

Geology

Hydrology

Remediation

Water Supply

June 15, 2012

Ms. Sarah Newell Clough, Harbour, & Associates LLP III Winners Circle P.O. Box 5269 Albany, New York 12205-0269

Re: Data Validation Report

ALCO Maxon RI

May 2012 Sediment Sampling Event

Dear Ms. Newell:

The data usability summary reports (DUSRs) and data validation summaries are attached to this letter for ALOC Maxon RI, May 2012 sediment sampling event. The data for TestAmerica Buffalo job number 480-20167-1 were acceptable with some minor issues that are identified and discussed in the validation summaries. There were no data that were qualified as unusable (R) in the data packs.

There was an issue with the method blank for the semi-volatiles. Although the levels of detected compounds in the method blank were acceptable, the blank contained 22 detected compounds. Rather than flagging data as not detected ("U"), the validation criteria was modified to indicate that the corresponding concentrations reported in the samples were not significantly greater than those reported in the blank and flagged "B". This allows the user to evaluate whether the concentrations should be considered detected or not.

A list of common data validation acronyms is attached to this letter to assist you in interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Clough, Harbour, & Associates LLP.

Sincerely,

Alpha Geoscience
Ronald Anné

Donald Anné Senior Chemist

DCA:dca attachments

Z:\projects\2012\12600 - 12620\12611-ALCO RI\alco ri-121-4.ltr.wpd

#### **Data Validation Acronyms**

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit

CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine

ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

#### Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.

  R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.



Geology

Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-20167-1

#### 13 Sediment Samples, 2 Field Duplicates, and 2 Trip Blanks Collected May 16 and 17, 2012

Prepared by: Donald Anné June 15, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 13 sediment samples, 2 field duplicates, and 2 trip blanks analyzed for volatiles, and 13 sediment samples and 2 field duplicates analyzed semi-volatiles, PCB, TAL metals, and total organic carbon (TOC).

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Positive volatile results for xylenes were flagged as "not detected" (U) in samples DUP-01, DUP-02, and SED-11 (6-12) DL because the results for xylenes were not significantly higher (five times) than the highest associated blank level.
- Positive volatile results for acetone were flagged as "estimated" (J) in samples SED-11 (0-6) and DUP-02 because relative percent difference for acetone was above the allowable maximum in sediment field duplicate pair SED-11 (0-6)/DUP-02.
- The volatile result for cis-1,2-dichloroethene in sample SED-11 (6-12) was quantited using data that was extrapolated beyond the highest calibration and flagged "E" by the laboratory. The result for cis-1,2-dichloroethen marked "E" in the undiluted sample SED-11 (6-12) was qualified as estimated (J).
- Positive semi-volatile results for fluoranthene and pyrene were flagged as "estimated" (J) in samples SED-10 (0-6) and DUP-01 because relative percent differences for fluoranthene and pyrene were above the allowable maximum in the associated sediment field duplicate pair SED-10 (0-6)/DUP-01.

Page 1 of 2

Job No: 480-201671-1

- Positive semi-volatile results for benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene were flagged as "estimated" (J) in samples SED-11 (0-6) and DUP-02 because relative percent differences for benzo(a)pyrene, benzo(b)fluoranthene, and benzo(k)fluoranthene were above the allowable maximum in the associated sediment field duplicate pair SED-11 (0-6)/DUP-02.
- Positive semi-volatile results for 6 compounds in samples SED-11 (0-6), SED-11 (6-12), and SED-13 (6-12); 7 compounds in sample SED-10 (0-6), SED-12 (0-6), and SED-13 (0-6); and 12 compounds in sample SED-10 (6-12) were flagged as "not significantly above the level of the method blank" (B) because the levels in the samples were less than 10 times the method blank level for phthalate esters and 5 times the method blank level for all other compounds.
- Positive metals results for aluminum were flagged as "estimated" (J) in all 13 sediment samples and 2 field duplicates because 2 of 2 percent recoveries for aluminum were above control limits, but were not above 250% in the associated sediment MS/MSD sample.
- Positive metal results for mercury were flagged as "estimated" (J) in samples SED-11 (0-6) and DUP-02 because relative percent difference for mercury was above the allowable maximum in sediment field duplicate pair SED-11 (0-6)/DUP-02.
- Positive results for TOC were flagged as "estimated" (J) in samples SED-10 (0-6) and DUP-01 because relative percent difference for TOC was above the allowable maximum in sediment field duplicate pair SED-10 (0-6)/DUP-01.

All data are considered usable with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-20167-1

#### 13 Sediment Samples, 2 Field Duplicates, and 2 Trip Blanks Collected May 16 and 17, 2012

Prepared by: Donald Anné June 15, 2012

<u>Holding Times</u>: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for 1,1-dichloroethane, carbon tetrachloride, bromodichloromethane, and 1,2-dibromo-3-chloropropane were above the allowable maximum (25%) on 05-18-12 (G11894.D). The %Ds for carbon disulfide and bromoform were above the allowable maximum (25%) on 05-19-12 (S14265.D). The %D for dichlorodifluoromethane was above the allowable maximum (25%) on 05-20-12 (F9219.D). The %D for dichlorodifluoromethane was above the allowable maximum (25%) on 05-21-12 (F9276.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: Method blank MB 480-65268/7 contained a trace of toluene (0.674 ug/kg). Method blank MB 480-65414/7 contained traces of 4-methyl-2-pentanone (1.63 ug/kg), ethylbenzene (0.450 ug/kg), toluene (1.04 ug/kg), and xylenes (1.67 ug/kg). Positive results for 4-methyl-2-pentanone, ethylbenzene, toluene, and xylenes that are less than the highest blank level should be reported as not detected (U) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximum, but 19 of 26 percent recoveries (%Rs) were below QC limits for sediment MS/MSD sample SED-04 (6-12). The RPDs for spike compounds were below the allowable maximum, but 12 of 26 %Rs were below QC limits for soil MS/MSD sample SED-12 (0-6). No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for the following aqueous and soil samples.

| LCS 480-65011/4 | LCS 480-65120/4 | LCS 480-65169/4 |
|-----------------|-----------------|-----------------|
| LCS 480-65238/6 | LCS 480-65268/6 | LCS 480-65414/6 |

<u>Field Duplicates</u>: The relative percent difference (RPD) for acetone was below the allowable maximum (35%) for sediment field duplicate pair SED-10 (0-6)/DUP-01 (attached table), as required.

The RPD for acetone was above the allowable maximum (35%) for sediment field duplicate pair SED-11 (0-6)/DUP-02 (attached table). Results for acetone should be considered estimated (J) in samples SED-11 (0-6) and DUP-02.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There was a volatile result for cis-1,2-dichloroethene in sample SED-11 (6-12) that was quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The sample was diluted by the laboratory and re-analyzed; therefore, the result for cis-1,2-dichloroethene that is flagged as 'E' in the undiluted sample should be considered estimated (J) and the use of the diluted result for cis-1,2-dichloroethene is recommended. It is recommended that the undiluted results be used for all other compounds.

#### **Volatiles**

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-20167-1

| SED-10 (0-6)                                     | S2=                                                                  | DUP-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>S1</u><br>11<br>42<br>2.7                     | <u>\$2</u><br>9.5<br>41<br>1.4                                       | RPD (%)<br>NC<br>2%<br>NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SED-11 (0-6)                                     | S2=                                                                  | DUP-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>\$1</u><br>16<br>64<br>6.1<br>ND<br>ND<br>3.6 | \$2<br>9.7<br>38<br>5.4<br>2.8<br>3.8<br>1.3                         | RPD (%)  NC 51%  NC  NC  NC  NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                  | 11<br>42<br>2.7<br>SED-11 (0-6)<br>S1<br>16<br>64<br>6.1<br>ND<br>ND | S1       S2         11       9.5         42       41         2.7       1.4         SED-11 (0-6)       S2=         \$\frac{\text{S1}}{16}  \frac{\text{S2}}{9.7} \\ 64  38 \\ 6.1  \frac{\text{5.4}}{16} \\ ND  \text{2.8} \\ ND  \text{3.8} \\ ND  \tex |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in ug/kg

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa | lo         | Job No.: 480-20167-1        |
|----------|----------------------|------------|-----------------------------|
| SDG No.: | •                    |            |                             |
| Matrix:  | Solid                | Level: Low | Lab File ID: F9207.D        |
| Lab ID:  | 480-20167-5 MS       |            | Client ID: SED-04 (6-12) MS |

|                          | SPIKE<br>ADDED | SAMPLE CONCENTRATION | MS<br>CONCENTRATION | MS<br>% | QC<br>LIMITS | # |
|--------------------------|----------------|----------------------|---------------------|---------|--------------|---|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)              | (ug/Kg)             | REC     | REC          |   |
| 1,1-Dichloroethane       | 68.9           | ND                   | 56.5                | 82      | 79-126       |   |
| 1,1-Dichloroethene       | 68.9           | ND                   | 44.2                | 64      | 65-153       | F |
| 1,2-Dichlorobenzene      | 68.9           | ND                   | 19.3                | (28     | 75-120       | F |
| 1,2-Dichloroethane       | 68.9           | ND                   | 50.7                | 74      | 77-122       | F |
| Benzene                  | 68.9           | ND                   | 52.8                | (7.7)   | 79-127       | F |
| Chlorobenzene            | 68.9           | ND                   | 33.4                | (48)    | 76-124       | F |
| cis-1,2-Dichloroethene   | 68.9           | ND                   | 48.4                | (70     | 81-117       | F |
| Ethylbenzene             | 68.9           | ND                   | 35.3                | (51)    | 80-120       | F |
| Methyl tert-butyl ether  | 68.9           | ND                   | 58.7                | 85      | 63-125       |   |
| Tetrachloroethene        | 68.9           | ND                   | 34.2                | (50     | 74-122       | F |
| Toluene                  | 68.9           | 1.2 J                | 45.8                | 65      | 74-128       | F |
| trans-1,2-Dichloroethene | 68.9           | ND                   | 43.7                | (63     | 78-126       | F |
| Trichloroethene          | 68.9           | ND                   | 39.7                | (58     | 77-129       | F |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values

## FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa | lo         | Job No.: 480-20167-1         |
|----------|----------------------|------------|------------------------------|
| SDG No.: |                      |            |                              |
| Matrix:  | Solid                | Level: Low | Lab File ID: F9208.D         |
| Lab ID:  | 480-20167-5 MSD      |            | Client ID: SED-04 (6-12) MSD |

|                          | SPIKE   | MSD<br>CONCENTRATION | MSD<br>% | g)ço | QC L1 | IMITS  | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|---------|----------------------|----------|------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPOUND                 | (ug/Kg) | (ug/Kg)              | REC      | RPD  | RPD   | REC    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethane       | 75.3    | 68.2                 | 91       | 19   | 30    | 79-126 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1,1-Dichloroethene       | 75.3    | 55.9                 | 74       | 23   | 30    | 65-153 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichlorobenzene      | 75.3    | 24.1                 | (32      | 22   | 30    | 75-120 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,2-Dichloroethane       | 75.3    | 61.0                 | 81       | 18   | 30    | 77-122 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Benzene                  | 75.3    | 63.2                 | 84       | 18   | 30    | 79-127 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chlorobenzene            | 75.3    | 41.1                 | 55       | 21   | 30    | 76-124 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| cis-1,2-Dichloroethene   | 75.3    | 59.2                 | (7)      | 20   | 30    | 81-117 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ethylbenzene             | 75.3    | 42.6                 | (5)      | 19   | 30    | 80-120 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methyl tert-butyl ether  | 75.3    | 67.5                 | 90       | 14   | 30    | 63-125 | th de a three desirements of the first security and a section of a sec |
| Tetrachloroethene        | 75.3    | 42.9                 | (57      | 23   | 30    | 74-122 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Toluene                  | 75.3    | 54.7                 | (7)      | 18   | 30    | 74-128 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| trans-1,2-Dichloroethene | 75.3    | 55.4                 | (74)     | 24   | 30    | 78-126 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Trichloroethene          | 75.3    | 49.5                 | 66       | 22   | 30    | 77-129 | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values

### FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa |                                                                                                       |        |         | 30-20167-1   |    |
|----------|----------------------|-------------------------------------------------------------------------------------------------------|--------|---------|--------------|----|
| SDG No.  |                      | ad disassed which dielle as white as when it was part about property company to property and a second |        |         |              |    |
| Matrix:  | Solid                | Level: Lo                                                                                             | ow Lab | File ID | : F9291.D    |    |
| Lab ID:  | 480-20232-8 MS       |                                                                                                       |        | ent ID: | SED-12 (0-6) | MS |

|                          | SPIKE   | SAMPLE        | MS            | MS   | QC     |                                         |
|--------------------------|---------|---------------|---------------|------|--------|-----------------------------------------|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | 양    | LIMITS | #                                       |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC  | REC    |                                         |
| 1,1-Dichloroethane       | 74.8    | ND            | 67.3          | 90   | 79-126 |                                         |
| 1,1-Dichloroethene       | 74.8    | ND            | 52.8          | 71   | 65-153 | *************************************** |
| 1,2-Dichlorobenzene      | 74.8    | ND            | 34.3          | (46) | 75-120 | F                                       |
| 1,2-Dichloroethane       | 74.8    | ND            | 62.8          | 84   | 77-122 |                                         |
| Benzene                  | 74.8    | ND            | 62.1          | 83   | 79-127 |                                         |
| Chlorobenzene            | 74.8    | ND            | 46.8          | (63  | 76-124 | F                                       |
| cis-1,2-Dichloroethene   | 74.8    | ND            | 59.2          | (79  | 81-117 | F                                       |
| Ethylbenzene             | 74.8    | ND            | 51.3          | (69  | 80-120 | F                                       |
| Methyl tert-butyl ether  | 74.8    | ND            | 60.7          | 81   | 63-125 |                                         |
| Tetrachloroethene        | 74.8    | ND            | 51.8          | (69) | 74-122 | F                                       |
| Toluene                  | 74.8    | ND            | 56.2          | 75   | 74-128 |                                         |
| trans-1,2-Dichloroethene | 74.8    | ND            | 57.4          | (77) | 78-126 | F                                       |
| Trichloroethene          | 74.8    | ND            | 51.5          | (69  | 77-129 | F                                       |

<sup>#</sup> Column to be used to flag recovery and RPD values FORM III 8260B

## FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa                   |        | Job No.:  | 480-20167-1        |
|----------|----------------------------------------|--------|-----------|--------------------|
| SDG No.: | ************************************** |        |           |                    |
| Matrix:  |                                        | Level: |           | ID: F9292.D        |
| Lab ID:  | 480-20232-8 MSD                        |        | Client ID | : SED-12 (0-6) MSD |

|                          | SPIKE   | MSD<br>CONCENTRATION | MSD<br>% | o <sub>l</sub> c | QC L | IMITS  | n     |
|--------------------------|---------|----------------------|----------|------------------|------|--------|-------|
| COMPOUND                 | (ug/Kg) | (ug/Kg)              | REC      | RPD              | RPD  | REC    | #     |
| 1,1-Dichloroethane       | 73.1    | 68.4                 | 94       | 2                | 30   | 79-126 |       |
| 1,1-Dichloroethene       | 73.1    | 53.9                 | 74       | 2                | 30   | 65-153 |       |
| 1,2-Dichlorobenzene      | 73.1    | 35.8                 | 49       | 4                | 30   | 75-120 | F     |
| 1,2-Dichloroethane       | 73.1    | 61.2                 | 84       | 3                | 30   | 77-122 |       |
| Benzene                  | 73.1    | 63.3                 | 87       | 2                | 30   | 79-127 |       |
| Chlorobenzene            | 73.1    | 48.2                 | 66       | 3                | 30   | 76-124 | F     |
| cis-1,2-Dichloroethene   | 73.1    | 60.5                 | 83       | 2                | 30   | 81-117 |       |
| Ethylbenzene             | 73.1    | 52.8                 | (72      | 3                | 30   | 80-120 | F'    |
| Methyl tert-butyl ether  | 73.1    | 62.4                 | 85       | 3                | 30   | 63-125 |       |
| Tetrachloroethene        | 73.1    | 53.2                 | 03       | 3                | 30   | 74-122 | F     |
| Toluene                  | 73.1    | 57.1                 | 78       | 2                | 30   | 74-128 | ~     |
| trans-1,2-Dichloroethene | 73.1    | 58.0                 | 79       | 1                | 30   | 78-126 | ····· |
| Trichloroethene          | 73.1    | 53.3                 | (73      | 4                | 30   | 77-129 | F     |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-20167-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-65268/7       |
| Matrix: Solid                 | Lab File ID: F9252.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 05/21/2012 11:22     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 65268     | Units: ug/Kg                        |
|                               |                                     |

| CAS NO.    | COMPOUND NAME                       | RESULT | Q                                       | RL  | MDL  |
|------------|-------------------------------------|--------|-----------------------------------------|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane               | ND     |                                         | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane           | ND     |                                         | 5.0 | 0.81 |
| 79-00-5    | 1,1,2-Trichloroethane               | ND     |                                         | 5.0 | 0.65 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |                                         | 5.0 | 1.1  |
| 75-34-3    | 1,1-Dichloroethane                  | ND     |                                         | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                  | ND     |                                         | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene              | ND     |                                         | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane         | ND     |                                         | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                   | ND     |                                         | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                 | ND     |                                         | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                  | ND     |                                         | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                 | ND ND  |                                         | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                 | ND     |                                         | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                 | ND     |                                         | 5.0 | 0.70 |
| 591-78-6   | 2-Hexanone                          | ND     |                                         | 25  | 2.5  |
| 78-93-3    | 2-Butanone (MEK)                    | ND     |                                         | 25  | 1.8  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)         | ND     |                                         | 25  | 1.6  |
| 67-64-1    | Acetone                             | ND     |                                         | 25  | 4.2  |
| 71-43-2    | Benzene                             | ND     |                                         | 5.0 | 0,25 |
| 75-27-4    | Bromodichloromethane                | ND     |                                         | 5.0 | 0.67 |
| 75-25-2    | Bromoform                           | ND     |                                         | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                        | ND     |                                         | 5.0 | 0.45 |
| 75-15-0    | Carbon dísulfide                    | ND     |                                         | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                | ND     |                                         | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                       | ND     | *************************************** | 5.0 | 0.66 |
| 124-48-1   | Dibromochloromethane                | ND     |                                         | 5.0 | 0.64 |
| 75-00-3    | Chloroethane                        | ND     |                                         | 5.0 | 1.1  |
| 67-66-3    | Chloroform                          | ND     |                                         | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                       | ND     |                                         | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene              | ND     |                                         | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene             | ND     |                                         | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                         | ND     |                                         | 5.0 | 0.70 |
| 75-71-8    | Dichlorodifluoromethane             | ND     |                                         | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                        | ND     |                                         | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                    | ND     |                                         | 5.0 | 0.75 |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

|                           | Job No.: 480-20167-1                |  |  |  |  |
|---------------------------|-------------------------------------|--|--|--|--|
| SDG No.:                  |                                     |  |  |  |  |
| Client Sample ID:         | Lab Sample ID: MB 480-65268/7       |  |  |  |  |
| Matrix: Solid             | Lab File ID: F9252.D                |  |  |  |  |
| Analysis Method: 8260B    | Date Collected:                     |  |  |  |  |
| Sample wt/vol: 5(g)       | Date Analyzed: 05/21/2012 11:22     |  |  |  |  |
| Soil Aliquot Vol:         | Dilution Factor: 1                  |  |  |  |  |
| Soil Extract Vol.:        | GC Column: ZB-624 (60) ID: 0.25(mm) |  |  |  |  |
| % Moisture:               | Level: (low/med) Low                |  |  |  |  |
| Analysis Batch No.: 65268 | Units: ug/Kg                        |  |  |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q       | RL  | MDL  |
|------------|---------------------------|--------|---------|-----|------|
| 79-20-9    | Methyl acetate            | ND     |         | 5.0 | 0.93 |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |         | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | ND     |         | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | ND     |         | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | ND     |         | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |         | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | 0.674  | J       | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | CH     | <i></i> | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |         | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND     |         | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |         | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |         | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | ND     |         | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 84   |   | 64-126 |
| 2037-26-5  | Toluene-d8 (Surr)            | 99   |   | 71-125 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 101  |   | 72-126 |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-20167-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-65414/7       |
| Matrix: Solid                 | Lab File ID: F9279.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 05/21/2012 23:30     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 65414     | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME                       | RESULT  | Q                                       | RL  | MDL  |
|------------|-------------------------------------|---------|-----------------------------------------|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane               | ND ND   |                                         | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane           | ND      |                                         | 5.0 | 0.81 |
| 79-00-5    | 1,1,2-Trichloroethane               | ND      |                                         | 5.0 | 0.65 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroetha | ND      |                                         | 5.0 | 1.1  |
| 75-34-3    | 1,1-Dichloroethane                  | ND      |                                         | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                  | ND      |                                         | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene              | ND ND   |                                         | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane         | ND      |                                         | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                   | ND      |                                         | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                 | ND      |                                         | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                  | ND      |                                         | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                 | ND      |                                         | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                 | ND      |                                         | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                 | ND      |                                         | 5.0 | 0.70 |
| 591-78-6   | 2-Hexanone                          | ND      |                                         | 25  | 2.5  |
| 78-93-3    | 2-Butanone (MEK)                    | ND.     |                                         | 25  | 1.8  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)         | 1.63    | J                                       | 25  | 1.6  |
| 67-64-1    | Acetone                             | ND      |                                         | 25  | 4.2  |
| 71-43-2    | Benzene                             | ND      |                                         | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                | ND      |                                         | 5.0 | 0.67 |
| 75-25-2    | Bromoform                           | ND      |                                         | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                        | ND      |                                         | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                    | ND      |                                         | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                | ND      | *************************************** | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                       | ND      |                                         | 5.0 | 0.66 |
| 124-48-1   | Dibromochloromethane                | ND      |                                         | 5.0 | 0.64 |
| 75-00-3    | Chloroethane                        | ND ND   |                                         | 5.0 | 1.1  |
| 67-66-3    | Chloroform                          | ND      |                                         | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                       | ND ND   |                                         | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene              | ND      |                                         | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene             | ND      |                                         | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                         | ND ND   |                                         | 5.0 | 0.72 |
| 75-71-8    | Dichlorodifluoromethane             |         |                                         | 5.0 | 0.70 |
| 100-41-4   | Ethylbenzene                        | 0.450 J | -                                       | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                    |         |                                         | 5.0 | 0.33 |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-20167-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-65414/7       |
| Matrix: Solid                 | Lab File ID: F9279.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 05/21/2012 23:30     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 65414     | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME             | RESULT | Q  | RL  | MDL  |
|------------|---------------------------|--------|----|-----|------|
| 79-20-9    | Methyl acetate            | ND     |    | 5.0 | 0.93 |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |    | 5.0 | 0.4  |
| 108-87-2   | Methylcyclohexane         | ND     |    | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | ND     |    | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | ND     |    | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |    | 5.0 | 0.23 |
| 108-88-3   | Toluene                   |        | J  | 5.0 | 0.07 |
| 156-60-5   | trans-1,2-Dichloroethene  | NB     |    | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |    | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND ND  |    | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |    | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |    | 5.0 |      |
| 1330-20-7  | Xylenes, Total            |        | .T | 10  | 0.61 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 88   |   | 64-126 |
| 2037-26-5  | Toluene-d8 (Surr)            | 98   |   | 71-125 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 99   |   | 72-126 |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65238/4 Calibration Date: 05/20/2012 10:26

Instrument ID: HP5973F Calib Start Date: 05/11/2012 02:34

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 05/11/2012 04:41

Lab File ID: F9219.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2526  | 0.1876 |         | 37.1           | 50.0            | (-25.7) | 50.0      |
| Chloromethane                          | Ave           | 0.2826  | 0.2540 | 0.1000  | 44.9           | 50.0            | -10.1   | 50.0      |
| Vinyl chloride                         | Ave           | 0.2229  | 0.2037 |         | 45.7           | 50.0            | -8.6    | 20.0      |
| Bromomethane                           | Ave           | 0.0852  | 0.0930 |         | 54.6           | 50.0            | 9.1     | 50.0      |
| Chloroethane                           | Ave           | 0.0906  | 0.0995 |         | 54.9           | 50.0            | 9.8     | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.2408  | 0.2590 |         | 53.8           | 50.0            | 7.6     | 50.0      |
| Acrolein                               | Ave           | 0.0224  | 0.0190 |         | 849            | 1000            | -15.1   | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2348  | 0.2041 |         | 43.5           | 50.0            | -13.1   | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2508  | 0.2320 | 0.1000  | 46.3           | 50.0            | -7.5    | 20.0      |
| Acetone                                | Ave           | 0.1024  | 0.0981 |         | 240            | 250             | -4.2    | 50.0      |
| Iodomethane                            | Ave           | 0.3810  | 0.3552 |         | 46.6           | 50.0            | -6.8    | 50.0      |
| Carbon disulfide                       | Ave           | .0.6833 | 0.5518 |         | 40.4           | 50.0            | -19.3   | 50.0      |
| Methyl acetate                         | Ave           | 0.4525  | 0.4270 |         | 47.2           | 50.0            | -5.6    | 50.0      |
| Acetonitrile                           | Ave           | 0.0229  | 0.0218 |         | 1900           | 2000            | -4.8    | 50.0      |
| Methylene Chloride                     | Ave           | 0.2868  | 0.2763 |         | 48.2           | 50.0            | -3.7    | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.8089  | 0.7714 |         | 47.7           | 50.0            | -4.6    | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2786  | 0.2722 |         | 48.9           | 50.0            | -2.3    | 50.0      |
| Acrylonitrile                          | Ave           | 0.1147  | 0.1068 |         | 233            | 250             | -6.9    | 50.0      |
| Vinyl acetate                          | Ave           | 0.5620  | 0.5422 |         | 241            | 250             | -3.5    | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4808  | 0.4686 |         | 48.7           | 50.0            | -2.5    | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1669  | 0.1551 |         | 232            | 250             | -7.1    | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3495  | 0.3562 |         | 51.0           | 50.0            | 1.9     | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3089  | 0.3076 |         | 49.8           | 50.0            | -0.4    | 50.0      |
| Bromochloromethane                     | Ave           | 0.1568  | 0.1580 |         | 50.4           | 50.0            | 0.8     | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1149  | 0.1068 |         | 232            | 250             | -7.1    | 50.0      |
| Chloroform                             | Ave           | 0.4389  | 0.4430 |         | 50.5           | 50.0            | 0.9     | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3833  | 0.3834 |         | 50.0           | 50.0            | 0.0     | 50.0      |
| Cyclohexane                            | Ave           | 0.5066  | 0.4256 |         | 42.0           | 50.0            | -16.0   | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3476  | 0.3354 |         | 48.2           | 50.0            | -3.5    | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.3303  | 0.3296 |         | 49.9           | 50.0            | -0.2    | 50.0      |
| Benzene                                | Ave           | 1.028   | 0.9902 |         | 48.2           | 50.0            | -3.7    | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.3634  | 0.3826 |         | 52.6           | 50.0            | 5.3     | 50.0      |
| Trichloroethene                        | Ave           | 0.2815  | 0.2707 |         | 48.1           | 50.0            | -3.8    | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4709  | 0.4008 |         | 42.6           | 50.0            | -14.9   | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2797  | 0.2700 |         | 48.3           | 50.0            | -3.4    | 20.0      |
| Dibromomethane                         | Ave           | 0.1611  | 0.1602 |         | 49.7           | 50.0            | -0.6    | 50.0      |
| Bromodichloromethane                   | Ave           | 0.2992  | 0.3086 |         | 51.6           | 50.0            | 3.1     | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.1830  | 0.1759 |         | 240            | 250             | -3.9    | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.3984  | 0.3947 |         | 49.5           | 50.0            | -0.9    | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.8181  | 0.7742 |         | 237            | 250             | -5.4    | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65238/4 Calibration Date: 05/20/2012 10:26

Instrument ID: HP5973F Calib Start Date: 05/11/2012 02:34

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 05/11/2012 04:41

Lab File ID: F9219.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                                  | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|------------------------------|---------------|---------|--------|----------------------------------------------------------|----------------|-----------------|------|-----------|
| Toluene                      | Ave           | 1.683   | 1.644  |                                                          | 48.8           | 50.0            | -2.3 | 20.0      |
| Ethyl methacrylate           | Ave           | 0.8004  | 0.7708 |                                                          | 48.2           | 50.0            | -3.7 | 50.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.8504  | 0.8692 |                                                          | 51.1           | 50.0            | 2.2  | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.4475  | 0.4373 | 7. Pakiti da 18. ani | 48.9           | 50.0            | -2.3 | 50.0      |
| Tetrachloroethene            | Ave           | 0.7307  | 0.7231 |                                                          | 49.5           | 50.0            | -1.0 | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.9240  | 0.9226 |                                                          | 49.9           | 50.0            | -0.2 | 50.0      |
| 2-Hexanone                   | Ave           | 0.5787  | 0.5472 |                                                          | 236            | 250             | -5.5 | 50.0      |
| Dibromochloromethane         | Ave           | 0.5890  | 0.6384 | /#W####                                                  | 54.2           | 50.0            | 8.4  | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6022  | 0.6039 |                                                          | 50.1           | 50.0            | 0.3  | 50.0      |
| Chlorobenzene                | Ave           | 1.964   | 1.996  | 0.3000                                                   | 50.8           | 50.0            | 1.6  | 50.0      |
| Ethylbenzene                 | Ave           | 3.054   | 3.047  |                                                          | 49.9           | 50.0            | -0.3 | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.6187  | 0.6503 |                                                          | 52.6           | 50.0            | 5.1  | 50.0      |
| m,p-Xylene                   | Ave           | 1.213   | 1.213  |                                                          | 100            | 100             | -0.0 | 50.0      |
| o-Xylene                     | Ave           | 1.203   | 1.212  |                                                          | 50.4           | 50.0            | 0.8  | 50.0      |
| Styrene                      | Ave           | 1.890   | 1.905  |                                                          | 50.4           | 50.0            | 0.8  | 50.0      |
| Bromoform                    | Lin1          |         | 0.3672 | 0.1000                                                   | 48.2           | 50.0            | -3.6 | 50.0      |
| Isopropylbenzene             | Ave           | 2.839   | 2.723  |                                                          | 48.0           | 50.0            | -4.1 | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.6673  | 0.6132 | 0.3000                                                   | 45.9           | 50.0            | -8.1 | 50.0      |
| Bromobenzene                 | Ave           | 0.7360  | 0.7250 | 0.0000                                                   | 49.3           | 50.0            | -1.5 | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2325  | 0.2236 |                                                          | 240            | 250             | -3.8 | 50.0      |
| N-Propylbenzene              | Ave           | 3.355   | 3.213  |                                                          | 47.9           | 50.0            | -4.3 | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2193  | 0.2136 | 1                                                        | 48.7           | 50.0            | -2.6 | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.7264  | 0.6964 |                                                          | 47.9           | 50.0            | -4.1 | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.406   | 2.314  |                                                          | 48.1           | 50.0            | -3.8 | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.7581  | 0.7247 |                                                          | 47.8           | 50.0            | -4.4 | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5458  | 0.5288 |                                                          | 48.4           | 50.0            | -3.1 | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.478   | 2.358  |                                                          | 47.6           | 50.0            | -4.9 | 50.0      |
| sec-Butylbenzene             | Ave           | 3.059   | 2.903  |                                                          | 47.4           | 50.0            | -5.1 | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.703   | 2.621  |                                                          | 48.5           | 50.0            | -3.0 | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.455   | 1.420  |                                                          | 48.8           | 50.0            | -2.4 | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.487   | 1.449  |                                                          | 48.7           | 50.0            | -2.4 | 50.0      |
| n-Butylbenzene               | Ave           | 2.345   | 2.216  |                                                          | 47.2           | 50.0            | -5.5 | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.413   | 1.363  |                                                          | 48.2           | 50.0            | -3.5 |           |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1179  | 0.1097 |                                                          | 46.5           | 50.0            | -6.9 | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.9342  | 0.9298 |                                                          | 49.8           |                 |      | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.4386  | 0.4303 |                                                          | 49.0           | 50.0            | -0.5 | 50.0      |
| Naphthalene                  | Ave           | 2.687   | 2.446  |                                                          | 45.5           |                 | -1.9 | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.8301  | 0.8175 |                                                          |                | 50.0            | -9.0 | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1361  | 0.1270 |                                                          | 49.2           | 50.0            | -1.5 | 50.0      |
| Foluene-d8 (Surr)            | Ave           | 2.284   | 2.223  |                                                          | 46.7           | 50.0            | -6.7 | 50.0      |
| 1-Bromofluorobenzene (Surr)  | Ave           | 0.7427  | 0.7674 |                                                          | 48.7           | 50.0            | 3.3  | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65414/4 Calibration Date: 05/21/2012 21:58

Instrument ID: HP5973F Calib Start Date: 05/11/2012 02:34

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 05/11/2012 04:41

Lab File ID: F9276.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2526  | 0.1876 |         | 37.1           | 50.0            | -25.8 | 50.0      |
| Chloromethane                          | Ave           | 0.2826  | 0.2630 | 0,1000  | 46.5           | 50.0            | -6.9  | 50.0      |
| Vinyl chloride                         | Ave           | 0.2229  | 0.2200 |         | 49.3           | 50.0            | -1.3  | 20.0      |
| Bromomethane                           | Ave           | 0.0852  | 0.0906 | ~~~     | 53.2           | 50.0            | 6.3   | 50.0      |
| Chloroethane                           | Ave           | 0.0906  | 0.1013 |         | 55.9           | 50.0            | 11.8  | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.2408  | 0.2530 |         | 52.5           | 50.0            | 5.1   | 50.0      |
| Acrolein                               | Ave           | 0.0224  | 0.0218 |         | 972            | 1000            | -2.8  | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2348  | 0.2211 |         | 47.1           | 50.0            | -5.9  | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2508  | 0.2672 | 0.1000  | 53.3           | 50.0            | 6.6   | 20.0      |
| Acetone                                | Ave           | 0.1024  | 0.1092 |         | 266            | 250             | 6.6   | 50.0      |
| Iodomethane                            | Ave           | 0.3810  | 0.3681 |         | 48.3           | 50.0            | -3.4  | 50.0      |
| Carbon disulfide                       | Ave           | 0.6833  | 0.6270 |         | 45.9           | 50.0            | -8.2  | 50.0      |
| Methyl acetate                         | Ave           | 0.4525  | 0.4975 |         | 55.0           | 50.0            | 9.9   | 50.0      |
| Acetonitrile                           | Ave           | 0.0229  | 0.0247 |         | 2160           | 2000            | 8.2   | 50.0      |
| Methylene Chloride                     | Ave           | 0.2868  | 0.2959 |         | 51.6           | 50.0            | 3.2   | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.8089  | 0.8693 |         | 53.7           | 50.0            | 7.5   | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2786  | 0.3000 |         | 53.8           | 50.0            | 7,7   | 50.0      |
| Acrylonitrile                          | Ave           | 0.1147  | 0.1212 |         | 264            | 250             | 5.7   | 50.0      |
| Vinyl acetate                          | Ave           | 0.5620  | 0.6198 |         | 276            | 250             | 10.3  | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4808  | 0.5294 |         | 55.0           | 50.0            | 10.1  | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1669  | 0.1817 |         | 272            | 250             | 8.9   | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3495  | 0.4029 |         | 57.7           | 50.0            | 15.3  | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3089  | 0.3345 |         | 54.1           | 50.0            | 8.3   | 50.0      |
| Bromochloromethane                     | Ave           | 0.1568  | 0.1736 |         | 55.3           | 50.0            | 10.7  | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1149  | 0.1236 |         | 269            | 250             | 7.6   | 50.0      |
| Chloroform                             | Ave           | 0.4389  | 0.4702 |         | 53.6           | 50.0            | 7.1   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3833  | 0.4180 |         | 54.5           | 50.0            | 9.1   | 50.0      |
| Cyclohexane                            | Ave           | 0.5066  | 0.5004 |         | 49.4           | 50.0            | -1.2  | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3476  | 0.3737 |         | 53.7           | 50.0            | 7.5   | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.3303  | 0.3664 |         | 55.5           | 50.0            | 10.9  | 50.0      |
| Benzene                                | Ave           | 1.028   | 1.118  |         | 54.4           | 50.0            | 8.8   | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.3634  | 0.4027 |         | 55.4           | 50.0            | 10.8  | 50.0      |
| Trichloroethene                        | Ave           | 0.2815  | 0.3043 |         | 54.0           | 50.0            | 8.1   | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4709  | 0.4637 |         | 49.2           | 50.0            | -1.5  | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2797  | 0.3065 |         | 54.8           | 50.0            | 9.6   | 20.0      |
| Dibromomethane                         | Ave           | 0.1611  | 0.1738 |         | 53.9           | 50.0            | 7.9   | 50.0      |
| Bromodichloromethane                   | Ave           | 0.2992  | 0.3399 |         | 56.8           | 50.0            | 13.6  | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.1830  | 0.2050 |         | 280            | 250             | 12.0  | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.3984  | 0.4532 |         | 56.9           | 50.0            | 13.8  | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.8181  | 0.9800 |         | 300            | 250             | 19.8  | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65414/4 Calibration Date: 05/21/2012 21:58

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 05/11/2012 04:41

Lab File ID: F9276.D Conc. Units: ug/L Heated Purge: (Y/N) N

|                              |               |         |        |                                         | Ţ~~~~~~        | γ               | y    | -         |
|------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|------|-----------|
| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
| Toluene                      | Ave           | 1.683   | 1.841  |                                         | 54.7           | 50.0            | 9.4  | 20.0      |
| Ethyl methacrylate           | Ave           | 0.8004  | 0.8631 |                                         | 53.9           | 50.0            | 7.8  | 50.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.8504  | 0.9750 |                                         | 57.3           | 50.0            | 14.7 | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.4475  | 0.4761 |                                         | 53.2           | 50.0            | 6.4  | 50.0      |
| Tetrachloroethene            | Ave           | 0.7307  | 0.7877 |                                         | 53.9           | 50.0            | 7.8  | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.9240  | 1.021  |                                         | 55.2           | 50.0            | 10.4 | 50.0      |
| 2-Hexanone                   | Ave           | 0.5787  | 0.6242 |                                         | 270            | 250             | 7.8  | 50.0      |
| Dibromochloromethane         | Ave           | 0.5890  | 0.6943 | *****                                   | 58.9           | 50.0            | 17.9 | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6022  | 0.6585 |                                         | 54.7           | 50.0            | 9.3  | 50.0      |
| Chlorobenzene                | Ave           | 1.964   | 2.146  | 0.3000                                  | 54.6           | 50.0            | 9.2  | 50.0      |
| Ethylbenzene                 | Ave           | 3.054   | 3.390  | 0.3000                                  | 55.5           | 50.0            | 11.0 | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.6187  | 0.7070 |                                         | 57.1           | 50.0            | 14.3 | 50.0      |
| m,p-Xylene                   | Ave           | 1.213   | 1.385  |                                         | 114            | 100             | 14.1 | 50.0      |
| o-Xylene                     | Ave           | 1,203   | 1.333  |                                         | 55.4           | 50.0            | 10.8 | 50.0      |
| Styrene                      | Ave           | 1.890   | 2.115  |                                         | 56.0           | 50.0            | 11.9 | 50.0      |
| Bromoform                    | Lin1          |         | 0.4070 | 0.1000                                  | 53.2           | 50.0            | 6.4  | 50.0      |
| Isopropylbenzene             | Ave           | 2.839   | 3.043  | 0.1000                                  | 53.6           | 50.0            | 7.2  |           |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.6673  | 0.6978 | 0.3000                                  | 52.3           | 50.0            | 4.6  | 50.0      |
| Bromobenzene                 | Ave           | 0.7360  | 0.7865 |                                         | 53.4           | 50.0            | 6.9  |           |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2325  | 0.2497 |                                         | 269            | 250             | 7.4  | 50.0      |
| N-Propylbenzene              | Ave           | 3.355   | 3.627  |                                         | 54.1           | 50.0            | 8.1  | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2193  | 0.2314 |                                         | 52.8           | 50.0            | 5.6  |           |
| 2-Chlorotoluene              | Ave           | 0.7264  | 0.7810 |                                         | 53.8           | 50.0            | 7.5  | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.406   | 2.626  |                                         | 54.6           | 50.0            |      | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.7581  | 0.8196 |                                         | 54.1           | 50.0            | 9.1  | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5458  | 0.5891 |                                         | 54.0           | 50.0            | 7.9  | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.478   | 2.746  |                                         | 55.4           | 50.0            | 10.8 | 50.0      |
| sec-Butylbenzene             | Ave           | 3.059   | 3.311  |                                         | 54.1           | 50.0            | 8.2  | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.703   | 2.949  |                                         | 54.5           | 50.0            | 9.1  | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.455   | 1.569  |                                         | 53.9           | 50.0            | 7.9  | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.487   | 1.595  |                                         | 53.6           | 50.0            | 7.3  | 50.0      |
| n-Butylbenzene               | Ave           | 2.345   | 2.529  |                                         | 53.9           | 50.0            | 7.8  | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.413   | 1.514  |                                         | 53.6           | 50.0            | 7.2  |           |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1179  | 0.1273 |                                         | 54.0           | 50.0            | 1    | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.9342  | 1.010  |                                         | 54.0           |                 | 8.0  | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.4386  | 0.4742 |                                         | 54.1           | 50.0            | 8.1  | 50.0      |
| Naphthalene                  | Ave           | 2.687   | 2.892  | *************************************** | 53.8           |                 | 8.1  | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.8301  | 0.9090 |                                         | 54.8           | 50.0            | 7.6  | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave .         | 0.1361  | 0.1268 |                                         | 46.6           | 50.0            | 9.5  | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.284   | 2.231  |                                         | 48.8           | 50.0            | -6.8 | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.7427  | 0.7531 |                                         | 50.7           | 50.0            | 1.4  | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65011/2 Calibration Date: 05/18/2012 12:25

Instrument ID: HP5973G Calib Start Date: 05/03/2012 15:31

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 05/03/2012 16:40

Lab File ID: G11894.D Conc. Units: ug/L Heated Purge: (Y/N) N

|                                        |               |         |        |                                           | ·              |                 |         |           |
|----------------------------------------|---------------|---------|--------|-------------------------------------------|----------------|-----------------|---------|-----------|
| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                   | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
| Dichlorodifluoromethane                | Ave           | 0.4451  | 0.4352 |                                           | 24.4           | 25.0            | -2.2    | 50.0      |
| Chloromethane                          | Ave           | 0.3778  | 0.4000 | 0.1000                                    | 26.5           | 25.0            | 5.9     | 50.0      |
| Vinyl chloride                         | Ave           | 0.4578  | 0.4243 |                                           | 23.2           | 25.0            | -7.3    | 20.0      |
| Bromomethane                           | Ave           | 0.1140  | 0.1203 |                                           | 26.4           | 25.0            | 5.5     | 50.0      |
| Chloroethane                           | Lin           |         | 0.2210 |                                           | 23.5           | 25.0            | -6.0    | 50.0      |
| Trichlorofluoromethane                 | Linl          |         | 0.4890 |                                           | 24.4           | 25.0            | -2.4    | 50.0      |
| Acrolein                               | Linl          |         | 0.0428 |                                           | 505            | 500             | 1.1     | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.3640  | 0.4224 |                                           | 29.0           | 25.0            | 16.0    | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.4532  | 0.4181 | 0.1000                                    | 23.1           | 25.0            | -7.8    | 20.0      |
| Acetone                                | Ave           | 0.1980  | 0.2019 |                                           | 128            | 125             | 2.0     | 50.0      |
| Iodomethane                            | Ave           | 0.4842  | 0.5680 |                                           | 29.3           | 25.0            | 17.3    | 50.0      |
| Carbon disulfide                       | Ave           | 1.190   | 1.380  |                                           | 29.0           | 25.0            | 15.9    | 50.0      |
| Acetonitrile                           | Ave           | 0.0412  | 0.0462 |                                           | 1120           | 1000            | 12.1    | 50.0      |
| Methyl acetate                         | Ave           | 0.7939  | 0.8467 |                                           | 26.7           | 25.0            | 6.7     | 50.0      |
| Methylene Chloride                     | Ave           | 0.5766  | 0.4984 |                                           | 21.6           | 25.0            | -13.6   | 50.0      |
| Methyl tert-butyl ether                | Ave           | 1.596   | 1.604  | #A-000-00-00-00-00-00-00-00-00-00-00-00-0 | 25.1           | 25.0            | 0.5     | 50.0      |
| Acrylonitrile                          | Ave           | 0.2137  | 0.2423 |                                           | 142            | 125             | 13.4    | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.4933  | 0.4469 |                                           | 22.6           | 25.0            | -9.4    | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.6001  | 0.4436 |                                           | 18.5           | 25.0            | (-26.1) | 50.0      |
| Vinyl acetate                          | Ave           | 0.7903  | 0.8578 |                                           | 136            | 125             | 8.5     | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3168  | 0.2298 |                                           | 18.1           | 25.0            | /A-27.5 | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.4542  | 0.3765 |                                           | 20.7           | 25.0            | -17.1   | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.3265  | 0.3578 |                                           | 137            | 125             | 9.6     | 50.0      |
| Bromochloromethane                     | Ave           | 0.1954  | 0.1774 |                                           | 22.7           | 25.0            | -9.2    | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.2193  | 0.2416 | ***************************************   | 138            | 125             | 10.2    | 50.0      |
| Chloroform                             | Ave           | 0.4811  | 0.3930 | V-PVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV    | 20.4           | 25.0            | -18.3   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.4590  | 0.4270 |                                           | 23.3           | 25.0            | -7.0    | 50.0      |
| Cyclohexane                            | Ave           | 0.6867  | 0.8046 |                                           | 29.3           | 25.0            | 17.2    | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.5334  | 0.3741 |                                           | 17.5           | 25.0            | (-29.9) | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.5878  | 0.4844 |                                           | 20.6           | 25.0            | -17.6   | 50.0      |
| Benzene                                | Ave           | 1.768   | 1.531  |                                           | 21.7           | 25.0            | -13.4   | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.6482  | 0.4913 |                                           | 18.9           | 25.0            | -24.2   | 50.0      |
| Trichloroethene                        | Ave           | 0.4354  | 0.3746 |                                           | 21.5           | 25.0            | -14.0   | 50.0      |
| Methylcyclohexane                      | Ave           | 0.7372  | 0.8618 |                                           | 29.2           | 25.0            | 16.9    | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.3935  | 0.3440 |                                           | 21.9           | 25.0            | -12.6   | 20.0      |
| Dibromomethane                         | Ave           | 0.2752  | 0.2288 |                                           | 20.8           | 25.0            | -16.9   | 50.0      |
| Bromodichloromethane                   | Ave           | 0.5585  | 0.4180 |                                           | 18.7           | 25.0            | (-25.2) | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.3204  | 0.3767 |                                           | 147            | 125             | 17.6    | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.7082  | 0.5848 |                                           | 20.6           | 25.0            | -17.4   | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 1.070   | 1.274  |                                           | 149            | 125             | 19.0    | 50.0      |
|                                        |               |         |        | i                                         |                |                 | 1       | 1         |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65011/2 Calibration Date: 05/18/2012 12:25

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 05/03/2012 16:40

Lab File ID: G11894.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF .  | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|---------|-----------|
| Toluene                      | Ave           | 2.079   | 1.966  |                                         | 23.6           | 25.0            | -5.4    | 20.0      |
| trans-1,3-Dichloropropene    | Ave           | 1.262   | 1.068  |                                         | 21.2           | 25.0            | -15.4   | 50.0      |
| Ethyl methacrylate           | Ave           | 1.251   | 1.473  |                                         | 29.4           | 25.0            | 17.8    | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.6167  | 0.5794 | *************************************** | 23.5           | 25.0            | -6.1    | 50.0      |
| Tetrachloroethene            | Ave           | 0.7317  | 0.7519 |                                         | 25.7           | 25.0            | 2.8     | 50.0      |
| 1,3-Dichloropropane          | Ave           | 1.373   | 1.284  |                                         | 23.4           | 25.0            | -6.5    | 50.0      |
| 2-Hexanone                   | Ave           | 0.8264  | 0.999  | *************************************** | 151            | 125             | 20.8    | 50.0      |
| Dibromochloromethane         | Ave           | 0.6854  | 0.5720 |                                         | 20.9           | 25.0            | -16.5   | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.7755  | 0.7433 |                                         | 24.0           | 25.0            | -4.2    | 50.0      |
| Chlorobenzene                | Ave           | 2.235   | 2.165  | 0.3000                                  | 24.2           | 25.0            | -3.1    | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.6755  | 0.6060 |                                         | 22.4           | 25.0            | -10.3   | 50.0      |
| Ethylbenzene                 | Ave           | 3.912   | 3.739  |                                         | 23.9           | 25.0            | -4.4    | 20.0      |
| m,p-Xylene                   | Ave           | 1.501   | 1.491  |                                         | 49.7           | 50.0            | -0.7    | 50.0      |
| o-Xylene                     | Ave           | 1.469   | 1.451  |                                         | 24.7           | 25.0            | -1.2    | 50.0      |
| Styrene                      | Ave           | 2.344   | 2.329  |                                         | 24.8           | 25.0            | -0.6    | 50.0      |
| Bromoform                    | Ave           | 0.4567  | 0.3789 | 0.1000                                  | 20.7           | 25.0            | -17.0   | 50.0      |
| Isopropylbenzene             | Ave           | 4.300   | 3.839  |                                         | 22.3           | 25.0            | -10.7   | 50.0      |
| Bromobenzene                 | Ave           | 0.9936  | 0.9398 |                                         | 23.6           | 25.0            | -5.4    | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 1.350   | 1.186  | 0.3000                                  | 22.0           | 25.0            | -12.2   | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.4756  | 0.4123 |                                         | 21.7           | 25.0            | -13.3   | 50.0      |
| N-Propylbenzene              | Ave           | 5.403   | 4.874  |                                         | 22.6           | 25.0            | -9.8    | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.4433  | 0.3763 |                                         | 106            | 125             | -15.1   | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.9493  | 0.8668 |                                         | 22.8           | 25.0            | -8.7    | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 3.758   | 3.356  |                                         | 22.3           | 25.0            | -10.7   | 50.0      |
| 4-Chlorotoluene              | Ave           | 1.005   | 0.9281 |                                         | 23.1           | 25.0            | -7.7    | 50.0      |
| tert-Butylbenzene            | Ave           | 0.7518  | 0.6776 |                                         | 22.5           | 25.0            | -9.9    | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 3.853   | 3.442  |                                         | 22.3           | 25.0            | -10.7   | 50.0      |
| sec-Butylbenzene             | Ave           | 4.670   | 4.131  |                                         | 22.1           | 25.0            | -11.5   | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.984   | 1.876  |                                         | 23.6           | 25.0            | -5.4    | 50.0      |
| 4-Isopropyltoluene           | Ave           | 3.787   | 3.441  | *************************************** | 22.7           | 25.0            | -9.1    | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 2.093   | 1.947  |                                         | 23.3           | 25.0            | -7.0    | 50.0      |
| n-Butylbenzene               | Ave           | 3.733   | 3.213  |                                         | 21.5           | 25.0            | -13.9   | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 2.008   | 1.849  |                                         | 23.0           | 25.0            | -7.9    | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.3872  | 0.2642 | *************************************** | 17.1           | 25.0            | (-31.7) | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.478   | 1.281  |                                         | 21.7           | 25.0            | -13.3   | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.6445  | 0.5168 |                                         | 20.0           | 25.0            | -19.8   | 50.0      |
| Naphthalene                  | Ave           | 4.852   | 4.181  |                                         | 21.5           | 25.0            | -13.8   | 50.0      |
| 1,2,3-Trichlorobenzene       | Linl          |         | 1.147  |                                         | 25.0           | 25.0            | 0.0     | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.2229  | 0.2018 |                                         | 22.6           | 25.0            | -9.5    | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.273   | 2.689  |                                         | 29.6           | 25.0            | 18.3    | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.7430  | 0.7942 |                                         | 26.7           | 25.0            | 6.9     | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65169/2 Calibration Date: 05/19/2012 09:45

Instrument ID: HP5973S Calib Start Date: 04/28/2012 12:26

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 04/28/2012 14:13

Lab File ID: S14265.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D            | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|----------------------------------------|----------------|-----------------|---------------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2016  | 0.2325 |                                        | 28.8           | 25.0            | 15.3          | 50.0      |
| Chloromethane                          | Ave           | 0.2602  | 0.2656 | 0.1000                                 | 25.5           | 25.0            | 2.1           | 50.0      |
| Vinyl chloride                         | Ave           | 0.2749  | 0.2815 |                                        | 25.6           | 25.0            | 2.4           | 20.0      |
| Bromomethane                           | Ave           | 0.0689  | 0.0671 |                                        | 24.3           | 25.0            | -2.6          | 50.0      |
| Chloroethane                           | Ave           | 0.1076  | 0.0994 |                                        | 23.1           | 25.0            | -7.6          | 50.0      |
| Trichlorofluoromethane                 | Lin1F         |         | 0.2267 |                                        | 25.1           | 25.0            | 0.4           | 50.0      |
| Acrolein                               | Ave           | 0.0257  | 0.0231 |                                        | 450            | 500             | -10.0         | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2194  | 0.2050 |                                        | 23.4           | 25.0            | -6.5          | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2586  | 0.2639 | 0.1000                                 | 25.5           | 25.0            | 2.0           | 20.0      |
| Acetone                                | LinF          |         | 0.1084 |                                        | 126            | 125             | 0.8           | 50.0      |
| Iodomethane                            | Ave           | 0.2984  | 0.2699 |                                        | 22.6           | 25.0            | -9.5          | 50.0      |
| Carbon disulfide                       | Ave           | 0.5947  | 0.3687 |                                        | 15.5           | 25.0            | (-38.0)       | 50.0      |
| Methyl acetate                         | Ave           | 0.3776  | 0.4272 |                                        | 28.3           | 25.0            | 13.1          | 50.0      |
| Acetonitrile                           | Ave           | 0.0219  | 0.0232 |                                        | 1060           | 1000            | 6.0           | 50.0      |
| Methylene Chloride                     | Ave           | 0.3315  | 0.3006 |                                        | 22.7           | 25.0            | -9.3          | 50.0      |
| Methyl tert-butyl ether                | Ave           | 1.030   | 0.8672 |                                        | 21.0           | 25.0            | -15.8         | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2821  | 0.2206 |                                        | 19.6           | 25.0            | -21.8         | 50.0      |
| Acrylonitrile                          | Ave           | 0.1219  | 0.1172 |                                        | 120            | 125             | -3.9          | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.5115  | 0.4687 |                                        | 22.9           | 25.0            | -8.4          | 50.0      |
| Vinyl acetate                          | Ave           | 0.6313  | 0.4973 |                                        | 98.5           | 125             | -21.2         | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.2539  | 0.1895 |                                        | 18.7           | 25.0            | <u>1</u> 25.3 | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3127  | 0.2934 |                                        | 23.5           | 25.0            | -6.2          | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1773  | 0.1637 |                                        | 115            | 125             | -7.7          | 50.0      |
| Bromochloromethane                     | Ave           | 0.1387  | 0.1322 |                                        | 23.8           | 25.0            | -4.7          | 50.0      |
| Tetrahydrofuran                        | Lin1F         |         | 0.1081 |                                        | 124            | 125             | -0.6          | 50.0      |
| Chloroform                             | Ave           | 0.5094  | 0.4631 |                                        | 22.7           | 25.0            | -9.1          | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3738  | 0.2999 |                                        | 20.1           | 25.0            | -19.8         | 50.0      |
| Cyclohexane                            | Ave           | 0.4883  | 0.3951 |                                        | 20.2           | 25.0            | -19.1         | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.2783  | 0.2558 |                                        | 23.0           | 25.0            | -8.1          | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3910  | 0.3652 |                                        | 23.3           | 25.0            | -6.6          | 50.0      |
| Benzene                                | Ave           | 1.191   | 1.113  | W-************************************ | 23.4           | 25.0            | -6.6          | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.4284  | 0.4015 |                                        | 23.4           | 25.0            | -6.3          | 50.0      |
| Trichloroethene                        | Ave           | 0.3002  | 0.2774 |                                        | 23.1           | 25.0            | -7.6          | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4910  | 0.4180 |                                        | 21.3           | 25.0            | -14.9         | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2974  | 0.2663 |                                        | 22.4           | 25.0            | -10.5         | 20.0      |
| Dibromomethane                         | Ave           | 0.1781  | 0.1690 |                                        | 23.7           | 25.0            | -5.1          | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3513  | 0.2935 |                                        | 20.9           | 25.0            | -16.4         | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.2276  | 0.2091 |                                        | 115            | 125             | -8.1          | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.4645  | 0.3887 |                                        | 20.9           | 25.0            | -16.3         | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.6684  | 0.6356 |                                        | 119            | 125             | -4.9          | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65169/2 Calibration Date: 05/19/2012 09:45

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/28/2012 14:13

Lab File ID: S14265.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| Toluene                      | Ave           | 1.489   | 1.375  |         | 23.1           | 25.0            | -7.6    | 20.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.8429  | 0.6744 |         | 20.0           | 25.0            | -20.0   | 50.0      |
| Ethyl methacrylate           | Ave           | 0.8938  | 0.7595 |         | 21.2           | 25.0            | -15.0   | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.4371  | 0.4107 |         | 23.5           | 25.0            | -6.0    | 50.0      |
| Tetrachloroethene            | Ave           | 0.5334  | 0.5084 |         | 23.8           | 25.0            | -4.7    | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.9496  | 0.8856 |         | 23.3           | 25.0            | -6.7    | 50.0      |
| 2-Hexanone                   | Ave           | 0.4829  | 0.4626 |         | 120            | 125             | -4.2    | 50.0      |
| Dibromochloromethane         | Ave           | 0.4466  | 0.3666 |         | 20.5           | 25.0            | -17.9   | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.5100  | 0.4823 |         | 23.6           | 25.0            | -5.4    | 50.0      |
| Chlorobenzene                | Ave           | 1.545   | 1.439  | 0.3000  | 23.3           | 25.0            | -6.9    | 50.0      |
| Ethylbenzene                 | Ave           | 2.778   | 2,580  |         | 23.2           | 25.0            | -7.1    | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.4814  | 0.4027 |         | 20.9           | 25.0            | -16.4   | 50.0      |
| m,p-Xylene                   | Ave           | 1.022   | 0.9647 |         | 47.2           | 50.0            | -5.6    | 50.0      |
| o-Xylene                     | Ave           | 1.008   | 0.9317 |         | 23.1           | 25.0            | -7.5    | 50.0      |
| Styrene                      | Ave           | 1.644   | 1.525  |         | 23.2           | 25.0            | -7.2    | 50.0      |
| Bromoform                    | LinF          |         | 0.2001 | 0.1000  | 16.4           | 25.0            | (-34.4) | 50.0      |
| Isopropylbenzene             | Ave           | 2.888   | 2.700  | 0.1000  | 23.4           | 25.0            | -6.5    | 50.0      |
| Bromobenzene                 | Ave           | 0.6924  | 0.6578 |         | 23.7           | 25.0            | -5.0    | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.8148  | 0.7599 | 0.3000  | 23.3           | 25.0            | -6.7    | 50.0      |
| N-Propylbenzene              | Ave           | 3.745   | 3.483  |         | 23.2           | 25.0            | -7.0    | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2460  | 0.2444 |         | 24.8           | 25.0            | -0.6    | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2575  | 0.2128 |         | 103            | 125             | -17.4   | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.6767  | 0.6402 |         | 23.7           | 25.0            | -5.4    | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.493   | 2.315  |         | 23.2           | 25.0            | -7.1    | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.7175  | 0.6672 |         | 23.2           | 25.0            | -7.0    | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5371  | 0.4928 |         | 22.9           | 25.0            | -8.3    | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.556   | 2.368  |         | 23.2           | 25.0            | -7.4    | 50.0      |
| sec-Butylbenzene             | Ave           | 3.119   | 2.914  |         | 23.4           | 25.0            | -6.6    | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.361   | 1.282  |         | 23.6           | 25.0            | -5.8    | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.631   | 2.435  |         | 23.1           | 25.0            | -7.4    | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.438   | 1.346  |         | 23.4           | 25.0            | -6.4    | 50.0      |
| n-Butylbenzene               | Ave           | 2.596   | 2.394  |         | 23.1           | 25.0            | -7,8    | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.359   | 1.257  |         | 23.1           | 25.0            | -7.5    | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1599  | 0.1214 |         | 19.0           | 25.0            | -24.1   | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.024   | 0.8633 |         | 21.1           | 25.0            | -15.7   | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.2131  | 0.1852 | -       | 21.7           | 25.0            | -13.1   | 50.0      |
| Naphthalene                  | Ave           | 1.362   | 1.149  |         | 21.1           | 25.0            | -15.6   | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.4510  | 0.3595 |         | 19.9           | 25.0            | -20.3   | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1799  | 0.1905 |         | 26.5           | 25.0            | 5.9     | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.046   | 2.218  |         | 27.1           | 25.0            | 8.4     | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.5773  | 0.6168 |         | 26.7           | 25.0            | 6.8     | 50.0      |



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-20167-1

#### 13 Sediment Samples and 2 Field Duplicates Collected May 16 and 17, 2012

Prepared by: Donald Anné June 15, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for bis(2-ethylhexyl)phthalate was above the allowable maximum (25%) on 05-23-12 (W16047.D). The %D for 2,4-dinitrophenol was above the allowable maximum (25%) on 05-29-12 (W16145.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: Method blank MB 480-65304/1-A contained traces of 22 compounds. Positive results for phthalates that are less than ten times the method blank level were flagged as not significantly above the blank level (B) in associated samples. Positive results for non-phthalates that are less than five times the method blank level were flagged as not significantly above the blank level (B) in associated samples. The end user should determine whether detected compounds are usable or not. Although this blank fulfils the requirements for a method, the samples should have been re-extracted with a "cleaner" blank.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: One of three acid extractable surrogates for samples SED-01 (0-9.5), SED-02 (0-6), SED-04 (0-6), and SED-04 (6-12) was diluted beyond detection limits. No action is taken on surrogates diluted beyond detection limits.

One of three acid extractable surrogate recoveries for sample SED-02 (6-12) was below control limits, but was not below 10%. No action is taken on one surrogate per fraction outside control limits, provided the recovery is not less than 10%.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for sediment MS/MSD sample SED-12 (0-6).
- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil samples LCS 480-64995/2-A, LCS 480-65304/2-A, and LCS 480-65363/2-A.
- <u>Field Duplicates</u>: The relative percent differences (RPDs) for fluoranthene and pyrene were above the allowable maximum (35%) for sediment field duplicate pair SED-10 (0-6)/DUP-01 (attached table). Results for fluoranthene and pyrene should be considered estimated (J) in samples SED-10 (0-6) and DUP-01.

The RPDs for benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene were above the allowable maximum (35%) for sediment field duplicate pair SED-11 (0-6)/DUP-02 (attached table). Results for benzo(b)fluoranthene, benzo(k)fluoranthene, and benzo(a)pyrene should be considered estimated (J) in samples SED-11 (0-6) and DUP-02.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### **Semi-Volatiles**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-20167-1

| S1= S                  | SED-10 (0-6) | S2=        | : DUP-01 |
|------------------------|--------------|------------|----------|
| <u>Analyte</u>         | <u>S1</u>    | <u>\$2</u> | RPD (%)  |
| 2-methylnaphthalene    | 64           | 100        | NC NC    |
| acenaphthene           | ND           | 160        | NC       |
| acenaphthylene         | 72           | 130        | NC       |
| anthracene             | 230          | 400        | NC       |
| benzo(a)anthracene     | 660          | 850        | 25%      |
| benzo(a)pyrene         | 950          | 780        | 20%      |
| benzo(b)fluoranthene   | 1200         | 1000       | 18%      |
| benzo(g,h,i)perylene   | 340          | 360        | 6%       |
| benzo(k)fluoranthene   | 540          | 410        | 27%      |
| biphenyl               | 23           | 39         | NC       |
| carbazole              | 45           | 64         | NC       |
| chrysene               | 700          | 950        | 30%      |
| dibenz(a,h)anthracene  | 140          | ND         | NC       |
| dibenzofuran           | 46           | 28         | NC       |
| fluoranthene           | 1100         | 1600       | 37% *    |
| fluorene               | 130          | 130        | 0%       |
| indeno(1,2,3-cd)pyrene | 300          | 320        | 6%       |
| naphthalene            | 51           | 72         | NC       |
| phenanthrene           | 630          | 900        | 35%      |
| pyrene                 | 1200         | 2100       | 55% *    |

<sup>\*</sup> RPD is above the allowable maximum (35%)

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### **Semi-Volatiles**

### <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-20167-1

| S1=                    | SED-11 (0-6) | S2=           | DUP-02  |   |
|------------------------|--------------|---------------|---------|---|
| <u>Analyte</u>         | <u>S1</u>    | <u>S2</u>     | RPD (%) |   |
| 2-methylnaphthalene    | ND           | <del>51</del> | NC      |   |
| 4-methylphenol         | ND           | 37            | NC      |   |
| acenaphthylene         | 76           | 80            | NC      |   |
| anthracene             | 120          | 110           | NC      |   |
| benzo(a)anthracene     | 440          | 310           | 35%     |   |
| benzo(a)pyrene         | 740          | 340           | 74%     | * |
| benzo(b)fluoranthene   | 1000         | 540           | 60%     | * |
| benzo(g,h,i)perylene   | 280          | 180           | NC      |   |
| benzo(k)fluoranthene   | 540          | 230           | 81%     | * |
| chrysene               | 510          | 380           | 29%     |   |
| dibenz(a,h)anthracene  | 130          | ND            | NC      |   |
| fluoranthene           | 740          | 630           | 16%     |   |
| indeno(1,2,3-cd)pyrene | 270          | 180           | NC      |   |
| naphthalene            | 43           | 43            | NC      |   |
| phenanthrene           | 240          | 170           | NC      |   |
| pyrene                 | 760          | 790           | 4%      |   |

<sup>\*</sup> RPD is above the allowable maximum (35%)

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab Name: TestAmerica Buffalo            | Job No. | .: 480-20167-1 |
|------------------------------------------|---------|----------------|
| SDG No.:                                 |         |                |
| Matrix: Solid                            | Level:  | =              |
| GC Column (1): RXI-5Sil MS ID: 0.25 (mm) |         |                |

| Client Sample ID | Lab Sample ID        | 2FP # | PHL | NBZ # | FBP | # TBP  | TPH |
|------------------|----------------------|-------|-----|-------|-----|--------|-----|
| SED-01 (0-9.5)   | 480-20167-1          | 52    | 65  | - 62  |     |        |     |
| SED-02 (0-6)     |                      |       | ~   | 62    | 98  | 000    | 122 |
|                  | 480-20167-2          | 55    | 66  | 67    | 97  | DLO:   | 121 |
| SED-02 (6-12)    | 480-20167-3          | 64    | 75  | 73    | 106 | (22):  | 121 |
| SED-04 (0-6)     | 480-20167-4          | 59    | 71  | 67    | 99  | DL 0   | 121 |
| SED-04 (6-12)    | 480-20167-5          | 57    | 70  | 70    | 99  | DL 0 1 | 123 |
| SED-09 (0-6)     | 480-20232-1          | 46    | 57  | 56    | 75  | 95     | 100 |
| SED-10 (0-6)     | 480-20232-2          | 70    | 77  | 78    | 85  | 108    | 98  |
| SED-10 (6-12)    | 480-20232-3          | 64    | 75  | 67    | 89  | 110    | 108 |
| DUP-01           | 480-20232-4          | 51    | 60  | 62    | 77  | 87     | 98  |
| SED-11 (0-6)     | 480-20232-5          | 68    | 76  | 77    | 84  | 106    | 95  |
| SED-11 (6-12)    | 480-20232-6          | 66    | 74  | 71    | 83  | 106    | 89  |
| DUP-02           | 480-20232-7          | 52    | 57  | 61    | 71  | 78     | 86  |
| SED-12 (0-6)     | 480-20232-8          | 65    | 77  | 69    | 88  | 113    | 102 |
| SED-13 (0-6)     | 480-20232-10         | 63    | 74  | 71    | 82  | 106    | 95  |
| SED-13 (6-12)    | 480-20232-11         | 61    | 71  | 73    | 87  | 110    | 100 |
|                  | MB 480-64995/1-A     | 72    | 78  | 83    | 91  | 85     | 102 |
|                  | MB 480-65304/1-A     | 77    | 80  | 76    | 84  | 105    | 109 |
|                  | MB 480-65363/1-A     | 46    | 34  | 82    | 91  | 98     | 108 |
|                  | LCS<br>480-64995/2-A | 76    | 79  | 88    | 94  | 111    | 105 |
|                  | LCS<br>480-65304/2-A | 67    | 71  | 80    | 76  | 95     | 97  |
|                  | LCS<br>480-65363/2-A | 70    | 74  | 80    | 86  | 102    | 99  |
| ED-12 (0-6) MS   | 480-20232-8 MS       | 86    | 92  | 89    | 94  | 124    | 115 |
| ED-12 (0-6) MSD  | 480-20232-8 MSD      | 83    | 86  | 92    | 95  | 125    | 110 |

DL- surrogate diluted beyond detection limits

|     |     |                      | QC LIMITS |
|-----|-----|----------------------|-----------|
| 2FP | 222 | 2-Fluorophenol       | 18-120    |
| PHL | === | Phenol-d5            | 11-120    |
| NBZ | 200 | Nitrobenzene-d5      | 34-132    |
| FBP | === | 2-Fluorobiphenyl     | 37-120    |
| TBP | 100 | 2,4,6-Tribromophenol | 39-146    |
| TPH |     | p-Terphenyl-d14      | 65-153    |

<sup>#</sup> Column to be used to flag recovery values

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65712/2 Calibration Date: 05/23/2012 13:02

Instrument ID: <u>HP5973W</u> Calib Start Date: 05/14/2012 11:20

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 05/14/2012 13:23

Lab File ID: W16047.D Conc. Units: ug/L

|                               |               |                                        |          |         |                | 7               |       | Y         |
|-------------------------------|---------------|----------------------------------------|----------|---------|----------------|-----------------|-------|-----------|
| ANALYTE                       | CURVE<br>TYPE | AVE RRF                                | RRF      | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
| N-Nitrosodimethylamine        | Ave           | 0.6351                                 | 0.5178   | 0.0100  | 40800          | 50000           | -18.5 | 25.0      |
| Pyridine                      | Ave           | 1.162                                  | 1.015    | 0.0100  | 43700          | 50000           | -18.5 | 100.0     |
| Phenol                        | Ave           | 2.144                                  | 1.916    | 0.0100  | 44700          | 50000           | -10.7 | 20.0      |
| Aniline                       | Ave           | 2.426                                  | 2.177    | 0.0100  | 44900          | 50000           | -10.7 | 100.0     |
| Bis(2-chloroethyl)ether       | Ave           | 1.615                                  | 1.432    | 0.0100  | 44300          | 50000           | -10.3 | 25.0      |
| 2-Chlorophenol                | Ave           | 1.498                                  | 1.384    | 0.0100  | 46200          | 50000           | -7.6  | 25.0      |
| 1,3-Dichlorobenzene           | Ave           | 1.494                                  | 1.396    | 0.0100  | 46700          | 50000           | -6.6  | 25.0      |
| 1,4-Dichlorobenzene           | Ave           | 1.498                                  | 1.411    | 0.0100  | 47100          | 50000           | -5.8  | 20.0      |
| Benzyl alcohol                | Ave           | 0.9921                                 | 0.9243   | 0.0100  | 46600          | 50000           | -6.8  | 100.0     |
| 1,2-Dichlorobenzene           | Ave           | 1.408                                  | 1.320    | 0.0100  | 46900          | 50000           | -6.2  | 25.0      |
| 2-Methylphenol                | Ave           | 1.368                                  | 1.239    | 0.0100  | 45300          | 50000           | -9.4  | 25.0      |
| bis (2-chloroisopropyl) ether | Ave           | 2.042                                  | 1.753    | 0.0100  | 42900          | 50000           | -14.1 | 25.0      |
| N-Nitrosodi-n-propylamine     | Ave           | 0.9778                                 | 0.8755   | 0.0500  | 44800          | 50000           | -10.5 | 25.0      |
| 4-Methylphenol                | Ave           | 1.426                                  | 1.301    | 0.0100  | 45600          | 50000           | -8.8  | 25.0      |
| Hexachloroethane              | Ave           | 0.5337                                 | 0.4957   | 0.0100  | 46400          | 50000           | -7.1  | 25.0      |
| Nitrobenzene                  | Ave           | 0.3608                                 | 0.3265   | 0.0100  | 45300          | 50000           | -9.5  | 25.0      |
| Isophorone                    | Ave           | 0.6874                                 | 0.6233   | 0.0100  | 45300          | 50000           | -9.3  | 25.0      |
| 2-Nitrophenol                 | Ave           | 0.1769                                 | 0.1837   | 0.0100  | 51900          | 50000           | 3.8   | 20.0      |
| 2,4-Dimethylphenol            | Ave           | 0.3470                                 | 0.3198   | 0.0100  | 46100          | 50000           | -7.8  | 25.0      |
| Tetraethyl lead               | Ave           | 0.0941                                 | 0.0962   | 0.0100  | 51200          | 50000           | 2.3   | 40.0      |
| Bis(2-chloroethoxy)methane    | Ave           | 0.4451                                 | 0.4003   | 0.0100  | 45000          | 50000           | -10.1 | 25.0      |
| Benzoic acid                  | Ave           | 0.2558                                 | 0.2193   | 0.0100  | 129000         | 150000          | -14.3 | 25.0      |
| 2,4-Dichlorophenol            | Ave           | 0.2706                                 | 0.2582   | 0.0100  | 47700          | 50000           | -4.6  | 20.0      |
| 1,2,4-Trichlorobenzene        | Ave           | 0.2802                                 | 0.2750   | 0.0100  | 49100          | 50000           | -1.9  | 25.0      |
| Naphthalene                   | Ave           | 1.014                                  | 0.9692   | 0.0100  | 47800          | 50000           | -4.4  | 25.0      |
| 4-Chloroaniline               | Ave           | 0.4451                                 | 0.4104   | 0.0100  | 46100          | 50000           | -7.8  | 25.0      |
| Hexachlorobutadiene           | Ave           | 0.1512                                 | 0.1488   | 0.0100  | 49200          | 50000           | -1.6  | 20.0      |
| 4-Chloro-3-methylphenol       | Ave           | 0.2991                                 | 0.2772   | 0.0100  | 46300          | 50000           | -7.3  | 20.0      |
| 2-Methylnaphthalene           | Ave           | 0.6341                                 | 0.6002   | 0.0100  | 47300          | 50000           | -5.4  | 25.0      |
| Hexachlorocyclopentadiene     | Ave           | 0.2752                                 | 0.2695   | 0.0500  | 49000          | 50000           | -2.1  | 25.0      |
| 2,4,6-Trichlorophenol         | Ave           | 0.3184                                 | 0.3180   | 0.0100  | 49900          | 50000           | -0.1  | 20.0      |
| 2,4,5-Trichlorophenol         | Ave           | 0.3452                                 | 0.3409   | 0.0100  | 49400          | 50000           | -1.2  | 25.0      |
| 2-Chloronaphthalene           | Ave           | 1.038                                  | 0.9833   | 0.0100  | 47300          | 50000           | -5.3  | 25.0      |
| 2-Nitroaniline                | Ave           | 0.3140                                 | 0.2890   | 0.0100  | 46000          | 50000           | -8.0  | 25.0      |
| Dimethyl phthalate            | Ave           | 1.205                                  | 1.128    | 0.0100  | 46800          | 50000           | -6.4  | 25.0      |
| 2,6-Dinitrotoluene            | Ave           | 0.2628                                 | 0.2643   | 0.0100  | 50300          | 50000           | 0.6   | 25.0      |
| Acenaphthylene                | Ave           | 1.742                                  | 1.676    | 0.0100  | 48100          | 50000           | -3.8  | 25.0      |
| 3-Nitroaniline                | Ave           | 0.3451                                 | 0.3228 · | 0.0100  | 46800          | 50000           | -6.5  | 25.0      |
| Acenaphthene                  | Ave           | 1.057                                  | 0.996    | 0.0100  | 47100          | 50000           | -5.8  | 20.0      |
| 2,4-Dinitrophenol             | Linl          | ************************************** | 0.1057   | 0.0500  | 37500          | 50000           | -25.0 | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-65712/2 Calibration Date: 05/23/2012 13:02

Instrument ID: HP5973W Calib Start Date: 05/14/2012 11:20

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 05/14/2012 13:23

Lab File ID: W16047.D Conc. Units: ug/L

| ANALYTE                     | CURVE | AVE RRF | RRF    | MIN RRF     | CALC   | SPIKE  | 0.5    | 2/2.5/    |
|-----------------------------|-------|---------|--------|-------------|--------|--------|--------|-----------|
|                             | TYPE  |         | 1111   | LATIA LVIVE | AMOUNT | AMOUNT | %D     | MAX<br>%D |
| 4-Nitrophenol               | Linl  |         | 0.1128 | 0.0500      | 42600  | 50000  | -14.8  | 25.0      |
| 2,4-Dinitrotoluene          | Ave   | 0.3352  | 0.3402 | 0.0100      | 50700  | 50000  | 1.5    | 25.0      |
| Dibenzofuran                | Qua   |         | 1.420  | 0.0100      | 45400  | 50000  | -9.2   | 25.0      |
| Diethyl phthalate           | Ave   | 1.179   | 1.130  | 0.0100      | 48000  | 50000  | -4.1   | 25.0      |
| Fluorene                    | Qua   |         | 1.099  | 0.0100      | 45400  | 50000  | -9.2   | 25.0      |
| 4-Chlorophenyl phenyl ether | Qua   |         | 0.5194 | 0.0100      | 46500  | 50000  | -7.0   | 25.0      |
| 4-Nitroaniline              | Ave   | 0.3571  | 0.3252 | 0.0100      | 45500  | 50000  | -8.9   | 25.0      |
| 4,6-Dinitro-2-methylphenol  | Lin1  |         | 0.1193 | 0.0100      | 46800  | 50000  | -6.4   | 25.0      |
| N-Nitrosodiphenylamine      | Ave   | 0.4970  | 0.4807 | 0.0100      | 48400  | 50000  | -3.3   | 20.0      |
| 1,2-Diphenylhydrazine       | Ave   | 1.261   | 1.126  | 0.0100      | 44700  | 50000  | -10.7  | 25.0      |
| 4-Bromophenyl phenyl ether  | Ave   | 0.1776  | 0.1755 | 0.0100      | 49400  | 50000  | -1.2   | 25.0      |
| Hexachlorobenzene           | Ave   | 0.1773  | 0.1676 | 0.0100      | 47300  | 50000  | -5.4   | 25.0      |
| Pentachlorophenol           | Lin1  |         | 0.1024 | 0.0100      | 49400  | 50000  | -1.2   | 20.0      |
| Phenanthrene                | Qua   |         | 0.9466 | 0.0100      | 44700  | 50000  | -10.6  | 25.0      |
| Anthracene                  | Ave   | 1.017   | 0.9605 | 0.0100      | 47200  | 50000  | -5.6   | 25.0      |
| Carbazole                   | Ave   | 1.022   | 0.9363 | 0.0100      | 45800  | 50000  | -8.4   | 25.0      |
| Di-n-butyl phthalate        | Ave   | 1.124   | 1.151  | 0.0100      | 51200  | 50000  | 2.5    | 25.0      |
| Fluoranthene                | Ave   | 1.099   | 1.063  | 0.0100      | 48300  | 50000  | -3.3   | 20.0      |
| Benzidine                   | Ave   | 0.6741  | 0.6806 | 0.0100      | 50500  | 50000  | 1.0    | 25.0      |
| Pyrene                      | Ave   | 1.288   | 1.207  | 0.0100      | 46900  | 50000  | -6.3   | 25.0      |
| Butyl benzyl phthalate      | Ave   | 0.5055  | 0.5511 | 0.0100      | 54500  | 50000  | 9.0    | 25.0      |
| 3,3'-Dichlorobenzidine      | Ave   | 0.3869  | 0.4113 | 0.0100      | 53200  | 50000  | 6.3    | 25.0      |
| Bis(2-ethylhexyl) phthalate | Ave   | 0.6221  | 0.7973 | 0.0100      | 64100  | 50000  | 28.2*  | 25.0      |
| Benzo(a)anthracene          | Ave   | 1.157   | 1.085  | 0.0100      | 46900  | 50000  | - La2/ | 25.0      |
| Chrysene                    | Ave   | 1.176   | 1.060  | 0.0100      | 45100  | 50000  | -9.8   | 25.0      |
| Di-n-octyl phthalate        | Lin1  |         | 1.442  | 0.0100      | 55100  | 50000  | 10.2   | 20.0      |
| Benzo(b)fluoranthene        | Ave   | 0.9862  | 0.9589 | 0.0100      | 48600  | 50000  | -2.8   | 25.0      |
| Benzo(k) fluoranthene       | Ave   | 1.139   | 1.068  | 0.0100      | 46900  | 50000  | -6.3   | 25.0      |
| Benzo(a)pyrene              | Ave   | 0.9254  | 0.8956 | 0.0100      | 48400  | 50000  | -3.2   | 20.0      |
| Dibenz(a,h)anthracene       | Ave   | 0.8732  | 0.8067 | 0.0100      | 46200  | 50000  | -7.6   | 25.0      |
| Indeno(1,2,3-cd)pyrene      | Ave   | 1.037   | 0.9744 | 0.0100      | 47000  | 50000  | -6.0   | 25.0      |
| Benzo(g,h,i)perylene        | Ave   | 0.9457  | 0.9053 | 0.0100      | 47900  | 50000  | -4.3   | 25.0      |
| 2-Fluorophenol              | Ave   | 1.489   | 1.377  | 0.0100      | 46200  | 50000  | -7.5   | 25.0      |
| Phenol-d5                   | Ave   | 1.873   | 1.728  | 0.0100      | 46100  | 50000  | -7.8   | 25.0      |
| Nitrobenzene-d5             | Ave   | 0.3425  | 0.3171 | 0.0100      | 46300  | 50000  | -7.4   | 25.0      |
| 2-Fluorobiphenyl            | Ave   | 1.172   | 1.139  | 0.0100      | 48600  | 50000  | -2.8   | 25.0      |
| 2,4,6-Tribromophenol        | Ave   | 0.0734  | 0.0804 | 0.0100      | 54700  | 50000  | 9.5    | 25.0      |
| p-Terphenyl-d14             | Ave   | 0.7907  | 0.7313 | 0.0100      | 46200  | 50000  | -7.5   | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-66271/2 Calibration Date: 05/29/2012 13:41

Instrument ID: HP5973W Calib Start Date: 05/14/2012 11:20

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 05/14/2012 13:23

Lab File ID: W16145.D Conc. Units: ug/L

| ANALYTE                       | CURVE | AVE RRF | RRF    | MIN DOD |        |        |              |       |
|-------------------------------|-------|---------|--------|---------|--------|--------|--------------|-------|
|                               | TYPE  | AVE REF | RRE    | MIN RRF | CALC   | SPIKE  | %D           | MAX   |
|                               |       |         |        |         | AMOUNT | AMOUNT |              | %D    |
| N-Nitrosodimethylamine        | Ave   | 0.6351  | 0.4989 | 0.0100  | 39300  | 50000  | -21.4        | 25.0  |
| Pyridine                      | Ave   | 1.162   | 0.9845 | 0.0100  | 42400  | 50000  | -15.3        | 100.0 |
| Phenol                        | Ave   | 2.144   | 1.865  | 0.0100  | 43500  | 50000  | -13.0        | 20.0  |
| Aniline                       | Ave   | 2.426   | 2.022  | 0.0100  | 41700  | 50000  | -16.7        | 100.0 |
| Bis(2-chloroethyl)ether       | Ave   | 1.615   | 1.362  | 0.0100  | 42200  | 50000  | -15.7        | 25.0  |
| 2-Chlorophenol                | Ave   | 1.498   | 1.338  | 0.0100  | 44700  | 50000  | -10.6        | 25.0  |
| 1,3-Dichlorobenzene           | Ave   | 1.494   | 1.364  | 0.0100  | 45600  | 50000  | -8.7         | 25.0  |
| 1,4-Dichlorobenzene           | Ave   | 1.498   | 1.375  | 0.0100  | 45900  | 50000  | -8.2         | 20.0  |
| Benzyl alcohol                | Ave   | 0.9921  | 0.8929 | 0.0100  | 45000  | 50000  | -10.0        | 100.0 |
| 1,2-Dichlorobenzene           | Ave   | 1.408   | 1.300  | 0.0100  | 46200  | 50000  | -7.7         | 25.0  |
| 2-Methylphenol                | Ave   | 1.368   | 1.185  | 0.0100  | 43300  | 50000  | -13.4        | 25.0  |
| bis (2-chloroisopropyl) ether | Ave   | 2.042   | 1.709  | 0.0100  | 41800  | 50000  | -16.3        | 25.0  |
| N-Nitrosodi-n-propylamine     | Ave   | 0.9778  | 0.8511 | 0.0500  | 43500  | 50000  | -13.0        | 25.0  |
| 4-Methylphenol                | Ave   | 1.426   | 1.254  | 0.0100  | 44000  | 50000  |              | 25.0  |
| Hexachloroethane              | Ave   | 0.5337  | 0.4911 | 0.0100  | 46000  | 50000  | -12.0        | 25.0  |
| Nitrobenzene                  | Ave   | 0.3608  | 0.3182 | 0.0100  | 44100  | 50000  | -8.0         | 25.0  |
| Isophorone                    | Ave   | 0.6874  | 0.6152 | 0.0100  | 44700  | 50000  | -11.8        | 25.0  |
| 2-Nitrophenol                 | Ave   | 0.1769  | 0.1869 | 0.0100  | 52800  | 50000  | -10.5        | 25.0  |
| 2,4-Dimethylphenol            | Ave   | 0.3470  | 0.3120 | 0.0100  | 45000  | 50000  | 5.7          | 20.0  |
| Tetraethyl lead               | Ave   | 0.0941  | 0.0937 | 0.0100  | 49800  | 50000  | -10.1        | 25.0  |
| Bis(2-chloroethoxy)methane    | Ave   | 0.4451  | 0.3913 | 0.0100  | 44000  | 50000  | -0.4         | 40.0  |
| Benzoic acid                  | Ave   | 0.2558  | 0.1891 | 0.0100  | 111000 |        |              | 25.0  |
| 2,4-Dichlorophenol            | Ave   | 0.2706  | 0.2605 | 0.0100  | 48100  | 50000  | -3.7         | 25.0  |
| 1,2,4-Trichlorobenzene        | Ave   | 0.2802  | 0.2842 | 0.0100  | 50700  | 50000  | 1.4          | 20.0  |
| Naphthalene                   | Ave   | 1.014   | 0.9598 | 0.0100  | 47300  | 50000  | -5.3         | 25.0  |
| 4-Chloroaniline               | Ave   | 0.4451  | 0.4088 | 0.0100  | 45900  | 50000  | -8.1         | 25.0  |
| Hexachlorobutadiene           | Ave   | 0.1512  | 0.1550 | 0.0100  | 51300  | 50000  | 2.5          | 20.0  |
| 4-Chloro-3-methylphenol       | Ave   | 0.2991  | 0.2795 | 0.0100  | 46700  | 50000  | -6.6         | 20.0  |
| 2-Methylnaphthalene           | Ave   | 0.6341  | 0.6046 | 0.0100  | 47700  | 50000  | -4.7         | 25.0  |
| Hexachlorocyclopentadiene     | Ave   | 0.2752  | 0.2761 | 0.0500  | 50200  | 50000  | 0.3          |       |
| 2,4,6-Trichlorophenol         | Ave   | 0.3184  | 0.3195 | 0.0100  | 50200  | 50000  | 0.3          | 25.0  |
| 2,4,5-Trichlorophenol         | Ave   | 0.3452  | 0.3482 | 0.0100  | 50400  | 50000  | 0.9          |       |
| 2-Chloronaphthalene           | Ave   | 1.038   | 0.9894 | 0.0100  | 47600  | 50000  | -4.7         | 25.0  |
| 2-Nitroaniline                | Ave   | 0.3140  | 0.2832 | 0.0100  | 45100  | 50000  |              |       |
| Dimethyl phthalate            | Ave   | 1.205   | 1.145  | 0.0100  | 47500  | 50000  | -9.8<br>-5.0 | 25.0  |
| 2,6-Dinitrotoluene            | Ave   | 0.2628  | 0.2752 | 0.0100  | 52400  | 50000  | 4.7          | 25.0  |
| Acenaphthylene                | Ave   | 1.742   | 1.673  | 0.0100  | 48000  | 50000  | -3.9         | 25.0  |
| 3-Nitroaniline                | Ave   | 0.3451  | 0.3227 | 0.0100  | 46800  | 50000  | -6.5         | 25.0  |
| Acenaphthene                  | Ave   | 1.057   | 0.998  | 0.0100  | 47200  | 50000  | -5.6         | 20.0  |
| 2,4-Dinitrophenol             | Linl  |         | 0.0962 | 0.0500  | 35000  | 50000  | -30.0*       | 25.0  |

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCVIS 480-66271/2 Calibration Date: 05/29/2012 13:41

Instrument ID: HP5973W

Calib Start Date: 05/14/2012 11:20

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 05/14/2012 13:23

Lab File ID: W16145.D

Conc. Units: ug/L

| ANALYTE                     | CURVE<br>TYPE | AVE RRF                                 | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|-----------------------------|---------------|-----------------------------------------|--------|---------|----------------|-----------------|-------|-----------|
| 4-Nitrophenol               | Linl          |                                         | 0.1092 | 0.0500  | 41400          | 50000           | -17.2 | 25.0      |
| 2,4-Dinitrotoluene          | Ave           | 0.3352                                  | 0.3460 | 0.0100  | 51600          | 50000           | 3.2   | 25.0      |
| Dibenzofuran                | Qua           | *************************************** | 1.407  | 0.0100  | 44900          | 50000           | -10.2 | 25.0      |
| Diethyl phthalate           | Ave           | 1.179                                   | 1.150  | 0.0100  | 48800          | 50000           | -2.5  | 25.0      |
| 4-Chlorophenyl phenyl ether | Qua           |                                         | 0.5375 | 0.0100  | 48500          | 50000           | -3.0  | 25.0      |
| Fluorene                    | Qua           |                                         | 1.117  | 0.0100  | 46200          | 50000           | -7.6  | 25.0      |
| 4-Nitroaniline              | Ave           | 0.3571                                  | 0.3214 | 0.0100  | 45000          | 50000           | -10.0 | 25.0      |
| 4,6-Dinitro-2-methylphenol  | Linl          |                                         | 0.1292 | 0.0100  | 50200          | 50000           | 0.4   | 25.0      |
| N-Nitrosodiphenylamine      | Ave           | 0.4970                                  | 0.4604 | 0.0100  | 46300          | 50000           | -7.4  | 20.0      |
| 1,2-Diphenylhydrazine       | Ave           | 1.261                                   | 1.107  | 0.0100  | 43900          | 50000           | -12.2 | 25.0      |
| 4-Bromophenyl phenyl ether  | Ave           | 0.1776                                  | 0.1794 | 0.0100  | 50500          | 50000           | 1.0   | 25.0      |
| Hexachlorobenzene           | Ave           | 0.1773                                  | 0.1766 | 0.0100  | 49800          | 50000           | -0.4  | 25.0      |
| Pentachlorophenol           | Linl          |                                         | 0.0925 | 0.0100  | 45200          | 50000           | -9.6  | 20.0      |
| Phenanthrene                | Qua           |                                         | 0.9558 | 0.0100  | 45200          | 50000           | ~9.6  | 25.0      |
| Anthracene                  | Ave           | 1.017                                   | 0.9645 | 0.0100  | 47400          | 50000           | -5.2  | 25.0      |
| Carbazole                   | Ave           | 1.022                                   | 0.9458 | 0.0100  | 46300          | 50000           | -7.4  | 25.0      |
| Di-n-butyl phthalate        | Ave           | 1.124                                   | 1.134  | 0.0100  | 50500          | 50000           | 0.9   | 25.0      |
| Fluoranthene                | Ave           | 1.099                                   | 1.078  | 0.0100  | 49100          | 50000           | -1.9  | 20.0      |
| Benzidine                   | Ave           | 0.6741                                  | 0.5019 | 0.0100  | 37200          | 50000           | 25.5* | 25.0      |
| Pyrene                      | Ave           | 1.288                                   | 1.206  | 0.0100  | 46800          | 50000           | -6.4  | 25.0      |
| Butyl benzyl phthalate      | Ave           | 0.5055                                  | 0.5425 | 0.0100  | 53700          | 50000           | 7.3   | 25.0      |
| 3,3'-Dichlorobenzidine      | Ave           | 0.3869                                  | 0.3934 | 0.0100  | 50800          | 50000           | 1.7   | 25.0      |
| Bis(2-ethylhexyl) phthalate | Ave           | 0.6221                                  | 0.7693 | 0.0100  | 61800          | 50000           | 23.7  | 25.0      |
| Benzo(a)anthracene          | Ave           | 1.157                                   | 1.085  | 0.0100  | 46900          | 50000           | -6.3  | 25.0      |
| Chrysene                    | Ave           | 1.176                                   | 1.092  | 0.0100  | 46400          | 50000           | -7.1  | 25.0      |
| Di-n-octyl phthalate        | Lin1          |                                         | 1.425  | 0.0100  | 54500          | 50000           | 9.0   | 20.0      |
| Benzo(b)fluoranthene        | Ave           | 0.9862                                  | 0.9359 | 0.0100  | 47500          | 50000           | -5.1  | 25.0      |
| Benzo(k) fluoranthene       | Ave           | 1.139                                   | 1.137  | 0.0100  | 49900          | 50000           | -0.2  | 25.0      |
| Benzo(a)pyrene              | Ave           | 0.9254                                  | 0.9115 | 0.0100  | 49200          | 50000           | -1.5  | 20.0      |
| Dibenz(a,h)anthracene       | Ave           | 0.8732                                  | 0.8808 | 0.0100  | 50400          | 50000           | 0.9   | 25.0      |
| Indeno(1,2,3-cd)pyrene      | Ave           | 1.037                                   | 1.048  | 0.0100  | 50500          | 50000           | 1.0   | 25.0      |
| Benzo(g,h,i)perylene        | Ave           | 0.9457                                  | 0.9625 | 0.0100  | 50900          | 50000           | 1.8   | 25.0      |
| 2-Fluorophenol              | Ave           | 1.489                                   | 1.309  | 0.0100  | 44000          | 50000           | -12.1 | 25.0      |
| Phenol-d5                   | Ave           | 1.873                                   | 1.648  | 0.0100  | 44000          | 50000           | -12.0 | 25.0      |
| Nitrobenzene-d5             | Ave           | 0.3425                                  | 0.3122 | 0.0100  | 45600          | 50000           | -8.8  | 25.0      |
| 2-Fluorobiphenyl            | Ave           | 1.172                                   | 1.142  | 0.0100  | 48700          | 50000           | -2.5  | 25.0      |
| 2,4,6-Tribromophenol        | Ave           | 0.0734                                  | 0.0779 | 0.0100  | 53100          | 50000           | 6.1   | 25.0      |
| p-Terphenyl-d14             | Ave           | 0.7907                                  | 0.7585 | 0.0100  | 48000          | 50000           | -4.1  | 25.0      |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-20167-1             |
|-------------------------------|----------------------------------|
| SDG No.:                      |                                  |
| Client Sample ID:             | Lab Sample ID: MB 480-65304/1-A  |
| Matrix: Solid                 | Lab File ID: V0848.D             |
| Analysis Method: 8270C        | Date Collected:                  |
| Extract. Method: 3550B        | Date Extracted: 05/21/2012 10:07 |
| Sample wt/vol: +30.49(g)      | Date Analyzed: 05/22/2012 11:14  |
| Con. Extract Vol.: 1 (mL)     | Dilution Factor: 1               |
| Injection Volume: 1(uL)       | Level: (low/med) Low             |
| % Moisture:                   | GPC Cleanup:(Y/N) N              |
| Analysis Batch No.: 65485     | Units: ug/Kg                     |

| CAS NO.   | COMPOUND NAME               | RESULT   | Q | RL  | MDL |
|-----------|-----------------------------|----------|---|-----|-----|
| 95-95-4   | 2,4,5-Trichlorophenol       | ND       |   | 170 | 36  |
| 88-06-2   | 2,4,6-Trichlorophenol       | ND       |   | 170 | 11  |
| 120-83-2  | 2,4-Dichlorophenol          | ND       |   | 170 | 8.7 |
| 105-67-9  | 2,4-Dimethylphenol          | ND       |   | 170 | 45  |
| 51-28-5   | 2,4-Dinitrophenol           | ND       |   | 320 | 58  |
| 121-14-2  | 2,4-Dinitrotoluene          | ND ND    |   | 170 | 26  |
| 606-20-2  | 2,6-Dinitrotoluene          | ND       |   | 170 | 41  |
| 91-58-7   | 2-Chloronaphthalene         | ND       |   | 170 | 11  |
| 95-57-8   | 2-Chlorophenol              | ND       |   | 170 | 8.5 |
| 91-57-6   | 2-Methylnaphthalene         | ND       |   | 170 | 2.0 |
| 95-48-7   | 2-Methylphenol              | ND       |   | 170 | 5.1 |
| 88-74-4   | 2-Nitroaniline              | ND       |   | 320 | 53  |
| 88-75-5   | 2-Nitrophenol               | ND       |   | 170 | 7.6 |
| 91-94-1   | 3,3'-Dichlorobenzidine      | ND       |   | 170 | 150 |
| 99-09-2   | 3-Nitroaniline              | ND       |   | 320 | 38  |
| 534-52-1  | 4,6-Dinitro-2-methylphenol  | ND       |   | 320 | 57  |
| 101-55-3  | 4-Bromophenyl phenyl ether  | ND       |   | 170 | 53  |
| 59-50-7   | 4-Chloro-3-methylphenol     | ND       |   | 170 | 6.8 |
| 106-47-8  | 4-Chloroaniline             | ND       |   | 170 | 49  |
| 7005-72-3 | 4-Chlorophenyl phenyl ether |          | T | 170 | 3.5 |
| 106-44-5  | 4-Methylphenol              | ND       |   | 320 | 9.2 |
| 100-01-6  | 4-Nitroaniline              | ND       |   | 320 | 19  |
| 100-02-7  | 4-Nitrophenol               | ND       |   | 320 | 40  |
| 83-32-9   | Acenaphthene                | ND       |   | 170 | 2.0 |
| 208-96-8  | Acenaphthylene              | ND ND    |   | 170 | 1.4 |
| 98-86-2   | Acetophenone                | ND ND    |   | 170 | 8.5 |
| 120-12-7  | Anthracene                  | (30.0) 3 | Г | 170 | 4.3 |
| 1912-24-9 | Atrazine                    | ND       |   | 170 | 7.4 |
| 100-52-7  | Benzaldehyde                | AHD.     |   | 170 | 18  |
| 56-55-3   | Benzo(a)anthracene          | (55.4) J | r | 170 | 2.9 |
| 50-32-8   | Benzo(a)pyrene              | 74.5) J  |   | 170 | 4.0 |
| 205-99-2  | Benzo(b) fluoranthene       | (106) J  |   | 170 | 3.2 |
| 191-24-2  | Benzo(g,h,i)perylene        | (84.3) J |   | 170 | 2.0 |
| 207-08-9  | Benzo(k) fluoranthene       | 91.2 J   |   | 170 | 1.8 |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1 SDG No.: Client Sample ID: Lab Sample ID: MB 480-65304/1-A Matrix: Solid Lab File ID: V0848.D Analysis Method: 8270C Date Collected: Extract. Method: 3550B Date Extracted: 05/21/2012 10:07 Sample wt/vol: +30.49(g)Date Analyzed: 05/22/2012 11:14 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 65485 Units: ug/Kg

| CAS NO.  | COMPOUND NAME                 | RESULT | Q | RL  | MDL |
|----------|-------------------------------|--------|---|-----|-----|
| 92-52-4  | Biphenyl                      | ND     |   | 170 | 10  |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |   | 170 | 17  |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |   | 170 | 9.0 |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |   | 170 | 14  |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | 79.4   | J | 170 | 54  |
| 85-68-7  | Butyl benzyl phthalate        | 62.6   | J | 170 | 45  |
| 105-60-2 | Caprolactam                   | ND     |   | 170 | 72  |
| 86-74-8  | Carbazole                     | (36.4) | J | 170 | 1.9 |
| 218-01-9 | Chrysene                      | 54.4   | J | 170 | 1.7 |
| 53-70-3  | Dibenz(a,h)anthracene         | 76.4   | J | 170 | 2.0 |
| 132-64-9 | Dibenzofuran                  | ND     |   | 170 | 1.7 |
| 84-66-2  | Diethyl phthalate             | (38.0) | J | 170 | 5.0 |
| 131-11-3 | Dimethyl phthalate            | (30.9) | J | 170 | 4.3 |
| 84-74-2  | Di-n-butyl phthalate          | (57.1) | J | 170 | 57  |
| 117-84-0 | Di-n-octyl phthalate          | (72.5) | J | 170 | 3.9 |
| 206-44-0 | Fluoranthene                  | 42,6   | J | 170 | 2.4 |
| 86-73-7  | Fluorene                      | 26.1   | J | 170 | 3.8 |
| 118-74-1 | Hexachlorobenzene             | (40.0) | J | 170 | 8.3 |
| 87-68-3  | Hexachlorobutadiene           | ND     |   | 170 | 8.5 |
| 77-47-4  | Hexachlorocyclopentadiene     | DN     |   | 170 | 50  |
| 67-72-1  | Hexachloroethane              | ND     |   | 170 | 13  |
| 193-39-5 | Indeno(1,2,3-cd)pyrene        | (88.6  | J | 170 | 4.6 |
| 78-59-1  | Isophorone                    | ND     |   | 170 | 8.3 |
| 91-20-3  | Naphthalene                   | ND     |   | 170 | 2.8 |
| 98-95-3  | Nitrobenzene                  | ND     |   | 170 | 7.4 |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |   | 170 | 13  |
| 86-30-6  | N-Nitrosodiphenylamine        | ND     |   | 170 | 9.1 |
| 87-86-5  | Pentachlorophenol             | ND     |   | 320 | 57  |
| 85-01-8  | Phenanthrene                  | 36.4   | J | 170 | 3.5 |
| 108-95-2 | Phenol                        | ND     |   | 170 | 17  |
| 129-00-0 | Pyrene                        | (43.)  | J | 170 | 1.1 |



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-20167-1

#### 13 Sediment Samples, and 2 Field Duplicates Collected May 16 and 17, 2012

Prepared by: Donald Anné June 15, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

<u>Blanks</u>: The analyses of method blanks reported target PCBs as not detected.

Surrogate Recovery: The surrogates recoveries were within QC limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for sediment MS/MSD sample SED-12 (0-6).

<u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil samples LCS 480-64952/2-A and LCS 480-65377/2-A.

<u>Field Duplicates</u>: The analyses of soil field duplicate pairs /DUP-01 and /DUP-02 reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.

<u>Initial Calibration</u>: The %RSDs for PCB-1016 and PCB-1260 were below the allowable maximum (20%), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 05-21-12 (CCV480-65262/2) for the ZB-35 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 05-22-12 (CCV480-65434/41) for the ZB-5 column. Positive results for PCB-1016 and PCB-1260 should be considered estimated in associated samples.

<u>PCB Identification Summary for Multicomponent Analytes</u>: The checked surrogates were within GC quantitation limits. The analyses of sediment samples in this data pack reported target PCBs as not detected.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-20167-1.pcb.wpd

#### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCV 480-65262/2

Instrument ID: HP6890-7

Lab File ID: 7\_221\_264.D

Calibration Date: 05/21/2012 05:51

Calib Start Date: 05/07/2012 17:04

GC Column: ZB-35 ID: 0.53(mm) Calib End Date: 05/07/2012 18:40

Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF   | CF        | MIN CF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|----------|-----------|----------------------------------------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 20022882 | 23426052  | ************************************** | 0.585          | 0.500           | 17.0* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 7308259  | 8750670   | ***                                    | 0.599          | 0.500           | 19.7* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 4452279  | 5804798   |                                        | 0.652          | 0.500           | 30.4* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 5525262  | 7584462   |                                        | 0.686          | 0.500           | 37.3* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 12238909 | 17301608  |                                        | 0.707          | 0.500           | 41.4* | 15.0      |
| PCB-1260 Peak 3        | Ave           | 7495039  | 10172088  |                                        | 0.679          | 0.500           | 35.7* |           |
| Tetrachloro-m-xylene   | Lin           |          | 378263167 |                                        | 0.0352         | 0.300           | 17.3* | 15.0      |
| DCB Decachlorobiphenyl | Lin           |          | 120073333 |                                        | 0.0332         | 0.0300          | 33.3* | 15.0      |

average % D PCB-1016 = (22.4%)

average % D PCB-1260 = (38.1%)

### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Lab Sample ID: CCV 480-65434/41 Calibration Date: 05/22/2012 09:45

Instrument ID: HP5890-12 Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5 ID: 0.53(mm) Calib End Date: 10/23/2011 15:23

Lab File ID: 12\_171\_175.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|------------------------|---------------|---------|---------|--------|----------------|-----------------|--------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 267470  |        | 0.586          | 0.500           | 17.2*  | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908  | 150384  |        | 0.627          | 0.500           | 25.4*  | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 399610  |        | 0.603          | 0.500           | 20.5*  | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756  | 179108  |        | 0.670          | 0.500           | 33.9*  | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257  | 339226  |        | 0.623          | 0.500           | 24.6*  | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 444970  |        | 0.507          | 0.500           | 1.4    | 15.0      |
| PCB-1260 Peak 3        | Ave           | 177029  | 202386  |        | 0,572          | 0.500           | 14.3   | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 97078   |        | 0.391          | 0.500           | -21.8* | 15.0      |
| Tetrachloro-m-xylene   | Lin1          |         | 4903400 |        | 0.0335         | 0.0300          | 11.7   | 15.0      |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 4478367 |        | 0.0291         | 0.0300          | -3.0   | 15.0      |

average % D PCB-1016 = 24.3% average % D PCB-1260 = 15.5%



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No:480-20167-1

#### 13 Sediment Samples, and 2 Field Duplicates Collected May 16 and 17, 2012

Prepared by: Donald Anné June 15, 2012

<u>Holding Times</u>: Samples were analyzed within NYSDEC ASP holding times.

- <u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).
- CRDL Standard for AA and ICP: The percent recoveries for target metals were within laboratory QC limits (50-150%) for CRQL standard samples CRI 480-65469/7, CRI 480-65823/7, CRA 480-65360/3, and CRA 480-65728/3.
- <u>Blanks</u>: The analyses of initial calibration and continuing calibrationblanks reported TAL metals as below the CRDLs, as required.
  - Method blank MB 480-65190/1-A contained iron (21.49 mg/kg) and manganese (0.215 mg/kg). Positive results for iron and manganese that are less than ten times the method blank level should be reported as unusable (R) in associated sediment samples.
- <u>ICP Interference Check Sample</u>: The percent recoveries for applicable metals were within control limits (80-120%).
- Spike Sample Recovery: Two of two percent recoveries (%Rs) for aluminum were above control limits (75-125%), but were not above 250% for sediment MS/MSD sample SED-12 (0-6). Since aluminum is a naturally occurring metal, positive for aluminum should be considered estimated (J) in associated soil samples.
- <u>Laboratory Duplicates</u>: The relative percent differences for TAL metals were below the allowable maximum (35%) in sediment MS/MSD sample SED-12 (0-6), as required.
- <u>Field Duplicates</u>: The relative percent differences (RPDs) for applicable metals were below the allowable maximum (35%) for sediment field duplicate pair SED-10 (0-6) /DUP-01 (attached table), as required.

Page 1 of 2

The RPD for mercury was above the allowable maximum (35%) for sediment field duplicate pair SED-11 (0-6)/DUP-02 (attached table). Positive results for mercury should be considered estimated (J) in samples SED-11 (0-6) and DUP-02.

<u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in the soil samples LCSSRM 480-65190/2-A, LCSSRM 480-65539/2-A, LCSSRM 480-65171/2-A, and LCSSRM 480-65643/2-A.

<u>ICP Serial Dilution</u>: The analyses of sediment serial dilution samples SED-09 (0-6) and SED-12 (0-6) were acceptable.

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

<u>Percent Solids</u>: The % solids for soil samples were above 50%.

#### **TAL Metals & TOC**

#### Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-20167-1

| S1= :                      | SED-10 (0-6) | S2=       | DUP-01         |
|----------------------------|--------------|-----------|----------------|
| <u>Analyte</u>             | <u>\$1</u>   | <u>S2</u> | <u>RPD (%)</u> |
| aluminum                   | 6810         | 8290      | 20%            |
| antimony                   | ND           | ND        | NC             |
| arsenic                    | 6.7          | 8.0       | 18%            |
| barium                     | 68.3         | 73.0      | 7%             |
| beryllium                  | 0.47         | 0.57      | 19%            |
| cadmium                    | 1.3          | 1.8       | 32%            |
| calcium                    | 18300        | 24300     | 28%            |
| chromium                   | 39.8         | 46.2      | 15%            |
| cobalt                     | 7.2          | 8.7       | 19%            |
| copper                     | 51.6         | 63.2      | 20%            |
| iron                       | 17300        | 20100     | 15%            |
| lead                       | 65.3         | 47.6      | 31%            |
| magnesium                  | 6730         | 7360      | 9%             |
| manganese                  | 296          | 351       | 17%            |
| mercury                    | 0.28         | 0.33      | 16%            |
| nickel                     | 17.2         | 20.1      | 16%            |
| potassium                  | 981          | 1170      | 18%            |
| selenium                   | ND           | ND        | NC             |
| silver                     | ND           | ND        | NC             |
| sodium                     | 57.7         | 121       | NC             |
| thallium                   | ND           | ND        | NC             |
| vanadium                   | 15.3         | 17.8      | 15%            |
| zinc                       | 105          | 122       | 15%            |
| total organic carbon (TOC) | 32000        | 16900     | 62%            |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

#### **TAL Metals & TOC**

#### Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-20167-1

| <b>S1=</b> SED-11 (0-6)    |           | S2=               | <b>S2=</b> DUP-02 |  |  |
|----------------------------|-----------|-------------------|-------------------|--|--|
| <u>Analyte</u>             | <u>S1</u> | <u>\$2</u>        | RPD (%)           |  |  |
| aluminum                   | 6500      | 7 <del>45</del> 0 | 14%               |  |  |
| antimony                   | ND        | ND                | NC                |  |  |
| arsenic                    | 9.5       | 11.5              | 19%               |  |  |
| barium                     | 63.2      | 66.8              | 6%                |  |  |
| beryllium                  | 0.46      | 0.51              | 10%               |  |  |
| cadmium                    | 2.1       | 3.0               | 35%               |  |  |
| calcium                    | 25400     | 20800             | 20%               |  |  |
| chromium                   | 64.8      | 75.6              | 15%               |  |  |
| cobalt                     | 7.3       | 8.1               | 10%               |  |  |
| copper                     | 85.3      | 97.4              | 13%               |  |  |
| iron                       | 18500     | 18900             | 2%                |  |  |
| lead                       | 45.7      | 58.7              | 25%               |  |  |
| magnesium                  | 6990      | 6680              | 5%                |  |  |
| manganese                  | 289       | 297               | 3%                |  |  |
| mercury                    | 0.94      | 2.0               | 72%               |  |  |
| nickel                     | 18.4      | 20.3              | 10%               |  |  |
| potassium                  | 1050      | 1060              | 1%                |  |  |
| selenium                   | ND        | 1.1               | NC                |  |  |
| silver                     | ND        | ND                | NC                |  |  |
| sodium                     | 101       | 120               | NC                |  |  |
| thallium                   | ND        | ND                | NC                |  |  |
| vanadium                   | 15.2      | 16.3              | 7%                |  |  |
| zinc                       | 111       | 131               | 17%               |  |  |
| total organic carbon (TOC) | 21700     | 23800             | 9%                |  |  |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

#### 3-IN METHOD BLANK METALS

| Lab Name: TestAmerica Buffalo | Job No.: 480-20167-1            |
|-------------------------------|---------------------------------|
| SDG No.:                      | -                               |
| Concentration Units: mg/Kg    | Lab Sample ID: MB 480-65190/1-A |
| Instrument Code: ICAP1        | Batch No.: 65469                |

| CAS No.   | Analyte   | Concentration | С                                                | Q | Method |
|-----------|-----------|---------------|--------------------------------------------------|---|--------|
| 7429-90-5 | Aluminum  | ND            | T                                                |   | 6010B  |
| 7440-36-0 | Antimony  | ND            |                                                  |   | 6010B  |
| 7440-38-2 | Arsenic   | ND            |                                                  |   | 6010B  |
| 7440-39-3 | Barium    | ND            |                                                  |   | 6010B  |
| 7440-41-7 | Beryllium | ND            |                                                  |   | 6010B  |
| 7440-43-9 | Cadmium   | ND            | <del>                                     </del> |   | 6010B  |
| 7440-70-2 | Calcium   | 7.43          | J                                                |   | 6010B  |
| 7440-47-3 | Chromium  | ND            |                                                  |   | 6010B  |
| 7440-48-4 | Cobalt    | ND            |                                                  |   | 6010B  |
| 7440-50-8 | Copper    | ND            |                                                  |   | 6010B  |
| 7439-89-6 | Iron      | 21.49         |                                                  |   | 6010B  |
| 7439-92-1 | Lead      | ND            |                                                  |   | 6010B  |
| 7439-95-4 | Magnesium | 1.50          | J                                                |   | 6010B  |
| 7439-96-5 | Manganese | 0.215         |                                                  |   | 6010B  |
| 7440-02-0 | Nickel    | MD            |                                                  |   | 6010B  |
| 7440-09-7 | Potassium | ND            |                                                  |   | 6010B  |
| 7782-49-2 | Selenium  | ND            |                                                  |   | 6010B  |
| 7440-22-4 | Silver    | ND            |                                                  |   | 6010B  |
| 7440-23-5 | Sodium    | ND            |                                                  |   | 6010B  |
| 7440-28-0 | Thallium  | ND            |                                                  |   | 6010B  |
| 7440-62-2 | Vanadium  | ND            |                                                  |   | 6010B  |
| 7440-66-6 | Zinc      | 0.156         | J                                                |   | 6010B  |

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: SED-12 (0-6) MS Lab ID: 480-20232-8 MS

Lab Name: TestAmerica Buffalo Job No.: 480-20167-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 65.7

| Analyte   | SSR<br>C | Sample<br>Result (SR)<br>C | Spike<br>Added (SA) | %R     | Control<br>Limit<br>%R | Q                                       | Method |
|-----------|----------|----------------------------|---------------------|--------|------------------------|-----------------------------------------|--------|
| Aluminum  | 11670    | 6110                       | 2700                | (206)  | 75-125                 | F                                       | 6010B  |
| Antimony  | 43:90    | ND                         | 53.9                | 81     | 75-125                 | 1                                       | 6010B  |
| Arsenic   | 53.72    | 4.2                        | 53.9                | 92     | 75-125                 |                                         | 6010B  |
| Barium    | 113.4    | 52.8                       | 53.9                | 112    | 75-125                 |                                         | 6010B  |
| Beryllium | 55.15    | 0.43                       | 53.9                | 102    | 75-125                 |                                         | 6010B  |
| Cadmium   | 49.83    | 0.35                       | 53.9                | 92     | 75-125                 | *************************************** | 6010B  |
| Calcium   | 26520    | 17600                      | 2690                | NA 331 | 75-125                 | 4                                       | 6010B  |
| Chromium  | 72.13    | 16.1                       | 53.9                | 104    | 75-125                 |                                         | 6010B  |
| Cobalt    | 60.29    | 6.8                        | 53.9                | 99     | 75-125                 |                                         | 6010B  |
| Copper    | 74.21    | 20.9                       | 53.9                | 99     | 75-125                 |                                         | 6010B  |
| Iron      | 19450    | 16400                      | 2690                | 112    | 75-125                 | 4                                       | 6010B  |
| Lead      | 74.60    | 18.1                       | 53.9                | 105    | 75-125                 |                                         | 6010B  |
| Magnesium | 8980     | 6000                       | 2690                | 111    | 75-125                 |                                         | 6010B  |
| Manganese | 348.4    | 294                        | 53.9                | 102    | 75-125                 | 4                                       | 6010B  |
| Nickel    | 71.49    | 16.9                       | 53.9                | 101    | 75-125                 |                                         | 6010B  |
| Potassium | 4120     | 842                        | 2700                | 122    | 75-125                 |                                         | 6010B  |
| Selenium  | 50.08    | ND                         | 53.9                | 93     | 75-125                 |                                         | 6010B  |
| Silver    | 12.74    | ND                         | 13.5                | 95     | 75-125                 |                                         | 6010B  |
| Sodium    | 2500     | 40.0 J                     | 2700                | 91     | 75-125                 |                                         | 6010B  |
| Thallium  | 51.42    | ND                         | 53.9                | 95     | 75-125                 |                                         | 6010B  |
| Vanadium  | 66.59    | 13.5                       | 53.9                | 99     | 75-125                 |                                         | 6010B  |
| Zinc      | 132.2    | 73.6                       | 53.9                | 109    | 75-125                 |                                         | 6010B  |
| Нд        | 0.655    | 0.23                       | 0.521               | 82     | 75-125                 |                                         | 7471A  |

SSR = Spiked Sample Result

NA - Not applicable, the sample concentration was greater than 4 times the spiking level therefore, valid percent recoveries could not be calculated.

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

#### 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SED-12 (0-6) MSD

Lab ID: 480-20232-8 MSD

Lab Name: TestAmerica Buffalo

Job No.: 480-20167-1

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 65.7

| Analyte   | (SDR)<br>C | Spike<br>Added (SA) | %R      | Control<br>Limit<br>%R | RPD | RPD<br>Limit | Q | Method |
|-----------|------------|---------------------|---------|------------------------|-----|--------------|---|--------|
| Aluminum  | 12800      | 2990                | (223)   | 75-125                 | 9   | 20           | F | 6010B  |
| Antimony  | 47.22      | 59.8                | 79      | 75-125                 | 7   | 20           |   | 6010B  |
| Arsenic   | 58.50      | 59.8                | 91      | 75-125                 | 9   | 20           |   | 6010B  |
| Barium    | 120.7      | 59.8                | 114     | 75-125                 | 6   | 20           |   | 6010B  |
| Beryllium | 60.83      | 59.8                | 101     | 75-125                 | 10  | 20           |   | 6010B  |
| Cadmium   | 54.25      | 59.8                | 90      | 75-125                 | 8   | 20           |   | 6010B  |
| Calcium   | 22050      | 2990                | WA149   | 75-125                 | 18  | 20           | 4 | 6010B  |
| Chromium  | 79.21      | 59.8                | 105     | 75-125                 | 9   | 20           |   | 6010B  |
| Cobalt    | 66.04      | 59.8                | 99      | 75-125                 | 9   | 20           |   | 6010B  |
| Copper    | 79.87      | 59.8                | 99      | 75-125                 | 7   | 20           |   | 6010B  |
| Iron      | 21250      | 2990                | A/A 161 | 75-125                 | 9   | 20           | 4 | 6010B  |
| Lead      | 79.17      | 59.8                | 102     | 75-125                 | 6   | 20           |   | 6010B  |
| Magnesium | 9626       | 2990                | 121     | 75-125                 | 7   | 20           |   | 6010B  |
| Manganese | 368.5      | 59.8                | 125     | 75-125                 | 6   | 20           | 4 | 6010B  |
| Nickel    | 77.82      | 59.8                | 102     | 75-125                 | 8   | 20           |   | 6010B  |
| Potassium | 4563       | 2990                | 124     | 75-125                 | 10  | 20           |   | 6010B  |
| Selenium  | 54.47      | 59.8                | 91      | 75-125                 | 8   | 20           |   | 6010B  |
| Silver    | 13.70      | 15.0                | 92      | 75-125                 | 7   | 20           |   | 6010B  |
| Sodium    | 2767       | 2990                | 91      | 75-125                 | 10  | 20           |   | 6010B  |
| Thallium  | 56.34      | 59.8                | 94      | 75-125                 | 9   | 20           |   | 6010B  |
| Vanadium  | 73.45      | 59.8                | 100     | 75-125                 | 10  | 20           |   | 6010B  |
| Zinc      | 135.8      | 59.8                | 104     | 75-125                 | 3   | 20           |   | 6010B  |
| Hg        | 0.598      | 0.485               | 76      | 75-125                 | 9   | 20           |   | 7471A  |

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Total Organic Carbon (TOC) Data for TestAmerica Buffalo, Job No. 480-20167-1

#### 13 Sediment Samples, and 2 Field Duplicates Collected May 16 and 17, 2012

Prepared by: Donald Anné June 15, 2012

Holding Times: The samples were analyzed within USEAP SW-846 holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TOC were within control limits (85-115%).

<u>Blanks</u>: The analyses of initial calibration, continuing calibration, and method blanks reported TOC as not detected.

<u>Spike Sample Recovery</u>: The percent recoveries for TOC were within control limits (75-125%) for sediment MS/MSD sample SED-12 (0-6).

<u>Laboratory Duplicates</u>: The relative percent difference for TOC was below the allowable maximum (35%) for sediment MS/MSD sample SED-12 (0-6), as required.

<u>Field Duplicates</u>: The relative percent difference for TOC was below the allowable maximum (35%) for sediment field duplicate pair SED-11 (0-6) /DUP-02 (attached table), as required.

The RPD for TOC was above the allowable maximum (35%) for sediment field duplicate pair SED-10 (0-6)/DUP-01 (attached table). Positive results for TOC should be considered estimated (J) in samples SED-10 (0-6) and DUP-01.

<u>Laboratory Control Sample</u>: The percent recoveries for TOC were within laboratory QC limits (75-125%) for soil samples LCS 200-39328/4 and LCS 200-39417/4.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-20167-1.toc.wpd



Geology

Hydrology

Remediation

Water Supply

May 10, 2012

Ms. Sarah Newell Clough, Harbour, & Associates LLP III Winners Circle P.O. Box 5269 Albany, New York 12205-0269

Re:

Data Validation Report ALCO Maxon RI April 2012 Ground Water, Soil, and Air Sampling Events

#### Dear Ms. Newell:

The data usability summary reports (DUSRs) and data validation summaries are attached to this letter for ALOC Maxon RI, April 2012 ground water, soil, and air sampling events. The data for TestAmerica Buffalo job numbers 480-18504-1 and 480-19021-1 and TestAmerica Burlington job number 200-10420-1 were acceptable with some minor issues that are identified and discussed in the validation summaries. There were no data that were qualified as unusable (R) in the data packs.

A list of common data validation acronyms is attached to this letter to assist you in interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Clough, Harbour, & Associates LLP.

Sincerely,

Alpha Geoscience

Ronald Ame

Donald Anné Senior Chemist

DCA:dca attachments

Z:\projects\2012\12600 - 12620\12611-ALCO RI\alco ri-121-3.ltr.wpd

#### Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II

- U = Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R = Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N = Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

#### **Data Validation Acronyms**

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

EAA Atomic character formace tech

FAA Atomic absorption, furnace technique FID Flame ionization detector

FNP 1-Fluoronaphthalene
GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector PCB Polychlorinated biphenyl

PCDD Polychlorinated dibenzodioxins PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation



Geology

Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Burlington, Job No: 200-10420-1

18 Air Samples, 2 Field Duplicates, and 1 Trip Blank Collected April 16 and 17, 2012

> Prepared by: Donald Anné May 10, 2012

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appears legible and complete. The data pack contained the results of TO15 volatile analyses for 18 air samples, 2 field duplicates, and 1 trip blank.

The overall performances of the analyses are acceptable. TestAmerica Burlington did fulfill the requirements of the analytical method.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• Positive results for 1,1,1-trichloroethane were flagged as "estimated" (J) in samples SV-A9 and CHA-6 because relative percent difference for 1,1,1-trichloroethane was above the allowable maximum in the associated soil field duplicate pair SV-A9/CHA-6.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\200-10420-1.dus.wpd



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TO15 Volatiles Data for TestAmerica Burlington, Job No: 200-10420-1

#### 18 Air Samples, 2 Field Duplicates, and 1 Trip Blank Collected April 16 and 17, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were analyzed within the EPA recommended holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for target compounds were above the allowable minimum (0.010), as required.

The %RSD for 1,2,4-trichlorobenzene was below the allowable maximum (30%) for G.i on 04-05-12. Positive results for 1,2,4-trichlorobenzene should be considered estimated (J) in associated samples.

Continuing Calibration: The RRF10s for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (30%), as required.

<u>Blanks</u>: The analyses of method and trip blanks reported target compounds as not detected. The certification analyses of summa canisters reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for target compounds were within QC limits (70-130%) for sample LCS 200-37527/3.

The %R for naphthalene was above QC limits for sample LCS 200-37409/1. Positive results for naphthalene should be considered estimated (J) in associated samples.

<u>Field Duplicates</u>: The relative percent differences (RPDs) for applicable compounds were below the allowable maximum (50%) in field duplicate pair SV-A3/CHA-5 (attached table), as required.

Page 1 of 2

The RPD for 1,1,1-trichloroethane was above the allowable maximum (35%) for soil field duplicate pair SV-A9/CHA-6 (attached table). Results for 1,1,1-trichloroethane should be considered estimated (J) in samples SV-A9 and CHA-6.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

#### **TO15 Volatiles**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 200-10420-1

 S1=
 SV-A3
 S2=
 CHA-5

 Analyte trichlorofluoromethane acetone
 S1/49
 S2/54
 RPD (%)

 10% acetone
 660
 1000
 41%

**S1=** SV-A9 **S2=** CHA-6

| <u>Analyte</u>        | <u>S1</u> | <u>S2</u> | RPD (%) |
|-----------------------|-----------|-----------|---------|
| acetone               | 340       | 240       | 34%     |
| 1,1,1-trichloroethane | 710       | 410       | 54%     |

<sup>\*</sup> RPD is greater than 50%

Results are in units of bbpv.

#### Bold numbers are above quantitation limits

ND - Not detected.

NC - Not calculated, both results must be detected and above quantitation limits for valid RPDs to be calculated.

### FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

| Lab Name: TestAmerica Burlington | Job No.: | 200-10420-1 |
|----------------------------------|----------|-------------|
|----------------------------------|----------|-------------|

SDG No.: 200-10420

Matrix: Air Level: Low Lab File ID: ggjn003.d

Lab ID: LCS 200-37409/3

Client ID:

|                               | SPIKE     | LCS           | LCS | QC     |                                                                                                                |
|-------------------------------|-----------|---------------|-----|--------|----------------------------------------------------------------------------------------------------------------|
|                               | ADDED     | CONCENTRATION | 8   | LIMITS | #                                                                                                              |
| COMPOUND                      | (ppb v/v) | (ppb v/v)     | REC | REC    |                                                                                                                |
| Dichlorodifluoromethane       | 10.0      | 11.6          | 116 | 70-130 |                                                                                                                |
| Freon 22                      | 10.0      | 10.9          | 109 | 70-130 |                                                                                                                |
| 1,2-Dichlorotetrafluoroethane | 10.0      | 11.2          | 112 | 70-130 | ari-aritemi-habanasaranan.                                                                                     |
| Chloromethane                 | 10.0      | 9.43          | 94  | 70-130 | december 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - |
| n-Butane                      | 10.0      | 9.26          | 93  | 70-130 |                                                                                                                |
| Vinyl chloride                | 10.0      | 10.1          | 101 | 70-130 |                                                                                                                |
| 1,3-Butadiene                 | 10.0      | 10.0          | 100 | 70-130 |                                                                                                                |
| Bromomethane                  | 10.0      | 10.3          | 103 | 70-130 |                                                                                                                |
| Chloroethane                  | 10.0      | 9.57          | 96  | 70-130 | ****                                                                                                           |
| Bromoethene(Vinyl Bromide)    | 10.0      | 10.6          | 106 | 70-130 |                                                                                                                |
| Trichlorofluoromethane        | 10.0      | 10.7          | 107 | 70-130 |                                                                                                                |
| Freon TF                      | 10.0      | 11.4          | 114 | 70-130 |                                                                                                                |
| 1,1-Dichloroethene            | 10.0      | 11.4          | 114 | 70-130 | · · · · · · · · · · · · · · · · · · ·                                                                          |
| Acetone                       | 10.0      | 9.67          | 97  | 70-130 |                                                                                                                |
| Isopropyl alcohol             | 10.0      | 8.70          | 87  | 70-130 |                                                                                                                |
| Carbon disulfide              | 10.0      | 10.1          | 101 | 70-130 |                                                                                                                |
| 3-Chloropropene               | 10.0      | 9.54          | 95  | 70-130 |                                                                                                                |
| Methylene Chloride            | 10.0      | 10.1          | 101 | 70-130 |                                                                                                                |
| tert-Butyl alcohol            | 10.0      | 9.43          | 94  | 70-130 |                                                                                                                |
| Methyl tert-butyl ether       | 10.0      | 9.56          | 96  | 70-130 |                                                                                                                |
| trans-1,2-Dichloroethene      | 10.0      | 10.1          | 101 | 70-130 |                                                                                                                |
| n-Hexane                      | 10.0      | 9.18          | 92  | 70-130 |                                                                                                                |
| 1,1-Dichloroethane            | 10.0      | 9.82          | 98  | 70-130 |                                                                                                                |
| Methyl Ethyl Ketone           | 10.0      | 9.62          | 96  | 70-130 | ***************************************                                                                        |
| cis-1,2-Dichloroethene        | 10.0      | 10.5          | 105 | 70-130 |                                                                                                                |
| Chloroform                    | 10.0      | 10.7          | 107 | 70-130 |                                                                                                                |
| Tetrahydrofuran               | 10.0      | 8.24          | 82  | 70-130 |                                                                                                                |
| 1,1,1-Trichloroethane         | 10.0      | 11.1          | 111 | 70-130 |                                                                                                                |
| Cyclohexane                   | 10.0      | 10.5          | 105 | 70-130 |                                                                                                                |
| Carbon tetrachloride          | 10.0      | 11.1          | 111 | 70-130 |                                                                                                                |
| 2,2,4-Trimethylpentane        | 10.0      | 9.57          | 96  | 70-130 |                                                                                                                |
| Benzene                       | 10.0      | 9.79          | 98  | 70-130 |                                                                                                                |
| 1,2-Dichloroethane            | 10.0      | 10.5          | 105 | 70-130 |                                                                                                                |
| n-Heptane                     | 10.0      | 8.64          | 86  | 70-130 |                                                                                                                |
| Trichloroethene               | 10.0      | 10.8          | 108 | 70-130 |                                                                                                                |
| Methyl methacrylate           | 10.0      | 9.56          | 96  | 70-130 |                                                                                                                |
| 1,2-Dichloropropane           | 10.0      | 8.98          | 90  | 70-130 |                                                                                                                |
| 1,4-Dioxane                   | 10.0      | 9.29          | 93  | 70-130 |                                                                                                                |
| Bromodichloromethane          | 10.0      | 11.0          | 110 | 70-130 |                                                                                                                |
| cis-1,3-Dichloropropene       | 10.0      | 10.1          | 101 | 70-130 |                                                                                                                |
| methyl isobutyl ketone        | 10.0      | 9.64          | 96  | 70-130 |                                                                                                                |
| Toluene                       | 10.0      | 9.60          | 96  | 70-130 |                                                                                                                |

<sup>#</sup> Column to be used to flag recovery and RPD values

### FORM III AIR - GC/MS VOA LAB CONTROL SAMPLE RECOVERY

Lab Name: TestAmerica Burlington Job No.: 200-10420-1

SDG No.: 200-10420

Matrix: Air Level: Low Lab File ID: ggjn003.d

Lab ID: LCS 200-37409/3 Client ID:

|                           | SPIKE     |               |       |        |                                         |
|---------------------------|-----------|---------------|-------|--------|-----------------------------------------|
|                           |           | LCS           | LCS   | QC     |                                         |
|                           | ADDED     | CONCENTRATION | %     | LIMITS | #                                       |
| COMPOUND                  | (ppb v/v) | (ppb v/v)     | REC   | REC    |                                         |
| trans-1,3-Dichloropropene | 10.0      | 10.4          | 104   | 70-130 |                                         |
| 1,1,2-Trichloroethane     | 10.0      | 9.49          | 95    | 70-130 |                                         |
| Tetrachloroethene         | 10.0      | 9.33          | 93    | 70-130 |                                         |
| Methyl Butyl Ketone       | 10.0      | 9.39          | 94    | 70-130 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| (2-Hexanone)              |           |               |       |        |                                         |
| Dibromochloromethane      | 10.0      | 10.8          | 109   | 70-130 |                                         |
| 1,2-Dibromoethane         | 10.0      | 10.2          | 102   | 70-130 |                                         |
| Chlorobenzene             | 10.0      | 10.2          | 102   | 70-130 |                                         |
| Ethylbenzene              | 10.0      | 10.1          | 101   | 70-130 | <del></del>                             |
| m,p-Xylene                | 20.0      | 20.0          | 100   | 70-130 |                                         |
| Xylene, o-                | 10.0      | 9.54          | 95    | 70-130 |                                         |
| Styrene                   | 10.0      | 10.7          | 107   | 70-130 |                                         |
| Bromoform                 | 10.0      | 10.8          | 108   | 70-130 | *************************************** |
| Cumene                    | 10.0      | 10.1          | 101   | 70-130 |                                         |
| 1,1,2,2-Tetrachloroethane | 10.0      | 9.45          | 95    | 70-130 |                                         |
| n-Propylbenzene           | 10.0      | 10.7          | 107   | 70-130 |                                         |
| 4-Ethyltoluene            | 10.0      | 11.2          | 112   | 70-130 |                                         |
| 1,3,5-Trimethylbenzene    | 10.0      | 10.3          | 103   | 70-130 |                                         |
| 2-Chlorotoluene           | 10.0      | 10.8          | 108   | 70-130 |                                         |
| tert-Butylbenzene         | 10.0      | 10.4          | 104   | 70-130 |                                         |
| 1,2,4-Trimethylbenzene    | 10.0      | 10.6          | 106   | 70-130 |                                         |
| sec-Butylbenzene          | 10.0      | 10.9          | 109   | 70-130 |                                         |
| 4-Isopropyltoluene        | 10.0      | 11.2          | 112   | 70-130 |                                         |
| 1,3-Dichlorobenzene       | 10.0      | 10.8          | 109   | 70-130 |                                         |
| 1,4-Dichlorobenzene       | 10.0      | 10.9          | 109   | 70-130 |                                         |
| Benzyl chloride           | 10.0      | 12.4          | 124   | 70-130 |                                         |
| n-Butylbenzene            | 10.0      | 11.8          | 118   | 70-130 |                                         |
| 1,2-Dichlorobenzene       | 10.0      | 10.7          | 107   | 70-130 |                                         |
| 1,2,4-Trichlorobenzene    | 10.0      | 11.7          | 117   | 70-130 |                                         |
| Hexachlorobutadiene       | 10.0      | 10.3          | 103   | 70-130 |                                         |
| Naphthalene               | 10.0      | 13.4          | (134) | 70-130 | *                                       |

<sup>#</sup> Column to be used to flag recovery and RPD values FORM III TO-15

| Lab Name: TestAmerica Burlington         | Job No.: 200-10420-1  |                  | Analy Batch No.: 36363 |
|------------------------------------------|-----------------------|------------------|------------------------|
| SDG No.: 200-10420                       |                       |                  |                        |
| Instrument ID: G.i                       | GC Column: RTX+624    | ID: 0.32 (mm)    | Heated Purge: (Y/N) N  |
| Calibration Start Date: 04/05/2012 18:09 | Calibration End Date: | 04/06/2012 10:08 | Calibration ID: 14455  |
| Calibration Files:                       |                       |                  |                        |

| LEVEL:    | LAB SAMPLE ID:   | LAB FILE ID: |
|-----------|------------------|--------------|
| Level 1   | IC 200-36363/3   | ggj003.d     |
| Level 2   | IC 200-36363/4   | ggj004.d     |
| Level 3 · | IC 200-36363/5   | ggj005.d     |
| Level 4   | IC 200-36363/22  | ggj022.d     |
| Level 5   | ICIS 200-36363/7 | ggj007.d     |
| Level 6   | IC 200-36363/8   | ggj008.d     |
| Level 7   | IC 200-36363/9   | ggj009.d     |
| Level 8   | IC 200-36363/10  | gaj010.d     |

| - Company of the Comp |        |        |        |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|--------|------------|------------|----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | ,      | RRF    |        |            | CURVE      | COEFFICIENT    | CIENT | =#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN RRF                                 | %RSD #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAX  | R^2 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIN R^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LVL 1  | LVL 2  | LVL 3  | LVL 4  | LVL 5      | TYPE       | B M1           | 1 M2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *RSD | OR COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LVL 6  |        | LVL 8  |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Propylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ++++   |        | 0.2646 | 0.2646 | 0.2605     | Ave        | 0.2573         | 573   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | رد                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.0 | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2584 | 0.2532 | 0.2428 |        |            | ********** |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Freon 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++++   |        | 0.9583 | 1.0195 | 0.9427     | Ave        | 0.9372         | 372   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9173 | 0.9081 | 0.8777 |        |            |            | _,,,           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +++++  |        | 0.3995 | 0.4073 | 0.3679     | Ave        | 0.3751         | 751   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3674 | 0.3583 | 0.3498 |        |            |            | ·              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +++++  |        | 2.5155 | 2.7004 | 2.4592     | Ave        | 2.4705         | 705   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | (5)<br>(X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4462 | 2.3907 | 2.3113 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n-Butane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +++++  |        | 0.6171 | 0.6144 | 0.5734     | Ave        | 0.5785         | 785   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 | The state of the s | 7111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5584 | 0.5626 | 0.5449 |        | -          |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +++++  | 0.3689 | 0.3266 | 0.3562 | 0.3231 Ave | Ave        | 0.3355         | 355   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3346 | 0.3236 | 0.3149 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichlorotetrafluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +++++  | 2.1783 | 2.3348 | 2.5082 | 2.2689     | Ave        | 2.2680         | 680   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2557 | 2.2020 | 2.1278 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5873 | 0.5210 | 0.5441 | 0.5836 | 0.5381     | Ave        | 0.5435         | 435   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5323 | 0.5274 | 0.5142 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++++   |        | 0.2633 | 0.2527 | 0.2520     | Ave        | 0.2545         | 545   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2576 | 0.2518 | 0.2493 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Isopentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +++++  | 0.5129 | 0.4526 | 0.4366 | 0.4180     | Ave        | 0.4354         | 354   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4184 | 0.4064 | 0.4065 |        |            |            |                | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromoethene(Vinyl Bromide)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +++++  | 0.9023 | 0.8420 | 0.9030 | 0.8697     | Ave ·      | 0.8719         | 719   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The state of the s |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8639 | 0.8702 | 0.8523 |        |            |            | Telife Annahan |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ++++   | 0.8198 | 0.7362 | 0.8671 | 0.8049     | Ave        | 0.8028         | 028   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8070 | 0.8019 | 0.7817 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| n-Pentane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +++++  |        | 0.5988 | 0.6293 | 0.5932     | Ave        | 0.6029         | 029   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6097 | 0.5960 | 0.5905 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ++++   |        | 0.1149 | 0.0773 | 0.1110 Ave | Ave        | 0.1054         | 054   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1ω<br>ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1112 | 0.1122 | 0.1058 |        |            |            |                |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |        |        |            |            |                |       | And the Property of the Party o | -                                       | And a second contract of the second contract |      | PROPERTY OF THE PROPERTY OF TH |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Lab Name: TestAmerica Burlington         | Job No.: 200-10420-1             |                  | Analy Batch No.: 36363 |
|------------------------------------------|----------------------------------|------------------|------------------------|
| SDG No.: 200-10420                       |                                  |                  |                        |
| Instrument ID: G.i                       | GC Column: RTX-624               | ID: 0.32(mm)     | Heated Purge: (Y/N) N  |
| Calibration Start Date: 04/05/2012 18:09 | Calibration End Date: 04/06/2012 | 04/06/2012 10:08 | Calibration ID: 14455  |
|                                          |                                  |                  |                        |

| ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MANAGEMENT AND THE STATE OF THE |                       | RRF     |                                         |             | CURVE                                   | COEFFICIENT | # MIN RRF %RSD | D # MAX | AX R^2 # MIN R^2                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|-----------------------------------------|-------------|-----------------------------------------|-------------|----------------|---------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LVL 2<br>LVL 7        | LVL 3   | LVL 4                                   | LVL 5       | E C S S S S S S S S S S S S S S S S S S | B M1 M2     |                | %RSD    | OR COD                                  |
| Acrolein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |         | 0.1109                                  | 0.1372      | Ave                                     | 0.1332      | 9.4            |         | 30 0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1380                | 0.1387  |                                         |             |                                         |             |                |         | 6                                       |
| Ethyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + + + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3346                | 0.2922  | 0.2667                                  | 0.2984      | Ave                                     | 0.2995      | 6.9            |         | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3012                | 0.2918  |                                         |             |                                         |             |                |         | (                                       |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0510                | 2.8305  | 3.0145                                  | 2.7677      | Ave                                     | 2.8351      | 5.0            | -       | 30.0                                    |
| Managaria de de la composição de la comp | 2.7640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.7308                | 2.6876  |                                         |             |                                         |             |                |         |                                         |
| Freon TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8048                | 1.7407  | 1.8341                                  | 1.7218      | Ave                                     | 1.7475      |                | +       |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.7270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7230                | 1.6807  |                                         |             |                                         |             |                |         | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7268                | 0.7200  | 0.7517                                  | 0.6977      | Ave                                     | 0.7134      | 2.9            | -       | 30 O                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.6999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7041                | 0.6937  |                                         |             | n-                                      | 3 6         |                |         |                                         |
| Acetonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +<br>+<br>+<br>+<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |         | 0.1707                                  | 0.1926      | Ave                                     | 0.1938      | 9.7            | 1       | 30 0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2092                | 0.1808  |                                         |             |                                         |             |                |         |                                         |
| tert-Butyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 +++++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | つ<br>ぬ<br>ヵ<br>か<br>い | D 83 60 | 0.8373                                  | 0.8438      | Ave                                     | 0.8470      | 2.             | 80      | 30.0                                    |
| 3-Chloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.4777                | 0.4161  | 0 4453                                  | 0 4681      | 2000                                    |             |                |         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4559                | 0.4396  | (                                       |             |                                         | ·           | 4.             |         | 00.0                                    |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C 478                 | 0.828.0 | 0.5925                                  | 0.6749      | Ave                                     | 0.6488      | 5.             |         | 30.0                                    |
| Acrylonitrile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 0 2461  | 0 0100                                  | 0 0 0 0 0 0 | 7::0                                    |             |                |         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2496                | 0.2536  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | (           | ď                                       |             | 1.2            |         | ٠.<br>د                                 |
| Methyl tert-butyl ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 1.7377  | 1.5466                                  | 1.7747      | Ave                                     | 1.7595      | 6.2            | 1       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7936                | 1.7298  |                                         |             |                                         |             |                |         |                                         |
| Isopropyl alcohol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |         | 0.4249                                  | 0.4575      | Ave                                     | 0.4354      | 5.1            | 1       | 30.0                                    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4391                | 0.4031  |                                         |             |                                         |             |                |         |                                         |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 1.7808  | 1.9784                                  | 1.8563      | Ave                                     | 1.8525      | ω. σ·          | -       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.8442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.8395                | 1.8156  |                                         |             |                                         |             |                |         | (                                       |
| VinyL acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |         | 0.6692                                  | 0.8352      | Ave                                     | 0.8186      | 10.4           | 1       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8558                | 0.8498  |                                         |             |                                         |             |                |         | (                                       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1386                | 1.1288  | 1.0662                                  | 1.0598      | Ave                                     | 1.0730      | 4.1            | 7       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0328                | 1.0322  |                                         |             |                                         |             |                |         | 1                                       |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 0.6178  | 0.5515                                  | 0.5344      | Ave                                     | 0.5413      | 7.6            | 1       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5183                | 0.4994  |                                         |             |                                         |             |                |         | (                                       |
| Ethyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |         | 0.0333                                  | 0.0414      | Ave                                     | 0.0400      | 9.7            | +       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0422                | 0.0403  |                                         |             |                                         |             |                |         | (                                       |
| trans-1, 2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8782                | 0.8767  | 0.9606                                  | 0.9117      | Ave                                     | 0.8994      | 3.4            | +       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8902                | 0.8731  |                                         |             |                                         |             |                |         | (                                       |
| Methyl Ethyl Ketone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       | 0.2332  | 0.1778                                  | 0.2165      | Ave                                     | 0.2143      | 8.9            |         | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2184                | 0.2140  |                                         |             |                                         | 1           |                |         | (                                       |
| Tetrahydrofuran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +++++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - Parketonian         |         | 0.0653                                  | 0.0790      | Ave                                     | 0.0790      | 10.3           | 7       | 30.0                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0821                | 0.0817  |                                         |             |                                         |             | ********       |         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |                                         |             |                                         |             |                | -       |                                         |

| Lab Name: TestAmerica Burlington                 | Job No.: 200-10420-1               |                  | Analy Batch No.: 36363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDG No.: 200-10420                               |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MANIFORM AND |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instrument ID: G.i                               | GC Column: RTX-624                 | ID: 0.32 (mm)    | Heated Purge: (Y/N) N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calibration start Date. OA/OR/3013 10:00         |                                    | - 1              | ANNEL PROPERTY AND THE PROPERTY OF THE PROPERT |
|                                                  | - cattoracton bud bace: 04/06/2012 | 04/U6/ZUIZ IU:08 | Calibration ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                                    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ANALYTE                 |                 |                  | RRF              | A STATE OF THE STA |        | CURVE | COEFFICIENT | # MIN RRF %RSD # | MAX R^2 # MIN R^2 |
|-------------------------|-----------------|------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|-------------|------------------|-------------------|
|                         | LVI 6           | LVL 2<br>LVL 7   | LVL 3            | LVL 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LVL 5  | TY PE | B M1 M2     |                  | OR COD            |
| n-Hexane                | +++++<br>0.6702 | 0.7848           | 0.6572           | 0.6903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6667 | Ave   | 0.6851      | 6.6              | 30.0              |
| 2,2,4-Trimethylpentane  | +++++           | 0.5869           | 0.5400           | 0.5518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5573 | Ave   | 0.5646      | 3.0              | 30.0              |
| 1,2-Dichloroethane      | +++++           | 0.2821           | 0.2709           | 0.2212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2431 | Ave   | 0.2512      | 8.2              | 30.0              |
| n-Butanol               | +++++           | 0.0419           | 0.0404           | 0.0383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0382 | Ave   | 0.0402      | 4.8              | 30.0              |
| cis-1,2-Dichloroethene  | +++++<br>0.7875 | 0.8951           | 0.8028           | 0.7409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7906 | Ave   | 0.7954      | 6.0              | 30.0              |
| Chloroform              | 1.6544          | 1,7853           | 1.6526<br>1.6178 | 1.5904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.6450 | Ave   | 1.6505      | 3.9              | 30.0              |
| 1,4-Dioxane             | 0.0641          | 0.0608           | 0.0570           | 0.0540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0618 | Ave   | 0.0596      | 6.8              | 30.0              |
| 1,1,1-Trichloroethane   | 0.5654          | 0.6163           | 0.5521<br>0.5658 | 0.5873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5536 | Ave   | 0.5708      | 4.1              | 30.0              |
| Cyclonexane             | 0.2325          | 0.2207           | 0.2254<br>0.2336 | 0.2365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2199 | Ave   | 0.2281      | 2.8              | 30.0              |
| Metny1 methacry1ate     | +++++<br>0.1215 | 0.1197           | 0.1095           | 0.0837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1091 | Ave   | 0.1110      | 13.2             | 30.0              |
| Carbon tetrachloride    | 0.6904          | 0.6567<br>0.6630 | 0.6213           | 0.6961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.6555 | Ave   | 0.6665      | 3.5              | 30.0              |
| Benzene                 |                 | 0:5038           | 0.4871           | 0.3843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4158 | Ave   | 0.4455      | 9.3              | 30.0              |
| n-Heptane               | 0.1549          | 0.1950<br>0.1517 | 0.1565           | 0.1346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1489 | Ave   | 0.1578      | 11.8             | 30.0              |
| metnyl isobutyl ketone  | 0.1940          | 0.1862           | 0.1737           | 0.1494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1776 | Ave   | 0.1780      | 80               | 30.0              |
| cis-1,3-Dichloropropene | 0.2217          | 0.2236           | 0.2231<br>0.2126 | 0.1743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2055 | Ave   | 0.2093      | ω                | 30.0              |
| Trichloroethene         | 0.2687          | 0.2853<br>0.2175 | 0.2723           | 0.2125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2385 | Ave   | 0.2457      | 10.9             | 30.0              |
| n-Octane                | 0.2082          | 0.2429           | 0.2012<br>0.2192 | 0.1655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1873 | Ave   | 0.2036      | 11.9             | 30.0              |
| 1,2-Dichloropropane     | 0.1286          | 0.1380<br>0.1227 | 0.1214           | 0.1065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1175 | Ave   | 0.1236      | 8.2              | 30.0              |
| Dibromomethane          | 0.2705          | 0.3471           | 0.3155           | 0.2346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2722 | Ave   | 0.2815      | 13.5             | 30.0              |
| Bromodichloromethane    | 0.4140          |                  | 0.4255           | 0.3581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4004 | Ave   | 0.4029      | 5.6              | 30.0              |

| Lab Name: TestAmerica Burlington         | Job No.: 200-10420-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | Analy Batch No.: 36363 |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|
| SDG No.: 200-10420                       | The state of the s |                  | ,                      |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                        |
| Instrument ID: G.i                       | GC Column: RTX-624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ID: 0.32 (mm)    | Heated Purge: (Y/N) N  |
| Calibration Start Date: 04/05/2012 18:09 | Calibration End Date: 04/06/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 04/06/2012 10:08 |                        |
|                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1              |                        |

| ANALYTE                          |                 |                  | RRF              |        |        | CURVE | COEFFICIENT | # MIN RRF *R | # # Z | # **                |
|----------------------------------|-----------------|------------------|------------------|--------|--------|-------|-------------|--------------|-------|---------------------|
|                                  | LVI 1           | LVI 2            | LVI 3            | LVL 4  | LVL 5  | TYPE  | в м1 м2     |              |       | \$RSD OR COD OR COD |
|                                  | 1               |                  | , 1              |        |        |       |             |              |       |                     |
| -Hollene                         | 0.3649          | 0.3723           | 0.3422           | 0.2972 | 0.3068 | Ave   | 0.3420      | 33           | 8.5   | 30.0                |
| n-Nonane                         | +++++           | 0.2296           | 0.1956           | 0.1806 | 0.1984 | Ave   | 0.2140      | 10           | 10.2  | 30.0                |
| trans-1,3-Dichloropropene        | +++++           | 0.2260           | 0.2121           | 0.1748 | 0.2163 | Ave   | 0.2149      | 20           | 9.0   | 30.0                |
| 1,1,2-Trichloroethane            | 0.1668          | 0.1599           | 0.1641           | 0.1417 | 0.1463 | Ave   | 0.1558      | (1)          | 5.9   | 30.0                |
| Tetrachloroethene                | +++++           | 0.5337           | 0.4847           | 0.3888 | 0.3869 | Ave   | 0.4384      | 12           | 12.2  | 30.0                |
| Methyl Butyl Ketone (2-Hexanone) | +++++<br>0.1857 | 0.1816           | 0.1734           | 0.1577 | 0.1634 | Ave   | 0.1720      | 6            | 6.2   | 30.0                |
| n-Decane                         | +++++<br>0.2630 | 0.2487           | 0.1895           | 0.1855 | 0.2213 | Ave   | 0.2258      | 1-3          | 4.4   | 30.0                |
| Dibromochloromethane             | +++++<br>0.5235 |                  | 0.4913           | 0.4312 | 0.4516 | Ave   | 0.4846      | 0            | 6.7   | 30.0                |
| 1,2-Dibromoethane                | +++++<br>0.3480 | 0.3523           | 0.3530           | 0.2888 | 0.3090 | Ave   | 0.3266      | 7            | 7.7   | 30.0                |
| 2-Chlorotoluene                  | 0.8275          | 0.7294           | 0.6800           | 0.6501 | 0.6943 | Ave   | 0.7365      | ω            | 8.9   | 30.0                |
| n-Undecane                       | +++++<br>0.2227 | 0.2140           | 0.2234           | 0.1642 | 0.1808 | Ave   | 0.2010      | الله الما    | 13.4  | 30.0                |
| Chiorobenzene                    | 0.5180          | 0.5106           | 0.5056           | 0.4336 | 0.4430 | Ave   | 0.4855      | 6            | 6.9   | 30.0                |
| Ethylbenzene                     | 0.8102          | 0.7180<br>0.7717 | 0.7112<br>0.7831 | 0.6265 | 0.6737 | Ave   | 0.7278      | 80           | 8.9   | 30.0                |
| m, p-xytene                      | 0.3355          | 0.2954           | 0.2688           | 0.2544 | 0.2786 | Ave   | 0.2991      | j1<br>64     | 11.2  | 30.0                |
| Benzyl chloride                  | 0.4857          | 0.3014           | 0.2801           | 0.3253 | 0.3769 | Ave   | 0.3867      | 22           | 22.6  | 30.0                |
| Xylene, o-                       | 0.3422          | 0.3050           | 0.2892           | 0.2669 | 0.2847 | Ave   | 0.3092      | 9            | 9.9   | 30.0                |
| Styrene                          | 0.4660          | 0.3651           | 0.3251<br>0.4559 | 0.3368 | 0.3823 | Ave   | 0.3967      | 14           | 8     | 30.0                |
| Bromotorm                        | 0.5115          | 0.4102           | 0.3954           | 0.3898 | 0.4294 | Ave   | 0.4447      | pook<br>     | 11.3  | 30.0                |
| Cumene                           | 1.0463          | 0.8790           | 0.7988<br>1.0153 | 0.7825 | 0.8632 | Ave   | 0.9124      |              | 11.8  | 30.0                |
| n-Dodecane                       | 0 1 5 0 5       | - 1              | 7311             | 0.1243 | 0.1260 | Ave   | 0.1314      | 10           | 10.4  | 30.0                |
|                                  | 0.1505          | 0.1401           | 0.1164           |        |        |       |             |              |       |                     |

| Lab Name: TestAmerica Burlington         | Job No.: 200-10420-1             |                  | Analy Batch No.: 36363 |
|------------------------------------------|----------------------------------|------------------|------------------------|
| SDG No.: 200-10420                       |                                  |                  |                        |
| Instrument ID: C :                       |                                  | 1177             |                        |
| Instrument ID: G.i                       | GC Column: RTX-624               | ID: 0.32 (mm)    | Heated Purge: (Y/N) N  |
| Calibration Start Date: 04/05/2012 18:09 | Calibration End Date: 04/06/2012 | 04/06/2012 10:08 | Calibration ID: 14455  |
|                                          |                                  |                  |                        |

|                                         | - A constant of the constant o |                                         |            |               |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------|---------------|--------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (                                       | į (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                       |            |               | 0.5055 | 0.4626 | 0.4812  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 0                                    | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3871                                  | 425 Ave    | 0.3062 0.3425 | 0.2244 |        | +++++   | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ( ( ( )                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 0.3693 | 0.3872 | 0.4212  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30_0                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3590                                  | 3473 Ave   | 0.3280 0.3    | 0.3306 | 0.3292 | ++++    | Hexachlorobutadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 0.2328 | 0.2256 | 0.2322  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30_0                                    | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1836                                  | 699 Ave    | 0.1585 0.1699 | 0.1131 | 0.1533 | ++++    | 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (                                       |            |               | 0.5376 | 0.5283 | 0.5527  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 0                                    | 148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4703                                  | 4506 Ave   | 0.4024 0.4    | 0.3762 | 0.4444 | ++++    | 1,2-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ( ( ( )                                 | 3 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |            |               | 0.6720 | 0.6745 | 0.7157  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 05                                    | 70.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5780                                  | 767 Ave    | 0.4959 0.5767 | 0.4359 | 0.4751 | +++++   | n-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |            |               | 0.4979 | 0.4826 | 0.5012  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 0                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.4314                                  | 4040 Ave   | 0.3442 0.4    | 0.3586 | 0.4310 | +++++   | 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |            |               | 0.5338 | 0.5211 | 0.5439  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4695                                  | 388 Ave    | 0.3914 0.4388 | 0.3835 | 0.4736 | ++++    | 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 1.0014 | 0.9907 | 1.0474  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 74.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8848                                  | 651 Ave    | 0.7607 0.8651 | 0.7482 | 0.7798 | ++++++  | 4-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ( ( )                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 0.2518 | 0.2342 | 0.2385  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 331.6 ★                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.1908                                  | 723 Ave    | 0.1457 0.1723 | 0.1021 |        | ++++    | 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6                                       | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |            |               | 1.1001 | 1.1021 | 1.1544  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 12.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9916                                  | 684 Ave    | 0.8662 0.9684 | 0.8553 | 0.8943 | ++++    | sec-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 0.7660 | 0.7614 | 0.7947  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6789                                  | 527 Ave    | 0.5890 0.6527 | 0.5812 | 0.6076 | ++++    | 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| \$ \$ \$ \$                             | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |            |               | 0.8533 | 0.8450 | 0.8858  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7754                                  | 366 Ave    | 0.6687 0.7366 | 0.7119 | 0.7266 | ++++    | tert-Butylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 0.3876 | 0.3797 | 0.3939  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30.0                                    | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3154                                  | 0.3137 Ave | 0.2710 0.3    | 0.2430 | 0.2185 | +++++   | Alpha Methyl Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | _          |               | 0.8102 | 0.7993 | 0.8402  | and the control of the state of |
| 30 0                                    | 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7316                                  | 6945 Ave   | 0.6225 0.6    | 0.6400 | 0.7144 | ++++    | 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | \$ dd • • dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |            |               | 0.9088 | 0.8895 | 0.9308  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 0                                    | 7 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.7917                                  | 7592 Ave   | 0.6877 0.7    | 0.6761 | 0.6899 | +++++   | 4-Ethyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( |            |               | 0.9794 | 0.9875 | 1.0246  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 0                                    | 70/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8852                                  | 8511 Ave   | 0.7799 0.8    | 0.7531 | 0.8206 | +++++   | n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (()                                     | t ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | -          |               | 0.2862 | 0.2931 | 0.3108  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 0                                    | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2754                                  | 2595 Ave   | 0.2445 0.2    | 0.2585 |        | ++++++  | 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               | 0.3972 | 0.4040 | 0.4252  | And the contraction of the contr |
| 30.0                                    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3786                                  | 0.3616 Ave | 0.3394 0.3    | 0.3431 | 0.3794 | +++++   | 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            | ļ             |        | LVL 7  | 1 LVI 6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RRSD OR COD OR COD                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1<br>M2                                | th<br>Cu   | LVL 4 LVL     | LVI 3  | LVL 2  | LVL 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX R^2 # MIN R^2                       | # MIN RRF %RSD #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COEFFICIENT                             | CURVE      |               | RRF    |        |         | ANALYTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |            |               |        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Geology

Hydrology

Remediation

Water Supply

## Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-18504-1

7 Soil Samples, 1 Field Duplicate, and 2 Trip Blanks Collected April 10-17, 2012

> Prepared by: Donald Anné May 10, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 7 soil samples, 1 field duplicate, and 1 trip blanks analyzed for volatiles, and 7 soil samples and 1 field duplicate analyzed semi-volatiles, PCB, and TAL metals.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- The positive PCB result for PCB-1260 was flagged as "estimated" (J) in sample SS-A2 because the %D for PCB-1260 was above the allowable maximum the associated continuing calibration.
- Positive metals results for aluminum were flagged as "estimated" (J) in all 7 soil samples and the field duplicate because 2 of 2 percent recoveries for aluminum were above control limits, but were not above 250% in the associated soil MS/MSD sample.
- Positive metal results for barium were flagged as "estimated" (J) in all 7 soil samples and the field duplicate because 2 of 2 percent recoveries for barium were above control limits, but only one was above 200% in the associated soil MS/MSD sample.
- Positive metal results for potassium were flagged as "estimated" (J) in all 7 soil samples and the field duplicate because 1 of 2 percent recoveries for potassium was above control limits, but was not above 200% in the associated soil MS/MSD sample.

Page 1 of 2

Job No: 480-18504-1

- Positive metal results for copper were flagged as "estimated" (J) in all 7 soil samples and the field duplicate because 2 of 2 percent recoveries for copper were below control limits, but were not below 10% in the associated soil MS/MSD sample.
- Positive metal results for calcium and magnesium were flagged as "estimated" (J) in all 7 soil samples and the field duplicate because relative percent differences for calcium and magnesium were above the allowable maximum in the associated soil MS/MSD sample.
- Positive metal results for arsenic, iron, and manganese were flagged as "estimated" (J) in samples SS-A1 and DUP-03 because relative percent differences for arsenic, iron and manganese were above the allowable maximum in the associated soil field duplicate pair SS-A1/DUP-03.

All data are considered usable with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-18504-1

#### 7 Soil Samples, 1 Field Duplicate, and 2 Trip Blanks Collected April 10-17, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for dichlorodifluoromethane were above the allowable maximum (25%) on 04-15-12 (C18454.D). Positive results for dichlorodifluoromethane should be considered estimated (J) in associated samples.

<u>Blanks</u>: Method blank MB 480-60821/5 contained a trace of 2-hexanone (2.83 ug/kg). Positive results for 2-hexanone that are less than five times the highest blank level should be reported as not detected (U) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximum, but 23 of 26 percent recoveries (%Rs) were below QC limits for soil MS/MSD sample SS-A3. The RPDs for spiked compounds were

below the allowable maximum, but 24 of 26 %Rs were below QC limits for soil MS/MSD sample SS-A3 RA. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for the following aqueous and soil samples.

LCS 480-59670/5 LCS 480-59587/4 LCS 480-59671/6 LCS 480-59696/6 LCS 480-59974/6 LCS 480-60821/4 LCS 480-61401/4

<u>Field Duplicates</u>: The analyses of soil field duplicate pairs SS-A1/DUP-03 reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa | _ ~        | Job No.: 480-18504-1 |
|----------|----------------------|------------|----------------------|
| SDG No.: |                      |            |                      |
| Matrix:  | Solid                | Level: Low | Lab File ID: F8125.D |
| Lab ID:  | 480-18504-3 MS       |            | Client ID: SS-A3 MS  |

|                          | SPIKE   | SAMPLE        | MS            | MS   | QC     |   |
|--------------------------|---------|---------------|---------------|------|--------|---|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | 양    | LIMITS | # |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC  | REC    |   |
| 1,1-Dichloroethane       | 54.2    | ND            | 41.6          | (77) | 79-126 | F |
| 1,1-Dichloroethene       | 54.2    | ND            | 30.2          | (56  | 65-153 | F |
| 1,2-Dichlorobenzene      | 54.2    | ND            | 14.5          | (27  | 75-120 | F |
| 1,2-Dichloroethane       | 54.2    | ND            | 39.3          | 72   | 77-122 | F |
| Benzene                  | 54.2    | ND            | 38.3          | 71   | 79-127 | F |
| Chlorobenzene            | 54.2    | ND            | 28.1          | (52) | 76-124 | F |
| cis-1,2-Dichloroethene   | 54.2    | ND            | 37.2          | (69) | 81-117 | F |
| Ethylbenzene             | 54.2    | ND            | 29.2          | (54) | 80-120 | F |
| Methyl tert-butyl ether  | 54.2    | ND            | 39.8          | 73   | 63-125 |   |
| Tetrachloroethene        | 54.2    | 1.5 J         | 32.0          | (56  | 74-122 | F |
| Toluene                  | 54.2    | ND            | 34.5          | (64) | 74-128 | F |
| trans-1,2-Dichloroethene | 54.2    | ND            | 34.6          | 64   | 78-126 | F |
| Trichloroethene          | 54.2    | ND            | 30.7          | 57   | 77-129 | F |

<sup>#</sup> Column to be used to flag recovery and RPD values FORM III  $8260\,\mathrm{B}$ 

#### FÓRM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa |            | Job No.: 480-18504-1 |
|----------|----------------------|------------|----------------------|
| SDG No.: |                      |            |                      |
| Matrix:  | Solid                | Level: Low | Lab File ID: F8126.D |
| Lab ID:  | 480-18504-3 MSD      |            | Client ID: SS-A3 MSD |

|                          | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | o)c    | QC L | IMITS  | # |
|--------------------------|----------------|----------------------|----------|--------|------|--------|---|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)              | REC      | RPD    | RPD  | REC    | " |
| 1,1-Dichloroethane       | 54.2           | 43.4                 | 80       | 4.08   | 30   | 79-126 |   |
| 1,1-Dichloroethene       | 54.2           | 31.6                 | (58      | 4.57   | 30   | 65-153 | F |
| 1,2-Dichlorobenzene      | 54.2           | 12.3                 | 23       | 17.0   | 30   | 75-120 | F |
| 1,2-Dichloroethane       | 54.2           | 38.9                 | 72       | ) 1.00 | 30   | 77-122 | F |
| Benzene                  | 54.2           | 38.5                 | (71)     | 1.00   | 30   | 79-127 | F |
| Chlorobenzene            | 54.2           | 24.4                 | 45       | 14.0   | 30   | 76-124 | F |
| cis-1,2-Dichloroethene   | 54.2           | 35.1                 | 65       | 5.70   | 30   | 81-117 | F |
| Ethylbenzene             | 54.2           | 26.8                 | 49       | 8.53   | 30   | 80-120 | F |
| Methyl tert-butyl ether  | 54.2           | 42.3                 | 78       | 6.08   | 30   | 63-125 |   |
| Tetrachloroethene        | 54.2           | 30.6                 | (54      | 4.51   | 30   | 74-122 | F |
| Toluene                  | 54.2           | 32.9                 | 61       | 4.83   | 30   | 74-128 | F |
| trans-1,2-Dichloroethene | 54.2           | 32.9                 | 61       | 5.14   | 30   | 78-126 | F |
| Trichloroethene          | 54.2           | 29.4                 | (54      | 4.33   | 30   | 77-129 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

## FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa | <del></del> | Job No.: 480-18504-1   |
|----------|----------------------|-------------|------------------------|
| SDG No.: |                      |             |                        |
| Matrix:  | Solid                | Level: Low  | Lab File ID: F8184.D   |
| Lab ID:  | 480-18504-3 MS RA    |             | Client ID: SS-A3 MS RA |

|                          | SPIKE   | SAMPLE        | MS            | MS    | QC     |   |
|--------------------------|---------|---------------|---------------|-------|--------|---|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | િક    | LIMITS | # |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC   | REC    |   |
| 1,1-Dichloroethane       | 53.5    | ND            | 29.8          | (5.6) | 79-126 | F |
| 1,1-Dichloroethene       | 53.5    | ND            | 20.9          | (39)  | 65-153 | F |
| 1,2-Dichlorobenzene      | 53.5    | ND            | 13.4          | 25    | 75-120 | F |
| 1,2-Dichloroethane       | 53.5    | ND            | 32.5          | (61)  | 77-122 | F |
| Benzene                  | 53.5    | ND            | 27.4          | (51)  | 79-127 | F |
| Chlorobenzene            | 53.5    | ND            | 21.8          | (41)  | 76-124 | F |
| cis-1,2-Dichloroethene   | 53.5    | ND            | 25.9          | 48    | 81-117 | F |
| Ethylbenzene             | 53.5    | ND            | 21.9          | 41    | 80-120 | F |
| Methyl tert-butyl ether  | 53.5    | ND            | 33.9          | 63    | 63-125 |   |
| Tetrachloroethene        | 53.5    | ND            | 25.6          | (48)  | 74-122 | F |
| Toluene                  | 53.5    | ND            | 25.1          | (47)  | 74-128 | F |
| trans-1,2-Dichloroethene | 53.5    | ND            | 24.4          | (46   | 78-126 | F |
| Trichloroethene          | 53.5    | ND            | 22.8          | 43    | 77-129 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values

### FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | : TestAmerica Buffa |            | Job No.: 480-18504-1    |
|----------|---------------------|------------|-------------------------|
| SDG No.: |                     |            |                         |
| Matrix:  | Solid               | Level: Low | Lab File ID: F8185.D    |
| Lab ID:  | 480-18504-3 MSD RA  |            | Client ID: SS-A3 MSD RA |

|                          | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | o)c  | QC L | MITS   | #  |
|--------------------------|----------------|----------------------|----------|------|------|--------|----|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)              | REC      | RPD  | RPD  | REC    | π  |
| 1,1-Dichloroethane       | 49.8           | 27.2                 | (55)     | 9.21 | 30   | 79-126 | F  |
| 1,1-Dichloroethene       | 49.8           | 18.4                 | (37)     | 12.3 | 30   | 65-153 | F  |
| 1,2-Dichlorobenzene      | 49.8           | 10.3                 | (21)     | 26.2 | 30   | 75-120 | F  |
| 1,2-Dichloroethane       | 49.8           | 31.5                 | (63)     | 3.17 | 30   | 77-122 | F  |
| Benzene                  | 49.8           | 24.4                 | (49      | 11.4 | 30   | 79-127 | F  |
| Chlorobenzene            | 49.8           | 17.7                 | 36       | 20.6 | 30   | 76-124 | F  |
| cis-1,2-Dichloroethene   | 49.8           | 23.2                 | (47)     | 10.8 | 30   | 81-117 | F  |
| Ethylbenzene             | 49.8           | 17.8                 | (36      | 20.5 | 30   | 80-120 | F  |
| Methyl tert-butyl ether  | 49.8           | 36.4                 | 73       | 7.05 | 30   | 63-125 |    |
| Tetrachloroethene        | 49.8           | 20.3                 | (41)     | 22.8 | 30   | 74-122 | F' |
| Toluene                  | 49.8           | 20.8                 | (42)     | 18.7 | 30   | 74-128 | F  |
| trans-1,2-Dichloroethene | 49.8           | 21.0                 | (42)     | 14.8 | 30   | 78-126 | F  |
| Trichloroethene          | 49.8           | 18.9                 | 38       | 18.4 | 30   | 77-129 | F  |

<sup>#</sup> Column to be used to flag recovery and RPD values

## FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18504-1

SDG No.:

Lab Sample ID: CCVIS 480-59670/3 Calibration Date: 04/15/2012 09:57

Instrument ID: HP5973C Calib Start Date: 04/04/2012 15:34

GC Column: ZB-624 (30) ID: 0.53(mm) Calib End Date: 04/04/2012 19:16

Lab File ID: C18485.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|-------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2817  | 0.2033 |                                         | 18.0           | 25.0            | -27.8 | 50.0      |
| Chloromethane                          | Ave           | 0.3848  | 0.3146 | 0.1000                                  | 20.4           | 25.0            | -18.2 | 50.0      |
| Vinyl chloride                         | Ave           | 0.3693  | 0.3057 |                                         | 20.7           | 25.0            | -17.2 | 20.0      |
| Bromomethane                           | Ave           | 0.1837  | 0.1496 |                                         | 20.4           | 25.0            | -18.6 | 50.0      |
| Chloroethane                           | Ave           | 0.2090  | 0.1846 |                                         | 22.1           | 25.0            | -11.7 | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.4229  | 0.3844 |                                         | 22.7           | 25.0            | -9.1  | 50.0      |
| Acrolein                               | Ave           | 0.0354  | 0.0352 |                                         | 497            | 500             | -0.6  | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2441  | 0.2320 |                                         | 23.8           | 25.0            | -5.0  | 50.0      |
| 1,1-Dichloroethene                     | Lin1F         |         | 0.2320 | 0.1000                                  | 23.8           | 25.0            | -4.8  | 20.0      |
| Acetone                                | Ave           | 0.1430  | 0.1575 |                                         | 138            | 125             | 10.1  | 50.0      |
| Iodomethane                            | Ave           | 0.3363  | 0.3151 |                                         | 23.4           | 25.0            | -6.3  | 50.0      |
| Carbon disulfide                       | LinlF         |         | 0.6699 |                                         | 22.6           | 25.0            | -9.6  | 50.0      |
| Methyl acetate                         | Ave           | 0.4798  | 0.4984 |                                         | 26.0           | 25.0            | 3.9   | 50.0      |
| Acetonitrile                           | Ave           | 0.0357  | 0.0347 |                                         | 974            | 1000            | -2.7  | 50.0      |
| Methylene Chloride                     | Ave           | 0.3119  | 0.2861 |                                         | 22.9           | 25.0            | -8.3  | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.9780  | 0.9643 | ~                                       | 24.7           | 25.0            | -1.4  | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.3033  | 0.2643 |                                         | 21.8           | 25.0            | -12.9 | 50.0      |
| Acrylonitrile                          | Ave           | 0.1539  | 0.1609 |                                         | 131            | 125             | 4.6   | 50.0      |
| Vinyl acetate                          | Ave           | 0.7445  | 0.7811 |                                         | 131            | 125             | 4.9   | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.5607  | 0.5337 |                                         | 23.8           | 25.0            | -4.8  | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.2194  | 0.2290 | *************************************** | 131            | 125             | 4.4   | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.4518  | 0.4159 |                                         | 23.0           | 25.0            | -7.9  | 50.0      |
| cis-1,2-Dichloroethene                 | LinlF         |         | 0.3012 | ~                                       | 24.3           | 25.0            | -2.8  | 50.0      |
| Bromochloromethane                     | Ave           | 0.1584  | 0.1508 |                                         | 23.8           | 25.0            | -4.8  | 50.0      |
| Chloroform                             | Ave           | 0.5222  | 0.4921 |                                         | 23.6           | 25.0            | -5.8  | 20.0      |
| Tetrahydrofuran                        | Ave           | 0.1435  | 0.1502 |                                         | 131            | 125             | 4.7   | 50.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.4340  | 0.4061 |                                         | 23.4           | 25.0            | -6.4  | 50.0      |
| Cyclohexane                            | Ave           | 0.5046  | 0.4814 |                                         | 23.9           | 25.0            | -4.6  | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.4076  | 0.3629 |                                         | 22.3           | 25.0            | -11.0 | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.3694  | 0.3525 |                                         | 23.9           | 25.0            | -4.6  | 50.0      |
| Benzene                                | Ave           | 1.138   | 1.057  |                                         | 23.2           | 25.0            | -7.2  | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.4904  | 0.4773 |                                         | 24.3           | 25.0            | -2.7  | 50.0      |
| Trichloroethene                        | Ave           | 0.2963  | 0.2688 |                                         | 22.7           | 25.0            | -9.3  | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4382  | 0.4287 |                                         | 24.5           | 25.0            | -2.2  | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.3103  | 0.2999 |                                         | 24.2           | 25.0            | -3.4  | 20.0      |
| Dibromomethane                         | Ave           | 0.1973  | 0.1882 |                                         | 23.9           | 25.0            | -4.6  | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3775  | 0.3599 |                                         | 23.8           | 25.0            | -4.7  | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.2247  | 0.2363 |                                         | 132            | 125             | 5.2   | 50.0      |
| trans-1,3-Dichloropropene              | Ave           | 0.8878  | 0.7937 |                                         | 22.4           | 25.0            | -10.6 | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.8219  | 0.8358 |                                         | 127            | 125             | 1.7   | 50.0      |

#### FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18504-1

SDG No.:

Lab Sample ID: CCVIS 480-59670/3 Calibration Date: 04/15/2012 09:57

Instrument ID: HP5973C Calib Start Date: 04/04/2012 15:34

GC Column: ZB-624 (30) ID: 0.53(mm) Calib End Date: 04/04/2012 19:16

Lab File ID: C18485.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Toluene                      | Ave           | 1.302   | 1.159  |         | 22.3           | 25.0            | -11.0 | 20.0      |
| Ethyl methacrylate           | Ave           | 0.7080  | 0.7047 |         | 24.9           | 25.0            | -0.5  | 50.0      |
| cis-1,3-Dichloropropene      | Ave           | 0.4448  | 0.4234 |         | 23.8           | 25.0            | -4.8  | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.4334  | 0.3972 |         | 22.9           | 25.0            | -8.4  | 50.0      |
| 2-Hexanone                   | Ave           | 0.5837  | 0.5960 |         | 128            | 125             | 2.1   | 50.0      |
| Tetrachloroethene            | Ave           | 0.5543  | 0.4750 |         | 21.4           | 25.0            | -14.3 | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.9137  | 0.8319 |         | 22.8           | 25.0            | -9.0  | 50.0      |
| Dibromochloromethane         | Ave           | 0.5417  | 0.5005 |         | 23.1           | 25.0            | -7.6  | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.5373  | 0.4940 |         | 23.0           | 25.0            | -8.1  | 50.0      |
| Chlorobenzene                | Ave           | 1.440   | 1.282  | 0.3000  | 22.3           | 25.0            | -11.0 | 50.0      |
| Ethylbenzene                 | Ave           | 2.517   | 2.198  |         | 21.8           | 25.0            | -12.7 | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.5192  | 0.4679 |         | 22.5           | 25.0            | -9.9  | 50.0      |
| m,p-Xylene                   | Ave           | 0.9673  | 0.8582 |         | 44.4           | 50.0            | -11.3 | 50.0      |
| o-Xylene                     | Ave           | 0.9625  | 0.8355 |         | 21.7           | 25.0            | -13.2 | 50.0      |
| Styrene                      | Ave           | 1.424   | 1.274  |         | 22.4           | 25.0            | -10.6 | 50.0      |
| Isopropylbenzene             | Ave           | 2.621   | 2.327  |         | 22.2           | 25.0            | -11.2 | 50.0      |
| Bromoform                    | Ave           | 0.3581  | 0.3353 | 0.1000  | 23.4           | 25.0            | -6.4  | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.8475  | 0.7626 | 0.3000  | 22.5           | 25.0            | -10.0 | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.3034  | 0.3078 |         | 127            | 125             | 1.5   | 50.0      |
| N-Propylbenzene              | Ave           | 3.340   | 2.993  |         | 22.4           | 25.0            | -10.4 | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2664  | 0.2431 |         | 22.8           | 25.0            | -8.7  | 50.0      |
| Bromobenzene                 | Ave           | 0.6509  | 0.5910 |         | 22.7           | 25.0            | -9.2  | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.181   | 1.913  |         | 21.9           | 25.0            | -12.3 | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.6329  | 0.5515 |         | 21.8           | 25.0            | -12.9 | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.6441  | 0.5684 |         | 22.1           | 25.0            | -11.7 | 50.0      |
| tert-Butylbenzene            | Ave           | 0.4487  | 0.3902 |         | 21.7           | 25.0            | -13.0 | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.226   | 1.978  |         | 22.2           | 25.0            | -11.1 | 50.0      |
| sec-Butylbenzene             | Ave           | 2.768   | 2.411  |         | 21.8           | 25.0            | -12.9 | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.256   | 1.941  |         | 21.5           | 25.0            | -14.0 | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.251   | 1.093  |         | 21.8           | 25.0            | -12.6 | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.279   | 1.128  |         | 22.0           | 25.0            | -11.8 | 50.0      |
| n-Butylbenzene               | Ave           | 2.177   | 1.863  |         | 21.4           | 25.0            | -14.4 | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.211   | 1.081  |         | 22.3           | 25.0            | -10.7 | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | LinF          |         | 0.1656 |         | 22.3           | 25.0            | -10.8 | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.8953  | 0.7706 |         | 21.5           | 25.0            | -13.9 | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.3367  | 0.2651 |         | 19.7           | 25.0            | -21.3 | 50.0      |
| Naphthalene                  | Ave           | 2.704   | 2.411  |         | 22.3           | 25.0            | -10.8 | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.8492  | 0.7401 |         | 21.8           | 25.0            | -12.9 | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.2042  | 0.1796 |         | 22.0           | 25.0            | -12.1 | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.000   | 1.730  |         | 21.6           | 25.0            | -13.5 | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.6341  | 0.5633 |         | 22.2           | 25.0            | -11.2 | 50.0      |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-18504-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-60821/5       |
| Matrix: Solid                 | Lab File ID: F8312.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 04/20/2012 22:14     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 60821     | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME                        | RESULT | Q | RL  | MDL  |
|------------|--------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                | ND     |   | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane            | ND     |   | 5.0 | 0.81 |
| 79-00-5    | 1,1,2-Trichloroethane                | ND     |   | 5.0 | 0.65 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 5.0 | 1.1  |
| 75-34-3    | 1,1-Dichloroethane                   | ND     |   | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                   | ND     |   | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene               | ND     |   | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane          | ND     |   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                    | ND     |   | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                  | ND     |   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                   | ND     |   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                  | ND     |   | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                  | ND     |   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                  | ND     |   | 5.0 | 0.70 |
| 591-78-6   | 2-Hexanone                           | 2.83   | J | 25  | 2.5  |
| 78-93-3    | 2-Butanone (MEK)                     | ND     |   | 25  | 1.8  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)          | ND     |   | 25  | 1.6  |
| 67-64-1    | Acetone                              | ND     |   | 25  | 4.2  |
| 71-43-2    | Benzene                              | ND     |   | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                 | ND     |   | 5.0 | 0.67 |
| 75-25-2    | Bromoform                            | ND     |   | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                         | ND     |   | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                     | ND     |   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                 | ND     |   | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                        | ND     |   | 5.0 | 0.66 |
| 124-48-1   | Dibromochloromethane                 | ND     |   | 5.0 | 0.64 |
| 75-00-3    | Chloroethane                         | ND     |   | 5.0 | 1.1  |
| 67-66-3    | Chloroform                           | ND     |   | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                        | ND     |   | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene               | ND     |   | 5.0 | 0.50 |
| 10061-01-5 | cis-1,3-Dichloropropene              | ND     |   | 5.0 | 0.72 |
| 110-82-7   | Cyclohexane                          | ND     |   | 5.0 | 0.70 |
| 75-71-8    | Dichlorodifluoromethane              | ND     |   | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                         | ND     |   | 5.0 | 0.35 |
| 98-82-8    | Isopropylbenzene                     | ND     |   | 5.0 | 0.75 |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-18504-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-60821/5       |
| Matrix: Solid                 | Lab File ID: F8312.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 04/20/2012 22:14     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 60821     | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 5.0 | 0.93 |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | ND     |   | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | ND     |   | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | ND     | , | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND     |   | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |   | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 89   |   | 64-126 |
| 2037-26-5  | Toluene-d8 (Surr)            | 96   |   | 71-125 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 91   |   | 72-126 |



Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-18504-1

#### 7 Soil Samples and 1 Field Duplicate Collected April 10-17, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for 4-chloroaniline, 3-nitroaniline, and 3,3'-dichlorobenzidine were above the allowable maximum (25%) on 04-17-12 (W13938.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: One of three base/neutral surrogate recoveries for sample SS-A6 was below control limits, but was not below 10%. No action is taken on one surrogate per fraction outside control limits, provided the recovery is not less than 10%.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for soil

Page 1 of 2

- MS/MSD sample SS-A3. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.
- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil samples LCS 480-59470/2-A and LCS 480-60404/2-A.
- <u>Field Duplicates</u>: The relative percent differences for applicable compounds were below the allowable maximum (35%) for soil field duplicate pair SS-A1/DUP-03 (attached table), as required.
- <u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

#### **Semi-Volatiles**

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-18504-1

| <b>S1=</b> SS          | S-A1      | S2=           | DUP-03  |
|------------------------|-----------|---------------|---------|
| <u>Analyte</u>         | <u>S1</u> | <u>\$2</u>    | RPD (%) |
| 2-methylnaphthalene    | 57        | <del>55</del> | NC      |
| acenaphthene           | 27        | 33            | NC      |
| acenaphthylene         | 130       | 98            | NC      |
| anthracene             | 120       | 240           | NC      |
| benzo(a)anthracene     | 1300      | 1200          | 8%      |
| benzo(a)pyrene         | 1700      | 1500          | 13%     |
| benzo(b)fluoranthene   | 3100      | 2900          | 7%      |
| benzo(g,h,i)perylene   | 600       | 610           | NC      |
| benzo(k)fluoranthene   | 1400      | 1300          | 7%      |
| carbazole              | 72        | 97            | NC      |
| chrysene               | 1700      | 1600          | 6%      |
| dibenz(a,h)anthracene  | 210       | 200           | NC      |
| dibenzofuran           | 31        | 35            | NC      |
| fluoranthene           | 1800      | 1700          | 6%      |
| fluorene               | ND        | 29            | NC      |
| indeno(1,2,3-cd)pyrene | 570       | 560           | NC      |
| phenanthrene           | 600       | 560           | 7%      |
| pyrene                 | 1700      | 1400          | 19%     |

<sup>\*</sup> RPD is above the allowable maximum (35%)

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab | Name: | TestAmerica | Buffalo | Job | No.: | 480-18504-1 |  |
|-----|-------|-------------|---------|-----|------|-------------|--|
|     |       |             |         |     |      |             |  |

SDG No.:

Matrix: Solid Level: Low

GC Column (1): RXI-5Sil MS ID: 0.25 (mm)

| Client Sample ID | Lab Sample ID        | 2FP | # PHL | # | NBZ | #        | FBP | # | TBP | # | TPH |             |
|------------------|----------------------|-----|-------|---|-----|----------|-----|---|-----|---|-----|-------------|
| SS-A1            | 480-18504-1          | 73  | 84    |   | 81  |          | 93  |   | 92  |   | 102 |             |
| SS-A2            | 480-18504-2          | 76  | 85    |   | 83  |          | 94  | _ | 94  |   | 102 |             |
| SS-A3            | 480-18504-3          | 81  | 89    |   | 89  |          | 97  |   | 98  |   | 103 | *********** |
| SS-A4            | 480-18504-4          | 60  | 67    |   | 66  |          | 77  | _ | 96  |   | 91  |             |
| SS-A5            | 480-18504-5          | 73  | 84    |   | 82  |          | 91  |   | 91  |   | 100 |             |
| SS-A7            | 480-18504-6          | 62  | 72    |   | 69  | _        | 79  |   | 95  |   | 88  | ~           |
| DUP-03           | 480-18504-7          | 70  | 80    |   | 80  |          | 89  |   | 89  |   | 94  |             |
| SS-A6            | 480-18798-1          | 45  | 45    |   | 44  | $\dashv$ | 59  |   | 54  | _ | 64  | \ \         |
|                  | MB 480-59470/1-A     | 83  | 88    |   | 89  | 7        | 92  | _ | 102 |   | 110 | <i>I</i>    |
|                  | MB 480-60404/1-A     | 76  | 79    |   | 78  | +        | 89  |   | 108 |   | 113 |             |
|                  | LCS<br>480-59470/2-A | 85  | 89    |   | 91  | -        | 93  |   | 103 |   | 110 |             |
|                  | LCS<br>480-60404/2-A | 77  | 81    |   | 80  |          | 91  |   | 112 |   | 109 | manus.      |
| SS-A3 MS         | 480-18504-3 MS       | 91  | 97    |   | 94  | 1        | 100 |   | 106 |   | 118 |             |
| SS-A3 MSD        | 480-18504-3 MSD      | 92  | 97    |   | 97  | _        | 103 |   | 109 | + | 116 |             |

|                |      |                      | QC LIMITS |
|----------------|------|----------------------|-----------|
| 2FP            | ===  | 2-Fluorophenol       | 18-120    |
| $\mathtt{PHL}$ | 2000 | Phenol-d5            | 11-120    |
| NBZ            | -    | Nitrobenzene-d5      | 34-132    |
| FBP            | ==   | 2-Fluorobiphenyl     | 37-120    |
| TBP            | ===  | 2,4,6-Tribromophenol | 39-146    |
| TPH            | 2002 | p-Terphenyl-d14      | 65-153    |

<sup>#</sup> Column to be used to flag recovery values

### FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18504-1

SDG No.:

Lab Sample ID: ICV 480-59982/3 Calibration Date: 04/17/2012 10:29

Instrument ID: HP5973W Calib Start Date: 04/16/2012 13:36

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 04/16/2012 15:44

Lab File ID: W13938.D Conc. Units: ug/L

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| 4-Nitrophenol               | Ave           | 0.2262  | 0.2375 | 0.0500  | 52500          | 50000           | 5.0     | 25.0      |
| 2,4-Dinitrotoluene          | Ave           | 0.3877  | 0.4285 | 0.0100  | 55300          | 500.00          | 10.5    | 25.0      |
| Dibenzofuran                | Ave           | 1.517   | 1.595  | 0.0100  | 52600          | 50000           | 5.1     | 25.0      |
| Diethyl phthalate           | Ave           | 1.212   | 1.308  | 0.0100  | 54000          | 50000           | 8.0     | 25.0      |
| Fluorene                    | Ave           | 1.239   | 1.350  | 0.0100  | 54500          | 50000           | 9.0     | 25.0      |
| 4-Chlorophenyl phenyl ether | Ave           | 0.6050  | 0.6628 | 0.0100  | 54800          | 50000           | 9.6     | 25.0      |
| 4-Nitroaniline              | Ave           | 0.3242  | 0.3268 | 0.0100  | 50400          | 50000           | 0.8     | 25.0      |
| 4,6-Dinitro-2-methylphenol  | Linl          |         | 0.1407 | 0.0100  | 47200          | 50000           | -5.6    | 25.0      |
| N-Nitrosodiphenylamine      | Ave           | 0.5033  | 0.5386 | 0.0100  | 53500          | 50000           | 7.0     | 25.0      |
| 1,2-Diphenylhydrazine       | Ave           | 1.572   | 1.693  | 0.0100  | 53800          | 50000           | 7.7     | 25.0      |
| 4-Bromophenyl phenyl ether  | Ave           | 0.2032  | 0.2090 | 0.0100  | 51400          | 50000           | 2.9     | 25.0      |
| Hexachlorobenzene           | Ave           | 0.2244  | 0.2272 | 0.0100  | 50600          | 50000           | 1.3     | 25.0      |
| Pentachlorophenol           | Linl          |         | 0.1511 | 0.0100  | 50700          | 50000           | 1.4     | 25.0      |
| Phenanthrene                | Ave           | 1.109   | 1.150  | 0.0100  | 51800          | 50000           | 3.6     | 25.0      |
| Anthracene                  | Ave           | 1.120   | 1.177  | 0.0100  | 52500          | 50000           | 5.1     | 25.0      |
| Carbazole                   | Ave           | 1.005   | 1.063  | 0.0100  | 52900          | 50000           | 5.8     | 25.0      |
| Di-n-butyl phthalate        | Ave           | 1.182   | 1.276  | 0.0100  | 54000          | 50000           | 8.0     | 25.0      |
| Fluoranthene                | Ave           | 1.189   | 1.233  | 0.0100  | 51900          | 50000           | 3.8     | 25.0      |
| Benzidine                   | Ave           | 0.6869  | 0.2092 | 0.0100  | 15200          | 50000           | A-69.5* | 25.0      |
| Pyrene                      | Ave           | 1.193   | 1.241  | 0.0100  | 52000          | 50000           | 4.1     | 25.0      |
| Butyl benzyl phthalate      | Ave           | 0.5302  | 0.5697 | 0.0100  | 53700          | 50000           | 7.4     | 25.0      |
| 3,3'-Dichlorobenzidine      | Ave           | 0.4190  | 0.2745 | 0.0100  | 32800          | 50000           | -34.5*  | 25.0      |
| Bis(2-ethylhexyl) phthalate | Ave           | 0.7459  | 0.8356 | 0.0100  | 56000          | 50000           | 12.0    | 25.0      |
| Benzo(a)anthracene          | Ave           | 1.172   | 1.196  | 0.0100  | 51000          | 50000           | 2.0     | 25.0      |
| Chrysene                    | Ave           | 1.129   | 1.154  | 0.0100  | 51100          | 50000           | 2.2     | 25.0      |
| Di-n-octyl phthalate        | Linl          |         | 1.374  | 0.0100  | 50900          | 50000           | 1.8     | 25.0      |
| Benzo(b)fluoranthene        | Ave           | 1.063   | 1.029  | 0.0100  | 48400          | 50000           | -3.2    | 25.0      |
| Benzo(k)fluoranthene        | Ave           | 1.058   | 1.164  | 0.0100  | 55000          | 50000           | 10.0    | 25.0      |
| Benzo (a) pyrene            | Ave           | 0.9011  | 0.9300 | 0.0100  | 51600          | 50000           | 3.2     | 25.0      |
| Indeno(1,2,3-cd)pyrene      | Ave           | 1.095   | 1.196  | 0.0100  | 54600          | 50000           | 9.2     | 25.0      |
| Dibenz(a,h)anthracene       | Ave           | 0.9750  | 1.068  | 0.0100  | 54800          | 50000           | 9.5     | 25.0      |
| Benzo(g,h,i)perylene        | Ave           | 0.9083  | 0.9112 | 0.0100  | 50200          | 50000           | 0.3     | 25.0      |

### FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18504-1

SDG No.:

Lab Sample ID: <u>ICV 480-59982/3</u> Calibration Date: <u>04/17/2012</u> 10:29

Instrument ID: HP5973W Calib Start Date: 04/16/2012 13:36

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 04/16/2012 15:44

Lab File ID: W13938.D Conc. Units: ug/L

| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D       | MAX<br>%D |
|----------------------------|---------------|---------|--------|---------|----------------|-----------------|----------|-----------|
| N-Nitrosodimethylamine     | Ave           | 1.007   | 1.066  | 0.0100  | 52900          | 50000           | 5.8      | 25.0      |
| Pyridine                   | Ave           | 1.367   | 1.422  | 0.0100  | 52000          | 50000           | 4.0      | 25.0      |
| Phenol                     | Ave           | 2.044   | 2.152  | 0.0100  | 52700          | 50000           | 5.3      | 25.0      |
| Aniline                    | Ave           | 2.450   | 1.469  | 0.0100  | 30000          | 50000           | 40.0*    | 25.0      |
| Bis(2-chloroethyl)ether    | Ave           | 1.600   | 1.695  | 0.0100  | 53000          | 50000           | 5.9      | 25.0      |
| 2-Chlorophenol             | Ave           | 1.524   | 1.573  | 0.0100  | 51600          | 50000           | 3.2      | 25.0      |
| 1,3-Dichlorobenzene        | Ave           | 1.578   | 1.650  | 0.0100  | 52300          | 50000           | 4.6      | 25.0      |
| 1,4-Dichlorobenzene        | Ave           | 1.622   | 1.686  | 0.0100  | 52000          | 50000           | 4.0      | 25.0      |
| Benzyl alcohol             | Ave           | 1.060   | 1.116  | 0.0100  | 52600          | 50000           | 5.3      | 25.0      |
| 1,2-Dichlorobenzene        | Ave           | 1.516   | 1.593  | 0.0100  | 52600          | 50000           | 5.1      | 25.0      |
| 2-Methylphenol             | Ave           | 1.453   | 1.584  | 0.0100  | 54500          | 50000           | 9.0      | 25.0      |
| bis (2-chloroisopropyl)    | Ave           | 2.592   | 2.815  | 0.0100  | 54300          | 50000           | 8.6      | 25.0      |
| 4-Methylphenol             | Ave           | 1.523   | 1.718  | 0.0100  | 113000         | 100000          | 12.8     | 25.0      |
| N-Nitrosodi-n-propylamine  | Ave           | 1.229   | 1.389  | 0.0500  | 56500          | 50000           | 13.1     | 25.0      |
| Hexachloroethane           | Ave           | 0.6127  | 0.6624 | 0.0100  | 54100          | 50000           | 8.1      | 25.0      |
| Nitrobenzene               | Ave           | 0.4500  | 0.4401 | 0.0100  | 48900          | 50000           | -2.2     | 25.0      |
| Isophorone                 | Ave           | 0.7759  | 0.7830 | 0.0100  | 50500          | 50000           | 0.9      | 25.0      |
| 2-Nitrophenol              | Ave           | 0.1831  | 0.1781 | 0.0100  | 48600          | 50000           | -2.7     | 25.0      |
| 2,4-Dimethylphenol         | Ave           | 0.3948  | 0.4004 | 0.0100  | 50700          | 50000           | 1.4      | 25.0      |
| Tetraethyl lead            | Ave           | 0.1394  | 0.1350 | 0.0100  | 24200          | 25000           | -3.1     | 25.0      |
| Bis(2-chloroethoxy)methane | Ave           | 0.4413  | 0.4476 | 0.0100  | 50700          | 50000           | 1.4      | 25.0      |
| Benzoic acid               | Ave           | 0.3216  | 0.2780 | 0.0100  | 41100          | 47500           | -13.6    | 25.0      |
| 2,4-Dichlorophenol         | Ave           | 0.2954  | 0.2910 | 0.0100  | 49300          | 50000           | -1.5     | 25.0      |
| 1,2,4-Trichlorobenzene     | Ave           | 0.3165  | 0.3117 | 0.0100  | 49200          | 50000           | -1.5     | 25.0      |
| Naphthalene                | Ave           | 1.057   | 1.058  | 0.0100  | 50100          | 50000           | 0.1      | 25.0      |
| 4-Chloroaniline            | Ave           | 0.4450  | 0.3061 | 0.0100  | 29600          | 43000           | -31.2*   | 25.0      |
| Hexachlorobutadiene        | Ave           | 0.1821  | 0.1792 | 0.0100  | 49200          | 50000           | =1.6     | 25.0      |
| 4-Chloro-3-methylphenol    | Ave           | 0.3353  | 0.3407 | 0.0100  | 50800          | 50000           | 1.6      | 25.0      |
| 2-Methylnaphthalene        | Ave           | 0.6688  | 0.6638 | 0.0100  | 49600          | 50000           | -0.7     | 25.0      |
| Hexachlorocyclopentadiene  | Ave           | 0.3397  | 0.3626 | 0.0500  | 53400          | 50000           | 6.7      | 25.0      |
| 2,4,6-Trichlorophenol      | Ave           | 0.3362  | 0.3406 | 0.0100  | 50700          | 50000           | 1.3      | 25.0      |
| 2,4,5-Trichlorophenol      | Ave           | 0.3631  | 0.3812 | 0.0100  | 52500          | 50000           | 5.0      | 25.0      |
| 2-Chloronaphthalene        | Ave           | 1.069   | 1.120  | 0.0100  | 52400          | 50000           | 4.8      | 25.0      |
| 2-Nitroaniline             | Ave           | 0.3914  | 0.4290 | 0.0100  | 54800          | 50000           | 9.6      | 25.0      |
| Dimethyl phthalate         | Ave           | 1.261   | 1.327  | 0.0100  | 52600          | 50000           | 5.2      | 25.0      |
| 2,6-Dinitrotoluene         | Ave           | 0.2746  | 0.3074 | 0.0100  | 56000          | 50000           | 11.9     | 25.0      |
| Acenaphthylene             | Ave           | 1.673   | 1.791  | 0.0100  | 53500          | 50000           | 7.1      | 25.0      |
| 3-Nitroaniline             | Ave           | 0.3209  | 0.2383 | 0.0100  | 35600          | 48000           | (-25.7*) | 25.0      |
| Acenaphthene               | Ave           | 1.104   | 1.142  | 0.0100  | 51700          | 50000           | 3.5      | 25.0      |
| 2,4-Dinitrophenol          | Linl          |         | 0.1642 | 0.0500  | 45800          | 50000           | -8.4     | 25.0      |



Hydrology

Remediation

Water Supply

# QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-18504-1

#### 7 Soil Samples, and 1 Field Duplicate Collected April 10-17, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of method blanks reported target PCBs as not detected.

<u>Surrogate Recovery</u>: The surrogates recoveries were within QC limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD samples SS-A3 and SS-A6.

<u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil samples LCS 480-59463/2-A and LCS 480-60652/2-A.

<u>Field Duplicates</u>: The analyses of soil field duplicate pair SS-A1/DUP-03 reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.

<u>Initial Calibration</u>: The %RSDs for PCB-1016 and PCB-1260 were below the allowable maximum (20%), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-13-12 (CCV480-59465/35) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-14-12 (CCV480-59465/48) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-21-12 (CCV480-60848/38) for the ZB-5 column. Positive results for PCB-1016 and PCB-1260 should be considered estimated in associated samples.

<u>PCB Identification Summary for Multicomponent Analytes</u>: The checked surrogates and PCBs were within GC quantitation limits. The %D for dual column quantitation of PCB-1260 was below the allowable maximum (25%) for sample SS-A2, as required.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-18504-1.pcb.wpd

### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18504-1

SDG No.:

Lab Sample ID: CCV 480-59465/48 Calibration Date: 04/14/2012 06:53

Instrument ID: HP5890-12 Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5 ID: 0.53(mm) Calib End Date: 10/23/2011 15:23

Lab File ID: 12 164 240.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|---------|--------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 335334  |        | 0.735          | 0.500           | 47.0* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908  | 188372  |        | 0.786          | 0.500           | 57.1* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 458322  |        | 0.691          | 0.500           | 38.2* | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756  | 228772  |        | 0.855          | 0.500           | 71.0* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257  | 395806  |        | 0.727          | 0.500           | 45.4* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 576560  |        | 0.657          | 0.500           | 31.5* | 15.0      |
| PCB-1260 Peak 3        | Ave           | 177029  | 257750  |        | 0.728          | 0.500           | 45.6* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 149216  |        | 0.601          | 0.500           | 20.2* | 15.0      |
| Tetrachloro-m-xylene   | Linl          |         | 5896167 |        | 0.0401         | 0.0300          | 33.7* | 15.0      |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 6668600 |        | 0.0433         | 0.0300          | 44.4* | 15.0      |

average %1) - PCB-1016 = 53.3% 11 11 PCB-1260 = 35.7%

### FORM VII PCBS CONTINUING CALIBRATION DATA

| Lab  | Name:   | Test. | America Buffalo  |             | Job No.: 480-1850 | 4-1         |       |
|------|---------|-------|------------------|-------------|-------------------|-------------|-------|
| SDG  | No.:    |       |                  |             |                   |             |       |
| Lab  | Sample  | ID:   | CCV 480-59465/35 |             | Calibration Date: | 04/13/2012  | 19:29 |
| Inst | trument | ID:   | HP5890-12        |             | Calib Start Date: | 10/23/2011  | 13:54 |
| CC ( | Column. | 7 D   | E.               | TD: 0 53/mm | Calib End Data: 1 | 0/23/2011 1 | 5.73  |

Lab File ID: 12 164 233.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF                                  | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|---------|-----------------------------------------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 320008  |                                         | 0.701          | 0.500           | 40.3* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908  | 171746  |                                         | 0.716          | 0.500           | 43.2* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 428542  |                                         | 0.646          | 0.500           | 29.2* | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756  | 219650  | *************************************** | 0.821          | 0.500           | 64.2* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257  | 336868  |                                         | 0.619          | 0.500           | 23.7* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 486722  |                                         | 0.555          | 0.500           | 11.0  | 15.0      |
| PCB-1260 Peak 3        | Ave           | 177029  | 250046  |                                         | 0.706          | 0.500           | 41.2* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 148312  |                                         | 0.598          | 0.500           | 19.5* | 15.0      |
| Tetrachloro-m-xylene   | Linl          |         | 5735033 |                                         | 0.0390         | 0.0300          | 30.0* | 15.0      |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 6851133 |                                         | 0.0445         | 0.0300          | 48.4* | 15.0      |

average %D PCB-1016 = (44.2%)

### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo

SDG No.:

Lab Sample ID: CCV 480-60848/38

Calibration Date: 04/21/2012 13:54

Instrument ID: HP5890-12

GC Column: ZB-5

ID: 0.53 (mm)

Calib End Date: 10/23/2011 15:23

Lab File ID: 12 165 236.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF                                  | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|---------|-----------------------------------------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 352394  |                                         | 0.772          | 0.500           | 54.5* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908  | 198254  |                                         | 0.827          | 0.500           | 65.3* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 477158  | g g g g g v g v g v g v g v g v g v g v | 0.720          | 0.500           | 43.9* | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756  | 240386  |                                         | 0.899          | 0.500           | 79.7* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257  | 442402  |                                         | 0.813          | 0.500           | 62.5* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 610458  |                                         | 0.696          | 0.500           | 39.2* | 15.0      |
| PCB-1260 Peak 3        | Ave           | 177029  | 269924  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,  | 0.762          | 0.500           | 52.5* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 155574  |                                         | 0.627          | 0.500           | 25.4* | 15.0      |
| Tetrachloro-m-xylene   | Lin1          |         | 6125167 |                                         | 0.0416         | 0.0300          | 38.7* | 15.0      |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 7504067 |                                         | 0.0488         | 0.0300          | 62.5* | 15.0      |

average %D PCB-1016 = 609% 11 PCB-1260 = 44.9%



Hydrology

Remediation

Water Supply

## QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No: 480-18504-1

#### 7 Soil Samples and 1 Field Duplicate Collected April 10-17, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

CRDL Standard for AA and ICP: The percent recoveries for target metals were within laboratory QC limits (50-150%) for CRQL standard samples CRI 480-59704/15, CRI 480-59955/7, CRI 480-60990/7, CRI 480-60889/7, CRA 480-59512/3, and CRA 480-61078/3.

<u>Blanks</u>: The analyses of initial calibration and continuing calibration, and method blanks reported TAL metals as below the CRDLs, as required.

<u>ICP Interference Check Sample</u>: The percent recoveries for applicable metals were within control limits (80-120%).

<u>Spike Sample Recovery</u>: Two of two percent recoveries (%Rs) for aluminum were above control limits (75-125%), but were not above 250% for soil MS/MSD sample SS-A3. Since aluminum is a naturally occurring metal, positive for aluminum should be considered estimated (J) in associated soil samples.

Two of two %Rs for barium were above control limits (75-125%), but only one was above 200% for soil MS/MSD sample SS-A3. Positive for barium should be considered estimated (J) in associated soil samples.

One of two %Rs for potassium was above control limits (75-125%), but was not above 200% for soil MS/MSD sample SS-A3. Positive for potassium should be considered estimated (J) in associated soil samples.

Two of two %Rs for copper were below control limits (75-125%), but were not below 10% for soil MS/MSD sample SS-A3. Positive and "not detected" results for copper should be considered estimated (J) in associated soil samples.

- <u>Laboratory Duplicates</u>: The relative percent differences for barium, calcium, and magnesium was above the allowable maximum (35%) in soil MS/MSD sample SS-A3. Positive results for barium, calcium, and magnesium should be considered estimated (J) in associated soil samples.
- <u>Field Duplicates</u>: The relative percent differences for arsenic, copper, iron, and manganese were above the allowable maximum (35%) for soil field duplicate pair SS-A1/DUP-03 (attached table). Positive results for arsenic, copper, iron, and manganese should be considered estimated (J) in samples SS-A1 and DUP-03.
- <u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in soil samples LCSSRM 480-59481/2-A, LCSSRM 480-60688/2-A, LCSSRM 480-60688/2-A, LCSSRM 480-59400/2-A, and LCSSRM 480-60873/2-A
- <u>ICP Serial Dilution</u>: The %Ds for applicable metals were below the allowable maximum (10%) for soil serial dilution sample SS-A3, as required.

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

Percent Solids: The % solids for soil samples were above 50%.

#### **TAL Metals**

## <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-18504-1

**S2=** DUP-03

|                |            | <b>-</b>  | 201 00  |   |
|----------------|------------|-----------|---------|---|
| <u>Analyte</u> | <u>\$1</u> | <u>S2</u> | RPD (%) |   |
| aluminum       | 3940       | 4080      | 3%      |   |
| antimony       | 1.1        | 1.5       | NC      |   |
| arsenic        | 12.2       | 19.6      | 47%     | * |
| barium         | 129        | 154       | 18%     |   |
| beryllium      | 0.33       | 0.36      | 9%      |   |
| cadmium        | 0.70       | 0.63      | 11%     |   |
| calcium        | 46000      | 53100     | 14%     |   |
| chromium       | 29.1       | 32.7      | 12%     |   |
| cobalt         | 6.4        | 8.6       | 29%     |   |
| copper         | 190        | 317       | 50%     | * |
| iron           | 25300      | 45100     | 56%     | * |
| lead           | 311        | 298       | 4%      |   |
| magnesium      | 20900      | 24300     | 15%     |   |
| manganese      | 502        | 787       | 44%     | * |
| mercury        | 0.24       | 0.22      | 9%      |   |
| nickel         | 40.7       | 57.7      | 35%     |   |
| potassium      | 653        | 592       | 10%     |   |
| selenium       | ND         | ND        | NC      |   |
| silver         | ND         | ND        | NC      |   |
| sodium         | 84.4       | 110       | NC      |   |
| thallium       | ND         | ND        | NC      |   |
| vanadium       | 18.5       | 19.0      | 3%      |   |
| zinc           | 229        | 248       | 8%      |   |
|                |            |           |         |   |

<sup>\*</sup> RPD is above the allowable maximum (35%)

**S1=** SS-A1

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

# 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SS-A3 MSD Lab ID: 480-18504-3 MSD

Lab Name: TestAmerica Buffalo Job No.: 480-18504-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 92.2

| Analyte   | (SDR)<br>C | Spike<br>Added (SA) | %R      | Control<br>Limit<br>%R | RPD  | RPD<br>Limit | Q   | Method |
|-----------|------------|---------------------|---------|------------------------|------|--------------|-----|--------|
| Aluminum  | 8870       | 2210                | (229)   | 75-125                 | 4    | 20           | F   | 6010B  |
| Antimony  | 45.20      | 44.0                | 83      | 75-125                 | 2    | 20           |     | 6010B  |
| Arsenic   | 72.46      | 44.0                | 92      | 75-125                 | 2    | 20           |     | 6010B  |
| Barium    | 251.3      | 44.0                | (197)   | 75-125                 | (67) | 20           | F   | 6010B  |
| Beryllium | 44.42      | 44.0                | 100     | 75-125                 | 4    | 20           |     | 6010B  |
| Cadmium   | 43.56      | 44.0                | 97      | 75-125                 | 22   | 20           | F   | 6010B  |
| Calcium   | 53930      | 2200                | MA 356  | 75-125                 | (43) | 20           | 4 F | 6010B  |
| Chromium  | 75.35      | 44.0                | 103     | 75-125                 | 12   | 20           |     | 6010B  |
| Cobalt    | 50.23      | 44.0                | 93      | 75-125                 | 3    | 20           |     | 6010B  |
| Copper    | 110.8      | 44.0                | (42)    | 75-125                 | 7    | 20           | F   | 6010B  |
| Iron      | 24700      | 2200                | WA -740 | 75-125                 | 21   | 2.0          | 4 F | 6010B  |
| Lead      | 974.5      | 44.0                | NA 176  | 75-125                 | 11   | 20           | 4   | 6010B  |
| Magnesium | 28230      | 2200                | NA 258  | 75-125                 | (48) | 20           | 4 F | 6010B  |
| Manganese | 432.2      | 44.0                | MA 131  | 75-125                 | 13   | 20           | 4   | 6010B  |
| Nickel    | 74.99      | 44.0                | 120     | 75-125                 | 16   | 20           |     | 6010B  |
| Potassium | 3304       | 2200                | (127)   | 75-125                 | 1    | 20           | F   | 6010B  |
| Selenium  | 40.65      | 44.0                | 92      | 75-125                 | 9    | 20           |     | 6010B  |
| Silver    | 10.57      | 11.0                | 96      | 75-125                 | 2    | 20           |     | 6010B  |
| Sodium    | 2294       | 2210                | 101     | 75-125                 | 2    | 20           |     | 6010B  |
| Thallium  | 43.59      | 44.0                | 99      | 75-125                 | 2    | 20           |     | 6010B  |
| Vanadium  | 60.65      | 44.0                | 104     | 75-125                 | 2    | 20           |     | 6010B  |
| Zinc      | 199.9      | 44.0                | 75      | 75-125                 | 10   | 20           |     | 6010B  |
| Нд        | 2.98       | 0.365               | NA 282  | 75-125                 | 11   | 20           | 4   | 7471A  |

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client I | D: SS-A3 MS           | Lab ID:  | 480-18504-3 N |       |
|----------|-----------------------|----------|---------------|-------|
| Lab Name | : TestAmerica Buffalo | Job No.: | 480-18504-1   |       |
| SDG No.: |                       |          |               |       |
| Matrix:  | Solid                 | Concentr | ation Units:  | mg/Kg |

% Solids: 92.2

| Analyte   | SSR<br>C | Sample<br>Result (SR | )<br>C | Spike<br>Added (SA) | %R       | Control<br>Limit<br>%R | Q   | Method |
|-----------|----------|----------------------|--------|---------------------|----------|------------------------|-----|--------|
| Aluminum  | 9204     | 3820                 |        | 2280                | (236)    | 75-125                 | F   | 6010B  |
| Antimony  | 46.29    | 8.6                  | J      | 45.5                | 83       | 75-125                 |     | 6010B  |
| Arsenic   | 73.95    | 32.1                 |        | 45.5                | 92       | 75-125                 |     | 6010B  |
| Barium    | 502.5    | 164                  |        | 45.5                | (744)    | 75-125                 | F'  | 6010B  |
| Beryllium | 46.32    | 0.31                 |        | 45.5                | 101      | 75-125                 |     | 6010B  |
| Cadmium   | 54.53    | 0.75                 |        | 45.5                | 118      | 75-125                 |     | 6010B  |
| Calcium   | 34890    | 46100                |        | 2270                | MA -493  | 75-125                 | 4   | 6010B  |
| Chromium  | 84.88    | 30.0                 |        | 45.5                | 121      | 75-125                 |     | 6010B  |
| Cobalt    | 52.01    | 9.1                  |        | 45.5                | 94       | 75-125                 |     | 6010B  |
| Copper    | 103.1    | 92.3                 |        | 45.5                | (24)     | 75-125                 | F   | 6010B  |
| Iron      | 30400    | 41000                |        | 2270                | MA -466  | 75-125                 | 4   | 6010B  |
| Lead      | 870.7    | 897                  |        | 45.5                | NA -58   | 75-125                 | 4   | 6010B  |
| Magnesium | 17240    | 22500                |        | 2270                | <b>√</b> | 75-125                 | 4   | 6010B  |
| Manganese | 378.0    | 375                  |        | 45.5                | NA 8     | 75-125                 | 4   | 6010B  |
| Nickel    | 63.69    | 22.2                 |        | 45.5                | 91       | 75-125                 |     | 6010B  |
| Potassium | 3324     | 513                  |        | 2280                | 124      | 75-125                 |     | 6010B  |
| Selenium  | 44.33    | ND                   |        | 45.5                | 98       | 75-125                 |     | 6010B  |
| Silver    | 10.81    | ND                   |        | 11.4                | 95       | 75-125                 |     | 6010B  |
| Sodium    | 2346     | 63.8                 | J      | 2280                | 100      | 75-125                 | . 4 | 6010B  |
| Thallium  | 44.40    | ND                   |        | 45.5                | 98       | 75-125                 |     | 6010B  |
| Vanadium  | 61.93    | 14.7                 |        | 45.5                | 104      | 75-125                 |     | 6010B  |
| Zinc      | 220.3    | 167                  |        | 45.5                | 118      | 75-125                 |     | 6010B  |
| Нд        | 2.67     | 2.0                  |        | 0.364               | MA 195   | 75-125                 | 4   | 7471A  |

SSR = Spiked Sample Result

NA - Not applicable, the sample concentration was greater than 4 times the spiking level therefore, valid percent recoveries could not be calculated.

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.



Hydrology

Remediation

Water Supply

## Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-19021-1

4 Ground Water Samples, 1 Field Duplicate, and 1 Trip Blank Collected April 23, 2012

> Prepared by: Donald Anné May 10, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 4 ground water samples,1 field duplicate, and 1 trip blank analyzed for volatiles, and 4 ground water samples and1 field duplicate analyzed semi-volatiles.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- The volatile results for cis-1,2-dichloroethene in samples MW-25D, MW-52, and CHA-4 were quantitated using data that were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The results for cis-1,2-dichloroethene marked "E" in the undiluted samples MW-25D, MW-52, and CHA-4 were qualified as estimated (J).
- The volatile results for trichloroethene in samples MW-52 and CHA-4 were quantitated using data that were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The results for trichloroethene marked "E" in the undiluted samples MW-52 and CHA-4 were qualified as estimated (J).
- The positive volatile results for 1,1-dichloroethene, tetrachloroethene, trans-1,2-dichloroethene, and vinyl chloride were flagged as "estimated" (J) in samples MW-52 and CHA-4 because relative percent differences for 1,1-dichloroethene, tetrachloroethene, trans-1,2-dichloroethene, and vinyl chloride were above the allowable maximum in the associated aqueous field duplicate pair MW-52/CHA-4.

Page 1 of 2

• The positive volatile results for vinyl chloride were flagged as "estimated" (J) in samples MW-52 DL and CHA-4 DL because relative percent difference for vinyl chloride was above the allowable maximum in the associated aqueous field duplicate pair MW-52 DL/CHA-4 DL.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Hydrology

Remediation

Water Supply

# QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-19021-1

#### 4 Ground Water Samples, 1 Field Duplicate, and 1 Trip Blank Collected April 23, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (25%), as required.

<u>Blanks</u>: The analyses of method blanks reported target compounds as not detected. The trip blank contained a trace of trichloroethene (0.60 ug/L). Positive results for trichloroethene that are less than five times the highest blank level should be reported as not detected (U) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximum, but 1 of 26 percent recoveries (%Rs) was below QC limits for aqueous MS/MSD sample MW-52. The RPDs for spiked compounds were below the allowable maximum, but 2 of 26 %Rs were below QC limits for aqueous MS/MSD sample CHA-4. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for aqueous samples LCS 480-62035/4, LCS 480-62171/4, and LCS 480-62252/4.

<u>Field Duplicates</u>: The relative percent differences (RPDs) for 1,1-dichloroethene, tetrachloroethene, trans-1,2-dichloroethene, and vinyl chloride were above the allowable maximum (20%) for aquoeus field duplicate pair MW-52/CHA-4 (attached table). The results for 1,1-dichloroethene, tetrachloroethene, trans-1,2-dichloroethene, and vinyl chloride should be considered estimated in samples MW-52 and CHA-4.

The RPD for vinyl chloride was above the allowable maximum (20%) for aquoeus field duplicate pair MW-52 DL/CHA-4 DL (attached table). The results for vinyl chloride should be considered estimated in samples MW-52 DL and CHA-4 DL.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There are results for cis-1,2-dichloroethene in samples MW-25D, MW-52, and CHA-4, and trichloroethene in samples MW-52 and CHA-4 that were quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The samples were diluted by the laboratory and re-analyzed; therefore, the results for cis-1,2-dichloroethene and trichloroethene that are flagged as 'E' in the undiluted samples should be considered estimated (J). The use of the diluted results for cis-1,2-dichloroethene and trichloroethene is recommended. It is recommended that the undiluted results for samples MW-25D, MW-52, and CHA-4 be used for all other compounds.

#### **Volatiles**

### <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-19021-1

| S1=                      | MW-53      | <b>S2=</b> CHA-4    |         |   |  |  |  |
|--------------------------|------------|---------------------|---------|---|--|--|--|
| <u>Analyte</u>           | <u>\$1</u> | <u>S2</u>           | RPD (%) |   |  |  |  |
| 1,1-dichloroethene       | 5.2        | 9.4                 | 58%     | * |  |  |  |
| cis-1,2-dichloroethene   | 450        | <i>890</i>          | NC      |   |  |  |  |
| tetrachloroethene        | 25         | 45                  | 57%     | * |  |  |  |
| trans-1,2-dichloroethene | 13         | 24                  | 59%     | * |  |  |  |
| trichloroethene          | 400        | 750                 | NC      |   |  |  |  |
| vinyl chloride           | 25         | 46                  | 59%     | * |  |  |  |
| S1=                      | MW-53 DL   | <b>S2=</b> CHA-4 DL |         |   |  |  |  |
| Analyte                  | <u>S1</u>  | <u>S2</u>           | RPD (%) |   |  |  |  |
| 1,1-dichloroethene       | 13         | <del>13</del>       | NC      |   |  |  |  |
| cis-1,2-dichloroethene   | 970        | 900                 | 7%      |   |  |  |  |
| tetrachloroethene        | 43         | 42                  | 2%      |   |  |  |  |
| trans-1,2-dichloroethene | 30         | 27                  | 11%     |   |  |  |  |
| trichloroethene          | 760        | 740                 | 3%      |   |  |  |  |
| vinyl chloride           | 25         | 41                  | 48%     | * |  |  |  |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in ug/kg

Bold numbers were values that below the CRQL.

Italic numbers were values above the highest standard

ND - Not detected.

NC - Not calculated, both results must be above the CRDL and below the highest standard for valid RPDs to be calculated.

### FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa |        |     | Job |         |      | 19021-1  |  |
|----------|----------------------|--------|-----|-----|---------|------|----------|--|
| SDG No.  |                      |        |     |     |         |      |          |  |
| Matrix:  | Water                | Level: | Low | Lab | File 1  | ID:  | C18883.D |  |
| Lab ID:  | 480-19021-4 MS       |        |     | Cli | ent ID: | : MW | 7-52 MS  |  |

|                          | SPIKE  | SAMPLE        | MS            | MS  | QC     |   |
|--------------------------|--------|---------------|---------------|-----|--------|---|
|                          | ADDED  | CONCENTRATION | CONCENTRATION | %   | LIMITS | # |
| COMPOUND                 | (ug/L) | (ug/L)        | (ug/L)        | REC | REC    |   |
| 1,1-Dichloroethane       | 500    | ND            | 538           | 108 | 71-129 |   |
| 1,1-Dichloroethene       | 500    | 13 J          | 464           | 90  | 65-138 |   |
| 1,2-Dichlorobenzene      | 500    | ND            | 524           | 105 | 77-120 |   |
| 1,2-Dichloroethane       | 500    | ND            | 544           | 109 | 75-127 |   |
| Benzene                  | 500    | ND            | 556           | 111 | 71-124 |   |
| Chlorobenzene            | 500    | ND            | 548           | 110 | 72-120 |   |
| cis-1,2-Dichloroethene   | 500    | 970           | 1400          | 86  | 74-124 |   |
| Ethylbenzene             | 500    | ND            | 538           | 108 | 77-123 |   |
| Methyl tert-butyl ether  | 500    | ND            | 518           | 104 | 64-127 |   |
| Tetrachloroethene        | 500    | 43            | 588           | 109 | 74-122 |   |
| Toluene                  | 500    | ND            | 586           | 117 | 70-122 |   |
| trans-1,2-Dichloroethene | 500    | 30            | 558           | 106 | 73-127 |   |
| Trichloroethene          | 500    | 760           | 1230          | 94  | 74-123 |   |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values

### FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa |        |     | Job | No.:   |     | 0-19021-1 | here we common |
|----------|----------------------|--------|-----|-----|--------|-----|-----------|----------------|
| SDG No.: |                      |        |     |     |        |     |           |                |
| Matrix:  | Water                | Level: | Low | Lab | File : | ID: | C18884.D  |                |
| Lab ID:  | 480-19021-4 MSD      |        |     | Cli | ent ID | : N | W-52 MSD  |                |

|                          | SPIKE  | MSD           | MSD |     | QC LIMITS |        |   |
|--------------------------|--------|---------------|-----|-----|-----------|--------|---|
|                          | ADDED  | CONCENTRATION | ક   | ajo |           |        | # |
| COMPOUND                 | (ug/L) | (ug/L)        | REC | RPD | RPD       | REC    |   |
| 1,1-Dichloroethane       | 500    | 500           | 100 | 7   | 20        | 71-129 |   |
| 1,1-Dichloroethene       | 500    | 422           | 82  | 9   | 16        | 65-138 |   |
| 1,2-Dichlorobenzene      | 500    | 490           | 98  | 7   | 20        | 77-120 |   |
| 1,2-Dichloroethane       | 500    | 524           | 105 | 4   | 20        | 75-127 |   |
| Benzene                  | 500    | 518           | 104 | 7   | 13        | 71-124 |   |
| Chlorobenzene            | 500    | 510           | 102 | 7   | 25        | 72-120 |   |
| cis-1,2-Dichloroethene   | 500    | 1300          | (67 | 7   | 15        | 74-124 | F |
| Ethylbenzene             | 500    | 488           | 98  | 10  | 15        | 77-123 |   |
| Methyl tert-butyl ether  | 500    | 492           | 98  | 5   | 37        | 64-127 |   |
| Tetrachloroethene        | 500    | 546           | 101 | 7   | 20        | 74-122 |   |
| Toluene                  | 500    | 538           | 108 | 9   | 15        | 70-122 |   |
| trans-1,2-Dichloroethene | 500    | 526           | 99  | 6   | 20        | 73-127 |   |
| Trichloroethene          | 500    | 1140          | 77  | 7   | 16        | 74-123 |   |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values

### FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa |            |       |          | 0-19021-1 |
|----------|----------------------|------------|-------|----------|-----------|
| SDG No.: |                      |            |       |          |           |
| Matrix:  | Water                | Level: Low | w Lab | File ID: | C18857.D  |
| Lab ID:  | 480-19021-5 MS       |            | Clie  | nt ID: ( | CHA-4 MS  |

|                          | SPIKE  | SAMPLE        | MS            | MS   | QC     |   |
|--------------------------|--------|---------------|---------------|------|--------|---|
|                          | ADDED  | CONCENTRATION | CONCENTRATION | 8    | LIMITS | # |
| COMPOUND                 | (ug/L) | (ug/L)        | (ug/L)        | REC  | REC    |   |
| 1,1-Dichloroethane       | 500    | ND            | 460           | 92   | 71-129 |   |
| 1,1-Dichloroethene       | 500    | 13 J          | 390           | 75   | 65-138 |   |
| 1,2-Dichlorobenzene      | 500    | ND            | 452           | 90   | 77-120 |   |
| 1,2-Dichloroethane       | 500    | ND            | 458           | 92   | 75-127 |   |
| Benzene                  | 500    | ND            | 472           | 94   | 71-124 |   |
| Chlorobenzene            | 500    | ND            | 474           | 95   | 72-120 |   |
| cis-1,2-Dichloroethene   | 500    | 900           | 1200          | (60) | 74-124 | F |
| Ethylbenzene             | 500    | ND            | 458           | 92   | 77-123 |   |
| Methyl tert-butyl ether  | 500    | ND            | 428           | 86   | 64-127 |   |
| Tetrachloroethene        | 500    | 42            | 510           | 94   | 74-122 |   |
| Toluene                  | 500    | ND            | 466           | 93   | 70-122 |   |
| trans-1,2-Dichloroethene | 500    | 27            | 480           | 91   | 73-127 |   |
| Trichloroethene          | 500    | 740           | 1060          | (64  | 74-123 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

### FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | : TestAmerica Buffal |            | Job No.: 4  | 180-19021-1 |
|----------|----------------------|------------|-------------|-------------|
| SDG No.: |                      |            |             |             |
| Matrix:  | Water                | Level: Low | Lab File II | D: C18858.D |
| Lab ID:  | 480-19021-5 MSD      |            | Client ID:  | CHA-4 MSD   |

|                          | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | oto | QC L | #      |   |
|--------------------------|----------------|----------------------|----------|-----|------|--------|---|
| COMPOUND                 | (ug/L)         | (ug/L)               | REC      | RPD | RPD  | REC    | " |
| 1,1-Dichloroethane       | 500            | 494                  | 99       | 7   | 20   | 71-129 |   |
| 1,1-Dichloroethene       | 500            | 414                  | 80       | 6   | 16   | 65-138 |   |
| 1,2-Dichlorobenzene      | 500            | 480                  | 96       | 6   | 20   | 77-120 |   |
| 1,2-Dichloroethane       | 500            | 508                  | 102      | 10  | 20   | 75-127 |   |
| Benzene                  | 500            | 504                  | 101      | 7   | 13   | 71-124 |   |
| Chlorobenzene            | 500            | 500                  | 100      | 5   | 25   | 72-120 |   |
| cis-1,2-Dichloroethene   | 500            | 1300                 | 80       | 8   | 15   | 74-124 |   |
| Ethylbenzene             | 500            | 476                  | 95       | 4   | 15   | 77-123 |   |
| Methyl tert-butyl ether  | 500            | 466                  | 93       | 9   | 37   | 64-127 |   |
| Tetrachloroethene        | 500            | 530                  | 98       | 4   | 20   | 74-122 |   |
| Toluene                  | 500            | 494                  | 99       | 6   | 15   | 70-122 |   |
| trans-1,2-Dichloroethene | 500            | 514                  | 97       | 7   | 20   | 73-127 |   |
| Trichloroethene          | 500            | 1130                 | 78       | 6   | 16   | 74-123 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260B}$ 



Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-19021-1

#### 4 Ground Water Samples and 1 Field Duplicate Collected April 23, 2012

Prepared by: Donald Anné May 10, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010)and the %Ds were below the allowable maximum (25%), as required.

Blanks: The analyses of method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: One of three base/neutral surrogate recoveries for samples MW-25D, MW-52, and CHA-4 was below control limits, but was not below 10%. No action is taken on one surrogate per fraction outside control limits, provided the recovery is not less than 10%.

<u>Laboratory Control Sample</u>: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for aqueous samples LCS 480-61379/2-A and LCSD 480-61379/3-A.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pairs MW-52/CHA-4 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab  | Name | : TestAmerica Buffalo | Job  | No.:         | 480-19021-1 |
|------|------|-----------------------|------|--------------|-------------|
| SDG  | No.: |                       |      |              |             |
| Matr | ix:  | Water                 | Leve | el: <u>I</u> | OW          |
|      |      |                       |      |              |             |

GC Column (1): RXI-5Sil MS ID: 0.25 (mm)

| Client Sample ID | Lab Sample ID         | 2FP | # | PHL | #      | NBZ | # | FBP | # | TBP | # | TPH | ì               |
|------------------|-----------------------|-----|---|-----|--------|-----|---|-----|---|-----|---|-----|-----------------|
| MW-36            | 480-19021-1           | 45  |   | 32  | +      | 85  |   | 95  |   | 111 |   | 79  | -               |
| MW-36B           | 480-19021-2           | 36  |   | 27  | 1      | 81  |   | 96  |   | 114 | - | 94  |                 |
| MW-25D           | 480-19021-3           | 35  |   | 27  | 1      | 73  |   | 83  |   | 96  |   | 45  | 1               |
| MW-52            | 480-19021-4           | 37  |   | 27  | +      | 72  |   | 82  |   | 105 |   | 4.8 | -               |
| CHA-4            | 480-19021-5           | 42  |   | 30  |        | 82  |   | 95  | - | 108 |   | 55  | >               |
|                  | MB 480-61379/1-A      | 44  |   | 33  | $\top$ | 75  |   | 79  |   | 104 |   | 123 | *****           |
|                  | LCS<br>480-61379/2-A  | 56  |   | 40  |        | 88  |   | 97  |   | 110 | 1 | 121 |                 |
|                  | LCSD<br>480-61379/3-A | 60  |   | 43  |        | 96  | 1 | 100 |   | 111 |   | 122 | Nach assessment |

 QC LIMITS

 2FP = 2-Fluorophenol
 20-120

 PHL = Phenol-d5
 16-120

 NBZ = Nitrobenzene-d5
 46-120

 FBP = 2-Fluorobiphenyl
 48-120

 TBP = 2,4,6-Tribromophenol
 52-132

 TPH = p-Terphenyl-d14
 67-150

 $\ensuremath{\text{\#}}$  Column to be used to flag recovery values



Hydrology

Remediation

Water Supply

May 2, 2012

Ms. Sarah Newell Clough, Harbour, & Associates LLP III Winners Circle P.O. Box 5269 Albany, New York 12205-0269

Re:

Data Validation Report

ALCO Maxon RI

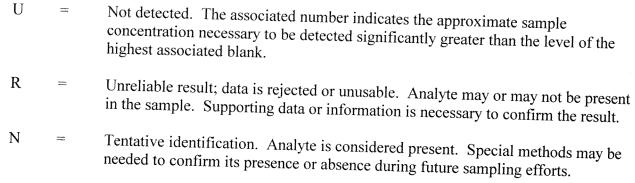
August-September 2011 Ground Water, Soil, and Air Sampling Events

Dear Ms. Newell:

The data usability summary reports (DUSR) and data validation summaries are attached to this letter for ALOC Maxon RI, August-September 2011 ground water, soil, and air sampling events. The data for TestAmerica job numbers 480-8280-1, 480-9072-1, 480-10088-1, 480-10389-1, and 480-10585-1 and TestAmerica Burlington job numbers 200-6629-1 and 200-7167-1 were mostly acceptable with some issues that are identified and discussed in the validation summaries. There was a PCB result in data pack 480-8280-1 that was qualified as unusable (R). The DUSR and QA/QC review outline the reason for rejecting the data. The data is rejected based solely on the validation guidance criteria. The rejected data may be determined to be acceptable to the user based on additional information that is not contained in the data validation criteria.

A list of common data validation acronyms is attached to this letter to assist you in interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Clough, Harbour, & Associates LLP.

Sincerely,


Alpha Geoscience

Donald Anné Senior Chemist

DCA:dca attachments

Z:\projects\2012\12600 - 12620\12611-ALCO RI\alco ri-121-1.ltr.wpd

## Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II



- J = Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

### **Data Validation Acronyms**

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions
MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance QC Quality control RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene
%D Percent difference
%R Percent recovery

%RSD Percent relative standard deviation



Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Burlington, SDG No: 200-6629-1

13 Air Samples, 2 Field Duplicates, and 1 Trip Blank Collected August 16 and 18, 2011

> Prepared by: Donald Anné May 2, 2012

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appears legible and complete. The data pack contained the results of TO15 volatile analyses for 13 air samples, 2 field duplicates, and 1 trip blank.

The overall performances of the analyses are acceptable. TestAmerica Burlington did fulfill the requirements of the analytical method.

The data are acceptable with no issues identified in the accompanying data validation review. There were no data that were flagged as either estimated (J) or unusable (R); therefore, all data are considered usable. Detailed information on data quality is included in the data validation review.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\200-6629-1.dus.wpd



Hydrology

Remediation

Water Supply

# QA/QC Review of TO15 Volatiles Data for TestAmerica Burlington, SDG No: 200-6629-1

### 13 Air Samples, 2 Field Duplicates, and 1 Trip Blank Collected August 16 and 18, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within the EPA recommended holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

- <u>Initial Calibration</u>: The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.
- Continuing Calibration: The RRF10s for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (30%), as required.
- <u>Blanks</u>: The analyses of method and trip blanks reported target compounds as not detected. The certification analyses of summa canisters reported target compounds as not detected.
- Internal Standard Area Summary: The internal standard areas and retention times were within control limits.
- <u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for target compounds were within QC limits (70-130%) for samples LCS 200-24125/3 and LCS 200-24217/25.
- <u>Field Duplicates</u>: The relative percent differences for applicable compounds were below the allowable maximum (50%) in field duplicate pairs SV-B10/CHA-1 and SV-B9/CHA-2 (attached table), as required.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\200-6629-1.t15.wpd

#### **Volatiles**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 200-6629-1

| <b>S1=</b> SV-B10                                                                                                                    |                                                        | <b>S2=</b> CHA-1                                                  |                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|--|--|
| Analyte n-butane acetone n-hexane cyclohexane n-heptane methyl metacrylate cumene n-propylbenzene tert-butylbenzene sec-butylbenzene | \$\frac{\mathbb{S}1}{73}\$ 250 40 23 28 59 44 36 ND 35 | \$2<br>68<br>200<br>35<br>21<br>25<br>54<br>41<br>34<br>7.8<br>34 | RPD (%) 7% 22% 13% 9% 11% 9% 7% 6% NC 3% |  |  |
| <b>S1=</b> SV-B9                                                                                                                     |                                                        | <b>S2=</b> CHA-2                                                  |                                          |  |  |
| Analyte<br>trichloroethene                                                                                                           | <u>\$1</u><br>11                                       | <u>\$2</u><br>11                                                  | RPD (%)                                  |  |  |


<sup>\*</sup> RPD is greater than 50%

Results are in units of bbpv.

### Bold numbers are below quantitation limits

ND - Not detected.

NC - Not calculated, both results must be detected and above quantitation limits for valid RPDs to be calculated.



Hydrology

Remediation

Water Supply

### **Data Usability Summary Report for** TestAmerica Burlington, SDG No: 200-7167-1

### 15 Air Samples, 2 Field Duplicates, and 1 Trip Blank Collected September 22 and 23, 2011

Prepared by: Donald Anné May 2, 2012

The data package contains the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appears legible and complete. The data pack contained the results of TO15 volatile analyses for 13 air samples, 2 field duplicates, and 1 trip blank.

The overall performances of the analyses are acceptable. TestAmerica Burlington did fulfill the requirements of the analytical method.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- There was a result for isopropyl alcohol in sample CHA-4 that was quantitated using data extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The result for ethanol marked "E" in the sample was qualified as estimated (J).
- Positive results for the following compounds were flagged as "estimated" (J) in samples SV-B3A and CHA-4 because relative percent differences for these compounds were above the allowable maximum in the associated soil field duplicate pair SV-B3A/CHA-4.

isopropyl alcohol

methyl ethyl ketone

ethylbenzene

m,p-xylene

o-xylene

xylene (total)

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\200-7167-1.dus.wpd



Hydrology

Remediation

Water Supply

# QA/QC Review of TO15 Volatiles Data for TestAmerica Burlington, SDG No: 200-7167-1

#### 15 Air Samples, 2 Field Duplicates, and 1 Trip Blank Collected September 22 and 23, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within the EPA recommended holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The RRF10s for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (30%), as required.

<u>Blanks</u>: The analyses of method and trip blanks reported target compounds as not detected. The certification analyses of summa canisters reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for target compounds were within QC limits (70-130%) for samples LCS 200-25992/3 and LCS 200-26049/3.

<u>Field Duplicates</u>: The relative percent differences (RPDs) for applicable compounds were below the allowable maximum (50%) in field duplicate pair SV-C13/CHA-3 (attached table), as required.

The RPDs for the following compounds were above the allowable maximum (35%) for soil field duplicate pair SV-B3A/CHA-4 (attached table). Results for these compounds should be considered estimated (J) in samples SV-B3A and CHA-4.

isopropyl alcohol m,p-xylene

methyl ethyl ketone

ethylbenzene xylene (total)

o-xylene

Page 1 of 2

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There is a result for isopropyl alcohol in sample CHA-4 that was quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The result for isopropyl alcohol that is flagged as 'E' in the sample CHA-4 should be considered estimated (J).

#### **Volatiles**

## Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 200-7167-1

|                        |                           |                        | _       |
|------------------------|---------------------------|------------------------|---------|
| Analyte<br>freon 22    | <b><u>\$1</u></b><br>0.55 | <u><b>S2</b></u><br>ND | RPD (%) |
| trichlorofluoromethane | 0.86                      | 0.85                   | 1%      |
| freon TF               | 0.33                      | ND                     | NC      |
| acetone                | 19                        | 18                     | 5%      |
| carbon disulfide       | 1.1                       | 1.2                    | 9%      |
| methyl ethyl ketone    | 1.1                       | 1.4                    | 24%     |
| chloroform             | 0.36                      | 0.35                   | 3%      |
| 1,1,1-trichloroethane  | 0.45                      | 0.43                   | 5%      |
| toluene                | 0.27                      | ND                     | NC      |

2.8

ethylbenzene 0.20 m,p-xylene 0.56 xylene, o-0.24 xylene (total) 0.79 1,2,4-trimethylbenzene 0.23

tetrachloroethene

**S1=** SV-C13

NC 38% NC NC NC NC NC

**S1=** SV-B3A

**S2=** CHA-4

1.9

ND

ND

ND

ND

ND

**S2=** CHA-3

| <u>Analyte</u>         | <u>S1</u> |                           | DDD (0/)       |   |
|------------------------|-----------|---------------------------|----------------|---|
| n-butene               | ND        | <u><b>\$2</b></u><br>0.71 | <u>RPD (%)</u> |   |
| trichlorofluoromethane | 3.8       | 3.5                       | NC             |   |
| acetone                | 10        |                           | 8%             |   |
| isopropyl alcohol      | 5.3       | 12                        | 18%            |   |
| carbon disulfide       |           | 260                       | 192%           | * |
|                        | 2.1       | 1.8                       | 15%            |   |
| n-hexane               | 0.29      | 0.32                      | 10%            |   |
| methyl ethyl ketone    | 0.55      | 1.0                       | 58%            | * |
| chloroform             | 0.30      | 0.27                      | 11%            |   |
| cyclohexane            | 0.33      | 0.35                      |                |   |
| carbon tetrachloride   | 1.4       |                           | 6%             |   |
| n-heptane              | ND        | 1.3                       | 7%             |   |
| toluene                |           | 0.25                      | NC             |   |
| <del>-</del>           | ND        | 0.26                      | NC             |   |
| tetrachloroethene      | ND        | 0.67                      | NC             |   |
| ethylbenzene           | 0.26      | 0.73                      | 95%            | * |
| m,p-xylene             | 0.66      | 1.7                       | 88%            | * |
| xylene, o-             | 0.29      |                           |                |   |
| xylene (total)         |           | 0.64                      | 75%            | * |
| - ,                    | 0.95      | 2.3                       | 83%            | * |
| 1,2,4-trimethylbenzene | 0.23      | 0.24                      | 4%             |   |
|                        |           |                           |                |   |

<sup>\*</sup> RPD is greater than 50%

Results are in units of bbpv.

## Bold numbers are above quantitation limits

ND - Not detected.

NC - Not calculated, both results must be detected and above quantitation limits for valid RPDs to be calculated.



Geology

Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-8280-1

### 19 Soil Samples, 2 Field Duplicates, and 3 Trip Blanks Collected August 8-22, 2011

Prepared by: Donald Anné May 2, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 19 soil samples, 2 field duplicates, and 3 trip blanks analyzed for volatiles, and 19 soil samples and 2 field duplicates analyzed semi-volatiles, PCB, and TAL metals.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• Positive volatile result for tetrachloroethene were flagged as "not detected" (U) for the following soil samples because the level reported in the samples were not significantly greater than (more than 5 times) the highest associated blank level.

| SS-A8<br>SS-B7<br>SS-C9 | SS-B1<br>SS-B8<br>DUP-01 | SS-B2<br>SS-C3 | SS-B3<br>SS-C5 | SS-B4<br>SS-C6 | SS-B5<br>SS-C8 |
|-------------------------|--------------------------|----------------|----------------|----------------|----------------|
|-------------------------|--------------------------|----------------|----------------|----------------|----------------|

- Positive volatile results for tetrachloroethene and toluene were flagged as "not detected" (U) for the trip blanks collected on 08-09-11 and 08-10-11 because the level reported in the samples were not significantly greater than (more than 5 times) the highest associated blank level.
- Positive volatile result for methylene chloride was flagged as "not detected" (U) for the trip blank collected on 08-09-11 because the level reported in the sample was not significantly greater than (more than 10 times) the highest associated blank level.

- Positive semi-volatile results for benzo(b)fluoranthene were flagged as "estimated" (J) in samples SS-C2 and DUP-02 because relative percent differences for benzo(b)fluoranthene was above the allowable maximum in the associated soil field duplicate pair SS-C2/DUP-02.
- The positive PCB results for PCB-1254 were flagged as "estimated" (J) in sample SS-C1 and DUP-02 because the %Ds for dual quantitation of PCB-1254 were above the allowable maximum, but were not above 70% in the samples SS-C1 and DUP-02.
- The positive PCB result for PCB-1260 was flagged as "unusable" (R) in sample SS-B4 because the %D for dual quantitation of PCB-1260 was above the allowable maximum and was above 100% in the sample SS-B4.
- The positive results for aluminum were flagged as "estimated" (J) in all 19 soil samples and both field duplicates because 2 of 2 percent recoveries for aluminum were above control limits, but were not above 300% in the associated soil MS/MSD samples.
- The positive results for potassium were flagged as "estimated" (J) in all 19 soil samples and both field duplicates because 2 of 2 percent recoveries for potassium were above control limits, but were not above 200% in the associated soil MS/MSD samples.
- The positive results for barium were flagged as "estimated" (J) in the following soil samples because 2 of 2 percent recoveries for barium were above control limits, but were not above 200% in the associated soil MS/MSD sample.

| SS-C3<br>SS-C1 | SS-C5<br>SS-C2 | SS-C6<br>DUP-02 | SS-C8<br>SS-C7 | SS-C9 | DUP-01 |
|----------------|----------------|-----------------|----------------|-------|--------|
|                | 55 62          | DOF-02          | SS-C7          | SS-C4 | SS-B6  |

• The positive results for calcium were flagged as "estimated" (J) in the following soil samples because 2 of 2 percent recoveries for calcium were below control limits and were below 10% in the associated soil MS/MSD sample.

| SS-C3 | SS-C5 | SS-C6  | SS-C8 | SS-C9 | DUP-01 |
|-------|-------|--------|-------|-------|--------|
| SS-C1 | SS-C2 | DUP-02 | SS-C7 | SS-C4 | SS-B6  |
|       |       |        | 200,  | 33-C4 | 22-R0  |

• The positive results for magnesium were flagged as "estimated" (J) in the following soil samples because 2 of 2 percent recoveries for magnesium were below control limits and one was below 10% in the associated soil MS/MSD sample.

| SS-C3<br>SS-C1 | SS-C5 | SS-C6  | SS-C8 | SS-C9 | DUP-01 |
|----------------|-------|--------|-------|-------|--------|
| SS-C1          | SS-C2 | DUP-02 | SS-C7 | SS-C4 | SS-B6  |

• The positive and "not detected" results for antimony were flagged as "estimated" (J) in the following soil samples because 1 of 2 percent recoveries for antimony was below control limits, but was not below 10% in the associated soil MS/MSD sample.

| SS-C3 | SS-C5 | SS-C6  | SS-C8 | SS-C9 | DUD 01          |
|-------|-------|--------|-------|-------|-----------------|
| SS-C1 | SS-C2 | DUP-02 | SS-C7 | SS-C4 | DUP-01<br>SS-B6 |

• The positive results for chromium were flagged as "estimated" (J) in the following soil samples because 1 of 2 percent recoveries for chromium was above control limits, but was not above 200% in the associated soil MS/MSD sample.

| SS-A8 | SS-A9 | SS-B1 | SS-B2 | SS-B3 |
|-------|-------|-------|-------|-------|
| SS-B4 | SS-B5 | SS-B7 | SS-B8 | 33-D3 |

• The positive results for arsenic were flagged as "estimated" (J) in the following soil samples because 2 of 2 percent recoveries for arsenic were above control limits and were below 10% in the associated soil MS/MSD sample.

| SS-A8 | SS-A9 | SS-B1 | SS-B2          | 20.02 |
|-------|-------|-------|----------------|-------|
| SS-B4 | SS-B5 | SS-B7 | SS-B2<br>SS-B8 | SS-B3 |

All data that are not flagged unusable (R) are considered usable with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Geology

Hydrology

Remediation

Water Supply

## QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-8280-1

## 19 Soil Samples, 2 Field Duplicates, and 3 Trip Blanks Collected August 8-22, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for chloroethane, acetone, and 2-butanone were above the allowable maximum (25%) on 08-13-11 (P4482.D). The %Ds for chloroethane and 1,2-dibromo-3-chloropropane were above the allowable maximum (25%) on 08-17-11 (S5005.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: Method blank MB 480-27458/7 contained traces of tetrachloroethene (1.97 ug/kg) and toluene (1.34 ug/kg). Method blank MS 480-29184/26 contained a trace of methylene chloride (5.78 ug/kg). Method blank MB 480-31091/4 contained traces of methylene chloride (0.812 ug/L), tetrachloroethene (1.86 ug/L), and toluene (1.25 ug/L). The trip blank collected on 08-09-11 contained a trace of acetone (3.1 ug/L). Positive results for acetone and methylene chloride that are less than ten times the highest blank level should be reported as not detected (J) in associated samples. Positive results for tetrachloroethene and toleune that are less than five times the highest blank level should be reported as not detected (J) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum, but 12 of 26 percent recoveries were below QC limits for soil MS/MSD sample SS-C6. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for the following aqueous and soil samples.

| LCS 480-27458/3<br>LCS 480-27936/4<br>LCS 480-31091/3 | LCS 480-27603/6<br>LCS 480-29135/5 | LCS 480-27822/4<br>LCS 480-29184/4 |
|-------------------------------------------------------|------------------------------------|------------------------------------|
|-------------------------------------------------------|------------------------------------|------------------------------------|

<u>Field Duplicates</u>: The analyses of soil field duplicate pairs SS-C3/DUP-01 and SS-C2/DUP-02 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

## FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | : TestAmerica Buffa                     |        |                                         | Job No.: 48 | 30-8280-1 |  |
|----------|-----------------------------------------|--------|-----------------------------------------|-------------|-----------|--|
| SDG No.: |                                         |        |                                         |             |           |  |
|          | 7 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |        | *************************************** |             |           |  |
| Matrix:  | Solid                                   | Level: | Low                                     | Lab File ID | : P4500.D |  |
| Lab ID:  | 480-8453-3 MS                           |        |                                         | Client ID:  |           |  |

|                          | SPIKE   | SAMPLE        | MS            | MS    | QC               | the definition of the second s |
|--------------------------|---------|---------------|---------------|-------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | 00    | LIMITS           | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC   | REC              | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1,1-Dichloroethane       | 52.8    | ND            | 53.5          | 101   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,1-Dichloroethene       | 52.8    | ND            | 43.7          | 83    |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichlorobenzene      | 52.8    | ND            | 20.5          |       | 65-153           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1,2-Dichloroethane       | 52.8    | ND            |               | (39   |                  | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Benzene                  | 52.8    |               | 50.4          | 95    | 77-122           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chlorobenzene            | 52.8    | ND            | 49.7          | 94    | 79-127           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cis-1,2-Dichloroethene   |         | ND            | 32.3          | (61)  | 76-124           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ethylbenzene             | 52.8    | ND            | 46.2          | 88    | 81-117           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl tert-butyl ether  | 52.8    | ND            | 34.3          | (65)  | 80-120           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | 52.8    | ND            | 52.1          | 99    | 63-125           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tetrachloroethene        | 52.8    | 1.5 J         | 31.1          | C221) | 74-122           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Toluene                  | 52.8    | ND            | 34.1          | (65)  | 74-128           | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| trans-1,2-Dichloroethene | 52.8    | ND            | 45.8          | 87    |                  | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Trichloroethene          | 52.8    | 6.2           |               | -1067 | 78-126<br>77-129 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $\mbox{8260B}$ 

## FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa |        |     | Job  | No.:                                    | 480- | 8280-1  |                             |
|----------|----------------------|--------|-----|------|-----------------------------------------|------|---------|-----------------------------|
| SDG No.: |                      |        |     |      |                                         |      |         |                             |
|          |                      |        |     |      | *************************************** |      |         |                             |
| Matrix:  | Solid                | Level: | Low | Lab  | File :                                  |      | P4501.D | Providence and the property |
| Lab ID:  | 480-8453-3 MSD       |        |     | Clie | ent ID                                  |      | -C6 MSD |                             |

|                          | SPIKE   | MSD           | MSD    | A LANGE | QC LI | MITS   |     |
|--------------------------|---------|---------------|--------|---------|-------|--------|-----|
|                          | ADDED   | CONCENTRATION | 용      | 용       |       |        | #   |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | REC    | RPD     | RPD   | REC    | "   |
| 1,1-Dichloroethane       | 43.0    | 42.2          | 98     | 24      | 30    | 79-126 |     |
| 1,1-Dichloroethene       | 43.0    | 34.2          | 80     | 24      | 30    |        |     |
| 1,2-Dichlorobenzene      | 43.0    | 19.2          | (45)   |         |       | 65-153 |     |
| 1,2-Dichloroethane       | 43.0    | 39.7          | 92     |         | 30    | 75-120 | F   |
| Benzene                  | 43.0    |               |        | 24      | 30    | 77-122 | *** |
| Chlorobenzene            | 43.0    | 40.2          | 94     | 21      | 30    | 79-127 |     |
| cis-1,2-Dichloroethene   |         | 26.9          | (63)   | 18      | 30    | 76-124 | F   |
| Ethylbenzene             | 43.0    | 36.5          | 85     | 23      | 30    | 81-117 |     |
|                          | 43.0    | 28.8          | (67)   | 17      | 30    | 80-120 | F   |
| Methyl tert-butyl ether  | 43.0    | 41.0          | 95     | 24      | 30    | 63-125 |     |
| Tetrachloroethene        | 43.0    | 25.9          | (-284) | 18      | 30    | 74-122 | F   |
| Toluene                  | 43.0    | 28.2          | (66)   | 19      | 30    | 74-128 | F   |
| trans-1,2-Dichloroethene | 43.0    | 36.0          | 84     | 24      | 30    | 78-126 |     |
| Trichloroethene          | 43.0    |               | -1334  | 20      | 30    | 77-129 | 4   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

Lab Name: TestAmerica Buffalo Job No.: 480-8280-1

SDG No.:

Lab Sample ID: CCVIS 480-27458/2 Calibration Date: 08/13/2011 14:19

Instrument ID: HP5973P Calib Start Date: 08/02/2011 01:54

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 08/02/2011 04:01

Lab File ID: P4482.D Conc. Units: ug/L Heated Purge: (Y/N) N

|                                        |               |         |        |         |                |                 |                 | ,         |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|-----------------|-----------|
| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D              | MAX<br>%D |
| Dichlorodifluoromethane                | Ave           | 0.3681  | 0.3828 |         | £2.0           |                 |                 | ļ         |
| Chloromethane                          | Ave           | 0.3975  | 0.3763 | 0.1000  | 52.0           | 50.0            |                 | 50.0      |
| Vinyl chloride                         | Ave           | 0.3571  | 0.3689 | 0.1000  | 47.3           | 50.0            |                 | 50.0      |
| Bromomethane                           | Ave           | 0.0629  | 0.0624 |         | 51.7           | 50.0            |                 | 20.0      |
| Chloroethane                           | Ave           | 0.0771  | 0.0573 |         | 49.6           | 50.0            |                 | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.5959  | 0.6080 |         | 37.2           | 50.0            |                 | 50.0      |
| Acrolein                               | Ave           | 0.0191  | 0.0178 |         | 51.0           | 50.0            |                 | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.3523  | 0.3799 |         | 933<br>53.9    | 1000            |                 | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.3453  | 0.3910 | 0.1000  | 56.6           | F.O. O.         |                 |           |
| Acetone                                | Ave           | 0.1020  | 0.1292 | 0.1000  | 317            | 50.0            | 13.2            | 20.0      |
| Iodomethane                            | Ave           | 0.4815  | 0.5476 |         |                | 250             |                 | 50.0      |
| Carbon disulfide                       | Ave           | 0.9074  | 1.021  |         | 56.9           | 50.0            |                 | 50.0      |
| Methyl acetate                         | Ave           | 0.4094  | 0.5183 |         | 56.3           | 50.0            | 12.6            | 50.0      |
| Acetonitrile                           | Ave           | 0.0241  | 0.0307 |         | 63.3           | 50.0            | ₩ 26.6          | 50.0      |
| Methylene Chloride                     | LinF          |         | 0.4440 |         | 2550           | 2000            | VA 27.3         | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.9509  | 1.126  |         | 58.4           | 50.0            | 16.8            | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.3626  | 0.4136 |         | 59.2           | 50.0            | 18.4            | 50.0      |
| Acrylonitrile                          | Ave           | 0.1187  | 0.1587 |         | 57.0           | 50.0            | 14.1            | 50.0      |
| Vinyl acetate                          | Ave           | 0.4801  | 0.6556 |         | 334            | 250             | WA 33.7         | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.6679  | 0.7460 |         | 341            | 250             | NA 36.6         | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.4802  |        |         | 55.8           | 50.0            | 11.7            | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1568  | 0.5723 |         | 59.6           | 50.0            | 19.2            | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3951  |        |         | 329            | 250             | (31.7)          | 50.0      |
| Bromochloromethane                     | Ave           | 0.1898  | 0.4494 |         | 56.9           | 50.0            | 13.7            | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1898  | 0.2239 |         | 59.0           | 50.0            | 17.9            | 50.0      |
| Chloroform                             | Ave           | 0.6239  | 0.1310 |         | 332            | 250             | MA 32.6         | 50.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.4942  | 0.6935 |         | 55.6           | 50.0            | 11.2            | 20.0      |
| Cyclohexane                            | Ave           | 0.5923  | 0.5770 |         | 58.4           | 50.0            | 16.8            | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.4673  | 0.6404 |         | 54.1           | 50.0            | 8.1             | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.4288  | 0.5409 |         | 57.9           | 50.0            | 15.8            | 50.0      |
| Benzene                                | Ave           | 1.343   | 0.5043 |         | 58.8           | 50.0            | 17.6            | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.4549  | 1.546  |         | 57.6           | 50.0            | 15.1            | 50.0      |
| Trichloroethene                        | Ave           |         | 0.5083 |         | 55.9           | 50.0            | 11.7            | 50.0      |
| Methylcyclohexane                      | -             | 0.3608  | 0.4101 |         | 56.8           | 50.0            | 13.7            | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.5675  | 0.6348 |         | 55.9           | 50.0            | 11.9            | 50.0      |
| Dibromomethane                         | Ave Ave       | 0.3695  | 0.4119 |         | 55.7           | 50.0            | 11.5            | 20.0      |
| Bromodichloromethane                   |               | 0.2150  | 0.2544 |         | 59.1           | 50.0            | 18.3            | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.4172  | 0.4895 |         | 58.7           | 50.0            | 17.3            | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.1735  | 0.2493 |         | 359            | 250             | Δ <u>Δ</u> 43.7 | 50.0      |
| 1-Methyl-2-pentanone (MIBK)            | Ave           | 0.5171  | 0.6121 |         | 59.2           | 50.0            | 18.4            | 50.0      |
|                                        | Ave           | 0.6685  | 0.7521 |         | 281            | 250             | 12.5            | 50.0      |

Lab Name: TestAmerica Buffalo

Job No.: 480-8280-1

SDG No.:

Lab Sample ID: CCVIS 480-27458/2

Calibration Date: 08/13/2011 14:19

Instrument ID: HP5973P

Calib Start Date: 08/02/2011 01:54

GC Column: ZB-624 (60) ID: 0.25(mm)

Calib End Date: 08/02/2011 04:01

Lab File ID: P4482.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | 1      | MAX<br>%D |
|-----------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|--------|-----------|
| Toluene                     | Ave           | 1.897   | 1.794  |                                         | 47.3           | 50.0            |        |           |
| trans-1,3-Dichloropropene   | Ave           | 0.9488  | 1.026  |                                         | 54.1           | 50.0            |        | 20.0      |
| Ethyl methacrylate          | Ave           | 0.8112  | 0.9025 |                                         | 55.6           | 50.0            | 0.1    | 50.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.5319  | 0.5462 |                                         | 51.3           | 50.0            |        | 50.0      |
| Tetrachloroethene           | Ave           | 0.9666  | 0.9508 |                                         | 49.2           |                 |        | 50.0      |
| 1,3-Dichloropropane         | Ave           | 1.036   | 1.049  |                                         | 50.6           | 50.0            |        | 50.0      |
| 2-Hexanone                  | Ave           | 0.4881  | 0.5406 |                                         | 277            | 50.0            |        | 50.0      |
| Dibromochloromethane        | Lin1F         |         | 0.7055 |                                         | 48.4           | 250             |        | 50.0      |
| 1,2-Dibromoethane           | Ave           | 0.6649  | 0.7105 | ~~~                                     | 53.4           | 50.0            |        | 50.0      |
| Chlorobenzene               | Ave           | 2.075   | 2.071  | 0.3000                                  | 49.9           | 50.0            |        | 50.0      |
| Ethylbenzene                | Ave           | 3.226   | 3.265  | 0.3000                                  |                | 50.0            |        | 50.0      |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.6795  | 0.7300 |                                         | 50.6           | 50.0            |        | 20.0      |
| m,p-Xylene                  | Ave           | 1.353   | 1.375  |                                         | 53.7           | 50.0            | 7.4    | 50.0      |
| o-Xylene                    | Ave           | 1.361   | 1.369  |                                         | 102            | 100             | 1.6    | 50.0      |
| Styrene                     | Ave           | 2.307   | 2.302  |                                         | 50.3           | 50.0            | 0.7    | 50.0      |
| Bromoform                   | LinF          |         | 0.5230 | 0 1000                                  | 49.9           | 50.0            | -0.2   | 50.0      |
| Isopropylbenzene            | Ave           | 3.021   | 2.610  | 0.1000                                  | 46.5           | 50.0            | -7.0   | 50.0      |
| 1,1,2,2-Tetrachloroethane   | Ave           | 0.7479  |        |                                         | 43.2           | 50.0            | -13.6  | 50.0      |
| Bromobenzene                | Ave           | 0.9222  | 0.6840 | 0.3000                                  | 45.7           | 50.0            | -8.5   | 50.0      |
| trans-1,4-Dichloro-2-butene | Ave           | 0.1830  | 0.7805 |                                         | 42.3           | 50.0            | -15.4  | 50.0      |
| 1,2,3-Trichloropropane      | Ave           | 0.2145  | 0.1761 |                                         | 241            | 250             | -3.8   | 50.0      |
| N-Propylbenzene             | Ave           | 3.669   | 0.1939 |                                         | 45.2           | 50.0            | -9.6   | 50.0      |
| 2-Chlorotoluene             | Ave           | 0.7999  | 3.169  |                                         | 43.2           | 50.0            | -13.6  | 50.0      |
| 1,3,5-Trimethylbenzene      | Ave           | 2.552   | 0.6725 |                                         | 42.0           | 50.0            | -15.9  | 50.0      |
| 4-Chlorotoluene             | Ave           | 0.8263  | 2.191  |                                         | 42.9           | 50.0            | -14.1  | 50.0      |
| tert-Butylbenzene           | Ave           | 0.5581  | 0.6929 |                                         | 41.9           | 50.0            | -16.1  | 50.0      |
| 1,2,4-Trimethylbenzene      | Ave           | 2.601   | 0.4800 |                                         | 43.0           | 50.0            | -14.0  | 50.0      |
| sec-Butylbenzene            | Ave           | 3.326   | 2.215  | *************************************** | 42.6           | 50.0            | -14.8  | 50.0      |
| 4-Isopropyltoluene          | Ave           | 2.685   | 2.897  |                                         | 43.5           | 50.0            | -12.9  | 50.0      |
| 1,3-Dichlorobenzene         | Ave           | 1.652   | 2.326  |                                         | 43.3           | 50.0            | -13.4  | 50.0      |
| 1,4-Dichlorobenzene         | Ave           |         | 1.414  |                                         | 42.8           | 50.0            | -14.4  | 50.0      |
| n-Butylbenzene              | Ave           | 1.686   | 1.445  |                                         | 42.8           | 50.0            | -14.3  | 50.0      |
| ,,2-Dichlorobenzene         | Ave           | 2.629   | 2.233  |                                         | 42.5           | 50.0            | -15.0  | 50.0      |
| ,2-Dibromo-3-Chloropropane  | Lin1F         | 1.569   | 1.347  |                                         | 42.9           | 50.0            | -14.2  | 50.0      |
| ,2,4-Trichlorobenzene       |               |         | 0.1179 |                                         | 46.6           | 50.0            | -6.8   | 50.0      |
| exachlorobutadiene          | Ave           | 1.174   | 1.073  |                                         | 45.7           | 50.0            | -8.6   | 50.0      |
| aphthalene                  | Ave           | 0.3685  | 0.4487 |                                         | 60.9           | 50.0            | 21.8   | 50.0      |
| ,2,3-Trichlorobenzene       | Ave           | 1,149   | 1.637  |                                         | 71.3           | 50.0            | A 42.5 | 50.0      |
| ,2-Dichloroethane-d4 (Surr) | Ave           | 0.5433  | 0.6595 |                                         | 60.7           | 50.0            | 21.4   | 50.0      |
| oluene-d8 (Surr)            | Ave           | 0.2258  | 0.2244 |                                         | 49.7           | 50.0            | -0.6   | 50.0      |
| -Bromofluorobenzene (Surr)  | Ave           | 2.825   | 2.698  |                                         | 47.8           | 50.0            | -4.5   | 50.0      |
| promotituoiopenzene (Surr)  | Ave           | 1.144   | 1.112  |                                         | 48.6           | 50.0            | -2.8   | 50.0      |

Lab Name: TestAmerica Buffalo

Job No.: 480-8280-1

SDG No.:

Lab Sample ID: CCVIS 480-27822/2

Calibration Date: 08/17/2011 09:42

Instrument ID: HP5973S

Calib Start Date: 07/08/2011 12:49

GC Column: ZB-624 (60) ID: 0.25(mm)

Calib End Date: 07/08/2011 14:39

Lab File ID: S5005.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                               | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D    |
|----------------------------------------|---------------|---------|--------|---------------------------------------|----------------|-----------------|-------|--------------|
| Dichlorodifluoromethane                | Ave           | 0.3034  | 0.2815 |                                       | 23,2           |                 |       |              |
| Chloromethane                          | Ave           | 0.4141  | 0.3494 | 0.1000                                | 23.2           | 25.0            | -7.2  | 50.0         |
| Vinyl chloride                         | Ave           | 0.4116  | 0.3299 | 0.1000                                | 20.0           | 25.0            | -15.6 | 50.0         |
| Bromomethane                           | Ave           | 0.0905  | 0.0701 |                                       | 19.4           | 25.0            | -19.9 | 20.0         |
| Chloroethane                           | QuaF          | *       | 0.1563 |                                       | 34.4           | 25.0            | -22.5 | 50.0         |
| Trichlorofluoromethane                 | Lin1F         |         | 0.3362 |                                       | 24.1           | 25.0            | 37.6  | 50.0         |
| Acrolein                               | Ave           | 0.0239  | 0.0130 |                                       | 272            | 25.0            | -3.6  | 50.0         |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2719  | 0.3241 |                                       | 29.8           | 500<br>25.0     | 19.2  | 50.0<br>50.0 |
| 1,1-Dichloroethene                     | Ave           | 0.3417  | 0.2955 | 0.1000                                | 21.6           | 25.0            | -13.5 | 20.0         |
| Acetone                                | Ave           | 0.1508  | 0.1520 |                                       | 126            | 125             | 0.8   | 50.0         |
| Iodomethane                            | Ave           | 0.3482  | 0.3564 |                                       | 25.6           | 25.0            | 2.3   | 50.0         |
| Carbon disulfide                       | Ave           | 0.8314  | 0.8657 |                                       | 26.0           | 25.0            | 4.1   |              |
| Methyl acetate                         | Ave           | 0.6175  | 0.6211 |                                       | 25.1           | 25.0            | 0.6   | 50.0         |
| Acetonitrile                           | Ave           | 0.0354  | 0.0351 |                                       | 993            | 1000            | -0.7  | 50.0         |
| Methylene Chloride                     | Ave           | 0.3877  | 0.3269 |                                       | 21.1           | 25.0            |       | 50.0         |
| Methyl tert-butyl ether                | Ave           | 1.244   | 1.153  |                                       | 23.2           | 25.0            | -15.7 | 50.0         |
| trans-1,2-Dichloroethene               | Ave           | 0.3422  | 0.3089 |                                       | 22.6           | 25.0            | -7.3  | 50.0         |
| Acrylonitrile                          | Ave           | 0.1880  | 0.1895 | ****                                  | 126            |                 | -9.7  | 50.0         |
| 1,1-Dichloroethane                     | Ave           | 0.6458  | 0.5540 |                                       | 21.4           | 125             | 0.8   | 50.0         |
| Vinyl acetate                          | Ave           | 0.7713  | 0.7287 |                                       | 118            | 25.0            | -14.2 | 50.0         |
| 2,2-Dichloropropane                    | Ave           | 0.2987  | 0.2418 |                                       | 20.2           |                 | -5.5  | 50.0         |
| cis-1,2-Dichloroethene                 | Ave           | 0.3912  | 0.3381 |                                       | 21.6           | 25.0            | -19.1 | 50.0         |
| 2-Butanone (MEK)                       | Ave           | 0.2497  | 0.2381 |                                       | 119            | 25.0            | -13.6 | 50.0         |
| Bromochloromethane                     | Ave           | 0.1812  | 0.1619 |                                       | 22.3           | 125             | -4.7  | 50.0         |
| Tetrahydrofuran                        | Ave           | 0.1667  | 0.1564 |                                       | 117            | 25.0            | -10.7 | 50.0         |
| Chloroform                             | Ave           | 0.6146  | 0.5129 |                                       |                | 125             | -6.2  | 50.0         |
| 1,1,1-Trichloroethane                  | Ave           | 0,4026  | 0.3687 |                                       | 20.9           | 25.0            | -16.5 | 20.0         |
| Cyclohexane                            | Ave           | 0.6830  | 0.6830 |                                       |                | 25.0            | -8.4  | 50.0         |
| Carbon tetrachloride                   | Ave           | 0.4084  | 0.3613 |                                       | 25.0           | 25.0            | 0.0   | 50.0         |
| 1,1-Dichloropropene                    | Ave           | 0.4975  | 0.4170 |                                       | 22.1           | 25.0            | -11.5 | 50.0         |
| Benzene                                | Ave           | 1.524   | 1.275  |                                       | 21.0           | 25.0            | -16.2 | 50.0         |
| 1,2-Dichloroethane                     | Ave           | 0.5053  | 0.4213 |                                       | 20.9           | 25.0            | -16.3 | 50.0         |
| Trichloroethene                        | Ave           | 0.3603  | 0.3046 |                                       | 20.8           | 25.0            | -16.6 | 50.0         |
| Methylcyclohexane                      | Ave           | 0.6254  | 0.6617 |                                       | 21.1           | 25.0            | -15.5 | 50.0         |
| 1,2-Dichloropropane                    | Ave           | 0.3897  | 0.3122 |                                       | 26.4           | 25.0            | 5.8   | 50.0         |
| Dibromomethane                         | Ave           | 0.2150  | 0.1804 |                                       | 20.0           | 25.0            | -19.9 | 20.0         |
| Bromodichloromethane                   | Ave           | 0.4517  | 0.3715 |                                       | 21.0           | 25.0            | -16.1 | 50.0         |
| 2-Chloroethyl vinyl ether              | Ave           | 0.2960  | 0.3713 |                                       | 20.6           | 25.0            | -17.8 | 50.0         |
| cis-1,3-Dichloropropene                | Ave           | 0.6262  | 0.4886 | · · · · · · · · · · · · · · · · · · · | 115            | 125             | -8.3  | 50.0         |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.9897  | 0.4886 |                                       | 19.5           | 25.0            | -22.0 | 50.0         |
|                                        |               | 0.3031  | 0.3009 |                                       | 124            | 125             | -0.9  | 50.0         |

Lab Name: TestAmerica Buffalo

Job No.: 480-8280-1

SDG No.:

Lab Sample ID: CCVIS 480-27822/2

Calibration Date: 08/17/2011 09:42

Instrument ID: HP5973S

Calib Start Date: 07/08/2011 12:49

GC Column: ZB-624 (60) ID: 0.25(mm)

Calib End Date: 07/08/2011 14:39

Lab File ID: S5005.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|---------|-----------|
| Toluene                      | Ave           | 1.968   | 1 715  |                                         |                |                 |         |           |
| trans-1,3-Dichloropropene    | Ave           | 1.162   | 1.715  |                                         | 21.8           | 25.0            | -12.9   | 20.0      |
| Ethyl methacrylate           | Ave           | 1.162   | 0.9461 |                                         | 20.4           | 25.0            | -18.6   | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.5824  | 1.146  |                                         | 23.4           | 25.0            | -6.4    | 50.0      |
| Tetrachloroethene            | Ave           | 0.3824  | 0.5049 |                                         | 21.7           | 25.0            | -13.3   | 50.0      |
| 1,3-Dichloropropane          | Ave           |         | 0.6639 |                                         | 23.0           | 25.0            | -8.0    | 50.0      |
| 2-Hexanone                   | Ave           | 1.245   | 1.053  |                                         | 21.1           | 25.0            | -15.4   | 50.0      |
| Dibromochloromethane         | Ave           | 0.7294  | 0.7128 |                                         | 122            | 125             | -2.3    | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6810  | 0.5917 |                                         | 21.7           | 25.0            | -13.1   | 50.0      |
| Chlorobenzene                | Ave           | 0.6939  | 0.5970 |                                         | 21.5           | 25.0            | -14.0   | 50.0      |
| Ethylbenzene                 |               | 2.132   | 1.869  | 0.3000                                  | 21.9           | 25.0            | -12.3   | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 3.608   | 3.112  |                                         | 21.6           | 25.0            | -13.7   | 20.0      |
| m,p-Xylene                   | Ave           | 0.6760  | 0.5945 |                                         | 22.0           | 25.0            | -12.1   | 50.0      |
| o-Xylene                     | Ave           | 1.447   | 1.234  |                                         | 42.7           | 50.0            | -14.7   | 50.0      |
| Styrene                      | Ave           | 1.393   | 1.185  |                                         | 21.3           | 25.0            | -14.9   | 50.0      |
| Bromoform                    | Ave           | 2.444   | 2.092  |                                         | 21.4           | 25.0            | -14.4   | 50.0      |
| Isopropylbenzene             | Ave           | 0.4230  | 0.3628 | 0.1000                                  | 21.4           | 25.0            | -14.2   | 50.0      |
| Bromobenzene                 | Ave           | 3.805   | 3.156  |                                         | 20.7           | 25.0            | -17.0   | 50.0      |
|                              | Ave           | 0.8847  | 0.7767 |                                         | 21.9           | 25.0            | -12.2   | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 1.022   | 0.8400 | 0.3000                                  | 20.6           | 25.0            | -17.8   | 50.0      |
| N-Propylbenzene              | Ave           | 4.711   | 4.005  |                                         | 21.3           | 25.0            | -15.0   | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.3123  | 0.2692 | *************************************** | 21.5           | 25.0            | -13.8   | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.3124  | 0.3053 | -7-2                                    | 122            | 125             | -2.3    | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.8869  | 0.7529 |                                         | 21.2           | 25.0            | -15.1   | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 3.200   | 2.680  |                                         | 20.9           | 25.0            | -16.2   | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.9284  | 0.8067 |                                         | 21.7           | 25.0            | -13.1   | 50.0      |
| tert-Butylbenzene            | Ave           | 0.7090  | 0.5999 |                                         | 21.2           | 25.0            | -15.4   | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 3.221   | 2.730  |                                         | 21.2           | 25.0            | -15.3   | 50.0      |
| sec-Butylbenzene             | Ave           | 4.105   | 3.486  |                                         | 21.2           | 25.0            | -15.1   | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.742   | 1.536  |                                         | 22.0           | 25.0            | -11.8   | ····      |
| 4-Isopropyltoluene           | Ave           | 3.453   | 2.973  |                                         | 21.5           | 25.0            | -13.9   | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.804   | 1.566  |                                         | 21.7           | 25.0            | -13.9   | 50.0      |
| n-Butylbenzene               | Ave           | 3.195   | 2.755  |                                         | 21.6           | 25.0            |         | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.684   | 1.480  |                                         | 22.0           | 25.0            | -13.8   | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.2044  | 0.1508 |                                         | 18.4           | 1               | -12.1   | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.203   | 1.045  |                                         |                | 25.0            | (-26.2) | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.2436  | 0.2210 |                                         | 21.7           | 25.0            | -13.2   | 50.0      |
| Naphthalene                  | Ave           | 1.654   | 1.313  |                                         | 22.7           | 25.0            | -9.3    | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.5173  | 0.4501 |                                         | 19.8           | 25.0            | -20.7   | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1978  | 0.2015 |                                         | 21.8           | 25.0            | -13.0   | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.467   | 2.734  |                                         | 25.5           | 25.0            | 1.9     | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.7741  | 0.7894 |                                         | 27.7           | 25.0            | 10.8    | 50.0      |
|                              |               | 0.1171  | 0.7034 |                                         | 25.5           | 25.0            | 2.0     | 50.0      |

| Lab Name: TestAmerica Buffalo | Job No.: 480-8280-1                 |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-27458/7       |
| Matrix: Solid                 | Lab File ID: P4485.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 08/13/2011 16:12     |
| Soil Alíquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 27458     | Units: na/Ka                        |

| CAS NO.   | COMPOUND NAME                        | RESULT | Q | RL  | MDL  |
|-----------|--------------------------------------|--------|---|-----|------|
| 71-55-6   | 1,1,1-Trichloroethane                | ND     |   | 5.0 |      |
| 79-34-5   | 1,1,2,2-Tetrachloroethane            | ND     |   | 5.0 | 0.3  |
| 79-00-5   | 1,1,2-Trichloroethane                | ND     |   | 5.0 | 0.8  |
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 5.0 | 0.6  |
| 75-34-3   | 1,1-Dichloroethane                   | ND     |   |     |      |
| 75-35-4   | 1,1-Dichloroethene                   | ND ND  |   | 5.0 | 0.61 |
| 120-82-1  | 1,2,4-Trichlorobenzene               | ND ND  |   | 5.0 | 0.61 |
| 96-12-8   | 1,2-Dibromo-3-Chloropropane          | ND     |   | 5.0 | 0.30 |
| 106-93-4  | 1,2-Dibromoethane                    | ND     |   | 5.0 | 2.5  |
| 95-50-1   | 1,2-Dichlorobenzene                  |        |   | 5.0 | 0.64 |
| 107-06-2  | 1,2-Dichloroethane                   | ND     |   | 5.0 | 0.39 |
| 78-87-5   | 1,2-Dichloropropane                  | ND     |   | 5.0 | 0.25 |
| 541-73-1  | 1,3-Dichlorobenzene                  | ND     |   | 5.0 | 2.5  |
| 106-46-7  | 1,4-Dichlorobenzene                  | ND     |   | 5.0 | 0.26 |
| 591-78-6  | 2-Hexanone                           | ND     |   | 5.0 | 0.70 |
| 78-93-3   | 2-Butanone (MEK)                     | ND     |   | 25  | 2.5  |
| 108-10-1  | 4-Methyl-2-pentanone (MIBK)          | ND     |   | 25  | 1.8  |
| 67-64-1   | Acetone                              | ND     |   | 25  | 1.6  |
| 71-43-2   | Benzene                              | ND     |   | 25  | 4.2  |
| 75-27-4   | Bromodichloromethane                 | ND     |   | 5.0 | 0.25 |
| 75-25-2   | Bromoform                            | ND     |   | 5.0 | 0.67 |
| 74-83-9   | Bromomethane                         | ND     |   | 5.0 | 2.5  |
| 75-15-0   | Carbon disulfide                     | ND     |   | 5.0 | 0.45 |
| 56-23-5   | Carbon tetrachloride                 | ND     |   | 5.0 | 2.5  |
| 108-90-7  | Chlorobenzene                        | ND     |   | 5.0 | 0.48 |
| 124-48-1  |                                      | ND     |   | 5.0 | 0.66 |
| 75-00-3   | Dibromochloromethane                 | ND     |   | 5.0 | 0.64 |
| 77-66-3   | Chloroethane                         | ND     |   | 5.0 | 1.1  |
| 74-87-3   | Chloroform                           | ND     |   | 5.0 | 0.31 |
| 56-59-2   | Chloromethane                        | ND     |   | 5.0 | 0.30 |
|           | cis-1,2-Dichloroethene               | ND     |   | 5.0 | 0.64 |
| 0061-01-5 | cis-1,3-Dichloropropene              | ND     |   | 5.0 | 0.72 |
| 10-82-7   | Cyclohexane                          | ND     |   | 5.0 | 0.72 |
| 5-71-8    | Dichlorodifluoromethane              | ND ND  |   | 5.0 | 0.70 |
| 00-41-4   | Ethylbenzene                         | ND     |   | 5.0 | 0.35 |
| 8-82-8    | Isopropylbenzene                     | ND     |   | 5.0 | 0.35 |

| Soil Alimet Val.                                                                                                                   |      |
|------------------------------------------------------------------------------------------------------------------------------------|------|
| Matrix: Solid  Lab File ID: P4485.D  Analysis Method: 8260B  Date Collected:  Sample wt/vol: 5(g)  Date Analyzed: 08/13/2011 16:12 |      |
| Matrix: Solid  Analysis Method: 8260B  Date Collected:  Sample wt/vol: 5(g)  Date Analyzed: 08/13/2011 16:12                       |      |
| Sample wt/vol: 5(g)  Date Analyzed: 08/13/2011 16:12                                                                               |      |
| Soil Alignot Wel.                                                                                                                  |      |
| Soil Alignot Wel.                                                                                                                  |      |
| Dilution Factor: 1                                                                                                                 |      |
| Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0.25(                                                                                | mm ) |
| % Moisture: Level: (low/med) Low                                                                                                   |      |
| Analysis Batch No.: 27458 Units: ug/Kg                                                                                             |      |

| CAS NO.    | COMPOUND NAME             | RESULT | Q        | RL  | MDL  |
|------------|---------------------------|--------|----------|-----|------|
| 79-20-9    | Methyl acetate            | ND     |          |     |      |
| 1634-04-4  | Methyl tert-butyl ether   |        |          | 5.0 | 0.93 |
| 108-87-2   | Methylcyclohexane         | ND     |          | 5.0 | 0.49 |
| 75-09-2    |                           | ND     |          | 5.0 | 0.76 |
| 100-42-5   | Methylene Chloride        | ND     |          | 5.0 | 2.3  |
|            | Styrene                   | ND     | . Pleas. | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | (1.97  | J        | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | 1.34   | J        | 5.0 |      |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |          |     | 0.38 |
| 10061-02-6 | trans-1,3-Dichloropropene |        |          | 5.0 | 0.52 |
| 79-01-6    | Trichloroethene           | ND     |          | 5.0 | 2.2  |
| 75-69-4    |                           | ND     |          | 5.0 | 1.1  |
| 75-01-4    | Trichlorofluoromethane    | ND     |          | 5.0 | 0.47 |
|            | Vinyl chloride            | ND     |          | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | ND     |          | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 0.4  |   | 64.106 |
| 2037-26-5  | Toluene-d8 (Surr)            | 94   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 92   |   | 71-125 |
|            |                              | 90   |   | 72-126 |

| Job No.: 480-8280-1                 |
|-------------------------------------|
|                                     |
| Lab Sample ID: MB 480-29184/26      |
| Lab File ID: P4707.D                |
| Date Collected:                     |
| Date Analyzed: 08/27/2011 15:21     |
| Dilution Factor: 1                  |
| GC Column: ZB-624 (60) ID: 0.25(mm) |
| Level: (low/med) Low                |
| Units: ug/Kg                        |
|                                     |

| CAS NO.   | COMPOUND NAME                        | RESULT | Q | RL   | MDL  |
|-----------|--------------------------------------|--------|---|------|------|
| 71-55-6   | 1,1,1-Trichloroethane                | ND     |   |      |      |
| 79-34-5   | 1,1,2,2-Tetrachloroethane            | ND ND  |   | 5.0  | 0.36 |
| 79-00-5   | 1,1,2-Trichloroethane                | ND ND  |   | 5.0  | 0.81 |
| 76-13-1   | 1,1,2-Trichloro-1,2,2-trifluoroethan |        |   | 5.0  | 0.65 |
| 75-34-3   | e                                    | ND     |   | 5.0  | 1.1  |
| 75-34-3   | 1,1-Dichloroethane                   | ND     |   | 5.0  | 0.61 |
| 120-82-1  | 1,1-Dichloroethene                   | ND     |   | 5.0  | 0.61 |
| ·         | 1,2,4-Trichlorobenzene               | ND     |   | 5.0  | 0.30 |
| 96-12-8   | 1,2-Dibromo-3-Chloropropane          | ND     |   | 5.0  | 2.5  |
| 106-93-4  | 1,2-Dibromoethane                    | ND     |   | 5.0  | 0.64 |
| 95-50-1   | 1,2-Dichlorobenzene                  | ND     |   | 5.0  | 0.84 |
| 107-06-2  | 1,2-Dichloroethane                   | ND     |   | 5.0  | 0.39 |
| 78-87-5   | 1,2-Dichloropropane                  | ND     |   | 5.0  | 2.5  |
| 541-73-1  | 1,3-Dichlorobenzene                  | ND     |   | 5.0  | 0.26 |
| 106-46-7  | 1,4-Dichlorobenzene                  | ND     |   | 5.0  |      |
| 591-78-6  | 2-Hexanone                           | ND     |   | 25   | 0.70 |
| 78-93-3   | 2-Butanone (MEK)                     | ND     |   | 25   | 2.5  |
| 108-10-1  | 4-Methyl-2-pentanone (MIBK)          | ND     |   | 25   | 1.8  |
| 67-64-1   | Acetone                              | ND     |   |      | 1.6  |
| 71-43-2   | Benzene                              | ND     |   | 25   | 4.2  |
| 75-27-4   | Bromodichloromethane                 | ND     |   | 5.0. | 0.25 |
| 75-25-2   | Bromoform                            | ND ND  |   | 5.0  | 0.67 |
| 74-83-9   | Bromomethane                         | ND ND  |   | 5.0  | 2.5  |
| 75-15-0   | Carbon disulfide                     | ND     |   | 5.0  | 0.45 |
| 6-23-5    | Carbon tetrachloride                 | ND ND  |   | 5.0  | 2.5  |
| .08-90-7  | Chlorobenzene                        | ND ND  |   | 5.0  | 0.48 |
| 24-48-1   | Dibromochloromethane                 |        |   | 5.0  | 0.66 |
| 5-00-3    | Chloroethane                         | ND     |   | 5.0  | 0.64 |
| 7-66-3    | Chloroform                           | ND     |   | 5.0  | 1.1  |
| 4-87-3    | Chloromethane                        | ND     |   | 5.0  | 0.31 |
| 56-59-2   | cis-1,2-Dichloroethene               | ND .   |   | 5.0  | 0.30 |
| 0061-01-5 | cis-1,3-Dichloropropene              | ND     |   | 5.0  | 0.64 |
| 10-82-7   | Cyclohexane                          | ND     |   | 5.0  | 0.72 |
| 5-71-8    | Dichlorodifluoromethane              | ND     |   | 5.0  | 0.70 |
| 00-41-4   | Ethylbenzene                         | ND     |   | 5.0  | 0.41 |
| 3-82-8    | Isopropylbenzene                     | ND     |   | 5.0  | 0.35 |
| V         |                                      | ND     |   | 5.0  | 0.75 |

| Lab Name: TestAmerica Buffalo | Job No.: 480-8280-1                 |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-29184/26      |
| Matrix: Solid                 | Lab File ID: P4707.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 08/27/2011 15:21     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 29184     | Units: ug/Kg                        |
|                               |                                     |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDI  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            |        |   |     |      |
| 1634-04-4  | Methyl tert-butyl ether   | ND ND  |   | 5.0 | 0.93 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 5.0 | 0.49 |
| 75-09-2    |                           | ND     |   | 5.0 | 0.76 |
| 100-42-5   | Methylene Chloride        | 5.78   |   | 5.0 | 2.3  |
| 127-18-4   | Styrene                   | ND     |   | 5.0 | 0.25 |
|            | Tetrachloroethene         | ND     |   | 5.0 | 0.23 |
| 108-88-3   | Toluene                   | ND     |   | 5.0 |      |
| 156-60-5   | trans-1,2-Dichloroethene  | ND ND  |   |     | 0.38 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND ND  |   | 5.0 | 0.52 |
| 79-01-6    | Trichloroethene           |        |   | 5.0 | 2.2  |
| 75-69-4    | Trichlorofluoromethane    | ND ND  |   | 5.0 | 1.1  |
| 75-01-4    | Vinyl chloride            | ND     |   | 5.0 | 0.47 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 5.0 | 0.61 |
|            | Total                     | ND ND  |   | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) |      |   |        |
| 2037-26-5  | Toluene-d8 (Surr)            | 96   |   | 64-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 102  |   | 71-125 |
|            | JULI JULI                    | 93   |   | 72-126 |

| Lab Name: TestAmerica Buffalo | Job No.: 480-8280-1                 |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-31091/4       |
| Matrix: Water                 | Lab File ID: P4485A.D               |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(mL)          | Date Analyzed: 08/13/2011 16:12     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 31091     | Units: ug/L                         |

| CAS NO.    | COMPOUND NAME                        | RESULT | Q | RL  | MDL  |
|------------|--------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                | ND     |   | 1.0 | 0.82 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane            | ND     |   | 1.0 | 0.82 |
| 79-00-5    | 1,1,2-Trichloroethane                | ND     |   | 1.0 | 0.21 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 1.0 | 0.23 |
| 75-34-3    | 1,1-Dichloroethane                   | ND     |   | 1.0 |      |
| 75-35-4    | 1,1-Dichloroethene                   | ND     |   | 1.0 | 0.38 |
| 120-82-1   | 1,2,4-Trichlorobenzene               | ND     |   | 1.0 | 0.29 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane          | ND ND  |   | 1.0 | 0.41 |
| 106-93-4   | 1,2-Dibromoethane                    | ND ND  |   |     | 0.39 |
| 95-50-1    | 1,2-Dichlorobenzene                  | ND     |   | 1.0 | 0.73 |
| 107-06-2   | 1,2-Dichloroethane                   | ND ND  |   | 1.0 | 0.79 |
| 78-87-5    | 1,2-Dichloropropane                  | ND ND  |   | 1.0 | 0.21 |
| 541-73-1   | 1,3-Dichlorobenzene                  | ND ND  |   | 1.0 | 0.72 |
| 106-46-7   | 1,4-Dichlorobenzene                  | ND     |   | 1.0 | 0.78 |
| 591-78-6   | 2-Hexanone                           | ND ND  |   | 1.0 | 0.84 |
| 78-93-3    | 2-Butanone (MEK)                     | ND ND  |   | 5.0 | 1.2  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)          |        |   | 10  | 1.3  |
| 67-64-1    | Acetone                              | ND     |   | 5.0 | 2.1  |
| 71-43-2    | Benzene                              | ND     |   | 10  | 3.0  |
| 75-27-4    | Bromodichloromethane                 | ND     |   | 1.0 | 0.41 |
| 75-25-2    | Bromoform                            | ND     |   | 1.0 | 0.39 |
| 74-83-9    | Bromomethane                         | ND     |   | 1.0 | 0.26 |
| 75-15-0    | Carbon disulfide                     | ND     |   | 1.0 | 0.69 |
| 56-23-5    | Carbon tetrachloride                 | ND     |   | 1.0 | 0.19 |
| 108-90-7   | Chlorobenzene                        | ND     |   | 1.0 | 0.27 |
| 124-48-1   | Dibromochloromethane                 | ND     |   | 1.0 | 0.75 |
| 75-00-3    | Chloroethane                         | ND     |   | 1.0 | 0.32 |
| 67-66-3    | Chloroform                           | ND     |   | 1.0 | 0.32 |
| 74-87-3    | Chloromethane                        | ND     |   | 1.0 | 0.34 |
| 156-59-2   | cis-1,2-Dichloroethene               | ND     |   | 1.0 | 0.35 |
| 10061-01-5 | cis-1,3-Dichloropropene              | ND     |   | 1.0 | 0.81 |
| 110-82-7   | Cyclohexane                          | ND     |   | 1.0 | 0.36 |
| 75-71-8    | Dichlorodifluoromethane              | DM     |   | 1.0 | 0.18 |
| 100-41-4   | Ethylbenzene                         | ND     |   | 1.0 | 0.68 |
| 98-82-8    | -                                    | ND     |   | 1.0 | 0.74 |
| V4 U       | Isopropylbenzene                     | ND     |   | 1.0 | 0.79 |

| SDG No.:  Client Sample ID:  Lab Sample ID: MB 480-31091/4  Matrix: Water  Lab File ID: P4485A.D |          |
|--------------------------------------------------------------------------------------------------|----------|
| Matrix: Water Lab File ID: P4485A.D                                                              |          |
| Dab File ID. F4465A.D                                                                            |          |
|                                                                                                  |          |
| Analysis Method: 8260B Date Collected:                                                           |          |
| Sample wt/vol: 5(mL) Date Analyzed: 08/13/2011 16:12                                             |          |
| Soil Aliquot Vol: Dilution Factor: 1                                                             |          |
| Soil Extract Vol.: GC Column: ZB-624 (60) ID: 0                                                  | .25 (mm) |
| % Moisture: Level: (low/med) Low                                                                 |          |
| Analysis Batch No.: 31091 Units: ug/L                                                            |          |

| CAS NO.    | COMPOUND NAME             | RESULT | Q                                       | RL  | MDL  |
|------------|---------------------------|--------|-----------------------------------------|-----|------|
| 79-20-9    | Methyl acetate            | ND     |                                         | 1.0 | 0,50 |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |                                         | 1.0 | 0.16 |
| 108-87-2   | Methylcyclohexane         | ND     |                                         | 1.0 | 0.16 |
| 75-09-2    | Methylene Chloride        | 0.812  | J                                       | 1.0 | 0.16 |
| 100-42-5   | Styrene                   | ND     | Ž                                       | 1.0 | 0.44 |
| 127-18-4   | Tetrachloroethene         | 1.86   |                                         | 1.0 |      |
| 108-88-3   | Toluene                   | 1.25   |                                         |     | 0.36 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND ND  |                                         | 1.0 | 0.51 |
| 10061-02-6 | trans-1,3-Dichloropropene |        |                                         | 1.0 | 0.90 |
| 79-01-6    | Trichloroethene           | ND     |                                         | 1.0 | 0.37 |
| 75-69-4    | Trichlorofluoromethane    | ND     |                                         | 1.0 | 0.46 |
|            |                           | ND     | and | 1.0 | 0.88 |
| 75-01-4    | Vinyl chloride            | ND     |                                         | 1.0 | 0.90 |
| 1330-20-7  | Xylenes, Total            | ND     | 11/1                                    | 2.0 | 0.66 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 102  |   | 66-137 |
| 2037-26-5  | Toluene-d8 (Surr)            | 91   |   | 71-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 86   |   | 73-120 |



Geology

Hydrology

Remediation

Water Supply

## QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-8280-1

## 19 Soil Samples, and 2 Field Duplicates Collected August 8-22, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for benzaldehyde, 4-chloroaniline, 3-nitroaniline, and 3,3'-dichlorobenzidine were above the allowable maximum (25%) on 08-11-11 (U2627.D). The %D for benzaldehyde was above the allowable maximum (25%) on 08-11-11 (U.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: One of six surrogates for samples SS-C4 and SS-A9 DL was diluted beyond detection limits. No action is taken on surrogates diluted beyond detection limits.

One of three acid extractable surrogate recoveries for sample SS-B6 was above control limits. No action is taken on one surrogate per fraction outside control limits, provided the recovery is not less than 10%.

Page 1 of 2

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximums, but 2 of 24 the percent recoveries (%Rs) were above QC limits for soil MS/MSD sample SS-C6. One of 12 RPDs for spiked compounds were above the allowable maximum and 10 of 24 %Rs were outside QC limits for soil MS/MSD sample SS-A8. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.
- <u>Laboratory Control Sample</u>: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for soil samples LCS 480-28965/2-A and LCSD 480-28965/3-A. The %Rs for spiked compounds were within QC limits for soil samples LCS 480-26908/2-A and LCS 480-27915/2-A.
- <u>Field Duplicates</u>: The analyses of soil field duplicate pair SS-C3/DUP-01 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

The relative percent difference for benzo(b)fluoranthene was above the allowable maximum (35%) for soil field duplicate pair SS-C2/DUP-02 (attached table). Results for benzo(b)fluoranthene should be considered estimated (J) in samples SS-C2 and DUP-02.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

## Semi-Volatiles

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-8280-1

**S1=** SS-C2 **S2=** DUP-02

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

<sup>\*</sup> RPD is above the allowable maximum (35%)

## FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab | Name: | TestAmerica | Buffalo | Job | No.: | 480-8280-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|-------|-------------|---------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDG | No.:  | -           |         |     |      | TOTAL SOCIAL SECURITION SECURITIO |

Matrix: Solid Level: Low

GC Column (1): RXI-5Sil MS ID: 0.25 (mm)

| Client Sample ID | Lab Sample ID         | 2FP # | PHL | #   | NBZ | #      | FBP | #   | TBP  | #    | TPH |
|------------------|-----------------------|-------|-----|-----|-----|--------|-----|-----|------|------|-----|
| SS-A8            | 480-8280-1            | 64    | 74  | _   | 65  |        | 82  | -   | 97   |      | 97  |
| SS-A9            | 480-8280-2            | 77    | 84  |     | 8.3 |        | 100 | -   | 116  |      | 110 |
| SS-A9            | 480-8280-2            | 74    | 92  |     | 90  |        | 107 |     | 39   | -    | 130 |
| SS-A9 DL         | 480-8280-2 DL         | 70    | 77  |     | 79  |        | 103 |     |      | -,,- |     |
| SS-B1            | 480-8382-1            | 61    | 71  |     | 63  |        | 85  | _   | DL 0 | Х    | 104 |
| SS-B2            | 480-8382-2            | 76    | 97  |     | 70  |        | 117 |     | 62   |      | 81  |
| SS-B3            | 480-8382-3            | 75    | 89  |     | 68  |        | 112 |     | 67   |      | 117 |
| SS-B4            | 480-8382-4            | 72    | 93  |     | 84  | -      |     |     | 64   |      | 111 |
| SS-B5            | 480-8382-5            | 44    | 58  |     | 46  | -      | 107 |     | 93   |      | 106 |
| SS-B7            | 480-8382-6            | 37    | 46  |     |     | 4      | 65  |     | 97   |      | 84  |
| SS-B8            | 480-8382-7            | 57    | 71  | -   | 42  | _      | 57  |     | 79   |      | 70  |
| SS-C3            | 480-8453-1            | 54    | 66  |     | 67  | _      | 84  |     | 71   |      | 80  |
| SS-C5            | 480-8453-2            | 70    |     |     | 59  |        | 74  |     | 96   |      | 88  |
| SS-C6            | 480-8453-3            |       | 82  |     | 77  | _      | 94  |     | 76   |      | 100 |
| SS-C8            | 480-8453-4            | 48    | 63  |     | 49  |        | 73  |     | 74   |      | 98  |
| SS-C9            | 480-8453-5            | 60    | 68  |     | 61  |        | 71  |     | 97   |      | 84  |
| OUP-01           | 480-8453-6            | 65    | 73  |     | 65  |        | 81  |     | 60   |      | 78  |
| SS-C1            | 480-8505-1            | 61    | 75  |     | 69  |        | 87  |     | 72   |      | 85  |
| SS-C2            |                       | 72    | 87  |     | 74  |        | 102 |     | 89   |      | 102 |
| OUP-02           | 480-8505-2            | 69    | 86  |     | 77  |        | 103 |     | 83   | T    | 102 |
| SS-C7            | 480-8505-3            | 53    | 62  |     | 57  |        | 77  | 1   | 61   | 1    | 91  |
| SS-C4            | 480-8853-1            | 67    | 83  |     | 76  |        | 92  |     | 79   | 1    | 106 |
|                  | 480-8853-2            | 63    | 79  |     | 77  |        | 92  | ħ   | 0    | x    | 110 |
| S-B6             | 480-8853-3            | 50    | 69  |     | 65  |        | 78  | 1   | (24) | X    | 87  |
|                  | MB 480-26908/1-A      | 66    | 76  | 1   | 72  | $\top$ | 83  | +   | 96   | +    | 136 |
|                  | MB 480-27915/1-A      | 74    | 80  |     | 77  | T      | 83  | -   | 88   | +    | 93  |
|                  | MB 480-28965/1-A      | 55    | 62  | 1   | 59  | +-     | 69  | +   | 75   | +    | 92  |
|                  | LCS<br>480-26908/2-A  | 84    | 93  |     | 89  | -      | 98  |     | 113  | +    | 119 |
|                  | LCS<br>480-27915/2-A  | 68    | 74  |     | 72  | ļ      | 82  |     | 93   |      | 105 |
|                  | LCS<br>480-28965/2-A  | 65    | 71  |     | 71  |        | 81  |     | 88   |      | 94  |
|                  | LCSD<br>480-28965/3-A | 65    | 72  |     | 72  |        | 80  | A 1 | 89   | -    | 94  |
| 5-A8 MS          | 480-8280-1 MS         | 77    | 89  | - 8 | 80  | -      | 94  | -   | L19  | 1    | 116 |
| S-C6 MS          | 480-8453-3 MS         | 68    | 78  |     | 71  | -      | 90  |     | 88   | ļ    | .08 |
| S-A8 MSD         | 480-8280-1 MSD        | 72    | 78  | ş   | 3.0 |        | 93  | 1   | 29   |      | .13 |

| 255   |            | 0 401                | QC LIMITS |
|-------|------------|----------------------|-----------|
|       |            | 2-Fluorophenol       | 18-120    |
| PHL   | ===        | Phenol-d5            | 11-120    |
| NBZ   | ==         | Nitrobenzene-d5      | 34-132    |
| FBP : | -          | 2-Fluorobiphenyl     | 37-120    |
| TBP : | ===        | 2,4,6-Tribromophenol | 39-146    |
| TPH = | nina<br>ma | p-Terphenyl-d14      | 58-147    |

<sup>#</sup> Column to be used to flag recovery values

## GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa |            | Job No.: 480-8280-1  |
|----------|----------------------|------------|----------------------|
| SDG No.: | :                    |            |                      |
| Matrix:  | Solid                | Level: Low | Lab File ID: U2633.D |
| Lab ID:  | 480-8280-1 MS        |            | Client ID: SS-A8 MS  |

|                             | SPIKE   | SAMPLE        | MS            | MS    | QC     |   |
|-----------------------------|---------|---------------|---------------|-------|--------|---|
|                             | ADDED   | CONCENTRATION | CONCENTRATION | ુક    | LIMITS | # |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC   | REC    | " |
| 2,4-Dinitrotoluene          | 3860    | ND            | 5150          | 134   | 55-125 | F |
| 2-Chlorophenol              | 3860    | ND            | 3460 J        | 90    | 38-120 |   |
| 4-Chloro-3-methylphenol     | 3860    | ND            | 3290 J        |       |        |   |
| 4-Nitrophenol               | 3860    | ND            |               | 85    | 49-125 |   |
| Acenaphthene                | 3860    |               | 6310 J        | (164) |        | F |
| Bis(2-ethylhexyl) phthalate | 3860    | 5400          | 7940          | 66    | 53-120 |   |
| Fluorene                    |         | ND            | 3860 J        | 100   | 61-133 |   |
| Hexachloroethane            | 3860    | 3600 J        | 6590          | 79    | 63-126 |   |
|                             | 3860    | ND            | 3360 J        | 87    | 41-120 |   |
| N-Nitrosodi-n-propylamine   | 3860    | ND            | 3240 J        | 84    | 46-120 |   |
| Pentachlorophenol           | 3860    | ND            | 7320 J        | (190) | 33-136 | F |
| Phenol                      | 3860    | ND            | 3450 J        | 9.0   |        |   |
| Pyrene                      | 3860    |               |               |       | 36-120 | 4 |
| Tyrene                      | 3860    | 40000         | 45600         | (140) | 51-133 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

### FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Bufi |        | Job No.: 480-8280-1  |
|----------|---------------------|--------|----------------------|
| SDG No.  | •<br>•              |        |                      |
| Matrix:  | Solid               | Level: | Lab File ID: W4059.D |
| Lab ID:  | 480-8453-3 MS       |        | Client ID: SS-C6 MS  |

|                             | SPIKE   | SAMPLE        | MS            | MS  | QC     |   |
|-----------------------------|---------|---------------|---------------|-----|--------|---|
| COMPOUND                    | ADDED   | CONCENTRATION | CONCENTRATION | 90  | LIMITS | # |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC | REC    |   |
| 2,4-Dinitrotoluene          | 3510    | ND            | 3250          | 93  | 55-125 |   |
| 2-Chlorophenol              | 3510    | ND            | 2530          | 72  | L      |   |
| 4-Chloro-3-methylphenol     | 3510    | ND            | 3170          |     | 38-120 |   |
| 4-Nitrophenol               | 3510    |               |               | 90  | 49-125 |   |
| Acenaphthene                | 3510    | ND            | 2670 J        | 76  | 43-137 |   |
| Bis(2-ethylhexyl) phthalate |         | 340 J         | 3730          | 96  | 53-120 |   |
| Fluorene                    | 3510    | ND            | 3430          | 98  | 61-133 |   |
| Hexachloroethane            | 3510    | 330 J         | 3900          | 102 | 63-126 |   |
|                             | 3510    | ND            | 2340          | 67  | 41-120 |   |
| N-Nitrosodi-n-propylamine   | 3510    | ND            | 2700          | 77  | 46-120 |   |
| Pentachlorophenol           | 3510    | ND            | 2180 J        | 62  |        |   |
| Phenol                      | 3510    | ND            | 2850          |     | 33-136 |   |
| Pyrene                      | 3510    | 7300          |               | 81  | 36-120 |   |
|                             | 3310    | /300          | 12000         | 134 | 51-133 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

## FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Na | ame | : TestAmerica Buffal |        |     | Job No.:                                | 480-8280-1  |
|--------|-----|----------------------|--------|-----|-----------------------------------------|-------------|
| SDG No | o.: |                      |        |     |                                         |             |
|        |     |                      |        |     | *************************************** |             |
| Matrix |     | Solid                | Level: | Low |                                         | ID: U2634.D |
| Lab II |     | 480-8280-1 MSD       |        |     | Client ID:                              | SS-A8 MSD   |

|                             | SPIKE   | MSD           | MSD   |      | OC 11     | MITTO  |    |
|-----------------------------|---------|---------------|-------|------|-----------|--------|----|
|                             | ADDED   | CONCENTRATION |       | 96   | QC LIMITS |        | #  |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | REC   | RPD  | RPD       | REC    | 11 |
| 2,4-Dinitrotoluene          | 3880    | 5090          | (131  | 1    | 20        | 55-125 | F  |
| 2-Chlorophenol              | 3880    | 3000 J        | 77    | 14   | 25        |        | r  |
| 4-Chloro-3-methylphenol     | 3880    | 3420 J        | 88    | 1.4  |           | 38-120 |    |
| 4-Nitrophenol               | 3880    | 6420 J        | 165   | 2    | 27        | 49-125 |    |
| Acenaphthene                | 3880    | 6520          |       |      | 25        | 43-137 | F  |
| Bis(2-ethylhexyl) phthalate | 3880    |               | (29)  | 20   | 35        | 53-120 | F  |
| Fluorene                    |         | 4300 J        | 111   | 11   | 15        | 61-133 |    |
| Hexachloroethane            | 3880    | 5070          | (39)  | (26) | 15        | 63-126 | F  |
| N-Nitrosodi-n-propylamine   | 3880    | 2850 J        | 73    | 16   | 46        | 41-120 |    |
|                             | 3880    | 3340 J        | 86    | 3    | 31        | 46-120 |    |
| Pentachlorophenol           | 3880    | 7230 J        | (186) | 1    | 35        | 33-136 | F  |
| Phenol                      | 3880    | 3200 J        | 82    | 8    | 35        | 36-120 |    |
| Pyrene                      | 3880    | 31900         | F215  | 35   | 35        | 51-133 | 4  |

<sup>#</sup> Column to be used to flag recovery and RPD values FORM III 8270C

## FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa |        |     | Job No.: 480-8280-1  |
|----------|----------------------|--------|-----|----------------------|
| SDG No.: | :                    |        |     |                      |
| Matrix:  | Solid                | Level: | Tar |                      |
| T 1      |                      | never. | LOW | Lab File ID: W4060.D |
| Lab ID:  | 480-8453-3 MSD       |        |     | Client ID: SS-C6 MSD |

|                             | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | 96  | QC LIMITS |        | #  |
|-----------------------------|----------------|----------------------|----------|-----|-----------|--------|----|
| COMPOUND                    | (ug/Kg)        | (ug/Kg)              | REC      | RPD | RPD       | REC    | 11 |
| 2,4-Dinitrotoluene          | 3540           | 3380                 | 95       |     | 20        |        |    |
| 2-Chlorophenol              | 3540           | 3050                 | 86       |     |           | 55-125 |    |
| 4-Chloro-3-methylphenol     | 3540           | 3340                 |          |     | 25        | 38-120 |    |
| 4-Nitrophenol               | 3540           |                      | 94       | 0   | 27        | 49-125 |    |
| Acenaphthene                |                | 2770 J               | 78       |     | 25        | 43-137 |    |
| Bis(2-ethylhexyl) phthalate | 3540           | 4040                 | 104      | 8   | 35        | 53-120 |    |
| Fluorene                    | 3540           | 3650                 | 103      | 6   | 15        | 61-133 |    |
|                             | 3540           | 4140                 | 108      | 6   | 15        | 63-126 |    |
| Hexachloroethane            | 3540           | 2820                 | 80       | 19  | 46        | 41-120 |    |
| N-Nitrosodi-n-propylamine   | 3540           | 3130                 | 89       | 15  | 31        | 46-120 |    |
| Pentachlorophenol           | 3540           | 2110 J               | 60       | 2   | 35        | 33-136 |    |
| Phenol                      | 3540           | 3220                 | 91       | 12  |           |        |    |
| Pyrene                      | 3540           | 12100                | -        | 12  | 35        | 36-120 |    |
|                             |                | 12100                | 136      | 1   | 35        | 51-133 | F  |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

Lab Name: TestAmerica Buffalo

Job No.: 480-8280-1

SDG No.:

Lab Sample ID: ICV 480-27157/9

Instrument ID: HP5973U

Calibration Date: 08/11/2011 16:45

Calib Start Date: 08/10/2011 12:09

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 08/10/2011 14:06

Lab File ID: U2627.D

Conc. Units: ug/L

| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D       | MAX<br>%D |
|----------------------------|---------------|---------|--------|---------|----------------|-----------------|----------|-----------|
| N-Nitrosodimethylamine     | Ave           | 0.5765  | 0.5880 | 0.0100  | 51000          | F0000           |          |           |
| Pyridine                   | Ave           | 0.5889  | 0.5066 | 0.0100  | 43000          | 50000           |          | 25.0      |
| Phenol                     | Ave           | 1.404   | 1.259  | 0.0100  |                | 50000           |          | 25.0      |
| Aniline                    | Ave           | 1.597   | 0.9708 | 0.0100  | 44900          | 50000           |          | 25.0      |
| Bis(2-chloroethyl)ether    | Ave           | 0.9635  | 0.8909 | 0.0100  | 30400          | 50000           | -39.2*   | 25.0      |
| 2-Chlorophenol             | Ave           | 1.348   | 1.276  | 0.0100  | 46200          | 50000           | NA -7.5  | 25.0      |
| 1,3-Dichlorobenzene        | Ave           | 1.593   | 1.538  | 0.0100  | 47300          | 50000           | -5.3     | 25.0      |
| 1,4-Dichlorobenzene        | Ave           | 1.642   | 1.621  | 0.0100  | 48300          | 50000           | -3.5     | 25.0      |
| Benzyl alcohol             | Ave           | 0.8183  | 0.7303 |         | 49400          | 50000           | -1.3     | 25.0      |
| 1,2-Dichlorobenzene        | Ave           | 1.553   | 1.460  | 0.0100  | 44600          | 50000           | -10.8    | 25.0      |
| 2-Methylphenol             | Ave           | 1.053   | 1.021  | 0.0100  | 47000          | 50000           | -6.0     | 25.0      |
| bis (2-chloroisopropyl)    | Ave           | 0.8325  | 0.7337 | 0.0100  | 48500          | 50000           | -3.0     | 25.0      |
| ether                      |               | 0.0323  | 0.7337 | 0.0100  | 44100          | 50000           | -11.9    | 25.0      |
| N-Nitrosodi-n-propylamine  | Ave           | 0.6814  | 0.6630 | 0.0500  | 48600          | 50000           | -2.7     | 25.0      |
| 4-Methylphenol             | Ave           | 1.096   | 1.096  | 0.0100  | 100000         | 100000          | -0.0     | 25.0      |
| Hexachloroethane           | Ave           | 0.5307  | 0.5273 | 0.0100  | 49700          | 50000           | -0.6     | 25.0      |
| Nitrobenzene               | Ave           | 0.3107  | 0.2885 | 0.0100  | 46400          | 50000           | -7.1     | 25.0      |
| Isophorone                 | Ave           | 0.5130  | 0.4975 | 0.0100  | 48500          | 50000           | -3.0     | 25.0      |
| 2-Nitrophenol              | Linl          |         | 0.1824 | 0.0100  | 46600          | 50000           | -6.8     | 25.0      |
| 2,4-Dimethylphenol         | Ave           | 0.3526  | 0.3433 | 0.0100  | 48700          | 50000           | -2.7     | 25.0      |
| Tetraethyl lead            | Ave           | 0.1600  | 0.1656 | 0.0100  | 25900          | 25000           | 3.5      | 25.0      |
| Bis(2-chloroethoxy)methane | Ave           | 0.3056  | 0.2852 | 0.0100  | 46700          | 50000           | -6.7     | 25.0      |
| Benzoic acid               | Ave           | 0.2518  | 0.2744 | 0.0100  | 54500          | 50000           | 9.0      | 25.0      |
| 2,4-Dichlorophenol         | Ave           | 0.3271  | 0.3253 | 0.0100  | 49700          | 50000           | -0.5     |           |
| 1,2,4-Trichlorobenzene     | Ave           | 0.3678  | 0.3627 | 0.0100  | 49300          | 50000           | -1.4     | 25.0      |
| Naphthalene                | Ave           | 1.077   | 1.053  | 0.0100  | 48900          | 50000           |          | 25.0      |
| 4-Chloroaniline            | Ave           | 0.4296  | 0.2718 | 0.0100  | 31600          | 50000           | (-36.7*) | 25.0      |
| Hexachlorobutadiene        | Ave           | 0.2176  | 0.2225 | 0.0100  | 51100          | 50000           | 2.3      | 25.0      |
| 4-Chloro-3-methylphenol    | Ave           | 0.2962  | 0.2968 | 0.0100  | 50100          | 50000           | 0.2      | 25.0      |
| 2-Methylnaphthalene        | Ave           | 0.7448  | 0.7382 | 0.0100  | 49600          | 50000           |          | 25.0      |
| dexachlorocyclopentadiene  | Ave           | 0.3774  | 0.3801 | 0.0500  | 50400          | 50000           | -0.9     | 25.0      |
| 2,4,6-Trichlorophenol      | Ave           | 0.3659  | 0.3611 | 0.0100  | 49300          | 50000           | 0.7      | 25.0      |
| 2,4,5-Trichlorophenol      | Ave           | 0.3881  | 0.3810 | 0.0100  | 49100          |                 | -1.3     | 25.0      |
| 2-Chloronaphthalene        | Ave           | 1.124   | 1.072  | 0.0100  | 47700          | 50000           | -1.8     | 25.0      |
| -Nitroaniline              | Lin1          |         | 0.2350 | 0.0100  |                | 50000           | -4.7     | 25.0      |
| Dimethyl phthalate         | Ave           | 1.334   | 1.308  | 0.0100  | 46400          | 50000           | -7.2     | 25.0      |
| ,6-Dinitrotoluene          | Lin1          |         | 0.3043 | 0.0100  | 49000          | 50000           | -2.0     | 25.0      |
| cenaphthylene              | Ave           | 1.770   | 1.773  | 0.0100  | 50000          | 50000           | 0.0      | 25.0      |
| -Nitroaniline              | Linl          |         | 0.2226 |         | 50100          | 50000           | 0.2      | 25.0      |
| cenaphthene                | Ave           | 1.109   | 1.077  | 0.0100  | 35800          | 50000 (         | -28.4*   | 25.0      |
| ,4-Dinitrophenol           | Lin1          |         | 0.1477 | 0.0100  | 48600<br>44500 | 50000           | -2.9     | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-8280-1

SDG No.:

Lab Sample ID: ICV 480-27157/9 Calibration Date: 08/11/2011 16:45

Instrument ID: HP5973U Calib Start Date: 08/10/2011 12:09

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 08/10/2011 14:06

Lab File ID: U2627.D Conc. Units: ug/L

| ANALYTE                     | CURVE | ALIE DDE |        |         |        | ***    |                   |      |
|-----------------------------|-------|----------|--------|---------|--------|--------|-------------------|------|
| 111111111111                |       | AVE RRF  | RRF    | MIN RRF | CALC   | SPIKE  | %D                | MAX  |
|                             | TYPE  |          |        |         | AMOUNT | AMOUNT |                   | %D   |
| 4-Nitrophenol               | Linl  |          | 0.2188 | 0.0500  | 48400  | 7,0000 | ļ                 |      |
| 2,4-Dinitrotoluene          | Lin1  |          | 0.4077 | 0.0100  | 46100  | 50000  | -3.2              | 25.0 |
| Dibenzofuran                | Ave   | 1.720    | 1,618  | 0.0100  | 47100  | 50000  | -7.8              | 25.0 |
| Diethyl phthalate           | Ave   | 1.279    | 1.266  | 0.0100  | 49500  | 50000  | -5.9              | 25.0 |
| 4-Chlorophenyl phenyl ether | Ave   | 0.7382   | 0.7072 | 0.0100  | 47900  | 50000  | -1.0              | 25.0 |
| Fluorene                    | Ave   | 1.401    | 1.379  | 0.0100  | 49200  | 50000  | -4.2              | 25.0 |
| 4-Nitroaniline              | Ave   | 0.3069   | 0.2781 | 0.0100  |        | 50000  | -1.6              | 25.0 |
| 4,6-Dinitro-2-methylphenol  | Linl  |          | 0.1354 | 0.0100  | 45300  | 50000  | -9.4              | 25.0 |
| N-Nitrosodiphenylamine      | Ave   | 0.5613   | 0.1354 | 0.0100  | 45300  | 50000  | -9.4              | 25.0 |
| 1,2-Diphenylhydrazine       | Ave   | 0.9692   | 0.9379 |         | 47800  | 50000  | -4.4              | 25.0 |
| 4-Bromophenyl phenyl ether  | Ave   | 0.2256   | 0.2168 | 0.0100  | 48400  | 50000  | -3.2              | 25.0 |
| Hexachlorobenzene           | Ave   | 0.2333   | 0.2225 | 0.0100  | 48000  | 50000  | -3.9              | 25.0 |
| Pentachlorophenol           | Linl  | 0.2333   |        | 0.0100  | 47700  | 50000  | -4.7              | 25.0 |
| Phenanthrene                | Ave   | 1.148    | 0.1438 | 0.0100  | 48200  | 50000  | -3.6              | 25.0 |
| Anthracene                  | Ave   | 1.148    | 1.110  | 0.0100  | 48300  | 50000  | -3.3              | 25.0 |
| Carbazole                   | Ave   |          | 1.132  | 0.0100  | 49000  | 50000  | -2.0              | 25.0 |
| Di-n-butyl phthalate        | Ave   | 1.037    | 0.9793 | 0.0100  | 47200  | 50000  | -5.6              | 25.0 |
| Pyrene                      | Ave   | 1.160    | 1.102  | 0.0100  | 47500  | 50000  | -5.0              | 25.0 |
| Benzidine                   |       | 1.188    | 1.146  | 0.0100  | 50000  | 50000  | -3.6              | 25.0 |
| Fluoranthene                | Ave   | 0.5828   | 0.1855 | 0.0100  | 15900  | 50000  | ₩ <u>0</u> -68.2* | 25.0 |
| Butyl benzyl phthalate      | Ave   | 1.273    | 1.263  | 0.0100  | 47900  | 50000  | -0.8              | 25.0 |
| 3,3'-Dichlorobenzidine      | Ave   | 0.5141   | 0.4925 | 0.0100  | 47900  | 50000  | -4.2              | 25.0 |
| Bis(2-ethylhexyl) phthalate | Ave   | 0.4596   | 0.2877 | 0.0100  | 31300  | 50000  | -37.4*            | 25.0 |
| Benzo(a) anthracene         | Ave   | 0.7062   | 0.6867 | 0.0100  | 48600  | 50000  | -2.8              | 25.0 |
| Chrysene Chrysene           | Ave   | 1.158    | 1.137  | 0.0100  | 49100  | 50000  | -1.8              | 25.0 |
| *                           | Ave   | 1.129    | 1.096  | 0.0100  | 48500  | 50000  | -2.9              | 25.0 |
| Di-n-octyl phthalate        | Lin1  |          | 1.094  | 0.0100  | 46900  | 50000  | -6.2              | 25.0 |
| Benzo(b)fluoranthene        | Ave   | 1.166    | 1.168  | 0.0100  | 50100  | 50000  | 0.2               | 25.0 |
| Benzo(k)fluoranthene        | Ave   | 1.205    | 1.143  | 0.0100  | 47400  | 50000  | -5.1              | 25.0 |
| Benzo(a)pyrene              | Ave   | 0.9856   | 0.9704 | 0.0100  | 49200  | 50000  | -1.5              | 25.0 |
| Indeno(1,2,3-cd)pyrene      | Ave   | 1.241    | 1.153  | 0.0100  | 46400  | 50000  | -7.1              | 25.0 |
| Dibenz(a,h)anthracene       | Ave   | 1.092    | 1.047  | 0.0100  | 48000  | 50000  | -4.1              | 25.0 |
| Benzo(g,h,i)perylene        | Ave   | 0.9531   | 0.8920 | 0.0100  | 46800  | 50000  | -6.4              | 25.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-8280-1 SDG No.:

Lab Sample ID: ICV 480-27157/9 Calibration Date: 08/11/2011 16:45

Instrument ID: HP5973U Calib Start Date: 08/11/2011 14:25

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 08/11/2011 16:22

Lab File ID: U2627.D Conc. Units: ug/L

| ANALYTE                   | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D       | MAX<br>%D |
|---------------------------|---------------|---------|--------|---------|----------------|-----------------|----------|-----------|
| Benzaldehyde              | Ave           | 0.7374  | 0.3337 | 0.0100  | 22600          | 50000           | (-54.7*) | 25.0      |
| Acetophenone              | Ave           | 1.525   | 1.556  | 0.0100  | 51000          | 50000           | 2.1      | 25.0      |
| Caprolactam               | Linl          |         | 0.0930 | 0.0100  | 54100          | 50000           | 8.2      | 25.0      |
| Biphenyl                  | Ave           | 1.500   | 1.418  | 0.0100  | 47300          | 50000           | -5.5     | 25.0      |
| 2,3,4,6-Tetrachlorophenol | Lin1          |         | 0.3203 | 0.0100  | 55800          | 50000           | 11.6     | 25.0      |
| Atrazine                  | Ave           | 0.3567  | 0.4100 | 0.0100  | 57500          | 50000           | 14.9     | 25.0      |



Geology

Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-8280-1

### 19 Soil Samples, and 2 Field Duplicates Collected August 8-22, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of method blanks reported target PCBs as not detected.

<u>Surrogate Recovery</u>: The surrogates recoveries were within QC limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample SS-C6 (7-8).

Laboratory Control Sample: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for soil samples LCS 480-26952/2-A, LCS 480-27842/2-A, LCSD 480-26952/3-A, and LCSD 480-27842/3-A. The %Rs for PCB-1016 and PCB-1260 were within QC limits for soil samples LCS 480-27839/2-A and LCS 480-28850/2-A.

<u>Field Duplicates</u>: The analyses of soil field duplicate pairs SS-C3/DUP-01 and SS-C2/DUP-02 reported target PCBs as either not detected or below the lowest standard in one or both samples; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.

<u>Initial Calibration</u>: The "r" squared for PCB-1016 and PCB-1260 were above the allowable minimum (0.990), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were below the allowable maximum (15%), as required.

PCB Identification Summary for Multicomponent Analytes: The checked surrogate was within GC quantitation limits. The %Ds for dual column quantitation of PCB-1254 in samples SS-C1 and DUP-02 were above the allowable maximum (25%), but were not above 70%. The results for PCB-1254 should be considered estimated (J) in samples SS-C1 and DUP-02.

The %D for dual column quantitation of PCB-1260 in sample SS-B4 was above the allowable maximum (25%) and was above 100%. The result for PCB-1260 should be considered unusable (R) in sample SS-B4.

## FORM X IDENTIFICATION SUMMARY

Lab Name: TestAmerica Buffalo

SDG No.:

Client Sample ID: DUP-02

Lab Sample ID: 480-8505-3

Date Analyzed (1): 08/18/2011 16:30 Date Analyzed (2): 08/18/2011 16:30

GC Column (1): ZB-5 ID: 0.53(mm) GC Column (2): ZB-35 ID: 0.53(mm)

| ANALYTE  | COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PEAK | RT   | RT WINDOW |      | CONCENTRATION |      |     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------|------|---------------|------|-----|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |      | FROM      | TO   | PEAK          | MEAN | RPD |
| PCB-1254 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    | 3.65 | 3.61      | 3.67 | 138           | 230  | 26. |
|          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 2  | 3.72 | 3.69      | 3.75 | 199           |      |     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3    | 3.90 | 3.86      | 3.92 | 240           | 7    |     |
|          | Orași de la companio della companio | 4    | 4.27 | 4.23      | 4.29 | 325           |      |     |
|          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1    | 3.39 | 3.35      | 3.41 | 271           | 290  |     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2    | 3.52 | 3.48      | 3.54 | 240           |      |     |
|          | 7 01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3    | 3.79 | 3.75      | 3.81 | 265           |      |     |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4    | 3.90 | 3.87      | 3.93 | 396           |      |     |

## FORM X IDENTIFICATION SUMMARY

| Lab Name: TestAmerica Buffalo       | Job No.: 480-8280-1                 |  |  |
|-------------------------------------|-------------------------------------|--|--|
| SDG No.:                            |                                     |  |  |
| Client Sample ID: SS-B4             | Lab Sample ID: 480-8382-4           |  |  |
| Instrument ID (1): HP5890-12        | Instrument ID (2): HP5890-12        |  |  |
| Date Analyzed (1): 08/18/2011 11:23 | Date Analyzed (2): 08/18/2011 11:23 |  |  |
| GC Column (1): ZB-5 ID: 0.53(mm)    | GC Column (2): ZB-35 ID: 0.53(mm)   |  |  |

| ANALYTE  | COL                | PEAK | RT   | RT WINDOW |      | CONCENTRATION |      |       |
|----------|--------------------|------|------|-----------|------|---------------|------|-------|
|          |                    |      | 111  | FROM      | TO   | PEAK          | MEAN | RPD   |
| PCB-1254 | 1                  | 1    | 3.64 | 3.61      | 3.67 | 448           | 440  | 1.    |
|          |                    | 2    | 3.72 | 3.69      | 3.75 | 427           | 440  | 1     |
|          |                    | 3    | 3.89 | 3.86      | 3.92 | 451           |      |       |
|          | Vill make interest | 4    | 4.26 | 4.23      | 4.29 | 423           |      | -     |
|          | 2                  | 1    | 3.38 | 3.35      | 3.41 | 391           | 430  |       |
|          |                    | 2    | 3.51 | 3.48      | 3.54 | 418           | 130  |       |
|          |                    | 3    | 3.78 | 3.75      | 3.81 | 427           |      |       |
| DGD 1060 |                    | 4    | 3.90 | 3.87      | 3.93 | 492           |      |       |
| PCB-1260 | 1                  | 2    | 4.73 | 4.70      | 4.76 | 183           | 170  | 109.4 |
|          |                    | 3    | 4.94 | 4.91      | 4.97 | 294           |      | 103.  |
|          | 2                  | 1    | 4.17 | 4.14      | 4.20 | 284           | 570  |       |
|          |                    | 3    | 4.60 | 4.57      | 4.63 | 381           |      |       |
|          |                    | 4    | 4.97 | 4.94      | 5.00 | 1060          |      |       |

## FORM X IDENTIFICATION SUMMARY

 Lab Name:
 TestAmerica Buffalo
 Job No.:
 480-8280-1

 SDG No.:
 Client Sample ID:
 SS-C1
 Lab Sample ID:
 480-8505-1

Date Analyzed (1): 08/18/2011 16:01 Date Analyzed (2): 08/18/2011 16:01

GC Column (1): ZB-5 ID: 0.53(mm) GC Column (2): ZB-35 ID: 0.53(mm)

| ANALYTE  | COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEAK | RT   | RT WINDOW |      | CONCENTRATION |      |      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----------|------|---------------|------|------|
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      | FROM      | TO   | PEAK          | MEAN | RPD  |
| PCB-1254 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 3.64 | 3.61      | 3.67 | 255           | 260  | 30.0 |
|          | THE PROPERTY OF THE PROPERTY O | 2    | 3.71 | 3.69      | 3.75 | 232           |      | C    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | 3.89 | 3.86      | 3.92 | 276           |      |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4    | 4.25 | 4.23      | 4.29 | 263           |      |      |
|          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 3.38 | 3.35      | 3.41 | 180           | 190  |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2    | 3.50 | 3.48      | 3.54 | 199           |      |      |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    | 3.77 | 3.75      | 3.81 | 179           | 1    |      |
|          | 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4    | 3.89 | 3.87      | 3.93 | 200           |      |      |



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No: 480-8280-1

## 19 Soil Samples and 2 Field Duplicates Collected August 8-22, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

<u>CRDL Standard for AA and ICP</u>: The percent recoveries for target metals were within laboratory QC limits (50-150%) for the following CRQL standard samples.

| CRI 480-27260/7<br>CRI 480-28494/8 | CRI 480-27881/10                    | CRI 480-28017/7                    | CRI 480-28241/7                    |
|------------------------------------|-------------------------------------|------------------------------------|------------------------------------|
| CRI 480-29371/40                   | CRI 480-28511/10<br>CRI 480-29560/7 | CRI 480-28669/7<br>CRA 480-27102/3 | CRI 480-29371/7<br>CRA 480-27200/3 |
| CRA 480-27346/3                    | CRA 480-27580/3                     | CRA 480-27788/3                    | CIG1 400-27200/3                   |

<u>Blanks</u>: The analyses of initial calibration and continuing calibration, and method blanks reported TAL metals as below the CRDLs, as required.

ICP Interference Check Sample: The percent recoveries for applicable metals were within control limits (80-120%).

Spike Sample Recovery: Two of two percent recoveries (%Rs) for barium and potassium were above control limits (75-125%), but were not above 200% for soil MS/MSD sample SS-C6. Two of two %Rs for potassium were above control limits (75-125%), but were not above 200% for soil MS/MSD sample SS-B3. One of two %Rs for chromium was above control limits (75-125%), but was not above 200% for soil MS/MSD sample SS-B3. Positive results for these metals should be considered estimated (J) in associated soil samples.

Two of two %Rs for aluminum were above control limits (75-125%), but were not above 300% for soil MS/MSD samples SS-C6 and SS-B3. Since aluminum is a naturally occurring metal, positive for aluminum should be considered estimated (J) in associated soil samples.

One of two %Rs for antimony was below control limits (75-125%), but was not below 10% for soil MS/MSD sample SS-C6. Positive and "not detected" results for antimony should be considered estimated (J) in associated soil samples.

Two of two %Rs for calcium and magnesium were below control limits (75-125%) and 1 or 2 were below 10% for soil MS/MSD sample SS-C6. Two of two %Rs for arsenic were below control limits (75-125%) and were below 10% for soil MS/MSD sample SS-B3. Positive results for these metals should be considered estimated (J) and "not detected" unusable (R) in associated soil samples.

- <u>Laboratory Duplicates</u>: The relative percent differences for TAL metals were below the allowable maximum (35%) in soil MS/MSD samples SS-C6 and SS-B3, as required.
- <u>Field Duplicates</u>: The relative percent differences (RPDs) for applicable metals were below the allowable maximum (35%) for soil field duplicate pair SS-C5/DUP-01 (attached table), as required.

The RPD for magnesium was above the allowable maximum (35%) for soil field duplicate pair SS-C2/DUP-02 (attached table). Positive results for magnesium should be considered estimated (J) in samples SS-C2 and DUP-02.

<u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in the following soil samples.

| LCSSRM 480-28190/2-A | LCSSRM 480-28991/2-A | LCSSRM 480-27541/2-A<br>LCSSRM 480-26967/2-A<br>LCSSRM 480-27520/2-A |
|----------------------|----------------------|----------------------------------------------------------------------|
|----------------------|----------------------|----------------------------------------------------------------------|

ICP Serial Dilution: The %Ds for applicable metals were below the allowable maximum (10%) for soil serial dilution sample SS-B3, as required. The %D for potassium was above the allowable maximum (10%) for soil serial dilution sample SS-C6. Positive results for potassium that are above the CRDLs should be considered estimated (J) in associated soil samples.

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

Percent Solids: The % solids for soil samples were above 50%.

### **TAL Metals**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-8280-1

**S1=** SS-C5 **S2=** DUP-01

| <u>Analyte</u> | <u>S1</u> | <u>S2</u> | RPD (%)  |
|----------------|-----------|-----------|----------|
| aluminum       | 7950      | 8160      | 3%       |
| antimony       | ND        | ND        | NC       |
| arsenic        | 4.9       | 5.1       | 4%       |
| barium         | 62.3      | 61.5      | 1%       |
| beryllium      | 0.50      | 0.48      | 4%       |
| cadmium        | 0.33      | 0.29      | 13%      |
| calcium        | 11500     | 9570      | 18%      |
| chromium       | 15.9      | 15.2      | 5%       |
| cobalt         | 6.8       | 6.5       | 5%       |
| copper         | 27.3      | 26.9      | 1%       |
| iron           | 19400     | 18600     | 4%       |
| lead           | 36.0      | 39.7      | 10%      |
| magnesium      | 6560      | 5690      | 14%      |
| manganese      | 433       | 412       | 5%       |
| mercury        | 0.050     | 0.056     | 11%      |
| nickel         | 15.8      | 15.3      | 3%       |
| potassium      | 859       | 837       | 3%       |
| selenium       | ND        | ND        | NC       |
| silver         | ND        | ND        | NC       |
| sodium         | 82.2      | 68.2      | NC<br>NC |
| thallium       | ND        | ND        | NC<br>NC |
| vanadium       | 19.7      | 18.5      | 6%       |
| zinc           | 296       | 262       | 12%      |
|                |           |           | 1270     |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### **TAL Metals**

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-8280-1

**S1=** SS-C2 **S2=** DUP-02

| <u>\$1</u> | <u>\$2</u>                               | <u>RPD (%)</u>                                                                                                                                                                                    |
|------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3390       |                                          | 6%                                                                                                                                                                                                |
| 1.6        |                                          | NC                                                                                                                                                                                                |
| 8.4        |                                          | 11%                                                                                                                                                                                               |
| 112        | · · · <del>- ·</del>                     |                                                                                                                                                                                                   |
| 0.34       |                                          | 3%                                                                                                                                                                                                |
| 0.80       |                                          | 6%                                                                                                                                                                                                |
| 60500      |                                          | 11%                                                                                                                                                                                               |
|            |                                          | 22%                                                                                                                                                                                               |
|            |                                          | 10%                                                                                                                                                                                               |
|            |                                          | 8%                                                                                                                                                                                                |
|            |                                          | 10%                                                                                                                                                                                               |
|            |                                          | 7%                                                                                                                                                                                                |
|            |                                          | 11%                                                                                                                                                                                               |
|            |                                          | 46%                                                                                                                                                                                               |
|            |                                          | 12%                                                                                                                                                                                               |
|            |                                          | 57%                                                                                                                                                                                               |
|            |                                          | 4%                                                                                                                                                                                                |
|            |                                          | 1%                                                                                                                                                                                                |
|            |                                          | NC                                                                                                                                                                                                |
|            |                                          | NC                                                                                                                                                                                                |
|            |                                          | 14%                                                                                                                                                                                               |
|            | ND                                       | NC                                                                                                                                                                                                |
|            | 21.5                                     | 9%                                                                                                                                                                                                |
| 1980       | 1770                                     | 11%                                                                                                                                                                                               |
|            | 3390<br><b>1.6</b><br>8.4<br>112<br>0.34 | 3390 3610 1.6 1.7 8.4 7.5 112 115 0.34 0.32 0.80 0.72 60500 48500 51.2 46.1 6.7 6.2 149 135 34300 31900 126 113 29400 408 361 0.36 0.36 0.20 41.6 39.8 517 ND |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client I | D: SS-B3 MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lab II | ): | 480-8382-3 MS | 3 |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---------------|---|--|
| Lab Name | : TestAmerica Buffalo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job No |    | 480-8280-1    |   |  |
| SDG No.: | Of the date of the second of t |        |    |               |   |  |
| Matrix:  | Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |    | tion Units:   |   |  |

Control Sample Spike Analyte Limit SSR Result (SR) Added (SA) 8R Q 응R Method C Aluminum 5648 914 2040 232 75-125 F 6010B Antimony 35.90 ND 40.9 88 75-125 6010B Arsenic 50.32 79.7 40.9 -72 75-125 F 6010B Barium 68.82 32.4 40.9 89 75-125 6010B Beryllium 38.41 0.20 J 40.9 93 75-125 6010B Cadmium 38.57 0.27 40.9 94 75-125 6010B Calcium 146900 150000 2040 -13975-125 4 6010B Chromium 60.65 5.0 40.9 136 75 - 125F 6010B Cobalt 42.10 3.1 40.9 95 75-125 6010B Copper 47.56 15.7 40.9 78 75-125 6010B Iron 11350 21200 2040 -483 75-125 6010B Lead 54.31 16.4 40.9 93 75-125 6010B Magnesium 77260 72000 2040 258 75-125 4 6010B Manganese 361.0 297 40.9 75-125 156 4 6010B Nickel 48.38 15.8 40.9 80 75-125 6010B Potassium 3656 463 2040 156 75-125 6010B Selenium 37.95 ND 40.9 93 75-125 6010B Silver 9.05 10.2 89 75-125 6010B Sodium 2144 120 2040 99 75-125 6010B Thallium 36.83 ND 40.9 90 75-125 6010B Vanadium 62.24 28.9 40.9 82 75-125 6010B Zinc 50.28 15.4 39.3 75-125 6010B

SSR = Spiked Sample Result

% Solids: 96.1

NA-Not Applicable, concentration in the sample was greater than 4 times the spiking level; therefore, valid % Rs could not be calculated.

# 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

| Client ID: SS-B3 MSD          | Lab ID: 480-8382-3 MSD     |
|-------------------------------|----------------------------|
| Lab Name: TestAmerica Buffalo | Job No.: 480-8280-1        |
| SDG No.:                      |                            |
| Matrix: Solid                 | Concentration Units: mg/Kg |
| % Solids: 96.1                |                            |

| Analyte   | (SDR)  | Spike<br>Added (SA) | 응R       | Control<br>Limit<br>%R | RPD | RPD<br>Limit | Q | Method |
|-----------|--------|---------------------|----------|------------------------|-----|--------------|---|--------|
| Aluminum  | 5524   | 2000                | 231      | 75-125                 | 2   | 20           | F | 6010B  |
| Antimony  | 35.99  | 39.9                | 90       | 75-125                 | 0   | 20           | Г |        |
| Arsenic   | 46.98  | 39.9                | (-82)    | 75-125                 | 7   | 20           | D | 6010B  |
| Barium    | 75.37  | 39.9                | 108      | 75-125                 | 9   | 20           | F | 6010B  |
| Beryllium | 38.48  | 39.9                | 96       | 75-125                 | 0   |              |   | 6010B  |
| Cadmium   | 38.27  | 39.9                | 95       | 75-125                 |     | 20           |   | 6010B  |
| Calcium   | 146000 | 2000                | A/A −190 | 75-125                 | 1   | 20           |   | 6010B  |
| Chromium  | 43.41  | 39.9                | 96       |                        | 1   | 20           | 4 | 6010B  |
| Cobalt    | 40.29  | 39.9                | 93       | 75-125                 | 33  | 20           | F | 6010B  |
| Copper    | 47.44  | 39.9                | 80       | 75-125                 | 4   | 20           |   | 6010B  |
| Iron      | 9282   |                     |          | 75-125                 | 0   | 20           |   | 6010B  |
| Lead      | 51.66  | 39.9                | NA -598  | 75-125                 | 20  | 20           | 4 | 6010B  |
| Magnesium | 69280  |                     | 88       | 75-125                 | 5   | 20           |   | 6010B  |
| Manganese | 293.9  |                     | M-136    | 75-125                 | 11  | 20           | 4 | 6010B  |
| Nickel    | 46.33  | 39.9                | NA -9    | 75-125                 | 20  | 20           | 4 | 6010B  |
| Potassium | 40.55  | 39.9                | 77       | 75-125                 | 4   | 20           |   | 6010B  |
| Selenium  |        | 2000                | (177)    | 75-125                 | 9   | 20           | F | 6010B  |
| Silver    | 38.11  | 39.9                | 95       | 75-125                 | 0   | 20           |   | 6010B  |
| Sodium    | 9.00   | 9.98                | 90       | 75-125                 | 1   | 20           |   | 6010B  |
| hallium   | 2088   | 2000                | 99       | 75-125                 | 3   | 20           |   | 6010B  |
|           | 35.67  | 39.9                | 89       | 75-125                 | 3   | 20           | - | 6010B  |
| /anadium  | 59.59  | 39.9                | 77       | 75-125                 | 4   | 20           |   | 6010B  |
| inc       | 61.48  | 41.1                | 112      | 75-125                 | 20  | 20           |   | 6010B  |

SDR = Sample Duplicate Result

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client ID: SS-C6 MS           | Lab ID: 480-8453-3 MS      |
|-------------------------------|----------------------------|
| Lab Name: TestAmerica Buffalo | Job No.: 480-8280-1        |
| SDG No.:                      |                            |
| Matrix: Solid                 | Concentration Units: mg/Kg |
| % Solids: 92.9                | ing/ kg                    |

| Analyte           | SSR   | Sample<br>Result (S |     | Spike<br>Added (SA) | %R     | Control<br>Limit<br>%R | Q | Method         |
|-------------------|-------|---------------------|-----|---------------------|--------|------------------------|---|----------------|
| Aluminum          | 11380 | <u> </u>            |     |                     |        |                        |   |                |
| Antimony          | 32.59 | 5480                |     | 2180                | 271    | 75-125                 | F | 6010B          |
| Arsenic           | 46.97 | ND                  |     | 43.6                | 75     | 75-125                 |   | 6010B          |
| Barium            | 117.9 | 6.5                 |     | 43.6                | 93     | 75-125                 |   | 6010B          |
| Beryllium         | 38.12 | 44.8                |     | 43.6                | (168)  | 75-125                 | F | 6010B          |
| Cadmium           | 42.53 | 0.33                |     | 43.6                | 87     | 75-125                 |   | 6010B          |
| Calcium           | 6449  | 0.39                | 4-4 | 43.6                | 97     | 75-125                 |   | 6010B          |
| Chromium          | 58.23 | 8630                |     | 2180                | (-100) | 75-125                 | F | 6010B          |
| Cobalt            | 49.57 | 18.0                | 4-4 | 43.6                | 92     | 75-125                 |   | 6010B          |
| Copper            |       | 5.9                 | 11  | 43.6                | 100    | 75-125                 |   | 6010B          |
| Iron              | 92.63 | 47.4                |     | 43.6                | 104    | 75-125                 |   | 6010B          |
| Lead              | 22380 | 17800               |     | 2180                | WA 209 | 75-125                 | 4 | 6010B          |
| Magnesium         | 108.2 | 64.6                |     | 43.6                | 100    | 75-125                 |   | 6010B          |
| Manganese         | 5552  | 5230                |     | 2180                | (15)   | 75-125                 | F | 6010B          |
| Nickel            | 371.8 | 324                 |     | 43.6                | 111    | 75-125                 | 4 | 6010B          |
| Potassium         | 56.43 | 14.5                |     | 43.6                | 96     | 75-125                 |   | 6010B          |
| Selenium Selenium | 3598  | 712                 |     | 2180                | (133)  | 75-125                 | F | 6010B          |
| ilver             | 40.85 | ND                  |     | 43.6                | 94     | 75-125                 |   | 6010B          |
|                   | 10.01 | ND                  |     | 10.9                | 92     | 75-125                 |   | 6010B          |
| Sodium            | 2165  | 74.8                | J   | 2180                | 96     | 75-125                 |   | 6010B          |
| hallium           | 39.68 | ND                  |     | 43.6                | 91     | 75-125                 |   | 6010B          |
| anadium           | 59.02 | 15.2                |     | 43.6                | 101    | 75-125                 |   | 6010B          |
| inc               | 160.0 | 112                 |     | 43.6                | 109    | 75-125                 |   |                |
| g                 | 0.503 | 0.14                |     | 0.333               | 108    | 75-125                 |   | 6010B<br>7471A |

SSR = Spiked Sample Result

# 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: SS-C6 MSD Lab ID: 480-8453-3 MSD

Lab Name: TestAmerica Buffalo Job No.: 480-8280-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 92.9

| Analyte   | (SDR) | Spike<br>Added (SA) | %R          | Control<br>Limit<br>%R | RPD | RPD<br>Limit | Q  | Method         |
|-----------|-------|---------------------|-------------|------------------------|-----|--------------|----|----------------|
| Aluminum  | 11420 | 2030                | (293)       | 75-125                 | 0   | 20           |    |                |
| Antimony  | 28.57 | 40.5                | 70          | 75-125                 | 13  | 20           | F  | 6010B          |
| Arsenic   | 43.25 | 40.5                | 91          | 75-125                 | 8   |              | F  | 6010B          |
| Barium    | 105.4 | 40.5                | (149)       | 75-125                 | 11  | 20           |    | 6010B          |
| Beryllium | 35.46 | 40.5                | 87          | 75-125                 |     | 20           | F  | 6010B          |
| Cadmium   | 39.44 | 40.5                | 96          | 75-125                 | 7   | 20           |    | 6010B          |
| Calcium . | 6797  | 2030                | (-90)       |                        | 8   | 20           |    | 6010B          |
| Chromium  | 55.27 | 40.5                | 92          | 75-125                 | 5   | 20           | 45 | 6010B          |
| Cobalt    | 45.52 | 40.5                |             | 75-125                 | 5   | 20           |    | 6010B          |
| Copper    | 87.29 | 40.5                | 98          | 75-125                 | 9   | 20           |    | 6010B          |
| Iron      | 19510 |                     | 98          | 75-125                 | 6   | 20           |    | 6010B          |
| Lead      | 107.3 | 2030                | 83          | 75-125                 | 14  | 20           | 4  | 6010B          |
| Magnesium | 5367  | 40.5                | 105         | 75-125                 | 1   | 20           |    | 6010B          |
| Manganese | 348.6 | 2030                | (7)         | 75-125                 | 3   | 20           | F  | 6010B          |
| Nickel    |       | 40.5                | <b>№</b> 61 | 75-125                 | 6   | 20           | 4  | 6010B          |
| Potassium | 52.61 | 40.5                | 94          | 75-125                 | 7   | 20           |    | 6010B          |
| Selenium  | 3672  | 2030                | (146)       | 75-125                 | 2   | 20           | F  | 6010B          |
|           | 37.38 | 40.5                | 92          | 75-125                 | 9   | 20           |    | 6010B          |
| Silver    | 9.44  | 10.1                | 93          | 75-125                 | 6   | 20           |    | 6010B          |
| Sodium    | 2056  | 2030                | 98          | 75-125                 | 5   | 20           |    | 6010B          |
| Thallium  | 36.58 | 40.5                | 90          | 75-125                 | 8   | 20           |    | 6010B          |
| /anadium  | 56.51 | 40.5                | 102         | 75-125                 | 4   | 20           |    | 6010B          |
| linc      | 156.1 | 40.5                | 108         | 75-125                 | 2   | 20           |    |                |
| lg        | 0.546 | 0.348               | 116         | 75-125                 | 8   | 20           |    | 6010B<br>7471A |

SDR = Sample Duplicate Result

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

| Lab |     | D: 480-8453-3 |  |
|-----|-----|---------------|--|
| SDG | No: | io:           |  |
|     |     |               |  |

Lab Name: TestAmerica Buffalo Job No: 480-8280-1

Matrix: Solid Concentration Units: mg/Kg

|                                     |        |                                    |              | T               |                                         |        |
|-------------------------------------|--------|------------------------------------|--------------|-----------------|-----------------------------------------|--------|
| Initial Sample Analyte Result (I) C |        | Serial<br>Dilution<br>Result (S) C |              | %<br>Difference | Q                                       | Method |
| Aluminum                            | 5480   | 5834                               |              | 6.5             |                                         | 6010B  |
| Antimony                            | ND     | ND                                 | <del> </del> | NC NC           |                                         |        |
| Arsenic                             | 6.5    | 7,37                               | J            | NC NC           |                                         | 6010B  |
| Barium                              | 44.8   | 48.76                              |              |                 |                                         | 6010B  |
| Beryllium                           | 0.33   | 0.362                              | J            | 8.8             | ļ                                       | 6010B  |
| Cadmium                             | 0.39   | 0.410                              | J            | NC              |                                         | 6010B  |
| Calcium                             | 8630   | 9117                               | J            | NC              |                                         | 6010B  |
| Chromium                            | 18.0   |                                    |              | 5.6             |                                         | 6010B  |
| Cobalt                              | 5.9    | 19.07                              |              | 5.7             |                                         | 6010B  |
| Copper                              | 47.4   | 5.81                               |              | 1.1             |                                         | 6010B  |
| Iron                                | 17800  | 48.69                              |              | 2.6             |                                         | 6010B  |
| Lead                                |        | 17970                              |              | 0.76            |                                         | 6010B  |
| Magnesium                           | 64.6   | 66.42                              |              | 2.8             |                                         | 6010B  |
| Manganese                           | 5230   | 5588                               |              | 6.8             |                                         | 6010B  |
| Nickel                              | 324    | 343.9                              |              | 6.3             | *************************************** | 6010B  |
|                                     | 14.5   | 14.49                              | J            | 0.06            |                                         | 6010B  |
| Potassium                           | 712    | 803.3                              |              | (13             | V                                       | 6010B  |
| Selenium                            | ND     | ND                                 |              | NC              | Z                                       | 6010B  |
| Silver                              | ND     | ND                                 |              | NC NC           |                                         | 6010B  |
| Sodium                              | 74.8 J | 96.08                              | J            | NC NC           |                                         |        |
| Thallium                            | ND     | ND                                 |              | NC NC           |                                         | 6010B  |
| Vanadium                            | 15.2   | 16.07                              |              |                 |                                         | 6010B  |
| Zinc                                | 112    | 120.0                              |              | 5.9             |                                         | 6010B  |
|                                     |        | 120.0                              |              | 6.7             |                                         | 6010B  |

Calculations are performed before rounding to avoid round-off errors in calculated results.



Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-9072-1

9 Soil Samples, 2 Field Duplicates, and 1 Trip Blank Collected August 25-September 7, 2011

> Prepared by: Donald Anné May 2, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 9 soil samples, 2 field duplicates, and 1 trip blank analyzed for volatiles, and 9 soil samples and 2 field duplicates analyzed semi-volatiles.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Positive volatile results for toluene were flagged as "not detected" (U) for samples SB-B1 (5-9) and SB-B2 (3-4) because the level reported in the samples were not significantly greater than (more than 5 times) the highest associated blank level.
- Positive volatile result for methylene chloride was flagged as "not detected" (U) for the trip blank because the level reported in the sample was not significantly greater than (more than 10 times) the highest associated blank level.
- Positive semi-volatile results for the following compounds were flagged as "estimated" (J) in samples SB-C3 (5-8) and DUP-01 because relative percent differences for these compounds were above the allowable maximum in the associated soil field duplicate pair SB-C3 (5-8)/DUP-01.

benzo(a)anthracene benzo(g,h,i)perylene fluoranthene pyrene

benzo(a)pyrene benzo(k)fluoranthene indeno(1,2,3-cd)pyrene

benzo(b)fluoranthene chrysene phenanthrene

All data are considered usable with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-9072-1.dus.wpd



Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-9072-1

### 9 Soil Samples, 2 Field Duplicates, and 1 Trip Blank Collected August 25-September 7, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for dichlorodifluoromethane and bromomethane were above the allowable maximum (25%) on 08-30-11 (P4754.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: Method blank MS 480-29441/5 contained traces of methylene chloride (3.21 ug/kg) and toluene (0.683 ug/kg). Method blank MB 480-31837/5 contained a trace of methylene chloride (2.18 ug/L). The trip blank contained a trace of toluene (0.68 ug/L). Positive results for methylene chloride that are less than ten times the highest blank level should be reported as not detected (J) in associated samples. Positive results for toleune that are less than five times the highest blank level should be reported as not detected (J) in associated samples.

- <u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.
- <u>Matrix Spike/Matrix Spike Duplicate</u>: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample SB-B1 (5-9).
- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil samples LCS 480-29441/4, LCS 480-30731/4, and LCS 480-30918/4, and aqueous sample LCS 480-31837/4.
- Field Duplicates: The analyses of soil field duplicate pairs SB-C3 (5-8)/DUP-01 and SB-B2 (3-4)/DUP-02 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo

Job No.: 480-9072-1

SDG No.:

Lab Sample ID: CCVIS 480-29441/2

Calibration Date: 08/30/2011 11:55

Instrument ID: HP5973P

Calib Start Date: 08/18/2011 15:26

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 08/18/2011 17:33

Lab File ID: P4754.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D           | MAX<br>%D    |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|--------------|--------------|
| Dichlorodifluoromethane                | Ave           | 0.3726  | 0.2482 |         | 22.2           |                 |              |              |
| Chloromethane                          | Ave           | 0.3702  | 0.2919 | 0.1000  | 33.3           | 50.0            | -33.4        | 50.0         |
| Vinyl chloride                         | Ave           | 0.3441  | 0.2994 | 0.1000  | 39.4           | 50.0            | -21.2        | 50.0         |
| Bromomethane                           | Ave           | 0.0633  | 0.0450 |         | 43.5           | 50.0            | -13.0        | 20.0         |
| Chloroethane                           | Ave           | 0.0563  | 0.0427 |         | 35.5           | 50.0            | -29.0        | 50.0         |
| Trichlorofluoromethane                 | Ave           | 0.6045  | 0.5235 |         | 37.9           | 50.0            | -24.2        | 50.0         |
| Acrolein                               | Ave           | 0.0163  | 0.0149 |         | 43.3           | 50.0            | -13.4        | 50.0         |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.3330  | 0.3026 |         | 910<br>45.4    | 1000<br>50.0    | -9.0<br>-9.1 | 50.0<br>50.0 |
| 1,1-Dichloroethene                     | Ave           | 0.3222  | 0.3059 | 0.1000  | 47.5           | E0 0            |              |              |
| Acetone                                | Ave           | 0.1193  | 0.1145 | 0.1000  | 240            | 50.0            | -5.1         | 20.0         |
| Iodomethane                            | Ave           | 0.4376  | 0.4211 |         | 48.1           | 250             | -4.0         | 50.0         |
| Carbon disulfide                       | Ave           | 0.8751  | 0.8172 |         | 46.7           | 50.0            | -3.8         | 50.0         |
| Methyl acetate                         | Ave           | 0.5091  | 0.4822 |         | 47.4           | 50.0            | -6.6         | 50.0         |
| Acetonitrile                           | Ave           | 0.0291  | 0.0276 |         |                | 50.0            | -5.3         | 50.0         |
| Methylene Chloride                     | LinF          |         | 0.3688 |         | 1890           | 2000            | -5.3         | 50.0         |
| Methyl tert-butyl ether                | Ave           | 0.9627  | 0.9308 |         | 50.0           | 50.0            | 0.0          | 50.0         |
| trans-1,2-Dichloroethene               | Ave           | 0.3515  | 0.3329 |         | 48.3           | 50.0            | -3.3         | 50.0         |
| Acrylonitrile                          | Ave           | 0.1442  | 0.1414 |         | 47.4           | 50.0            | -5.3         | 50.0         |
| Vinyl acetate                          | Ave           | 0.5495  | 0.5338 |         | 245            | 250             | -1.9         | 50.0         |
| 1,1-Dichloroethane                     | Ave           | 0.6587  | 0.5985 |         | 243            | 250             | -2.9         | 50.0         |
| 2-Butanone (MEK)                       | Ave           | 0.1890  | 0.1793 |         | 45.4           | 50.0            | -9.1         | 50.0         |
| 2,2-Dichloropropane                    | Ave           | 0.4519  | 0.4622 |         | 237            | 250             | -5.1         | 50.0         |
| cis-1,2-Dichloroethene                 | Ave           | 0.3848  | 0.4622 |         | 51.1           | 50.0            | 2.3          | 50.0         |
| 3romochloromethane                     | Ave           | 0.1904  | 0.1870 |         | 47.5           | 50.0            | -5.1         | 50.0         |
| Tetrahydrofuran                        | Ave           | 0.1183  | 0.1870 |         | 49.1           | 50.0            | -1.8         | 50.0         |
| Chloroform                             | Ave           | 0.6283  | 0.5648 |         | 240            | 250             | -4.1         | 50.0         |
| ,1,1-Trichloroethane                   | Ave           | 0.4825  | 0.3648 |         | 44.9           | 50.0            | -10.1        | 20.0         |
| Cyclohexane                            | Ave           | 0.5614  | 0.4976 |         | 48.4           | 50.0            | -3.2         | 50.0         |
| ,1-Dichloropropene                     | Ave           | 0.4630  |        |         | 44.0           | 50.0            | -11.9        | 50.0         |
| arbon tetrachloride                    | Ave           | 0.4163  | 0.4265 |         | 46.1           | 50.0            | -7.9         | 50.0         |
| enzene                                 | Ave           | 1.319   | 1.242  |         | 51.5           | 50.0            | 3.0          | 50.0         |
| ,2-Dichloroethane                      | Ave           | 0.4702  |        |         | 47.1           | 50.0            | -5.8         | 50.0         |
| richloroethene                         | Ave           | 0.3469  | 0.4196 |         | 44.6           | 50.0            | -10.8        | 50.0         |
| ethylcyclohexane                       | Ave           |         | 0.3239 |         | 46.7           | 50.0            | -6.6         | 50.0         |
| ,2-Dichloropropane                     | Ave           | 0.5355  | 0.4972 |         | 46.4           | 50.0            | -7.2         | 50.0         |
| ibromomethane                          | Ave           | 0.3603  | 0.3303 |         | 45.8           | 50.0            | -8.3         | 20.0         |
| romodichloromethane                    | Ave           |         | 0.2084 |         | 47.3           | 50.0            | -5.3         | 50.0         |
| -Chloroethyl vinyl ether               | Ave           | 0.4124  | 0.4077 |         | 49.4           | 50.0            | -1.1         | 50.0         |
| is-1,3-Dichloropropene                 | Ave           | 0.2142  | 0.1977 |         | 231            | 250             | -7.7         | 50.0         |
| -Methyl-2-pentanone (MIBK)             |               | 0.5009  | 0.4993 |         | 49.8           | 50.0            | -0.3         | 50.0         |
|                                        | Ave           | 0.7984  | 0.7775 |         | 243            | 250             | -2.6         | 50.0         |

### FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-9072-1

SDG No.:

Lab Sample ID: CCVIS 480-29441/2 Calibration Date: 08/30/2011 11:55

Instrument ID: HP5973P Calib Start Date: 08/18/2011 15:26

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 08/18/2011 17:33

Lab File ID: P4754.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|-------|-----------|
| Toluene                      | Ave           | 1.841   | 1.718  |                                         | 46.7           | 50.0            | -6.7  | 20.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.999   | 1.022  |                                         | 51.1           | 50.0            | 2.3   | 50.0      |
| Ethyl methacrylate           | Ave           | 0.8893  | 0.8730 |                                         | 49.1           | 50.0            | -1.8  | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.5644  | 0.5460 |                                         | 48.4           | 50.0            | -3.3  | 50.0      |
| Tetrachloroethene            | Ave           | 0.9325  | 0.8828 |                                         | 47.3           | 50.0            | -5.3  | 50.0      |
| 1,3-Dichloropropane          | Ave           | 1.095   | 1.047  |                                         | 47.8           | 50.0            | -4.4  | 50.0      |
| 2-Hexanone                   | Ave           | 0.5726  | 0.5633 |                                         | 246            | 250             | -1.6  | 50.0      |
| Dibromochloromethane         | Lin1F         |         | 0.7483 |                                         | 47.7           | 50.0            | -4.6  | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.7172  | 0.7112 |                                         | 49.6           | 50.0            | -0.8  | 50.0      |
| Chlorobenzene                | Ave           | 2.078   | 2.061  | 0.3000                                  | 49.6           | 50.0            | -0.8  | 50.0      |
| Ethylbenzene                 | Ave           | 3.268   | 3.179  |                                         | 48.6           | 50.0            | -2.7  | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.7103  | 0.7583 |                                         | 53.4           | 50.0            | 6.8   | 50.0      |
| m,p-Xylene                   | Ave           | 1.358   | 1.354  |                                         | 99.7           | 100             | -0.3  | 50.0      |
| o-Xylene                     | Ave           | 1.353   | 1.347  |                                         | 49.8           | 50.0            | -0.5  | 50.0      |
| Styrene                      | Ave           | 2.264   | 2.238  |                                         | 49.4           | 50.0            | -1.2  | 50.0      |
| Bromoform                    | QuaF          |         | 0.5930 | 0.1000                                  | 56.5           | 50.0            | 13.0  | 50.0      |
| Isopropylbenzene             | Ave           | 2.966   | 2.623  |                                         | 44.2           | 50.0            | -11.6 | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.8262  | 0.7330 | 0.3000                                  | 44.4           | 50.0            | -11.3 | 50.0      |
| Bromobenzene                 | Ave           | 0.9079  | 0.8159 |                                         | 44.9           | 50.0            | -10.1 | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2108  | 0.1934 |                                         | 229            | 250             | -8.3  | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2337  | 0.2119 |                                         | 45.3           | 50.0            | -9.4  | 50.0      |
| N-Propylbenzene              | Ave           | 3.644   | 3.243  |                                         | 44.5           | 50.0            | -11.0 | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.7676  | 0.6833 | -                                       | 44.5           | 50.0            | -11.0 | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.508   | 2,205  |                                         | 44.0           | 50.0            | -12.1 | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.7961  | 0.7039 |                                         | 44.2           | 50.0            | -11.6 | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5460  | 0.4912 |                                         | 45.0           | 50.0            | -10.0 | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.558   | 2.246  |                                         | 43.9           | 50.0            | -12.2 | 50.0      |
| sec-Butylbenzene             | Ave           | 3.301   | 2.929  |                                         | 44.4           | 50.0            | -11.3 | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.644   | 2.377  |                                         | 44.9           | 50.0            | -10.1 | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.636   | 1.476  |                                         | 45.1           | 50.0            | -9.8  | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.672   | 1.512  | *                                       | 45.2           | 50.0            | -9.6  | 50.0      |
| n-Butylbenzene               | Ave           | 2.605   | 2.225  |                                         | 42.7           | 50.0            | -14.6 | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.578   | 1.434  |                                         | 45.4           | 50.0            | -9.2  | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1322  | 0.1288 |                                         | 48.7           | 50.0            | -2.6  | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.204   | 1.105  |                                         | 45.9           | 50.0            | -8.2  | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.3540  | 0.3623 |                                         | 51.2           | 50.0            | 2.3   | 50.0      |
| Naphthalene                  | Ave           | 1.250   | 1.498  | *************************************** | 59.9           | 50.0            | 19.8  | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.5506  | 0.5631 |                                         | 51.1           | 50.0            | 2.3   | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.2314  | 0.1962 |                                         | 42.4           | 50.0            | -15.2 | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.852   | 2.808  |                                         | 49.2           | 50.0            | -1.5  | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 1.140   | 1.181  |                                         | 51.8           | 50.0            | 3.7   | 50.0      |

## FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-9072-1                 |  |  |
|-------------------------------|-------------------------------------|--|--|
| SDG No.:                      |                                     |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-29441/5       |  |  |
| Matrix: Solid                 | Lab File ID: P4757.D                |  |  |
| Analysis Method: 8260B        | Date Collected:                     |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 08/30/2011 13:25     |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |
| Analysis Batch No.: 29441     | Units: ug/Kg                        |  |  |

| CAS NO.    | COMPOUND NAME                        | RESULT | Q | RL  | MDL  |
|------------|--------------------------------------|--------|---|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                | ND     |   | 5.0 | 0.36 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane            | ND     |   | 5.0 | 0.81 |
| 79-00-5    | 1,1,2-Trichloroethane                | ND     |   | 5.0 | 0.65 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 5.0 | 1.1  |
| 75-34-3    | 1,1-Dichloroethane                   | ND     |   | 5.0 | 0.61 |
| 75-35-4    | 1,1-Dichloroethene                   | ND     |   | 5.0 | 0.61 |
| 120-82-1   | 1,2,4-Trichlorobenzene               | ND     |   | 5.0 | 0.30 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane          | ND     |   | 5.0 | 2.5  |
| 106-93-4   | 1,2-Dibromoethane                    | ND     |   | 5.0 | 0.64 |
| 95-50-1    | 1,2-Dichlorobenzene                  | ND     |   | 5.0 | 0.39 |
| 107-06-2   | 1,2-Dichloroethane                   | ND     |   | 5.0 | 0.25 |
| 78-87-5    | 1,2-Dichloropropane                  | ND ND  |   | 5.0 | 2.5  |
| 541-73-1   | 1,3-Dichlorobenzene                  | ND     |   | 5.0 | 0.26 |
| 106-46-7   | 1,4-Dichlorobenzene                  | ND     |   | 5.0 | 0.70 |
| 591-78-6   | 2-Hexanone                           | ND     |   | 25  | 2.5  |
| 78-93-3    | 2-Butanone (MEK)                     | ND     |   | 25  | 1.8  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)          | ND     |   | 25  | 1.6  |
| 67-64-1    | Acetone                              | ND     |   | 25  | 4.2  |
| 71-43-2    | Benzene                              | ND     |   | 5.0 | 0.25 |
| 75-27-4    | Bromodichloromethane                 | ND     |   | 5.0 | 0.67 |
| 75-25-2    | Bromoform                            | ND     |   | 5.0 | 2.5  |
| 74-83-9    | Bromomethane                         | ND     |   | 5.0 | 0.45 |
| 75-15-0    | Carbon disulfide                     | ND     |   | 5.0 | 2.5  |
| 56-23-5    | Carbon tetrachloride                 | ND     |   | 5.0 | 0.48 |
| 108-90-7   | Chlorobenzene                        | ND     |   | 5.0 | 0.66 |
| 124-48-1   | Dibromochloromethane                 | ND     |   | 5.0 | 0.64 |
| 75-00-3    | Chloroethane                         | ND     |   | 5.0 | 1.1  |
| 67-66-3    | Chloroform                           | ND     |   | 5.0 | 0.31 |
| 74-87-3    | Chloromethane                        | ND ND  |   | 5.0 | 0.30 |
| 156-59-2   | cis-1,2-Dichloroethene               | ND     |   | 5.0 | 0.64 |
| 10061-01-5 | cis-1,3-Dichloropropene              | ND     |   | 5.0 | 0.72 |
| 10-82-7    | Cyclohexane                          | ND     |   | 5.0 | 0.70 |
| 75-71-8    | Dichlorodifluoromethane              | ND     |   | 5.0 | 0.41 |
| 100-41-4   | Ethylbenzene                         | ND     |   | 5.0 | 0.35 |
| 8-82-8     | Isopropylbenzene                     | ND ND  |   | 5.0 | 0.75 |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-9072-1                 |  |  |
|-------------------------------|-------------------------------------|--|--|
| SDG No.:                      |                                     |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-29441/5       |  |  |
| Matrix: Solid                 | Lab File ID: P4757.D                |  |  |
| Analysis Method: 8260B        | Date Collected:                     |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 08/30/2011 13:25     |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |
| Analysis Batch No.: 29441     | Units: ug/Kg                        |  |  |

| CAS NO.    | COMPOUND NAME             | RESULT | Q             | RL  | MDL  |
|------------|---------------------------|--------|---------------|-----|------|
| 79-20-9    | Methyl acetate            | ND     |               | 5.0 | 0.93 |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |               | 5.0 | 0.49 |
| 108-87-2   | Methylcyclohexane         | ND     |               | 5.0 | 0.76 |
| 75-09-2    | Methylene Chloride        | (3.21  | J             | 5.0 | 2.3  |
| 100-42-5   | Styrene                   | ND     |               | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     | - Schrößbann. | 5.0 | 0.67 |
| 108-88-3   | Toluene                   | 0.683  | J )           | 5.0 | 0.38 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |               | 5.0 | 0.52 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |               | 5.0 | 2.2  |
| 79-01-6    | Trichloroethene           | ND     |               | 5.0 | 1.1  |
| 75-69-4    | Trichlorofluoromethane    | ND     |               | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |               | 5.0 | 0.61 |
| 1330-20-7  | Xylenes, Total            | ND     |               | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | 82   |   | 64-126 |
| 2037-26-5  | Toluene-d8 (Surr)            | 100  |   | 71-125 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 100  |   | 72-126 |

### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-9072-1                 |  |  |
|-------------------------------|-------------------------------------|--|--|
| SDG No.:                      |                                     |  |  |
| Client Sample ID:             | Lab Sample ID: MB 480-31837/5       |  |  |
| Matrix: Water                 | Lab File ID: F3811A.D               |  |  |
| Analysis Method: 8260B        | Date Collected:                     |  |  |
| Sample wt/vol: 5(g)           | Date Analyzed: 09/10/2011 14:33     |  |  |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |  |  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |  |  |
| % Moisture:                   | Level: (low/med) Low                |  |  |
| Analysis Batch No.: 31837     | Units: ug/L                         |  |  |

| CAS NO.    | COMPOUND NAME                        | RESULT | Q                                       | RL  | MDL  |
|------------|--------------------------------------|--------|-----------------------------------------|-----|------|
| 71-55-6    | 1,1,1-Trichloroethane                | ND     |                                         | 1.0 | 0.82 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane            | ND     |                                         | 1.0 | 0.21 |
| 79-00-5    | 1,1,2-Trichloroethane                | ND     |                                         | 1.0 | 0.23 |
| 76-13-1    | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |                                         | 1.0 | 0.31 |
| 75-34-3    | 1,1-Dichloroethane                   | ND     |                                         | 1.0 | 0.38 |
| 75-35-4    | 1,1-Dichloroethene                   | ND     |                                         | 1.0 | 0.29 |
| 120-82-1   | 1,2,4-Trichlorobenzene               | ND     |                                         | 1.0 | 0.41 |
| 96-12-8    | 1,2-Dibromo-3-Chloropropane          | ND     |                                         | 1.0 | 0.39 |
| 106-93-4   | 1,2-Dibromoethane                    | ND     |                                         | 1.0 | 0.73 |
| 95-50-1    | 1,2-Dichlorobenzene                  | ND     |                                         | 1.0 | 0.79 |
| 107-06-2   | 1,2-Dichloroethane                   | ND     |                                         | 1.0 | 0.21 |
| 78-87-5    | 1,2-Dichloropropane                  | ND     |                                         | 1.0 | 0.72 |
| 541-73-1   | 1,3-Dichlorobenzene                  | ND     |                                         | 1.0 | 0.78 |
| 106-46-7   | 1,4-Dichlorobenzene                  | ND     |                                         | 1.0 | 0.84 |
| 591-78-6   | 2-Hexanone                           | ND     |                                         | 5.0 | 1.2  |
| 78-93-3    | 2-Butanone (MEK)                     | ND     |                                         | 10  | 1.3  |
| 108-10-1   | 4-Methyl-2-pentanone (MIBK)          | ND     |                                         | 5.0 | 2.1  |
| 67-64-1    | Acetone                              | ND     |                                         | 10  | 3.0  |
| 71-43-2    | Benzene                              | ND     |                                         | 1.0 | 0.41 |
| 75-27-4    | Bromodichloromethane                 | ND     |                                         | 1.0 | 0.39 |
| 75-25-2    | Bromoform                            | ND     |                                         | 1.0 | 0.26 |
| 74-83-9    | Bromomethane                         | ND     |                                         | 1.0 | 0.69 |
| 75-15-0    | Carbon disulfide                     | ND     |                                         | 1.0 | 0.19 |
| 56-23-5    | Carbon tetrachloride                 | ND     |                                         | 1.0 | 0.27 |
| 108-90-7   | Chlorobenzene                        | ND     |                                         | 1.0 | 0.75 |
| 124-48-1   | Dibromochloromethane                 | ND     |                                         | 1.0 | 0.32 |
| 75-00-3    | Chloroethane                         | ND     |                                         | 1.0 | 0.32 |
| 67-66-3    | Chloroform                           | ND     |                                         | 1.0 | 0.34 |
| 74-87-3    | Chloromethane                        | ND     |                                         | 1.0 | 0.35 |
| 156-59-2   | cis-1,2-Dichloroethene               | ND     |                                         | 1.0 | 0.81 |
| 10061-01-5 | cis-1,3-Dichloropropene              | ND     |                                         | 1.0 | 0.36 |
| 110-82-7   | Cyclohexane                          | ND     |                                         | 1.0 | 0.18 |
| 75-71-8    | Dichlorodifluoromethane              | ND     |                                         | 1.0 | 0.68 |
| 100-41-4   | Ethylbenzene                         | ND     | *************************************** | 1.0 | 0.74 |
| 98-82-8    | Isopropylbenzene                     | ND     |                                         | 1.0 | 0.79 |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-9072-1                 |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-31837/5       |
| Matrix: Water                 | Lab File ID: F3811A.D               |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 09/10/2011 14:33     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 31837     | Units: ug/L                         |
|                               |                                     |

| CAS NO.    | COMPOUND NAME             | RESULT | Q | RL  | MDL  |
|------------|---------------------------|--------|---|-----|------|
| 79-20-9    | Methyl acetate            | ND     |   | 1.0 | 0.50 |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |   | 1.0 | 0.16 |
| 108-87-2   | Methylcyclohexane         | ND     |   | 1.0 | 0.16 |
| 75-09-2    | Methylene Chloride        | 2.18   |   | 1.0 | 0.44 |
| 100-42-5   | Styrene                   | ND /   |   | 1.0 | 0.73 |
| 127-18-4   | Tetrachloroethene         | ND     |   | 1.0 | 0.36 |
| 108-88-3   | Toluene                   | ND ND  |   | 1.0 | 0.51 |
| 156-60-5   | trans-1,2-Dichloroethene  | ND     |   | 1.0 | 0.90 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |   | 1.0 | 0.37 |
| 79-01-6    | Trichloroethene           | ND     |   | 1.0 | 0.46 |
| 75-69-4    | Trichlorofluoromethane    | ND     |   | 1.0 | 0.88 |
| 75-01-4    | Vinyl chloride            | ND     |   | 1.0 | 0.90 |
| 1330-20-7  | Xylenes, Total            | ND     |   | 2.0 | 0.90 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) | . 87 |   | 66-137 |
| 2037-26-5  | Toluene-d8 (Surr)            | 97   |   | 71-126 |
| 460-00-4   | 4-Bromofluorobenzene (Surr)  | 91   |   | 73-120 |



Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-9072-1

### 9 Soil Samples, and 2 Field Duplicates Collected August 25-September 7, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum, as required.

Blanks: The analyses of method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

<u>Matrix Spike/Matrix Spike Duplicate</u>: The relative percent differences for spiked compounds were below the allowable maximums and the percent recoveries were within QC limits for soil MS/MSD sample SB-B1 (5-9).

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil samples LCS 480-29814/2-A, LCS 480-30582/2-A, and LCS 480-30841/2-A.

Page 1 of 2

<u>Field Duplicates</u>: The relative percent differences (RPDs) for applicable compounds were below the allowable maximum (35%) for soil field duplicate pair SB-B2 (3-4)/DUP-02 (attached table), as required.

The RPDs for the following compounds were above the allowable maximum (35%) for soil field duplicate pair SB-C3 (5-8')/DUP-01 (attached table). Results for these compounds should be considered estimated (J) in samples SB-C3 (5-8) and DUP-01.

benzo(a)anthracene benzo(a)pyrene benzo(b)fluoranthene benzo(g,h,i)perylene benzo(k)fluoranthene chrysene fluoranthene indeno(1,2,3-cd)pyrene pyrene

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### Semi-Volatiles

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-9072-1

| <b>S1=</b> SB-C3 (5-8) |            | S2=       | DUP-01  |   |
|------------------------|------------|-----------|---------|---|
| <u>Analyte</u>         | <u>\$1</u> | <u>S2</u> | RPD (%) |   |
| 2-methylnaphthalene    | 75         | 29        | NC NC   |   |
| acenaphthene           | 320        | 54        | NC      |   |
| acenaphthylene         | 84         | 53        | NC      |   |
| anthracene             | 510        | 120       | NC      |   |
| benzo(a)anthracene     | 1200       | 340       | 112%    | * |
| benzo(a)pyrene         | 1200       | 390       | 102%    | * |
| benzo(b)fluoranthene   | 1300       | 420       | 102%    | * |
| benzo(g,h,i)perylene   | 840        | 270       | 103%    | * |
| benzo(k)fluoranthene   | 620        | 230       | 92%     | * |
| biphenyl               | 24         | ND        | NC      |   |
| carbazole              | 190        | 32        | NC      |   |
| chrysene               | 1200       | 370       | 106%    | * |
| dibenz(a,h)anthracene  | 230        | 67        | NC      |   |
| dibenzofuran           | 160        | 45        | NC      |   |
| fluoranthene           | 2900       | 690       | 123%    | * |
| fluorene               | 160        | 61        | NC      |   |
| indeno(1,2,3-cd)pyrene | 700        | 230       | 101%    | * |
| naphthalene            | ND         | 34        | NC      |   |
| phenanthrene           | 2800       | 520       | 137%    | * |
| pyrene                 | 2300       | 560       | 122%    | * |

<sup>\*</sup> RPD is above the allowable maximum (35%)

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### **Semi-Volatiles**

## Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-9072-1

| <b>\$1=</b> SB-B2 (3-4) |           | S2=       | DUP-02  |
|-------------------------|-----------|-----------|---------|
| <u>Analyte</u>          | <u>S1</u> | <u>S2</u> | RPD (%) |
| 2-methylnaphthalene     | 860       | 890       | NC      |
| acenaphthene            | 4500      | 4400      | 2%      |
| acenaphthylene          | 110       | 160       | NC      |
| anthracene              | 7600      | 7900      | 4%      |
| benzo(a)anthracene      | 13000     | 13000     | 0%      |
| benzo(a)pyrene          | 13000     | 13000     | 0%      |
| benzo(b)fluoranthene    | 14000     | 15000     | 7%      |
| benzo(g,h,i)perylene    | 8300      | 7700      | 8%      |
| benzo(k)fluoranthene    | 7000      | 6200      | 12%     |
| biphenyl                | 210       | 210       | NC      |
| carbazole               | 3100      | 3600      | 15%     |
| chrysene                | 12000     | 13000     | 8%      |
| dibenz(a,h)anthracene   | 2400      | 2200      | 9%      |
| dibenzofuran            | 1700      | 1900      | NC      |
| fluoranthene            | 29000     | 26000     | 11%     |
| fluorene                | 3500      | 3600      | 3%      |
| indeno(1,2,3-cd)pyrene  | 7000      | 6400      | 9%      |
| naphthalene             | 1600      | 1400      | NC      |
| phenanthrene            | 26000     | 25000     | 4%      |
| pyrene                  | 22000     | 22000     | 0%      |

<sup>\*</sup> RPD is above the allowable maximum (35%)

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.



Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-10088-1

### 5 Soil Samples, 1 Equipment Blank, and 1 Trip Blank Collected September 19, 2011

Prepared by: Donald Anné May 2, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 5 soil samples, 1 equipment blank, and 1 trip blanks analyzed for volatiles, and 5 soil samples and 1 equipment blank analyzed semi-volatiles.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• Positive semi-volatile result for di-n-butyl phthalate was flagged as "not detected" (U) for the sample EB because the level reported in the sample was not significantly greater than (more than 10 times) the highest associated blank level.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-10088-1.dus.wpd



Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-10088-1

### 5 Soil Samples, 1 Equipment Blank, and 1 Trip Blank Collected September 19, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for bromomethane was above the allowable maximum (25%) on 09-27-11 (F4206.D). Positive results for bromomethane should be considered estimated (J) in associated samples.

Blanks: The analyses of method, equipment, and trip blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum, but 22 of 26 percent recoveries were below QC limits for soil MS/MSD sample TP-C4 (7-8). No action is taken on batch MS/MSD data alone to qualify or reject an entire set of samples. (This data is from job no: 480-10389-1.)

Page 1 of 2

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil sample LCS 480-33080/4 and aqueous sample LCS 480-33097/4.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-10088-1

SDG No.:

Lab Sample ID: CCVIS 480-33080/2 Calibration Date: 09/27/2011 18:11

Instrument ID: HP5973F Calib Start Date: 09/01/2011 13:30

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/01/2011 15:38

Lab File ID: F4206.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2499  | 0.2056 |         | 41.1           | 50.0            | -17.8  | 50.0      |
| Chloromethane                          | Ave           | 0.2882  | 0.2809 | 0.1000  | 48.7           | 50.0            | -2.5   | 50.0      |
| Vinyl chloride                         | Ave           | 0.2347  | 0.2253 |         | 48.0           | 50.0            | -4.0   | 20.0      |
| Bromomethane                           | QuaF          |         | 0.0659 |         | 63.3           | 50.0            | (26.6) | 50.0      |
| Chloroethane                           | Ave           | 0.0748  | 0.0826 |         | 55.2           | 50.0            | 10.4   | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.2338  | 0.2607 |         | 55.8           | 50.0            | 11.5   | 50.0      |
| Acrolein                               | Ave           | 0.0093  | 0.0101 |         | 1080           | 1000            | 7.9    | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2140  | 0.2226 |         | 52.0           | 50.0            | 4.0    | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2275  | 0.2170 | 0.1000  | 47.7           | 50.0            | -4.6   | 20.0      |
| Acetone                                | Ave           | 0.1169  | 0.1175 |         | 251            | 250             | 0.5    | 50.0      |
| Iodomethane                            | Ave           | 0.3042  | 0.2901 |         | 47.7           | 50.0            | -4.6   | 50.0      |
| Carbon disulfide                       | Ave           | 0.6158  | 0.5895 |         | 47.9           | 50.0            | -4.3   | 50.0      |
| Methyl acetate                         | Ave           | 0.4745  | 0.4871 |         | 51.3           | 50.0            | 2.6    | 50.0      |
| Acetonitrile                           | Ave           | 0.0243  | 0.0261 |         | 2150           | 2000            | 7.5    | 50.0      |
| Methylene Chloride                     | LinF          |         | 0.2600 |         | 51.2           | 50.0            | 2.4    | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.8322  | 0.8064 |         | 48.4           | 50.0            | -3.1   | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2546  | 0.2505 |         | 49.2           | 50.0            | -1.6   | 50.0      |
| Acrylonitrile                          | Ave           | 0.1255  | 0.1299 |         | 259            | 250             | 3.5    | 50.0      |
| Vinyl acetate                          | Ave           | 0.5473  | 0.5696 |         | 260            | 250             | 4.1    | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4637  | 0.4632 | ~~~     | 49.9           | 50.0            | -0.1   | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1850  | 0.1929 |         | 261            | 250             | 4.3    | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3590  | 0.3351 |         | 46.7           | 50.0            | -6.7   | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.2872  | 0.2813 |         | 49.0           | 50.0            | -2.1   | 50.0      |
| Bromochloromethane                     | Ave           | 0.1556  | 0.1567 |         | 50.3           | 50.0            | 0.7    | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1187  | 0.1271 |         | 268            | 250             | 7.1    | 50.0      |
| Chloroform                             | Ave           | 0.4539  | 0.4370 |         | 48.1           | 50.0            | -3.7   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3909  | 0.3681 |         | 47.1           | 50.0            | -5.8   | 50.0      |
| Cyclohexane                            | Ave           | 0.4458  | 0.4632 |         | 52.0           | 50.0            | 3.9    | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3479  | 0.3365 |         | 48.4           | 50.0            | -3.3   | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.3463  | 0.3368 |         | 48.6           | 50.0            | -2.7   | 50.0      |
| Benzene                                | Ave           | 0.998   | 0.9789 |         | 49.0           | 50.0            | -1.9   | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.4091  | 0.4005 |         | 48.9           | 50.0            | -2.1   | 50.0      |
| Trichloroethene                        | Ave           | 0.2714  | 0.2610 |         | 48.1           | 50.0            | -3.8   | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4197  | 0.4127 |         | 49.2           | 50.0            | -1.7   | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2692  | 0.2658 |         | 49.4           | 50.0            | -1.3   | 20.0      |
| Dibromomethane                         | Lin1F         |         | 0.1655 |         | 50.2           | 50.0            | 0.4    | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3299  | 0.3226 |         | 48.9           | 50.0            | -2.2   | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.1900  | 0.1981 |         | 261            | 250             | 4.3    | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.4236  | 0.4103 |         | 48.4           | 50.0            | -3.1   | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.7887  | 0.8352 |         | 265            | 250             | 5.9    | 50.0      |

### FORM VII GC/MS VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-10088-1

SDG No.:

Lab Sample ID: CCVIS 480-33080/2 Calibration Date: 09/27/2011 18:11

Instrument ID: HP5973F Calib Start Date: 09/01/2011 13:30

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/01/2011 15:38

Lab File ID: F4206.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Toluene                      | Ave           | 1.520   | 1.425  |         | 46.9           | 50.0            | -6.3  | 20.0      |
| Ethyl methacrylate           | Ave           | 0.8206  | 0.7753 |         | 47.2           | 50.0            | -5.5  | 50.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.8632  | 0.8346 |         | 48.3           | 50.0            | -3.3  | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.4286  | 0.4220 | ~~~     | 49.2           | 50.0            | -1.5  | 50.0      |
| Tetrachloroethene            | Ave           | 0.6517  | 0.6166 |         | 47.3           | 50.0            | -5.4  | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.8929  | 0.8801 |         | 49.3           | 50.0            | -1.4  | 50.0      |
| 2-Hexanone                   | Ave           | 0.5863  | 0.6161 |         | 263            | 250             | 5.1   | 50.0      |
| Dibromochloromethane         | Ave           | 0.5848  | 0.6105 |         | 52.2           | 50.0            | 4.4   | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.5928  | 0.5806 |         | 49.0           | 50.0            | -2.1  | 50.0      |
| Chlorobenzene                | Ave           | 1.703   | 1.655  | 0.3000  | 48.6           | 50.0            | -2.8  | 50.0      |
| Ethylbenzene                 | Ave           | 2.750   | 2.672  |         | 48.6           | 50.0            | -2.9  | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.5719  | 0.5791 |         | 50.6           | 50.0            | 1.3   | 50.0      |
| m,p-Xylene                   | Ave           | 1.134   | 1.108  |         | 97.7           | 100             | -2.3  | 50.0      |
| o-Xylene                     | Ave           | 1.104   | 1.067  |         | 48.3           | 50.0            | -3.3  | 50.0      |
| Styrene                      | Ave           | 1.907   | 1.839  |         | 48.2           | 50.0            | -3.6  | 50.0      |
| Bromoform                    | Lin1F         |         | 0.3657 | 0.1000  | 46.3           | 50.0            | -7.4  | 50.0      |
| Isopropylbenzene             | Ave           | 2.572   | 2.390  |         | 46.5           | 50.0            | -7.1  | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.6370  | 0.6131 | 0.3000  | 48.1           | 50.0            | -3.7  | 50.0      |
| Bromobenzene                 | Ave           | 0.6997  | 0.6638 |         | 47.4           | 50.0            | -5.1  | 50.0      |
| N-Propylbenzene              | Ave           | 2.983   | 2.857  |         | 47.9           | 50.0            | -4.2  | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2247  | 0.2203 |         | 245            | 250             | -2.0  | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2195  | 0.2122 |         | 48.3           | 50.0            | -3.3  | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.6427  | 0.6064 |         | 47.2           | 50.0            | -5.6  | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.169   | 2.036  |         | 46.9           | 50.0            | -6.1  | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.6899  | 0.6419 |         | 46.5           | 50.0            | -7.0  | 50.0      |
| tert-Butylbenzene            | Ave           | 0.4933  | 0.4581 |         | 46.4           | 50.0            | -7.1  | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.228   | 2.069  |         | 46.5           | 50.0            | -7.1  | 50.0      |
| sec-Butylbenzene             | Ave           | 2.745   | 2.583  |         | 47.1           | 50.0            | -5.9  | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.379   | 2.247  |         | 47.2           | 50.0            | -5.6  | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.334   | 1.260  |         | 47.2           | 50.0            | -5.6  | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.350   | 1.277  |         | 47.3           | 50.0            | -5.4  | 50.0      |
| n-Butylbenzene               | Ave           | 2.050   | 1.900  |         | 46.3           | 50.0            | -7.3  | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.281   | 1.180  |         | 46.0           | 50.0            | -7.9  | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1211  | 0.1131 |         | 46.7           | 50.0            | -6.6  | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.8233  | 0.7234 |         | 43.9           | 50.0            | -12.1 |           |
| Hexachlorobutadiene          | Ave           | 0.3932  | 0.3466 |         | 44.1           | 50.0            | -11.8 | 50.0      |
| Naphthalene                  | Ave           | 2.309   | 2.016  |         | 43.7           | 50.0            | -12.7 | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.7463  | 0.6648 |         | 44.5           | 50.0            | -10.9 | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1755  | 0.1645 |         | 46.8           | 50.0            | -6.3  | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.284   | 2.331  |         | 51.0           | 50.0            | 2.1   | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.8003  | 0.8056 |         | 50.3           | 50.0            | 0.7   | 50.0      |



Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-10088-1

#### 5 Soil Samples and 1 Equipment Blank Collected September 19, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for caprolactam was above the allowable maximum (25%) on 09-26-11 (U4528.D). Positive results for caprolactam should be considered estimated (J) in associated samples.

Blanks: Method blank MB 480-32537/1-A contained a trace of di-n-butyl phthalate (0.457 ug/L). Positive results for di-n-butyl phthalate that are less than ten times the highest blank level should be reported as not detected (U) in associated samples.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximums, but 2 of 26 percent recoveries were within QC limits for soil MS/MSD sample SB-B3 (5-9). No action is taken on batch MS/MSD data alone to qualify or reject an entire set of samples.

Page 1 of 2

<u>Laboratory Control Sample</u>: The relative percent differences for spiked compounds were below the allowable maximums and percent recoveries (%Rs) were within QC limits for aqueous samples LCS 480-32537/2-A and LCSD 480-32537/3-A. The %Rs for spiked compounds were within QC limits for soil sample LCS 480-32474/2-A.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa | 10         | Job No.: 480-10088-1      |
|----------|----------------------|------------|---------------------------|
| SDG No.: |                      |            |                           |
| Matrix:  | Solid                | Level: Low | Lab File ID: U4529.D      |
| Lab ID:  | 480-10088-1 MS       |            | Client ID: SB-B3 (5-9) MS |

|                             | SPIKE   | SAMPLE        | MS            | MS  | QC     |   |
|-----------------------------|---------|---------------|---------------|-----|--------|---|
|                             | ADDED   | CONCENTRATION | CONCENTRATION | ે   | LIMITS | # |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC | REC    |   |
| 2,4-Dinitrophenol           | 3930    | ND            | 2350          | 60  | 35-146 |   |
| 2,4-Dinitrotoluene          | 3930    | ND            | 3970          | 101 | 55-125 |   |
| 2-Chlorophenol              | 3930    | ND            | 3180          | 81  | 38-120 |   |
| 4-Chloro-3-methylphenol     | 3930    | ND            | 3440          | 88  | 49-125 |   |
| 4-Nitrophenol               | 3930    | ND            | 3590          | 91  | 43-137 |   |
| Acenaphthene                | 3930    | 86 J          | 4010          | 100 | 53-120 |   |
| Bis(2-ethylhexyl) phthalate | 3930    | ND            | 3680          | 94  | 61-133 |   |
| Fluorene                    | 3930    | 64 J          | 3840          | 96  | 63-126 |   |
| Hexachloroethane            | 3930    | ND            | 2850          | 73  | 41-120 |   |
| N-Nitrosodi-n-propylamine   | 3930    | ND            | 3460          | 88  | 46-120 |   |
| Pentachlorophenol           | 3930    | ND            | 2190          | 56  | 33-136 |   |
| Phenol                      | 3930    | ND            | 3290          | 84  | 36-120 |   |
| Pyrene                      | 3930    | 5800          | 12000         | 157 | 51-133 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\,\mbox{C}$ 

### FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa                    |        |     | Job No.: 480-10088-1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------------------|--------|-----|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDG No.: | *************************************** |        |     |                            | The second secon |
| Matrix:  | Solid                                   | Level: | Low | Lab File ID: U4530.D       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lab ID:  | 480-10088-1 MSD                         |        |     | Client ID: SB-B3 (5-9) MSD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                             | SPIKE   | MSD           | MSD MSD |     | QC LIMITS |        |                                         |
|-----------------------------|---------|---------------|---------|-----|-----------|--------|-----------------------------------------|
|                             | ADDED   | CONCENTRATION | િક      | 8   |           |        | #                                       |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | REC     | RPD | RPD       | REC    |                                         |
| 2,4-Dinitrophenol           | 3920    | 2330          | 59      | 1   | 22        | 35-146 |                                         |
| 2,4-Dinitrotoluene          | 3920    | 3970          | 101     | 0   | 20        | 55-125 |                                         |
| 2-Chlorophenol              | 3920    | 3470          | 89      | 9   | 25        | 38-120 |                                         |
| 4-Chloro-3-methylphenol     | 3920    | 3680          | 94      | 7   | 27        | 49-125 |                                         |
| 4-Nitrophenol               | 3920    | 3530          | 90      | 2   | 25        | 43-137 | *************************************** |
| Acenaphthene                | 3920    | 4150          | 104     | 4   | 35        | 53-120 |                                         |
| Bis(2-ethylhexyl) phthalate | 3920    | 3820          | 97      | 4   | 15        | 61-133 |                                         |
| Fluorene                    | 3920    | 3900          | 98      | 1   | 15        | 63-126 |                                         |
| Hexachloroethane            | 3920    | 3260          | 83      | 13  | 46        | 41-120 |                                         |
| N-Nitrosodi-n-propylamine   | 3920    | 3850          | 98      | 11  | 31        | 46-120 |                                         |
| Pentachlorophenol           | 3920    | 2370          | 60      | 8   | 35        | 33-136 |                                         |
| Phenol                      | 3920    | 3610          | 92      | 9   | 35        | 36-120 |                                         |
| Pyrene                      | 3920    | 11300         | 141     | 6   | 35        | 51-133 | F                                       |

FORM III 8270C

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values

#### FORM VII GC/MS SEMI VOA CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-10088-1

SDG No.:

Lab Sample ID: CCV 480-32845/3 Calibration Date: 09/26/2011 14:37

Instrument ID: HP5973U Calib Start Date: 09/14/2011 17:22

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 09/14/2011 19:20

Lab File ID: U4528.D Conc. Units: ug/L

| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|----------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| Benzaldehyde               | Ave           | 0.8538  | 0.8540 | 0.0100  | 50000          | 50000           | 0.0  | 40.0      |
| Acetophenone               | Ave           | 1.842   | 1.749  | 0.0100  | 47500          | 50000           | -5.0 | 40.0      |
| Caprolactam                | Ave           | 0.0722  | 0.0965 | 0.0100  | 64700          | 50000           | 33.6 | 40.0      |
| 1,2,4,5-Tetrachlorobenzene | Ave           | 0.6018  | 0.5870 | 0.0100  | 48800          | 50000           | -2.5 | 40.0      |
| Biphenyl                   | Ave           | 1.531   | 1.520  | 0.0100  | 49700          | 50000           | -0.7 | 40.0      |
| 2,3,4,6-Tetrachlorophenol  | Linl          |         | 0.3190 | 0.0100  | 45200          | 50000           | -9.6 | 40.0      |
| Atrazine                   | Ave           | 0.4044  | 0.4165 | 0.0100  | 51500          | 50000           | 3.0  | 25.0      |



Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-10585-1

2 Soil Samples, 7 Ground Water samples, 1 Field Duplicate, 1 Equipment Blank, and 1 Trip Blank Collected September 29 and 30, 2011

> Prepared by: Donald Anné May 2, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 7 ground water samples, 2 soil samples, 1 field duplicate, 1 equipment blank, and 1 trip blanks analyzed for volatiles, and 7 ground water samples, 2 soil samples, 1 field duplicate, and 1 equipment blank analyzed semi-volatiles.

The overall performances of the analyses are acceptable. TestAmerica Buffal did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• The volatile results for cis-1,2-dichloroethene and tetrachloroethene in sample MW-46 were quantitated using data that were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The results for cis-1,2-dichloroethene and tetrachloroethene marked "E" in the undiluted sample MW-46 were qualified as estimated (J).

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-10585-1.dus.wpd



Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-10585-1

### 2 Soil Samples, 7 Ground Water samples, 1 Field Duplicate, 1 Equipment Blank, and 1 Trip Blank Collected September 29 and 30, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (25%), as required.

<u>Blanks</u>: The analyses of method, equipment, and trip blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-31.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil sample LCS 480-34830/4, and aqueous samples LCS 480-35002/4 and LCS 480-35066/4.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-32/CHA-2 reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There are results for cis-1,2-dichloroethene and trichloroethene in sample MW-46 that were quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The sample was diluted by the laboratory and re-analyzed; therefore, the results for cis-1,2-dichloroethene and tetrachloroethene that are flagged as 'E' in the undiluted sample should be considered estimated (J). The use of the diluted results for cis-1,2-dichloroethene and tetrachloroethene is recommended. It is recommended that the undiluted results for sample MW-46 be used for all other compounds.



Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-10585-1

7 Ground Water Samples, 2 Soil Samples, 1 Field Duplicate, and 1 Equipment Blank Collected September 29 and 30, 2011

> Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable maximum (25%), as required.

Blanks: The analyses of method and equipment blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximums and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-31.

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for spiked compounds were within QC limits for soil sample LCS 480-33829/2-A.

Page 1 of 2

The %R for 2,4-dinitrotoluene was above QC limits for aqueous sample LCS 480-34007/2-A. Positive results for 2,4-dinitrotoluene should be considered estimated (J) in associated aqueous samples.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-32/CHA-2 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

## FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

| Lab Name | : TestAmerica Buffa |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job No.: 480                            |          |
|----------|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|
| SDG No.: |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |          |
| Matrix:  |                     | Level: | Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lab File ID:                            | V6229 D  |
| Lab ID:  | LCS 480-34007/2-A   |        | And the second s | Client ID:                              | V-0223.D |

|                             | SPIKE  | LCS           | LCS  | QC     |   |
|-----------------------------|--------|---------------|------|--------|---|
|                             | ADDED  | CONCENTRATION | 96   | LIMITS | # |
| COMPOUND                    | (ug/L) | (ug/L)        | REC  | REC    |   |
| 2,4-Dinitrophenol           | 100    | 118           | 118  | 42-153 |   |
| 2,4-Dinitrotoluene          | 100    | 126           | (126 |        |   |
| 2-Chlorophenol              | 100    | 88.8          | 89   | 48-120 |   |
| 4-Chloro-3-methylphenol     | 100    | 111           | 111  | 64-120 |   |
| 4-Nitrophenol               | 100    | 64.8          | 65   | 16-120 |   |
| Acenaphthene                | 100    | 114           | 114  | 60-120 |   |
| Bis(2-ethylhexyl) phthalate | 100    | 120           | 120  |        |   |
| Fluorene                    | 100    |               |      | 69-136 |   |
| Hexachloroethane            | 100    | 120           | 120  | 66-129 |   |
| N-Nitrosodi-n-propylamine   | 100    | 78.9          | 79   | 25-120 |   |
| Pentachlorophenol           |        | 113           | 113  | 56-120 |   |
| Phenol                      | 100    | 131           | 131  | 39-136 |   |
|                             | . 100  | 49.0          | 49   | 17-120 |   |
| Pyrene                      | 100    | 116           | 116  | 58-136 |   |

<sup>#</sup> Column to be used to flag recovery and RPD values



Geology

Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-10389-1

5 Soil Samples, 15 Ground Water samples, 2 Field Duplicates, and 4 Trip Blanks Collected September 27-30, 2011

> Prepared by: Donald Anné May 2, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 15 ground water samples, 5 soil samples, 2 field duplicates, and 4 trip blanks analyzed for volatiles; 14 ground water samples, 5 soil samples, and 2 field duplicates analyzed semi-volatiles; 1 ground water sample, 5 soil samples, and 1 field duplicate analyzed for PCB; 5 soil samples and 1 field duplicate analyzed for TAL metals.

The overall performances of the analyses are acceptable. TestAmerica Buffal did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- The volatile results for vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene in sample MW-48 were quantitated using data that were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The results for vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene marked "E" in the undiluted sample MW-48 were qualified as estimated (J).
- The volatile results for cis-1,2-dichloroethene and tetrachloroethene in sample MW-19 were quantitated using data that were extrapolated beyond the highest calibration standard and flagged "E" by the laboratory. The results for cis-1,2-dichloroethene and tetrachloroethene marked "E" in the undiluted sample MW-19 were qualified as estimated (J).
- The positive volatile result for 1,1,1-trichloroethane was flagged as "estimated" (J) in sample MW-12 because the %D for 1,1,1-trichloroethane was above the allowable maximum in the associated continuing calibration.

- The positive semi-volatile results for acephenone were flagged as "estimated" (J) in samples DUP-01 and TP-B1 (5-6) because the %D for acephenone was above the allowable maximum in the associated continuing calibration.
- The "not detected" results for antimony were flagged as "estimated" (J) in all 5 soil samples and the field duplicate because 2 of 2 percent recoveries for antimony were below control limits, but were not below 10% in the associated soil MS/MSD sample.
- The positive results for copper and potassium were flagged as "estimated" (J) in all 5 soil samples and the field duplicate because the %Ds for copper and potassium were above the allowable in the associated soil serial dilution sample and the sample results were above the CRDLs.
- Positive results for arsenic and calcium were flagged as "estimated" (J) in samples TP-B1 (5-6) and DUP-0-1 because relative percent differences for arsenic and calcium were above the allowable maximum in the associated soil field duplicate pair TP-B1 (5-6)/DUP-01.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-10389-1

### 5 Soil Samples, 15 Ground Water samples, 2 Field Duplicates, and 4 Trip Blanks Collected September 27-30, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for carbon disulfide and carbon tetrachloride were above the allowable maximum (25%) on 10-05-11 (N1733.D). The %Ds for chloroethane, trichlorofluoromethane, 1,1,1-trichloroethane, and carbon tetrachloride were above the allowable maximum (25%) on 10-07-11 (N1839.D). The %D for chloroethane was above the allowable maximum (25%) on 10-07-11 (N1862.D). The %D for dichlorodifluoromethane was above the allowable maximum (25%) on 10-11-11 (F4481.D). Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Blanks</u>: The analyses of method and trip blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximum, but 22 of 26 percent recoveries (%Rs) were below QC limits for soil MS/MSD sample TP-C4 (7-8). The %Rs for spike compounds were within QC limits, but 12 of 13 RPDs were above the allowable maximum for aqueous MS/MSD sample MW-17. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for the following aqueous and soil samples.

| LCS 480-33644/5   | LCS 480-33837/4 | LCS 480-34035/37 |
|-------------------|-----------------|------------------|
| LCS 480-34063/5-B | LCS 480-34393/4 | LCS 480-34399/5  |
| LCS 480-34573/4   | LCS 480-34830/4 | LCS 480-34866/4  |

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-17/CHA-1 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

The relative percent differences for applicable compounds were below the allowable maximum (35%) for soil field duplicate pair TP-B1 (5-6)/DUP-01 (attached table), as required.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

There are results for cis-1,2-dichloroethene in samples MW-19 and MW-48; tetrachloroethene in samples MW-19 and MW-48; trichloroethene in sample MW-48, and vinyl chloride in sample MW-48 that were quantitated by extrapolating data above the highest calibration standard and marked 'E' by the laboratory. The samples were diluted by the laboratory and re-analyzed; therefore, the results for vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene that are flagged as 'E' in the undiluted samples should be considered estimated (J). The use of the diluted results for vinyl chloride, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene is recommended. It is recommended that the undiluted results for these samples be used for all other compounds.

### **Volatiles**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-10389-1

| S1=                                                                                          | TP-B1 (5-6)                                      | S2=                                                           | DUP-01                      |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|-----------------------------|
| Analyte cyclohexane isopropylbenzene methyl acetate methylcyclohexane toluene xylenes, total | <b><u>S1</u></b><br>100<br>95<br>52<br>170<br>ND | <u>\$2</u><br>ND<br>67<br>ND<br>200<br><b>22</b><br><b>28</b> | RPD (%)  NC 35%  NC 16%  NC |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in ug/kg

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

# FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | E: TestAmerica Buffa | alo        | Job No.: 480-10389-1 |
|----------|----------------------|------------|----------------------|
| SDG No.: |                      |            |                      |
| Matrix:  | Water                | Level: Low | Lab File ID: S6587.D |
| Lab ID:  | 480-10389-3 MS       |            | Client ID: MW-18 MS  |

|                          | SPIKE  | SAMPLE        | MS            | MS  | QC     |   |
|--------------------------|--------|---------------|---------------|-----|--------|---|
|                          | ADDED  | CONCENTRATION | CONCENTRATION | ુ   | LIMITS | # |
| COMPOUND                 | (ug/L) | (ug/L)        | (ug/L)        | REC | REC    |   |
| 1,1-Dichloroethane       | 25.0   | 0.83 J        | 28.1          | 109 | 71-129 |   |
| 1,1-Dichloroethene       | 25.0   | ND            | 25.1          | 100 | 65-138 |   |
| 1,2-Dichlorobenzene      | 25.0   | ND            | 26.5          | 106 | 77-120 |   |
| 1,2-Dichloroethane       | 25.0   | ND            | 26.9          | 108 | 75-127 |   |
| Benzene                  | 25.0   | ND            | 26.8          | 107 | 71-124 |   |
| Chlorobenzene            | 25.0   | ND            | 27.0          | 108 | 72-120 |   |
| cis-1,2-Dichloroethene   | 25.0   | ND            | 26.6          | 106 | 74-124 |   |
| Ethylbenzene             | 25.0   | ND            | 26.4          | 106 | 77-123 |   |
| Methyl tert-butyl ether  | 25.0   | ND            | 24.4          | 98  | 64-127 |   |
| Tetrachloroethene        | 25.0   | . ND          | 27.0          | 108 | 74-122 |   |
| Toluene                  | 25.0   | ND            | 25.8          | 103 | 70-122 |   |
| trans-1,2-Dichloroethene | 25.0   | ND            | 27.4          | 110 | 73-127 |   |
| Trichloroethene          | 25.0   | 0.99 J        | 27.9          | 108 | 74-123 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

# FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Nam | e: TestAmerica Buff | alo        | Job No.: 480-10389-1      |
|---------|---------------------|------------|---------------------------|
| SDG No. | *                   |            |                           |
| Matrix: | Solid               | Level: Low | Lab File ID: P5696.D      |
| Lab ID: | 480-10588-5 MS      |            | Client ID: TP-C4 (7-8) MS |

|                          | SPIKE   | SAMPLE        | MS            | MS  | QC     |   |  |
|--------------------------|---------|---------------|---------------|-----|--------|---|--|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | 90  | LIMITS | # |  |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC | REC    |   |  |
| 1,1-Dichloroethane       | 47.0    | ND            | 31.4          | 67  | 79-126 | F |  |
| 1,1-Dichloroethene       | 47.0    | ND            | 27.2          | 58  | 65-153 | F |  |
| 1,2-Dichlorobenzene      | 47.0    | ND            | 26.5          | 56  | 75-120 | F |  |
| 1,2-Dichloroethane       | 47.0    | ND            | 29.3          | 62  | 77-122 | F |  |
| Benzene                  | 47.0    | ND            | 32.4          | 69  | 79-127 |   |  |
| Chlorobenzene            | 47.0    | ND            | 31.2          | 66  | 76-124 | F |  |
| cis-1,2-Dichloroethene   | 47.0    | ND            | 30.3          | 64  | 81-117 |   |  |
| Ethylbenzene             | 47.0    | ND            | 31.5          | 67  | 80-120 | F |  |
| Methyl tert-butyl ether  | 47.0    | ND            | 28.9          | 61  | 63-125 |   |  |
| Tetrachloroethene        | 47.0    | ND            | 29.5          | 63  | 74-122 |   |  |
| Toluene                  | 47.0    | ND            | 30.8          | 65  | 74-128 | F |  |
| trans-1,2-Dichloroethene | 47.0    | ND            | 28.9          | 61  | 78-126 | F |  |
| Trichloroethene          | 47.0    | ND            | 30.4          | 65  | 77-129 | F |  |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

# FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buff. | alo        | Job No.: 480-10389-1 |
|----------|----------------------|------------|----------------------|
| SDG No.: |                      |            |                      |
| Matrix:  |                      | Level: Low | Lab File ID: S6588.D |
| Lab ID:  | 480-10389-3 MSD      |            | Client ID: MW-18 MSD |

|                          | SPIKE  | MSD           | MSD | -    | QC LIMITS |        |   |
|--------------------------|--------|---------------|-----|------|-----------|--------|---|
|                          | ADDED  | CONCENTRATION | ક   | 용    |           |        | # |
| COMPOUND                 | (ug/L) | (ug/L)        | REC | RPD  | RPD       | REC    |   |
| 1,1-Dichloroethane       | 25.0   | 21.3          | 82  | (28) | 20        | 71-129 | F |
| 1,1-Dichloroethene       | 25.0   | 18.6          | 74  | 30)  | 16        | 65-138 | F |
| 1,2-Dichlorobenzene      | 25.0   | 20.2          | 81  | (27) | 20        | 77-120 | F |
| 1,2-Dichloroethane       | 25.0   | 20.5          | 82  | (27) | 20        | 75-127 | F |
| Benzene                  | 25.0   | 19.9          | 80  | (30) | 13        | 71-124 | F |
| Chlorobenzene            | 25.0   | 20.4          | 82  | (28) | 25        | 72-120 | F |
| cis-1,2-Dichloroethene   | 25.0   | 19.5          | 78  | 31   | 15        | 74-124 | F |
| Ethylbenzene             | 25.0   | 20.0          | 80  | (28) | 15        | 77-123 | F |
| Methyl tert-butyl ether  | 25.0   | 17.8          | 71  | 31   | 37        | 64-127 |   |
| Tetrachloroethene        | 25.0   | 21.0          | 84  | (25) | 20        | 74-122 | F |
| Toluene                  | 25.0   | 19.9          | 80  | (26) | 15        | 70-122 | F |
| trans-1,2-Dichloroethene | 25.0   | 20.8          | 83  | 27   | 20        | 73-127 | F |
| Trichloroethene          | 25.0   | 21.0          | 80  | (28) | 16        | 74-123 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

# FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa |        |     | Job No.: 480-10389-1       |
|----------|----------------------|--------|-----|----------------------------|
| SDG No.: |                      |        |     |                            |
| Matrix:  | Solid                | Level: | Low | Lab File ID: P5697.D       |
| Lab ID:  | 480-10588-5 MSD      |        |     | Client ID: TP-C4 (7-8) MSD |

|                          | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD     | oj.  | QC LIMITS |        | # |
|--------------------------|----------------|----------------------|---------|------|-----------|--------|---|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)              | REC RPD |      | RPD       | REC    | π |
| 1,1-Dichloroethane       | 46.0           | 35.4                 | (77     | ) 12 | 30        | 79-126 | F |
| 1,1-Dichloroethene       | 46.0           | 30.7                 | 67      | 12   | 30        | 65-153 |   |
| 1,2-Dichlorobenzene      | 46.0           | 30.1                 | 65      | ) 12 | 30        | 75-120 | F |
| 1,2-Dichloroethane       | 46.0           | 32.8                 | 71      | 11   | 30        | 77-122 | F |
| Benzene                  | 46.0           | 35.9                 | 78      | 10   | 30        | 79-127 | F |
| Chlorobenzene            | 46.0           | 34.9                 | 76      | 11   | 30        | 76-124 |   |
| cis-1,2-Dichloroethene   | 46.0           | 34.6                 | (75     | ) 13 | 30        | 81-117 | F |
| Ethylbenzene             | 46.0           | 35.0                 | 76      | 11   | 30        | 80-120 | F |
| Methyl tert-butyl ether  | 46.0           | 33.8                 | 74      | 16   | 30        | 63-125 |   |
| Tetrachloroethene        | 46.0           | 33.3                 | (72     | 12   | 30        | 74-122 | F |
| Toluene                  | 46.0           | 34.1                 | 74      | 10   | 30        | 74-128 |   |
| trans-1,2-Dichloroethene | 46.0           | 33.6                 | (73)    | 15   | 30        | 78-126 | F |
| Trichloroethene          | 46.0           | 34.6                 | (75     | ) 13 | 30        | 77-129 | F |

 $<sup>\</sup>ensuremath{\text{\#}}$  Column to be used to flag recovery and RPD values

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34573/2 Calibration Date: 10/07/2011 22:11

Instrument ID: HP5973N Calib Start Date: 09/20/2011 11:55

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/20/2011 13:51

Lab File ID: N1862.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2284  | 0.2583 |         | 28.3           | 25.0            | 13.1  | 50.0      |
| Chloromethane                          | Ave           | 0.2302  | 0.2445 | 0.1000  | 26.6           | 25.0            | 6.2   | 50.0      |
| Vinyl chloride                         | Ave           | 0.2234  | 0.2611 |         | 29.2           | 25.0            | 16.9  | 20.0      |
| Bromomethane                           | Ave           | 0.1399  | 0.1678 |         | 30.0           | 25.0            | 19.9  | 50.0      |
| Chloroethane                           | Ave           | 0.1235  | 0.1555 |         | 31.5           | 25.0            | 25.9  | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.3023  | 0.3495 |         | 28.9           | 25.0            | 15.6  | 50.0      |
| Acrolein                               | Ave           | 0.0084  | 0.0076 |         | 450            | 500             | -10.0 | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2794  | 0.2740 | 0.1000  | 24.5           | 25.0            | -1.9  | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2075  | 0.2355 |         | 28.4           | 25.0            | 13.5  | 50.0      |
| Acetone                                | Ave           | 0.0635  | 0.0682 |         | 134            | 125             | 7.3   | 50.0      |
| Iodomethane                            | Ave           | 0.2780  | 0.2942 |         | 26.5           | 25.0            | 5.8   | 50.0      |
| Carbon disulfide                       | Ave           | 0.6127  | 0.6187 |         | 25.2           | 25.0            | 1.0   | 50.0      |
| Acetonitrile                           | Ave           | 0.0139  | 0.0130 |         | 936            | 1000            | -6.4  | 50.0      |
| Methyl acetate                         | Ave           | 0.2797  | 0.2723 |         | 24.3           | 25.0            | -2.6  | 50.0      |
| Methylene Chloride                     | Ave           | 0.2872  | 0.2690 |         | 23.4           | 25.0            | -6.4  | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.7650  | 0.8414 |         | 27.5           | 25.0            | 10.0  | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2723  | 0.2789 |         | 25.6           | 25.0            | 2.4   | 50.0      |
| Acrylonitrile                          | Ave           | 0.0826  | 0.0773 |         | 117            | 125             | -6.4  | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4878  | 0.4903 |         | 25.1           | 25.0            | 0.5   | 50.0      |
| Vinyl acetate                          | LinlF         |         | 0.3551 |         | 118            | 125             | -5.7  | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.2879  | 0.3378 |         | 29.3           | 25.0            | 17.3  | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3010  | 0.3007 |         | 25.0           | 25.0            | -0.0  | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1016  | 0.1020 |         | 126            | 125             | 0.4   | 50.0      |
| Bromochloromethane                     | Ave           | 0.1350  | 0.1403 |         | 26.0           | 25.0            | 3.9   | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.0657  | 0.0633 |         | 120            | 125             | -3.8  | 50.0      |
| Chloroform                             | Ave           | 0.5017  | 0.5117 |         | 25.5           | 25.0            | 2.0   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.2994  | 0.3511 |         | 29.3           | 25.0            | 17.3  | 50.0      |
| Cyclohexane                            | Ave           | 0.4086  | 0.4233 |         | 25.9           | 25.0            | 3.6   | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.2824  | 0.3358 |         | 29.7           | 25.0            | 18.9  | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3841  | 0.4160 |         | 27.1           | 25.0            | 8.3   | 50.0      |
| Benzene                                | Ave           | 1.149   | 1.123  |         | 24.4           | 25.0            | -2.3  | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.3656  | 0.3963 |         | 27.1           | 25.0            | 8.4   | 50.0      |
| Trichloroethene                        | Ave           | 0.2859  | 0.2960 |         | 25.9           | 25.0            | 3.5   | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4579  | 0.4906 |         | 26.8           | 25.0            | 7.1   | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2686  | 0.2576 | -       | 24.0           | 25.0            | -4.1  | 20.0      |
| Dibromomethane                         | Ave           | 0.1556  | 0.1558 |         | 25.0           | 25.0            | 0.1   | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3338  | 0.3604 |         | 27.0           | 25.0            | 8.0   | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.1542  | 0.1638 |         | 133            | 125             | 6.2   | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.4161  | 0.4362 |         | 26.2           | 25.0            | 4.8   | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.2473  | 0.2466 |         | 125            | 125             | -0.3  | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34573/2 Calibration Date: 10/07/2011 22:11

Instrument ID: HP5973N Calib Start Date: 09/20/2011 11:55

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/20/2011 13:51

Lab File ID: N1862.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Toluene                      | Ave           | 0.8608  | 0.8665 |         | 25.2           | 25.0            | 0.7   | 20.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.4254  | 0.4653 |         | 27.3           | 25.0            | 9.4   | 50.0      |
| Ethyl methacrylate           | LinF          | ~~~~    | 0.3741 |         | 23.6           | 25.0            | -5.6  | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.2266  | 0.2214 |         | 24.4           | 25.0            | -2.3  | 50.0      |
| Tetrachloroethene            | Ave           | 0.3655  | 0.3796 |         | 26.0           | 25.0            | 3.9   | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.4791  | 0.4847 |         | 25.3           | 25.0            | 1.2   | 50.0      |
| 2-Hexanone                   | Ave           | 0.1733  | 0.1730 |         | 125            | 125             | -0.2  | 50.0      |
| Dibromochloromethane         | Ave           | 0.2685  | 0.2964 |         | 27.6           | 25.0            | 10.4  | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.2648  | 0.2723 |         | 25.7           | 25.0            | 2.8   | 50.0      |
| Chlorobenzene                | Ave           | 0.9430  | 0.9529 | 0.3000  | 25.3           | 25.0            | 1.0   | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.2831  | 0.3105 |         | 27.4           | 25.0            | 9.7   | 50.0      |
| Ethylbenzene                 | Ave           | 1.593   | 1.689  |         | 26.5           | 25.0            | 6.0   | 20.0      |
| m,p-Xylene                   | Ave           | 0.6336  | 0.6586 |         | 52.0           | 50.0            | 3.9   | 50.0      |
| o-Xylene                     | Ave           | 0.6008  | 0.6116 |         | 25.4           | 25.0            | 1.8   | 50.0      |
| Styrene                      | Ave           | 1.033   | 1.056  |         | 25.6           | 25.0            | 2.3   | 50.0      |
| Bromoform                    | LinF          |         | 0.1662 | 0.1000  | 23.2           | 25.0            | -7.2  | 50.0      |
| Isopropylbenzene             | Ave           | 2.785   | 2.936  |         | 26.4           | 25.0            | 5.4   | 50.0      |
| Bromobenzene                 | Ave           | 0.7167  | 0.7140 |         | 24.9           | 25.0            | -0.4  | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.5929  | 0.5746 | 0.3000  | 24.2           | 25.0            | -3.1  | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.1697  | 0.1911 |         | 28.2           | 25.0            | 12.6  | 50.0      |
| N-Propylbenzene              | Ave           | 3.345   | 3.496  |         | 26.1           | 25.0            | 4.5   | 50.0      |
| trans-1,4-Dichloro-2-butene  | Lin1F         |         | 0.1442 |         | 110            | 125             | -12.0 | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.6725  | 0.6758 |         | 25.1           | 25.0            | 0.5   | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.291   | 2.436  |         | 26.6           | 25.0            | 6.3   | 50.0      |
| 4-Chlorotoluene              | Ave           | 2.316   | 2.455  |         | 26.5           | 25.0            | 6.0   | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5236  | 0.5440 |         | 26.0           | 25.0            | 3.9   | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.365   | 2.474  | ****    | 26.1           | 25.0            | 4.6   | 50.0      |
| sec-Butylbenzene             | Ave           | 2.952   | 2.991  |         | 25.3           | 25.0            | 1.3   | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.403   | 1.421  |         | 25.3           | 25.0            | 1.2   | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.480   | 2.551  |         | 25.7           | 25.0            | 2.9   | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.458   | 1.477  |         | 25.3           | 25.0            | 1.2   | 50.0      |
| n-Butylbenzene               | Ave           | 2.243   | 2.272  |         | 25.3           | 25.0            | 1.3   | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.312   | 1.331  |         | 25.4           | 25.0            | 1.4   | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | LinF          |         | 0.0945 |         | 23.3           | 25.0            | -6.8  | 50.0      |
| 1,2,4-Trichlorobenzene       | Lin1F         |         | 0.8265 |         | 23.6           | 25.0            | -5.6  | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.3453  | 0.3259 |         | 23.6           | 25.0            | -5.6  | 50.0      |
| Naphthalene                  | Lin1F         |         | 1.748  |         | 23.1           | 25.0            | -7.6  | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.6792  | 0.6819 |         | 25.1           | 25.0            | 0.4   | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.3046  | 0.3318 |         | 27.2           | 25.0            | 8.9   | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 1.195   | 1.278  |         | 26.7           | 25.0            | 6.9   | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.3622  | 0.3914 |         | 27.0           | 25.0            | 8.1   | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34393/2 Calibration Date: 10/07/2011 11:32

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/20/2011 13:51

Lab File ID: N1839.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|--------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2284  | 0.2644 |         | 28.9           | 25.0            | 15.7   | 50.0      |
| Chloromethane                          | Ave           | 0.2302  | 0.2331 | 0.1000  | 25.3           | 25.0            | 1.2    | 50.0      |
| Vinyl chloride                         | Ave           | 0.2234  | 0.2478 |         | 27.7           | 25.0            | 10.9   | 20.0      |
| Bromomethane                           | Ave           | 0.1399  | 0.1726 |         | 30.8           | 25.0            | 23.4   | 50.0      |
| Chloroethane                           | Ave           | 0.1235  | 0.1557 |         | 31.5           | 25.0            | 26.1   | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.3023  | 0.3809 |         | 31.5           | 25.0            | 26.0   | 50.0      |
| Acrolein                               | Ave           | 0.0084  | 0.0070 |         | 414            | 500             | -17.2  | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2794  | 0.2696 | 0.1000  | 24.1           | 25.0            | -3.5   | 20.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2075  | 0.2264 |         | 27.3           | 25.0            | 9.1    | 50.0      |
| Acetone                                | Ave           | 0.0635  | 0.0682 |         | 134            | 125             | 7.3    | 50.0      |
| Iodomethane                            | Ave           | 0.2780  | 0.2983 |         | 26.8           | 25.0            | 7.3    | 50.0      |
| Carbon disulfide                       | Ave           | 0.6127  | 0.6064 |         | 24.7           | 25.0            | -1.0   | 50.0      |
| Acetonitrile                           | Ave           | 0.0139  | 0.0114 |         | 817            | 1000            | -18.3  | 50.0      |
| Methyl acetate                         | Ave           | 0.2797  | 0.2542 |         | 22.7           | 25.0            | -9.1   | 50.0      |
| Methylene Chloride                     | Ave           | 0.2872  | 0.2764 |         | 24.1           | 25.0            | -3.8   | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.7650  | 0.8317 |         | 27.2           | 25.0            | 8.7    | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2723  | 0.2786 |         | 25.6           | 25.0            | 2.3    | 50.0      |
| Acrylonitrile                          | Ave           | 0.0826  | 0.0746 |         | 113            | 125             | -9.8   | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4878  | 0.4829 |         | 24.7           | 25.0            | -1.0   | 50.0      |
| Vinyl acetate                          | Lin1F         |         | 0.3460 |         | 115            | 125             | -8.1   | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.2879  | 0.3533 |         | 30.7           | 25.0            | 22.7   | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3010  | 0.3073 |         | 25.5           | 25.0            | 2.1    | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1016  | 0.0962 |         | 118            | 125             | -5.3   | 50.0      |
| Bromochloromethane                     | Ave           | 0.1350  | 0.1432 |         | 26.5           | 25.0            | 6.1    | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.0657  | 0.0581 |         | 111            | 125             | -11.6  | 50.0      |
| Chloroform                             | Ave           | 0.5017  | 0.5357 |         | 26.7           | 25.0            | 6.8    | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.2994  | 0.3764 |         | 31.4           | 25.0            | (25.7) | 50.0      |
| Cyclohexane                            | Ave           | 0.4086  | 0.4066 |         | 24.9           | 25.0            | -0.5   | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.2824  | 0.3627 |         | 32.1           | 25.0            | 28.4   | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3841  | 0.4146 |         | 27.0           | 25.0            | 8.0    | 50.0      |
| Benzene                                | Ave           | 1.149   | 1.110  |         | 24.1           | 25.0            | -3.4   | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.3656  | 0.4143 |         | 28.3           | 25.0            | 13.3   | 50.0      |
| Trichloroethene                        | Ave           | 0.2859  | 0.2916 |         | 25.5           | 25.0            | 2.0    | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4579  | 0.4885 |         | 26.7           | 25.0            | 6.7    | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2686  | 0.2530 |         | 23.5           | 25.0            | -5.8   | 20.0      |
| Dibromomethane                         | Ave           | 0.1556  | 0.1584 |         | 25.5           | 25.0            | 1.8    | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3338  | 0.3888 |         | 29.1           | 25.0            | 16.5   | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.1542  | 0.1567 |         | 127            | 125             | 1.6    | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.4161  | 0.4576 |         | 27.5           | 25.0            | 10.0   | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.2473  | 0.2282 |         | 115            | 125             | -7.7   | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34393/2 Calibration Date: 10/07/2011 11:32

Instrument ID: HP5973N Calib Start Date: 09/20/2011 11:55

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/20/2011 13:51

Lab File ID: N1839.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|-------|-----------|
| Toluene                      | Ave           | 0.8608  | 0.8477 |         | 24.6           | 25.0            | -1.5  | 20.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.4254  | 0.4661 |         | 27.4           | 25.0            | 9.6   | 50.0      |
| Ethyl methacrylate           | LinF          |         | 0.3503 |         | 22.1           | 25.0            | -11.6 | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.2266  | 0.2169 |         | 23.9           | 25.0            | -4.3  | 50.0      |
| Tetrachloroethene            | Ave           | 0.3655  | 0.3722 |         | 25.5           | 25.0            | 1.8   | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.4791  | 0.4848 |         | 25.3           | 25.0            | 1.2   | 50.0      |
| 2-Hexanone                   | Ave           | 0.1733  | 0.1604 |         | 116            | 125             | -7.5  | 50.0      |
| Dibromochloromethane         | Ave           | 0.2685  | 0.3112 |         | 29.0           | 25.0            | 15.9  | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.2648  | 0.2733 |         | 25.8           | 25.0            | 3.2   | 50.0      |
| Chlorobenzene                | Ave           | 0.9430  | 0.9491 | 0.3000  | 25.2           | 25.0            | 0.6   | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.2831  | 0.3331 |         | 29,4           | 25.0            | 17.7  | 50.0      |
| Ethylbenzene                 | Ave           | 1.593   | 1.624  |         | 25.5           | 25.0            | 1.9   | 20.0      |
| m,p-Xylene                   | Ave           | 0.6336  | 0.6270 |         | 49.5           | 50.0            | -1.0  | 50.0      |
| o-Xylene                     | Ave           | 0.6008  | 0.5955 |         | 24.8           | 25.0            | -0.9  | 50.0      |
| Styrene                      | Ave           | 1.033   | 1.031  |         | 25.0           | 25.0            | -0.1  | 50.0      |
| Bromoform                    | LinF          |         | 0.1700 | 0.1000  | 23.8           | 25.0            | -4.8  | 50.0      |
| Isopropylbenzene             | Ave           | 2.785   | 2.911  |         | 26.1           | 25.0            | 4.5   | 50.0      |
| Bromobenzene                 | Ave           | 0.7167  | 0.7245 |         | 25.3           | 25.0            | 1.1   | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.5929  | 0.5646 | 0.3000  | 23.8           | 25.0            | -4.8  | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.1697  | 0.1865 |         | 27.5           | 25.0            | 9.9   | 50.0      |
| N-Propylbenzene              | Ave           | 3.345   | 3.490  |         | 26.1           | 25.0            | 4.3   | 50.0      |
| trans-1,4-Dichloro-2-butene  | Lin1F         |         | 0.1361 |         | 104            | 125             | -17.0 | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.6725  | 0.6846 |         | 25.5           | 25.0            | 1.8   | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.291   | 2.471  |         | 27.0           | 25,0            | 7.9   | 50.0      |
| 4-Chlorotoluene              | Ave           | 2.316   | 2.472  |         | 26.7           | 25.0            | 6.8   | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5236  | 0.5428 |         | 25.9           | 25.0            | 3.7   | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.365   | 2.501  |         | 26.4           | 25.0            | 5.8   | 50.0      |
| sec-Butylbenzene             | Ave           | 2.952   | 2.501  |         | 21.2           | 25.0            | -15.3 | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.403   | 1.449  |         | 25.8           | 25.0            | 3.2   | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.480   | 2.632  |         | 26.5           | 25.0            | 6.1   | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.458   | 1.488  |         | 25.5           | 25.0            | 2.0   | 50.0      |
| n-Butylbenzene               | Ave           | 2.243   | 2.345  |         | 26.1           | 25.0            | 4.5   | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.312   | 1.364  |         | 26.0           | 25.0            | 3.9   | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | LinF          |         | 0.0974 |         | 24.0           | 25.0            | -4.0  | 50.0      |
| 1,2,4-Trichlorobenzene       | LinlF         |         | 0.8531 |         | 24.3           | 25.0            | -2.8  | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.3453  | 0.3578 |         | 25.9           | 25.0            | 3.6   | 50.0      |
| Naphthalene                  | Lin1F         |         | 1.685  |         | 22.3           | 25.0            | -10.8 | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.6792  | 0.6970 |         | 25.7           | 25.0            | 2.6   | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.3046  | 0.3575 |         | 29.3           | 25.0            | 17.4  | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 1.195   | 1.269  |         | 26.6           | 25.0            | 6.2   | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.3622  | 0.3960 |         | 27.3           | 25.0            | 9.3   | 50.0      |

| TestAmerica Buffalo | Job | No.: | 480-10389-1 |
|---------------------|-----|------|-------------|
|                     |     |      |             |

SDG No.:

Lab Sample ID: CCVIS 480-34035/2 Calibration Date: 10/05/2011 10:51

Instrument ID: HP5973N Calib Start Date: 09/20/2011 11:55

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/20/2011 13:51

Lab File ID: N1733.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MA)<br>%D                               |
|----------------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|--------|-----------------------------------------|
| Dichlorodifluoromethane                | Ave           | 0.2284  | 0.1836 |                                         | 20.1           | 25.0            | -19.6  |                                         |
| Chloromethane                          | Ave           | 0.2302  | 0.1837 |                                         | 19.9           | 25.0            | -20.2  |                                         |
| Vinyl chloride                         | Ave           | 0.2234  | 0.2026 |                                         | 22.7           | 25.0            | -9.3   |                                         |
| Bromomethane                           | Ave           | 0.1399  | 0.1544 |                                         | 27.6           | 25.0            | 10.4   |                                         |
| Chloroethane                           | Ave           | 0.1235  | 0.1397 |                                         | 28.3           | 25.0            | 13.2   |                                         |
| Trichlorofluoromethane                 | Ave           | 0.3023  | 0.3647 |                                         | 30.2           | 25.0            | 20.6   |                                         |
| Acrolein                               | Ave           | 0.0084  | 0.0068 |                                         | 405            | 500             | -19.0  |                                         |
| 1,1-Dichloroethene                     | Ave           | 0.2794  | 0.2373 |                                         | 21.2           | 25.0            | -15.1  |                                         |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2075  | 0.1819 | ····                                    | 21.9           | 25.0            | -12.3  | *************************************** |
| Acetone                                | Ave           | 0.0635  | 0.0608 |                                         | 120            | 125             | -4.3   |                                         |
| Iodomethane                            | Ave           | 0.2780  | 0.2448 |                                         | 22.0           | 25.0            | -12.0  |                                         |
| Carbon disulfide                       | Ave           | 0.6127  | 0.4407 |                                         | 18.0           | 25.0            | (-28.1 | ·                                       |
| Acetonitrile                           | Ave           | 0.0139  | 0.0100 |                                         | 719            | 1000            | 128.1  |                                         |
| Methyl acetate                         | Ave           | 0.2797  | 0.2270 | *************************************** | 20.3           | 25.0            | -18.8  |                                         |
| Methylene Chloride                     | Ave           | 0.2872  | 0.2415 |                                         | 21.0           | 25.0            | -15.9  |                                         |
| Methyl tert-butyl ether                | Ave           | 0.7650  | 0.7623 |                                         | 24.9           | 25.0            | -0.4   |                                         |
| trans-1,2-Dichloroethene               | Ave           | 0.2723  | 0.2521 |                                         | 23.1           | 25.0            | -7.4   |                                         |
| Acrylonitrile                          | Ave           | 0.0826  | 0.0611 |                                         | 92.4           | 125             | 26.0   |                                         |
| 1,1-Dichloroethane                     | Ave           | 0.4878  | 0.4542 |                                         | 23.3           | 25.0            | -6.9   |                                         |
| Vinyl acetate                          | Lin1F         |         | 0.3143 |                                         | 104            | 125             | -16.5  |                                         |
| 2,2-Dichloropropane                    | Ave           | 0.2879  | 0.3541 |                                         | 30.7           | 25.0            | 23.0   |                                         |
| cis-1,2-Dichloroethene                 | Ave           | 0.3010  | 0.2725 |                                         | 22.6           | 25.0            | -9.5   |                                         |
| 2-Butanone (MEK)                       | Ave           | 0.1016  | 0.0855 |                                         | 105            | 125             | -15.8  |                                         |
| Bromochloromethane                     | Ave           | 0.1350  | 0.1323 |                                         | 24.5           | 25.0            | -2.0   |                                         |
| Tetrahydrofuran                        | Ave           | 0.0657  | 0.0512 |                                         | 97.4           | 125             | -22.1  |                                         |
| Chloroform                             | Ave           | 0.5017  | 0.5101 |                                         | 25.4           | 25.0            | 1.7    |                                         |
| 1,1,1-Trichloroethane                  | Ave           | 0.2994  | 0.3618 |                                         | 30.2           | 25.0            | 20.8   |                                         |
| Cyclohexane                            | Ave           | 0.4086  | 0.3326 |                                         | 20.3           | 25.0            | -18.6  |                                         |
| Carbon tetrachloride                   | Ave           | 0.2824  | 0.3669 |                                         | 32.5           | 25.0            | (29.9) |                                         |
| 1,1-Dichloropropene                    | Ave           | 0.3841  | 0.3904 |                                         | 25.4           | 25.0            | 1.6    |                                         |
| Benzene                                | Ave           | 1.149   | 0.9927 |                                         | 21.6           | 25.0            | -13.6  |                                         |
| 1,2-Dichloroethane                     | Ave           | 0.3656  | 0.4065 |                                         | 27.8           | 25.0            | 11.2   |                                         |
| Trichloroethene                        | Ave           | 0.2859  | 0.2734 |                                         | 23.9           | 25.0            | -4.4   |                                         |
| Methylcyclohexane                      | Ave           | 0.4579  | 0.4054 |                                         | 22.1           | 25.0            | -11.5  |                                         |
| ,2-Dichloropropane                     | Ave           | 0.2686  | 0.2285 |                                         | 21.3           | 25.0            | -14.9  |                                         |
| Dibromomethane                         | Ave           | 0.1556  | 0.1479 |                                         | 23.8           | 25.0            | -4.9   |                                         |
| 3romodichloromethane                   | Ave           | 0.3338  | 0.3680 |                                         | 27.6           | 25.0            | 10.2   |                                         |
| C-Chloroethyl vinyl ether              | Ave           | 0.1542  | 0.1306 |                                         | 106            | 125             | -15.3  |                                         |
| is-1,3-Dichloropropene                 | Ave           | 0.4161  | 0.4062 |                                         | 24.4           | 25.0            | -2.4   | ~~~~                                    |
| -Methyl-2-pentanone (MIBK)             | Ave           | 0.2473  | 0.2081 |                                         | 105            | 125             | -15.9  |                                         |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34035/2 Calibration Date: 10/05/2011 10:51

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 09/20/2011 13:51

Lab File ID: N1733.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                               | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D           | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------------------------------------|----------------|-----------------|--------------|-----------|
| Toluene                      | Ave           | 0.8608  | 0.7822 |                                       | 22.7           | 25.0            | -9.1         |           |
| trans-1,3-Dichloropropene    | Ave           | 0.4254  | 0.4351 |                                       | 25.6           | 25.0            | 2.3          |           |
| Ethyl methacrylate           | LinF          |         | 0.3199 |                                       | 20.2           | 25.0            | -19.2        |           |
| 1,1,2-Trichloroethane        | Ave           | 0.2266  | 0.1969 |                                       | 21.7           | 25.0            | -13.1        |           |
| Tetrachloroethene            | Ave           | 0.3655  | 0.3541 |                                       | 24.2           | 25.0            | -3.1         |           |
| 1,3-Dichloropropane          | Ave           | 0.4791  | 0.4422 |                                       | 23.1           | 25.0            | -7.7         |           |
| 2-Hexanone                   | Ave           | 0.1733  | 0.1451 |                                       | 105            | 125             | -16.3        |           |
| Dibromochloromethane         | Ave           | 0.2685  | 0.3018 |                                       | 28.1           | 25.0            | 12.4         |           |
| 1,2-Dibromoethane            | Ave           | 0.2648  | 0.2517 |                                       | 23.8           | 25.0            | -5.0         |           |
| Chlorobenzene                | Ave           | 0.9430  | 0.8883 |                                       | 23.6           | 25.0            | -5.8         |           |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.2831  | 0.3176 |                                       | 28.0           | 25.0            | 12.2         |           |
| Ethylbenzene                 | Ave           | 1.593   | 1.543  |                                       | 24.2           | 25.0            | -3.1         | ~~~~~     |
| m,p-Xylene                   | Ave           | 0.6336  | 0.5970 |                                       | 47.1           | 50.0            | -5.8         |           |
| o-Xylene                     | Ave           | 0.6008  | 0.5488 |                                       | 22.8           | 25.0            | -8.7         |           |
| Styrene                      | Ave           | 1.033   | 0.9602 | · · · · · · · · · · · · · · · · · · · | 23.2           | 25.0            | -7.0         |           |
| Bromoform                    | LinF          |         | 0.1708 |                                       | 23.9           | 25.0            | -4.4         |           |
| Isopropylbenzene             | Ave           | 2.785   | 2.774  |                                       | 24.9           | 25.0            | -4.4         |           |
| Bromobenzene                 | Ave           | 0.7167  | 0.6813 |                                       | 23.8           | 25.0            |              |           |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.5929  | 0.5010 |                                       | 21.1           | 25.0            | -4.9         | ***       |
| 1,2,3-Trichloropropane       | Ave           | 0.1697  | 0.1778 |                                       | 26.2           | 25.0            | 4.8          |           |
| N-Propylbenzene              | Ave           | 3.345   | 3,252  |                                       | 24.3           | 25.0            | -2.8         |           |
| trans-1,4-Dichloro-2-butene  | LinlF         |         | 0.1403 |                                       | 107            | 125             | -14.4        |           |
| 2-Chlorotoluene              | Ave           | 0.6725  | 0.6308 |                                       | 23.5           | 25.0            | -6.2         |           |
| 1,3,5-Trimethylbenzene       | Ave           | 2.291   | 2.348  |                                       | 25.6           | 25.0            | 2,5          |           |
| 4-Chlorotoluene              | Ave           | 2.316   | 2,337  |                                       | 25.2           | 25.0            | 0.9          |           |
| tert-Butylbenzene            | Ave           | 0.5236  | 0.5205 |                                       | 24.9           | 25.0            | -0.6         |           |
| 1,2,4-Trimethylbenzene       | Ave           | 2.365   | 2.357  |                                       | 24.9           | 25.0            | -0.8         |           |
| sec-Butylbenzene             | Ave           | 2.952   | 2.891  |                                       | 24.5           | 25.0            | -2.1         |           |
| 1,3-Dichlorobenzene          | Ave           | 1.403   | 1.341  |                                       | 23.9           | 25.0            | -4.4         |           |
| 4-Isopropyltoluene           | Ave           | 2.480   | 2.542  |                                       | 25.6           | 25.0            | 2.5          |           |
| 1,4-Dichlorobenzene          | Ave           | 1.458   | 1.374  |                                       | 23.5           | 25.0            | -5.8         |           |
| n-Butylbenzene               | Ave           | 2,243   | 2.278  |                                       | 25.4           | 25.0            | 1.6          |           |
| 1,2-Dichlorobenzene          | Ave           | 1.312   | 1.253  |                                       | 23.9           | 25.0            |              |           |
| 1,2-Dibromo-3-Chloropropane  | LinF          |         | 0.0939 |                                       | 23.1           | 25.0            | -4.6<br>-7.6 |           |
| 1,2,4-Trichlorobenzene       | Lin1F         |         | 0.8210 |                                       | 23.4           | 25.0            |              |           |
| Hexachlorobutadiene          | Ave           | 0.3453  | 0.3871 |                                       | 28.0           | 25.0            | 12.1         |           |
| Naphthalene                  | Lin1F         |         | 1.641  |                                       | 21.7           | 25.0            | -13.2        |           |
| 1,2,3-Trichlorobenzene       | Ave           | 0.6792  | 0.6865 |                                       | 25.3           | 25.0            |              |           |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.3046  | 0.3665 |                                       | 30.1           | 25.0            | 1.1          |           |
| Toluene-d8 (Surr)            | Ave           | 1.195   | 1.258  |                                       | 26.3           |                 | 20.3         |           |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.3622  | 0.4067 |                                       | 28.1           | 25.0            | 5.3          |           |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34830/2 Calibration Date: 10/11/2011 09:27

Instrument ID: <u>HP5973F</u> Calib Start Date: 10/04/2011 15:11

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 10/04/2011 17:19

Lab File ID: F4481.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D     | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|--------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.2045  | 0.2820 |                                         | 68.9           | 50.0            | (37.9) | 50.0      |
| Chloromethane                          | Ave           | 0.3351  | 0.3849 | 0.1000                                  | 57.4           | 50.0            | 14.8   | 50.0      |
| Vinyl chloride                         | Ave           | 0.2710  | 0.3142 |                                         | 58.0           | 50.0            | 15.9   | 20.0      |
| Bromomethane                           | Ave           | 0.0874  | 0.0932 |                                         | 53.3           | 50.0            | 6.6    | 50.0      |
| Chloroethane                           | Ave           | 0.1016  | 0.1104 |                                         | 54.3           | 50.0            | 8.6    | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.3130  | 0.3415 |                                         | 54.5           | 50.0            | 9.1    | 50.0      |
| Acrolein                               | Ave           | 0.0110  | 0.0117 |                                         | 1070           | 1000            | 6.8    | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2389  | 0.2734 |                                         | 57.2           | 50.0            | 14.4   | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2306  | 0.2549 | 0.1000                                  | 55.3           | 50.0            | 10.6   | 20.0      |
| Acetone                                | Ave           | 0.1302  | 0.1351 |                                         | 259            | 250             | 3.7    | 50.0      |
| Iodomethane                            | Ave           | 0.3138  | 0.3671 |                                         | 58.5           | 50.0            | 17.0   | 50.0      |
| Carbon disulfide                       | Ave           | 0.6225  | 0.7262 |                                         | 58.3           | 50.0            | 16.7   | 50.0      |
| Methyl acetate                         | Ave           | 0.5237  | 0.5392 |                                         | 51.5           | 50.0            | 3.0    | 50.0      |
| Acetonitrile                           | Ave           | 0.0273  | 0.0274 |                                         | 2010           | 2000            | 0.6    | 50.0      |
| Methylene Chloride                     | Ave           | 0.2831  | 0.2932 |                                         | 51.8           | 50.0            | 3.6    | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.8468  | 0.9217 |                                         | 54.4           | 50.0            | 8.9    | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2665  | 0.2905 |                                         | 54.5           | 50.0            | 9.0    | 50.0      |
| Acrylonitrile                          | Ave           | 0.1313  | 0.1368 |                                         | 261            | 250             | 4.2    | 50.0      |
| Vinyl acetate                          | Ave           | 0.5918  | 0.6286 |                                         | 266            | 250             | 6.2    | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.5024  | 0.5221 |                                         | 52.0           | 50.0            | 3.9    | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.2043  | 0.2118 |                                         | 259            | 250             | 3.6    | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3479  | 0.3986 |                                         | 57.3           | 50.0            | 14.6   | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3008  | 0.3154 |                                         | 52.4           | 50.0            | 4.8    | 50.0      |
| Bromochloromethane                     | Ave           | 0.1639  | 0.1752 |                                         | 53.4           | 50.0            | 6.9    | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1275  | 0.1325 |                                         | 260            | 250             | 3.9    | 50.0      |
| Chloroform                             | Ave           | 0.4929  | 0.5079 |                                         | 51.5           | 50.0            | 3.0    | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.4056  | 0.4385 |                                         | 54.1           | 50.0            | 8.1    | 50.0      |
| Cyclohexane                            | Ave           | 0.4688  | 0.5149 |                                         | 54.9           | 50.0            | 9.8    | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3614  | 0.3850 |                                         | 53.3           | 50.0            | 6.5    | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.3529  | 0.3993 |                                         | 56.6           | 50.0            | 13.1   | 50.0      |
| Benzene                                | Ave           | 1.041   | 1.088  |                                         | 52.2           | 50.0            | 4.5    | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.4487  | 0.4672 |                                         | 52.1           | 50.0            | 4.1    | 50.0      |
| Trichloroethene                        | Aye           | 0.2835  | 0.2978 |                                         | 52.5           | 50.0            | 5.0    | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4244  | 0.4665 |                                         | 55.0           | 50.0            | 9.9    | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2755  | 0.2849 |                                         | 51.7           | 50.0            | 3.4    | 20.0      |
| Dibromomethane                         | Ave           | 0.1771  | 0.1891 |                                         | 53.4           | 50.0            | 6.8    | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3407  | 0.3614 |                                         | 53.0           | 50.0            | 6.1    | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.2006  | 0.2126 | *************************************** | 265            | 250             | 6.0    | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.4089  | 0.4434 |                                         | 54.2           | 50.0            | 8.4    | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.8848  | 0.9075 |                                         | 256            | 250             | 2.6    | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: CCVIS 480-34830/2 Calibration Date: 10/11/2011 09:27

Instrument ID: HP5973F Calib Start Date: 10/04/2011 15:11

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 10/04/2011 17:19

Lab File ID: F4481.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| Toluene                      | Ave           | 1.569   | 1.579  |         | 50.3           | 50.0            | 0.6  | 20.0      |
| Ethyl methacrylate           | Ave           | 0.8007  | 0.8493 |         | 53.0           | 50.0            | 6.1  | 50.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.8632  | 0.9280 |         | 53.7           | 50.0            | 7.5  | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.4531  | 0.4668 |         | 51.5           | 50.0            | 3.0  | 50.0      |
| Tetrachloroethene            | Ave           | 0.7304  | 0.7315 |         | 50.1           | 50.0            | 0.2  | 50.0      |
| 1,3-Dichloropropane          | Ave           | 0.9534  | 0.9558 |         | 50.1           | 50.0            | 0.3  | 50.0      |
| 2-Hexanone                   | Ave           | 0.6536  | 0.6786 |         | 260            | 250             | 3.8  | 50.0      |
| Dibromochloromethane         | Ave           | 0.6109  | 0.6931 |         | 56.7           | 50.0            | 13.5 | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6136  | 0.6441 |         | 52.5           | 50.0            | 5.0  | 50.0      |
| Chlorobenzene                | Ave           | 1.805   | 1.851  | 0.3000  | 51.3           | 50.0            | 2.5  | 50.0      |
| Ethylbenzene                 | Ave           | 2.936   | 3.005  |         | 51.2           | 50.0            | 2.3  | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.5968  | 0.6546 |         | 54.8           | 50.0            | 9.7  | 50.0      |
| m,p-Xylene                   | Ave           | 1.182   | 1.212  |         | 103            | 100             | 2.5  | 50.0      |
| o-Xylene                     | Ave           | 1.127   | 1.176  |         | 52.2           | 50.0            | 4.4  | 50.0      |
| Styrene                      | Ave           | 1.945   | 1.990  |         | 51.2           | 50.0            | 2.3  | 50.0      |
| Bromoform                    | LinF          |         | 0.4103 | 0.1000  | 48.1           | 50.0            | -3.8 | 50.0      |
| Isopropylbenzene             | Ave           | 2.682   | 2.758  |         | 51.4           | 50.0            | 2.9  | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.6760  | 0.7008 | 0.3000  | 51.8           | 50.0            | 3.7  | 50.0      |
| Bromobenzene                 | Ave           | 0.7418  | 0.7513 |         | 50.6           | 50.0            | 1.3  | 50.0      |
| N-Propylbenzene              | Ave           | 3.272   | 3.303  |         | 50.5           | 50.0            | 0.9  | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2463  | 0.2668 |         | 271            | 250             | 8.3  | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2366  | 0.2393 |         | 50.6           | 50.0            | 1.2  | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.6875  | 0.7011 |         | 51.0           | 50.0            | 2.0  | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.290   | 2.329  |         | 50.9           | 50.0            | 1.7  | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.7173  | 0.7271 |         | 50.7           | 50.0            | 1.4  | 50.0      |
| tert-Butylbenzene            | Ave           | 0.4966  | 0.5234 |         | 52.7           | 50.0            | 5.4  | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.311   | 2.331  |         | 50.4           | 50.0            | 0.9  | 50.0      |
| sec-Butylbenzene             | Ave           | 2.871   | 2.939  |         | 51.2           | 50.0            | 2.4  | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.462   | 2.551  |         | 51.8           | 50.0            | 3.6  | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.404   | 1.420  |         | 50.6           | 50.0            | 1.1  | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.417   | 1.440  |         | 50.8           | 50.0            | 1.7  | 50.0      |
| n-Butylbenzene               | Ave           | 2.137   | 2.186  |         | 51.1           | 50.0            | 2.3  | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.322   | 1.345  |         | 50.9           | 50.0            | 1.8  | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Lin1F         |         | 0.1215 |         | 48.7           | 50.0            | -2.6 | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.7845  | 0.8457 |         | 53.9           | 50.0            | 7.8  |           |
| Hexachlorobutadiene          | Ave           | 0.3849  | 0.4060 |         | 52.7           | 50.0            | 5.5  | 50.0      |
| Naphthalene                  | Ave           | 2.126   | 2.380  |         | 56.0           | 50.0            | 12.0 | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.7185  | 0.7597 |         | 52.9           | 50.0            | 5.7  |           |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1700  | 0.1691 |         | 49.7           | 50.0            |      | 50.0      |
| Toluene-d8 (Surr)            | Ave           | 2.216   | 2.260  |         | 51.0           | 50.0            | -0.5 | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.7357  | 0.7807 |         | 53.1           | 50.0            | 6.1  | 50.0      |



Geology

Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-10389-1

### 14 Ground Water Samples, 5 Soil Samples, and 2 Field Duplicates Collected September 27-30, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for 4-chloroaniline, 3-nitroaniline, and 3,3'-dichlorobenzidine were above the allowable maximum (25%) on 10-07-11 (U4976.D). The %Ds for 4-chloroaniline and 3,3'-dichlorobenzidine were above the allowable maximum (25%) on 10-11-11 (U5083.D). The %D for acetophenone was above the allowable maximum (25%) on 10-13-11 (U5166.D). Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Blanks</u>: Method blank MB 480-33652/1-A contained a trace of butyl benzyl phthalate (0.496 ug/L). Positive results for butyl benzyl phthalate that are less than ten times the highest blank level should be reported as not detected (U) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximums and the percent recoveries (%Rs) were within QC limits for soil MS/MSD sample TP-C4 (7-8).

Four of 12 RPDs for spiked compounds were above the allowable maximum and 2 of 24 %Rs were above QC limits for aqueous MS/MSD sample MW-18. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for aqueous samples LCS 480-33829/2-A and LCSD 480-33829/3-A. The %Rs for spiked compounds were within QC limits for aqueous samples LCS 480-33652/2-A and 480-34007/2-A and soil sample 480-34190/2-A.

<u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-17/CHA-1 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

The relative percent difference for phenanthrene was below the allowable maximum (35%) for soil field duplicate pair TP-B1 (5-6)/DUP-01 (attached table), as required.

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### **Semi-Volatiles**

### <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-10389-1

| S1= TF                 | P-B1 (5-6)     | S2=        | DUP-01   |
|------------------------|----------------|------------|----------|
| <u>Analyte</u>         | <u>S1</u>      | <u>\$2</u> | RPD (%)  |
| 2-methylnaphthalene    | <del>790</del> | <u>590</u> | NC       |
| acetophenone           | 560            | 410        | NC       |
| anthracene             | 390            | 330        | NC<br>NC |
| benzo(a)anthracene     | 220            | 340        | NC<br>NC |
| benzo(a)pyrene         | 350            | 260        | NC<br>NC |
| benzo(b)fluoranthene   | 320            | 300        | NC<br>NC |
| benzo(g,h,i)perylene   | 230            | 230        | NC<br>NC |
| benzo(k)fluoranthene   | 120            | 180        | NC       |
| chrysene               | 330            | 400        | NC       |
| fluoranthene           | 420            | 540        | NC<br>NC |
| fluorene               | 770            | 860        | NC<br>NC |
| indeno(1,2,3-cd)pyrene | 160            | 170        | NC<br>NC |
| phenanthrene           | 2000           | 2200       | 10%      |
| pyrene                 | 520            | <b>680</b> | NC       |

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

<sup>\*</sup> RPD is above the allowable maximum (35%)

# FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab N  | ame: | : TestAmerica Buffa |        |     | Job No.: 48  |           |
|--------|------|---------------------|--------|-----|--------------|-----------|
| SDG N  | 0.:  |                     |        |     |              |           |
|        |      |                     |        |     |              |           |
| Matri: | x:   | Water               | Level: | Low | Lab File ID: |           |
| Lab I  |      | 480-10389-3 MSD     |        |     | Client ID:   | MW-18 MSD |

|                             | SPIKE<br>ADDED | MSD           | MSD  |      | QC LI     | MITS   |   |
|-----------------------------|----------------|---------------|------|------|-----------|--------|---|
| COMPOUND                    |                | CONCENTRATION | 용    | 8    | - Indiana |        | # |
|                             | (ug/L)         | (ug/L)        | REC  | RPD  | RPD       | REC    |   |
| 2,4-Dinitrophenol           | 96.2           | 123           | 128  | (23) | 22        | 42-153 | F |
| 2-Chlorophenol              | 96.2           | 86.4          | 90   | 21   | 25        | 48-120 |   |
| 4-Chloro-3-methylphenol     | 96.2           | 118           | (122 | 27   | 27        | 64-120 | F |
| 4-Nitrophenol               | 96.2           | 75.6          | 79   | 36   | 48        | 16-120 |   |
| Acenaphthene                | 96.2           | 105           | 110  | 21   | 24        | 60-120 |   |
| Bis(2-ethylhexyl) phthalate | 96.2           | 124           | 129  | (24) | 15        | 69-136 | F |
| Fluorene                    | 96.2           | 115           | 120  | (25) | 15        | 66-129 | F |
| Hexachloroethane            | 96.2           | 62.3          | 65   | 30   | 46        | 25-120 |   |
| N-Nitrosodi-n-propylamine   | 96.2           | 106           | 110  | 24   | 31        | 56-120 |   |
| Pentachlorophenol           | 96.2           | 133           | 139  | 23   | 37        | 39-136 | F |
| Phenol                      | 96.2           | 45.9          | 48   | 21   | 34        | 17-120 | Е |
| Pyrene                      | 96.2           | 119           | 124  | (23) | 19        | 58-136 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

### FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab N  | ame: | TestAmerica Buffal |        |     | Job No.: 48 |          |
|--------|------|--------------------|--------|-----|-------------|----------|
| SDG N  | o.:  |                    |        |     |             |          |
|        |      |                    |        |     |             |          |
| Matri: |      | ater               | Level: | Low | Lab File ID |          |
| Lab II |      | 80-10389-3 MS      |        |     | Client ID:  | MW-18 MS |

|                                         | SPIKE  | SAMPLE        | MS            | MS  | QC     |    |
|-----------------------------------------|--------|---------------|---------------|-----|--------|----|
| * * * · · · · · · · · · · · · · · · · · | ADDED  | CONCENTRATION | CONCENTRATION | ojo | LIMITS | #  |
| COMPOUND                                | (ug/L) | (ug/L)        | (ug/L)        | REC | REC    |    |
| 2,4-Dinitrophenol                       | 95.2   | ND            | 97.5          | 102 | 42-153 | ~~ |
| 2-Chlorophenol                          | 95.2   | ND            | 69.9          | 73  | 48-120 |    |
| 4-Chloro-3-methylphenol                 | 95.2   | ND            | 89.5          | 94  | 64-120 |    |
| 4-Nitrophenol                           | 95.2   | ND            | 52.4          | 55  | 16-120 |    |
| Acenaphthene                            | 95.2   | ND ND         | 85.0          | 89  |        |    |
| Bis(2-ethylhexyl) phthalate             | 95.2   | ND            | 97.6          |     | 60-120 |    |
| Fluorene                                | 95.2   | ND ND         | 89.4          | 103 | 69-136 |    |
| Hexachloroethane                        | 95.2   |               |               | 94  | 66-129 |    |
| N-Nitrosodi-n-propylamine               | 95.2   | ND            | 46.1          | 48  | 25-120 |    |
| Pentachlorophenol                       |        | ND            | 82.8          | 87  | 56-120 |    |
| Phenol                                  | 95.2   | ND            | 106           | 111 | 39-136 |    |
|                                         | 95.2   | ND            | 37.3          | 39  | 17-120 |    |
| Pyrene                                  | 95.2   | ND            | 94.4          | 99  | 58-136 |    |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

Lab Name: TestAmerica Buffalo

Job No.: 480-10389-1

SDG No.:

Lab Sample ID: ICV 480-34421/8

Calibration Date: 10/07/2011 16:50

Instrument ID: HP5973U

Calib Start Date: 10/07/2011 11:46

Calib End Date: 10/07/2011 13:43

GC Column: RXI-5Sil MS ID: 0.25(mm)

Lab File ID: U4976.D

Conc. Units: ug/L

| ANALYTE                    | CURVE | AVE RRF | RRF    | MIN RRF | CALC   | SPIKE  | %D      | MAX  |
|----------------------------|-------|---------|--------|---------|--------|--------|---------|------|
|                            | TYPE  |         |        |         | AMOUNT | AMOUNT |         | %D   |
| N-Nitrosodimethylamine     | Ave   | 0.7414  | 0.8107 | 0.0100  | E 4700 |        |         |      |
| Pyridine                   | Ave   | 1.100   | 1.090  | 0.0100  | 54700  | 50000  | 9.3     | 25.0 |
| Phenol                     | Ave   | 1.749   | 1.661  | 0.0100  | 49500  | 50000  | -0.9    | 25.0 |
| Aniline                    | Ave   | 2.000   | 1.292  | 0.0100  | 47500  | 50000  | -5.1    | 25.0 |
| Bis(2-chloroethyl)ether    | Ave   | 1.316   | 1.262  |         | 25800  | 40000  | M-35.4* | 25.0 |
| 2-Chlorophenol             | Ave   | 1.411   | 1.404  | 0.0100  | 48000  | 50000  | -4.1    | 25.0 |
| 1,3-Dichlorobenzene        | Ave   | 1.543   | 1.568  | 0.0100  | 49800  | 50000  | -0.5    | 25.0 |
| 1,4-Dichlorobenzene        | Ave   | 1.569   | 1.588  | 0.0100  | 50800  | 50000  | 1.6     | 25.0 |
| Benzyl alcohol             | Ave   | 0.8902  | 0.8608 | 0.0100  | 50600  | 50000  | 1.2     | 25.0 |
| 1,2-Dichlorobenzene        | Ave   | 1.472   | 1.485  | 0.0100  | 48300  | 50000  | -3.3    | 25.0 |
| 2-Methylphenol             | Ave   | 1.177   | 1.177  | 0.0100  | 50500  | 50000  | 0.9     | 25.0 |
| bis (2-chloroisopropyl)    | Ave   | 1.965   |        | 0.0100  | 50000  | 50000  | -0.0    | 25.0 |
| ether                      |       | 1.905   | 1.908  | 0.0100  | 48500  | 50000  | -2.9    | 25.0 |
| N-Nitrosodi-n-propylamine  | Ave   | 0.9390  | 0.9441 | 0.0500  | 50300  | 50000  | 0.6     | 25.0 |
| 4-Methylphenol             | Ave   | 1.205   | 1.212  | 0.0100  | 101000 | 100000 | 0.6     | 25.0 |
| Hexachloroethane           | Ave   | 0.5587  | 0.5808 | 0.0100  | 52000  | 50000  | 4.0     | 25.0 |
| Nitrobenzene               | Ave   | 0.3593  | 0.3627 | 0.0100  | 50500  | 50000  | 1.0     | 25.0 |
| Isophorone                 | Ave   | 0.6075  | 0.6211 | 0.0100  | 51100  | 50000  | 2.2     | 25.0 |
| 2-Nitrophenol              | Ave   | 0.1817  | 0.1839 | 0.0100  | 50600  | 50000  | 1.2     |      |
| 2,4-Dimethylphenol         | Ave   | 0.3444  | 0.3609 | 0.0100  | 52400  | 50000  | 4.8     | 25.0 |
| Tetraethyl lead            | Ave   | 0.1274  | 0.1546 | 0.0100  | 30300  | 25000  | 21.3    | 25.0 |
| Bis(2-chloroethoxy)methane | Ave   | 0.3688  | 0.3647 | 0.0100  | 49400  | 50000  |         | 25.0 |
| Benzoic acid               | Ave   | 0.2683  | 0.2126 | 0.0100  | 39600  | 50000  | -1.1    | 25.0 |
| 2,4-Dichlorophenol         | Ave   | 0.2666  | 0.2808 | 0.0100  | 52700  | 50000  | -20.8   | 25.0 |
| 1,2,4-Trichlorobenzene     | Ave   | 0.3158  | 0.3293 | 0.0100  | 52100  |        | 5.3     | 25.0 |
| Naphthalene                | Ave   | 0.9654  | 1.012  | 0.0100  | 52400  | 50000  | 4.3     | 25.0 |
| 4-Chloroaniline            | Ave   | 0.4166  | 0.2570 | 0.0100  | 27500  | 50000  | 4.9     | 25.0 |
| Hexachlorobutadiene        | Ave   | 0.1782  | 0.1987 | 0.0100  | 55700  | 44500  | (-38.3* | 25.0 |
| 4-Chloro-3-methylphenol    | Ave   | 0.2880  | 0.3098 | 0.0100  |        | 50000  | 11.5    | 25.0 |
| 2-Methylnaphthalene        | Ave   | 0.6424  | 0.6821 | 0.0100  | 53800  | 50000  | 7.6     | 25.0 |
| Hexachlorocyclopentadiene  | Ave   | 0.3520  | 0.3677 | 0.0500  | 53100  | 50000  | 6.2     | 25.0 |
| 2,4,6-Trichlorophenol      | Ave   | 0.3467  | 0.3565 | 0.0300  | 52200  | 50000  | 4.5     | 25.0 |
| 2,4,5-Trichlorophenol      | Ave   | 0.3863  | 0.3824 |         | 51400  | 50000  | 2.8     | 25.0 |
| 2-Chloronaphthalene        | Ave   | 1.091   | 1.090  | 0.0100  | 49500  | 50000  | -1.0    | 25.0 |
| 2-Nitroaniline             | Ave   | 0.3305  | 0.3448 | 0.0100  | 50000  | 50000  | -0.0    | 25.0 |
| Dimethyl phthalate         | Ave   | 1.281   |        | 0.0100  | 52200  | 50000  | 4.3     | 25.0 |
| 2,6-Dinitrotoluene         | Ave   | 0.2844  | 1.329  | 0.0100  | 51900  | 50000  | 3.7     | 25.0 |
| Acenaphthylene             | Ave   | 1.691   | 0.3147 | 0.0100  | 55300  | 50000  | 10.6    | 25.0 |
| 3-Nitroaniline             | Ave   | 0.3283  | 1.808  | 0.0100  | 53500  | 50000  | 6.9     | 25.0 |
| Acenaphthene               | Ave   | 1.086   | 0.2329 | 0.0100  | 35500  | 50000  | -29.1   | 25.0 |
| 2,4-Dinitrophenol          | Linl  | 1.000   | 1.130  | 0.0100  | 52000  | 50000  | 4.1     | 25.0 |
|                            |       |         | 0.1521 | 0.0500  | 44100  | 50000  | -11.8   | 25.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: ICV 480-34421/8 Calibration Date: 10/07/2011 16:50

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 10/07/2011 13:43

Lab File ID: U4976.D Conc. Units: ug/L

|                             |       |         |        |         |        | <del></del> |           |      |
|-----------------------------|-------|---------|--------|---------|--------|-------------|-----------|------|
| ANALYTE                     | CURVE | AVE RRF | RRF    | MIN RRF | CALC   | SPIKE       | %D        | MAX  |
|                             | TYPE  |         |        |         | AMOUNT | AMOUNT      |           | %D   |
|                             |       |         |        |         |        |             |           |      |
| 4-Nitrophenol               | Ave   | 0.1896  | 0.2148 | 0.0500  | 56600  | 50000       | 13.3      | 25.0 |
| 2,4-Dinitrotoluene          | Ave   | 0.3893  | 0.4175 | 0.0100  | 53600  | 50000       | 7.2       | 25.0 |
| Dibenzofuran                | Ave   | 1.532   | 1.556  | 0.0100  | 50800  | 50000       | 1.6       | 25.0 |
| Diethyl phthalate           | Ave   | 1.292   | 1.381  | 0.0100  | 53500  | 50000       | 6.9       | 25.0 |
| Fluorene                    | Ave   | 1.223   | 1.303  | 0.0100  | 53300  | 50000       | 6.6       | 25.0 |
| 4-Chlorophenyl phenyl ether | Ave   | 0.6177  | 0.6509 | 0.0100  | 52700  | 50000       | 5.4       | 25.0 |
| 4-Nitroaniline              | Ave   | 0.3403  | 0.3255 | 0.0100  | 47800  | 50000       | -4.4      | 25,0 |
| 4,6-Dinitro-2-methylphenol  | Linl  |         | 0.1296 | 0.0100  | 46400  | 50000       | -7.2      | 25.0 |
| N-Nitrosodiphenylamine      | Ave   | 0.4993  | 0.4986 | 0.0100  | 49900  | 50000       | -0.1      | 25.0 |
| 1,2-Diphenylhydrazine       | Ave   | 1.233   | 1.279  | 0.0100  | 51900  | 50000       | 3.7       | 25.0 |
| 4-Bromophenyl phenyl ether  | Ave   | 0.2039  | 0.2030 | 0.0100  | 49800  | 50000       | -0.4      | 25.0 |
| Hexachlorobenzene           | Ave   | 0.2295  | 0.2310 | 0.0100  | 50300  | 50000       | 0.7       | 25.0 |
| Pentachlorophenol           | Ave   | 0.1365  | 0.1436 | 0.0100  | 52600  | 50000       | 5.2       | 25.0 |
| Phenanthrene                | Ave   | 1.073   | 1.083  | 0.0100  | 50500  | 50000       | 0.9       | 25.0 |
| Anthracene                  | Ave   | 1.072   | 1.099  | 0.0100  | 51300  | 50000       | 2.5       | 25.0 |
| Carbazole                   | Ave   | 0.9767  | 0.9682 | 0.0100  | 49600  | 50000       | -0.9      | 25.0 |
| Di-n-butyl phthalate        | Ave   | 1.177   | 1.189  | 0.0100  | 50500  | 50000       | 1.0       | 25.0 |
| Fluoranthene                | Ave   | 1.191   | 1.226  | 0.0100  | 51500  | 50000       | 3.0       | 25.0 |
| Benzidine                   | Ave   | 0.6378  | 0.1833 | 0.0100  | 14400  |             | N/1-71.3* | 25.0 |
| Pyrene                      | Ave   | 1.162   | 1.159  | 0.0100  | 49900  | 50000       | -0.3      | 25.0 |
| Butyl benzyl phthalate      | Ave   | 0.5351  | 0.5505 | 0.0100  | 51400  | 50000       | 2.9       | 25.0 |
| 3,3'-Dichlorobenzidine      | Ave   | 0.4528  | 0.2598 | 0.0100  | 28700  | 50000       | (-42.6*)  | 25.0 |
| Bis(2-ethylhexyl) phthalate | Ave   | 0.7616  | 0.7736 | 0.0100  | 50800  | 50000       | 1.6       | 25.0 |
| Benzo (a) anthracene        | Ave   | 1.147   | 1.173  | 0.0100  | 51200  | 50000       | 2.3       | 25.0 |
| Chrysene                    | Ave   | 1.150   | 1.177  | 0.0100  | 51200  | 50000       | 2.3       | 25.0 |
| Di-n-octyl phthalate        | Ave   | 1.218   | 1.264  | 0.0100  | 51900  | 50000       | 3.8       | 25.0 |
| Benzo(b) fluoranthene       | Ave   | 1.138   | 1.118  | 0.0100  | 49200  | 50000       | -1.7      | 25.0 |
| Benzo(k) fluoranthene       | Ave   | 1.170   | 1.257  | 0.0100  | 53800  | 50000       | 7.5       | 25.0 |
| Benzo (a) pyrene            | Ave   | 0.9627  | 1.004  | 0.0100  | 52100  | 50000       | 4.2       | 25.0 |
| Dibenz(a,h)anthracene       | Ave   | 0.9864  | 0.9785 | 0.0100  | 49600  | 50000       | -0.8      | 25.0 |
| Indeno(1,2,3-cd)pyrene      | Ave   | 1,155   | 1.117  | 0.0100  | 48300  | 50000       |           |      |
| Benzo(g,h,i)perylene        | Ave   | 0.9285  | 0.9116 | 0.0100  | 49100  | 50000       | -3.3      | 25.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: ICV 480-34909/8 Calibration Date: 10/11/2011 17:04

Instrument ID: <u>HP5973U</u> Calib Start Date: 10/11/2011 14:43

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 10/11/2011 16:41

Lab File ID: U5083.D Conc. Units: ug/L

|                                 |       |         |        |         | T      | T      |          |      |
|---------------------------------|-------|---------|--------|---------|--------|--------|----------|------|
| ANALYTE                         | CURVE | AVE RRF | RRF    | MIN RRF | CALC   | SPIKE  | %D       | MAX  |
|                                 | TYPE  |         | 410    |         | AMOUNT | AMOUNT |          | %D   |
| N-Nitrosodimethylamine          | Ave   | 0.9533  | 0.9918 | 0.0100  | 52000  | 50000  | 4.0      | 25.0 |
| Pyridine                        | Ave   | 1.051   | 1.041  | 0.0100  | 49500  | 50000  | -1.0     | 25.0 |
| Phenol                          | Ave   | 1.620   | 1.523  | 0.0100  | 47000  | 50000  | -6.0     | 25.0 |
| Aniline                         | Ave   | 1.856   | 1.217  | 0.0100  | 26200  | 40000  | -0.0     | 25.0 |
| Bis(2-chloroethyl)ether         | Ave   | 1.172   | 1.142  | 0.0100  | 48700  | 50000  | -2.6     | 25.0 |
| 2-Chlorophenol                  | Ave   | 1.365   | 1.370  | 0.0100  | 50200  | 50000  | 0.4      | 25.0 |
| 1,3-Dichlorobenzene             | Ave   | 1.579   | 1.563  | 0.0100  | 49500  | 50000  | -1.0     | 25.0 |
| 1,4-Dichlorobenzene             | Ave   | 1.624   | 1.590  | 0.0100  | 48900  | 50000  | -2.1     | 25.0 |
| Benzyl alcohol                  | Ave   | 0.8348  | 0.8174 | 0.0100  | 49000  | 50000  | -2.1     | 25.0 |
| 1,2-Dichlorobenzene             | Ave   | 1.520   | 1.473  | 0.0100  | 48500  | 50000  | -3.1     | 25.0 |
| 2-Methylphenol                  | Ave   | 1.123   | 1.105  | 0.0100  | 49200  | 50000  | -1.6     |      |
| bis (2-chloroisopropyl)         | Ave   | 1.704   | 1.675  | 0.0100  | 49100  | 50000  | -1.6     | 25.0 |
| ether N-Nitrosodi-n-propylamine |       |         |        |         | 19100  | 30000  | 1./      | 23.0 |
| 4-Methylphenol                  | Ave   | 0.9495  | 0.9443 | 0.0500  | 49700  | 50000  | -0.5     | 25.0 |
| Hexachloroethane                | Ave   | 1.169   | 1.196  | 0.0100  | 102000 | 100000 | 2.3      | 25.0 |
| Nitrobenzene                    | Ave   | 0.6369  | 0.6077 | 0.0100  | 47700  | 50000  | -4.6     | 25.0 |
| Isophorone                      | Ave   | 0.3876  | 0.3702 | 0.0100  | 47700  | 50000  | -4.5     | 25.0 |
|                                 | Ave   | 0.6219  | 0.6151 | 0.0100  | 49500  | 50000  | -1.1     | 25.0 |
| 2-Nitrophenol                   | Ave   | 0.1848  | 0.1814 | 0.0100  | 49100  | 50000  | -1.8     | 25.0 |
| 2,4-Dimethylphenol              | Ave   | 0.3824  | 0.3862 | 0.0100  | 50500  | 50000  | 1.0      | 25.0 |
| Tetraethyl lead                 | Ave   | 0.1654  | 0.1802 | 0.0100  | 27200  | 25000  | 9.0      | 25.0 |
| Bis(2-chloroethoxy)methane      | Ave   | 0.3424  | 0.3296 | 0.0100  | 48100  | 50000  | -3.7     | 25.0 |
| Benzoic acid                    | Ave   | 0.2851  | 0.2325 | 0.0100  | 40800  | 50000  | -18.5    | 25.0 |
| 2,4-Dichlorophenol              | Ave   | 0.2835  | 0.2871 | 0.0100  | 50600  | 50000  | 1.3      | 25.0 |
| 1,2,4-Trichlorobenzene          | Ave   | 0.3501  | 0.3430 | 0.0100  | 49000  | 50000  | -2.0     | 25.0 |
| Naphthalene                     | Ave   | 0.9904  | 0.9888 | 0.0100  | 49900  | 50000  | -0.2     | 25.0 |
| 4-Chloroaniline                 | Ave   | 0.4075  | 0.2545 | 0.0100  | 27800  | 44500  | (-37.6*) | 25.0 |
| Hexachlorobutadiene             | Ave   | 0.2270  | 0.2295 | 0.0100  | 50500  | 50000  | 7.1      | 25.0 |
| 4-Chloro-3-methylphenol         | Ave   | 0.3154  | 0.3203 | 0.0100  | 50800  | 50000  | 1.6      | 25.0 |
| 2-Methylnaphthalene             | Ave   | 0.6824  | 0.6767 | 0.0100  | 49600  | 50000  | -0.8     | 25.0 |
| Hexachlorocyclopentadiene       | Ave   | 0.3946  | 0.4021 | 0.0500  | 50900  | 50000  | 1.9      | 25.0 |
| 2,4,6-Trichlorophenol           | Ave   | 0.3776  | 0.3817 | 0.0100  | 50500  | 50000  | 1.1      | 25.0 |
| 2,4,5-Trichlorophenol           | Ave   | 0.4002  | 0.4036 | 0.0100  | 50400  | 50000  | 0.9      | 25.0 |
| 2-Chloronaphthalene             | Ave   | 1.128   | 1.118  | 0.0100  | 49600  | 50000  | -0.9     | 25.0 |
| 2-Nitroaniline                  | Ave   | 0.3577  | 0.3656 | 0.0100  | 51100  | 50000  | 2.2      | 25.0 |
| Dimethyl phthalate              | Ave   | 1.374   | 1.407  | 0.0100  | 51200  | 50000  | 2.4      | 25.0 |
| 2,6-Dinitrotoluene              | Ave   | 0.2882  | 0.3182 | 0.0100  | 55200  | 50000  | 10.4     | 25.0 |
| Acenaphthylene                  | Ave   | 1.744   | 1.833  | 0.0100  | 52500  | 50000  | 5.1      | 25.0 |
| 3-Nitroaniline                  | Ave   | 0.3042  | 0.2284 | 0.0100  | 37500  | 50000  | -24.9    | 25.0 |
| Acenaphthene                    | Ave   | 1.117   | 1.119  | 0.0100  | 50100  | 50000  | 0.1      | 25.0 |
| 2,4-Dinitrophenol               | Linl  |         | 0.1296 | 0.0500  | 42800  | 50000  | -14.4    | 25.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1

SDG No.:

Lab Sample ID: ICV 480-34909/8

\_ Calibration Date: 10/11/2011 17:04

Instrument ID: HP5973U Calib Start Date: 10/11/2011 14:43

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 10/11/2011 16:41

Lab File ID: U5083.D Conc. Units: ug/L

|                             |               |         |        |         |                |                 | The first state of the first state of the st |           |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAX<br>%D |
| 4-Nitrophenol               | Ave           | 0.2528  | 0.2746 | 0.0500  | 54300          | 50000           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5       |
| 2,4-Dinitrotoluene          | Ave           | 0.4213  | 0.4388 | 0.0100  | 52100          | 50000           | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Dibenzofuran                | Ave           | 1.654   | 1.613  | 0.0100  | 48800          | 50000           | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Diethyl phthalate           | Ave           | 1.451   | 1.506  | 0.0100  | 51900          | 50000           | -2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| 4-Chlorophenyl phenyl ether | Ave           | 0.7208  | 0.7132 | 0.0100  | 49500          | 50000           | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Fluorene                    | Ave           | 1.353   | 1.388  | 0.0100  | 51300          | 50000           | -1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| 4-Nitroaniline              | Ave           | 0.3026  | 0.2906 | 0.0100  | 48000          | 50000           | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| 4,6-Dinitro-2-methylphenol  | Linl          |         | 0.1500 | 0.0100  | 50300          | 50000           | -4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| N-Nitrosodiphenylamine      | Ave           | 0.5032  | 0.5021 | 0.0100  | 49900          | 50000           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| 1,2-Diphenylhydrazine       | Ave           | 1.289   | 1.284  | 0.0100  | 49800          | 50000           | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| 4-Bromophenyl phenyl ether  | Ave           | 0.2206  | 0.2200 | 0.0100  | 49900          |                 | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Hexachlorobenzene           | Ave           | 0.2488  | 0.2455 | 0.0100  | 49300          | 50000           | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Pentachlorophenol           | Linl          |         | 0.1435 | 0.0100  | 49300          | 50000           | -1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Phenanthrene                | Ave           | 1.078   | 1.105  | 0.0100  | 51200          | 50000           | -1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Anthracene                  | Ave           | 1.080   | 1.107  | 0.0100  | 51200          | 50000           | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Carbazole                   | Ave           | 0.9275  | 0.9218 | 0.0100  |                | 50000           | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Di-n-butyl phthalate        | Ave           | 1.235   | 1.231  | 0.0100  | 49700          | 50000           | -0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Fluoranthene                | Ave           | 1.199   | 1.199  | 0.0100  | 49800          | 50000           | -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Benzidine                   | Ave           | 0.5408  | 0.1925 |         | 50000          | 50000           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Pyrene                      | Ave           | 1.147   | 1.161  | 0.0100  | 17800          |                 | M 64.4*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.0      |
| Butyl benzyl phthalate      | Ave           | 0.5836  | 0,5913 | 0.0100  | 50600          | 50000           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| 3,3'-Dichlorobenzidine      | Ave           | 0.4739  | 0.2978 |         | 50700          | 50000           | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Bis(2-ethylhexyl) phthalate | Ave           | 0.8187  | 0.8319 | 0.0100  | 31400          | 50000           | (-37.2*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25.0      |
| Benzo(a)anthracene          | Ave           | 1.159   | 1.182  | 0.0100  | 50800          | 50000           | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Chrysene                    | Ave           | 1.119   | 1.182  | 0.0100  | 51000          | 50000           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Di-n-octyl phthalate        | Àve           | 1.266   | 1.143  | 0.0100  | 51100          | 50000           | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Benzo(b) fluoranthene       | Ave           | 1.150   | 1.334  | 0.0100  | 53400          | 50000           | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Benzo(k) fluoranthene       | Ave           | 1.201   | 1.131  | 0.0100  | 49100          | 50000           | -1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Benzo(a) pyrene             | Ave           | 0.9764  | 0.9850 | 0.0100  | 49900          | 50000           | -0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Indeno(1,2,3-cd)pyrene      | Ave           | 1.339   | 1.261  | 0.0100  | 50400          | 50000           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0      |
| Dibenz(a,h)anthracene       | Ave           | 1.154   |        | 0.0100  | 47100          | 50000           | -5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
| Benzo(g,h,i)perylene        | Ave           | 1.134   | 1.115  | 0.0100  | 48300          | 50000           | -3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |
|                             |               | 1.023   | 1.011  | 0.0100  | 49400          | 50000           | -1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0      |

 Lab Name:
 TestAmerica Buffalo
 Job No.: 480-10389-1

 SDG No.:
 Lab Sample ID: CCV 480-35243/3
 Calibration Date: 10/13/2011 11:01

 Instrument ID: HP5973U
 Calib Start Date: 10/07/2011 14:06

Lab File ID: U5166.D Conc. Units: ug/L

| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D   | MAX<br>%D |
|----------------------------|---------------|---------|--------|---------|----------------|-----------------|------|-----------|
| Benzaldehyde               | Ave           | 1.021   | 1.146  | 0.0100  | 56100          | 50000           | 12.2 | 40.0      |
| Acetophenone               | Ave           | 1.751   | 2.207  | 0.0100  | 63000          | 50000           | 26.0 | 40.0      |
| Caprolactam                | Lin1          |         | 0.1104 | 0.0100  | 56700          | 50000           | 13.4 | 40.0      |
| 1,2,4,5-Tetrachlorobenzene | Ave           | 0.5519  | 0.6035 | 0.0100  | 54700          | 50000           | 9.3  | 40.0      |
| Biphenyl                   | Ave           | 1.495   | 1.609  | 0.0100  | 53800          | 50000           | 7.6  | 40.0      |
| 2,3,4,6-Tetrachlorophenol  | Linl          |         | 0.3307 | 0.0100  | 59300          | 50000           | 18.6 | 40.0      |
| Atrazine                   | Ave           | 0.3464  | 0.4315 | 0.0100  | 62300          | 50000           | 24.6 | 25.0      |

### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1 SDG No.: Client Sample ID: Lab Sample ID: MB 480-33652/1-A Matrix: Water Lab File ID: U4980.D Analysis Method: 8270C Date Collected: Extract. Method: 3510C Date Extracted: 10/03/2011 09:02 Sample wt/vol: 1000(mL) Date Analyzed: 10/07/2011 18:23 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 34421 \_\_\_\_\_Units: ug/L

| CAS NO.   | COMPOUND NAME                     | RESULT | Q | RL  | MDL  |
|-----------|-----------------------------------|--------|---|-----|------|
| 95-95-4   | 2,4,5-Trichlorophenol             | ND     |   | 5.0 | 0.40 |
| 88-06-2   | 2,4,6-Trichlorophenol             | ND     |   | 5.0 | 0.48 |
| 120-83-2  | 2,4-Dichlorophenol                | ND ND  |   | 5.0 | 0.61 |
| 105-67-9  | 2,4-Dimethylphenol                | ND     |   | 5.0 | 0.51 |
| 51-28-5   | 2,4-Dinitrophenol                 | ND ND  |   | 10  |      |
| 121-14-2  | 2,4-Dinitrotoluene                | ND     |   | 5.0 | 2.2  |
| 606-20-2  | 2,6-Dinitrotoluene                | ND ND  |   | 5.0 | 0.45 |
| 91-58-7   | 2-Chloronaphthalene               | ND ND  |   | 5.0 | 0.40 |
| 95-57-8   | 2-Chlorophenol                    | ND ND  |   |     | 0.46 |
| 91-57-6   | 2-Methylnaphthalene               | ND ND  |   | 5.0 | 0.53 |
| 95-48-7   | 2-Methylphenol                    | ND ND  |   | 5.0 | 0.60 |
| 88-74-4   | 2-Nitroaniline                    | ND ND  |   | 5.0 | 0.40 |
| 88-75-5   | 2-Nitrophenol                     | ND ND  |   | 10  | 0.42 |
| 91-94-1   | 3,3'-Dichlorobenzidine            |        |   | 5.0 | 0.48 |
| 99-09-2   | 3-Nitroaniline                    | ND     |   | 5.0 | 0.40 |
| 534-52-1  | 4,6-Dinitro-2-methylphenol        | ND ND  |   | 10  | 0.48 |
| 101-55-3  | 4-Bromophenyl phenyl ether        | ND     |   | 10  | 2.2  |
| 59-50-7   | 4-Chloro-3-methylphenol           | ND ND  |   | 5.0 | 0.45 |
| 106-47-8  | 4-Chloroaniline                   | ND     |   | 5.0 | 0.45 |
| 7005-72-3 | 4-Chlorophenyl phenyl ether       | ND     |   | 5.0 | 0.59 |
| 106-44-5  | 4-Methylphenol                    | ND     |   | 5.0 | 0.35 |
| 100-01-6  | 4-Nitroaniline                    | ND     |   | 10  | 0.36 |
| 100-02-7  | 4-Nitrophenol                     | ND     |   | 10  | 0.25 |
| 83-32-9   | Acenaphthene                      | ND ND  |   | 10  | 1.5  |
| 208-96-8  | Acenaphthylene                    | ND ND  |   | 5.0 | 0.41 |
| 98-86-2   | Acetophenone                      | ND ND  |   | 5.0 | 0.38 |
| 120-12-7  | Anthracene                        | ND ND  |   | 5.0 | 0.54 |
| 1912-24-9 | Atrazine                          | ND     |   | 5.0 | 0.28 |
| 100-52-7  | Benzaldehyde                      | ND     |   | 5.0 | 0.46 |
| 56-55-3   | Benzo(a)anthracene                | ND     |   | 5.0 | 0.27 |
| 50-32-8   | Benzo(a) pyrene                   | ND     |   | 5.0 | 0.36 |
| 205-99-2  | Benzo(b) fluoranthene             | ND ND  |   | 5.0 | 0.47 |
| 91-24-2   | Benzo(g,h,i)perylene              | ND     |   | 5.0 | 0.34 |
| 207-08-9  | Benzo(k) fluoranthene             | ND     |   | 5.0 | 0.35 |
|           | nemental transfer and an analysis | ND     |   | 5.0 | 0.73 |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-10389-1             |
|-------------------------------|----------------------------------|
| SDG No.:                      |                                  |
| Client Sample ID:             | Lab Sample ID: MB 480-33652/1-A  |
| Matrix: Water                 | Lab File ID: U4980.D             |
| Analysis Method: 8270C        | Date Collected:                  |
| Extract. Method: 3510C        | Date Extracted: 10/03/2011 09:02 |
| Sample wt/vol: 1000(mL)       | Date Analyzed: 10/07/2011 18:23  |
| Con. Extract Vol.: 1(mL)      | Dilution Factor: 1               |
| Injection Volume: 1(uL)       | Level: (low/med) Low             |
| % Moisture:                   | GPC Cleanup: (Y/N) N             |
| Analysis Batch No.: 34421     | Unite: va/I                      |

| CAS NO.  | COMPOUND NAME                 | RESULT | Q  | RL  | MDL  |
|----------|-------------------------------|--------|----|-----|------|
| 92-52-4  | Biphenyl                      | ND     |    | 5.0 | 0.65 |
| 108-60-1 | bis (2-chloroisopropyl) ether | ND     |    | 5.0 | 0.52 |
| 111-91-1 | Bis(2-chloroethoxy)methane    | ND     |    | 5.0 | 0.35 |
| 111-44-4 | Bis(2-chloroethyl)ether       | ND     |    | 5.0 | 0.40 |
| 117-81-7 | Bis(2-ethylhexyl) phthalate   | ND     |    | 5.0 | 1.8  |
| 85-68-7  | Butyl benzyl phthalate        | 0.496  | J) | 5.0 | 0.42 |
| 105-60-2 | Caprolactam                   | ND     |    | 5.0 | 2.2  |
| 86-74-8  | Carbazole                     | ND     |    | 5.0 | 0.30 |
| 218-01-9 | Chrysene                      | ND     |    | 5.0 | 0.33 |
| 53-70-3  | Dibenz(a,h)anthracene         | ND     |    | 5.0 | 0.42 |
| 132-64-9 | Dibenzofuran                  | ND     |    | 10  | 0.51 |
| 84-66-2  | Diethyl phthalate             | ND     |    | 5.0 | 0.22 |
| 131-11-3 | Dimethyl phthalate            | ND     |    | 5.0 | 0.36 |
| 84-74-2  | Di-n-butyl phthalate          | ND     |    | 5.0 | 0.31 |
| 117-84-0 | Di-n-octyl phthalate          | ND     |    | 5.0 | 0.47 |
| 206-44-0 | Fluoranthene                  | ND     |    | 5.0 | 0.40 |
| 86-73-7  | Fluorene                      | ND     |    | 5.0 | 0.36 |
| 118-74-1 | Hexachlorobenzene             | ND     |    | 5.0 | 0.51 |
| 87-68-3  | Hexachlorobutadiene           | ND     |    | 5.0 | 0.68 |
| 77-47-4  | Hexachlorocyclopentadiene     | ND     |    | 5.0 | 0.59 |
| 67-72-1  | Hexachloroethane              | ND ND  |    | 5.0 | 0.59 |
| 193-39-5 | Indeno(1,2,3-cd)pyrene        | ND     |    | 5.0 | 0.47 |
| 78-59-1  | Isophorone                    | ND     |    | 5.0 | 0.43 |
| 91-20-3  | Naphthalene                   | ND     |    | 5.0 | 0.76 |
| 98-95-3  | Nitrobenzene                  | ND     |    | 5.0 | 0.29 |
| 621-64-7 | N-Nitrosodi-n-propylamine     | ND     |    | 5.0 | 0.54 |
| 36-30-6  | N-Nitrosodiphenylamine        | ND     |    | 5.0 | 0.51 |
| 37-86-5  | Pentachlorophenol             | ND     |    | 10  | 2.2  |
| 35-01-8  | Phenanthrene                  | ND     |    | 5.0 | 0.44 |
| 108-95-2 | Phenol                        | ND     |    | 5.0 | 0.39 |
| L29-00-0 | Pyrene                        | ND     |    | 5.0 | 0.34 |



Geology

Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-10389-1

### 1 Ground Water Samples, 5 Soil Samples, and 1 Field Duplicate Collected September 27-30, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of method blanks reported target PCBs as not detected.

<u>Surrogate Recovery</u>: One of two surrogates recoveries for sample TP-C3 (7-8) was above QC limits on one column. No action is taken on one surrogate per column outside QC limits, provided the recovery is not less than 10%.

Two of two percent recoveries for sample TP-B2 (5-6) were above QC limits on one column. Positive results for sample TP-B2 (5-6) should be considered estimated (J).

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample TP-C4 (7-8).
- <u>Laboratory Control Sample</u>: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for aqueous samples LCS 480-33668/2-A and LCSD 480-33668/3-A. The %Rs for PCB-1016 and PCB-1260 were within QC limits for soil sample LCS 480-33687/2-A.
- <u>Field Duplicates</u>: The analyses of soil field duplicate pair TP-B1 (5-6)/DUP-01 reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Initial Calibration</u>: The "r" squared for PCB-1016 and PCB-1260 were above the allowable minimum (0.990), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 10-04-11 (CCV 480-33769/34) on the ZB-35 column. Positive results for PCB-1016 and PCB-1260 should be considered estimated (J) in associated samples.

<u>PCB Identification Summary for Multicomponent Analytes</u>: The checked surrogate was within GC quantitation limits. The analyses of samples in this data pack reported target PCBs as not detected.

# FORM II PCBS SURROGATE RECOVERY

| Lab Name: TestAmerica Buffalo     | Job No.: 480-10389-1               |
|-----------------------------------|------------------------------------|
| SDG No.:                          |                                    |
| Matrix: Solid                     | Level: Low                         |
| GC Column (1): ZB-5 ID: 0.53 (mm) | GC Column (2): ZB-35 ID: 0.53 (mm) |

| Client Sample ID | Lab Sample ID        | TCX1 | # TCX2 | # DCB1 | # | DCB2 | #               |
|------------------|----------------------|------|--------|--------|---|------|-----------------|
| DUP-01           | 480-10588-1          | 39   | 43     | 79     |   | 105  |                 |
| TP-B1 (5-6)      | 480-10588-2          | 43   | 47     | 78     |   | 105  |                 |
| TP-C2 (5-6)      | 480-10588-3          | 82   | 132    | 107    |   | 141  |                 |
| TP-C3 (7-8)      | 480-10588-4          | 88   | 125    | 119    |   | 151  | X               |
| TP-C4 (7-8)      | 480-10588-5          | 85   | 133    | 108    | - | 140- | and the same of |
| TP-B2 (5-6)      | 480-10588-6          | 91   | (146   | X 120  |   | (157 | X               |
|                  | MB 480-33687/1-A     | 93   | 144    | X 122  | + | 153  | X               |
|                  | LCS<br>480-33687/2-A | 109  | 166    | X 139  |   | 166  | Х               |
| TP-C4 (7-8) MS   | 480-10588-5 MS       | 93   | 137    | X 130  | _ | 163  | Х               |
| TP-C4 (7-8) MSD  | 480-10588-5 MSD      | 82   | 119    | 118    |   | 150  | Х               |

TCX = Tetrachloro-m-xylene
DCB = DCB Decachlorobiphenyl

QC LIMITS 35-134 34-148

# Column to be used to flag recovery values

#### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-10389-1 SDG No.:

Lab Sample ID: CCV 480-33769/34

Calibration Date: 10/04/2011 00:39

Instrument ID: HP6890-7 Calib Start Date: 09/27/2011 22:59

GC Column: ZB-35 ID: 0.53(mm) Calib End Date: 09/28/2011 00:35

Lab File ID: 7\_200\_147.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF | CF        | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|--------|-----------|--------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | LinF          |        | 19164896  |        | 0.744          | 0.500           | 48.8* | 15.0      |
| PCB-1016 Peak 2        | LinF          |        | 39300370  | ~~~    | 0.670          | 0.500           | 34.1* | 15.0      |
| PCB-1016 Peak 3        | LinF          |        | 15041064  |        | 0.749          | 0.500           | 49.8* | 15.0      |
| PCB-1016 Peak 4        | LinF          |        | 9776586   |        | 0.738          | 0.500           | 47.6* | 15.0      |
| PCB-1260 Peak 1        | LinF          |        | 11103646  |        | 0.699          | 0.500           | 39.7* | 15.0      |
| PCB-1260 Peak 2        | LinF          |        | 27839060  |        | 0.662          | 0.500           | 32.4* | 15.0      |
| PCB-1260 Peak 3        | LinF          |        | 14704936  |        | 0.676          | 0.500           | 35.2* | 15.0      |
| PCB-1260 Peak 4        | LinF          |        | 5998886   |        | 0.731          | 0.500           | 46.2* | 15.0      |
| Tetrachloro-m-xylene   | LinF          |        | 734228067 |        | 0.0394         | 0.0300          | 31.3* | 15.0      |
| DCB Decachlorobiphenyl | LinF          |        | 206593233 |        | 0.0432         | 0.0300          | 44.0* | 15.0      |

average %D PCB-1016 = 45.1%

Querage %D PCB-1260 = 38.4%



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No: 480-10389-1

### 5 Soil Samples and 1 Field Duplicate Collected September 29 and 30, 2011

Prepared by: Donald Anné May 2, 2012

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

- <u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).
- CRDL Standard for AA and ICP: The percent recoveries for target metals were within laboratory QC limits (50-150%) for CRQL standard samples CRI 480-33872/7 and CRA 480-33961/3.
- <u>Blanks</u>: The analyses of initial calibration and continuing calibration, and method blanks reported TAL metals as below the CRDLs, as required.
- ICP Interference Check Sample: The percent recoveries for applicable metals were within control limits (80-120%).
- Spike Sample Recovery: Two of two percent recoveries for antimony were below control limits (75-125%), but were not below 10% for soil MS/MSD sample TP-C4 (7-8). Positive and "not detected" results for antimony should be considered estimated (J) in associated soil samples.
- <u>Laboratory Duplicates</u>: The relative percent differences for TAL metals were below the allowable maximum (35%) in soil MS/MSD sample TP-C4 (7-8), as required.
- <u>Field Duplicates</u>: The relative percent differences for arsenic and calcium were above the allowable maximum (35%) for soil field duplicate pair TP-B1 (5-6)/DUP-01 (attached table). Positive results for arsenic and calcium should be considered estimated (J) in samples TP-B1 (5-6) and DUP-01.

<u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in soil samples LCS 480-33670/2-A and LCS 480-33859/2-A.

ICP Serial Dilution: The %Ds for copper and potassium were above the allowable maximum (10%) for soil serial dilution sample TP-C4 (7-8). Positive results for copper and potassium that are above the CRDLs should be considered estimated (J) in associated soil samples.

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

Percent Solids: The % solids for soil samples were above 50%.

**TAL Metals** 

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-10389-1

|                | <b>S1=</b> TP-B1 (5-6) | <b>S2=</b> DUP-01 |         |  |  |
|----------------|------------------------|-------------------|---------|--|--|
| <u>Analyte</u> | <u>\$1</u>             | <u>S2</u>         | RPD (%) |  |  |
| aluminum       | 10300                  | 9210              | 11%     |  |  |
| antimony       | ND                     | ND                | NC      |  |  |
| arsenic        | 8.4                    | 4.9               | 53%     |  |  |
| barium         | 67.4                   | 58.1              | 15%     |  |  |
| beryllium      | 0.64                   | 0.54              | 17%     |  |  |
| cadmium        | 0.12                   | 0.068             | NC      |  |  |
| calcium        | 2510                   | 4670              | 60%     |  |  |
| chromium       | 15.1                   | 12.7              | 17%     |  |  |
| cobalt         | 9.7                    | 9.5               | 2%      |  |  |
| copper         | 25.1                   | 21.8              | 14%     |  |  |
| iron           | 21100                  | 19300             | 9%      |  |  |
| lead           | 33.2                   | 25.6              | 26%     |  |  |
| magnesium      | 2930                   | 2850              | 3%      |  |  |
| manganese      | 291                    | 238               | 20%     |  |  |
| mercury        | 0.10                   | 0.071             | 34%     |  |  |
| nickel         | 24.4                   | 21.6              | 12%     |  |  |
| potassium      | 1380                   | 1140              | 19%     |  |  |
| selenium       | ND                     | ND                | NC      |  |  |
| silver         | ND                     | ND                | NC      |  |  |
| sodium         | 55.3                   | 47.2              | 16%     |  |  |
| thallium       | ND                     | ND                | NC      |  |  |
| vanadium       | 18.6                   | 17.0              | 9%      |  |  |
| zinc           | 64.4                   | 55.2              | 15%     |  |  |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

## 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client ID: TP-C4 (7-8) MS     | Lab ID: 480-10588-5 MS     |
|-------------------------------|----------------------------|
| Lab Name: TestAmerica Buffalo | Job No.: 480-10389-1       |
| SDG No.:                      |                            |
|                               | Concentration Units: mg/Kg |
| % Solids: 82 2                | mg/kg                      |

| Analyte   | SSR<br>C | Sample<br>Result (SR) | Spike<br>Added (SA) | %R     | Control<br>Limit<br>%R | Q           | Method |
|-----------|----------|-----------------------|---------------------|--------|------------------------|-------------|--------|
| Aluminum  | 16220    | 10000                 | 2340                | WA 265 | 75-125                 | 4           | 6010B  |
| Antimony  | 28.30    | ND                    | 46.8                | (61)   | 75-125                 | F           | 6010B  |
| Arsenic   | 43.84    | 4.3                   | 46.8                | 85     | 75-125                 | г           | 6010B  |
| Barium    | 112.5    | 56.8                  | 46.8                | 119    | 75-125                 |             |        |
| Beryllium | 42.08    | 0.59                  | 46.8                | 89     | 75-125                 |             | 6010B  |
| Cadmium   | 40.55    | 0.051 J               |                     | 87     | 75-125                 |             | 6010B  |
| Calcium   | 3604     | 1520                  | 2340                | 89     | 75-125                 | ~~~         | 6010B  |
| Chromium  | 58.62    | 13.1                  | 46.8                | 97     | 75-125                 |             | 6010B  |
| Cobalt    | 55.19    | 9.6                   | 46.8                | 97     | 75-125                 |             | 6010B  |
| Copper    | 59.82    | 16.6                  | 46.8                | 92     | 75-125                 | <del></del> | 6010B  |
| Iron      | 23480    | 20100                 | 2340                |        |                        |             | 6010B  |
| Lead      | 56.28    | 12.6                  | 46.8                | NA 144 | 75-125                 | 4           | 6010B  |
| Magnesium | 5457     | 2920                  | 2340                | 108    | 75-125                 |             | 6010B  |
| Manganese | 370.5    | 302                   | 46.8                |        | 75-125                 |             | 6010B  |
| Nickel    | 67.06    | 19.7                  | 46.8                | NA 145 | 75-125                 | 4           | 6010B  |
| Potassium | 3813     | 1010                  | 2340                | 101    | 75-125                 |             | 6010B  |
| Selenium  | 39.65    | ND                    | 46.8                | 120    | 75-125                 |             | 6010B  |
| Silver    | 10.46    | ND ND                 | 11.7                | 85     | 75-125                 |             | 6010B  |
| Sodium    | 2284     | 99.1 J                |                     | 89     | 75-125                 |             | 6010B  |
| Thallium  | 43.37    | ND ND                 | 2340                | 93     | 75-125                 |             | 6010B  |
| Vanadium  | 66.22    | 19.2                  | 46.8                | 93     | 75-125                 |             | 6010B  |
| Zinc      | 95.61    | 48.0                  | 46.8                | 101    | 75-125                 |             | 6010B  |
| łg        | 0.657    |                       | 46.8                | 102    | 75-125                 |             | 6010B  |
|           | 0.031    | 0.25                  | 0.376               | 109    | 75-125                 |             | 7471A  |

SSR = Spiked Sample Result

NA - not opplicable, the sample concentration was greater than 4 times the spiking leve, therefore, valid % R's could not be calculated.

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

## 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: TP-C4 (7-8) MSD

Lab ID: 480-10588-5 MSD

Lab Name: TestAmerica Buffalo

Job No.: 480-10389-1

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 82.2

| Analyte   | (SDR) | Spike<br>Added (SA) | %R     | Control<br>Limit<br>%R | RPD | RPD<br>Limit | Q | Method |
|-----------|-------|---------------------|--------|------------------------|-----|--------------|---|--------|
| Aluminum  | 16310 | 2400                | MA 263 | 75-125                 | 1   | 20           | 4 | 6010B  |
| Antimony  | 28.96 | 47.9                | (60)   | 75-125                 | 2   | 20           | F |        |
| Arsenic   | 44.16 | 47.9                | 83     | 75-125                 | 1   | 20           | Е | 6010B  |
| Barium    | 113.1 | 47.9                | 118    | 75-125                 | 1   | 20           |   | 6010B  |
| Beryllium | 42.48 | 47.9                | 87     | 75-125                 | 1   |              |   | 6010B  |
| Cadmium   | 40.90 | 47.9                | 85     | 75-125                 |     | 20           |   | 6010B  |
| Calcium   | 3653  | 2390                | 89     | 75-125                 | 1   | 20           |   | 6010B  |
| Chromium  | 57.39 | 47.9                | 93     | 75-125                 | 1   | 20           |   | 6010B  |
| Cobalt    | 55.61 | 47.9                | 96     |                        | 2   | 20           |   | 6010B  |
| Copper    | 60.01 | 47.9                |        | 75-125                 | 1   | 20           |   | 6010B  |
| Iron      | 24870 | 2390                | 91     | 75-125                 | 0   | 20           |   | 6010B  |
| Lead      | 56.39 |                     | NA 199 | 75-125                 | 6   | 20           | 4 | 6010B  |
| Magnesium | 5534  | 47.9                | 91     | 75-125                 | 0   | 20           |   | 6010B  |
| Manganese | 393.7 | 2390                | 109    | 75-125                 | 1   | 20           |   | 6010B  |
| Nickel    | 68.72 |                     | NA 190 | 75-125                 | 6   | 20           | 4 | 6010B  |
| Potassium |       | 47.9                | 102    | 75-125                 | 2   | 20           |   | 6010B  |
| Selenium  | 3829  | 2400                | 117    | 75-125                 | 0   | 20           |   | 6010B  |
| Silver    | 40.15 | 47.9                | 84     | 75-125                 | 1   | 20           |   | 6010B  |
| Sodium    | 10.45 | 12.0                | 87     | 75-125                 | 0   | 20           |   | 6010B  |
|           | 2299  | 2400                | 92     | 75-125                 | 1   | 20           |   | 6010B  |
| Thallium  | 43.63 | 47.9                | 91     | 75-125                 | 1   | 20           |   | 6010B  |
| /anadium  | 65.47 | 47.9                | 97     | 75-125                 | 1   | 20           |   | 6010B  |
| Zinc      | 95.07 | 47.9                | 98     | 75-125                 | 1   | 20           | - | 6010B  |
| łg        | 0.637 | 0.374               | 105    | 75-125                 | 3   | 20           |   | 7471A  |

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

| Matı | cix: | Solid                 | Concentration Units: mg/Kg |
|------|------|-----------------------|----------------------------|
| Lab  | Name | : TestAmerica Buffalo | Job No: 480-10389-1        |
| SDG  | No:  |                       |                            |
| Lab  | ID:  | 480-10588-5           |                            |

|           |                             |   |                                  |     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |     |        |
|-----------|-----------------------------|---|----------------------------------|-----|----------------------------------------|-----|--------|
| Analyte   | Initial Samp.<br>Result (I) |   | Serial<br>Dilution<br>Result (S) | С   | %<br>Difference                        | Q   | Method |
| Aluminum  | 10000                       |   | 10940                            |     | 9.2                                    |     | 6010B  |
| Antimony  | ND                          |   | ND                               |     | NC                                     |     | 6010B  |
| Arsenic   | 4.3                         |   | 4.59                             | J   | NC                                     |     | 6010B  |
| Barium    | 56.8                        |   | 62.49                            |     | 10                                     |     | 6010B  |
| Beryllium | 0.59                        |   | 0.686                            | J   | NC                                     |     | 6010B  |
| Cadmium   | 0.051                       | J | ND                               |     | NC                                     |     | 6010B  |
| Calcium   | 1520                        |   | 1645                             |     | 8.2                                    |     | 6010B  |
| Chromium  | 13.1                        |   | 14.11                            |     | 8.0                                    |     | 6010B  |
| Cobalt    | 9.6                         |   | 9.45                             |     | 1.9                                    |     | 6010B  |
| Copper    | 16.6                        |   | 18.56                            |     | (12)                                   | V   | 6010B  |
| Iron      | 20100                       |   | 21310                            |     | 6.0                                    |     | 6010B  |
| Lead      | 12.6                        |   | 13.48                            |     | 6.6                                    |     | 6010B  |
| Magnesium | 2920                        |   | 3191                             |     | 9.1                                    |     | 6010B  |
| Manganese | 302                         |   | 327.1                            |     | 8.1                                    |     | 6010B  |
| Nickel    | 19.7                        |   | 19.78                            | J   | 0.57                                   |     | 6010B  |
| Potassium | 1010                        |   | 1163                             |     | (15)                                   | V   | 6010B  |
| Selenium  | ND                          |   | ND                               |     | NC                                     | V . |        |
| Silver    | ND                          |   | ND                               |     | NC NC                                  |     | 6010B  |
| Sodium    | 99.1                        | J | 97.95                            | J   | NC NC                                  |     | 6010B  |
| Thallium  | ND                          |   | ND ND                            |     |                                        |     | 6010B  |
| Vanadium  | 19.2                        |   | 20.51                            |     | NC                                     |     | 6010B  |
| Zinc      | 48.0                        |   | 50.94                            |     | 6.9                                    |     | 6010B  |
|           | 10.0                        |   | 30.94                            | i i | 6.1                                    |     | 6010B  |

Calculations are performed before rounding to avoid round-off errors in calculated results.



Hydrology

Remediation

Water Supply

May 4, 2012

Ms. Sarah Newell Clough, Harbour, & Associates LLP III Winners Circle P.O. Box 5269 Albany, New York 12205-0269

Re:

Data Validation Report

ALCO Maxon RI

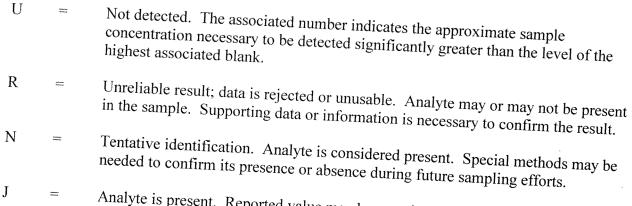
April 2012 Ground Water and Soil Sampling Events

Dear Ms. Newell:

The data usability summary reports (DUSRs) and data validation summaries are attached to this letter for ALOC Maxon RI, April 2012 ground water and soil sampling events. The data for TestAmerica job numbers 480-18067-1, 480-18068-1, 480-18071-1, and 480-18292-1 were acceptable with some minor issues that are identified and discussed in the validation summaries. There were data that was qualified as unusable (R) in the data packs.

A list of common data validation acronyms is attached to this letter to assist you in interpreting the validation summaries. If you have any questions concerning the work performed, please contact me at (518) 348-6995. Thank you for the opportunity to assist Clough, Harbour, & Associates LLP.

Sincerely, Alpha Geoscience


Donald Anné Senior Chemist

Donald Home

DCA:dca attachments

Z:\projects\2012\12600 - 12620\12611-ALCO Rf\alco ri-121-2.ltr.wpd

# Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II



Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.

UJ = Not detected, quantitation limit may be inaccurate or imprecise.

Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

### **Data Validation Acronyms**

AAAtomic absorption, flame technique **BHC** Hexachlorocyclohexane **BFB** Bromofluorobenzene **CCB** Continuing calibration blank **CCC** Calibration check compound **CCV** Continuing calibration verification CN Cyanide CRDL Contract required detection limit **CRQL** Contract required quantitation limit **CVAA** Atomic adsorption, cold vapor technique **DCAA** 2,4-Dichlophenylacetic acid **DCB** Decachlorobiphenyl **DFTPP** Decafluorotriphenyl phosphine **ECD** Electron capture detector FAA Atomic absorption, furnace technique FID Flame ionization detector **FNP** 1-Fluoronaphthalene GC Gas chromatography GC/MS Gas chromatography/mass spectrometry **GPC** Gel permeation chromatography **ICB** Initial calibration blank **ICP** Inductively coupled plasma-atomic emission spectrometer **ICV** Initial calibration verification IDL Instrument detection limit IS Internal standard LCS Laboratory control sample LCS/LCSD Laboratory control sample/laboratory control sample duplicate **MSA** Method of standard additions MS/MSD Matrix spike/matrix spike duplicate PID Photo ionization detector **PCB** Polychlorinated biphenyl **PCDD** Polychlorinated dibenzodioxins **PCDF** Polychlorinated dibenzofurans OA. Quality assurance QC Quality control RF Response factor **RPD** Relative percent difference **RRF** Relative response factor RRF(number) Relative response factor at concentration of the number following RT Retention time **RRT** Relative retention time SDG Sample delivery group **SPCC** System performance check compound **TCX** Tetrachloro-m-xylene %D Percent difference %R Percent recovery %RSD Percent relative standard deviation



Hydrology

Remediation

Water Supply

### **Data Usability Summary Report for** TestAmerica Buffalo, Job No: 480-18067-1

### 10 Ground Water Samples, 1 Field Duplicate, 1 Field Blank, 1 Equipment Blank, and 3 Trip Blanks Collected April 2 and 3, 2012

Prepared by: Donald Anné May 4, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 10 ground water samples, 1 field duplicate, 1 field blank, 1 equipment blank, and 3 trip blanks analyzed for volatiles, and 10 ground water samples, 1 field duplicate, 1 field blank, and 1 equipment blank analyzed semi-volatiles.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Positive semi-volatile results for bis(2-ethylhexyl)phthalate were flagged as "not detected" (U) for samples MW-04, MW-16, MW-21, EQUIPMENT BLANK, and FIELD BLANK because the level reported in the samples were not significantly greater than (more than 10 times) the highest associated blank level.
- Positive semi-volatile result for butyl benzyl phthalate was flagged as "not detected" (U) for sample MW-21 because the level reported in the sample was not significantly greater than (more than 10 times) the highest associated blank level.
- The positive semi-volatile result for caprolactam was flagged as "estimated" (J) in sample MW-12D because the %D for caprolactam was above the allowable maximum in the associated continuing calibration.

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-18067-1.dus.wpd



Hydrology

Remediation

Water Supply

# QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-18067-1

### 10 Ground Water Samples, 1 Field Duplicate, 1 Field Blank, 1 Equipment Blank, and 3Trip Blank Collected April 3 and 4, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %D for bromomethane was above the allowable maximum (25%) on 04-07-12 (P8848.D). The %D for bromomethane was above the allowable maximum (25%) on 04-07-12 (P8873.D). The %Ds for chloroethane, 1,1,2-trichloro-1,2,2-trifluoroethane, 4-methyl-2-pentanone, and 2-hexanone were above the allowable maximum (25%) on 04-10-12 (S12829.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method, trip, field, and equipment blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample MW-06.
- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for aqueous samples LCS 480-58595/3, LCS 480-58635/3, and LCS 480-58898/4.
- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-21/CHA-3 reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- Compound ID: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Lab Name: TestAmerica Buffalo

Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCVIS 480-58595/2 Calibration Date: 04/07/2012 11:34

Instrument ID: HP5973P

Calib Start Date: 03/16/2012 13:56

GC Column: ZB-624 (60)

ID: 0.25(mm) Calib End Date: 03/16/2012 15:59

Lab File ID: P8848.D

Conc. Units: ug/L Heated Purge: (Y/N) N

|                                        |               |         | *************************************** |                                         | and a second control of the second control o |                 |                 |                                         |
|----------------------------------------|---------------|---------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------------------------------|
| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF                                     | MIN RRF                                 | CALC<br>AMOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPIKE<br>AMOUNT | %D              | MAX<br>%D                               |
| Dichlorodifluoromethane                | Ave           | 0.4132  | 0.3822                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                                         |
| Chloromethane                          | Ave           | 0.2706  | 0.2452                                  | 0.1000                                  | 23.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -7.5            | 50.0                                    |
| Vinyl chloride                         | Ave           | 0.2879  | 0.2687                                  | 0.1000                                  | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -9.4            | 50.0                                    |
| Bromomethane -                         | Ave           | 0.1946  | 0.1128                                  | *************************************** | 23.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -6.7            | 20.0                                    |
| Chloroethane                           | Ave           | 0.1479  | 0.1128                                  | 77/2011                                 | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | (1-42.0)        | 50.0                                    |
| Trichlorofluoromethane                 | Ave           | 0.6550  | 0.6195                                  |                                         | 19.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -21.0           | 50.0                                    |
| Acrolein                               | Ave           | 0.0457  | 0.0329                                  |                                         | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -5.4            | 50.0                                    |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.3807  | 0.3669                                  |                                         | 360<br>24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500<br>25.0     | √A-28.0<br>-3.6 | 50.0<br>50.0                            |
| 1,1-Dichloroethene                     | Ave           | 0.3562  | 0.3062                                  | 0.1000                                  | 21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            |                 | *************************************** |
| Acetone                                | Ave           | 0.1539  | 0.1682                                  | 0.1000                                  | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0            | -14.0           | 20.0                                    |
| Iodomethane                            | Ave           | 0.5363  | 0.5405                                  |                                         | 25.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125             | 9.3             | 50.0                                    |
| Carbon disulfide                       | Ave           | 0.9939  | 1.065                                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0            | 0.8             | 50.0                                    |
| Methyl acetate                         | Ave           | 0.4232  | 0.4296                                  |                                         | 26.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 7.1             | 50.0                                    |
| Acetonitrile                           | Ave           | 0.0291  | 0.0297                                  |                                         | 25.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 1.5             | 50.0                                    |
| Methylene Chloride                     | Ave           | 0.4166  | 0.3420                                  |                                         | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000            | 1.9             | 50.0                                    |
| Methyl tert-butyl ether                | Ave           | 1.219   | 1.324                                   |                                         | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -17.9           | 50.0                                    |
| trans-1,2-Dichloroethene               | Ave           | 0.3778  | 0.3333                                  |                                         | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 8.6             | 50.0                                    |
| Acrylonitrile                          | Ave           | 0.1421  | 0.1456                                  |                                         | 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -11.8           | 50.0                                    |
| Vinyl acetate                          | Ave           | 0.6504  | 0.7233                                  |                                         | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 2.4             | 50.0                                    |
| 1,1-Dichloroethane                     | Ave           | 0.6597  | 0.7233                                  |                                         | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 11.2            | 50.0                                    |
| 2-Butanone (MEK)                       | Ave           | 0.2066  | 0.2149                                  |                                         | 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -17.7           | 50.0                                    |
| 2,2-Dichloropropane                    | Ave           | 0.6172  | 0.5555                                  |                                         | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 4.0             | 50.0                                    |
| cis-1,2-Dichloroethene                 | Ave           | 0.4226  |                                         |                                         | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -10.0           | 50.0                                    |
| Bromochloromethane                     | Ave           | 0.2262  | 0.3674                                  |                                         | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -13.1           | 50.0                                    |
| Tetrahydrofuran                        | Ave           | 0.1196  | 0.1960                                  |                                         | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -13.4           | 50.0                                    |
| Chloroform                             | Ave           | 0.8046  | 0.1238                                  |                                         | 129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 3.5             | 50.0                                    |
| 1,1,1-Trichloroethane                  | Ave           | 0.6931  | 0.6873                                  |                                         | 21.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -14.6           | 20.0                                    |
| Cyclohexane                            | Ave           | 0.4540  | 0.6168                                  |                                         | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -11.0           | 50.0                                    |
| 1,1-Dichloropropene                    | Ave           | 0.5255  | 0.4243                                  |                                         | 23.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -6.5            | 50.0                                    |
| Carbon tetrachloride                   | Ave           | 0.5996  | 0.4532                                  |                                         | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -13.8           | 50.0                                    |
| Benzene                                | Ave           | 1.440   | 0.5437                                  |                                         | 22.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -9.3            | 50.0                                    |
| 1,2-Dichloroethane                     | Ave           |         | 1.215                                   |                                         | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -15.6           | 50.0                                    |
| Trichloroethene                        | Ave           | 0.6487  | 0.5656                                  |                                         | 21.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -12.8           | 50.0                                    |
| Methylcyclohexane                      | Lin1F         | 0.4169  | 0.3614                                  |                                         | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -13.3           | 50.0                                    |
| ,2-Dichloropropane                     | Ave           | 0 2276  | 0.4770                                  |                                         | 21.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -13.2           | 50.0                                    |
| Dibromomethane                         | Ave           | 0.3316  | 0.2796                                  |                                         | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -15.7           | 20.0                                    |
| Bromodichloromethane                   | Ave           | 0.2881  | 0.2580                                  |                                         | 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -10.4           | 50.0                                    |
| 2-Chloroethyl vinyl ether              | Ave           | 0.5320  | 0.5030                                  |                                         | 23.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -5.4            | 50.0                                    |
| cis-1,3-Dichloropropene                | ļ             | 0.2332  | 0.2601                                  |                                         | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 11.5            | 50.0                                    |
| -Methyl-2-pentanone (MIBK)             | Ave           | 0.5764  | 0.5339                                  |                                         | 23.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -7.4            | 50.0                                    |
| A CANADA (AND LINE)                    | AVE           | 0.8433  | 0.8819                                  |                                         | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 4.6             | 50.0                                    |

Lab Name: TestAmerica Buffalo Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCVIS 480-58595/2 Calibration Date: 04/07/2012 11:34

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/16/2012 15:59

Lab File ID: P8848.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                          | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC   | SPIKE  | %D       | MAX  |
|----------------------------------|---------------|---------|--------|---------|--------|--------|----------|------|
|                                  |               |         |        |         | AMOUNT | AMOUNT |          | %D   |
| Toluene                          | Ave           | 1.866   | 1.621  |         | 21.3   |        |          | 1    |
| Ethyl methacrylate               | Lin1F         |         | 1.096  |         | 21.7   | 25.0   |          | 20   |
| trans-1,3-Dichloropropene        | Ave           | 1.164   | 1.135  | V-00704 | 24.9   | 25.0   |          | 50   |
| 1,1,2-Trichloroethane            | Ave           | 0.6496  | 0.5667 |         | 24.4   | 25.0   |          | 50   |
| Tetrachloroethene                | Ave           | 0.8917  | 0.7627 |         | 21.8   | 25.0   |          | 50   |
| 1,3-Dichloropropane              | Ave           | 1.270   | 1.125  |         | 21.4   | 25.0   |          | 50   |
| 2-Hexanone                       | Ave           | 0.6179  | 0.6675 |         | 22.1   | 25.0   | -11.5    | 50   |
| Dibromochloromethane             | Lin1F         |         | 0.8531 |         | 135    | 125    | 8.0      | 50   |
| 1,2-Dibromoethane                | Ave           | 0.8790  | 0.8052 |         | 22.3   | 25.0   | -10.8    | 50   |
| Chlorobenzene                    | Ave           | 2.301   | 1.969  |         | 22.9   | 25.0   | -8.4     | 50.  |
| Ethylbenzene                     | Ave           | 3.614   | 3.229  | 0.3000  | 21.4   | 25.0   | -14.4    | 50.  |
| 1,1,1,2-Tetrachloroethane        | Ave           | 0.8187  | 0.7604 |         | 22.3   | 25.0   | -10.7    | 20.  |
| m,p-Xylene                       | Äve           | 1.381   |        |         | 23.2   | 25.0   | -7.1     | 50.  |
| o-Xylene                         | Ave           | 1.339   | 1.252  |         | 45.3   | 50.0   | -9.3     | 50.  |
| Styrene                          | Ave           | 2.123   | 1.234  |         | 23.0   | 25.0   | -7.8     | 50.  |
| Bromoform                        | LinF          | 4.143   | 1.994  |         | 23.5   | 25.0   | -6.0     | 50.  |
| Isopropylbenzene                 | Ave           | 3.126   | 0.6164 | 0.1000  | 21.2   | 25.0   | -15.2    | 50.  |
| 1,1,2,2-Tetrachloroethane        | Ave           | 1.007   | 2.783  |         | 22.3   | 25.0   | -11.0    | 50.  |
| Bromobenzene                     | Ave           | 0.9220  | 0.8892 | 0.3000  | 22.1   | 25.0   | -11.7    | 50.  |
| trans-1,4-Dichloro-2-butene      | Ave           |         | 0.8218 |         | 22.3   | 25.0   | -10.9    | 50.  |
| 1,2,3-Trichloropropane           | Ave           | 0.2423  | 0.3039 |         | 157    | 125    | A/A 25.4 | 50.0 |
| N-Propylbenzene                  | Ave           | 0.3262  | 0.2878 |         | 22.1   | 25.0   | -11.8    | 50.0 |
| 2-Chlorotoluene                  | Ave           | 3.933   | 3.465  |         | 22.0   | 25.0   | -11.9    | 50.0 |
| 1,3,5-Trimethylbenzene           | Ave           | 0.8200  | 0.7076 |         | 21.6   | 25.0   | -13.7    | 50.0 |
| 4-Chlorotoluene                  | Ave           | 2.749   | 2.398  |         | 21.8   | 25.0   | -12.8    | 50,0 |
| tert-Butylbenzene                | Ave           | 0.8632  | 0.7395 |         | 21.4   | 25.0   | -14.3    | 50.0 |
| 1,2,4-Trimethylbenzene           | Ave           | 0.5076  | 0.4507 |         | 22.2   | 25.0   | -11.2    | 50.0 |
| sec-Butylbenzene                 |               | 2.796   | 2.474  |         | 22.1   | 25.0   | -11.5    | 50.0 |
| -Isopropyltoluene                | Ave           | 3.283   | 2.737  |         | 20.8   | 25.0   | -16.6    | 50.0 |
| ,3-Dichlorobenzene               | Ave           | 2.756   | 2.396  |         | 21.7   | 25.0   | -13.1    | 50.0 |
| ,4-Dichlorobenzene               | Ave           | 1.706   | 1.476  |         | 21.6   | 25.0   | -13.5    | 50.0 |
| -Butylbenzene                    | Ave           | 1.784   | 1.516  |         | 21.2   | 25.0   | -15.1    | 50.0 |
| ,2-Dichlorobenzene               | Ave           | 2.530   | 2.075  |         | 20.5   | 25.0   | -18.0    | 50.0 |
| ,2-Dibromo-3-Chloropropane       | Ave           | 1.705   | 1.462  |         | 21.4   | 25.0   | -14.2    | 50.0 |
| ,2,4-Trichlorobenzene            | Lin1F         |         | 0.2178 |         | 21.8   | 25.0   | -12.8    |      |
| exachlorobutadiene               | Ave           | 1.238   | 1.110  |         | 22.4   | 25.0   | -10.4    | 50.0 |
| exachiorobutadiene<br>aphthalene | Ave           | 0.2977  | 0.2278 |         | 19.1   | 25.0   | -23.5    | 50.0 |
|                                  | Ave           | 1.805   | 1.768  |         | 24.5   | 25.0   | -2.0     | 50.0 |
| 2,3-Trichlorobenzene             | Ave           | 0.6471  | 0.5853 |         | 22.6   | 25.0   |          | 50.0 |
| .2-Dichloroethane-d4 (Surr)      | Lin1F         |         | 0.2173 |         | 22.3   | 25.0   | -9.5     | 50.0 |
| Dluene-d8 (Surr)                 | LinlF         |         | 2.532  |         | 24.1   |        | -10.8    | 50.0 |
| -Bromofluorobenzene (Surr)       | LinlF         |         | 1.006  |         | 25.4   | 25.0   | -3.6     | 50.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCVIS 480-58635/2 Calibration Date: 04/07/2012 22:51

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/16/2012 15:59

Lab File ID: P8873.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                          | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                | CALC<br>AMOUNT | SPIKE  | %D     | MAX  |
|--------------------------------------------------|---------------|---------|--------|----------------------------------------|----------------|--------|--------|------|
| Dichlorodifluoromethane                          |               |         |        |                                        | ANOUNI         | AMOUNT |        | %D   |
| Chloromethane                                    | Ave           | 0.4132  | 0.4339 |                                        | 26.2           | 25.0   | 5.0    | 50.  |
| Vinyl chloride                                   | Ave           | 0.2706  | 0.2923 | 0.1000                                 | 27.0           | 25.0   | 8.0    | 50.  |
| Bromomethane                                     | Ave           | 0.2879  | 0.3359 |                                        | 29.2           | 25.0   | 16.7   | 20.  |
| Chloroethane                                     | Ave           | 0.1946  | 0.0958 |                                        | 12.3           | 25.0   | -50.8* | 4    |
| Trichlorofluoromethane                           | Ave           | 0.1479  | 0.1201 |                                        | 20.3           | 25.0   | -18.8  | 50.  |
| Acrolein                                         | Ave           | 0.6550  | 0.6658 |                                        | 25.4           | 25.0   | 1.7    | 50.  |
| 1,1,2-Trichloro-1,2,2-triflu                     | Ave           | 0.0457  | 0.0348 |                                        | 381            | 500    | -23.8  | 50.  |
| oroethane 1,1-Dichloroethene                     | Ave           | 0.3807  | 0.3722 |                                        | 24.4           | 25.0   | -2.2   | 50.  |
| Acetone                                          | Ave           | 0.3562  | 0.3730 | 0.1000                                 | 26.2           | 25.0   | 4.7    | 20.  |
| Iodomethane                                      | Ave           | 0.1539  | 0.1500 |                                        | 122            | 125    | -2.5   | 50.  |
| Carbon disulfide                                 | Ave           | 0.5363  | 0.5354 |                                        | 25.0           | 25.0   | -0.2   | 50.  |
| Methyl acetate                                   | Ave           | 0.9939  | 1.035  |                                        | 26.0           | 25.0   | 4.1    | 50.  |
| Acetonitrile                                     | Ave           | 0.4232  | 0.4180 |                                        | 24.7           | 25.0   | -1.2   | 50.  |
| Methylene Chloride                               | Ave           | 0.0291  | 0.0288 |                                        | 988            | 1000   | -1.2   | 50.  |
|                                                  | Ave           | 0.4166  | 0.3911 |                                        | 23.5           | 25.0   | -6.1   | 50.  |
| Methyl tert-butyl ether trans-1,2-Dichloroethene | Ave           | 1.219   | 1.228  |                                        | 25.2           | 25.0   | 0.7    |      |
| Acrylonitrile                                    | Ave           | 0.3778  | 0.3853 |                                        | 25.5           | 25.0   | 2.0    | 50.  |
| Vinyl acetate                                    | Ave           | 0.1421  | 0.1425 |                                        | 125            | 125    | 0.3    | 50.  |
| 1,1-Dichloroethane                               | Ave           | 0.6504  | 0.7011 |                                        | 135            | 125    | 7.8    | 50.  |
|                                                  | Ave           | 0.6597  | 0.6235 |                                        | 23.6           | 25.0   | -5.5   | 50.0 |
| 2-Butanone (MEK)                                 | Ave           | 0.2066  | 0.2087 |                                        | 126            | 125    | 1.0    |      |
| 2,2-Dichloropropane                              | Ave           | 0.6172  | 0.6149 |                                        | 24.9           | 25.0   | -0.4   | 50.0 |
| cis-1,2-Dichloroethene                           | Ave           | 0.4226  | 0.4288 |                                        | 25.4           | 25.0   | 1.5    | 50.0 |
| Bromochloromethane                               | Ave           | 0.2262  | 0.2240 |                                        | 24.8           | 25.0   | -1.0   | 50.0 |
| Tetrahydrofuran                                  | Ave           | 0.1196  | 0.1225 |                                        | 128            | 125    | 2,4    | 50.0 |
| Chloroform                                       | Ave           | 0.8046  | 0.7377 |                                        | 22.9           | 25.0   | -8.3   | 50.0 |
| ,1,1-Trichloroethane                             | Ave           | 0.6931  | 0.6606 |                                        | 23.8           | 25.0   | -8.3   | 20.0 |
| Cyclohexane                                      | Ave           | 0.4540  | 0.4602 |                                        | 25.3           | 25.0   | 1.4    | 50.0 |
| ,1-Dichloropropene                               | Ave           | 0.5255  | 0.5437 |                                        | 25.9           | 25.0   | 3.5    | 50.0 |
| arbon tetrachloride                              | Ave           | 0.5996  | 0.5723 |                                        | 23.9           | 25.0   |        | 50.0 |
| enzene                                           | Ave           | 1.440   | 1.450  |                                        | 25.2           | 25.0   | -4.5   | 50.0 |
| ,2-Dichloroethane                                | Ave           | 0.6487  | 0.5763 |                                        | 22.2           | 25.0   | 0.7    | 50.0 |
| richloroethene                                   | Ave           | 0.4169  | 0.4225 |                                        | 25.3           | 25.0   | -11.2  | 50.0 |
| ethylcyclohexane                                 | LinlF         | A-7-4   | 0.5251 | ************************************** | 23.9           | 25.0   | 1.3    | 50.0 |
| ,2-Dichloropropane                               | Ave           | 0.3316  | 0.3326 |                                        | 25.1           |        | -4.4   | 50.0 |
| ibromomethane                                    | Ave           | 0.2881  | 0.2780 |                                        | 24.1           | 25.0   | 0.3    | 20.0 |
| romodichloromethane                              | Ave           | 0.5320  | 0.5386 |                                        | 25.3           | 25.0   | -3.5   | 50.0 |
| -Chloroethyl vinyl ether                         | Ave           | 0.2332  | 0.2526 |                                        | 135            | 25.0   | 1.3    | 50.0 |
| ls-1,3-Dichloropropene                           | Ave           | 0.5764  | 0.6081 |                                        |                | 125    | 8.3    | 50.0 |
| Methyl-2-pentanone (MIBK)                        | Ave           | 0.8433  | 0.8727 |                                        | 26.4<br>129    | 25.0   | 5.5    | 50.0 |

Lab Name: TestAmerica Buffalo

Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCVIS 480-58635/2

Calibration Date: 04/07/2012 22:51

Instrument ID: HP5973P

Calib Start Date: 03/16/2012 13:56

GC Column: ZB-624 (60) ID: 0.25(mm)

Calib End Date: 03/16/2012 15:59

Lab File ID: P8873.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------------|---------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------|-----------|
| Toluene                      | Ave           | 1.866   | 2 001  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>       |                 |       |           |
| trans-1,3-Dichloropropene    | Ave           | 1.164   | 1.984  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.6           | 25.0            | 6.4   | 20.0      |
| Ethyl methacrylate           | Lin1F         | 1.104   | 1.259  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.1           | 25.0            | 8.2   | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.6496  | 1.116  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.3           | 25.0            | 1.2   | 50.0      |
| Tetrachloroethene            | Ave           | 0.8917  | 0.6579 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.3           | 25.0            | 1.3   | 50.0      |
| 1,3-Dichloropropane          | Ave           | 1.270   | 0.9516 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.7           | 25.0            | 6.7   | 50.0      |
| 2-Hexanone                   | Ave           | 0.6179  | 1.284  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.3           | 25.0            | 1.1   | 50.0      |
| Dibromochloromethane         | Lin1F         | 0.01/9  | 0.6548 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133            | 125             | 6.0   | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.8790  | 0.9312 | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24.4           | 25.0            | -2.4  | 50.0      |
| Chlorobenzene                | Ave           |         | 0.9238 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.3           | 25.0            | 5.1   | 50.0      |
| Ethylbenzene                 | Ave           | 2.301   | 2.339  | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.4           | 25.0            | 1.7   | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 3.614   | 3.801  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.3           | 25.0            | 5.2   | 20.0      |
| m,p-Xylene                   | Ave           | 0.8187  | 0.8492 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.9           | 25.0            | 3.7   | 50.0      |
| o-Xylene                     | Ave           | 1.381   | 1.491  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.0           | 50.0            | 8.0   | 50.0      |
| Styrene                      |               | 1.339   | 1.463  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.3           | 25.0            | 9.3   | 50.0      |
| Bromoform                    | Ave           | 2.123   | 2.370  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27.9           | 25.0            | 11.6  | 50.0      |
| Isopropylbenzene             | LinF          |         | 0.6432 | 0.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.1           | 25.0            | -11.6 | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 3.126   | 3.309  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.5           | 25.0            | 5.8   | 50.0      |
| Bromobenzene                 | Ave           | 1.007   | 1.019  | 0.3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.3           | 25.0            | 1.2   | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.9220  | 0.9623 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.1           | 25.0            | 4.4   | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2423  | 0.2269 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117            | 125             | -6.4  | 50.0      |
| N-Propylbenzene              | Ave           | 0.3262  | 0.3082 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.6           | 25.0            | -5.5  | 50.0      |
| 2-Chlorotoluene              | Ave           | 3.933   | 3.965  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.2           | 25.0            | 0.8   | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 0.8200  | 0.8483 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.9           | 25.0            | 3.4   | 50.0      |
| 4-Chlorotoluene              | Ave           | 2.749   | 2.775  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.2           | 25.0            | 0.9   | 50.0      |
| tert-Butylbenzene            | Ave           | 0.8632  | 0.8776 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.4           | 25.0            | 1.7   |           |
|                              | Ave           | 0.5076  | 0.5419 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.7           | 25.0            | 6.8   | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.796   | 2.823  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.2           | 25.0            | 1.0   | 50.0      |
| sec-Butylbenzene             | Ave           | 3.283   | 3.260  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.8           | 25.0            | -0.7  | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.756   | 2.819  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.6           | 25.0            |       | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.706   | 1.690  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.8           | 25.0            | 2.3   | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.784   | 1.738  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.3           | 25.0            | -0.9  | 50.0      |
| n-Butylbenzene               | Ave           | 2.530   | 2.466  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.4           | 25.0            | -2.6  | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.705   | 1.681  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.6           |                 | -2.5  | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Lin1F         |         | 0.2258 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.6           | 25.0            | -1.4  | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.238   | 1.280  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 25.0            | -9.6  | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.2977  | 0.2632 | And the second s | 25.8           | 25.0            | 3.4   | 50.0      |
| Naphthalene                  | Ave           | 1.805   | 1.926  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22.1           | 25.0            | -11.6 | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.6471  | 0.6367 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.7           | 25.0            | 6.7   | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Lin1F         |         | 0.2017 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.6           | 25.0            | -1.6  | 50.0      |
| Toluene-d8 (Surr)            | Lin1F         |         | 2.571  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.7           | 25.0            | -17.2 | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Lin1F         |         | 1.026  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24.5           | 25.0            | -2.0  | 50.0      |
|                              | 1             |         | 1.040  | ļ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.9           | 25.0            | 3.6   | 50.0      |

Lab Name: TestAmerica Buffalo

Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCVIS 480-58898/2

Instrument ID: HP5973S

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/09/2012 22:39 Lab File ID: S12829.D

Calibration Date: 04/10/2012 09:48

Calib Start Date: 04/09/2012 20:52

| ANALYTE                                               | CURVE<br>TYPE | AVE RRF                                             | RRF    | MIN RRF                               | CALC   | SPIKE        | %D                        | MAX        |
|-------------------------------------------------------|---------------|-----------------------------------------------------|--------|---------------------------------------|--------|--------------|---------------------------|------------|
|                                                       | III           |                                                     | >>     |                                       | AMOUNT | AMOUNT       |                           | %D         |
| Dichlorodifluoromethane                               | Ave           | 0.2754                                              | 0.2863 |                                       | 26.0   |              |                           |            |
| Chloromethane                                         | Ave           | 0.3868                                              | 0.3719 | 0.1000                                | 24.0   | 25.0         | 4.0                       | 50.        |
| Vinyl chloride                                        | Ave           | 0.3183                                              | 0.3208 |                                       | 25.2   | 25.0         | -3.9                      | 50.        |
| Bromomethane                                          | QuaF          |                                                     | 0.0916 |                                       | 26.0   | 25.0<br>25.0 | 0.8                       | 20.        |
| Chloroethane                                          | QuaF          |                                                     | 0.1041 |                                       | 17.1   | 25.0         | 4.0                       | 50.        |
| Trichlorofluoromethane                                | Ave           | 0.2980                                              | 0.2897 |                                       | 24.3   |              | (-31.6)                   | 50.        |
| 1,1,2-Trichloro-1,2,2-triflu<br>oroethane<br>Acrolein | Lin1F         | 100 p. d. d. a. | 0.1569 |                                       | 15.3   | 25.0<br>25.0 | -2 <del>.8</del><br>-38.8 | 50.<br>50. |
| · ·                                                   | Ave           | 0.0292                                              | 0.0366 | · · · · · · · · · · · · · · · · · · · | 628    | 500          | 1 afric c                 |            |
| 1,1-Dichloroethene                                    | Lin1F         |                                                     | 0.2599 | 0.1000                                | 24.1   | 25.0         | M25.6                     | 50.        |
| Acetone                                               | Ave           | 0.1116                                              | 0.1351 |                                       | 151    | 125          | -3.6                      | 20.        |
| Iodomethane                                           | LinF          |                                                     | 0.2748 |                                       | 24.4   | 25.0         | 21.0                      | 50.        |
| Carbon disulfide                                      | LinF          |                                                     | 0.7638 |                                       | 24.2   | 25.0         | -2.4                      | 50.        |
| Methyl acetate                                        | Ave           | 0.3425                                              | 0.4176 |                                       | 30.5   |              | -3.2                      | 50.        |
| Acetonitrile                                          | Ave           | 0.0241                                              | 0.0304 |                                       | 1260   | 25.0         | 21.9                      | 50.0       |
| Methylene Chloride                                    | Ave           | 0.3074                                              | 0.3064 |                                       | 24.9   | 1000         | VA25.9                    | 50.0       |
| Methyl tert-butyl ether                               | Ave           | 0.8130                                              | 0.9576 |                                       | 29.4   | 25.0         | -0.3                      | 50.        |
| rans-1,2-Dichloroethene                               | Ave           | 0.2456                                              | 0.2323 |                                       | 23.6   | 25.0         | 17.8                      | 50.0       |
| Acrylonitrile                                         | Ave           | 0.1168                                              | 0.1450 |                                       | 155    | 25.0         | -5.4                      | 50.0       |
| ,1-Dichloroethane                                     | Ave           | 0.4724                                              | 0.4759 |                                       | 25.2   | 125          | 24.1                      | 50.0       |
| 'inyl acetate                                         | Lin1F         |                                                     | 0.6903 |                                       | 137    | 25.0         | 0.8                       | 50.0       |
| ,2-Dichloropropane                                    | Ave           | 0.2546                                              | 0.2616 |                                       |        | 125          | 9.9                       | 50.0       |
| is-1,2-Dichloroethene                                 | Ave           | 0.2907                                              | 0.2888 |                                       | 25.7   | 25.0         | 2.7                       | 50.0       |
| -Butanone (MEK)                                       | Ave           | 0.1727                                              | 0.2130 |                                       | 24.8   | 25.0         | -0.7                      | 50.0       |
| romochloromethane                                     | Ave           | 0.1299                                              | 0.1300 |                                       | 154    | 125          | 23.3                      | 50.0       |
| etrahydrofuran                                        | Ave           | 0.1134                                              | 0.1373 |                                       | 25.0   | 25.0         | 0.0                       | 50.0       |
| hloroform                                             | Ave           | 0.4571                                              | 0.4548 |                                       | 151    | 125          | 21.0                      | 50.0       |
| ,1,1-Trichloroethane                                  | Ave           | 0.3031                                              | 0.3081 |                                       | 24.9   | 25.0         | -0.5                      | 20.0       |
| yclohexane                                            | LinF          |                                                     | 0.4680 |                                       | 25.4   | 25.0         | 1.7                       | 50.0       |
| arbon tetrachloride                                   | LinF          |                                                     | 0.2572 |                                       | 25.9   | 25.0         | 3.6                       | 50.0       |
| 1-Dichloropropene                                     | Ave           | 0.3790                                              | 0.3726 |                                       | 19.8   | 25.0         | -20.8                     | 50.0       |
| enzene                                                | Ave           | 1.165                                               | 1.135  |                                       | 24.6   | 25.0         | -1.7                      | 50.0       |
| 2-Dichloroethane                                      | Ave           | 0.3985                                              | 0.3775 |                                       | 24.3   | 25.0         | -2.6                      | 50.0       |
| ichloroethene                                         | Ave           | 0.2790                                              | 0.2688 |                                       | 23.7   | 25.0         | -5.3                      | 50.0       |
| thylcyclohexane                                       | Ave           | 0.4004                                              | 0.4664 |                                       | 24.1   | 25.0         | -3.7                      | 50.0       |
| 2-Dichloropropane                                     | Ave           | 0.2895                                              | 0.2835 |                                       | 29.1   | 25.0         | 16.5                      | 50.0       |
| bromomethane                                          | Ave           | 0.1621                                              | 0.1635 |                                       | 24.5   | 25.0         | -2.1                      | 20.0       |
| omodichloromethane                                    | LinlF         |                                                     | 0.3175 |                                       | 25.2   | 25.0         | 0.9                       | 50.0       |
| Chloroethyl vinyl ether                               | Lin1F         |                                                     | 0.2231 |                                       | 23.1   | 25.0         | -7.6                      | 50.0       |
| s-1,3-Dichloropropene                                 | Lin1F         |                                                     | 0.4231 |                                       | 135    | 125          | 8.0                       | 50.0       |
| Methyl-2-pentanone (MIBK)                             | Ave           | 0.6423                                              | 0.8129 |                                       | 23.1   | 25.0         | -7.6                      | 50.0       |

Lab Name: TestAmerica Buffalo

Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCVIS 480-58898/2

Instrument ID: HP5973S

Calibration Date: 04/10/2012 09:48

Calib Start Date: 04/09/2012 20:52

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/09/2012 22:39

Lab File ID: S12829.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D                | MAX<br>%D |
|-----------------------------|---------------|---------|--------|----------------------------------------|----------------|-----------------|-------------------|-----------|
| Toluene                     | Ave           | 1.420   | 1.404  |                                        |                |                 |                   | -         |
| trans-1,3-Dichloropropene   | LinF          |         | 0.7572 |                                        | 24.7           | 25.0            | -1.1              | 20        |
| Ethyl methacrylate          | LinF          |         | 0.9391 |                                        | 22.2           | 25.0            | -11.2             | 50.       |
| 1,1,2-Trichloroethane       | Ave           | 0.4157  | 0.4254 |                                        | 25.8           | 25.0            | 3.2               | 50.       |
| Tetrachloroethene           | Ave           | 0.5216  | 0.5126 |                                        | 25.6           | 25.0            | 2.3               | 50.       |
| 1,3-Dichloropropane         | Ave           | 0.9142  | 0.9147 | ************************************** | 24.6           | 25.0            | -1.7              | 50.       |
| 2-Hexanone                  | Ave           | 0.4716  | 0.6060 |                                        | 25.0           | 25.0            | 0.0               | 50.       |
| Dibromochloromethane        | LinF          | 3.7.10  | 0.4276 |                                        | 161            | 125             | (28.5)            | 50.       |
| 1,2-Dibromoethane           | Ave           | 0.4801  | 0.5022 |                                        | 21.7           | 25.0            | -13.2             | 50.       |
| Chlorobenzene               | Ave           | 1.550   |        |                                        | 26.2           | 25.0            | 4.6               | 50.       |
| Ethylbenzene                | Ave           | 2.684   | 1.510  | 0.3000                                 | 24.4           | 25.0            | -2.6              | 50.       |
| 1,1,1,2-Tetrachloroethane   | Lin1F         | 2.004   | 2.642  |                                        | 24.6           | 25.0            | -1.5              | 20.0      |
| m,p-Xylene                  | Ave           | 1.042   | 0.4575 |                                        | 24.0           | 25.0            | -4.0              | 50.0      |
| o-Xylene                    | Ave           | 0.9930  | 1.028  |                                        | 49.3           | 50.0            | -1.4              | 50.0      |
| Styrene                     | Lin1F         | 0.9930  | 0.998  |                                        | 25.1           | 25.0            | 0.5               | 50.0      |
| Bromoform                   | QuaF          |         | 1.665  |                                        | 24.5           | 25.0            | -2.0              | 50.0      |
| Isopropylbenzene            | Ave           |         | 0.2554 | 0.1000                                 | 27.4           | 25.0            | 9.6               | 50.0      |
| Bromobenzene                | Ave           | 2.922   | 2.915  |                                        | 24.9           | 25.0            | -0.2              | 50.0      |
| 1,1,2,2-Tetrachloroethane   | Ave           | 0.6568  | 0.6492 |                                        | 24.7           | 25.0            | -1.1              | 50.0      |
| N-Propylbenzene             | Ave           | 0.7741  | 0.8288 | 0.3000                                 | 26.8           | 25.0            | 7.1               | 50.0      |
| 1,2,3-Trichloropropane      | Ave           | 3.535   | 3.660  |                                        | 25.9           | 25.0            | 3.6               | 50.0      |
| trans-1,4-Dichloro-2-butene | QuaF          | 0.2531  | 0.2595 |                                        | 25.6           | 25.0            | 2.5               | 50.0      |
| 2-Chlorotoluene             | Ave           |         | 0.2376 |                                        | 174            | 125             | 38.9              | 50.0      |
| ,3,5-Trimethylbenzene       | Ave           | 0.6640  | 0.6660 | 70.44                                  | 25.1           | 25.0            | NT <sub>0.3</sub> | 50.0      |
| -Chlorotoluene              | Ave           | 2.464   | 2.466  |                                        | 25.0           | 25.0            | 0.0               | 50.0      |
| ert-Butylbenzene            | Ave           | 0.7063  | 0.6972 |                                        | 24.7           | 25.0            | -1.3              | 50.0      |
| ,2,4-Trimethylbenzene       | Ave           | 0.5044  | 0.5097 |                                        | 25.3           | 25.0            | 1.1               | 50.0      |
| ec-Butylbenzene             |               | 2.500   | 2.487  |                                        | 24.9           | 25.0            | -0.5              | 50.0      |
| ,3-Dichlorobenzene          | Ave           | 3.075   | 3.066  |                                        | 24.9           | 25.0            | -0.3              | 50.0      |
| -Isopropyltoluene           | Ave           | 1.336   | 1.311  |                                        | 24.5           | 25.0            | -1.9              | 50.0      |
| ,4-Dichlorobenzene          | Ave           | 2.548   | 2.576  |                                        | 25.3           | 25.0            | 1.1               | 50.0      |
| -Butylbenzene               | Ave           | 1.396   | 1.336  |                                        | 23.9           | 25.0            | -4.3              | 50.0      |
| ,2-Dichlorobenzene          | Ave           | 2.395   | 2.429  |                                        | 25.4           | 25.0            | 1.4               | 50.0      |
| ,2-Dibromo-3-Chloropropane  | Ave           | 1.310   | 1.276  |                                        | 24.3           | 25.0            | -2.6              | 50.0      |
| .2,4-Trichlorobenzene       | QuaF          |         | 0.1542 |                                        | 27.5           | 25.0            | 10.0              | 50.0      |
| exachlorobutadiene          | Ave           | 0.8981  | 0.9025 |                                        | 25.1           | 25.0            | 0.5               | 50.0      |
| sphthalene                  | Ave           | 0.1705  | 0.1668 |                                        | 24.5           | 25.0            | -2.2              | 50.0      |
| 2,3-Trichlorobenzene        | Lin1F         |         | 1.304  |                                        | 23.4           | 25.0            | -6.4              | 50.0      |
| 2-Dichloroethane-d4 (Surr)  | Ave           | 0.3909  | 0.3869 |                                        | 24.7           | 25.0            | -1.0              |           |
| luene-d8 (Surr)             | Ave           | 0.1671  | 0.1665 |                                        | 24.9           | 25.0            | -0.4              | 50.0      |
|                             | Ave           | 1.895   | 1.974  |                                        | 26.0           | 25.0            |                   | 50.0      |
| Bromofluorobenzene (Surr)   | Ave           | 0.5274  | 0.5301 |                                        | 25.1           | 25.0            | 4.2               | 50.0      |



Hydrology

Remediation

Water Supply

for TestAmerica Buffalo, Job No: 480-18067-1
10 Ground Water Samples, 1 Field Duplicate,

QA/QC Review of Method 8270C Semi-Volatiles Data

10 Ground Water Samples, 1 Field Duplicate,1 Field Duplicate, and 1 Equipment BlankCollected April 3 and 4, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for caprolactam and atrazine were above the allowable maximum (25%) on 04-06-12 (X4918.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: Method blank MB 480-58414/1-A contained traces of bis(2-ethylhexyl)phthalate (3.83 ug/L) and butyl benzyl phthalate (2.25 ug/L). Positive results for bis(2-ethylhexyl)phthalate and butyl benzyl phthalate that are less than ten times the highest blank level should be reported as not detected (U) in associated samples.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogates for samples MW-45 and MW-53 were diluted beyond detection limits. No action is taken on surrogates diluted beyond detection limits.

One of three base/neutral surrogate recoveries for sample MW-53 was above control limits. No action is taken on one surrogate per fraction outside control limits, provided the recovery is not less than 10%.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximums and the percent recoveries were within QC limits for aqueous MS/MSD sample MW-06.
- <u>Laboratory Control Sample</u>: The relative percent differences for spiked compounds were below the allowable maximums and the percent recoveries (%Rs) were within QC limits for aqueous samples LCS 480-58414/2-A and LCSD 480-58414/3-A. The percent recoveries (%Rs) were within QC limits for aqueous sample LCS 480-58223/2-A
- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair MW-21/CHA-3 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab Name | :: TestAmerica Buffalo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Job No. | : 480-1 | 8067-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDG No.: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | The second secon |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | WHEN SHOW HELD IN THE PROPERTY OF THE PROPERTY |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matrix:  | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         | The second of th | The second section of the section o |
|          | The state of the s | Level:  | Low     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

GC Column (1): RXI-5Sil MS ID: 0.25 (mm)

| Client Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lab Sample ID         | 2FP | ħ              | PHL | #        | NBZ        | # FBP | #                | TBP | #   | ТРН      | #        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----|----------------|-----|----------|------------|-------|------------------|-----|-----|----------|----------|
| MW-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18067-1           | 0   | Xx             | 0   | ¥Χ       | 0 <b>x</b> | X O   | <b>)</b> X       |     | 901 |          |          |
| MW-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18067-2           | 33  |                | 23  | <i>!</i> | 78         |       | 1                |     | ХX  |          | ХX       |
| MW-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18067-3           | 33  | _              | 21  |          |            | 82    |                  | 106 |     | 94       |          |
| MW-12D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 480-18067-4           | 38  |                |     |          | 83         | 82    | İ                | 113 |     | 96       |          |
| MW-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18172-1           |     |                | 24  |          | 91         | 81    |                  | 109 |     | 103      |          |
| MW-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 40  |                | 27  |          | 85         | 95    |                  | 114 | -   | 85       |          |
| MW-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18172-2           | 35  |                | 26  |          | 75         | 90_   | -                | 117 |     | 76       |          |
| Anna province of the same of t | 480-18172-3           | 0   | ХX             | 0 \ | кx       | 0 X        | X 123 | ·x               | 0.5 | ¢χ  | 72       |          |
| MW-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18172-4           | 45  | _              | 31  |          | 82         | 102   |                  | 123 | - 1 |          |          |
| MW-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18172-5           | 39  |                | 23  | -        | 68         | 87    | Make South Color |     |     | 94       |          |
| OW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 480-18172-6           | 36  |                | 23  |          | 70         |       |                  | 99  |     | 75       |          |
| CHA-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 480-18172-7           | 48  |                |     |          |            | 93    |                  | 110 |     | 86       |          |
| EQUIPMENT BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480-18172-8           |     |                | 35  |          | 101        | 114   |                  | 132 |     | 79       |          |
| FIELD BLANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | 38  |                | 25  |          | 73         | 93    |                  | 101 |     | 89       |          |
| TANK DIMIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 480-18172-9           | 34  | and a standard | 23  |          | 69         | 86    |                  | 98  |     | 8.8      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB 480-58223/1-A      | 35  |                | 23  |          | 66         | 69    |                  | 98  |     | 117      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MB 480-58414/1-A      | 43  | -              | 30  |          | 70         | 88    | -                | 105 |     |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCS                   | 46  |                | 33  |          | 83         | 86    |                  |     |     | 118      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 480-58223/2-A         |     |                |     |          |            |       |                  | 101 |     | 94       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCS<br>480-58414/2-A  | 49  |                | 35  |          | 76         | 87    |                  | 100 |     | 101      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LCSD<br>480-58414/3-A | 52  |                | 38  |          | 86         | 99    | -                | 112 | +   | 115      | $\dashv$ |
| IW-06 MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 480-18067-3 MS        | 46  | 1              | 30  | -        | 100        | 94    |                  | 110 |     | 4.53     |          |
| IW-06 MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 480-18067-3 MSD       | 47  | +              | 33  |          | 101        | 100   |                  | 110 | -   | 47<br>50 | X        |

xx - surrogate diluted beyond detection limits

| 2FP | == | 2-Fluorophenol       | QC LIMITS        |
|-----|----|----------------------|------------------|
|     |    | Phenol-d5            | 20-120           |
| NBZ |    | Nitrobenzene-d5      | 16-120<br>46-120 |
|     |    | 2-Fluorobiphenyl     | 48-120           |
|     |    | 2,4,6-Tribromophenol | 52-132           |
| TPH |    | p-Terphenyl-d14      | 67-150           |

# Column to be used to flag recovery values

Lab Name: TestAmerica Buffalo Job No.: 480-18067-1

SDG No.:

Lab Sample ID: CCV 480-58387/3 Calibration Date: 04/06/2012 00:43

Instrument ID: HP5973X Calib Start Date: 03/01/2012 14:12

Lab File ID: X4918.D Conc. Units: ug/L

| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAX<br>%D |
|----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Benzaldehyde               | Ave           | 1.063   | 1.207  | 0.2300  |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Acetophenone               | Ave           | 1 070   |        | 0.0100  | 56800          | 50000           | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
| Caprolactam                |               | 1.870   | 2.078  | 0.0100  | 55600          | 50000           | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
|                            | Lin1          |         | 0.0644 | 0.0100  | 35500          | 50000           | The state of the s |           |
| 1,2,4,5-Tetrachlorobenzene | Ave           | 0.4710  | 0.4826 | 0.0100  |                |                 | -29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.0      |
| Biphenyl                   | Ave           | 1.326   |        |         | 51200          | 50000           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
| 2,3,4,6-Tetrachlorophenol  |               | 1,320   | 1.288  | 0.0100  | 48600          | 50000           | -2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
|                            | Ave           | 0.2494  | 0.2615 | 0.0100  | 52400          | 50000           | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |
| Atrazine                   | Ave           | 0.3017  | 0.3773 | 0.0100  |                |                 | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
|                            |               |         | 0.3,73 | 0.0100  | 62500          | 50000           | 25.1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.0      |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-18067-1 SDG No.: Client Sample ID: Lab Sample ID: MB 480-58414/1-A Matrix: Water Lab File ID: V8619.D Analysis Method: 8270C Date Collected: Extract. Method: 3510C Date Extracted: 04/06/2012 07:08 Sample wt/vol: 1000(mL) Date Analyzed: 04/06/2012 17:44 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup:(Y/N) N Analysis Batch No.: 58452 Units: ug/L

| CAS NO.   | COMPOUND NAME                         | RESULT | Q | RL  | MDL  |
|-----------|---------------------------------------|--------|---|-----|------|
| 92-52-4   | Biphenyl                              | ND     |   |     |      |
| 108-60-1  | bis (2-chloroisopropyl) ether         | ND ND  |   | 5.0 | 0.65 |
| 95-95-4   | 2,4,5-Trichlorophenol                 | ND ND  |   | 5.0 | 0.52 |
| 88-06-2   | 2,4,6-Trichlorophenol                 | ND ND  |   | 5.0 | 0.48 |
| 120-83-2  | 2,4-Dichlorophenol                    |        |   | 5.0 | 0.61 |
| 105-67-9  | 2,4-Dimethylphenol                    | ND ND  |   | 5.0 | 0.51 |
| 51-28-5   | 2,4-Dinitrophenol                     |        |   | 5.0 | 0.50 |
| 121-14-2  | 2,4-Dinitrotoluene                    | ND     |   | 10  | 2.2  |
| 606-20-2  | 2,6-Dinitrotoluene                    | ND     |   | 5.0 | 0.45 |
| 91-58-7   | 2-Chloronaphthalene                   | ND     |   | 5.0 | 0.40 |
| 95-57-8   | 2-Chlorophenol                        | ND     |   | 5.0 | 0.46 |
| 91-57-6   | 2-Methylnaphthalene                   | ND     |   | 5.0 | 0.53 |
| 95-48-7   | 2-Methylphenol                        | ND     |   | 5.0 | 0.60 |
| 88-74-4   | 2-Nitroaniline                        | ND ND  |   | 5.0 | 0.40 |
| 88-75-5   | 2-Nitrophenol                         | ND     |   | 10  | 0.42 |
| 91-94-1   | 3,3'-Dichlorobenzidine                | ND     |   | 5.0 | 0.48 |
| 99-09-2   | 3-Nitroaniline                        | ND     |   | 5.0 | 0.40 |
| 534-52-1  | 4,6-Dinitro-2-methylphenol            | ND ND  |   | 10  | 0.48 |
| 101-55-3  | 4-Bromophenyl phenyl ether            | ND     |   | 10  | 2.2  |
| 59-50-7   | 4-Chloro-3-methylphenol               | ND     |   | 5.0 | 0.45 |
| 106-47-8  | 4-Chloroaniline                       | ND     |   | 5.0 | 0.45 |
| 7005-72-3 | 4-Chlorophenyl phenyl ether           | ND     |   | 5.0 | 0.59 |
| 106-44-5  | 4-Methylphenol                        | ND     |   | 5.0 | 0.35 |
| 100-01-6  | 4-Nitroaniline                        | ND     |   | 10  | 0.36 |
| 100-02-7  | 4-Nitrophenol                         | ND     |   | 10  | 0.25 |
| 83-32-9   | Acenaphthene                          | ND     |   | 10  | 1.5  |
| 208-96-8  | Acenaphthylene                        | ND     |   | 5.0 | 0.41 |
| 98-86-2   | Acetophenone                          | ND ND  |   | 5.0 | 0.38 |
| 120-12-7  | Anthracene                            | ND ND  |   | 5.0 | 0.54 |
| 1912-24-9 | Atrazine                              | ND     |   | 5.0 | 0.28 |
| 100-52-7  | Benzaldehyde                          | ND     |   | 5.0 | 0.46 |
| 56-55-3   | Benzo(a) anthracene                   | ND     |   | 5.0 | 0.27 |
| 0-32-8    | Benzo (a) pyrene                      | ND     |   | 5.0 | 0.36 |
| 205-99-2  | Benzo(a) pyrene Benzo(b) fluoranthene | ND     |   | 5.0 | 0.47 |
|           | Denzo (b) Iluoranthene                | ND     |   | 5.0 | 0.34 |

#### FORM I GC/MS SEMI VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Buffalo Job No.: 480-18067-1 SDG No.: Client Sample ID: Lab Sample ID: MB 480-58414/1-A Matrix: Water Lab File ID: V8619.D Analysis Method: 8270C Date Collected: Extract. Method: 3510C Date Extracted: 04/06/2012 07:08 Sample wt/vol: 1000(mL) Date Analyzed: 04/06/2012 17:44 Con. Extract Vol.: 1(mL) Dilution Factor: 1 Injection Volume: 1(uL) Level: (low/med) Low % Moisture: GPC Cleanup: (Y/N) N Analysis Batch No.: 58452 Units: ug/L

| CAS NO.          | COMPOUND NAME                              | RESULT | Q                                                              | RL  | MDL  |
|------------------|--------------------------------------------|--------|----------------------------------------------------------------|-----|------|
| 191-24-2         | Benzo(g,h,i)perylene                       | X17    |                                                                |     |      |
| 207-08-9         | Benzo(k)fluoranthene                       | ND     |                                                                | 5.0 | 0.35 |
| 111-91-1         | Bis(2-chloroethoxy)methane                 | ND     | ***************************************                        | 5.0 | 0.73 |
| 111-44-4         | Bis(2-chloroethyl)ether                    | ND     |                                                                | 5.0 | 0.35 |
| 117-81-7         | Bis(2-ethylhexyl) phthalate                | ND     |                                                                | 5.0 | 0.40 |
| 85-68-7          | Butyl benzyl phthalate                     | (3.83  | J                                                              | 5.0 | 1.8  |
| 105-60-2         | Caprolactam                                | (2.25  | J)                                                             | 5.0 | 0.42 |
| 86-74-8          | Carbazole                                  | ND     |                                                                | 5.0 | 2.2  |
| 218-01-9         | Chrysene                                   | ND     |                                                                | 5.0 | 0.30 |
| 84-74-2          | Di-n-butyl phthalate                       | ND     |                                                                | 5.0 | 0.33 |
| 117-84-0         | Di-n-octyl phthalate                       | ND     |                                                                | 5.0 | 0.31 |
| 53-70-3          | Dibenz (a, h) anthracene                   | ND     |                                                                | 5.0 | 0.47 |
| 132-64-9         | Dibenzofuran                               | ND     |                                                                | 5.0 | 0.42 |
| 84-66-2          | Diethyl phthalate                          | ND     |                                                                | 10  | 0.51 |
| 131-11-3         | Dimethyl phthalate                         | ND     |                                                                | 5.0 | 0.22 |
| 206-44-0         | Fluoranthene                               | ND     |                                                                | 5.0 | 0.36 |
| 86-73-7          | Fluorene                                   | ND     |                                                                | 5.0 | 0.40 |
| 118-74-1         | Hexachlorobenzene                          | ND     |                                                                | 5.0 | 0.36 |
| 37-68-3          | Hexachlorobutadiene                        | ND     |                                                                | 5.0 | 0.51 |
| 77-47-4          |                                            | ND     |                                                                | 5.0 | 0.68 |
| 57-72-1          | Hexachlorocyclopentadiene Hexachloroethane | ND     |                                                                | 5.0 | 0.59 |
| 93-39-5          |                                            | ND     |                                                                | 5.0 | 0.59 |
| 18-59-1          | Indeno(1,2,3-cd)pyrene                     | ND     |                                                                | 5.0 | 0.47 |
| 21-64-7          | Isophorone                                 | ND     |                                                                | 5.0 | 0.43 |
| 6-30-6           | N-Nitrosodi-n-propylamine                  | ND     |                                                                | 5.0 | 0.54 |
| 1-20-3           | N-Nitrosodiphenylamine                     | ND     | 199. All and a second processing and a second part of a second | 5.0 | 0.51 |
| 8-95-3           | Naphthalene                                | ND     |                                                                | 5.0 | 0.76 |
| 0-95-3<br>7-86-5 | Nitrobenzene                               | ND     |                                                                | 5.0 | 0.29 |
|                  | Pentachlorophenol                          | ND     | 1                                                              | 10  | 2.2  |
| 5-01-8           | Phenanthrene                               | ND     |                                                                | 5.0 | 0.44 |
| 08-95-2          | Phenol                                     | ND     |                                                                | 5.0 |      |
| 29-00-0          | Pyrene                                     | ND     |                                                                | 5.0 | 0.39 |



Hydrology

Remediation

Water Supply

## Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-18068-1

#### 15 Soil Samples, 1 Field Duplicate, 1 Equipment Blank, and 1 Trip Blank Collected April 2 and 3, 2012

Prepared by: Donald Anné May 4, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 15 soil samples, 1 field duplicate, 1 equipment blank, and 1 trip blank analyzed for volatiles; 15 soil samples, 1 field duplicate, and 1 equipment blank analyzed semi-volatiles; 12 soil samples analyzed for PCB; and 12 soil samples analyzed for TAL metals.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• Positive volatile result for total xylenes were flagged as "not detected" (U) for the following soil samples because the level reported in the samples were not significantly greater than (more than 5 times) the highest associated blank level.

| RB-03(0-6") | RB-03(6"-12") | RB-03(12"-24") |
|-------------|---------------|----------------|
| RB-04(0-6") | RB-04(6"-12") | RB-04(12"-24") |
| RB-05(0-6") | RB-05(6"-12") | RB-06(6"-12")  |

- The positive volatile results for acetone and 2-butanone were flagged as "estimated" (J) in sample SB-A2(10'-11') because the %Ds for acetone and 2-butanone were above the allowable maximum in the associated continuing calibration.
- Positive results for the following compounds were flagged as "estimated" (J) in samples SB-A2 (10'-11') and DUP-03 because relative percent differences for these compounds were above the allowable maximum in the associated soil field duplicate pair SB-A2 (10'-11')/DUP-03.

Job No: 480-18068-1

benzo(a)anthracene benzo(g,h,i)perylene indeno(1,2,3-cd)pyrene benzo(a)pyrene chrysene phenanthrene

benzo(b)fluoranthene fluoranthene pyrene

- The positive results for aluminum were flagged as "estimated" (J) in all 12 soil samples because 2 of 2 percent recoveries for aluminum were above control limits, but were not above 250% in the associated soil MS/MSD sample.
- The positive results for barium were flagged as "estimated" (J) in all 12 soil samples because 1 of 2 percent recoveries for barium was above control limits, but were not above 250% in the associated soil MS/MSD sample.
- The positive and "not detected" results for antimony were flagged as "estimated" (J) in all 12 soil samples because 1 of 2 percent recoveries for antimony was below control limits, but was not below 10% in the associated soil MS/MSD sample.
- The positive results for magnesium were flagged as "estimated" (J) in all 12 soil samples because 1 of 2 percent recoveries for magnesium was below control limits, but was not below 10% in the associated soil MS/MSD sample.
- The positive results for the following metals were flagged as "estimated" (J) in all 12 soil samples because the %Ds for these metals were above the allowable in the associated soil serial dilution sample and the sample results were above the CRDLs.

calcium manganese chromium vanadium

iron zinc

All data are considered usable, with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-18068-1

#### 15 Soil Samples, 1 Field Duplicate, 1 Equipment Blank, and 1 Trip Blank Collected April 2 and 3, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for dichlorodifluoromethane, bromomethane, carbon sulfide, cyclohexane, and bromoform were above the allowable maximum (25%) on 04-07-12 (G10801.D). The %Ds for acetone and 2-butanone were above the allowable maximum (25%) on 04-10-12 (F7960.D). Positive results for these compounds should be considered estimated (J) in associated samples.

<u>Blanks</u>: Method blank MB 480-58567/5 contained a trace of total xylenes (0.859 ug/kg). Positive results for total xylenes that are less than five times the highest blank level should be reported as not detected (J) in associated samples.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample SB-A3(5'-6'1").
- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil samples LCS 480-58567/4 and LCS 480-58856/3 and aqueous sample LCS 480-58634/4.
- <u>Field Duplicates</u>: The analyses of aqueous field duplicate pair SB-A2((10'-11')/DUP-03 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

Lab Name: TestAmerica Buffalo

Job No.: 480-18068-1

SDG No.:

Lab Sample ID: CCVIS 480-58856/3

Calibration Date: 04/10/2012 09:47

Instrument ID: HP5973F

Calib Start Date: 03/07/2012 23:43

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/08/2012 01:25

Lab File ID: F7960.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE    | %D      | MAX  |
|------------------------------|---------------|---------|--------|-----------------------------------------|----------------|----------|---------|------|
| Dichlorodifluoromethane      | Ave           | 0.0050  |        |                                         |                | 11100111 |         | %D   |
| Chloromethane                | Ave           | 0.2059  | 0.1799 |                                         | 43.7           | 50.0     | -12.6   | 50.  |
| Vinyl chloride               | Ave           | 0.2765  | 0.2379 | 0.1000                                  | 43.0           | 50.0     | -14.0   | 50.  |
| Bromomethane                 | Ave           | 0.2213  | 0.2060 |                                         | 46.5           | 50.0     | -6.9    | 20.  |
| Chloroethane                 | Ave           | 0.1097  | 0.0947 |                                         | 43.2           | 50.0     | -13.7   | 50.0 |
| Trichlorofluoromethane       | Ave           | 0.1050  | 0.0928 |                                         | 44.2           | 50.0     | -11.7   | 50.0 |
| Acrolein                     | Ave           | 0.2394  | 0.2349 |                                         | 49.1           | 50.0     | -1.9    | 50.0 |
| 1,1,2-Trichloro-1,2,2-triflu | Ave           | 0.0379  | 0.0211 |                                         | 558            | 1000     | A-44.2  | 50.0 |
| oroethane                    | Ave           | 0.2313  | 0.1840 |                                         | 39.8           | 50.0     | -20.5   | 50.0 |
| 1,1-Dichloroethene           | Ave           | 0.2420  | 0.2277 | 0.1000                                  | 47.0           | F.O. 0   |         |      |
| Acetone                      | Ave           | 0.1081  | 0.0783 | 0.2000                                  | 181            | 50.0     | -5.9    | 20.0 |
| Iodomethane                  | Ave           | 0.3623  | 0.3193 |                                         | 44.1           | 250      | (-27.6) | 50.0 |
| Carbon disulfide             | Ave           | 0.6556  | 0.4956 |                                         | 37.8           | 50.0     | -11.9   | 50.0 |
| Methyl acetate               | Ave           | 0.3785  | 0.2859 |                                         |                | 50.0     | -24.4   | 50.0 |
| Acetonitrile                 | Ave           | 0.0226  | 0.0191 |                                         | 37.8           | 50.0     | -24.4   | 50.0 |
| Methylene Chloride           | Ave           | 0.2868  | 0.2676 |                                         | 1700           | 2000     | -15.2   | 50.0 |
| Methyl tert-butyl ether      | Ave           | 0.8378  | 0.6792 |                                         | 46.7           | 50.0     | -6.7    | 50.0 |
| trans-1,2-Dichloroethene     | Ave           | 0.2812  | 0.2651 |                                         | 40.5           | 50.0     | -18.9   | 50.0 |
| Acrylonitrile                | Ave           | 0.1271  | 0.1022 |                                         | 47.1           | 50.0     | -5.7    | 50.0 |
| Vinyl acetate                | Ave           | 0.6567  | 0.5250 |                                         | 201            | 250      | -19.6   | 50.0 |
| 1,1-Dichloroethane           | Ave           | 0.4772  | 0.4220 |                                         | 200            | 250      | -20.1   | 50.0 |
| 2-Butanone (MEK)             | Ave           | 0.1867  | 0.1358 |                                         | 44.2           | 50.0     | -11.6   | 50.0 |
| 2,2-Dichloropropane          | Ave           | 0.3267  | 0.1338 |                                         | 182            | 250      | (-27.3) | 50.0 |
| cis-1,2-Dichloroethene       | Ave           | 0.3174  | 0.2942 |                                         | 46.8           | 50.0     | -6.4    | 50.0 |
| Bromochloromethane           | Ave           | 0.1669  |        |                                         | 46.4           | 50.0     | -7.3    | 50.0 |
| Tetrahydrofuran              | Ave           | 0.1231  | 0.1560 |                                         | 46.7           | 50.0     | -6.6    | 50.0 |
| Chloroform                   | Ave           | 0.4648  | 0.0910 |                                         | 185            | 250      | A-26.0  | 50.0 |
| 1,1,1-Trichloroethane        | Ave           | 0.3695  | 0.4132 |                                         | 44.4           | 50.0     | -11.1   | 20.0 |
| Cyclohexane                  | Ave           | 0.4776  | 0.3399 |                                         | 46.0           | 50.0     | -8.0    | 50.0 |
| 1,1-Dichloropropene          | Ave           | 0.3625  | 0.3720 |                                         | 38.9           | 50.0     | -22.1   | 50.0 |
| Carbon tetrachloride         | Ave           | 0.3123  | 0.3170 |                                         | 43.7           | 50.0     | -12.6   | 50.0 |
| Benzene                      | Ave           |         | 0.2918 |                                         | 46.7           | 50.0     | -6.6    | 50.0 |
| ,2-Dichloroethane            | Ave           | 1.074   | 0.9829 |                                         | 45.8           | 50.0     | -8.5    | 50.0 |
| richloroethene               | Ave           | 0.3784  | 0.3116 |                                         | 41.2           | 50.0     | -17.7   | 50.0 |
| ethylcyclohexane             |               | 0.2881  | 0.2635 |                                         | 45.7           | 50.0     | -8.5    | 50.0 |
| ,2-Dichloropropane           | Ave           | 0.4705  | 0.3917 |                                         | 41.6           | 50.0     | -16.7   | 50.0 |
| ibromomethane                | <u> </u>      | 0.2858  | 0.2525 |                                         | 44.2           | 50.0     | -11.7   | 20.0 |
| romodichloromethane          | Ave           | 0.1702  | 0.1462 |                                         | 42.9           | 50.0     | -14.1   | 50.0 |
| -Chloroethyl vinyl ether     | Ave           | 0.3334  | 0.2868 | 0.00 a 10 | 43.0           | 50.0     | -14.0   | 50.0 |
| is-1,3-Dichloropropene       | Ave           | 0.2068  | 0.1664 |                                         | 201            | 250      | -19.5   | 50.0 |
| -Methyl-2-pentanone (MIBK)   | Ave           | 0.4314  | 0.3701 |                                         | 42.9           | 50.0     | -14.2   | 50.0 |
| 1 beneauous (MIDV)           | Ave           | 0.8542  | 0.6771 |                                         | 198            | 250      | -20.7   | 50.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1

SDG No.:

Lab Sample ID: CCVIS 480-58856/3 Calibration Date: 04/10/2012 09:47

Instrument ID: <u>HP5973F</u> Calib Start Date: 03/07/2012 23:43

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/08/2012 01:25

Lab File ID: F7960.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                                                                                         | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D        |
|-----------------------------|---------------|---------|--------|-----------------------------------------------------------------------------------------------------------------|----------------|-----------------|-------|------------------|
| Toluene                     | Ave           | 1.664   | 1.584  |                                                                                                                 |                |                 |       | ] <sub>0</sub> D |
| Ethyl methacrylate          | Ave           | 0.9228  | 0.7654 |                                                                                                                 | 47.6           | 50.0            | -4.9  | 20.0             |
| trans-1,3-Dichloropropene   | Ave           | 0.9099  |        |                                                                                                                 | 41.5           | 50.0            | -17.1 | 50.0             |
| 1,1,2-Trichloroethane       | Ave           | 0.5001  | 0.7833 |                                                                                                                 | 43.0           | 50.0            | -13.9 | 50.0             |
| Tetrachloroethene           | Ave           | 0.7388  | 0.4427 |                                                                                                                 | 44.3           | 50.0            | -11.5 | 50.0             |
| 1,3-Dichloropropane         | Ave           | 1.038   | 0.7456 |                                                                                                                 | 50.5           | 50.0            | 0.9   | 50.0             |
| 2-Hexanone                  | Ave           | 0.6379  | 0.9115 |                                                                                                                 | 43.9           | 50.0            | -12.1 | 50.0             |
| Dibromochloromethane        | Ave           | 0.6588  | 0.4798 |                                                                                                                 | 188            | 250             | -24.8 | 50.0             |
| 1,2-Dibromoethane           | Ave           | 0.6697  | 0.5982 |                                                                                                                 | 45.4           | 50.0            | -9.2  | 50.0             |
| Chlorobenzene               | Ave           | 2.027   | 0.6077 |                                                                                                                 | 45.4           | 50.0            | -9.3  | 50.0             |
| Ethylbenzene                | Ave           | 3.069   | 1.928  | 0.3000                                                                                                          | 47.6           | 50.0            | -4.9  | 50.0             |
| 1,1,1,2-Tetrachloroethane   | Ave           | 0.6553  | 2.923  |                                                                                                                 | 47.6           | 50.0            | -4.8  | 20.0             |
| m,p-Xylene                  | Ave           |         | 0.6518 |                                                                                                                 | 49.7           | 50.0            | -0.5  | 50.0             |
| o-Xylene                    | Ave           | 1.283   | 1.232  |                                                                                                                 | 96.0           | 100             | -4.0  | 50.0             |
| Styrene                     | Ave           | 1.233   | 1.189  |                                                                                                                 | 48.2           | 50.0            | -3.6  | 50.0             |
| Bromoform                   | Ave           | 2.044   | 1.966  |                                                                                                                 | 48.1           | 50.0            | -3.8  | 50.0             |
| Isopropylbenzene            | Ave           | 0.3801  | 0.3397 | 0.1000                                                                                                          | 44.7           | 50.0            | -10.6 | 50.0             |
| 1,1,2,2-Tetrachloroethane   |               | 2.706   | 2.517  |                                                                                                                 | 46.5           | 50.0            | -7.0  | 50.0             |
| Bromobenzene                | Ave           | 0.7166  | 0.6083 | 0.3000                                                                                                          | 42.4           | 50.0            | -15.1 | 50.0             |
| trans-1,4-Dichloro-2-butene | Ave           | 0.7878  | 0.7216 |                                                                                                                 | 45.8           | 50.0            | -8.4  | 50.0             |
| N-Propylbenzene             | Ave           | 0.2406  | 0.1789 |                                                                                                                 | 186            | 250             | 25.6  | 50.0             |
| 1,2,3-Trichloropropane      | Ave           | 3.278   | 2.948  |                                                                                                                 | 45.0           | 50.0            | -10.1 | 50.0             |
| 2-Chlorotoluene             | Ave           | 0.2483  | 0.1994 |                                                                                                                 | 40.2           | 50.0            | -19.7 | 50.0             |
| 1,3,5-Trimethylbenzene      | Ave           | 0.7471  | 0.6934 |                                                                                                                 | 46.4           | 50.0            | -7.2  | 50.0             |
| 4-Chlorotoluene             | Ave           | 2.282   | 2.132  | 100 To | 46.7           | 50.0            | -6.6  | 50.0             |
| cert-Butylbenzene           | Ave           | 0.7987  | 0.7251 |                                                                                                                 | 45.4           | 50.0            | -9.2  |                  |
| 1,2,4-Trimethylbenzene      | Ave           | 0.5765  | 0.5431 |                                                                                                                 | 47.1           | 50.0            | -5.8  | 50.0             |
| sec-Butylbenzene            | Ave           | 2.322   | 2.149  |                                                                                                                 | 46.3           | 50.0            | -7.5  | 50.0             |
|                             | Ave           | 2.926   | 2.719  |                                                                                                                 | 46.4           | 50.0            |       | 50.0             |
| -Isopropyltoluene           | Ave           | 2.670   | 2.512  |                                                                                                                 | 47.0           | 50.0            | -7.1  | 50.0             |
| ,3-Dichlorobenzene          | Ave           | 1.504   | 1.384  |                                                                                                                 | 46.0           | 50.0            | -5.9  | 50.0             |
| ,4-Dichlorobenzene          | Ave           | 1.550   | 1.414  |                                                                                                                 | 45.6           | 50.0            | -7.9  | 50.0             |
| -Butylbenzene               | Ave           | 2.179   | 2.014  |                                                                                                                 | 46.2           |                 | -8.8  | 50.0             |
| ,2-Dichlorobenzene          | Ave           | 1.420   | 1.317  |                                                                                                                 | 46.4           | 50.0            | -7.6  | 50.0             |
| ,2-Dibromo-3-Chloropropane  | Ave           | 0.1193  | 0.0895 |                                                                                                                 |                | 50.0            | -7.2  | 50.0             |
| ,2,4-Trichlorobenzene       | Ave           | 0.8879  | 0.8830 |                                                                                                                 | 37.5           | 50.0            | -25.0 | 50.0             |
| exachlorobutadiene          | Ave           | 0.3855  | 0.3871 |                                                                                                                 | 49.7           | 50.0            | -0.6  | 50.0             |
| aphthalene                  | Ave           | 2.610   | 2.317  |                                                                                                                 | 50.2           | 50.0            | 0.4   | 50.0             |
| 2,3-Trichlorobenzene        | Ave           | 0.8054  | 0.7874 |                                                                                                                 | 44.4           | 50.0            | -11.2 | 50.0             |
| 2-Dichloroethane-d4 (Surr)  | Ave           | 0.1520  | 0.1390 |                                                                                                                 | 48.9           | 50.0            | -2.2  | 50.0             |
| luene-d8 (Surr)             | Ave           | 2.361   |        |                                                                                                                 | 45.7           | 50.0            | -8.5  | 50.0             |
| Bromofluorobenzene (Surr)   | Ave           | 0.7860  | 2.579  |                                                                                                                 | 54.6           | 50.0            | 9.2   | 50.0             |
|                             |               | 0.7000  | 0.8467 |                                                                                                                 | 53.9           | 50.0            | 7.7   | 50.0             |

Lab Name: TestAmerica Buffalo

Job No.: 480-18068-1

SDG No.:

Lab Sample ID: CCVIS 480-58634/2 Calibration Date: 04/07/2012 21:47

Instrument ID: HP5973G

Calib Start Date: 03/24/2012 01:37

GC Column: ZB-624 (60) ID: 0.25(mm)

Calib End Date: 03/24/2012 03:26

Lab File ID: G10801.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.3497  | 0.4274 |         |                |                 |         |           |
| Chloromethane                          | Ave           | 0.6073  | 0.4374 |         | 31.3           | 25.0            | 25.1    | 50.0      |
| Vinyl chloride                         | Ave           | 0.5159  |        | 0.1000  | 25.8           | 25.0            | 3.3     | 50.0      |
| Bromomethane                           | LinF          | 0.3133  | 0.5979 |         | 29.0           | 25.0            | 15.9    | 20.0      |
| Chloroethane                           | Ave           | 0.2678  | 0.1145 |         | 34.1           | 25.0            | 36.4    | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.4028  | 0.2754 |         | 25.7           | 25.0            | 2.8     | 50.0      |
| Acrolein                               | Ave           | 0.0544  | 0.4235 |         | 26.3           | 25.0            | 5.2     | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.3758  | 0.0346 |         | 502            | 500             | 0.4     | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Lin1F         | 0.3736  | 0.3814 | 0.1000  | 25.4           | 25.0<br>25.0    | 1.5     | 20.0      |
| Acetone                                | Ave           | 0.1714  | 0.1986 |         |                | ****            | 20.0    | 30.0      |
| Iodomethane                            | Ave           | 0.3034  | 0.2590 |         | 145            | 125             | 15.9    | 50.0      |
| Carbon disulfide                       | LinF          | 0,3001  | 0.4174 |         | 21.3           | 25.0            | -14.7   | 50.0      |
| Methyl acetate                         | Ave           | 0.6345  | 0.6380 |         | 9.73           | 25.0            | (-61.1* | 50.0      |
| Acetonitrile                           | Lin1F         | 0.0030  |        |         | 25.1           | 25.0            | 0.6     | 50.0      |
| Methylene Chloride                     | Ave           | 0.4873  | 0.0490 |         | 1070           | 1000            | 7.1     | 50.0      |
| Methyl tert-butyl ether                | Ave           | 1.222   | 0.4781 |         | 24.5           | 25.0            | -1.9    | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.4195  | 1.161  |         | 23.8           | 25.0            | -5.0    | 50.0      |
| Acrylonitrile                          | Ave           | 0.2445  | 0.4178 |         | 24.9           | 25.0            | -0.4    | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.5936  | 0.2670 |         | 137            | 125             | 9.2     | 50.0      |
| Vinyl acetate                          | Ave           | 0.9887  | 0.7124 |         | 30.0           | 25.0            | 20.0    | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.2389  | 0.9906 |         | 125            | 125             | 0.2     | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.2389  | 0.2403 |         | 25.2           | 25.0            | 0.6     | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.3497  | 0.4017 |         | 28.7           | 25.0            | 14.9    | 50.0      |
| Bromochloromethane                     | Ave           | 0.3631  | 0.3920 |         | 135            | 125             | 7.9     | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1598  | 0.1725 |         | 27.0           | 25.0            | 7.9     | 50.0      |
| Chloroform                             | Ave           |         | 0.2609 |         | 136            | 125             | 8.8     | 50.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3701  | 0.3888 |         | 26.3           | 25.0            | 5.0     | 20.0      |
| Cyclohexane                            | Ave           | 0.3623  | 0.3488 |         | 24.1           | 25.0            | -3.7    | 50.0      |
| Carbon tetrachloride                   | QuaF          | 0.5619  | 0.7048 |         | 31.4           | 25.0            | (25.4)  | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.5304  | 0.3037 |         | 26.5           | 25.0            | 6.0     | 50.0      |
| Benzene                                | Ave           | 0.5304  | 0.5391 |         | 25.4           | 25.0            | 1.6     | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 1.615   | 1.621  |         | 25.1           | 25.0            | 0.3     | 50.0      |
| Trichloroethene                        | Ave           | 0.5683  | 0.5344 |         | 23.5           | 25.0            | -6.0    | 50.0      |
| Methylcyclohexane                      | Ave           | 0.3813  | 0.3812 |         | 25.0           | 25.0            | -0.0    | 50.0      |
| 1,2-Dichloropropane                    |               | 0.5062  | 0.6005 |         | 29.7           | 25.0            | 18.6    | 50.0      |
| Dibromomethane                         | Ave           | 0.4332  | 0.4325 |         | 25.0           | 25.0            | -0.2    | 20.0      |
| Bromodichloromethane                   | Ave           | 0.2212  | 0.2085 |         | 23.6           | 25.0            | -5.7    | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.3875  | 0.3350 |         | 21.6           | 25.0            | -13.6   | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.3385  | 0.3342 |         | 123            | 125             | -1.3    | 50.0      |
| H-Methyl-2-pentanone (MIBK)            | Ave           | 0.5702  | 0.4931 |         | 21.6           | 25.0            | -13.5   | 50.0      |
| 1 - Language (MIDN)                    | Ave           | 1.286   | 1.353  |         | 132            | 125             | 5.2     | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1

SDG No.:

Lab Sample ID: CCVIS 480-58634/2 Calibration Date: 04/07/2012 21:47

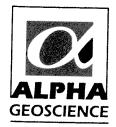
GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/24/2012 03:26

Lab File ID: G10801.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D        | MAX<br>%D |
|------------------------------|---------------|---------|--------|---------|----------------|-----------------|-----------|-----------|
| Toluene                      | Ave           | 1.968   | 1.997  |         |                |                 |           |           |
| trans-1,3-Dichloropropene    | Ave           | 0.9808  | 0.8208 |         | 25.4           | 25.0            |           | 20.0      |
| Ethyl methacrylate           | Lin1F         |         | 1.135  |         | 20.9           | 25.0            |           | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.5574  | 0.5493 |         | 21.9           | 25.0            |           | 50.0      |
| Tetrachloroethene            | Ave           | 0.6886  | 0.7128 |         | 24.6           | 25.0            | -1.5      | 50.0      |
| 1,3-Dichloropropane          | Ave           | 1.270   | 1.225  |         | 25.9           | 25.0            | 3.5       | 50.0      |
| 2-Hexanone                   | Ave           | 0.9808  | 1.225  |         | 24.1           | 25.0            | -3.5      | 50.0      |
| Dibromochloromethane         | QuaF          | 0.3000  |        |         | 137            | 125             | 9.5       | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6695  | 0.3656 |         | 19.2           | 25.0            | -23.2     | 50.0      |
| Chlorobenzene                | Ave           | 2.082   | 0.6595 |         | 24.6           | 25.0            | -1.5      | 50.0      |
| Ethylbenzene                 | Ave           | 3.647   | 2.086  | 0.3000  | 25.1           | 25.0            | 0.2       | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           |         | 3.741  |         | 25.6           | 25.0            | 2.6       | 20.0      |
| m,p-Xylene                   | Ave           | 0.5482  | 0.5148 |         | 23.5           | 25.0            | -6.1      | 50.0      |
| o-Xylene                     |               | 1.419   | 1.465  |         | 51.6           | 50.0            | 3.3       | 50.0      |
| Styrene                      | Ave           | 1.345   | 1.413  |         | 26.3           | 25.0            | 5.0       | 50.0      |
| Bromoform                    | Ave           | 2.184   | 2.354  |         | 26.9           | 25.0            | 7.8       | 50.0      |
| Isopropylbenzene             | QuaF          |         | 0.1728 | 0.1000  | 18.1           | 25.0            | (-27.6)   | 50.0      |
| Bromobenzene                 | Ave           | 4.028   | 4.033  |         | 25.0           | 25.0            | 0.1       | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.8830  | 0.8650 |         | 24.5           | 25.0            | -2.0      | 50.0      |
| N-Propylbenzene              | Ave           | 1.159   | 1.133  | 0.3000  | 24.5           | 25.0            | -2.2      | 50.0      |
|                              | Ave           | 4.914   | 4.913  |         | 25.0           | 25.0            | -0.0      | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.3929  | 0.3820 |         | 24.3           | 25.0            | -2.8      | 50.0      |
| trans-1,4-Dichloro-2-butene  | LinF          |         | 0.1832 |         | 55.9           | 125             | A A 55.3* | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.9078  | 0.9035 |         | 24.9           | 25.0            | -0.5      | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 3.389   | 3.477  |         | 25.7           | 25.0            | 2.6       |           |
| 4-Chlorotoluene              | Ave           | 0.9657  | 0.9480 |         | 24.5           | 25.0            | -1.8      | 50.0      |
| tert-Butylbenzene            | Ave           | 0.7129  | 0.7230 |         | 25.4           | 25.0            |           | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 3.440   | 3.549  |         | 25.8           | 25.0            | 1.4       | 50.0      |
| sec-Butylbenzene             | Äve           | 4.285   | 4.395  |         | 25.6           | 25.0            | 3.2       | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.804   | 1.859  |         | 25.8           |                 | 2.6       | 50.0      |
| 4-Isopropyltoluene           | Ave           | 3.518   | 3.677  |         | 26.1           | 25.0            | 3.1       | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.896   | 1.920  |         | 25.3           | 25.0            | 4.5       | 50.0      |
| n-Butylbenzene               | Ave           | 3.272   | 3.456  |         |                | 25.0            | 1.3       | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.770   | 1.810  |         | 26.4           | 25.0            | 5.6       | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.2066  | 0.1989 |         | 25.6           | 25.0            | 2.2       | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 1.105   | 1.084  |         | 24.1           | 25.0            | -3.7      | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.4522  |        |         | 24.5           | 25.0            | -1.9      | 50.0      |
| Naphthalene                  | Ave           | 3.668   | 0.4308 |         | 23.8           | 25.0            | -4.7      | 50.0      |
| 1,2,3-Trichlorobenzene       | LinF          | 3.000   | 3.752  |         | 25.6           | 25.0            | 2.3       | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.2019  | 0.9518 |         | 29.0           | 25.0            | 16.0      | 50.0      |
| Foluene-d8 (Surr)            | Ave           |         | 0.1990 |         | 24.6           | 25.0            | -1.4      | 50.0      |
| 1-Bromofluorobenzene (Surr)  | Ave           | 2.422   | 2.624  |         | 27.1           | 25.0            | 8.3       | 50.0      |
| ( )                          | 1 ***         | 0.6385  | 0.6929 |         | 27.1           | 25.0            | 8.5       | 50.0      |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-18068-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-58567/5       |
| Matrix: Solid                 | Lab File ID: F7881.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 04/06/2012 22:52     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 58567     | Units: ug/Kg                        |


| CAS NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPOUND NAME                        | RESULT | Q | RL  | MDL  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|---|-----|------|
| 71-55-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,1-Trichloroethane                |        |   |     |      |
| 79-34-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2,2-Tetrachloroethane            | ND     |   | 5.0 | 0.3  |
| 79-00-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2-Trichloroethane                | ND     |   | 5.0 | 0.8  |
| 76-13-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,2-Trichloro-1,2,2-trifluoroethan | ND     |   | 5.0 | 0.6  |
| 75-34-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e                                    | ND     |   | 5.0 | 1.   |
| 75-34-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1-Dichloroethane                   | ND     |   | 5.0 |      |
| 120-82-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-Dichloroethene                   | ND     |   | 5.0 | 0.6  |
| 96-12-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-Trichlorobenzene               | ND     |   | 5.0 |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2-Dibromo-3-Chloropropane          | ND     |   | 5.0 | 0.30 |
| 106-93-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dibromoethane                    | ND     |   | 5.0 | 2.5  |
| 95-50-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dichlorobenzene                  | ND     |   | 5.0 | 0.64 |
| 107-06-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,2-Dichloroethane                   | ND     |   | 5.0 | 0.39 |
| 78-87-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2-Dichloropropane                  | ND     | ~ | 5.0 | 0.25 |
| 541-73-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,3-Dichlorobenzene                  | ND     |   |     | 2.5  |
| 106-46-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,4-Dichlorobenzene                  | ND     |   | 5.0 | 0.26 |
| 591-78-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2-Hexanone                           | ND     |   | 5.0 | 0.70 |
| 78-93-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-Butanone (MEK)                     | ND ND  |   | 25  | 2.5  |
| 108-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4-Methyl-2-pentanone (MIBK)          | ND     |   | 25  | 1.8  |
| 67-64-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Acetone                              | ND ND  |   | 25  | 1.6  |
| 71-43-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Benzene                              | ND ND  |   | 25  | 4.2  |
| 75-27-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromodichloromethane                 | ND ND  |   | 5.0 | 0.25 |
| 75-25-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromoform                            |        |   | 5.0 | 0.67 |
| 74-83-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromomethane                         | DND    |   | 5.0 | 2.5  |
| 75-15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbon disulfide                     | ND     |   | 5.0 | 0.45 |
| 56-23-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Carbon tetrachloride                 | ND     |   | 5.0 | 2.5  |
| 108-90-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorobenzene                        | ND     |   | 5.0 | 0.48 |
| 24-48-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dibromochloromethane                 | ND     |   | 5.0 | 0.66 |
| 75-00-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chloroethane                         | ND     |   | 5.0 | 0.64 |
| 7-66-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chloroform                           | ND     |   | 5.0 | 1.1  |
| 4-87-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chloromethane                        | ND     |   | 5.0 | 0.31 |
| 56-59-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cis-1,2-Dichloroethene               | ND     |   | 5.0 | 0.30 |
| 0061-01-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cis-1,3-Dichloropropene              | ND     |   | 5.0 | 0.64 |
| 10-82-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cyclohexane                          | ND     |   | 5.0 | 0.72 |
| 5-71-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dichlorodifluoromethane              | ND     |   | 5.0 | 0.70 |
| 00-41-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethylbenzene Ethylbenzene            | מא     |   | 5.0 | 0.41 |
| 8-82-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Isopropylbenzene                     | ND     |   | 5.0 | 0.35 |
| The state of the s |                                      | ND     |   | 5.0 | 0.75 |

#### FORM I GC/MS VOA ORGANICS ANALYSIS DATA SHEET

| Lab Name: TestAmerica Buffalo | Job No.: 480-18068-1                |
|-------------------------------|-------------------------------------|
| SDG No.:                      |                                     |
| Client Sample ID:             | Lab Sample ID: MB 480-58567/5       |
| Matrix: Solid                 | Lab File ID: F7881.D                |
| Analysis Method: 8260B        | Date Collected:                     |
| Sample wt/vol: 5(g)           | Date Analyzed: 04/06/2012 22:52     |
| Soil Aliquot Vol:             | Dilution Factor: 1                  |
| Soil Extract Vol.:            | GC Column: ZB-624 (60) ID: 0.25(mm) |
| % Moisture:                   | Level: (low/med) Low                |
| Analysis Batch No.: 58567     | Units: ug/Kg                        |

| CAS NO.    | COMPOUND NAME             | RESULT | Q        | RL  | MDL  |
|------------|---------------------------|--------|----------|-----|------|
| 79-20-9    | Methyl acetate            |        |          |     |      |
| 1634-04-4  | Methyl tert-butyl ether   | ND     |          | 5.0 | 0.93 |
| 108-87-2   | Methylcyclohexane         | ND     |          | 5.0 | 0.49 |
| 75-09-2    |                           | ND     |          | 5.0 | 0.76 |
| 100-42-5   | Methylene Chloride        | ND     |          | 5.0 | 2.3  |
|            | Styrene                   | ND     |          | 5.0 | 0.25 |
| 127-18-4   | Tetrachloroethene         | ND     |          | 5.0 |      |
| 108-88-3   | Toluene                   | ND ND  |          |     | 0.67 |
| 156-60-5   | trans-1,2-Dichloroethene  |        |          | 5.0 | 0.38 |
| 10061-02-6 | trans-1,3-Dichloropropene | ND     |          | 5.0 | 0.52 |
| 79-01-6    | Trichloroethene           | ND     |          | 5.0 | 2.2  |
| 75-69-4    |                           | ND     |          | 5.0 | 1.1  |
|            | Trichlorofluoromethane    | ND     |          | 5.0 | 0.47 |
| 75-01-4    | Vinyl chloride            | ND     |          |     |      |
| .330-20-7  | Xylenes, Total            |        | <u> </u> | 5.0 | 0.61 |
|            |                           | 0.859  | 1)       | 10  | 0.84 |

| CAS NO.    | SURROGATE                    | %REC | Q | LIMITS |
|------------|------------------------------|------|---|--------|
| 17060-07-0 | 1,2-Dichloroethane-d4 (Surr) |      |   |        |
| 2037-26-5  | Toluene-d8 (Surr)            | 94   |   | 64-126 |
| 460-00-4   |                              | 105  |   | 71-125 |
|            | (Sull)                       | 100  |   | 72-126 |



Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-18068-1

15 Soil Samples, 1 Field Duplicate, and 1 Equipment Blank Collected April 2 and 3, 2012

> Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for caprolactam and atrazine were above the allowable maximum (25%) on 04-06-12 (X4918.D). The %D for atrazine was above the allowable maximum (25%) on 04-06-12 (X4953.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method and equipment blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: One of twelve relative percent differences for spiked compounds was above the allowable maximums and 3 of 24 percent recoveries were outside

Page 1 of 2

QC limits for soil MS/MSD sample SB-A3(5'-6'1"). No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for spiked compounds were within QC limits for aqueous sample LCS 480-58223/2-A.

The %R for 4-nitrophenol was above QC limits for soil sample 480-58302/2-A. Positive results for 4-nitrophenol should be considered estimated (J) in associated soil samples.

<u>Field Duplicates</u>: The relative percent differences for the following compounds were above the allowable maximum (35%) for soil field duplicate pair SB-A2 (10'-11')/DUP-03 (attached table). Results for these compounds should be considered estimated (J) in samples SB-A2 (10'-11') and DUP-03.

| benzo(a)anthracene     | benzo(a)pyrene | benzo(b)fluoranthene |
|------------------------|----------------|----------------------|
| benzo(g,h,i)perylene   | chrysene       | fluoranthene         |
| indeno(1,2,3-cd)pyrene | phenanthrene   | pyrene               |

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

#### **Semi-Volatiles**

## <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-18068-1

| S1=                                                                                                                                 | SB-A2 (10'-11')                                                                 | S2=                                                                            | DUP-03                                    |     |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------|-----|
| Analyte 2-methylnaphthalene acenaphthene acenaphthylene anthracene benzo(a)anthracene benzo(b)fluoranthene                          | \$1<br>48<br>170<br>140<br>590<br>2000<br>1900<br>2500                          | \$2<br>36<br>97<br>120<br>380<br>1300<br>1300<br>1400                          | RPD (%) NC NC NC NC 42% 38% 56%           | *   |
| benzo(g,h,i)perylene benzo(k)fluoranthene biphenyl bis(2-ethylhexyl)phthalate carbazole chrysene dibenz(a,h)anthracene dibenzofuran | 1100<br><b>890</b><br>ND<br>ND<br><b>250</b><br>2000<br><b>370</b><br><b>98</b> | 640<br>760<br><b>13</b><br><b>73</b><br><b>140</b><br>1300<br>220<br><b>60</b> | 55%<br>53%<br>NC<br>NC<br>NC<br>42%<br>NC | *   |
| fluoranthene fluorene indeno(1,2,3-cd)pyrene naphthalene phenanthrene pyrene                                                        | 4000<br><b>190</b><br>1100<br><b>75</b><br>2500<br>3200                         | 2400<br><b>110</b><br>650<br><b>52</b><br>1300<br>2100                         | 50%<br>NC<br>51%<br>NC<br>63%<br>42%      | * * |

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

<sup>\*</sup> RPD is above the allowable maximum (35%)

#### FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1 SDG No.:

Matrix: Solid Level: Low Lab File ID: X4972.D

Lab ID: 480-18068-15 MS Client ID: SB-A3 (5'-6'1") MS

| COMPOUND                    | SPIKE<br>ADDED<br>(ug/Kg) |         | MS<br>CONCENTRATION | MS<br>% | QC<br>LIMITS | # |
|-----------------------------|---------------------------|---------|---------------------|---------|--------------|---|
| 2,4-Dinitrotoluene          |                           | (ug/Kg) | (ug/Kg)             | REC     | REC          |   |
| 2-Chlorophenol              | 3530                      | ND      | 4080                | 116     | 55-125       |   |
| 4-Chloro-3-methylphenol     | 3530                      | ND      | 2910                | 83      | 38-120       |   |
|                             | 3530                      | ND      | 3760                | 107     | 49-125       |   |
| 4-Nitrophenol               | 3530                      | ND      | 5650                | 160     |              |   |
| Acenaphthene                | 3530                      | 430     | 3640                | 91      | 53-120       |   |
| Bis(2-ethylhexyl) phthalate | 3530                      | ND      | 4020                |         |              |   |
| Fluorene                    | 3530                      | 630     |                     | 114     | 61-133       |   |
| Hexachloroethane            | 3530                      |         | 4110                | 99      | 63-126       |   |
| N-Nitrosodi-n-propylamine   | ~                         | ND      | 3090                | 87      | 41-120       |   |
| Pentachlorophenol           | 3530                      | ND      | 3670                | 104     | 46-120       |   |
| Phenol                      | 3530                      | ND      | 2820                | 80      | 33-136       |   |
|                             | 3530                      | 21 J    | 3140                | 88      | 36-120       |   |
| Pyrene                      | 3530                      | 3300    | 7340                | 114     | 51-133       | E |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8270C

#### FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

 Lab Name:
 TestAmerica Buffalo
 Job No.:
 480-18068-1

 SDG No.:
 Matrix:
 Solid
 Level:
 Low
 Lab File ID:
 X4973.D

 Lab ID:
 480-18068-15 MSD
 Client ID:
 SB-A3 (5'-6'1") MSD

| 0000                        | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | 90    | QC LIMITS |        | # |
|-----------------------------|----------------|----------------------|----------|-------|-----------|--------|---|
| COMPOUND                    | (ug/Kg)        | (ug/Kg)              | REC      | RPD   | RPD       | REC    | π |
| 2,4-Dinitrotoluene          | 3480           | 3910                 | 112      | 4.44  | 20        | 55-125 |   |
| 2-Chlorophenol              | 3480           | 2920                 |          | 0.000 |           |        |   |
| 4-Chloro-3-methylphenol     | 3480           | 3580                 | 103      |       | 25        | 38-120 |   |
| 4-Nitrophenol               | 3480           | 5190                 |          |       | 27        | 49-125 |   |
| Acenaphthene                | 3480           |                      | (149)    |       | 25        | 43-137 | F |
| Bis(2-ethylhexyl) phthalate |                | 3460                 | 87       | 5.13  | 35        | 53-120 |   |
| Fluorene                    | 3480           | 4060                 | 116      | 1.07  | 15        | 61-133 |   |
| Hexachloroethane            | 3480           | 3650                 | 87       | 12.0  | 15        | 63-126 |   |
|                             | 3480           | 3260                 | 94       | 5.57  | 46        | 41-120 |   |
| N-Nitrosodi-n-propylamine   | 3480           | 3730                 | 107      | 1.47  | 31        | 46-120 |   |
| Pentachlorophenol           | 3480           | 3220                 | 92       | 13.1  | 35        |        |   |
| Phenol                      | 3480           | 3160                 | 90       |       |           | 33-136 |   |
| Pyrene                      | 3480           | 4130                 | 23       | 1.00  | 35        | 36-120 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

#### FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

| Lab  | Name | : TestAmerica Buffa | 110    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Job  | No.:   | 480-180 | 068-1                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|------|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|---------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDG  | No.: |                     |        | The state of the s |      |        |         | when were present to the second second second        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | de la constantation primarie le manifest en A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |      |                     |        | and the same of th |      |        |         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Matr |      | Solid               | Level: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        | ID: X49 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | The state of the s |
| Lab  |      | LCS 480-58302/2-A   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clie | nt ID: |         | Mill Bill Mill And A Supplementary or 1988 Mills and | the expression on the same of |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|                             | SPIKE<br>ADDED | LCS<br>CONCENTRATION | LCS   | QC<br>LIMITS | #                                       |
|-----------------------------|----------------|----------------------|-------|--------------|-----------------------------------------|
| COMPOUND                    | (ug/Kg)        | (ug/Kg)              | REC   | -            | #                                       |
| 2,4-Dinitrophenol           | 3290           | 2990                 |       | REC          |                                         |
| 2,4-Dinitrotoluene          | 3290           |                      | 91    | 35-146       |                                         |
| 2-Chlorophenol              |                | 3770                 | 114   | 55-125       |                                         |
| 4-Chloro-3-methylphenol     | 3290           | 2700                 | 82    | 38-120       | *************************************** |
| 4-Nitrophenol               | 3290           | 3680                 | 112   | 49-125       |                                         |
| Acenaphthene                | 3290           | 5000                 | (152) | 43-137       | *                                       |
|                             | 3290           | 3340                 | 101   | 53-120       |                                         |
| Bis(2-ethylhexyl) phthalate | 3290           | 3710                 | 113   | 61-133       |                                         |
| Fluorene                    | 3290           | 3740                 |       |              |                                         |
| Hexachloroethane            | 3290           |                      | 114   | 63-126       |                                         |
| N-Nitrosodi-n-propylamine   |                | 2870                 | 87    | 41-120       |                                         |
| Pentachlorophenol           | 3290           | 3560                 | 108   | 46-120       |                                         |
| Phenol                      | 3290           | 2900                 | 88    | 33-136       |                                         |
| Pyrene                      | 3290           | 2830                 | 86    | 36-120       | *************************************** |
| r Ar cue                    | 3290           | 3500                 | 106   | 51-133       |                                         |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1

SDG No.:

Lab Sample ID: CCV 480-58387/3 Calibration Date: 04/06/2012 00:43 Instrument ID: HP5973X

Lab File ID: X4918.D

Calib Start Date: 03/01/2012 14:12

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 03/01/2012 16:13

Conc. Units: ug/L

| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAX<br>%D |
|----------------------------|---------------|---------|--------|---------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Benzaldehyde               | Ave           | 1.063   | 2 000  |         |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Acetophenone               | 2             |         | 1.207  | 0.0100  | 56800          | 50000           | 13.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.       |
|                            | Ave           | 1.870   | 2.078  | 0.0100  | 55600          | 50000           | 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| Caprolactam                | Lin1          |         | 0.0644 | 0,0100  | 25.500         |                 | and the same of th | 40.       |
| 1,2,4,5-Tetrachlorobenzene | Ave           | 0.4710  | 0 4006 |         | 35500          | 50000           | (-29.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.       |
| Biphenyl                   | 2             |         | 0.4826 | 0.0100  | 51200          | 50000           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
| 3 4 6                      | Ave           | 1.326   | 1.288  | 0.0100  | 48600          | 50000           | -2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| 2,3,4,6-Tetrachlorophenol  | Ave           | 0.2494  | 0.2615 | 0.0100  | 52400          |                 | -2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
| Atrazine                   | Ave           | 0.3017  |        |         | 52400          | 50000           | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
|                            |               | 0.3017  | 0.3773 | 0.0100  | 62500          | 50000           | 25.1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1 SDG No.:

Lab Sample ID: CCV 480-58507/3 Calibration Date: 04/06/2012 15:33

Instrument ID: HP5973X Calib Start Date: 03/01/2012 14:12

Lab File ID: X4953.D Conc. Units: ug/L

|                            |               |         |        | Miller of hadron or memory gray | Andrew Control of the Control of | Committee of the Commit | The second secon | ****      |
|----------------------------|---------------|---------|--------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ANALYTE                    | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                         | CALC<br>AMOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPIKE<br>AMOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAX<br>%D |
| Benzaldehyde               | Ave           | 1.063   | 1.205  | 0.0100                          | F 6700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Acetophenone               | Ave           | 1.870   |        |                                 | 56700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
| Caprolactam                |               | 1.070   | 2.092  | 0.0100                          | 55900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
|                            | Linl          |         | 0.1054 | 0.0100                          | 56100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 40.0      |
| 1,2,4,5-Tetrachlorobenzene | Ave           | 0.4710  | 0.5160 | 0.0100                          | 5.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Biphenyl                   | Ave           | 1.326   |        |                                 | 54800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
| 2,3,4,6-Tetrachlorophenol  |               | 1.326   | 1.386  | 0.0100                          | 52300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
|                            | Ave           | 0.2494  | 0.2621 | 0.0100                          | 52500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0      |
| Atrazine                   | Ave           | 0.3017  | 0.4166 | 0.0100                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.0      |
|                            |               |         | 0.4100 | 0.0100                          | 69000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (38.1*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.0      |



### QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-18068-1

#### 12 Soil Samples Collected April 2, 2012

Prepared by: Donald Anné May 4, 2012

Geology

Hydrology

Remediation

Water Supply

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analysis of the method blank reported target PCBs as not detected.

Surrogate Recovery: The surrogates recoveries were within QC limits for the soil samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD sample RB-06 (12"-24").

<u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil sample LCS 480-58267/2-A.

<u>Initial Calibration</u>: The %RSDs for PCB-1016 and PCB-1260 were below the allowable maximum (20%), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-05-12 (CCV 480-58319/16) on the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-05-12 (CCV 480-58319/28) on the ZB-5 column. Positive results for PCB-1016 and PCB-1260 should be considered estimated (J) in associated samples.

<u>PCB Identification Summary for Multicomponent Analytes</u>: The checked surrogates were within GC quantitation limits. The analyses of samples in this data pack reported target PCBs as not detected.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-18068-1.pcb.wpd

#### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1 SDG No.:

Lab Sample ID: CCV 480-58319/28

Calibration Date: 04/05/2012 22:23 Instrument ID: HP5890-12

Calib Start Date: 10/23/2011 13:54 GC Column: ZB-5

ID: 0.53(mm) Calib End Date: 10/23/2011 15:23

Lab File ID: 12\_163\_216.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CALC   | SPIKE<br>AMOUNT | %D    | MAX  |
|------------------------|---------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|-------|------|
| PCB-1016 Peak 1        |               |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 11100111        |       | %D   |
| PCB-1016 Peak 2        | Ave           | 228124  | 305374  | The second secon | 0.669  | 0.500           | 33.9* | 15.  |
|                        | Ave           | 119908  | 170210  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.710  | 0.500           |       |      |
| PCB-1016 Peak 3        | Ave           | 331581  | 415532  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                 | 42.0* | 15.  |
| PCB-1016 Peak 4        | Ave           | 133756  | 204462  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.627  | 0.500           | 25.3* | 15.0 |
| PCB-1260 Peak 1        | Ave           | 272257  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.764  | 0.500           | 52.9* | 15.0 |
| PCB-1260 Peak 2        | Ave           |         | 361406  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.664  | 0.500           | 32.7* | 15.0 |
| PCB-1260 Peak 3        |               | 438611  | 525586  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.599  | 0.500           | 19.8* | 15.0 |
| PCB-1260 Peak 4        | Ave           | 177029  | 232348  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.656  | 0.500           | 31.2* | 15.0 |
|                        | Ave           | 124111  | 137218  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.553  | 0.500           |       | **   |
| Tetrachloro-m-xylene   | Lin1          |         | 5395333 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0368 |                 | 10.6  | 15.0 |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 6218167 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.0300          | 22.7* | 15.0 |
|                        |               |         | 0210107 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0404 | 0.0300          | 34.7* | 15.0 |

average %D for PCB-10/6 = 38.5% average %D for PCB-1260 = 23.6%

#### FORM VII PCBS CONTINUING CALIBRATION DATA

Lab Name: TestAmerica Buffalo Job No.: 480-18068-1

SDG No.:

Lab Sample ID: CCV 480-58319/16

Instrument ID: HP5890-12

Lab File ID: 12\_163\_204.D

GC Column: ZB-5 ID: 0.53(mm) Calib End Date: 10/23/2011 15:23

Calibration Date: 04/05/2012 19:26

Calib Start Date: 10/23/2011 13:54

Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF                                  | CF      | MIN CF                                  | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|-----------------------------------------|---------|-----------------------------------------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | 7             |                                         |         |                                         |                |                 |       | 0.0       |
| 700                    | Ave           | 228124                                  | 305564  |                                         | 0.670          | 0.500           | 33.9* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908                                  | 169896  | *************************************** | 0.708          |                 |       |           |
| PCB-1016 Peak 3        | Ave           | 331581                                  | 422550  |                                         |                | 0.500           | 41.7* | 15.0      |
| PCB-1016 Peak 4        | 7             |                                         | 422558  |                                         | 0.637          | 0.500           | 27.4* | 15.0      |
|                        | Ave           | 133756                                  | 200484  |                                         | 0.749          | 0.500           | 49.9* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257                                  | 375708  |                                         | 0.690          |                 |       |           |
| PCB-1260 Peak 2        | Ave           | 438611                                  | 517738  |                                         |                | 0.500           | 38.0* | 15.0      |
| PCB-1260 Peak 3        | 7             |                                         | 31/138  |                                         | 0.590          | 0.500           | 18.0* | 15.0      |
|                        | Ave           | 177029                                  | 232138  |                                         | 0.656          | 0.500           | 31.1* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111                                  | 136058  |                                         | 0.548          |                 |       |           |
| Petrachloro-m-xylene   | Linl          |                                         |         | V4                                      |                | 0.500           | 9.6   | 15.0      |
| DCB Decachlorobiphenyl |               | *************************************** | 5338667 |                                         | 0.0364         | 0.0300          | 21.3* | 15.0      |
|                        | Ave           | 4617528                                 | 6119167 |                                         | 0.0398         | 0.0300          | 32.5* | 15.0      |

average %D for PCB-1016 = 38.2% average %D for PCB-1260 = 24.2%



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No: 480-18068-1

#### 12 Soil Samples Collected April 2, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

CRDL Standard for AA and ICP: The percent recoveries for target metals were within laboratory QC limits (50-150%) for CRQL standard samples CRI 480-58450/7, CRI 480-58892/7, and CRA 480-58512/3.

<u>Blanks</u>: The analyses of initial calibration and continuing calibration, and method blanks reported TAL metals as below the CRDLs, as required.

<u>ICP Interference Check Sample</u>: The percent recoveries for applicable metals were within control limits (80-120%).

Spike Sample Recovery: Two of two percent recoveries (%Rs) for aluminum and 1 of 2 %Rs barium were above control limits (75-125%), but were not above 250% for soil MS/MSD sample RB-03 (12"-24"). Positive results for aluminum and barium should be considered estimated (J) in associated soil samples.

One of two %Rs for antimony and magnesium were below control limits (75-125%), but were not below 10% for soil MS/MSD sample RB-03 (12"-24"). Positive and "not detected" results for antimony and magnesium should be considered estimated (J) in associated soil samples.

<u>Laboratory Duplicates</u>: The relative percent differences for TAL metals were below the allowable maximum (35%) in soil MS/MSD samples RB-03 (0"-6") and RB-03 (12"-24"), as required.

<u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in soil samples LCSSRM 480-58242/2-A and LCSSRM 480-58215/2-A.

ICP Serial Dilution: The %Ds for following metals were above the allowable maximum (10%) for soil serial dilution sample RB-03 (12"-24"). Positive results for these metals that are above the CRDLs should be considered estimated (J) in associated soil samples.

aluminum

calcium

chromium

iron

magnesium

manganese

vanadium

zinc

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

Percent Solids: The % solids for soil samples were above 50%.

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client I | D: RB-03 (12"-24") MS | Lab ID: 480-18068-3 MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lab Name | : TestAmerica Buffalo | Job No.: 480-18068-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG No.: |                       | American data (Maria April 2000) and a state of the control of the |
| Matrix:  | Solid                 | Concentration Units: mg/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

% Solids: 77.1

| Analyte   | SSR<br>C | Sample<br>Result (SR)<br>C | Spike<br>Added (SA) | %R     | Control<br>Limit<br>%R | · · · · · · · · · · · · · · · · · · · | Method |
|-----------|----------|----------------------------|---------------------|--------|------------------------|---------------------------------------|--------|
| Aluminum  | 12750    | 7330                       | 2490                | (212)  |                        |                                       |        |
| Antimony  | 37.78    | ND                         | 49.8                | (217)  | 75-125                 | F                                     | 6010B  |
| Arsenic   | 51.84    | 5.4                        | 49.8                | 76     | 75-125                 | ·                                     | 6010B  |
| Barium    | 137.9    | 72.9                       | 49.8                | 93     | 75-125                 |                                       | 6010B  |
| Beryllium | 48.89    | 0.48                       | 49.8                | (131)  | 75-125                 | F                                     | 6010B  |
| Cadmium   | 47.16    | 0.28                       | 49.8                | 97     | 75-125                 |                                       | 6010B  |
| Calcium   | 21660    | 19500                      | 2490                | 94     | 75-125                 |                                       | 6010B  |
| Chromium  | 61.04    | 13.1                       |                     | 88     | 75-125                 | 4                                     | 6010B  |
| Cobalt    | 58.24    | 8.2                        | 49.8                | 96     | 75-125                 |                                       | 6010B  |
| Copper    | 72.57    | 22.0                       | 49.8                | 101    | 75-125                 |                                       | 6010B  |
| Iron      | 21320    | 17800                      | 49.8                | 102    | 75-125                 |                                       | 6010B  |
| Lead      | 71.48    | 18.0                       | 2490                | MA 140 | 75-125                 | 4                                     | 6010B  |
| Magnesium | 8982     | 6670                       | 49.8                | 107    | 75-125                 |                                       | 6010B  |
| Manganese | 556.8    | 468                        | 2490                | 93     | 75-125                 |                                       | 6010B  |
| Nickel    | 70.24    | 19.3                       | 49.8                | M 179  | 75-125                 | 4                                     | 6010B  |
| Potassium | 3708     | 972                        | 49.8                | 102    | 75-125                 |                                       | 6010B  |
| Selenium  | 44.94    | ND ND                      | 2490                | 110    | 75-125                 |                                       | 6010B  |
| Silver    | 11.53    | ND ND                      | 49.8                | 90     | 75-125                 |                                       | 6010B  |
| Sodium    | 2459     |                            | 12.4                | 93     | 75-125                 |                                       | 6010B  |
| 'hallium  | 47,72    |                            | 2490                | 96     | 75-125                 |                                       | 6010B  |
| anadium   | 66.74    | ND 15 6                    | 49.8                | 96     | 75-125                 |                                       | 6010B  |
| inc       | 110.6    | 15.6                       | 49.8                | 103    | 75-125                 |                                       | 6010B  |
|           | 110.01   | 58.2                       | 49.8                | 105    | 75-125                 |                                       | 6010B  |

SSR = Spiked Sample Result

NA- Not applicable, the sample concentration was greater than 4 times the spiking level; therefore, a valid % R could not be calculated.

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

#### 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: RB-03 (12"-24") MSD

Lab ID: 480-18068-3 MSD

Lab Name: TestAmerica Buffalo

Job No.: 480-18068-1

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 77.1

| Analyte   | (SDR) | Spike<br>Added (SA) | %R           | Control<br>Limit<br>%R | RPD  | RPD<br>Limit | Q | Method |
|-----------|-------|---------------------|--------------|------------------------|------|--------------|---|--------|
| Aluminum  | 12710 | 2520                | (214)        | 75-125                 | 0.00 | 20           | F | 6010B  |
| Antimony  | 33.69 | F.O. 3              |              |                        | 0    |              | - | 0010B  |
| Arsenic   | 49.58 | 50.3                | (67)         | 75-125                 | 11.5 | 20           | F | 6010B  |
| Barium    | 132.4 | 50.3                | 88           | 75-125                 | 4.46 | 20           |   | 6010B  |
| Beryllium | 46.39 | 50.3                | 118          | 75-125                 | 4.02 | 20           |   | 6010B  |
| Cadmium   | 44.50 | 50.3                | 91           | 75-125                 | 5.24 | 20           |   | 6010B  |
| Calcium   | 18520 | 50.3                | 88           | 75-125                 | 5.80 | 20           |   | 6010B  |
| Chromium  | 58.68 | 2520                | NA -38       | 75-125                 | 15.6 | 20           | 4 | 6010B  |
| Cobalt    | 54.39 | 50.3                | 91           | 75-125                 | 3.94 | 20           |   | 6010B  |
| Copper    | 71.45 | 50.3                | 92           | 75-125                 | 6.84 | 20           |   | 6010B  |
| Iron      |       | 50.3                | 98           | 75-125                 | 1.56 | 20           |   | 6010B  |
| 11011     | 21240 | 2520                | <b>₩</b> 135 | 75-125                 | 0.00 | 20           | 4 | 6010B  |
| Lead      | 67.71 | 50.3                | 0.0          |                        | 0    |              |   |        |
| Magnesium | 7968  | 2520                | 99           | 75-125                 | 5.42 | 20           |   | 6010B  |
| Manganese | 609.7 | 50.3                | (52)         | 75-125                 | 12.0 | 20           | F | 6010B  |
| Nickel    | 67.29 | 50.3                | VA 282       | 75-125                 | 9.08 | 20           | 4 | 6010B  |
| Potassium | 3900  |                     | 95           | 75-125                 | 4.29 | 20           |   | 6010B  |
| Selenium  | 43.04 | 2520                | 116          | 75-125                 | 5.05 | 20           |   | 6010B  |
| Silver    | 10.99 | 50.3                | 86           | 75-125                 | 4.33 | 20           |   | 6010B  |
| Sodium    | 2316  | 12.6                | 87           | 75-125                 | 4.77 | 20           |   | 6010B  |
| hallium   | 45.25 | 2520                | 89           | 75-125                 | 6.01 | 20           |   | 6010B  |
| anadium   | 64.48 | 50.3                | 90           | 75-125                 | 5.32 | 20           |   | 6010B  |
| inc       | 104.7 | 50.3                | 97           | 75-125                 | 3.45 | 20           |   | 6010B  |
|           | 104./ | 50.3                | 93           | 75-125                 | 5.44 | 20           |   | 6010B  |

SDR = Sample Duplicate Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

| Lab |     | 480-18068-3 |
|-----|-----|-------------|
| SDG | No: |             |
|     |     |             |

Lab Name: TestAmerica Buffalo Job No: 480-18068-1

Matrix: Solid Concentration Units: mg/Kg

|           | 7.0                            |                                  |   |                 | 97119 | A CONTRACTOR OF THE PROPERTY O |
|-----------|--------------------------------|----------------------------------|---|-----------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte   | Initial Sample<br>Result (I) C | Serial<br>Dilution<br>Result (S) | С | %<br>Difference | Q     | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aluminum  | 7330                           | 8137                             | T | (11)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Antimony  | ND                             | ND                               |   | NC              |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Arsenic   | 5.4                            | 5.16                             | J | NC              |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Barium    | 72.9                           | 80.49                            |   | 10              | ·     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Beryllium | 0.48                           | 0.498                            | J | NC NC           |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cadmium   | 0.28                           | 0.342                            | J |                 |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calcium   | 19500                          | 21910                            |   | NC NC           |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chromium  | 13.1                           | 15.33                            |   | (13)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cobalt    | 8.2                            | 8.71                             |   | (17)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Copper    | 22.0                           |                                  |   | 6.2             |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iron      | 17800                          | 23.82                            |   | 8.3             |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lead      | 18.0                           | 20270                            |   | (14)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Magnesium | 6670                           | 19.17                            |   | 6.5             |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Manganese |                                | 7392                             |   | (11)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nickel    | 468                            | 529.1                            |   | (13)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Potassium | 19.3                           | 20.66                            | J | 6.8             |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Selenium  | 972                            | 1065                             |   | 9.6             |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | ND                             | ND                               |   | NC              |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Silver    | ND                             | ND                               |   | NC              |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sodium    | 68.2 J                         | 88.75                            | J | NC NC           |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thallium  | ND                             | ND                               |   | NC NC           |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Vanadium  | 15.6                           | 17.64                            |   |                 | v     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Zinc      | 58.2                           | 66.04                            |   |                 |       | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           |                                |                                  |   | (13)            | V     | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Calculations are performed before rounding to avoid round-off errors in calculated results.



Geology

Hydrology

Remediation

Water Supply

# Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-18071-1

### 12 Soil Samples, 3 Field Duplicates, and 2 Trip Blanks Collected April 3-5, 2012

Prepared by: Donald Anné May 4, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 12 soil samples, 3 field duplicates, and 2 trip blanks analyzed for volatiles, and 12 soil samples and 3 field duplicates analyzed semi-volatiles, PCB, and TAL metals

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

• Positive semi-volatile results for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene were flagged as "estimated" (J) in the following samples because %Ds for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene were above the allowable maximum in the associated soil continuing calibration.

| RB-07(0-6")    | RB-07(6"-12")  | RB-07(12"-24") | RB-08(0-6")   |
|----------------|----------------|----------------|---------------|
| RB-08(6"-12")  | RB-08(12"-24") | RB-09(0-6")    | RB-09(6"-12") |
| RB-09(12"-24") | DUP-01         | DUP-02 (4/5)   | RB-10(0-6")   |

• Positive semi-volatile results for dibenz(a,h)anthracene were flagged as "estimated" (J) in the following samples because %D for dibenz(a,h)anthracene wAS above the allowable maximum in the associated soil continuing calibration.

| RB-07(0-6")<br>RB-08(6"-12")<br>DUP-01 | RB-07(6"-12")<br>RB-08(12"-24")<br>DUP-02 (4/5) | RB-07(12"-24")<br>RB-09(0-6")<br>RB-10(0-6") | RB-08(0-6")<br>RB-09(6"-12") |
|----------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------|
|----------------------------------------|-------------------------------------------------|----------------------------------------------|------------------------------|

- Positive semi-volatile results for 2-methylnaphthalene were flagged as "estimated" (J) in samples TP-A2 and DUP-02 (4/3) because relative percent difference for 2-methylnaphthalene was above the allowable maximum in the associated soil field duplicate pair TP-A2/DUP-02 (4/3).
- Positive semi-volatile results for benzo(k)fluoranthene were flagged as "estimated" (J) in samples RB-09(0-6") and DUP-01 because relative percent difference for benzo(k)fluoranthene was above the allowable maximum in the associated soil field duplicate pair RB-09(0-6")/DUP-01.
- Positive semi-volatile results for benzo(b)fluoranthene were flagged as "estimated" (J) in samples RB-09(12"-24") and DUP-02 (4/5) because relative percent difference for benzo(b)fluoranthene was above the allowable maximum in the associated soil field duplicate pair RB-09(12"-24")/DUP-02 (4/5).
- Positive metals results for aluminum were flagged as "estimated" (J) in all 12 soil samples and 3 field duplicates because 2 of 2 percent recoveries for aluminum were above control limits, but only one was above 200% in the associated soil MS/MSD samples.
- Positive metal results for magnesium were flagged as "estimated" (J) in all 12 soil samples and 3 field duplicates because 1 or 2 of 2 percent recoveries for magnesium were below control limits, but were not below 10% in the associated soil MS/MSD samples.
- Positive metal results for nickel were flagged as "estimated" (J) in the following soil samples because 1 of 2 percent recoveries for nickel was above control limits, but was not above 200% in the associated soil MS/MSD sample.

| RB-07(0-6")    | RB-07(6"-12")  | RB-07(12"-24") | RB-08(0-6")   |
|----------------|----------------|----------------|---------------|
| RB-08(6"-12")  | RB-08(12"-24") | RB-09(0-6")    | RB-09(6"-12") |
| RB-09(12"-24") | DUP-01         | DUP-02 (4/5)   | RB-10(0-6")   |

• Positive metal results for arsenic and calcium were flagged as "estimated" (J) in the following soil samples because 2 of 2 percent recoveries for arsenic and calcium were below control limits, but were not below 10% in the associated soil MS/MSD sample.

| RB-07(0-6")    | RB-07(6"-12")  | RB-07(12"-24") | RB-08(0-6")   |
|----------------|----------------|----------------|---------------|
| RB-08(6"-12")  | RB-08(12"-24") | RB-09(0-6")    | RB-09(6"-12") |
| RB-09(12"-24") | DUP-01         | DUP-02 (4/5)   | RB-10(0-6")   |

• Positive metal results for mercury were flagged as "estimated" (J) in the following soil samples because 1 of 2 percent recoveries for mercury was below control limits, but was not below 10% in the associated soil MS/MSD sample.

| RB-07(0-6")    | RB-07(6"-12")  | RB-07(12"-24") | RB-08(0-6")   |
|----------------|----------------|----------------|---------------|
| RB-08(6"-12")  | RB-08(12"-24") | RB-09(0-6")    | RB-09(6"-12") |
| RB-09(12"-24") | DUP-01         | DUP-02 (4/5)   | RB-10(0-6")   |

• Positive metal results for iron were flagged as "estimated" (J) in the following soil samples because the relative percent difference for iron was above the allowable maximum in the associated soil MS/MSD sample.

| RB-07(0-6")    | RB-07(6"-12")  | RB-07(12"-24") | RB-08(0-6")   |
|----------------|----------------|----------------|---------------|
| RB-08(6"-12")  | RB-08(12"-24") | RB-09(0-6")    | RB-09(6"-12") |
| RB-09(12"-24") | DUP-01         | DUP-02 (4/5)   | RB-10(0-6")   |

• Positive metal results for cobalt were flagged as "estimated" (J) in the following soil samples because the %D for cobalt was above the allowable maximum in the associated serial dilution sample.

| RB-07(0-6")    | RB-07(6"-12")  | RB-07(12"-24") | RB-08(0-6")   |
|----------------|----------------|----------------|---------------|
| RB-08(6"-12")  | RB-08(12"-24") | RB-09(0-6")    | RB-09(6"-12") |
| RB-09(12"-24") | DUP-01         | DUP-02 (4/5)   | RB-10(0-6")   |

- Positive metal results for potassium were flagged as "estimated" (J) in samples TP-A2, DUP-02 (4/3), and TP-A1 because the %D for potassium was above the allowable maximum in the associated serial dilution sample.
- Positive metal results for calcium were flagged as "estimated" (J) in samples TP-A2 and DUP-02 (4/3) because relative percent difference for calcium was above the allowable maximum in the associated soil field duplicate pair TP-A2/DUP-02 (4/3).
- Positive metal results for lead were flagged as "estimated" (J) in samples RB-09(0-6") and DUP-01 because relative percent difference for lead was above the allowable maximum in the associated soil field duplicate pair RB-09(0-6")/DUP-01.

• Positive metal results for barium, lead, manganese, potassium, and zinc were flagged as "estimated" (J) in samples RB-09(12"-24") and DUP-02 (4/5) because relative percent differences for barium, lead, manganese, potassium, and zinc were above the allowable maximum in the associated soil field duplicate pair RB-09(12"-24")/DUP-02 (4/5).

All data are considered usable with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Geology

Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-18071-1

### 12 Soil Samples, 3 Field Duplicates, and 2 Trip Blanks Collected April 3-5, 2011

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for acetone and 2-butanone were above the allowable maximum (25%) on 04-10-12 (F7960.D). The %Ds for methyl tert-butyl ether and carbon tetrachloride were above the allowable maximum (25%) on 04-13-12 (G11022.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method and trip blanks reported target compounds as not detected.

Internal Standard Area Summary: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximum, but 9 of 26 percent recoveries (%Rs) were below QC limits for soil MS/MSD sample TP-A1. The RPDs for spike compounds were below the allowable maximum, but 21 of 26 %Rs were below QC limits for soil MS/MSD

Page 1 of 2

sample RB-10 (0-6"). No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for the following aqueous and soil samples.

| LCS 480-58912/3<br>LCS 480-58994/4<br>LCS 480-59441/4 | LCS 480-58856/5<br>LCS 480-59014/17-A | LCS 480-59033/4<br>LCS 480-59414/6 |
|-------------------------------------------------------|---------------------------------------|------------------------------------|
|-------------------------------------------------------|---------------------------------------|------------------------------------|

Field Duplicates: The analyses of soil field duplicate pairs RB-09(0-6")/DUP-01 and RB-09(12"-24")/DUP-02 (4/5) reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.

The relative percent differences for applicable compounds were below the allowable maximum (35%) for soil field duplicate pair TP-A2/DUP-02 (4/3) (attached table), as required.

<u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### **Volatiles**

### Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-18071-1

| S1= T                                                                                                                                                                                     | P-A2                                                                        | S2=                                                                                 | DUP-02 (4/3)                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------|
| Analyte  1,1,1-trichloroethane 1,2-dichloroethane benzene cis-1,2-dichloroethene ethylbenzene isopropylbenzene methyl acetate methylcyclohexane methylene chloride toluene xylenes, total | \$1<br>39<br>61<br>100<br>64<br>140<br>940<br>230<br>850<br>ND<br>78<br>320 | <u>S2</u><br>ND<br>53<br>92<br>59<br>120<br>1000<br>230<br>860<br>29<br>65<br>270.0 | RPD (%) NC NC NC 15% 6% 0% 1% NC NC |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in ug/kg

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

## FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | e: TestAmerica Buffa |        | Job No.: 480-18071-1 |
|----------|----------------------|--------|----------------------|
| SDG No.  |                      |        |                      |
| Matrix:  |                      | Level: | Lab File ID: F8094.D |
| Lab ID:  | 480-18147-1 MS       |        | Client ID: TP-A1 MS  |

|                          | SPIKE   | SAMPLE        | MS            | MS       | QC               |   |
|--------------------------|---------|---------------|---------------|----------|------------------|---|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | ુ        | LIMITS           | # |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC      | REC              |   |
| 1,1-Dichloroethane       | 50.3    | ND            | 46.4          | 92       | 79-126           |   |
| 1,1-Dichloroethene       | 50.3    | ND            | 39.0          | 78       | 65-153           |   |
| 1,2-Dichlorobenzene      | 50.3    | ND            | 42.1          | 84       | 75-120           |   |
| 1,2-Dichloroethane       | 50.3    | ND            | 44.4          | 88       | 77-122           |   |
| Benzene                  | 50.3    | ND            | 47.1          | 94       | 79-127           |   |
| Chlorobenzene            | 50.3    | ND            | 47.9          | 95       | 76-124           |   |
| cis-1,2-Dichloroethene   | 50.3    | ND            | 46.9          | 93       | 81-117           |   |
| Ethylbenzene             | 50.3    | ND            | 48.3          | 96       | 80-120           |   |
| Methyl tert-butyl ether  | 50.3    | ND            | 40.5          | 81       | 63-125           |   |
| Tetrachloroethene        | 50.3    | 7.7           | 60.0          | 104      |                  |   |
| Toluene                  | 50.3    | ND ND         | 48.1          |          | 74-122           |   |
| trans-1,2-Dichloroethene | 50.3    | ND            |               | 96       | 74-128           |   |
| Trichloroethene          | 50.3    | 8.5           | 47.6          | 95<br>90 | 78-126<br>77-129 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8260\mbox{B}$ 

# FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | : TestAmerica Buffa | alo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Job No.: 480-18071-1 |
|----------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| SDG No.: | :                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |
| No. of   |                     | 200 A |                      |
| Matrix:  | Solid               | Level: Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lab File ID: F8025.D |
| Lab ID:  | 480-18147-1 MSD     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Client ID: TP-A1 MSD |

|                                               | SPIKE   | MSD           | MSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | QC L | IMITS  |   |
|-----------------------------------------------|---------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|--------|---|
|                                               | ADDED   | CONCENTRATION | 용                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 용    |      |        | # |
| COMPOUND                                      | (ug/Kg) | (ug/Kg)       | REC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RPD  | RPD  | REC    |   |
| 1,1-Dichloroethane                            | 52.7    | 38.9          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.6 | 30   | 79-126 | F |
| 1,1-Dichloroethene                            | 52.7    | 34.0          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.8 | 30   | 65-153 | F |
| 1,2-Dichlorobenzene                           | 52.7    | 34.0          | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 30   | 75-120 | F |
| 1,2-Dichloroethane                            | 52.7    | 35.2          | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /    | 30   | 77-122 | F |
| Benzene                                       | 52.7    | 39.8          | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 30   | 79-127 | F |
| Chlorobenzene                                 | 52.7    | 39.4          | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 30   | 76-124 |   |
| cis-1,2-Dichloroethene                        | 52.7    | 39.0          | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 30   |        | F |
| Ethylbenzene                                  | 52.7    | 38.7          | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22.2 |      | 81-117 | F |
| Methyl tert-butyl ether                       | 52.7    | 33.2          | Name of the last o |      | 30   | 80-120 | F |
| Tetrachloroethene                             | 52.7    | 52.3          | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.8 | 30   | 63-125 |   |
| Toluene                                       |         |               | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.7 | 30   | 74-122 |   |
| trans-1,2-Dichloroethene                      | 52.7    | 40.5          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.3 | 30   | 74-128 |   |
| ~~~ <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u> | 52.7    | 40.1          | (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.3 | 30   | 78-126 | F |
| Trichloroethene                               | 52.7    | 50.1          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.09 | 30   | 77-129 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

## FORM III GC/MS VOA MATRIX SPIKE RECOVERY

| Lab Name | : TestAmerica Buff |        |     | Job N | 0.:   | 480-180 | 71-1   |  |
|----------|--------------------|--------|-----|-------|-------|---------|--------|--|
| SDG No.: |                    |        |     |       |       |         |        |  |
|          |                    |        |     |       |       |         |        |  |
| Matrix:  | Solid              | Level: | Low | Lab F | ile I | D: F79  | 96.D   |  |
| Lab ID:  | 480-18223-12 MS    |        |     | Clien | t ID: |         | (0-6") |  |

|                          | SPIKE<br>ADDED | SAMPLE<br>CONCENTRATION | MS      | MS<br>% | QC     | P.   |
|--------------------------|----------------|-------------------------|---------|---------|--------|------|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)                 | (ug/Kg) | REC     | LIMITS | #    |
| 1,1-Dichloroethane       | 48.7           | ND ND                   | 35.4    |         | REC    | ···· |
| 1,1-Dichloroethene       | 48.7           | ND                      |         | (73)    |        |      |
| 1,2-Dichlorobenzene      | 48.7           | ND                      | 29.2    | 60      |        | F    |
| 1,2-Dichloroethane       | 48.7           |                         | 12.0    | 25      | 75-120 |      |
| Benzene                  | 48.7           | ND                      | 29.8    | 61)     | 77-122 | F    |
| Chlorobenzene            |                | ND                      | 34.1    | (70)    | 79-127 | F    |
| cis-1,2-Dichloroethene   | 48.7           | ND                      | 22.5    | (46)    | 76-124 | F    |
| Ethylbenzene             | 48.7           | ND                      | 32.2    | (66)    | 81-117 | F    |
|                          | 48.7           | ND                      | 22.2    | 46      | 80-120 | F    |
| Methyl tert-butyl ether  | 48.7           | ND                      | 32.0    | 66      | 63-125 |      |
| Tetrachloroethene        | 48.7           | ND                      | 22.8    | (47)    | 74-122 | F    |
| Toluene                  | 48.7           | ND                      | 29.5    | 61      | 74-128 | F    |
| trans-1,2-Dichloroethene | 48.7           | ND                      | 31.5    | 65      | 78-126 | F    |
| Prichloroethene          | 48.7           | ND                      | 25.3    | 52      | 77-129 | F    |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8260\mbox{B}$ 

# FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | e: TestAmerica Buffa |        |     | Job No.: 480-18071-1        |
|----------|----------------------|--------|-----|-----------------------------|
| SDG No.: | :                    |        |     |                             |
| Matrix:  | Calid                |        |     |                             |
| macrix.  | 2011d                | Level: | Low | Lab File ID: F7997.D        |
| Lab ID:  | 480-18223-12 MSD     |        |     | Client ID: RB-10 (0-6") MSD |

|                          | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | 8   | QC LIMITS |        |   |
|--------------------------|----------------|----------------------|----------|-----|-----------|--------|---|
| COMPOUND                 | (ug/Kg)        | (ug/Kg)              | REC      | RPD | RPD       | REC    | # |
| 1,1-Dichloroethane       | 54.9           | 45.8                 | 83       |     | 30        | 79-126 |   |
| 1,1-Dichloroethene       | 54.9           | 39.2                 | 71       | 29  | 30        | 65-153 |   |
| 1,2-Dichlorobenzene      | 54.9           | 15.2                 | (28)     | 23  | 30        |        |   |
| 1,2-Dichloroethane       | 54.9           | 37.6                 | 68       | 1   |           | 75-120 | F |
| Benzene                  | 54.9           | 43.5                 | 79       |     | 30        | 77-122 | F |
| Chlorobenzene            | 54.9           | 28.9                 |          | 24  | 30        | 79-127 |   |
| cis-1,2-Dichloroethene   | 54.9           |                      | (53)     | 25  | 30        | 76-124 | F |
| Ethylbenzene             | 54.9           | 41.0                 | (75)     | 24  | 30        | 81-117 | F |
| Methyl tert-butyl ether  |                | 28.7                 | (52)     | 25  | 30        | 80-120 | F |
| Tetrachloroethene        | 54.9           | 41.1                 | 75       | 25  | 30        | 63-125 |   |
| Toluene                  | 54.9           | 30.7                 | 56       | 29  | 30        | 74-122 | F |
|                          | 54.9           | 37.8                 | 69       | 25  | 30        | 74-128 | F |
| trans-1,2-Dichloroethene | 54.9           | 40.8                 | (74)     | 26  | 30        | 78-126 | F |
| Trichloroethene          | 54.9           | 33.0                 | 60       | 26  | 30        | 77-129 | F |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8260B

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCVIS 480-58856/3 Calibration Date: 04/10/2012 09:47

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/08/2012 01:25

Lab File ID: F7960.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                |               |         |        |         | T              |                 |         |           |
|----------------------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
|                                        | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
| Dichlorodifluoromethane                | Ave           | 0.2059  | 0.1799 |         | 43.7           | 50.0            | -12.6   |           |
| Chloromethane                          | Ave           | 0.2765  | 0.2379 | 0.1000  | 43.0           | 50.0            | -12.6   | 50.0      |
| Vinyl chloride                         | Ave           | 0.2213  | 0.2060 |         | 46.5           | 50.0            |         | 50.0      |
| Bromomethane                           | Ave           | 0.1097  | 0.0947 |         | 43.2           | 50.0            | -6.9    | 20.0      |
| Chloroethane                           | Ave           | 0.1050  | 0.0928 |         | 44.2           | 50.0            | -13.7   | 50.0      |
| Trichlorofluoromethane                 | Ave           | 0.2394  | 0.2349 |         | 49.1           | 50.0            | -11.7   | 50.0      |
| Acrolein                               | Ave           | 0.0379  | 0.0211 |         | 558            |                 | -1.9    | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.2313  | 0.1840 |         | 39.8           | 50.0            | -20.5   | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.2420  | 0.2277 | 0.1000  | 47.0           | 50.0            | -5.9    | 20.0      |
| Acetone                                | Ave           | 0.1081  | 0.0783 |         | 181            | 250             | (-27.6) | 50.0      |
| Iodomethane                            | Ave           | 0.3623  | 0.3193 |         | 44.1           | 50.0            | -11.9   | 50.0      |
| Carbon disulfide                       | Ave           | 0.6556  | 0.4956 |         | 37.8           | 50.0            | -24.4   | 50.0      |
| Methyl acetate                         | Ave           | 0.3785  | 0.2859 |         | 37.8           | 50.0            | -24.4   | 50.0      |
| Acetonitrile                           | Ave           | 0.0226  | 0.0191 |         | 1700           | 2000            | -15.2   | 50.0      |
| Methylene Chloride                     | Ave           | 0.2868  | 0.2676 |         | 46.7           | 50.0            | -6.7    | 50.0      |
| Methyl tert-butyl ether                | Ave           | 0.8378  | 0.6792 |         | 40.5           | 50.0            | -18.9   | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.2812  | 0.2651 |         | 47.1           | 50.0            | -5.7    | 50.0      |
| Acrylonitrile                          | Ave           | 0.1271  | 0.1022 |         | 201            | 250             | -19.6   | 50.0      |
| Vinyl acetate                          | Ave           | 0.6567  | 0.5250 |         | 200            | 250             | -20.1   | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.4772  | 0.4220 |         | 44.2           | 50.0            | -11.6   | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.1867  | 0.1358 |         | 182            | 250             | (-27.3  | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.3267  | 0.3058 |         | 46.8           | 50.0            | -6.4    | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3174  | 0.2942 |         | 46.4           | 50.0            | -7.3    | 50.0      |
| Bromochloromethane                     | Ave           | 0.1669  | 0.1560 |         | 46.7           | 50.0            | -6.6    | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.1231  | 0.0910 |         | 185            |                 | //26.0  | 50.0      |
| Chloroform                             | Ave           | 0.4648  | 0.4132 |         | 44.4           | 50.0            | ~11.1   | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3695  | 0.3399 |         | 46.0           | 50.0            | -8.0    | 50.0      |
| Cyclohexane                            | Ave           | 0.4776  | 0.3720 |         | 38.9           | 50.0            | -22.1   | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.3625  | 0.3170 |         | 43.7           | 50.0            | -12.6   | 50.0      |
| Carbon tetrachloride                   | Ave           | 0.3123  | 0.2918 |         | 46.7           | 50.0            | -6.6    | 50.0      |
| Benzene                                | Ave           | 1.074   | 0.9829 |         | 45.8           | 50.0            | -8.5    | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.3784  | 0.3116 |         | 41.2           | 50.0            | -17.7   | 50.0      |
| Trichloroethene                        | Ave           | 0.2881  | 0.2635 |         | 45.7           | 50.0            | -8.5    | 50.0      |
| Methylcyclohexane                      | Ave           | 0.4705  | 0.3917 |         | 41.6           | 50.0            | -16.7   | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.2858  | 0.2525 |         | 44.2           | 50.0            | -11.7   | 20.0      |
| Dibromomethane                         | Ave           | 0.1702  | 0.1462 |         | 42.9           | 50.0            | -14.1   | 50.0      |
| Bromodichloromethane                   | Ave           | 0.3334  | 0.2868 |         | 43.0           | 50.0            | -14.0   | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.2068  | 0.1664 |         | 201            | 250             | -19.5   | 50.0      |
| cis-1,3-Dichloropropene                | Ave           | 0.4314  | 0.3701 |         | 42.9           | 50.0            | -14.2   | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 0.8542  | 0.6771 |         | 198            | 250             | -20.7   | 50.0      |

Lab Name: TestAmerica Buffalo

Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCVIS 480-58856/3

Calibration Date: 04/10/2012 09:47

Instrument ID: HP5973F

Calib Start Date: 03/07/2012 23:43

GC Column: ZB-624 (60) ID: 0.25(mm)

Calib End Date: 03/08/2012 01:25

Lab File ID: F7960.D

Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                        | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D                   | MAX<br>%D |
|------------------------------------------------|---------------|---------|--------|---------|----------------|-----------------|----------------------|-----------|
| Toluene                                        | Ave           | 1.664   | 1.584  |         | 47.6           | 50.0            | -4.9                 | 20.0      |
| Ethyl methacrylate                             | Ave           | 0.9228  | 0.7654 |         | 41.5           | 50.0            | -17.1                | 50.0      |
| trans-1,3-Dichloropropene                      | Ave           | 0.9099  | 0.7833 |         | 43.0           | 50.0            | -17.1                | 50.0      |
| 1,1,2-Trichloroethane                          | Ave           | 0.5001  | 0.4427 |         | 44.3           | 50.0            | -11.5                | 50.0      |
| Tetrachloroethene                              | Ave           | 0.7388  | 0.7456 |         | 50.5           | 50.0            | 0.9                  |           |
| 1,3-Dichloropropane                            | Ave           | 1.038   | 0.9115 |         | 43.9           | 50.0            | -12.1                | 50.0      |
| 2-Hexanone                                     | Ave           | 0.6379  | 0.4798 |         | 188            | 250             | -12.1                | 50.0      |
| Dibromochloromethane                           | Ave           | 0.6588  | 0.5982 |         | 45.4           | 50.0            |                      | 50.0      |
| 1,2-Dibromoethane                              | Ave           | 0.6697  | 0.6077 |         | 45.4           | 50.0            | -9.2                 | 50.0      |
| Chlorobenzene                                  | Ave           | 2.027   | 1.928  | 0.3000  | 47.6           | 50.0            | -9.3                 | 50.0      |
| Ethylbenzene                                   | Ave           | 3.069   | 2.923  | 0.3000  | 47.6           | 50.0            | -4.9                 | 50.0      |
| 1,1,1,2-Tetrachloroethane                      | Ave           | 0.6553  | 0.6518 |         | 49.7           |                 | -4.8                 | 20.0      |
| m,p-Xylene                                     | Ave           | 1.283   | 1.232  |         | 96.0           | 50.0            | -0.5                 | 50.0      |
| o-Xylene                                       | Ave           | 1.233   | 1.189  |         | 48.2           | 100             | -4.0                 | 50.0      |
| Styrene                                        | Ave           | 2.044   | 1.966  |         |                | 50.0            | -3.6                 | 50.0      |
| Bromoform                                      | Ave           | 0.3801  | 0.3397 | 0.1000  | 48.1           | 50.0            | -3.8                 | 50.0      |
| Isopropylbenzene                               | Ave           | 2.706   | 2.517  | 0.1000  | 44.7           | 50.0            | -10.6                | 50.0      |
| 1,1,2,2-Tetrachloroethane                      | Ave           | 0.7166  | 0.6083 | 0.3000  | 46.5           | 50.0            | -7.0                 | 50.0      |
| Bromobenzene                                   | Ave           | 0.7878  | 0.7216 | 0.3000  | 42.4           | 50.0            | -15.1                | 50.0      |
| trans-1,4-Dichloro-2-butene                    | Ave           | 0.2406  | 0.1789 |         | 45.8           | 50.0            | -8.4                 | 50.0      |
| N-Propylbenzene                                | Ave           | 3.278   | 2.948  |         | 186            |                 | // <del>-</del> 25.6 | 50.0      |
| 1,2,3-Trichloropropane                         | Ave           | 0.2483  | 0.1994 |         | 45.0           | 50.0            | -10.1                | 50.0      |
| 2-Chlorotoluene                                | Ave           | 0.7471  | 0.6934 |         | 40.2           | 50.0            | -19.7                | 50.0      |
| 1,3,5-Trimethylbenzene                         | Ave           | 2.282   | 2.132  |         | 46.4           | 50.0            | -7.2                 | 50.0      |
| 4-Chlorotoluene                                | Ave           | 0.7987  | 0.7251 |         | 46.7           | 50.0            | -6.6                 | 50.0      |
| tert-Butylbenzene                              | Ave           | 0.5765  | 0.7251 |         | 45.4           | 50.0            | -9.2                 | 50.0      |
| 1,2,4-Trimethylbenzene                         | Ave           | 2.322   |        |         | 47.1           | 50.0            | -5.8                 | 50.0      |
| sec-Butylbenzene                               | Ave           | 2.926   | 2.149  |         | 46.3           | 50.0            | -7.5                 | 50.0      |
| 4-Isopropyltoluene                             | Ave           | 2.926   | 2.719  |         | 46.4           | 50.0            | -7.1                 | 50.0      |
| 1,3-Dichlorobenzene                            | Ave           | 1.504   | 2.512  |         | 47.0           | 50.0            | -5.9                 | 50.0      |
| 1,4-Dichlorobenzene                            | Ave           | 1.550   | 1.384  |         | 46.0           | 50.0            | -7.9                 | 50.0      |
| n-Butylbenzene                                 | Ave           |         | 1.414  |         | 45.6           | 50.0            | -8.8                 | 50.0      |
| 1,2-Dichlorobenzene                            |               | 2.179   | 2.014  |         | 46.2           | 50.0            | -7.6                 | 50.0      |
| 1,2-Dibromo-3-Chloropropane                    | Ave Ave       | 1.420   | 1.317  |         | 46.4           | 50.0            | -7.2                 | 50.0      |
| 1,2,4-Trichlorobenzene                         |               | 0.1193  | 0.0895 |         | 37.5           | 50.0            | -25.0                | 50.0      |
| Hexachlorobutadiene                            | Ave           | 0.8879  | 0.8830 |         | 49.7           | 50.0            | -0.6                 | 50.0      |
| Naphthalene                                    | Ave           | 0.3855  | 0.3871 |         | 50.2           | 50.0            | 0.4                  | 50.0      |
| 1,2,3-Trichlorobenzene                         | Ave           | 2.610   | 2.317  |         | 44.4           | 50.0            | -11.2                | 50.0      |
|                                                | Ave           | 0.8054  | 0.7874 |         | 48.9           | 50.0            | -2.2                 | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) Toluene-d8 (Surr) | Ave           | 0.1520  | 0.1390 |         | 45.7           | 50.0            | -8.5                 | 50.0      |
|                                                | Ave           | 2.361   | 2.579  |         | 54.6           | 50.0            | 9.2                  | 50.0      |
| 4-Bromofluorobenzene (Surr)                    | Ave           | 0.7860  | 0.8467 |         | 53.9           | 50.0            | 7.7                  | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCVIS 480-59441/2 Calibration Date: 04/13/2012 09:56

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 04/09/2012 22:09

Lab File ID: G11022.D Conc. Units: ug/L Heated Purge: (Y/N) N

|                                        | T     |              |        |         |        |        |         | 1    |
|----------------------------------------|-------|--------------|--------|---------|--------|--------|---------|------|
| ANALYTE                                | CURVE | AVE RRF      | RRF    | MIN RRF | CALC   | SPIKE  | %D      | MAX  |
|                                        | TYPE  | . Orthodoxia |        |         | AMOUNT | AMOUNT |         | %D   |
| Dichlorodifluoromethane                | Ave   | 0.4294       | 0.4134 |         | 24.1   | 25.0   | -3.7    | 50.0 |
| Chloromethane                          | Ave   | 0.6789       | 0.6553 | 0.1000  | 24.1   | 25.0   | -3.5    | 50.0 |
| Vinyl chloride                         | Ave   | 0.5844       | 0.5909 |         | 25.3   | 25.0   | 1.1     | 20.0 |
| Bromomethane                           | QuaF  |              | 0.0950 |         | 21.2   | 25.0   | -15.2   | 50.0 |
| Chloroethane                           | Ave   | 0.2790       | 0.2520 |         | 22.6   | 25.0   | -9.7    | 50.0 |
| Trichlorofluoromethane                 | Lin1F |              | 0.4305 |         | 22.8   | 25.0   | -8.8    | 50.0 |
| Acrolein                               | Ave   | 0.0447       | 0.0454 |         | 509    | 500    | 1.7     | 50.0 |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave   | 0.3255       | 0.3367 |         | 25.9   | 25.0   | 3.4     | 50.0 |
| 1,1-Dichloroethene                     | Ave   | 0.3701       | 0.3545 | 0.1000  | 23.9   | 25.0   | -4.2    | 20.0 |
| Acetone                                | Ave   | 0.2016       | 0.2016 |         | 125    | 125    | 0.0     | 50.0 |
| Iodomethane                            | Ave   | 0.3520       | 0.3369 |         | 23.9   | 25.0   | -4.3    | 50.0 |
| Carbon disulfide                       | Ave   | 0.8992       | 0.7703 |         | 21.4   | 25.0   | -14.3   | 50.0 |
| Methyl acetate                         | Ave   | 0.7292       | 0.7536 |         | 25.8   | 25.0   | 3.3     | 50.0 |
| Acetonitrile                           | Ave   | 0.0508       | 0.0560 |         | 1100   | 1000   | 10.2    | 50.0 |
| Methylene Chloride                     | Ave   | 0.4522       | 0.4788 |         | 26.5   | 25.0   | 5.9     | 50.0 |
| Methyl tert-butyl ether                | Ave   | 1.050        | 1.331  |         | 31.7   | 25.0   | (26.7)  | 50.0 |
| trans-1,2-Dichloroethene               | Ave   | 0.4203       | 0.4077 |         | 24.2   | 25.0   | -3.0    | 50.0 |
| Acrylonitrile                          | Ave   | 0.2647       | 0.2886 |         | 136    | 125    | 9.0     | 50.0 |
| 1,1-Dichloroethane                     | Ave   | 0.6794       | 0.7344 |         | 27.0   | 25.0   | 8.1     | 50.0 |
| Vinyl acetate                          | Ave   | 0.9164       | 1.165  |         | 159    | 125    | 27.1    | 50.0 |
| 2,2-Dichloropropane                    | Ave   | 0.2572       | 0.2368 |         | 23.0   | 25.0   | -7.9    | 50.0 |
| cis-1,2-Dichloroethene                 | Ave   | 0.3738       | 0.3964 |         | 26.5   | 25.0   | 6.0     | 50.0 |
| 2-Butanone (MEK)                       | Ave   | 0.3857       | 0.4128 |         | 134    | 125    | 7.0     | 50.0 |
| Bromochloromethane                     | Ave   | 0.1533       | 0.1767 |         | 28.8   | 25.0   | 15.3    | 50.0 |
| Tetrahydrofuran                        | Ave   | 0.2726       | 0.2837 |         | 130    | 125    | 4.1     | 50.0 |
| Chloroform                             | Ave   | 0.3712       | 0.3930 |         | 26.5   | 25.0   | 5.9     | 20.0 |
| 1,1,1-Trichloroethane                  | Ave   | 0.3735       | 0.3329 |         | 22.3   | 25.0   | -10.9   | 50.0 |
| Cyclohexane                            | Ave   | 0.9683       | 0.9926 |         | 25.6   | 25.0   | 2.5     | 50.0 |
| Carbon tetrachloride                   | LinF  |              | 0.2868 |         | 16.5   | 25.0   | (-34.0) | 50.0 |
| 1,1-Dichloropropene                    | Ave   | 0.5288       | 0.5280 |         | 25.0   | 25.0   | -0.2    | 50.0 |
| Benzene                                | Ave   | 1.524        | 1.593  |         | 26.1   | 25.0   | 4.5     | 50.0 |
| 1,2-Dichloroethane                     | Ave   | 0.4942       | 0.5639 |         | 28.5   | 25.0   | 14.1    | 50.0 |
| Trichloroethene                        | Ave   | 0.3732       | 0.3796 |         | 25.4   | 25.0   | 1.7     | 50.0 |
| Methylcyclohexane                      | Ave   | 0.6878       | 0.7278 |         | 26.5   | 25.0   | 5.8     | 50.0 |
| 1,2-Dichloropropane                    | Ave   | 0.3945       | 0.4456 |         | 28.2   | 25.0   | 12.9    | 20.0 |
| Dibromomethane                         | Ave   | 0.1832       | 0.2177 |         | 29.7   | 25.0   | 18.9    | 50.0 |
| Bromodichloromethane                   | LinlF |              | 0.3235 |         | 21.0   | 25.0   | -16.0   | 50.0 |
| 2-Chloroethyl vinyl ether              | Ave   | 0.2854       | 0.3795 |         | 166    |        | 33.0    | 50.0 |
| cis-1,3-Dichloropropene                | LinlF |              | 0.5298 |         | 25.1   | 25.0   | 0.4     | 50.0 |
| 4-Methyl-2-pentanone (MIBK)            | Ave   | 1.374        | 1.588  |         | 145    | 125    | 15.6    | 50.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCVIS 480-59441/2 Calibration Date: 04/13/2012 09:56

Instrument ID: HP5973G Calib Start Date: 04/09/2012 20:15

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/09/2012 22:09

Lab File ID: G11022.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                     | CURVE<br>TYPE | AVE RRF                                 | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|-----------------------------|---------------|-----------------------------------------|--------|---------|----------------|-----------------|-------|-----------|
| Toluene                     | Ave           | 2.013                                   | 2.020  |         | 25.1           | 25.0            | 0.3   | 20.0      |
| trans-1,3-Dichloropropene   | Lin1F         |                                         | 0.9675 |         | 25.1           | 25.0            | 0.3   | 50.0      |
| Ethyl methacrylate          | Ave           | 0.9933                                  | 1.307  |         | 32.9           | 25.0            | 31.6  | 50.0      |
| 1,1,2-Trichloroethane       | Ave           | 0.5112                                  | 0.5990 |         | 29.3           | 25.0            | 17.2  | 50.0      |
| Tetrachloroethene           | Ave           | 0.7667                                  | 0.7548 |         | 24.6           | 25.0            | -1.5  | 50.0      |
| 1,3-Dichloropropane         | Ave           | 1.126                                   | 1.352  |         | 30.0           | 25.0            | 20.1  | 50.0      |
| 2-Hexanone                  | Ave           | 1.087                                   | 1.214  |         | 140            | 125             | 11.7  | 50.0      |
| Dibromochloromethane        | QuaF          |                                         | 0.3740 |         | 22.3           | 25.0            | -10.8 | 50.0      |
| 1,2-Dibromoethane           | Ave           | 0.6112                                  | 0.7206 |         | 29.5           | 25.0            | 17.9  | 50.0      |
| Chlorobenzene               | Ave           | 2.107                                   | 2.187  | 0.3000  | 26.0           | 25.0            | 3.8   | 50.0      |
| Ethylbenzene                | Ave           | 3.777                                   | 3.821  |         | 25.3           | 25.0            | 1.2   | 20.0      |
| 1,1,1,2-Tetrachloroethane   | LinlF         |                                         | 0.4998 | -       | 20.8           | 25.0            | -16.8 | 50.0      |
| m,p-Xylene                  | Ave           | 1.470                                   | 1.465  |         | 49.8           | 50.0            | -0.4  | 50.0      |
| o-Xylene                    | Ave           | 1.373                                   | 1.430  |         | 26.0           | 25.0            | 4.2   | 50.0      |
| Styrene                     | Ave           | 2.208                                   | 2.408  |         | 27.3           | 25.0            | 9.0   | 50.0      |
| Bromoform                   | QuaF          |                                         | 0.1998 | 0.1000  | 22.6           | 25.0            | -9.6  | 50.0      |
| Isopropylbenzene            | Ave           | 3.966                                   | 3.771  |         | 23.8           | 25.0            | -4.9  | 50.0      |
| Bromobenzene                | Ave           | 0.8364                                  | 0.8759 |         | 26.2           | 25.0            | 4.7   | 50.0      |
| 1,1,2,2-Tetrachloroethane   | Ave           | 0.996                                   | 1.111  | 0.3000  | 27.9           | 25.0            | 11.6  |           |
| N-Propylbenzene             | Ave           | 4.900                                   | 4.744  | 0.0000  | 24.2           | 25.0            | -3.2  | 50.0      |
| 1,2,3-Trichloropropane      | Ave           | 0.3388                                  | 0.3700 |         | 27.3           | 25.0            | 9.2   | 50.0      |
| trans-1,4-Dichloro-2-butene | LinF          |                                         | 0.4341 |         | 141            | 125             | 12.6  | 50.0      |
| 2-Chlorotoluene             | Ave           | 0.9263                                  | 0.8985 |         | 24.2           | 25.0            | -3.0  | 50.0      |
| 1,3,5-Trimethylbenzene      | Ave           | 3.341                                   | 3.249  |         | 24.3           | 25.0            | -2.8  | 50.0      |
| 4-Chlorotoluene             | Ave           | 0.9698                                  | 0.9599 |         | 24.7           | 25.0            | -1.0  | 50.0      |
| tert-Butylbenzene           | Ave           | 0.7380                                  | 0.7065 |         | 23.9           | 25.0            | -4.3  | 50.0      |
| 1,2,4-Trimethylbenzene      | Ave           | 3.339                                   | 3.336  |         | 25.0           | 25.0            | -0.0  |           |
| sec-Butylbenzene            | Ave           | 4.264                                   | 4.010  |         | 23.5           | 25.0            | -5.9  | 50.0      |
| 1,3-Dichlorobenzene         | Ave           | 1.800                                   | 1.783  |         | 24.8           | 25.0            | -0.9  | 50.0      |
| 4-Isopropyltoluene          | Ave           | 3.531                                   | 3.397  |         | 24.1           | 25.0            | -3.8  | 50.0      |
| 1,4-Dichlorobenzene         | Ave           | 1.864                                   | 1.872  |         | 25.1           | 25.0            | 0.4   | 50.0      |
| n-Butylbenzene              | Ave           | 3.316                                   | 3.251  |         | 24.5           | 25.0            | -1.9  | 50.0      |
| 1,2-Dichlorobenzene         | Ave           | 1.682                                   | 1.749  |         | 26.0           | 25.0            | 4.0   | 50.0      |
| 1,2-Dibromo-3-Chloropropane | Ave           | 0.1921                                  | 0.1680 |         | 21.9           | 25.0            | -12.6 |           |
| 1,2,4-Trichlorobenzene      | QuaF          |                                         | 1.108  |         | 28.8           | 25.0            |       | 50.0      |
| Hexachlorobutadiene         | QuaF          |                                         | 0.4212 |         | 27.0           | 25.0            | 15.2  | 50.0      |
| Naphthalene                 | QuaF          |                                         | 3.838  |         | 29.6           | 25.0            | 8.0   | 50.0      |
| 1,2,3-Trichlorobenzene      | QuaF          | *************************************** | 0.9741 |         | 28.7           | 25.0            |       | 50.0      |
| ,2-Dichloroethane-d4 (Surr) | Ave           | 0.1836                                  | 0.2162 |         | 29.4           | 25.0            | 14.8  | 50.0      |
| Coluene-d8 (Surr)           | LinlF         |                                         | 2.679  |         | 24.5           | 25.0            | 17.7  | 50.0      |
| 1-Bromofluorobenzene (Surr) | Ave           | 0.6823                                  | 0.7516 |         | 27.5           | 25.0            | 10.2  | 50.0      |



Geology

Hydrology

Remediation

Water Supply

### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-18071-1

### 12 Soil Samples and 3 Field Duplicates Collected April 3-5, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

Initial Calibration: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for 4-chloroaniline and 3,3'-dichlorobenzidine were above the allowable maximum (25%) on 04-09-12 (V8764.D). The %Ds for indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, and benzo(g,h,i)perylene were above the allowable maximum (25%) on 04-12-12 (V8892.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method and equipment blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) for spiked compounds were below the allowable maximum and the percent recoveries (%Rs) were within QC limits for soil MS/MSD sample TP-A1.

Page 1 of 2

One of twelve RPDs for spike compounds was above the allowable maximum and 2 of 24 %Rs were below QC limits for soil MS/MSD sample RB-10 (0-6"). No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries (%Rs) for spiked compounds were within QC limits for soil samples LCS 480-58505/2-A and LCS 480-58843/2-A.

The %R for 4-nitrophenol was above QC limits for soil sample 480-58302/2-A. Positive results for 4-nitrophenol should be considered estimated (J) in associated soil samples.

<u>Field Duplicates</u>: The relative percent difference (RPD) for 2-methylnaphthalene was above the allowable maximum (35%) for soil field duplicate pair TP-A2/DUP-02 (4/3) (attached table). Results for 2-methylnaphthalene should be considered estimated (J) in samples TP-A2 and DUP-02 (4/3).

The RPD for benzo(k)fluoranthene was above the allowable maximum (35%) for soil field duplicate pair RB-09(0-6")/DUP-01 (attached table). Results for benzo(k)fluoranthene should be considered estimated (J) in samples RB-09(0-6") and DUP-01.

The RPD for benzo(b)fluoranthene was above the allowable maximum (35%) for soil field duplicate pair RB-09(12"-24")/DUP-02 (4/5) (attached table). Results for benzo(2)fluoranthene should be considered estimated (J) in samples RB-09(12"-24") and DUP-02 (4/5).

<u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### **Semi-Volatiles**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-18071-1

**S1=** TP-A2

**S2=** DUP-02 (4/3)

| 2-methylnaphthalene         5300         8000         41%           acenaphthene         2000         1700         NC           acenaphthylene         880         1100         NC           anthracene         950         930         NC           benzo(a)anthracene         490         600         NC           benzo(a)pyrene         410         740         NC           benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           benzo(k)fluoranthene         280         350         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           phenanthrene         6100         7000 | <u>Analyte</u>      | <u>S1</u>      | <u>S2</u>    | DDD (0/) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|--------------|----------|
| acenaphthene         2000         1700         NC           acenaphthylene         880         1100         NC           anthracene         950         930         NC           benzo(a)anthracene         490         600         NC           benzo(a)pyrene         410         740         NC           benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           bindenzo(k)fluoranthene         160         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           phenanthrene         6100         7000         14%                                                       | 2-methylnaphthalene |                |              |          |
| acenaphthylene         880         1100         NC           anthracene         950         930         NC           benzo(a)anthracene         490         600         NC           benzo(a)pyrene         410         740         NC           benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                        | acenaphthene        | 2000           |              |          |
| anthracene         950         930         NC           benzo(a)anthracene         490         600         NC           benzo(a)pyrene         410         740         NC           benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                     | acenaphthylene      |                |              |          |
| benzo(a)anthracene         490         600         NC           benzo(a)pyrene         410         740         NC           benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                             | anthracene          |                |              |          |
| benzo(a)pyrene         410         740         NC           benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                             | benzo(a)anthracene  |                | <del>-</del> |          |
| benzo(b)fluoranthene         760         750         NC           benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                              |                     |                |              |          |
| benzo(g,h,i)perylene         290         470         NC           benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                |                     |                | <del>-</del> |          |
| benzo(k)fluoranthene         280         350         NC           biphenyl         160         ND         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                |              |          |
| biphenyl         160         ND         NC           bis(2-ethylhexyl)phthalate         ND         830         NC           chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | <del>-</del>   |              |          |
| bis(2-ethylhexyl)phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                |              |          |
| chrysene         480         590         NC           dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                | . —          | _        |
| dibenzofuran         ND         2400         NC           fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                |              |          |
| fluoranthene         1100         1300         NC           fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |                |              | NC       |
| fluorene         3900         4000         3%           indeno(1,2,3-cd)pyrene         250         440         NC           isophorone         3000         ND         NC           naphthalene         780         1400         NC           phenanthrene         6100         7000         14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                |              | NC       |
| indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |                |              | NC       |
| isophorone 3000 ND NC naphthalene 780 1400 NC phenanthrene 6100 7000 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                | 4000         | 3%       |
| naphthalene 780 1400 NC phenanthrene 6100 7000 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | — <del>-</del> | 440          | NC       |
| phenanthrene 6100 7000 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                | ND           | NC       |
| prienantirrene 6100 7000 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                   |                | 1400         | NC       |
| Oviene 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                | 7000         |          |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pyrene              | 990            | 1200         | NC       |

<sup>\*</sup> RPD is above the allowable maximum (35%)

Results are in units of ug/kg.

Bold numbers were values that below the CRQL.

ND - Not detected.

NC - Not calculated, both results must be above the CRDL for valid RPDs to be calculated.

### **Semi-Volatiles**

# <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-18071-1

| <b>S1=</b> F           | RB-09(0-6")       | S2=             | DUP-01       |
|------------------------|-------------------|-----------------|--------------|
| Analyte acenaphthene   | <u>\$1</u><br>130 | <u>S2</u><br>73 | RPD (%)      |
| anthracene             | 310               | 200             | NC           |
| benzo(a)anthracene     | 6000              | 5400            | NC           |
| benzo(a)pyrene         | 7000              |                 | 11%          |
| benzo(b)fluoranthene   | 17000             | 6200            | 12%          |
| benzo(g,h,i)perylene   | 3600              | 17000           | 0%           |
| benzo(k)fluoranthene   | 6200              | 3200            | 12%          |
| carbazole              | 1 <b>60</b>       | 4000            | 43%          |
| chrysene               | 8200              | 120             | NC           |
| dibenz(a,h)anthracene  |                   | 7200            | 13%          |
| fluoranthene           | 2100              | 2100            | 0%           |
| indeno(1,2,3-cd)pyrene | 7500              | 7100            | 5%           |
|                        | 3200              | 2700            | 17%          |
| phenanthrene           | 2000              | 1700            | NC           |
| pyrene                 | 5900              | 5400            | 9%           |
| <b>S1=</b> RI          | 3-09(12"-24")     | S2=             | DUP-02 (4/5) |
| <u>Analyte</u>         | <u>S1</u>         | <u>S2</u>       | RPD (%)      |
| 2-methylnaphthalene    | 99                | 89              | NC           |
| benzo(a)anthracene     | 510               | 640             | NC           |
| benzo(a)pyrene         | 580               | 860             | NC           |
| benzo(b)fluoranthene   | 1400              | 2100            | 40%          |
| benzo(g,h,i)perylene   | 290               | 420             | NC           |
| benzo(k)fluoranthene   | 530               | 750             | NC           |
| chrysene               | 840               | 1100            |              |
| dibenz(a,h)anthracene  | ND                | 67 <b>0</b>     | NC<br>NC     |
| dibenzofuran           | 32                | ND              | NC<br>NC     |
| fluoranthene           | 710               | 870             | NC<br>NC     |
| indeno(1,2,3-cd)pyrene | 270               |                 | NC           |
| phenanthrene           | 320               | 340             | NC           |
| F. 1911 M. 110         | 320               | 320             | NC           |

 $<sup>^{\</sup>star}$  RPD is above the allowable maximum (35%)

540

670

NC

Results are in units of ug/kg.

pyrene

Bold numbers were values that below the CRQL.

ND - Not detected. NC - Not calculated, both results must be above the CRDL for

valid RPDs to be calculated.

## FORM III GC/MS SEMI VOA LAB CONTROL SAMPLE RECOVERY

| Lab Nam | e: <u>TestAmerica Buffa</u> |        |     | Job No.: 480 |  |
|---------|-----------------------------|--------|-----|--------------|--|
| SDG No. |                             |        |     |              |  |
|         |                             |        |     |              |  |
| Matrix: | Solid                       | Level: | Low | Lab File ID: |  |
| Lab ID: | LCS 480-58302/2-A           |        |     | Client ID:   |  |

|                             | SPIKE<br>ADDED | LCS<br>CONCENTRATION | LCS | QC<br>LIMITS | # |
|-----------------------------|----------------|----------------------|-----|--------------|---|
| COMPOUND                    | (ug/Kg)        | (ug/Kg)              | REC | REC          | П |
| 2,4-Dinitrotoluene          | 3290           | 3770                 | 114 | 55-125       |   |
| 2-Chlorophenol              | 3290           | 2700                 | 82  | 38-120       |   |
| 4-Chloro-3-methylphenol     | 3290           | 3680                 | 112 | 49-125       |   |
| 4-Nitrophenol               | 3290           | 5000                 | 152 |              | * |
| Acenaphthene                | 3290           | 3340                 | 101 |              |   |
| Bis(2-ethylhexyl) phthalate | 3290           | 3710                 | -   | 53-120       |   |
| Fluorene                    | 3290           | 3710                 | 113 | 61-133       |   |
| Hexachloroethane            | 3290           |                      | 114 | 63-126       |   |
| N-Nitrosodi-n-propylamine   | 3290           | 2870                 | 87  | 41-120       |   |
| Pentachlorophenol           |                | 3560                 | 108 | 46-120       |   |
| Phenol                      | 3290           | 2900                 | 88  | 33-136       |   |
|                             | 3290           | 2830                 | 86  | 36-120       |   |
| Pyrene                      | 3290           | 3500                 | 106 | 51-133       |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

#### FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

| Lab Name   | E: TestAmerica Buffa |        |       | Job  | No.:   | 480-18071-1        |   |
|------------|----------------------|--------|-------|------|--------|--------------------|---|
| SDG No.:   |                      |        |       |      |        |                    |   |
| Matrix:    | Solid                | Level: |       |      |        | ***                |   |
| T. I. www. |                      | nover. | 110 W | nan  | rile   | ID: <u>V8902.D</u> |   |
| rap ID:    | 480-18223-12 MS      |        |       | Clie | ent ID | : RB-10 (0-6") MG  | 2 |

Client ID: RB-10 (0-6") MS

|                             | SPIKE   | SAMPLE        | MS            | MS  | oc               |   |
|-----------------------------|---------|---------------|---------------|-----|------------------|---|
|                             | ADDED   | CONCENTRATION | CONCENTRATION | 용   | LIMITS           | # |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC | REC              | " |
| 2,4-Dinitrotoluene          | 3620    | ND            | 3310          | 91  | 55-125           |   |
| 2-Chlorophenol              | 3620    | ND            | 3050          | 84  | 38-120           |   |
| 4-Chloro-3-methylphenol     | 3620    | ND            | 3530          | 97  |                  |   |
| 4-Nitrophenol               | 3620    | ND            |               |     | 49-125           |   |
| Acenaphthene                | 3620    | ND<br>ND      | ND            | 0   | 43-137           | F |
| Bis(2-ethylhexyl) phthalate | 3620    |               | 3480          | 96  | 53-120           |   |
| Fluorene                    |         | ND            | 3950          | 109 | 61-133           |   |
| Hexachloroethane            | 3620    | ND            | 3270          | 90  | 63-126           |   |
|                             | 3620    | ND            | 2720          | 75  | 41-120           |   |
| N-Nitrosodi-n-propylamine   | 3620    | ND            | 3480          | 96  | 46-120           |   |
| Pentachlorophenol           | 3620    | ND            | 4090          | 113 | 33-136           |   |
| Phenol                      | 3620    | ND            | 3160          | 87  |                  |   |
| Pyrene                      | 3620    | 2200          | 5360          | 86  | 36-120<br>51-133 |   |

 $<sup>\</sup>ensuremath{\mathtt{\#}}$  Column to be used to flag recovery and RPD values FORM III 8270C

# FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

| Lab Name | : TestAmerica Buffa |        | <br>Job No.: | 480-18071-1      |
|----------|---------------------|--------|--------------|------------------|
| SDG No.: |                     |        |              |                  |
| Matrix:  |                     | Level: |              | D: V8903.D       |
| Lab ID:  | 480-18223-12 MSD    |        | Client ID:   | RB-10 (0-6") MSD |

|                             | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QC LI | IMITS  | # |
|-----------------------------|----------------|----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---|
| COMPOUND                    | (ug/Kg)        | (ug/Kg)              | REC      | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RPD   | REC    | # |
| 2,4-Dinitrotoluene          | 3590           | 2630                 | 73       | A CONTRACTOR OF THE PARTY OF TH | 20    | 55-125 | F |
| 2-Chlorophenol              | 3590           | 2690                 | 7.5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25    | 38-120 |   |
| 4-Chloro-3-methylphenol     | 3590           | 3420                 | 95       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27    | 49-125 |   |
| 4-Nitrophenol               | 3590           | ND                   | Ó        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25    | 43-123 |   |
| Acenaphthene                | 3590           | 3400                 | 95       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35    |        | F |
| Bis(2-ethylhexyl) phthalate | 3590           | 3950                 |          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15    | 53-120 |   |
| Fluorene                    | 3590           | 3190                 | 89       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15    | 63-126 |   |
| Hexachloroethane            | 3590           | 3170                 | 88       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46    | 41-120 |   |
| N-Nitrosodi-n-propylamine   | 3590           | 3340                 | 93       | 4.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 31    |        |   |
| Pentachlorophenol           | 3590           | 4130                 | 115      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 46-120 |   |
| Phenol                      | 3590           | 2740                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35    | 33-136 |   |
| Pyrene                      |                |                      | 76       | 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35    | 36-120 |   |
|                             | 3590           | 5460                 | 90       | 1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35    | 51-133 |   |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III  $8270\mbox{C}$ 

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: ICV 480-58695/8 Calibration Date: 04/09/2012 16:39

Instrument ID: HP5973V Calib Start Date: 04/09/2012 14:10

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 04/09/2012 16:15

Lab File ID: V8764.D Conc. Units: ug/L

| ANALYTE                       | CURVE<br>TYPE | AVE RRF                                 | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D                | MAX<br>%D |
|-------------------------------|---------------|-----------------------------------------|--------|---------|----------------|-----------------|-------------------|-----------|
| N-Nitrosodimethylamine        | Ave           | 0.7590                                  | 0.7491 | 0.0100  | 49400          | 50000           | -1.3              | 25.0      |
| Pyridine                      | Ave           | 0.7368                                  | 0.6822 | 0.0100  | 46300          | 50000           | -7.4              | 25.0      |
| Phenol                        | Ave           | 1.862                                   | 1.816  | 0.0100  | 48800          | 50000           | -2.5              | 25.0      |
| Aniline                       | Ave           | 2.299                                   | 1.151  | 0.0100  | 25000          | 50000           | <i>1</i> 0 49.9 ★ | 25.0      |
| Bis(2-chloroethyl)ether       | Ave           | 1.453                                   | 1.437  | 0.0100  | 49400          | 50000           | -1.1              | 25.0      |
| 2-Chlorophenol                | Ave           | 1.312                                   | 1.314  | 0.0100  | 50100          | 50000           | 0.1               | 25.0      |
| 1,3-Dichlorobenzene           | Ave           | 1.533                                   | 1.573  | 0.0100  | 51300          | 50000           | 2.6               | 25.0      |
| 1,4-Dichlorobenzene           | Ave           | 1.571                                   | 1.596  | 0.0100  | 50800          | 50000           | 1.5               | 25.0      |
| Benzyl alcohol                | Ave           | 0.9128                                  | 0.9445 | 0.0100  | 51700          | 50000           | 3.5               | 25.0      |
| 1,2-Dichlorobenzene           | Ave           | 1.469                                   | 1.481  | 0.0100  | 50400          | 50000           | 0.8               | 25.0      |
| 2-Methylphenol                | Ave           | 1.264                                   | 1.315  | 0.0100  | 52000          | 50000           | 4.0               | 25.0      |
| bis (2-chloroisopropyl) ether | Ave           | 1.042                                   | 1.038  | 0.0100  | 49800          | 50000           | -0.4              | 25.0      |
| N-Nitrosodi-n-propylamine     | Ave           | 1.076                                   | 1.154  | 0.0500  | 53600          | 50000           | 7.2               | 25.0      |
| 4-Methylphenol                | Ave           | 1.283                                   | 1.384  | 0.0100  | 108000         | 100000          | 7.9               | 25.0      |
| Hexachloroethane              | Ave           | 0.5819                                  | 0.6052 | 0.0100  | 52000          | 50000           | 4.0               | 25.0      |
| Nitrobenzene                  | Ave           | 0.4414                                  | 0.4673 | 0.0100  | 52900          | 50000           | 5.8               | 25.0      |
| Isophorone                    | Ave           | 0.7632                                  | 0.8036 | 0.0100  | 52600          | 50000           | 5.3               | 25.0      |
| 2-Nitrophenol                 | Ave           | 0.1709                                  | 0.1899 | 0.0100  | 55600          | 50000           | 11.2              | 25.0      |
| 2,4-Dimethylphenol            | Ave           | 0.3666                                  | 0.4160 | 0.0100  | 56700          | 50000           | 13.5              | 25.0      |
| Tetraethyl lead               | Ave           | 0.1432                                  | 0.1682 | 0.0100  | 29400          | 25000           | 17.5              | 25.0      |
| Bis(2-chloroethoxy)methane    | Ave           | 0.4206                                  | 0.4526 | 0.0100  | 53800          | 50000           | 7.6               | 25.0      |
| Benzoic acid                  | Lin1          |                                         | 0.1749 | 0.0100  | 69600          | 50000           | M39.2*            | 25.0      |
| 2,4-Dichlorophenol            | Ave           | 0.2792                                  | 0.3021 | 0.0100  | 54100          | 50000           | 8.2               | 25.0      |
| 1,2,4-Trichlorobenzene        | Ave           | 0.3275                                  | 0.3499 | 0.0100  | 53400          | 50000           | 6.8               | 25.0      |
| Naphthalene                   | Ave           | 1.006                                   | 1.053  | 0.0100  | 52300          | 50000           | 4.7               | 25.0      |
| 4-Chloroaniline               | Ave           | 0.3825                                  | 0.2503 | 0.0100  | 28100          | 43000           | £34.6*            | 25.0      |
| Hexachlorobutadiene           | Ave           | 0.2037                                  | 0.2176 | 0.0100  | 53400          | 50000           | 6.8               | 25.0      |
| 4-Chloro-3-methylphenol       | Linl          |                                         | 0.3306 | 0.0100  | 52800          | 50000           | 5.6               | 25.0      |
| 2-Methylnaphthalene           | Ave           | 0.6906                                  | 0.7156 | 0.0100  | 51800          | 50000           | 3.6               | 25.0      |
| Hexachlorocyclopentadiene     | Linl          |                                         | 0.3569 | 0.0500  | 50900          | 50000           | 1.8               | 25.0      |
| 2,4,6-Trichlorophenol         | Ave           | 0.3247                                  | 0.3572 | 0.0100  | 55000          | 50000           | 10.0              | 25.0      |
| 2,4,5-Trichlorophenol         | Lin1          |                                         | 0.3713 | 0.0100  | 53200          | 50000           | 6.4               | 25.0      |
| 2-Chloronaphthalene           | Ave           | 1.019 -                                 | 1.091  | 0.0100  | 53500          | 50000           | 7.1               | 25.0      |
| 2-Nitroaniline                | Lin1          |                                         | 0.3368 | 0.0100  | 52100          | 50000           | 4.2               | 25.0      |
| Dimethyl phthalate            | Ave           | 1.226                                   | 1.309  | 0.0100  | 53400          | 50000           | 6.8               | 25.0      |
| 2,6-Dinitrotoluene            | Lin1          |                                         | 0.2946 | 0.0100  | 56000          | 50000           | 12.0              | 25.0      |
| Acenaphthylene                | Ave           | 1.693                                   | 1.842  | 0.0100  | 54400          | 50000           | 8.8               | 25.0      |
| 3-Nitroaniline                | Lin1          | *************************************** | 0.2062 | 0.0100  | 36400          | 48000           | -24.2             | 25.0      |
| Acenaphthene                  | Ave           | 1.024                                   | 1.093  | 0.0100  | 53400          | 50000           | 6.8               | 25.0      |
| 2,4-Dinitrophenol             | Linl          |                                         | 0.1550 | 0.0500  | 51500          | 50000           | 3.0               | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: ICV 480-58695/8 Calibration Date: 04/09/2012 16:39

Instrument ID: HP5973V Calib Start Date: 04/09/2012 14:10

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 04/09/2012 16:15

Lab File ID: V8764.D Conc. Units: ug/L

| ANALYTE                     | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|-----------------------------|---------------|---------|--------|---------|----------------|-----------------|---------|-----------|
| 4-Nitrophenol               | Lin1          |         | 0.1442 | 0.0500  | 45.43.0        |                 |         |           |
| Dibenzofuran                | Ave           | 1.529   | 1.626  | 0.0300  | 45400          | 50000           | -9.2    | 25.0      |
| 2,4-Dinitrotoluene          | Ave           | 0.3546  | 0.4237 | 0.0100  | 53200          | 50000           | 6.4     | 25.0      |
| Diethyl phthalate           | Ave           | 1.247   | 1.332  | 0.0100  | 59700          | 50000           | 19.5    | 25.0      |
| Fluorene                    | Ave           | 1.326   | 1.385  | 0.0100  | 53400          | 50000           | 6.8     | 25.0      |
| 4-Chlorophenyl phenyl ether | Ave           | 0.6807  | 0.7078 | 0.0100  | 52200          | 50000           | 4.4     | 25.0      |
| 4-Nitroaniline              | Lin1          | 3.300,  | 0.2611 | 0.0100  | 52000          | 50000           | 4.0     | 25.0      |
| 4,6-Dinitro-2-methylphenol  | Linl          |         | 0.1384 | 0.0100  | 49400          | 50000           | -1.2    | 25.0      |
| N-Nitrosodiphenylamine      | Ave           | 0.5039  | 0.5140 | 0.0100  | 51800          | 50000           | 3.6     | 25.0      |
| 1,2-Diphenylhydrazine       | Ave           | 1.490   | 1.551  |         | 51000          | 50000           | 2.0     | 25.0      |
| 4-Bromophenyl phenyl ether  | Ave           | 0.2146  | 0.2176 | 0.0100  | 52000          | 50000           | 4.1     | 25.0      |
| Hexachlorobenzene           | Ave           | 0.2124  | 0.2176 | 0.0100  | 50700          | 50000           | 1.4     | 25.0      |
| Pentachlorophenol           | Lin1          | 0.2121  | 0.1061 | 0.0100  | 50500          | 50000           | 1.0     | 25.0      |
| Phenanthrene                | Ave           | 1.078   | 1.114  | 0.0100  | 47300          | 50000           | -5.4    | 25.0      |
| Anthracene                  | Ave           | 1.090   |        | 0.0100  | 51700          | 50000           | 3.3     | 25.0      |
| Carbazole                   | Ave           | 0.9112  | 1.129  | 0.0100  | 51800          | 50000           | 3.5     | 25.0      |
| Di-n-butyl phthalate        | Ave           | 1.091   | 0.9171 | 0.0100  | 50300          | 50000           | 0.6     | 25.0      |
| Fluoranthene                | Ave           | 1.177   | 1.138  | 0.0100  | 52100          | 50000           | 4.3     | 25.0      |
| Benzidine                   | Lin1          | 1.1//   | 1.180  | 0.0100  | 50100          | 50000           | 0.2     | 25.0      |
| Pyrene                      | Ave           | 1.175   | 0.2470 | 0.0100  | 28600          | 50000           | V-42.8* | 25.0      |
| Butyl benzyl phthalate      | Lin1          | 1.1/5   | 1.260  | 0.0100  | 53600          | 50000           | 7.2     | 25.0      |
| 3,3'-Dichlorobenzidine      | Linl          |         | 0.5129 | 0.0100  | 51300          | 50000           | 2.6     | 25.0      |
| Bis(2-ethylhexyl) phthalate | Lin1          |         | 0.2663 | 0.0100  | 33300          | 50000           | -33.4*  | 25.0      |
| Benzo(a) anthracene         | Ave           |         | 0.6853 | 0.0100  | 50200          | 50000           | 0.4     | 25.0      |
| Chrysene                    | Ave           | 1.114   | 1.172  | 0.0100  | 52600          | 50000           | 5.2     | 25.0      |
| Di-n-octyl phthalate        | Lin1          | 1.136   | 1.090  | 0.0100  | 48000          | 50000           | -4.0    | 25.0      |
| Benzo(b) fluoranthene       |               |         | 1.047  | 0.0100  | 50900          | 50000           | 1.8     | 25.0      |
| Benzo(k) fluoranthene       | Ave           | 1.141   | 1.207  | 0.0100  | 52900          | 50000           | 5.7     | 25.0      |
| Benzo(a) pyrene             | Ave           | 1.309   | 1.353  | 0.0100  | 51700          | 50000           | 3.3     | 25.0      |
| Dibenz(a,h)anthracene       | Ave           | 0.997   | 1.063  | 0.0100  | 53300          | 50000           | 6.6     | 25.0      |
| Indeno(1,2,3-cd)pyrene      | Lin1          |         | 1.002  | 0.0100  | 50800          | 50000           | 1.6     | 25.0      |
| Benzo(g,h,i)perylene        | Ave           | 1.070   | 1.217  | 0.0100  | 56900          | 50000           | 13.7    | 25.0      |
| Jenzo (g, n, 1/perylene     | Ave           | 0.8889  | 1.000  | 0.0100  | 56300          | 50000           | 12.5    | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCVIS 480-59236/2 Calibration Date: 04/12/2012 10:05

Instrument ID: HP5973V Calib Start Date: 04/09/2012 14:10

GC Column: RXI-5Sil MS ID: 0.25(mm) Calib End Date: 04/09/2012 16:15

Lab File ID: V8892.D Conc. Units: ug/L

| ANALYTE                       | CURVE | AVE RRF | RRF    | MIN RRF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|-------------------------------|-------|---------|--------|---------|----------------|-----------------|-------|-----------|
|                               |       |         |        |         | 71100141       | APIOONI         |       | 5D        |
| N-Nitrosodimethylamine        | Ave   | 0.7590  | 0.7965 | 0.0100  | 52500          | 50000           | 4.9   | 25.0      |
| Pyridine                      | Ave   | 0.7368  | 0.8224 | 0.0100  | 55800          | 50000           | 11.6  | 100.0     |
| Phenol                        | Ave   | 1.862   | 1.917  | 0.0100  | 51500          | 50000           | 3.0   | 20.0      |
| Aniline                       | Ave   | 2.299   | 2.219  | 0.0100  | 48300          | 50000           | -3.5  | 100.0     |
| Bis(2-chloroethyl)ether       | Ave   | 1.453   | 1.481  | 0.0100  | 50900          | 50000           | 1.9   | 25.0      |
| 2-Chlorophenol                | Ave   | 1.312   | 1.357  | 0.0100  | 51700          | 50000           | 3.5   | 25.0      |
| 1,3-Dichlorobenzene           | Ave   | 1.533   | 1.578  | 0.0100  | 51500          | 50000           | 2.9   | 25.0      |
| 1,4-Dichlorobenzene           | Ave   | 1.571   | 1.578  | 0.0100  | 50200          | 50000           | 0.4   | 20.0      |
| Benzyl alcohol                | Ave   | 0.9128  | 0.9601 | 0.0100  | 52600          | 50000           | 5.2   | 100.0     |
| 1,2-Dichlorobenzene           | Ave   | 1.469   | 1.470  | 0.0100  | 50000          | 50000           | 0.0   | 25.0      |
| 2-Methylphenol                | Ave   | 1.264   | 1.223  | 0.0100  | 48400          | 50000           | -3.2  | 25.0      |
| bis (2-chloroisopropyl) ether | Ave   | 1.042   | 0.9886 | 0.0100  | 47400          | 50000           | -5.1  | 25.0      |
| N-Nitrosodi-n-propylamine     | Ave   | 1.076   | 1.152  | 0.0500  | 53500          | 50000           | 7.0   | 25.0      |
| 4-Methylphenol                | Ave   | 1.283   | 1.330  | 0.0100  | 51900          | 50000           | 3.7   | 25.0      |
| Hexachloroethane              | Ave   | 0.5819  | 0.5888 | 0.0100  | 50600          | 50000           | 1.2   | 25.0      |
| Nitrobenzene                  | Ave   | 0.4414  | 0.4660 | 0.0100  | 52800          | 50000           | 5.6   | 25.0      |
| Isophorone                    | Ave   | 0.7632  | 0.7951 | 0.0100  | 52100          | 50000           | 4.2   | 25.0      |
| 2-Nitrophenol                 | Ave   | 0.1709  | 0.1997 | 0.0100  | 58400          | 50000           | 16.9  | 20.0      |
| 2,4-Dimethylphenol            | Ave   | 0.3666  | 0.3799 | 0.0100  | 51800          | 50000           | 3.6   | 25.0      |
| Tetraethyl lead               | Ave   | 0.1432  | 0.1275 | 0.0100  | 44500          | 50000           | -11.0 | 40.0      |
| Bis(2-chloroethoxy)methane    | Ave   | 0.4206  | 0.4343 | 0.0100  | 51600          | 50000           | 3.3   | 25.0      |
| 2,4-Dichlorophenol            | Ave   | 0.2792  | 0.3025 | 0.0100  | 54200          | 50000           | 8.3   | 20.0      |
| Benzoic acid                  | Lin1  |         | 0.2503 | 0.0100  | 170000         | 150000          | 13.2  | 25.0      |
| 1,2,4-Trichlorobenzene        | Ave   | 0.3275  | 0.3427 | 0.0100  | 52300          | 50000           | 4.6   | 25.0      |
| Naphthalene                   | Ave   | 1.006   | 1.021  | 0.0100  | 50800          | 50000           | 1.5   | 25.0      |
| 4-Chloroaniline               | Ave   | 0.3825  | 0.3851 | 0.0100  | 50300          | 50000           | 0.7   | 25.0      |
| Hexachlorobutadiene           | Ave   | 0.2037  | 0.2113 | 0.0100  | 51900          | 50000           | 3.7   | 20.0      |
| 4-Chloro-3-methylphenol       | Linl  |         | 0.3227 | 0.0100  | 51600          | 50000           | 3.2   | 20.0      |
| 2-Methylnaphthalene           | Ave   | 0.6906  | 0.7135 | 0.0100  | 51700          | 50000           | 3.3   | 25.0      |
| Hexachlorocyclopentadiene     | Linl  |         | 0.3365 | 0.0500  | 48100          | 50000           | -3.8  | 25.0      |
| 2,4,6-Trichlorophenol         | Ave   | 0.3247  | 0.3850 | 0.0100  | 59300          | 50000           | 18.6  | 20.0      |
| 2,4,5-Trichlorophenol         | Lin1  |         | 0.3847 | 0.0100  | 55000          | 50000           | 10.0  | 25.0      |
| 2-Chloronaphthalene           | Ave   | 1.019   | 1.094  | 0.0100  | 53700          | 50000           | 7.4   | 25.0      |
| 2-Nitroaniline                | Linl  | · ·     | 0.3566 | 0.0100  | 55000          | 50000           | 10.0  | 25.0      |
| Dimethyl phthalate            | Ave   | 1.226   | 1.288  | 0.0100  | 52500          | 50000           | 5.1   | 25.0      |
| 2,6-Dinitrotoluene            | Lin1  |         | 0.2950 | 0.0100  | 56100          | 50000           | 12.2  | 25.0      |
| Acenaphthylene                | Ave   | 1.693   | 1.758  | 0.0100  | 51900          | 50000           | 3.9   | 25.0      |
| 3-Nitroaniline                | Lin1  |         | 0.2849 | 0.0100  | 51200          | 50000           | 2.4   | 25.0      |
| Acenaphthene                  | Ave   | 1.024   | 1.060  | 0.0100  | 51800          | 50000           | 3.5   | 20.0      |
| 2,4-Dinitrophenol             | Linl  |         | 0.1354 | 0.0500  | 46100          | 50000           | -7.8  | 25.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCVIS 480-59236/2 Calibration Date: 04/12/2012 10:05

Instrument ID: HP5973V Calib Start Date: 04/09/2012 14:10

Lab File ID: V8892.D Conc. Units: ug/L

|                             |       | *************************************** |        |         |        | T      | T        |      |
|-----------------------------|-------|-----------------------------------------|--------|---------|--------|--------|----------|------|
| ANALYTE                     | CURVE | AVE RRF                                 | RRF    | MIN RRF | CALC   | SPIKE  | %D       | MAX  |
|                             | TYPE  | A HARAL - MAY                           |        |         | AMOUNT | AMOUNT |          | %D   |
| 4-Nitrophenol               | Linl  |                                         | 0.1288 | 0.0500  | 41700  | 50000  | -16.6    | 25.0 |
| Dibenzofuran                | Ave   | 1.529                                   | 1.610  | 0.0100  | 52700  | 50000  | 5.3      | 25.0 |
| 2,4-Dinitrotoluene          | Ave   | 0.3546                                  | 0.3990 | 0.0100  | 56300  | 50000  | 12.5     | 25.0 |
| Diethyl phthalate           | Ave   | 1.247                                   | 1.339  | 0.0100  | 53700  | 50000  | 7.4      | 25.0 |
| Fluorene                    | Ave   | 1.326                                   | 1.394  | 0.0100  | 52500  | 50000  | 5.1      | 25.0 |
| 4-Chlorophenyl phenyl ether | Ave   | 0.6807                                  | 0.7241 | 0.0100  | 53200  | 50000  | 6.4      | 25.0 |
| 4-Nitroaniline              | Linl  |                                         | 0.2611 | 0.0100  | 49400  | 50000  | -1.2     | 25.0 |
| 4,6-Dinitro-2-methylphenol  | Linl  |                                         | 0.1262 | 0.0100  | 47800  | 50000  | -4.4     | 25.0 |
| N-Nitrosodiphenylamine      | Ave   | 0.5039                                  | 0.5210 | 0.0100  | 51700  | 50000  | 3.4      | 20.0 |
| 1,2-Diphenylhydrazine       | Ave   | 1.490                                   | 1.548  | 0.0100  | 51900  | 50000  | 3.9      | 25.0 |
| 4-Bromophenyl phenyl ether  | Ave   | 0.2146                                  | 0.2190 | 0.0100  | 51000  | 50000  | 2.0      | 25.0 |
| Hexachlorobenzene           | Ave   | 0.2124                                  | 0.2115 | 0.0100  | 49800  | 50000  | -0.4     | 25.0 |
| Pentachlorophenol           | Linl  |                                         | 0.1192 | 0.0100  | 52300  | 50000  | 4.6      | 20.0 |
| Phenanthrene                | Ave   | 1.078                                   | 1.101  | 0.0100  | 51100  | 50000  | 2.1      | 25.0 |
| Anthracene                  | Ave   | 1.090                                   | 1.129  | 0.0100  | 51800  | 50000  | 3.6      | 25.0 |
| Carbazole                   | Ave   | 0.9112                                  | 0.9275 | 0.0100  | 50900  | 50000  | 1.8      | 25.0 |
| Di-n-butyl phthalate        | Ave   | 1.091                                   | 1.170  | 0.0100  | 53600  | 50000  | 7.3      | 25.0 |
| Fluoranthene                | Ave   | 1.177                                   | 1.221  | 0.0100  | 51900  | 50000  | 3.7      | 20.0 |
| Benzidine                   | Linl  |                                         | 0.3612 | 0.0100  | 40400  | 50000  | -19.2    | 25.0 |
| Pyrene                      | Ave   | 1.175                                   | 1.171  | 0.0100  | 49800  | 50000  | -0.3     | 25.0 |
| Butyl benzyl phthalate      | Lin1  |                                         | 0.5062 | 0.0100  | 50700  | 50000  | 1.4      | 25.0 |
| 3,3'-Dichlorobenzidine      | Linl  |                                         | 0.4281 | 0.0100  | 51900  | 50000  | 3.8      | 25.0 |
| Bis(2-ethylhexyl) phthalate | Lin1  |                                         | 0.7021 | 0.0100  | 51400  | 50000  | 2.8      | 25.0 |
| Benzo(a) anthracene         | Ave   | 1.114                                   | 1.153  | 0.0100  | 51800  | 50000  | 3.5      | 25.0 |
| Chrysene                    | Ave   | 1.136                                   | 1.144  | 0.0100  | 50300  | 50000  | 0.7      | 25.0 |
| Di-n-octyl phthalate        | Lin1  |                                         | 1.177  | 0.0100  | 57000  | 50000  | 14.0     | 20.0 |
| Benzo(b) fluoranthene       | Ave   | 1.141                                   | 1.324  | 0.0100  | 58000  | 50000  | 16.0     | 25.0 |
| Benzo(k) fluoranthene       | Ave   | 1.309                                   | 1.316  | 0.0100  | 50300  | 50000  | 0.5      | 25.0 |
| Benzo(a) pyrene             | Ave   | 0.997                                   | 1.072  | 0.0100  | 53800  | 50000  | 7.5      | 20.0 |
| Indeno(1,2,3-cd)pyrene      | Ave   | 1.070                                   | 0.7138 | 0.0100  | 33300  | 50000  | -33.3*   | 25.0 |
| Dibenz(a,h)anthracene       | Lin1  |                                         | 0.6299 | 0.0100  | 33000  | 50000  | -34.0*   | 25.0 |
| Benzo(g,h,i)perylene        | Ave   | 0.8889                                  | 0.5332 | 0.0100  | 30000  | 50000  | (-40.0*) | 25.0 |
| 2-Fluorophenol              | Ave   | 1.375                                   | 1.474  | 0.0100  | 53600  | 50000  | 7.2      | 25.0 |
| Phenol-d5                   | Ave   | 1.826                                   | 1.862  | 0.0100  | 51000  | 50000  | 2.0      | 25.0 |
| Nitrobenzene-d5             | Ave   | 0.4246                                  | 0.4622 | 0.0100  | 54400  | 50000  | 8.9      | 25.0 |
| 2-Fluorobiphenyl            | Ave   | 1.258                                   | 1.360  | 0.0100  | 54100  | 50000  | 8.2      | 25.0 |
| 2,4,6-Tribromophenol        | Ave   | 0.0804                                  | 0.0864 | 0.0100  | 53700  | 50000  | 7.5      | 25.0 |
| p-Terphenyl-d14             | Ave   | 0.8684                                  | 0.8675 | 0.0100  | 49900  | 50000  | -0.1     | 25.0 |

#### QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-18071-1

#### 12 Soil Samples, and 3 Field Duplicates Collected April 3-5, 2012

Prepared by: Donald Anné May 3, 2012

Holding Times: Samples were extracted and analy.

PCB

18071-1

LEPA SW-846 holding times.

Blanks: The analyses of method blanks reported target PCBs as not detected.

Surrogate Recovery: The surrogates recoveries were within QC limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD samples TP-A1 and RB-10 (0-6").

<u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil samples LCS 480-58267/2-A, LCS 480-58493/2-A, and LCS 480-58715/2-A.

<u>Field Duplicates</u>: The analyses of soil field duplicate pairs TP-A2/DUP-02, RB-09(0-6")/DUP-01, RB-09(12"-24")/DUP-02 reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.

<u>Initial Calibration</u>: The %RSDs for PCB-1016 and PCB-1260 were below the allowable maximum (20%), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-05-12 (CCV480-58319/9) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-06-12 (CCV480-58418/13) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-10-12 (CCV480-58658/62) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-10-12 (CCV480-58658/74) for the ZB-5 column. Positive results

for PCB-1016 and PCB-1260 should be considered estimated in associated samples.

<u>PCB Identification Summary for Multicomponent Analytes</u>: The checked surrogates wer within GC quantitation limits. The analyses of soil samples in this data pack reported target PCBs as not detected.



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-18071-1

#### 12 Soil Samples, and 3 Field Duplicates Collected April 3-5, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of method blanks reported target PCBs as not detected.

<u>Surrogate Recovery</u>: The surrogates recoveries were within QC limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD samples TP-A1 and RB-10 (0-6").

<u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil samples LCS 480-58267/2-A, LCS 480-58493/2-A, and LCS 480-58715/2-A.

<u>Field Duplicates</u>: The analyses of soil field duplicate pairs TP-A2/DUP-02, RB-09(0-6")/DUP-01, RB-09(12"-24")/DUP-02 reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.

<u>Initial Calibration</u>: The %RSDs for PCB-1016 and PCB-1260 were below the allowable maximum (20%), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-05-12 (CCV480-58319/9) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-06-12 (CCV480-58418/13) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-10-12 (CCV480-58658/62) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-10-12 (CCV480-58658/74) for the ZB-5 column. Positive results

for PCB-1016 and PCB-1260 should be considered estimated in associated samples.

PCB Identification Summary for Multicomponent Analytes: The checked surrogates were within GC quantitation limits. The analyses of soil samples in this data pack reported target PCBs as not detected.

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCV 480-58319/9 Calibration Date: 04/05/2012 17:42

Instrument ID: HP5890-12 Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5 ID: 0.53 (mm) Calib End Date: 10/23/2011 15:23

Lab File ID: 12 163 197.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|---------|--------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 307830  |        | 0.675          | 0.500           | 34.9* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908  | 170746  |        | 0.712          | 0.500           | 42.4* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 420184  |        | 0.634          | 0.500           | 26.7* | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756  | 206372  |        | 0.771          | 0.500           | 54.3* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257  | 352232  |        | 0.647          | 0.500           | 29.4* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 514922  |        | 0.587          | 0.500           | 17.4* | 15.0      |
| PCB-1260 Peak 3        | Ave           | 177029  | 228208  |        | 0.645          | 0.500           | 28.9* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 131264  |        | 0.529          | 0.500           | 5.8   | 15.0      |
| Tetrachloro-m-xylene   | Lin1          |         | 5384300 |        | 0.0367         | 0.0300          | 22.3* | 15.0      |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 5959633 |        | 0.0387         | 0.0300          | 29.1* | 15.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCV 480-58418/13

Instrument ID: HP5890-12

GC Column: ZB-5 ID: 0.53 (mm)

Lab File ID: 12 163 236.D

Calibration Date: 04/06/2012 10:56

Calib Start Date: 10/23/2011 13:54

Calib End Date: 10/23/2011 15:23

Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF | CALC   | SPIKE<br>AMOUNT | %D    | MAX  |
|------------------------|---------------|---------|---------|--------|--------|-----------------|-------|------|
|                        |               |         |         |        | AMOUNT | AMOUNI          |       | %D   |
| PCB-1016 Peak 1        | Ave           | 228124  | 324932  |        | 0.712  | 0.500           | 42.4* | 15.0 |
| PCB-1016 Peak 2        | Ave           | 119908  | 178096  |        | 0.743  | 0.500           | 48.5* | 15.0 |
| PCB-1016 Peak 3        | Ave           | 331581  | 457562  |        | 0.690  | 0.500           | 38.0* | 15.0 |
| PCB-1016 Peak 4        | Ave           | 133756  | 208326  |        | 0.779  | 0.500           | 55.8* |      |
| PCB-1260 Peak 1        | Ave           | 272257  | 383912  |        | 0.705  | 0.500           |       | 15.0 |
| PCB-1260 Peak 2        | Ave           | 438611  | 532656  |        | 0.607  |                 | 41.0* | 15.0 |
| PCB-1260 Peak 3        | Ave           | 177029  | 244130  |        |        | 0.500           | 21.4* | 15.0 |
| PCB-1260 Peak 4        | Ave           | 124111  | 139276  | ~      | 0.690  | 0.500           | 37.9* | 15.0 |
| Tetrachloro-m-xylene   | Lin1          | 154111  |         |        | 0.561  | 0.500           | 12.2  | 15.0 |
| DCB Decachlorobiphenyl |               |         | 5659700 |        | 0.0385 | 0.0300          | 28.3* | 15.0 |
| pen pecachiotopiphenyl | Ave           | 4617528 | 6260133 |        | 0.0407 | 0.0300          | 35.6* | 15.0 |

average %D PCB-1016 = 46.2% PCB-1260 = 28.190

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCV 480-58658/62 Calibration Date: 04/10/2012 00:22

Instrument ID: HP5890-12 Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5 ID: 0.53(mm) Calib End Date: 10/23/2011 15:23

Lab File ID: 12 163 311.D Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|---------|--------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 303604  |        | 0.665          | 0.500           | 33.1* | 15.0      |
| PCB-1016 Peak 2        | Ave           | 119908  | 169636  |        | 0.707          | 0.500           | 41.5* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 415342  |        | 0.626          | 0.500           | 25.3* | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756  | 200260  |        | 0.749          | 0.500           | 49.7* | 15.0      |
| PCB-1260 Peak 1        | Ave           | 272257  | 376230  |        | 0.691          | 0.500           | 38.2* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 521102  |        | 0.594          | 0.500           | 18.8* | 15.0      |
| PCB-1260 Peak 3        | Ave           | 177029  | 232982  |        | 0.658          | 0.500           | 31.6* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 136932  |        | 0.552          | 0.500           | 10.3  | 15.0      |
| Tetrachloro-m-xylene   | Lin1          |         | 5316700 |        | 0.0363         | 0.0300          | 21.0* | ~         |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 6257833 |        | 0.0407         | 0.0300          | 35.5* | 15.0      |

averge % D PCB-1016 = (37.4%)

Lab Name: TestAmerica Buffalo

Job No.: 480-18071-1

SDG No.:

Lab Sample ID: CCV 480-58658/74

Calibration Date: 04/10/2012 03:18

Instrument ID: HP5890-12

Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5 ID: 0.53(mm)

Calib End Date: 10/23/2011 15:23

Lab File ID: 12 163 323.D

Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF  | CF      | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|---------|---------|--------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124  | 305818  |        | 0.670          | 0.500           |       |           |
| PCB-1016 Peak 2        | Ave           | 110000  |         |        | 0.670          | 0.500           | 34.1* | 15.0      |
| PCB-1016 Peak 3        | 1116          | 119908  | 171000  |        | 0.713          | 0.500           | 42.6* | 15.0      |
| PCB-1016 Peak 3        | Ave           | 331581  | 411850  |        | 0.621          | 0.500           | 24 24 |           |
| PCB-1016 Peak 4        | Ave           | 133756  | 206998  |        |                | 0.300           | 24.2* | 15.0      |
| PCB-1260 Peak 1        |               |         | 206998  |        | 0.774          | 0.500           | 54.8* | 15.0      |
|                        | Ave           | 272257  | 358612  |        | 0.659          | 0.500           | 31.7* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611  | 522164  |        |                |                 | 31.7  | 15.0      |
| PCB-1260 Peak 3        | 2             |         |         |        | 0.595          | 0.500           | 19.0* | 15.0      |
|                        | Ave           | 177029  | 235258  |        | 0.665          | 0.500           | 32.9* | 15.0      |
| PCB-1260 Peak 4        | Ave           | 124111  | 135406  |        | 0.546          |                 |       | 13.0      |
| Tetrachloro-m-xylene   | Linl          |         |         | ~~     | 0.546          | 0.500           | 9.1   | 15.0      |
|                        | TILI          |         | 5352100 |        | 0.0365         | 0.0300          | 21.7* | 15.0      |
| DCB Decachlorobiphenyl | Ave           | 4617528 | 6066167 |        | 0.0394         |                 |       |           |
|                        |               |         |         |        | 0.0394         | 0.0300          | 31.4* | 15.0      |

average % D PCB-1016 = 38.9% 11 11 11 PCB-1260 = 23.2%



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No: 480-18071-1

#### 12 Soil Samples and 3 Field Duplicates Collected April 3-5, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were analyzed within NYSDEC ASP holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

CRDL Standard for AA and ICP: The percent recoveries for target metals were within laboratory QC limits (50-150%) for CRQL standard samples CRI 480-58450/7, CRI 480-58690/7, CRI 480-58891/7, CRA 480-58512/3, CRA 480-58486/3, and CRA 480-58742/3.

<u>Blanks</u>: The analyses of initial calibration and continuing calibration, and method blanks reported TAL metals as below the CRDLs, as required.

ICP Interference Check Sample: The percent recoveries for applicable metals were within control limits (80-120%).

Spike Sample Recovery: Two of two percent recoveries (%Rs) for aluminum were above control limits (75-125%), but only one was above 200% for soil MS/MSD samples TP-A1 and RB-10 (0-6"). Positive for aluminum should be considered estimated (J) in associated soil samples.

One of two %Rs for nickel was above control limits (75-125%), but was not above 200% for soil MS/MSD sample RB-10 (0-6"). Positive for nickel should be considered estimated (J) in associated soil samples.

One of two %Rs for magnesium and mercury were below control limits (75-125%), but were not below 10% for soil MS/MSD sample RB-10 (0-6"). Two of two %Rs for magnesium were below control limits (75-125%), but were not below 10% for soil MS/MSD sample TP-A1. Two of two %Rs for arsenic and calcium were below control limits (75-125%), but were not below 10% for soil MS/MSD sample RB-10 (0-6"). Positive and "not detected" results for these metals should be considered estimated (J) in associated soil samples.

Page 1 of 2

- <u>Laboratory Duplicates</u>: The relative percent difference for iron was above the allowable maximum (35%) in soil MS/MSD sample RB-10 (0-6"). Positive results for iron should be considered estimated (J) in associated soil samples.
- Field Duplicates: The relative percent difference (RPD) for calcium was above the allowable maximum (35%) for soil field duplicate pair TP-A2/DUP-02 (4/3) (attached table). Positive results for magnesium should be considered estimated (J) in samples TP-A2 and DUP-02 (4/3).

The RPD for lead was above the allowable maximum (35%) for soil field duplicate pair RB-09(0-6")/DUP-01 (attached table). Positive results for lead should be considered estimated (J) in samples RB-09(0-6") and DUP-01.

The RPDs for the following metals were above the allowable maximum (35%) for soil field duplicate pair RB-09(12"-24")/DUP-02 (4/5) (attached table). Positive results for these metals should be considered estimated (J) in samples RB-09(12"-24") and DUP-02 (4/5).

| barium    | calcium | lead      | magnesium |
|-----------|---------|-----------|-----------|
| manganese | mercury | potassium | zinc      |

<u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in the following soil samples.

| LCSSRM 480-58242/2-A LC | CSSRM 480-58490/2-A | LCSSRM 480-58539/2-A |
|-------------------------|---------------------|----------------------|
| I CCCCD A CACA TO CATE  | COORDA A COORDA     | LCSSRM 480-58652/2-A |

ICP Serial Dilution: The %D for potassium was above the allowable maximum (10%) for soil serial dilution sample TP-A2. The %D for cobalt was above the allowable maximum (10%) for soil serial dilution sample RB-10(0-6"). Positive results for cobalt and potassium that are above the CRDLs should be considered estimated (J) in associated soil samples.

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

Percent Solids: The % solids for soil samples were above 50%.

**TAL Metals** 

#### Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-18071-1

|                     | <b>S1=</b> TP-A2         | <b>S2=</b> DUP-02 (4/3)  |          |  |  |
|---------------------|--------------------------|--------------------------|----------|--|--|
| Analyte<br>aluminum | <u><b>S1</b></u><br>5330 | <u><b>S2</b></u><br>5790 | RPD (%)  |  |  |
| antimony            | ND                       | ND                       | 8%<br>NC |  |  |
| arsenic             | 6.3                      | 6.2                      | 2%       |  |  |
| barium              | 33.7                     | 38.2                     | 13%      |  |  |
| beryllium           | 0.34                     | 0.42                     | 21%      |  |  |
| cadmium             | 0.23                     | 0.19                     | NC       |  |  |
| calcium             | 7430                     | 15300                    | 69%      |  |  |
| chromium            | 7.1                      | 8.2                      | 14%      |  |  |
| cobalt              | 7.3                      | 7.4                      | 1%       |  |  |
| copper              | 82.2                     | 90.5                     | 10%      |  |  |
| iron                | 29700                    | 21800                    | 31%      |  |  |
| lead                | 44.4                     | 39.9                     | 11%      |  |  |
| magnesium           | 2680                     | 3000                     | 11%      |  |  |
| manganese           | 307                      | 439                      | 35%      |  |  |
| mercury             | 0.091                    | 0.090                    | 1%       |  |  |
| nickel              | 14.9                     | 15.0                     | 1%       |  |  |
| potassium           | 740                      | 931                      | 23%      |  |  |
| selenium<br>        | ND                       | ND                       | NC       |  |  |
| silver<br>          | ND                       | ND                       | NC       |  |  |
| sodium              | 74.2                     | 88.6                     | NC       |  |  |
| thallium            | ND                       | ND                       | NC       |  |  |
| vanadium            | 13.3                     | 14.5                     | 9%       |  |  |
| zinc                | 60.6                     | 48.1                     | 23%      |  |  |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

#### **TAL Metals**

# Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-18071-1

|                | <b>S1=</b> RB-09(0-6") | <b>S2=</b> DUP-01 |         |  |
|----------------|------------------------|-------------------|---------|--|
| <u>Analyte</u> | <u>\$1</u>             | <u>S2</u>         | RPD (%) |  |
| aluminum       | 5490                   | 5350              | 3%      |  |
| antimony       | 1.1                    | 0.99              | NC      |  |
| arsenic        | 63.8                   | 78.3              | 20%     |  |
| barium         | 25.4                   | 25.2              | 1%      |  |
| beryllium      | 0.24                   | 0.23              | NC      |  |
| cadmium        | ND                     | ND                | NC      |  |
| calcium        | 1730                   | 1550              | 11%     |  |
| chromium       | 9.7                    | 9.3               | 4%      |  |
| cobalt         | 2.6                    | 2.5               | 4%      |  |
| copper         | 36                     | 34                | 8%      |  |
| iron           | 14500                  | 15200             | 5%      |  |
| lead           | 65.8                   | 44.7              | 38%     |  |
| magnesium      | 780                    | 751               | 4%      |  |
| manganese      | 181                    | 163               | 10%     |  |
| mercury        | 0.61                   | 0.53              | 14%     |  |
| nickel         | 9.3                    | 9.4               | 1%      |  |
| potassium      | 476                    | 494               | 4%      |  |
| selenium       | 0.69                   | ND                | NC      |  |
| silver         | ND                     | ND                | NC      |  |
| sodium         | 51.0                   | 49.0              | 4%      |  |
| thallium       | ND                     | ND                | NC      |  |
| vanadium       | 16.8                   | 16.1              | 4%      |  |
| zinc           | 58.3                   | 53.2              | 9%      |  |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

#### **TAL Metals**

## <u>Calculations for Field Duplicate Relative Percent Difference (RPD)</u> SDG No. 480-18071-1

|                | <b>S1=</b> RB-09(12"-24") | S2=        | = DUP-02 (4/5) |   |
|----------------|---------------------------|------------|----------------|---|
| <u>Analyte</u> | <u>\$1</u>                | <u>\$2</u> | RPD (%)        |   |
| aluminum       | 2360                      | 3350       | 35%            |   |
| antimony       | 0.86                      | ND         | NC             |   |
| arsenic        | 21.6                      | 26.7       | 21%            |   |
| barium         | 121                       | 386        | 105%           | * |
| beryllium      | 0.40                      | 0.51       | 24%            |   |
| cadmium        | ND                        | ND         | NC             |   |
| calcium        | 1970                      | 3710       | 61%            | * |
| chromium       | 5.8                       | 6.9        | 17%            |   |
| cobalt         | 3.3                       | 2.8        | 16%            |   |
| copper         | 25.3                      | 30.4       | 18%            |   |
| iron           | 12700                     | 12100      | 5%             |   |
| lead           | 27.6                      | 40.7       | 38%            | * |
| magnesium      | 281                       | 475        | 51%            | * |
| manganese      | 35.1                      | 61.3       | 54%            | * |
| mercury        | 0.099                     | 0.280      | 96%            | * |
| nickel         | 8.4                       | 8.4        | 0%             |   |
| potassium      | 324                       | 480        | 39%            | * |
| selenium       | 0.82                      | ND         | NC             |   |
| silver         | ND                        | ND         | NC             |   |
| sodium         | 58.1                      | 65.5       | 12%            |   |
| thallium       | ND                        | ND         | NC             |   |
| vanadium       | 14.0                      | 14.0       | 0%             |   |
| zinc           | 24.6                      | 121        | 132%           | * |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: TP-A1 MS Lab ID: 480-18147-1 MS

Lab Name: TestAmerica Buffalo Job No.: 480-18071-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 89.6

| Analyte   | SSR<br>C | Sample<br>Result (SF | R)<br>C | Spike<br>Added (SA) | %R              | Control<br>Limit<br>%R | Q | Method |
|-----------|----------|----------------------|---------|---------------------|-----------------|------------------------|---|--------|
| Aluminum  | 11620    | 7140                 | T       | 2180                | 205             | 75-125                 | F | 6010B  |
| Antimony  | 34.13    | ND                   |         | 43.6                | 78              | 75-125                 |   | 6010B  |
| Arsenic   | 46.76    | 5.5                  |         | 43.6                | 95              | 75-125                 |   | 6010B  |
| Barium    | 83.92    | 34.8                 |         | 43.6                | 113             | 75-125                 |   | 6010B  |
| Beryllium | 43.21    | 0.59                 |         | 43.6                | 98              | 75-125                 |   | 6010B  |
| Cadmium   | 41.37    | 0.22                 |         | 43.6                | 94              | 75-125                 |   | 6010B  |
| Calcium   | 5045     | 9820                 |         | 2180                | <b>N</b> A −219 | 75-125                 | 4 | 6010B  |
| Chromium  | 54.12    | 10.4                 |         | 43.6                | 100             | 75-125                 |   | 6010B  |
| Cobalt    | 56.34    | 10.0                 |         | 43.6                | 106             | 75-125                 |   | 6010B  |
| Copper    | 83.98    | 39.2                 |         | 43.6                | 103             | 75-125                 |   | 6010B  |
| Iron      | 16990    | 14900                |         | 2180                | . 96            | 75-125                 | 4 | 6010B  |
| Lead      | 66.61    | 20.6                 |         | 43.6                | 105             | 75-125                 |   | 6010B  |
| Magnesium | 4699     | 4050                 |         | 2180                | (30)            | 75-125                 | F | 6010B  |
| Manganese | 192.5    | 259                  |         | 43.6                | MA -153         | 75-125                 | 4 | 6010B  |
| Nickel    | 76.11    | 31.9                 |         | 43.6                | 101             | 75-125                 |   | 6010B  |
| Potassium | 3167     | 943                  |         | 2180                | 102             | 75-125                 |   | 6010B  |
| Selenium  | 39.88    | 0.60                 | J       | 43.6                | 90              | 75-125                 |   | 6010B  |
| Silver    | 10.05    | ND                   |         | 10.9                | 92              | 75-125                 |   | 6010B  |
| Sodium    | 2184     | 128                  | J       | 2180                | 94              | 75-125                 |   | 6010B  |
| Thallium  | 44.02    | ND                   |         | 43.6                | 101             | 75-125                 |   | 6010B  |
| Vanadium  | 58.10    | 13.7                 |         | 43.6                | 102             | 75-125                 |   | 6010B  |
| Zinc      | 111.6    | 58.0                 |         | 43.6                | 123             | 75-125                 |   | 6010B  |
| Нд        | 0.462    | 0.14                 |         | 0.373               | 86              | 75-125                 |   | 7471A  |

SSR = Spiked Sample Result

NA- Not applicable, the sample concentration is greater than 4 times the spike level; therefore, valid % Rs could not be calculated.

# 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

| Client I | D: TP-A1 MSD          | Lab | ID:    | 480-18147-1 MSD    |
|----------|-----------------------|-----|--------|--------------------|
| Lab Name | : TestAmerica Buffalo | Job | No.:   | 480-18071-1        |
| SDG No.: |                       |     |        |                    |
| Matrix:  |                       |     | centra | ation Units: mg/Kg |

% Solids: 89.6

| Analyte   | (SDR) | Spike<br>Added (SA) | %R      | Control<br>Limit<br>%R | RPD  | RPD<br>Limit | Q  | Method |
|-----------|-------|---------------------|---------|------------------------|------|--------------|----|--------|
| Aluminum  | 11950 | 2470                | 194     | 75-125                 | 2.75 | 20           | F  | 6010B  |
| Antimony  | 40.56 | 49.4                | 82      | 75-125                 | 17.2 | 20           |    | 6010B  |
| Arsenic   | 51.85 | 49.4                | 94      | 75-125                 | 10.3 | 20           |    | 6010B  |
| Barium    | 87.98 | 49.4                | 108     | 75-125                 | 4.73 | 20           |    | 6010B  |
| Beryllium | 50.09 | 49.4                | 100     | 75-125                 | 14.8 | 20           |    | 6010B  |
| Cadmium   | 47.79 | 49.4                | 96      | 75-125                 | 14.4 | 20           |    | 6010B  |
| Calcium   | 4417  | 2470                | WA -219 | 75-125                 | 13.3 | 20           | FY | 6010B  |
| Chromium  | 59.95 | 49.4                | 100     | 75-125                 | 10.2 | 20           |    | 6010B  |
| Cobalt    | 62.21 | 49.4                | 106     | 75-125                 | 9.91 | 20           |    | 6010B  |
| Copper    | 92.06 | 49.4                | 107     | 75-125                 | 9.18 | 20           |    | 6010B  |
| Iron      | 15510 | 2470                | NA 25   | 75-125                 | 9.14 | 20           | 4  | 6010B  |
| Lead      | 73.60 | 49.4                | 107     | 75-125                 | 9.97 | 20           |    | 6010B  |
| Magnesium | 4464  | 2470                | (17)    | 75-125                 | 5.13 | 20           | F  | 6010B  |
| Manganese | 160.6 | 49.4                | NA-200  | 75-125                 | 18.0 | 20           | 4  | 6010B  |
| Nickel    | 77.86 | 49.4                | 93      | 75-125                 | 2.28 | 20           |    | 6010B  |
| Potassium | 3563  | 2470                | 106     | 75-125                 | 11.8 | 20           |    | 6010B  |
| Selenium  | 46.58 | 49.4                | 93      | 75-125                 | 15.5 | 20           |    | 6010B  |
| Silver    | 11.46 | 12.4                | 93      | 75-125                 | 13.1 | 20           |    | 6010B  |
| Sodium    | 2510  | 2470                | 96      | 75-125                 | 13.9 | 20           |    | 6010B  |
| Thallium  | 49.91 | 49.4                | 101     | 75-125                 | 12.5 | 20           |    | 6010B  |
| Vanadium  | 64.62 | 49.4                | 103     | 75-125                 | 10.6 | 20           |    | 6010B  |
| Zinc      | 108.3 | 49.4                | 102     | 75-125                 | 2.96 | 20           |    | 6010B  |
| Нд        | 0.527 | 0.366               | 105     | 75-125                 | 13.2 | 20           |    | 7471A  |

SDR = Sample Duplicate Result

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client ID: RB-10 (0-6") MS    | Lab ID: 480-18223-12 MS |
|-------------------------------|-------------------------|
| Lab Name: TestAmerica Buffalo | Job No.: 480-18071-1    |
| SDG No.:                      |                         |
|                               |                         |

Matrix: Solid Concentration Units: mg/Kg

% Solids: 91.0

| Analyte   | SSR<br>C | Sample<br>Result (SR | )<br>C       | Spike<br>Added (SA) | %R     | Control<br>Limit<br>%R | Q                                                | Method |
|-----------|----------|----------------------|--------------|---------------------|--------|------------------------|--------------------------------------------------|--------|
| Aluminum  | 9315     | 4230                 |              | 2310                | (220)  | 75-125                 | F                                                | 6010B  |
| Antimony  | 40.22    | ND                   |              | 46.2                | 87     | 75-125                 |                                                  | 6010B  |
| Arsenic   | 62.56    | 29.6                 |              | 46.2                | (71)   | 75-125                 | F                                                | 6010B  |
| Barium    | 107.3    | 52.6                 |              | 46.2                | 118    | 75-125                 |                                                  | 6010B  |
| Beryllium | 46.24    | 0.28                 |              | 46.2                | 100    | 75-125                 |                                                  | 6010B  |
| Cadmium   | 44.94    | 0.14                 | J            | 46.2                | 97     | 75-125                 |                                                  | 6010B  |
| Calcium   | 6861     | 5150                 | $\top$       | 2310                | (74)   | 75-125                 | F                                                | 6010B  |
| Chromium  | 59.34    | 12.3                 | _            | 46.2                | 102    | 75-125                 |                                                  | 6010B  |
| Cobalt    | 49.99    | 3.3                  | $\dashv$     | 46.2                | 101    | 75-125                 |                                                  | 6010B  |
| Copper    | 69.57    | 23.2                 | +            | 46.2                | 101    | 75-125                 | <del>*************************************</del> | 6010B  |
| Iron      | 20140    | 18100                |              | 2310                | 88     | 75-125                 | 4                                                | 6010B  |
| Lead      | 94.99    | 41.1                 |              | 46.2                | 117    | 75-125                 | 7                                                | 6010B  |
| Magnesium | 5277     | 3200                 | $\dashv$     | 2310                | 90     | 75-125                 |                                                  | 6010B  |
| Manganese | 274.3    | 213                  |              | 46.2                | NA 133 | 75-125                 | 4                                                | 6010B  |
| Nickel    | 72.01    | 9.5                  |              | 46.2                | 135    | 75-125                 | <del></del>                                      |        |
| Potassium | 3019     | 598                  |              | 2310                | 105    | 75-125                 | Е                                                | 6010B  |
| Selenium  | 42.49    | ND                   |              | 46.2                | 92     | 75-125                 |                                                  | 6010B  |
| Silver    | 11.27    | ND                   | +            | 11.5                | 98     | 75-125                 |                                                  | 6010B  |
| Sodium    | 2210     |                      | J            | 2310                | 94     | 75-125                 |                                                  | 6010B  |
| Thallium  | 45.63    | ND                   | <del>-</del> | 46.2                | 99     | 75-125                 |                                                  | 6010B  |
| Vanadium  | 61.01    | 15.3                 | +            | 46.2                | 99     |                        |                                                  | 6010B  |
| Zinc      | 95.86    | 38.8                 | -            | 46.2                | 124    | 75-125                 |                                                  | 6010B  |
| На        | 0.814    | 0.43                 |              | 0.392               | 97     | 75-125                 |                                                  | 6010B  |
|           |          |                      |              | 0.392               | 9/     | 75-125                 |                                                  | .7471A |

SSR = Spiked Sample Result

# 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: RB-10 (0-6") MSD

Lab ID: 480-18223-12 MSD

Lab Name: TestAmerica Buffalo

Job No.: 480-18071-1

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 91.0

| Analyte   | (SDR) | Spike<br>Added (SA) | %R      | Control<br>Limit<br>%R | RPD    | RPD<br>Limit | Q                                       | Method |
|-----------|-------|---------------------|---------|------------------------|--------|--------------|-----------------------------------------|--------|
| Aluminum  | 8640  | 2250                | (196)   | 75-125                 | 7.52   | 20           | F                                       | 6010B  |
| Antimony  | 39.70 | 44.9                | 88      | 75-125                 | 1.29   | 20           |                                         | 6010B  |
| Arsenic   | 62.59 | 44.9                | (73)    | 75-125                 | 0.00   | 20           | F                                       | 6010B  |
| Barium    | 103.3 | 44.9                | 113     | 75-125                 | 3.78   | 20           |                                         | 6010B  |
| Beryllium | 45.12 | 44.9                | 100     | 75-125                 | 2.45   | 20           |                                         | 6010B  |
| Cadmium   | 44.16 | 44.9                | 98      | 75-125                 | 1.73   | 20           |                                         | 6010B  |
| Calcium   | 6702  | 2240                | (69)    | 75-125                 | 2.34   | 20           | F                                       | 6010B  |
| Chromium  | 60.53 | 44.9                | 108     | 75-125                 | 1.98   | 20           |                                         | 6010B  |
| Cobalt    | 49.32 | 44.9                | 102     | 75-125                 | 1.36   | 20           |                                         | 6010B  |
| Copper    | 71.44 | 44.9                | 108     | 75-125                 | 2.65   | 20           | *************************************** | 6010B  |
| Iron      | 30200 | 2240                | NA 538  | 75-125                 | (40.0) | 20           | 4 F                                     | 6010B  |
| Lead      | 92.53 | 44.9                | 115     | 75-125                 | 2.62   | 20           |                                         | 6010B  |
| Magnesium | 4754  | 2240                | (69)    | 75-125                 | 10.4   | 20           | F                                       | 6010B  |
| Manganese | 353.6 | 44.9                | A/A 313 | 75-125                 | 25.2   | 20           | 4 F                                     | 6010B  |
| Nickel    | 57.28 | 44.9                | 106     | 75-125                 | 22.8   | 20           | F                                       | 6010B  |
| Potassium | 2853  | 2250                | 100     | 75-125                 | 5.68   | 20           |                                         | 6010B  |
| Selenium  | 41.56 | 44.9                | 93      | 75-125                 | 2.24   | 20           |                                         | 6010B  |
| Silver    | 10.92 | 11.2                | 97      | 75-125                 | 3.19   | 20           |                                         | 6010B  |
| Sodium    | 2155  | 2250                | 95      | 75-125                 | 2.54   | 20           |                                         | 6010B  |
| Thallium  | 43.98 | 44.9                | 98      | 75-125                 | 3.70   | 20           |                                         | 6010B  |
| Vanadium  | 58.69 | 44.9                | 97      | 75-125                 | 3.87   | 20           |                                         | 6010B  |
| Zinc      | 93.81 | 44.9                | 123     | 75-125                 | 2.17   | 20           |                                         | 6010B  |
| Hg        | 0.709 | 0.387               | (71)    | 75-125                 | 13.8   | 20           | F                                       | 7471A  |

SDR = Sample Duplicate Result

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

| Matrix |      | Solid               | Concentr | ation Units: | mg/Kg |
|--------|------|---------------------|----------|--------------|-------|
| Lab Na | ame: | TestAmerica Buffalo | Job No:  | 480-18071-1  |       |
| SDG No | o:   |                     |          |              |       |
| Lab II |      | 480-18147-1         | ~~~~     |              |       |

| Analyte   | Initial Samp<br>Result (I) |   | Serial<br>Dilution<br>Result (S) | C | %<br>Difference | _              |        |
|-----------|----------------------------|---|----------------------------------|---|-----------------|----------------|--------|
| imaryce   | THOODIC (I)                | C | nobate (b)                       | C | pitterence      | Q              | Method |
| Aluminum  | 7140                       |   | 7706                             |   | 7.9             |                | 6010B  |
| Antimony  | ND                         |   | ND                               |   | NC              | ~ <u>~~~~~</u> | 6010B  |
| Arsenic   | 5.5                        |   | 6.11                             | J | NC              |                | 6010B  |
| Barium    | 34.8                       |   | 38.13                            |   | 9.5             |                | 6010B  |
| Beryllium | 0.59                       |   | 0.671                            | J | NC              |                | 6010B  |
| Cadmium   | 0.22                       |   | 0.196                            | J | NC              |                | 6010B  |
| Calcium   | 9820                       |   | 10410                            |   | 6.0             |                | 6010B  |
| Chromium  | 10.4                       |   | 11.04                            |   | 5.9             |                | 6010B  |
| Cobalt    | 10.0                       |   | 9.80                             |   | 2.1             |                | 6010B  |
| Copper    | 39.2                       |   | 40.06                            |   | 2.3             |                | 6010B  |
| Iron      | 14900                      |   | 15840                            |   | 6.4             |                | 6010B  |
| Lead      | 20.6                       |   | 19.93                            |   | 3.4             |                | 6010B  |
| Magnesium | 4050                       |   | 4325                             |   | 6.7             |                | 6010B  |
| Manganese | 259                        |   | 278.8                            |   | 7.5             |                | 6010B  |
| Nickel    | 31.9                       |   | 31.28                            |   | 2.0             |                | 6010B  |
| Potassium | 943                        |   | 1086                             |   |                 | V              | 6010B  |
| Selenium  | 0.60                       | J | 4.14                             | J | NC              | •              | 6010B  |
| Silver    | ND                         |   | ND                               |   | NC NC           |                | 6010B  |
| Sodium    | 128                        | J | 144.8                            | J | NC NC           |                | 6010B  |
| Thallium  | ND                         |   | ND ND                            | - | NC NC           |                | 6010B  |
| Vanadium  | 13.7                       |   | 14.95                            |   | 9.0             |                | 6010B  |
| Zinc      | 58.0                       |   | 62.80                            |   | 8.2             |                | 6010B  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

| Matrix: Solid   |                 | Concenti | ration Units: | mg/Kg                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------|-----------------|----------|---------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lab Name: TestA | America Buffalo | Job No:  | 480-18071-1   |                                                    | COMMON And Advisor and Annual State of the S |
| SDG No:         |                 |          |               | VPROMOBBLE AND |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lab ID: 480-182 | 223-12          |          |               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|           | Initial Sampl |   | Serial<br>Dilution |    | o <sub>l</sub> o |   | The state of the s |
|-----------|---------------|---|--------------------|----|------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte   | Result (I)    | С | Result (S)         | С  | Difference       | Q | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aluminum  | 4230          |   | 4234               |    | 0.20             |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Antimony  | ND            |   | ND                 |    | NC               |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Arsenic   | 29.6          |   | 29.75              |    | 0.37             |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Barium    | 52.6          |   | 52.51              |    | 0.22             |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Beryllium | 0.28          |   | 0.241              | J  | NC               |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cadmium   | 0.14          | J | ND                 |    | NC               |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Calcium   | 5150          |   | 5276               |    | 2.4              |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chromium  | 12.3          |   | 11.86              |    | 3.4              |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cobalt    | 3.3           |   | 2.93               | J  | (12)             | V | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Copper    | 23.2          |   | 23.35              |    | 0.82             |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Iron      | 18100         |   | 18870              |    | 4.2              |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lead      | 41.1          |   | 39.98              |    | 2.8              |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Magnesium | 3200          |   | 3225               |    | 0.93             |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Manganese | 213           |   | 217.0              |    | 1.9              |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nickel    | 9.5           | - | 9.07               | T, | 4.6              |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Potassium | 598           |   | 574.5              |    | NC NC            |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Selenium  | ND            | - | ND                 |    | NC NC            |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Silver    | ND            |   | ND                 |    | NC NC            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sodium    | 31.3          | J | ND                 |    | NC NC            | · | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Thallium  | ND            |   | ND ND              |    |                  |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| /anadium  | 15.3          |   | 15.85              |    | NC NC            |   | 6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| inc       | 38.8          |   | 39.62              |    | 3.7              |   | 6010B<br>6010B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Calculations are performed before rounding to avoid round-off errors in calculated results.



Geology

Hydrology

Remediation

Water Supply

## Data Usability Summary Report for TestAmerica Buffalo, Job No: 480-18292-1

#### 10 Soil Samples, 1 Field Duplicate, and 1 Trip Blank Collected April 5, 2012

Prepared by: Donald Anné May 4, 2012

The data packages contain the documentation required by NYSDEC ASP. The proper chain of custody procedures were followed by the samplers. All information appeared legible and complete. The data pack contained the results for 10 soil samples, 1 field duplicate, and 1 trip blank analyzed for volatiles, and 10 soil samples and 1 field duplicate analyzed semi-volatiles, PCB, and TAL metals.

The overall performances of the analyses are acceptable. TestAmerica Buffalo did fulfill the requirements of the analytical methods.

The data are mostly acceptable with some issues that are identified in the accompanying data validation reviews. The following data were flagged:

- Positive metals results for aluminum were flagged as "estimated" (J) in all 10 soil samples and the field duplicate because 2 of 2 percent recoveries for aluminum were above control limits, but were not above 300% in the associated soil MS/MSD sample.
- Positive metal results for magnesium were flagged as "estimated" (J) in all 10 soil samples and the field duplicate because 1 of 2 percent recoveries for magnesium was above control limits and was above 200% in the associated soil MS/MSD sample.
- Positive metal results for barium were flagged as "estimated" (J) in all 10 soil samples and the field duplicate because 1 of 2 percent recoveries for barium was above control limits, but was not above 200% in the associated soil MS/MSD sample.
- Positive metal results for mercury were flagged as "estimated" (J) in all 10 soil samples and the field duplicate because 2 of 2 percent recoveries for mercury were below control limits, but were not below 10% in the associated soil MS/MSD sample.

Page 1 of 2

• Positive metal results for calcium were flagged as "estimated" (J) in samples RB-01(6"-12") and DUP-03 because relative percent difference for calcium was above the allowable maximum in the associated soil field duplicate pair RB-01(6"-12")/DUP-03.

All data are considered usable with estimated (J) data associated with a higher level of quantitative uncertainty. Detailed information on data quality is included in the data validation reviews.



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8260B Volatiles Data for TestAmerica Buffalo, Job No: 480-18292-1

#### 10 Soil Samples, 1 Field Duplicate, and 1 Trip Blank Collected April 5, 2011

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The SPCCs and CCCs were within control limits for method 8260B.

The average RRFs for target compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within control limits for method 8260B.

The RRFs for target compounds were above the allowable minimum (0.010), as required.

The %Ds for 1,1,2-trichloro-1,2,2-trifluoroethane, acetone, carbon disulfide, methyl acetate, 2-butanone, cylohexane, 2-hexanone, and 1,2-dibromo-3-chloropropane were above the allowable maximum (25%) on 04-11-12 (F8012.D). The %Ds for methyl tert-butyl ether and carbon tetrachloride were above the allowable maximum (25%) on 04-13-12 (G11022.D). Positive results for these compounds should be considered estimated (J) in associated samples.

Blanks: The analyses of method and trip blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries were within control limits for environmental samples.

<u>Matrix Spike/Matrix Spike Duplicate</u>: All relative percent differences for spiked compounds were below the allowable maximum and all percent recoveries were below QC limits for soil

- MS/MSD sample RB-01 (0-6"). No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.
- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for aqueous sample LCS 480-59441/4 and soil samples LCS 480-58994/4 and LCS 480-59033/4.
- <u>Field Duplicates</u>: The analyses of soil field duplicate pairs RB-01(6"-12")/DUP-03 reported target compounds as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked compounds were within GC quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

#### FORM III GC/MS VOA MATRIX SPIKE RECOVERY

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: F8017.D

Lab ID: 480-18292-5 MS Client ID: RB-01 (0-6") MS

|                          | SPIKE   | SAMPLE        | MS            | MS  | QC     |    |
|--------------------------|---------|---------------|---------------|-----|--------|----|
|                          | ADDED   | CONCENTRATION | CONCENTRATION | %   | LIMITS | #  |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC | REC    |    |
| 1,1-Dichloroethane       | 85.9    | ND            | /36.6         | 43  | 79-126 | F  |
| 1,1-Dichloroethene       | 85.9    | ND            | / 31.1        | 36  | 65-153 | F  |
| 1,2-Dichlorobenzene      | 85.9    | ND            | 19.6          | 23  | 75-120 | F  |
| 1,2-Dichloroethane       | 85.9    | ND            | 31.6          | 37  |        | F  |
| Benzene                  | 85.9    | ND            | 35.6          | 41  | 79-127 |    |
| Chlorobenzene            | 85.9    | ND            | 28.3          | 33  | 76-124 | F  |
| cis-1,2-Dichloroethene   | 85.9    | ND            | 33.7          | 39  | 81-117 | F  |
| Ethylbenzene             | 85.9    | ND            | 29.4          | 34  | 80-120 | F  |
| Methyl tert-butyl ether  | 85.9    | ND            | 32.5          | 38  | 63-125 | F, |
| Tetrachloroethene        | 85.9    | ND            | 30.9          | 36  | 74-122 | F  |
| Toluene                  | 85.9    | ND            | 34.0          | 40  | 74-128 | F  |
| trans-1,2-Dichloroethene | 85.9    | ND            | 32.3          | 38  | 78-126 | F  |
| Trichloroethene          | 85.9    | ND            | 28.9          | 34  | 77-129 | F  |

#### FORM III GC/MS VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: F8018.D

Lab ID: 480-18292-5 MSD Client ID: RB-01 (0-6") MSD

|                          | SPIKE   | MSD           | MSD |      | QC L1 | IMITS  |    |
|--------------------------|---------|---------------|-----|------|-------|--------|----|
|                          | ADDED   | CONCENTRATION | 90  | 96   |       |        | #  |
| COMPOUND                 | (ug/Kg) | (ug/Kg)       | REC | RPD  | RPD   | REC    |    |
| 1,1-Dichloroethane       | 100     | 70.2          | 70  | 63.0 | 30    | 79-126 | F  |
| 1,1-Dichloroethene       | 100     | 59.4          | 59  | 62.6 | 30    | 65-153 |    |
| 1,2-Dichlorobenzene      | 100     | 32.7          | 33  | 50.2 | 30    | 75-120 | F  |
| 1,2-Dichloroethane       | 100     | 59.4          | 59  | 61.1 | 30    | 77-122 |    |
| Benzene                  | 100     | 68.0          | 68  | 62.7 | 30    | 79-127 | F  |
| Chlorobenzene            | 100     | 51.0          | 51  | 57.1 | 30    | 76-124 | F  |
| cis-1,2-Dichloroethene   | 100     | 63.2          | 63  | 61.0 | 30    | 81-117 | F  |
| Ethylbenzene             | 100     | 53.0          | 53  | 57.3 | 30    | 80-120 | F  |
| Methyl tert-butyl ether  | 100     | 63.0          | 63  | 64.0 | 30    | 63-125 | F  |
| Tetrachloroethene        | 100     | 54.4          | 54  | 55.0 | 30    | 74-122 | F  |
| Toluene                  | 100     | 62,8          | 63  | 59.5 | 30    | 74-128 | F  |
| trans-1,2-Dichloroethene | 100     | 60.2          | 60  | 60.4 | 30    | 78-126 | F' |
| Trichloroethene          | 100     | 52.2          |     | 57.6 | 30    | 77-129 | F  |

<sup>#</sup> Column to be used to flag recovery and RPD values

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Lab Sample ID: CCVIS 480-59033/2 Calibration Date: 04/11/2012 09:07

Instrument ID: HP5973F Calib Start Date: 03/07/2012 23:43

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/08/2012 01:25

Lab File ID: F8012.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D           | MAX<br>%D |
|------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|--------------|-----------|
| Toluene                      | Ave           | 1.664   | 1.591  |                                         | 47.8           | 50.0            | -4.4         | 20.0      |
| Ethyl methacrylate           | Ave           | 0.9228  | 0.7182 |                                         | 38.9           | 50.0            | -22.2        | 50.0      |
| trans-1,3-Dichloropropene    | Ave           | 0.9099  | 0.7614 |                                         | 41.8           | 50.0            | -16.3        | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.5001  | 0.4439 |                                         | 44.4           | 50.0            | -11.2        | 50.0      |
| Tetrachloroethene            | Ave           | 0.7388  | 0.7608 |                                         | 51.5           | 50.0            | 3.0          | 50.0      |
| 1,3-Dichloropropane          | Ave           | 1.038   | 0.9010 |                                         | 43.4           | 50.0            | -13.2        | 50.0      |
| 2-Hexanone                   | Ave           | 0.6379  | 0.4717 |                                         | 185            | 250             | (-26.1)      | 50.0      |
| Dibromochloromethane         | Ave           | 0.6588  | 0.5926 | · · · · · · · · · · · · · · · · · · ·   | 45.0           | 50.0            | -10.0        | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6697  | 0.5948 |                                         | 44.4           | 50.0            | -11.2        | 50.0      |
| Chlorobenzene                | Ave           | 2.027   | 1.923  | 0.3000                                  | 47.4           | 50.0            | -5.2         | 50.0      |
| Ethylbenzene                 | Ave           | 3.069   | 2.908  |                                         | 47.4           | 50.0            | -5.3         | 20.0      |
| 1,1,1,2-Tetrachloroethane    | Ave           | 0.6553  | 0.6535 |                                         | 49.9           | 50.0            | -0.3         |           |
| m-Xylene & p-Xylene          | Ave           | 1.283   | 1.223  | *************************************** | 95.4           | 100             | -4.6         | 50.0      |
| o-Xylene                     | Ave           | 1.233   | 1.188  |                                         | 48.2           | 50.0            |              | 50.0      |
| Styrene                      | Ave           | 2.044   | 1.937  |                                         | 47.4           | 50.0            | -3.7<br>-5.3 | 50.0      |
| Bromoform                    | Ave           | 0.3801  | 0.3300 | 0.1000                                  | 43.4           | 50.0            | <u> </u>     | 50.0      |
| Isopropylbenzene             | Ave           | 2.706   | 2.509  | 0.1000                                  | 46.4           | 50.0            | -13.2        | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.7166  | 0.5995 | 0.3000                                  | 41.8           | 50.0            | -7.3         | 50.0      |
| Bromobenzene                 | Ave           | 0.7878  | 0.7129 | 0.3000                                  | 45.2           | ~~~             | -16.3        | 50.0      |
| trans-1,4-Dichloro-2-butene  | Ave           | 0.2406  | 0.1745 |                                         | 181            | 50.0            | -9.5         | 50.0      |
| N-Propylbenzene              | Ave           | 3.278   | 2.944  |                                         | 44.9           | 250             | NA27.5       | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.2483  | 0.2024 |                                         | 44.9           | 50.0            | -10.2        | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.7471  | 0.6953 |                                         | 46.5           | 50.0            | -18.5        | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 2.282   | 2.113  |                                         | 46.3           | 50.0            | -6.9         | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.7987  | 0.7211 |                                         | 45.1           | 50.0            | -7.4         | 50.0      |
| tert-Butylbenzene            | Ave           | 0.5765  | 0.5390 |                                         | 45.1           | 50.0            | -9.7         | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 2.322   | 2.126  |                                         |                | 50.0            | -6.5         | 50.0      |
| sec-Butylbenzene             | Ave           | 2.926   | 2.741  |                                         | 45.8           | 50.0            | -8.5         | 50.0      |
| 4-Isopropyltoluene           | Ave           | 2.670   | 2.513  |                                         | 47.1           | 50.0            | -6.3         | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 1.504   | 1.372  |                                         |                | 50.0            | -5.9         | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 1.550   | 1.405  |                                         | 45.6           | 50.0            | -8.8         | 50.0      |
| n-Butylbenzene               | Ave           | 2.179   | 2.008  |                                         | 45.3           | 50.0            | -9.4         | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 1.420   | 1.297  |                                         |                | 50.0            | -7.8         | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 0.1193  | 0.0855 |                                         | 45.7           | 50.0            | -8.6         | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.8879  |        |                                         | 35.8           | 50.0            | -28.3        | 50.0      |
| Hexachlorobutadiene          | Ave           | 0.3855  | 0.8590 |                                         | 48.4           | 50.0            | -3.3         | 50.0      |
| Naphthalene                  | Ave           | 2.610   | 2.208  |                                         | 49.6           | 50.0            | -0.9         | 50.0      |
| 1,2,3-Trichlorobenzene       | Ave           | 0.8054  |        |                                         | 42.3           | 50.0            | -15.4        | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1520  | 0.7627 |                                         | 47.3           | 50.0            | -5.3         | 50.0      |
| Foluene-d8 (Surr)            | Ave           | 2.361   | 0.1422 |                                         | 46.8           | 50.0            | -6.4         | 50.0      |
| 1-Bromofluorobenzene (Surr)  | Ave           | 0.7860  | 0.8590 |                                         | 54.5           | 50.0            | 9.0          | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Lab Sample ID: CCVIS 480-59033/2 Calibration Date: 04/11/2012 09:07

Instrument ID: HP5973F Calib Start Date: 03/07/2012 23:43

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 03/08/2012 01:25

Lab File ID: F8012.D Conc. Units: ug/L Heated Purge: (Y/N) N

|                                        |       |          |        |                                         |        | *************************************** |                         |      |
|----------------------------------------|-------|----------|--------|-----------------------------------------|--------|-----------------------------------------|-------------------------|------|
| ANALYTE                                | CURVE | AVE RRF  | RRF    | MIN RRF                                 | CALC   | SPIKE                                   | %D                      | MAX  |
|                                        | TYPE  | 0.000    |        |                                         | AMOUNT | AMOUNT                                  | Pri Vi Consesse semple. | %D   |
| Dichlorodifluoromethane                | Ave   | 0.2059   | 0.1737 |                                         | 42.2   | 50.0                                    | -15.6                   | 50.0 |
| Chloromethane                          | Ave   | 0.2765   | 0.2401 | 0.1000                                  | 43.4   | 50.0                                    | -13.2                   | 50.0 |
| Vinyl chloride                         | Ave   | 0.2213   | 0.2092 |                                         | 47.3   | 50.0                                    | -5.4                    | 20.0 |
| Bromomethane                           | Ave   | 0.1097   | 0.0921 |                                         | 42.0   | 50.0                                    | -16.0                   | 50.0 |
| Chloroethane                           | Ave   | - 0.1050 | 0.0912 |                                         | 43.4   | 50.0                                    | -13.1                   | 50.0 |
| Trichlorofluoromethane                 | Ave   | 0.2394   | 0.2472 |                                         | 51.6   | 50.0                                    | 3,3                     | 50.0 |
| Acrolein                               | Ave   | 0.0379   | 0.0208 | *************************************** | 550    |                                         | (/D-45.0                | 50.0 |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave   | 0.2313   | 0.1680 |                                         | 36.3   | 50.0                                    | -27.4                   | 50.0 |
| 1,1-Dichloroethene                     | Ave   | 0.2420   | 0.2356 | 0.1000                                  | 48.7   | 50.0                                    | -2.7                    | 20.0 |
| Acetone                                | Ave   | 0.1081   | 0.0778 |                                         | 180    | 250                                     | (-28.0)                 | 50.0 |
| Iodomethane                            | Ave   | 0.3623   | 0.2962 |                                         | 40.9   | 50.0                                    | -18.3                   | 50.0 |
| Carbon disulfide                       | Ave   | 0.6556   | 0.4370 |                                         | 33.3   | 50.0                                    | (-33.3)                 | 50.0 |
| Methyl acetate                         | Ave   | 0.3785   | 0.2809 |                                         | 37.1   | 50.0                                    | (-25.8)                 | 50.0 |
| Acetonitrile                           | Ave   | 0.0226   | 0.0190 |                                         | 1690   | 2000                                    | -15.6                   | 50.0 |
| Methylene Chloride                     | Ave   | 0.2868   | 0.2634 |                                         | 45.9   | 50.0                                    | -8.2                    | 50.0 |
| Methyl tert-butyl ether                | Ave   | 0.8378   | 0.6331 |                                         | 37.8   | 50.0                                    | -24.4                   | 50.0 |
| trans-1,2-Dichloroethene               | Ave   | 0.2812   | 0.2665 |                                         | 47.4   | 50.0                                    | -5.2                    | 50.0 |
| Acrylonitrile                          | Ave   | 0.1271   | 0.0988 |                                         | 194    | 250                                     | -22.2                   | 50.0 |
| Vinyl acetate                          | Ave   | 0.6567   | 0.5084 |                                         | 194    | 250                                     | -22.6                   | 50.0 |
| 1,1-Dichloroethane                     | Ave   | 0.4772   | 0.4238 |                                         | 44.4   | 50.0                                    | -11.2                   | 50.0 |
| 2-Butanone (MEK)                       | Ave   | 0.1867   | 0.1348 |                                         | 181    | 250                                     | (-27.8)                 | 50.0 |
| 2,2-Dichloropropane                    | Ave   | 0.3267   | 0.2974 |                                         | 45.5   | 50.0                                    | -9.0                    | 50.0 |
| cis-1,2-Dichloroethene                 | Ave   | 0.3174   | 0.2942 |                                         | 46.3   | 50.0                                    | -7.3                    | 50.0 |
| Bromochloromethane                     | Ave   | 0.1669   | 0.1559 |                                         | 46.7   | 50.0                                    | -6.6                    | 50.0 |
| Tetrahydrofuran                        | Ave   | 0.1231   | 0.0902 |                                         | 183    | 250                                     | √A-26.7                 | 50.0 |
| Chloroform                             | Ave   | 0.4648   | 0.4158 |                                         | 44.7   | 50.0                                    | -10.5                   | 20.0 |
| 1,1,1-Trichloroethane                  | Ave   | 0.3695   | 0.3407 |                                         | 46.1   | 50.0                                    | -7.8                    | 50.0 |
| Cyclohexane                            | Ave   | 0.4776   | 0.3467 |                                         | 36.3   | 50.0                                    | (-27.4)                 | 50.0 |
| 1,1-Dichloropropene                    | Ave   | 0.3625   | 0.3219 |                                         | 44.4   | 50.0                                    | -11.2                   | 50.0 |
| Carbon tetrachloride                   | Ave   | 0.3123   | 0.2948 |                                         | 47.2   | 50.0                                    | -5.6                    | 50.0 |
| Benzene                                | Ave   | 1.074    | 0.9877 |                                         | 46.0   | 50.0                                    | -8.0                    | 50.0 |
| 1,2-Dichloroethane                     | Ave   | 0.3784   | 0.3111 |                                         | 41.1   | 50.0                                    | -17.8                   | 50.0 |
| Trichloroethene                        | Ave   | 0.2881   | 0.2663 |                                         | 46.2   | 50.0                                    | -7.6                    | 50.0 |
| Methylcyclohexane                      | Ave   | 0.4705   | 0.3641 |                                         | 38.7   | 50.0                                    | -22.6                   | 50.0 |
| l,2-Dichloropropane                    | Ave   | 0.2858   | 0.2507 |                                         | 43.9   | 50.0                                    | -12.3                   | 20.0 |
| Dibromomethane                         | Ave   | 0.1702   | 0.1455 |                                         | 42.7   | 50.0                                    | -14.5                   | 50.0 |
| Bromodichloromethane                   | Ave   | 0.3334   | 0.2864 |                                         | 43.0   | 50.0                                    | -14.1                   | 50.0 |
| 2-Chloroethyl vinyl ether              | Ave   | 0.2068   | 0.1601 |                                         | 194    | 250                                     | -22.6                   | 50.0 |
| cis-1,3-Dichloropropene                | Ave   | 0.4314   | 0.3594 |                                         | 41.7   | 50.0                                    | -16.7                   | 50.0 |
| 4-Methyl-2-pentanone (MIBK)            | Ave   | 0.8542   | 0.6693 |                                         | 196    | 250                                     | -21.6                   | 50.0 |

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Lab Sample ID: CCVIS 480-59441/2 Calibration Date: 04/13/2012 09:56

Instrument ID: HP5973G Calib Start Date: 04/09/2012 20:15

GC Column: ZB-624 (60) ID: 0.25(mm) Calib End Date: 04/09/2012 22:09

Lab File ID: G11022.D Conc. Units: ug/L Heated Purge: (Y/N) N

| ANALYTE                                | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
|----------------------------------------|---------------|---------|--------|-----------------------------------------|----------------|-----------------|---------|-----------|
| Dichlorodifluoromethane                | Ave           | 0.4294  | 0.4134 |                                         | 24.1           | 25.0            | -3,7    | 50.0      |
| Chloromethane                          | Ave           | 0.6789  | 0.6553 | 0.1000                                  | 24.1           | 25.0            | -3.5    | 50.0      |
| Vinyl chloride                         | Ave           | 0.5844  | 0.5909 |                                         | 25.3           | 25.0            | 1.1     | 20.0      |
| Bromomethane                           | QuaF          |         | 0.0950 |                                         | 21.2           | 25.0            | -15.2   | 50.0      |
| Chloroethane                           | Ave           | 0.2790  | 0.2520 |                                         | 22.6           | 25.0            | -9.7    | 50.0      |
| Trichlorofluoromethane                 | Lin1F         |         | 0.4305 |                                         | 22.8           | 25.0            | -8.8    | 50.0      |
| Acrolein                               | Ave           | 0.0447  | 0.0454 |                                         | 509            | 500             | 1.7     | 50.0      |
| 1,1,2-Trichloro-1,2,2-triflu oroethane | Ave           | 0.3255  | 0.3367 |                                         | 25.9           | 25.0            | 3.4     | 50.0      |
| 1,1-Dichloroethene                     | Ave           | 0.3701  | 0.3545 | 0.1000                                  | 23.9           | 25.0            | -4.2    | 20.0      |
| Acetone                                | Ave           | 0.2016  | 0.2016 |                                         | 125            | 125             | 0.0     | 50.0      |
| Iodomethane                            | Ave           | 0.3520  | 0.3369 |                                         | 23.9           | 25.0            | -4.3    | 50.0      |
| Carbon disulfide                       | Ave           | 0.8992  | 0.7703 | *************************************** | 21.4           | 25.0            | -14.3   | 50.0      |
| Methyl acetate                         | Ave           | 0.7292  | 0.7536 |                                         | 25.8           | 25.0            | 3.3     | 50.0      |
| Acetonitrile                           | Ave           | 0.0508  | 0.0560 |                                         | 1100           | 1000            | 10.2    | 50.0      |
| Methylene Chloride                     | Ave           | 0.4522  | 0.4788 |                                         | 26.5           | 25.0            | 5.9     | 50.0      |
| Methyl tert-butyl ether                | Ave           | 1.050   | 1.331  | *************************************** | 31.7           | 25.0            | 26.7    | 50.0      |
| trans-1,2-Dichloroethene               | Ave           | 0.4203  | 0.4077 |                                         | 24.2           | 25.0            | -3.0    | 50.0      |
| Acrylonitrile                          | Ave           | 0.2647  | 0.2886 |                                         | 136            | 125             | 9.0     | 50.0      |
| 1,1-Dichloroethane                     | Ave           | 0.6794  | 0.7344 |                                         | 27.0           | 25.0            | 8.1     | 50.0      |
| Vinyl acetate                          | Ave           | 0.9164  | 1.165  | *************************************** | 159            | 125             | NA 27.1 | 50.0      |
| 2,2-Dichloropropane                    | Ave           | 0.2572  | 0.2368 |                                         | 23.0           | 25.0            | -7.9    | 50.0      |
| cis-1,2-Dichloroethene                 | Ave           | 0.3738  | 0.3964 |                                         | 26.5           | 25.0            | 6.0     | 50.0      |
| 2-Butanone (MEK)                       | Ave           | 0.3857  | 0.4128 |                                         | 134            | 125             | 7.0     | 50.0      |
| Bromochloromethane                     | Ave           | 0.1533  | 0.1767 |                                         | 28.8           | 25.0            | 15.3    | 50.0      |
| Tetrahydrofuran                        | Ave           | 0.2726  | 0.2837 |                                         | 130            | 125             | 4.1     | 50.0      |
| Chloroform                             | Ave           | 0.3712  | 0.3930 |                                         | 26.5           | 25.0            | 5.9     | 20.0      |
| 1,1,1-Trichloroethane                  | Ave           | 0.3735  | 0.3329 |                                         | 22.3           | 25.0            | -10.9   | 50.0      |
| Cyclohexane                            | Ave           | 0.9683  | 0.9926 |                                         | 25.6           | 25.0            | 2.5     | 50.0      |
| Carbon tetrachloride                   | LinF          |         | 0.2868 |                                         | 16.5           | 25.0            | (-34.0) | 50.0      |
| 1,1-Dichloropropene                    | Ave           | 0.5288  | 0.5280 |                                         | 25.0           | 25.0            | -0.2    | 50.0      |
| Benzene                                | Ave           | 1.524   | 1.593  |                                         | 26.1           | 25.0            | 4.5     | 50.0      |
| 1,2-Dichloroethane                     | Ave           | 0.4942  | 0.5639 | **************************************  | 28.5           | 25.0            | 14.1    | 50.0      |
| Trichloroethene                        | Ave           | 0.3732  | 0.3796 |                                         | 25.4           | 25.0            | 1.7     | 50.0      |
| Methylcyclohexane                      | Ave           | 0.6878  | 0.7278 |                                         | 26.5           | 25.0            | 5.8     | 50.0      |
| 1,2-Dichloropropane                    | Ave           | 0.3945  | 0.4456 |                                         | 28.2           | 25.0            | 12.9    | 20.0      |
| Dibromomethane                         | Ave           | 0.1832  | 0.2177 |                                         | 29.7           | 25.0            | 18.9    | 50.0      |
| Bromodichloromethane                   | LinlF         |         | 0.3235 |                                         | 21.0           | 25.0            | -16.0   | 50.0      |
| 2-Chloroethyl vinyl ether              | Ave           | 0.2854  | 0.3795 |                                         | 166            | 125             | VA 33.0 | 50.0      |
| cis-1,3-Dichloropropene                | LinlF         |         | 0.5298 |                                         | 25.1           | 25.0            | 0.4     | 50.0      |
| 4-Methyl-2-pentanone (MIBK)            | Ave           | 1.374   | 1.588  |                                         | 145            | 125             | 15.6    | 50.0      |

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Lab Sample ID: CCVIS 480-59441/2 Calibration Date: 04/13/2012 09:56

GC Column: ZB-624 (60) ID: 0.25 (mm) Calib End Date: 04/09/2012 22:09

Lab File ID: G11022.D Conc. Units: ug/L Heated Purge: (Y/N) N

|                              |               |         |        |                                         | Minimum and Archaeological Control of the Control o |                 |         |           |
|------------------------------|---------------|---------|--------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------|
| ANALYTE                      | CURVE<br>TYPE | AVE RRF | RRF    | MIN RRF                                 | CALC<br>AMOUNT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SPIKE<br>AMOUNT | %D      | MAX<br>%D |
| Toluene                      | Ave           | 2.013   | 2.020  |                                         | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36.0            |         |           |
| trans-1,3-Dichloropropene    | Lin1F         |         | 0.9675 |                                         | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 0.3     | 20.0      |
| Ethyl methacrylate           | Ave           | 0.9933  | 1.307  |                                         | 32.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 0.4     | 50.0      |
| 1,1,2-Trichloroethane        | Ave           | 0.5112  | 0.5990 |                                         | 29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0<br>25.0    | NA 31.6 | 50.0      |
| Tetrachloroethene            | Ave           | 0.7667  | 0.7548 | VANAL TYPE STREET                       | 29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 | 17.2    | 50.0      |
| 1,3-Dichloropropane          | Ave           | 1.126   | 1.352  |                                         | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -1.5    | 50.0      |
| 2-Hexanone                   | Ave           | 1.087   | 1.214  |                                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25.0            | 20.1    | 50.0      |
| Dibromochloromethane         | QuaF          |         | 0.3740 |                                         | 22.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125             | 11.7    | 50.0      |
| 1,2-Dibromoethane            | Ave           | 0.6112  | 0.7206 | *************************************** | 29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -10.8   | 50.0      |
| Chlorobenzene                | Ave           | 2.107   | 2.187  | 0.3000                                  | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 17.9    | 50.0      |
| Ethylbenzene                 | Ave           | 3.777   | 3.821  | 0.3000                                  | 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 3.8     | 50.0      |
| 1,1,1,2-Tetrachloroethane    | Lin1F         |         | 0.4998 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0            | 1.2     | 20.0      |
| m,p-Xylene                   | Ave           | 1.470   | 1.465  |                                         | 20.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -16.8   | 50.0      |
| o-Xylene                     | Ave           | 1.373   | 1.430  |                                         | 49.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50.0            | -0.4    | 50.0      |
| Styrene                      | Ave           | 2.208   | 2.408  |                                         | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 4.2     | 50.0      |
| Bromoform                    | OuaF          |         | 0.1998 | 2 1000                                  | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 9.0     | 50.0      |
| Isopropylbenzene             | Ave           | 3.966   | 3.771  | 0.1000                                  | 22.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -9.6    | 50.0      |
| Bromobenzene                 | Ave           | 0.8364  | 0.8759 |                                         | 23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -4.9    | 50.0      |
| 1,1,2,2-Tetrachloroethane    | Ave           | 0.996   |        |                                         | 26.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 4.7     | 50.0      |
| N-Propylbenzene              | Ave           | 4.900   | 4.744  | 0.3000                                  | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 11.6    | 50.0      |
| 1,2,3-Trichloropropane       | Ave           | 0.3388  |        |                                         | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -3.2    | 50.0      |
| trans-1,4-Dichloro-2-butene  | LinF          | 0.3300  | 0.3700 |                                         | 27.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 9.2     | 50.0      |
| 2-Chlorotoluene              | Ave           | 0.9263  | 0.4341 |                                         | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125             | 12.6    | 50.0      |
| 1,3,5-Trimethylbenzene       | Ave           | 3.341   | 0.8985 |                                         | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -3.0    | 50.0      |
| 4-Chlorotoluene              | Ave           | 0.9698  | 3.249  |                                         | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -2.8    | 50.0      |
| tert-Butylbenzene            | Ave           | 0.7380  | 0.9599 |                                         | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -1.0    | 50.0      |
| 1,2,4-Trimethylbenzene       | Ave           | 3,339   | 0.7065 |                                         | 23.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -4.3    | 50.0      |
| sec-Butylbenzene             | Ave           |         | 3.336  |                                         | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -0.0    | 50.0      |
| 1,3-Dichlorobenzene          | Ave           | 4.264   | 4.010  |                                         | 23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -5.9    | 50.0      |
| 4-Isopropyltoluene           | Ave           | 1.800   | 1.783  |                                         | 24.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -0.9    | 50.0      |
| 1,4-Dichlorobenzene          | Ave           | 3.531   | 3.397  |                                         | 24.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -3.8    | 50.0      |
| n-Butylbenzene               |               | 1.864   | 1.872  |                                         | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 0.4     | 50.0      |
| 1,2-Dichlorobenzene          | Ave           | 3.316   | 3.251  |                                         | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -1.9    | 50.0      |
| 1,2-Dibromo-3-Chloropropane  | Ave           | 1.682   | 1.749  |                                         | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 4.0     | 50.0      |
| 1,2,4-Trichlorobenzene       | Ave           | 0.1921  | 0.1680 |                                         | 21.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -12.6   | 50.0      |
| Hexachlorobutadiene          | QuaF          |         | 1.108  |                                         | 28.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 15.2    | 50.0      |
| Naphthalene                  | QuaF          |         | 0.4212 |                                         | 27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 8.0     | 50.0      |
| 1,2,3-Trichlorobenzene       | QuaF          |         | 3.838  |                                         | 29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 18.4    | 50.0      |
|                              | QuaF          | ~       | 0.9741 |                                         | 28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 14.8    | 50.0      |
| 1,2-Dichloroethane-d4 (Surr) | Ave           | 0.1836  | 0.2162 |                                         | 29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 17.7    | 50.0      |
| Toluene-d8 (Surr)            | Lin1F         |         | 2.679  |                                         | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | -2.0    | 50.0      |
| 4-Bromofluorobenzene (Surr)  | Ave           | 0.6823  | 0.7516 |                                         | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0            | 10.2    | 50.0      |



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8270C Semi-Volatiles Data for TestAmerica Buffalo, Job No: 480-18292-1

#### 12 Soil Samples and 1 Field Duplicate Collected April 5, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

GC/MS Tuning and Mass Calibration: The DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: The SPCCs and CCCs were within method 8270C criteria.

The average RRFs for target base/neutral compounds were above the allowable minimum (0.010) and the %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: The SPCCs and CCCs were within method 8270C criteria.

The RRFs for target compounds were above the allowable minimum (0.010) and the %Ds were below the allowable mxaimum (25%), as required.

Blanks: The analyses of method and equipment blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: The internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: One of three acid extractable surrogate recoveries for sample RB-01(0-6") was below control limits, but was not below 10%. No action is taken on one surrogate per fraction outside control limits, provided the recovery is not less than 10%.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for spiked compounds were below the allowable maximum, but 5 of 24 percent recoveries were outside QC limits for soil MS/MSD sample RB-01 (0-6"). No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

Page 1 of 2

- <u>Laboratory Control Sample</u>: The percent recoveries for spiked compounds were within QC limits for soil sample LCS 480-58845/2-A.
- <u>Field Duplicates</u>: The analyses of soil field duplicate pairs RB-01(6"-12")/DUP-03 reported target compounds as either not detected or below the lowest standard; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pair were acceptable.
- <u>Compound ID</u>: Checked compounds were within quantitation limits. The mass spectra for detected compounds contained the primary and secondary ions, as outlined in the method.

### FORM II GC/MS SEMI VOA SURROGATE RECOVERY

| Lab Name | e: TestAmerica Buffalo | Job No.: | : 480-18292-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDG No.: |                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          |                        |          | the control of the co |
| Matrix:  |                        | Level:   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

GC Column (1): RXI-5Sil MS ID: 0.25 (mm)

| Client Sample ID | Lab Sample ID        | 2FP # | PHL | # NBZ # | FBP | # TBP   | # TPH |
|------------------|----------------------|-------|-----|---------|-----|---------|-------|
| RB-10 (6-12")    | 480-18292-1          | 70    | 66  | 75      | 81  | 73      | 99    |
| RB-10 (12-24")   | 480-18292-2          | 72    | 73  | 82      | 91  | 92      | 107   |
| RB-11 (0-6")     | 480-18292-3          | 71    | 71  | 70      | 81  | 78      | 98    |
| RB-12 (0-6")     | 480-18292-4          | 63    | 65  | 75      | 86  | 69      | 100   |
| RB-01 (0-6")     | 480-18292-5          | 52    | 53  | 55      | 65  | penceng | X 82  |
| RB-01 (6-12")    | 480-18292-6          | 66    | 61  | 67      | 79  | 43      | 95    |
| RB-01 (12-24")   | 480-18292-7          | 68    | 69  | 78      | 89  | 66      | 97    |
| RB-02 (0-6")     | 480-18292-8          | 66    | 64  | 75      | 83  | 56      | 90    |
| RB-02 (6-12")    | 480-18292-9          | 72    | 64  | 71      | 80  | 57      | 89    |
| RB-02 (12-24")   | 480-18292-10         | 68    | 62  | 65      | 85  | 67      | 97    |
| DUP-03           | 480-18292-11         | 59    | 63  | 74      | 82  | 49      | 90    |
|                  | MB 480-58845/1-A     | 69    | 71  | 76      | 82  | 97      | 103   |
|                  | LCS<br>480-58845/2-A | 74    | 79  | 91      | 90  | 115     | 112   |
| RB-01 (0-6") MS  | 480-18292-5 MS       | 75    | 68  | 87      | 85  | 97      | 97    |
| RB-01 (0-6") MSD | 480-18292-5 MSD      | 82    | 76  | 95      | 94  | 96      | 112   |

|     |     |                      | QC LIMITS |
|-----|-----|----------------------|-----------|
| 2FP | 322 | 2-Fluorophenol       | 18-120    |
| PHL | -   | Phenol-d5            | 11-120    |
| NBZ |     | Nitrobenzene-d5      | 34-132    |
| FBP | ==  | 2-Fluorobiphenyl     | 37-120    |
| TBP | =   | 2,4,6-Tribromophenol | 39-146    |
| TPH | =   | p-Terphenyl-d14      | 65-153    |

# Column to be used to flag recovery values

#### FORM III GC/MS SEMI VOA MATRIX SPIKE RECOVERY

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Matrix: Solid Level: Low Lab File ID: V8864.D

Lab ID: 480-18292-5 MS Client ID: RB-01 (0-6") MS

|                             | SPIKE   | SAMPLE        | MS            | MS   | QC      |   |
|-----------------------------|---------|---------------|---------------|------|---------|---|
|                             | ADDED   | CONCENTRATION | CONCENTRATION | 8    | LIMITS  | # |
| COMPOUND                    | (ug/Kg) | (ug/Kg)       | (ug/Kg)       | REC  | REC     |   |
| 2,4-Dinitrotoluene          | 3720    | ND            | 2760 J        | 74   | 55-125  |   |
| 2-Chlorophenol              | 3720    | ND            | 3100 J        | 8.3  | 38-120  |   |
| 4-Chloro-3-methylphenol     | 3720    | ND            | 3830          | 103  |         |   |
| 4-Nitrophenol               | 3720    | ND            | ND            | (0   | <u></u> | F |
| Acenaphthene                | 3720    | ND            | 3030 J        | 81   | 53-120  |   |
| Bis(2-ethylhexyl) phthalate | 3720    | 2700 J        | 4740          | (54  |         | F |
| Fluorene                    | 3720    | ND            | 3020 J        | 81   | 63-126  |   |
| Hexachloroethane            | 3720    | ND            | 2620 J        | 7.0  | 41-120  |   |
| N-Nitrosodi-n-propylamine   | 3720    | ND            | 3050 J        | 82   | 46-120  |   |
| Pentachlorophenol           | 3720    | ND            | 6340 J        | (170 |         | F |
| Phenol                      | 3720    | ND            | 2520 J        | 68   | 36-120  | E |
| Pyrene                      | 3720    | 1500 J        | 4490          | 80   | 51-133  |   |

<sup>#</sup> Column to be used to flag recovery and RPD values FORM III  $8270\mathrm{C}$ 

## FORM III GC/MS SEMI VOA MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1
SDG No.:

Matrix: Solid Level: Low Lab File ID: V8865.D

Lab ID: 480-18292-5 MSD Client ID: RB-01 (0-6") MSD

|                             | SPIKE<br>ADDED | MSD<br>CONCENTRATION | MSD<br>% | D <sub>l</sub> o | QC L1 | MITS   | #  |
|-----------------------------|----------------|----------------------|----------|------------------|-------|--------|----|
| COMPOUND                    | (ug/Kg)        | (ug/Kg)              | REC      | RPD              | RPD   | REC    | 11 |
| 2,4-Dinitrotoluene          | 3640           | 2490 J               | 68       | 10.3             | 20    | 55-125 |    |
| 2-Chlorophenol              | 3640           | 3050 J               | 84       |                  | 25    | 38-120 |    |
| 4-Chloro-3-methylphenol     | 3640           | 3830                 |          | 0.000            | 27    |        |    |
| 4-Nitrophenol               | 3640           | ND                   | 70       | ·                |       | 49-125 |    |
| Acenaphthene                | 3640           | 3600 J               | "Annual  | , 1.0            | 25    | 43-137 | F  |
| Bis(2-ethylhexyl) phthalate | 3640           |                      | 99       |                  | 35    | 53-120 |    |
| Fluorene                    | 3640           | 5220                 | 69       | 9.55             | 15    | 61-133 |    |
| Hexachloroethane            |                | 3450 J               | 95       | 13.6             | 15    | 63-126 |    |
| N-Nitrosodi-n-propylamine   | 3640           | 2930 J               | 80       | 11.1             | 46    | 41-120 |    |
|                             | 3640           | 3240 J               | 89       | 6.07             | 31    | 46-120 |    |
| Pentachlorophenol           | 3640           | ND                   | (0)      | NC               | 35    | 33-136 | F  |
| Phenol                      | 3640           | 3080 J               | 85       | 20.2             | 35    | 36-120 |    |
| Pyrene                      | 3640           | 5280                 | 103      | 16.1             | 35    | 51-133 |    |

 $<sup>\</sup>mbox{\#}$  Column to be used to flag recovery and RPD values FORM III 8270C



Geology

Hydrology

Remediation

Water Supply

#### QA/QC Review of Method 8082 PCB Data for TestAmerica Buffalo, Job No: 480-18292-1

#### 10 Soil Samples, and 1 Field Duplicate Collected April 5, 2012

Prepared by: Donald Anné May 4, 2012

Holding Times: Samples were extracted and analyzed within USEPA SW-846 holding times.

Blanks: The analyses of method blanks reported target PCBs as not detected.

Surrogate Recovery: The surrogates recoveries were within QC limits for environmental samples.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences for PCB-1016 and PCB-1260 were below the allowable maximum and the percent recoveries were within QC limits for soil MS/MSD samples TP-A1 and RB-01 (0-6").

<u>Laboratory Control Sample</u>: The percent recoveries for PCB-1016 and PCB-1260 were within QC limits for soil sample LCS 480-58864/2-A.

<u>Field Duplicates</u>: The analyses of soil field duplicate pair RB-01(6"-12")/DUP-03 reported target PCBs as not detected; therefore, valid relative percent differences could not be calculated. The analyses for the field duplicate pairs were acceptable.

<u>Initial Calibration</u>: The %RSDs for PCB-1016 and PCB-1260 were below the allowable maximum (20%), as required.

Continuing Calibration: The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-11-12 (CCV480-59004/2) for the ZB-5 column. The average %Ds for PCB-1016 and PCB-1260 were above the allowable maximum (15%) on 04-11-12 (CCV480-59004/14) for the ZB-5 column. Positive results for PCB-1016 and PCB-1260 should be considered estimated in associated samples.

<u>PCB Identification Summary for Multicomponent Analytes</u>: The checked surrogates wer within GC quantitation limits. The analyses of soil samples in this data pack reported target PCBs as not detected.

Z:\projects\2012\12600 - 12620\12611-ALCO RI\480-18292-1.pcb.wpd

Lab Name: TestAmerica Buffalo Job No.: 480-18292-1

SDG No.:

Lab Sample ID: CCV 480-59004/2 Calibration Date: 04/11/2012 07:09

Instrument ID: HP5890-12 Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5 ID: 0.53(mm) Calib End Date: 10/23/2011 15:23

Lab File ID: 12\_164\_066.D Conc. Units: ng/uL

| CURVE<br>TYPE | AVE CF                                  | CF                                                                                                 | MIN CF                                                                                                                                                                     | CALC                                                                                                                                                                       | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|---------------|-----------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-----------|
|               |                                         |                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                            |                 | i i i | 0.0       |
| Ave           | 228124                                  | 322582                                                                                             |                                                                                                                                                                            | 0.707                                                                                                                                                                      | 0.500           | 41 4* | 15.0      |
| Ave           | 119908                                  | 180170                                                                                             |                                                                                                                                                                            | 0.751                                                                                                                                                                      |                 |       | 15.0      |
| Ave           | 331581                                  | 443086                                                                                             |                                                                                                                                                                            |                                                                                                                                                                            |                 |       |           |
| Ave           | 133756                                  |                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                            |                 |       | 15.0      |
| Ave           |                                         |                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                            |                 |       | 15.0      |
| λιιο          |                                         |                                                                                                    |                                                                                                                                                                            | 0.716                                                                                                                                                                      | 0.500           | 43.2* | 15.0      |
|               |                                         | 538192                                                                                             |                                                                                                                                                                            | 0.614                                                                                                                                                                      | 0.500           | 22.7* | 15.0      |
| Ave           | 177029                                  | 243466                                                                                             |                                                                                                                                                                            | 0.688                                                                                                                                                                      | 0.500           | 37.5* | 15.0      |
| Ave           | 124111                                  | 142088                                                                                             |                                                                                                                                                                            | 0.572                                                                                                                                                                      | 0.500           | 14 5  | 15.0      |
| Linl          |                                         | 5588500                                                                                            |                                                                                                                                                                            | 0.0380                                                                                                                                                                     |                 |       |           |
| Ave           | 4617528                                 |                                                                                                    |                                                                                                                                                                            |                                                                                                                                                                            |                 |       | 15.0      |
|               | Ave | TYPE  Ave 228124 Ave 119908 Ave 331581 Ave 133756 Ave 272257 Ave 438611 Ave 177029 Ave 124111 Lin1 | TYPE  Ave 228124 322582  Ave 119908 180170  Ave 331581 443086  Ave 133756 214424  Ave 272257 389920  Ave 438611 538192  Ave 177029 243466  Ave 124111 142088  Lin1 5588500 | TYPE  Ave 228124 322582  Ave 119908 180170  Ave 331581 443086  Ave 133756 214424  Ave 272257 389920  Ave 438611 538192  Ave 177029 243466  Ave 124111 142088  Lin1 5588500 | TYPE            | TYPE  | TYPE      |

average %D PCB-1016 = (46.4%)

Lab Name: TestAmerica Buffalo

SDG No.:

Lab Sample ID: CCV 480-59004/14

Calibration Date: 04/11/2012 10:05

Instrument ID: HP5890-12

Calib Start Date: 10/23/2011 13:54

GC Column: ZB-5

ID: 0.53 (mm)

Calib End Date: 10/23/2011 15:23

Lab File ID: 12 164 078.D

Conc. Units: ng/uL

| ANALYTE                | CURVE<br>TYPE | AVE CF                                  | CF      | MIN CF | CALC<br>AMOUNT | SPIKE<br>AMOUNT | %D    | MAX<br>%D |
|------------------------|---------------|-----------------------------------------|---------|--------|----------------|-----------------|-------|-----------|
| PCB-1016 Peak 1        | Ave           | 228124                                  | 310818  |        | 0.681          | 0 500           | 26.04 |           |
| PCB-1016 Peak 2        | Ave           | 119908                                  | 124206  |        | 0.001          | 0.500           | 36.2* | 15.0      |
| PCB-1016 Peak 3        |               |                                         | 174306  |        | 0.727          | 0.500           | 45.4* | 15.0      |
|                        | Ave           | 331581                                  | 421852  |        | 0.636          | 0.500           | 27.2* | 15.0      |
| PCB-1016 Peak 4        | Ave           | 133756                                  | 212622  |        |                |                 |       | 15.0      |
| PCB-1260 Peak 1        | Ave           | 22225                                   |         |        | 0.795          | 0.500           | 59.0* | 15.0      |
| PCB-1260 Peak 2        | 2100          | 272257                                  | 375080  |        | 0.689          | 0.500           | 37.8* | 15.0      |
| PCB-1260 Peak 2        | Ave           | 438611                                  | 533660  |        | 0.608          | 0.500           | 01 7  |           |
| PCB-1260 Peak 3        | Ave           | 177029                                  | 237458  |        |                | 0.500           | 21.7* | 15.0      |
| PCB-1260 Peak 4        |               |                                         | 237458  |        | 0.671          | 0.500           | 34.1* | 15.0      |
|                        | Ave           | 124111                                  | 138402  |        | 0.558          | 0.500           | 11.5  | 15.0      |
| Tetrachloro-m-xylene   | Linl          | 7.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 5469633 |        | 0.0272         |                 |       | 15.0      |
| DCB Decachlorobiphenyl | Ave           | A C 3 D C C C                           |         |        | 0.0373         | 0.0300          | 24.3* | 15.0      |
|                        | ave           | 4617528                                 | 6297500 |        | 0.0409         | 0.0300          | 36.4* | 15.0      |

average %D PCB-1016 = (42.0%)
11 11 PCB-1260 = (26.3%)



Geology

Hydrology

Remediation

Water Supply

# QA/QC Review of TAL Metals Data for TestAmerica Buffalo, Job No: 480-18292-1

#### 10 Soil Samples and 1 Field Duplicate Collected April 5, 2012

Prepared by: Donald Anné May 4, 2012

<u>Holding Times</u>: Samples were analyzed within NYSDEC ASP holding times.

<u>Initial and Continuing Calibration Verification</u>: The percent recoveries for TAL metals were within control limits (90-110% for all metals except Hg, 80-120% for Hg).

<u>CRDL Standard for AA and ICP</u>: The percent recoveries for target metals were within laboratory QC limits (50-150%) for CRQL standard samples CRI 480-59065/7, CRI 480-59415/7, and CRA 480-58742/3.

<u>Blanks</u>: The analyses of initial calibration and continuing calibration, and method blanks reported TAL metals as below the CRDLs, as required.

ICP Interference Check Sample: The percent recoveries for applicable metals were within control limits (80-120%).

Spike Sample Recovery: Two of two percent recoveries (%Rs) for aluminum were above control limits (75-125%), but were not above 300% for soil MS/MSD sample RB-01 (0-6"). Since aluminum is a naturally occurring metal, positive for aluminum should be considered estimated (J) in associated soil samples.

One of two %Rs for magnesium was above control limits (75-125%) and was above 200% for soil MS/MSD sample RB-01 (0-6"). Positive for magnesium should be considered estimated (J) in associated soil samples.

One of two %Rs for barium was above control limits (75-125%), but was not above 200% for soil MS/MSD sample RB-01 (0-6"). Positive for barium should be considered estimated (J) in associated soil samples.

Two of two %Rs for mercury were below control limits (75-125%), but were not below 10% for soil MS/MSD sample RB-01 (0-6"). Positive and "not detected" results for mercury should be considered estimated (J) in associated soil samples.

<u>Laboratory Duplicates</u>: The relative percent difference for magnesium was above the allowable maximum (35%) in soil MS/MSD sample RB-10 (0-6"). Positive results for magnesium should be considered estimated (J) in associated soil samples.

<u>Field Duplicates</u>: The relative percent differences for calcium and magnesium were above the allowable maximum (35%) for soil field duplicate pair RB-01(6"-12")/DUP-03 (attached table). Positive results for calcium and magnesium should be considered estimated (J) in samples RB-01(6"-12") and DUP-03.

<u>Laboratory Control Sample</u>: The percent recoveries for TAL metals were within QC limits in soil samples LCSSRM 480-58875/2-A and LCSSRM 480-58653/2-A

ICP Serial Dilution: The %Ds for applicable metals were below the allowable maximum (10%) for soil serial dilution sample RB-01 (0-6"), as required.

<u>Instrument Detection Limits</u>: The MDLs were at or below the RLs, as required.

Percent Solids: The % solids for soil samples were above 50%.

**TAL Metals** 

## Calculations for Field Duplicate Relative Percent Difference (RPD) SDG No. 480-18292-1

|                | <b>S1=</b> RB-01(6"-12") | S2:        | = DUP-03 |
|----------------|--------------------------|------------|----------|
| <b>Analyte</b> | <u>\$1</u>               | <u>\$2</u> | RPD (%)  |
| aluminum       | 6460                     | 4790       | 30%      |
| antimony       | ND                       | ND         | NC       |
| arsenic        | 11.5                     | 12.7       | 10%      |
| barium         | 78.1                     | 82.7       | 6%       |
| beryllium      | 0.39                     | 0.37       | 5%       |
| cadmium        | 0.31                     | 0.35       | 12%      |
| calcium        | 14100                    | 42900      | 101%     |
| chromium       | 11.9                     | 13.8       | 15%      |
| cobalt         | 3.9                      | 4.5        | 14%      |
| copper         | 43.5                     | 42.3       | 3%       |
| iron           | 16800                    | 17600      | 5%       |
| lead           | 74.6                     | 62.2       | 18%      |
| magnesium      | 5320                     | 24700      | 129%     |
| manganese      | 303                      | 255        | 17%      |
| mercury        | 0.14                     | 0.12       | 15%      |
| nickel         | 19.5                     | 16.4       | 17%      |
| potassium      | 813                      | 760        | 7%       |
| selenium       | ND                       | ND         | NC       |
| silver         | ND                       | ND         | NC       |
| sodium         | 162                      | 242        | NC       |
| thallium       | ND                       | ND         | NC       |
| vanadium       | 17.4                     | 16.7       | 4%       |
| zinc           | 63.1                     | 47.2       | 29%      |

<sup>\*</sup> RPD is above the allowable maximum (35%)

All results are in units of mg/kg.

Bold numbers were values that below the CRDL.

ND - Not detected.

#### 5A-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY METALS

Client ID: RB-01 (0-6") MSD

Lab ID: 480-18292-5 MSD

Lab Name: TestAmerica Buffalo

Job No.: 480-18292-1

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 89.3

| Analyte   | (SDR)<br>C | Spike<br>Added (SA) | %R      | Control<br>Limit<br>%R | RPD    | RPD<br>Limit | Q                                       | Method |
|-----------|------------|---------------------|---------|------------------------|--------|--------------|-----------------------------------------|--------|
| Aluminum  | 9996       | 2250                | (255)   | 75-125                 | 12.5   | 20           | F                                       | 6010B  |
| Antimony  | 40.75      | 44.9                | 89      | 75-125                 | 5.09   | 20           |                                         | 6010B  |
| Arsenic   | 53.02      | 44.9                | 97      | 75-125                 | 4.12   | 20           | *************************************** | 6010B  |
| Barium    | 137.6      | 44.9                | (146)   | 75-125                 | 12.5   | 20           | F                                       | 6010B  |
| Beryllium | 43.65      | 44.9                | 96      | 75-125                 | 5.21   | 20           | *                                       | 6010B  |
| Cadmium   | 44.52      | 44.9                | 98      | 75-125                 | 3.59   | 20           |                                         | 6010B  |
| Calcium   | 16480      | 2250                | /A 138  | 75-125                 | 13.1   | 20           | 4                                       | 6010B  |
| Chromium  | 53.02      | 44.9                | 97      | 75-125                 | 2.07   | 20           |                                         | 6010B  |
| Cobalt    | 47.22      | 44.9                | 98      | 75-125                 | 4.87   | 20           |                                         | 6010B  |
| Copper    | 80.29      | 44.9                | 101     | 75-125                 | 2.51   | 20           | ~*************************************  | 6010B  |
| Iron      | 17440      | 2250                | NA 129  | 75-125                 | 5.09   | 20           | 4                                       | 6010B  |
| Lead      | 123.0      | 44.9                | 93      | 75-125                 | 3.40   | 20           | <u> </u>                                | 6010B  |
| Magnesium | 6157       | 2250                | 92      | 75-125                 | (44.8) | 20           | F                                       | 6010B  |
| Manganese | 266.2      | 44.9                | A/A 139 | 75-125                 | 6.74   | 20           | 4                                       | 6010B  |
| Nickel    | 59.63      | 44.9                | 103     | 75-125                 | 6.38   | 20           |                                         | 6010B  |
| Potassium | 3193       | 2250                | 112     | 75-125                 | 3.93   | 20           |                                         | 6010B  |
| Selenium  | 42.37      | 44.9                | 94      | 75-125                 | 3.22   | 20           |                                         | 6010B  |
| Silver    | 10.23      | 11.2                | 91      | 75-125                 | 6.03   | 20           |                                         | 6010B  |
| Sodium    | 2372       | 2250                | 98      | 75-125                 | 6.60   | 20           |                                         | 6010B  |
| Thallium  | 43.25      | 44.9                | 96      | 75-125                 | 4.50   | 20           |                                         | 6010B  |
| Vanadium  | 61.09      | 44.9                | 103     | 75-125                 | 6.27   | 20           |                                         | 6010B  |
| Zinc      | 96.59      | 44.9                | 85      | 75-125                 | 5.71   | 20           |                                         | 6010B  |
| Hg        | 0.523      | 0.379               | (64)    | 75-125                 | 6.70   | 20           | F                                       | 7471A  |

SDR = Sample Duplicate Result

#### 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: RB-01 (0-6") MS

Lab ID: 480-18292-5 MS

Lab Name: TestAmerica Buffalo

Job No.: 480-18292-1

SDG No.:

Matrix: Solid

Concentration Units: mg/Kg

% Solids: 89.3

| Analyte   | SSR<br>C | Sample<br>Result (SR) | Spike<br>Added (SA) | %R             | Control<br>Limit<br>%R | Q | Method |
|-----------|----------|-----------------------|---------------------|----------------|------------------------|---|--------|
| Aluminum  | 8822     | 4270                  | 2120                | (215)          | 75-125                 | F | 6010B  |
| Antimony  | 38.73    | 0.84 3                | 42.3                | 90             | 75-125                 |   | 6010B  |
| Arsenic   | 50.88    | 9.5                   | 42.3                | 98             | 75-125                 |   | 6010B  |
| Barium    | 121.5    | 72.2                  | 42.3                | 116            | 75-125                 |   | 6010B  |
| Beryllium | 41.43    | 0.30                  | 42.3                | 97             | 75-125                 |   | 6010B  |
| Cadmium   | 42.95    | 0.30                  | 42.3                | 101            | 75-125                 |   | 6010B  |
| Calcium   | 18790    | 13400                 | 2120                | <b>N</b> A 255 | 75-125                 | 4 | 6010B  |
| Chromium  | 51.93    | 9.5                   | 42.3                | 100            | 75-125                 |   | 6010B  |
| Cobalt    | 44.97    | 3.2                   | 42.3                | 99             | 75-125                 |   | 6010B  |
| Copper    | 78.30    | 34.8                  | 42.3                | 103            | 75-125                 |   | 6010B  |
| Iron      | 16580    | 14600                 | 2120                | 96             | 75-125                 | 4 | 6010B  |
| Lead      | 118.9    | 81.1                  | 42.3                | 89             | 75-125                 |   | 6010B  |
| Magnesium | 9709     | 4100                  | 2120                | (265)          | 75-125                 | F | 6010B  |
| Manganese | 248.9    | 204                   | 42.3                | 107            | 75-125                 | 4 | 6010B  |
| Nickel    | 55.94    | 13.5                  | 42.3                | 100            | 75-125                 |   | 6010B  |
| Potassium | 3070     | 673                   | 2120                | 113            | 75-125                 |   | 6010B  |
| Selenium  | 41.03    | ND                    | 42.3                | 97             | 75-125                 |   | 6010B  |
| Silver    | 9.63     | ND                    | 10.6                | 91             | 75-125                 |   | 6010B  |
| Sodium    | 2221     | 160                   | 2120                | 97             | 75-125                 |   | 6010B  |
| Thallium  | 41.35    | ND ·                  | 42.3                | 98             | 75-125                 |   | 6010B  |
| Vanadium  | 57.38    | 14.9                  | 42.3                | 100            | 75-125                 |   | 6010B  |
| Zinc      | 102.3    | 58.6                  | 42.3                | 103            | 75-125                 |   | 6010B  |
| Нд        | 0.559    | 0.28                  | 0.391               | (71)           | 75-125                 | F | 7471A  |

SSR = Spiked Sample Result

NA - Not applicable, sample concentration was greater than 4 times the spiking level; therefore, valid YOR's could not be catculated.