34.75' 23.87 23.30 21.40 20.18 20.20 19.87 19.65 19.74 20.30 21.93 35.39 34.65 33.77 34.52 35.75 27.94 27.16 21.90	Water Depth (8/26/21) 11.06 13.05 12.40 13.91 6.44 2.80 2.25 1.26 1.73 3.34 15.90 15.85 12.39 12.92 14.23 10.17 13.75 14.35 12.61 11.27	Elevation 12.81 10.25 9.00 6.27 13.76 17.07 17.40 18.48 18.57 18.59 19.49 18.80 21.38 21.60 21.52 17.77 13.41 12.81 9.29 13.05		September 2021 Barnet Mills 20 Forbes Avenue 20 Forbes Avenue BrockPrio. 2021 DESCRIPTION: DRAFT DESCRIPTION: DRAFT BREET NO: 201-2021 SHEET NO: 201-2021

FIGURE – 4 GROUNDWATER ELEVATION CONTOUR MAP (ATTACHED)

Project: Barnet Mill Phase II ESA DRAWING DATE SEPTEMBER, 2021 Project Number: 21-26694-E

LEGEND:

- GROUNDWATER ELEVATION CONTOUR
- MONITORING WELL LOCATION AND NUMBER
- SOIL SAMPLE LOCATION
- DRAIN SAMPLE LOCATION

Image: Signal	Hudson River					٩		DVIPEQ
PROJECT NO: 21-26694-E SHEET TITLE: GROUND WATER ELEVATION CONTOURS	GW: 18.51' SW-DR2 21' -13 -21.38' 	MW-10 GW: 18.59' 19' MW-12 GW: 18.80'	MW-11 SW: 11 127.40'	9.49' N32'37'50"W (53.72' 11 1:50	N ^o	DATE: September 2021		
						PROJECT NO: 21-260 SHEET NO:	DESCRIPTION: 94-F	DATE: September 10, 2021

5 ш

ERVICE

 \sim

_

A

 \vdash Z ш

ENVIRDNM

APPENDICES

Appendix A EPA Vapor Intrusion Screening Levels

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

/HTML"Corresponding Equations

Resident Vapor Intrusion Screening Levels (VISL)

/HTML"User's Guide Variable References

Chemical	CAS Number	Does the chemical meet the definition for volatility (HLC>1E-5 VP>1)	Does the chemical have inhalation toxicity data? (IUR and/or RfC)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Soil Source? (C _{vp} > C _{ia} Target?)	Is Chemical Sufficiently Volatile and Toxic to Pose Inhalation Risk Via Vapor Intrusion from Groundwater Groundwater (C _{hc} > C _{int} Target?)	Target Indoor Air Concentration (TCR=1E-06 or THQ=0.1) MIN(Ci _{k,c} , Ci _{k,n} c) (μg/m ³)	Toxicity Basis	Target Sub-Slab and Near-source Soil Gas Concentration (TCR=1E-06 or THQ=0.1) C _{sp} Target ((g/m ³)	Target Groundwater Concentration (TCR=1E=66 or THQ=0.1) C _{gm} ,Target (µg/L)	Is Target Groundwater Concentration < MCL? (C _{gw} < MCL?)	Pure Phase Vapor Concentration C _{vp} (25 °C) (µg/m ³)	Maximum Groundwater Vapor Concentration Chc (µg/m³)	Temperature for Maximum Groundwater Vapor Concentration (°C)	Lower Explosive Limit LEL (% by volume)	LEL Ref	IUR (ug/m³) ⁻¹	IUR Ref	RfC (mg/m³)	RfC Ref	Mutagenic Indicator	Carcinogenic VISL TCR≕1E-06 Ci _{lac} (µg/m ³)	Noncarcinogenic VISL THQ=0.1 Ca_c(Lg/m ³)
Acetone	67-64-1	Yes	Yes	Yes	Yes	3.22E+03	NC	1.07E+05	2.25E+06		7.25E+08	1.43E+09	2.50E+01	2.50E+00	U	-		3.09E+01	U	No	-	3.22E+03
Benzene	71-43-2	Yes	Yes	Yes	Yes	3.60E-01	CA	1.20E+01	1.59E+00	Yes (5)	3.98E+08	4.06E+08	2.50E+01	1.20E+00	U	7.80E-06	U	3.00E-02	U	No	3.60E-01	3.13E+00
Benzene, Ethylmethyl Butadiene, 1,3-	25550-14-5 106-99-0	Yes Yes	No Yes	No Inhal. Tox. Info Yes	No Inhal. Tox. Info Yes	- 9.36E-02	CA	- 3.12E+00	- 3.11E-02	-	5.59E+07 6.14E+09	1.53E+07 2.21E+09	2.50E+01 2.50E+01	- 2.00E+00	U	- 3.00E-05	U	- 2.00E-03	U	No No	- 9.36E-02	- 2.09E-01
				No Inhal. Tox.																		
Butyl Alcohol, t-	75-65-0	Yes	No	Info	No Inhal. Tox. Info	-		-	-		1.62E+08	3.70E+08	2.50E+01	2.40E+00	U	-				No	-	-
Carbon Disulfide	75-15-0	Yes	Yes	Yes	Yes	7.30E+01	NC	2.43E+03	1.24E+02		1.47E+09	1.27E+09	2.50E+01	1.30E+00	U	-		7.00E-01	U	No	-	7.30E+01
Carbon Tetrachloride	56-23-5	Yes	Yes	Yes	Yes	4.68E-01	CA	1.56E+01	4.15E-01	Yes (5)	9.51E+08	8.95E+08	2.50E+01	-		6.00E-06	U	1.00E-01	U	No	4.68E-01	1.04E+01
Chlorobenzene	108-90-7	Yes	Yes	Yes	Yes	5.21E+00	NC	1.74E+02	4.10E+01	Yes (100)	7.26E+07	6.33E+07	2.50E+01	1.30E+00	U			5.00E-02	U	No	-	5.21E+00
Chloroform	67-66-3	Yes	Yes	Yes	Yes	1.22E-01	CA	4.07E+00	8.14E-01	Yes (80)	1.26E+09	1.19E+09	2.50E+01	-		2.30E-05	U	9.77E-02	U	No	1.22E-01	1.02E+01
Chloromethane	74-87-3	Yes	Yes	Yes	Yes	9.39E+00	NC	3.13E+02	2.60E+01		1.17E+10	1.92E+09	2.50E+01	8.10E+00	U	-		9.00E-02	U	No	-	9.39E+00
Cyclohexane	110-82-7	Yes	Yes	Yes	Yes	6.26E+02	NC	2.09E+04	1.02E+02		4.39E+08	3.37E+08	2.50E+01	1.30E+00	U			6.00E+00	U	No	-	6.26E+02
Dichlorodifluoromethane	75-71-8	Yes	Yes	Yes	Yes	1.04E+01	NC	3.48E+02	7.44E-01		3.15E+10	3.93E+09	2.50E+01	-		-		1.00E-01	U	No	-	1.04E+01
Dichloroethylene, 1,1-	75-35-4	Yes	Yes	Yes	Yes	2.09E+01	NC	6.95E+02	1.95E+01	No (7)	3.13E+09	2.58E+09	2.50E+01	6.50E+00	U	-		2.00E-01	U	No	-	2.09E+01
Dioxane, 1,4-	123-91-1	Yes	Yes	Yes	Yes	5.62E-01	CA	1.87E+01	2.86E+03		1.81E+08	1.96E+08	2.50E+01	2.00E+00	U	5.00E-06	U	3.00E-02	U	No	5.62E-01	3.13E+00
Ethanol	64-17-5	Yes	No	No Inhal. Tox. Info	No Inhal. Tox. Info	-					1.47E+08	2.04E+08	2.50E+01	3.30E+00	U	-		-		No	-	-
Ethylbenzene	100-41-4	Yes	Yes	Yes	Yes	1.12E+00	CA	3.74E+01	3.49E+00	Yes (700)	5.48E+07	5.44E+07	2.50E+01	8.00E-01	U	2.50E-06	U	1.00E+00	U	No	1.12E+00	1.04E+02
Heptane, N-	142-82-5	Yes	Yes	Yes	Yes	4.17E+01	NC	1.39E+03	5.10E-01		2.48E+08	2.78E+08	2.50E+01	1.05E+00	U	-		4.00E-01	U	No	-	4.17E+01
Hexachlorobutadiene	87-68-3	Yes	Yes	Yes	Yes	1.28E-01	CA	4.25E+00	3.03E-01		3.09E+06	1.35E+06	2.50E+01	2.90E+00	U	2.20E-05	U	-		No	1.28E-01	-
Hexane, N-	110-54-3	Yes	Yes	Yes	Yes	7.30E+01	NC	2.43E+03	9.92E-01		7.00E+08	6.99E+08	2.50E+01	1.10E+00	U	-		7.00E-01	U	No	-	7.30E+01
Methyl Ethyl Ketone (2-Butanone) 78-93-3	Yes	Yes	Yes	Yes	5.21E+02	NC	1.74E+04	2.24E+05		3.51E+08	5.19E+08	2.50E+01	1.40E+00	U	-		5.00E+00	U	No	-	5.21E+02
Methyl Isobutyl Ketone (4-methyl-																						
2-pentanone)	108-10-1	Yes	Yes	Yes	Yes	3.13E+02	NC	1.04E+04	5.55E+04		1.07E+08	1.07E+08	2.50E+01	1.20E+00	U	-		3.00E+00	U	No	-	3.13E+02
Methylene Chloride	75-09-2	Yes	Yes	Yes	Yes	6.26E+01	NC	2.09E+03	4.71E+02	No (5)	1.99E+09	1.73E+09	2.50E+01	1.30E+01	-	1.00E-08	U	6.00E-01	U	Mut	1.01E+02	6.26E+01
Styrene	100-42-5	Yes	Yes	Yes	Yes	1.04E+02	NC	3.48E+03	9.28E+02	No (100)	3.58E+07	3.49E+07	2.50E+01	9.00E-01	U	-		1.00E+00	U	No	-	1.04E+02
Tetrachloroethylene	127-18-4	Yes	Yes	Yes	Yes	4.17E+00	NC	1.39E+02	5.76E+00	No (5)	1.65E+08	1.49E+08	2.50E+01	-		2.60E-07		4.00E-02	U	No	1.08E+01	4.17E+00
Tetrahydrofuran	109-99-9	Yes	Yes	Yes	Yes	2.09E+02	NC	6.95E+03	7.24E+04		6.28E+08	2.88E+09	2.50E+01	2.00E+00	U	-		2.00E+00		No	-	2.09E+02
Toluene	108-88-3	Yes	Yes	Yes	Yes	5.21E+02	NC	1.74E+04	1.92E+03	No (1000)	1.41E+08	1.43E+08	2.50E+01	1.10E+00	U	-		5.00E+00	-	No	-	5.21E+02
Trichloroethane, 1,1,1-	71-55-6	Yes	Yes	Yes	Yes	5.21E+02	NC	1.74E+04	7.42E+02	No (200)	8.90E+08	9.07E+08	2.50E+01	8.00E+00	U	-		5.00E+00		No	-	5.21E+02
Trichloroethylene	79-01-6	Yes	Yes	Yes No Inhal. Tox.	Yes	2.09E-01	NC	6.95E+00	5.18E-01	Yes (5)	4.88E+08	5.15E+08	2.50E+01	8.00E+00	U	4.10E-06	U	2.00E-03	U	Mut	4.78E-01	2.09E-01
Trichlorofluoromethane	75-69-4	Yes	No	Info	No Inhal. Tox. Info	-		-	-		5.93E+09	4.36E+09	2.50E+01	-		-		-		No	-	-
Trimethylbenzene, 1,2,4-	95-63-6	Yes	Yes	Yes	Yes	6.26E+00	NC	2.09E+02	2.48E+01		1.36E+07	1.44E+07	2.50E+01	9.00E-01	U	-		6.00E-02		No	-	6.26E+00
Trimethylbenzene, 1,3,5-	108-67-8	Yes	Yes	Yes No Inhal, Tox.	Yes	6.26E+00	NC	2.09E+02	1.75E+01		1.60E+07	1.73E+07	2.50E+01	1.00E+00	U	-		6.00E-02	U	No	-	6.26E+00
Trimethylpentane, 2,2,4-	540-84-1	Yes	No	Info	No Inhal, Tox, Info						3.03E+08	3.03E+08	2.50E+01	9.00E-01	υ					No	-	-
Xylene, o-	95-47-6	Yes	Yes	Yes	Yes	1.04E+01	NC	3.48E+02	4.92E+01		3.77E+07	3.77E+07	2.50E+01	9.00E-01	U	-		1.00E-01	U	No	-	1.04E+01
Xylenes	1330-20-7	Yes	Yes	Yes	Yes	1.04E+01	NC	3.48E+02	3.85E+01	Yes (10000)	4.56E+07	2.87E+07	2.50E+01	-		-		1.00E-01	U	No	-	1.04E+01

/HTML"Corresponding Equations

Commercial Vapor Intrusion Screening Levels (VISL)

/HTML"User's Guide Variable References

Key: I = IRIS; P = PPRTV; O = OPP; A = ATSDR; C = Cal EPA; X = PPRTV Screening Level; H = HEAST; D = DWSHA; W = TEF applied; E = RPF applied; U = user provided; G = see RSL User's Guide Section 5; CA = cancer; NC = noncancer.

Is Chemical Sufficiently Is Chemical Volatile and Sufficiently Toxic to Target Volatile and Toxic Pose Inhalatio Sub-Slab and Target Near-source Soil Target Does the Risk Pose Inhalation Indoor Air Gas Pure Phase Maximum Groundwater Does the chemical Via Vapor Risk Temperature Lower Concentration Concentration Concentration Vapor Groundwater chemical meet have Is Target . for Maximum Explosive Intrusion Via Vapor (TCR=1E-06 or (TCR=1E-06 or Vapor (TCR=1E-06 or Concentrat Noncarcinogenic Carcinogenic the definition inhalation from Soil Intrusion fron Groundwate Groundwater l imit THQ=0.1) THQ=0.1) THQ=0.1) С, Concentration LEL VISL for volatility? VISL toxicity data? Source? Groundwater Concentration Vapor (HLC>1E-5 or MIN(Ciac,Cianc) C_{so},Target Cgw, Target (25 °C) Che IUR RfC TCR=1E-06 THQ=0.1 Toxicity Concentration LEL IIIR RfC Mutagenic (IUR and/or (C_{vp} > Source? < MCL? (% by Chemical CAS Number VP>1) RfC) (µg/m³) Basis (µg/m³) (µg/L) (µg/m³) (µg/m³) (°C) volume) Ref (ua/m³)⁻ Ref (ma/m^3) Ref Indicator (Chc > Ci,a, Target?) (C_{gw} < MCL?) $C_{ia,c}(\mu g/m^3)$ Cia,nc(µg/m³) Ci.a, Target?) Acetone 67-64-1 Yes Yes Yes Yes 1 35E+04 NC 4 51E+05 946E+06 7.25E+08 1.43E+09 2.50E+01 2 50E+00 ш 3.09E+01 Ш No 1.35E+04 Benzene 71-43-2 Yes Yes Yes Yes 1.57E+00 CA 5.24E+01 6.93E+00 No (5) 3.98E+08 4.06E+08 2.50E+01 1.20E+00 U 7.80E-06 U 3.00E-02 U No 1.57E+00 1.31E+01 No Inhal, Tox 25550-14-5 5.59E+07 1.53E+07 2.50E+01 Benzene, Ethvlmethvl Yes No Inhal, Tox, Info No Info No 4 09E-01 CA 1.36E+01 1.36E-01 2 21E+09 2.50E+01 U 3.00E-05 U 2.00E-03 U 106-99-0 6.14E+09 2.00E+00 4 09E-01 8 76E-01 Butadiene, 1,3-Yes Yes Yes Yes ---No No Inhal. Tox. Butyl Alcohol, t-75-65-0 No No Inhal, Tox, Info 1.62E+08 3.70E+08 2 50E+01 2 40E+00 Yes Info 11 Nr Carbon Disulfide 75-15-0 Yes Yes Yes Yes 3.07E+02 NC 1 02E+04 5.21E+02 1.47E+09 1.27E+09 2.50E+01 1.30E+00 U 7.00E-01 U No 3.07E+02 Carbon Tetrachloride 56-23-5 Yes Yes Yes Yes 2.04E+00 CA 6.81E+01 1.81E+00 Yes (5) 9.51E+08 8.95E+08 2.50E+01 6.00E-06 U 1.00E-01 U No 2.04E+00 4 38E+01 108-90-7 2.19E+01 NC 7.30E+02 1.72E+02 7.26E+07 6.33E+07 2.50E+01 U 5.00E-02 2.19E+01 Chlorobenzene Yes Yes Yes Yes No (100) 1.30E+00 υ No Chloroform 67-66-3 Yes Yes Yes Yes 5.33E-01 CA 1.78E+01 3.55E+00 Yes (80) 1.26E+09 1.19E+09 2.50E+01 2.30E-05 U 9.77E-02 U No 5.33E-01 4.28E+01 Chloromethane 74-87-3 Yes Yes Yes 3.94E+01 NC 1.31E+03 1.09E+02 1.17E+10 1.92E+09 2.50E+01 8.10E+00 U 9.00E-02 U No 3.94E+01 Yes ---110-82-7 2.63E+03 NC 8.76E+04 4.29E+02 4.39E+08 3.37E+08 2.50E+01 1.30E+00 6.00E+00 U 2.63E+03 Cvclohexane Yes Yes Yes Yes ---U No -NC Dichlorodifluoromethane 75-71-8 Yes Yes Yes 4.38E+01 1.46E+03 3.12E+00 3.15E+10 3.93E+09 2.50E+01 1.00E-01 No 4.38E+01 Yes U Dichloroethylene, 1,1-75-35-4 8.76E+01 NC 2.92E+03 8.21E+01 No (7) 3.13E+09 2.58E+09 2.50E+01 6.50E+00 U 2.00E-01 8.76E+01 Yes Yes Yes Yes U No 2.45E+00 CA 1.25E+04 1.81E+08 1.96E+08 2.50E+01 2.00E+00 5.00E-06 3.00E-02 2.45E+00 1.31E+01 Dioxane, 1.4-123-91-1 Yes Yes Yes Yes 8.18E+01 U υ U No No Inhal, Tox. 64-17-5 No Inhal. Tox. Info 1.47E+08 2.04E+08 2.50E+01 3.30E+00 Ethanol Yes No Info U No Ethylbenzene 100-41-4 Yes Yes Yes Yes 4.91E+00 CA 1.64E+02 1.52E+01 Yes (700) 548E+07 5.44E+07 2.50E+01 8.00E-01 U 2.50E-06 U 1.00E+00 U No 4.91E+00 4.38E+02 2.14E+00 Heptane, N-142-82-5 Yes Yes Yes Yes 1.75E+02 NC 5.84E+03 2.48E+08 2.78E+08 2.50E+01 1.05E+00 U 4.00E-01 U No 1.75E+02 5.57E-01 CA 1.35E+06 2.50E+01 Hexachlorobutadiene 87-68-3 Yes Yes Yes Yes 1.86E+01 1.32E+00 3.09E+06 2.90E+00 U 2.20E-05 U No 5.57E-01 110-54-3 NC 7.00E-01 U 3.07E+02 Hexane, N-Yes Yes Yes Yes 3.07E+02 1.02E+04 4.17E+00 ---7.00E+08 6.99E+08 2.50E+01 1.10E+00 υ No Methyl Ethyl Ketone (2-Butanone) 78-93-3 Yes Yes Yes Yes 2.19E+03 NC 7.30E+04 9.41E+05 3.51E+08 5.19E+08 2.50E+01 1.40E+00 U 5.00E+00 U No 2.19E+03 Methyl Isobutyl Ketone (4-methyl-108-10-1 Yes 1.31E+03 NC 4.38E+04 2.33E+05 1.07E+08 1.07E+08 2.50E+01 1.31E+03 2-pentanone) Yes Yes Yes 1.20E+00 U 3.00E+00 U No Methylene Chlorid 75-09-2 Yes Yes Yes Yes 2.63E+02 NC 8.76E+03 1.98E+03 No (5) 1.99E+09 1.73E+09 2.50E+01 1.30E+01 U 1.00E-08 U 6.00E-01 U Mut 1.23E+03 2.63E+02 Styrene 100-42-5 Yes Yes Yes 4.38E+02 NC 1.46E+04 3.90E+03 No (100) 3.58E+07 3.49E+07 2.50E+01 9.00E-01 1.00E+00 No 4.38E+02 Yes U U Tetrachloroethylene 127-18-4 Yes Yes Yes Yes 1.75E+01 NC 5.84E+02 2.42E+01 No (5) 1.65E+08 1.49E+08 2.50E+01 2.60E-07 U 4.00E-02 U No 4.72E+01 1.75E+01 Tetrahydrofuran 109-99-9 Yes Yes 8.76E+02 NC 2.92E+04 3.04E+05 6.28E+08 2.88E+09 2.50E+01 2.00E+00 U 2.00E+00 U No 8.76E+02 Yes Yes 108-88-3 Yes 2.19E+03 NC 7.30E+04 8.07E+03 No (1000) 1.41E+08 1.43E+08 2.50E+01 1.10E+00 5.00E+00 U 2.19E+03 Toluene Yes Yes Yes U No Trichloroethane, 1,1,1-71-55-6 Yes Yes Yes Yes 2.19E+03 NC 7.30E+04 3.11E+03 No (200) 8.90E+08 9.07E+08 2.50E+01 8.00E+00 U 5.00E+00 U No 2.19E+03 2.99E+00 Trichloroethylene 79-01-6 Yes Yes Yes Yes 8.76E-01 NC 2.92E+01 2.18E+00 Yes (5) 4.88E+08 5.15E+08 2.50E+01 8.00E+00 U 4.10E-06 U 2.00E-03 U Mut 8.76E-01 No Inhal. Tox. Trichlorofluoromethane 75-69-4 Yes No Info No Inhal. Tox. Info 5.93E+09 4 36E+09 2.50E+01 No Trimethylbenzene, 1,2,4-95-63-6 Yes Yes Yes Yes 2.63E+01 NC 8.76E+02 1.04E+02 1.36E+07 1.44E+07 2.50E+01 9.00E-01 U 6.00E-02 U No 2.63E+01 2.63E+01 8.76E+02 1.73E+07 2.50E+01 Trimethylbenzene, 1,3,5-108-67-8 Yes Yes Yes Yes NC 7.33E+01 1.60E+07 1.00E+00 U 6.00E-02 U No 2.63E+01 No Inhal. Tox. Trimethylpentane, 2.2.4-540-84-1 Yes No Info No Inhal, Tox, Info 3.03E+08 3.03E+08 2.50E+01 9.00E-01 U No 3.77E+07 2.50E+01 Xylene, o-95-47-6 Yes Yes Yes Yes 4.38E+01 NC 1.46E+03 2.07E+02 3.77E+07 9.00E-01 U 1.00E-01 U No 4.38E+01 Yes (10000) Xylenes 1330-20-7 Yes Yes Yes Yes 4.38E+01 NC 146E+03 1.62E+02 4 56E+07 2.87E+07 2.50E+01 1.00E-01 U No 4.38E+01

Appendix B Test Pit Logs

Test Pit Logs

20 FORBES AVENUE LOCATION: NORTH END OF PROPERTY DATE: JULY 27, 2021 WEATHER: CLEAR AND 85 DEG F. EQUIPMENT: MINI EXCAVATOR

TEST PI	TEST PIT TP-1							
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)						
0-2	Brown sand and gravel, rounded washed stone, medium - coarse	0						
2-4	Same	0						
4-6	Same	0						
6-8	Black heavily stained soil with strong odor and oily consistency	3.0						
8-11	Same to Bottom of Test Pit at 11-ft, Dry	3.0						

TEST PI	TEST PIT TP-2								
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)							
0-5	Sand & Gravel Fill with automobile tires, bricks, wood and metal	0							
5-11	Sand & Gravel Fill with Crushed red Bricks. Coarse sand and gravel - Dry	0							
11	Bottom of Pit – No Groundwater								

TEST PI	TEST PIT TP-3							
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)						
0-9	Coarse Brown Gravel and med-coarse brown sand	0						
9-11	Sand & Gravel with decaying wood and small tree fill - Dry	0						
11	Bottom of Pit – No Groundwater							

TEST PI	TEST PIT TP-4							
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)						
0-9	Coarse Brown Gravel and med-coarse brown sand	0						
9-11	Sand & Gravel with decaying wood and small tree fill - Dry	0						
11	Bottom of Pit – No Groundwater							

TEST PI	TEST PIT TP-5								
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)							
0-10	Coarse Brown Gravel and med-coarse brown sand	0							
10	Apparent original grade surface - silty sand and organic layer - Dry	0							
11	Bottom of Pit – No Groundwater								

Test Pit Logs

20 FORBES AVENUE LOCATION: NORTH END OF PROPERTY DATE: JULY 27, 2021 WEATHER: CLEAR AND 85 DEG F. EQUIPMENT: MINI EXCAVATOR

TEST PI	TEST PIT TP-6								
DEPTH	DESCRIPTION	PID READING							
(Feet)	DESCRIPTION	(PPM)							
0-10	Coarse Brown Gravel and med-coarse brown sand	0							
10	Apparent original grade surface - silty sand and organic layer - Dry	0							
11	Bottom of Pit – No Groundwater								

TEST PI	TEST PIT TP-7							
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)						
0-8	Coarse Brown Gravel and med-coarse brown sand	0						
8-11	Sand & Gravel and metal waste - Dry	0.5						
11	Bottom of Pit – No Groundwater							

TEST PI	TEST PIT TP-8							
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)						
0-11	Coarse Brown Gravel and med-coarse brown sand. Large quantity of small diameter tree wood waste mixed into the sand and gravel.	0						
11	Bottom of Pit – No Groundwater							

TEST PI	T TP-9	
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)
0-10	Coarse Brown Gravel and med-coarse brown sand with mixed-in wastes including a metal automobile axel, pieces of scrap metal, wood and brick.	0
10	Bottom of Pit – No Groundwater	

TEST PI	T TP-10	
DEPTH (Feet)	DESCRIPTION	PID READING (PPM)
0-6	Coarse Brown Gravel and med-coarse brown sand	0
6-9	Sand & Gravel and silt with Groundwater rapidly entering test pit to 6-foot deep level. Walls collapsing, pit unstable and backfilled.	0
9	Bottom of Pit – Rapid groundwater infiltration from 6-foot depth	

Test Pit Logs

20 FORBES AVENUE LOCATION: NORTH END OF PROPERTY DATE: JULY 27, 2021 WEATHER: CLEAR AND 85 DEG F. EQUIPMENT: MINI EXCAVATOR

TEST PI	T TP-11	
DEPTH	DESCRIPTION	PID READING
(Feet)	DESCRIPTION	(PPM)
0-5	Brown sand and gravel, bricks, wood and small diameter tree wood	0
5-11	Brown sand and gravel – coarse - dry	0
11	Bottom of Test Pit at 11-ft, Dry	0

Appendix C Soil Boring Logs

Project Location: Rensselaer, NY

Project Number: 21-26694-E

Log of Boring B-1 Sheet 1 of 1

Drilling Method Direct Push Drill Bit Size/Type 2" Dual Tube Total Depth of Borehole 30 ft Drill Rig Type Geoprobe Drilling Contractor CoreDown Approximate Surface Elevation Approx 24 ft AMSL Groundwater Level and Date Measured est. 15' Sampling Method(s) Hammer Data NA	Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By MS				
Groundwater Level and Date Measured est. 15' Sampling Method(s) Hammer Data NA	Drilling Method Direct Push		Total Depth of Borehole 30 ft				
Groundwater Level and Date Measured est. 15' Sampling Method(s) Hammer Data	Drill Rig Type Geoprobe		Approximate Surface Elevation Approx 24 ft AMSL				
Borehole	Groundwater Level est. 15' and Date Measured		Sampling Hammer				
Backfill Well Materials Location South Bldng #1	Borehole Backfill Well Materials Location South Bldng #1						
	puce,						

Sample	Sample Number		MATERIAL DESCRIPTION	Water Content,	REMARKS AND OTHER TESTS
		Sampling Resistance, blows/ft	Gravel Surface	>	
1			Fine sand and gravel		
1					
Π			Fine sand, silt and fine gravel - dry		
\square			Same moist - dark staining and petroleum odor in soil		Dark staining and oily with
					petroleum odor
Η			Fine sand and gravel, coarse sand, black stained and petroleum odor, moisF		Black staining an oily with petroleum odor
					Black oily staining and oily
			Same, saturated, black staining and petroleum odor		residue
Н			Medium-coarse sand and med gravel, saturated and black oily contamination		Saturated with black oily
					deposits
Η					Set Monitoring Well @ 22-ft
				1	with 10 ft of 0,020 slotted screen and solid riser to
1				1	grade,Bentonite seal above
. 1			ЕОВ	,	screen and flush mount curb box at surface
				Same, moist - dark staining and petroleum odor in soil Same, moist - dark staining and petroleum odor in soil Fine sand and gravel, coarse sand, black stained and petroleum odor, moisF Same, saturated, black staining and petroleum odor Same, saturated, black staining and petroleum odor Medium-coarse sand and med gravel, saturated and black oily contamination Medium-coarse sand and med gravel, saturated and black oily contamination	Same, moist - dark staining and petroleum odor in soil Same, moist - dark staining and petroleum odor in soil Fine sand and gravel, coarse sand, black stained and petroleum odor, moist Same, saturated, black staining and petroleum odor Same, saturated, black staining and petroleum odor Medium-coarse sand and med gravel, saturated and black oily contamination Medium-coarse sand and med gravel, saturated and black oily contamination

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-2 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12 Logged By Baines Checked By MS									
Drilling Aethod Direct Push	Drill Bit Size/Type 2" Dual Tube	Total Depth of Borehole 30 ft							
^{Drill Rig} Geoprobe	Drilling Contractor CoreDown	Approximate Surface Elevation Approx 23 ft AMSL							
Groundwater Level Ind Date Measured est. 15'	Sampling Method(s) Dual Tube Hammer Data NA								
Borehole Backfill Well Materials	Location SW of Building #1								

0 Gravel Surface Fine sand and gravel Fine sand and gravel 5 Fine sand, silt and fine gravel - dry 10 Fine sand, silt and fine gravel - dry 10 Same, moist - dark staining and petroleum odor in soil starting @ 14-15 ft 15 Fine sand and gravel, coarse sand, black stained and petroleum odor, moist 16 Fine sand and gravel, coarse sand, black stained and petroleum odor, moist	ESTS	REMARKS AND OTHER TE	Water Content, %	MATERIAL DESCRIPTION	Sampling Resistance, blows/ft	Sample Number	Sample Type	Depth (feet)
5 Fine sand, silt and fine gravel - dry			-	Gravel Surface				
Fine sand, silt and fine gravel - dry				Fine sand and gravel				-
Fine sand, silt and fine gravel - dry				-				-
				Fine sand silt and fine gravel - dry				5-
10 Image: Same, moist - dark staining and petroleum odor in soil starting @ 14-15 ft Dark staining and oily wipetroleum odor 15 Image: Same, moist - dark staining and petroleum odor in soil starting @ 14-15 ft Image: Same, moist - dark staining and oily wipetroleum odor 15 Image: Same, moist - dark staining and petroleum odor in soil starting @ 14-15 ft Image: Same, moist - dark staining and oily wipetroleum odor 15 Image: Same, moist - dark staining and gravel, coarse sand, black stained and petroleum odor, moist Black staining an oily wipetroleum odor 20 Image: Same, moist - dark staining and gravel, coarse sand, black stained and petroleum odor, moist Image: Same, moist - dark staining and oily mipetroleum odor 20 Image: Same, moist - dark staining and gravel, saturated, black staining and oily mipetroleum odor Image: Same, moist - dark staining and oily mipetroleum odor 20 Image: Same, moist - dark staining and gravel, saturated, black staining and oily mipetroleum odor Image: Same, moist - dark staining and oily mipetroleum odor 20 Image: Same, moist - dark staining and oily mipetroleum in soil Image: Same, moist - dark staining and oily mipetroleum odor 1 Image: Same, moist - dark staining and oily mipetroleum in soil Image: Same, moist - dark staining and oily mipetroleum odor 1 Image: Same, moist - dark staining and oily mipetroleum in soil Image: Same, moist - dark staining an								-
10								-
10 Same, moist - dark staining and petroleum odor in soil starting @ 14-15 ft Dark staining and oily w 15 Fine sand and gravel, coarse sand, black stained and petroleum odor, moist Black staining an oily with petroleum odor 20 Fine brown sand, fine-med gravel, saturated, black staining and oily Black oily staining and oily Petroleum in soil Black staining and oily Black oily staining and oily	L	Darly statistics and all with		-				-
20 Fine sand and gravel, coarse sand, black stained and petroleum odor, moist Black staining an oily with petroleum odor 20 Fine brown sand, fine-med gravel, saturated, black staining and oily Black oily staining and o residue	1			Same, moist - dark staining and petroleum odor in soil starting @ 14-15 ft				-
15 Fine sand and gravel, coarse sand, black stained and petroleum odor, moist Black staining an oily with petroleum odor 20 Fine brown sand, fine-med gravel, saturated, black staining and oily Black oily staining and o residue								-
Is Est GW Depth ▼ Is Fine sand and gravel, coarse sand, black stained and petroleum odor, moisF Black staining an oily with petroleum odor Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is Is				-				-
20 	I	Black staining an oily with petroleum odor		Fine sand and gravel, coarse sand, black stained and petroleum odor, mois				15 —
20 20 				-				-
20 Fine brown sand, fine-med gravel, saturated, black staining and oily petroleum in soil Black oily staining and o residue								-
- - petroleum in soil - - - - - - - - - - - - - - - - - - - - - - - - - - - -	у	Black oily staining and oily						20 —
		residue		- petroleum in soil				-
				- · · ·			$\left \right $	-
25 Coarse sand, silt and med gravel, saturated Saturated with black oily		Saturated with black oily		Coarse sand silt and med gravel saturated			Ц	- 25 —
deposits				שמושב שמוש, שוג מוש חובש שומיבו, שמנשומובש			$\left \right $	-
Set Monitoring Well @ 2 - <	-ft	Set Monitoring Well @ 22-ft with 10 ft of 0,020 slotted					Π	-
हुrade,Bentonite seal abo		screen and solid riser to grade,Bentonite seal above					$\left \right $	
BOB EOB Screen and flush mount box at surface	arb	screen and flush mount curl box at surface		EOB				30 —

Project Location: Rensselaer, NY

Project Number: 321-266-94E

Log of Boring B-3 Sheet 1 of 1

Drilled 8/9	/12 - 8/	12/12		Logged By Baines		Checked	Ву 🛛	IS
Drilling Method Dir	ect Pu	sh		Drill Bit Size/Type 2" Dual Tube		Total De of Boreh	ole 20) ft
Drill Rig ype Ge	oprobe	e		Drilling Contractor				ion Approx 21' AMSL
Groundwate			2'	Sampling Method(s) Dual Tube		Hammer Data	NA	
Borehole Backfill				Location West of Bldng #2 Area		Dulu		
Backfill effilieft)		Sampling Resistance, blows/ft	Gravel Surface Sand, gravel and brick Fine sand, silt and fine Fine sand, silt and fine	MATERIAL DESCRIPTION	Est GW De	epth ¥	Water Content, %	REMARKS AND OTHER TEST

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-4 Sheet 1 of 1

			8/12/12		Logged By Baines		Checked		
Drilling Nethod	Dir	ect P	ush		Drill Bit Size/Type 2" Dual Tube		Total De of Boreh	ole 2) ft
orill Rig ype					Drilling Contractor				ion Approx 20' AMSL
			l est. 1	4'	Sampling Method(s) Dual Tube		Hamme Data	NA	
			aterials		Location West of Building #3 Area				
			Ű.						
	Sample Type	Sample Number	Sampling Resistance, blows/ft		MATERIAL DESCRIPTION			Water Content, %	REMARKS AND OTHER TES
0	Π			Gravel Surface					
-				Sand, gravel and silt			_		
-	$\left \right $			-			_		
-				-			-		
5-	Π			Fine sand & silt then g	ray clay @ 6-10 ft dry				
-	$\left \right $			-			-		
-				-			-		
- 10 —	Ш			_			-		
-				Gray clay to 12-ft, the	n fine sand, silt and fine gravel - mois	t	_		
-				-			_		
-	11			_		Est GW De	- epth▼		
- 15 —	Ц			- Fine could ailt and fine	arrayal Caturated				
-	$\left \right $			Fine sand, silt and fine	gravel - Saturated		_		
-				-			_		
-				-			-		
20 —	Н			EOB					Set Monitoring Well @ 20-ft
-	$\left \right $			-			-		with 10 ft of 0,020 slotted screen and solid riser to
-	1			-			_		grade,Bentonite seal above screen and flush mount curb
_				_			-		box at surface
25 —	$\left \right $			_			_		
-				_			_		
-				-			-		
-	$\left \right $			-			-		
30 —									

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-5 Sheet 1 of 1

Date(s) Drilled 8/9/12 -	8/12/12					ed By MS		
Drilling Method Direct F			Drill Bit Size/Type 2" Dual Tube	Total D of Bore	epth hole 20	D ft		
Drill Rig Type Geopro	be	Drilling Contractor CoreDown Approxi						
Groundwater Leve and Date Measure	ate Measured est. To Method(s) Dual Tube Data				^{er} NA			
Borehole Backfill Well M	aterials	5	Location West of Building #4					
Depth (feet) Sample Type Sample Number	Sampling Resistance, blows/ft	Gravel Surface Sand, silt, brick and g	MATERIAL DESCRIPTION		Water Content, %	REMARKS AND OTHER TEST		

	₀ Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS
	-				Gravel Surface Sand, silt, brick and gravel - dry		
er field).tpl]	5				Silt, clay and fine gravel - saturated		
Ave080921.bg4[(mast	- 10				Est GW Depth ▼ Same		
SA/Borings/20-Forbes-	- - 15				Coarse sand and fine gravel - Saturated Coarse sand, silt and fine gravel		
Users/Earth/Documents/Alpine-Projects/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4[(master field).tp]	- - 20						Set Monitoring Well @ 20-ft with 10 ft of 0,020 slotted screen and solid riser to
Alpine-Projects/2021/20-Fo	- - 25						grade,Bentonite seal above screen and flush mount curb box at surface
/Users/Earth/Documents/	- - 30 -						

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-6 Sheet 1 of 1

						•			
Date(s) Drilled	8/9	/12 - 8	8/12/12		Logged By Baines	CI	hecked	By N	IS
Drilling Method	Dir	ect P	ush		Drill Bit Size/Type 2" Dual Tube	To	otal Dep Boreho	oth ole 2	D Ft
Drill Rig Type	Ge	opro	be		Drilling Contractor	Su	pproxim urface E	Elevat	ion Approx 20" AMSL
			d est. ′	10'	Sampling Method(s) Dual Tube	Ha	ammer ata	NA	
			aterials		Location West of Building #5	I			
	Π								
Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft		MATERIAL DESCRIPTION			Water Content, %	REMARKS AND OTHER TESTS
0-				Gravel Surface	der .				
5-	-			Sand, silt and gravel - - -			-		
				Silt, clay and fine grav - -	rel, wood @ 5-6 ft - saturated		-		
	$\left\{ \right\}$			-			{		
for 10 -	Π			Same, some black sta	aining in soil, saturated	Est GW Dept	<u>n v</u>		
	$\left \right $			-			_		
	$\left\{ \right\}$			-			-		
				-			-		
				Same, some black sta	aining in soil, saturated		-		
	$\left\{ \right\}$			Fine sand, silt and me	edium gravel - saturated				
	1			-					
20 -	\square			EOB					Set Monitoring Well @ 20-ft
	$\left\{ \right\}$			-			-		with 10 ft of 0,020 slotted screen and solid riser to
	1			-]		grade,Bentonite seal above screen and flush mount curb
19/2/01	$\left \right $			-			4		box at surface
25-	$\left \right $			–			-		
	1			-			_		
	$\left \right $			-					
	$\left \right $			-			-		
30-	1								

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-7 Sheet 1 of 1

		unne	. 2	1-200-346					
Date(s) Drilled	8/9/	12 - 8	8/12/12		Logged By Baines	Cł	hecked E	By N	IS
Drilling Method	Dire	ect P	ush		Drill Bit Size/Type 2" Dual Tube	Tc of	Total Depth of Borehole 20 ft		
						Approximate Surface Elevation Approx 20' AMSL			
Ground and Dat	water e Mea	Level	d est. 1	10'	Sampling Method(s) Dual Tube	Ha	ammer ata	NA	
Borehol Backfill					Location West of Building #6				
			n,		• •				
Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft		MATERIAL DESCRIPTION			Water Content, %	REMARKS AND OTHER TESTS
0-				Gravel Surface					PID elevated at 4-5 ft
_				 Sand, silt and gravel - 	moist, black oily stained soil @ 4-5 ft				
-				-			-		
-				-			-		
5—	Η			Coarse sand and grav	el- moist, black oily staining				
-				Gray Clay - moist					
-				- Gray Clay - Moist			-		
-				-		Est GW Dept	- h▼		
10				Gray clay - moist			<u> </u>		
-				-			_		
-				Sand, silting coarse g	ravel - saturated				
- 15 —				-			_		
-				Fine brown silt, sand a	and coarse gravel - saturated		_		
-				-			-		
-				-			-		
- 20 —				-					
-				EOB -			-		Set Monitoring Well @ 20-ft with 10 ft of 0,020 slotted
-				-			-		screen and solid riser to grade,Bentonite seal above
-				-					screen and flush mount curb box at surface
- 25 —									
-				-			-		
-				-			-		
_				F			-		

/Users/Earth/Documents/Alpine-Projects/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4{(master field).tp]

30

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-8 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By MS		
Drilling Method Direct Push	Drill Bit Size/Type 2" Dual Tube	Total Depth of Borehole 20 ft		
		Approximate Surface Elevation Approx 20' AMSL		
Groundwater Level and Date Measured est. 3'	Sampling Method(s) Dual Tube	Hammer NA Data		
Borehole Backfill Well Materials	Location SW of Building #7			

Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS
0-	\square			Gravel Surface		
				Sand, silt and gravel - moist, black oily stained soil @ 4-5 ft		
				Est GW Depth ▼		
	$\left \right $					
5-	Н			same, black oily staining		PID 0.0 PPM at 7-10 ft
lidi.						
				Fine sand silt and coarse gravel - saturated		
In- 10 - 10 - 15 - 15 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2	Н			same at 10-13 ft, saturated		
76000						
	1					
				Dense silt and fine sand - dry		
15 -	Н			Fine brown silt, sand and fine gravel - saturated		
	$\left \right $			-		
J- ZIII						
200100]			[]		
20-	Ц			500		Set Monitoring Well @ 20-ft
504-60	$\left \right $			EOB		with 10 ft of 0,020 slotted screen and solid riser to
						grade,Bentonite seal above screen and flush mount curb
7/1 7/12	11					box at surface Later adjusted screen to 2-Foot Depth and
25 -						finished
	$\left \right $					
	$\left \right $					
25 - 30 -						
30 -	. 1				•	1

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-9 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By MS		
Drilling Method Direct Push	Drill Bit Size/Type 2" Dual Tube	Total Depth of Borehole 20 ft		
Drill Rig Type Geoprobe	Drilling Contractor CoreDown	Approximate Surface Elevation Approx 20' AMSL		
Groundwater Level and Date Measured est. 2'		Hammer NA Data		
Borehole Backfill Well Materials	Location West of Bldng#7			

		Sample Type	Sample Number	Sampling Resistance, blows/ft	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS
	0-				Gravel Surface Fine brown sand and fine gravel - dry		
	-				_ Est GW Depth ₹		
	-				Black stained fine sand and fine gravel - moist		
	5—	Η			same, black oily staining		
eld).tpl]	-				Gray silt and clay and fine gravel - moist		
master fi	-						
s/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4[(master field).tp]	10 —	$\left \right $			Fine sand, silt and coarse gravel - moist		
Ave0809	-						
-Forbes-	-						
orings/20	15 —				Fine brown sand, silt and fine gravel - saturated		
2-ESAB	-						
elaer/Ph	-						
e-Renss	- 20 —				 ЕОВ		Set Monitoring Well @ 20-ft with 10 ft of 0,020 slotted
orbes-Av	-						screen and solid riser to grade,Bentonite seal above
21/20-Fo	-						screen and flush mount curb box at surface Later adjusted
ojects/20	- 25 —						screen to 2-Foot Depth and finished
Alpine-Pr	-						
uments//	-				 		
arth/Doc	-						
/Users/Earth/Documents/Alpine-Project	30 —						

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-10 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By		
Drilling	Drill Bit	Total Depth		
Method Direct Push	Size/Type 2" Dual Tube	of Borehole		
Drill Rig	Drilling	Approximate		
Type Geoprobe	Contractor CoreDown	Surface Elevation		
Groundwater Level	Sampling	Hammer		
and Date Measured	Method(s) Dual Tube	Data		
Borehole Backfill Well Materials	Location West of Building #9	Location West of Building #9		
(feet) e Type e Number ng Resistance, t		Content, %		

	Depth (feet)	Sample Type	Sample Numbe	Sampling Resis blows/ft		Water Content,	
		San	San	San blov	MATERIAL DESCRIPTION	Wat	REMARKS AND OTHER TESTS
	-0				Gravel Surface Fine sand, silt and fine gravel - dry		
	-						
	-				_ Est GW Depth ♥_		
	- 5—	Ш					
-	-				Fine sand, silt and fine gravel - saturated		
field).tp	-						
naster	_						
1.bg4[(10 —				Fine sand, silt and coarse gravel - saturated		
908092	-						
bes-Ave	_						
20-For	-						
3orings/	15 —	\square			Dense silt, sand and coarse gravel - saturated		
2-ESA/B	_						
aer/Ph2	-						
Rensse	-						
s-Ave-F	20 —	Π			EOB		Set Monitoring Well @ 12-ft with 10 ft of 0,020 slotted
-Forbe	-						screen and solid riser to grade, bentonite seal above
2021/20	-						screen and flush mount curb
ojects/2	- 25 —						
pine-Pr	-						
ents/Al	-						
Docum	_	1					
Users/Earth/Documents/Alpine-Projects/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4[(master field).tp]	30 —						
/User							

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-11 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By Total Depth of Borehole Approximate Surface Elevation		
Drilling Method Direct Push	Drill Bit Size/Type 2" Dual Tube			
Drill Rig Type Geoprobe	Drilling Contractor CoreDown			
Groundwater Level and Date Measured est. 15'	Sampling Method(s) Dual Tube Hammer Data			
Borehole Backfill Well Materials	Location North end of SP			

Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS
- 0 15/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4[(master field).tp]] - 0 - 0 - 10 - 10 - 10 - 10 - 10 - 10 -		Ŏ	Ŭ Ā	MATERIAL DESCRIPTION Gravel Surface Fine sand, silt and fine gravel - dry Fine sand and silt and med gravel - dry Same - dry Fine brown sand, some silt and fine gravel - saturated Fine brown sand and fine gravel - saturated Fine brown sand and fine gravel - saturated EOB		REMARKS AND OTHER TESTS Odorous soil Set Monitoring Well @ 25-ft with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above screen and flush mount curb box at surface
/Users/Earth/Documents/Alpine-Projec					-	

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-12 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By
Drilling	Drill Bit	Total Depth
Method Direct Push	Size/Type 2" Dual Tube	of Borehole
Drill Rig	Drilling	Approximate
Type Geoprobe	Contractor	Surface Elevation
Groundwater Level	Sampling	Hammer
and Date Measured est. 16'	Method(s) Dual Tube	Data
Borehole Backfill Well Materials	Location East of Building #9	
et) <u>Type</u> Jumber I Resistance,		ontent, %

Depth (feet)	Sample Type	Sample Number	Sampling Resistar blows/ft		Water Content, %	
	Samp	Samp	Samp blows	MATERIAL DESCRIPTION	Wate	REMARKS AND OTHER TESTS
0				Gravel Surface Fine sand, and fine gravel - dry		
				Fine sand and silt and fine gravel - dry	•	
					•	
				Fine brown sand, some silt and med gravel - saturated Est GW Depth 里	•	
- 20				Fine brown sand and fine gravel - saturated	•	Set Monitoring Well @ 25-ft with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above screen and flush mount curb box at surface
						Set Monitoring Well @ 25-ft with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above screen and flush mount curb box at surface
30						

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-13 Sheet 1 of 1

Date(s) Drilled	8/9	/12 - 8	8/12/12	1	Logged By Baines	С	Checked	By N	ıs
Drilling Method	Dir	ect P	ush		Drill Bit Size/Type 2" Dual Tube	T	Total Depth 25 ft		
Drill Rig Type	^g Ge	opro	be		Drilling Contractor CoreDown		Approximate Surface Elevation Approx 34' AMSL		
Ground and Da	dwate	r Leve		15'	Sampling Method(s) Dual Tube	н	lammer Data	NA	
	le 🔒		aterials	6	Location North of Building #10		Julu		
					_				
Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft			Water Content, %	REMARKS AND OTHER TESTS		
0-				Gravel Surface Fine brown sand, and	coarse gravel - dry				
	$\left \right $			-			-		
	$\left \right $			-			-		
5-				-			-		
5-				Same - dry -			-		
	$\left \right $			-			-		
	$\left \right $			-			-		
10-	1			_					
10	$\left \right $			Fine brown sand and a	silt, coarse gravel - damp		-		
	$\left \right $			-			-		
	1			-			-		
15 -	1			_		Est GW Dep	- th ▼		
10	$\left \right $			Fine brown sand, som	e silt and coarse gravel - saturated		= -		
	$\left \right $			-			-		
	1			-			-		Set Monitoring Well @ 25-ft
20 -				-					with 10 ft of 0,020 slotted screen and solid riser to
20	$\left \right $			Fine brown sand and t	fine gravel - saturated		-		grade, bentonite seal above screen and flush mount curb
	$\left \right $			F			-		box at surface
	$\left \right $			F			-		Set Monitoring Well @ 25-ft
25 -	1								with 10 ft of 0,020 slotted
23-	$\lfloor \rceil$			EOB -			-		screen and solid riser to grade, bentonite seal above
	$\left \right $			-			-		screen and flush mount curb box at surface
	$\left \right $			F			-		
	- 1		1	L			_		

30 -

Project Location: Rensselaer, NY

Project Number: 21-26694-E

Log of Boring B-14 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12	Logged By Baines	Checked By MS			
Drilling	Drill Bit	Total Depth			
Method Direct Push	Size/Type 2" Dual Tube	of Borehole 25 ft			
Drill Rig	Drilling	Approximate			
Type Geoprobe	Contractor CoreDown	Surface Elevation Approx 35' AMSL			
Groundwater Level	Sampling	Hammer NA			
and Date Measured est. 15'	Method(s) Dual Tube	Data			
Borehole Backfill Well Materials	Location East of Building #8	Location East of Building #8			

Depth (feet) Sample Type Sample Number	Sampling Resistance, blows/ft	MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS
		Gravel Surface Fine brown sand, and med-coarse gravel - dry - - Same - dry Black coal ash staining at 8-10 ft.		
Ave080921.bg4[(master field).tpl]	-	No Recovery due to pushed cobble		
Users/Earth/Documents/Alpine-Projects/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4((master field).tp1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Fine brown sand, some silt and coarse gravel - saturated 	-	
2021/20-Forbes-Ave-Renssela		Same - saturated	-	Set Monitoring Well @ 25-ft with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above screen and flush mount curb box at surface Set Monitoring Well @ 25-ft
th/Documents/Alpine-Projects/		EOB -	-	with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above screen and flush mount curb box at surface

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-15 Sheet 1 of 1

Date(s) 8/9/12 - 8/12/12 Logged By Baines							ed By		
Drilling Method	Dir	ect P	ush		Drill Bit Size/Type 2" Dual Tube	Total Depth of Borehole 25 ft			
Drill Rig Type	Ge	oprol	be		Drilling Contractor CoreDown	Approximate Surface Elevation Approx 36' AMSL			
Ground and Dat	wate te Me	r Leve easure	d est.	15'	Sampling Method(s) Dual Tube	Hammer NA Data			
Borehol Backfill					Location East of Building #6 next to road				
	П								
o Depth (feet) I	Sample Type	Sample Number	Sampling Resistance, blows/ft	Gravel Surface	MATERIAL DESCRIPTION		Water Content, %	REMARKS AND OTHER TESTS	
-				Fine brown sand, and	fine gravel - dry				
-				-			_		
-				-			-		
5—	Η			Same - moist					
-]			-]		
-	$\left \right $			-			-		
-				-			-		
10-	П			Same					
-				-			-		
-				-			-		
-				-	Est GW	Depth 🔻			
15 -	П			No Recovery		. =			
-	$\left \right $			-			-		
-				-			-	Set Monitoring Well @ 25-ft	
- 20 —	Ш			-				with 10 ft of 0,020 slotted screen and solid riser to	
-				No Recovery - satura	ed sampler		-	grade, bentonite seal above screen and flush mount curb	
-				-			-	box at surface	
-				-			1	Set Monitoring Well @ 25-ft	
- 25 —	Ш			-				with 10 ft of 0,020 slotted screen and solid riser to	
-				ЕОВ - -				grade, bentonite seal above screen and flush mount curb box at surface	
-				-]		
30 —									

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-16 Sheet 1 of 1

Project Number: 21-266-94E)			
Date(s) Drilled 8/9/12 - 8/12/12	Check	ed By N	IS			
Drilling Method Direct Push	Drill Bit Size/Type 2" Dual Tube		Pepth Pehole 2	5 ft		
Drill Rig Type Geoprobe	Drilling Contractor	Approximate Surface Elevation Approx 28' AMSL				
Groundwater Level and Date Measured est. 12'	Sampling Method(s) Dual Tube	Hammer NA Data				
Borehole Backfill Well Materials	Location East of Building #5 ctr					
and Date Measured est. 12 Borehole Backfill Well Materials	Method(s) Dual Tube Location East of Building #5 ctr MATERIAL DESCRIPTION II at 8 9 feet then coarse gravel and silt - saturate at 14 Ft. fine gravel - saturated at bottom of s	concrete fill - dry	WA	REMARKS AND OTHER TESTS		
EOB 				with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above screen and flush mount curb box at surface		
			-			

/Users/Earth/Documents/Alpine-Projects/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4[(master field).tpl]

Project Location: Rensselaer, NY

Project Number: 21-266-94E

Log of Boring B-17 Sheet 1 of 1

Date(s) Drilled	8/9	/12 - 8	8/12/12		Logged By Baines	Checked	d By N	ıs	
Drilling Method	D:-	ect P			Drill Bit Size/Type 2" Dual Tube	Total Depth of Borehole 20 ft			
Drill Rig Type		opro	be		Drilling Contractor	Approximate Surface Elevation Approx 27' AMSL			
				10'	Sampling Method(s) Dual Tube	Hammer Data NA			
Boreho	^{le} W	/ell M	aterials	5	Location West of Sub Station in Road	1			
Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft		MATERIAL DESCRIPTION	Water Content, %	REMARKS AND OTHER TESTS		
0-				Gravel Surface					
				Fine brown sand and f	ine gravel - dry	-			
5-				Same, some silt - dry					
[idv:/pu	-			-		_			
	$\left \right $			-		-			
				-	Est GW D	- Depth▼			
10-				Same, saturated at 14	-Ft.	- 			
	$\left \right $			-		-			
				-		_			
15-				-		-			
				Fine sand and silt and	fine gravel - saturated	-			
2 	$\left \right $			-		-			
				-		-		Set Monitoring Well @ 18-ft	
20 -								with 10 ft of 0,020 slotted screen and solid riser to	
				EOB -		_		grade, bentonite seal above screen and flush mount curb	
	$\left \right $			-		_		box at surface	
				-		-			
25 -				-		-			
	$\left \right $			-		-			
	-			-		_			
	$\left \right $			-		-			
				-		-			
30 -									

Project Location: Rensselaer, NY

Project Number: 91-266-94E

Log of Boring B-18 Sheet 1 of 1

Ć				1 200 042						
Date(s) Drilled					Logged By Baines		Checked			
Drilling Method	Dir	ect P	ush		Drill Bit Size/Type 2" Dual Tube		Total Depth of Borehole 20 ft			
Drill Rig Type	Ge	oprol	be		Drilling Contractor		Approximate Surface Elevation Approx 27' AMSL			
Ground and Dat	wate e Me	r Leve easure	d est.	10'	Sampling Method(s) Dual Tube		Hammer Data	NA		
Boreho Backfill					Location South of Sub Station					
\square										
Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft		MATERIAL DESCRIPTION			Water Content, %	REMARKS AND OTHER TESTS	
0-		0,	0.0	Gravel Surface				~		
				Fine brown sand and t - -						
-				Fine brown sand, silt a	and coarse gravel - dry		-			
-				-			-			
- - - - - - - - - - - - - - - - - - -				- Same - dry		Est GW De	- pth <u>▼</u>			
-				-			-			
-				-			-			
- 15 —	\square			- Same with some clay	- saturated					
-				-			-			
-				-			-		Set Monitoring Well @ 18-ft	
20 —	$\left \right $			EOB					with 10 ft of 0,020 slotted screen and solid riser to grade, bentonite seal above	
-				-			-		screen and flush mount curb box at surface	
-				-			-			
- 25 —				- 			_			
25 —				-			-			
-				F			-			

/Users/Earth/Documents/Alpine-Projects/2021/20-Forbes-Ave-Rensselaer/Ph2-ESA/Borings/20-Forbes-Ave080921.bg4[(master field).tpl]

30

Project Location: Rensselaer, NY

Project Number: 91-266-94E

Log of Boring B-19 Sheet 1 of 1

Date(s) Drilled 8/9/12 - 8/12/12 Logged By Baines Checked By MS Drilling Method Direct Push Drill Bit Size/Type 2" Dual Tube Total Depth of Borehole 20 ft Drill Rig Type Geoprobe Drilling Contractor CoreDown Approximate Surface Elevation Approx 22 ft AMSL Groundwater Level and Date Measured est. 12' Sampling Method(s) Dual Tube Hammer Data NA Borehole Backfill Well Materials Location South side of Building #4 Vietual Size of a MATERIAL DESCRIPTION % tupo Size of Size of Siz	
Drill Rig Type Geoprobe Drilling Contractor CoreDown Approximate Surface Elevation Approx 22 ft AMSL Groundwater Level and Date Measured est. 12' Sampling Method(s) Dual Tube Hammer Data NA Borehole Backfill Well Materials Location South side of Building #4 V Image: Signal of the system o	
Drill Rig Type Geoprobe Drilling Contractor CoreDown Approximate Surface Elevation Approx 22 ft AMSL Groundwater Level and Date Measured est. 12' Sampling Method(s) Dual Tube Hammer Data NA Borehole Backfill Well Materials Location South side of Building #4 V Image: Signal	
Groundwater Level and Date Measured Borehole Backfill est. 12' Sampling Method(s) Dual Tube Hammer Data NA Borehole Backfill Well Materials Location South side of Building #4 Image: Signal of the signal	
Borehole Backfill Well Materials Location South side of Building #4 Image: South side of Building #4 	
Depth (feet) Sample Type Sample Number Sample Number Sampling Resistance, Mater Content, %	
0 Gravel Surface	
Gravel Surface	TESTS
Brick, sanu, stone and graver - dry	
5 Fine brown sand, silt and fine gravel - dry	
10 Same - moist	
Est GW Depth ¥	
¹⁵ Fine sand and fine gravel, dark gray stained with slight odor - saturated	
20 Set Monitoring Well @ 2 with 10 ft of 0,020 slotte screen and solid riser to	ed
EOB 	

Project Location: Rensselaer, NY

Project Number: 90-266-94E

Log of Boring B-20 Sheet 1 of 1

		NUTTIN	JCI. J	0-200-946							
Date(s) B/9/12 - 8/12/12 Logged By Baines Check							Checked	Ву 🛛	IS		
Drilling Method					Drill Bit Size/Type 2" Dual Tube		Total Depth of Borehole 25 ft				
Drill Rig Type	Ge	opro	be		Drilling Contractor	5	Approximate Surface Elevation Approx 24' AMSL				
Ground and Da	wate te Me	r Leve easure	d est. ′	12'	Sampling Method(s) Dual Tube	H	Hammer NA Data				
Boreho Backfill	^{le} W	/ell M	aterials	5	Location NE Corner of Building #	g #1					
			é.								
Depth (feet)	Sample Type	Sample Number	Sampling Resistance, blows/ft		MATERIAL DESCRIPTION			Water Content, %	REMARKS AND OTHER TESTS		
Ъ 0-		0,	0.0	Gravel Surface				>			
-				Fine sand and coarse	gravel - dry						
-				-			-				
5 —				Fine sand, silt and coa	arse gravel - dry						
-	1			-							
-				-			_				
-				-			-				
10 —				Same - dry, saturated	l at 14.5 Ft.						
-				-		Est GW Dep	oth 🖳				
-				-			= -				
-				-			-				
15 —				Same with seam of bla	ack oily gravel at 16-19 Ft saturat	ted			Black oily stained gravel at 6-18 ft.		
-				-					0-10 h.		
-				-			_				
-				-			-		Set Monitoring Well @ 22-ft with 10 ft of 0,020 slotted		
20 —				Medium Brown sand -	saturated				screen and solid riser to grade, bentonite seal above		
-				-]		screen and flush mount curb box at surface		
-				-			_				
-				-			-				
25 —	$\left \right $			EOB							
-	1			F			-				
-				-							
-				-			_				
30 —											

Project Location: Rensselaer, NY

Project Number: 21-26694-E

Key to Log of Boring Sheet 1 of 1

Depth (feet)	Sample Type Sample Number	Sampling Resistance, blows/ft							REMARKS AND OTHER TESTS
1	2 3	4			5			6	7
COL	UMN DE	SCRIPTI	<u>ONS</u>						
 Depth (feet): Depth in feet below the ground surface. Sample Type: Type of soil sample collected at the depth interval shown. Sample Number: Sample identification number. Sampler one foot (or distance shown) beyond seating interval using the hammer identified on the boring log. FIELD AND LABORATORY TEST ABBREVIATIONS CHEM: Chemical tests to assess corrosivity COMP: Compaction test MATERIAL DESCRIPTION: Description of material encountered. May include consistency, moisture, color, and other descriptive text. MATERIAL DESCRIPTION: Description of material encountered. May include consistency, moisture, color, and other descriptive text. Water Content, %: Water content of the soil sample, expressed as percentage of dry weight of sample. REMARKS AND OTHER TESTS: Comments and observations regarding drilling or sampling made by driller or field personnel. 									
				idation test		UC: Unconfined comp WA: Wash sieve (per			
LL: Liquid Limit, percent WA: Wash sieve (percent passing No. 200 Sieve) MATERIAL GRAPHIC SYMBOLS OTHER GRAPHIC SYMBOLS									
]	X					el (at time of drilling, ATD)
A	uger sam	npler		CME Sampler	Pitch	er Sample			
В	ulk Samp	ble		Grab Sample		h-OD unlined split n (SPT)	<u>₹</u>		el (after waiting) nge in material properties within a
	inch-OD ass rings	Californi S	a w/	2.5-inch-OD Modified California w/ brass liners		by Tube (Thin-walled, head)			adational contact between strata

GENERAL NOTES

1: Soil classifications are based on the Unified Soil Classification System. Descriptions and stratum lines are interpretive, and actual lithologic changes may be gradual. Field descriptions may have been modified to reflect results of lab tests.

2: Descriptions on these logs apply only at the specific boring locations and at the time the borings were advanced. They are not warranted to be representative of subsurface conditions at other locations or times.

Appendix D Lab Sample Analysis Reports

INDOOR AIR AND SUB-SLAB SOIL GAS SAMPLES

ANALYTICAL REPORT

Lab Number:	L2140488	
Client:	Alpine Environmental	
Oliciti.	438 New Karner Road	
	Albany, NY 12205	
ATTN:	Kim Baines	
Phone:	(518) 250-4047	
Project Name:	BARNET MILLS	
Project Number:	21-26694-E	
Report Date:	08/02/21	

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:08022117:02

Project Name:BARNET MILLSProject Number:21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140488-01	SS-01	SOIL_VAPOR	RENSSELAER, NY	07/27/21 14:20	07/28/21
L2140488-02	SS-02	SOIL_VAPOR	RENSSELAER, NY	07/27/21 14:53	07/28/21
L2140488-03	SS-03	SOIL_VAPOR	RENSSELAER, NY	07/27/21 14:55	07/28/21
L2140488-04	SS-04	SOIL_VAPOR	RENSSELAER, NY	07/27/21 15:04	07/28/21
L2140488-05	SS-05	SOIL_VAPOR	RENSSELAER, NY	07/27/21 15:10	07/28/21
L2140488-06	SS-06	SOIL_VAPOR	RENSSELAER, NY	07/27/21 15:10	07/28/21
L2140488-07	SS-07	SOIL_VAPOR	RENSSELAER, NY	07/27/21 15:20	07/28/21
L2140488-08	SS-08	SOIL_VAPOR	RENSSELAER, NY	07/27/21 15:27	07/28/21
L2140488-09	SS-09	SOIL_VAPOR	RENSSELAER, NY	07/27/21 15:32	07/28/21
L2140488-10	AA-01	AIR	RENSSELAER, NY	07/27/21 15:40	07/28/21

Project Name: BARNET MILLS Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: BARNET MILLS Project Number: 21-26694-E
 Lab Number:
 L2140488

 Report Date:
 08/02/21

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on July 22, 2021. The canister certification results are provided as an addendum.

L2140488-06D through -08D: The canister vacuum measured on receipt at the laboratory was > 15 in. Hg. Prior to sample analysis, the canisters were pressurized with UHP Nitrogen in order to facilitate the transfer of sample to the Gas Chromatograph. The addition of Nitrogen resulted in a dilution of the samples. The reporting limits have been elevated accordingly.

L2140488-09D: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L2140488-04D: Prior to sample analysis, the canisters were pressurized with UHP Nitrogen due to canister size. The pressurization resulted in a dilution of the sample. The reporting limits have been elevated accordingly.

The WG1530310-3 LCS recoveries for 3-chloropropene (131%), bromoform (135%) and benzyl chloride (144%) are above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

Sample Receipt

The samples designated SS-05 (L2140488-05) and SS-06 (L2140488-06) failed to collect and had to be cancelled.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 08/02/21

AIR

Lab Number: L2140488 Report Date:

08/02/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

SAMPLE RESULTS

Lab ID: L2140488-01 Client ID: SS-01 Sample Location: RENSSELAER, NY

Date Collected:	07/27/21 14:20
Date Received:	07/28/21
Field Prep:	Not Specified

Sample Depth: Matrix: Soil_Vapor Anaytical Method:

48,TO-15 Analytical Date: 08/01/21 17:45 Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mai	nsfield Lab							
Dichlorodifluoromethane	0.392	0.200		1.94	0.989			1
Chloromethane	0.507	0.200		1.05	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	14.0	5.00		26.4	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	15.8	1.00		37.5	2.38			1
Trichlorofluoromethane	0.332	0.200		1.87	1.12			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	1.46	0.500		4.43	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.388	0.200		1.21	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.928	0.500		2.74	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

07/27/21 14:20

Not Specified

07/28/21

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-01Client ID:SS-01Sample Location:RENSSELAER, NY

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	1.84	0.200		6.48	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	1.66	0.200		5.30	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	1.65	0.200		5.68	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	1.54	0.200		7.19	0.934			1
Heptane	3.21	0.200		13.2	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	29.7	0.200		112	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	4.42	0.200		19.2	0.869			1
o/m-Xylene	14.7	0.400		63.9	1.74			1

07/27/21 14:20

Not Specified

07/28/21

Project Number: 21-26694-E

Lab Number: L2140488 Report Date: 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-01Client ID:SS-01Sample Location:RENSSELAER, NY

	ppbV		ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
field Lab							
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
5.40	0.200		23.5	0.869			1
0.398	0.200		1.96	0.983			1
0.453	0.200		2.23	0.983			1
1.42	0.200		6.98	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	field Lab ND ND 5.40 0.398 0.453 1.42 ND ND ND ND ND ND ND	Results RL field Lab ND 0.200 ND 0.200 ND ND 0.200 0.200 ND 0.200 0.200 5.40 0.200 0.398 0.398 0.200 0.453 0.453 0.200 0.200 ND 0.200 ND ND 0.200 ND	Results RL MDL field Lab ND 0.200 ND 0.200 ND 0.200 ND 0.200 S.40 0.200 0.398 0.200 0.453 0.200 1.42 0.200 ND 0.200	Results RL MDL Results field Lab ND 0.200 ND 0.398 0.200 2.3.5 0.398 0.200 2.23 0.453 0.200 6.98 ND 0.200 ND ND 0.200 ND	Results RL MDL Results RL field Lab ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 1.37 5.40 0.200 23.5 0.869 0.398 0.200 1.96 0.983 0.453 0.200 2.23 0.983 1.42 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL field Lab ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 1.37 5.40 0.200 23.5 0.869 0.398 0.200 1.96 0.983 0.453 0.200 6.98 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48	Results RL MDL Results RL MDL Qualifier field Lab ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.852 ND 0.200 ND 1.37 ND 0.200 ND 1.37 0.398 0.200 23.5 0.869 0.453 0.200 1.96 0.983 1.42 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.48 </td

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	100		60-140

Lab Number: Report Date:

ber: L2140488 ate: 08/02/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

SAMPLE RESULTS

Lab ID:L2140488-02Client ID:SS-02Sample Location:RENSSELAER, NY

Date Collected:	07/27/21 14:53
Date Received:	07/28/21
Field Prep:	Not Specified

Sample Depth: Matrix: Soil_Vapor Anaytical Method: 48,TO-15

Anaytical Method:48,TO-15Analytical Date:08/01/21 19:07Analyst:RY

		ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mar								
Dichlorodifluoromethane	0.430	0.200		2.13	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	269	5.00		507	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	42.0	1.00		99.8	2.38			1
Trichlorofluoromethane	0.332	0.200		1.87	1.12			1
1,1-Dichloroethene	0.259	0.200		1.03	0.793			1
Tertiary butyl Alcohol	6.06	0.500		18.4	1.52			1
Methylene chloride	0.701	0.500		2.44	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	1.35	0.200		4.20	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	4.41	0.500		13.0	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

07/27/21 14:53

Not Specified

07/28/21

Project Name:	BARNET MILLS
Project Name.	BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-02Client ID:SS-02Sample Location:RENSSELAER, NY

Sample Depth:	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Chloroform	5.53	0.200		27.0	0.977			1
Tetrahydrofuran	8.81	0.500		26.0	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	3.44	0.200		12.1	0.705			1
1,1,1-Trichloroethane	12.8	0.200		69.8	1.09			1
Benzene	3.37	0.200		10.8	0.639			1
Carbon tetrachloride	1.63	0.200		10.3	1.26			1
Cyclohexane	3.05	0.200		10.5	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	0.204	0.200		0.735	0.721			1
Trichloroethene	0.687	0.200		3.69	1.07			1
2,2,4-Trimethylpentane	2.59	0.200		12.1	0.934			1
Heptane	5.95	0.200		24.4	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.542	0.500		2.22	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	66.3	0.200		250	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	19.8	0.200		86.0	0.869			1
o/m-Xylene	65.9	0.400		286	1.74			1

07/27/21 14:53

Not Specified

07/28/21

Project Name:	BARNET MILLS
	DAILINET MILLO

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-02Client ID:SS-02Sample Location:RENSSELAER, NY

Sample Depth:								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.383	0.200		1.63	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	29.2	0.200		127	0.869			1
4-Ethyltoluene	3.47	0.200		17.1	0.983			1
1,3,5-Trimethylbenzene	4.46	0.200		21.9	0.983			1
1,2,4-Trimethylbenzene	14.9	0.200		73.3	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	96		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	108		60-140

Lab Number: L2140488 Report Date: 08/02/21

BARNET MILLS

08/01/21 19:50

Project Number: 21-26694-E

Project Name:

Analyst:

SAMPLE RESULTS

Lab ID: L2140488-03 Client ID: SS-03 Sample Location: RENSSELAER, NY

RY

Soil_Vapor
48,TO-15
08/01/21 19

Date Collected: 07/27/21 14:55 Date Received: 07/28/21 Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	0.369	0.200		1.82	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	81.8	5.00		154	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	259	1.00		615	2.38			1
Trichlorofluoromethane	0.321	0.200		1.80	1.12			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	7.92	0.500		24.0	1.52			1
Methylene chloride	1.41	0.500		4.90	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	0.730	0.200		2.27	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	4.19	0.500		12.4	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

07/27/21 14:55

Not Specified

07/28/21

Project Name:	BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-03Client ID:SS-03Sample Location:RENSSELAER, NY

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	3.38	0.200		11.9	0.705			1
1,1,1-Trichloroethane	20.2	0.200		110	1.09			1
Benzene	3.43	0.200		11.0	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	3.11	0.200		10.7	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	4.31	0.200		15.5	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	2.83	0.200		13.2	0.934			1
Heptane	6.74	0.200		27.6	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.646	0.500		2.65	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	71.8	0.200		271	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	0.444	0.200		2.04	0.921			1
Ethylbenzene	21.5	0.200		93.4	0.869			1
o/m-Xylene	68.3	0.400		297	1.74			1

07/27/21 14:55

Not Specified

07/28/21

Project Name: BARNE	T MILLS
---------------------	---------

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-03Client ID:SS-03Sample Location:RENSSELAER, NY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.419	0.200		1.78	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	30.5	0.200		132	0.869			1
4-Ethyltoluene	3.26	0.200		16.0	0.983			1
1,3,5-Trimethylbenzene	4.59	0.200		22.6	0.983			1
1,2,4-Trimethylbenzene	14.9	0.200		73.3	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	102		60-140
Bromochloromethane	99		60-140
chlorobenzene-d5	111		60-140

 Lab Number:
 L2140488

 Report Date:
 08/02/21

BARNET MILLS

Project Number: 21-26694-E

Project Name:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2140488-04 SS-04 RENSSELAER	D , NY				Date Collected: Date Received: Field Prep:		Date Received: 07/28/21	
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15 08/01/21 20:32 RY								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield L	ab							
Dichlorodifluoromethane)	0.434	0.259		2.15	1.28			1.295
Chloromethane		ND	0.259		ND	0.535			1.295
Freon-114		ND	0.259		ND	1.81			1.295
Vinyl chloride		ND	0.259		ND	0.662			1.295
1,3-Butadiene		ND	0.259		ND	0.573			1.295
Bromomethane		ND	0.259		ND	1.01			1.295
Chloroethane		ND	0.259		ND	0.683			1.295
Ethanol		25.0	6.48		47.1	12.2			1.295
Vinyl bromide		ND	0.259		ND	1.13			1.295
Acetone		41.8	1.30		99.3	3.09			1.295
Trichlorofluoromethane		0.504	0.050		0.00	4.40			4 005

Trichlorofluoromethane 0.501 0.259 2.82 1.295 ---1.46 ---1,1-Dichloroethene ND 0.259 ND 1.03 1.295 ------Tertiary butyl Alcohol 5.14 0.648 15.6 1.96 1.295 -----Methylene chloride 1.49 0.648 5.18 2.25 1.295 -----3-Chloropropene ND 0.259 ---ND 0.811 ---1.295 Carbon disulfide 1.09 0.259 ---3.39 0.807 ---1.295 Freon-113 0.259 1.295 ND ND 1.99 ---trans-1,2-Dichloroethene ND ND 1.295 0.259 ---1.03 --1,1-Dichloroethane ND 0.259 ND 1.05 ---1.295 ---Methyl tert butyl ether ND 0.259 ---ND 0.934 ---1.295 2-Butanone 1.295 4.98 0.648 14.7 1.91 ----cis-1,2-Dichloroethene ND 0.259 ---ND 1.03 ---1.295 Ethyl Acetate ND 0.648 ---ND 2.34 ---1.295

Not Specified

07/28/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-04DClient ID:SS-04Sample Location:RENSSELAER, NY

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Chloroform	0.695	0.259		3.39	1.26			1.295
Tetrahydrofuran	7.58	0.648		22.4	1.91			1.295
1,2-Dichloroethane	ND	0.259		ND	1.05			1.295
n-Hexane	3.85	0.259		13.6	0.913			1.295
1,1,1-Trichloroethane	0.943	0.259		5.15	1.41			1.295
Benzene	3.26	0.259		10.4	0.827			1.295
Carbon tetrachloride	ND	0.259		ND	1.63			1.295
Cyclohexane	3.03	0.259		10.4	0.892			1.295
1,2-Dichloropropane	ND	0.259		ND	1.20			1.295
Bromodichloromethane	ND	0.259		ND	1.74			1.295
1,4-Dioxane	ND	0.259		ND	0.933			1.295
Trichloroethene	ND	0.259		ND	1.39			1.295
2,2,4-Trimethylpentane	2.74	0.259		12.8	1.21			1.295
Heptane	6.02	0.259		24.7	1.06			1.295
cis-1,3-Dichloropropene	ND	0.259		ND	1.18			1.295
4-Methyl-2-pentanone	ND	0.648		ND	2.66			1.295
trans-1,3-Dichloropropene	ND	0.259		ND	1.18			1.295
1,1,2-Trichloroethane	ND	0.259		ND	1.41			1.295
Toluene	71.6	0.259		270	0.976			1.295
2-Hexanone	ND	0.259		ND	1.06			1.295
Dibromochloromethane	ND	0.259		ND	2.21			1.295
1,2-Dibromoethane	ND	0.259		ND	1.99			1.295
Tetrachloroethene	ND	0.259		ND	1.76			1.295
Chlorobenzene	ND	0.259		ND	1.19			1.295
Ethylbenzene	21.0	0.259		91.2	1.12			1.295
p/m-Xylene	73.5	0.518		319	2.25			1.295

Not Specified

07/28/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-04DClient ID:SS-04Sample Location:RENSSELAER, NY

Sample Depth:								
		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	0.259		ND	2.68			1.295
Styrene	0.321	0.259		1.37	1.10			1.295
1,1,2,2-Tetrachloroethane	ND	0.259		ND	1.78			1.295
o-Xylene	31.8	0.259		138	1.12			1.295
4-Ethyltoluene	3.77	0.259		18.5	1.27			1.295
1,3,5-Trimethylbenzene	5.12	0.259		25.2	1.27			1.295
1,2,4-Trimethylbenzene	17.2	0.259		84.6	1.27			1.295
Benzyl chloride	ND	0.259		ND	1.34			1.295
1,3-Dichlorobenzene	ND	0.259		ND	1.56			1.295
1,4-Dichlorobenzene	ND	0.259		ND	1.56			1.295
1,2-Dichlorobenzene	ND	0.259		ND	1.56			1.295
1,2,4-Trichlorobenzene	ND	0.259		ND	1.92			1.295
Hexachlorobutadiene	ND	0.259		ND	2.76			1.295

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	99		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	107		60-140

Not Specified

07/28/21

Lab Number: L2140488 **Report Date:** 08/02/21

BARNET MILLS

08/01/21 22:38

Project Number: 21-26694-E

Project Name:

Anaytical Method:

Analytical Date:

SAMPLE RESULTS

Lab ID: L2140488-07 Date Collected: Client ID: SS-07 Date Received: Sample Location: RENSSELAER, NY Field Prep: Sample Depth: Matrix: Soil_Vapor 48,TO-15

Analyst:	RY								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield La	ıb							
Dichlorodifluoromethane		0.488	0.200		2.41	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		94.8	5.00		179	9.42			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acetone		72.7	1.00		173	2.38			1
Trichlorofluoromethane		0.348	0.200		1.96	1.12			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1
Tertiary butyl Alcohol		8.85	0.500		26.8	1.52			1
Methylene chloride		ND	0.500		ND	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		1.13	0.200		3.52	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene)	ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		4.11	0.500		12.1	1.47			1
cis-1,2-Dichloroethene		ND	0.200		ND	0.793			1
Ethyl Acetate		ND	0.500		ND	1.80			1

Not Specified

07/28/21

Project Name:	BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-07Client ID:SS-07Sample Location:RENSSELAER, NY

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Chloroform	0.269	0.200		1.31	0.977			1
Tetrahydrofuran	12.2	0.500		36.0	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	4.68	0.200		16.5	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	9.23	0.200		29.5	0.639			1
Carbon tetrachloride	2.70	0.200		17.0	1.26			1
Cyclohexane	4.57	0.200		15.7	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	3.77	0.200		17.6	0.934			1
Heptane	8.45	0.200		34.6	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.703	0.500		2.88	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	82.9	0.200		312	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	22.1	0.200		96.0	0.869			1
o/m-Xylene	67.9	0.400		295	1.74			1

Not Specified

07/28/21

Project Name:	BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-07Client ID:SS-07Sample Location:RENSSELAER, NY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.472	0.200		2.01	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	27.7	0.200		120	0.869			1
4-Ethyltoluene	2.25	0.200		11.1	0.983			1
1,3,5-Trimethylbenzene	2.74	0.200		13.5	0.983			1
1,2,4-Trimethylbenzene	8.54	0.200		42.0	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	107		60-140

L2140488

08/02/21

Lab Number:

Report Date:

BARNET MILLS

Project Number: 21-26694-E

Project Name:

SAMPLE RESULTS

Lab ID:	L2140488-08 D	Date Collected:	07/27/21 15:27
Client ID:	SS-08	Date Received:	07/28/21
Sample Location:	RENSSELAER, NY	Field Prep:	Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15 08/01/21 23:19 RY		

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Dichlorodifluoromethane	1.60	0.792		7.91	3.92			3.961
Chloromethane	ND	0.792		ND	1.64			3.961
Freon-114	ND	0.792		ND	5.54			3.961
Vinyl chloride	ND	0.792		ND	2.02			3.961
1,3-Butadiene	2.68	0.792		5.93	1.75			3.961
Bromomethane	ND	0.792		ND	3.08			3.961
Chloroethane	ND	0.792		ND	2.09			3.961
Ethanol	200	19.8		377	37.3			3.961
Vinyl bromide	ND	0.792		ND	3.46			3.961
Acetone	475	3.96		1130	9.41			3.961
Trichlorofluoromethane	ND	0.792		ND	4.45			3.961
1,1-Dichloroethene	ND	0.792		ND	3.14			3.961
Tertiary butyl Alcohol	33.4	1.98		101	6.00			3.961
Methylene chloride	2.02	1.98		7.02	6.88			3.961
3-Chloropropene	ND	0.792		ND	2.48			3.961
Carbon disulfide	2.19	0.792		6.82	2.47			3.961
Freon-113	ND	0.792		ND	6.07			3.961
trans-1,2-Dichloroethene	ND	0.792		ND	3.14			3.961
1,1-Dichloroethane	ND	0.792		ND	3.21			3.961
Methyl tert butyl ether	ND	0.792		ND	2.86			3.961
2-Butanone	12.0	1.98		35.4	5.84			3.961
cis-1,2-Dichloroethene	ND	0.792		ND	3.14			3.961
Ethyl Acetate	ND	1.98		ND	7.14			3.961

Not Specified

07/28/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-08DClient ID:SS-08Sample Location:RENSSELAER, NY

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
Chloroform	ND	0.792		ND	3.87			3.961
Tetrahydrofuran	5.59	1.98		16.5	5.84			3.961
1,2-Dichloroethane	ND	0.792		ND	3.21			3.961
n-Hexane	12.7	0.792		44.8	2.79			3.961
1,1,1-Trichloroethane	ND	0.792		ND	4.32			3.961
Benzene	9.95	0.792		31.8	2.53			3.961
Carbon tetrachloride	2.21	0.792		13.9	4.98			3.961
Cyclohexane	8.90	0.792		30.6	2.73			3.961
1,2-Dichloropropane	ND	0.792		ND	3.66			3.961
Bromodichloromethane	ND	0.792		ND	5.31			3.961
1,4-Dioxane	ND	0.792		ND	2.85			3.961
Trichloroethene	ND	0.792		ND	4.26			3.961
2,2,4-Trimethylpentane	8.77	0.792		41.0	3.70			3.961
Heptane	17.1	0.792		70.1	3.25			3.961
cis-1,3-Dichloropropene	ND	0.792		ND	3.60			3.961
4-Methyl-2-pentanone	ND	1.98		ND	8.11			3.961
trans-1,3-Dichloropropene	ND	0.792		ND	3.60			3.961
1,1,2-Trichloroethane	ND	0.792		ND	4.32			3.961
Toluene	176	0.792		663	2.98			3.961
2-Hexanone	ND	0.792		ND	3.25			3.961
Dibromochloromethane	ND	0.792		ND	6.75			3.961
1,2-Dibromoethane	ND	0.792		ND	6.09			3.961
Tetrachloroethene	ND	0.792		ND	5.37			3.961
Chlorobenzene	ND	0.792		ND	3.65			3.961
Ethylbenzene	29.3	0.792		127	3.44			3.961
p/m-Xylene	97.6	1.58		424	6.86			3.961

Not Specified

07/28/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-08DClient ID:SS-08Sample Location:RENSSELAER, NY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	0.792		ND	8.19			3.961
Styrene	ND	0.792		ND	3.37			3.961
1,1,2,2-Tetrachloroethane	ND	0.792		ND	5.44			3.961
o-Xylene	34.9	0.792		152	3.44			3.961
4-Ethyltoluene	2.59	0.792		12.7	3.89			3.961
1,3,5-Trimethylbenzene	2.87	0.792		14.1	3.89			3.961
1,2,4-Trimethylbenzene	8.98	0.792		44.1	3.89			3.961
Benzyl chloride	ND	0.792		ND	4.10			3.961
1,3-Dichlorobenzene	ND	0.792		ND	4.76			3.961
1,4-Dichlorobenzene	ND	0.792		ND	4.76			3.961
1,2-Dichlorobenzene	ND	0.792		ND	4.76			3.961
1,2,4-Trichlorobenzene	ND	0.792		ND	5.88			3.961
Hexachlorobutadiene	ND	0.792		ND	8.45			3.961

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	98		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	106		60-140

 Lab Number:
 L2140488

 Report Date:
 08/02/21

BARNET MILLS

Project Number: 21-26694-E

Project Name:

SAMPLE RESULTS

Lab ID: Client ID: Sample Location:	L2140488-09 SS-09 RENSSELAER	D 2, NY					Collecte Receive Prep:	ed: 07/28	7/21 15:32 3/21 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Soil_Vapor 48,TO-15 08/01/21 23:59 RY	I							
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics ir	Air - Mansfield I	ah							
· · · · · · · · · · · · · · · · · · ·		au							
Dichlorodifluoromethane		0.475	0.307		2.35	1.52			1.536
-			0.307 0.307		2.35 0.803	1.52 0.634			1.536 1.536
Dichlorodifluoromethane		0.475							
Dichlorodifluoromethane		0.475 0.389	0.307		0.803	0.634			1.536
Dichlorodifluoromethane Chloromethane Freon-114		0.475 0.389 ND	0.307 0.307		0.803 ND	0.634 2.15			1.536 1.536
Dichlorodifluoromethane Chloromethane Freon-114 Vinyl chloride		0.475 0.389 ND ND	0.307 0.307 0.307		0.803 ND ND	0.634 2.15 0.785			1.536 1.536 1.536

		0.001		0.0.0	
Ethanol	9.53	7.68	 18.0	14.5	 1.536
Vinyl bromide	ND	0.307	 ND	1.34	 1.536
Acetone	39.6	1.54	 94.1	3.66	 1.536
Trichlorofluoromethane	0.312	0.307	 1.75	1.73	 1.536
1,1-Dichloroethene	ND	0.307	 ND	1.22	 1.536
Tertiary butyl Alcohol	7.66	0.768	 23.2	2.33	 1.536
Methylene chloride	ND	0.768	 ND	2.67	 1.536
3-Chloropropene	ND	0.307	 ND	0.961	 1.536
Carbon disulfide	1.32	0.307	 4.11	0.956	 1.536
Freon-113	ND	0.307	 ND	2.35	 1.536
trans-1,2-Dichloroethene	ND	0.307	 ND	1.22	 1.536
1,1-Dichloroethane	ND	0.307	 ND	1.24	 1.536
Methyl tert butyl ether	ND	0.307	 ND	1.11	 1.536
2-Butanone	8.25	0.768	 24.3	2.27	 1.536
cis-1,2-Dichloroethene	ND	0.307	 ND	1.22	 1.536
Ethyl Acetate	ND	0.768	 ND	2.77	 1.536

Not Specified

07/28/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-09DClient ID:SS-09Sample Location:RENSSELAER, NY

Sample Depth:		ppbV		ug/m3			Dilut	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Chloroform	ND	0.307		ND	1.50			1.536
Tetrahydrofuran	4.82	0.768		14.2	2.27			1.536
1,2-Dichloroethane	ND	0.307		ND	1.24			1.536
n-Hexane	4.33	0.307		15.3	1.08			1.536
1,1,1-Trichloroethane	0.782	0.307		4.27	1.68			1.536
Benzene	4.61	0.307		14.7	0.981			1.536
Carbon tetrachloride	ND	0.307		ND	1.93			1.536
Cyclohexane	3.52	0.307		12.1	1.06			1.536
1,2-Dichloropropane	ND	0.307		ND	1.42			1.536
Bromodichloromethane	ND	0.307		ND	2.06			1.536
1,4-Dioxane	ND	0.307		ND	1.11			1.536
Trichloroethene	ND	0.307		ND	1.65			1.536
2,2,4-Trimethylpentane	3.45	0.307		16.1	1.43			1.536
Heptane	8.63	0.307		35.4	1.26			1.536
cis-1,3-Dichloropropene	ND	0.307		ND	1.39			1.536
4-Methyl-2-pentanone	0.803	0.768		3.29	3.15			1.536
trans-1,3-Dichloropropene	ND	0.307		ND	1.39			1.536
1,1,2-Trichloroethane	ND	0.307		ND	1.68			1.536
Toluene	94.7	0.307		357	1.16			1.536
2-Hexanone	ND	0.307		ND	1.26			1.536
Dibromochloromethane	ND	0.307		ND	2.62			1.536
1,2-Dibromoethane	ND	0.307		ND	2.36			1.536
Tetrachloroethene	1.82	0.307		12.3	2.08			1.536
Chlorobenzene	ND	0.307		ND	1.41			1.536
Ethylbenzene	24.4	0.307		106	1.33			1.536
o/m-Xylene	81.4	0.614		354	2.67			1.536
Ethylbenzene p/m-Xylene		0.307						

Not Specified

07/28/21

Project Name: BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-09DClient ID:SS-09Sample Location:RENSSELAER, NY

Sample Depth:									
		ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	RL MDL		Factor	
Volatile Organics in Air - Mans	sfield Lab								
Bromoform	ND	0.307		ND	3.17			1.536	
Styrene	0.422	0.307		1.80	1.31			1.536	
1,1,2,2-Tetrachloroethane	ND	0.307		ND	2.11			1.536	
o-Xylene	32.2	0.307		140	1.33			1.536	
4-Ethyltoluene	3.31	0.307		16.3	1.51			1.536	
1,3,5-Trimethylbenzene	3.80	0.307		18.7	1.51			1.536	
1,2,4-Trimethylbenzene	12.6	0.307		61.9	1.51			1.536	
Benzyl chloride	ND	0.307		ND	1.59			1.536	
1,3-Dichlorobenzene	ND	0.307		ND	1.85			1.536	
1,4-Dichlorobenzene	ND	0.307		ND	1.85			1.536	
1,2-Dichlorobenzene	ND	0.307		ND	1.85			1.536	
1,2,4-Trichlorobenzene	ND	0.307		ND	2.28			1.536	
Hexachlorobutadiene	ND	0.307		ND	3.27			1.536	

			Acceptance
Internal Standard	% Recovery	Qualifier	Criteria
1,4-Difluorobenzene	100		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	110		60-140

L2140488

08/02/21

Lab Number:

Report Date:

Project Name: BARNET MILLS

Project Number: 21-26694-E

SAMPLE RESULTS

Lab ID:L2140488-10Client ID:AA-01Sample Location:RENSSELAER, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	08/01/21 17:06
Analyst:	RY

Date Collected:07/27/21 15:40Date Received:07/28/21Field Prep:Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.399	0.200		1.97	0.989			1
Chloromethane	0.488	0.200		1.01	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	7.20	1.00		17.1	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Not Specified

07/28/21

Project Name:	BARNET MILLS

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-10Client ID:AA-01Sample Location:RENSSELAER, NY

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	2.68	0.500		7.90	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	0.532	0.200		1.87	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.477	0.200		1.52	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	0.230	0.200		0.792	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	0.513	0.200		2.40	0.934			1
Heptane	0.529	0.200		2.17	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	16.1	0.200		60.7	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	0.564	0.200		2.45	0.869			1
o/m-Xylene	1.89	0.400		8.21	1.74			1

Not Specified

07/28/21

Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L2140488-10Client ID:AA-01Sample Location:RENSSELAER, NY

		ppbV		ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	0.625	0.200		2.71	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	81		60-140
chlorobenzene-d5	95		60-140

08/02/21

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/01/21 14:35

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01-	-04,07-10	Batch: WG	1530310)-4		
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

08/02/21

Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/01/21 14:35

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air -	Mansfield Lab for sam	nple(s): 01	-04,07-10) Batch: WG	61530310)-4		
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1

08/02/21

Project Number: 21-26694-E

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/01/21 14:35

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	field Lab for samp	le(s): 01-	04,07-10	Batch: WG	1530310)-4			
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Lab Control Sample Analysis Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694-E

Lab Number: L2140488 Report Date: 08/02/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-04,07-10	Batch: WG	1530310-3				
Dichlorodifluoromethane	72		-		70-130	-		
Chloromethane	88		-		70-130	-		
Freon-114	82		-		70-130	-		
Vinyl chloride	87		-		70-130	-		
1,3-Butadiene	89		-		70-130	-		
Bromomethane	83		-		70-130	-		
Chloroethane	89		-		70-130	-		
Ethanol	76		-		40-160	-		
Vinyl bromide	84		-		70-130	-		
Acetone	92		-		40-160	-		
Trichlorofluoromethane	105		-		70-130	-		
1,1-Dichloroethene	112		-		70-130	-		
Tertiary butyl Alcohol	96		-		70-130	-		
Methylene chloride	123		-		70-130	-		
3-Chloropropene	131	Q	-		70-130	-		
Carbon disulfide	102		-		70-130	-		
Freon-113	114		-		70-130	-		
trans-1,2-Dichloroethene	101		-		70-130	-		
1,1-Dichloroethane	102		-		70-130	-		
Methyl tert butyl ether	95		-		70-130	-		
2-Butanone	108		-		70-130	-		
cis-1,2-Dichloroethene	104		-		70-130	-		
Ethyl Acetate	110		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Lab Number: L2140488 Report Date: 08/02/21

Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04,07-10 Batch: WG1530310-3 Chordorm 95 - 70-130 - Tetrahydrduran 108 - 70-130 - 1.2-Dichloroethane 87 - 70-130 - n-Hexane 106 - 70-130 - n-Hoxane 98 - 70-130 - Renzene 99 - 70-130 - Carbon lettrachloride 103 - 70-130 - Cyclohexane 107 - 70-130 - 1.2-Dichloropropane 112 - 70-130 - 1.2-Dichloropropane 101 - 70-130 - 1.2-Dichloropropane 101 - 70-130 - 1.2-Dichloropropane 101 - 70-130 - 1.2-Dichloropropane 108 - 70-130 - 1.2-Dichloropropene 111 - 70-130	ter	LCS %Recovery C	LCSD Qual %Recove		%Recovery Limits	RPD	Qual	RPD Limits	
Tetrahydrofuran 108 - 70-130 - 1.2-Dichloroethane 87 - 70-130 - n-Hexane 106 - 70-130 - 1.1.1-Trichloroethane 98 - 70-130 - Benzene 99 - 70-130 - Carbon tetrachloride 103 - 70-130 - Cyclohexane 107 - 70-130 - 1.2-Dichloropropane 112 - 70-130 - 1.2-Dichloropropane 101 - 70-130 - 1.2-Dichloropropane 101 - 70-130 - 1.2-Dichloropropane 101 - 70-130 - 1.4-Dioxane 85 - 70-130 - 1.4-Dioxane 108 - 70-130 - 1.4-Dioxane 115 - 70-130 - 1.4-Dioxane 116 - 70-130 - 1.4-Dioxane 111 - 70-130 - 1.4-Dioxane 9	Organics in Air - Mansfield Lab Ass	ciated sample(s): (01-04,07-10 Batch:	WG1530310-3					
1.2-Dichloroethane 87 70-130 - n-Hexane 106 70-130 - 1.1.1-Trichloroethane 98 - 70-130 - Benzene 99 - 70-130 - Carbon tetrachloride 103 - 70-130 - Cyclohexane 107 - 70-130 - 1.2-Dichloropropane 112 70-130 - - 1.2-Dichloropropane 112 70-130 - - 1.4-Dioxane 85 - 70-130 - - 1.4-Dioxane 109 - 70-130 - - - 1.4-Dioxane 108 - 70-130 -	oform	95	-		70-130	-			
n-Hexane 106 70-130 - 1,1,1-Trichloroethane 98 - 70-130 - Benzene 99 - 70-130 - Carbon tetrachloride 103 - 70-130 - Cydohexane 107 70-130 - - LyDichloropropane 112 - 70-130 - Bromodichloromethane 101 - 70-130 - 1,4-Dioxane 85 - 70-130 - 1,4-Dioxane 109 - 70-130 - 2,2,4-Trimethylpentane 108 - 70-130 - Icis-1,3-Dichloropropene 111 - 70-130 - Itans-1,3-Dichloropropene 111 - 70-130 - Itans-1,3-Dichloropropene 97 - 70-130 - Itans-1,3-Dichloropropene 97 - 70-130 - Itans-1,3-Dichloropropene 97 - 70-130 - <td>hydrofuran</td> <td>108</td> <td>-</td> <td></td> <td>70-130</td> <td>-</td> <td></td> <td></td> <td></td>	hydrofuran	108	-		70-130	-			
1,1,1-Trichloroethane 98 - 70-130 - Benzene 99 - 70-130 - Carbon tetrachloride 103 - 70-130 - Cyclohexane 107 - 70-130 - 1_2-Dichloropropane 112 - 70-130 - Bromodichloromethane 101 - 70-130 - 1_4-Dioxane 85 - 70-130 - 1_4-Dioxane 109 - 70-130 - 2,2,4-Trimethylpentane 108 - 70-130 - 4-Methyl-2-pentanone 111 - 70-130 - 4-Methyl-2-pentanone 117 - 70-130 - 1,1,2-Trichloroethane 111 - 70-130 - 1,1,2-Trichloroethane 111 - 70-130 - 1,1,2-Trichloroethane 110 - 70-130 - 1,1,2-Trichloroethane 80 - 70-130 - Dibromochloromethane 125 - 70-130 -	ichloroethane	87	-		70-130	-			
Benzene 99 - 70-130 - Carbon tetrachloride 103 - 70-130 - Cyclohexane 107 - 70-130 - 1.2-Dichloropropane 112 - 70-130 - Bromodichloromethane 101 - 70-130 - 1.4-Dioxane 85 - 70-130 - Trichloroethene 109 - 70-130 - 2.2.4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - 1.1.2-Trichloropropene 111 - 70-130 - 4-Methyl-2-pentanone 1117 - 70-130 - 1.1.2-Trichloropropene 97 - 70-130 - 1.1.2-Trichloropthane 1110 - 70-130 - Toluene 1100 - 70-130 - 2-Hexanone 800 - 70-130 -	kane	106	-		70-130	-			
Carbon tetrachloride 103 - 70-130 - Cyclohexane 107 - 70-130 - 1,2-Dichloropropane 112 - 70-130 - Bromodichloromethane 101 - 70-130 - 1,4-Dioxane 85 - 70-130 - Trichloroethene 109 - 70-130 - 2,2,4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - cis-1,3-Dichloropropene 111 - 70-130 - trans-1,3-Dichloropropene 111 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - trans-1,3-Dichloropropene 91 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - Toluene 110 - 70-130 <td>Trichloroethane</td> <td>98</td> <td>-</td> <td></td> <td>70-130</td> <td>-</td> <td></td> <td></td> <td></td>	Trichloroethane	98	-		70-130	-			
Cyclohexane 107 70-130 - 1,2-Dichloropropane 112 - 70-130 - Bromodichloromethane 101 - 70-130 - 1,4-Dioxane 85 - 70-130 - Trichloroethene 109 - 70-130 - 2,2,4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - cis-1,3-Dichloropropene 111 - 70-130 - trans-1,3-Dichloropropene 117 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - Toluene 110 - 70-130 - Toluene 100 - 70-130 - Dibromochloromethane 125 - 70-130 - J.2-Dibromochlane 114 - 70-130 -	ene	99	-		70-130	-			
1.2-Dichloropropane 112 - 70-130 - Bromodichloromethane 101 - 70-130 - 1.4-Dioxane 85 - 70-130 - Trichloroethene 109 - 70-130 - 2.2.4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - 1.3-Dichloropropene 111 - 70-130 - 4-Methyl-2-pentanone 117 - 70-130 - 1.1.2-Trichloroethane 97 - 70-130 - 1.1.2-Trichloroptopene 111 - 70-130 - 1.1.2-Trichloropthane 111 - 70-130 - 1.1.2-Trichloropthane 110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 -	on tetrachloride	103	-		70-130	-			
Bromodichloromethane 101 - 70-130 - 1,4-Dioxane 85 - 70-130 - Trichloroethene 109 - 70-130 - 2,2,4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - I-Aethyl-2-pentanone 111 - 70-130 - I-Ans-1,3-Dichloropropene 111 - 70-130 - I-Aethyl-2-pentanone 117 - 70-130 - I-Ins-1,3-Dichloropropene 97 - 70-130 - I-Ins-1,3-Dichloropropene 97 - 70-130 - I-Ins-1,3-Dichloropropene 97 - 70-130 - I-Insertioneethane 110 - 70-130 - I-Insertionoethane 80 - 70-130 - Dibromochloromethane 125 - 70-130 -	hexane	107	-		70-130	-			
1,4-Dioxane85-70-130-Trichloroethene109-70-130-2,2,4-Trimethylpentane108-70-130-Heptane115-70-130-cis-1,3-Dichloropropene111-70-130-4-Methyl-2-pentanone117-70-130-trans-1,3-Dichloropropene97-70-130-1,1,2-Trichloroethane111-70-130-Toluene110-70-130-2-Hexanone80-70-130-Dibromochloromethane125-70-130-1,2-Dibromoethane114-70-130-	ichloropropane	112	-		70-130	-			
Trichloroethene 109 - 70-130 - 2,2,4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - cis-1,3-Dichloropropene 111 - 70-130 - 4-Methyl-2-pentanone 111 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - 1,1,2-Trichloroethane 111 - 70-130 - Toluene 1110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 -	odichloromethane	101	-		70-130	-			
2,2,4-Trimethylpentane 108 - 70-130 - Heptane 115 - 70-130 - cis-1,3-Dichloropropene 111 - 70-130 - 4-Methyl-2-pentanone 117 - 70-130 - trans-1,3-Dichloropropene 117 - 70-130 - 1,1,2-Trichloropthane 97 - 70-130 - Toluene 111 - 70-130 - 2-Hexanone 110 - 70-130 - Dibromochloromethane 125 - 70-130 - J,2-Dibromoethane 114 - 70-130 -	ioxane	85	-		70-130	-			
Heptane 115 70-130 - cis-1,3-Dichloropropene 111 - 70-130 - 4-Methyl-2-pentanone 117 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - 1,1,2-Trichloropthane 97 - 70-130 - 1,1,2-Trichloropthane 111 - 70-130 - 7oluene 110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	oroethene	109	-		70-130	-			
cis-1,3-Dichloropropene 111 - 70-130 - 4-Methyl-2-pentanone 117 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - 1,1,2-Trichloropthane 111 - 70-130 - 1,1,2-Trichloropthane 111 - 70-130 - Toluene 110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	Trimethylpentane	108	-		70-130	-			
4-Methyl-2-pentanone 117 - 70-130 - trans-1,3-Dichloropropene 97 - 70-130 - 1,1,2-Trichloroethane 111 - 70-130 - Toluene 110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	ane	115	-		70-130	-			
trans-1,3-Dichloropropene97-70-130-1,1,2-Trichloroethane111-70-130-Toluene110-70-130-2-Hexanone80-70-130-Dibromochloromethane125-70-130-1,2-Dibromoethane114-70-130-	3-Dichloropropene	111	-		70-130	-			
1,1,2-Trichloroethane 111 - 70-130 - Toluene 110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	thyl-2-pentanone	117	-		70-130	-			
Toluene 110 - 70-130 - 2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	1,3-Dichloropropene	97	-		70-130	-			
2-Hexanone 80 - 70-130 - Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	Trichloroethane	111	-		70-130	-			
Dibromochloromethane 125 - 70-130 - 1,2-Dibromoethane 114 - 70-130 -	ne	110	-		70-130	-			
1,2-Dibromoethane 114 - 70-130 -	kanone	80	-		70-130	-			
	mochloromethane	125	-		70-130	-			
Tetrachloroethene 110 - 70-130 -	ibromoethane	114	-		70-130	-			
	chloroethene	110	-		70-130	-			

Lab Control Sample Analysis

Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694-E
 Lab Number:
 L2140488

 Report Date:
 08/02/21

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-04,07-10 Batch: WG1530310-3 Chlorobenzene 111 70-130 --Ethylbenzene 113 70-130 -p/m-Xylene 112 70-130 --Bromoform 135 Q 70-130 --Styrene 113 70-130 --1,1,2,2-Tetrachloroethane 70-130 121 -o-Xylene 113 70-130 --4-Ethyltoluene 110 70-130 --1,3,5-Trimethylbenzene 109 70-130 --1,2,4-Trimethylbenzene 113 70-130 --Benzyl chloride Q 70-130 144 --110 1,3-Dichlorobenzene 70-130 --1,4-Dichlorobenzene 112 70-130 --113 70-130 1,2-Dichlorobenzene --70-130 1,2,4-Trichlorobenzene 114 --Hexachlorobutadiene 108 70-130 --

L2140488

Lab Duplicate Analysis Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694-E

Lab Number:

Report Date: 08/02/21

arameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Qual Limits	
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-04,07-10	QC Batch ID: WG	1530310-5 QC S	ample: L214	40488-01 Client ID: SS-01	
Dichlorodifluoromethane	0.392	0.380	ppbV	3	25	
Chloromethane	0.507	0.498	ppbV	2	25	
Freon-114	ND	ND	ppbV	NC	25	
Vinyl chloride	ND	ND	ppbV	NC	25	
1,3-Butadiene	ND	ND	ppbV	NC	25	
Bromomethane	ND	ND	ppbV	NC	25	
Chloroethane	ND	ND	ppbV	NC	25	
Ethanol	14.0	13.7	ppbV	2	25	
Vinyl bromide	ND	ND	ppbV	NC	25	
Acetone	15.8	16.3	ppbV	3	25	
Trichlorofluoromethane	0.332	0.316	ppbV	5	25	
1,1-Dichloroethene	ND	ND	ppbV	NC	25	
Tertiary butyl Alcohol	1.46	1.44	ppbV	1	25	
Methylene chloride	ND	ND	ppbV	NC	25	
3-Chloropropene	ND	ND	ppbV	NC	25	
Carbon disulfide	0.388	0.380	ppbV	2	25	
Freon-113	ND	ND	ppbV	NC	25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1-Dichloroethane	ND	ND	ppbV	NC	25	
Methyl tert butyl ether	ND	ND	ppbV	NC	25	
2-Butanone	0.928	0.927	ppbV	0	25	

Lab Duplicate Analysis Batch Quality Control

Project Name:BARNET MILLSProject Number:21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
platile Organics in Air - Mansfield Lab	Associated sample(s): 01-04,07-10	QC Batch ID: WG15	30310-5 QC Sa	ample: L214	40488-01 Client ID: SS-01
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
Ethyl Acetate	ND	ND	ppbV	NC	25
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	1.84	1.77	ppbV	4	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Benzene	1.66	1.62	ppbV	2	25
Carbon tetrachloride	ND	ND	ppbV	NC	25
Cyclohexane	1.65	1.61	ppbV	2	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
Trichloroethene	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	1.54	1.49	ppbV	3	25
Heptane	3.21	3.10	ppbV	3	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	29.7	29.2	ppbV	2	25

Lab Duplicate Analysis Batch Quality Control

Project Name:BARNET MILLSProject Number:21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s): 01-04,07-10	QC Batch ID: WG153	0310-5 QC S	ample: L214	40488-01 Client ID: SS-01
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Tetrachloroethene	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	4.42	4.32	ppbV	2	25
p/m-Xylene	14.7	14.4	ppbV	2	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	5.40	5.30	ppbV	2	25
4-Ethyltoluene	0.398	0.373	ppbV	6	25
1,3,5-Trimethylbenzene	0.453	0.442	ppbV	2	25
1,2,4-Trimethylbenzene	1.42	1.41	ppbV	1	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25

Project Name: BARNET MILLS

Project Number: 21-26694-E

Serial_No:08022117:02 Lab Number: L2140488

Report Date: 08/02/21

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)			Flow Out mL/min	Flow In mL/min	% RPD
L2140488-01	SS-01	02096	Flow 3	07/22/21	358638		-	-	-	Pass	4.5	4.9	9
L2140488-01	SS-01	3402	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.3	1.6	-	-	-	-
L2140488-02	SS-02	0875	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.7	4
L2140488-02	SS-02	3435	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.0	-8.1	-	-	-	-
L2140488-03	SS-03	01679	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.6	2
L2140488-03	SS-03	444	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.3	-8.6	-	-	-	-
L2140488-04	SS-04	01782	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.9	9
L2140488-04	SS-04	2332	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.2	-12.3	-	-	-	-
L2140488-05	SS-05	01365	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	.6	153
L2140488-05	SS-05	1718	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.3	-28.2	-	-	-	-
L2140488-06	SS-06	01062	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.5	0
L2140488-06	SS-06	3175	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.1	-26.9	-	-	-	-
L2140488-07	SS-07	0101	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.6	2
L2140488-07	SS-07	186	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.1	-9.5	-	-	-	-
L2140488-08	SS-08	0096	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.8	6

Project Name: BARNET MILLS

Project Number: 21-26694-E

Serial_No:08022117:02 Lab Number: L2140488

Report Date: 08/02/21

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2140488-08	SS-08	2819	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.4	-23.1	-	-	-	-
L2140488-09	SS-09	02076	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.4	2
L2140488-09	SS-09	2791	2.7L Can	07/22/21	358638	L2138213-02	Pass	-29.4	-11.4	-	-	-	-
L2140488-10	AA-01	0492	Flow 5	07/22/21	358638		-	-	-	Pass	4.5	4.4	2
L2140488-10	AA-01	3006	2.7L Can	07/22/21	358638	L2138499-01	Pass	-29.3	-11.5	-	-	-	-

Project Number:	CANISTER QC	ЗАТ				R	eport [Date: (08/02/21
		Air Can	ister Cer	tificatio	on Results	5			
Lab ID: Client ID: Sample Location:	L2138213-02 CAN 335 SHEL	F 16					Collecte Receive Prep:		07/15/21 16:00 07/16/21 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 07/16/21 17:54 TS								
			ppbV			ug/m3			Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in A	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane)	ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:08022117:02

L2138213

Lab Number:

	Serial_No:08022117:02					
TION	Lab Number:	L2138213				
	Report Date:	08/02/21				

L2138213 08/02/21 Report Date:

Air Canister Certification Results

Lab ID:	L2138213-02	Date Collected:	07/15/21 16:00
Client ID:	CAN 335 SHELF 16	Date Received:	07/16/21
Sample Location:		Field Prep:	Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

	Serial_No:08	3022117:02
DN	Lab Number:	L2138213
	Penort Date:	00/02/21

L2138213 08/02/21 Report Date:

Air Canister Certification Results

Lab ID:	L2138213-02	Date Collected:	07/15/21 16:00
Client ID:	CAN 335 SHELF 16	Date Received:	07/16/21
Sample Location:		Field Prep:	Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lat)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

	Serial_No:08022117:02			
N	Lab Number:	L2138213		
	Report Date:	08/02/21		

L2138213 08/02/21 Report Date:

Air Canister Certification Results

Lab ID:	L2138213-02	Date Collected:	07/15/21 16:00
Client ID:	CAN 335 SHELF 16	Date Received:	07/16/21
Sample Location:		Field Prep:	Not Specified

ample Deptn: ppbV ug/r		ug/m3			Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
lsopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:080	22117:02
Project Name:	BATCH CANIST	ER CERT	IFICATION			La	b Num	ber:	L2138213
Project Number:	CANISTER QC E	AT				Re	port D	Date:	08/02/21
		Air Car	nister Cer	tification	Results				
Lab ID: Client ID: Sample Location:	L2138213-02 CAN 335 SHELI	= 16				Date C Date R Field P	eceive		07/15/21 16:00 07/16/21 Not Specified
Sample Depth:			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
		R	esults	Qualifier	Units	RDL		Dilutio Facto	
Tentatively Identified Con	npounds								
Silanol, Trimethyl-			1.7	NJ	ppbV			1	
Internal S 	Standard		% Recovery	Qualif	ier	cceptance Criteria			

94

95

60-140

60-140

Bromochloromethane

chlorobenzene-d5

Project Number:	CANISTER QC E	BAT				R	eport D	ate: (08/02/21
		Air Car	nister Cer	tificati	ion Results				
Lab ID: Client ID: Sample Location:	L2138213-02 CAN 335 SHEL	F 16				Date	Collecte Receive Prep:		07/15/21 16:00 07/16/21 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 07/16/21 17:54 TS								
_			ppbV			ug/m3		o	Dilution Factor
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
Volatile Organics in A									
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acrolein		ND	0.050		ND	0.115			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	9	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:08022117:02

L2138213

Lab Number:

Serial_No:0	8022117:02
Lab Number:	L2138213
Report Date:	08/02/21

Lab ID:	L2138213-02	Date Collected:	07/15/21 16:00
Client ID:	CAN 335 SHELF 16	Date Received:	07/16/21
Sample Location:		Field Prep:	Not Specified

Air Canister Certification Results

Results ND	RL 0.092 0.134 0.360 0.107 0.091 2.05 0.091 0.109	MDL	Qualifier	Dilution Factor
ND ND ND ND ND ND ND	0.134 0.360 0.107 0.091 2.05 0.091 0.109	 		1 1 1 1 1
ND ND ND ND ND ND ND	0.134 0.360 0.107 0.091 2.05 0.091 0.109	 		1 1 1 1 1
ND ND ND ND ND	0.360 0.107 0.091 2.05 0.091 0.109	 		1 1 1 1
ND ND ND ND	0.107 0.091 2.05 0.091 0.109			1 1 1
ND ND ND ND	0.091 2.05 0.091 0.109			1
ND ND ND	2.05 0.091 0.109			1
ND ND	0.091 0.109			
ND	0.109			1
ND	0 4 0 0			1
	0.188			1
ND	0.170			1
ND	0.154			1
ND	0.136			1
ND	0.137			1
ND	0.461			1
ND	0.087			1
ND	0.174			1
ND	0.207			1
ND	0.085			1
ND	0.137			1
ND	0.087			1
ND	0.983			1
ND	0.098			1
ND	0.098			1
ND	0.098			1
ND	1.04			1
ND	0.120			1
ND	0.120			1
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND 0.170 ND 0.154 ND 0.136 ND 0.137 ND 0.137 ND 0.461 ND 0.461 ND 0.087 ND 0.174 ND 0.137 ND 0.174 ND 0.207 ND 0.085 ND 0.085 ND 0.137 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.098 ND 0.098 ND 0.098 ND 0.098 ND 1.04 ND 0.120	ND 0.188 ND 0.170 ND 0.154 ND 0.136 ND 0.137 ND 0.461 ND 0.461 ND 0.087 ND 0.174 ND 0.137 ND 0.174 ND 0.137 ND 0.137 ND 0.137 ND 0.085 ND 0.085 ND 0.087 ND 0.087 ND 0.087 ND 0.087 ND 0.098 ND 0.098 ND 0.098 ND 0.098 ND 1.04	ND 0.188 ND 0.170 ND 0.154 ND 0.136 ND 0.137 ND 0.137 ND 0.461 ND 0.087 ND 0.174 ND 0.207 ND 0.207 ND 0.137 ND 0.085 ND 0.085 ND 0.087 ND 0.087 ND 0.087 ND 0.0983 ND 0.098 ND 0.098 ND 0.098 ND 0.098 ND 1.04 ND 0.120

		Serial_No:08	8022117:02
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2138213
Project Number:	CANISTER QC BAT	Report Date:	08/02/21
	Air Canister Certification Results		
	1 04 00 0 0 0		

Lab ID:	L2138213-02	Date Collected:	07/15/21 16:00
Client ID:	CAN 335 SHELF 16	Date Received:	07/16/21
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	92		60-140

Project Number: CANISTER QC BAT **Report Date:** 08/02/21 **Air Canister Certification Results** Lab ID: L2138499-01 Date Collected: 07/16/21 16:00 Client ID: CAN 560 SHELF 2 Date Received: 07/19/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15 Anaytical Method: Analytical Date: 07/19/21 17:14 AW Analyst: ppbV ug/m3 Dilution Factor RL Qualifier Parameter Results RL Results MDL MDL Volatile Organics in Air - Mansfield Lab Chlorodifluoromethane ND 0.200 ND 0.707 ------1 Propylene ND 0.500 1 ND 0.861 ------Propane ND 0.500 ND 0.902 1 -----Dichlorodifluoromethane ND 0.200 ---ND 0.989 ---1 Chloromethane ND 0.200 ND 0.413 ---1 ---Freon-114 ND 0.200 ND 1.40 1 ------Methanol ND 5.00 ND 6.55 1 -----Vinyl chloride ND 0.200 ---ND 0.511 ---1 1,3-Butadiene ND 0.200 ND 0.442 1 ------Butane ND 0.200 ND 0.475 1 ------Bromomethane ND 0.200 ND 0.777 1 ------Chloroethane ND 0.200 ND 0.528 ---1 --Ethanol ND 5.00 ---ND 9.42 ---1 Dichlorofluoromethane ND 0.200 ND 0.842 1 -----Vinyl bromide ND 0.200 ND 0.874 1 ------Acrolein ND 0.500 ND 1 ---1.15 ---Acetone ND 1.00 --ND 2.38 ---1 Acetonitrile ND 0.200 ND 0.336 1 ------Trichlorofluoromethane 0.200 ND ND 1 ---1.12 ---Isopropanol ND 0.500 --ND 1.23 --1 Acrylonitrile ND 0.500 ---ND 1.09 ---1 Pentane 1 ND 0.200 ND 0.590 ----Ethyl ether ND 0.200 ND 0.606 1 ------1,1-Dichloroethene ND 0.200 ND 0.793 ------1

Serial_No:08022117:02

L2138499

Lab Number:

Project Name:

BATCH CANISTER CERTIFICATION

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2138499-01	Date Collected:	07/16/21 16:00
Client ID:	CAN 560 SHELF 2	Date Received:	07/19/21
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ıb							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2138499-01	Date Collected:	07/16/21 16:00
Client ID:	CAN 560 SHELF 2	Date Received:	07/19/21
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2138499-01	Date Collected:	07/16/21 16:00
Client ID:	CAN 560 SHELF 2	Date Received:	07/19/21
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
ert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

						S	erial_	_No:080	22117:02	
Project Name:	BATCH CANIST	ER CERT	TIFICATION	l		Lab	Num	ber:	L2138499	
Project Number:	CANISTER QC E	ЗАТ				Rep	ort D	ate:	08/02/21	
		Air Ca	nister Ce	rtificatior	Results					
Lab ID: Client ID: Sample Location:	L2138499-01 CAN 560 SHEL	F 2				Date Col Date Re Field Pre	ceive		07/16/21 1 07/19/21 Not Specif	
Sample Depth:										
_			ppbV			ug/m3		o	Dilution Factor	
Parameter	A., M.,	Results	RL	MDL	Results	RL I	MDL	Qualifie	r	_
Volatile Organics in	Air - Mansfield Lab									
Tentatively Identified Cor	nounds	F	Results	Qualifier	Units	RDL		Dilutio Facto		
remailvely luentilled Col	npounus									

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	96		60-140

Air Canister Certification Results Lab ID: L2138499-01 Date Collected: 07/16/21 16:00 Client ID: CAN 560 SHELF 2 Date Received: 07/19/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air Anaytical Method: 48,TO-15-SIM Analytical Date: 07/19/21 17:14 AW Analyst: ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane ND 0.200 ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 0.020 ND 1 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 ------Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 ------Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---

Serial_No:08022117:02

L2138499

08/02/21

Lab Number:

Report Date:

Project Name:

Project Number:

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Air Canister Certification Results

Lab ID:	L2138499-01	Date Collected:	07/16/21 16:00
Client ID:	CAN 560 SHELF 2	Date Received:	07/19/21
Sample Location:		Field Prep:	Not Specified

Dilutior Factor 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1
1 1 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

		Serial_No:08	8022117:02
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L2138499
Project Number:	CANISTER QC BAT	Report Date:	08/02/21
	Air Canister Certification Results		

Lab ID:	L2138499-01	Date Collected:	07/16/21 16:00
Client ID:	CAN 560 SHELF 2	Date Received:	07/19/21
Sample Location:		Field Prep:	Not Specified

		ppbV				ug/m3			
Parameter	Results	RL MDL		Results RL		MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	I - Mansfield Lab								
sec-Butylbenzene	ND	0.200		ND	1.10			1	
p-Isopropyltoluene	ND	0.200		ND	1.10			1	
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1	
n-Butylbenzene	ND	0.200		ND	1.10			1	
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1	
Naphthalene	ND	0.050		ND	0.262			1	
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1	
Hexachlorobutadiene	ND	0.050		ND	0.533			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	99		60-140

Project Name: BARNET MILLS Project Number: 21-26694-E

Serial_No:08022117:02 *Lab Number:* L2140488 Report Date: 08/02/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal				
NA	Absent				

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2140488-01A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-02A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-03A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-04A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-05A	Canister - 2.7 Liter	NA	NA			Y	Absent		CANCELLED()
L2140488-06A	Canister - 2.7 Liter	NA	NA			Y	Absent		CANCELLED()
L2140488-07A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-08A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-09A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)
L2140488-10A	Canister - 2.7 Liter	NA	NA			Y	Absent		TO15-LL(30)

Project Name: BARNET MILLS

Project Number: 21-26694-E

Lab Number: L2140488

Report Date: 08/02/21

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS MSD	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values. Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's
	reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	 No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	 Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: BARNET MILLS

Project Number: 21-26694-E

Lab Number: L2140488 **Report Date:**

08/02/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Serial_No:08022117:02

Project Name: BARNET MILLS

Project Number: 21-26694-E

Lab Number: L2140488

Report Date: 08/02/21

Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: BARNET MILLS Project Number: 21-26694-E

 Lab Number:
 L2140488

 Report Date:
 08/02/21

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial No:08022117:02

Aunto	AIR AN	VALY:	SIS	P/(3F 1	of 1	Date R	ec'd in Lat	. 7	1291	21		ALPHA	Job #: CM	40488
	CHAIN OF CUSTODY	Project	Informati	ion	K	in the	Repo	rt Informa	ation -	Data D	eliverat	oles	Billing	Information	Alexand a
	ansfield, MA 02048 FAX: 508-822-3288	Project Na	me: Barr	net Mills		2	G FA)						🖬 Same a	is Client info PC)#:
Client Informatio	in	Project Lo	cation: F	Renssela	ier, N	Y	ADI 🖬	Ex Criteria Che	scker:						
Nient Alpine E	nvironmental Services	Project #:	21-266	94-E				(Dotave boso) Sther Form		olatory Code	na balinalis	ı)			
Idress: 438 Nev	v Karner Road	Project Ma	inager: Ba	lines			⊉ EM	AIL (standa	ard pdf				and the state of the		ents/Report Lim
Albany NY		ALPHA Q						litional Deli					State/Fed	i Program	Res / Com
hone: 518-58	8-2104	Turn-Ar	round Tir	ne			Report	to: _t ramon	to tes Drogen	er Managar)					
ax:		🖬 Standar	d 🗆	I RUSH Server	alian and it proves	ајонтикно")		_		_				a producer and the same	_
^{mail:} KimB@A	lpineenv.com	Data Bur			T:		1						A	NALYSIS	
	ve been previously analyzed by Alpha pecific Requirements/Comr	Date Due ments:	:		Time:		1						1 1	\$ 2	
	Target Compound List: U		Do									1	MUSCHING	MIR GA	
,												_/	SIM Gaser	Article Juli	
ALPHA Lab ID			CO	S Bel				Sampler's			I D - Flow	12	SID	1.00% et 1	
(Lab Use Only)	Sample ID	555	Start Time	End Time	Vacuum		Matrix*	Initials	Size	Can	Controller	_	0,4,1,1	3 / /Sample	Comments (i.e. P
10498-01	SS-01	7/27/21	8.6	14:20	-30	-0.2	SG	KB	1L		2096	х		- ≮ .D:	NO
-02	SS-02	7/27/21		14:53	-29.8	-10.3	SG	KB	1L	3435	875	Х		6	equil t
-03	SS-03	7/27/21		14:55	-30	-10.5	SG	KB	1L	444	1679	Х		15.	propyl
-py	SS-04	7/27/21	8:05	15:04	-29.7	-14.4	SG	KB	1L	2332	1782	Х		A	aho K
-05	SS-05	7/27/21	8:20	15:10	-30	- 29 .7	SG	КВ	1⊾	1718	1365	Х			1
_06	SS-06	7/27/21	8:20	15:10	-30	-29.7	SG	KB	1L	3175	1062	х			
-07	SS-07	7/27/21	8:42	15:20	-30	-11.5	SG	KB	1L	186	101	х			_
-03	SS-08	7/27/21		15:27	-29.8	-24.8	SG	KB	1L	-	096				
-09	SS-09	7/27/21	9:05	15:32	-30	-13.4	SG	KB	1L	2791	2076	х			
-10	AA-01	7/27/21	9:10	15:40	-30	-13.2	AA	КВ	14	3006	492	х			V
*SAMPL	E MATRIX CODES S	A = Ambien V = Soil Vap Aher = Please	or/Landfill					C	ontaine	er Type				complete	int clearly, legibly and ly. Samples can not i and turnaround time
	Kim E	Relinquis	shed By:	d	Da 7/28/2 7/28/2	10-10	An	Race	tu By	DA	4L	7/25	Date/Time: 21 ! 21 00; /	clack will guites er ورز با ک submitted	not start until any am a rasolved. All samp l are subject to Alpha d Consilions.

SOIL SAMPLES FROM TEST PITS

STORM DRAIN AND SUBSTATION SAMPLES

ANALYTICAL REPORT

Lab Number:	L2140625	
Client:	Alpine Environmental	
	438 New Karner Road	
	Albany, NY 12205	
ATTN:	Kim Baines	
Phone:	(518) 250-4047	
Project Name:	BARNET MILLS	
Project Number:	21-26694E	
Report Date:	08/05/21	

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08052119:53

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2140625-01	TP-1 6-8FT	SOIL	RENSSELAER, NY	07/27/21 09:40	07/28/21
L2140625-02	TP-1 8-10FT	SOIL	RENSSELAER, NY	07/27/21 09:50	07/28/21
L2140625-03	TP-9 8-9FT	SOIL	RENSSELAER, NY	07/27/21 14:15	07/28/21
L2140625-04	TP-11 10FT	SOIL	RENSSELAER, NY	07/27/21 15:10	07/28/21

Project Name: BARNET MILLS Project Number: 21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Case Narrative (continued)

Report Submission

August 05, 2021: This final report includes the results of all requested analyses. August 04, 2021: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The Total Metals analysis was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Volatile Organics

Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L2140625-01 and -02: The methanol vial was analyzed in order to quantitate the sample within the calibration range. The result should be considered estimated, and is qualified with an E flag, for any compound that exceeded the calibration on the initial analysis. The results of both analyses are reported.

PCBs

L2140625-01D: The surrogate recoveries are outside the acceptance criteria for decachlorobiphenyl (1230%, 1320%); however, the sample was not re-extracted due to coelution with Aroclor 1268.

L2140625-02D: The surrogate recoveries are outside the acceptance criteria for decachlorobiphenyl (1882%,

2050%); however, the sample was not re-extracted due to coelution with Aroclor 1268.

L2140625-03: The surrogate recoveries are outside the acceptance criteria for decachlorobiphenyl (201%,

217%); however, the sample was not re-extracted due to coelution with Aroclor 1268.

L2140625-04D: The surrogate recoveries are below the acceptance criteria for 2,4,5,6-tetrachloro-m-xylene (0%) and decachlorobiphenyl (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

604 Sendow Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative

Date: 08/05/21

ORGANICS

VOLATILES

			Serial_N	o:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-01		Date Collected:	07/27/21 09:40
Client ID:	TP-1 6-8FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/03/21 02:26			
Analyst:	JC			
Percent Solids:	88%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	oorough Lab					
Methylene chloride	ND		ug/kg	5.1	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	0.15	J	ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1
Tetrachloroethene	ND		ug/kg	0.51	0.20	1
Chlorobenzene	ND		ug/kg	0.51	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.1	0.71	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/kg	0.51	0.17	1
Bromodichloromethane	ND		ug/kg	0.51	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1
cis-1,3-Dichloropropene	ND		ug/kg	0.51	0.16	1
Bromoform	ND		ug/kg	4.1	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.51	0.17	1
Benzene	ND		ug/kg	0.51	0.17	1
Toluene	2.0		ug/kg	1.0	0.55	1
Ethylbenzene	ND		ug/kg	1.0	0.14	1
Chloromethane	ND		ug/kg	4.1	0.95	1
Bromomethane	ND		ug/kg	2.0	0.59	1
Vinyl chloride	ND		ug/kg	1.0	0.34	1
Chloroethane	ND		ug/kg	2.0	0.46	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1
Trichloroethene	ND		ug/kg	0.51	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.15	1

		Serial_No:08052119:53					
Project Name:	BARNET MILLS				Lab Nu	mber:	L2140625
Project Number:	21-26694E				Report	Date:	08/05/21
		SAMPI		5			
Lab ID:	L2140625-01				Date Col	lected:	07/27/21 09:40
Client ID:	TP-1 6-8FT				Date Ree	ceived:	07/28/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by	y GC/MS - Westborough I	_ab					
		ND			2.0	0.45	4
1,3-Dichlorobenzene				ug/kg	2.0	0.15	1
1,4-Dichlorobenzene		ND ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether				ug/kg	2.0	0.20	1
p/m-Xylene		ND		ug/kg	2.0	0.57	1
o-Xylene		ND		ug/kg	1.0	0.30	1
cis-1,2-Dichloroethene		ND		ug/kg	1.0	0.18	1
Styrene		ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane		ND		ug/kg	10	0.93	1
Acetone		360	E	ug/kg	10	4.9	1
Carbon disulfide		8.8	J	ug/kg	10	4.6	1
2-Butanone		74		ug/kg	10	2.3	1
4-Methyl-2-pentanone		ND		ug/kg	10	1.3	1
2-Hexanone		ND		ug/kg	10	1.2	1
Bromochloromethane		ND		ug/kg	2.0	0.21	1
1,2-Dibromoethane		ND		ug/kg	1.0	0.28	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	3.0	1.0	1
Isopropylbenzene		ND		ug/kg	1.0	0.11	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.0	0.33	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.0	0.28	1
Methyl Acetate		ND		ug/kg	4.1	0.97	1
Cyclohexane		ND		ug/kg	10	0.55	1
1,4-Dioxane		ND		ug/kg	82	36.	1
Freon-113		ND		ug/kg	4.1	0.71	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	103	70-130	

4.1

ug/kg

0.62

ND

1

Methyl cyclohexane

			Serial_N	o:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-01		Date Collected:	07/27/21 09:40
Client ID:	TP-1 6-8FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
	0			
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/04/21 01:01			
Analyst:	JC			
Percent Solids:	88%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westl	oorough Lab					
Methylene chloride	ND		ug/kg	300	140	1
1,1-Dichloroethane	ND		ug/kg	60	8.6	1
Chloroform	11	J	ug/kg	89	8.3	1
Carbon tetrachloride	ND		ug/kg	60	14.	1
1,2-Dichloropropane	ND		ug/kg	60	7.4	1
Dibromochloromethane	ND		ug/kg	60	8.3	1
1,1,2-Trichloroethane	ND		ug/kg	60	16.	1
Tetrachloroethene	ND		ug/kg	30	12.	1
Chlorobenzene	ND		ug/kg	30	7.6	1
Trichlorofluoromethane	ND		ug/kg	240	41.	1
1,2-Dichloroethane	ND		ug/kg	60	15.	1
1,1,1-Trichloroethane	ND		ug/kg	30	10.	1
Bromodichloromethane	ND		ug/kg	30	6.5	1
trans-1,3-Dichloropropene	ND		ug/kg	60	16.	1
cis-1,3-Dichloropropene	ND		ug/kg	30	9.4	1
Bromoform	ND		ug/kg	240	15.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	30	9.9	1
Benzene	ND		ug/kg	30	9.9	1
Toluene	100		ug/kg	60	32.	1
Ethylbenzene	ND		ug/kg	60	8.4	1
Chloromethane	ND		ug/kg	240	56.	1
Bromomethane	ND		ug/kg	120	35.	1
Vinyl chloride	ND		ug/kg	60	20.	1
Chloroethane	ND		ug/kg	120	27.	1
1,1-Dichloroethene	ND		ug/kg	60	14.	1
trans-1,2-Dichloroethene	ND		ug/kg	89	8.2	1
Trichloroethene	ND		ug/kg	30	8.2	1
1,2-Dichlorobenzene	ND		ug/kg	120	8.6	1

					ç	Serial_No	:08052119:53	
Project Name:	BARNET MILLS				Lab Nu	mber:	L2140625	
Project Number:	21-26694E				Report	Date:	08/05/21	
-		SAMP	LE RESULTS	6	•			
Lab ID: Client ID: Sample Location:	L2140625-01 TP-1 6-8FT RENSSELAER, NY				Date Col Date Rec Field Pre	ceived:	07/27/21 09:40 07/28/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
1,3-Dichlorobenzene		ND		ug/kg	120	8.8	1	
1,4-Dichlorobenzene		ND		ug/kg	120	10.	1	
Methyl tert butyl ether		ND		ug/kg	120	12.	1	
p/m-Xylene		ND		ug/kg	120	33.	1	
o-Xylene		ND		ug/kg	60	17.	1	
cis-1,2-Dichloroethene		ND		ug/kg	60	10.	1	
Styrene		ND		ug/kg	60	12.	1	
Dichlorodifluoromethane		ND		ug/kg	600	54.	1	
Acetone		440	J	ug/kg	600	290	1	
Carbon disulfide		ND		ug/kg	600	270	1	
2-Butanone		190	J	ug/kg	600	130	1	
4-Methyl-2-pentanone		ND		ug/kg	600	76.	1	
2-Hexanone		ND		ug/kg	600	70.	1	
Bromochloromethane		ND		ug/kg	120	12.	1	
1,2-Dibromoethane		ND		ug/kg	60	17.	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	180	59.	1	
Isopropylbenzene		ND		ug/kg	60	6.5	1	
1,2,3-Trichlorobenzene		ND		ug/kg	120	19.	1	
1,2,4-Trichlorobenzene		ND		ug/kg	120	16.	1	
Methyl Acetate		330		ug/kg	240	57.	1	
Cyclohexane		ND		ug/kg	600	32.	1	
1,4-Dioxane		ND		ug/kg	4800	2100	1	
Freon-113		ND		ug/kg	240	41.	1	
Methyl cyclohexane		ND		ug/kg	240	36.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	95		70-130	
Dibromofluoromethane	101		70-130	

		Serial_N	0:08052119:53
BARNET MILLS		Lab Number:	L2140625
21-26694E		Report Date:	08/05/21
	SAMPLE RESULTS		
L2140625-02		Date Collected:	07/27/21 09:50
TP-1 8-10FT		Date Received:	07/28/21
RENSSELAER, NY		Field Prep:	Not Specified
Soil			
75%			
	21-26694E L2140625-02 TP-1 8-10FT RENSSELAER, NY Soil 1,8260C 08/03/21 03:44 JC	21-26694E SAMPLE RESULTS L2140625-02 TP-1 8-10FT RENSSELAER, NY Soil 1,8260C 08/03/21 03:44 JC	BARNET MILLS Lab Number: 21-26694E Report Date: SAMPLE RESULTS Date Collected: TP-1 8-10FT RENSSELAER, NY Date Received: Field Prep: Soil 1,8260C 08/03/21 03:44 JC

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/kg	5.8	2.7	1
1,1-Dichloroethane	ND	ug/kg	1.2	0.17	1
Chloroform	ND	ug/kg	1.8	0.16	1
Carbon tetrachloride	ND	ug/kg	1.2	0.27	1
1,2-Dichloropropane	ND	ug/kg	1.2	0.15	1
Dibromochloromethane	ND	ug/kg	1.2	0.16	1
1,1,2-Trichloroethane	ND	ug/kg	1.2	0.31	1
Tetrachloroethene	ND	ug/kg	0.58	0.23	1
Chlorobenzene	ND	ug/kg	0.58	0.15	1
Trichlorofluoromethane	ND	ug/kg	4.7	0.81	1
1,2-Dichloroethane	ND	ug/kg	1.2	0.30	1
1,1,1-Trichloroethane	ND	ug/kg	0.58	0.20	1
Bromodichloromethane	ND	ug/kg	0.58	0.13	1
trans-1,3-Dichloropropene	ND	ug/kg	1.2	0.32	1
cis-1,3-Dichloropropene	ND	ug/kg	0.58	0.18	1
Bromoform	ND	ug/kg	4.7	0.29	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.58	0.19	1
Benzene	ND	ug/kg	0.58	0.19	1
Toluene	14	ug/kg	1.2	0.64	1
Ethylbenzene	ND	ug/kg	1.2	0.16	1
Chloromethane	ND	ug/kg	4.7	1.1	1
Bromomethane	ND	ug/kg	2.3	0.68	1
Vinyl chloride	ND	ug/kg	1.2	0.39	1
Chloroethane	ND	ug/kg	2.3	0.53	1
1,1-Dichloroethene	ND	ug/kg	1.2	0.28	1
trans-1,2-Dichloroethene	ND	ug/kg	1.8	0.16	1
Trichloroethene	ND	ug/kg	0.58	0.16	1
1,2-Dichlorobenzene	ND	ug/kg	2.3	0.17	1

		Serial_No:08052119:53					
Project Name:	BARNET MILLS				Lab Nu	mber:	L2140625
Project Number:	21-26694E				Report	Date:	08/05/21
•		SAMP	LE RESULTS	6	•		
Lab ID: Client ID: Sample Location:	L2140625-02 TP-1 8-10FT RENSSELAER, NY	Date Collected: Date Received: Field Prep:		07/27/21 09:50 07/28/21 Not Specified			
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene		ND		ug/kg	2.3	0.20	1
Methyl tert butyl ether		ND		ug/kg	2.3	0.24	1
p/m-Xylene		ND		ug/kg	2.3	0.66	1
o-Xylene		ND		ug/kg	1.2	0.34	1
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.20	1
Styrene		ND		ug/kg	1.2	0.23	1
Dichlorodifluoromethane		ND		ug/kg	12	1.1	1
Acetone		820	E	ug/kg	12	5.6	1
Carbon disulfide		10	J	ug/kg	12	5.3	1
2-Butanone		150		ug/kg	12	2.6	1
4-Methyl-2-pentanone		ND		ug/kg	12	1.5	1
2-Hexanone		ND		ug/kg	12	1.4	1
Bromochloromethane		ND		ug/kg	2.3	0.24	1
1,2-Dibromoethane		ND		ug/kg	1.2	0.33	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.5	1.2	1
Isopropylbenzene		ND		ug/kg	1.2	0.13	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.3	0.38	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.3	0.32	1
Methyl Acetate		ND		ug/kg	4.7	1.1	1
Cyclohexane		ND		ug/kg	12	0.64	1
1,4-Dioxane		ND		ug/kg	94	41.	1
Freon-113		ND		ug/kg	4.7	0.81	1
Methyl cyclohexane		ND		ug/kg	4.7	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	105		70-130	

			Serial_N	0:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-02		Date Collected:	07/27/21 09:50
Client ID:	TP-1 8-10FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/04/21 01:27			
Analyst:	JC			
Percent Solids:	75%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	360	160	1
1,1-Dichloroethane	ND		ug/kg	71	10.	1
Chloroform	12	J	ug/kg	110	10.	1
Carbon tetrachloride	ND		ug/kg	71	16.	1
1,2-Dichloropropane	ND		ug/kg	71	8.9	1
Dibromochloromethane	ND		ug/kg	71	10.	1
1,1,2-Trichloroethane	ND		ug/kg	71	19.	1
Tetrachloroethene	ND		ug/kg	36	14.	1
Chlorobenzene	ND		ug/kg	36	9.1	1
Trichlorofluoromethane	ND		ug/kg	280	50.	1
1,2-Dichloroethane	ND		ug/kg	71	18.	1
1,1,1-Trichloroethane	ND		ug/kg	36	12.	1
Bromodichloromethane	ND		ug/kg	36	7.8	1
trans-1,3-Dichloropropene	ND		ug/kg	71	20.	1
cis-1,3-Dichloropropene	ND		ug/kg	36	11.	1
Bromoform	ND		ug/kg	280	18.	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	36	12.	1
Benzene	ND		ug/kg	36	12.	1
Toluene	1700		ug/kg	71	39.	1
Ethylbenzene	ND		ug/kg	71	10.	1
Chloromethane	ND		ug/kg	280	66.	1
Bromomethane	ND		ug/kg	140	42.	1
Vinyl chloride	ND		ug/kg	71	24.	1
Chloroethane	ND		ug/kg	140	32.	1
1,1-Dichloroethene	ND		ug/kg	71	17.	1
trans-1,2-Dichloroethene	ND		ug/kg	110	9.8	1
Trichloroethene	ND		ug/kg	36	9.8	1
1,2-Dichlorobenzene	ND		ug/kg	140	10.	1

					5	Serial_No	:08052119:53
Project Name:	BARNET MILLS				Lab Nu	mber:	L2140625
Project Number:	21-26694E				Report	Date:	08/05/21
•		SAMPI		S	•		
Lab ID: Client ID: Sample Location:	L2140625-02 TP-1 8-10FT RENSSELAER, NY				Date Coll Date Rec Field Pre	eived:	07/27/21 09:50 07/28/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
	,						
1,3-Dichlorobenzene		ND		ug/kg	140	10.	1
1,4-Dichlorobenzene		ND		ug/kg	140	12.	1
Methyl tert butyl ether		ND		ug/kg	140	14.	1
p/m-Xylene		ND		ug/kg	140	40.	1
o-Xylene		ND		ug/kg	71	21.	1
cis-1,2-Dichloroethene		ND		ug/kg	71	12.	1
Styrene		ND		ug/kg	71	14.	1
Dichlorodifluoromethane		ND		ug/kg	710	65.	1
Acetone		1200		ug/kg	710	340	1
Carbon disulfide		ND		ug/kg	710	320	1
2-Butanone		390	J	ug/kg	710	160	1
4-Methyl-2-pentanone		ND		ug/kg	710	91.	1
2-Hexanone		ND		ug/kg	710	84.	1
Bromochloromethane		ND		ug/kg	140	15.	1
1,2-Dibromoethane		ND		ug/kg	71	20.	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	210	71.	1
Isopropylbenzene		ND		ug/kg	71	7.8	1
1,2,3-Trichlorobenzene		ND		ug/kg	140	23.	1
1,2,4-Trichlorobenzene		ND		ug/kg	140	19.	1
Methyl Acetate		530		ug/kg	280	68.	1
Cyclohexane		ND		ug/kg	710	39.	1
1,4-Dioxane		ND		ug/kg	5700	2500	1
Freon-113		ND		ug/kg	280	50.	1
Methyl cyclohexane		ND		ug/kg	280	43.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	99		70-130	

			Serial_N	0:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-03		Date Collected:	07/27/21 14:15
Client ID:	TP-9 8-9FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/03/21 02:51			
Analyst:	JC			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	6.2	2.9	1
1,1-Dichloroethane	ND		ug/kg	1.2	0.18	1
Chloroform	0.21	J	ug/kg	1.9	0.17	1
Carbon tetrachloride	ND		ug/kg	1.2	0.29	1
1,2-Dichloropropane	ND		ug/kg	1.2	0.16	1
Dibromochloromethane	ND		ug/kg	1.2	0.17	1
1,1,2-Trichloroethane	ND		ug/kg	1.2	0.33	1
Tetrachloroethene	ND		ug/kg	0.62	0.24	1
Chlorobenzene	ND		ug/kg	0.62	0.16	1
Trichlorofluoromethane	ND		ug/kg	5.0	0.87	1
1,2-Dichloroethane	ND		ug/kg	1.2	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.62	0.21	1
Bromodichloromethane	ND		ug/kg	0.62	0.14	1
trans-1,3-Dichloropropene	ND		ug/kg	1.2	0.34	1
cis-1,3-Dichloropropene	ND		ug/kg	0.62	0.20	1
Bromoform	ND		ug/kg	5.0	0.31	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.62	0.21	1
Benzene	ND		ug/kg	0.62	0.21	1
Toluene	1.4		ug/kg	1.2	0.68	1
Ethylbenzene	ND		ug/kg	1.2	0.18	1
Chloromethane	ND		ug/kg	5.0	1.2	1
Bromomethane	ND		ug/kg	2.5	0.72	1
Vinyl chloride	ND		ug/kg	1.2	0.42	1
Chloroethane	ND		ug/kg	2.5	0.56	1
1,1-Dichloroethene	ND		ug/kg	1.2	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.17	1
Trichloroethene	ND		ug/kg	0.62	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.18	1

		Se				Serial_No	rial_No:08052119:53		
Project Name:	BARNET MILLS				Lab Nu	mber:	L2140625		
Project Number:	21-26694E				Report	Date:	08/05/21		
		SAMP		6					
Lab ID:	L2140625-03				Date Col	lected:	07/27/21 14:15		
Client ID:	TP-9 8-9FT				Date Red	ceived:	07/28/21		
Sample Location:	RENSSELAER, NY				Field Pre	p:	Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	y GC/MS - Westborough	Lab							
1,3-Dichlorobenzene		ND		ug/kg	2.5	0.18	1		
1,4-Dichlorobenzene		ND		ug/kg	2.5	0.21	1		
Methyl tert butyl ether		ND		ug/kg	2.5	0.25	1		
p/m-Xylene		ND		ug/kg	2.5	0.70	1		
o-Xylene		ND		ug/kg	1.2	0.36	1		
cis-1,2-Dichloroethene		ND		ug/kg	1.2	0.22	1		
Styrene		ND		ug/kg	1.2	0.24	1		
Dichlorodifluoromethane		ND		ug/kg	12	1.1	1		
Acetone		ND		ug/kg	12	6.0	1		
Carbon disulfide		ND		ug/kg	12	5.7	1		
2-Butanone		ND		ug/kg	12	2.8	1		
4-Methyl-2-pentanone		ND		ug/kg	12	1.6	1		
2-Hexanone		ND		ug/kg	12	1.5	1		
Bromochloromethane		ND		ug/kg	2.5	0.26	1		
1,2-Dibromoethane		ND		ug/kg	1.2	0.35	1		
1,2-Dibromo-3-chloroprop	ane	ND		ug/kg	3.7	1.2	1		
Isopropylbenzene		ND		ug/kg	1.2	0.14	1		
1,2,3-Trichlorobenzene		ND		ug/kg	2.5	0.40	1		
1,2,4-Trichlorobenzene		ND		ug/kg	2.5	0.34	1		
Methyl Acetate		ND		ug/kg	5.0	1.2	1		
Cyclohexane		ND		ug/kg	12	0.68	1		
1,4-Dioxane		ND		ug/kg	100	44.	1		
Freon-113		ND		ug/kg	5.0	0.86	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	103	70-130	

5.0

ug/kg

0.75

ND

1

Methyl cyclohexane

			Serial_No	0:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2140625-04 TP-11 10FT RENSSELAER, NY		Date Collected: Date Received: Field Prep:	07/27/21 15:10 07/28/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 08/03/21 03:18 JC 83%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	6.8	3.1	1
1,1-Dichloroethane	ND		ug/kg	1.4	0.20	1
Chloroform	0.19	J	ug/kg	2.0	0.19	1
Carbon tetrachloride	ND	•	ug/kg	1.4	0.31	1
1,2-Dichloropropane	ND		ug/kg	1.4	0.17	1
Dibromochloromethane	ND		ug/kg	1.4	0.19	1
1,1,2-Trichloroethane	ND		ug/kg	1.4	0.36	1
Tetrachloroethene	ND		ug/kg	0.68	0.26	1
Chlorobenzene	ND		ug/kg	0.68	0.17	1
Trichlorofluoromethane	ND		ug/kg	5.4	0.94	1
1,2-Dichloroethane	ND		ug/kg	1.4	0.35	1
1,1,1-Trichloroethane	ND		ug/kg	0.68	0.22	1
Bromodichloromethane	ND		ug/kg	0.68	0.15	1
trans-1,3-Dichloropropene	ND		ug/kg	1.4	0.37	1
cis-1,3-Dichloropropene	ND		ug/kg	0.68	0.21	1
Bromoform	ND		ug/kg	5.4	0.33	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.68	0.22	1
Benzene	0.28	J	ug/kg	0.68	0.22	1
Toluene	2.1		ug/kg	1.4	0.73	1
Ethylbenzene	ND		ug/kg	1.4	0.19	1
Chloromethane	ND		ug/kg	5.4	1.2	1
Bromomethane	ND		ug/kg	2.7	0.78	1
Vinyl chloride	ND		ug/kg	1.4	0.45	1
Chloroethane	ND		ug/kg	2.7	0.61	1
1,1-Dichloroethene	ND		ug/kg	1.4	0.32	1
trans-1,2-Dichloroethene	ND		ug/kg	2.0	0.18	1
Trichloroethene	ND		ug/kg	0.68	0.18	1
1,2-Dichlorobenzene	ND		ug/kg	2.7	0.19	1

					;	Serial_No	0:08052119:53
Project Name:	BARNET MILLS				Lab Nu	mber:	L2140625
Project Number:	21-26694E				Report	Date:	08/05/21
		SAMP	LE RESULTS	6			
Lab ID:	L2140625-04				Date Col	llected:	07/27/21 15:10
Client ID:	TP-11 10FT				Date Re		07/28/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
	, ,						
1,3-Dichlorobenzene		ND		ug/kg	2.7	0.20	1
1,4-Dichlorobenzene		ND		ug/kg	2.7	0.23	1
Methyl tert butyl ether		ND		ug/kg	2.7	0.27	1
p/m-Xylene		ND		ug/kg	2.7	0.76	1
o-Xylene		ND		ug/kg	1.4	0.39	1
cis-1,2-Dichloroethene		ND		ug/kg	1.4	0.24	1
Styrene		ND		ug/kg	1.4	0.26	1
Dichlorodifluoromethane		ND		ug/kg	14	1.2	1
Acetone		ND		ug/kg	14	6.5	1
Carbon disulfide		ND		ug/kg	14	6.1	1
2-Butanone		ND		ug/kg	14	3.0	1
4-Methyl-2-pentanone		ND		ug/kg	14	1.7	1
2-Hexanone		ND		ug/kg	14	1.6	1
Bromochloromethane		ND		ug/kg	2.7	0.28	1
1,2-Dibromoethane		ND		ug/kg	1.4	0.38	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	4.0	1.3	1
Isopropylbenzene		ND		ug/kg	1.4	0.15	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.7	0.43	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.7	0.37	1
Methyl Acetate		ND		ug/kg	5.4	1.3	1
Cyclohexane		ND		ug/kg	14	0.73	1
1,4-Dioxane		ND		ug/kg	110	47.	1
Freon-113		ND		ug/kg	5.4	0.94	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	103	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	105	70-130

5.4

ug/kg

0.81

ND

1

Methyl cyclohexane

Project Number: 21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	08/02/21 19:01
Analyst:	KJD

arameter	Result	Qualifier	Units	RL	м	DL
olatile Organics by EPA 5035 Low	- Westboro	ugh Lab fo	r sample(s):	01-04	Batch:	WG1530890-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0	().14
Chloroform	0.14	J	ug/kg	1.5	().14
Carbon tetrachloride	ND		ug/kg	1.0	().23
1,2-Dichloropropane	ND		ug/kg	1.0	().12
Dibromochloromethane	ND		ug/kg	1.0	().14
1,1,2-Trichloroethane	ND		ug/kg	1.0	().27
Tetrachloroethene	ND		ug/kg	0.50	().20
Chlorobenzene	ND		ug/kg	0.50	().13
Trichlorofluoromethane	ND		ug/kg	4.0	().70
1,2-Dichloroethane	ND		ug/kg	1.0	().26
1,1,1-Trichloroethane	ND		ug/kg	0.50	().17
Bromodichloromethane	ND		ug/kg	0.50	().11
trans-1,3-Dichloropropene	ND		ug/kg	1.0	().27
cis-1,3-Dichloropropene	ND		ug/kg	0.50	().16
Bromoform	ND		ug/kg	4.0	().25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	().17
Benzene	ND		ug/kg	0.50	().17
Toluene	ND		ug/kg	1.0	().54
Ethylbenzene	ND		ug/kg	1.0	().14
Chloromethane	ND		ug/kg	4.0	().93
Bromomethane	ND		ug/kg	2.0	().58
Vinyl chloride	ND		ug/kg	1.0	().34
Chloroethane	ND		ug/kg	2.0	().45
1,1-Dichloroethene	ND		ug/kg	1.0	().24
trans-1,2-Dichloroethene	ND		ug/kg	1.5	().14
Trichloroethene	ND		ug/kg	0.50	().14
1,2-Dichlorobenzene	ND		ug/kg	2.0	().14
1,3-Dichlorobenzene	ND		ug/kg	2.0	().15

Project Number: 21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	08/02/21 19:01
Analyst:	KJD

arameter	Result	Qualifier	Units	RL	Μ	DL
olatile Organics by EPA 5035	Low - Westboro	ugh Lab fo	r sample(s):	01-04	Batch:	WG1530890-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0	.17
Methyl tert butyl ether	ND		ug/kg	2.0	0	.20
p/m-Xylene	ND		ug/kg	2.0	0	.56
o-Xylene	ND		ug/kg	1.0	0	.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0	.18
Styrene	ND		ug/kg	1.0	0	.20
Dichlorodifluoromethane	ND		ug/kg	10	0	.92
Acetone	ND		ug/kg	10	4	4.8
Carbon disulfide	ND		ug/kg	10	4	4.6
2-Butanone	ND		ug/kg	10	:	2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
Bromochloromethane	ND		ug/kg	2.0	0	.20
1,2-Dibromoethane	ND		ug/kg	1.0	0	.28
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0	0	.11
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0	.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0	.27
Methyl Acetate	ND		ug/kg	4.0	0	.95
Cyclohexane	ND		ug/kg	10	0	.54
1,4-Dioxane	ND		ug/kg	80	:	35.
Freon-113	ND		ug/kg	4.0	0	.69
Methyl cyclohexane	ND		ug/kg	4.0	0	.60

Project Name:	BARNET MILLS	Lab Number:	L2140625
Project Number:	21-26694E	Report Date:	08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/02/21 19:01Analyst:KJD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by EPA 5035 Low	- Westboro	ough Lab fo	r sample(s):	01-04	Batch: WG1530890-5

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	96		70-130	
Dibromofluoromethane	100		70-130	

Project Number: 21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/03/21 19:50Analyst:MKS

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	/estborough Lal	b for samp	le(s): 01-02	Batch:	WG1531346-5
Methylene chloride	ND		ug/kg	250	110
1,1-Dichloroethane	ND		ug/kg	50	7.2
Chloroform	14	J	ug/kg	75	7.0
Carbon tetrachloride	ND		ug/kg	50	12.
1,2-Dichloropropane	ND		ug/kg	50	6.2
Dibromochloromethane	ND		ug/kg	50	7.0
1,1,2-Trichloroethane	ND		ug/kg	50	13.
Tetrachloroethene	ND		ug/kg	25	9.8
Chlorobenzene	ND		ug/kg	25	6.4
Trichlorofluoromethane	ND		ug/kg	200	35.
1,2-Dichloroethane	ND		ug/kg	50	13.
1,1,1-Trichloroethane	ND		ug/kg	25	8.4
Bromodichloromethane	ND		ug/kg	25	5.4
trans-1,3-Dichloropropene	ND		ug/kg	50	14.
cis-1,3-Dichloropropene	ND		ug/kg	25	7.9
Bromoform	ND		ug/kg	200	12.
1,1,2,2-Tetrachloroethane	ND		ug/kg	25	8.3
Benzene	ND		ug/kg	25	8.3
Toluene	ND		ug/kg	50	27.
Ethylbenzene	ND		ug/kg	50	7.0
Chloromethane	ND		ug/kg	200	47.
Bromomethane	ND		ug/kg	100	29.
Vinyl chloride	ND		ug/kg	50	17.
Chloroethane	ND		ug/kg	100	23.
1,1-Dichloroethene	ND		ug/kg	50	12.
trans-1,2-Dichloroethene	ND		ug/kg	75	6.8
Trichloroethene	ND		ug/kg	25	6.8
1,2-Dichlorobenzene	ND		ug/kg	100	7.2
1,3-Dichlorobenzene	ND		ug/kg	100	7.4

Project Number: 21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/03/21 19:50Analyst:MKS

arameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lab	o for sample	e(s): 01-	02 Batch:	WG1531346-5	
1,4-Dichlorobenzene	ND		ug/kg	100	8.6	
Methyl tert butyl ether	ND		ug/kg	100	10.	
p/m-Xylene	ND		ug/kg	100	28.	
o-Xylene	ND		ug/kg	50	14.	
cis-1,2-Dichloroethene	ND		ug/kg	50	8.8	
Styrene	ND		ug/kg	50	9.8	
Dichlorodifluoromethane	ND		ug/kg	500	46.	
Acetone	ND		ug/kg	500	240	
Carbon disulfide	ND		ug/kg	500	230	
2-Butanone	ND		ug/kg	500	110	
4-Methyl-2-pentanone	ND		ug/kg	500	64.	
2-Hexanone	ND		ug/kg	500	59.	
Bromochloromethane	ND		ug/kg	100	10.	
1,2-Dibromoethane	ND		ug/kg	50	14.	
1,2-Dibromo-3-chloropropane	ND		ug/kg	150	50.	
Isopropylbenzene	ND		ug/kg	50	5.4	
1,2,3-Trichlorobenzene	ND		ug/kg	100	16.	
1,2,4-Trichlorobenzene	ND		ug/kg	100	14.	
Methyl Acetate	ND		ug/kg	200	48.	
Cyclohexane	ND		ug/kg	500	27.	
1,4-Dioxane	ND		ug/kg	4000	1800	
Freon-113	ND		ug/kg	200	35.	
Methyl cyclohexane	ND		ug/kg	200	30.	

Project Name:	BARNET MILLS	Lab Number:	L2140625
Project Number:	21-26694E	Report Date:	08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/03/21 19:50Analyst:MKS

Parameter	Result	Qualifier	Units	i	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lat	b for sample	e(s):	01-02	Batch:	WG1531346-5	

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	98		70-130	
Dibromofluoromethane	99		70-130	

Project Number: 21-26694E

Project Name:

Lab Number: L2140625

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westk	oorough Lab Ass	ociated sample	e(s): 01-04 Ba	atch: WG1	530890-3 WG153	0890-4	
Methylene chloride	103		103		70-130	0	30
1,1-Dichloroethane	110		109		70-130	1	30
Chloroform	99		97		70-130	2	30
Carbon tetrachloride	106		104		70-130	2	30
1,2-Dichloropropane	105		104		70-130	1	30
Dibromochloromethane	102		104		70-130	2	30
1,1,2-Trichloroethane	104		107		70-130	3	30
Tetrachloroethene	110		107		70-130	3	30
Chlorobenzene	105		103		70-130	2	30
Trichlorofluoromethane	135		132		70-139	2	30
1,2-Dichloroethane	100		102		70-130	2	30
1,1,1-Trichloroethane	108		106		70-130	2	30
Bromodichloromethane	100		102		70-130	2	30
trans-1,3-Dichloropropene	106		109		70-130	3	30
cis-1,3-Dichloropropene	103		104		70-130	1	30
Bromoform	90		94		70-130	4	30
1,1,2,2-Tetrachloroethane	104		108		70-130	4	30
Benzene	105		103		70-130	2	30
Toluene	106		103		70-130	3	30
Ethylbenzene	108		106		70-130	2	30
Chloromethane	150	Q	143	Q	52-130	5	30
Bromomethane	136		132		57-147	3	30
Vinyl chloride	150	Q	147	Q	67-130	2	30

Project Name: Project Number: 21-26694E

BARNET MILLS

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Wes	tborough Lab Asso	ciated sample	e(s): 01-04 Ba	atch: WG1	530890-3 WG153	0890-4	
Chloroethane	128		126		50-151	2	30
1,1-Dichloroethene	115		112		65-135	3	30
trans-1,2-Dichloroethene	109		106		70-130	3	30
Trichloroethene	105		103		70-130	2	30
1,2-Dichlorobenzene	100		100		70-130	0	30
1,3-Dichlorobenzene	103		101		70-130	2	30
1,4-Dichlorobenzene	103		102		70-130	1	30
Methyl tert butyl ether	97		101		66-130	4	30
p/m-Xylene	107		106		70-130	1	30
o-Xylene	106		105		70-130	1	30
cis-1,2-Dichloroethene	107		106		70-130	1	30
Styrene	106		106		70-130	0	30
Dichlorodifluoromethane	257	Q	242	Q	30-146	6	30
Acetone	89		96		54-140	8	30
Carbon disulfide	114		112		59-130	2	30
2-Butanone	94		102		70-130	8	30
4-Methyl-2-pentanone	86		93		70-130	8	30
2-Hexanone	92		100		70-130	8	30
Bromochloromethane	100		101		70-130	1	30
1,2-Dibromoethane	103		106		70-130	3	30
1,2-Dibromo-3-chloropropane	83		93		68-130	11	30
Isopropylbenzene	113		109		70-130	4	30
1,2,3-Trichlorobenzene	99		100		70-130	1	30

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number: L2140625 Report Date: 08/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by EPA 5035 Low - Westbo	rough Lab Asso	ociated sample	(s): 01-04 Ba	tch: WG1	530890-3 WG153	80890-4			
1,2,4-Trichlorobenzene	102		102		70-130	0		30	
Methyl Acetate	95		103		51-146	8		30	
Cyclohexane	118		114		59-142	3		30	
1,4-Dioxane	88		97		65-136	10		30	
Freon-113	120		116		50-139	3		30	
Methyl cyclohexane	114		110		70-130	4		30	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	100	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	101	100	70-130
Dibromofluoromethane	98	99	70-130

Lab Number: L2140625

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recove	ry Qual	Limits	RPD	Qual	Limits
/olatile Organics by GC/MS - Westborough I	ab Associated	sample(s):	01-02 Batch	: WG1531346-3	3 WG1531346-4			
Methylene chloride	111		103		70-130	7		30
1,1-Dichloroethane	117		107		70-130	9		30
Chloroform	102		98		70-130	4		30
Carbon tetrachloride	112		101		70-130	10		30
1,2-Dichloropropane	109		102		70-130	7		30
Dibromochloromethane	105		103		70-130	2		30
1,1,2-Trichloroethane	107		105		70-130	2		30
Tetrachloroethene	116		103		70-130	12		30
Chlorobenzene	108		101		70-130	7		30
Trichlorofluoromethane	120		110		70-139	9		30
1,2-Dichloroethane	108		105		70-130	3		30
1,1,1-Trichloroethane	115		104		70-130	10		30
Bromodichloromethane	104		100		70-130	4		30
trans-1,3-Dichloropropene	116		113		70-130	3		30
cis-1,3-Dichloropropene	109		104		70-130	5		30
Bromoform	93		93		70-130	0		30
1,1,2,2-Tetrachloroethane	106		104		70-130	2		30
Benzene	107		98		70-130	9		30
Toluene	109		101		70-130	8		30
Ethylbenzene	112		103		70-130	8		30
Chloromethane	147	Q	128		52-130	14		30
Bromomethane	130		117		57-147	11		30
Vinyl chloride	144	Q	125		67-130	14		30

Lab Number: L2140625

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02	Batch:	WG1531346-3	WG1531346-4				
Chloroethane	113			102		50-151	10		30	
1,1-Dichloroethene	124			110		65-135	12		30	
trans-1,2-Dichloroethene	114			102		70-130	11		30	
Trichloroethene	109			100		70-130	9		30	
1,2-Dichlorobenzene	106			100		70-130	6		30	
1,3-Dichlorobenzene	108			99		70-130	9		30	
1,4-Dichlorobenzene	107			100		70-130	7		30	
Methyl tert butyl ether	106			103		66-130	3		30	
p/m-Xylene	111			103		70-130	7		30	
o-Xylene	109			101		70-130	8		30	
cis-1,2-Dichloroethene	109			101		70-130	8		30	
Styrene	109			102		70-130	7		30	
Dichlorodifluoromethane	243	Q		213	Q	30-146	13		30	
Acetone	97			101		54-140	4		30	
Carbon disulfide	124			109		59-130	13		30	
2-Butanone	91			95		70-130	4		30	
4-Methyl-2-pentanone	89			92		70-130	3		30	
2-Hexanone	98			104		70-130	6		30	
Bromochloromethane	103			97		70-130	6		30	
1,2-Dibromoethane	108			106		70-130	2		30	
1,2-Dibromo-3-chloropropane	85			90		68-130	6		30	
Isopropylbenzene	117			106		70-130	10		30	
1,2,3-Trichlorobenzene	106			102		70-130	4		30	

Lab Number: L2140625 Report Date: 08/05/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	' Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-02 Batch:	WG1531346-3	WG1531346-4			
1,2,4-Trichlorobenzene	110		102		70-130	8		30
Methyl Acetate	95		99		51-146	4		30
Cyclohexane	125		111		59-142	12		30
1,4-Dioxane	90		93		65-136	3		30
Freon-113	131		116		50-139	12		30
Methyl cyclohexane	116		103		70-130	12		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	101	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	105	103	70-130
Dibromofluoromethane	98	96	70-130

SEMIVOLATILES

			Serial_No:08052119:53		
Project Name:	BARNET MILLS		Lab Number:	L2140625	
Project Number:	21-26694E		Report Date:	08/05/21	
		SAMPLE RESULTS			
Lab ID:	L2140625-01		Date Collected:	07/27/21 09:40	
Client ID:	TP-1 6-8FT		Date Received:	07/28/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	I: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	07/31/21 18:04	
Analytical Date:	08/02/21 15:00				
Analyst:	SLR				
Percent Solids:	88%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	ND		ug/kg	150	19.	1
Fluoranthene	ND		ug/kg	110	22.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	46.	1
Benzo(b)fluoranthene	ND		ug/kg	110	32.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	19	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	190	18.	1
Phenanthrene	ND		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	19.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	32		23-120	
2-Fluorobiphenyl	28	Q	30-120	
4-Terphenyl-d14	25		18-120	

			Serial_No:08052119:53		
Project Name:	BARNET MILLS		Lab Number:	L2140625	
Project Number:	21-26694E		Report Date:	08/05/21	
		SAMPLE RESULTS			
Lab ID:	L2140625-02		Date Collected:	07/27/21 09:50	
Client ID:	TP-1 8-10FT		Date Received:	07/28/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	I: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	07/31/21 18:04	
Analytical Date:	08/02/21 15:24				
Analyst:	SLR				
Percent Solids:	75%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	180	23.	1		
Fluoranthene	44	J	ug/kg	130	25.	1		
Benzo(a)anthracene	31	J	ug/kg	130	25.	1		
Benzo(a)pyrene	ND		ug/kg	180	54.	1		
Benzo(b)fluoranthene	62	J	ug/kg	130	37.	1		
Benzo(k)fluoranthene	ND		ug/kg	130	35.	1		
Chrysene	110	J	ug/kg	130	23.	1		
Acenaphthylene	ND		ug/kg	180	34.	1		
Anthracene	ND		ug/kg	130	43.	1		
Benzo(ghi)perylene	26	J	ug/kg	180	26.	1		
Fluorene	ND		ug/kg	220	21.	1		
Phenanthrene	43	J	ug/kg	130	27.	1		
Dibenzo(a,h)anthracene	ND		ug/kg	130	26.	1		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	180	31.	1		
Pyrene	45	J	ug/kg	130	22.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	61	30-120	
4-Terphenyl-d14	55	18-120	

			Serial_No	:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-03		Date Collected:	07/27/21 14:15
Client ID:	TP-9 8-9FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	07/31/21 18:04
Analytical Date:	08/02/21 15:48			
Analyst:	SLR			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Acenaphthene	ND		ug/kg	150	20.	1			
Fluoranthene	240		ug/kg	110	22.	1			
Benzo(a)anthracene	120		ug/kg	110	21.	1			
Benzo(a)pyrene	89	J	ug/kg	150	46.	1			
Benzo(b)fluoranthene	120		ug/kg	110	32.	1			
Benzo(k)fluoranthene	49	J	ug/kg	110	30.	1			
Chrysene	120		ug/kg	110	20.	1			
Acenaphthylene	ND		ug/kg	150	29.	1			
Anthracene	48	J	ug/kg	110	37.	1			
Benzo(ghi)perylene	52	J	ug/kg	150	22.	1			
Fluorene	19	J	ug/kg	190	18.	1			
Phenanthrene	180		ug/kg	110	23.	1			
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1			
Indeno(1,2,3-cd)pyrene	56	J	ug/kg	150	26.	1			
Pyrene	190		ug/kg	110	19.	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	95	23-120	
2-Fluorobiphenyl	82	30-120	
4-Terphenyl-d14	80	18-120	

			Serial_No	0:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-04		Date Collected:	07/27/21 15:10
Client ID:	TP-11 10FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	07/31/21 18:04
Analytical Date:	08/02/21 16:12			
Analyst:	SLR			
Percent Solids:	83%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	160	20.	1		
Fluoranthene	64	J	ug/kg	120	23.	1		
Benzo(a)anthracene	44	J	ug/kg	120	22.	1		
Benzo(a)pyrene	ND		ug/kg	160	48.	1		
Benzo(b)fluoranthene	61	J	ug/kg	120	33.	1		
Benzo(k)fluoranthene	40	J	ug/kg	120	32.	1		
Chrysene	65	J	ug/kg	120	21.	1		
Acenaphthylene	ND		ug/kg	160	31.	1		
Anthracene	ND		ug/kg	120	39.	1		
Benzo(ghi)perylene	40	J	ug/kg	160	23.	1		
Fluorene	ND		ug/kg	200	19.	1		
Phenanthrene	78	J	ug/kg	120	24.	1		
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1		
Indeno(1,2,3-cd)pyrene	36	J	ug/kg	160	28.	1		
Pyrene	57	J	ug/kg	120	20.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	81	23-120	
2-Fluorobiphenyl	69	30-120	
4-Terphenyl-d14	61	18-120	

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8270D 08/02/21 23:38 CMM Extraction Method: EPA 3546 Extraction Date: 07/30/21 23:59

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	h Lab for sai	mple(s):	01-04	Batch:	WG1530063-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	99		19.
Benzo(a)anthracene	ND		ug/kg	99		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.

%Recovery 0	Acceptance Qualifier Criteria
91	25-120
95	10-120
95	23-120
101	30-120
114	10-136
119	18-120
	91 95 95 101 114

BARNET MILLS **Project Name:** Project Number: 21-26694E

Lab Number: L2140625 08/05/21

Report Date:

	LCS	-	LCSD		%Recovery		_	RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Associ	ated sample(s):	01-04 Batch	n: WG153006	3-2 WG15300	63-3		
Acenaphthene	94		92		31-137	2		50
Fluoranthene	99		95		40-140	4		50
Benzo(a)anthracene	99		97		40-140	2		50
Benzo(a)pyrene	102		98		40-140	4		50
Benzo(b)fluoranthene	95		92		40-140	3		50
Benzo(k)fluoranthene	107		104		40-140	3		50
Chrysene	89		87		40-140	2		50
Acenaphthylene	98		96		40-140	2		50
Anthracene	95		91		40-140	4		50
Benzo(ghi)perylene	97		94		40-140	3		50
Fluorene	96		95		40-140	1		50
Phenanthrene	94		90		40-140	4		50
Dibenzo(a,h)anthracene	103		101		40-140	2		50
Indeno(1,2,3-cd)pyrene	93		91		40-140	2		50
Pyrene	98		93		35-142	5		50

LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
90	89	25-120
91	92	10-120
87	90	23-120
93	92	30-120
106	105	10-136
106	103	18-120
	%Recovery Qual 90 91 87 93 106 106	%Recovery Qual %Recovery Qual 90 89 91 92 91 92 87 90 93 92 106 105

PCBS

			Serial_No	:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
			SAMPLE RESULTS	
Lab ID:	L2140625-01	D	Date Collected:	07/27/21 09:40
Client ID:	TP-1 6-8FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	07/31/21 16:56
Analytical Date:	08/02/21 11:28		Cleanup Method:	EPA 3665A
Analyst:	JM		Cleanup Date:	08/01/21
Percent Solids:	88%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/01/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	183	16.3	5	A			
Aroclor 1221	ND		ug/kg	183	18.4	5	А			
Aroclor 1232	ND		ug/kg	183	38.9	5	А			
Aroclor 1242	ND		ug/kg	183	24.7	5	А			
Aroclor 1248	ND		ug/kg	183	27.5	5	А			
Aroclor 1254	ND		ug/kg	183	20.0	5	А			
Aroclor 1260	ND		ug/kg	183	33.9	5	А			
Aroclor 1262	ND		ug/kg	183	23.3	5	А			
Aroclor 1268	748		ug/kg	183	19.0	5	В			
PCBs, Total	748		ug/kg	183	16.3	5	В			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		30-150	А
Decachlorobiphenyl	1230	Q	30-150	А
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	1320	Q	30-150	В

			Serial_No	0:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESU	LTS	
Lab ID:	L2140625-02)	Date Collected:	07/27/21 09:50
Client ID:	TP-1 8-10FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	07/31/21 16:56
Analytical Date:	08/02/21 11:35		Cleanup Method:	EPA 3665A
Analyst:	JM		Cleanup Date:	08/01/21
Percent Solids:	75%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/01/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	222	19.7	5	A			
Aroclor 1221	ND		ug/kg	222	22.2	5	А			
Aroclor 1232	ND		ug/kg	222	47.0	5	А			
Aroclor 1242	ND		ug/kg	222	29.9	5	А			
Aroclor 1248	ND		ug/kg	222	33.3	5	А			
Aroclor 1254	ND		ug/kg	222	24.3	5	А			
Aroclor 1260	ND		ug/kg	222	41.0	5	А			
Aroclor 1262	ND		ug/kg	222	28.2	5	А			
Aroclor 1268	1300		ug/kg	222	23.0	5	В			
PCBs, Total	1300		ug/kg	222	19.7	5	В			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	55		30-150	A
Decachlorobiphenyl	1880	Q	30-150	А
2,4,5,6-Tetrachloro-m-xylene	63		30-150	В
Decachlorobiphenyl	2050	Q	30-150	В

			Serial_No	:08052119:53
Project Name:	BARNET MILLS		Lab Number:	L2140625
Project Number:	21-26694E		Report Date:	08/05/21
		SAMPLE RESULTS		
Lab ID:	L2140625-03		Date Collected:	07/27/21 14:15
Client ID:	TP-9 8-9FT		Date Received:	07/28/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	07/31/21 16:56
Analytical Date:	08/03/21 10:05		Cleanup Method:	EPA 3665A
Analyst:	JM		Cleanup Date:	08/01/21
Percent Solids:	87%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/01/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
						_				
Aroclor 1016	ND		ug/kg	37.1	3.30	1	A			
Aroclor 1221	ND		ug/kg	37.1	3.72	1	А			
Aroclor 1232	ND		ug/kg	37.1	7.88	1	А			
Aroclor 1242	ND		ug/kg	37.1	5.01	1	А			
Aroclor 1248	ND		ug/kg	37.1	5.57	1	А			
Aroclor 1254	ND		ug/kg	37.1	4.06	1	А			
Aroclor 1260	ND		ug/kg	37.1	6.86	1	А			
Aroclor 1262	ND		ug/kg	37.1	4.72	1	А			
Aroclor 1268	78.3		ug/kg	37.1	3.85	1	А			
PCBs, Total	78.3		ug/kg	37.1	3.30	1	А			

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	А
Decachlorobiphenyl	201	Q	30-150	А
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	217	Q	30-150	В

				Serial_No:	08052119:53
Project Name:	BARNET MILLS			Lab Number:	L2140625
Project Number:	21-26694E			Report Date:	08/05/21
			SAMPLE RESULTS		
Lab ID:	L2140625-04	D		Date Collected:	07/27/21 15:10
Client ID:	TP-11 10FT			Date Received:	07/28/21
Sample Location:	RENSSELAER, NY			Field Prep:	Not Specified
Sample Depth:					
Matrix:	Soil			Extraction Method:	EPA 3546
Analytical Method:	1,8082A			Extraction Date:	07/31/21 16:56
Analytical Date:	08/03/21 02:07			Cleanup Method:	EPA 3665A
Analyst:	JM			Cleanup Date:	08/01/21
Percent Solids:	83%			Cleanup Method:	EPA 3660B
				Cleanup Date:	08/01/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/kg	766	68.0	20	А			
Aroclor 1221	ND		ug/kg	766	76.7	20	А			
Aroclor 1232	ND		ug/kg	766	162.	20	А			
Aroclor 1242	ND		ug/kg	766	103.	20	А			
Aroclor 1248	ND		ug/kg	766	115.	20	А			
Aroclor 1254	ND		ug/kg	766	83.8	20	А			
Aroclor 1260	ND		ug/kg	766	142.	20	А			
Aroclor 1262	ND		ug/kg	766	97.3	20	А			
Aroclor 1268	1830		ug/kg	766	79.4	20	В			
PCBs, Total	1830		ug/kg	766	68.0	20	В			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	А
Decachlorobiphenyl	0	Q	30-150	А
2,4,5,6-Tetrachloro-m-xylene	0	Q	30-150	В
Decachlorobiphenyl	0	Q	30-150	В

L2140625

08/05/21

Lab Number:

Report Date:

Project Name: BARNET MILLS

Project Number: 21-26694E

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 08/01/21 23:05 JAW Extraction Method:EPA 3546Extraction Date:07/31/21 08:26Cleanup Method:EPA 3665ACleanup Date:07/31/21Cleanup Method:EPA 3660BCleanup Date:07/31/21

Devenenter	Result	Qualifier	Units	RL		MDL	Column
Parameter	Result	Quaimer	Units	RL.		WDL	Column
Polychlorinated Biphenyls by GC -	Westborough	h Lab for s	ample(s):	01-04	Batch:	WG153	80122-1
Aroclor 1016	ND		ug/kg	32.4		2.88	А
Aroclor 1221	ND		ug/kg	32.4		3.24	А
Aroclor 1232	ND		ug/kg	32.4		6.86	А
Aroclor 1242	ND		ug/kg	32.4		4.36	А
Aroclor 1248	ND		ug/kg	32.4		4.86	А
Aroclor 1254	ND		ug/kg	32.4		3.54	А
Aroclor 1260	ND		ug/kg	32.4		5.98	А
Aroclor 1262	ND		ug/kg	32.4		4.11	А
Aroclor 1268	ND		ug/kg	32.4		3.35	А
PCBs, Total	ND		ug/kg	32.4		2.88	А

			Acceptanc	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69		30-150	A
Decachlorobiphenyl	74		30-150	А
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	70		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01-04 Batch: WG1530122-2 WG1530122-3 71 Aroclor 1016 72 40-140 50 А 1 68 67 40-140 50 Aroclor 1260 А 1

	LCS	LCSD		Acceptance		
Surrogate	%Recovery	Qual %Recovery Qual		Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	69	68		30-150	А	
Decachlorobiphenyl	67	66		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	67	66		30-150	В	
Decachlorobiphenyl	68	72		30-150	В	

INORGANICS & MISCELLANEOUS

Serial No:08052119:

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2140625-01 TP-1 6-8FT RENSSELAER, N	Y					Received:	07/27/21 09:40 07/28/21 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Qualit	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	87.7	%	0.100	NA	1	-	07/29/21 11:54	4 121,2540G	RI

Serial No:08052119:

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2140625-02 TP-1 8-10FT RENSSELAER,	NY					Received:	07/27/21 09:50 07/28/21 Not Specified)
Sample Depth: Matrix:	Soil								
Parameter	Result Qua	alifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab								
Solids, Total	74.8	%	0.100	NA	1	-	07/29/21 11:54	4 121,2540G	RI

Senal IN0.00052119.55	Serial	No:08052119:	53
-----------------------	--------	--------------	----

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2140625-0 TP-9 8-9FT RENSSELA	-						Received:	eceived: 07/28/21	
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal	C								
Solids, Total	87.4		%	0.100	NA	1	-	07/29/21 11:54	4 121,2540G	RI

Serial No:08052119:53	Serial	No:08052119:53
-----------------------	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2140625-0 TP-11 10FT RENSSELA							Received:	07/27/21 15:10 07/28/21 Not Specified)
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	83.0		%	0.100	NA	1	-	07/29/21 11:54	4 121,2540G	RI

Project Name:	BARNET MILLS	Li	ab Duplicate Analy Batch Quality Control			ab Numbe	
Project Number:	21-26694E				R	eport Date	e: 08/05/21
Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits

I di diffetet		pie D	uplicate Sample	Units		Quai	
General Chemistry - Westborough Lab	Associated sample(s): 01-04	QC Batch ID:	WG1529388-1	QC Sample:	L2140479-01	Client ID:	DUP Sample
						•	- • · • • • • • • • • •
Calida Tatal	04.0		00.0	0/	1		20
Solids, Total	81.8		82.3	%	1		20

Project Name:BARNET MILLSProject Number:21-26694E

Serial_No:08052119:53 *Lab Number:* L2140625 *Report Date:* 08/05/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2140625-01A	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		SUB-RCRA8(28)
L2140625-01B	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-01C	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2140625-01X	Vial MeOH preserved split	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-01Y	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)
L2140625-01Z	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)
L2140625-02A	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		SUB-RCRA8(28)
L2140625-02B	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-02C	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2140625-02X	Vial MeOH preserved split	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-02Y	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)
L2140625-02Z	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)
L2140625-03A	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		SUB-RCRA8(28)
L2140625-03B	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-03C	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2140625-03X	Vial MeOH preserved split	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-03Y	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)
L2140625-03Z	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)
L2140625-04A	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		SUB-RCRA8(28)
L2140625-04B	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-04C	Glass 120ml/4oz unpreserved	А	NA		2.6	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2140625-04X	Vial MeOH preserved split	А	NA		2.6	Y	Absent		NYTCL-8260-R2(14)
L2140625-04Y	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)

Project Name:BARNET MILLSProject Number:21-26694E

Serial_No:08052119:53 *Lab Number:* L2140625 *Report Date:* 08/05/21

Container Information			Initial	nitial Final T				Frozen		
Container ID	Container Type	Cooler	er pH pH		deg C	Pres	Seal	Date/Time	Analysis(*)	
L2140625-04Z	Vial Water preserved split	А	NA		2.6	Y	Absent	29-JUL-21 12:01	NYTCL-8260-R2(14)	

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2140625

Report Date: 08/05/21

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2140625

Report Date: 08/05/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08052119:53

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2140625 Report Date: 08/05/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name: BARNET MILLS Project Number: 21-26694E

 Lab Number:
 L2140625

 Report Date:
 08/05/21

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 506-822-9300 FAX: 506-822-9300	Service Centers Mahwah, NJ 07430: 35 Whitney H Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Coop Project Information Project Name: Project Location:	y per Ave, Suite 105 Barnet Mills			ge 1 of 1	Deli	ir verable ASP	A			29) ASP-B		ALPHA Job # L2110625 Billing Information
Client Information		Project #	Rensselaer 21-26694E	NY			┥┝	Othe	S(1Fi	ie)		EQuIS (4 File)	Po # Attn. Mark Schnitzer
and a second	onmental Services Inc	(Use Project name as Proje		1			Rea	ulatory	-	emente			10250	Disposal Site Information
Address: 438 New Ka		Project Manager;	201111					NY T		ernent		NY Part	375	Please identify below location of
Albany NY 12205		ALPHAQuote #:					1 -	-	Standa	arris		NY CP-		applicable disposal facilities.
Phone: 518-588-210	34	Turn-Around Time							estricte			Other		Disposal Facility:
Fax:		Standar	d v	Due Date	a1		1 1-	_		ted Use	1	Onier		
Email: KimB@Alpi	neEnv.com	Rush (only if pre approved		# of Days			1 1	=		Discharg				Other: NA
These samples have beer	previously analyzed by A	and the second se	<u> </u>	in the buy	3.		ANA	LYSIS	-	on a charge		_		Sample Filtration
Other project specific re								T	1					
Please specify Metals or ALPHA Lab ID	TAL.			ollection		1	8260	8270 CP-51	8082 PCBs Total	RCRA Metals				ab to do
(Lab Use Only)	Sa	Sample ID Date		Time	Sample Matrix	Sampler's Initials	I .		~					
40625-01	TP-1 6-8 Ft		-		-	-	-	-	-		_	-+		Sample Specific Comments
-02	TP-1 8-10 Ft		7/27/21	9:40	Soil	KB	X	X	X	X	_	-+		
-03	TP-9 8-9 Ft		7/27/21	9:50	Soil	KB	X	X	X	X		-	_	
-04	TP-11 10 Ft		7/27/21	14:15	Soil	KB	X	X	X	X	-	-	_	
~ .			7/27/21	15:10	Soil	КВ	X	X	X	X	_	-	_	
And the state of the							-	+					_	
The second s						-	-	-	-		-	-	_	
					-		-	+	+		-	-		
DESCRIPTION OF THE PARTY OF THE			12	-	-		-	+	+		_	-+	_	
Sume and the second					-		-	+	+	+ +		-+	_	
D = H ₂ SO ₄ E = NaOH F = MeOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other	Westboro: Certification No: M Mansfield: Certification No: M Relinquished B Km L. Baines	MA015		/Time J:Y2	thic	Rece	ived By	At	t t	7/20	Date/T	12:42	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND
$f = Na_2S_2O_3$	E = Encore D = BOD Bottle	fin lucture	0	7/25/21	12:55t		1	×\$.	Æ)	76	ada -	0010	AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.

Thursday, August 05, 2021

Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2140625 SDG ID: GCI85109 Sample ID#s: CI85109 - CI85112

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

XI. De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Sample Id Cross Reference

August 05, 2021

SDG I.D.: GCI85109

Project ID: L2140625

Client Id	Lab Id	Matrix
TP-1 6-8FT	CI85109	SOIL
TP-1 8-10FT	CI85110	SOIL
TP-9 8-9FT	CI85111	SOIL
TP-11 10FT	CI85112	SOIL

Analysis Report

August 05, 2021

L2140625

TP-1 6-8FT

FOR: Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Information

Project ID:

Client ID:

Sample Informa	<u>ation</u>	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		07/27/21	9:40
Location Code:	ALPHA	Received by:	SW	07/30/21	11:15
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					00105400

Laboratory Data

SDG ID: GCI85109 Phoenix ID: CI85109

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	0.53	0.40	mg/Kg	1	08/03/21	EK	SW6010D
Arsenic	6.52	0.80	mg/Kg	1	08/03/21	CPP	SW6010D
Barium	82.9	0.40	mg/Kg	1	08/03/21	CPP	SW6010D
Cadmium	1.49	0.40	mg/Kg	1	08/03/21	CPP	SW6010D
Chromium	86.3	0.40	mg/Kg	1	08/03/21	CPP	SW6010D
Mercury	0.22	0.03	mg/Kg	2	08/02/21	AT	SW7471B
Lead	75.3	0.40	mg/Kg	1	08/03/21	CPP	SW6010D
Selenium	< 1.6	1.6	mg/Kg	1	08/03/21	CPP	SW6010D
Percent Solid	80		%		07/30/21	AR	SW846-%Solid
Sample Disposal	Completed				07/30/21		
Mercury Digestion	Completed				08/02/21	KL/AB/A	вSW7471В
Total Metals Digest	Completed				07/30/21	M\AG/E	SW3050B

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 05, 2021 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

August 05, 2021

FOR: Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample	Information

Sample Informa	<u>ition</u>	Custody Inform	ation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		07/27/21	9:50
Location Code:	ALPHA	Received by:	SW	07/30/21	11:15
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					00105400

Laboratory Data

SDG ID: GCI85109 Phoenix ID: CI85110

Project ID:	L2140625	
Client ID:	TP-1 8-10FT	
Parameter		Result

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	0.81	0.43	mg/Kg	1	08/03/21	EK	SW6010D
Arsenic	7.36	0.85	mg/Kg	1	08/03/21	CPP	SW6010D
Barium	123	0.43	mg/Kg	1	08/03/21	CPP	SW6010D
Cadmium	1.56	0.43	mg/Kg	1	08/03/21	CPP	SW6010D
Chromium	105	0.43	mg/Kg	1	08/03/21	CPP	SW6010D
Mercury	0.45	0.03	mg/Kg	2	08/03/21	AT	SW7471B
Lead	158	0.43	mg/Kg	1	08/03/21	CPP	SW6010D
Selenium	< 1.7	1.7	mg/Kg	1	08/03/21	CPP	SW6010D
Percent Solid	78		%		07/30/21	AR	SW846-%Solid
Sample Disposal	Completed				07/30/21		
Mercury Digestion	Completed				08/02/21	KL/AB/A	вSW7471В
Total Metals Digest	Completed				07/30/21	M\AG/E	SW3050B

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 05, 2021 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

August 05, 2021

L2140625

TP-9 8-9FT

FOR: Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample Information

Project ID:

Client ID:

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		07/27/21	14:15
Location Code:	ALPHA	Received by:	SW	07/30/21	11:15
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					00105400

Laboratory Data

SDG ID: GCI85109 Phoenix ID: CI85111

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.37	0.37	mg/Kg	1	08/03/21	CPP	SW6010D
Arsenic	7.80	0.74	mg/Kg	1	08/03/21	CPP	SW6010D
Barium	99.0	0.37	mg/Kg	1	08/03/21	CPP	SW6010D
Cadmium	1.48	0.37	mg/Kg	1	08/03/21	CPP	SW6010D
Chromium	31.8	0.37	mg/Kg	1	08/03/21	CPP	SW6010D
Mercury	0.18	0.03	mg/Kg	2	08/03/21	AT	SW7471B
Lead	81.6	0.37	mg/Kg	1	08/03/21	CPP	SW6010D
Selenium	< 1.5	1.5	mg/Kg	1	08/03/21	CPP	SW6010D
Percent Solid	85		%		07/30/21	AR	SW846-%Solid
Sample Disposal	Completed				07/30/21		
Mercury Digestion	Completed				08/02/21	KL/AB/A	вSW7471В
Total Metals Digest	Completed				07/30/21	M\AG/E	SW3050B

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 05, 2021 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

August 05, 2021

FOR: Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Sample	Information

Sample Informa	<u>ation</u>	Custody Inforn	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:		07/27/21	15:10
Location Code:	ALPHA	Received by:	SW	07/30/21	11:15
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:					00105400

Laboratory Data

SDG ID: GCI85109 Phoenix ID: CI85112

Project ID:	L2140625					
Client ID:	TP-11 10F1					

Т

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	2.76	0.44	mg/Kg	1	08/03/21	EK	SW6010D
Arsenic	14.5	0.87	mg/Kg	1	08/03/21	CPP	SW6010D
Barium	476	0.44	mg/Kg	1	08/03/21	CPP	SW6010D
Cadmium	3.83	0.44	mg/Kg	1	08/03/21	CPP	SW6010D
Chromium	277	4.4	mg/Kg	10	08/04/21	EK	SW6010D
Mercury	0.26	0.03	mg/Kg	2	08/03/21	AT	SW7471B
Lead	552	0.44	mg/Kg	1	08/03/21	CPP	SW6010D
Selenium	< 1.7	1.7	mg/Kg	1	08/03/21	CPP	SW6010D
Percent Solid	82		%		07/30/21	AR	SW846-%Solid
Sample Disposal	Completed				07/30/21		
Mercury Digestion	Completed				08/02/21	KL/AB/A	вSW7471В
Total Metals Digest	Completed				07/30/21	M\AG/E	SW3050B

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director August 05, 2021 Reviewed and Released by: Rashmi Makol, Project Manager

QA/QC Report August 05, 2021

QA/QC Data

SDG I.D.:	GCI85109

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 585923 (mg/kg)	, QC Sam	ple No:	CI84784	(CI8510)9)								
Mercury - Soil Comment:	BRL	0.03	0.14	0.33	NC	129	122	5.6				70 - 130	30
Additional Mercury criteria: LCS	acceptanc	e range l	for waters	is 80-120	% and fo	or soils i	s 70-1309	%. MS a	cceptan	ce range	e is 75-1	25%.	
QA/QC Batch 585924 (mg/kg)	, QC Sam	ple No:	CI85283	2X (CI8	35110, C	CI8511	1, CI851	12)					
Mercury - Soil Comment:	BRL	0.03	<0.03	<0.03	NC	103	97.3	5.7	104	93.7	10.4	70 - 130	30
Additional Mercury criteria: LCS	acceptanc	e range l	for waters	is 80-120	% and fo	or soils i	s 70-1309	%. MS a	cceptan	ce range	e is 75-1	25%.	
QA/QC Batch 585775 (mg/kg)	, QC Sam	ple No:	CI85073	(CI8510	09, CI85	5110, C		CI851	12)				
ICP Metals - Soil													
Arsenic	BRL	0.67	7.27	8.73	18.3	111	105	5.6	94.6			75 - 125	35
Barium	BRL	0.33	37.9	43.9	14.7	112	103	8.4	99.8			75 - 125	35
Cadmium	BRL	0.33	0.81	0.81	NC	107	104	2.8	98.5			75 - 125	35
Chromium	BRL	0.33	19.5	15.5	22.9	108	101	6.7	94.0			75 - 125	35
Lead	BRL	0.33	44.2	35.9	20.7	114	106	7.3	97.0			75 - 125	35
Selenium	BRL	1.3	<1.5	<1.3	NC	103	100	3.0	94.2			75 - 125	35
Silver	BRL	0.33	<0.38	<0.33	NC	103	97.9	5.1	93.7			75 - 125	35
Comment:													
Additional Critoria, LCS accorta	nco rango	c 00 100	N/ MS ac	ontonco	rongo 70	1050/							

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference LCS - Laboratory Control Sample LCSD - Laboratory Control Sample Duplicate MS - Matrix Spike MS Dup - Matrix Spike Duplicate NC - No Criteria Intf - Interference

Phyllis/Shiller, Laboratory Director August 05, 2021

Thursday, A	ugust 05, 2021		Sample Criteria	Sample Criteria Exceedances Report							
Criteria:	None GCI85109 - ALPHA										
State:	NY						RL	Analvsis			
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units			
*** No Doto	to Dicploy ***										

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Analysis Comments

August 05, 2021

SDG I.D.: GCI85109

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

NY Temperature Narration

August 05, 2021

SDG I.D.: GCI85109

The samples in this delivery group were received at 1.0° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

						MCice 1.0	0
		Su	Subcontract	t Chain of Custody			
		Phoen 587 Ea Manch	ix Environm ast Middle Ti lester, CT 06	Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040		Alpha Job Number L2140625	lumber
Client Information	prmation	4	Project Information	rmation	Regula	Regulatory Requirements/Report Limits	its
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Labs V0 1581-1019	Project Location: NY Project Manager: Melissa Deyo Turnaround & Deliver	Υ ⁄telissa Deyc d & Deliver	t Location: NY t Manager: Melissa Deyo Turnaround & Deliverables Information	State/Federal Progr Regulatory Criteria:	State/Federal Program: NYDOH Regulatory Criteria:	
Phone: 716.427.5229 Email: mdeyo@alphalab.com).com	Due Date: 08/05/21 Deliverables:	/05/21				
		Project Specific R	equireme	ct Specific Requirements and/or Report Requirements	ments		
Reference	Reference following Alpha Job Number on final report/deliverables: L2140625	ther on final report/de	liverables: I		rt to include M	Report to include Method Blank, LCS/LCSD:	
Additional Comments: Se	Additional Comments: Send all results/reports to subreports	ubreports@alphalab.com	ШQ				
		and a subscription of the same	A STATE OF STATE OF STATE				
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch QC
85101 8010 2012	Р-1 6-8FT Р-1 8-10FT Р-9 8-9FT Р-11 10FT	09:40 09:51 15:10 15:10		Total RCRA8 Metals - EPA 6010D/7471 Total RCRA8 Metals - EPA 6010D/7471 Total RCRA8 Metals - EPA 6010D/7471 Total RCRA8 Metals - EPA 6010D/7471	2222		
	Relinguished I	the m	1/0(12	Date/Time: 01129151 11-50-21 101418	Received By:	DWNKHM MAD21	912 115
Form No: AL_subcoc					\Diamond		

SOIL AND GROUNDWATER SAMPLES FROM DRILLED BORINGS AND WELLS

ANALYTICAL REPORT

Lab Number:	L2144034
Client:	Alpine Environmental
	438 New Karner Road
	Albany, NY 12205
ATTN:	Kim Baines
Phone:	(518) 250-4047
Project Name:	BARNET MILLS
Project Number:	21-26694E
Report Date:	08/24/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:08242116:46

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2144034-01	B-1 10-15'	SOIL	RENSSELAER, NY	08/09/21 09:30	08/17/21
L2144034-02	B-2 10-15'	SOIL	RENSSELAER, NY	08/09/21 11:00	08/17/21
L2144034-03	B-7 4-5'	SOIL	RENSSELAER, NY	08/10/21 11:05	08/17/21
L2144034-04	B-8 4-5'	SOIL	RENSSELAER, NY	08/10/21 11:30	08/17/21
L2144034-05	B-13 10-15'	SOIL	RENSSELAER, NY	08/11/21 10:40	08/17/21
L2144034-06	B-19 15-20'	SOIL	RENSSELAER, NY	08/12/21 11:15	08/17/21
L2144034-07	B-20 16-18'	SOIL	RENSSELAER, NY	08/12/21 14:00	08/17/21

Project Name: BARNET MILLS Project Number: 21-26694E
 Lab Number:
 L2144034

 Report Date:
 08/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number: L2144034 **Report Date:** 08/24/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-gualified) have been guantitated to the limit noted in the MDL column.

Volatile Organics

L2144034-01 through -07: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

L2144034-01: The surrogate recovery is outside the acceptance criteria for toluene-d8 (141%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

L2144034-05: The surrogate recovery is outside the acceptance criteria for 4-bromofluorobenzene (133%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

Semivolatile Organics

L2144034-04: The sample has elevated detection limits due to limited sample volume available for analysis. L2144034-05, -06, and -07: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

PCBs

L2144034-01 through -07: The sample has elevated detection limits due to the limited sample volume utilized during extraction, as required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

M 20A Jennifer L Clements

Title: Technical Director/Representative

Date: 08/24/21

ORGANICS

VOLATILES

			Serial_N	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-01		Date Collected:	08/09/21 09:30
Client ID:	B-1 10-15'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/21/21 00:38			
Analyst:	AJK			
Percent Solids:	82%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND		ug/kg	5.3	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.15	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.24	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.13	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.28	1
Tetrachloroethene	ND		ug/kg	0.53	0.21	1
Chlorobenzene	ND		ug/kg	0.53	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.3	0.74	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1
Bromodichloromethane	ND		ug/kg	0.53	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.53	0.17	1
1,3-Dichloropropene, Total	ND		ug/kg	0.53	0.17	1
Bromoform	ND		ug/kg	4.3	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.53	0.18	1
Benzene	0.73		ug/kg	0.53	0.18	1
Toluene	1.3		ug/kg	1.1	0.58	1
Ethylbenzene	3.5		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.3	0.99	1
Bromomethane	ND		ug/kg	2.1	0.62	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.1	0.48	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	ND		ug/kg	0.53	0.15	1

				Serial_No:08242116:46			
Project Name:	BARNET MILLS				Lab Nu		L2144034
Project Number:	21-26694E				Report	Date:	08/24/21
-		SAMP	LE RESULT	S	-		
Lab ID: Client ID: Sample Location:	L2144034-01 B-1 10-15' RENSSELAER, NY				Date Co Date Re Field Pre	ceived:	08/09/21 09:30 08/17/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene		1.3	J	ug/kg	2.1	0.15	1
1,3-Dichlorobenzene		ND		ug/kg	2.1	0.16	1
1,4-Dichlorobenzene		ND		ug/kg	2.1	0.18	1
Methyl tert butyl ether		ND		ug/kg	2.1	0.21	1
p/m-Xylene		5.4		ug/kg	2.1	0.60	1
o-Xylene		1.4		ug/kg	1.1	0.31	1
Xylenes, Total		6.8		ug/kg	1.1	0.31	1
cis-1,2-Dichloroethene		ND		ug/kg	1.1	0.19	1
1,2-Dichloroethene, Tota	l	ND		ug/kg	1.1	0.15	1
Styrene		ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane		ND		ug/kg	11	0.98	1
		20		ug/kg	11	5.1	1
Carbon disulfide 2-Butanone		ND ND		ug/kg	11	4.8 2.4	1
4-Methyl-2-pentanone		ND		ug/kg	11	1.4	1
2-Hexanone		ND		ug/kg	11	1.4	1
Bromochloromethane		ND		ug/kg ug/kg	2.1	0.22	1
1,2-Dibromoethane		ND		ug/kg	1.1	0.30	1
n-Butylbenzene		37		ug/kg	1.1	0.18	1
sec-Butylbenzene		56		ug/kg	1.1	0.16	1
tert-Butylbenzene		8.8		ug/kg	2.1	0.12	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.2	1.1	1
Isopropylbenzene		29		ug/kg	1.1	0.12	1
p-lsopropyltoluene		13		ug/kg	1.1	0.12	1
Naphthalene		70		ug/kg	4.3	0.69	1
n-Propylbenzene		18		ug/kg	1.1	0.18	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.1	0.34	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.1	0.29	1
1,3,5-Trimethylbenzene		33		ug/kg	2.1	0.20	1
1,2,4-Trimethylbenzene		160		ug/kg	2.1	0.36	1
Methyl Acetate		ND		ug/kg	4.3	1.0	1
Cyclohexane		7.7	J	ug/kg	11	0.58	1
1,4-Dioxane		ND		ug/kg	85	37.	1
Freon-113		ND		ug/kg	4.3	0.74	1
Methyl cyclohexane		35		ug/kg	4.3	0.64	1

		Serial_No	0:08242116:46			
BARNET MILLS				Lab Nu	umber:	L2144034
21-26694E				Report	Date:	08/24/21
	SAMPL	E RESULTS	5			
L2144034-01				Date Co	llected:	08/09/21 09:30
B-1 10-15'				Date Re	ceived:	08/17/21
RENSSELAER, NY				Field Pre	ep:	Not Specified
	Result	Qualifier	Units	RL	MDL	Dilution Factor
y GC/MS - Westborough I	_ab					
	21-26694E L2144034-01 B-1 10-15' RENSSELAER, NY	21-26694E L2144034-01 B-1 10-15' RENSSELAER, NY	21-26694E L2144034-01 B-1 10-15' RENSSELAER, NY Result Qualifier	21-26694E SAMPLE RESULTS L2144034-01 B-1 10-15' RENSSELAER, NY Result Qualifier Units	BARNET MILLS Lab Nu 21-26694E Report SAMPLE RESULTS Date Co B-1 10-15' Date Re RENSSELAER, NY Field Pro- Result Qualifier Units RL	BARNET MILLS Lab Number: 21-26694E RESULTS Report Date: L2144034-01 Date Collected: B-1 10-15' Date Received: RENSSELAER, NY Result Qualifier Units RL MDL

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	141	Q	70-130	
4-Bromofluorobenzene	78		70-130	
Dibromofluoromethane	90		70-130	

			Serial_N	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-02		Date Collected:	08/09/21 11:00
Client ID:	B-2 10-15'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/20/21 23:22			
Analyst:	AJK			
Percent Solids:	83%			

Parameter	Result	Qualifier L	Jnits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		g/kg	5.7	2.6	1
1,1-Dichloroethane	ND		g/kg	1.1	0.16	1
Chloroform	ND		g/kg	1.7	0.16	1
Carbon tetrachloride	ND		g/kg	1.1	0.26	1
1,2-Dichloropropane	ND		g/kg	1.1	0.14	1
Dibromochloromethane	ND		g/kg	1.1	0.16	1
1,1,2-Trichloroethane	ND		g/kg	1.1	0.30	1
Tetrachloroethene	ND		g/kg	0.57	0.22	1
Chlorobenzene	ND		g/kg	0.57	0.14	1
Trichlorofluoromethane	ND		g/kg	4.6	0.79	1
1,2-Dichloroethane	ND		g/kg	1.1	0.29	1
1,1,1-Trichloroethane	ND		g/kg	0.57	0.19	1
Bromodichloromethane	ND		g/kg	0.57	0.12	1
trans-1,3-Dichloropropene	ND		g/kg	1.1	0.31	1
cis-1,3-Dichloropropene	ND		g/kg	0.57	0.18	1
1,3-Dichloropropene, Total	ND		g/kg	0.57	0.18	1
Bromoform	ND		g/kg	4.6	0.28	1
1,1,2,2-Tetrachloroethane	ND		g/kg	0.57	0.19	1
Benzene	ND		g/kg	0.57	0.19	1
Toluene	ND		g/kg	1.1	0.62	1
Ethylbenzene	ND		g/kg	1.1	0.16	1
Chloromethane	ND		g/kg	4.6	1.1	1
Bromomethane	ND		g/kg	2.3	0.66	1
Vinyl chloride	ND	u	g/kg	1.1	0.38	1
Chloroethane	ND	u	g/kg	2.3	0.51	1
1,1-Dichloroethene	ND		g/kg	1.1	0.27	1
trans-1,2-Dichloroethene	ND	u	g/kg	1.7	0.16	1
Trichloroethene	ND	u	g/kg	0.57	0.16	1

						Serial_No	:08242116:46
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034
Project Number:	21-26694E				Report	t Date:	08/24/21
		SAMPI		S			
Lab ID:	L2144034-02				Date Co	llected:	08/09/21 11:00
Client ID:	B-2 10-15'				Date Re	ceived:	08/17/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
1,2-Dichlorobenzene		0.16	J	ug/kg	2.3	0.16	1
1,3-Dichlorobenzene		ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene		ND		ug/kg	2.3	0.19	1
Methyl tert butyl ether p/m-Xylene		ND ND		ug/kg	2.3	0.23	1
o-Xylene		ND		ug/kg ug/kg	1.1	0.33	1
Xylenes, Total		ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene		ND		ug/kg	1.1	0.20	1
1,2-Dichloroethene, Total		ND		ug/kg	1.1	0.16	1
Styrene		ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane		ND		ug/kg	11	1.0	1
Acetone		20		ug/kg	11	5.5	1
Carbon disulfide		ND		ug/kg	11	5.2	1
2-Butanone		ND		ug/kg	11	2.5	1
4-Methyl-2-pentanone		ND		ug/kg	11	1.4	1
2-Hexanone		ND		ug/kg	11	1.3	1
Bromochloromethane		ND		ug/kg	2.3	0.23	1
1,2-Dibromoethane		ND		ug/kg	1.1	0.32	1
n-Butylbenzene		3.1		ug/kg	1.1	0.19	1
sec-Butylbenzene		5.0		ug/kg	1.1	0.17	1
tert-Butylbenzene		0.73	J	ug/kg	2.3	0.13	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	3.4	1.1	1
Isopropylbenzene		0.80	J	ug/kg	1.1	0.12	1
p-Isopropyltoluene		0.25	J	ug/kg	1.1	0.12	1
Naphthalene		1.9	J	ug/kg	4.6	0.74	1
n-Propylbenzene		ND		ug/kg	1.1	0.19	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.3	0.37	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.3	0.31	1
1,3,5-Trimethylbenzene		ND	1	ug/kg	2.3	0.22	1
1,2,4-Trimethylbenzene		0.40	J	ug/kg	2.3	0.38	1
Methyl Acetate Cyclohexane		ND 3.1	J	ug/kg	4.6	1.1 0.62	1
1,4-Dioxane		ND	J	ug/kg ug/kg	91	40.	1
Freon-113		ND		ug/kg	4.6	0.79	1
Methyl cyclohexane		12		ug/kg ug/kg	4.6	0.69	1
		14		uy/ky	т.0	0.03	I

						Serial_No	08242116:46
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034
Project Number:	21-26694E				Report	Date:	08/24/21
		SAMPL	E RESULTS	5			
Lab ID:	L2144034-02				Date Co	llected:	08/09/21 11:00
Client ID:	B-2 10-15'				Date Re	ceived:	08/17/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	95	70-130
Toluene-d8	105	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	95	70-130

			Serial_N	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-03		Date Collected:	08/10/21 11:05
Client ID:	B-7 4-5'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/21/21 01:04			
Analyst:	AJK			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.13	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.3	0.75	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
1,3-Dichloropropene, Total	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.3	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	0.87	J	ug/kg	1.1	0.58	1
Ethylbenzene	0.31	J	ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.3	1.0	1
Bromomethane	ND		ug/kg	2.2	0.62	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	ND		ug/kg	0.54	0.15	1

						Serial_No	0:08242116:46
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034
Project Number:	21-26694E				Report	Date:	08/24/21
		SAMP	LE RESULT	S			
Lab ID:	L2144034-03				Date Co	llected:	08/10/21 11:05
Client ID:	B-7 4-5'				Date Re		08/17/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
1,2-Dichlorobenzene		1.0	J	ug/kg	2.2	0.15	1
1,3-Dichlorobenzene		0.22	J	ug/kg	2.2	0.16	1
1,4-Dichlorobenzene		0.35	J	ug/kg	2.2	0.18	1
Methyl tert butyl ether		ND		ug/kg	2.2	0.22	1
p/m-Xylene		ND		ug/kg	2.2	0.60	1
o-Xylene		0.54	J	ug/kg	1.1	0.31	1
Xylenes, Total		0.54	J	ug/kg	1.1	0.31	1
cis-1,2-Dichloroethene		ND		ug/kg	1.1	0.19	1
1,2-Dichloroethene, Tota	l	ND		ug/kg	1.1	0.15	1
Styrene		ND		ug/kg	1.1	0.21	1
Dichlorodifluoromethane		ND		ug/kg	11	0.98	1
Acetone		34		ug/kg	11	5.2	1
Carbon disulfide		ND		ug/kg	11	4.9	1
2-Butanone		ND		ug/kg	11	2.4	1
4-Methyl-2-pentanone		ND		ug/kg	11	1.4	1
2-Hexanone		ND		ug/kg	11	1.3	1
Bromochloromethane		ND ND		ug/kg	2.2	0.22	1
1,2-Dibromoethane n-Butylbenzene		6.1		ug/kg	1.1	0.30	1
sec-Butylbenzene		16		ug/kg	1.1	0.18	1
tert-Butylbenzene		2.2		ug/kg ug/kg	2.2	0.13	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.2	1.1	1
Isopropylbenzene		2.0		ug/kg	1.1	0.12	1
p-lsopropyltoluene		0.28	J	ug/kg	1.1	0.12	1
Naphthalene		6.4		ug/kg	4.3	0.70	1
n-Propylbenzene		ND		ug/kg	1.1	0.18	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.2	0.35	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.2	0.29	1
1,3,5-Trimethylbenzene		0.57	J	ug/kg	2.2	0.21	1
1,2,4-Trimethylbenzene		3.0		ug/kg	2.2	0.36	1
Methyl Acetate		ND		ug/kg	4.3	1.0	1
Cyclohexane		0.60	J	ug/kg	11	0.58	1
1,4-Dioxane		ND		ug/kg	86	38.	1
Freon-113		ND		ug/kg	4.3	0.74	1
Methyl cyclohexane		8.5		ug/kg	4.3	0.65	1

						Serial_No	0:08242116:46
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034
Project Number:	21-26694E				Report	Date:	08/24/21
		SAMPI		5			
Lab ID:	L2144034-03				Date Co	llected:	08/10/21 11:05
Client ID:	B-7 4-5'				Date Re	ceived:	08/17/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	118	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	97	70-130	

			Serial_N	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2144034-04 B-8 4-5' RENSSELAER, NY		Date Collected: Date Received: Field Prep:	08/10/21 11:30 08/17/21 Not Specified
Sample Depth:				
Matrix: Analytical Method:	Soil 1,8260C			
Analytical Date:	08/21/21 01:29			
Analyst: Percent Solids:	AJK 78%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - We	Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	6.4	2.9	1			
1,1-Dichloroethane	0.40	J	ug/kg	1.3	0.19	1			
Chloroform	ND		ug/kg	1.9	0.18	1			
Carbon tetrachloride	ND		ug/kg	1.3	0.30	1			
1,2-Dichloropropane	ND		ug/kg	1.3	0.16	1			
Dibromochloromethane	ND		ug/kg	1.3	0.18	1			
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.34	1			
Tetrachloroethene	ND		ug/kg	0.64	0.25	1			
Chlorobenzene	ND		ug/kg	0.64	0.16	1			
Trichlorofluoromethane	ND		ug/kg	5.1	0.89	1			
1,2-Dichloroethane	ND		ug/kg	1.3	0.33	1			
1,1,1-Trichloroethane	ND		ug/kg	0.64	0.21	1			
Bromodichloromethane	ND		ug/kg	0.64	0.14	1			
trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.35	1			
cis-1,3-Dichloropropene	ND		ug/kg	0.64	0.20	1			
1,3-Dichloropropene, Total	ND		ug/kg	0.64	0.20	1			
Bromoform	ND		ug/kg	5.1	0.32	1			
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.64	0.21	1			
Benzene	ND		ug/kg	0.64	0.21	1			
Toluene	ND		ug/kg	1.3	0.70	1			
Ethylbenzene	ND		ug/kg	1.3	0.18	1			
Chloromethane	ND		ug/kg	5.1	1.2	1			
Bromomethane	ND		ug/kg	2.6	0.75	1			
Vinyl chloride	ND		ug/kg	1.3	0.43	1			
Chloroethane	ND		ug/kg	2.6	0.58	1			
1,1-Dichloroethene	ND		ug/kg	1.3	0.31	1			
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.18	1			
Trichloroethene	ND		ug/kg	0.64	0.18	1			

	Serial_No:08242116:46						0:08242116:46
Project Name:	BARNET MILLS				Lab Nu		L2144034
Project Number:	21-26694E				Report	Date:	08/24/21
		SAMP		S	Nopon		00/24/21
Lab ID:	L2144034-04				Date Co	lloctod:	08/10/21 11:30
Client ID:	B-8 4-5'				Date Co		08/17/21
Sample Location:	RENSSELAER, NY				Field Pre		Not Specified
						.	
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	Lab					
1,2-Dichlorobenzene		ND		ug/kg	2.6	0.18	1
1,3-Dichlorobenzene		ND		ug/kg	2.6	0.19	1
1,4-Dichlorobenzene		ND		ug/kg	2.6	0.22	1
Methyl tert butyl ether		ND		ug/kg	2.6	0.26	1
p/m-Xylene		ND		ug/kg	2.6	0.72	1
o-Xylene		ND		ug/kg	1.3	0.37	1
Xylenes, Total		ND		ug/kg	1.3	0.37	1
cis-1,2-Dichloroethene		ND		ug/kg	1.3	0.22	1
1,2-Dichloroethene, Tota	l	ND		ug/kg	1.3	0.18	1
Styrene		ND		ug/kg	1.3	0.25	1
Dichlorodifluoromethane		ND		ug/kg	13	1.2	1
Acetone		77		ug/kg	13	6.2	1
Carbon disulfide		ND		ug/kg	13	5.8	1
2-Butanone		ND		ug/kg	13	2.8	1
4-Methyl-2-pentanone		ND		ug/kg	13	1.6	1
2-Hexanone		ND		ug/kg	13	1.5	1
Bromochloromethane		ND		ug/kg	2.6	0.26	1
1,2-Dibromoethane		ND		ug/kg	1.3	0.36	1
n-Butylbenzene		ND		ug/kg	1.3	0.21	1
sec-Butylbenzene		2.0		ug/kg	1.3	0.19	1
tert-Butylbenzene		0.79	J	ug/kg	2.6	0.15	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.8	1.3	1
Isopropylbenzene		0.27	J	ug/kg	1.3	0.14	1
p-lsopropyltoluene		ND		ug/kg	1.3	0.14	1
Naphthalene		14		ug/kg	5.1	0.84	1
n-Propylbenzene		ND		ug/kg	1.3	0.22	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.6	0.41	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.6	0.35	1
1,3,5-Trimethylbenzene		0.52	J	ug/kg	2.6	0.25	1
1,2,4-Trimethylbenzene		0.76	J	ug/kg	2.6	0.43	1
Methyl Acetate		ND		ug/kg	5.1	1.2	1
Cyclohexane		0.72	J	ug/kg	13	0.70	1
1,4-Dioxane		ND		ug/kg	100	45.	1
Eroop 112					E 1	0.90	

ND

2.4

1

1

5.1

5.1

ug/kg

ug/kg

J

0.89

0.78

Freon-113

Methyl cyclohexane

					:	Serial_No	08242116:46	
Project Name:	BARNET MILLS				Lab Nu	mber:	L2144034	
Project Number:	21-26694E				Report	Date:	08/24/21	
		SAMPL	E RESULTS	5				
Lab ID:	L2144034-04				Date Col	lected:	08/10/21 11:30	
Client ID:	B-8 4-5'				Date Ree	ceived:	08/17/21	
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	oy GC/MS - Westborough	Lab						

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	128	70-130	
Dibromofluoromethane	104	70-130	

			Serial_No	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2144034-05 B-13 10-15' RENSSELAER, NY		Date Collected: Date Received: Field Prep:	08/11/21 10:40 08/17/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 08/23/21 08:05 MV 86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/kg	5.3	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.15	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.24	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.13	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.28	1
Tetrachloroethene	ND		ug/kg	0.53	0.21	1
Chlorobenzene	ND		ug/kg	0.53	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.74	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1
Bromodichloromethane	ND		ug/kg	0.53	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.53	0.17	1
1,3-Dichloropropene, Total	ND		ug/kg	0.53	0.17	1
Bromoform	ND		ug/kg	4.2	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.53	0.18	1
Benzene	ND		ug/kg	0.53	0.18	1
Toluene	ND		ug/kg	1.1	0.58	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.2	0.99	1
Bromomethane	ND		ug/kg	2.1	0.62	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.1	0.48	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1
Trichloroethene	ND		ug/kg	0.53	0.14	1

		Serial_No:08242116						
Project Name:	BARNET MILLS				Lab Nu	ımber:	L2144034	
Project Number:	21-26694E				Report	Date:	08/24/21	
•		SAMP	LE RESULT	5	•			
Lab ID:	L2144034-05				Date Co	llected:	08/11/21 10:40	
Client ID:	B-13 10-15'				Date Re	ceived:	08/17/21	
Sample Location:	RENSSELAER, NY				Field Pre	əp:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	Volatile Organics by GC/MS - Westborough Lab							
1,2-Dichlorobenzene		ND		ug/kg	2.1	0.15	1	
1,3-Dichlorobenzene		ND		ug/kg	2.1	0.16	1	
1,4-Dichlorobenzene		ND		ug/kg	2.1	0.18	1	
Methyl tert butyl ether		ND		ug/kg	2.1	0.21	1	
p/m-Xylene		ND		ug/kg	2.1	0.60	1	
o-Xylene		ND		ug/kg	1.1	0.31	1	
Xylenes, Total		ND		ug/kg	1.1	0.31	1	
cis-1,2-Dichloroethene		ND		ug/kg	1.1	0.19	1	
1,2-Dichloroethene, Tota	1	ND		ug/kg	1.1	0.14	1	
Styrene		ND		ug/kg	1.1	0.21	1	
Dichlorodifluoromethane		ND		ug/kg	11	0.97	1	
Acetone		ND		ug/kg	11	5.1	1	
Carbon disulfide		ND		ug/kg	11	4.8	1	
2-Butanone		ND		ug/kg	11	2.4	1	
4-Methyl-2-pentanone		ND		ug/kg	11	1.4	1	
2-Hexanone		ND		ug/kg	11	1.2	1	
Bromochloromethane		ND		ug/kg	2.1	0.22	1	
1,2-Dibromoethane		ND		ug/kg	1.1	0.30	1	
n-Butylbenzene		0.28	J	ug/kg	1.1	0.18	1	
sec-Butylbenzene		ND		ug/kg	1.1	0.16	1	
tert-Butylbenzene		ND		ug/kg	2.1	0.12	1	
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.2	1.1	1	
Isopropylbenzene		ND		ug/kg	1.1	0.12	1	
p-Isopropyltoluene		ND		ug/kg	1.1	0.12	1	
Naphthalene		ND		ug/kg	4.2	0.69	1	
n-Propylbenzene		ND		ug/kg	1.1	0.18	1	
1,2,3-Trichlorobenzene		ND		ug/kg	2.1	0.34	1	
1,2,4-Trichlorobenzene		ND		ug/kg	2.1	0.29	1	
1,3,5-Trimethylbenzene		ND		ug/kg	2.1	0.20	1	
1,2,4-Trimethylbenzene		ND		ug/kg	2.1	0.36	1	
1,4-Dioxane		ND		ug/kg	85	37.	1	

						Serial_No	08242116:46
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034
Project Number:	21-26694E				Report	t Date:	08/24/21
		SAMPL	E RESULTS	6			
Lab ID:	L2144034-05				Date Co	llected:	08/11/21 10:40
Client ID:	B-13 10-15'				Date Re	ceived:	08/17/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough I	Lab					

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	93		70-130	
4-Bromofluorobenzene	133	Q	70-130	
Dibromofluoromethane	112		70-130	

			Serial_N	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-06		Date Collected:	08/12/21 11:15
Client ID:	B-19 15-20'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	08/20/21 23:47			
Analyst:	AJK			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - We	Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/kg	5.0	2.3	1			
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1			
Chloroform	ND		ug/kg	1.5	0.14	1			
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1			
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1			
Dibromochloromethane	ND		ug/kg	1.0	0.14	1			
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1			
Tetrachloroethene	ND		ug/kg	0.50	0.20	1			
Chlorobenzene	ND		ug/kg	0.50	0.13	1			
Trichlorofluoromethane	ND		ug/kg	4.0	0.70	1			
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1			
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	1			
Bromodichloromethane	ND		ug/kg	0.50	0.11	1			
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.28	1			
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	1			
1,3-Dichloropropene, Total	ND		ug/kg	0.50	0.16	1			
Bromoform	ND		ug/kg	4.0	0.25	1			
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17	1			
Benzene	ND		ug/kg	0.50	0.17	1			
Toluene	ND		ug/kg	1.0	0.55	1			
Ethylbenzene	0.37	J	ug/kg	1.0	0.14	1			
Chloromethane	ND		ug/kg	4.0	0.94	1			
Bromomethane	ND		ug/kg	2.0	0.59	1			
Vinyl chloride	ND		ug/kg	1.0	0.34	1			
Chloroethane	ND		ug/kg	2.0	0.46	1			
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1			
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1			
Trichloroethene	ND		ug/kg	0.50	0.14	1			

					\$	Serial_No	:08242116:46	
Project Name:	BARNET MILLS				Lab Nu	mber:	L2144034	
Project Number:	21-26694E				Report	Date:	08/24/21	
•		SAMPL	E RESULT	S	•		00/2 //2 /	
Lab ID:	L2144034-06				Date Col	lected:	08/12/21 11:15	
Client ID:	B-19 15-20'				Date Red		08/17/21	
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westboroug	h Lab						
1,2-Dichlorobenzene		ND		ug/kg	2.0	0.14	1	
1,3-Dichlorobenzene		ND		ug/kg	2.0	0.15	1	
1,4-Dichlorobenzene		ND		ug/kg	2.0	0.17	1	
Methyl tert butyl ether		ND		ug/kg	2.0	0.20	1	
p/m-Xylene		ND		ug/kg	2.0	0.56	1	
o-Xylene		ND		ug/kg	1.0	0.29	1	
Xylenes, Total		ND		ug/kg	1.0	0.29	1	
cis-1,2-Dichloroethene		ND		ug/kg	1.0	0.18	1	
1,2-Dichloroethene, Total		ND		ug/kg	1.0	0.14	1	
Styrene		ND		ug/kg	1.0	0.20	1	
Dichlorodifluoromethane		ND		ug/kg	10	0.92	1	
Acetone		13		ug/kg	10	4.8	1	
Carbon disulfide		ND		ug/kg	10	4.6	1	
2-Butanone		ND		ug/kg	10	2.2	1	
4-Methyl-2-pentanone		ND		ug/kg	10	1.3	1	
2-Hexanone		ND		ug/kg	10	1.2	1	
Bromochloromethane		ND		ug/kg	2.0	0.21	1	
1,2-Dibromoethane		ND		ug/kg	1.0	0.28	1	
n-Butylbenzene		ND		ug/kg	1.0	0.17	1	
sec-Butylbenzene		0.40	J	ug/kg	1.0	0.15	1	
tert-Butylbenzene		ND		ug/kg	2.0	0.12	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	3.0	1.0	1	
Isopropylbenzene		0.14	J	ug/kg	1.0	0.11	1	
p-Isopropyltoluene		ND		ug/kg	1.0	0.11	1	
Naphthalene		ND		ug/kg	4.0	0.66	1	
n-Propylbenzene		0.22	J	ug/kg	1.0	0.17	1	
1,2,3-Trichlorobenzene		ND		ug/kg	2.0	0.32	1	
1,2,4-Trichlorobenzene		ND		ug/kg	2.0	0.27	1	
1,3,5-Trimethylbenzene		ND		ug/kg	2.0	0.19	1	
1,2,4-Trimethylbenzene		0.34	J	ug/kg	2.0	0.34	1	
Methyl Acetate		ND		ug/kg	4.0	0.96	1	
Cyclohexane		ND		ug/kg	10	0.55	1	
1,4-Dioxane		ND		ug/kg	81	35.	1	
Freon-113		ND		ug/kg	4.0	0.70	1	
Methyl cyclohexane		0.93	J	ug/kg	4.0	0.61	1	

						Serial_No:08242116:46		
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034	
Project Number:	21-26694E				Report Date:		08/24/21	
		SAMPL	E RESULTS	5				
Lab ID:	L2144034-06				Date Co	llected:	08/12/21 11:15	
Client ID:	B-19 15-20'				Date Re	ceived:	08/17/21	
Sample Location:	RENSSELAER, NY				Field Pro	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	101	70-130	

			Serial_No	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2144034-07 B-20 16-18' RENSSELAER, NY		Date Collected: Date Received: Field Prep:	08/12/21 14:00 08/17/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 08/21/21 00:13 AJK 87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/kg	5.2	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1
Tetrachloroethene	ND		ug/kg	0.52	0.20	1
Chlorobenzene	0.34	J	ug/kg	0.52	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.73	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.52	0.18	1
Bromodichloromethane	ND		ug/kg	0.52	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.52	0.16	1
1,3-Dichloropropene, Total	ND		ug/kg	0.52	0.16	1
Bromoform	ND		ug/kg	4.2	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.52	0.17	1
Benzene	ND		ug/kg	0.52	0.17	1
Toluene	ND		ug/kg	1.0	0.57	1
Ethylbenzene	ND		ug/kg	1.0	0.15	1
Chloromethane	ND		ug/kg	4.2	0.98	1
Bromomethane	ND		ug/kg	2.1	0.61	1
Vinyl chloride	ND		ug/kg	1.0	0.35	1
Chloroethane	ND		ug/kg	2.1	0.47	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1
Trichloroethene	ND		ug/kg	0.52	0.14	1

Project Name: BARNET MULLS Lab Numer: Lad Numer: Nu							Serial No	:08242116:46	
Labi Circ L2144034-07 Sample Location: RENSSELAER, NY Sample Location: ND Sample Location: RENSSELAER, NY Sample Location: RENSS	Project Name:	BARNET MILLS							
Labi Circ L2144034-07 Sample Location: RENSSELAER, NY Sample Location: ND Sample Location: RENSSELAER, NY Sample Location: RENSS	Project Number:	21-26694F				Report	t Date:		
Client Dic model Sample LocationB2016-18' RENSELAER, NYDiate ReserveDiate NetworkDiate Second Field YesNot SpecifiedSample LocationResultQuinterQuinterNot NetworkNot NetworkNot NetworkParameterResultQuinterQuinterQuinterQuinterNot NetworkNot Network1.5DebinorberzeneNDUging2.10.16111.4DebinorberzeneNDUging2.10.63111.4DebinorberzeneNDUging0.100.80101pre-XyleneNDUging1.00.80111Quinters TableNDUging1.00.80111Quinters TableNDUging1.00.811111Quinters TableNDUging1.00.81111111Quinters TableNDUging1.00.811	··· , ·····	21 2000 12	SAMP		S			00/24/21	
ParameterResultOutlifeUnitsRLMDLDiutor PactorUblittle Organics by GC/MS - Westboroug Lab1.3-DichtorobanzaneNDug/q2.10.1511.3-DichtorobanzaneNDug/q2.10.1611.4-DichtorobanzaneNDug/q2.10.0211.4-DichtorobanzaneNDug/q2.10.021Molty fort butyl otherNDug/q1.00.021NDug/q1.00.0311Sylenes, TotalNDug/q1.00.031Us/lenes, TotalNDug/q1.00.041Sylenes, TotalNDug/q1.00.041Sylenes, TotalNDug/q1.00.021DichtorothoneNDug/q1.00.021Sylenes, TotalNDug/q1.00.021DichtorothoneNDug/q1.00.141ActionNDug/q1.00.141Us/lenes, TotalNDug/q1.01.01PathoneNDug/q1.00.141ActionNDug/q1.01.01Us/lenesNDug/q1.01.01Us/lenesNDug/q1.01.01PathoneNDug/q1.01.01PathoneNDug/q1.01.0	Lab ID: Client ID: Sample Location:	B-20 16-18'				Date Re	ceived:	08/17/21	
Name No No No No No No No No 1,2-Dichlorobenzene ND ugkg 2.1 0.16 1 1,4-Dichlorobenzene ND ugkg 2.1 0.16 1 1,4-Dichlorobenzene ND ugkg 2.1 0.16 1 Nethyl tert buyl ether ND ugkg 1.0 0.30 1 o-Xylene ND ugkg 1.0 0.30 1 o-Xylene ND ugkg 1.0 0.14 1 1,2-Dichloroethene, Total ND ugkg 1.0 0.14 1 Syrene ND ugkg 1.0 0.14 1 Dichloroffluromethane, Total ND ugkg 1.0 0.14 1 Syrene ND ugkg 1.0 0.14 1 Adetone ND ugkg 1.0 0.14 1 Adetone ND ugkg 1.0 1 <	Sample Depth:								
ND ug/kg 2.1 0.15 1 1.2-Dichlorobenzene ND ug/kg 2.1 0.16 1 1.4-Dichlorobenzene ND ug/kg 2.1 0.18 1 Methyl ether ND ug/kg 2.1 0.29 1 or/Mane ND ug/kg 1.0 0.30 1 Or/Mane ND ug/kg 1.0 0.30 1 Science ND ug/kg 1.0 0.30 1 Science ND ug/kg 1.0 0.14 1 Science ND ug/kg 10 0.20 1 Octorodisulficoromethane ND ug/kg 10 0.23 1 Acetone 9.7 J ug/kg 10 0.14 1 Science ND ug/kg 10 2.3 1 Acetone ND ug/kg 10 1.3 1 Pautonone ND ug/kg				Qualifier	Units	RL	MDL	Dilution Factor	
A-Bihlkrobenzene ND ug/kg 2.1 0.16 1 1.4-Bihlkrobenzene ND ug/kg 2.1 0.18 1 Meityl teth butyl ether ND ug/kg 2.1 0.21 1 pm-Xylene ND ug/kg 2.1 0.30 1 o-Xylene ND ug/kg 1.0 0.30 1 o-Xylene ND ug/kg 1.0 0.30 1 1.2-Dichloroethene ND ug/kg 1.0 0.30 1 1.2-Dichloroethene ND ug/kg 1.0 0.20 1 Syrene ND ug/kg 1.0 0.20 1 Dichlorodfluoorenethane ND ug/kg 10 0.86 1 Aceton 9.7 J ug/kg 10 1.3 1 2-Bkanone ND ug/kg 10 1.3 1 2-Bkanone ND ug/kg 1.0 1.2 1 2-Bkanone ND ug/kg 1.0 1.2 1 1.2-	Volatile Organics b	oy GC/MS - Westborough	n Lab						
ND ug/kg 2.1 0.18 1 Metry Lert buly lert ND ug/kg 2.1 0.21 1 Metry Lert buly lert ND ug/kg 2.1 0.21 1 p/m-Xylene ND ug/kg 2.1 0.59 1 o-Xylene ND ug/kg 1.0 0.30 1 o-Xylene ND ug/kg 1.0 0.30 1 cis-12-Dichloroethene ND ug/kg 1.0 0.14 1 1.2-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Dichlorodilloromethane ND ug/kg 1.0 0.14 1 Acetone 8.7 J ug/kg 10 0.8 1 Cathon disulfde ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 1.0 1.3 1 12-Dichoroditoromethane ND ug/kg 1.0 0.11 1	1,2-Dichlorobenzene		ND		ug/kg	2.1	0.15	1	
ND ug/kg 2.1 0.21 1 pm-Xylene ND ug/kg 2.1 0.59 1 o-Xylone ND ug/kg 1.0 0.30 1 o-Xylone ND ug/kg 1.0 0.30 1 Xylores, Total ND ug/kg 1.0 0.18 1 12-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Syrene ND ug/kg 1.0 0.14 1 Carbon disulfde ND ug/kg 1.0 0.04 1 Carbon disulfde ND ug/kg 10 4.8 1 Carbon disulfde ND ug/kg 10 1.2 1 Carbon disulfde ND ug/kg 10 1.2 1 Carbon disulfde ND ug/kg 10 1.2 1 Carbon disulfde ND ug/kg 1.0 1.2 1 Personachioromethane ND	1,3-Dichlorobenzene		ND			2.1	0.16	1	
ND ug/kg 2.1 0.59 1 o-Xylene ND ug/kg 1.0 0.30 1 Xylenes ND ug/kg 1.0 0.30 1 Xylenes, Total ND ug/kg 1.0 0.30 1 cis-1.2-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Styrene ND ug/kg 1.0 0.20 1 Dichloroethene, Total ND ug/kg 1.0 0.96 1 Styrene ND ug/kg 1.0 0.96 1 Carbon disulfide ND ug/kg 1.0 0.14 1 Carbon disulfide ND ug/kg 1.0 1.3 1 2-Buranne ND ug/kg 1.0 1.3 1 2-Buranne ND ug/kg 1.0 0.13 1 12-Dibromothane ND ug/kg 1.0 0.11 1 Disoptop/kibenzene 0.3	1,4-Dichlorobenzene		ND		ug/kg	2.1	0.18	1	
o-Xylene ND ug/kg 1.0 0.30 1 Xylenes, Total ND ug/kg 1.0 0.30 1 xylenes, Total ND ug/kg 1.0 0.18 1 1.2-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Dichlorodthoroethene, Total ND ug/kg 1.0 0.14 1 Dichlorodthoroethene, Total ND ug/kg 1.0 0.14 1 Dichlorodthoroethane ND ug/kg 1.0 0.50 1 Acetone 9.7 J ug/kg 1.0 4.8 1 2-Butanone ND ug/kg 1.0 4.8 1 2-Hexanone ND ug/kg 1.0 1.2 1 Patemane ND ug/kg 1.0 0.12 1 1.2-Dibromoethane ND ug/kg 1.0 0.11 1 1.2-Dibrom-2-bioropropane ND ug/kg 1.0 1	Methyl tert butyl ether		ND		ug/kg	2.1	0.21	1	
ND ug/kg 1.0 0.30 1 cis-1,2-Dichloroethene ND ug/kg 1.0 0.18 1 1,2-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodthoromethane ND ug/kg 10 0.96 1 Acetone 9.7 J ug/kg 10 5.0 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 1.0 0.29 1 12-Dibromethane ND ug/kg 1.0 0.18 1 12-Dibromethane ND ug/kg 1.0 0.15 1 1.2-Dibromethane ND ug/kg 3.1 0.29 1 1.2-Dibromethane ND ug/kg 3.1 1.0 1 1.2	p/m-Xylene		ND		ug/kg	2.1	0.59	1	
ND ug/kg 1.0 0.18 1 1.2-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodthene, Total ND ug/kg 1.0 0.20 1 Styrene ND ug/kg 1.0 0.20 1 Carbon disulfido ND ug/kg 10 0.50 1 Carbon disulfido ND ug/kg 10 4.48 1 2-Buranone ND ug/kg 10 1.3 1 2-Hoxanone ND ug/kg 1.0 1.2 1 Bromochloromethane ND ug/kg 1.0 0.29 1 n=Burybenzene ND ug/kg 1.0 0.18 1 see-Burybenzene ND ug/kg 1.0 0.11 1 12-Dibrome-3-chloropropane ND ug/kg 1.0 0.11 1 see-Burybenzene<	o-Xylene		ND		ug/kg	1.0	0.30	1	
1.2-Dichloroethene, Total ND ug/kg 1.0 0.14 1 Styrene ND ug/kg 1.0 0.20 1 Dichlorodfluoromethane ND ug/kg 10 0.96 1 Acetone 9.7 J ug/kg 10 0.96 1 Carbon disulfide ND ug/kg 10 2.9 1 2-Butanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 1.0 0.29 1 1.2-Dibromoshane ND ug/kg 1.0 0.18 1 ese-Butylbenzene 0.58 J <ug kg<="" td=""> 1.0 0.11 1 ese-Butylbenzene 0.58 J<ug kg<="" td=""> 1.0 0.11 1 12-Dibromo-3-chloropropane ND ug/kg 1.0 1 1 12-Dibrome-3-chloropropane ND ug/kg 1.0 1 1 12-Dibrome-3-chloropropane ND ug/kg 1.0 <t< td=""><td>Xylenes, Total</td><td></td><td>ND</td><td></td><td>ug/kg</td><td>1.0</td><td>0.30</td><td>1</td><td></td></t<></ug></ug>	Xylenes, Total		ND		ug/kg	1.0	0.30	1	
Styrene ND ug/kg 1.0 0.20 1 Dichlorodifluoromethane ND ug/kg 10 0.96 1 Acetone 9.7 J ug/kg 10 5.0 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 1.0 0.29 1 1.2-Dibromoethane ND ug/kg 1.0 0.18 1 sec-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 1.2-Dibromo-3-chloropopane ND ug/kg 1.0 0.11 1 1.2-Dibromo-3-chloropopane ND ug/kg 1.0 0.11 1 1.2-Dibromo-3-chloropopane ND ug/kg 1.0	cis-1,2-Dichloroethene		ND		ug/kg	1.0	0.18	1	
Dichlorodifluoromethane ND ug/kg 10 0.96 1 Acetone 9.7 J ug/kg 10 5.0 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 1.0 0.29 1 n-Butylbenzene ND ug/kg 1.0 0.15 1 esc-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 tert-Butylbenzene 0.58 J ug/kg 1.0 1 1 sec-Butylbenzene ND ug/kg 1.0 0.11 1 tert-Butylbenzene 0.58 J ug/kg 1.0 1 1_2-Dibromo-3-chloropropane ND ug/kg	1,2-Dichloroethene, Tota	I	ND		ug/kg	1.0	0.14	1	
Actone 9.7 J ug/kg 10 5.0 1 Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochioromethane ND ug/kg 1.0 0.21 1 1.2-Dibromethane ND ug/kg 1.0 0.29 1 n-Butylbenzene 0.33 J ug/kg 1.0 0.18 1 1.2-Dibromethane 0.58 J ug/kg 3.1 1.0 1 1.2-Dibromethane ND ug/kg 3.1 1.0 1 1.2-Dibromethane ND ug/kg 3.1 1.0 1 1.2-Dibromethane ND ug/kg 1.0 1 1 1.2-Dibromethane ND ug/kg 1.0 1	Styrene		ND		ug/kg	1.0	0.20	1	
Carbon disulfide ND ug/kg 10 4.8 1 2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 1.0 0.29 1 1.2-Dibromoethane ND ug/kg 1.0 0.29 1 n-Butylbenzene ND ug/kg 1.0 0.18 1 sec-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 1.2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 1 sporpoptylbunzene ND ug/kg 1.0 0.11 1 p-lsopropylbonzene ND ug/kg 1.0 0.11 1 1.2-Dirichlorobenzene ND ug/kg 2.1 0.34 1 1.2-Dirichlorobenzene ND ug/kg 2.1	Dichlorodifluoromethane		ND		ug/kg	10	0.96	1	
2-Butanone ND ug/kg 10 2.3 1 4-Methyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 1.0 0.29 1 1.2-Dibromethane ND ug/kg 1.0 0.18 1 acc-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 tert-Butylbenzene 0.58 J ug/kg 3.1 1.0 1 12-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 12-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 1 12-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 1 p-lsopropylbourene ND ug/kg 1.0 0.11 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 1 1.2-Dibromo-3-chloropropane ND	Acetone		9.7	J	ug/kg	10	5.0	1	
Addethyl-2-pentanone ND ug/kg 10 1.3 1 2-Hexanone ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 2.1 0.21 1 1.2-Dibromoethane ND ug/kg 1.0 0.29 1 n-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 sec-Butylbenzene 0.58 J ug/kg 3.1 1.0 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 0.11 1 1.2-Diorono-1									
Jerr ND ug/kg 10 1.2 1 Bromochloromethane ND ug/kg 2.1 0.21 1 1.2-Dibromoethane ND ug/kg 1.0 0.29 1 n-Butylbenzene ND ug/kg 1.0 0.18 1 sec-Butylbenzene 0.33 J ug/kg 2.1 0.12 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 1 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 11 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 11 1 1.2-Dibromo-3-chloropropane ND ug/kg 1.0 11 1 1.2-Dibromo-3-chloropropane ND									
Image: Note of the second se									
I.2-Dibromoethane ND ug/kg 1.0 0.29 1 n-Butylbenzene ND ug/kg 1.0 0.18 1 sec-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 tert-Butylbenzene 0.58 J ug/kg 2.1 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 1.0 1 1 Isopropylbenzene ND ug/kg 1.0 0.11 1 p-isopropylbenzene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 1.0 0.11 1 Naphthalene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
n-Butylbenzene ND ug/kg 1.0 0.18 1 sec-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 tert-Butylbenzene 0.58 J ug/kg 3.1 1.0 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 tert-Butylbenzene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 1.0 0.18 1 1,2.3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2.4-Trichlorobenzene ND ug/kg 2.1 0.35 1 1,2.4-Trimetrylbenzene 0.44<									
sec-Butylbenzene 0.33 J ug/kg 1.0 0.15 1 tert-Butylbenzene 0.58 J ug/kg 2.1 0.12 1 1.2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 Isopropylbenzene ND ug/kg 1.0 0.11 1 p-lsopropylbenzene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 1.0 0.11 1 1.2-J-Trichlorobenzene ND ug/kg 1.0 0.11 1 1.2.3-Trichlorobenzene ND ug/kg 2.1 0.68 1 1.2.4-Trinethylbenzene ND ug/kg 2.1 0.34 1 1.2.4-Trimethylbenzene ND ug/kg 2.1 0.28 1 1.2.4-Trimethylbenzene ND ug/kg 2.1 0.35 1 1.2.4-Trimethylbenzene ND ug/kg 4.2 1.0 1 Cyclohexane									
tert-Butylbenzene 0.58 J ug/kg 2.1 0.12 1 1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 Isopropylbenzene ND ug/kg 1.0 0.11 1 p-Isopropylbenzene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 4.2 0.68 1 n-Propylbenzene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 Cyclohexane ND ug/kg 4.2 1.0 1 L4-Dioxane ND <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
1,2-Dibromo-3-chloropropane ND ug/kg 3.1 1.0 1 Isopropylbenzene ND ug/kg 1.0 0.11 1 p-Isopropylbenzene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 4.2 0.68 1 n-Propylbenzene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 4.2 1.0 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 84 37. 1 1,4-Dioxane	-								
Isopropylbenzene ND ug/kg 1.0 0.11 1 p-Isopropyltoluene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 4.2 0.68 1 n-Propylbenzene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 4.2 1.0 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 84 37. 1 1,4-Dioxane ND		nane		5					
P-Isopropyltoluene ND ug/kg 1.0 0.11 1 Naphthalene 1.8 J ug/kg 4.2 0.68 1 n-Propylbenzene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene ND ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg									
Naphthalene 1.8 J ug/kg 4.2 0.68 1 n-Propylbenzene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,3,5-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 4.2 1.0 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 84 37. 1 1,4-Dioxane ND ug/kg 4.2 0.73 1									
n-Propylbenzene ND ug/kg 1.0 0.18 1 1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 1,2,4-Trimethylbenzene ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1				J					
1,2,3-Trichlorobenzene ND ug/kg 2.1 0.34 1 1,2,4-Trichlorobenzene ND ug/kg 2.1 0.28 1 1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1	n-Propylbenzene		ND				0.18	1	
1,3,5-Trimethylbenzene ND ug/kg 2.1 0.20 1 1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1	1,2,3-Trichlorobenzene		ND			2.1	0.34	1	
1,2,4-Trimethylbenzene 0.44 J ug/kg 2.1 0.35 1 Methyl Acetate ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1	1,2,4-Trichlorobenzene		ND		ug/kg	2.1	0.28	1	
Methyl Acetate ND ug/kg 4.2 1.0 1 Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1	1,3,5-Trimethylbenzene		ND		ug/kg	2.1	0.20	1	
Cyclohexane ND ug/kg 10 0.57 1 1,4-Dioxane ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1	1,2,4-Trimethylbenzene		0.44	J	ug/kg	2.1	0.35	1	
ND ug/kg 84 37. 1 Freon-113 ND ug/kg 4.2 0.73 1	Methyl Acetate		ND		ug/kg	4.2	1.0	1	
Freon-113 ND ug/kg 4.2 0.73 1	Cyclohexane		ND		ug/kg	10	0.57	1	
	1,4-Dioxane		ND		ug/kg	84	37.	1	
Methyl cyclohexane 0.71 J ug/kg 4.2 0.63 1	Freon-113		ND		ug/kg	4.2	0.73	1	
	Methyl cyclohexane		0.71	J	ug/kg	4.2	0.63	1	

						Serial_No	0:08242116:46
Project Name:	BARNET MILLS				Lab Nu	umber:	L2144034
Project Number:	21-26694E				Report	Date:	08/24/21
		SAMP		6			
Lab ID:	L2144034-07				Date Co	llected:	08/12/21 14:00
Client ID:	B-20 16-18'				Date Re	ceived:	08/17/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	oy GC/MS - Westborough	Lab					

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	118	70-130	
Dibromofluoromethane	103	70-130	

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/20/21 18:42Analyst:MKS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	o for sample(s):	01-04,06-07	Batch: WG1537858-5
Methylene chloride	ND	ug/k	g 5.0	2.3
1,1-Dichloroethane	ND	ug/k	g 1.0	0.14
Chloroform	ND	ug/k	g 1.5	0.14
Carbon tetrachloride	ND	ug/k	g 1.0	0.23
1,2-Dichloropropane	ND	ug/k	g 1.0	0.12
Dibromochloromethane	ND	ug/k	g 1.0	0.14
1,1,2-Trichloroethane	ND	ug/k	g 1.0	0.27
Tetrachloroethene	ND	ug/k	g 0.50	0.20
Chlorobenzene	ND	ug/k	g 0.50	0.13
Trichlorofluoromethane	ND	ug/k	g 4.0	0.70
1,2-Dichloroethane	ND	ug/k	g 1.0	0.26
1,1,1-Trichloroethane	ND	ug/k	g 0.50	0.17
Bromodichloromethane	ND	ug/k	g 0.50	0.11
trans-1,3-Dichloropropene	ND	ug/k	g 1.0	0.27
cis-1,3-Dichloropropene	ND	ug/k	g 0.50	0.16
1,3-Dichloropropene, Total	ND	ug/k	g 0.50	0.16
Bromoform	ND	ug/k	g 4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/k	g 0.50	0.17
Benzene	ND	ug/k	g 0.50	0.17
Toluene	ND	ug/k	g 1.0	0.54
Ethylbenzene	ND	ug/k	g 1.0	0.14
Chloromethane	ND	ug/k	g 4.0	0.93
Bromomethane	ND	ug/k	g 2.0	0.58
Vinyl chloride	ND	ug/k	g 1.0	0.34
Chloroethane	ND	ug/k	g 2.0	0.45
1,1-Dichloroethene	ND	ug/k	g 1.0	0.24
trans-1,2-Dichloroethene	ND	ug/k	g 1.5	0.14
Trichloroethene	ND	ug/k	g 0.50	0.14
1,2-Dichlorobenzene	ND	ug/k	g 2.0	0.14

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/20/21 18:42Analyst:MKS

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lal	o for samp	le(s): 01-	04,06-07	Batch: WG1537858-5
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17
Methyl tert butyl ether	ND		ug/kg	2.0	0.20
p/m-Xylene	ND		ug/kg	2.0	0.56
o-Xylene	ND		ug/kg	1.0	0.29
Xylenes, Total	ND		ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14
Styrene	ND		ug/kg	1.0	0.20
Dichlorodifluoromethane	ND		ug/kg	10	0.92
Acetone	ND		ug/kg	10	4.8
Carbon disulfide	ND		ug/kg	10	4.6
2-Butanone	ND		ug/kg	10	2.2
4-Methyl-2-pentanone	ND		ug/kg	10	1.3
2-Hexanone	ND		ug/kg	10	1.2
Bromochloromethane	ND		ug/kg	2.0	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	0.28
n-Butylbenzene	0.28	J	ug/kg	1.0	0.17
sec-Butylbenzene	ND		ug/kg	1.0	0.15
tert-Butylbenzene	ND		ug/kg	2.0	0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Isopropylbenzene	ND		ug/kg	1.0	0.11
p-Isopropyltoluene	0.16	J	ug/kg	1.0	0.11
Naphthalene	ND		ug/kg	4.0	0.65
n-Propylbenzene	ND		ug/kg	1.0	0.17
1,2,3-Trichlorobenzene	0.56	J	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	0.47	J	ug/kg	2.0	0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/20/21 18:42Analyst:MKS

Parameter	Result	Qualifier Units	s RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-04,06-07	Batch: WG1537858-5
Methyl Acetate	ND	ug/k	g 4.0	0.95
Cyclohexane	ND	ug/k	g 10	0.54
1,4-Dioxane	ND	ug/k	g 80	35.
Freon-113	ND	ug/k	g 4.0	0.69
Methyl cyclohexane	ND	ug/k	g 4.0	0.60

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	98		70-130
Toluene-d8	94		70-130
4-Bromofluorobenzene	88		70-130
Dibromofluoromethane	95		70-130

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/23/21 05:59Analyst:MV

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Westborough Lab	for sample(s): 05	Batch:	WG1538254-5
Methylene chloride	ND	ug/kg	5.0	2.3
1,1-Dichloroethane	ND	ug/kg	1.0	0.14
Chloroform	ND	ug/kg	1.5	0.14
Carbon tetrachloride	ND	ug/kg	1.0	0.23
1,2-Dichloropropane	ND	ug/kg	1.0	0.12
Dibromochloromethane	ND	ug/kg	1.0	0.14
1,1,2-Trichloroethane	ND	ug/kg	1.0	0.27
Tetrachloroethene	ND	ug/kg	0.50	0.20
Chlorobenzene	ND	ug/kg	0.50	0.13
Trichlorofluoromethane	ND	ug/kg	4.0	0.70
1,2-Dichloroethane	ND	ug/kg	1.0	0.26
1,1,1-Trichloroethane	ND	ug/kg	0.50	0.17
Bromodichloromethane	ND	ug/kg	0.50	0.11
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.27
cis-1,3-Dichloropropene	ND	ug/kg	0.50	0.16
1,3-Dichloropropene, Total	ND	ug/kg	0.50	0.16
Bromoform	ND	ug/kg	4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	0.17
Benzene	ND	ug/kg	0.50	0.17
Toluene	ND	ug/kg	1.0	0.54
Ethylbenzene	ND	ug/kg	1.0	0.14
Chloromethane	ND	ug/kg	4.0	0.93
Bromomethane	ND	ug/kg	2.0	0.58
Vinyl chloride	ND	ug/kg	1.0	0.34
Chloroethane	ND	ug/kg	2.0	0.45
1,1-Dichloroethene	ND	ug/kg	1.0	0.24
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.14
Trichloroethene	ND	ug/kg	0.50	0.14
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/23/21 05:59Analyst:MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for samp	le(s): 05	Batch:	WG1538254-5
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17
Methyl tert butyl ether	ND		ug/kg	2.0	0.20
p/m-Xylene	ND		ug/kg	2.0	0.56
o-Xylene	ND		ug/kg	1.0	0.29
Xylenes, Total	ND		ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18
1,2-Dichloroethene, Total	ND		ug/kg	1.0	0.14
Styrene	ND		ug/kg	1.0	0.20
Dichlorodifluoromethane	ND		ug/kg	10	0.92
Acetone	ND		ug/kg	10	4.8
Carbon disulfide	ND		ug/kg	10	4.6
2-Butanone	ND		ug/kg	10	2.2
4-Methyl-2-pentanone	ND		ug/kg	10	1.3
2-Hexanone	ND		ug/kg	10	1.2
Bromochloromethane	ND		ug/kg	2.0	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	0.28
n-Butylbenzene	0.22	J	ug/kg	1.0	0.17
sec-Butylbenzene	ND		ug/kg	1.0	0.15
tert-Butylbenzene	ND		ug/kg	2.0	0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Isopropylbenzene	ND		ug/kg	1.0	0.11
p-Isopropyltoluene	0.11	J	ug/kg	1.0	0.11
Naphthalene	ND		ug/kg	4.0	0.65
n-Propylbenzene	ND		ug/kg	1.0	0.17
1,2,3-Trichlorobenzene	0.59	J	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	0.44	J	ug/kg	2.0	0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0	0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0	0.33

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:08/23/21 05:59Analyst:MV

arameter	Result Qual	ifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab for s	ample(s): 05	Batch:	WG1538254-5
Methyl Acetate	ND	ug/kg	4.0	0.95
Cyclohexane	ND	ug/kg	10	0.54
1,4-Dioxane	ND	ug/kg	80	35.
Freon-113	ND	ug/kg	4.0	0.69
Methyl cyclohexane	ND	ug/kg	4.0	0.60

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	101		70-130
Toluene-d8	91		70-130
4-Bromofluorobenzene	90		70-130
Dibromofluoromethane	104		70-130

BARNET MILLS **Project Name:**

Lab Number: L2144034

Project Number: 21-26694E

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s): 0	1-04,06-07 Bat	ch: WG1537858-3 WG1537	7858-4	
Methylene chloride	101		99	70-130	2	30
1,1-Dichloroethane	101		99	70-130	2	30
Chloroform	97		96	70-130	1	30
Carbon tetrachloride	110		109	70-130	1	30
1,2-Dichloropropane	100		100	70-130	0	30
Dibromochloromethane	108		108	70-130	0	30
1,1,2-Trichloroethane	102		101	70-130	1	30
Tetrachloroethene	113		112	70-130	1	30
Chlorobenzene	102		102	70-130	0	30
Trichlorofluoromethane	114		112	70-139	2	30
1,2-Dichloroethane	98		99	70-130	1	30
1,1,1-Trichloroethane	108		105	70-130	3	30
Bromodichloromethane	103		104	70-130	1	30
trans-1,3-Dichloropropene	104		104	70-130	0	30
cis-1,3-Dichloropropene	109		110	70-130	1	30
Bromoform	100		104	70-130	4	30
1,1,2,2-Tetrachloroethane	94		95	70-130	1	30
Benzene	104		103	70-130	1	30
Toluene	100		98	70-130	2	30
Ethylbenzene	98		97	70-130	1	30
Chloromethane	104		101	52-130	3	30
Bromomethane	122		115	57-147	6	30
Vinyl chloride	103		99	67-130	4	30

BARNET MILLS **Project Name:** Project Number: 21-26694E

Lab Number: L2144034

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD		PD mits
/olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): (01-04,06-07 Bate	ch: WG153	37858-3 WG1537	858-4		
Chloroethane	91		91		50-151	0	:	30
1,1-Dichloroethene	108		107		65-135	1	:	30
trans-1,2-Dichloroethene	107		104		70-130	3	:	30
Trichloroethene	110		109		70-130	1	:	30
1,2-Dichlorobenzene	98		99		70-130	1	:	30
1,3-Dichlorobenzene	101		100		70-130	1	:	30
1,4-Dichlorobenzene	99		98		70-130	1	:	30
Methyl tert butyl ether	106		107		66-130	1	:	30
p/m-Xylene	108		106		70-130	2	:	30
o-Xylene	96		95		70-130	1	:	30
cis-1,2-Dichloroethene	102		101		70-130	1	:	30
Styrene	100		100		70-130	0	:	30
Dichlorodifluoromethane	93		91		30-146	2	:	30
Acetone	104		108		54-140	4	:	30
Carbon disulfide	95		92		59-130	3	:	30
2-Butanone	91		89		70-130	2	:	30
4-Methyl-2-pentanone	106		109		70-130	3	:	30
2-Hexanone	91		91		70-130	0	:	30
Bromochloromethane	104		102		70-130	2	:	30
1,2-Dibromoethane	98		97		70-130	1	:	30
n-Butylbenzene	98		98		70-130	0	:	30
sec-Butylbenzene	100		99		70-130	1	:	30
tert-Butylbenzene	101		100		70-130	1		30

BARNET MILLS **Project Name:** Project Number: 21-26694E

Lab Number: L2144034

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04,06-07 Ba	tch: WG15	37858-3 WG1537	858-4			
1,2-Dibromo-3-chloropropane	98		103		68-130	5		30	
Isopropylbenzene	100		100		70-130	0		30	
p-Isopropyltoluene	101		101		70-130	0		30	
Naphthalene	94		97		70-130	3		30	
n-Propylbenzene	100		100		70-130	0		30	
1,2,3-Trichlorobenzene	98		100		70-130	2		30	
1,2,4-Trichlorobenzene	100		103		70-130	3		30	
1,3,5-Trimethylbenzene	100		100		70-130	0		30	
1,2,4-Trimethylbenzene	99		99		70-130	0		30	
Methyl Acetate	100		103		51-146	3		30	
Cyclohexane	107		107		59-142	0		30	
1,4-Dioxane	113		116		65-136	3		30	
Freon-113	119		115		50-139	3		30	
Methyl cyclohexane	116		116		70-130	0		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	91	92	70-130
Toluene-d8	96	95	70-130
4-Bromofluorobenzene	95	95	70-130
Dibromofluoromethane	93	93	70-130

Lab Number: L2144034

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	ab Associated	sample(s): 0	5 Batch: WG	1538254-3	WG1538254-4			
Methylene chloride	103		102		70-130	1	30	
1,1-Dichloroethane	103		103		70-130	0	30	
Chloroform	100		101		70-130	1	30	
Carbon tetrachloride	120		118		70-130	2	30	
1,2-Dichloropropane	95		99		70-130	4	30	
Dibromochloromethane	104		108		70-130	4	30	
1,1,2-Trichloroethane	88		94		70-130	7	30	
Tetrachloroethene	111		111		70-130	0	30	
Chlorobenzene	100		101		70-130	1	30	
Trichlorofluoromethane	124		121		70-139	2	30	
1,2-Dichloroethane	95		98		70-130	3	30	
1,1,1-Trichloroethane	114		113		70-130	1	30	
Bromodichloromethane	104		106		70-130	2	30	
trans-1,3-Dichloropropene	98		100		70-130	2	30	
cis-1,3-Dichloropropene	105		110		70-130	5	30	
Bromoform	97		97		70-130	0	30	
1,1,2,2-Tetrachloroethane	84		86		70-130	2	30	
Benzene	103		104		70-130	1	30	
Toluene	97		96		70-130	1	30	
Ethylbenzene	98		98		70-130	0	30	
Chloromethane	105		106		52-130	1	30	
Bromomethane	142		135		57-147	5	30	
Vinyl chloride	107		103		67-130	4	30	

Lab Number: L2144034

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	5 Batch: WG ²	1538254-3	WG1538254-4		
Chloroethane	108		105		50-151	3	30
1,1-Dichloroethene	111		110		65-135	1	30
trans-1,2-Dichloroethene	111		107		70-130	4	30
Trichloroethene	108		111		70-130	3	30
1,2-Dichlorobenzene	99		98		70-130	1	30
1,3-Dichlorobenzene	103		101		70-130	2	30
1,4-Dichlorobenzene	101		98		70-130	3	30
Methyl tert butyl ether	98		100		66-130	2	30
p/m-Xylene	106		106		70-130	0	30
o-Xylene	94		95		70-130	1	30
cis-1,2-Dichloroethene	104		104		70-130	0	30
Styrene	99		99		70-130	0	30
Dichlorodifluoromethane	98		95		30-146	3	30
Acetone	85		96		54-140	12	30
Carbon disulfide	97		95		59-130	2	30
2-Butanone	66	Q	73		70-130	10	30
4-Methyl-2-pentanone	83		89		70-130	7	30
2-Hexanone	70		74		70-130	6	30
Bromochloromethane	107		108		70-130	1	30
1,2-Dibromoethane	87		92		70-130	6	30
n-Butylbenzene	103		101		70-130	2	30
sec-Butylbenzene	104		101		70-130	3	30
tert-Butylbenzene	105		102		70-130	3	30

BARNET MILLS **Project Name:** Project Number: 21-26694E

Lab Number: L2144034

LCS		LCSD		%Recovery			RPD
%Recovery	Qual	%Recove	ry Qual	Limits	RPD	Qual	Limits
ab Associated	sample(s): 0	5 Batch:	WG1538254-3	WG1538254-4			
91		94		68-130	3		30
104		100		70-130	4		30
106		103		70-130	3		30
87		90		70-130	3		30
102		98		70-130	4		30
97		97		70-130	0		30
103		102		70-130	1		30
100		99		70-130	1		30
100		97		70-130	3		30
79		83		51-146	5		30
108		106		59-142	2		30
89		94		65-136	5		30
124		121		50-139	2		30
114		116		70-130	2		30
	Recovery ab Associated 91 104 106 87 102 97 103 100 100 100 79 103 100 100 100 100 101 100 102 100 103 100 100 100 100 100 102 103 103 100 100 100 102 103 103 100 104 100 105 104 106 100 107 103 108 89 124 124	%Recovery Qual ab Associated sample(s): 0 91 104 10 104 106 10 105 87 10 97 102 10 97 103 10 100 79 108 89 124 124	%Recovery Qual %Recovery ab Associated sample(s): 05 Batch: 91 94 104 100 106 103 87 90 102 98 97 97 103 102 100 99 100 97 103 102 97 97 103 102 100 99 100 97 103 102 90 102 91 97 100 99 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 97 100 9	%Recovery Qual %Recovery Qual ab Associated sample(s): 05 Batch: WG1538254-3 91 94 94 104 100 103 106 103 90 102 98 91 97 97 97 103 102 98 97 97 97 103 102 98 97 97 97 103 102 98 100 99 97 103 102 98 100 99 97 100 97 97 100 97 97 100 97 97 100 97 97 108 106 98 99 94 124	%Recovery Qual %Recovery Qual Limits ab Associated sample(s): 05 Batch: WG1538254-3 WG1538254-4 91 94 68-130 104 100 70-130 104 100 70-130 105 87 90 70-130 87 90 70-130 102 98 70-130 102 98 70-130 102 70-130 97 97 97 70-130 103 102 70-130 102 104 99 70-130 102 70-130 103 102 70-130 103 102 103 100 97 70-130 104 </td <td>%Recovery Qual %Recovery Qual Limits RPD ab Associated sample(s): 05 Batch: WG1538254-3 WG1538254-4 91 94 68-130 3 104 100 70-130 4 106 103 70-130 3 87 90 70-130 3 102 98 70-130 4 97 97 70-130 1 103 102 70-130 1 100 99 70-130 1 100 99 70-130 1 101 99 70-130 1 100 97 70-130 1 100 97 70-130 3 79 83 51-146 5 108 106 59-142 2 89 94 65-136 5 124 121 50-139 2 </td> <td>%Recovery Qual Limits RPD Qual ab Associated sample(s): 05 Batch: WG1538254-3 WG1538254-4 91 94 68-130 3 104 100 70-130 4 106 103 70-130 3 102 98 70-130 4 97 97 70-130 4 97 97 70-130 1 103 102 70-130 1 103 102 70-130 1 100 99 70-130 1 100 99 70-130 1 100 97 70-130 1 100 97 70-130 3 100 97 70-130 3 100 97 70-130 3 1010 97 70-130 3 108 106 59-142 2 89 94 65-136 5</td>	%Recovery Qual %Recovery Qual Limits RPD ab Associated sample(s): 05 Batch: WG1538254-3 WG1538254-4 91 94 68-130 3 104 100 70-130 4 106 103 70-130 3 87 90 70-130 3 102 98 70-130 4 97 97 70-130 1 103 102 70-130 1 100 99 70-130 1 100 99 70-130 1 101 99 70-130 1 100 97 70-130 1 100 97 70-130 3 79 83 51-146 5 108 106 59-142 2 89 94 65-136 5 124 121 50-139 2	%Recovery Qual Limits RPD Qual ab Associated sample(s): 05 Batch: WG1538254-3 WG1538254-4 91 94 68-130 3 104 100 70-130 4 106 103 70-130 3 102 98 70-130 4 97 97 70-130 4 97 97 70-130 1 103 102 70-130 1 103 102 70-130 1 100 99 70-130 1 100 99 70-130 1 100 97 70-130 1 100 97 70-130 3 100 97 70-130 3 100 97 70-130 3 1010 97 70-130 3 108 106 59-142 2 89 94 65-136 5

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	89	91	70-130
Toluene-d8	95	96	70-130
4-Bromofluorobenzene	97	94	70-130
Dibromofluoromethane	98	98	70-130

SEMIVOLATILES

			Serial_No:08242116:46		
Project Name:	BARNET MILLS		Lab Number:	L2144034	
Project Number:	21-26694E		Report Date:	08/24/21	
		SAMPLE RESULTS			
Lab ID:	L2144034-01		Date Collected:	08/09/21 09:30	
Client ID:	B-1 10-15'		Date Received:	08/17/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	I: EPA 3546	
Analytical Method:	1.8270D		Extraction Date:	08/21/21 13:59	
Analytical Date:	08/23/21 16:41				
Analyst:	SLR				
Percent Solids:	82%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	140	J	ug/kg	160	20.	1	
Fluoranthene	55	J	ug/kg	120	23.	1	
Benzo(a)anthracene	160		ug/kg	120	22.	1	
Benzo(a)pyrene	61	J	ug/kg	160	48.	1	
Benzo(b)fluoranthene	43	J	ug/kg	120	33.	1	
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1	
Chrysene	240		ug/kg	120	21.	1	
Acenaphthylene	35	J	ug/kg	160	31.	1	
Anthracene	120		ug/kg	120	39.	1	
Benzo(ghi)perylene	42	J	ug/kg	160	23.	1	
Fluorene	150	J	ug/kg	200	19.	1	
Phenanthrene	730		ug/kg	120	24.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1	
Pyrene	210		ug/kg	120	20.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	50	30-120	
4-Terphenyl-d14	47	18-120	

			Serial_No:08242116:46		
Project Name:	BARNET MILLS		Lab Number:	L2144034	
Project Number:	21-26694E		Report Date:	08/24/21	
		SAMPLE RESULTS			
Lab ID:	L2144034-02		Date Collected:	08/09/21 11:00	
Client ID:	B-2 10-15'		Date Received:	08/17/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	I: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	08/21/21 13:59	
Analytical Date:	08/23/21 17:05				
Analyst:	SLR				
Percent Solids:	83%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Acenaphthene	ND		ug/kg	160	20.	1
Fluoranthene	ND		ug/kg	120	23.	1
Benzo(a)anthracene	41	J	ug/kg	120	22.	1
Benzo(a)pyrene	ND		ug/kg	160	48.	1
Benzo(b)fluoranthene	ND		ug/kg	120	33.	1
Benzo(k)fluoranthene	ND		ug/kg	120	32.	1
Chrysene	60	J	ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	39.	1
Benzo(ghi)perylene	ND		ug/kg	160	23.	1
Fluorene	34	J	ug/kg	200	19.	1
Phenanthrene	88	J	ug/kg	120	24.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	23.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	51	J	ug/kg	120	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	96	23-120	
2-Fluorobiphenyl	69	30-120	
4-Terphenyl-d14	65	18-120	

			Serial_No:08242116:46		
Project Name:	BARNET MILLS		Lab Number:	L2144034	
Project Number:	21-26694E		Report Date:	08/24/21	
		SAMPLE RESULTS			
Lab ID:	L2144034-03		Date Collected:	08/10/21 11:05	
Client ID:	B-7 4-5'		Date Received:	08/17/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	I: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	08/21/21 13:59	
Analytical Date:	08/24/21 13:50				
Analyst:	JG				
Percent Solids:	87%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	70	J	ug/kg	150	20.	1	
Fluoranthene	47	J	ug/kg	110	22.	1	
Benzo(a)anthracene	120		ug/kg	110	21.	1	
Benzo(a)pyrene	54	J	ug/kg	150	46.	1	
Benzo(b)fluoranthene	37	J	ug/kg	110	32.	1	
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1	
Chrysene	250		ug/kg	110	20.	1	
Acenaphthylene	ND		ug/kg	150	29.	1	
Anthracene	61	J	ug/kg	110	37.	1	
Benzo(ghi)perylene	28	J	ug/kg	150	22.	1	
Fluorene	130	J	ug/kg	190	18.	1	
Phenanthrene	150		ug/kg	110	23.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	110	22.	1	
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1	
Pyrene	160		ug/kg	110	19.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	72	23-120	
2-Fluorobiphenyl	63	30-120	
4-Terphenyl-d14	63	18-120	

			Serial_No:08242116:46		
Project Name:	BARNET MILLS		Lab Number:	L2144034	
Project Number:	21-26694E		Report Date:	08/24/21	
		SAMPLE RESULTS			
Lab ID:	L2144034-04		Date Collected:	08/10/21 11:30	
Client ID:	B-8 4-5'		Date Received:	08/17/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	l: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	08/21/21 13:59	
Analytical Date:	08/24/21 14:14				
Analyst:	JG				
Percent Solids:	78%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	330	J	ug/kg	510	66.	1	
Fluoranthene	1200		ug/kg	380	73.	1	
Benzo(a)anthracene	780		ug/kg	380	72.	1	
Benzo(a)pyrene	430	J	ug/kg	510	160	1	
Benzo(b)fluoranthene	880		ug/kg	380	110	1	
Benzo(k)fluoranthene	220	J	ug/kg	380	100	1	
Chrysene	1300		ug/kg	380	66.	1	
Acenaphthylene	120	J	ug/kg	510	98.	1	
Anthracene	430		ug/kg	380	120	1	
Benzo(ghi)perylene	270	J	ug/kg	510	75.	1	
Fluorene	320	J	ug/kg	640	62.	1	
Phenanthrene	1000		ug/kg	380	77.	1	
Dibenzo(a,h)anthracene	100	J	ug/kg	380	74.	1	
Indeno(1,2,3-cd)pyrene	310	J	ug/kg	510	89.	1	
Pyrene	1300		ug/kg	380	63.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	58	30-120	
4-Terphenyl-d14	52	18-120	

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-05		Date Collected:	08/11/21 10:40
Client ID:	B-13 10-15'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	08/22/21 14:10
Analytical Date:	08/23/21 18:16			
Analyst:	SLR			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Acenaphthene	ND		ug/kg	430	55.	1
Fluoranthene	ND		ug/kg	320	61.	1
Benzo(a)anthracene	ND		ug/kg	320	60.	1
Benzo(a)pyrene	ND		ug/kg	430	130	1
Benzo(b)fluoranthene	ND		ug/kg	320	90.	1
Benzo(k)fluoranthene	ND		ug/kg	320	85.	1
Chrysene	ND		ug/kg	320	56.	1
Acenaphthylene	ND		ug/kg	430	82.	1
Anthracene	ND		ug/kg	320	100	1
Benzo(ghi)perylene	ND		ug/kg	430	63.	1
Fluorene	ND		ug/kg	530	52.	1
Phenanthrene	ND		ug/kg	320	65.	1
Dibenzo(a,h)anthracene	ND		ug/kg	320	62.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	430	74.	1
Pyrene	ND		ug/kg	320	53.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	89	23-120	
2-Fluorobiphenyl	78	30-120	
4-Terphenyl-d14	80	18-120	

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-06		Date Collected:	08/12/21 11:15
Client ID:	B-19 15-20'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	08/22/21 14:10
Analytical Date:	08/23/21 18:40			
Analyst:	SLR			
Percent Solids:	86%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Westborough Lab					
Acenaphthene	ND		ug/kg	450	58.	1
Fluoranthene	ND		ug/kg	340	64.	1
Benzo(a)anthracene	ND		ug/kg	340	63.	1
Benzo(a)pyrene	ND		ug/kg	450	140	1
Benzo(b)fluoranthene	ND		ug/kg	340	94.	1
Benzo(k)fluoranthene	ND		ug/kg	340	89.	1
Chrysene	ND		ug/kg	340	58.	1
Acenaphthylene	ND		ug/kg	450	86.	1
Anthracene	ND		ug/kg	340	110	1
Benzo(ghi)perylene	ND		ug/kg	450	66.	1
Fluorene	ND		ug/kg	560	54.	1
Phenanthrene	ND		ug/kg	340	68.	1
Dibenzo(a,h)anthracene	ND		ug/kg	340	64.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	450	78.	1
Pyrene	ND		ug/kg	340	56.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	87	23-120	
2-Fluorobiphenyl	80	30-120	
4-Terphenyl-d14	84	18-120	

			Serial_No	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-07		Date Collected:	08/12/21 14:00
Client ID:	B-20 16-18'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	08/22/21 14:10
Analytical Date:	08/23/21 19:04			
Analyst:	SLR			
Percent Solids:	87%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	420	54.	1		
Fluoranthene	ND		ug/kg	320	60.	1		
Benzo(a)anthracene	76	J	ug/kg	320	59.	1		
Benzo(a)pyrene	ND		ug/kg	420	130	1		
Benzo(b)fluoranthene	ND		ug/kg	320	88.	1		
Benzo(k)fluoranthene	ND		ug/kg	320	84.	1		
Chrysene	96	J	ug/kg	320	55.	1		
Acenaphthylene	ND		ug/kg	420	81.	1		
Anthracene	ND		ug/kg	320	100	1		
Benzo(ghi)perylene	ND		ug/kg	420	62.	1		
Fluorene	ND		ug/kg	520	51.	1		
Phenanthrene	ND		ug/kg	320	64.	1		
Dibenzo(a,h)anthracene	ND		ug/kg	320	61.	1		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	420	73.	1		
Pyrene	99	J	ug/kg	320	52.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	97	23-120	
2-Fluorobiphenyl	83	30-120	
4-Terphenyl-d14	81	18-120	

Project Name:	BARNET MILLS	Lab Number:	L2144034
Project Number:	21-26694E	Report Date:	08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 08/23/21 09:10 JRW Extraction Method: EPA 3546 Extraction Date: 08/21/21 13:59

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westboroug	h Lab for s	ample(s):	01-04	Batch:	WG1537716-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	98		19.
Benzo(a)anthracene	ND		ug/kg	98		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	98		28.
Benzo(k)fluoranthene	ND		ug/kg	98		26.
Chrysene	ND		ug/kg	98		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	98		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	98		20.
Dibenzo(a,h)anthracene	ND		ug/kg	98		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	98		16.

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	25-120
Phenol-d6	74	10-120
Nitrobenzene-d5	62	23-120
2-Fluorobiphenyl	64	30-120
2,4,6-Tribromophenol	64	10-136
4-Terphenyl-d14	76	18-120

Project Name:	BARNET MILLS	Lab Number:	L2144034
Project Number:	21-26694E	Report Date:	08/24/21

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 08/23/21 10:21 JRW Extraction Method: EPA 3546 Extraction Date: 08/22/21 14:10

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	- Westborough	Lab for sample(s): 05-07	Batch: WG1537816-1
Acenaphthene	ND	ug/kg	130	17.
Fluoranthene	ND	ug/kg	97	19.
Benzo(a)anthracene	ND	ug/kg	97	18.
Benzo(a)pyrene	ND	ug/kg	130	40.
Benzo(b)fluoranthene	ND	ug/kg	97	27.
Benzo(k)fluoranthene	ND	ug/kg	97	26.
Chrysene	ND	ug/kg	97	17.
Acenaphthylene	ND	ug/kg	130	25.
Anthracene	ND	ug/kg	97	32.
Benzo(ghi)perylene	ND	ug/kg	130	19.
Fluorene	ND	ug/kg	160	16.
Phenanthrene	ND	ug/kg	97	20.
Dibenzo(a,h)anthracene	ND	ug/kg	97	19.
Indeno(1,2,3-cd)pyrene	ND	ug/kg	130	23.
Pyrene	ND	ug/kg	97	16.

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	89	25-120
Phenol-d6	96	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	88	30-120
2,4,6-Tribromophenol	90	10-136
4-Terphenyl-d14	109	18-120

Lab Control Sample Analysis Batch Quality Control

BARNET MILLS **Project Name:** Project Number:

Lab Number: L2144034

21-26694E

Report Date: 08/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD .imits
Semivolatile Organics by GC/MS - Westbord	ugh Lab Associ	ated sample(s):	01-04 Bate	ch: WG153 ⁻	7716-2 WG15377	16-3	
Acenaphthene	70		76		31-137	8	50
Fluoranthene	74		82		40-140	10	50
Benzo(a)anthracene	71		79		40-140	11	50
Benzo(a)pyrene	78		84		40-140	7	50
Benzo(b)fluoranthene	78		83		40-140	6	50
Benzo(k)fluoranthene	73		81		40-140	10	50
Chrysene	71		76		40-140	7	50
Acenaphthylene	71		78		40-140	9	50
Anthracene	73		79		40-140	8	50
Benzo(ghi)perylene	73		80		40-140	9	50
Fluorene	71		79		40-140	11	50
Phenanthrene	69		76		40-140	10	50
Dibenzo(a,h)anthracene	74		81		40-140	9	50
Indeno(1,2,3-cd)pyrene	74		80		40-140	8	50
Pyrene	71		78		35-142	9	50

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	70	78	25-120
Phenol-d6	77	84	10-120
Nitrobenzene-d5	72	79	23-120
2-Fluorobiphenyl	66	71	30-120
2,4,6-Tribromophenol	67	75	10-136
4-Terphenyl-d14	68	75	18-120

Lab Control Sample Analysis Batch Quality Control

BARNET MILLS **Project Name:** Project Number: 21-26694E

Lab Number: L2144034

Report Date: 08/24/21

Parameter	LCS %Recovery Qu	LCSD Ial %Recove		%Recovery Limits	RPD	RF Qual Lin	PD nits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associated s	ample(s): 05-07	Batch: WG153	7816-2 WG15378	16-3		
Acenaphthene	82	84		31-137	2	5	0
Fluoranthene	88	90		40-140	2	5	0
Benzo(a)anthracene	85	87		40-140	2	5	0
Benzo(a)pyrene	91	96		40-140	5	5	0
Benzo(b)fluoranthene	90	93		40-140	3	5	0
Benzo(k)fluoranthene	89	92		40-140	3	5	0
Chrysene	84	85		40-140	1	5	0
Acenaphthylene	84	85		40-140	1	5	0
Anthracene	87	87		40-140	0	5	0
Benzo(ghi)perylene	88	90		40-140	2	5	0
Fluorene	84	86		40-140	2	5	0
Phenanthrene	82	84		40-140	2	5	0
Dibenzo(a,h)anthracene	90	91		40-140	1	5	0
Indeno(1,2,3-cd)pyrene	90	91		40-140	1	5	0
Pyrene	85	88		35-142	3	5	0

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	91	89	25-120
Phenol-d6	98	98	10-120
Nitrobenzene-d5	91	89	23-120
2-Fluorobiphenyl	84	84	30-120
2,4,6-Tribromophenol	88	90	10-136
4-Terphenyl-d14	92	96	18-120

PCBS

			Serial_No:	08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-01		Date Collected:	08/09/21 09:30
Client ID:	B-1 10-15'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 09:18		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	82%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/kg	108	9.62	1	A	
Aroclor 1221	ND		ug/kg	108	10.8	1	А	
Aroclor 1232	ND		ug/kg	108	23.0	1	А	
Aroclor 1242	ND		ug/kg	108	14.6	1	А	
Aroclor 1248	ND		ug/kg	108	16.2	1	А	
Aroclor 1254	ND		ug/kg	108	11.8	1	А	
Aroclor 1260	ND		ug/kg	108	20.0	1	А	
Aroclor 1262	ND		ug/kg	108	13.8	1	А	
Aroclor 1268	ND		ug/kg	108	11.2	1	А	
PCBs, Total	ND		ug/kg	108	9.62	1	А	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79		30-150	А
Decachlorobiphenyl	80		30-150	А
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	85		30-150	В

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-02		Date Collected:	08/09/21 11:00
Client ID:	B-2 10-15'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 09:25		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	83%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	106	9.44	1	А
Aroclor 1221	ND		ug/kg	106	10.6	1	A
Aroclor 1232	ND		ug/kg	106	22.5	1	А
Aroclor 1242	ND		ug/kg	106	14.3	1	А
Aroclor 1248	ND		ug/kg	106	15.9	1	А
Aroclor 1254	ND		ug/kg	106	11.6	1	А
Aroclor 1260	ND		ug/kg	106	19.6	1	А
Aroclor 1262	ND		ug/kg	106	13.5	1	А
Aroclor 1268	ND		ug/kg	106	11.0	1	А
PCBs, Total	ND		ug/kg	106	9.44	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	· · · · · ·			
2,4,5,6-Tetrachloro-m-xylene	80		30-150	A
Decachlorobiphenyl	79		30-150	А
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	83		30-150	В

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-03		Date Collected:	08/10/21 11:05
Client ID:	B-7 4-5'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 09:33		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	87%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	/estborough Lab						
Aroclor 1016	ND		ug/kg	114	10.1	1	A
Aroclor 1221	ND		ug/kg	114	11.4	1	А
Aroclor 1232	ND		ug/kg	114	24.1	1	А
Aroclor 1242	ND		ug/kg	114	15.3	1	А
Aroclor 1248	ND		ug/kg	114	17.0	1	А
Aroclor 1254	ND		ug/kg	114	12.4	1	А
Aroclor 1260	ND		ug/kg	114	21.0	1	А
Aroclor 1262	ND		ug/kg	114	14.4	1	А
Aroclor 1268	ND		ug/kg	114	11.8	1	А
PCBs, Total	ND		ug/kg	114	10.1	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	50		30-150	А
Decachlorobiphenyl	51		30-150	А
2,4,5,6-Tetrachloro-m-xylene	42		30-150	В
Decachlorobiphenyl	51		30-150	В

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-04		Date Collected:	08/10/21 11:30
Client ID:	B-8 4-5'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 09:40		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	78%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ua/ka	114	10.2	1	А			
			ug/kg			I				
Aroclor 1221	ND		ug/kg	114	11.5	1	A			
Aroclor 1232	ND		ug/kg	114	24.3	1	А			
Aroclor 1242	ND		ug/kg	114	15.4	1	А			
Aroclor 1248	ND		ug/kg	114	17.2	1	А			
Aroclor 1254	ND		ug/kg	114	12.5	1	А			
Aroclor 1260	ND		ug/kg	114	21.1	1	А			
Aroclor 1262	ND		ug/kg	114	14.5	1	А			
Aroclor 1268	15.8	J	ug/kg	114	11.8	1	А			
PCBs, Total	15.8	J	ug/kg	114	10.2	1	А			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	, incourcing	Quanter	Onterna	oolulliili
2,4,5,6-Tetrachloro-m-xylene	82		30-150	А
Decachlorobiphenyl	93		30-150	А
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	105		30-150	В

			Serial_No	0:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-05		Date Collected:	08/11/21 10:40
Client ID:	B-13 10-15'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	I: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 09:47		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	86%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/kg	114	10.2	1	А
Aroclor 1221	ND		ug/kg	114	11.4	1	А
Aroclor 1232	ND		ug/kg	114	24.2	1	А
Aroclor 1242	ND		ug/kg	114	15.4	1	А
Aroclor 1248	ND		ug/kg	114	17.1	1	А
Aroclor 1254	ND		ug/kg	114	12.5	1	А
Aroclor 1260	ND		ug/kg	114	21.1	1	А
Aroclor 1262	ND		ug/kg	114	14.5	1	А
Aroclor 1268	ND		ug/kg	114	11.8	1	А
PCBs, Total	ND		ug/kg	114	10.2	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	А
Decachlorobiphenyl	78		30-150	А
2,4,5,6-Tetrachloro-m-xylene	65		30-150	В
Decachlorobiphenyl	83		30-150	В

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-06		Date Collected:	08/12/21 11:15
Client ID:	B-19 15-20'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 09:54		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	86%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND			103	9.15	1	А
			ug/kg			1	
Aroclor 1221	ND		ug/kg	103	10.3	1	A
Aroclor 1232	ND		ug/kg	103	21.8	1	A
Aroclor 1242	ND		ug/kg	103	13.9	1	А
Aroclor 1248	ND		ug/kg	103	15.5	1	А
Aroclor 1254	ND		ug/kg	103	11.3	1	А
Aroclor 1260	ND		ug/kg	103	19.0	1	А
Aroclor 1262	ND		ug/kg	103	13.1	1	А
Aroclor 1268	ND		ug/kg	103	10.7	1	А
PCBs, Total	ND		ug/kg	103	9.15	1	А

_			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	А
Decachlorobiphenyl	79		30-150	А
2,4,5,6-Tetrachloro-m-xylene	68		30-150	В
Decachlorobiphenyl	84		30-150	В

			Serial_No	:08242116:46
Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-07		Date Collected:	08/12/21 14:00
Client ID:	B-20 16-18'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	l: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	08/22/21 08:53
Analytical Date:	08/23/21 10:02		Cleanup Method:	EPA 3665A
Analyst:	AWS		Cleanup Date:	08/22/21
Percent Solids:	87%		Cleanup Method:	EPA 3660B
			Cleanup Date:	08/23/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	/estborough Lab						
Aroclor 1016	ND		ug/kg	113	10.0	1	А
Aroclor 1221	ND		ug/kg	113	11.3	1	А
Aroclor 1232	ND		ug/kg	113	23.9	1	А
Aroclor 1242	ND		ug/kg	113	15.2	1	А
Aroclor 1248	ND		ug/kg	113	16.9	1	А
Aroclor 1254	ND		ug/kg	113	12.3	1	А
Aroclor 1260	ND		ug/kg	113	20.8	1	А
Aroclor 1262	ND		ug/kg	113	14.3	1	А
Aroclor 1268	ND		ug/kg	113	11.7	1	А
PCBs, Total	ND		ug/kg	113	10.0	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	A
Decachlorobiphenyl	65		30-150	А
2,4,5,6-Tetrachloro-m-xylene	56		30-150	В
Decachlorobiphenyl	69		30-150	В

L2144034

08/24/21

Lab Number:

Report Date:

Project Name: BARNET MILLS

Project Number: 21-26694E

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 08/23/21 08:49 AWS Extraction Method:EPA 3546Extraction Date:08/22/21 08:53Cleanup Method:EPA 3665ACleanup Date:08/22/21Cleanup Method:EPA 3660BCleanup Date:08/23/21

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westborough	Lab for s	ample(s):	01-07	Batch:	WG153	37779-1
Aroclor 1016	ND		ug/kg	32.2		2.86	А
Aroclor 1221	ND		ug/kg	32.2		3.23	А
Aroclor 1232	ND		ug/kg	32.2		6.83	А
Aroclor 1242	ND		ug/kg	32.2		4.34	А
Aroclor 1248	ND		ug/kg	32.2		4.84	А
Aroclor 1254	ND		ug/kg	32.2		3.53	А
Aroclor 1260	ND		ug/kg	32.2		5.96	А
Aroclor 1262	ND		ug/kg	32.2		4.09	А
Aroclor 1268	ND		ug/kg	32.2		3.34	А
PCBs, Total	ND		ug/kg	32.2		2.86	А

			Acceptanc	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	А
Decachlorobiphenyl	73		30-150	А
2,4,5,6-Tetrachloro-m-xylene	64		30-150	В
Decachlorobiphenyl	78		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01-07 Batch: WG1537779-2 WG1537779-3 79 Aroclor 1016 86 40-140 8 50 А 79 86 40-140 50 Aroclor 1260 8 А

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81	87		30-150	A
Decachlorobiphenyl	77	83		30-150	А
2,4,5,6-Tetrachloro-m-xylene	70	75		30-150	В
Decachlorobiphenyl	86	93		30-150	В

METALS

Project Name:	BARNET MILLS	Lab Number:	L2144034
Project Number:	21-26694E	Report Date:	08/24/21
	SAMPLE RESULTS		
Lab ID:	L2144034-01	Date Collected:	08/09/21 09:30
Client ID:	B-1 10-15'	Date Received:	08/17/21
Sample Location:	RENSSELAER, NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 82%

Percent Solids:	82%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab										
Arsenic, Total	5.58		mg/kg	0.471	0.098	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
Barium, Total	26.6		mg/kg	0.471	0.082	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
Cadmium, Total	0.212	J	mg/kg	0.471	0.046	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
Chromium, Total	11.2		mg/kg	0.471	0.045	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
Lead, Total	8.48		mg/kg	2.36	0.126	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
Mercury, Total	ND		mg/kg	0.076	0.050	1	08/19/21 09:30	0 08/19/21 19:23	B EPA 7471B	1,7471B	OU
Selenium, Total	0.655	J	mg/kg	0.942	0.122	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
Silver, Total	ND		mg/kg	0.471	0.133	1	08/19/21 08:1	5 08/20/21 20:36	6 EPA 3050B	1,6010D	JC
	=					•	00, 10, 21 00.10			,	

Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-03		Date Collected:	08/10/21 11:05
Client ID:	B-7 4-5'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 87%

Percent Solids:	87%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	5.42		mg/kg	0.443	0.092	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC
Barium, Total	42.7		mg/kg	0.443	0.077	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC
Cadmium, Total	0.226	J	mg/kg	0.443	0.043	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC
Chromium, Total	13.3		mg/kg	0.443	0.043	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC
Lead, Total	13.7		mg/kg	2.22	0.119	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC
Mercury, Total	0.048	J	mg/kg	0.072	0.047	1	08/19/21 09:3	0 08/19/21 19:26	EPA 7471B	1,7471B	OU
Selenium, Total	0.855	J	mg/kg	0.886	0.114	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC
Silver, Total	ND		mg/kg	0.443	0.125	1	08/19/21 08:1	5 08/20/21 20:41	EPA 3050B	1,6010D	JC

Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-04		Date Collected:	08/10/21 11:30
Client ID:	B-8 4-5'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

Percent Solids:	78%					Dilution	Date	Date	Prep	Analytical		
Parameter	Result	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
Total Metals - Man	sfield Lab											
Arsenic, Total	37.2		mg/kg	0.501	0.104	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	
Barium, Total	33.6		mg/kg	0.501	0.087	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	
Cadmium, Total	0.526		mg/kg	0.501	0.049	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	
Chromium, Total	21.2		mg/kg	0.501	0.048	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	
Lead, Total	65.8		mg/kg	2.51	0.134	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	
Mercury, Total	0.123		mg/kg	0.083	0.054	1	08/19/21 09:30	08/19/21 19:29	EPA 7471B	1,7471B	OU	
Selenium, Total	3.93		mg/kg	1.00	0.129	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	
Silver, Total	ND		mg/kg	0.501	0.142	1	08/19/21 08:15	5 08/20/21 21:17	EPA 3050B	1,6010D	JC	

Project Name:	BARNET MILLS		Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21
		SAMPLE RESULTS		
Lab ID:	L2144034-06		Date Collected:	08/12/21 11:15
Client ID:	B-19 15-20'		Date Received:	08/17/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 86%

Percent Solids:	86%					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Man	sfield Lab										
Arsenic, Total	6.18		mg/kg	0.437	0.091	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC
Barium, Total	26.7		mg/kg	0.437	0.076	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC
Cadmium, Total	0.245	J	mg/kg	0.437	0.043	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC
Chromium, Total	13.4		mg/kg	0.437	0.042	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC
Lead, Total	8.54		mg/kg	2.18	0.117	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC
Mercury, Total	ND		mg/kg	0.074	0.048	1	08/19/21 09:3	0 08/19/21 19:32	EPA 7471B	1,7471B	OU
Selenium, Total	0.616	J	mg/kg	0.874	0.113	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC
Silver, Total	0.127	J	mg/kg	0.437	0.124	1	08/19/21 08:1	5 08/20/21 21:22	EPA 3050B	1,6010D	JC

Project Name: BARNET MILLS Project Number: 21-26694E
 Lab Number:
 L2144034

 Report Date:
 08/24/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01,03-04,	06 Bato	ch: WG	1536607-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC
Barium, Total	ND	mg/kg	0.400	0.070	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC
Cadmium, Total	ND	mg/kg	0.400	0.039	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC
Chromium, Total	ND	mg/kg	0.400	0.038	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC
Lead, Total	ND	mg/kg	2.00	0.107	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC
Selenium, Total	ND	mg/kg	0.800	0.103	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC
Silver, Total	ND	mg/kg	0.400	0.113	1	08/19/21 08:15	08/20/21 20:22	1,6010D	JC

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01,03-04,	06 Bato	ch: WG	1536608-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	08/19/21 09:30	08/19/21 18:53	8 1,7471B	OU

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number: L2144034 Report Date: 08/24/21

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 01,03-04,06	Batch: WG1536607-2	SRM Lot Number: D109-540			
Arsenic, Total	101	-	70-130	-		
Barium, Total	94	-	75-125	-		
Cadmium, Total	108	-	75-125	-		
Chromium, Total	99	-	70-130	-		
Lead, Total	96	-	72-128	-		
Selenium, Total	103	-	68-132	-		
Silver, Total	99	-	68-131	-		
tal Metals - Mansfield Lab Associated sample	e(s): 01,03-04,06	Batch: WG1536608-2	SRM Lot Number: D109-540			
Mercury, Total	103	-	60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BARNET MILLS

Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery (Recovery Qual Limits	RPD Qual	RPD Limits
Fotal Metals - Mansfield La	ab Associated san	nple(s): 01,0	03-04,06	QC Batch ID: W	/G15366	607-3 C	C Sample: L2143	3909-13 Client I	D: MS Samp	le
Arsenic, Total	11.0	21.7	28.9	82		-	-	75-125	-	20
Barium, Total	448	362	664	60	Q	-	-	75-125	-	20
Cadmium, Total	1.17J	9.59	9.59	100		-	-	75-125	-	20
Chromium, Total	18.0	36.2	50.7	90		-	-	75-125	-	20
Lead, Total	65.3	95.9	116	53	Q	-	-	75-125	-	20
Selenium, Total	3.86	21.7	23.6	91		-	-	75-125	-	20
Silver, Total	ND	54.3	52.1	96		-	-	75-125	-	20
otal Metals - Mansfield La	ab Associated san	nple(s): 01,0	03-04,06	QC Batch ID: W	/G15366	608-3 C	C Sample: L2143	3909-13 Client I	D: MS Samp	le
Mercury, Total	0.346	0.296	0.562	73	Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number:

L2144034 Report Date: 08/24/21

Parameter	Native Sample	Duplicate San	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01,03-04,06 QC Batch ID:	WG1536607-4	QC Sample: L21439	909-13 CI	ient ID: Dl	JP Sample
Arsenic, Total	11.0	12.4	mg/kg	12		20
Barium, Total	448	503	mg/kg 12		20	
Cadmium, Total	1.17J	1.51J	mg/kg	NC		20
Chromium, Total	18.0	19.5	mg/kg	8		20
Lead, Total	65.3	70.9	mg/kg	8		20
Selenium, Total	3.86	4.64	mg/kg	18		20
Silver, Total	ND	ND	mg/kg	NC		20
Total Metals - Mansfield Lab Associated sample	e(s): 01,03-04,06 QC Batch ID:	WG1536608-4	QC Sample: L21439	909-13 CI	ient ID: Dl	JP Sample
Mercury, Total	0.346	0.254	mg/kg	31	Q	20

Project Name: Project Number:	BARNET MILLS 21-26694E		Lab Serial Dilution Analysis Batch Quality Control					L2144034 08/24/21
Parameter		Native S	Sample	Serial Diluti	on Units	% D	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sample(s):	01,03-04,06	QC Batch ID:	WG1536607-6	QC Sample: L2	2143909-13	Client ID: DUF	^o Sample
Barium, Total		448	8	394	mg/kg	12		20

INORGANICS & MISCELLANEOUS

	Serial	No:08242116:46
--	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2144034-0 B-1 10-15' RENSSELA							Received:	08/09/21 09:30 08/17/21 Not Specified)
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	82.4		%	0.100	NA	1	-	08/18/21 11:43	3 121,2540G	RI

	Serial	No:08242116:46
--	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2144034-0 B-2 10-15' RENSSELA							Received:	08/09/21 11:00 08/17/21 Not Specified)
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal	b								
Solids, Total	82.8		%	0.100	NA	1	-	08/18/21 09:24	4 121,2540G	RI

	Serial	No:08242116:46
--	--------	----------------

Project Name:BARNET MILLSProject Number:21-26694E

Lab ID: Client ID: Sample Location:	L2144034-0 B-7 4-5' RENSSELA	-						Received:	08/10/21 11:05 08/17/21 Not Specified	5
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	87.2		%	0.100	NA	1	-	08/18/21 11:43	3 121,2540G	RI

	Serial	No:08242116:46
--	--------	----------------

Project Name:BARNET MILLSProject Number:21-26694E

Lab ID: Client ID: Sample Location:	L2144034-0 B-8 4-5' RENSSELA							Received:	08/10/21 11:30 08/17/21 Not Specified)
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat	C								
Solids, Total	77.6		%	0.100	NA	1	-	08/18/21 11:43	3 121,2540G	RI

	Serial	No:08242116:46
--	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2144034-0 B-13 10-15' RENSSELA	-						Received:	08/11/21 10:40 08/17/21 Not Specified)
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal	C								
Solids, Total	86.1		%	0.100	NA	1	-	08/18/21 09:24	4 121,2540G	RI

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2144034-0 B-19 15-20' RENSSELA	-						Received:	08/12/21 11:15 08/17/21 Not Specified	5
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	86.0		%	0.100	NA	1	-	08/18/21 11:4	3 121,2540G	RI

	Serial	No:08242116:46
--	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	L2144034-07 B-20 16-18' RENSSELAER, NY		Date		Received:	08/12/21 14:00 08/17/21 Not Specified)			
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	87.2		%	0.100	NA	1	-	08/18/21 09:24	4 121,2540G	RI

Project Name:	BARNET MILLS	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2144034
Project Number:	21-26694E		Report Date:	08/24/21

Parameter	Native Sample	e Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 02,05,07	QC Batch ID: WG1536317-1	QC Sample:	L2142410-3	5 Client ID: DUP Sample
Solids, Total	95.4	95.2	%	0	20
General Chemistry - Westborough Lab	Associated sample(s): 01,03-04,0	06 QC Batch ID: WG1536363	3-1 QC Samp	ole: L214400	0-01 Client ID: DUP Sample
Solids, Total	93.8	94.8	%	1	20

Project Name: BARNET MILLS Project Number: 21-26694E

Serial_No:08242116:46 Lab Number: L2144034 Report Date: 08/24/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)
L2144034-01A	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2144034-01B	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		NYCP51-PAH(14),NYTCL-8260- R2(14),TS(7),NYTCL-8082(365)
L2144034-01X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-01Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-01Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-02A	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-02B	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2144034-02X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-02Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-02Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-03A	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2144034-03B	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		NYTCL-8260-R2(14),NYCP51- PAH(14),TS(7),NYTCL-8082(365)
L2144034-03X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-03Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-03Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-04A	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2144034-04B	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		NYTCL-8260-R2(14),NYCP51- PAH(14),TS(7),NYTCL-8082(365)
L2144034-04X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-04Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)

Project Name:BARNET MILLSProject Number:21-26694E

Serial_No:08242116:46 *Lab Number:* L2144034 *Report Date:* 08/24/21

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2144034-04Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-05A	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-05B	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2144034-05X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-05Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-05Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-06A	Vial Large Septa unpreserved (4oz)	A	NA		3.4	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2144034-06B	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYCP51-PAH(14),NYTCL-8260- R2(14),TS(7),NYTCL-8082(365)
L2144034-06X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-06Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-06Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-07A	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-07B	Vial Large Septa unpreserved (4oz)	А	NA		3.4	Y	Absent		NYCP51-PAH(14),TS(7),NYTCL-8082(365)
L2144034-07X	Vial MeOH preserved split	А	NA		3.4	Y	Absent		NYTCL-8260-R2(14)
L2144034-07Y	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)
L2144034-07Z	Vial Water preserved split	А	NA		3.4	Y	Absent	19-AUG-21 04:57	NYTCL-8260-R2(14)

Project Number: 21-26694E

Lab Number: L2144034

Report Date: 08/24/21

GLOSSARY

Acronyms

Acronyms	
DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Number: 21-26694E

Lab Number: L2144034

Report Date: 08/24/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08242116:46

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2144034 Report Date: 08/24/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Project Name: BARNET MILLS Project Number: 21-26694E

 Lab Number:
 L2144034

 Report Date:
 08/24/21

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

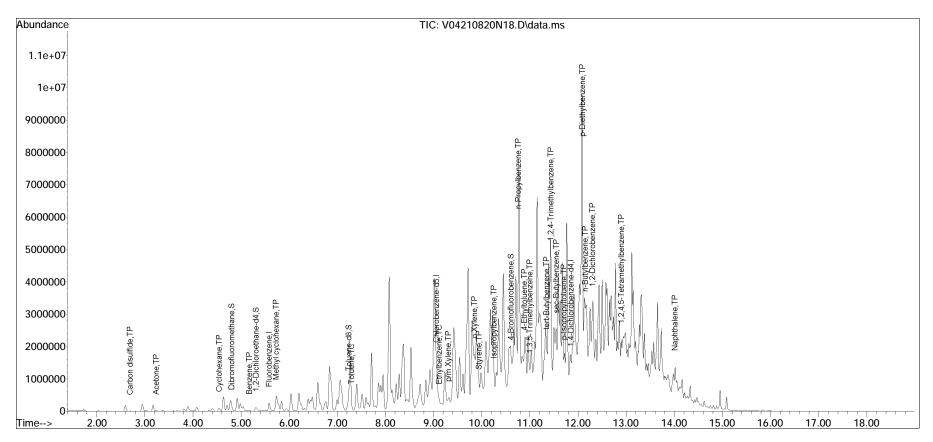
Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

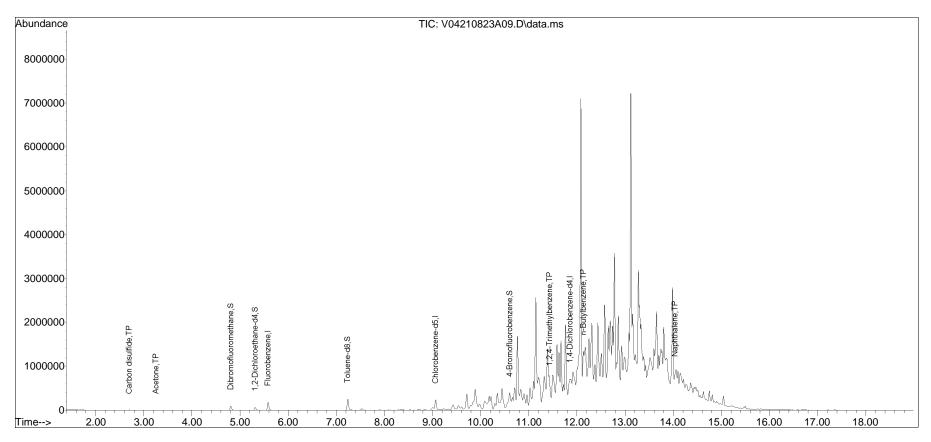

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: Alpine Enviro Address: 438 New Kar Albany NY 12205 Phone: 518-588-210 Fax: Email: KimB@Alpin	4	Service Centers Mahwah, NJ 07430: 35 Whitney Rd Albany, NY 12205: 14 Walker Way Tenawanda, NY 14150: 275 Coope Project Information Project Name: Project Name: Project Location: Project # (Use Project name as Project Project Manager: ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved)	r Ave, Suite 105 Barnet Mills Rensselaer 21-26694E tt#)	NY Due Date # of Days	E.	e 1 f 1	Regu	ASP-, ASP-, EQuit Other Jatory F NY TC AWQ NY Ri NY Ur NY C	A S (1 Fi S (1 Fi OGS Standa estricte	le) ament	P-B tulS (4 F Part 375 CP-51		ALPHA Job # LQ 1440.34 Billing Information Same as Client Info PO # Atth. Mark Schnitzer Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: NA	
These samples have been Other project specific re PO MID-LE Please specify Metals or	quirements/comments: WEL EXTRA		mp ces	MARK	ED "M	۲ <i>ـ</i>	ANA 0928	8270 CP-51	8082 PCBs Total	RCRA Metals			Sample Filtration t one ab to do 1 Preservation ab to do 8 (Please Specify below) t	
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Col Date	lection Time	Sample Matrix	Sampler's Initials	L		8	œ			Sample Specific Comments	
44034-01	B-1 10-15'		8/9/21	9:30	Soil	КВ	x	х	х	х			ML	1
50	B2 10-15		8/9/21	11:00	Soil	КВ	X	x	х				ML	
03	B7 4-5'		8/10/21	11:05	Soil	KB	x	x	х	x			ML	
04	B8 4-5		8/10/21	11:30	Soil	КВ	x	x	x	x	_	1	ML	1
05	B13 10-15		8/11/21	10:40	Soil	КВ	x	x	x					1
06	B19 15-20'		8/12/21	11:15	Soil	КВ	x	x	x	x			ML	1
07	B20 16-18		8/12/21	14:00	Soil	КВ	X	x	x				ML	-
				10000			1							-
A CONTRACTOR								-	1					
														1
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No: M Mansfield: Certification No: M		8	c	ontainer Type Preservative	⊢						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any	
E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH Form No: 01-25 (rev. 30-Sep)	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquished B Kim L. Baines Corlean RCKarey	у:	Date 8/1€/21 6/17/21 €/17/21		þi ð	Rece	ived By	###	811	 21 0 21 0 21 12		ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA104\2021\210820N\ Data File : V04210820N18.D : 21 Aug 2021 12:38 am Acq On Operator : VOA104:AJK : 12144034-01,31,5.69,5,,y Sample Misc : WG1537858, ICAL18128 Sample Multiplier: 1 ALS Vial : 18 Quant Time: Aug 22 15:51:12 2021 Quant Method : I:\VOLATILES\VOA104\2021\210820N\V104_210707N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Thu Jul 08 11:04:08 2021 Response via : Initial Calibration

Sub List : 8260-CurveSoil - Megamix plus DioxON\V04210820N01.D•



V104_210707N_8260.m Sun Aug 22 19:40:02 2021

Quantitation Report (QT Reviewed)

Data Path : I:\VOLATILES\VOA104\2021\210823A\ Data File : V04210823A09.D : 23 Aug 2021 Acq On 8:05 am Operator : VOA104:MV : 12144034-05,31,5.46,5,,y Sample Misc : WG1538254, ICAL18128 Sample Multiplier: 1 ALS Vial : 9 Quant Time: Aug 23 09:18:47 2021 Quant Method : I:\VOLATILES\VOA104\2021\210823A\V104_210707N_8260.m Quant Title : VOLATILES BY GC/MS QLast Update : Thu Jul 08 11:04:08 2021 Response via : Initial Calibration

Sub List : 8260-NYTCL - Megamix plus Diox10823A\V04210823A01.D•

V104_210707N_8260.m Mon Aug 23 21:26:15 2021

ANALYTICAL REPORT

Lab Number:	L2149063
Client:	Alpine Environmental
	438 New Karner Road
	Albany, NY 12205
ATTN:	Kim Baines
Phone:	(518) 250-4047
Project Name:	BARNET MILLS
Project Number:	21-26694E
Report Date:	09/28/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:09282113:22

Project Name:	BARNET MILLS
Project Number:	21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2149063-01	SW-TANK	WATER	RENSSELAER, NY	09/10/21 12:20	09/13/21
L2149063-02	SW-DR1	SOIL	RENSSELAER, NY	09/10/21 13:15	09/13/21
L2149063-03	SUB-STA-1	SOIL	RENSSELAER, NY	09/10/21 14:45	09/13/21
L2149063-04	SUB-STA-2	SOIL	RENSSELAER, NY	09/10/21 15:15	09/13/21
L2149063-05	SW-DR-1	WATER	RENSSELAER, NY	09/10/21 13:15	09/13/21
L2149063-06	SW-DR-2	SOIL	RENSSELAER, NY	09/10/21 15:40	09/13/21

Project Name: BARNET MILLS Project Number: 21-26694E
 Lab Number:
 L2149063

 Report Date:
 09/28/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: BARNET MILLS Project Number: 21-26694E
 Lab Number:
 L2149063

 Report Date:
 09/28/21

Case Narrative (continued)

Report Submission

September 28, 2021: This final report includes the results of all requested analyses. September 27, 2021: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2149063-01: The analysis of Semivolatile Organics was requested on the Chain of Custody; however, sample containers were not received. This was verified by the client.

Volatile Organics

L2149063-02 and -03 were analyzed with the method required holding time exceeded.

L2149063-02, -03, -04 and -06: Any reported concentrations that are below 200 ug/kg may be biased low due to the sample not being collected according to 5035-L/5035A-L low-level specifications.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 09/28/21

ORGANICS

VOLATILES

			Serial_No	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2149063-01 SW-TANK RENSSELAER, NY		Date Collected: Date Received: Field Prep:	09/10/21 12:20 09/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 09/22/21 19:13 MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					S	Serial_No	:09282113:22
Project Name:	BARNET MILLS				Lab Nu	mber:	L2149063
Project Number:	21-26694E				Report	Date:	09/28/21
-		SAMP		6			
Lab ID: Client ID: Sample Location:	L2149063-01 SW-TANK RENSSELAER, NY				Date Col Date Rec Field Pre	ceived:	09/10/21 12:20 09/13/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	99	70-130	

ug/l

10

0.40

ND

1

Methyl cyclohexane

			Serial_N	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2149063-02 SW-DR1 RENSSELAER, NY		Date Collected: Date Received: Field Prep:	09/10/21 13:15 09/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 09/27/21 14:08 MV 78%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	6.3	2.9	1
1,1-Dichloroethane	ND		ug/kg	1.3	0.18	1
Chloroform	ND		ug/kg	1.9	0.18	1
Carbon tetrachloride	ND		ug/kg	1.3	0.29	1
1,2-Dichloropropane	ND		ug/kg	1.3	0.16	1
Dibromochloromethane	ND		ug/kg	1.3	0.18	1
1,1,2-Trichloroethane	ND		ug/kg	1.3	0.34	1
Tetrachloroethene	ND		ug/kg	0.63	0.25	1
Chlorobenzene	ND		ug/kg	0.63	0.16	1
Trichlorofluoromethane	ND		ug/kg	5.0	0.88	1
1,2-Dichloroethane	ND		ug/kg	1.3	0.32	1
1,1,1-Trichloroethane	ND		ug/kg	0.63	0.21	1
Bromodichloromethane	ND		ug/kg	0.63	0.14	1
trans-1,3-Dichloropropene	ND		ug/kg	1.3	0.34	1
cis-1,3-Dichloropropene	ND		ug/kg	0.63	0.20	1
Bromoform	ND		ug/kg	5.0	0.31	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.63	0.21	1
Benzene	ND		ug/kg	0.63	0.21	1
Toluene	ND		ug/kg	1.3	0.68	1
Ethylbenzene	ND		ug/kg	1.3	0.18	1
Chloromethane	ND		ug/kg	5.0	1.2	1
Bromomethane	ND		ug/kg	2.5	0.73	1
Vinyl chloride	ND		ug/kg	1.3	0.42	1
Chloroethane	ND		ug/kg	2.5	0.57	1
1,1-Dichloroethene	ND		ug/kg	1.3	0.30	1
trans-1,2-Dichloroethene	ND		ug/kg	1.9	0.17	1
Trichloroethene	ND		ug/kg	0.63	0.17	1
1,2-Dichlorobenzene	ND		ug/kg	2.5	0.18	1

					Ś	Serial_No	:09282113:22
Project Name:	BARNET MILLS				Lab Nu	mber:	L2149063
Project Number:	21-26694E				Report	Date:	09/28/21
-		SAMP		S	-		
Lab ID:	L2149063-02				Date Col	lected:	09/10/21 13:15
Client ID:	SW-DR1				Date Red	ceived:	09/13/21
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
		ND		"	0.5	0.40	
1,3-Dichlorobenzene		ND ND		ug/kg	2.5 2.5	0.19	1
Methyl tert butyl ether		ND		ug/kg	2.5	0.22	1
p/m-Xylene		ND		ug/kg	2.5	0.25	1
o-Xylene		ND		ug/kg ug/kg	1.3	0.37	1
cis-1,2-Dichloroethene		ND		ug/kg	1.3	0.22	1
Styrene		ND		ug/kg	1.3	0.22	1
Dichlorodifluoromethane		ND		ug/kg	13	1.2	1
Acetone		6.9	J	ug/kg	13	6.1	1
Carbon disulfide		ND	0	ug/kg	13	5.7	1
2-Butanone		ND		ug/kg	13	2.8	1
4-Methyl-2-pentanone		ND		ug/kg	13	1.6	1
2-Hexanone		ND		ug/kg	13	1.5	1
Bromochloromethane		ND		ug/kg	2.5	0.26	1
1,2-Dibromoethane		ND		ug/kg	1.3	0.35	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/kg	3.8	1.2	1
Isopropylbenzene		ND		ug/kg	1.3	0.14	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.5	0.41	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.5	0.34	1
Methyl Acetate		ND		ug/kg	5.0	1.2	1
Cyclohexane		ND		ug/kg	13	0.69	1
1,4-Dioxane		ND		ug/kg	100	44.	1
Freon-113		ND		ug/kg	5.0	0.87	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	108	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	107	70-130	

5.0

ug/kg

0.76

ND

1

Methyl cyclohexane

			Serial_N	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2149063-03 SUB-STA-1 RENSSELAER, NY		Date Collected: Date Received: Field Prep:	09/10/21 14:45 09/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 09/27/21 12:52 MV 89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	5.0	2.3	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.14	1
Chloroform	ND		ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	1.0	0.23	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.12	1
Dibromochloromethane	ND		ug/kg	1.0	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27	1
Tetrachloroethene	ND		ug/kg	0.50	0.20	1
Chlorobenzene	ND		ug/kg	0.50	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.0	0.69	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.26	1
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17	1
Bromodichloromethane	ND		ug/kg	0.50	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27	1
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16	1
Bromoform	ND		ug/kg	4.0	0.24	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.16	1
Benzene	ND		ug/kg	0.50	0.16	1
Toluene	ND		ug/kg	1.0	0.54	1
Ethylbenzene	ND		ug/kg	1.0	0.14	1
Chloromethane	ND		ug/kg	4.0	0.93	1
Bromomethane	ND		ug/kg	2.0	0.58	1
Vinyl chloride	ND		ug/kg	1.0	0.33	1
Chloroethane	ND		ug/kg	2.0	0.45	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.24	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14	1
Trichloroethene	1.0		ug/kg	0.50	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1

		Serial_No:09282113:22					:09282113:22
Project Name:	BARNET MILLS				Lab Nu	ımber:	L2149063
Project Number:	21-26694E				Report	Date:	09/28/21
		SAMP		S			
Lab ID: Client ID: Sample Location:	L2149063-03 SUB-STA-1 RENSSELAER, NY				Date Co Date Re Field Pre	ceived:	09/10/21 14:45 09/13/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/kg	2.0	0.15	1
1,4-Dichlorobenzene		ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether		ND		ug/kg	2.0	0.20	1
p/m-Xylene		ND		ug/kg	2.0	0.56	1
o-Xylene		ND		ug/kg	1.0	0.29	1
cis-1,2-Dichloroethene		ND		ug/kg	1.0	0.17	1
Styrene		ND		ug/kg	1.0	0.20	1
Dichlorodifluoromethane		ND		ug/kg	10	0.91	1
Acetone		ND		ug/kg	10	4.8	1
Carbon disulfide		ND		ug/kg	10	4.5	1
2-Butanone		ND		ug/kg	10	2.2	1
4-Methyl-2-pentanone		ND		ug/kg	10	1.3	1
2-Hexanone		ND		ug/kg	10	1.2	1
Bromochloromethane		ND		ug/kg	2.0	0.20	1
1,2-Dibromoethane		ND		ug/kg	1.0	0.28	1
1,2-Dibromo-3-chloropro	pane	ND		ug/kg	3.0	1.0	1
Isopropylbenzene		ND		ug/kg	1.0	0.11	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.0	0.32	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.0	0.27	1

1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27	1	
Methyl Acetate	ND	ug/kg	4.0	0.95	1	
Cyclohexane	ND	ug/kg	10	0.54	1	
1,4-Dioxane	ND	ug/kg	80	35.	1	
Freon-113	ND	ug/kg	4.0	0.69	1	
Methyl cyclohexane	ND	ug/kg	4.0	0.60	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	103	70-130	

			Serial_N	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-04		Date Collected:	09/10/21 15:15
Client ID:	SUB-STA-2		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil			
Analytical Method:	1,8260C			
Analytical Date:	09/22/21 17:10			
Analyst:	MKS			
Percent Solids:	92%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	5.4	2.5	1
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.1	0.25	1
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1
Dibromochloromethane	ND		ug/kg	1.1	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.29	1
Tetrachloroethene	ND		ug/kg	0.54	0.21	1
Chlorobenzene	ND		ug/kg	0.54	0.14	1
Trichlorofluoromethane	ND		ug/kg	4.3	0.75	1
1,2-Dichloroethane	ND		ug/kg	1.1	0.28	1
1,1,1-Trichloroethane	ND		ug/kg	0.54	0.18	1
Bromodichloromethane	ND		ug/kg	0.54	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.30	1
cis-1,3-Dichloropropene	ND		ug/kg	0.54	0.17	1
Bromoform	ND		ug/kg	4.3	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.54	0.18	1
Benzene	ND		ug/kg	0.54	0.18	1
Toluene	ND		ug/kg	1.1	0.59	1
Ethylbenzene	ND		ug/kg	1.1	0.15	1
Chloromethane	ND		ug/kg	4.3	1.0	1
Bromomethane	ND		ug/kg	2.2	0.63	1
Vinyl chloride	ND		ug/kg	1.1	0.36	1
Chloroethane	ND		ug/kg	2.2	0.49	1
1,1-Dichloroethene	ND		ug/kg	1.1	0.26	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.15	1
Trichloroethene	0.26	J	ug/kg	0.54	0.15	1
1,2-Dichlorobenzene	ND		ug/kg	2.2	0.16	1

		Serial_No:09282113:22						
Project Name:	BARNET MILLS				Lab Nu	mber:	L2149063	
Project Number:	21-26694E				Report	Date:	09/28/21	
		SAMP		5				
Lab ID:	L2149063-04				Date Col	lected:	09/10/21 15:15	
Client ID:	SUB-STA-2				Date Re	ceived:	09/13/21	
Sample Location:	RENSSELAER, NY				Field Pre	ep:	Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
1,3-Dichlorobenzene		ND		ualka	2.2	0.16	1	
				ug/kg				
1,4-Dichlorobenzene		ND		ug/kg	2.2	0.18	1	
Methyl tert butyl ether		ND		ug/kg	2.2	0.22	1	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
1,3-Dichlorobenzene	ND		ug/kg	2.2	0.16	1		
1,4-Dichlorobenzene	ND		ug/kg	2.2	0.18	1		
Methyl tert butyl ether	ND		ug/kg	2.2	0.22	1		
p/m-Xylene	ND		ug/kg	2.2	0.60	1		
o-Xylene	ND		ug/kg	1.1	0.31	1		
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.19	1		
Styrene	ND		ug/kg	1.1	0.21	1		
Dichlorodifluoromethane	ND		ug/kg	11	0.99	1		
Acetone	ND		ug/kg	11	5.2	1		
Carbon disulfide	ND		ug/kg	11	4.9	1		
2-Butanone	ND		ug/kg	11	2.4	1		
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1		
2-Hexanone	ND		ug/kg	11	1.3	1		
Bromochloromethane	ND		ug/kg	2.2	0.22	1		
1,2-Dibromoethane	ND		ug/kg	1.1	0.30	1		
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.1	1		
Isopropylbenzene	ND		ug/kg	1.1	0.12	1		
1,2,3-Trichlorobenzene	ND		ug/kg	2.2	0.35	1		
1,2,4-Trichlorobenzene	ND		ug/kg	2.2	0.29	1		
Methyl Acetate	ND		ug/kg	4.3	1.0	1		
Cyclohexane	ND		ug/kg	11	0.59	1		
1,4-Dioxane	ND		ug/kg	86	38.	1		
Freon-113	ND		ug/kg	4.3	0.75	1		
Methyl cyclohexane	ND		ug/kg	4.3	0.65	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	94	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	110	70-130

			Serial_N	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2149063-05 SW-DR-1 RENSSELAER, NY		Date Collected: Date Received: Field Prep:	09/10/21 13:15 09/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260C 09/22/21 19:34 MKS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	brough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	1.4	J	ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.28	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					:	Serial_No	:09282113:22	
Project Name:	BARNET MILLS				Lab Nu	mber:	L2149063	
Project Number:	21-26694E				Report	Date:	09/28/21	
•		SAMP		6	•		00/20/21	
Lab ID: Client ID: Sample Location:	L2149063-05 SW-DR-1 RENSSELAER, NY				Date Col Date Ree Field Pre	ceived:	09/10/21 13:15 09/13/21 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	y GC/MS - Westborough	Lab						
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		1.9	J	ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	
Methyl cyclohexane		ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	93	70-130

			Serial_N	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2149063-06 SW-DR-2 RENSSELAER, NY		Date Collected: Date Received: Field Prep:	09/10/21 15:40 09/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8260C 09/22/21 17:35 MKS 93%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/kg	4.9	2.2	1
1,1-Dichloroethane	ND		ug/kg	0.98	0.14	1
Chloroform	ND		ug/kg	1.5	0.14	1
Carbon tetrachloride	ND		ug/kg	0.98	0.22	1
1,2-Dichloropropane	ND		ug/kg	0.98	0.12	1
Dibromochloromethane	ND		ug/kg	0.98	0.14	1
1,1,2-Trichloroethane	ND		ug/kg	0.98	0.26	1
Tetrachloroethene	ND		ug/kg	0.49	0.19	1
Chlorobenzene	ND		ug/kg	0.49	0.12	1
Trichlorofluoromethane	ND		ug/kg	3.9	0.68	1
1,2-Dichloroethane	ND		ug/kg	0.98	0.25	1
1,1,1-Trichloroethane	ND		ug/kg	0.49	0.16	1
Bromodichloromethane	ND		ug/kg	0.49	0.11	1
trans-1,3-Dichloropropene	ND		ug/kg	0.98	0.27	1
cis-1,3-Dichloropropene	ND		ug/kg	0.49	0.16	1
Bromoform	ND		ug/kg	3.9	0.24	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.49	0.16	1
Benzene	ND		ug/kg	0.49	0.16	1
Toluene	ND		ug/kg	0.98	0.53	1
Ethylbenzene	ND		ug/kg	0.98	0.14	1
Chloromethane	ND		ug/kg	3.9	0.91	1
Bromomethane	ND		ug/kg	2.0	0.57	1
Vinyl chloride	ND		ug/kg	0.98	0.33	1
Chloroethane	ND		ug/kg	2.0	0.44	1
1,1-Dichloroethene	ND		ug/kg	0.98	0.23	1
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.13	1
Trichloroethene	4.6		ug/kg	0.49	0.13	1
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14	1

					;	Serial_No	09282113:22
Project Name:	BARNET MILLS				Lab Nu	mber:	L2149063
Project Number:	21-26694E				Report	Date:	09/28/21
		SAMP	LE RESULT	S			
Lab ID: Client ID: Sample Location:	L2149063-06 SW-DR-2 RENSSELAER, NY				Date Col Date Ree Field Pre	ceived:	09/10/21 15:40 09/13/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	Lab					
					<u> </u>	<i></i>	
1,3-Dichlorobenzene		ND		ug/kg	2.0	0.14	1
1,4-Dichlorobenzene		ND		ug/kg	2.0	0.17	1
Methyl tert butyl ether		ND		ug/kg	2.0	0.20	1
p/m-Xylene		ND		ug/kg	2.0	0.55	1
o-Xylene		ND		ug/kg	0.98	0.28	1
cis-1,2-Dichloroethene		ND		ug/kg	0.98	0.17	1
Styrene		ND		ug/kg	0.98	0.19	1
Dichlorodifluoromethane		ND		ug/kg	9.8	0.90	1
Acetone		ND		ug/kg	9.8	4.7	1
Carbon disulfide		ND		ug/kg	9.8	4.5	1
2-Butanone		ND		ug/kg	9.8	2.2	1
4-Methyl-2-pentanone		ND		ug/kg	9.8	1.2	1
2-Hexanone		ND		ug/kg	9.8	1.2	1
Bromochloromethane		ND		ug/kg	2.0	0.20	1
1,2-Dibromoethane		ND		ug/kg	0.98	0.27	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/kg	2.9	0.98	1
Isopropylbenzene		ND		ug/kg	0.98	0.11	1
1,2,3-Trichlorobenzene		ND		ug/kg	2.0	0.32	1
1,2,4-Trichlorobenzene		ND		ug/kg	2.0	0.27	1
Methyl Acetate		ND		ug/kg	3.9	0.93	1
Cyclohexane		ND		ug/kg	9.8	0.53	1
1,4-Dioxane		ND		ug/kg	78	34.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	95	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	102	70-130	
Dibromofluoromethane	110	70-130	

ug/kg

ug/kg

3.9

3.9

0.68

0.59

ND

ND

1

1

Freon-113

Methyl cyclohexane

Project Number: 21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/22/21 18:51Analyst:LAC

arameter	Result	Qualifier L	Jnits	RL	MDL
olatile Organics by GC/MS - We	estborough Lab	for sample(s): 01,05	Batch:	WG1549904-5
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.0	0.14
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70

Project Number: 21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/22/21 18:51Analyst:LAC

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01,05	Batch:	WG1549904-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	BARNET MILLS	Lab Number:	L2149063
Project Number:	21-26694E	Report Date:	09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/22/21 18:51Analyst:LAC

Parameter	Result	Qualifier	Units	6	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough La	b for sampl	e(s):	01,05	Batch:	WG1549904-5	

		Acceptance			
Surrogate	%Recovery	Qualifier Crit	eria		
1.2-Dichloroethane-d4	106	70-1	30		
Toluene-d8	99	70-1			
4-Bromofluorobenzene	97	70-1	30		
Dibromofluoromethane	97	70-1	30		

Project Number: 21-26694E Lab Number: L2149063 **Report Date:** 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: Analyst: TMS

09/22/21 16:45

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lal	b for samp	le(s): 04,06	Batch:	WG1550129-5
Methylene chloride	ND		ug/kg	5.0	2.3
1,1-Dichloroethane	ND		ug/kg	1.0	0.14
Chloroform	0.14	J	ug/kg	1.5	0.14
Carbon tetrachloride	ND		ug/kg	1.0	0.23
1,2-Dichloropropane	ND		ug/kg	1.0	0.12
Dibromochloromethane	ND		ug/kg	1.0	0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.27
Tetrachloroethene	ND		ug/kg	0.50	0.20
Chlorobenzene	ND		ug/kg	0.50	0.13
Trichlorofluoromethane	ND		ug/kg	4.0	0.70
1,2-Dichloroethane	ND		ug/kg	1.0	0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50	0.17
Bromodichloromethane	ND		ug/kg	0.50	0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50	0.16
Bromoform	ND		ug/kg	4.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50	0.17
Benzene	ND		ug/kg	0.50	0.17
Toluene	ND		ug/kg	1.0	0.54
Ethylbenzene	ND		ug/kg	1.0	0.14
Chloromethane	ND		ug/kg	4.0	0.93
Bromomethane	ND		ug/kg	2.0	0.58
Vinyl chloride	ND		ug/kg	1.0	0.34
Chloroethane	ND		ug/kg	2.0	0.45
1,1-Dichloroethene	ND		ug/kg	1.0	0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5	0.14
Trichloroethene	ND		ug/kg	0.50	0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0	0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0	0.15

Project Number: 21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/22/21 16:45Analyst:TMS

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - W	/estborough Lat	o for samp	le(s): 04,06	Batch:	WG1550129-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17
Methyl tert butyl ether	ND		ug/kg	2.0	0.20
p/m-Xylene	ND		ug/kg	2.0	0.56
o-Xylene	0.70	J	ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18
Styrene	0.67	J	ug/kg	1.0	0.20
Dichlorodifluoromethane	ND		ug/kg	10	0.92
Acetone	ND		ug/kg	10	4.8
Carbon disulfide	ND		ug/kg	10	4.6
2-Butanone	2.4	J	ug/kg	10	2.2
4-Methyl-2-pentanone	ND		ug/kg	10	1.3
2-Hexanone	ND		ug/kg	10	1.2
Bromochloromethane	ND		ug/kg	2.0	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	0.28
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Isopropylbenzene	ND		ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	ND		ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	ND		ug/kg	2.0	0.27
Methyl Acetate	ND		ug/kg	4.0	0.95
Cyclohexane	ND		ug/kg	10	0.54
1,4-Dioxane	ND		ug/kg	80	35.
Freon-113	ND		ug/kg	4.0	0.69
Methyl cyclohexane	ND		ug/kg	4.0	0.60

Project Name:	BARNET MILLS	Lab Number:	L2149063
Project Number:	21-26694E	Report Date:	09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/22/21 16:45Analyst:TMS

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sampl	e(s): (04,06	Batch:	WG1550129-5	

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	92		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	101		70-130		
Dibromofluoromethane	105		70-130		

Project Number: 21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/27/21 08:19Analyst:MV

arameter	Result Qua	lifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab for s	sample(s): 02-03	Batch:	WG1551390-5
Methylene chloride	ND	ug/kg	5.0	2.3
1,1-Dichloroethane	ND	ug/kg	1.0	0.14
Chloroform	ND	ug/kg	1.5	0.14
Carbon tetrachloride	ND	ug/kg	1.0	0.23
1,2-Dichloropropane	ND	ug/kg	1.0	0.12
Dibromochloromethane	ND	ug/kg	1.0	0.14
1,1,2-Trichloroethane	ND	ug/kg	1.0	0.27
Tetrachloroethene	ND	ug/kg	0.50	0.20
Chlorobenzene	ND	ug/kg	0.50	0.13
Trichlorofluoromethane	ND	ug/kg	4.0	0.70
1,2-Dichloroethane	ND	ug/kg	1.0	0.26
1,1,1-Trichloroethane	ND	ug/kg	0.50	0.17
Bromodichloromethane	ND	ug/kg	0.50	0.11
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.27
cis-1,3-Dichloropropene	ND	ug/kg	0.50	0.16
Bromoform	ND	ug/kg	4.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	0.17
Benzene	ND	ug/kg	0.50	0.17
Toluene	ND	ug/kg	1.0	0.54
Ethylbenzene	ND	ug/kg	1.0	0.14
Chloromethane	ND	ug/kg	4.0	0.93
Bromomethane	ND	ug/kg	2.0	0.58
Vinyl chloride	ND	ug/kg	1.0	0.34
Chloroethane	ND	ug/kg	2.0	0.45
1,1-Dichloroethene	ND	ug/kg	1.0	0.24
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.14
Trichloroethene	ND	ug/kg	0.50	0.14
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15

Project Number: 21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/27/21 08:19Analyst:MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lat	o for samp	ole(s): 02-03	Batch:	WG1551390-5
1,4-Dichlorobenzene	ND		ug/kg	2.0	0.17
Methyl tert butyl ether	ND		ug/kg	2.0	0.20
p/m-Xylene	ND		ug/kg	2.0	0.56
o-Xylene	ND		ug/kg	1.0	0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0	0.18
Styrene	ND		ug/kg	1.0	0.20
Dichlorodifluoromethane	ND		ug/kg	10	0.92
Acetone	ND		ug/kg	10	4.8
Carbon disulfide	ND		ug/kg	10	4.6
2-Butanone	ND		ug/kg	10	2.2
4-Methyl-2-pentanone	ND		ug/kg	10	1.3
2-Hexanone	ND		ug/kg	10	1.2
Bromochloromethane	ND		ug/kg	2.0	0.20
1,2-Dibromoethane	ND		ug/kg	1.0	0.28
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0	1.0
Isopropylbenzene	ND		ug/kg	1.0	0.11
1,2,3-Trichlorobenzene	0.83	J	ug/kg	2.0	0.32
1,2,4-Trichlorobenzene	0.66	J	ug/kg	2.0	0.27
Methyl Acetate	ND		ug/kg	4.0	0.95
Cyclohexane	ND		ug/kg	10	0.54
1,4-Dioxane	ND		ug/kg	80	35.
Freon-113	ND		ug/kg	4.0	0.69
Methyl cyclohexane	ND		ug/kg	4.0	0.60

Project Name:	BARNET MILLS	Lab Number:	L2149063
Project Number:	21-26694E	Report Date:	09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:09/27/21 08:19Analyst:MV

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sample	e(s): 02	2-03	Batch:	WG1551390-5	

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
1,2-Dichloroethane-d4	98	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	99	70-130
Dibromofluoromethane	103	70-130

Lab Number: L2149063

	LCS		LCSD		%Recovery		RP	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Lim	its
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01,05 Batch:	WG1549904-3	WG1549904-4			
Methylene chloride	99		99		70-130	0	20)
1,1-Dichloroethane	110		100		70-130	10	20)
Chloroform	96		95		70-130	1	20)
Carbon tetrachloride	85		82		63-132	4	20)
1,2-Dichloropropane	100		110		70-130	10	20)
Dibromochloromethane	78		78		63-130	0	20)
1,1,2-Trichloroethane	98		94		70-130	4	20)
Tetrachloroethene	97		93		70-130	4	20)
Chlorobenzene	96		96		75-130	0	20)
Trichlorofluoromethane	95		98		62-150	3	20)
1,2-Dichloroethane	95		98		70-130	3	20)
1,1,1-Trichloroethane	92		90		67-130	2	20)
Bromodichloromethane	86		88		67-130	2	20)
trans-1,3-Dichloropropene	86		89		70-130	3	20)
cis-1,3-Dichloropropene	91		92		70-130	1	20)
Bromoform	70		71		54-136	1	20)
1,1,2,2-Tetrachloroethane	100		100		67-130	0	20)
Benzene	100		100		70-130	0	20)
Toluene	98		97		70-130	1	20)
Ethylbenzene	100		100		70-130	0	20)
Chloromethane	110		110		64-130	0	20)
Bromomethane	90		88		39-139	2	20)
Vinyl chloride	130		120		55-140	8	20)

Lab Number: L2149063

Parameter	LCS %Recovery	Qual	LCSI %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,05 Bat	ch: V	VG1549904-3	WG1549904-4				
Chloroethane	120		120)		55-138	0		20	
1,1-Dichloroethene	97		99			61-145	2		20	
trans-1,2-Dichloroethene	100		99			70-130	1		20	
Trichloroethene	100		98			70-130	2		20	
1,2-Dichlorobenzene	95		96			70-130	1		20	
1,3-Dichlorobenzene	99		94			70-130	5		20	
1,4-Dichlorobenzene	100		97			70-130	3		20	
Methyl tert butyl ether	92		93			63-130	1		20	
p/m-Xylene	100		100)		70-130	0		20	
o-Xylene	100		100)		70-130	0		20	
cis-1,2-Dichloroethene	97		92			70-130	5		20	
Styrene	100		100)		70-130	0		20	
Dichlorodifluoromethane	110		100)		36-147	10		20	
Acetone	160	Q	160)	Q	58-148	0		20	
Carbon disulfide	110		100)		51-130	10		20	
2-Butanone	120		130)		63-138	8		20	
4-Methyl-2-pentanone	97		100)		59-130	3		20	
2-Hexanone	100		110)		57-130	10		20	
Bromochloromethane	93		91			70-130	2		20	
1,2-Dibromoethane	88		90			70-130	2		20	
1,2-Dibromo-3-chloropropane	75		72			41-144	4		20	
Isopropylbenzene	100		95			70-130	5		20	
1,2,3-Trichlorobenzene	92		95			70-130	3		20	

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number: L2149063 Report Date: 09/28/21

Parameter	LCS %Recovery	Qual		SD overv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L									2	
	ab Associated	sample(s).	01,05 D		WO 1049904-5	101343304-4				
1,2,4-Trichlorobenzene	91			92		70-130	1		20	
Methyl Acetate	99			100		70-130	1		20	
Cyclohexane 1.4-Dioxane	110 88			110 90		70-130 56-162	0		20	
Freon-113	100			110		70-130	10		20	
Methyl cyclohexane	100		1	100		70-130	0		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria	
1,2-Dichloroethane-d4	101	101	70-130	
Toluene-d8	102	100	70-130	
4-Bromofluorobenzene	98	96	70-130	
Dibromofluoromethane	96	96	70-130	

Lab Number: L2149063

Parameter	LCS %Recovery	Qual		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04,06	Batch:	WG1550129-3	WG1550129-4				
Methylene chloride	81			79		70-130	3		30	
1,1-Dichloroethane	87			85		70-130	2		30	
Chloroform	78			76		70-130	3		30	
Carbon tetrachloride	88			85		70-130	3		30	
1,2-Dichloropropane	90			88		70-130	2		30	
Dibromochloromethane	94			93		70-130	1		30	
1,1,2-Trichloroethane	84			83		70-130	1		30	
Tetrachloroethene	100			97		70-130	3		30	
Chlorobenzene	87			86		70-130	1		30	
Trichlorofluoromethane	56	Q		54	Q	70-139	4		30	
1,2-Dichloroethane	81			79		70-130	3		30	
1,1,1-Trichloroethane	87			84		70-130	4		30	
Bromodichloromethane	85			84		70-130	1		30	
trans-1,3-Dichloropropene	86			85		70-130	1		30	
cis-1,3-Dichloropropene	95			94		70-130	1		30	
Bromoform	94			93		70-130	1		30	
1,1,2,2-Tetrachloroethane	83			81		70-130	2		30	
Benzene	88			86		70-130	2		30	
Toluene	80			78		70-130	3		30	
Ethylbenzene	85			83		70-130	2		30	
Chloromethane	74			70		52-130	6		30	
Bromomethane	48	Q		47	Q	57-147	2		30	
Vinyl chloride	59	Q		57	Q	67-130	3		30	

Lab Number: L2149063

arameter	LCS %Recovery	Qual		SD overy	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04,06 E	atch:	WG1550129-3	WG1550129-4				
Chloroethane	52			50		50-151	4		30	
1,1-Dichloroethene	94			90		65-135	4		30	
trans-1,2-Dichloroethene	93			90		70-130	3		30	
Trichloroethene	92			90		70-130	2		30	
1,2-Dichlorobenzene	90			90		70-130	0		30	
1,3-Dichlorobenzene	90			88		70-130	2		30	
1,4-Dichlorobenzene	88			87		70-130	1		30	
Methyl tert butyl ether	89			88		66-130	1		30	
p/m-Xylene	91			90		70-130	1		30	
o-Xylene	80			79		70-130	1		30	
cis-1,2-Dichloroethene	91			89		70-130	2		30	
Styrene	80			79		70-130	1		30	
Dichlorodifluoromethane	42			41		30-146	2		30	
Acetone	138		1	17		54-140	16		30	
Carbon disulfide	75			72		59-130	4		30	
2-Butanone	137	Q	1	34	Q	70-130	2		30	
4-Methyl-2-pentanone	98			96		70-130	2		30	
2-Hexanone	114		1	13		70-130	1		30	
Bromochloromethane	96			94		70-130	2		30	
1,2-Dibromoethane	94			93		70-130	1		30	
1,2-Dibromo-3-chloropropane	100			99		68-130	1		30	
Isopropylbenzene	86			86		70-130	0		30	
1,2,3-Trichlorobenzene	107		1	08		70-130	1		30	

BARNET MILLS **Project Name:** Project Number: 21-26694E

Lab Number: L2149063 Report Date: 09/28/21

	LCS		LCS	D	%Recovery			RPD	
Parameter	%Recovery	Qual	%Reco	very Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	04,06 Bat	ch: WG1550129-	3 WG1550129-4				
1,2,4-Trichlorobenzene	105		106	5	70-130	1		30	
Methyl Acetate	93		89		51-146	4		30	
Cyclohexane	95		92		59-142	3		30	
1,4-Dioxane	88		84		65-136	5		30	
Freon-113	93		89		50-139	4		30	
Methyl cyclohexane	89		87		70-130	2		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	90	89	70-130
Toluene-d8	99	99	70-130
4-Bromofluorobenzene	99	99	70-130
Dibromofluoromethane	106	103	70-130

Lab Number: L2149063

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
/olatile Organics by GC/MS - Westborough	Lab Associated s	ample(s): 02	2-03 Batch:	WG1551390-3	WG1551390-4			
Methylene chloride	87		83		70-130	5		30
1,1-Dichloroethane	102		99		70-130	3		30
Chloroform	93		91		70-130	2		30
Carbon tetrachloride	79		90		70-130	13		30
1,2-Dichloropropane	99		98		70-130	1		30
Dibromochloromethane	83		92		70-130	10		30
1,1,2-Trichloroethane	93		92		70-130	1		30
Tetrachloroethene	105		102		70-130	3		30
Chlorobenzene	98		96		70-130	2		30
Trichlorofluoromethane	104		97		70-139	7		30
1,2-Dichloroethane	94		93		70-130	1		30
1,1,1-Trichloroethane	96		99		70-130	3		30
Bromodichloromethane	90		97		70-130	7		30
trans-1,3-Dichloropropene	85		93		70-130	9		30
cis-1,3-Dichloropropene	90		96		70-130	6		30
Bromoform	74		82		70-130	10		30
1,1,2,2-Tetrachloroethane	91		91		70-130	0		30
Benzene	96		94		70-130	2		30
Toluene	94		92		70-130	2		30
Ethylbenzene	101		99		70-130	2		30
Chloromethane	95		88		52-130	8		30
Bromomethane	93		87		57-147	7		30
Vinyl chloride	93		89		67-130	4		30

Lab Number: L2149063

arameter	LCS %Recovery	Qual		CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	02-03	Batch:	WG1551390-3	WG1551390-4			
Chloroethane	102			97		50-151	5		30
1,1-Dichloroethene	98			94		65-135	4		30
trans-1,2-Dichloroethene	101			95		70-130	6		30
Trichloroethene	95			93		70-130	2		30
1,2-Dichlorobenzene	97			95		70-130	2		30
1,3-Dichlorobenzene	102			98		70-130	4		30
1,4-Dichlorobenzene	98			96		70-130	2		30
Methyl tert butyl ether	85			82		66-130	4		30
p/m-Xylene	99			98		70-130	1		30
o-Xylene	101			99		70-130	2		30
cis-1,2-Dichloroethene	100			96		70-130	4		30
Styrene	101			99		70-130	2		30
Dichlorodifluoromethane	82			76		30-146	8		30
Acetone	76			72		54-140	5		30
Carbon disulfide	90			85		59-130	6		30
2-Butanone	92			84		70-130	9		30
4-Methyl-2-pentanone	90			88		70-130	2		30
2-Hexanone	100			100		70-130	0		30
Bromochloromethane	100			96		70-130	4		30
1,2-Dibromoethane	87			94		70-130	8		30
1,2-Dibromo-3-chloropropane	63	Q		73		68-130	15		30
Isopropylbenzene	102			98		70-130	4		30
1,2,3-Trichlorobenzene	86			86		70-130	0		30

Lab Number: L2149063 Report Date: 09/28/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
	<i>/incoursely</i>	Quui	,	Quui	Linito		Quui	2
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-03 Batch:	WG1551390-3	WG1551390-4			
1.2.4 Trichlorobonzono	06		04		70-130	0		30
1,2,4-Trichlorobenzene	96		94		70-130	2		30
Methyl Acetate	75		77		51-146	3		30
Cyclohexane	107		103		59-142	4		30
1,4-Dioxane	76		77		65-136	1		30
Freon-113	105		100		50-139	5		30
Methyl cyclohexane	102		99		70-130	3		30

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	98	98	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	96	95	70-130
Dibromofluoromethane	101	100	70-130

SEMIVOLATILES

			Serial_No	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-02		Date Collected:	09/10/21 13:15
Client ID:	SW-DR1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	I: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/19/21 20:10
Analytical Date:	09/22/21 09:12			
Analyst:	ALS			
Percent Solids:	78%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	44	J	ug/kg	170	22.	1
1,2,4-Trichlorobenzene	ND		ug/kg	210	24.	1
Hexachlorobenzene	ND		ug/kg	130	24.	1
Bis(2-chloroethyl)ether	ND		ug/kg	190	29.	1
2-Chloronaphthalene	ND		ug/kg	210	21.	1
1,2-Dichlorobenzene	ND		ug/kg	210	38.	1
1,3-Dichlorobenzene	ND		ug/kg	210	36.	1
1,4-Dichlorobenzene	ND		ug/kg	210	37.	1
3,3'-Dichlorobenzidine	ND		ug/kg	210	56.	1
2,4-Dinitrotoluene	ND		ug/kg	210	42.	1
2,6-Dinitrotoluene	ND		ug/kg	210	36.	1
Fluoranthene	790		ug/kg	130	24.	1
4-Chlorophenyl phenyl ether	ND		ug/kg	210	23.	1
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	36.	1
Bis(2-chloroethoxy)methane	ND		ug/kg	230	21.	1
Hexachlorobutadiene	ND		ug/kg	210	31.	1
Hexachlorocyclopentadiene	ND		ug/kg	600	190	1
Hexachloroethane	ND		ug/kg	170	34.	1
Isophorone	ND		ug/kg	190	27.	1
Naphthalene	39	J	ug/kg	210	26.	1
Nitrobenzene	ND		ug/kg	190	31.	1
NDPA/DPA	ND		ug/kg	170	24.	1
n-Nitrosodi-n-propylamine	ND		ug/kg	210	33.	1
Bis(2-ethylhexyl)phthalate	230		ug/kg	210	73.	1
Butyl benzyl phthalate	280		ug/kg	210	53.	1
Di-n-butylphthalate	ND		ug/kg	210	40.	1
Di-n-octylphthalate	ND		ug/kg	210	72.	1

			Serial_N	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-02		Date Collected:	09/10/21 13:15
Client ID:	SW-DR1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS ·	- Westborough Lab					
Diethyl phthalate	ND		ug/kg	210	20.	1
Dimethyl phthalate	ND		ug/kg	210	44.	1
Benzo(a)anthracene	420		ug/kg	130	24.	1
Benzo(a)pyrene	390		ug/kg	170	52.	1
Benzo(b)fluoranthene	560		ug/kg	130	36.	1
Benzo(k)fluoranthene	150		ug/kg	130	34.	1
Chrysene	420		ug/kg	130	22.	1
Acenaphthylene	ND		ug/kg	170	33.	1
Anthracene	140		ug/kg	130	41.	1
Benzo(ghi)perylene	260		ug/kg	170	25.	1
Fluorene	50	J	ug/kg	210	20.	1
Phenanthrene	550		ug/kg	130	26.	1
Dibenzo(a,h)anthracene	66	J	ug/kg	130	24.	1
Indeno(1,2,3-cd)pyrene	290		ug/kg	170	29.	1
Pyrene	630		ug/kg	130	21.	1
Biphenyl	ND		ug/kg	480	49.	1
4-Chloroaniline	ND		ug/kg	210	38.	1
2-Nitroaniline	ND		ug/kg	210	41.	1
3-Nitroaniline	ND		ug/kg	210	40.	1
4-Nitroaniline	ND		ug/kg	210	88.	1
Dibenzofuran	34	J	ug/kg	210	20.	1
2-Methylnaphthalene	ND		ug/kg	250	26.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1
Acetophenone	ND		ug/kg	210	26.	1
Benzyl Alcohol	ND		ug/kg	210	65.	1
Carbazole	80	J	ug/kg	210	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	79	25-120	
Phenol-d6	83	10-120	
Nitrobenzene-d5	84	23-120	
2-Fluorobiphenyl	63	30-120	
2,4,6-Tribromophenol	67	10-136	
4-Terphenyl-d14	57	18-120	

			Serial_No	:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-03		Date Collected:	09/10/21 14:45
Client ID:	SUB-STA-1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8270D		Extraction Date:	09/19/21 20:10
Analytical Date:	09/22/21 00:30			
Analyst:	ALS			
Percent Solids:	89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	/estborough Lab					
Acenaphthene	ND	l	ug/kg	150	19.	1
1,2,4-Trichlorobenzene	ND		ug/kg	180	21.	1
Hexachlorobenzene	ND	l	ug/kg	110	21.	1
Bis(2-chloroethyl)ether	ND	l	ug/kg	160	25.	1
2-Chloronaphthalene	ND	l	ug/kg	180	18.	1
1,2-Dichlorobenzene	ND	l	ug/kg	180	33.	1
1,3-Dichlorobenzene	ND	l	ug/kg	180	32.	1
1,4-Dichlorobenzene	ND	ι	ug/kg	180	32.	1
3,3'-Dichlorobenzidine	ND	ı	ug/kg	180	49.	1
2,4-Dinitrotoluene	ND	l	ug/kg	180	37.	1
2,6-Dinitrotoluene	ND	l	ug/kg	180	32.	1
Fluoranthene	ND	l	ug/kg	110	21.	1
4-Chlorophenyl phenyl ether	ND	l	ug/kg	180	20.	1
4-Bromophenyl phenyl ether	ND	ı	ug/kg	180	28.	1
Bis(2-chloroisopropyl)ether	ND	ι	ug/kg	220	31.	1
Bis(2-chloroethoxy)methane	ND	l	ug/kg	200	18.	1
Hexachlorobutadiene	ND	l	ug/kg	180	27.	1
Hexachlorocyclopentadiene	ND	l	ug/kg	530	170	1
Hexachloroethane	ND	l	ug/kg	150	30.	1
Isophorone	ND	l	ug/kg	160	24.	1
Naphthalene	ND	l	ug/kg	180	22.	1
Nitrobenzene	ND	l	ug/kg	160	27.	1
NDPA/DPA	ND	l	ug/kg	150	21.	1
n-Nitrosodi-n-propylamine	ND	l	ug/kg	180	28.	1
Bis(2-ethylhexyl)phthalate	ND	l	ug/kg	180	64.	1
Butyl benzyl phthalate	ND	ι	ug/kg	180	46.	1
Di-n-butylphthalate	ND	ι	ug/kg	180	35.	1
Di-n-octylphthalate	ND	l	ug/kg	180	63.	1

			Serial_N	o:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-03		Date Collected:	09/10/21 14:45
Client ID:	SUB-STA-1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
	ND			180	17.	1
Diethyl phthalate			ug/kg			1
Dimethyl phthalate	ND		ug/kg	180	39.	1
Benzo(a)anthracene	ND		ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	45.	1
Benzo(b)fluoranthene	ND		ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	ND		ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	28.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	ND		ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	ND		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	ND		ug/kg	110	18.	1
Biphenyl	ND		ug/kg	420	43.	1
4-Chloroaniline	ND		ug/kg	180	34.	1
2-Nitroaniline	ND		ug/kg	180	36.	1
3-Nitroaniline	ND		ug/kg	180	35.	1
4-Nitroaniline	ND		ug/kg	180	76.	1
Dibenzofuran	ND		ug/kg	180	17.	1
2-Methylnaphthalene	ND		ug/kg	220	22.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1
Acetophenone	ND		ug/kg	180	23.	1
Benzyl Alcohol	ND		ug/kg	180	56.	1
Carbazole	ND		ug/kg	180	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	64	25-120	
Phenol-d6	67	10-120	
Nitrobenzene-d5	67	23-120	
2-Fluorobiphenyl	61	30-120	
2,4,6-Tribromophenol	54	10-136	
4-Terphenyl-d14	64	18-120	

			Serial_No	0:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2149063-04 SUB-STA-2 RENSSELAER, NY		Date Collected: Date Received: Field Prep:	09/10/21 15:15 09/13/21 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst: Percent Solids:	Soil 1,8270D 09/22/21 00:52 ALS 92%		Extraction Method Extraction Date:	I: EPA 3546 09/19/21 20:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	ND		ug/kg	140	18.	1		
1,2,4-Trichlorobenzene	ND		ug/kg	180	20.	1		
Hexachlorobenzene	ND		ug/kg	110	20.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1		
2-Chloronaphthalene	ND		ug/kg	180	18.	1		
1,2-Dichlorobenzene	ND		ug/kg	180	32.	1		
1,3-Dichlorobenzene	ND		ug/kg	180	31.	1		
1,4-Dichlorobenzene	ND		ug/kg	180	31.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	180	48.	1		
2,4-Dinitrotoluene	ND		ug/kg	180	36.	1		
2,6-Dinitrotoluene	ND		ug/kg	180	31.	1		
Fluoranthene	ND		ug/kg	110	20.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	180	19.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	180	27.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	220	31.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	190	18.	1		
Hexachlorobutadiene	ND		ug/kg	180	26.	1		
Hexachlorocyclopentadiene	ND		ug/kg	510	160	1		
Hexachloroethane	ND		ug/kg	140	29.	1		
Isophorone	ND		ug/kg	160	23.	1		
Naphthalene	ND		ug/kg	180	22.	1		
Nitrobenzene	ND		ug/kg	160	26.	1		
NDPA/DPA	ND		ug/kg	140	20.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	180	28.	1		
Bis(2-ethylhexyl)phthalate	ND		ug/kg	180	62.	1		
Butyl benzyl phthalate	ND		ug/kg	180	45.	1		
Di-n-butylphthalate	ND		ug/kg	180	34.	1		
Di-n-octylphthalate	ND		ug/kg	180	61.	1		

			Serial_No:09282113:22		
Project Name:	BARNET MILLS		Lab Number:	L2149063	
Project Number:	21-26694E		Report Date:	09/28/21	
		SAMPLE RESULTS			
Lab ID:	L2149063-04		Date Collected:	09/10/21 15:15	
Client ID:	SUB-STA-2		Date Received:	09/13/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Diethyl phthalate	ND		ug/kg	180	17.	1		
Dimethyl phthalate	ND		ug/kg	180	38.	1		
Benzo(a)anthracene	ND		ug/kg	110	20.	1		
Benzo(a)pyrene	ND		ug/kg	140	44.	1		
Benzo(b)fluoranthene	ND		ug/kg	110	30.	1		
Benzo(k)fluoranthene	ND		ug/kg	110	29.	1		
Chrysene	ND		ug/kg	110	19.	1		
Acenaphthylene	ND		ug/kg	140	28.	1		
Anthracene	ND		ug/kg	110	35.	1		
Benzo(ghi)perylene	ND		ug/kg	140	21.	1		
Fluorene	ND		ug/kg	180	17.	1		
Phenanthrene	ND		ug/kg	110	22.	1		
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1		
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	25.	1		
Pyrene	ND		ug/kg	110	18.	1		
Biphenyl	ND		ug/kg	410	42.	1		
4-Chloroaniline	ND		ug/kg	180	33.	1		
2-Nitroaniline	ND		ug/kg	180	34.	1		
3-Nitroaniline	ND		ug/kg	180	34.	1		
4-Nitroaniline	ND		ug/kg	180	74.	1		
Dibenzofuran	ND		ug/kg	180	17.	1		
2-Methylnaphthalene	ND		ug/kg	220	22.	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	180	19.	1		
Acetophenone	ND		ug/kg	180	22.	1		
Benzyl Alcohol	ND		ug/kg	180	55.	1		
Carbazole	ND		ug/kg	180	17.	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	70	25-120
Phenol-d6	73	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	69	30-120
2,4,6-Tribromophenol	64	10-136
4-Terphenyl-d14	71	18-120
4-Terphenyl-d14	71	18-120

			Serial_No:09282113:22		
Project Name:	BARNET MILLS		Lab Number:	L2149063	
Project Number:	21-26694E		Report Date:	09/28/21	
		SAMPLE RESULTS			
Lab ID:	L2149063-06		Date Collected:	09/10/21 15:40	
Client ID:	SW-DR-2		Date Received:	09/13/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Soil		Extraction Method	d: EPA 3546	
Analytical Method:	1,8270D		Extraction Date:	09/19/21 20:10	
Analytical Date:	09/22/21 09:34				
Analyst:	ALS				
Percent Solids:	93%				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	180		ug/kg	140	18.	1		
1,2,4-Trichlorobenzene	ND		ug/kg	170	20.	1		
Hexachlorobenzene	ND		ug/kg	100	19.	1		
Bis(2-chloroethyl)ether	ND		ug/kg	160	24.	1		
2-Chloronaphthalene	ND		ug/kg	170	17.	1		
1,2-Dichlorobenzene	ND		ug/kg	170	31.	1		
1,3-Dichlorobenzene	ND		ug/kg	170	30.	1		
1,4-Dichlorobenzene	ND		ug/kg	170	30.	1		
3,3'-Dichlorobenzidine	ND		ug/kg	170	46.	1		
2,4-Dinitrotoluene	ND		ug/kg	170	35.	1		
2,6-Dinitrotoluene	ND		ug/kg	170	30.	1		
Fluoranthene	2100		ug/kg	100	20.	1		
4-Chlorophenyl phenyl ether	ND		ug/kg	170	19.	1		
4-Bromophenyl phenyl ether	ND		ug/kg	170	26.	1		
Bis(2-chloroisopropyl)ether	ND		ug/kg	210	30.	1		
Bis(2-chloroethoxy)methane	ND		ug/kg	190	17.	1		
Hexachlorobutadiene	ND		ug/kg	170	25.	1		
Hexachlorocyclopentadiene	ND		ug/kg	500	160	1		
Hexachloroethane	ND		ug/kg	140	28.	1		
Isophorone	ND		ug/kg	160	22.	1		
Naphthalene	290		ug/kg	170	21.	1		
Nitrobenzene	ND		ug/kg	160	26.	1		
NDPA/DPA	ND		ug/kg	140	20.	1		
n-Nitrosodi-n-propylamine	ND		ug/kg	170	27.	1		
Bis(2-ethylhexyl)phthalate	62	J	ug/kg	170	60.	1		
Butyl benzyl phthalate	ND		ug/kg	170	44.	1		
Di-n-butylphthalate	ND		ug/kg	170	33.	1		
Di-n-octylphthalate	ND		ug/kg	170	59.	1		

			Serial_No:09282113:22		
Project Name:	BARNET MILLS		Lab Number:	L2149063	
Project Number:	21-26694E		Report Date:	09/28/21	
		SAMPLE RESULTS			
Lab ID:	L2149063-06		Date Collected:	09/10/21 15:40	
Client ID:	SW-DR-2		Date Received:	09/13/21	
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified	

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Diethyl phthalate	ND		ug/kg	170	16.	1		
Dimethyl phthalate	ND		ug/kg	170	36.	1		
Benzo(a)anthracene	1100		ug/kg	100	20.	1		
Benzo(a)pyrene	1000		ug/kg	140	42.	1		
Benzo(b)fluoranthene	1400		ug/kg	100	29.	1		
Benzo(k)fluoranthene	420		ug/kg	100	28.	1		
Chrysene	1000		ug/kg	100	18.	1		
Acenaphthylene	ND		ug/kg	140	27.	1		
Anthracene	370		ug/kg	100	34.	1		
Benzo(ghi)perylene	690		ug/kg	140	20.	1		
Fluorene	210		ug/kg	170	17.	1		
Phenanthrene	1700		ug/kg	100	21.	1		
Dibenzo(a,h)anthracene	160		ug/kg	100	20.	1		
Indeno(1,2,3-cd)pyrene	750		ug/kg	140	24.	1		
Pyrene	1800		ug/kg	100	17.	1		
Biphenyl	ND		ug/kg	400	40.	1		
4-Chloroaniline	ND		ug/kg	170	32.	1		
2-Nitroaniline	ND		ug/kg	170	34.	1		
3-Nitroaniline	ND		ug/kg	170	33.	1		
4-Nitroaniline	ND		ug/kg	170	72.	1		
Dibenzofuran	150	J	ug/kg	170	16.	1		
2-Methylnaphthalene	74	J	ug/kg	210	21.	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	170	18.	1		
Acetophenone	ND		ug/kg	170	22.	1		
Benzyl Alcohol	ND		ug/kg	170	53.	1		
Carbazole	290		ug/kg	170	17.	1		

% Recovery	Acceptance Qualifier Criteria	
73	25-120	
76	10-120	
76	23-120	
68	30-120	
62	10-136	
68	18-120	
	73 76 76 68 62	% Recovery Qualifier Criteria 73 25-120 76 10-120 76 23-120 68 30-120 62 10-136

Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		Martha I Dhavel Averation's		

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 09/22/21 00:06 SZ Extraction Method: EPA 3546 Extraction Date: 09/19/21 20:10

arameter	Result	Qualifier	Units	RL	М	DL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	02-04,06	Batch:	WG1548187-1
Acenaphthene	ND		ug/kg	130	1	7.
1,2,4-Trichlorobenzene	ND		ug/kg	160	1	8.
Hexachlorobenzene	ND		ug/kg	97	1	8.
Bis(2-chloroethyl)ether	ND		ug/kg	140	2	2.
2-Chloronaphthalene	ND		ug/kg	160	1	6.
1,2-Dichlorobenzene	ND		ug/kg	160	2	9.
1,3-Dichlorobenzene	ND		ug/kg	160	2	8.
1,4-Dichlorobenzene	ND		ug/kg	160	2	8.
3,3'-Dichlorobenzidine	ND		ug/kg	160	4	3.
2,4-Dinitrotoluene	ND		ug/kg	160	3	2.
2,6-Dinitrotoluene	ND		ug/kg	160	2	8.
Fluoranthene	ND		ug/kg	97	1	8.
4-Chlorophenyl phenyl ether	ND		ug/kg	160	1	7.
4-Bromophenyl phenyl ether	ND		ug/kg	160	2	5.
Bis(2-chloroisopropyl)ether	ND		ug/kg	190	2	8.
Bis(2-chloroethoxy)methane	ND		ug/kg	170	1	6.
Hexachlorobutadiene	ND		ug/kg	160	2	4.
Hexachlorocyclopentadiene	ND		ug/kg	460	1	50
Hexachloroethane	ND		ug/kg	130	2	6.
Isophorone	ND		ug/kg	140	2	:1.
Naphthalene	ND		ug/kg	160	2	0.
Nitrobenzene	ND		ug/kg	140	2	4.
NDPA/DPA	ND		ug/kg	130	1	8.
n-Nitrosodi-n-propylamine	ND		ug/kg	160	2	5.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160	5	6.
Butyl benzyl phthalate	ND		ug/kg	160	4	1.
Di-n-butylphthalate	ND		ug/kg	160	3	1.
Di-n-octylphthalate	ND		ug/kg	160	5	5.

Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		Mathad Dlauk Analysia		

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8270D 09/22/21 00:06 SZ Extraction Method: EPA 3546 Extraction Date: 09/19/21 20:10

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	6 - Westborough	Lab for sample(s):	02-04,06	Batch: WG1548187-1
Dimethyl phthalate	ND	ug/kg	160	34.
Benzo(a)anthracene	ND	ug/kg	97	18.
Benzo(a)pyrene	ND	ug/kg	130	39.
Benzo(b)fluoranthene	ND	ug/kg	97	27.
Benzo(k)fluoranthene	ND	ug/kg	97	26.
Chrysene	ND	ug/kg	97	17.
Acenaphthylene	ND	ug/kg	130	25.
Anthracene	ND	ug/kg	97	31.
Benzo(ghi)perylene	ND	ug/kg	130	19.
Fluorene	ND	ug/kg	160	16.
Phenanthrene	ND	ug/kg	97	20.
Dibenzo(a,h)anthracene	ND	ug/kg	97	19.
Indeno(1,2,3-cd)pyrene	ND	ug/kg	130	22.
Pyrene	ND	ug/kg	97	16.
Biphenyl	ND	ug/kg	370	37.
4-Chloroaniline	ND	ug/kg	160	29.
2-Nitroaniline	ND	ug/kg	160	31.
3-Nitroaniline	ND	ug/kg	160	30.
4-Nitroaniline	ND	ug/kg	160	67.
Dibenzofuran	ND	ug/kg	160	15.
2-Methylnaphthalene	ND	ug/kg	190	20.
1,2,4,5-Tetrachlorobenzene	ND	ug/kg	160	17.
Acetophenone	ND	ug/kg	160	20.
Benzyl Alcohol	ND	ug/kg	160	49.
Carbazole	ND	ug/kg	160	16.

Serial_No:09282113:22

Project Name: Project Number:	BARNET MILLS 21-26694E		Lab Number: Report Date:	L2149063 09/28/21
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	1,8270D 09/22/21 00:06 SZ		Extraction Method: Extraction Date:	EPA 3546 09/19/21 20:10

Parameter	Result	Qualifier	Units	RL	М	DL
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	02-04,06	Batch:	WG1548187-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	76	25-120
Phenol-d6	85	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	62	10-136
4-Terphenyl-d14	68	18-120

Lab Number: L2149063

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits		RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - We	estborough Lab Associa	ted sample(s):	02-04,06	Batch: \	NG1548187-2 \	NG154818	37-3			
Acenaphthene	79		63		31-137		23		50	
1,2,4-Trichlorobenzene	75		64		38-107		16		50	
Hexachlorobenzene	75		60		40-140		22		50	
Bis(2-chloroethyl)ether	81		68		40-140		17		50	
2-Chloronaphthalene	80		66		40-140		19		50	
1,2-Dichlorobenzene	76		64		40-140		17		50	
1,3-Dichlorobenzene	75		64		40-140		16		50	
1,4-Dichlorobenzene	75		63		28-104		17		50	
3,3'-Dichlorobenzidine	64		54		40-140		17		50	
2,4-Dinitrotoluene	87		70		40-132		22		50	
2,6-Dinitrotoluene	84		67		40-140		23		50	
Fluoranthene	82		66		40-140		22		50	
4-Chlorophenyl phenyl ether	80		65		40-140		21		50	
4-Bromophenyl phenyl ether	83		65		40-140		24		50	
Bis(2-chloroisopropyl)ether	82		69		40-140		17		50	
Bis(2-chloroethoxy)methane	81		66		40-117		20		50	
Hexachlorobutadiene	75		63		40-140		17		50	
Hexachlorocyclopentadiene	76		63		40-140		19		50	
Hexachloroethane	70		59		40-140		17		50	
Isophorone	77		64		40-140		18		50	
Naphthalene	77		64		40-140		18		50	
Nitrobenzene	84		70		40-140		18		50	
NDPA/DPA	83		67		36-157		21		50	

Project Name:

BARNET MILLS

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-04,06 Batch: WG1548187-2 WG1548187-3								
n-Nitrosodi-n-propylamine	80		67		32-121	18		50
Bis(2-ethylhexyl)phthalate	83		66		40-140	23		50
Butyl benzyl phthalate	83		66		40-140	23		50
Di-n-butylphthalate	82		66		40-140	22		50
Di-n-octylphthalate	86		68		40-140	23		50
Diethyl phthalate	80		64		40-140	22		50
Dimethyl phthalate	78		64		40-140	20		50
Benzo(a)anthracene	79		63		40-140	23		50
Benzo(a)pyrene	83		67		40-140	21		50
Benzo(b)fluoranthene	82		65		40-140	23		50
Benzo(k)fluoranthene	79		65		40-140	19		50
Chrysene	75		61		40-140	21		50
Acenaphthylene	82		66		40-140	22		50
Anthracene	79		65		40-140	19		50
Benzo(ghi)perylene	81		66		40-140	20		50
Fluorene	82		65		40-140	23		50
Phenanthrene	77		63		40-140	20		50
Dibenzo(a,h)anthracene	82		66		40-140	22		50
Indeno(1,2,3-cd)pyrene	82		68		40-140	19		50
Pyrene	79		65		35-142	19		50
Biphenyl	85		70		37-127	19		50
4-Chloroaniline	89		79		40-140	12		50
2-Nitroaniline	86		70		47-134	21		50

Lab Control Sample Analysis

Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694E
 Lab Number:
 L2149063

 Report Date:
 09/28/21

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-04,06 Batch: WG1548187-2 WG1548187-3 3-Nitroaniline 85 70 26-129 19 50 72 4-Nitroaniline 91 41-125 23 50 Dibenzofuran 81 65 40-140 22 50 2-Methylnaphthalene 82 68 40-140 19 50 1,2,4,5-Tetrachlorobenzene 79 64 40-117 21 50 Acetophenone 85 71 14-144 50 18 Benzyl Alcohol 92 76 40-140 19 50 Carbazole 54-128 50 84 68 21

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qu	al %Recovery Qual	Criteria
2-Fluorophenol	80	67	25-120
Phenol-d6	90	73	10-120
Nitrobenzene-d5	80	67	23-120
2-Fluorobiphenyl	77	63	30-120
2,4,6-Tribromophenol	75	59	10-136
4-Terphenyl-d14	77	61	18-120

PCBS

			Serial_No:	09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-01		Date Collected:	09/10/21 12:20
Client ID:	SW-TANK		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Water		Extraction Method:	EPA 3510C
Analytical Method:	1,8082A		Extraction Date:	09/25/21 00:54
Analytical Date:	09/26/21 19:16		Cleanup Method:	EPA 3665A
Analyst:	CW		Cleanup Date:	09/25/21
•			Cleanup Method:	EPA 3660B
			Cleanup Date:	09/26/21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Arealar 1010				0.074	0.004	4	٨
Aroclor 1016	ND		ug/l	0.071	0.061	1	A
Aroclor 1221	ND		ug/l	0.071	0.061	1	A
Aroclor 1232	ND		ug/l	0.071	0.061	1	А
Aroclor 1242	ND		ug/l	0.071	0.061	1	А
Aroclor 1248	ND		ug/l	0.071	0.061	1	А
Aroclor 1254	ND		ug/l	0.071	0.061	1	А
Aroclor 1260	ND		ug/l	0.071	0.061	1	А
Aroclor 1262	ND		ug/l	0.071	0.061	1	А
Aroclor 1268	ND		ug/l	0.071	0.061	1	А
PCBs, Total	ND		ug/l	0.071	0.061	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		30-150	A
Decachlorobiphenyl	78		30-150	A
2,4,5,6-Tetrachloro-m-xylene	69		30-150	В
Decachlorobiphenyl	75		30-150	В

			Serial_No	:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-02		Date Collected:	09/10/21 13:15
Client ID:	SW-DR1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/19/21 15:32
Analytical Date:	09/20/21 21:07		Cleanup Method:	EPA 3660B
Analyst:	CW		Cleanup Date:	09/20/21
Percent Solids:	78%		-	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab						
Aroclor 1016	ND		ug/kg	41.6	3.70	1	А
Aroclor 1221	ND		ug/kg	41.6	4.17	1	A
Aroclor 1232	ND		ug/kg	41.6	8.83	1	А
Aroclor 1242	ND		ug/kg	41.6	5.61	1	А
Aroclor 1248	ND		ug/kg	41.6	6.25	1	А
Aroclor 1254	ND		ug/kg	41.6	4.56	1	А
Aroclor 1260	10.6	J	ug/kg	41.6	7.70	1	А
Aroclor 1262	ND		ug/kg	41.6	5.29	1	А
Aroclor 1268	5.64	J	ug/kg	41.6	4.32	1	А
PCBs, Total	16.2	J	ug/kg	41.6	3.70	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	A
Decachlorobiphenyl	69		30-150	А
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	72		30-150	В

			Serial_No:	09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-03		Date Collected:	09/10/21 14:45
Client ID:	SUB-STA-1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/19/21 15:32
Analytical Date:	09/20/21 21:14		Cleanup Method:	EPA 3660B
Analyst:	CW		Cleanup Date:	09/20/21
Percent Solids:	89%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	stborough Lab						
Aroclor 1016	ND		ug/kg	35.5	3.15	1	А
Aroclor 1221	ND		ug/kg	35.5	3.56	1	A
Aroclor 1232	ND		ug/kg	35.5	7.52	1	A
Aroclor 1242	ND		ug/kg	35.5	4.78	1	А
Aroclor 1248	ND		ug/kg	35.5	5.32	1	А
Aroclor 1254	ND		ug/kg	35.5	3.88	1	А
Aroclor 1260	ND		ug/kg	35.5	6.56	1	А
Aroclor 1262	ND		ug/kg	35.5	4.51	1	А
Aroclor 1268	ND		ug/kg	35.5	3.68	1	А
PCBs, Total	ND		ug/kg	35.5	3.15	1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75		30-150	A
Decachlorobiphenyl	75		30-150	А
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	62		30-150	В

			Serial_No	:09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-04		Date Collected:	09/10/21 15:15
Client ID:	SUB-STA-2		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method	: EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/19/21 15:32
Analytical Date:	09/20/21 21:21		Cleanup Method:	EPA 3660B
Analyst:	CW		Cleanup Date:	09/20/21
Percent Solids:	92%		-	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - We	estborough Lab						
Araplar 1016	ND			25.4	2.14	1	٨
Aroclor 1016			ug/kg	35.4	3.14	1	A
Aroclor 1221	ND		ug/kg	35.4	3.54	1	A
Aroclor 1232	ND		ug/kg	35.4	7.50	1	Α
Aroclor 1242	ND		ug/kg	35.4	4.77	1	А
Aroclor 1248	ND		ug/kg	35.4	5.31	1	А
Aroclor 1254	ND		ug/kg	35.4	3.87	1	А
Aroclor 1260	ND		ug/kg	35.4	6.54	1	В
Aroclor 1262	ND		ug/kg	35.4	4.49	1	А
Aroclor 1268	ND		ug/kg	35.4	3.66	1	А
PCBs, Total	ND		ug/kg	35.4	3.14	1	В

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		30-150	А
Decachlorobiphenyl	76		30-150	А
2,4,5,6-Tetrachloro-m-xylene	60		30-150	В
Decachlorobiphenyl	53		30-150	В

			Serial_No:	09282113:22
Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-06		Date Collected:	09/10/21 15:40
Client ID:	SW-DR-2		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified
Sample Depth:				
Matrix:	Soil		Extraction Method:	EPA 3546
Analytical Method:	1,8082A		Extraction Date:	09/19/21 15:32
Analytical Date:	09/20/21 21:28		Cleanup Method:	EPA 3660B
Analyst:	CW		Cleanup Date:	09/20/21
Percent Solids:	93%			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Polychlorinated Biphenyls by GC - Westborough Lab									
	ND			05.0	0.44	_			
Aroclor 1016	ND		ug/kg	35.0	3.11	1	A		
Aroclor 1221	ND		ug/kg	35.0	3.51	1	Α		
Aroclor 1232	ND		ug/kg	35.0	7.42	1	А		
Aroclor 1242	ND		ug/kg	35.0	4.72	1	А		
Aroclor 1248	ND		ug/kg	35.0	5.25	1	А		
Aroclor 1254	ND		ug/kg	35.0	3.83	1	А		
Aroclor 1260	ND		ug/kg	35.0	6.47	1	А		
Aroclor 1262	ND		ug/kg	35.0	4.44	1	А		
Aroclor 1268	ND		ug/kg	35.0	3.63	1	А		
PCBs, Total	ND		ug/kg	35.0	3.11	1	А		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	А
Decachlorobiphenyl	75		30-150	А
2,4,5,6-Tetrachloro-m-xylene	67		30-150	В
Decachlorobiphenyl	69		30-150	В

Serial_No:09282113:22

Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		Method Blank Analysis		

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst:

1,8082A 09/20/21 20:46 AD Extraction Method: EPA 3546 Extraction Date: 09/19/21 15:32

Cleanup Method: EPA 3660B Cleanup Date: 09/20/21

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	02-04,06	Batch: WG1	548166-1
Aroclor 1016	ND		ug/kg	32.9	2.92	А
Aroclor 1221	ND		ug/kg	32.9	3.30	А
Aroclor 1232	ND		ug/kg	32.9	6.97	А
Aroclor 1242	ND		ug/kg	32.9	4.43	А
Aroclor 1248	ND		ug/kg	32.9	4.93	А
Aroclor 1254	ND		ug/kg	32.9	3.60	А
Aroclor 1260	ND		ug/kg	32.9	6.08	А
Aroclor 1262	ND		ug/kg	32.9	4.18	А
Aroclor 1268	ND		ug/kg	32.9	3.41	А
PCBs, Total	ND		ug/kg	32.9	2.92	А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	71		30-150	А	
Decachlorobiphenyl	68		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В	
Decachlorobiphenyl	63		30-150	В	

Project Name:BARNET MILLSLab Number:Project Number:21-26694EReport Date:

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: 1,8082A 09/24/21 22:07 JM Extraction Method:EPA 3510CExtraction Date:09/24/21 13:06Cleanup Method:EPA 3665ACleanup Date:09/24/21Cleanup Method:EPA 3660BCleanup Date:09/24/21

Parameter	Result	Qualifier	Units	RL	-	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	sample(s):	01 E	Batch:	WG155052	2-1
Aroclor 1016	ND		ug/l	0.07	71	0.061	А
Aroclor 1221	ND		ug/l	0.07	71	0.061	А
Aroclor 1232	ND		ug/l	0.07	71	0.061	А
Aroclor 1242	ND		ug/l	0.07	71	0.061	А
Aroclor 1248	ND		ug/l	0.07	71	0.061	А
Aroclor 1254	ND		ug/l	0.07	71	0.061	А
Aroclor 1260	ND		ug/l	0.07	71	0.061	А
Aroclor 1262	ND		ug/l	0.07	71	0.061	А
Aroclor 1268	ND		ug/l	0.07	71	0.061	А
PCBs, Total	ND		ug/l	0.07	71	0.061	А

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	49		30-150	A	
Decachlorobiphenyl	57		30-150	А	
2,4,5,6-Tetrachloro-m-xylene	47		30-150	В	
Decachlorobiphenyl	53		30-150	В	

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 02-04,06 Batch: WG1548166-2 WG1548166-3 80 Aroclor 1016 82 40-140 2 50 А 74 76 40-140 50 Aroclor 1260 3 А

	LCS	LCSD	LCSD		
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70	73		30-150	А
Decachlorobiphenyl	70	71		30-150	А
2,4,5,6-Tetrachloro-m-xylene	67	70		30-150	В
Decachlorobiphenyl	60	65		30-150	В

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

LCS LCSD %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual Column Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 Batch: WG1550522-2 WG1550522-3 Aroclor 1016 42 52 40-140 20 50 А 45 54 40-140 18 50 Aroclor 1260 А

	LCS	LCSD	Acceptance	
Surrogate	%Recovery	Qual %Recovery Q	lual Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	46	54	30-150	А
Decachlorobiphenyl	54	59	30-150	A
2,4,5,6-Tetrachloro-m-xylene	43	49	30-150	В
Decachlorobiphenyl	48	54	30-150	В

METALS

Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-02		Date Collected:	09/10/21 13:15
Client ID:	SW-DR1		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

78%					Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analys
sfield Lab										
5.01		mg/kg	0.506	0.105	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
51.3		mg/kg	0.506	0.088	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
1.02		mg/kg	0.506	0.050	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
18.8		mg/kg	0.506	0.049	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
51.6		mg/kg	2.53	0.136	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
0.136		mg/kg	0.090	0.058	1	09/14/21 22:09	9 09/15/21 15:36	EPA 7471B	1,7471B	OU
0.268	J	mg/kg	1.01	0.131	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
ND		mg/kg	0.506	0.143	1	09/14/21 21:23	3 09/23/21 14:56	EPA 3050B	1,6010D	MP
	Result sfield Lab 5.01 51.3 1.02 18.8 51.6 0.136 0.268	Result Qualifier sfield Lab 5.01 5.01 51.3 1.02 18.8 51.6 0.136 0.268 J	ResultQualifierUnitssfield Labmg/kg5.01mg/kg51.3mg/kg1.02mg/kg18.8mg/kg51.6mg/kg0.136mg/kg0.268JJmg/kg	Result Qualifier Units RL sfield Lab mg/kg 0.506 5.01 mg/kg 0.506 51.3 mg/kg 0.506 1.02 mg/kg 0.506 18.8 mg/kg 0.506 51.6 mg/kg 0.506 0.136 mg/kg 0.090 0.268 J mg/kg 1.01	Result Qualifier Units RL MDL sfield Lab mg/kg 0.506 0.105 5.01 mg/kg 0.506 0.088 1.02 mg/kg 0.506 0.050 18.8 mg/kg 0.506 0.049 51.6 mg/kg 0.506 0.049 0.136 mg/kg 0.090 0.058 0.268 J mg/kg 1.01 0.131	Result Qualifier Units RL MDL Dilution Factor sfield Lab mg/kg 0.506 0.105 1 5.01 mg/kg 0.506 0.088 1 51.3 mg/kg 0.506 0.050 1 1.02 mg/kg 0.506 0.049 1 18.8 mg/kg 0.506 0.049 1 51.6 mg/kg 0.506 0.049 1 0.136 mg/kg 0.090 0.058 1 0.268 J mg/kg 1.01 0.131 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared sfield Lab mg/kg 0.506 0.105 1 09/14/21 21:23 5.01 mg/kg 0.506 0.008 1 09/14/21 21:23 51.3 mg/kg 0.506 0.008 1 09/14/21 21:23 1.02 mg/kg 0.506 0.049 1 09/14/21 21:23 18.8 mg/kg 0.506 0.049 1 09/14/21 21:23 51.6 mg/kg 2.53 0.136 1 09/14/21 21:23 0.136 mg/kg 0.090 0.058 1 09/14/21 21:23 0.268 J mg/kg 1.01 0.131 1 09/14/21 21:23	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed sfield Lab 5.01 mg/kg 0.506 0.105 1 09/14/21 21:23 09/23/21 14:56 51.3 mg/kg 0.506 0.088 1 09/14/21 21:23 09/23/21 14:56 1.02 mg/kg 0.506 0.050 1 09/14/21 21:23 09/23/21 14:56 18.8 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 51.6 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 51.6 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 0.136 mg/kg 0.090 0.058 1 09/14/21 21:23 09/23/21 14:56 0.268 J mg/kg 1.01 0.131 1 09/14/21 21:23 09/23/21 14:56	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method sfield Lab mg/kg 0.506 0.105 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 5.01 mg/kg 0.506 0.088 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 51.3 mg/kg 0.506 0.050 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1.02 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 18.8 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 51.6 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 0.136 mg/kg 0.090 0.058 1 09/14/21 21:23 09/23/21 14:56 EPA 7471B 0.268 J mg/kg 1.01 0.131 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed Prep Method Analytical Method sfield Lab mg/kg 0.506 0.105 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1,6010D 51.3 mg/kg 0.506 0.088 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1,6010D 1.02 mg/kg 0.506 0.050 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1,6010D 1.8.8 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1,6010D 51.6 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1,6010D 51.6 mg/kg 0.506 0.049 1 09/14/21 21:23 09/23/21 14:56 EPA 3050B 1,6010D 0.136 mg/kg 0.090 0.058 1 09/14/21 21:23 09/23/21 14:56 EPA 7471B 1,7471B 0.268 J mg/kg 1.01 0.131 1 <

Project Name:	BARNET MILLS		Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21
		SAMPLE RESULTS		
Lab ID:	L2149063-06		Date Collected:	09/10/21 15:40
Client ID:	SW-DR-2		Date Received:	09/13/21
Sample Location:	RENSSELAER, NY		Field Prep:	Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 93%

93%					Dilution	Date	Date	Prep	Analytical	
Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
sfield Lab										
3.08		mg/kg	0.421	0.088	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
50.6		mg/kg	0.421	0.073	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
ND		mg/kg	0.421	0.041	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
11.1		mg/kg	0.421	0.040	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
15.2		mg/kg	2.10	0.113	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
ND		mg/kg	0.072	0.047	1	09/14/21 22:09	9 09/15/21 15:39	EPA 7471B	1,7471B	OU
0.185	J	mg/kg	0.842	0.109	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
0.130	J	mg/kg	0.421	0.119	1	09/14/21 21:23	3 09/23/21 15:42	EPA 3050B	1,6010D	MP
	Result 3.08 50.6 ND 11.1 15.2 ND 0.185	Result Qualifier 3.08 - 50.6 - ND - 11.1 - 15.2 - ND - 0.185 J	ResultQualifierUnitsSfield Labmg/kg3.08mg/kg50.6mg/kgNDmg/kg11.1mg/kg15.2mg/kgNDmg/kg0.185J	Result Qualifier Units RL sfield Lab mg/kg 0.421 3.08 mg/kg 0.421 50.6 mg/kg 0.421 ND mg/kg 0.421 11.1 mg/kg 0.421 15.2 mg/kg 0.421 ND mg/kg 0.421 0.185 J mg/kg 0.421	Result Qualifier Units RL MDL Sfield Lab mg/kg 0.421 0.088 3.08 mg/kg 0.421 0.073 S0.6 mg/kg 0.421 0.073 ND mg/kg 0.421 0.041 11.1 mg/kg 0.421 0.040 15.2 mg/kg 0.421 0.040 ND mg/kg 0.072 0.047 0.185 J mg/kg 0.842 0.109	Result Qualifier Units RL MDL Dilution Factor sfield Lab mg/kg 0.421 0.088 1 3.08 mg/kg 0.421 0.073 1 50.6 mg/kg 0.421 0.041 1 ND mg/kg 0.421 0.041 1 11.1 mg/kg 0.421 0.040 1 15.2 mg/kg 2.10 0.113 1 ND mg/kg 0.072 0.047 1 0.185 J mg/kg 0.842 0.109 1	Result Qualifier Units RL MDL Dilution Factor Date Prepared 3.08 mg/kg 0.421 0.088 1 09/14/21 21:23 50.6 mg/kg 0.421 0.073 1 09/14/21 21:23 ND mg/kg 0.421 0.073 1 09/14/21 21:23 11.1 mg/kg 0.421 0.040 1 09/14/21 21:23 15.2 mg/kg 0.421 0.040 1 09/14/21 21:23 ND mg/kg 0.072 0.047 1 09/14/21 21:23 ND mg/kg 0.072 0.047 1 09/14/21 21:23 ND mg/kg 0.842 0.109 1 09/14/21 21:23	Result Qualifier Units RL MDL Dilution Factor Date Prepared Date Analyzed 3.08 mg/kg 0.421 0.088 1 09/14/21 21:23 09/23/21 15:42 50.6 mg/kg 0.421 0.073 1 09/14/21 21:23 09/23/21 15:42 ND mg/kg 0.421 0.041 1 09/14/21 21:23 09/23/21 15:42 11.1 mg/kg 0.421 0.040 1 09/14/21 21:23 09/23/21 15:42 15.2 mg/kg 0.421 0.040 1 09/14/21 21:23 09/23/21 15:42 ND mg/kg 0.421 0.040 1 09/14/21 21:23 09/23/21 15:42 15.2 mg/kg 0.072 0.047 1 09/14/21 21:23 09/23/21 15:42 ND mg/kg 0.072 0.047 1 09/14/21 21:23 09/23/21 15:42 ND mg/kg 0.072 0.047 1 09/14/21 21:23 09/23/21 15:42 ND mg/kg 0.842 0.109 1 09/14/21 21:23 09/23/21 15:42	Result Qualifier Units RL MDL Date Prepared Date Prepared Date Analyzed Prep Method sfield Lab mg/kg 0.421 0.088 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B 50.6 mg/kg 0.421 0.073 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B ND mg/kg 0.421 0.041 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B 11.1 mg/kg 0.421 0.040 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B 15.2 mg/kg 0.421 0.040 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B ND mg/kg 0.421 0.040 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B 15.2 mg/kg 0.072 0.047 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B ND mg/kg 0.072 0.047 1 09/14/21 21:23 09/23/21 15:42 EPA 3050B ND mg/kg 0.072 0.047 1 09/14/21 21:23 09/23/21 15:42	ResultQualifierUnitsRLMDLDilution FactorDate PreparedDate AnalyzedPrep MethodAnalytical Method3.08mg/kg0.4210.088109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010D50.6mg/kg0.4210.073109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010DNDmg/kg0.4210.041109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010D11.1mg/kg0.4210.040109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010D15.2mg/kg0.4210.040109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010D15.2mg/kg0.0720.047109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010DNDmg/kg0.0720.047109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010DNDmg/kg0.8420.109109/14/21 21:23 09/23/21 15:42EPA 3050B1,6010D

Project Name: BARNET MILLS Project Number: 21-26694E
 Lab Number:
 L2149063

 Report Date:
 09/28/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	02,06 Ba	atch: WO	G15463	50-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP
Barium, Total	ND	mg/kg	0.400	0.070	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP
Cadmium, Total	ND	mg/kg	0.400	0.039	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP
Chromium, Total	ND	mg/kg	0.400	0.038	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP
Lead, Total	ND	mg/kg	2.00	0.107	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP
Selenium, Total	ND	mg/kg	0.800	0.103	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP
Silver, Total	ND	mg/kg	0.400	0.113	1	09/14/21 21:23	09/23/21 14:40	1,6010D	MP

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	02,06 Ba	atch: W0	G15463	52-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	09/14/21 22:09	09/15/21 15:09	1,7471B	OU

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number: L2149063 Report Date: 09/28/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated samp	le(s): 02,06 Ba	atch: WG15	46350-2 SRM L	ot Number:	D109-540			
Arsenic, Total	96		-		70-130	-		
Barium, Total	92		-		75-125	-		
Cadmium, Total	101		-		75-125	-		
Chromium, Total	95		-		70-130	-		
Lead, Total	90		-		72-128	-		
Selenium, Total	98		-		68-132	-		
Silver, Total	91		-		68-131	-		
tal Metals - Mansfield Lab Associated samp	le(s): 02,06 Ba	atch: WG15	46352-2 SRM L	ot Number:	D109-540			
Mercury, Total	103		-		60-140	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BARNET MILLS Project Number: 21-26694E

Lab Number: L2149063 **Report Date:** 09/28/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD Q	RPD _{Jal} Limits
otal Metals - Mansfield Lab	o Associated san	nple(s): 02,06	QC Bat	tch ID: WG154	6350-3	QC Sam	ple: L2149091-0	01 CI	ient ID: MS	Sample	
Arsenic, Total	4.12	10.4	12.7	82		-	-		75-125	-	20
Barium, Total	48.9	173	346	172	Q	-	-		75-125	-	20
Cadmium, Total	0.084J	4.59	3.67	80		-	-		75-125	-	20
Chromium, Total	14.3	17.3	29.5	88		-	-		75-125	-	20
Lead, Total	372	45.9	412	87		-	-		75-125	-	20
Selenium, Total	0.412J	10.4	8.35	80		-	-		75-125	-	20
Silver, Total	ND	26	24.7	95		-	-		75-125	-	20
otal Metals - Mansfield Lab	o Associated san	nple(s): 02,06	QC Bat	tch ID: WG154	6352-3	QC Sam	ple: L2149091-0	01 CI	ient ID: MS	Sample	
Mercury, Total	0.478	0.147	0.586	74	Q	-	-		80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:BARNET MILLSProject Number:21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 02,0	6 QC Batch ID:	WG1546350-4 QC Sample:	L2149091-01	Client ID:	DUP Sampl	e
Arsenic, Total	4.12	3.64	mg/kg	12		20
Barium, Total	48.9	135	mg/kg	94	Q	20
Cadmium, Total	0.084J	ND	mg/kg	NC		20
Chromium, Total	14.3	17.6	mg/kg	21	Q	20
Lead, Total	372	253	mg/kg	38	Q	20
Selenium, Total	0.412J	ND	mg/kg	NC		20
Silver, Total	ND	ND	mg/kg	NC		20
otal Metals - Mansfield Lab Associated sample(s): 02,0	6 QC Batch ID:	WG1546352-4 QC Sample:	L2149091-01	Client ID:	DUP Sampl	e
Mercury, Total	0.478	0.625	mg/kg	27	Q	20

Due is at Names		Lab Serial Dilution	Lab Number:	
Project Name:	BARNET MILLS	Analysis	Lab Number.	L2149063
Project Number:	21-26694E	Batch Quality Control	Report Date:	09/28/21

Parameter		Native Sample	Seria	l Dilution	Units	% D	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 02,06	QC Batch ID:	WG1546350-6	QC Sample:	L2149091-01	Client ID:	DUP San	nple
Barium, Total		48.9		49.4	mg/kg	1		20
Lead, Total		372		456	mg/kg	23	Q	20

INORGANICS & MISCELLANEOUS

Serial No:09282113:22

Project Name:BARNET MILLSProject Number:21-26694E

Lab ID: Client ID: Sample Location:	SW-DR1	.2149063-02 SW-DR1 RENSSELAER, NY						Date Collected:09,Date Received:09,Field Prep:No		5
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal	C								
Solids, Total	78.0		%	0.100	NA	1	-	09/15/21 12:3	5 121,2540G	RI

Serial No:09282113:22	Serial	No:09282113:22
-----------------------	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	SUB-STA-1	.2149063-03 SUB-STA-1 RENSSELAER, NY						Received:	09/10/21 14:45 09/13/21 Not Specified	i
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	88.6		%	0.100	NA	1	-	09/15/21 12:3	5 121,2540G	RI

Serial No:09282113:22	Serial	No:09282113:22
-----------------------	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	SUB-STA-2	.2149063-04 SUB-STA-2 RENSSELAER, NY						Received:	09/10/21 15:15 09/13/21 Not Specified	i
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	91.6		%	0.100	NA	1	-	09/15/21 12:3	5 121,2540G	RI

Serial No:09282113:22	Serial	No:09282113:22
-----------------------	--------	----------------

Project Name: BARNET MILLS Project Number: 21-26694E

Lab ID: Client ID: Sample Location:	SW-DR-2	2149063-06 SW-DR-2 RENSSELAER, NY						Date Collected:09/10/21 15:40Date Received:09/13/21Field Prep:Not Specified		
Sample Depth: Matrix:	Soil									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total	93.0		%	0.100	NA	1	-	09/15/21 12:3	5 121,2540G	RI

Project Name:	BARNET MILLS	Lab Duplicate Analysis Batch Quality Control	Lab Number:	L2149063
Project Number:	21-26694E		Report Date:	09/28/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 02-04,06	QC Batch ID: WG1546670-1	QC Sample:	L2147847-0	3 Client ID: DUP Sample
Solids, Total	83.7	81.8	%	2	20

Project Name:BARNET MILLSProject Number:21-26694E

Serial_No:09282113:22 *Lab Number:* L2149063 *Report Date:* 09/28/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2149063-01A	Vial HCl preserved	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-01B	Vial HCl preserved	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-01C	Vial HCI preserved	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-01D	Amber 120ml unpreserved	А	7	7	2.2	Y	Absent		NYTCL-8082-LVI(365)
L2149063-01E	Amber 120ml unpreserved	А	7	7	2.2	Y	Absent		NYTCL-8082-LVI(365)
L2149063-02A	Vial Large Septa unpreserved (4oz)	A	NA		2.2	Y	Absent		NYTCL-8270(14),NYTCL-8260- R2(14),TS(7),NYTCL-8082(365)
L2149063-02B	Vial Large Septa unpreserved (4oz)	A	NA		2.2	Y	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2149063-02X	Vial MeOH preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-02Y	Vial Water preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-02Z	Vial Water preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-03A	Vial Large Septa unpreserved (4oz)	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-03B	Vial Large Septa unpreserved (4oz)	А	NA		2.2	Y	Absent		NYTCL-8270(14),TS(7),NYTCL-8082(365)
L2149063-03X	Vial MeOH preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-03Y	Vial Water preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-03Z	Vial Water preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-04A	Vial Large Septa unpreserved (4oz)	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-04B	Vial Large Septa unpreserved (4oz)	А	NA		2.2	Y	Absent		NYTCL-8270(14),TS(7),NYTCL-8082(365)
L2149063-04X	Vial MeOH preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-04Y	Vial Water preserved split	А	NA		2.2	Y	Absent	21-SEP-21 13:32	NYTCL-8260-R2(14)
L2149063-04Z	Vial Water preserved split	А	NA		2.2	Y	Absent	21-SEP-21 13:32	NYTCL-8260-R2(14)
L2149063-05A	Vial HCl preserved	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-05B	Vial HCl preserved	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)

Project Name:BARNET MILLSProject Number:21-26694E

Serial_No:09282113:22 *Lab Number:* L2149063 *Report Date:* 09/28/21

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2149063-05C	Vial HCl preserved	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-06A	Vial Large Septa unpreserved (4oz)	А	NA		2.2	Y	Absent		NYTCL-8270(14),NYTCL-8260- R2(14),TS(7),NYTCL-8082(365)
L2149063-06B	Vial Large Septa unpreserved (4oz)	A	NA		2.2	Y	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2149063-06X	Vial MeOH preserved split	А	NA		2.2	Y	Absent		NYTCL-8260-R2(14)
L2149063-06Y	Vial Water preserved split	А	NA		2.2	Y	Absent	21-SEP-21 13:32	NYTCL-8260-R2(14)
L2149063-06Z	Vial Water preserved split	А	NA		2.2	Y	Absent	21-SEP-21 13:32	NYTCL-8260-R2(14)

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2149063

Report Date: 09/28/21

GLOSSARY

Acronyms

Acronyms	
DL	 Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2149063

Report Date: 09/28/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: BARNET MILLS

Project Number: 21-26694E

Lab Number: L2149063 Report Date: 09/28/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: BARNET MILLS Project Number: 21-26694E

 Lab Number:
 L2149063

 Report Date:
 09/28/21

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105			Page	Date Rec'd in Lab 29/19/21						ALPHA JOB # L2 49063			
Westberough, MA 01581 8 Walkup Dr. TEL: 508-698-9220 FAX: 508-896-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	Barnet Mills Rensselaer	NY			Deliv	erables ASP-/ EQuIS	A 5 (1 Fil	e)	ASP	-B IS (4 File)	Billing Information Same as Client Info PO # Attn. Mark Schnitzer		
Client Information		Project # 21-26694E					Other								
and the second sec	ronmental Services Inc	(Use Project name as Pro	- WARNESS - THE PARTY				Regu	latory R	Require	ment		25 D L 20	Disposal Site Information		
Address: 438 New K								NY TO	GS		Please identify below location of				
Albany NY 12205		ALPHAQuote #:							Standar	ds	Other	applicable disposal facilities.			
Phone: 518-588-21	04	Turn-Around Time						NY Re	stricted	Use	Disposal Facility:				
Fax:		Standard Due Date:					\mathbb{Z}	NY Un	restricte	d Use			NJ NY		
Email: KimB@Alpi	ineEnv.com	Rush (only if pre approved) # of Days:					NYC Sewer Discharge						Other: NA		
These samples have been	en previously analyzed b	Alpha					ANALYSIS					Sample Filtration			
Other project specific r		is:						BN	2808	MERAL			one t ab to do l Preservation ab to do B		
Please specify Metals of	or TAL.						8260	8270		1248			(Please Specify below)		
ALPHA Lab ID (Lab Use Only)		ample ID	Co Date	llection Time	Sample Matrix	Sampler's Initials	1	82	PCB	KC1		Sample Specific Comments s			
49063-01	SW-TAN	JK	9/10/21	1220	WTR	КВ	x	×	×						
-02	SW-DR	1	9/10/21	1315	SED	кв	х	X	×	X					
-03	SUB-STI	A -1	9/10/21	1445	SOIL	КВ	x	×	×	æ					
-04	SUB -ST.		9/10/21	1515	SOIL	КВ	x	X	×						
-05	SW-DR		9/10/21	1315	WTR	КВ	х								
-06	SW-DR	-2	9/10/21	1540	SEP	КВ	x	X	X	X					
			9/10/21			КВ	X								
			9/10/21			КВ	x	_	_						
			9/10/21			КВ	х		-		_				
Preservative Code: A = Nane B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube	9/10/21 Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Co	x						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any			
F = MeOH G = NaHSO,	0 = Other Relinquished By Date/Time					11	Received By: / Date/Time					ambiguities are resolved. BY EXECUTING THIS COC, THE			
H = Na ₂ S ₂ O ₅ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Kim L. Baines		9/19/21	_	fu	Ú A	4		<u>I</u>	3/ AI	di olili	a set on any set of the set of th		
Form No: 01-25 (rev. 30-Sep	1-2013)			1		1			(7	1.1		and the second second		
					100										