October 2, 2024

Supplemental Subsurface Assessment
Schenectady 40 Anchor Site
742, 754 & 758 State Street and
749 Albany Street
City of Schenectady
Schenectady County, New York

NYSDEC Spill No. 2300878 PBS No. 4-054429

Prepared for:

ALBANY STATE STREET LIMITED PARTNERSHIP 8 West 38th Street, Suite 1102/1103 New York, NY 10018

Certified To:

The Land Reutilization Corporation of the Capital Region D/B/A The Capital Region Land Bank

Prepared by:

C.T. MALE ASSOCIATES 50 Century Hill Drive Latham, New York 12110 (518) 786-7400 FAX (518) 786-7299

C.T. Male Project No: 23.3588

SUPPLEMENTAL SUBSURFACE ASSESSMENT REPORT SCHENECTADY 40 ANCHOR SITE

1.0	INTR	ODUCTION	1
	1.1	Project Background	1
	1.2	Site Configuration	
	1.3	Project Scope	
2.0	METI	HOD OF PHASE II ESA INVESTIGATION	5
	2.1	Test Boring Locations and Drilling Method	5
	2.2	Test Pit Locations and Excavation Method	6
	2.3	Soil Screening	6
	2.4	Soil Sampling - Test Borings	
	2.5	Soil Sampling - Test Pits	
	2.6	Decontamination	8
3.0	FIND	INGS OF THE PHASE II ESA INVESTIGATION	9
	3.1	Soil Conditions at Test Boring Locations	
	3.2	Soil Conditions at Test Pit Locations	
	3.3	Soil Screening Results	
	3.4	Groundwater Conditions	
	3.5	Other Site Conditions	12
4.0	ANA	LYTICAL RESULTS	13
	4.1	Subsurface Soil - Soil Borings and Test Pits	13
	4.2	Subsurface Soil - Previous Assessments	15
	4.3	Summary of Soil Sampling Results - Current and Former	
		Sampling Events	16
5.0	CON	CLUSIONS	18
	5.1	Conclusions	18
	5.2	Recommendations	19
		TABLES FOLLOWING TEXT	
TAB	LE 4.1-1		etals
TAB	LE 4.1-2		
		APPENDICES	
APP	ENDIX .	0 , 1	
	ENDIX I	1 0	
	ENDIX (O	
	ENDIX 1		
	ENDIX 1	<i>y y</i> 1	
APP	ENDIX 1	F: Laboratory Analysis Report for Soil from Test Pits	

1.0 INTRODUCTION

1.1 Project Background

This report presents the findings of a supplemental subsurface assessment conducted by C.T. Male Associates Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C. (C.T. Male) at the Schenectady 40 Anchor Site, which is located in the City of Schenectady, Schenectady County, New York (See Figure 1, Appendix A).

The site is comprised of four (4) adjoining parcels of land identified as 742, 754 & 758 State Street and 749 Albany Street.

Prior assessments of the site include the following (Note: In some cases, parcels not included in the bounds of the current defined site were included in the below assessments; and in some cases, not all of the site parcels were included. These discrepancies are noted for each report):

- 2002 Phase I Environmental Site Assessment (ESA) of the Mohawk Honda Site at 728-756 State Street prepared by Northeastern Environmental Technologies Corp. (NETC) (included a review of off-site properties to the northwest that are not included in the site and did not include the 749 Albany Street parcel or the 758 State Street parcel.)
- 2003 Subsurface Investigation of the Mohawk Honda Site at 728-756 State Street prepared by NETC (included a review of off-site properties to the northwest that are not included in the site and did not include the 749 Albany Street parcel or the 758 State Street parcel.)
- 2003 Remedial Investigation & Tank Closure Program for the Mohawk Honda Site at 728-756 State Street prepared by NETC (included a review of off-site properties to the northwest that are not included in the site and did not include the 749 Albany Street parcel or the 758 State Street parcel.)
- 2023 Phase I ESA for the Mohawk Chevrolet Co Inc, Haraden Motorcar Corp, and Two Guys Realty LLC Property at 742, 754, 756 and 758 State Street prepared by LaBella Associates, D.P.C. (LaBella) (did not include the 749 Albany Street parcel).

- 2023 Phase II ESA for 742, 754, 756 and 758 State Street Site, prepared by LaBella (did not include the 749 Albany Street parcel.)
- 2023 Phase I ESA for the Vacant Lot at 749 Albany Street Site, prepared by C.T. Male (did not include the State Street parcels.)
- 2024 Phase II ESA for the Schenectady 40 Anchor Site, 742, 754 & 758 State Street and 749 Albany Street, prepared by C.T. Male.
- 2024 Phase I ESA for the Former Mohawk Honda Site, 742, 754 & 758 State Street and 749 Albany Street, prepared by C.T. Male.

On the basis of the findings and investigations the following conditions currently exist at the site:

- ➤ Two (2) anomalies (based on the findings of a ground penetrating radar (GPR) survey) consistent with underground storage tanks (USTs) are located on the site. The first anomaly was identified on the northeastern portion of the site on the 742 State Street parcel. The second anomaly was identified on the 754 State Street parcel to the north of the southwestern portion of the former 754 State Street building. A third potential UST was identified beneath the slab of the basement of the building formerly located on the 754 State Street parcel.
- ➤ The soils within the site and to the depths explored (up to 20 feet bgs) contain urban fill comprised of ash, brick, coal, concrete rubble, glass and slag.
- ➤ Impacts to soils have been documented through various investigations at the site including post excavation samples for soil/UST removal activities conducted in 2003; the 2023 Phase II ESA conducted by LaBella, and the 2024 Phase II ESA conducted by C.T. Male. Impacts to soils appear to be related to a petroleum release at the suspect UST to the north of the southwestern portion of the former 754 State Street building as documented by volatile organic compounds (VOCs) above Unrestricted Use/Commissioner's Policy (CP-51) soil cleanup objectives (SCOs)¹, and by the presence of fill materials on scattered portions of the site as documented by semi volatile organic compounds (SVOCs) and metals above Unrestricted Use SCOs. Select SVOCs and one (1) metal (mercury) are documented to exceed Industrial Use SCOs.

¹ Unrestricted Use Soil Cleanup Objectives refer to: 6NYCRR Part 375, December 14, 2006, Table 375-6.8(a), & CP-51 Soil Cleanup Objectives refer to: CP-51/Soil Cleanup Guidance, October 21, 2010, Tables 2 & 3

- ➤ Similarly, impacts to groundwater have been documented through the 2023 Phase II ESA and the 2024 Phase II ESA. Petroleum related compounds were identified proximate to the suspect UST to the north of the southwestern portion of the former 754 State Street building. Metals and SVOCs were detected above groundwater standards/guidance values on various portions of the site.
- A spill was reported to the New York State Department of Environmental Conservation (NYSDEC) based on the findings of the 2023 Phase II ESA. The spill remains active.

In addition to the above environmental studies, the site was subject of a geotechnical evaluation in 2024 as documented in the Geotechnical Evaluation Report for the Proposed Anchor Site Development, State and Albany Street, City of Schenectady, prepared by C.T. Male, dated May 13, 2024. The report indicates that fill materials (urban fill) consisting of fine to coarse sand with lesser amounts of silt and varying amounts of fragments of brick, glass, coal, ash and wood were encountered from approximately three (3) feet below grade surface (bgs) to approximately 23.5 feet bgs, at the locations explored.

This Supplemental Subsurface Assessment was conducted to further evaluate the environmental quality of soils and the urban fill in order to be able to provide adequate information to determine if the site would be eligible for the NYSDEC Brownfield Cleanup Program (BCP).

1.2 Site Configuration

The site is located at 742, 754 & 758 State Street and 749 Albany Street in the City of Schenectady, Schenectady County, New York (see Figure 1 in Appendix A). The site is situated northeast of Albany Street and southwest of State Street on the block between Hulett Street and Armory Alley.

The site was recently improved with a two-story commercial building (razed late summer/early fall 2024) formerly used as an office and automotive repair garage on the 754 Albany Street parcel. The building was constructed on a full basement and was constructed between 1914 and 1930. The basement area of the building contained various drainage features (trench floor drains and sumps) as well as piping within the concrete slab which resembled fill and vent pipes typically associated with USTs.

Electricity and natural gas are supplied to the site by National Grid. Municipal water and sewer services are provided by the City of Schenectady. The former 754 State Street building was reportedly heated by natural gas.

The site has a petroleum bulk storage (PBS) registration listed under the name Mohawk Honda with an address of 756 State Street. The site is referenced with PBS No. 4-054429. The facility is listed as active with four (4) above ground storage tanks (ASTs) ranging in capacity from 275 gallons to 1,000 gallons listed as in service, three (3) 500-gallon ASTs listed as closed by removal in 2008 and one (1) 2,000-gallon underground storage tank (UST) listed as closed by removal in 1992.

The suspect USTs discussed above do not appear to have been previously registered under the site's PBS registration.

1.3 Project Scope

This Supplemental Subsurface Assessment included the advancement of ten (10) soil borings; the excavation of three (3) test pits, the collection of soil samples for field vapor screening; and the collection of soil samples for laboratory analysis.

This Phase II ESA was conducted by C.T. Male as requested by Albany State Street Limited Partnership.

2.0 METHOD OF PHASE II ESA INVESTIGATION

2.1 Test Boring Locations and Drilling Method

Ten (10) test boring locations were selected in order to collect additional soil samples on the site in areas where soil samples were not previously collected or analyzed. The test borings were located as follows:

- GP-7 and GP-8 were advanced on the northeastern portion of the site near State Street on the 742 State Street parcel.
- GP-9 was advanced on the north-central portion of the site on the 742 State Street parcel between two (2) soil removal areas (Areas 4 and 5) that were excavated in 2003.
- GP-10 was advanced on the central portion of the 742 State Street parcel.
- GP-11 was advanced on the northwestern portion of the site on the northwestern corner of the 742 State Street parcel.
- GP-12 was advanced on west-central portion of the site on the southwestern corner of the 742 State Street parcel.
- GP-13 was advanced on the southeastern portion of the site on the eastern portion of the 758 State Street parcel.
- GP-14 was advanced on the south-central portion of the site on the western portion of the 758 State Street parcel.
- GP-15 was advanced on the southwestern portion of the site on the west-central portion of the 749 Albany Street parcel.
- GP-16 was advanced on the south-central portion of the site on the eastern portion of the 749 Albany Street parcel, to the southwest of the former 754 State Street building.

The approximate test boring locations are depicted on the Sampling Location Plan which is included as Figure 2 in Appendix A.

The drilling activities were completed on Monday, May 20, 2024 by Core Down Drilling LLC of Brewster, New York. For the purpose of this investigation, Geoprobe drilling techniques were utilized.

At each test location a two-inch diameter MacroCore sampler was advanced at continuous five-foot intervals to the termination depths of the borings. The recovered soil samples were visually classified and recorded on individual subsurface exploration logs.

2.2 Test Pit Locations and Excavation Method

Three (3) exploratory test pit locations were selected to provide assessment of the soil conditions beneath the slab of the former 754 State Street building. The test pits were located as follows:

- TP-1 was excavated within the northeastern portion of the basement of the recently demolished building.
- TP-2 was excavated within the central portion of the basement, within the northeastern corner of the auto repair portion of the building.
- TP-3 was excavated within the southwestern portion of the basement of the auto repair portion of the building.

The test pit sampling was conducted on September 5, 2024 following the demolition of the building, prior to the basement being completely backfilled. As groundwater was present near the surface of the slab, the soil samples were collected from just below the slab.

The test pits were excavated by the client's demolition contractor, Jackson Demolition Services, Inc. (Jackson). For the purpose of this investigation, a Caterpillar 328D track mounted excavator was utilized.

The approximate test pit locations are depicted on the Sampling Location Plan which is included as Figure 2 in Appendix A.

2.3 Soil Screening

Soil samples were collected from the soil borings and test pits for the purpose of field screening with a Photoionization Detector (PID) meter. Following the recovery of the soil samples from the test borings and test pits, each sample was placed in a new, clean sealable plastic bag and then screened for the presence of detectable VOCs with a MiniRAE 3000 PID equipped with a 10.6 eV lamp. The PID meter was calibrated according to manufacturer recommendations prior to use.

2.4 Soil Sampling - Test Borings

Select soil samples were collected from the soil borings for laboratory analysis as follows:

- GP-7 from 5-7.5 feet bgs;
- GP-8 from 5-7.5 feet bgs;
- GP-9 from 5-7.5 feet bgs;
- GP-10 from 2.5-5 feet bgs;
- GP-11 from 2-5.5 feet bgs;
- GP-12 from 5-7.5 feet bgs;
- GP-13 from 5-7.5 feet bgs;
- GP-14 from 5-6 feet bgs;
- GP-15 from 5-7 feet bgs; and
- GP-16 from 2.5-5 feet bgs.

The soil samples from the borings were selected based on the results of the subjective soil screening activities. The soil samples were collected in new laboratory supplied glass jars while wearing new gloves. The samples were placed in a cooler with ice and were forwarded under chain-of-custody to Alpha Analytical, Inc. of Westborough, Massachusetts for laboratory analysis for the CP-51 SVOCs by EPA Method 8270 and the Target Analyte List (TAL) of metals.

2.5 Soil Sampling - Test Pits

The soil samples from the test pits were collected just below the slab of the foundation of the former 754 State Street building.

The soil samples were collected in new laboratory supplied glass jars while wearing new gloves. The samples were placed in a cooler with ice and were forwarded under chain-of-custody to Alpha Analytical, Inc. of Westborough, Massachusetts for laboratory analysis for the Target Compound List (TCL) and CP-51 list of VOCs, CP-51 SVOCs by EPA Method 8270 and TAL metals.

2.6 Decontamination

To preclude the potential for cross contamination between the test boring locations, drilling tools and sampling equipment that would contact the site soils and groundwater were decontaminated prior to the start of the drilling activities and between boring locations utilizing a detergent/water wash and tap water rinse. At each test pit location, the bucket of the excavator was cleaned so that visible soils were not evident on the bucket prior to collection of soil samples intended for laboratory analysis. Soil samples were handled with a new pair of nitrile gloves to deter cross contamination of the soil samples collected for screening and/or laboratory analysis.

3.0 FINDINGS OF THE PHASE II ESA INVESTIGATION

3.1 Soil Conditions at Test Boring Locations

At GP-7, beneath the asphalt, the soils generally consisted of sand, gravel and cobble. The soils became wet at approximately 10 feet bgs, where the boring was terminated. Petrochemical type odors or staining were not noted in the soils recovered from GP-7.

At GP-8, the soils beneath the asphalt consisted primarily of sand with little gravel present to approximately 6 feet bgs. The boring was terminated at approximately 10 feet bgs. The soils became wet at approximately 7.5 feet bgs. Petrochemical type odors or staining were not noted in the soils recovered from GP-8.

At GP-9, beneath the asphalt surface, urban fill consisting of ash, gravel, concrete and asphalt was encountered to approximately 7.5 feet bgs. The urban fill was underlain by brown fine to medium sand. The boring was terminated at approximately 10 feet bgs. The soils became wet at approximately 7.5 feet bgs. Petrochemical type odors and staining were not noted in the soil samples recovered from GP-9.

At GP-10, beneath the asphalt, brown medium sand was encountered to approximately 1.5 feet bgs. Urban fill was encountered beneath the sand, consisting of concrete and asphalt, to approximately 2.5 feet bgs. Beneath the fill, medium sand was encountered with some of urban fill present to approximately 5.5 feet bgs. Brown-gray medium sand was encountered in the remainder of the boring which was terminated at approximately 10 feet bgs. The soils became wet at approximately 5.5 feet bgs. Petrochemical type odors and staining were not noted in the soil samples recovered from GP-10.

Urban fill consisting of concrete, ash, asphalt and some brown medium sand was encountered to approximately 7.5 feet bgs at GP-11. Brown medium sand containing urban fill (primarily brick) was encountered in the balance of the boring which was terminated at 10 feet bgs. Petrochemical type odors and staining were not noted in the soil samples recovered from GP-11. The soils became wet at approximately 7.5 feet bgs.

Beneath the asphalt, other than an approximate half-foot layer of grey gravel from 4 to 4.5 feet bgs, the soils at GP-12 consisted of brown/grey and brown medium sand to the termination depth of 10 feet bgs. The soils became wet at approximately 5.5

feet bgs. Petrochemical odors or staining were not encountered in the soils recovered from GP-12.

At GP-13 beneath the asphalt, the soils consisted of brown medium sand and urban fill (brick and ash) to approximately 5.5 feet bgs. Brown fine sand was encountered in the remainder of the boring which was terminated at approximately 10 feet bgs. The soils became wet at approximately 9.5 feet bgs. Petrochemical odors or staining were not encountered in the soils recovered from GP-13.

Urban fill consisting of concrete, brick, ash, wood and brown fine to medium sand was encountered beneath the asphalt at GP-14 to the termination of the boring at approximately 6 feet bgs where refusal was encountered. The soil/fill was damp throughout. Petrochemical odors or staining were not encountered in the soil/fill recovered from GP-14.

Urban fill consisting of concrete, brick, ash, wood and fine to medium sand was encountered beneath the asphalt at GP-15 to the termination of the boring at approximately 9 feet bgs where refusal was encountered. The soil/fill was damp throughout. Petrochemical odors or staining were not encountered in the soil/fill recovered from GP-15.

Brown fine to medium sand was encountered beneath the asphalt at GP-16 to approximately 2.5 feet bgs. A layer of urban fill consisting of ash and asphalt was encountered beneath the sand to approximately 4.5 feet bgs. The fill was underlain by brown fine sand and silt to the termination of the boring at 5 feet bgs. The soils became wet at approximately 1.5 feet bgs. Petrochemical odors or staining were not encountered in the soils recovered from GP-16.

The subsurface exploration logs are included in Appendix B.

3.2 Soil Conditions at Test Pit Locations

The test pits excavated in the basement of the former 754 State Street building were advanced just below the concrete floor. Groundwater was noted to be perched above the slab. The soils at TP-1 and TP-2 consisted of fine to medium brown sand with urban fill (glass and general trash). Petrochemical odors or staining were not encountered in the soils recovered from these test pits. The soils at TP-3 consisted of fine to medium dark brown sand. The soils from TP-3 exhibited a petrochemical

type odor and the soils exhibited staining. The soils recovered from the three test pit locations were wet.

The test pit logs are included in Appendix C.

3.3 Soil Screening Results

The PID readings for the soil samples collected from the soil borings were generally less than 10 parts per million (ppm) above background. Slightly elevated readings were recorded in two (2) soil samples, GP-13 (7.5-10') and GP- 14 (0-2.5') at 21.4 ppm and 11.7 ppm respectively. The readings recorded appeared to be related to moisture content in the samples as opposed to the presence of VOCs. The soil samples did not exhibit petrochemical type odors, staining or sheens and the increased readings on the PID meter responded slowly, indicative of moisture interference/humidity.

Slightly elevated readings were recorded from the soils from TP-1 and TP-2 at 8.7 ppm and 14.3 ppm above background; however, these samples did not exhibit petrochemical type odors, staining or sheens. The sample collected from TP-3 had an elevated PID reading at 195.5 ppm above background. The sample exhibited a petrochemical type odor and staining.

As an active spill is listed for the site (Spill No. 2300878), the NYSDEC spill engineer was consulted regarding the observation of these results. It was requested by NYSDEC that these findings be handled under the existing spill number for the site.

The Organic Vapor Headspace Analysis Logs are included in Appendix D.

3.4 Groundwater Conditions

Groundwater was encountered at varying depths across the site from approximately 1.5- feet bgs to 9.5 feet bgs during the drilling activities. Petrochemical type odors or sheens were not noted in the groundwater present in the recovered soil samples.

At the time of the test pit assessment, groundwater was noted to be perched above the slab of the basement of the former 754 State Street building. Petrochemical type odors or sheens were not noted in the groundwater present above the slab or within the recovered soil samples from the test pits.

The direction of groundwater flow was not determined as a function of this assessment; however, during the Phase II ESA completed in 2003 the direction of groundwater flow was noted to be to the north/northeast.

3.5 Other Site Conditions

During demolition activities, Jackson inadvertently uncovered a UST located to the north of the southwestern portion of the former 754 State Street building. The UST was noted to be in the location where an anomaly was identified consistent with a UST during the completion of the 2023 and 2024 Phase II ESAs of the site. The tank was reported to be approximately 30 feet long. A petroleum type liquid (reported as diesel/oil) was noted to be present within the tank (approximately ½ full). The tank was reportedly covered for future removal. The NYSDEC spill engineer was notified of the finding.

4.0 ANALYTICAL RESULTS

4.1 Subsurface Soil - Soil Borings and Test Pits

The soil samples collected from the soil borings were analyzed for CP-51 SVOCs by EPA Method 8270 and TAL metals. The soil samples collected from the test pits were analyzed for TCL/CP-51 VOCs by EPA Method 8260, CP-51 SVOCs by EPA Method 8270 and TAL metals.

SVOCs

SVOCs were either not detected above the laboratory method detection limit, or were below Unrestricted SCOs in the soil samples collected from GP-7, GP-8, GP-10, GP-11, GP-12, GP-13, GP-16, TP-1 and TP-3. The SVOCs detected above their respective Unrestricted Use SCOs in the remaining soil samples are discussed below.

Two (2) SVOCs were detected in the sample collected from GP-9 (5-7.5) as follows:

- Benzo(b)fluoranthene was detected at a concentration of 1.1 ppm, above the Restricted Residential Use SCO of 1 ppm.
- Indeno(1,2,3-cd)pyrene was detected at a concentration of 0.57 ppm, above the Restricted Residential Use SCO of 0.5 ppm.

Nine (9) SVOCs were detected in the sample collected from GP-14 (5-6) exceeding their respective NYSDEC Unrestricted Use/CP-51 SCOs as follows:

- Benzo(a)anthracene was detected at a concentration of 47 ppm, above the Industrial Use SCO of 11 ppm.
- Benzo(a)pyrene was detected at a concentration of 44 ppm, above the Industrial Use SCO of 1.1 ppm.
- Benzo(b)fluoranthene was detected at a concentration of 54 ppm, above the Industrial Use SCO of 11 ppm.
- Benzo(k)fluoranthene was detected at a concentration of 18 ppm, above the Restricted Residential Use SCO of 3.9 ppm.
- Chrysene was detected at a concentration of 39 ppm, above the Restricted Residential Use SCO of 3.9 ppm.
- Dibenzo(a,h)anthracene was detected at a concentration of 6.6 ppm, above the Industrial Use SCO of 1.1 ppm.

- Fluoranthene was detected at a concentration of 170 ppm, above the Restricted Residential Use SCO of 100 ppm.
- Indeno(1,2,3-cd)pyrene was detected at a concentration of 27 ppm, above the Industrial Use SCO of 11 ppm.
- Phenanthrene was detected at a concentration of 140 ppm, above the Restricted Residential Use SCO of 100 ppm.

Seven (7) SVOCs were detected in the sample collected from TP-3 exceeding their respective NYSDEC Unrestricted Use/CP-51 SCOs as follows:

- Benzo(a)anthracene was detected at a concentration of 10 ppm, above the Commercial Use SCO of 5.6 ppm.
- Benzo(a)pyrene was detected at a concentration of 9.4 ppm, above the Industrial Use SCO of 1.1 ppm.
- Benzo(b)fluoranthene was detected at a concentration of 16 ppm, above the Industrial Use SCO of 11 ppm.
- Benzo(k)fluoranthene was detected at a concentration of 3.2 ppm, above the Residential Use SCO of 1 ppm.
- Chrysene was detected at a concentration of 10 ppm, above the Restricted Residential Use SCO of 3.9 ppm.
- Indeno(1,2,3-cd)pyrene was detected at a concentration of 5.7 ppm, above the Commercial Use SCO of 5.6 ppm.

Metals

Up to 21 metals were detected in the soil samples submitted for laboratory analysis. Of those, copper, lead, mercury and zinc were detected in concentrations that exceeded their respective SCOs in one (1) or more samples summarized as follows:

Copper was detected in each of the soil samples collected from the borings ranging in concentrations from 8.26 ppm to 54.4 ppm. The concentration exceeded the Unrestricted Use SCO of 50 ppm at GP-16 (2.5-5) at a concentration of 54.4 ppm.

Lead was detected in each of the soil samples ranging in concentrations of 8.71 ppm to 1,130 ppm. Lead exceeded the Commercial Use SCO of 1,000 ppm at GP-9 (5-7.5) at a concentration of 1,130 ppm. Lead exceeded the Restricted Residential Use SCO of 400 ppm at GP-16 (2.5-5) with a concentration of 689 ppm. Lead exceeded the

Unrestricted Use SCO of 63 ppm at GP-8 (5-7.5) at a concentration of 104 ppm; GP-10 (2.5-5) at a concentration of 242 ppm; GP-11 (2.5-5) at a concentration of 215 ppm; GP-13 (5-7.5) at a concentration of 334 ppm and TP-2 at a concentration of 71.9 ppm.

Mercury was detected in each of the soil samples ranging in concentrations of 0.06 ppm (estimated) to 30.5 ppm. Mercury exceeded the Industrial Use SCO of 5.7 ppm at GP-9 (5-7.5) at a concentration of 30.5 ppm. Mercury exceeded the Unrestricted Use SCO of 0.18 ppm at GP-10 (2.5-5) at a concentration of 0.23 ppm; GP-11 (2.5-5) at a concentration of 0.423 ppm; GP-13 (5-7.5) at a concentration of 0.265 ppm, GP-16 (2.5-5) at a concentration of 0.53 ppm and TP-2 at a concentration of 0.358 ppm.

Zinc was detected in each of the soil samples in concentrations ranging 41.4 ppm to 726 ppm. Zinc exceeded the Unrestricted Use SCO of 109 ppm at GP-13 (5-7.5) at a concentration of 726 ppm; GP-14 (5-6) at a concentration of 204 ppm, GP-16 (2.5-5) at a concentration of 603 ppm and TP-2 at a concentration of 115 ppm.

Concentrations exceeding Restricted Residential, Commercial and Industrial Use SCOs are depicted on Figure 3 with concentrations summarized in tables. The results of the soil sampling for SVOCs and metals are also summarized in Table 4.1-1.

VOCs

The samples from the soil borings were not submitted for laboratory analysis for VOCs.

At least one (1) VOC was detected above the laboratory's method detection limit in the soils collected from the three (3) test pits. Acetone was detected at a concentration of 0.085 ppm in the sample collected from TP-3, above the Unrestricted Use SCO of 0.05 ppm. The remaining VOC detections were below Unrestricted Use SCOs.

The results of the soil sampling for VOCs are summarized in Table 4.1-2.

Full analytical results for the subsurface soil samples from the soil borings are presented in Appendix E and the analytical results for the subsurface soil samples from the test pits are presented in Appendix F.

4.2 Subsurface Soil - Previous Assessments

Figure 3 in Appendix A depicts locations from this assessment and prior assessments that had one (1) or more analyte or compound which exceed its Unrestricted Use

SCO (green shaded locations). Analytes in soils exceeding Restricted-Residential Use, Commercial Use and Industrial Use SCOs relative to both the findings of this assessment and the three (3) prior investigations are in tables within the figure for each sampling location.

4.3 Summary of Soil Sampling Results - Current and Former Sampling Events

Each of the site parcels is noted to have at least one (1) exceedance above Restricted Residential Use SCOs (the intended use of the site) summarized as follows:

742 State Street

Area 5 (6.5') (July 2003 sampling event) with five (5) SVOCs above their corresponding Restricted Residential SCOs.

B-1 (8-10') (May 2023 sampling event) with one (1) metal above its corresponding Restricted Residential SCO.

B-3 (14-15') (May 2023 sampling event) with four (4) SVOCs above their corresponding Restricted Residential SCOs.

GP-9 (5-7.5') (May 2024 sampling event) with two (2) SVOCs and two (2) metals above their respective Restricted Residential SCOs.

754 State Street

GP-4 (10-11') (November 2023 sampling event) with seven (7) SVOCs and one (1) metal above their respective Restricted Residential SCOs.

GP-4 (15-16') (November 2023 sampling event) with four (4) SVOCs above their respective Restricted Residential SCOs.

GP-5 (1-2') (November 2023 sampling event) with four (4) SVOCs above their respective Restricted Residential SCOs.

TP-3 (September 2024 sampling event) with six (6) SVOCs above their respective Restricted Residential SCOs.

758 State Street

GP-14 (5-6') (May 2024 sampling event) with nine (9) SVOCs above their respective Restricted Residential SCOs.

749 Albany Street

GP-16 (2.5-5') (May 2024 sampling event) with one (1) metal above its respective Restricted Residential SCO.

5.0 CONCLUSIONS

5.1 Conclusions

This Supplemental Subsurface Assessment of the Schenectady 40 Anchor Site included the advancement of ten (10) soil borings, the excavation of three (3) test pits and the collection of soil samples for field vapor screening and laboratory analysis.

The soils within the site and to the depths explored during this assessment (up to 10 feet bgs) generally consisted of fine to coarse sand with silt and urban fill comprised of ash, brick, coal, concrete rubble and glass. The PID readings for the soil samples collected from the soil borings were generally less than 10 ppm above background. Slightly elevated readings were recorded in two (2) soil samples from the soil borings; however, the readings recorded appeared to be related to moisture content. The soil samples did not exhibit petrochemical type odors, staining or sheens. Slightly elevated readings were recorded from the soils collected from TP-1 and TP-2; however, these samples did not exhibit petrochemical type odors, staining or sheens. The sample collected from TP-3 had an elevated PID reading of 195.5 ppm and exhibited a petrochemical type odor and staining.

Groundwater was encountered from approximately 5.5 feet bgs to 10 feet bgs during the advancement of the soil borings but was not encountered at either GP-15 or GP-16. At the time of the excavation of the test pits, groundwater had infiltrated the basement remains of the former 754 State Street building.

Impacts to soils have been documented through various investigations at the site including post excavation samples for soil/UST removal activities conducted in 2003; the 2023 Phase II ESA conducted by LaBella, and the 2024 Phase II ESA completed by C.T. Male as well as during this supplemental assessment. Impacts to soils appear to be related to a petroleum release at the suspect UST to the north of the southwestern portion of the former 754 State Street building as documented by VOCs above Unrestricted Use/CP-51 SCOs, and by the presence of fill materials throughout the site as documented by SVOCs and metals above Restricted Residential Use SCOs. Select SVOCs and one (1) metal (mercury) are noted to exceed Industrial Use SCOs.

Similarly, impacts to groundwater have been documented through the LaBella Phase II ESA and as a function of the 2024 Phase II ESA conducted by C.T. Male. Petroleum related compounds were identified proximate to the suspect UST to the north of the

southwestern portion of the former 754 State Street building. Metals and SVOCs were detected above groundwater standards/guidance values on various portions of the site.

5.2 Recommendations

As an active spill is listed for the site, this report should be submitted to Mr. Joshua Utberg of the NYSDEC (joshua.utberg@dec.ny.gov) for review and comment and to determine if additional investigation or remedial activities are required by NYSDEC.

It is understood that the site is being contemplated for the NYSDEC BCP. Remedial investigations and actions for the site will be prescribed through the BCP program. Otherwise, recommendations are outlined in C.T. Male's 2024 Phase II ESA report.

The findings and conclusions of this Supplemental Phase II ESA represent the site conditions as disclosed through the investigations performed at the time completed and may not be representative of the entire site. No other warranties expressed or implied are made. If you have any questions regarding this report, please contact this office at (518) 786-7400.

Respectfully submitted, C.T. MALE ASSOCIATES

mée Smith

Aimee Smith Project Manager

K:\Projects\233588\Env\Anchor\7 Supplemental Subsurface Assessments\R Schenectady 40 Anchor Site Supplemental Subsurface Assessment.doc

TABLES

- TABLE 4.1-1: Summary of Subsurface Soil Sampling Results & Regulatory Values - SVOCs and Metals
- TABLE 4.1-2: Summary of Subsurface Soil Sampling Results & Regulatory Values VOCs

TABLE 4.1-1

SUMMARY OF SOIL SAMPLING RESULTS AND REGULATORY VALUES

SVOCS/METALS

SUPPLEMENTAL SUBSURFACE ASSESSMENT SCHENECTADY 40 ANCHOR SITE

	SAMPLE ID		SAMPLE ID:	D : GP-7_5-7.5 GP-8_5-7.5				GP-9_5-7.5			GP-10_2.5-5	5	(P-11 (2.5-5))					
	LAB ID:		: L2427928-01				L2427928-02	2		L2427928-03	3		L2427928-04	1		2427928-05	;			
				COL	LECTION DATE:		5/20/2024		5/20/2024 5/20/2024			5/20/2024			5/20/2024					
	NY-UNRES	NY-RESR	NY-RESRR	NY-RESC	NY-RESI													•		
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL
SEMIVOLATILE ORGA	NICS BY GC	/MS	, , ,		, , ,		-		•			•				-		•		
Acenaphthene	20	100	100	500	1000	ND		0.14	ND		0.15	0.1	J	0.15	0.019	J	0.14	0.1	J	0.14
Acenaphthylene	100	100	100	500	1000	ND		0.14	0.076	J	0.15	0.078	J	0.15	0.035	J	0.14	ND		0.14
Anthracene	100	100	100	500	1000	ND		0.1	0.045	J	0.11	0.21		0.11	0.075	J	0.11	0.26		0.1
Benzo(a)anthracene	1	1	1	5.6	11	0.038	J	0.1	0.076	J	0.11	0.83		0.11	0.25		0.11	0.69		0.1
Benzo(a)pyrene	1	1	1	1	1.1	ND		0.14	0.1	J	0.15	0.85		0.15	0.24		0.14	0.68		0.14
Benzo(b)fluoranthene	1	1	1	5.6	11	0.053	J	0.1	0.16		0.11	1.1		0.11	0.29		0.11	0.81		0.1
Benzo(ghi)perylene	100	100	100	500	1000	0.027	J	0.14	0.085	J	0.15	0.62		0.15	0.16		0.14	0.48		0.14
Benzo(k)fluoranthene	0.8	1	3.9	56	110	ND		0.1	0.06	J	0.11	0.37		0.11	0.096	J	0.11	0.23		0.1
Chrysene	1	1	3.9	56	110	0.061	J	0.1	0.14		0.11	0.89		0.11	0.25		0.11	0.75		0.1
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND		0.1	0.023	J	0.11	0.13		0.11	0.034	J	0.11	0.097	J	0.1
Fluoranthene	100	100	100	500	1000	0.18		0.1	0.33		0.11	1.7		0.11	0.59		0.11	1.3		0.1
Fluorene	30	100	100	500	1000	ND		0.17	0.024	J	0.19	0.07	J	0.18	0.028	J	0.18	0.075	J	0.18
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	11	ND		0.14	0.079	J	0.15	0.57		0.15	0.14		0.14	0.4		0.14
Phenanthrene	100	100	100	500	1000	0.11		0.1	0.23		0.11	0.87		0.11	0.36		0.11	0.78		0.1
Pyrene	100	100	100	500	1000	0.17		0.1	0.26		0.11	1.5		0.11	0.53		0.11	1.4		0.1
TOTAL METALS																				
Aluminum, Total	NS	NS	NS	NS	NS	6270		8.2	3340		17.5	5650		8.81	4050		8.47	4770		8.39
Antimony, Total	NS	NS	NS	NS	NS	ND		4.1	ND		8.73	1.6	J	4.4	0.805	J	4.24	0.624	J	4.19
Arsenic, Total	13	16	16	16	16	3.33		0.82	3.1		1.75	8.3		0.881	4.41		0.847	4.61		0.839
Barium, Total	350	350	400	400	10000	24.5		0.82	52.8		1.75	114		0.881	49.2		0.847	40.5		0.839
Beryllium, Total	7.2	14	72	590	2700	0.273	J	0.41	0.198	J	0.873	0.334	J	0.44	0.229	J	0.424	0.302	J	0.419
Cadmium, Total	2.5	2.5	4.3	9.3	60	0.19	J	0.82	0.195	J	1.75	0.899		0.881	0.404	J	0.847	0.25	J	0.839
Calcium, Total	NS	NS	NS	NS	NS	37000		8.2	103000		17.5	26800		8.81	13200		8.47	31700		8.39
Chromium, Total	NS	NS	NS	NS	NS	9.85		0.82	5.52		1.75	36.9		0.881	11.3		0.847	7.14		0.839
Cobalt, Total	NS	NS	NS	NS	NS	4.48		1.64	3.4	J	3.49	4.83		1.76	2.74		1.69	3.7		1.68
Copper, Total	50	270	270	270	10000	13.9		0.82	13.5		1.75	32.3		0.881	43.1		0.847	24		0.839
Iron, Total	NS	NS	NS	NS	NS	15300		4.1	7940		8.73	17400		4.4	10100		4.24	12100		4.19
Lead, Total	63	400	400	1000	3900	21.6		4.1	104		8.73	1130		4.4	242		4.24	215		4.19
Magnesium, Total	NS	NS	NS	NS	NS	6540		8.2	6240		17.5	6440		8.81	3120		8.47	10700		8.39
Manganese, Total	1600	2000	2000	10000	10000	376		0.82	242		1.75	297		0.881	144		0.847	232		0.839
Mercury, Total	0.18	0.81	0.81	2.8	5.7	0.138		0.068	0.172		0.073	30.5		1.42	0.23		0.071	0.423		0.07
Nickel, Total	30	140	310	310	10000	11.3		2.05	7.42		4.37	11.6		2.2	6.19		2.12	8.71		2.1
Potassium, Total	NS	NS	NS	NS	NS	514		205	294	J	437	592		220	349		212	412		210
Silver, Total	2	36	180	1500	6800	ND		0.41	ND		0.873	ND		0.44	ND		0.424	ND		0.419
Sodium, Total	NS	NS	NS	NS	NS	303		164	87.3	J	349	294		176	290		169	103	J	168
Vanadium, Total	NS	NS	NS	NS	NS	14.5		0.82	9.19		1.75	17.1		0.881	12.3		0.847	14.2		0.839
Zinc, Total	109	2200	10000	10000	10000	49.8		4.1	79.9		8.73	575		4.4	241		4.24	81.9		4.19
Values are shown in mg/kg	or parts per mil	llion																		

Values are shown in mg/kg or parts per million.

Shaded values exceed their respective SCOs

Only the compounds that were detected are listed.

ND = Not Detected above the laboratory method detection limit

NS = No Standard

J = Estimated Value

E = Concentration of analyte exceeds range of the calibration curve and/or linear range of the instrument.

NY-UNRES= New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-RESR = New York NYCRR Part 375 Residential Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-RESRR = New York NYCRR Part 375 Restricted-Residential Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-RESC = New York NYCRR Part 375 Commercial Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

NY-RESI = New York NYCRR Part 375 Industrial Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

TABLE 4.1-1

SUMMARY OF SOIL SAMPLING RESULTS AND REGULATORY VALUES SVOCS/METALS

SUPPLEMENTAL SUBSURFACE ASSESSMENT SCHENECTADY 40 ANCHOR SITE

						SCHENECTADY 40 ANCHOR SITE														
					SAMPLE ID:		GP-12 (5-7.5')		GP-13 (5-7.5'	')		GP-14 (5-6')			GP-14 (5-6')			GP-15 (5-7')
					LAB ID:		L2427928-06	3		L2427928-07	7		L2427928-08	}	L2	2427928-08 F	R1		_2427928-0	9
				COL	LECTION DATE:		5/20/2024			5/20/2024			5/20/2024			5/20/2024			5/20/2024	
	NY-UNRES	NY-RESR	NY-RESRR	NY-RESC	NY-RESI				_						_					
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL
SEMIVOLATILE ORGA	ANICS BY GO	C/MS																		
Acenaphthene	20	100	100	500	1000	ND		0.15	ND		0.16	11		1.6	-		-	0.026	J	0.14
Acenaphthylene	100	100	100	500	1000	ND		0.15	ND		0.16	11		1.6	-		-	ND		0.14
Anthracene	100	100	100	500	1000	ND		0.11	ND		0.12	23		1.2	-		-	0.074	J	0.11
Benzo(a)anthracene	1	1	1	5.6	11	0.031	J	0.11	ND		0.12	47		1.2	-		-	0.18		0.11
Benzo(a)pyrene	1	1	1	1	1.1	ND		0.15	ND		0.16	44		1.6	-		-	0.18		0.14
Benzo(b)fluoranthene	1	1	1	5.6	11	0.042	J	0.11	ND		0.12	54		1.2	-		-	0.23		0.11
Benzo(ghi)perylene	100	100	100	500	1000	0.024	J	0.15	ND		0.16	26		1.6	-		-	0.11	J	0.14
Benzo(k)fluoranthene	0.8	1	3.9	56	110	ND		0.11	ND		0.12	18		1.2	-		-	0.074	J	0.11
Chrysene	1	1	3.9	56	110	0.053	J	0.11	ND		0.12	39		1.2	-		-	0.18		0.11
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND		0.11	ND		0.12	6.6		1.2	-		-	0.028	J	0.11
Fluoranthene	100	100	100	500	1000	0.093	J	0.11	ND		0.12	90	E	1.2	170		5.9	0.4		0.11
Fluorene	30	100	100	500	1000	ND		0.18	ND		0.2	17		2	-		-	0.027	J	0.18
ndeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	11	ND		0.15	ND		0.16	27		1.6	-		-	0.1	J	0.14
Phenanthrene	100	100	100	500	1000	0.057	J	0.11	ND		0.12	80	Е	1.2	140		5.9	0.23		0.11
Pyrene	100	100	100	500	1000	0.093	J	0.11	ND		0.12	71		1.2	-		-	0.33		0.11
TOTAL METALS																				
Aluminum, Total	NS	NS	NS	NS	NS	3730		8.55	5350		9.56	6220		9.11	-		-	6830		8.64
Antimony, Total	NS	NS	NS	NS	NS	ND		4.28	0.405	J	4.78	1.04	J	4.56	-		-	ND		4.32
Arsenic, Total	13	16	16	16	16	2.67		0.855	7.55		0.956	4.33		0.911	-		-	4.05		0.864
Barium, Total	350	350	400	400	10000	13.6		0.855	152		0.956	282		0.911	-		-	58.7		0.864
Beryllium, Total	7.2	14	72	590	2700	0.222	J	0.428	0.259	J	0.478	0.338	J	0.456	-		-	0.301	J	0.432
Cadmium, Total	2.5	2.5	4.3	9.3	60	0.129	J	0.855	1.08		0.956	0.242	J	0.911	-		-	0.156	J	0.864
Calcium, Total	NS	NS	NS	NS	NS	2910		8.55	79200		9.56	87000		9.11	-		-	61200		8.64
Chromium, Total	NS	NS	NS	NS	NS	5.37		0.855	10.8		0.956	12.6		0.911	-		-	12.9		0.864
Cobalt, Total	NS	NS	NS	NS	NS	3.15		1.71	3.41		1.91	3.72		1.82	-		-	3.17		1.73
Copper, Total	50	270	270	270	10000	8.26		0.855	11.2		0.956	16.9		0.911	-		-	11.9		0.864
Iron, Total	NS	NS	NS	NS	NS	10100		4.28	11700		4.78	11400		4.56	-		-	11000		4.32
Lead, Total	63	400	400	1000	3900	8.71		4.28	334		4.78	39.4		4.56	-		-	40.2		4.32
Magnesium, Total	NS	NS	NS	NS	NS	2240		8.55	5310		9.56	12900		9.11	-		-	8810		8.64
Manganese, Total	1600	2000	2000	10000	10000	206		0.855	216		0.956	315		0.911	-		-	247		0.864
Mercury, Total	0.18	0.81	0.81	2.8	5.7	0.06	J	0.072	0.265		0.078	0.09		0.076	-		-	0.095		0.069
Nickel, Total	30	140	310	310	10000	6.26		2.14	6.95		2.39	11.1		2.28	-		-	7.98		2.16
Potassium, Total	NS	NS	NS	NS	NS	250		214	635		239	588		228	-		-	508		216
Silver, Total	2	36	180	1500	6800	ND		0.428	ND		0.478	0.273	J	0.456	-		_	ND		0.432
Sodium, Total	NS	NS	NS	NS	NS	51.6	J	171	475		191	429		182	-		-	244		173
Vanadium, Total	NS	NS	NS	NS	NS	10.4		0.855	18.7		0.956	16.4		0.911	-		-	12.9		0.864
	+	 	-	 	_	-								-	1			+		

Values are shown in mg/kg or parts per million.

Zinc, Total

10000

10000

10000

41.4

726

4.78

204

4.56

56.4

4.32

4.28

Shaded values exceed their respective SCOs

Only the compounds that were detected are listed.

ND = Not Detected above the laboratory method detection limit

NS = No Standard

J = Estimated Value

E = Concentration of analyte exceeds range of the calibration curve and/or linear range of the instrument.

NY-UNRES= New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 376

NY-RESR = New York NYCRR Part 375 Residential Criteria, New York Restricted use Criteria per 6 NYCRI

NY-RESRR = New York NYCRR Part 375 Restricted-Residential Criteria, New York Restricted use Criteria

NY-RESC = New York NYCRR Part 375 Commercial Criteria, New York Restricted use Criteria per 6 NYCRI

NY-RESI = New York NYCRR Part 375 Industrial Criteria, New York Restricted use Criteria per 6 NYCRR F

TABLE 4.1-1

SUMMARY OF SOIL SAMPLING RESULTS AND REGULATORY VALUES SVOCS/METALS

SUPPLEMENTAL SUBSURFACE ASSESSMENT SCHENECTADY 40 ANCHOR SITE

	SAI					D: GP-16 (2.5-5')				TP-1			TP-2			TP-3	
	LABI								L2450528-01			L2450528-02)		L2450528-03		
				COL	LAB ID.		5/20/2024	,		9/5/2024			9/5/2024			9/5/2024	
	NY-UNRES	NY-RESR	NY-RESRR	NY-RESC	NY-RESI		3/20/2024			3/3/2024			3/3/2024			3/3/2024	
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL
SEMIVOLATILE ORGA	` ` ` ` ` ` `		(gg)	(···g···g,	(99)					9	- · ·-		9			9	
Acenaphthene	20	100	100	500	1000	ND		0.17	ND		0.18	0.44	J	0.86	0.12	J	0.17
Acenaphthylene	100	100	100	500	1000	ND		0.17	ND		0.18	4.8		0.86	ND		0.17
Anthracene	100	100	100	500	1000	ND		0.12	ND		0.13	4.2		0.64	0.12		0.12
Benzo(a)anthracene	1	1	1	5.6	11	0.075	J	0.12	0.12	J	0.13	10		0.64	0.34		0.12
Benzo(a)pyrene	1	1	1	1	1.1	0.073	J	0.17	0.12	J	0.18	9.4		0.86	0.2		0.17
Benzo(b)fluoranthene	1	1	1	5.6	11	0.091	J	0.12	0.17		0.13	16		0.64	0.3		0.12
Benzo(ghi)perylene	100	100	100	500	1000	0.044	J	0.17	0.091	J	0.18	7		0.86	0.1	J	0.17
Benzo(k)fluoranthene	0.8	1	3.9	56	110	ND		0.12	0.048	J	0.13	3.2		0.64	0.081	J	0.12
Chrysene	1	1	3.9	56	110	0.068	J	0.12	0.13		0.13	10		0.64	0.34		0.12
Dibenzo(a,h)anthracene	0.33	0.33	0.33	0.56	1.1	ND		0.12	0.026	J	0.13	1.9		0.64	0.037	J	0.12
Fluoranthene	100	100	100	500	1000	0.14		0.12	0.22		0.13	24		0.64	0.76		0.12
Fluorene	30	100	100	500	1000	ND		0.21	ND		0.22	1.4		1.1	0.38		0.21
Indeno(1,2,3-cd)pyrene	0.5	0.5	0.5	5.6	11	0.042	J	0.17	0.073	J	0.18	5.7		0.86	0.077	J	0.17
Phenanthrene	100	100	100	500	1000	0.027	J	0.12	0.1	J	0.13	21		0.64	0.54		0.12
Pyrene	100	100	100	500	1000	0.12		0.12	0.18		0.13	18		0.64	0.62		0.12
TOTAL METALS																	
Aluminum, Total	NS	NS	NS	NS	NS	4060		9.63	2790		10.2	3870		10.2	4300		9.78
Antimony, Total	NS	NS	NS	NS	NS	0.57	J	4.82	ND		5.12	ND		5.09	ND		4.89
Arsenic, Total	13	16	16	16	16	6.13		0.963	2.56		1.02	3.49		1.02	2.08		0.978
Barium, Total	350	350	400	400	10000	228		0.963	13.1		1.02	72.8		1.02	19.1		0.978
Beryllium, Total	7.2	14	72	590	2700	0.262	J	0.482	0.179	J	0.512	0.235	J	0.509	0.274	J	0.489
Cadmium, Total	2.5	2.5	4.3	9.3	60	0.816	J	0.963	ND		1.02	ND		1.02	ND		0.978
Calcium, Total	NS	NS	NS	NS	NS	56400		9.63	2160		10.2	7510		10.2	8550		9.78
Chromium, Total	NS	NS	NS	NS	NS	23		0.963	5.11		1.02	9.06		1.02	4.89		0.978
Cobalt, Total	NS	NS	NS	NS	NS	3.47		1.93	3.28		2.05	3.02		2.04	3.43		1.96
Copper, Total	50	270	270	270	10000	54.4		0.963	7.7		1.02	19.3		1.02	11.4		0.978
Iron, Total	NS	NS	NS	NS	NS	11000		4.82	9870		5.12	9770		5.09	10200		4.89
Lead, Total	63	400	400	1000	3900	689		4.82	3.8	J	5.12	71.9		5.09	9.1		4.89
Magnesium, Total	NS	NS	NS	NS	NS	2350		9.63	1160		10.2	1690		10.2	1570		9.78
Manganese, Total	1600	2000	2000	10000	10000	216		0.963	120		1.02	180		1.02	331		0.978
Mercury, Total	0.18	0.81	0.81	2.8	5.7	0.53		0.079	ND		0.085	0.358		0.084	ND		0.081
Nickel, Total	30	140	310	310	10000	9.44		2.41	6.79		2.56	6.75		2.55	7.99		2.45
Potassium, Total	NS	NS	NS	NS	NS	358		241	290		256	292		255	339		245
Silver, Total	2	36	180	1500	6800	ND		0.482	ND		0.512	ND		0.509	ND		0.489
Sodium, Total	NS	NS	NS	NS	NS	114	J	193	120	J	205	119	J	204	62.8	J	196
Vanadium, Total	NS	NS	NS	NS	NS	11		0.963	11.2		1.02	10.9		1.02	9.78		0.978
Zinc, Total	109	2200	10000	10000	10000	603		4.82	23.3		5.12	115		5.09	25.9		4.89

Values are shown in mg/kg or parts per million.

Shaded values exceed their respective SCOs

Only the compounds that were detected are listed.

ND = Not Detected above the laboratory method detection limit

NS = No Standard

J = Estimated Value

E = Concentration of analyte exceeds range of the calibration curve and/or linear range of the instrument.

NY-UNRES= New York NYCRR Part 375 New York Unrestricted use Criteria per 6 NYCRR Part 375 NY-RESR = New York NYCRR Part 375 Residential Criteria, New York Restricted use Criteria per 6 NYCRI

NY-RESRR = New York NYCRR Part 375 Restricted-Residential Criteria, New York Restricted use Criteria

NY-RESC = New York NYCRR Part 375 Commercial Criteria, New York Restricted use Criteria per 6 NYCRI

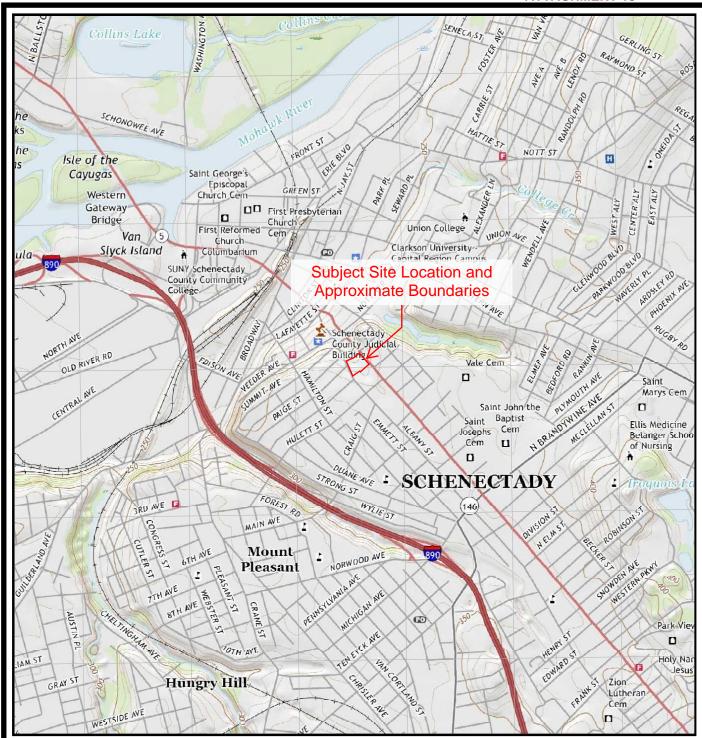
NY-RESI = New York NYCRR Part 375 Industrial Criteria, New York Restricted use Criteria per 6 NYCRR F

TABLE 4.1-2 SUMMARY OF SOIL SAMPLING RESULTS AND REGULATORY VALUES VOCS SUPPLEMENTAL SUBSURFACE ASSESSMENT SCHENECTADY 40 ANCHOR SITE

					SAMPLE ID:		TP-1			TP-2			TP-3	
					LAB ID:		L2450528-01		I	_2450528-02)		L2450528-03	3
_				COLLEC	TION DATE:		9/5/2024			9/5/2024			9/5/2024	
	NY-UNRES	NY-RESR	NY-RESRR	NY-RESC	NY-RESI									
ANALYTE	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Result	Flg	RL	Result	Flg	RL	Result	Flg	RL
VOLATILE ORGANIC	S BY EPA	5035							•					
1,3,5-Trimethylbenzene	8.4	47	52	190	380	ND		0.0026	ND		0.0023	0.0007	J	0.0021
2-Butanone	0.12	100	100	500	1000	ND		0.013	ND		0.011	0.013		0.01
Acetone	0.05	100	100	500	1000	0.017		0.013	0.015		0.011	0.085		0.01
cis-1,2-Dichloroethene	0.25	59	100	500	1000	ND		0.0013	ND		0.0011	0.00027	J	0.001
Isopropylbenzene	NA	NA	NA	NA	NA	ND		0.0013	ND		0.0011	0.0087		0.001
Methyl Acetate	NA	NA	NA	NA	NA	ND		0.0053	ND		0.0046	0.0017	J	0.0042
Methyl cyclohexane	NA	NA	NA	NA	NA	ND		0.0053	0.00074	J	0.0046	0.0038	J	0.0042
n-Butylbenzene	12	100	100	500	1000	ND		0.0013	ND		0.0011	0.086		0.001
n-Propylbenzene	3.9	100	100	500	1000	ND		0.0013	ND		0.0011	0.011		0.001
Naphthalene	12	100	100	500	1000	ND		0.0053	0.0014	J	0.0046	0.0042		0.0042
o-Xylene	NA	NA	NA	NA	NA	ND		0.0013	ND		0.0011	0.00061	J	0.001
p-Isopropyltoluene	NA	NA	NA	NA	NA	ND		0.0013	0.00023	J	0.0011	ND		0.001
sec-Butylbenzene	11	100	100	500	1000	ND		0.0013	ND		0.0011	0.11		0.001
tert-Butylbenzene	5.9	100	100	500	1000	ND		0.0026	ND		0.0023	0.0062		0.0021
Trichlorofluoromethane	NA	NA	NA	NA	NA	ND		0.0053	0.0024	J	0.0046	ND		0.0042
Values are shown in mg/k	kg or parts per	million.	_						_					

Shaded values exceed their respective SCOs

Only the compounds that were detected are listed.


ND = Not Detected above the laboratory method detection limit

NS = No Standard

- J = Estimated Value
- NY-UNRES= New York NYCRR Part 375 New York Unrestricted use Criteria Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2
- NY-RESR = New York NYCRR Part 375 Residential Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2
- NY-RESRR = New York NYCRR Part 375 Restricted-Residential Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- NY-RESC = New York NYCRR Part 375 Commercial Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.
- NY-RESI = New York NYCRR Part 375 Industrial Criteria, New York Restricted use Criteria per 6 NYCRR Part 375 Environmental Remediation Programs, effective December 14, 2006.

APPENDIX A

Figures/Maps

MAP REFERENCE

United States Geological Survey 7.5 Minute Series Topographic Map Quadrangle: Schenectady, NY

Date: 2019

50 CENTURY HILL DRIVE

LATHAM, NY 12110

CITY OF SCHENECTADY

SCHENECTADY COUNTY, NY

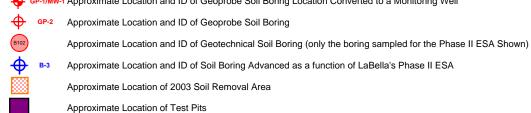
SCALE: 1:24,000±

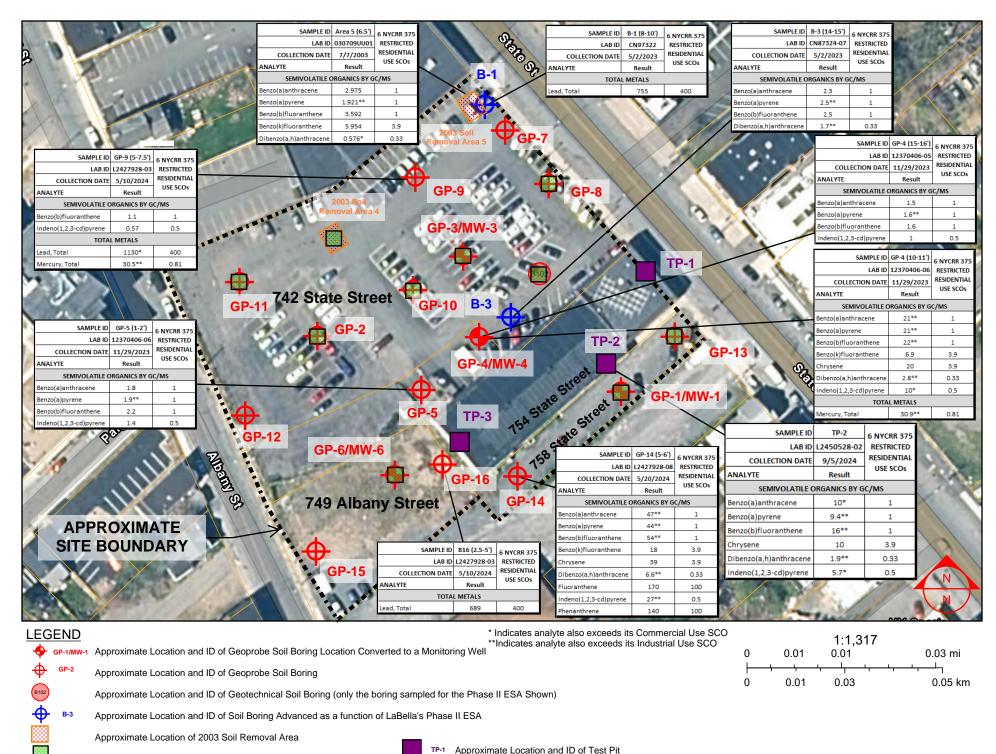
DRAFTER: AR

PROJECT No.: 23.3588

The locations and features depicted on this map are approximate and do not represent an actual survey.

FIGURE 1 - SUBJECT SITE LOCATION MAP


FIGURE 2 - SAMPLING LOCATIONS PLAN


0.01

0.03

0.05 km

FIGURE 3 ANALYTES IN SOILS EXCEEDING RESTRICTED-RESIDENTIAL USE SOIL CLEANUP OBJECTIVES

Sampling Location That Exceeds Unrestricted Use SCOs

APPENDIX B

Subsurface Exploration Logs

C.T	. M	ALE	AS	SOCIATES	DIDECT DUS			
区		$\overline{\odot}$		3	BORING NO.:	H EXPLORATION LOC	7	
	֓֞֜֝֝֓֜֜֝֓֜֜֝֓֓֓֓֜֟֜֜֟֓֓֓֓֟֓֓֟֓֓֓֟֓֓֓֟֓֓֟֓֓֟֓֓֓֟֓				ELEV.: START DATE: SHEET	5/20/2024 1 of 1	DATU FINIS	IM: H DATE: 5/20/2024
PROJE	СТ		40 A	nchor Site		CTM PROJECT NO.:	23.35	88
LOCA	TION:		Sche	nectady, NY		CTM OBSERVER:	A. Ro	gers
	S	AMPL	E					
ОЕРТН (FT)	INTERVAL	NUMBER	RECOVERY (FT)		CLASSIFICA [*]	TION		NOTES
		1		ASPHALT				
0				Brown-grey medium SAND, little	e grey gravel (da	ımp)		
_2			2.4					
		2		Grey GRAVEL and COBBLE (d	amp)			
4		_		ordy ora tvee and obbee (a	ш.,р <i>)</i>			
				D I OAND I'm	171			
_6		3		Brown medium SAND, little grey	y gravei (damp)			
8			2.5					
		4						
10				(wet)				
	/				erminated ±10' b	gs		
				, and the second				
12								
14								
16								
18								
10								
20								
20							1	
DRILLIN DIRECT				Core Down Drilling 7822DT			GROUN	NDWATER LEVEL READINGS
METHO				5'x2.25" DT22 Dual Tube Sampler			DATE LE	EVEL REFERENCE MEASURING POINT
				RMATION SHOWN HEREON WAS OB				
INFORI	MATIC	N AV	AILAB	JTHORIZED USERS ONLY THAT THE\ LE TO C.T. MALE. IT IS PRESENTED	IN GOOD FAITH, BU	JT IS NOT INTENDED AS A		
SUBST	ITUTE	FOR	INVES	STIGATIONS, INTERPRETATION OR J	UDGMENT OF SUC	H AUTHORIZED USERS.	SAMPLE	CLASSIFICATION BY:
								A. Rogers

C.T	. M	٩LE	AS	SOCIATES	DIDECT BUS	H EXPLORATION LOC				
		<u>₩</u>			BORING NO.: ELEV.: START DATE: SHEET	GP-8 5/20/2024 1 of 1	DA ⁻	TUM: IISH D <i>i</i>	ATE:	5/20/2024
PROJE				nchor Site		CTM PROJECT NO.:	23.	3588		
LOCA				nectady, NY		CTM OBSERVER:	A. F	Rogers		
DEPTH (FT)	INTERVAL	NUMBER NUMBER	RECOVERY (FT)		CLASSIFICA	TION		I	NOTI	ΞS
4		1 2	3.1	¬ ASPHALT Brown-grey fine to medium SAN	ND, little gravel (damp)				
8		3	3.2	Light brown fine to medium SAN Brown fine to medium SAND (w						
10 12 14				Boring to	erminated ±10' b	ogs				
16 18 20										
DRILLIN			TOR:	Core Down Drilling			GRO	DUNDWA	ATER LE	VEL READINGS
DIRECT:			NG:	7822DT						ICE MEASURING POINT
THE SU MADE A INFORI	JBSUF AVAIL MATIO	RFACE ABLE ON AV	INFO TO AU AILABI	5'x2.25" DT22 Dual Tube Sampler RMATION SHOWN HEREON WAS OBJITHORIZED USERS ONLY THAT THEY LE TO C.T. MALE. IT IS PRESENTED STIGATIONS, INTERPRETATION OR J	/ MAY HAVE ACCE IN GOOD FAITH, B	SS TO THE SAME JT IS NOT INTENDED AS A	SAMP			CATION BY:

C.T	. M	ALE	AS	SOCIATES	DIDEOT DUO		_		
【】	JE	\odot		<u>S</u>	DIRECT-PUS BORING NO.:	H EXPLORATION LOC)		
				<u></u> 到	ELEV.: START DATE: SHEET	5/20/2024 1 of 1	DAT FINIS	UM: SH DATE:	5/20/2024
PROJE	ECT		40 Aı	nchor Site		CTM PROJECT NO.:	23.3	588	
LOCA	TION:		Sche	nectady, NY		CTM OBSERVER:	A. R	ogers	
ОЕРТН (FT)	INTERVAL	NUMBER 14MP	RECOVERY (FT)	SAMPLE	CLASSIFICA [*]	TION		NOT	ES
		1	,	¬ ASPHALT URBAN FILL: Ash, gravel, conc	rete and asphalt	(damp)			
4		2	3.0	, 6	·	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			
_6		3							
_8		4	2.5	Brown fine to medium SAND (w	ret)				
10				Boring to	erminated ±10' b	ogs			
12						3-			
14									
16									
18									
20						-			
DRILLIN DIRECT				Core Down Drilling 7822DT			GROU	UNDWATER LI	EVEL READINGS
METHO				5'x2.25" DT22 Dual Tube Sampler			DATE	LEVEL REFERE	NCE MEASURING POINT
MADE A	AVAIL. MATIC	ABLE N AV	TO AL AILABI	RMATION SHOWN HEREON WAS OB JTHORIZED USERS ONLY THAT THEY LE TO C.T. MALE. IT IS PRESENTED I STIGATIONS, INTERPRETATION OR JI	MAY HAVE ACCE IN GOOD FAITH, BU	SS TO THE SAME JT IS NOT INTENDED AS A			
30001		Οι	11 4 V L C	S. O. MICHOLO, HALLMING TATION ON U	ODOMENT OF OUC		SAMPL	LE CLASSIFI A. Rog	

C.T	. M	٩LE	AS	SOCIATES				
					BORING NO.: ELEV.: START DATE: SHEET	H EXPLORATION LOC GP-10 5/20/2024 1 of 1	DATUM: FINISH I	
PROJE				nchor Site		CTM PROJECT NO.:		
LOCAT				enectady, NY		CTM OBSERVER:	A. Roger	'S
DEPTH (FT)	INTERVAL	NUMBER	RECOVERY (FT)	SAMPLE	CLASSIFICA	TION		NOTES
		1		ASPHALT				
2				Brown medium SAND, little grav	vel (damp)			
			2.2	URBAN FILL: Concrete and Asp	ohalt (damp)			
_4	$/ \mid$	2		Brown medium SAND, some Ur	ban Fill: Brick a	nd Asphalt (damp)		
6		3		Brown-grey medium SAND (we	t)		-	
_8		4	3.1					
10	/							
	,			Boring to	erminated ±10' b	ogs		
12								
14								
16								
18								
20								
DRILLIN	G CON	TRACT	TOR:	Core Down Drilling			GROUNDV	VATER LEVEL READINGS
DIRECT-				7822DT				1
MADE /	JBSUR AVAIL/ MATIO	RFACE ABLE N AV	INFO TO AU AILAB	5'x2.25" DT22 Dual Tube Sampler DRMATION SHOWN HEREON WAS OB JTHORIZED USERS ONLY THAT THEY LE TO C.T. MALE. IT IS PRESENTED STIGATIONS, INTERPRETATION OR J	/ MAY HAVE ACCE IN GOOD FAITH, BI	SS TO THE SAME UT IS NOT INTENDED AS A	SAMPLE CI	ASSIFICATION BY:

C.T	. M	ALE	AS	SOCIATES	DIDECT DUG	LI EVDI ODATIONI I OC		
瓜][$\overline{\odot}$		S	BORING NO.:	H EXPLORATION LOC GP-11	7	
	٦٢ ٦٢	쓽		2) JU	ELEV.: START DATE:	5/20/2024	DATU	M: H DATE: 5/20/2024
		<u>公</u>		当	SHEET	1 of 1		
PROJI	ECT		40 Aı	nchor Site	-	CTM PROJECT NO.:	23.35	88
LOCA	TION:		Sche	nectady, NY		CTM OBSERVER:	A. Ro	gers
	S	AMPL						
(FT)	VAL	ËR	۲۲ (FT)	SAMDI F	CLASSIFICA ⁻	TION		NOTES
ОЕРТН (FT)	INTERVAL	NUMBER	RECOVERY (FT)	SAMI LL	CLASSII ICA	HON		NOTES
ä	Z	Z	REC					
		1		¬ ASPHALT				
2				URBAN FILL: Concrete, Ash, As	sphalt, some bro	wn med Sand (damp)		
			2.7					
		2						
4	/							
6		3						
8			2.6	Brown medium SAND, some Ur	ban Fill: Brick (d	lamp)		
		4		(wet)				
10	/							
				Boring to	erminated ±10' b	gs		
40								
12								
14								
16								
18								
20								
DRILLIN	G CON	TRACT	TOR:	Core Down Drilling				
DIRECT				7822DT			GROUN	NDWATER LEVEL READINGS
METHO!				5'x2.25" DT22 Dual Tube Sampler	TAINED FOR C T.	MALE EVALUATION IT IS	DATE LI	EVEL REFERENCE MEASURING POINT
MADE .	AVAIL	ABLE	TO AL	RMATION SHOWN HEREON WAS OB JTHORIZED USERS ONLY THAT THEY	MAY HAVE ACCE	SS TO THE SAME		
				LE TO C.T. MALE. IT IS PRESENTED I STIGATIONS, INTERPRETATION OR JI				
							SAMPLE	E CLASSIFICATION BY: A. Rogers
							i	U

C.T	. M	٩LE	AS	SOCIATES	DIRECT-PUS	H EXPLORATION LOC	<u>, </u>	
		<u>②</u> <u>以</u>			BORING NO.: ELEV.: START DATE: SHEET	GP-12 5/20/2024 1 of 1	DATU	JM: SH DATE: 5/20/2024
PROJE				nchor Site		CTM PROJECT NO.:		
LOCA				enectady, NY		CTM OBSERVER:	A. Ro	gers
ОЕРТН (FT)	INTERVAL	NUMBER W	RECOVERY (FT)		CLASSIFICA	TION		NOTES
4		1	2.6	ASPHALT Brown-grey medium SAND (dar Grey GRAVEL (damp)	mp)			
8		3	4.0	Brown fine to medium SAND (d (wet)	amp)			
10 12 14				Boring to	erminated ±10' b	gs		
16 18 20								
DRILLIN				Core Down Drilling			GROUN	NDWATER LEVEL READINGS
DIRECT:				7822DT 5'x2.25" DT22 Dual Tube Sampler				EVEL REFERENCE MEASURING POINT
THE SU MADE A INFORI	JBSUF AVAIL MATIO	RFACE ABLE IN AV	INFO TO AL	DRMATION SHOWN HEREON WAS OF JTHORIZED USERS ONLY THAT THEY LE TO C.T. MALE. IT IS PRESENTED STIGATIONS, INTERPRETATION OR J	Y MAY HAVE ACCE IN GOOD FAITH, BI	SS TO THE SAME JT IS NOT INTENDED AS A H AUTHORIZED USERS.		E CLASSIFICATION BY: A. Rogers

C.T	. M	ALE	AS	SOCIATES	DIDECT DUG			
【】		$\overline{\mathfrak{O}}$		3	BORING NO.:	H EXPLORATION LOC GP-13	7	
					ELEV.: START DATE: SHEET	5/20/2024 1 of 1	DATU FINIS	JM: SH DATE: 5/20/2024
PROJE	СТ		40 Aı	nchor Site		CTM PROJECT NO.:	23.35	588
LOCA	ΓΙΟN:		Sche	nectady, NY		CTM OBSERVER:	A. Ro	ogers
ОЕРТН (FT)	INTERVAL	NUMBER NUMBER	RECOVERY (FT)	SAMPLE	CLASSIFICA	TION		NOTES
		1		¬ ASPHALT				
_2			1.7	Brown medium SAND and URB	SAN FILL: Brick 8	& Ash (damp)		
_4		2	1.7					
_6		3		Brown fine to medium SAND (d	amp)			
8		4	3.0					
10				(wet)				
12				Boring to	erminated ±10' b	gs		
14								
16								
18								
20								
DRILLIN DIRECT			TOR:	Core Down Drilling 7822DT			GROU	NDWATER LEVEL READINGS
METHO			NG:	5'x2.25" DT22 Dual Tube Sampler			DATE L	LEVEL REFERENCE MEASURING POINT
MADE A	AVAIL.	ABLE	TO AL	RMATION SHOWN HEREON WAS OB ITHORIZED USERS ONLY THAT THE LE TO C.T. MALE. IT IS PRESENTED	Y MAY HAVE ACCE	SS TO THE SAME		
				STIGATIONS, INTERPRETATION OR J			SAMPLE	E CLASSIFICATION BY: A. Rogers

			_		DIDECT DIS	H EXPLORATION LOC	<u> </u>	
					BORING NO.: ELEV.: START DATE: SHEET	GP-14 5/20/2024 1 of 1	DATUM FINISH	
PROJE				nchor Site		CTM PROJECT NO.:		
LOCAT		ANADI		nectady, NY		CTM OBSERVER:	A. Roge	ers
ОЕРТН (FT)	INTERVAL	NUMBER NUMBER	RECOVERY (FT)	SAMPLE	CLASSIFICA	TION		NOTES
2		2	2.4	¬ASPHALT URBAN FILL:Concrete, brick, a (damp)	sh, wood, & brov	vn fine to med SAND		
6		3	0.5	Boring termi	nated ±6' bgs (R	efusal)		
<u>8</u> 10				, and the second	J (,		
12								
14								
16								
18								
20								
DRILLIN			OR:	Core Down Drilling			GROUND	WATER LEVEL READINGS
DIRECT-			NG:	7822DT 5'x2.25" DT22 Dual Tube Sampler			DATE LEVE	EL REFERENCE MEASURING POINT
THE SU MADE / INFORM	JBSUR AVAILA MATIO	RFACE ABLE N AV	INFO TO AU AILABI	ORMATION SHOWN HEREON WAS OB JTHORIZED USERS ONLY THAT THE LE TO C.T. MALE. IT IS PRESENTED STIGATIONS, INTERPRETATION OR J	Y MAY HAVE ACCE IN GOOD FAITH, BI	SS TO THE SAME JT IS NOT INTENDED AS A H AUTHORIZED USERS.		CLASSIFICATION BY: A. Rogers

C.T	. M	ALE	AS	SOCIATES	DIDECT DUG			
【】	֝֡֜֝֞֝֞֜֝֡֡֝֡֡֡֝֡֡֡֡֡֡֡֡֡֡֝	$\overline{\mathfrak{O}}$		<u> </u>	BORING NO.:	H EXPLORATION LOC GP-15	7	
		<u> </u>			ELEV.: START DATE: SHEET	5/20/2024 1 of 1		TUM: NISH DATE: 5/20/2024
PROJE	ЕСТ		40 Aı	nchor Site		CTM PROJECT NO.:	23.3	3588
LOCA	TION:		Sche	nectady, NY		CTM OBSERVER:	A. F	Rogers
ОЕРТН (FT)	INTERVAL	NUMBER	RECOVERY (FT)	SAMPLE	CLASSIFICA	TION		NOTES
2 4 6 8 10 12 14		3 4	1.7	TOPSOIL URBAN FILL:Concrete, brick, a	sh and fine to m			
18 20								
DRILLIN			OR:	Core Down Drilling			GRO	OUNDWATER LEVEL READINGS
DIRECT: METHOI			NG.	7822DT 5'x2.25" DT22 Dual Tube Sampler			DATE	LEVEL REFERENCE MEASURING POINT
THE SU MADE A INFORI	JBSUF AVAIL MATIC	RFACE ABLE ON AV	INFO TO AU AILABI	PRMATION SHOWN HEREON WAS OF UTHORIZED USERS ONLY THAT THEY LE TO C.T. MALE. IT IS PRESENTED STIGATIONS, INTERPRETATION OR J	Y MAY HAVE ACCE IN GOOD FAITH, BI	SS TO THE SAME JT IS NOT INTENDED AS A		PLE CLASSIFICATION BY:
								A. Rogers

C.T	. M	ALE	AS.	SOCIATES	DIRECT-PUS	H EXPLORATION LOC	<u> </u>	
	֧֧֓֞֟֝֝֓֓֓֓֓֓֟֝֓֓֓֟֝֓֓֟֝֟֝֓֟֝֟֝֓֓֟֝֟֝֟֝֓֟֝֟֝֓֓֟֝֟֝֟֝֟֝֓֓֝֟֝֓֝֟֝֝֓֝֟֝֝֝֝֓֝֝֝ ֓֞֓֞֞֞֞֓֞֞֓֞֞֞֞֓֓֞֓֓֞֞֓֓֞֞֞֓֓֓֞֞֞֓֓֞֞֞֩֞֞֓֓֞֩֞֩֞֓֓֓֓֓֜֡֓֓֓֡֓֜֡֓֜֡֓֜֡֓֜֡֓֜֡֓֜֡֓֜֡֓֜֡֓֜֡֜֜֡֜	<u>₩</u>			BORING NO.: ELEV.: START DATE: SHEET	GP-14 5/20/2024 1 of 1	DATUM: FINISH [
PROJE				nchor Site		CTM PROJECT NO.:		
LOCAT		AMPL		nectady, NY		CTM OBSERVER:	A. Roger	'S
ОЕРТН (FT)	INTERVAL	NUMBER	RECOVERY (FT)	SAMPLE	CLASSIFICA	TION		NOTES
		1		ASPHALT				
2				Brown-dark brown fine to mediu	(wet)			
4	/	2	3.0	URBAN FILL: Ash and Asphalt				
				Brown fine SAND and SILT (we	t) terminated ±5' b	ne		
6				Boiling	terrimated ±5 b(y3		
_ 8								
10								
12								
14								
16								
18								
20								
DRILLIN			OR:	Core Down Drilling			GROUNDV	VATER LEVEL READINGS
DIRECT- METHOI			NG·	7822DT 5'x2.25" DT22 Dual Tube Sampler			DATE LEVEL	1
THE SU MADE / INFORM	JBSUF AVAIL MATIO	RFACE ABLE ON AV	INFC TO AU AILABI	DRMATION SHOWN HEREON WAS OB JTHORIZED USERS ONLY THAT THEY LE TO C.T. MALE. IT IS PRESENTED STIGATIONS, INTERPRETATION OR J	Y MAY HAVE ACCE IN GOOD FAITH, BI	SS TO THE SAME JT IS NOT INTENDED AS A		ASSIFICATION BY:

APPENDIX C

Test Pit Logs

TEST PIT LOG

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive Latham, NY 12110 (518) 786-7400 • FAX (581) 786-7299

PROJECT NAME:	Schenectady 40 Anchor	EXCAVATOR:	Jackson Demolition	
PROJECT NUMBER:	23.3588	EQUIPMENT:	328D CAT	
OGGED BY:	AR	DATE:	9/5/2024	_
	TE:	ST PIT NO	D. 1	
0'				0'
	Fine to Medium Brown S	and, Some Urban Fill (g	lass, trash) (wet)	
		ν.		
		Test Pit Terminated at :	±2' bgs	
			<u> </u>	
5'				5'
				_~
				
10'				_10'
			-	
			<u> </u>	
15'				15'
	<u> </u>		L	_ ''
	TOTAL DEPTH: 2'			
	WATER AT: Above c	oncete slab		
S	IZE OF TEST PIT: ±3' x 3'			
NOTES: Test pit	excavated beneath concrete floor	in former basement		

TEST PIT LOG

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive Latham, NY 12110 (518) 786-7400 • FAX (581) 786-7299


PROJECT NAME:	Schenectady 40 Anchor	_ EXCAVATOR:	Jackson Demolition		
ROJECT NUMBER:	23.3588	EQUIPMENT:	328D CAT		
OGGED BY:	AR	DATE:	9/5/2024		
	TES	ST PIT NO	0. 2		
0'					0'
	Fine to Medium Brown Sa	nd, Some Urban Fill (g	lass, trash) (wet)		
			, , ,		
	Т	est Pit Terminated at ±	:2' bgs		
			-		
5'					5'
ວ					°
				<u> </u>	
10'					10'
15'					15'
	TOTAL DEPTH: 2'				
	WATER AT: Above co	ncrete slab			
S	IZE OF TEST PIT: ±3' x 3'				
NOTES: Test pit	excavated beneath concrete floor in				

TEST PIT LOG

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive Latham, NY 12110 (518) 786-7400 • FAX (581) 786-7299

PROJECT NAME:	Schenectady 40 Anchor	EXCAVATOR:	Jackson Demolition	
PROJECT NUMBER:	23.3588	EQUIPMENT:	328D CAT	
LOGGED BY:	AR	DATE:	9/5/2024	
	TF!	ST PIT NO) 3	
0'	`		<u> </u>	0'
	Fine to Medium Dark Bro	own SAND (wet)		
		Test Pit Terminated at	±2' bgs	
5'				5'
				
10'				10'
				
15'				15'
. •				
	TOTAL DEPTH: 2'			
	WATER AT: Above c	oncrete slab		
SI	IZE OF TEST PIT: ±3' x 3'			
NOTES: Strong p	petroleum odor and dark staining i	n soils		
	excavated beneath concrete floor			
i cot pit	SASSATULOU DOLLOULI COLLOUGU 11001	ISTITIOT BUSCITION		

APPENDIX D

Organic Vapor Headspace Analysis Logs

ORGANIC VAPOR HEADSPACE ANALYSIS LOG

PROJECT:	Schenectady 40 Anchor Site			PROJECT #	23.3588	PAGE 1 OF 2
LOCATION:	742, 754 & 7	58 State Stre	et Schenectady	I.		DATE
COUNTY, STATE:	Schenectac					COLLECTED: 5/20/24
INSTRUMENT USED:		MiniRae 3000			eV	DATE
DATE INSTRUMENT			5/20/2024	BY:	AR	ANALYZED: 5/20/24
TEMPERATURE OF S	SOIL:	а	mbient			ANALYST: AR
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-7	1	0-2.5	Soil - Headspace	1.8	0.0	NONS
GP-7	2	2.5-5	Soil - Headspace	0.8	0.0	NONS
GP-7	3	5-7.5	Soil - Headspace	0.8	0.0	NONS
GP-7	4	7.5-10	Soil - Headspace	0.6	0.0	NONS
GP-8	1	0-2.5	Soil - Headspace	1.0	0.0	NONS
GP-8	2	2.5-5	Soil - Headspace	1.2	0.0	NONS
GP-8	3	5-7.5	Soil - Headspace	1.6	0.0	NONS
GP-8	4	7.5-10	Soil - Headspace	1.0	0.0	NONS
GP-9	1	0-2.5	Soil - Headspace	0.5	0.0	NONS
GP-9	2	2.5-5	Soil - Headspace	0.7	0.0	NONS
GP-9	3	5-7.5	Soil - Headspace	0.6	0.0	NONS
GP-9	4	7.5-10	Soil - Headspace	0.3	0.0	NONS
GP-10	1	0-2.5	Soil - Headspace	0.1	0.0	NONS
GP-10	2	2.5-5	Soil - Headspace	0.2	0.0	NONS
GP-10	3	5-7.5	Soil - Headspace	0.0	0.0	NONS
GP-10	4	7.5-10	Soil - Headspace	0.3	0.0	NONS
GP-11	1	0-2.5	Soil - Headspace	0.6	0.0	NONS
GP-11	2	2.5-5	Soil - Headspace	2.7	0.0	NONS
GP-11	3	5-7.5	Soil - Headspace	2.7	0.0	NONS
GP-11	4	7.5-10	Soil - Headspace	0.7	0.0	NONS

Soil - Headspace *Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

NONS = No Odors/No Staining

^{**}PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

^{***} represents feet below the ground surface

ORGANIC VAPOR HEADSPACE ANALYSIS LOG

PROJECT:	Schenectac	dy 40 Anchor	Site	PROJECT #	23.3588	PAGE 2 OF 2
LOCATION:	742, 754 & 7	58 State Stre	et Schenectady			DATE
COUNTY, STATE:		dy County, N				COLLECTED: 5/20/24
INSTRUMENT USED		∕IiniRae 3000			eV	DATE
DATE INSTRUMENT			-, -, -			ANALYZED: 5/20/24
TEMPERATURE OF	SOIL:	aı	mbient			ANALYST: AR
EVELOR ATION				SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH (57.)***	SAMPLE	READING	READING	DEAA A DVC
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
GP-12	1	0-2.5	Soil - Headspace	0.5	0.0	NONS
GP-12	2	2.5-5	Soil - Headspace	0.6	0.0	NONS
GP-12	3	5-7.5	Soil - Headspace	1.1	0.0	NONS
GP-12	4	7.5-10	Soil - Headspace	0.8	0.0	NONS
GP-13	1	0-2.5	Soil - Headspace	1.3	0.0	NONS
GP-13	2	2.5-5	Soil - Headspace	9.9	0.0	NONS
GP-13	3	5-7.5	Soil - Headspace	5.5	0.0	NONS
GP-13	4	7.5-10	Soil - Headspace	21.4	0.0	NONS
GP-14	1	0-2.5	Soil - Headspace	11.7	0.0	NONS
GP-14	2	2.5-5	Soil - Headspace	0.4	0.0	NONS
GP-14	3	5-6	Soil - Headspace	1.1	0.0	NONS
GP-15	1	0-2.5	Soil - Headspace	0.9	0.0	NONS
GP-15	2	2.5-5	Soil - Headspace	0.4	0.0	NONS
GP-15	3	5-7	Soil - Headspace	0.1	0.0	NONS
GP-15	4	7-9	Soil - Headspace	0.0	0.0	NONS
GP-16	1	0-2.5	Soil - Headspace	0.0	0.0	NONS
GP-16	2	2.5-5	Soil - Headspace	0.0	0.0	NONS

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

NONS = No Odors/No Staining

 $^{{}^{\}star\star} PPM \ \ represents concentration of detectable volatile and gaseous compounds in parts per million of air.$

^{***} represents feet below the ground surface

ORGANIC VAPOR HEADSPACE ANALYSIS LOG

PROJECT:		dy 40 Anchor		PROJECT #	23.3588	PAGE 1 OF 1
LOCATION:	742, 754 & 7	58 State Stre	et Schenectady			DATE
COUNTY, STATE:	Schenectad	dy County, N	Y			COLLECTED : 9/15/24
INSTRUMENT USED	: ^	MiniRae 3000	LAMP	10.6	eV	DATE
DATE INSTRUMENT	CALIBRATED:		9/15/2024	BY:	AR	ANALYZED: 9/15/24
TEMPERATURE OF S	SOIL:	ar	nbient			ANALYST: AR
				SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
TP-1	1	0-2	Soil - Headspace	8.7	0.0	NONS
TP-2	2	0-2	Soil - Headspace	14.3	0.0	NONS
TP-3	3	0-2	Soil - Headspace	195.5	0.0	Petrochemical Odor/Staining

^{*}Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

NONS = No Odors/No Staining

 $^{{}^{\}star\star}PPM \;\; represents \; concentration \; of \; detectable \; volatile \; and \; gaseous \; compounds \; in \; parts \; per \; million \; of \; air.$

^{***} represents feet below the ground surface

APPENDIX E

Laboratory Analysis Report for Soil from Soil Borings

ANALYTICAL REPORT

Lab Number: L2427928

Client: C.T. Male Associates

50 Century Hill Drive Latham, NY 12110

ATTN: Aimee Smith Phone: (518) 786-7400

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588
Report Date: 05/28/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA

ATTACHMENT 15

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

 Lab Number:
 L2427928

 Report Date:
 05/28/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2427928-01	GP-7_5-7.5	SOIL	SCHENECTADY, NY	05/20/24 12:50	05/20/24
L2427928-02	GP-8_5-7.5	SOIL	SCHENECTADY, NY	05/20/24 13:00	05/20/24
L2427928-03	GP-9_5-7.5	SOIL	SCHENECTADY, NY	05/20/24 13:05	05/20/24
L2427928-04	GP-10_2.5-5	SOIL	SCHENECTADY, NY	05/20/24 13:10	05/20/24
L2427928-05	GP-11_2.5-5	SOIL	SCHENECTADY, NY	05/20/24 13:15	05/20/24
L2427928-06	GP-12_5-7.5	SOIL	SCHENECTADY, NY	05/20/24 13:20	05/20/24
L2427928-07	GP-13_5-7.5	SOIL	SCHENECTADY, NY	05/20/24 13:25	05/20/24
L2427928-08	GP-14_5-6	SOIL	SCHENECTADY, NY	05/20/24 13:30	05/20/24
L2427928-09	GP-15_5-7	SOIL	SCHENECTADY, NY	05/20/24 13:35	05/20/24
L2427928-10	GP-16_2.5-5	SOIL	SCHENECTADY, NY	05/20/24 13:40	05/20/24

Serial_No:05282411:06 ATTACHMENT 15

L2427928

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588 Report Date: 05/28/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:05282411:06 ATTACHMENT 15

L2427928

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588 Report Date: 05/28/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Metals

L2427928-01, -02, -04 through -10: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

L2427928-03: The sample has elevated detection limits for all elements due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

(attlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 05/28/24

ORGANICS

SEMIVOLATILES

Serial_No:05282411:06

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: ACHMENT 15/928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-01 Date Collected: 05/20/24 12:50

Client ID: GP-7_5-7.5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270E Extraction Date: 05/22/24 14:09

Analyst: EK Percent Solids: 94%

05/24/24 10:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Acenaphthene	ND		ug/kg	140	18.	1
Fluoranthene	180		ug/kg	100	20.	1
Benzo(a)anthracene	38	J	ug/kg	100	19.	1
Benzo(a)pyrene	ND		ug/kg	140	42.	1
Benzo(b)fluoranthene	53	J	ug/kg	100	29.	1
Benzo(k)fluoranthene	ND		ug/kg	100	28.	1
Chrysene	61	J	ug/kg	100	18.	1
Acenaphthylene	ND		ug/kg	140	27.	1
Anthracene	ND		ug/kg	100	34.	1
Benzo(ghi)perylene	27	J	ug/kg	140	20.	1
Fluorene	ND		ug/kg	170	17.	1
Phenanthrene	110		ug/kg	100	21.	1
Dibenzo(a,h)anthracene	ND		ug/kg	100	20.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	140	24.	1
Pyrene	170		ug/kg	100	17.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	77		23-120	
2-Fluorobiphenyl	77		30-120	
4-Terphenyl-d14	73		18-120	

05/28/24

05/22/24 14:09

Project Name: SCHENECTADY 40 ANCHOR SITE

L2427928-02

SCHENECTADY, NY

GP-8_5-7.5

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:00

Date Received: 05/20/24

Extraction Method: EPA 3546

Report Date:

Extraction Date:

150

110

26.

19.

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270E
Analytical Date: 05/24/24 08:26

Analyst: EK
Percent Solids: 88%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	ND		ug/kg	150	20.	1
Fluoranthene	330		ug/kg	110	22.	1
Benzo(a)anthracene	76	J	ug/kg	110	21.	1
Benzo(a)pyrene	100	J	ug/kg	150	46.	1
Benzo(b)fluoranthene	160		ug/kg	110	32.	1
Benzo(k)fluoranthene	60	J	ug/kg	110	30.	1
Chrysene	140		ug/kg	110	20.	1
Acenaphthylene	76	J	ug/kg	150	29.	1
Anthracene	45	J	ug/kg	110	37.	1
Benzo(ghi)perylene	85	J	ug/kg	150	22.	1
Fluorene	24	J	ug/kg	190	18.	1
Phenanthrene	230		ug/kg	110	23.	1
Dibenzo(a,h)anthracene	23	J	ug/kg	110	22.	1

Surrogate	% Recovery	Accepta Qualifier Criter	
Nitrobenzene-d5	77	23-1	20
2-Fluorobiphenyl	81	30-1	20
4-Terphenyl-d14	78	18-1	20

J

ug/kg

ug/kg

79

260

1

1

Indeno(1,2,3-cd)pyrene

Pyrene

05/28/24

05/22/24 14:09

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:05

Date Received: 05/20/24

Field Propi

Report Date:

Extraction Date:

Field Prep: Not Specified

Extraction Method: EPA 3546

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270E
Analytical Date: 05/24/24 11:31

L2427928-03

SCHENECTADY, NY

GP-9_5-7.5

Analyst: EK
Percent Solids: 89%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Acenaphthene	100	J	ug/kg	150	19.	1
Fluoranthene	1700		ug/kg	110	21.	1
Benzo(a)anthracene	830		ug/kg	110	21.	1
Benzo(a)pyrene	850		ug/kg	150	45.	1
Benzo(b)fluoranthene	1100		ug/kg	110	31.	1
Benzo(k)fluoranthene	370		ug/kg	110	29.	1
Chrysene	890		ug/kg	110	19.	1
Acenaphthylene	78	J	ug/kg	150	28.	1
Anthracene	210		ug/kg	110	36.	1
Benzo(ghi)perylene	620		ug/kg	150	22.	1
Fluorene	70	J	ug/kg	180	18.	1
Phenanthrene	870		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	130		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	570		ug/kg	150	26.	1
Pyrene	1500		ug/kg	110	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	65	23-120	
2-Fluorobiphenyl	73	30-120	
4-Terphenyl-d14	60	18-120	

05/28/24

Project Name: SCHENECTADY 40 ANCHOR SITE

05/24/24 08:03

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:10

Report Date:

Lab ID: L2427928-04 Date Received: Client ID: GP-10_2.5-5 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/22/24 14:09 Analytical Method: 1,8270E

Analyst: ΕK 90% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
Acenaphthene	19	J	ug/kg	140	19.	1
Fluoranthene	590		ug/kg	110	21.	1
Benzo(a)anthracene	250		ug/kg	110	20.	1
Benzo(a)pyrene	240		ug/kg	140	44.	1
Benzo(b)fluoranthene	290		ug/kg	110	30.	1
Benzo(k)fluoranthene	96	J	ug/kg	110	29.	1
Chrysene	250		ug/kg	110	19.	1
Acenaphthylene	35	J	ug/kg	140	28.	1
Anthracene	75	J	ug/kg	110	35.	1
Benzo(ghi)perylene	160		ug/kg	140	21.	1
Fluorene	28	J	ug/kg	180	18.	1
Phenanthrene	360		ug/kg	110	22.	1
Dibenzo(a,h)anthracene	34	J	ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	140		ug/kg	140	25.	1
Pyrene	530		ug/kg	110	18.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	86	23-120	
2-Fluorobiphenyl	74	30-120	
4-Terphenyl-d14	68	18-120	

Serial_No:05282411:06

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: ACHMENT 15/928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

 Lab ID:
 L2427928-05
 Date Collected:
 05/20/24 13:15

 Client ID:
 GP-11_2.5-5
 Date Received:
 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270E Extraction Date: 05/22/24 14:09

Analyst: EK Percent Solids: 92%

05/24/24 11:08

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	orough Lab					
Acanaphthana	100	J		140	18.	1
Acenaphthene		J	ug/kg			
Fluoranthene	1300		ug/kg	100	20.	1
Benzo(a)anthracene	690		ug/kg	100	20.	1
Benzo(a)pyrene	680		ug/kg	140	43.	1
Benzo(b)fluoranthene	810		ug/kg	100	30.	1
Benzo(k)fluoranthene	230		ug/kg	100	28.	1
Chrysene	750		ug/kg	100	18.	1
Acenaphthylene	ND		ug/kg	140	27.	1
Anthracene	260		ug/kg	100	34.	1
Benzo(ghi)perylene	480		ug/kg	140	21.	1
Fluorene	75	J	ug/kg	180	17.	1
Phenanthrene	780		ug/kg	100	21.	1
Dibenzo(a,h)anthracene	97	J	ug/kg	100	20.	1
Indeno(1,2,3-cd)pyrene	400		ug/kg	140	24.	1
Pyrene	1400		ug/kg	100	17.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	67		23-120	
2-Fluorobiphenyl	65		30-120	
4-Terphenyl-d14	59		18-120	

05/28/24

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:20

Report Date:

Lab ID: L2427928-06 Date Received: Client ID: GP-12_5-7.5 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 05/22/24 14:09 Analytical Method: 1,8270E Analytical Date: 05/24/24 09:58

Analyst: ΕK 88% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
	ND			450	40	,
Acenaphthene	ND		ug/kg	150	19.	1
Fluoranthene	93	J	ug/kg	110	21.	1
Benzo(a)anthracene	31	J	ug/kg	110	21.	1
Benzo(a)pyrene	ND		ug/kg	150	45.	1
Benzo(b)fluoranthene	42	J	ug/kg	110	31.	1
Benzo(k)fluoranthene	ND		ug/kg	110	30.	1
Chrysene	53	J	ug/kg	110	19.	1
Acenaphthylene	ND		ug/kg	150	29.	1
Anthracene	ND		ug/kg	110	36.	1
Benzo(ghi)perylene	24	J	ug/kg	150	22.	1
Fluorene	ND		ug/kg	180	18.	1
Phenanthrene	57	J	ug/kg	110	22.	1
Dibenzo(a,h)anthracene	ND		ug/kg	110	21.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	150	26.	1
Pyrene	93	J	ug/kg	110	18.	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	69		23-120	
2-Fluorobiphenyl	74		30-120	
4-Terphenyl-d14	65		18-120	

05/28/24

Project Name: SCHENECTADY 40 ANCHOR SITE

SCHENECTADY, NY

L2427928-07

GP-13_5-7.5

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:25

Date Received: 05/20/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270E
Analytical Date: 05/24/24 07:16

Analyst: EK
Percent Solids: 81%

Extraction Method: EPA 3546
Extraction Date: 05/22/24 14:09

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - W	estborough Lab					
Acenaphthene	ND		ug/kg	160	21.	1
Fluoranthene	ND		ug/kg	120	23.	1
Benzo(a)anthracene	ND		ug/kg	120	23.	1
Benzo(a)pyrene	ND		ug/kg	160	50.	1
Benzo(b)fluoranthene	ND		ug/kg	120	34.	1
Benzo(k)fluoranthene	ND		ug/kg	120	33.	1
Chrysene	ND		ug/kg	120	21.	1
Acenaphthylene	ND		ug/kg	160	31.	1
Anthracene	ND		ug/kg	120	40.	1
Benzo(ghi)perylene	ND		ug/kg	160	24.	1
Fluorene	ND		ug/kg	200	20.	1
Phenanthrene	ND		ug/kg	120	25.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	ND		ug/kg	160	28.	1
Pyrene	ND		ug/kg	120	20.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	68	23-120	
2-Fluorobiphenyl	61	30-120	
4-Terphenyl-d14	49	18-120	

Serial_No:05282411:06

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: ACHMENT 15/928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-08 D2 Date Collected: 05/20/24 13:30

Client ID: GP-14_5-6 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270E Extraction Date: 05/22/24 14:09

Analytical Date: 05/26/24 22:23

Analyst: CMM Percent Solids: 83%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Fluoranthene	170000		ug/kg	5900	1100	50	
Phenanthrene	140000		ug/kg	5900	1200	50	

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:30

Report Date:

Date Received:

Lab ID: L2427928-08 D

Client ID: GP-14_5-6

Sample Location: SCHENECTADY, NY Field Prep:

05/20/24 Not Specified

05/28/24

Sample Depth:

Matrix: Soil Analytical Method: 1,8270E

Analytical Date: 05/24/24 10:22

Analyst: CMM Percent Solids: 83%

Extraction	Method:	EPA 3546
Extraction	Date:	05/22/24 14:09

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Acenaphthene	11000		ug/kg	1600	200	10	
Fluoranthene	90000	E	ug/kg	1200	220	10	
Benzo(a)anthracene	47000		ug/kg	1200	220	10	
Benzo(a)pyrene	44000		ug/kg	1600	480	10	
Benzo(b)fluoranthene	54000		ug/kg	1200	330	10	
Benzo(k)fluoranthene	18000		ug/kg	1200	310	10	
Chrysene	39000		ug/kg	1200	200	10	
Acenaphthylene	11000		ug/kg	1600	300	10	
Anthracene	23000		ug/kg	1200	380	10	
Benzo(ghi)perylene	26000		ug/kg	1600	230	10	
Fluorene	17000		ug/kg	2000	190	10	
Phenanthrene	80000	Е	ug/kg	1200	240	10	
Dibenzo(a,h)anthracene	6600		ug/kg	1200	230	10	
Indeno(1,2,3-cd)pyrene	27000		ug/kg	1600	270	10	
Pyrene	71000		ug/kg	1200	200	10	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	47	23-120	
2-Fluorobiphenyl	48	30-120	
4-Terphenyl-d14	55	18-120	

05/28/24

05/22/24 14:54

Project Name: SCHENECTADY 40 ANCHOR SITE

SCHENECTADY, NY

L2427928-09

GP-15_5-7

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:35

Date Received: 05/20/24

Extraction Method: EPA 3546

Report Date:

Extraction Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270E
Analytical Date: 05/24/24 07:40

Analyst: EK Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - West	Semivolatile Organics by GC/MS - Westborough Lab								
Acenaphthene	26	J	ug/kg	140	19.	1			
Fluoranthene	400		ug/kg	110	21.	1			
Benzo(a)anthracene	180		ug/kg	110	20.	1			
Benzo(a)pyrene	180		ug/kg	140	44.	1			
Benzo(b)fluoranthene	230		ug/kg	110	30.	1			
Benzo(k)fluoranthene	74	J	ug/kg	110	29.	1			
Chrysene	180		ug/kg	110	19.	1			
Acenaphthylene	ND		ug/kg	140	28.	1			
Anthracene	74	J	ug/kg	110	35.	1			
Benzo(ghi)perylene	110	J	ug/kg	140	21.	1			
Fluorene	27	J	ug/kg	180	18.	1			
Phenanthrene	230		ug/kg	110	22.	1			
Dibenzo(a,h)anthracene	28	J	ug/kg	110	21.	1			
Indeno(1,2,3-cd)pyrene	100	J	ug/kg	140	25.	1			
Pyrene	330		ug/kg	110	18.	1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	80	23-120	
2-Fluorobiphenyl	77	30-120	
4-Terphenyl-d14	72	18-120	

05/28/24

Project Name: SCHENECTADY 40 ANCHOR SITE

SCHENECTADY, NY

L2427928-10

GP-16_2.5-5

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 05/20/24 13:40

Date Received: 05/20/24

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Soil
Analytical Method: 1,8270E
Analytical Date: 05/24/24 06:53

Analyst: EK Percent Solids: 80%

Extraction Method: EPA 3546
Extraction Date: 05/22/24 14:54

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		ug/kg	170	22.	1
Fluoranthene	140		ug/kg	120	24.	1
Benzo(a)anthracene	75	J	ug/kg	120	24.	1
Benzo(a)pyrene	73	J	ug/kg	170	51.	1
Benzo(b)fluoranthene	91	J	ug/kg	120	35.	1
Benzo(k)fluoranthene	ND		ug/kg	120	33.	1
Chrysene	68	J	ug/kg	120	22.	1
Acenaphthylene	ND		ug/kg	170	32.	1
Anthracene	ND		ug/kg	120	41.	1
Benzo(ghi)perylene	44	J	ug/kg	170	24.	1
Fluorene	ND		ug/kg	210	20.	1
Phenanthrene	27	J	ug/kg	120	25.	1
Dibenzo(a,h)anthracene	ND		ug/kg	120	24.	1
Indeno(1,2,3-cd)pyrene	42	J	ug/kg	170	29.	1
Pyrene	120		ug/kg	120	21.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	76	23-120	
2-Fluorobiphenyl	73	30-120	
4-Terphenyl-d14	65	18-120	

Serial_No:05282411:06 ATTACHMENT 15

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: L2427928

Report Date: 05/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 05/23/24 23:27

Analyst: LJG

Extraction Method: EPA 3546
Extraction Date: 05/22/24 14:09

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	sample(s):	01-10	Batch:	WG1924542-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	98		19.
Benzo(a)anthracene	ND		ug/kg	98		18.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	98		27.
Benzo(k)fluoranthene	ND		ug/kg	98		26.
Chrysene	ND		ug/kg	98		17.
Acenaphthylene	ND		ug/kg	130		25.
Anthracene	ND		ug/kg	98		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	98		20.
Dibenzo(a,h)anthracene	ND		ug/kg	98		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	98		16.

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	81	25-120
Phenol-d6	80	10-120
Nitrobenzene-d5	78	23-120
2-Fluorobiphenyl	94	30-120
2,4,6-Tribromophenol	125	10-136
4-Terphenyl-d14	100	18-120

ATTACHMENT 15

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: L2427928

Report Date: 05/28/24

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01-10 Batc	h: WG1924	542-2 WG19245	42-3		
Acenaphthene	85		82		31-137	4		50
Fluoranthene	89		86		40-140	3		50
Benzo(a)anthracene	84		82		40-140	2		50
Benzo(a)pyrene	91		92		40-140	1		50
Benzo(b)fluoranthene	92		90		40-140	2		50
Benzo(k)fluoranthene	87		86		40-140	1		50
Chrysene	85		82		40-140	4		50
Acenaphthylene	95		87		40-140	9		50
Anthracene	86		83		40-140	4		50
Benzo(ghi)perylene	87		84		40-140	4		50
Fluorene	88		84		40-140	5		50
Phenanthrene	83		80		40-140	4		50
Dibenzo(a,h)anthracene	87		84		40-140	4		50
Indeno(1,2,3-cd)pyrene	90		86		40-140	5		50
Pyrene	87		85		35-142	2		50

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	76	67	25-120
Phenol-d6	76	68	10-120
Nitrobenzene-d5	78	69	23-120
2-Fluorobiphenyl	88	80	30-120
2,4,6-Tribromophenol	123	118	10-136
4-Terphenyl-d14	90	85	18-120
			ALPHA

METALS

Serial_No:05282411:06 ATTACHMENT 15

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: Report Date:

Date Collected:

L2427928 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-01

Client ID: GP-7_5-7.5 Sample Location: SCHENECTADY, NY 05/20/24 12:50 05/20/24

Date Received: 09 Field Prep: N

Not Specified

Sample Depth:

Matrix: Soil

Percent Solids: 94%

Percent Solids: Parameter	94% Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	6270		mg/kg	8.20	2.21	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Antimony, Total	ND		mg/kg	4.10	0.312	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Arsenic, Total	3.33		mg/kg	0.820	0.170	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Barium, Total	24.5		mg/kg	0.820	0.143	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Beryllium, Total	0.273	J	mg/kg	0.410	0.027	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Cadmium, Total	0.190	J	mg/kg	0.820	0.080	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Calcium, Total	37000		mg/kg	8.20	2.87	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Chromium, Total	9.85		mg/kg	0.820	0.079	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Cobalt, Total	4.48		mg/kg	1.64	0.136	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Copper, Total	13.9		mg/kg	0.820	0.212	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Iron, Total	15300		mg/kg	4.10	0.741	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Lead, Total	21.6		mg/kg	4.10	0.220	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Magnesium, Total	6540		mg/kg	8.20	1.26	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Manganese, Total	376		mg/kg	0.820	0.130	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Mercury, Total	0.138		mg/kg	0.068	0.044	1	05/24/24 10:10	05/24/24 12:07	EPA 7471B	1,7471B	MJR
Nickel, Total	11.3		mg/kg	2.05	0.198	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Potassium, Total	514		mg/kg	205	11.8	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Selenium, Total	ND		mg/kg	1.64	0.212	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Silver, Total	ND		mg/kg	0.410	0.232	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Sodium, Total	303		mg/kg	164	2.58	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Thallium, Total	ND		mg/kg	1.64	0.258	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Vanadium, Total	14.5		mg/kg	0.820	0.166	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF
Zinc, Total	49.8		mg/kg	4.10	0.240	2	05/24/24 09:00	05/24/24 15:33	EPA 3050B	1,6010D	JMF

Serial_No:05282411:06 ATTACHMENT 15

L2427928

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number:

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

 Lab ID:
 L2427928-02
 Date Collected:
 05/20/24 13:00

 Client ID:
 GP-8_5-7.5
 Date Received:
 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 88%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 3340 mg/kg 17.5 4.72 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** ND 4 1,6010D Antimony, Total mg/kg 8.73 0.664 05/24/24 09:00 05/24/24 17:09 EPA 3050B **JMF** Arsenic, Total 3.10 mg/kg 1.75 0.363 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** Barium, Total 52.8 1.75 0.304 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** mg/kg J 1,6010D Beryllium, Total 0.198 mg/kg 0.873 0.058 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B **JMF** J 1,6010D **JMF** Cadmium, Total 0.195 mg/kg 1.75 0.171 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B Calcium, Total 103000 17.5 6.11 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D mg/kg **JMF** 1,6010D 5.52 1.75 0.168 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B **JMF** Chromium, Total mg/kg J 1,6010D Cobalt, Total 3.40 mg/kg 3.49 0.290 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B **JMF** 1,6010D Copper, Total 13.5 1.75 0.451 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B **JMF** mg/kg 1,6010D JMF 7940 8.73 1.58 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B Iron, Total mg/kg Lead, Total 104 mg/kg 8.73 0.468 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** 6240 17.5 2.69 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 0.278 4 1,6010D JMF Manganese, Total 242 mg/kg 1.75 05/24/24 09:00 05/24/24 17:09 EPA 3050B Mercury, Total 0.172 mg/kg 0.073 0.047 1 05/24/24 10:10 05/24/24 12:25 EPA 7471B 1,7471B **MJR** Nickel, Total 7.42 4.37 0.423 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** mg/kg J JMF 294 4 1,6010D Potassium, Total mg/kg 437 25.2 05/24/24 09:00 05/24/24 17:09 EPA 3050B Selenium, Total ND mg/kg 3.49 0.451 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** Silver, Total ND mg/kg 0.873 0.494 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** J Sodium, Total 87.3 mg/kg 349 5.50 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** Thallium, Total ND 3.49 0.550 4 05/24/24 09:00 05/24/24 17:09 EPA 3050B 1,6010D **JMF** mg/kg 1.75 4 1,6010D Vanadium, Total 9.19 mg/kg 0.355 05/24/24 09:00 05/24/24 17:09 EPA 3050B **JMF** 1.6010D 79.9 0.512 4 JMF Zinc, Total mg/kg 8.73 05/24/24 09:00 05/24/24 17:09 EPA 3050B

L2427928

05/20/24 13:05

Lab Number:

Date Collected:

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-03

Client ID: GP-9_5-7.5 Date Received: 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 89%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 5650 mg/kg 8.81 2.38 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** J 4.40 0.335 2 1,6010D Antimony, Total 1.60 mg/kg 05/24/24 09:00 05/24/24 15:41 EPA 3050B **JMF** Arsenic, Total 8.30 mg/kg 0.881 0.183 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** Barium, Total 114 0.881 0.153 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** mg/kg J 0.029 2 1,6010D Beryllium, Total 0.334 mg/kg 0.440 05/24/24 09:00 05/24/24 15:41 EPA 3050B **JMF** 2 1,6010D **JMF** Cadmium, Total 0.899 mg/kg 0.881 0.086 05/24/24 09:00 05/24/24 15:41 EPA 3050B Calcium, Total 26800 8.81 3.08 2 1,6010D mg/kg 05/24/24 09:00 05/24/24 15:41 EPA 3050B **JMF** 2 1,6010D 36.9 0.881 0.085 05/24/24 09:00 05/24/24 15:41 EPA 3050B **JMF** Chromium, Total mg/kg 2 1,6010D Cobalt, Total 4.83 mg/kg 1.76 0.146 05/24/24 09:00 05/24/24 15:41 EPA 3050B **JMF** Copper, Total 32.3 0.881 0.227 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** mg/kg 0.795 2 1,6010D JMF 17400 4.40 05/24/24 09:00 05/24/24 15:41 EPA 3050B Iron, Total mg/kg 2 Lead, Total 1130 mg/kg 4.40 0.236 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** 6440 8.81 1.36 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 0.881 0.140 2 1,6010D **JMF** Manganese, Total 297 mg/kg 05/24/24 09:00 05/24/24 15:41 EPA 3050B Mercury, Total 30.5 mg/kg 1.42 0.924 20 05/24/24 10:10 05/24/24 13:42 EPA 7471B 1,7471B **MJR** Nickel, Total 11.6 2.20 0.213 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** mg/kg 2 1,6010D **JMF** Potassium, Total 592 mg/kg 220 12.7 05/24/24 09:00 05/24/24 15:41 EPA 3050B Selenium, Total ND mg/kg 1.76 0.227 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** 0.440 Silver, Total ND mg/kg 0.249 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** Sodium, Total 294 mg/kg 176 2.77 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** Thallium, Total ND 1.76 0.277 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D **JMF** mg/kg 0.881 0.179 2 05/24/24 09:00 05/24/24 15:41 EPA 3050B 1,6010D Vanadium, Total 17.1 mg/kg **JMF** 2 1,6010D 575 0.258 JMF Zinc, Total mg/kg 4.40 05/24/24 09:00 05/24/24 15:41 EPA 3050B

L2427928

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number:

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

 Lab ID:
 L2427928-04
 Date Collected:
 05/20/24 13:10

 Client ID:
 GP-10_2.5-5
 Date Received:
 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 90%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 4050 mg/kg 8.47 2.29 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** 0.805 J 2 1,6010D Antimony, Total mg/kg 4.24 0.322 05/24/24 09:00 05/24/24 15:45 EPA 3050B **JMF** Arsenic, Total 4.41 mg/kg 0.847 0.176 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** Barium, Total 49.2 0.847 0.147 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** mg/kg 0.229 J 0.028 2 1,6010D Beryllium, Total mg/kg 0.424 05/24/24 09:00 05/24/24 15:45 EPA 3050B **JMF** J 2 1,6010D **JMF** Cadmium, Total 0.404 mg/kg 0.847 0.083 05/24/24 09:00 05/24/24 15:45 EPA 3050B Calcium, Total 13200 8.47 2.97 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D mg/kg **JMF** 2 1,6010D 0.847 0.081 05/24/24 09:00 05/24/24 15:45 EPA 3050B **JMF** Chromium, Total 11.3 mg/kg 2 1,6010D Cobalt, Total 2.74 mg/kg 1.69 0.141 05/24/24 09:00 05/24/24 15:45 EPA 3050B **JMF** Copper, Total 43.1 0.847 0.219 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** mg/kg 0.765 2 1,6010D JMF 10100 4.24 05/24/24 09:00 05/24/24 15:45 EPA 3050B Iron, Total mg/kg 242 2 Lead, Total mg/kg 4.24 0.227 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** 3120 8.47 1.30 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 0.847 2 1,6010D JMF Manganese, Total 144 mg/kg 0.135 05/24/24 09:00 05/24/24 15:45 EPA 3050B Mercury, Total 0.230 mg/kg 0.071 0.046 1 05/24/24 10:10 05/24/24 12:34 EPA 7471B 1,7471B **MJR** Nickel, Total 6.19 0.205 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** mg/kg 2.12 JMF 2 1,6010D Potassium, Total 349 mg/kg 212 12.2 05/24/24 09:00 05/24/24 15:45 EPA 3050B Selenium, Total ND mg/kg 1.69 0.219 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** 0.424 Silver, Total ND mg/kg 0.240 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** Sodium, Total 290 mg/kg 169 2.67 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** Thallium, Total ND 1.69 0.267 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D **JMF** mg/kg 0.847 2 05/24/24 09:00 05/24/24 15:45 EPA 3050B 1,6010D Vanadium, Total 12.3 mg/kg 0.172 **JMF** 2 1.6010D 241 4.24 0.248 JMF Zinc, Total mg/kg 05/24/24 09:00 05/24/24 15:45 EPA 3050B

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Report Date:

Lab Number:

L2427928 05/28/24

SAMPLE RESULTS

Date Collected:

05/20/24 13:15

Lab ID: L2427928-05 Client ID: GP-11_2.5-5

Date Received:

05/20/24

Sample Location:

Field Prep:

Not Specified

SCHENECTADY, NY

Sample Depth:

Matrix: Soil

92% Percent Solids:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	4770		mg/kg	8.39	2.26	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Antimony, Total	0.624	J	mg/kg	4.19	0.319	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Arsenic, Total	4.61		mg/kg	0.839	0.174	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Barium, Total	40.5		mg/kg	0.839	0.146	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Beryllium, Total	0.302	J	mg/kg	0.419	0.028	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Cadmium, Total	0.250	J	mg/kg	0.839	0.082	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Calcium, Total	31700		mg/kg	8.39	2.94	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Chromium, Total	7.14		mg/kg	0.839	0.081	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Cobalt, Total	3.70		mg/kg	1.68	0.139	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Copper, Total	24.0		mg/kg	0.839	0.216	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Iron, Total	12100		mg/kg	4.19	0.757	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Lead, Total	215		mg/kg	4.19	0.225	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Magnesium, Total	10700		mg/kg	8.39	1.29	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Manganese, Total	232		mg/kg	0.839	0.133	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Mercury, Total	0.423		mg/kg	0.070	0.045	1	05/24/24 10:10	05/24/24 12:38	EPA 7471B	1,7471B	MJR
Nickel, Total	8.71		mg/kg	2.10	0.203	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Potassium, Total	412		mg/kg	210	12.1	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Selenium, Total	ND		mg/kg	1.68	0.216	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Silver, Total	ND		mg/kg	0.419	0.237	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Sodium, Total	103	J	mg/kg	168	2.64	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Thallium, Total	ND		mg/kg	1.68	0.264	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Vanadium, Total	14.2		mg/kg	0.839	0.170	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF
Zinc, Total	81.9		mg/kg	4.19	0.246	2	05/24/24 09:00	05/24/24 15:49	EPA 3050B	1,6010D	JMF

Date Collected:

L2427928

05/20/24 13:20

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number:

Project Number: Report Date: 05/28/24 23.3588

SAMPLE RESULTS

Lab ID: L2427928-06

41.4

Client ID: GP-12_5-7.5 Date Received: 05/20/24 Field Prep: Sample Location: SCHENECTADY, NY Not Specified

Sample Depth:

Matrix: Soil 88%

Percent Solids: Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 3730 mg/kg 8.55 2.31 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** ND 2 1,6010D Antimony, Total mg/kg 4.28 0.325 05/24/24 09:00 05/24/24 15:53 EPA 3050B **JMF** Arsenic, Total 2.67 mg/kg 0.855 0.178 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** Barium, Total 13.6 0.855 0.149 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** mg/kg 0.222 J 0.028 2 1,6010D Beryllium, Total mg/kg 0.428 05/24/24 09:00 05/24/24 15:53 EPA 3050B **JMF** J 2 1,6010D **JMF** Cadmium, Total 0.129 mg/kg 0.855 0.084 05/24/24 09:00 05/24/24 15:53 EPA 3050B Calcium, Total 2910 8.55 2.99 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D mg/kg **JMF** 2 1,6010D 5.37 0.855 0.082 05/24/24 09:00 05/24/24 15:53 EPA 3050B **JMF** Chromium, Total mg/kg 2 1,6010D Cobalt, Total 3.15 mg/kg 1.71 0.142 05/24/24 09:00 05/24/24 15:53 EPA 3050B **JMF** Copper, Total 8.26 0.855 0.221 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** mg/kg 2 1,6010D JMF 10100 4.28 0.772 05/24/24 09:00 05/24/24 15:53 EPA 3050B Iron, Total mg/kg 2 Lead, Total 8.71 mg/kg 4.28 0.229 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** 2240 8.55 1.32 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 0.855 2 1,6010D **JMF** Manganese, Total 206 mg/kg 0.136 05/24/24 09:00 05/24/24 15:53 EPA 3050B J Mercury, Total 0.060 mg/kg 0.072 0.047 1 05/24/24 10:10 05/24/24 12:41 EPA 7471B 1,7471B **MJR** Nickel, Total 6.26 0.207 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** mg/kg 2.14 2 1,6010D **JMF** Potassium, Total 250 mg/kg 214 12.3 05/24/24 09:00 05/24/24 15:53 EPA 3050B Selenium, Total ND mg/kg 1.71 0.221 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** JMF Silver, Total ND mg/kg 0.428 0 242 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D J Sodium, Total 51.6 mg/kg 171 2.69 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** Thallium, Total ND 1.71 0.269 2 05/24/24 09:00 05/24/24 15:53 EPA 3050B 1,6010D **JMF** mg/kg 10.4 2 1,6010D Vanadium, Total mg/kg 0.855 0.174 05/24/24 09:00 05/24/24 15:53 EPA 3050B **JMF** 2 1,6010D

4.28

mg/kg

0.251

05/24/24 09:00 05/24/24 15:53 EPA 3050B

JMF

Zinc, Total

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

 Lab ID:
 L2427928-07
 Date Collected:
 05/20/24 13:25

 Client ID:
 GP-13_5-7.5
 Date Received:
 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 81%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 5350 mg/kg 9.56 2.58 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** J 2 1,6010D Antimony, Total 0.405 mg/kg 4.78 0.363 05/24/24 09:00 05/24/24 15:57 EPA 3050B **JMF** Arsenic, Total 7.55 mg/kg 0.956 0.199 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** Barium, Total 152 0.956 0.166 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** mg/kg 0.259 J 0.478 0.032 2 1,6010D Beryllium, Total mg/kg 05/24/24 09:00 05/24/24 15:57 EPA 3050B **JMF** 2 1,6010D **JMF** Cadmium, Total 1.08 mg/kg 0.956 0.094 05/24/24 09:00 05/24/24 15:57 EPA 3050B Calcium, Total 79200 9.56 3.35 2 1,6010D mg/kg 05/24/24 09:00 05/24/24 15:57 EPA 3050B **JMF** 2 1,6010D 10.8 0.956 0.092 05/24/24 09:00 05/24/24 15:57 EPA 3050B **JMF** Chromium, Total mg/kg 2 1,6010D Cobalt, Total 3.41 mg/kg 1.91 0.159 05/24/24 09:00 05/24/24 15:57 EPA 3050B **JMF** 1,6010D Copper, Total 11.2 0.956 0.247 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B **JMF** mg/kg 11700 2 1,6010D JMF 4.78 0.863 05/24/24 09:00 05/24/24 15:57 EPA 3050B Iron, Total mg/kg 2 Lead. Total 334 mg/kg 4.78 0.256 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** 5310 9.56 1.47 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 0.956 2 1,6010D **JMF** Manganese, Total 216 mg/kg 0.152 05/24/24 09:00 05/24/24 15:57 EPA 3050B Mercury, Total 0.265 mg/kg 0.078 0.051 1 05/24/24 10:10 05/24/24 12:44 EPA 7471B 1,7471B **MJR** Nickel, Total 6.95 2.39 0.231 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** mg/kg JMF 2 1,6010D Potassium, Total 635 mg/kg 239 13.8 05/24/24 09:00 05/24/24 15:57 EPA 3050B Selenium, Total ND mg/kg 1.91 0.247 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** 0.478 Silver, Total ND mg/kg 0.270 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** Sodium, Total 475 mg/kg 191 3.01 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** Thallium, Total ND 1.91 0.301 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D **JMF** mg/kg 18.7 2 05/24/24 09:00 05/24/24 15:57 EPA 3050B 1,6010D Vanadium, Total mg/kg 0.956 0.194 **JMF** 2 1.6010D 726 0.280 JMF Zinc, Total mg/kg 4.78 05/24/24 09:00 05/24/24 15:57 EPA 3050B

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

 Lab ID:
 L2427928-08
 Date Collected:
 05/20/24 13:30

 Client ID:
 GP-14_5-6
 Date Received:
 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 83%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 6220 mg/kg 9.11 2.46 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** J 2 1,6010D Antimony, Total 1.04 mg/kg 4.56 0.346 05/24/24 09:00 05/24/24 16:01 EPA 3050B **JMF** Arsenic, Total 4.33 mg/kg 0.911 0.190 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** Barium, Total 282 0.911 0.158 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** mg/kg 0.338 J 0.030 2 1,6010D Beryllium, Total mg/kg 0.456 05/24/24 09:00 05/24/24 16:01 EPA 3050B **JMF** J 2 1,6010D **JMF** Cadmium, Total 0.242 mg/kg 0.911 0.089 05/24/24 09:00 05/24/24 16:01 EPA 3050B Calcium, Total 87000 9.11 3.19 2 1,6010D mg/kg 05/24/24 09:00 05/24/24 16:01 EPA 3050B **JMF** 2 1,6010D 12.6 0.911 0.088 05/24/24 09:00 05/24/24 16:01 EPA 3050B **JMF** Chromium, Total mg/kg 2 1,6010D Cobalt, Total 3.72 mg/kg 1.82 0.151 05/24/24 09:00 05/24/24 16:01 EPA 3050B **JMF** Copper, Total 16.9 0.911 0.235 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** mg/kg 11400 2 1,6010D JMF 4.56 0.823 05/24/24 09:00 05/24/24 16:01 EPA 3050B Iron, Total mg/kg 2 Lead, Total 39.4 mg/kg 4.56 0.244 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** 12900 9.11 1.40 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 2 1,6010D **JMF** Manganese, Total 315 mg/kg 0.911 0.145 05/24/24 09:00 05/24/24 16:01 EPA 3050B Mercury, Total 0.090 mg/kg 0.076 0.050 1 05/24/24 10:10 05/24/24 12:48 EPA 7471B 1,7471B **MJR** Nickel, Total 2.28 0.220 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** 11.1 mg/kg JMF 588 2 1,6010D Potassium, Total mg/kg 228 13.1 05/24/24 09:00 05/24/24 16:01 EPA 3050B Selenium, Total ND mg/kg 1.82 0.235 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** 0.456 Silver, Total 0.273 J mg/kg 0.258 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** Sodium, Total 429 mg/kg 182 2.87 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** Thallium, Total ND 1.82 0.287 2 05/24/24 09:00 05/24/24 16:01 EPA 3050B 1,6010D **JMF** mg/kg 16.4 2 1,6010D Vanadium, Total mg/kg 0.911 0.185 05/24/24 09:00 05/24/24 16:01 EPA 3050B **JMF** 2 1,6010D 204 0.267 JMF Zinc, Total mg/kg 4.56 05/24/24 09:00 05/24/24 16:01 EPA 3050B

Project Name: SCHENECTADY 40 ANCHOR SITE

L2427928

Project Number: 23.3588 **Report Date:**

Lab Number:

05/28/24

SAMPLE RESULTS

L2427928-09

Date Collected:

05/20/24 13:35

Client ID:

GP-15_5-7

Date Received:

05/20/24

Sample Location:

SCHENECTADY, NY

Field Prep: Not Specified

Sample Depth:

Matrix:

Lab ID:

Soil

Percent Solids:

91%

Parameter Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	6830		mg/kg	8.64	2.33	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Antimony, Total	ND		mg/kg	4.32	0.328	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Arsenic, Total	4.05		mg/kg	0.864	0.180	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Barium, Total	58.7		mg/kg	0.864	0.150	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Beryllium, Total	0.301	J	mg/kg	0.432	0.029	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Cadmium, Total	0.156	J	mg/kg	0.864	0.085	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Calcium, Total	61200		mg/kg	8.64	3.02	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Chromium, Total	12.9		mg/kg	0.864	0.083	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Cobalt, Total	3.17		mg/kg	1.73	0.144	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Copper, Total	11.9		mg/kg	0.864	0.223	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Iron, Total	11000		mg/kg	4.32	0.781	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Lead, Total	40.2		mg/kg	4.32	0.232	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Magnesium, Total	8810		mg/kg	8.64	1.33	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Manganese, Total	247		mg/kg	0.864	0.137	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Mercury, Total	0.095		mg/kg	0.069	0.045	1	05/24/24 10:10	05/24/24 12:51	EPA 7471B	1,7471B	MJR
Nickel, Total	7.98		mg/kg	2.16	0.209	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Potassium, Total	508		mg/kg	216	12.4	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Selenium, Total	ND		mg/kg	1.73	0.223	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Silver, Total	ND		mg/kg	0.432	0.245	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Sodium, Total	244		mg/kg	173	2.72	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Thallium, Total	ND		mg/kg	1.73	0.272	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Vanadium, Total	12.9		mg/kg	0.864	0.175	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF
Zinc, Total	56.4		mg/kg	4.32	0.253	2	05/24/24 09:00	05/24/24 16:04	EPA 3050B	1,6010D	JMF

05/20/24 13:40

Date Collected:

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928 **Report Date:** 05/28/24

Project Number: 23.3588

SAMPLE RESULTS

Lab ID: L2427928-10 Client ID:

GP-16_2.5-5 Date Received: 05/20/24 SCHENECTADY, NY Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Soil 80%

Percent Solids: Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 4060 mg/kg 9.63 2.60 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** J 2 1,6010D Antimony, Total 0.570 mg/kg 4.82 0.366 05/24/24 09:00 05/24/24 16:08 EPA 3050B **JMF** Arsenic, Total 6.13 mg/kg 0.963 0.200 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** Barium, Total 228 0.963 0.168 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** mg/kg 0.262 J 0.032 2 1,6010D Beryllium, Total mg/kg 0.482 05/24/24 09:00 05/24/24 16:08 EPA 3050B **JMF** J 2 1,6010D **JMF** Cadmium, Total 0.816 mg/kg 0.963 0.094 05/24/24 09:00 05/24/24 16:08 EPA 3050B Calcium, Total 56400 9.63 3.37 2 1,6010D mg/kg 05/24/24 09:00 05/24/24 16:08 EPA 3050B **JMF** 2 1,6010D 23.0 0.963 0.093 05/24/24 09:00 05/24/24 16:08 EPA 3050B **JMF** Chromium, Total mg/kg 2 1,6010D Cobalt, Total 3.47 mg/kg 1.93 0.160 05/24/24 09:00 05/24/24 16:08 EPA 3050B **JMF** Copper, Total 54.4 0.963 0.248 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** mg/kg 11000 2 1,6010D JMF 4.82 0.870 05/24/24 09:00 05/24/24 16:08 EPA 3050B Iron, Total mg/kg 2 Lead, Total 689 mg/kg 4.82 0.258 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** 2350 9.63 1.48 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** Magnesium, Total mg/kg 0.963 2 1,6010D **JMF** Manganese, Total 216 mg/kg 0.153 05/24/24 09:00 05/24/24 16:08 EPA 3050B Mercury, Total 0.530 mg/kg 0.079 0.052 1 05/24/24 10:10 05/24/24 12:54 EPA 7471B 1,7471B **MJR** Nickel, Total 9.44 2.41 0.233 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** mg/kg 2 1,6010D **JMF** Potassium, Total 358 mg/kg 241 13.9 05/24/24 09:00 05/24/24 16:08 EPA 3050B Selenium, Total ND mg/kg 1.93 0.248 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** JMF Silver, Total ND mg/kg 0.482 0.273 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D J Sodium, Total 114 mg/kg 193 3.03 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** Thallium, Total ND 1.93 0.303 2 05/24/24 09:00 05/24/24 16:08 EPA 3050B 1,6010D **JMF** mg/kg 2 1,6010D Vanadium, Total 11.0 mg/kg 0.963 0.196 05/24/24 09:00 05/24/24 16:08 EPA 3050B **JMF**

2

05/24/24 09:00 05/24/24 16:08 EPA 3050B

0.282

4.82

mg/kg

1,6010D

JMF

Zinc, Total

603

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588 Report Date: 05/28/24

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-10 B	atch: W	G192529	97-1				
Aluminum, Total	ND	mg/kg	4.00	1.08	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Antimony, Total	ND	mg/kg	2.00	0.152	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Arsenic, Total	ND	mg/kg	0.400	0.083	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Barium, Total	ND	mg/kg	0.400	0.070	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Beryllium, Total	ND	mg/kg	0.200	0.013	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Cadmium, Total	ND	mg/kg	0.400	0.039	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Calcium, Total	ND	mg/kg	4.00	1.40	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Chromium, Total	ND	mg/kg	0.400	0.038	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Cobalt, Total	ND	mg/kg	0.800	0.066	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Copper, Total	ND	mg/kg	0.400	0.103	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Iron, Total	0.504 J	mg/kg	2.00	0.361	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Lead, Total	ND	mg/kg	2.00	0.107	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Magnesium, Total	ND	mg/kg	4.00	0.616	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Manganese, Total	ND	mg/kg	0.400	0.064	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Nickel, Total	ND	mg/kg	1.00	0.097	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Potassium, Total	ND	mg/kg	100	5.76	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Selenium, Total	ND	mg/kg	0.800	0.103	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Silver, Total	ND	mg/kg	0.200	0.113	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Sodium, Total	ND	mg/kg	80.0	1.26	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Thallium, Total	ND	mg/kg	0.800	0.126	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Vanadium, Total	ND	mg/kg	0.400	0.081	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC
Zinc, Total	ND	mg/kg	2.00	0.117	1	05/24/24 09:00	05/24/24 11:39	1,6010D	DMC

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Metals - Mansfield Lab for sample(s): 01-10 Batch: WG1925299-1										
Mercury, Total	ND	mg/kg	0.083	0.054	1	05/24/24 10:10	05/24/24 11:51	1,7471B	MJR	

Project Name: SCHENECTADY 40 ANCHOR SITE

Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: L2427928

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
tal Metals - Mansfield Lab Asso	ciated sample(s): 01-10 Batch	: WG1925297-2				
Aluminum, Total	110	-	80-120	-		
Antimony, Total	104	-	80-120	-		
Arsenic, Total	106	-	80-120	-		
Barium, Total	112	-	80-120	-		
Beryllium, Total	114	-	80-120	-		
Cadmium, Total	98	-	80-120	-		
Calcium, Total	115	-	80-120	-		
Chromium, Total	106	-	80-120	-		
Cobalt, Total	102	-	80-120	-		
Copper, Total	106	-	80-120	-		
Iron, Total	116	-	80-120	-		
Lead, Total	105	-	80-120	-		
Magnesium, Total	102	-	80-120	-		
Manganese, Total	118	-	80-120	-		
Nickel, Total	100	-	80-120	-		
Potassium, Total	120	-	80-120	-		
Selenium, Total	101	-	80-120	-		
Silver, Total	114	-	80-120	-		
Sodium, Total	111	-	80-120	-		
Thallium, Total	99	-	80-120	-		
Vanadium, Total	105	-	80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: L2427928

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associa	ted sample(s): 01-10 Batch: WG	31925297-2			
Zinc, Total	102	-	80-120	-	
Total Metals - Mansfield Lab Associa	ted sample(s): 01-10 Batch: WG	1925299-2			
Mercury, Total	104	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: L2427928

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sar	mple(s): 01-10	QC Ba	tch ID: WG192	5297-3	QC Sam	nple: L2428902-05	Client ID: MS	S Sample	
Aluminum, Total	4520	168	6220	1010	Q	-	-	75-125	-	20
Antimony, Total	ND	42	42.6	101		-	-	75-125	-	20
Arsenic, Total	3.87	10.1	12.8	88		-	-	75-125	-	20
Barium, Total	9.13	168	192	109		-	-	75-125	-	20
Beryllium, Total	0.137J	4.2	4.78	114		-	-	75-125	-	20
Cadmium, Total	ND	4.45	4.29	96		-	-	75-125	-	20
Calcium, Total	236	840	1160	110		-	-	75-125	-	20
Chromium, Total	12.0	16.8	29.5	104		-	-	75-125	-	20
Cobalt, Total	0.444J	42	43.7	104		-	-	75-125	-	20
Copper, Total	3.01	21	25.1	105		-	-	75-125	-	20
Iron, Total	7320	84	5600	0	Q	-	-	75-125	-	20
Lead, Total	4.81	44.5	52.5	107		-	-	75-125	-	20
Magnesium, Total	220	840	1110	106		-	-	75-125	-	20
Manganese, Total	8.82	42	58.9	119		-	-	75-125	-	20
Nickel, Total	0.877J	42	42.9	102		-	-	75-125	-	20
Potassium, Total	323	840	1400	128	Q	-	-	75-125	-	20
Selenium, Total	ND	10.1	9.47	94		-	-	75-125	-	20
Silver, Total	ND	4.2	4.77	114		-	-	75-125	-	20
Sodium, Total	4.80J	840	893	106		-	-	75-125	-	20
Thallium, Total	ND	10.1	9.45	94		-	-	75-125	-	20
Vanadium, Total	23.6	42	63.2	94		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number:

L2427928

Report Date:

05/28/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-10	QC Bat	tch ID: WG1925297-3	QC Sam	ple: L2428902-05	Client ID: MS	Sample	
Zinc, Total	4.41	42	49.0	106	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-10	QC Bat	tch ID: WG1925299-3	QC Sam	nple: L2428902-05	Client ID: MS	Sample	
Mercury, Total	ND	1.36	1.43	106	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number: L2427928

arameter	!	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab A	ssociated sample(s): 01-10	QC Batch ID:	WG1925297-4 QC Sample:	L2428902-05	Client ID:	DUP Sam	ple
Aluminum, Total		4520	4190	mg/kg	8		20
Antimony, Total		ND	ND	mg/kg	NC		20
Arsenic, Total		3.87	4.68	mg/kg	19		20
Barium, Total		9.13	8.44	mg/kg	8		20
Beryllium, Total		0.137J	0.146J	mg/kg	NC		20
Cadmium, Total		ND	ND	mg/kg	NC		20
Calcium, Total		236	250	mg/kg	6		20
Chromium, Total		12.0	13.3	mg/kg	10		20
Cobalt, Total		0.444J	0.438J	mg/kg	NC		20
Copper, Total		3.01	3.13	mg/kg	4		20
Iron, Total		7320	9390	mg/kg	25	Q	20
Lead, Total		4.81	4.93	mg/kg	2		20
Magnesium, Total		220	204	mg/kg	8		20
Manganese, Total		8.82	8.82	mg/kg	0		20
Nickel, Total		0.877J	0.806J	mg/kg	NC		20
Potassium, Total		323	300	mg/kg	7		20
Selenium, Total		ND	ND	mg/kg	NC		20
Silver, Total		ND	ND	mg/kg	NC		20
Sodium, Total		4.80J	4.06J	mg/kg	NC		20

Lab Duplicate Analysis

Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number:

L2427928

Report Da

Parameter	Native Sample	Duplica	ite Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-1	0 QC Batch ID:	WG1925297-4	QC Sample:	L2428902-05	Client ID:	DUP Sample
Thallium, Total	ND		ND	mg/kg	NC	20
Vanadium, Total	23.6		24.6	mg/kg	4	20
Zinc, Total	4.41		4.53	mg/kg	3	20
Total Metals - Mansfield Lab Associated sample(s): 01-10	0 QC Batch ID:	WG1925299-4	QC Sample:	L2428902-05	Client ID:	DUP Sample
Mercury, Total	ND		ND	mg/kg	NC	20

L2427928

ATTACHMENT 15

Lab Serial Dilution Analysis
Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Report Date: 05/28/24

Lab Number:

arameter	Native Sample	Serial Dilution	Units	% D	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01-10	QC Batch ID:	WG1925297-6 QC Sample:	L2428902-05	Client ID:	DUP Sampl	е
Aluminum, Total	4520	4470	mg/kg	1		20
Calcium, Total	236	245	mg/kg	4		20
Iron, Total	7320	7380	mg/kg	1		20
Magnesium, Total	220	231	mg/kg	5		20
Vanadium, Total	23.6	23.7	mg/kg	0		20

INORGANICS & MISCELLANEOUS

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-01 Date Collected: 05/20/24 12:50

Client ID: GP-7_5-7.5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	93.5		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-02 Date Collected: 05/20/24 13:00

Client ID: GP-8_5-7.5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	87.8		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-03 Date Collected: 05/20/24 13:05

Client ID: GP-9_5-7.5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total	88.9		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-04 Date Collected: 05/20/24 13:10

Client ID: GP-10_2.5-5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	89.6		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-05 Date Collected: 05/20/24 13:15

Client ID: GP-11_2.5-5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Solids, Total	92.2		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-06 Date Collected: 05/20/24 13:20

Client ID: GP-12_5-7.5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Solids, Total	87.9		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-07 Date Collected: 05/20/24 13:25

Client ID: GP-13_5-7.5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	81.2		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-08 Date Collected: 05/20/24 13:30

Client ID: GP-14_5-6 Date Received: 05/20/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	82.7		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-09 Date Collected: 05/20/24 13:35

Client ID: GP-15_5-7 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	90.8		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

SAMPLE RESULTS

Lab ID: L2427928-10 Date Collected: 05/20/24 13:40

Client ID: GP-16_2.5-5 Date Received: 05/20/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	79.6		%	0.100	NA	1	-	05/21/24 14:11	121,2540G	ROI

Lab Duplicate Analysis

Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588

Lab Number:

L2427928

Report Date:

05/28/24

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-10	QC Batch ID:	WG1923789-1	QC Sample:	L2427964-01	Client ID:	DUP Sample
Solids, Total	58.4		55.2	%	6		20

Serial_No:05282411:06 **Lab Number:** L2427928

Report Date: 05/28/24

Project Number: 23.3588

YES

SCHENECTADY 40 ANCHOR SITE

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2427928-01A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-01B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		5.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),NI-TI(180),TL-TI(180),CR- TI(180),CU-TI(180),SE-TI(180),PB-TI(180),SB- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),MN- TI(180),FE-TI(180),HG-T(28),MG-TI(180),K- TI(180),NA-TI(180),CA-TI(180),CD-TI(180)
L2427928-01C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-02A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-02B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		5.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),NI-TI(180),TL-TI(180),CR-TI(180),AL- TI(180),SE-TI(180),SB-TI(180),CU-TI(180),ZN- TI(180),PB-TI(180),CO-TI(180),V-TI(180),HG- T(28),MG-TI(180),FE-TI(180),MN-TI(180),CD- TI(180),CA-TI(180),K-TI(180),NA-TI(180)
L2427928-02C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-03A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-03B	Metals Only-Glass 60mL/2oz unpreserved	А	NA		5.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),TL-TI(180),AL-TI(180),NI- TI(180),PB-TI(180),SE-TI(180),SB-TI(180),ZN- TI(180),CU-TI(180),V-TI(180),CO-TI(180),HG- T(28),FE-TI(180),MN-TI(180),MG-TI(180),CD- TI(180),K-TI(180),CA-TI(180),NA-TI(180)
L2427928-03C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-04A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-04B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		5.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),PB-TI(180),CU-TI(180),SE-TI(180),ZN- TI(180),SB-TI(180),CO-TI(180),V-TI(180),MN- TI(180),FE-TI(180),HG-T(28),MG-TI(180),CD- TI(180),K-TI(180),NA-TI(180),CA-TI(180)
L2427928-04C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-05A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)

Lab Number: L2427928

Report Date: 05/28/24

Serial_No:05282411:06

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	•	Pres	Seal	Date/Time	Analysis(*)
L2427928-05B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		5.2	Υ	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),TL-TI(180),AL-TI(180),NI-TI(180),CR- TI(180),PB-TI(180),ZN-TI(180),CU-TI(180),SE- TI(180),SB-TI(180),CO-TI(180),V-TI(180),HG- T(28),MG-TI(180),MN-TI(180),FE-TI(180),K- TI(180),CA-TI(180),CD-TI(180),NA-TI(180)
L2427928-05C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-06A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-06B	Metals Only-Glass 60mL/2oz unpreserved	А	NA		5.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),AL-TI(180),TL- TI(180),CU-TI(180),ZN-TI(180),SB-TI(180),SE- TI(180),PB-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),NA-TI(180),K-TI(180)
L2427928-06C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-07A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-07B	Metals Only-Glass 60mL/2oz unpreserved	А	NA		5.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),AL-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),SE-TI(180),ZN-TI(180),SB- TI(180),PB-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),HG-T(28),MG-TI(180),CA- TI(180),K-TI(180),NA-TI(180),CD-TI(180)
L2427928-07C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-08A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-08B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		5.2	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),NI-TI(180),TL-TI(180),AL- TI(180),CU-TI(180),PB-TI(180),SE-TI(180),SB- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),NA- TI(180),CD-TI(180),K-TI(180),CA-TI(180)
L2427928-08C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-09A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)
L2427928-09B	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		5.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),AL-TI(180),NI-TI(180),TL-TI(180),CR- TI(180),SB-TI(180),ZN-TI(180),CU-TI(180),PB- TI(180),SE-TI(180),CO-TI(180),V-TI(180),MG- TI(180),MN-TI(180),FE-TI(180),HG-T(28),NA- TI(180),K-TI(180),CA-TI(180),CD-TI(180)
L2427928-09C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)
L2427928-10A	Plastic 2oz unpreserved for TS	Α	NA		5.2	Υ	Absent		TS(7)

Project Name:

Project Number: 23.3588

SCHENECTADY 40 ANCHOR SITE

Serial_No:05282411:06 **Lab Number:** L2427928

Report Date: 05/28/24

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2427928-10B	Metals Only-Glass 60mL/2oz unpreserved	A	NA		5.2	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG-TI(180),TL-TI(180),CR-TI(180),AL-TI(180),NI-TI(180),CU-TI(180),SB-TI(180),PB-TI(180),SE-TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),K-TI(180),NA-TI(180),CD-TI(180)
L2427928-10C	Glass 120ml/4oz unpreserved	Α	NA		5.2	Υ	Absent		NYCP51-PAH(14)

Project Name:

Project Number: 23.3588

SCHENECTADY 40 ANCHOR SITE

L2427928

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR SITE

Report Date: Project Number: 23.3588 05/28/24

GLOSSARY

Acronyms

DL

LCSD

LOD

MS

- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

 Laboratory Control Sample Duplicate: Refer to LCS. LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

> than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

L2427928

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR SITE

Project Number: 23.3588 Report Date: 05/28/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SCHENECTADY 40 ANCHOR SITE Lab Number: L2427928

Project Number: 23.3588 Report Date: 05/28/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial No:05282411:06

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ATTACHMENTID5No.:17873 Revision 21

> Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine. SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

						ATT	ACHI	MENT	15					
Дірна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W. Tonawanda, NY 14150: 275 Coo	ay	5	Page \ of	127	1	Date Roin La		5lala	24		ALPHA JOB# 124 27928	
Westborough, MA 01581	Mansfield, MA 02048	Project Information	4 5 3 (12)	I Bellin			Delive	erables	E	STATE OF	53 NH	E	Billing Information	
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: Schme	chady 40	3 Anchor	Site			ASP-A		MA	SP-B		Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Sch					N	EQuIS	(1 File)	□ E	QuIS (4 File) P	PO#	
Client Information		Project # 23.35	38				-	Other						
Client: CT Male	Associates	(Use Project name as Pro					Regu	latory R	equireme	ent		-	Disposal Site Information	186
Address: 50 Cent	The state of the s	Project Manager: A		with				NY TOG	S	□ N	Y Part 375	F	Please identify below location of	of
Lytham, NY	12110	ALPHAQuote #:						AWQ St	andards	□ N	Y CP-51		applicable disposal facilities.	
Phone: 575 780		Turn-Around Time		Marine .	The last	WEST		NY Rest	ricted Use	_ o	ther	i	Disposal Facility:	
Fax:	- Andrews	Standard	X	Due Date:				NY Unre	stricted U	se			NJ NY	
Email: a. 5m H. G	tmak.com	Rush (only if pre approved)		# of Days:				NYC Se	wer Disch	arge			Other:	
These samples have be	OF REAL PROPERTY.	ed by Alpha					ANA	YSIS					Sample Filtration	T
Other project specific							1					\neg	Done	1
Total sold	s bottle includ	led in total count	H				100	etals					Lab to do Preservation	a 1
Please specify Metals	or TAL.						1 SVOS 12	Re					Lab to do (Please Specify below)	Bot
ALPHA Lab ID	9	ample ID	Colle	ection	Sample	Sampler's	CP-51	五		- 1		ı ļ		
(Lab Use Only)		ample to	Date	Time	Matrix	Initials	2						Sample Specific Comments	e
27928-01	6P-7-	5-7.5	5/20/24	250	Soil	AR	X	X				_		3
-02	GP-8-	5-7.5		1300		1	X	X						3
-03	GP-9-	5-7.5		1305			X	X						3
704	GP-10_	2.5-5		1310			X	X						3
-05	GP-11_7	2.5-5		1315			X	X						3
-06	GP-12_	5-7.5		1320	1		×	X						3
-07	GP-13_			1325			X	×						3
-0%	GP-14_	5-6		1330			X	×						3
~09	GP-15_			1335			X	X				-		3
70	GP-16_		V	1340	V	V	X	X						3
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification N				ntainer Type Preservative	H	A					Please print clearly, legit and completely. Sample: not be logged in and turnaround time clock wi start until any ambiguitie	s can
E = NaOH F = MeOH	B = Bacteria Cup C = Cube	Relinquished	Byc	Date	/Time		Recei	ved By:			Date/Time		resolved. BY EXECUTIN	
G = NaHSO ₄	O = Other	AMM /	by.	5/20/24	1500		-	TA		sko		CC	THIS COC, THE CLIENT	T
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	E = Encore D = BOD Bottle	Motor Pi	X	5/20/24	1510	all		1/1		5/21/			HAS READ AND AGREI TO BE BOUND BY ALP TERMS & CONDITIONS	PHA'S
Form No: 01-25 HC (rev.	30-Sept-2013)	1-2-11 9-61											(See reverse side.)	

APPENDIX F

Laboratory Analysis Report for Soil from Test Pits

ANALYTICAL REPORT

Lab Number: L2450528

Client: C.T. Male Associates

50 Century Hill Drive Latham, NY 12110

ATTN: Aimee Smith Phone: (518) 786-7400

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA ANALYTISAL

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528 **Report Date:** 09/12/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2450528-01	TP-1	SOIL	SCHENECTADY, NY	09/05/24 11:05	09/05/24
L2450528-02	TP-2	SOIL	SCHENECTADY, NY	09/05/24 11:10	09/05/24
L2450528-03	TP-3	SOIL	SCHENECTADY, NY	09/05/24 11:15	09/05/24

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:

SCHENECTADY 40 ANCHOR

Lab Number:

L2450528 09/12/24

Project Number:

23.3588

Report Date:

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-gualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2450528-03: The surrogate recovery is outside the acceptance criteria for 1,2-dichloroethane-d4 (134%) and 4-bromofluorobenzene (486%); however, the sample was not re-analyzed due to coelution with an obvious interference. A copy of the chromatogram is included as an attachment to this report.

The WG1970749-5 Method Blank, associated with L2450528-03, has a concentration above the reporting limit for bromomethane. Since the associated sample concentrations are either greater than 10x the blank concentration or non-detect to the RL for this target analyte, no corrective action is required. Any results detected below the reporting limit are qualified with a "B".

Total Metals

L2450528-01 through -03: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Cattlin Wallet Caitlin Walukevich

Authorized Signature:

Title: Technical Director/Representative

Date: 09/12/24

ORGANICS

VOLATILES

Lab Number: 1528

Report Date: 09/12/24

SCHENECTADY 40 ANCHOR

Project Number: 23.3588

SAMPLE RESULTS

Lab ID: L2450528-01 Date Collected: 09/05/24 11:05

Client ID: TP-1

Date Received: 09/05/24 Field Prep: Sample Location: SCHENECTADY, NY Not Specified

Sample Depth:

Project Name:

Matrix: Soil Analytical Method: 1,8260D Analytical Date: 09/10/24 17:52

Analyst: JIC 74% Percent Solids:

Volatile Organics by EPA 5035 Low - West Methylene chloride	borough Lab				
Methylene chloride	ND				
	ND	ug/kg	6.6	3.0	1
1,1-Dichloroethane	ND	ug/kg	1.3	0.19	1
Chloroform	ND	ug/kg	2.0	0.18	1
Carbon tetrachloride	ND	ug/kg	1.3	0.30	1
1,2-Dichloropropane	ND	ug/kg	1.3	0.16	1
Dibromochloromethane	ND	ug/kg	1.3	0.18	1
1,1,2-Trichloroethane	ND	ug/kg	1.3	0.35	1
Tetrachloroethene	ND	ug/kg	0.66	0.26	1
Chlorobenzene	ND	ug/kg	0.66	0.17	1
Trichlorofluoromethane	ND	ug/kg	5.3	0.92	1
1,2-Dichloroethane	ND	ug/kg	1.3	0.34	1
1,1,1-Trichloroethane	ND	ug/kg	0.66	0.22	1
Bromodichloromethane	ND	ug/kg	0.66	0.14	1
trans-1,3-Dichloropropene	ND	ug/kg	1.3	0.36	1
cis-1,3-Dichloropropene	ND	ug/kg	0.66	0.21	1
Bromoform	ND	ug/kg	5.3	0.33	1
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.66	0.22	1
Benzene	ND	ug/kg	0.66	0.22	1
Toluene	ND	ug/kg	1.3	0.72	1
Ethylbenzene	ND	ug/kg	1.3	0.19	1
Chloromethane	ND	ug/kg	5.3	1.2	1
Bromomethane	ND	ug/kg	2.6	0.77	1
Vinyl chloride	ND	ug/kg	1.3	0.44	1
Chloroethane	ND	ug/kg	2.6	0.60	1
1,1-Dichloroethene	ND	ug/kg	1.3	0.32	1
trans-1,2-Dichloroethene	ND	ug/kg	2.0	0.18	1
Trichloroethene	ND	ug/kg	0.66	0.18	1
1,2-Dichlorobenzene	ND	ug/kg	2.6	0.19	1

09/12/24

Lab Number: ACHMENT 1528 **Project Name:** SCHENECTADY 40 ANCHOR **Report Date:**

Project Number: 23.3588

SAMPLE RESULTS

Lab ID: Date Collected: 09/05/24 11:05 L2450528-01

Date Received: 09/05/24 Client ID: TP-1 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.6	0.20	1
1,4-Dichlorobenzene	ND		ug/kg	2.6	0.23	1
Methyl tert butyl ether	ND		ug/kg	2.6	0.27	1
p/m-Xylene	ND		ug/kg	2.6	0.74	1
o-Xylene	ND		ug/kg	1.3	0.38	1
cis-1,2-Dichloroethene	ND		ug/kg	1.3	0.23	1
Styrene	ND		ug/kg	1.3	0.26	1
Dichlorodifluoromethane	ND		ug/kg	13	1.2	1
Acetone	17		ug/kg	13	6.4	1
Carbon disulfide	ND		ug/kg	13	6.0	1
2-Butanone	ND		ug/kg	13	2.9	1
4-Methyl-2-pentanone	ND		ug/kg	13	1.7	1
2-Hexanone	ND		ug/kg	13	1.6	1
1,2-Dibromoethane	ND		ug/kg	1.3	0.37	1
n-Butylbenzene	ND		ug/kg	1.3	0.22	1
sec-Butylbenzene	ND		ug/kg	1.3	0.19	1
tert-Butylbenzene	ND		ug/kg	2.6	0.16	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	4.0	1.3	1
Isopropylbenzene	ND		ug/kg	1.3	0.14	1
p-lsopropyltoluene	ND		ug/kg	1.3	0.14	1
Naphthalene	ND		ug/kg	5.3	0.86	1
n-Propylbenzene	ND		ug/kg	1.3	0.23	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.6	0.36	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.6	0.26	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.6	0.44	1
Methyl Acetate	ND		ug/kg	5.3	1.2	1
Cyclohexane	ND		ug/kg	13	0.72	1
Freon-113	ND		ug/kg	5.3	0.92	1
Methyl cyclohexane	ND		ug/kg	5.3	0.80	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	96	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	93	70-130	

Serial_No:09122411:50
Lab Number: 450528

09/12/24

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

SAMPLE RESULTS

Date Collected: 09/05/24 11:10

Date Received: 09/05/24
Field Prep: Not Specified

Report Date:

Lab ID: L2450528-02

Client ID: TP-2

Sample Location: SCHENECTADY, NY

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 09/10/24 18:18

Analyst: JIC Percent Solids: 76%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by EPA 5035 L	ow - Westborough Lab						
Methylene chloride	ND		ug/kg	5.7	2.6	1	
1,1-Dichloroethane	ND		ug/kg	1.1	0.16	1	
Chloroform	ND		ug/kg	1.7	0.16	1	
Carbon tetrachloride	ND		ug/kg	1.1	0.26	1	
1,2-Dichloropropane	ND		ug/kg	1.1	0.14	1	
Dibromochloromethane	ND		ug/kg	1.1	0.16	1	
1,1,2-Trichloroethane	ND		ug/kg	1.1	0.30	1	
Tetrachloroethene	ND		ug/kg	0.57	0.22	1	
Chlorobenzene	ND		ug/kg	0.57	0.14	1	
Trichlorofluoromethane	2.4	J	ug/kg	4.6	0.79	1	
1,2-Dichloroethane	ND		ug/kg	1.1	0.29	1	
1,1,1-Trichloroethane	ND		ug/kg	0.57	0.19	1	
Bromodichloromethane	ND		ug/kg	0.57	0.12	1	
trans-1,3-Dichloropropene	ND		ug/kg	1.1	0.31	1	
cis-1,3-Dichloropropene	ND		ug/kg	0.57	0.18	1	
Bromoform	ND		ug/kg	4.6	0.28	1	
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.57	0.19	1	
Benzene	ND		ug/kg	0.57	0.19	1	
Toluene	ND		ug/kg	1.1	0.62	1	
Ethylbenzene	ND		ug/kg	1.1	0.16	1	
Chloromethane	ND		ug/kg	4.6	1.1	1	
Bromomethane	ND		ug/kg	2.3	0.66	1	
Vinyl chloride	ND		ug/kg	1.1	0.38	1	
Chloroethane	ND		ug/kg	2.3	0.52	1	
1,1-Dichloroethene	ND		ug/kg	1.1	0.27	1	
trans-1,2-Dichloroethene	ND		ug/kg	1.7	0.16	1	
Trichloroethene	ND		ug/kg	0.57	0.16	1	
1,2-Dichlorobenzene	ND		ug/kg	2.3	0.16	1	

Project Name: SCHENECTADY 40 ANCHOR Lab Number: ACHMENT 15/28

Project Number: 23.3588 **Report Date:** 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-02 Date Collected: 09/05/24 11:10

Client ID: TP-2 Date Received: 09/05/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low -	Westborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.3	0.17	1
1,4-Dichlorobenzene	ND		ug/kg	2.3	0.19	1
Methyl tert butyl ether	ND		ug/kg	2.3	0.23	1
p/m-Xylene	ND		ug/kg	2.3	0.64	1
o-Xylene	ND		ug/kg	1.1	0.33	1
cis-1,2-Dichloroethene	ND		ug/kg	1.1	0.20	1
Styrene	ND		ug/kg	1.1	0.22	1
Dichlorodifluoromethane	ND		ug/kg	11	1.0	1
Acetone	15		ug/kg	11	5.5	1
Carbon disulfide	ND		ug/kg	11	5.2	1
2-Butanone	ND		ug/kg	11	2.5	1
4-Methyl-2-pentanone	ND		ug/kg	11	1.4	1
2-Hexanone	ND		ug/kg	11	1.3	1
1,2-Dibromoethane	ND		ug/kg	1.1	0.32	1
n-Butylbenzene	ND		ug/kg	1.1	0.19	1
sec-Butylbenzene	ND		ug/kg	1.1	0.17	1
tert-Butylbenzene	ND		ug/kg	2.3	0.13	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.4	1.1	1
Isopropylbenzene	ND		ug/kg	1.1	0.12	1
p-Isopropyltoluene	0.23	J	ug/kg	1.1	0.12	1
Naphthalene	1.4	J	ug/kg	4.6	0.74	1
n-Propylbenzene	ND		ug/kg	1.1	0.19	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.3	0.31	1
1,3,5-Trimethylbenzene	ND		ug/kg	2.3	0.22	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.3	0.38	1
Methyl Acetate	ND		ug/kg	4.6	1.1	1
Cyclohexane	ND		ug/kg	11	0.62	1
Freon-113	ND		ug/kg	4.6	0.79	1
Methyl cyclohexane	0.74	J	ug/kg	4.6	0.69	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	93	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	94	70-130	

09/05/24 11:15

Not Specified

09/05/24

Lab Number: ACHMENT 1528

Report Date: 09/12/24

Date Collected:

Date Received:

Field Prep:

SCHENECTADY 40 ANCHOR

Project Number: 23.3588

SAMPLE RESULTS

Lab ID: L2450528-03

Client ID: TP-3

Sample Location: SCHENECTADY, NY

Sample Depth:

Project Name:

Matrix: Soil
Analytical Method: 1,8260D
Analytical Date: 09/12/24 02:01

Analyst: JIC Percent Solids: 80%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - Wes	tborough Lab					
Methylene chloride	ND		ug/kg	5.3	2.4	1
1,1-Dichloroethane	ND		ug/kg	1.0	0.15	1
Chloroform	ND		ug/kg	1.6	0.15	1
Carbon tetrachloride	ND		ug/kg	1.0	0.24	1
1,2-Dichloropropane	ND		ug/kg	1.0	0.13	1
Dibromochloromethane	ND		ug/kg	1.0	0.15	1
1,1,2-Trichloroethane	ND		ug/kg	1.0	0.28	1
Tetrachloroethene	ND		ug/kg	0.53	0.21	1
Chlorobenzene	ND		ug/kg	0.53	0.13	1
Trichlorofluoromethane	ND		ug/kg	4.2	0.73	1
1,2-Dichloroethane	ND		ug/kg	1.0	0.27	1
1,1,1-Trichloroethane	ND		ug/kg	0.53	0.18	1
Bromodichloromethane	ND		ug/kg	0.53	0.12	1
trans-1,3-Dichloropropene	ND		ug/kg	1.0	0.29	1
cis-1,3-Dichloropropene	ND		ug/kg	0.53	0.17	1
Bromoform	ND		ug/kg	4.2	0.26	1
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.53	0.18	1
Benzene	ND		ug/kg	0.53	0.18	1
Toluene	ND		ug/kg	1.0	0.57	1
Ethylbenzene	ND		ug/kg	1.0	0.15	1
Chloromethane	ND		ug/kg	4.2	0.98	1
Bromomethane	ND		ug/kg	2.1	0.61	1
Vinyl chloride	ND		ug/kg	1.0	0.35	1
Chloroethane	ND		ug/kg	2.1	0.48	1
1,1-Dichloroethene	ND		ug/kg	1.0	0.25	1
trans-1,2-Dichloroethene	ND		ug/kg	1.6	0.14	1
Trichloroethene	ND		ug/kg	0.53	0.14	1
1,2-Dichlorobenzene	ND		ug/kg	2.1	0.15	1

Project Name: SCHENECTADY 40 ANCHOR Lab Number: ACHMENT 15/28

Project Number: 23.3588 **Report Date:** 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-03 Date Collected: 09/05/24 11:15

Client ID: TP-3 Date Received: 09/05/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by EPA 5035 Low - V	Vestborough Lab					
1,3-Dichlorobenzene	ND		ug/kg	2.1	0.16	1
1,4-Dichlorobenzene	ND		ug/kg	2.1	0.18	1
Methyl tert butyl ether	ND		ug/kg	2.1	0.21	1
p/m-Xylene	ND		ug/kg	2.1	0.59	1
o-Xylene	0.61	J	ug/kg	1.0	0.31	1
cis-1,2-Dichloroethene	0.27	J	ug/kg	1.0	0.18	1
Styrene	ND		ug/kg	1.0	0.21	1
Dichlorodifluoromethane	ND		ug/kg	10	0.97	1
Acetone	85		ug/kg	10	5.1	1
Carbon disulfide	ND		ug/kg	10	4.8	1
2-Butanone	13		ug/kg	10	2.3	1
4-Methyl-2-pentanone	ND		ug/kg	10	1.4	1
2-Hexanone	ND		ug/kg	10	1.2	1
1,2-Dibromoethane	ND		ug/kg	1.0	0.30	1
n-Butylbenzene	86		ug/kg	1.0	0.18	1
sec-Butylbenzene	110		ug/kg	1.0	0.15	1
tert-Butylbenzene	6.2		ug/kg	2.1	0.12	1
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.2	1.0	1
Isopropylbenzene	8.7		ug/kg	1.0	0.12	1
p-Isopropyltoluene	ND		ug/kg	1.0	0.12	1
Naphthalene	4.2		ug/kg	4.2	0.69	1
n-Propylbenzene	11		ug/kg	1.0	0.18	1
1,2,4-Trichlorobenzene	ND		ug/kg	2.1	0.29	1
1,3,5-Trimethylbenzene	0.70	J	ug/kg	2.1	0.20	1
1,2,4-Trimethylbenzene	ND		ug/kg	2.1	0.35	1
Methyl Acetate	1.7	J	ug/kg	4.2	1.0	1
Cyclohexane	ND		ug/kg	10	0.58	1
Freon-113	ND		ug/kg	4.2	0.73	1
Methyl cyclohexane	3.8	J	ug/kg	4.2	0.64	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	134	Q	70-130
Toluene-d8	96		70-130
4-Bromofluorobenzene	486	Q	70-130
Dibromofluoromethane	123		70-130

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/10/24 10:02

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by EPA 5035 Low	- Westboro	ough Lab for sample(s): 01-02	Batch: WG196	9787-5
Methylene chloride	ND	ug/kg	5.0	2.3	
1,1-Dichloroethane	ND	ug/kg	1.0	0.14	
Chloroform	ND	ug/kg	1.5	0.14	
Carbon tetrachloride	ND	ug/kg	1.0	0.23	
1,2-Dichloropropane	ND	ug/kg	1.0	0.12	
Dibromochloromethane	ND	ug/kg	1.0	0.14	
1,1,2-Trichloroethane	ND	ug/kg	1.0	0.27	
Tetrachloroethene	ND	ug/kg	0.50	0.20	
Chlorobenzene	ND	ug/kg	0.50	0.13	
Trichlorofluoromethane	ND	ug/kg	4.0	0.70	
1,2-Dichloroethane	ND	ug/kg	1.0	0.26	
1,1,1-Trichloroethane	ND	ug/kg	0.50	0.17	
Bromodichloromethane	ND	ug/kg	0.50	0.11	
trans-1,3-Dichloropropene	ND	ug/kg	1.0	0.27	
cis-1,3-Dichloropropene	ND	ug/kg	0.50	0.16	
Bromoform	ND	ug/kg	4.0	0.25	
1,1,2,2-Tetrachloroethane	ND	ug/kg	0.50	0.17	
Benzene	ND	ug/kg	0.50	0.17	
Toluene	ND	ug/kg	1.0	0.54	
Ethylbenzene	ND	ug/kg	1.0	0.14	
Chloromethane	ND	ug/kg	4.0	0.93	
Bromomethane	ND	ug/kg	2.0	0.58	
Vinyl chloride	ND	ug/kg	1.0	0.34	
Chloroethane	ND	ug/kg	2.0	0.45	
1,1-Dichloroethene	ND	ug/kg	1.0	0.24	
trans-1,2-Dichloroethene	ND	ug/kg	1.5	0.14	
Trichloroethene	ND	ug/kg	0.50	0.14	
1,2-Dichlorobenzene	ND	ug/kg	2.0	0.14	
1,3-Dichlorobenzene	ND	ug/kg	2.0	0.15	

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/10/24 10:02

Analyst: AJK

arameter	Result	Qualifier Units	RL	MDL	
olatile Organics by EPA 5035	Low - Westboro	ugh Lab for sample(s): 01-02	Batch: WG1969	787-5
1,4-Dichlorobenzene	ND	ug/kg	2.0	0.17	
Methyl tert butyl ether	ND	ug/kg	2.0	0.20	
p/m-Xylene	ND	ug/kg	2.0	0.56	
o-Xylene	ND	ug/kg	1.0	0.29	
cis-1,2-Dichloroethene	ND	ug/kg	1.0	0.18	
Styrene	ND	ug/kg	1.0	0.20	
Dichlorodifluoromethane	ND	ug/kg	10	0.92	
Acetone	ND	ug/kg	10	4.8	
Carbon disulfide	ND	ug/kg	10	4.6	
2-Butanone	ND	ug/kg	10	2.2	
4-Methyl-2-pentanone	ND	ug/kg	10	1.3	
2-Hexanone	ND	ug/kg	10	1.2	
1,2-Dibromoethane	ND	ug/kg	1.0	0.28	
n-Butylbenzene	ND	ug/kg	1.0	0.17	
sec-Butylbenzene	ND	ug/kg	1.0	0.15	
tert-Butylbenzene	ND	ug/kg	2.0	0.12	
1,2-Dibromo-3-chloropropane	ND	ug/kg	3.0	1.0	
Isopropylbenzene	ND	ug/kg	1.0	0.11	
p-Isopropyltoluene	ND	ug/kg	1.0	0.11	
Naphthalene	ND	ug/kg	4.0	0.65	
n-Propylbenzene	ND	ug/kg	1.0	0.17	
1,2,4-Trichlorobenzene	ND	ug/kg	2.0	0.27	
1,3,5-Trimethylbenzene	ND	ug/kg	2.0	0.19	
1,2,4-Trimethylbenzene	ND	ug/kg	2.0	0.33	
Methyl Acetate	ND	ug/kg	4.0	0.95	
Cyclohexane	ND	ug/kg	10	0.54	
Freon-113	ND	ug/kg	4.0	0.69	
Methyl cyclohexane	ND	ug/kg	4.0	0.60	

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/10/24 10:02

Analyst: AJK

Parameter Result Qualifier Units RL MDL

Volatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 01-02 Batch: WG1969787-5

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	93		70-130			
Toluene-d8	101		70-130			
4-Bromofluorobenzene	95		70-130			
Dibromofluoromethane	90		70-130			

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/11/24 22:47

Analyst: RAW

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035	Low - Westboro	ugh Lab for	sample(s):	03	Batch:	WG1970749-5
Methylene chloride	ND		ug/kg	5.0		2.3
1,1-Dichloroethane	ND		ug/kg	1.0		0.14
Chloroform	ND		ug/kg	1.5		0.14
Carbon tetrachloride	ND		ug/kg	1.0		0.23
1,2-Dichloropropane	ND		ug/kg	1.0		0.12
Dibromochloromethane	ND		ug/kg	1.0		0.14
1,1,2-Trichloroethane	ND		ug/kg	1.0		0.27
Tetrachloroethene	ND		ug/kg	0.50		0.20
Chlorobenzene	ND		ug/kg	0.50		0.13
Trichlorofluoromethane	ND		ug/kg	4.0		0.70
1,2-Dichloroethane	ND		ug/kg	1.0		0.26
1,1,1-Trichloroethane	ND		ug/kg	0.50		0.17
Bromodichloromethane	ND		ug/kg	0.50		0.11
trans-1,3-Dichloropropene	ND		ug/kg	1.0		0.27
cis-1,3-Dichloropropene	ND		ug/kg	0.50		0.16
Bromoform	ND		ug/kg	4.0		0.25
1,1,2,2-Tetrachloroethane	ND		ug/kg	0.50		0.17
Benzene	ND		ug/kg	0.50		0.17
Toluene	ND		ug/kg	1.0		0.54
Ethylbenzene	ND		ug/kg	1.0		0.14
Chloromethane	ND		ug/kg	4.0		0.93
Bromomethane	2.8		ug/kg	2.0		0.58
Vinyl chloride	ND		ug/kg	1.0		0.34
Chloroethane	ND		ug/kg	2.0		0.45
1,1-Dichloroethene	ND		ug/kg	1.0		0.24
trans-1,2-Dichloroethene	ND		ug/kg	1.5		0.14
Trichloroethene	ND		ug/kg	0.50		0.14
1,2-Dichlorobenzene	ND		ug/kg	2.0		0.14
1,3-Dichlorobenzene	ND		ug/kg	2.0		0.15

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/11/24 22:47

Analyst: RAW

Parameter	Result	Qualifier	Units	RL		MDL
olatile Organics by EPA 5035 Lov	w - Westboro	ugh Lab fo	r sample(s):	03	Batch:	WG1970749-5
1,4-Dichlorobenzene	ND		ug/kg	2.0		0.17
Methyl tert butyl ether	ND		ug/kg	2.0		0.20
p/m-Xylene	ND		ug/kg	2.0		0.56
o-Xylene	ND		ug/kg	1.0		0.29
cis-1,2-Dichloroethene	ND		ug/kg	1.0		0.18
Styrene	ND		ug/kg	1.0		0.20
Dichlorodifluoromethane	ND		ug/kg	10		0.92
Acetone	ND		ug/kg	10		4.8
Carbon disulfide	ND		ug/kg	10		4.6
2-Butanone	ND		ug/kg	10		2.2
4-Methyl-2-pentanone	ND		ug/kg	10		1.3
2-Hexanone	ND		ug/kg	10		1.2
1,2-Dibromoethane	ND		ug/kg	1.0		0.28
n-Butylbenzene	ND		ug/kg	1.0		0.17
sec-Butylbenzene	ND		ug/kg	1.0		0.15
tert-Butylbenzene	ND		ug/kg	2.0		0.12
1,2-Dibromo-3-chloropropane	ND		ug/kg	3.0		1.0
Isopropylbenzene	ND		ug/kg	1.0		0.11
p-Isopropyltoluene	ND		ug/kg	1.0		0.11
Naphthalene	ND		ug/kg	4.0		0.65
n-Propylbenzene	ND		ug/kg	1.0		0.17
1,2,4-Trichlorobenzene	ND		ug/kg	2.0		0.27
1,3,5-Trimethylbenzene	ND		ug/kg	2.0		0.19
1,2,4-Trimethylbenzene	ND		ug/kg	2.0		0.33
Methyl Acetate	ND		ug/kg	4.0		0.95
Cyclohexane	ND		ug/kg	10		0.54
Freon-113	ND		ug/kg	4.0		0.69
Methyl cyclohexane	ND		ug/kg	4.0		0.60

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 09/11/24 22:47

Analyst: RAW

Parameter Result Qualifier Units RL MDL

Volatile Organics by EPA 5035 Low - Westborough Lab for sample(s): 03 Batch: WG1970749-5

		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	107		70-130
Toluene-d8	101		70-130
4-Bromofluorobenzene	103		70-130
Dibromofluoromethane	96		70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westb	orough Lab Assoc	ciated sample(s): 01-02 Batch	: WG1969787-3 WG1969	9787-4	
Methylene chloride	83	81	70-130	2	30
1,1-Dichloroethane	85	83	70-130	2	30
Chloroform	84	82	70-130	2	30
Carbon tetrachloride	88	86	70-130	2	30
1,2-Dichloropropane	82	82	70-130	0	30
Dibromochloromethane	87	88	70-130	1	30
1,1,2-Trichloroethane	87	89	70-130	2	30
Tetrachloroethene	109	108	70-130	1	30
Chlorobenzene	98	97	70-130	1	30
Trichlorofluoromethane	94	92	70-139	2	30
1,2-Dichloroethane	79	79	70-130	0	30
1,1,1-Trichloroethane	89	87	70-130	2	30
Bromodichloromethane	81	81	70-130	0	30
trans-1,3-Dichloropropene	99	99	70-130	0	30
cis-1,3-Dichloropropene	92	92	70-130	0	30
Bromoform	84	89	70-130	6	30
1,1,2,2-Tetrachloroethane	91	94	70-130	3	30
Benzene	87	86	70-130	1	30
Toluene	96	95	70-130	1	30
Ethylbenzene	98	97	70-130	1	30
Chloromethane	83	78	52-130	6	30
Bromomethane	115	103	57-147	11	30
Vinyl chloride	88	83	67-130	6	30

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Westb	orough Lab Ass	ociated sample	(s): 01-02 Batc	h: WG1969787-3 WG196	69787-4	
Chloroethane	92		85	50-151	8	30
1,1-Dichloroethene	95		90	65-135	5	30
trans-1,2-Dichloroethene	94		90	70-130	4	30
Trichloroethene	88		87	70-130	1	30
1,2-Dichlorobenzene	100		100	70-130	0	30
1,3-Dichlorobenzene	105		104	70-130	1	30
1,4-Dichlorobenzene	104		103	70-130	1	30
Methyl tert butyl ether	82		83	66-130	1	30
p/m-Xylene	101		99	70-130	2	30
o-Xylene	98		96	70-130	2	30
cis-1,2-Dichloroethene	89		85	70-130	5	30
Styrene	98		97	70-130	1	30
Dichlorodifluoromethane	84		80	30-146	5	30
Acetone	64		65	54-140	2	30
Carbon disulfide	85		82	59-130	4	30
2-Butanone	64	Q	74	70-130	14	30
4-Methyl-2-pentanone	84		89	70-130	6	30
2-Hexanone	79		83	70-130	5	30
1,2-Dibromoethane	95		97	70-130	2	30
n-Butylbenzene	108		107	70-130	1	30
sec-Butylbenzene	102		101	70-130	1	30
tert-Butylbenzene	100		100	70-130	0	30
1,2-Dibromo-3-chloropropane	90		95	68-130	5	30

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by EPA 5035 Low - West	oorough Lab Asso	ciated sample	e(s): 01-02 Ba	atch: WG1	969787-3 WG196	69787-4			
Isopropylbenzene	102		101		70-130	1		30	
p-Isopropyltoluene	106		105		70-130	1		30	
Naphthalene	105		108		70-130	3		30	
n-Propylbenzene	104		103		70-130	1		30	
1,2,4-Trichlorobenzene	119		120		70-130	1		30	
1,3,5-Trimethylbenzene	101		100		70-130	1		30	
1,2,4-Trimethylbenzene	102		100		70-130	2		30	
Methyl Acetate	75		76		51-146	1		30	
Cyclohexane	86		84		59-142	2		30	
Freon-113	97		94		50-139	3		30	
Methyl cyclohexane	90		89		70-130	1		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	86	88	70-130
Toluene-d8	103	102	70-130
4-Bromofluorobenzene	97	98	70-130
Dibromofluoromethane	89	90	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

arameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low - Wes	tborough Lab Associa	ated sample(s): 03	Batch: WG19	70749-3 WG19707	49-4	
Methylene chloride	84	84		70-130	0	30
1,1-Dichloroethane	96	96		70-130	0	30
Chloroform	93	94		70-130	1	30
Carbon tetrachloride	96	97		70-130	1	30
1,2-Dichloropropane	95	98		70-130	3	30
Dibromochloromethane	86	88		70-130	2	30
1,1,2-Trichloroethane	98	100)	70-130	2	30
Tetrachloroethene	95	96		70-130	1	30
Chlorobenzene	93	94		70-130	1	30
Trichlorofluoromethane	105	101	1	70-139	4	30
1,2-Dichloroethane	96	98		70-130	2	30
1,1,1-Trichloroethane	94	95		70-130	1	30
Bromodichloromethane	87	89		70-130	2	30
trans-1,3-Dichloropropene	101	102	2	70-130	1	30
cis-1,3-Dichloropropene	94	96		70-130	2	30
Bromoform	82	81		70-130	1	30
1,1,2,2-Tetrachloroethane	99	100)	70-130	1	30
Benzene	94	94		70-130	0	30
Toluene	98	98		70-130	0	30
Ethylbenzene	100	100)	70-130	0	30
Chloromethane	99	96		52-130	3	30
Bromomethane	91	86		57-147	6	30
Vinyl chloride	106	102	2	67-130	4	30

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

arameter	LCS %Recovery	LCS Qual %Reco		%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by EPA 5035 Low -	Westborough Lab Assoc	ciated sample(s): 03	Batch: V	WG1970749-3 WG19707	49-4	
Chloroethane	108	10	05	50-151	3	30
1,1-Dichloroethene	93	9	1	65-135	2	30
trans-1,2-Dichloroethene	95	9	6	70-130	1	30
Trichloroethene	95	9	7	70-130	2	30
1,2-Dichlorobenzene	95	9.	4	70-130	1	30
1,3-Dichlorobenzene	99	9	7	70-130	2	30
1,4-Dichlorobenzene	95	9:	5	70-130	0	30
Methyl tert butyl ether	85	9	8	66-130	14	30
p/m-Xylene	97	9	7	70-130	0	30
o-Xylene	94	9.	4	70-130	0	30
cis-1,2-Dichloroethene	89	9	0	70-130	1	30
Styrene	95	9:	5	70-130	0	30
Dichlorodifluoromethane	101	9	7	30-146	4	30
Acetone	110	10	7	54-140	3	30
Carbon disulfide	92	8	9	59-130	3	30
2-Butanone	101	10	03	70-130	2	30
4-Methyl-2-pentanone	99	10	00	70-130	1	30
2-Hexanone	96	99	9	70-130	3	30
1,2-Dibromoethane	94	9:	5	70-130	1	30
n-Butylbenzene	108	10	06	70-130	2	30
sec-Butylbenzene	104	10	12	70-130	2	30
tert-Butylbenzene	100	99	9	70-130	1	30
1,2-Dibromo-3-chloropropane	85	8	7	68-130	2	30

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

arameter	LCS %Recovery	Qual	LCSD %Recovery	/ Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by EPA 5035 Low - Westbo	orough Lab Ass	ociated sample(s): 03 Ba	tch: WG197	0749-3 WG19707	49-4		
Isopropylbenzene	101		102		70-130	1		30
p-Isopropyltoluene	102		99		70-130	3		30
Naphthalene	94		93		70-130	1		30
n-Propylbenzene	104		103		70-130	1		30
1,2,4-Trichlorobenzene	91		91		70-130	0		30
1,3,5-Trimethylbenzene	100		99		70-130	1		30
1,2,4-Trimethylbenzene	100		99		70-130	1		30
Methyl Acetate	112		115		51-146	3		30
Cyclohexane	107		106		59-142	1		30
Freon-113	98		96		50-139	2		30
Methyl cyclohexane	94		95		70-130	1		30

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	101	102	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	103	99	70-130
Dibromofluoromethane	93	92	70-130

SEMIVOLATILES

Extraction Method: EPA 3546

09/10/24 06:44

Extraction Date:

Project Name: SCHENECTADY 40 ANCHOR Lab Number: ACHMENT 1528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-01 Date Collected: 09/05/24 11:05

Client ID: TP-1 Date Received: 09/05/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Matrix: Soil

Analytical Method: 1,8270E
Analytical Date: 09/11/24 14:39

Analyst: EK Percent Solids: 74%

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
Acenaphthene	ND		ug/kg	180	23.	1	
Fluoranthene	220		ug/kg	130	25.	1	
Benzo(a)anthracene	120	J	ug/kg	130	25.	1	
Benzo(a)pyrene	120	J	ug/kg	180	53.	1	
Benzo(b)fluoranthene	170		ug/kg	130	37.	1	
Benzo(k)fluoranthene	48	J	ug/kg	130	35.	1	
Chrysene	130		ug/kg	130	23.	1	
Acenaphthylene	ND		ug/kg	180	34.	1	
Anthracene	ND		ug/kg	130	43.	1	
Benzo(ghi)perylene	91	J	ug/kg	180	26.	1	
Fluorene	ND		ug/kg	220	21.	1	
Phenanthrene	100	J	ug/kg	130	27.	1	
Dibenzo(a,h)anthracene	26	J	ug/kg	130	25.	1	
Indeno(1,2,3-cd)pyrene	73	J	ug/kg	180	30.	1	
Pyrene	180		ug/kg	130	22.	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	55		23-120	
2-Fluorobiphenyl	70		30-120	
4-Terphenyl-d14	59		18-120	

Project Name: SCHENECTADY 40 ANCHOR Lab Number: ACHMENT 1528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-02 D Date Collected: 09/05/24 11:10

Client ID: TP-2 Date Received: 09/05/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270E Extraction Date: 09/10/24 06:44

Analyst: SLR Percent Solids: 76%

09/11/24 14:57

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab										
Acenaphthene	440	J	ug/kg	860	110	5				
Fluoranthene	24000		ug/kg	640	120	5				
Benzo(a)anthracene	10000		ug/kg	640	120	5				
Benzo(a)pyrene	9400		ug/kg	860	260	5				
Benzo(b)fluoranthene	16000		ug/kg	640	180	5				
Benzo(k)fluoranthene	3200		ug/kg	640	170	5				
Chrysene	10000		ug/kg	640	110	5				
Acenaphthylene	4800		ug/kg	860	160	5				
Anthracene	4200		ug/kg	640	210	5				
Benzo(ghi)perylene	7000		ug/kg	860	130	5				
Fluorene	1400		ug/kg	1100	100	5				
Phenanthrene	21000		ug/kg	640	130	5				
Dibenzo(a,h)anthracene	1900		ug/kg	640	120	5				
Indeno(1,2,3-cd)pyrene	5700		ug/kg	860	150	5				
Pyrene	18000		ug/kg	640	110	5				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	41		23-120	
2-Fluorobiphenyl	49		30-120	
4-Terphenyl-d14	38		18-120	

Project Name: SCHENECTADY 40 ANCHOR Lab Number: ACHMENT 1528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-03 Date Collected: 09/05/24 11:15

Client ID: TP-3 Date Received: 09/05/24 Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270E Extraction Date: 09/10/24 06:44

Analyst: EK Percent Solids: 80%

09/11/24 15:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab										
Assessable	120			470	22.	4				
Acenaphthene	120	J	ug/kg	170	22.	1				
Fluoranthene	760		ug/kg	120	24.	1				
Benzo(a)anthracene	340		ug/kg	120	23.	1				
Benzo(a)pyrene	200		ug/kg	170	51.	1				
Benzo(b)fluoranthene	300		ug/kg	120	35.	1				
Benzo(k)fluoranthene	81	J	ug/kg	120	33.	1				
Chrysene	340		ug/kg	120	22.	1				
Acenaphthylene	ND		ug/kg	170	32.	1				
Anthracene	120		ug/kg	120	40.	1				
Benzo(ghi)perylene	100	J	ug/kg	170	24.	1				
Fluorene	380		ug/kg	210	20.	1				
Phenanthrene	540		ug/kg	120	25.	1				
Dibenzo(a,h)anthracene	37	J	ug/kg	120	24.	1				
Indeno(1,2,3-cd)pyrene	77	J	ug/kg	170	29.	1				
Pyrene	620		ug/kg	120	21.	1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	69	23-120	
2-Fluorobiphenyl	68	30-120	
4-Terphenyl-d14	66	18-120	

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 09/11/24 01:41

Analyst:

SLR

Extraction Method: EPA 3546
Extraction Date: 09/10/24 06:44

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG1969533-1
Acenaphthene	ND		ug/kg	130		17.
Fluoranthene	ND		ug/kg	99		19.
Benzo(a)anthracene	ND		ug/kg	99		19.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		26.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	78	25-120
Phenol-d6	80	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	77	10-136
1-Terphenyl-d14	89	18-120

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

Parameter	LCS %Recovery	Qual	LCSD %Recove			ecovery .imits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s):	01-03	Batch:	WG1969533-2	2 WG196953	33-3		
Acenaphthene	85		76		3	31-137	11		50
Fluoranthene	90		78		4	10-140	14		50
Benzo(a)anthracene	89		79		4	10-140	12		50
Benzo(a)pyrene	93		82		4	10-140	13		50
Benzo(b)fluoranthene	93		78		4	10-140	18		50
Benzo(k)fluoranthene	88		81		4	10-140	8		50
Chrysene	90		80		4	10-140	12		50
Acenaphthylene	84		71		4	10-140	17		50
Anthracene	90		78		4	10-140	14		50
Benzo(ghi)perylene	91		78		4	10-140	15		50
Fluorene	88		77		4	10-140	13		50
Phenanthrene	88		76		4	10-140	15		50
Dibenzo(a,h)anthracene	91		78		4	10-140	15		50
Indeno(1,2,3-cd)pyrene	92		79		4	10-140	15		50
Pyrene	90		77		3	35-142	16		50

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	91	77	25-120
Phenol-d6	91	78	10-120
Nitrobenzene-d5	82	69	23-120
2-Fluorobiphenyl	80	69	30-120
2,4,6-Tribromophenol	90	75	10-136
4-Terphenyl-d14	91	81	18-120
			ANALYTICAL

METALS

09/05/24 11:05

Date Collected:

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-01

Client ID: TP-1 Date Received: 09/05/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 74%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units RL MDL Analyst Total Metals - Mansfield Lab Aluminum, Total 2790 mg/kg 10.2 2.76 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D DMC ND 2 1,6010D DMC Antimony, Total mg/kg 5.12 0.389 09/10/24 10:30 09/11/24 15:19 EPA 3050B Arsenic, Total 2.56 mg/kg 1.02 0.213 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D DMC Barium, Total 13.1 1.02 0.178 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D DMC mg/kg J 0.034 2 1,6010D DMC Beryllium, Total 0.179 mg/kg 0.512 09/10/24 10:30 09/11/24 15:19 EPA 3050B ND 1.02 2 1,6010D DMC Cadmium, Total mg/kg 0.100 09/10/24 10:30 09/11/24 15:19 EPA 3050B 09/10/24 10:30 09/11/24 15:19 EPA 3050B Calcium, Total 2160 10.2 3.58 2 1,6010D mg/kg **DMC** 2 1,6010D DMC 5.11 1.02 0.098 09/10/24 10:30 09/11/24 15:19 EPA 3050B Chromium, Total mg/kg 2 3.28 1,6010D Cobalt, Total mg/kg 2.05 0.170 09/10/24 10:30 09/11/24 15:19 EPA 3050B **DMC** 1,6010D Copper, Total 7.70 1.02 0.264 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B **DMC** mg/kg 5.12 2 1,6010D DMC Iron, Total 9870 0.924 09/10/24 10:30 09/11/24 15:19 EPA 3050B mg/kg J 2 1,6010D Lead, Total 3.80 mg/kg 5.12 0.274 09/10/24 10:30 09/11/24 15:19 EPA 3050B DMC Magnesium, Total 10.2 1.58 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D **DMC** 1160 mg/kg 1.02 0.163 2 1,6010D **DMC** Manganese, Total 120 mg/kg 09/10/24 10:30 09/11/24 15:19 EPA 3050B Mercury, Total ND mg/kg 0.085 0.056 1 09/10/24 11:00 09/11/24 16:17 EPA 7471B 1,7471B **JWN** Nickel, Total 6.79 2.56 0.248 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D **DMC** mg/kg 290 256 14.7 2 1,6010D **DMC** Potassium, Total mg/kg 09/10/24 10:30 09/11/24 15:19 EPA 3050B Selenium, Total ND mg/kg 2.05 0.264 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D **DMC** Silver, Total ND mg/kg 0.512 0.290 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D **DMC** J Sodium, Total 120 mg/kg 205 3.22 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D DMC Thallium, Total ND mg/kg 2.05 0.322 2 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1,6010D DMC 09/10/24 10:30 09/11/24 15:19 EPA 3050B 1.02 0.208 2 1,6010D DMC Vanadium, Total 11.2 mg/kg 2 1.6010D 23.3 5.12 0.300 DMC Zinc, Total mg/kg 09/10/24 10:30 09/11/24 15:19 EPA 3050B

Project Name: Lab Number: SCHENECTADY 40 ANCHOR L2450528

Project Number: 23.3588 **Report Date:**

09/12/24

SAMPLE RESULTS

Lab ID: L2450528-02 Date Collected:

09/05/24 11:10

TP-2 Client ID:

Date Received:

09/05/24

SCHENECTADY, NY Sample Location:

Field Prep:

Not Specified

Sample Depth:

Matrix:

Soil

76% Percent Solids:

Antimony, Total ND mg/kg 5.09 0.387 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Arsenic, Total 3.49 mg/kg 1.02 0.212 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Barium, Total 72.8 mg/kg 1.02 0.177 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Beryllium, Total 0.235 J mg/kg 0.509 0.034 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Calcium, Total 7510 mg/kg 10.2 3.56 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 1.02 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 180 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Antimony, Total ND mg/kg 5.09 0.387 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Arsenic, Total 3.49 mg/kg 1.02 0.212 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Barium, Total 72.8 mg/kg 1.02 0.177 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Berlyllium, Total 0.235 J mg/kg 0.509 0.034 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Calcium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Magnesium, Total 1690 mg/kg 1.02 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Magnesium, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Magnesium, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Magnesium, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Magnesium, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Mcrcury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1.6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B	Total Metals - Mansfield Lab											
Arsenic, Total 3.49 mg/kg 1.02 0.212 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Barium, Total 72.8 mg/kg 1.02 0.177 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Beryllium, Total 0.235 J mg/kg 0.509 0.034 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Calcium, Total 7510 mg/kg 10.2 3.56 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 10.2 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 10.2 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Manganese, Total 180 mg/kg 10.2 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.28B 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 305	Aluminum, Total	3870		mg/kg	10.2	2.75	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Barium, Total 72.8 mg/kg 1.02 0.177 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Beryllium, Total 0.235 J mg/kg 0.509 0.034 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Calcium, Total 7510 mg/kg 1.02 0.509 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.2273 2 09/10/24 10:30 09/11/24 15:23 EPA	Antimony, Total	ND		mg/kg	5.09	0.387	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Beryllium, Total 0.235 J mg/kg 0.509 0.034 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Calcium, Total 7510 mg/kg 1.02 3.56 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Loper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 <td< td=""><td>Arsenic, Total</td><td>3.49</td><td></td><td>mg/kg</td><td>1.02</td><td>0.212</td><td>2</td><td>09/10/24 10:30</td><td>09/11/24 15:23</td><td>EPA 3050B</td><td>1,6010D</td><td>DMC</td></td<>	Arsenic, Total	3.49		mg/kg	1.02	0.212	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Cadmium, Total ND mg/kg 1.02 0.100 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Calcium, Total 7510 mg/kg 10.2 3.56 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 1	Barium, Total	72.8		mg/kg	1.02	0.177	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Calcium, Total 7510 mg/kg 10.2 3.56 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 1.02 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 2.55 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 10.9 mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 1	Beryllium, Total	0.235	J	mg/kg	0.509	0.034	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Chromium, Total 9.06 mg/kg 1.02 0.098 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 10.2 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Manganese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 255 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND	Cadmium, Total	ND		mg/kg	1.02	0.100	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Cobalt, Total 3.02 mg/kg 2.04 0.169 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 1.02 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Margnesium, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 6.75 mg/kg	Calcium, Total	7510		mg/kg	10.2	3.56	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Copper, Total 19.3 mg/kg 1.02 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 1.02 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Manganese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg <t< td=""><td>Chromium, Total</td><td>9.06</td><td></td><td>mg/kg</td><td>1.02</td><td>0.098</td><td>2</td><td>09/10/24 10:30</td><td>09/11/24 15:23</td><td>EPA 3050B</td><td>1,6010D</td><td>DMC</td></t<>	Chromium, Total	9.06		mg/kg	1.02	0.098	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Iron, Total 9770 mg/kg 5.09 0.920 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 10.2 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Manganese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 11:00 09/11/24 16:20 EPA 7471B 1,7471B JW Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Solium, Total ND mg/kg	Cobalt, Total	3.02		mg/kg	2.04	0.169	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Lead, Total 71.9 mg/kg 5.09 0.273 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Magnesium, Total 1690 mg/kg 10.2 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Manganese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 11:00 09/11/24 16:20 EPA 7471B 1,7471B JW Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 2.55 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg <	Copper, Total	19.3		mg/kg	1.02	0.263	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Magnesium, Total 1690 mg/kg 10.2 1.57 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Manganese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 11:00 09/11/24 16:20 EPA 7471B 1,7471B JW Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 2.55 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg	Iron, Total	9770		mg/kg	5.09	0.920	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Manganese, Total 180 mg/kg 1.02 0.162 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 11:00 09/11/24 16:20 EPA 7471B 1,7471B JW Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 2.55 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 119 J mg/kg 2.04 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg	Lead, Total	71.9		mg/kg	5.09	0.273	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Mercury, Total 0.358 mg/kg 0.084 0.055 1 09/10/24 11:00 09/11/24 16:20 EPA 7471B 1,7471B JW Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 255 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 119 J mg/kg 2.04 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/	Magnesium, Total	1690		mg/kg	10.2	1.57	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Nickel, Total 6.75 mg/kg 2.55 0.246 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Potassium, Total 292 mg/kg 255 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 119 J mg/kg 204 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Manganese, Total	180		mg/kg	1.02	0.162	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Potassium, Total 292 mg/kg 255 14.7 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 119 J mg/kg 204 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Mercury, Total	0.358		mg/kg	0.084	0.055	1	09/10/24 11:00	09/11/24 16:20	EPA 7471B	1,7471B	JWN
Selenium, Total ND mg/kg 2.04 0.263 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 119 J mg/kg 204 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Nickel, Total	6.75		mg/kg	2.55	0.246	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Silver, Total ND mg/kg 0.509 0.288 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Sodium, Total 119 J mg/kg 204 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Potassium, Total	292		mg/kg	255	14.7	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Sodium, Total 119 J mg/kg 204 3.21 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Selenium, Total	ND		mg/kg	2.04	0.263	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Thallium, Total ND mg/kg 2.04 0.321 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Silver, Total	ND		mg/kg	0.509	0.288	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Vanadium, Total 10.9 mg/kg 1.02 0.207 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Sodium, Total	119	J	mg/kg	204	3.21	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
	Thallium, Total	ND		mg/kg	2.04	0.321	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
Zinc, Total 115 mg/kg 5.09 0.298 2 09/10/24 10:30 09/11/24 15:23 EPA 3050B 1,6010D DM	Vanadium, Total	10.9		mg/kg	1.02	0.207	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC
	Zinc, Total	115		mg/kg	5.09	0.298	2	09/10/24 10:30	09/11/24 15:23	EPA 3050B	1,6010D	DMC

09/05/24 11:15

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Repo

Report Date: 09/12/24

Date Collected:

SAMPLE RESULTS

Lab ID: L2450528-03

Client ID: TP-3 Date Received: 09/05/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 80%

Dilution Date Date Prep **Analytical** Method Qualifier Factor **Prepared** Analyzed Method Parameter Result Units RL MDL Analyst Total Metals - Mansfield Lab Aluminum, Total 4300 mg/kg 9.78 2.64 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D DMC ND 0.372 2 1,6010D DMC Antimony, Total mg/kg 4.89 09/10/24 10:30 09/11/24 16:03 EPA 3050B Arsenic, Total 2.08 mg/kg 0.978 0.204 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D DMC Barium, Total 19.1 0.978 0.170 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D DMC mg/kg 0.274 J 0.032 2 1,6010D DMC Beryllium, Total mg/kg 0.489 09/10/24 10:30 09/11/24 16:03 EPA 3050B ND 0.096 2 1,6010D DMC Cadmium, Total mg/kg 0.978 09/10/24 10:30 09/11/24 16:03 EPA 3050B Calcium, Total 8550 9.78 3.42 2 1,6010D mg/kg 09/10/24 10:30 09/11/24 16:03 EPA 3050B **DMC** 2 1,6010D DMC 4.89 0.978 0.094 09/10/24 10:30 09/11/24 16:03 EPA 3050B Chromium, Total mg/kg 2 1,6010D Cobalt, Total 3.43 mg/kg 1.96 0.162 09/10/24 10:30 09/11/24 16:03 EPA 3050B **DMC** 1,6010D Copper, Total 11.4 0.978 0.252 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B **DMC** mg/kg 2 1,6010D DMC 10200 4.89 0.884 09/10/24 10:30 09/11/24 16:03 EPA 3050B Iron, Total mg/kg 2 1,6010D Lead, Total 9.10 mg/kg 4.89 0.262 09/10/24 10:30 09/11/24 16:03 EPA 3050B DMC Magnesium, Total 1570 9.78 1.51 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D **DMC** mg/kg 0.978 0.156 2 1,6010D **DMC** Manganese, Total 331 mg/kg 09/10/24 10:30 09/11/24 16:03 EPA 3050B Mercury, Total ND mg/kg 0.081 0.053 1 09/10/24 11:00 09/11/24 16:23 EPA 7471B 1,7471B **JWN** Nickel, Total 7.99 2.45 0.237 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D **DMC** mg/kg 2 1,6010D **DMC** Potassium, Total 339 mg/kg 245 14.1 09/10/24 10:30 09/11/24 16:03 EPA 3050B Selenium, Total ND mg/kg 1.96 0.252 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D **DMC** 0.489 Silver, Total ND mg/kg 0.277 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D **DMC** J Sodium, Total 62.8 mg/kg 196 3.08 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D **DMC** Thallium, Total ND mg/kg 1.96 0.308 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D **DMC** 9.78 0.978 2 09/10/24 10:30 09/11/24 16:03 EPA 3050B 1,6010D DMC Vanadium, Total mg/kg 0.199 2 1.6010D 25.9 4.89 0.287 **DMC** Zinc, Total mg/kg 09/10/24 10:30 09/11/24 16:03 EPA 3050B

Lab Number: SCHENECTADY 40 ANCHOR L2450528 Project Number: 23.3588

Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sam	ple(s):	01-03 B	atch: W	G196948	39-1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Antimony, Total	ND		mg/kg	2.00	0.152	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Arsenic, Total	ND		mg/kg	0.400	0.083	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Barium, Total	ND		mg/kg	0.400	0.070	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Beryllium, Total	ND		mg/kg	0.200	0.013	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Cadmium, Total	ND		mg/kg	0.400	0.039	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Calcium, Total	ND		mg/kg	4.00	1.40	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Chromium, Total	ND		mg/kg	0.400	0.038	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Cobalt, Total	ND		mg/kg	0.800	0.066	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Copper, Total	0.117	J	mg/kg	0.400	0.103	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Iron, Total	0.765	J	mg/kg	2.00	0.361	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Lead, Total	ND		mg/kg	2.00	0.107	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Magnesium, Total	ND		mg/kg	4.00	0.616	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Manganese, Total	ND		mg/kg	0.400	0.064	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Nickel, Total	ND		mg/kg	1.00	0.097	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Potassium, Total	ND		mg/kg	100	5.76	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Selenium, Total	ND		mg/kg	0.800	0.103	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Silver, Total	ND		mg/kg	0.200	0.113	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Sodium, Total	ND		mg/kg	80.0	1.26	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Thallium, Total	ND		mg/kg	0.800	0.126	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Vanadium, Total	ND		mg/kg	0.400	0.081	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC
Zinc, Total	ND		mg/kg	2.00	0.117	1	09/10/24 10:30	09/11/24 15:11	1,6010D	DMC

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01-03 B	atch: Wo	G19694	92-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	09/10/24 11:00	09/11/24 15:57	1,7471B	JWN

Project Name:

Project Name:SCHENECTADY 40 ANCHORLab Number:L2450528

Project Number: 23.3588 Report Date: 09/12/24

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

rameter	LCS %Recovery Qu	LCSD ual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associ	ciated sample(s): 01-03 Batch: W	/G1969489-2				
Aluminum, Total	94	-	80-120	-		
Antimony, Total	100	-	80-120	-		
Arsenic, Total	92	-	80-120	-		
Barium, Total	97	-	80-120	-		
Beryllium, Total	98	-	80-120	-		
Cadmium, Total	98	-	80-120	-		
Calcium, Total	98	-	80-120	-		
Chromium, Total	100	-	80-120	-		
Cobalt, Total	100	-	80-120	-		
Copper, Total	100	-	80-120	-		
Iron, Total	99	-	80-120	-		
Lead, Total	95	-	80-120	-		
Magnesium, Total	100	-	80-120	-		
Manganese, Total	96	-	80-120	-		
Nickel, Total	101	-	80-120	-		
Potassium, Total	102	-	80-120	-		
Selenium, Total	94	-	80-120	-		
Silver, Total	99	-	80-120	-		
Sodium, Total	102	-	80-120	-		
Thallium, Total	91	-	80-120	-		
Vanadium, Total	100	-	80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated	sample(s): 01-03 Batch: WG	1969489-2			
Zinc, Total	100	-	80-120	-	
Total Metals - Mansfield Lab Associated	sample(s): 01-03 Batch: WG	1969492-2			
Mercury, Total	97	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
otal Metals - Mansfield Lab	Associated sar	mple(s): 01-03	QC Ba	tch ID: WG1969	9489-3	QC Sam	ple: L2451351-09	Client ID: MS	S Sample	
Aluminum, Total	7460	222	8650	536	Q	-	-	75-125	-	20
Antimony, Total	ND	55.4	49.0	88		-	-	75-125	-	20
Arsenic, Total	2.81	13.3	17.8	113		-	-	75-125	-	20
Barium, Total	53.5	222	257	92		-	-	75-125	-	20
Beryllium, Total	0.216J	5.54	5.48	99		-	-	75-125	-	20
Cadmium, Total	ND	5.88	4.63	79		-	-	75-125	-	20
Calcium, Total	89400	1110	96600	649	Q	-	-	75-125	-	20
Chromium, Total	19.2	22.2	41.6	101		-	-	75-125	-	20
Cobalt, Total	2.75	55.4	50.7	86		-	-	75-125	-	20
Copper, Total	12.1	27.7	40.8	104		-	-	75-125	-	20
Iron, Total	9420	111	10800	1240	Q	-	-	75-125	-	20
Lead, Total	182	58.8	326	245	Q	-	-	75-125	-	20
Magnesium, Total	6030	1110	7510	133	Q	-	-	75-125	-	20
Manganese, Total	134	55.4	211	139	Q	-	-	75-125	-	20
Nickel, Total	10.2	55.4	60.1	90		-	-	75-125	-	20
Potassium, Total	1760	1110	2540	70	Q	-	-	75-125	-	20
Selenium, Total	ND	13.3	14.5	109		-	-	75-125	-	20
Silver, Total	ND	5.54	5.53	100		-	-	75-125	-	20
Sodium, Total	838	1110	1550	64	Q	-	-	75-125	-	20
Thallium, Total	0.676J	13.3	13.4	101		-	-	75-125	-	20
Vanadium, Total	22.6	55.4	77.7	99		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number:

L2450528

Report Date:

09/12/24

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 01-03	QC Bat	tch ID: WG1969489-3	QC Sam	nple: L2451351-09	Client ID: MS	Sample	
Zinc, Total	50.3	55.4	107	102	-	-	75-125	-	20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01-03	QC Bat	tch ID: WG1969492-3	QC Sam	nple: L2451351-09	Client ID: MS	Sample	
Mercury, Total	ND	1.8	1.78	99	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number: L2450528

arameter	N	lative Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Assoc	siated sample(s): 01-03	QC Batch ID:	WG1969489-4 QC Sample:	L2451351-09	Client ID:	DUP Samp	ole
Aluminum, Total		7460	7550	mg/kg	1		20
Antimony, Total		ND	ND	mg/kg	NC		20
Arsenic, Total		2.81	3.01	mg/kg	7		20
Barium, Total		53.5	56.3	mg/kg	5		20
Beryllium, Total		0.216J	0.253J	mg/kg	NC		20
Cadmium, Total		ND	ND	mg/kg	NC		20
Calcium, Total		89400	91300	mg/kg	2		20
Chromium, Total		19.2	19.3	mg/kg	1		20
Cobalt, Total		2.75	2.97	mg/kg	8		20
Copper, Total		12.1	12.3	mg/kg	2		20
Iron, Total		9420	9270	mg/kg	2		20
Lead, Total		182	185	mg/kg	2		20
Magnesium, Total		6030	6100	mg/kg	1		20
Manganese, Total		134	148	mg/kg	10		20
Nickel, Total		10.2	10.2	mg/kg	0		20
Potassium, Total		1760	1760	mg/kg	0		20
Selenium, Total		ND	ND	mg/kg	NC		20
Silver, Total		ND	ND	mg/kg	NC		20
Sodium, Total		838	773	mg/kg	8		20

Lab Duplicate Analysis Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Lab Number:

L2450528

Report Date:

09/12/24

Parameter	Na	ative Sample	Duplicat	Duplicate Sample		RPD	RPD Limits	
Total Metals - Mansfield Lab Assoc	ciated sample(s): 01-03	QC Batch ID:	WG1969489-4	QC Sample:	L2451351-09	Client ID:	DUP Sample	
Thallium, Total		0.676J	0.6	34J	mg/kg	NC		20
Vanadium, Total		22.6	22	2.7	mg/kg	0		20
Zinc, Total		50.3	52	2.1	mg/kg	4		20
Total Metals - Mansfield Lab Assoc	ciated sample(s): 01-03	QC Batch ID:	WG1969492-4	QC Sample:	L2451351-09	Client ID:	DUP Sample	
Mercury, Total		ND	Ν	ID	mg/kg	NC		20

Lab Serial Dilution
Analysis
Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Report Date:

Lab Number:

L2450528 09/12/24

Parameter	Native Sample	Serial Dilution	Units	% D	Qual RPD	Limits
Total Metals - Mansfield Lab Associated sample(s): 01	-03 QC Batch ID:	WG1969489-6 QC Sample:	L2451351-09	Client ID:	DUP Sample	
Manganese, Total	134	143	mg/kg	7		20

INORGANICS & MISCELLANEOUS

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-01 Date Collected: 09/05/24 11:05

Client ID: TP-1 Date Received: 09/05/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	73.8		%	0.100	NA	1	-	09/06/24 12:48	121,2540G	ROI

SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-02 Date Collected: 09/05/24 11:10

Client ID: TP-2 Date Received: 09/05/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Project Name:

Matrix: Soil

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	75.5		%	0.100	NA	1	-	09/06/24 12:48	121,2540G	ROI

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

SAMPLE RESULTS

Lab ID: L2450528-03 Date Collected: 09/05/24 11:15

Client ID: TP-3 Date Received: 09/05/24

Sample Location: SCHENECTADY, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	79.6		%	0.100	NA	1	-	09/06/24 12:48	121,2540G	ROI

L2450528

ATTACHMENT 15

Lab Duplicate Analysis

Batch Quality Control

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588

Quality Control Lab Number:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	QC Batch ID:	WG1968361-1	QC Sample:	L2450528-01	Client ID:	TP-1
Solids, Total	73.8		73.5	%	0		20

Serial_No:09122411:50 **Lab Number:** L2450528

Report Date: 09/12/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

SCHENECTADY 40 ANCHOR

YES

Cooler Information

Project Name:

Project Number: 23.3588

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen			
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
	L2450528-01A	Vial MeOH preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260HLW-R2(14)	
	L2450528-01B	Vial water preserved	Α	NA		4.8	Υ	Absent	06-SEP-24 09:02	NYTCL-8260HLW-R2(14)	
	L2450528-01C	Vial water preserved	Α	NA		4.8	Υ	Absent	06-SEP-24 09:02	NYTCL-8260HLW-R2(14)	
	L2450528-01D	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.8	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),SE-TI(180),PB-TI(180),SB-TI(180),ZN-TI(180),CO-TI(180),V-TI(180),HG-T(28),MG-TI(180),FE-TI(180),MN-TI(180),K-TI(180),CA-TI(180),NA-TI(180),CD-TI(180)	
	L2450528-01E	Plastic 2oz unpreserved for TS	Α	NA		4.8	Υ	Absent		TS(7)	
	L2450528-01F	Plastic 120ml unpreserved	Α	NA		4.8	Υ	Absent		TS(7)	
	L2450528-01G	Glass 120ml/4oz unpreserved	Α	NA		4.8	Υ	Absent		NYCP51-PAH(14)	
	L2450528-02A	Vial MeOH preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260HLW-R2(14)	
	L2450528-02B	Vial water preserved	Α	NA		4.8	Υ	Absent	06-SEP-24 09:02	NYTCL-8260HLW-R2(14)	
	L2450528-02C	Vial water preserved	Α	NA		4.8	Υ	Absent	06-SEP-24 09:02	NYTCL-8260HLW-R2(14)	
	L2450528-02D	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.8	Y	Absent		BE-TI(180),BA-TI(180),AS-TI(180),AG- TI(180),TL-TI(180),AL-TI(180),CR-TI(180),NI- TI(180),CU-TI(180),SE-TI(180),PB-TI(180),SB- TI(180),ZN-TI(180),V-TI(180),CO-TI(180),MN- TI(180),FE-TI(180),HG-T(28),MG-TI(180),K- TI(180),CA-TI(180),CD-TI(180),NA-TI(180)	
	L2450528-02E	Plastic 2oz unpreserved for TS	Α	NA		4.8	Υ	Absent		TS(7)	
	L2450528-02F	Plastic 120ml unpreserved	Α	NA		4.8	Υ	Absent		TS(7)	
	L2450528-02G	Glass 120ml/4oz unpreserved	Α	NA		4.8	Υ	Absent		NYCP51-PAH(14)	
	L2450528-03A	Vial MeOH preserved	Α	NA		4.8	Υ	Absent		NYTCL-8260HLW-R2(14)	
	L2450528-03B	Vial water preserved	Α	NA		4.8	Υ	Absent	06-SEP-24 09:02	NYTCL-8260HLW-R2(14)	
	L2450528-03C	Vial water preserved	Α	NA		4.8	Υ	Absent	06-SEP-24 09:02	NYTCL-8260HLW-R2(14)	

Serial_No:09122411:50 Lab Number: L2450528

Report Date: 09/12/24

Container Information In		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2450528-03D	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.8	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),SB-TI(180),SE-TI(180),PB- TI(180),ZN-TI(180),V-TI(180),CO-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),NA- TI(180),CA-TI(180),CD-TI(180),K-TI(180)	
L2450528-03E	Plastic 2oz unpreserved for TS	Α	NA		4.8	Υ	Absent		TS(7)	
L2450528-03F	Plastic 120ml unpreserved	Α	NA		4.8	Υ	Absent		TS(7)	
L2450528-03G	Glass 120ml/4oz unpreserved	Α	NA		4.8	Υ	Absent		NYCP51-PAH(14)	

Project Name:

Project Number: 23.3588

SCHENECTADY 40 ANCHOR

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

L2450528

Lab Number:

Project Name: SCHENECTADY 40 ANCHOR

Project Number: 23.3588 Report Date: 09/12/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

L2450528

Project Name: SCHENECTADY 40 ANCHOR Lab Number:

Project Number: 23.3588 Report Date: 09/12/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: SCHENECTADY 40 ANCHOR Lab Number: L2450528

Project Number: 23.3588 Report Date: 09/12/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.

Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:09122411:50 ATTACHMENTI05No.:17873

Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270E:** NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

				ATTE	CHIN	IENI	10								
ALPHA CHAIN OF CUSTODY		Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105) o		Date Rec'd 9 10 24						ALPHA Job# L2450528		
Westborough, MA 01581	Mansfield, MA 02048	Project Information	Project Information						s			Billing Information			
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name: Sche	necladu	40 Ans	her		Π	ASP.	-A	1	ASP-	В	X Same as Client Info	0	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Sch	ap chace	NV			X	EQui	S (1 Fi	le)	EQui	S (4 File)	PO# 23.3589		
Client Information		Project # 23 35						Othe			- 1 - 2 - 2 - 2		23.3303		
Client: CT Make	e Associates		7				Regu	_	Requir	ement		200	Disposal Site Informatio	n	
Address: 50 Cen	tony Hill Dr.	Project Manager: A.	and the Control of th	14			- NAMES OF TAXABLE PARTY.	NY TO	NUMBER	L	NY Pa	art 375	Please identify below location	ion of	
Lathan, N	4/12110	ALPHAQuote #:					AWQ Standards NY CP-51						applicable disposal facilities.		
Phone: 786 518	786 7400	Turn-Around Time						NY R	estricted	Use [Other		Disposal Facility:		
Fax:	100	Standar	d X	Due Date:				NY U	nrestrict	ed Use			NJ NY	į.	
Email: a. smith 6	Octora le com	Rush (only if pre approve	d) [# of Days:				NYC	Sewer D	ischarge			Other:		
These samples have b	een previously analyz	ed by Alpha					ANA	LYSIS	3				Sample Filtration		
Other project specific							8200	8270					Done	1	
Total solic	is continuers	econte in tot	al TCL	& CP-51	VOG b	8260	13 8	\$ 8	S				Lab to do Preservation	a 1	
Please specify Metals		10.000					-0 1		-				Lab to do	В	
						1 6	120	CP-519/06,	Meta				(Please Specify below	0	
ALPHA Lab ID	1		Colle	ection	Sample	Sampler's		25					(rouse speerly seem	· i	
(Lab Use Only)	S	ample ID	Date	Time	Matrix	Initials	3.	9	世				Sample Specific Commen	ots	
	TP-I				S	AR	X	-	V	_	-		Jumpie opecine dominen	7	
50528-01			9/5/24						0	-	+				
	TP -2		1	1110	5	AR	×		-	-	+	\vdash		7	
03	111-3			1115	3	AR	X	×	X	_	+-	-		Ŧ	
			-		-	-	-	-		-	+-	-	-	_	
			-				-	-		-	+	-			
					-	-	-	-	-	-	+-		-	_	
			-		-	-	-	-	-		+	-	-	_	
					-		-	-			-	\vdash			
			-		-	-	-	-	-	_	_			_	
Preservative Code:	Container Code				_		+	-		_	-	-			
A = None	P = Plastic	Westboro: Certification	No: MA935		Co	ntainer Type	VID	A	AI				Please print clearly, le		
B = HCl A = Amber Glass Mansfield: Certification No: MA015 C = HNO ₃ V = Vial D = H ₂ SO ₄ G = Glass Preservative							11		1/8	_	-	-	and completely. Sam not be logged in and		
							F/	A	A				turnaround time clock		
E = NaOH	B = Bacteria Cup					- A	IN	,	11				start until any ambigu		
F = MeOH G = NaHSO ₄	C = Cube O = Other	Relinquished	By:	-	/Time	11.0	Recei	yed B	y:			e/Time	resolved. BY EXECU		
$H = Na_2S_2O_3$	E = Encore	ANN		9/5/24	1205	Jon C	ABU	щ	PAC	E 9	10/2	4 12:05	HAS READ AND AG		
K/E = Zn Ac/NaOH	D = BOD Bottle						_	A		- 5	15	2200	TO BE BOUND BY A	ALPHA'S	
O = Other		11		9/6	1200	1/0	uli 9/4					14 1:2	TERMS & CONDITIO	SNC.	
Form No: 01-25 HC (rev. 3	0-Sept-2013)					/		*****				The same of the sa	(See reverse side.)		

Quantitation Report (QT Reviewed) ATTACHMENT 15

Data Path : K:\VOA110\2024\240911N\

Data File: V10240911N12.D

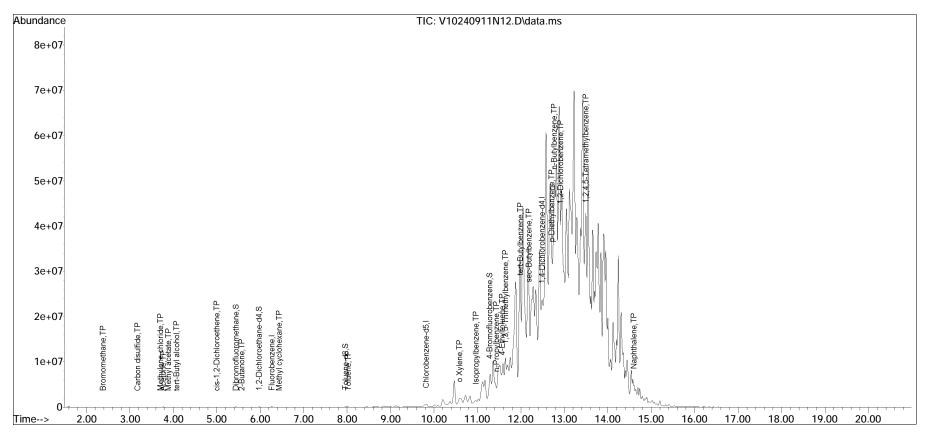
Acq On : 12 Sep 2024 2:01 am

Operator : VOA110:JIC

Sample : L2450528-03,31,5.94,5,,B,32.66,39.10,0.50

Misc : WG1970749,ICAL21435 ALS Vial : 12 Sample Multiplier: 1

Quant Time: Sep 12 09:17:18 2024


Quant Method: K:\VOA110\2024\240911N\V110_240829T_8260.m

Quant Title : VOLATILES BY GC/MS

QLast Update : Fri Aug 30 10:17:56 2024

Response via : Initial Calibration

Sub List : 8260-CurveSoil - Megamix plus Diox11N01.D•

V110_240829T_8260.m Thu Sep 12 09:44:13 2024