Contract No: EP-W-09-002 WA #: 029-SION-0200 ## Region 2 RAC2 Remedial Action Contract # Final Phase II Environmental Site Assessment Former Duofold Targeted Brownfields Assessment Ilion, New York. June 15, 2017 14 Wall Street, Suite 1702 New York, New York 10005 tel: 212-785-9123 fax: 212-227-1692 June 15, 2017 Ms. Alison Devine Remedial Project Manager U.S. Environmental Protection Agency 290 Broadway, 20th Floor New York, NY 10007-1866 PROJECT: EPA Region 2, RAC 2 Contract No.: EP-W-09-002 Work Assignments: 029-SION-0200 DOCUMENT NO .: 3323-029-03252 SUBJECT: Final Phase II Environmental Site Assessment Former Duofold Targeted Brownfields Assessment Ilion, New York Dear Ms. Devine: CDM Federal Programs Corporation (CDM Smith) is pleased to submit this Final Phase II Environmental Site Assessment (ESA) for the Targeted Brownfields Assessment (TBA) at the Former Duofold subject property located in Ilion, New York. If you have any comments concerning this submittal, please contact me at (212) 377-4527. Very truly yours, **CDM FEDERAL PROGRAMS CORPORATION** Brendan MacDonald, P.E., LEED ®AP Project Manager PSO: #5 Attachment cc: A. Devine, EPA Region 2 (CD) F. Rosado, EPA Region 2 (letter only) T. Leonard, Village of Ilion (Electronic Copy) J. Blaum, CDM Smith (Electronic Copy) L. Estrada, CDM Smith (Electronic Copy) RAC 2 Region 2 Document Control ### **Table of Contents** | Acronyms | V | |--|------| | Executive Summary | ES-1 | | Section 1 Introduction | 1-1 | | 1.1 Purpose | 1-1 | | 1.2 Special Terms and Conditions | 1-1 | | 1.3 Limitations, Methodology and Exceptions of Investigation | | | Section 2 Site Description | 2-1 | | 2.1 Site Description | 2-1 | | 2.2 Physical Setting, Site History and Land Use | 2-1 | | 2.3 Adjacent Property Land Use | 2-2 | | 2.4 Summary of Previous Assessment | 2-2 | | Section 3 Phase II Activities | 3-1 | | 3.1 Scope | 3-1 | | 3.2 Site Access and Reconnaissance | 3-2 | | 3.3 Geophysical Survey | | | 3.4 Sampling Activities and Sample Analysis | | | 3.4.1 Passive Soil Gas Survey | | | 3.4.2 Soil Borings and Subsurface Soil Samples | | | 3.4.3 Shallow Soil Borings | | | 3.4.4 Surface Soil Samples | | | 3.4.5 Existing and Temporary Monitoring Well Installation and Sampling | | | 3.4.6 Investigative Derived Waste Sampling and Disposal | | | 3.5 Deviations from the QAPP | 3-5 | | Section 4 Summary and Evaluation of Data | | | 4.1 Selection of Evaluation Criteria | 4-1 | | 4.2 Soil Sample Results | | | 4.2.1 Surface Soil Analytical Results | | | 4.2.1.1 Pesticides | 4-2 | | 4.2.1.2 Metals | 4-2 | | 4.2.1.3 TCLP Metals | | | 4.2.2 Subsurface Soil Analytical Results | | | 4.2.2.1 VOCs | | | 4.2.2.2 SVOCs | | | 4.2.2.3 PCBs | | | 4.2.2.4 Metals | 4-3 | | 4.2.2.5 TCLP Metals | | | 4.3 Temporary Well Point and Existing Monitoring Well Sample Results | | | 4.3.1 Monitoring Well Sample Analytical Results | 4-4 | | 4.3.1.1 VOCs | | | 4.3.1.2 SVOCs | 4-5 | | 4.3.1.3 Metals | 4-5 | |--|-----| | 4.4 Quality Assurance/Quality Control | | | 4.5 Evaluation of Results | | | 4.5.1 VOCs | 4-7 | | 4.5.2 SVOCs | 4-7 | | 4.5.3 PCBs and Pesticides | | | 4.5.4 Metals | 4-8 | | 4.5.5 TCLP Metals | | | 4.5.6 Evaluation of Sampled Environmental Matrices | 4-8 | | Section 5 Conclusions and Recommendations | 5-1 | | 5.1 Conclusions | 5-1 | | 5.2 Recommendations | 5-1 | | Costian C References | 6.1 | ### List of Tables | Table 1-1 | Sampling Scope and Rationale Summary Table | |------------|--| | Table 2-1 | Sample Parameters | | Table 2-2 | Groundwater Water Quality Parameters | | Table 3-1A | Soil Sample Detections - VOCs | | Table 3-1B | Soil Sample Detections – SVOCs | | Table 3-1C | Soil Sample Detections - PCBs | | Table 3-1D | Soil Sample Detections – Pesticides | | Table 3-1E | Soil Sample Detections – Metals | | Table 3-1F | Soil Sample Detections - TCLP Metals | | Table 3-2A | Groundwater Sample Detections - VOCs | | Table 3-2B | Groundwater Sample Detections – SVOCs | | Table 3-2C | Groundwater Sample Detections – Metals | | Table 3-3A | Trip Blank and Field Blank Detections - VOCs | | Table 3-3B | Field Blank Detections - SVOCs | | Table 3-3C | Field Blank Sample Detections - PCBs | | Table 3-3D | Field Blank Detections - Pesticides | | Table 3-3E | Field Blank Detections - Metals | | Table 3-3F | Field Blank Detections - TCLP Metals | ### List of Figures | Figure 1-1 | Site Location Map | |------------|--| | 0 | • | | Figure 2-1 | Overall Site Plan and Herkimer County Tax Map | | Figure 3-1 | Sample Location Plan | | Figure 3-2 | Existing Monitoring Well Groundwater Contour Map | | Figure 4-1 | Metal Exceedances in Surface Soil | | Figure 4-2 | Metal Exceedances in Subsurface Soil | | Figure 4-3 | Volatile Organic Compound Exceedances in Groundwater | | Figure 4-4 | Metal Exceedances in Groundwater | ### **Appendices** | Appendix A | Geophysical Investigation Report | |------------|--| | Appendix B | Field Log Book and Equipment Calibration Forms | | Appendix C | Passive Soil Gas Survey Report | | Appendix D | Soil Boring and Temporary Well Construction Logs | | Appendix E | Groundwater Sampling Logs | | Appendix F | Waste Manifests | | Appendix G | Data Validation Report | | = = | | ### **Acronyms** AAI All Appropriate Inquiries ACM asbestos containing material AST above ground storage tank AWQS ambient water quality standards bgs below ground surface BVC BAV1 vinyl chloride reductase CDM Smith CDM Federal Programs Corporation CIH Certified Industrial Hygienist cis-1,2-DCE cis-1,2-dichloroethene CLP Contract Laboratory Program COCs contaminants of concern CRQL Contract required quantitation limit Delta Geophysics Inc. DER Division of Environmental Remediation DMC Deuterated Monitoring Compounds DPT direct push technology EM Electromagnetic EPA United States Environmental Protection Agency ESA Environmental Site Assessment GC/MS gas chromatography/mass spectrometry GPR ground penetrating radar GPS Global Positioning System HASP health and safety plan ICP inductive coupled plasma ID identification IDW Investigative derived waste I estimated value J+ biased high estimated value J- biased low estimated value mg/kg milligram per kilogram MS/MSD matrix spike/matrix spike duplicate No. number NYCRR New York Codes Rules and Regulations NYSDEC New York State Department of Environmental Conservation PAH polyaromatic hydrocarbon PAL Project Action Limit PCB polychlorinated biphenyl PCE tetrachloroethene PID photoionization detector ppm part per million PVC polyvinyl chloride QA quality assurance QAPP Quality Assurance Project Plan QC quality control R rejected RSL Regional Screening Levels SCO Soil Cleanup Objectives SVOC semi-volatile organic compound TAL Target Analyte List TBA Targeted Brownfields Assessment TCE trichloroethene tceA reductase TCL Target Compound List TCLP Toxicity Characteristic Leaching Procedure TOGS Technical & Operational Guidance Series trans-1,2-DCE trans-1,2-dichloroethene μm micron $\begin{array}{ll} \mu g/kg & \text{microgram per kilogram} \\ \mu g/L & \text{microgram per Liter} \end{array}$ U undetected UJ undetected estimated UST underground storage tank VOC volatile organic compound VC vinyl chloride VCR vinyl chloride reductase % percent %D percent difference %RSD percent relative standard deviation ### **Executive Summary** This report presents the results of CDM Federal Programs Corporation's (CDM Smith) Phase II Environmental Site Assessment (ESA) for Former Duofold Corporation site (the "subject property") located in Ilion, New York (**Figure 1-1**). This Phase II ESA was conducted on behalf of the United States Environmental Protection Agency (EPA) as a result of a Targeted Brownfields Assessment (TBA) request from Herkimer County, Contract No.: EP-W-09-002, WA No.: 029-SION-0200. The results of this Phase II ESA will assist the Village of Ilion in identifying any areas or contaminants of concern and identifying appropriate options for redevelopment and future use. The subject property is currently owned by Ilion Properties, Inc. Company and is located at 7 Spruce Street in the Village of Ilion, Herkimer County, New York. The subject property is approximately 12.3 acres that is comprised of three Herkimer County tax parcels and located within the Village of Ilion. The majority of the subject property is comprised of tax parcel 120.29-1-63, on the south side of Spruce Street, and tax parcel 120.29-2-74.1, a contiguous parcel on the north side of River Street. The third parcel is located on the north side of Spruce Street with the tax parcel ID 120.29-1-26 (**Figure 2-1**). The subject property was last used to cut and sew winter clothes and underwear from pre-dried and pre-treated materials. Manufacturing ceased around 2000, from which time the subject property has been vacant. Prior to use for clothing manufacturing, Sperry-Univac (formerly the Sperry-Rand Corporation) utilized the subject property to manufacture computers from the late 1940's until approximately 1968. The subject property was also used to manufacture naval shells during World War II. Remington-Rand Corporation utilized the subject property for manufacturing adding machines and typewriters in the 1930's. Through the early 1900's the subject property was owned by the Library Bureau and was used to manufacture wood and veneer. The main building housed the former manufacturing and office operations of the facility and includes an approximately 106,000-square foot, 4-story brick structure. The middle portion of this structure has a basement with a 1,000,000-gallon underground fire protection water storage tank. The in-feed to this tank is unknown, but it is assumed to be from a municipal water source. The main building is vacant. The powerhouse
building is located adjacent to the west side of the main building. The powerhouse building contains boilers, a former coal silo and a 30,000-gallon aboveground Number (No.) 6 fuel oil tank that is located in a separate building. The volume of the product remaining in the tank, if any, is unknown. There is an approximately 5,600-square foot maintenance garage located to the west of the powerhouse building. The interior of the garage was not available for inspection and the contents of the garage are unknown. The remainder of tax parcel 120.29-1-63 consists of former building foundations and slabs to the east and a grassy area to the west. The area north of main building (tax parcel 120.29-1-26) is paved parking lot area, and the area south (tax parcel 120.29-2-74.1) is an open grassy area with a paved unnamed roadway that gives access to the main building. The subject property is currently vacant and there are no known easements. There are no open permits issued by the New York State Department of Environmental Conservation (NYSDEC) or EPA related to the subject property (Barton and Loguidice 2012). A site inspection and sampling investigation was conducted by NUS Corporation, Region 2 FIT, in 1990 for the EPA in which low levels of polyaromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) including chlorinated constituents (tetrachloroethene) were noted in the subject property soils. Elevated levels of metals (lead, arsenic, antimony, and copper) were also observed. In 2014-2015 Nature's Way Environmental Consultants & Contractors, Inc. performed a subsurface investigation for NYSDEC that included sampling of surface soils, subsurface soils and groundwater quality. Low levels of polychlorinated biphenyls (PCBs), PAHs, and VOCs were seen in surface and subsurface soils. Elevated levels of metals (arsenic, barium, copper, lead, total mercury, nickel and selenium) were present in surface and subsurface soil. VOCs were seen at low levels in groundwater. Elevated levels of metals (arsenic, chromium, lead, manganese, nickel, and magnesium) were present in the installed monitoring wells. The 12 monitoring wells installed by Nature's way are still present at the subject property. The 2016 Phase II ESA was performed by CDM Smith to investigate and confirm the previous investigation results conducted by Nature's Way and Barton and Loguidice. The Phase II ESA was conducted in accordance with the following guidance documents: - Quality Assurance Guidance for Conducting Brownfields Site Assessments (EPA 1998) - ASTM International E1527-13: Standard Practice for Environmental Site Assessments: Phase II Environmental Site Assessment Process (ASTM International 2013) - New York State Department of Environmental Remediation (NYSDEC) Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation, May 2010 (DER-10); - 6 NYCRR Part 375 Environmental Remediation Programs, December 2006 The following Phase II investigation tasks were completed by CDM Smith and their subcontractors in 2016 at the subject property: • Site Reconnaissance: A site reconnaissance was performed by CDM Smith. The main building, the powerhouse building (containing boilers, a former coal silo and a separate building containing a 30,000-gallon #6 oil aboveground storage tank (AST)) and other site features of the property were visually inspected. There is an approximately 5,600-square foot maintenance garage located to the west of the powerhouse building, which was not available for inspection and the contents of the garage are unknown. Surface conditions at the time of the reconnaissance included maintained lawn areas, asphalt, and overgrown brushy areas. There was no snow on the ground at the time of the subject property visit. - Passive Gas Survey: Beacon Environmental Services, Inc. performed a passive gas survey across the subject property except for within the buildings. A total of 81 sorbent tubes were deployed in an approximate 100 x 100-foot grid pattern to determine if VOCs were present in subsurface soils across the subject property and to aid in the placement of soil borings and temporary well points. - Electromagnetic (EM) 31 and Ground-Penetrating Radar (GPR): Survey: An EM and GPR survey was performed by Delta Geophysics to identify any subsurface anomalies including underground storage tanks (USTs), septic tanks, buried drums, and utilities. The survey was conducted using electromagnetic conductivity, GPR and utility detection equipment. Findings from the survey include: - Utilities including water, gas, sanitary sewer, storm sewer and unknown utilities were located and marked with appropriate colors. - A potential building foundation was detected; however, in previous environmental report this feature was identified as a backfilled fire pond. No other subsurface features were identified via EM/GPR. - Soil Borings: Twenty Geoprobe soil borings were advanced by Talon Drilling Company to a maximum depth of 15 feet and 20 subsurface soil samples were collected from depths ranging from 2 to 8 feet below ground surface (bgs). The locations selected for soil sampling was based on passive soil gas sampling, proximity to onsite features, and previous environmental sampling results. The soil was collected from the interval above the groundwater table. Lithologic logging, visual and olfactory observations, and photoionization (PID) field screening of subsurface soil samples, which were collected via direct push technology (DPT), were used to characterize environmental media and to screen for potential impacts. - Monitoring Well Sampling: Ten temporary groundwater wells were installed and sampled, in addition to the 12 existing groundwater wells at the subject property, for a total of 22 groundwater wells sampled. The temporary monitoring wells ranged in depths from 11 to 15 feet bgs, while the existing wells had depths from 13 to 15 feet bgs. Groundwater samples were collected via low flow sample methodology. - Surface Soil Samples: Ten surface soil samples were collected from 0 to 0.5 feet bgs via disposable trowel. Lithologic logging and PID screening was also performed for surface soil samples to characterize environmental media and screened for potential impacts to the ground surface. - Shallow Soil Borings: Four shallow soil boring samples were collected across the subject property from a depth of 0 to 2 feet bgs. These locations were only analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals. The locations of these borings were advanced as close as possible to areas previously identified as having significantly high levels of lead. Analyzing for TCLP metals may determine if lead and other metals are leaching to groundwater in these areas. All sampling locations are presented on Figure 3-1. All samples were analyzed via off-site EPA Contract Laboratory Program (CLP) laboratory. Surface soil samples were analyzed for pesticides, Target Analyte List (TAL) metals and TCLP metals. Shallow soil borings were analyzed for TCLP metals. Subsurface soil was analyzed for Target Compound List (TCL) VOCs, semi-volatile organic compounds (SVOCs), PCBs, TCLP Metals, and TAL Metals. The groundwater samples were analyzed for TCL VOCs, SVOCs, and TAL metals. #### **Phase II ESA Conclusions** CDM Smith's conclusions, based on analytical results, historic information, and visual observations are summarized below. Analytical results for soil were compared to NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs) and analytical results for groundwater were compared to NYSDEC Ambient Water Quality Standards (AWQS) and Guidance Values. EPA Regional Screening Levels (RSLs) are provided for reference in the analytical result tables (provided as an attachment to this report) however, these RSLs are generally less stringent than NYSDEC guidance thus the project action levels (PALs) will be consistent with NYSDEC guidance. Within the surface soil and subsurface soil, metal concentrations were observed above the Unrestricted Use SCOs. Subsurface soil had detections for VOCs, SVOCs and TCLP Metals but no exceedances. PCBs were not detected in subsurface soil. Surface soil had no detections for pesticides but did have detections for TCLP metals below EPA Regulatory Levels. The four shallow subsurface soil samples from 0 to 2 feet bgs that were only analyzed for TCLP metals did have detections for TCLP metals but not above the EPA Regulatory Levels. Groundwater had VOC and metals exceedances but had no detections for SVOCs. A more detailed summary of the analytical results associated with the various matrices are below: - Surface Soil: Pesticides were not detected in surface soil; however, several metals (copper, lead, nickel, silver and zinc) were detected at concentrations exceeding Unrestricted Use SCOs. Copper was observed from 61.9 milligrams per kilogram (mg/kg) to 193 mg/kg above the SCO of 50 mg/kg. Lead was observed from 112 mg/kg to 381 mg/kg above the SCO of 63 mg/kg. Nickel (65.9 mg/kg) and silver (3.9 mg/kg) were only observed above the SCOs of 30 mg/kg and 2 mg/kg, respectively in one location, DF-SS-06. Zinc was observed from 136 mg/kg to 629 mg/kg above the SCO of 109 mg/kg. All surface soil locations and their metal exceedances are shown on Figure 4-1. Surface soil was also analyzed for TCLP metals. There were detections for TCLP metals (barium, cadmium, chromium, lead and selenium) but there were no exceedances of the EPA Regulatory Levels. - Shallow Subsurface Soil: Four shallow subsurface soil samples were collected from 0 to 2 feet bgs and analyzed for TCLP metals. As mentioned, these sample locations were placed in areas previously identified as having high concentrations of lead. Lead was only detected at DF-SSB-01(located near former soil boring SB-24 from the Nature's Way investigation) at a level of 0.1 J mg/L below the EPA Regulatory Level of 5 mg/L. Barium, cadmium, chromium, lead
and selenium were all detected but did not exceed EPA Regulatory Levels, this indicates that leaching of metals is not a concern in these areas. - Subsurface Soil: The passive soil gas samplers were deployed in a 100x100-foot grid pattern to screen for the presence of VOCs across the subject property and aid in the determination of soil boring and temporary well point locations. Subsurface soil samples ranged from 2 to 8 feet bgs. Several VOCs and SVOCs were detected in subsurface soil samples but did not exceed Unrestricted Use SCOs. Several metal concentrations (arsenic, barium, cadmium, chromium, copper, lead, nickel, selenium, and zinc) were detected above SCOs throughout the subject property. Copper, nickel, selenium and zinc were generally seen at similar levels (with the exception of DF-SB-11) throughout the subject property and may be associated with background concentrations rather than activities at the subject property. Arsenic, barium, cadmium, chromium, and lead appear to be the primary contaminations of concern (COCs) within the subsurface soil. DF-SB-11 had the most exceedances of metals above Unrestricted Use SCOs and a majority of the concentrations were the highest levels observed within the subsurface soil. The concentration ranges of metals that exceeded the Unrestricted Use SCOs in subsurface soil are listed in the table below. All subsurface soil sample locations and metal exceedances are shown on **Figure 4-2.** | Metal Compound | Concentration Range Seen in
Subsurface Soil
(mg/kg) | NYSDEC Unrestricted Use SCO (mg/kg) | |----------------|---|-------------------------------------| | Arsenic | 13.9 to 41.3 | 13 | | Barium | 1730 (only seen at DF-SB-11) | 350 | | Cadmium | 5.7 (only seen at DF-SB-11) | 2.5 | | Chromium | 49.4 to 2,090 | 30 | | Copper | 54 to 251 | 50 | | Lead | 97.9 to 84,200 | 63 | | Nickel | 32.9 to 442 | 30 | | Selenium | 6.5 (only seen at DF-SB-10) | 3.9 | | Zinc | 112 to 10,500 | 109 | Subsurface soil was also analyzed for TCLP metals. There were detections for TCLP metals (arsenic, barium, cadmium, chromium, lead, mercury, and selenium) but there were no exceedances of the EPA Regulatory Levels. • *Groundwater:* A network of 12 existing monitoring wells are located at the subject property. Ten temporary well points were installed during the Phase II ESA. Depth to water was identified at approximately 6 to 9 feet bgs and flows toward the north/northeast towards the Mohawk River. A complete round of groundwater was collected from the 12 existing wells as well as the ten temporary wells. No SVOCs were detected in groundwater samples. VOCs, cis-1,2-dichlorethene (cis-1,2-DCE), trans-1,2-dichlorethene (trans-1,2-DCE), trichloroethene (TCE), and vinyl chloride (VC) were detected at concentrations exceeding AWQS at 6 well locations (DF-MW-02, DF-MW-08, DF-MW-10, DF-TWP-14, DF-TWP-15 and DF-TWP-16). Cis-1,2-DCE was observed from 26 micrograms per liter (μg/L) to 340 μg/L above the AWQS of 5 μg/L. Trans-1,2-DCE was observed from 8.1 μg/L to 17 μg/L above the AWQS of 5 μ g/L. TCE was observed from 5.8 μ g/L to 34 μ g/L above the AWQS of 5 μ g/L. VC was observed from 2.4 μ g/L to 33 μ g/L above the AWQS of 2 μ g/L. All groundwater sample locations and associated VOC exceedances are shown in **Figure 4-3.** Iron, manganese, selenium, and sodium were detected above AWQS in a majority of the well locations sampled at the subject property. It is likely that these metals compounds are associated with background concentrations rather the site activities. All groundwater sample locations and associated metal exceedances are shown in **Figure 4-4**. Based on the data generated during the Phase II ESA, CDM Smith concludes that contamination detected at the subject property is fairly wide-spread in the surface soil and more concentrated near the main building in the subsurface soil. Contamination in the surface and subsurface soil mainly consists of metals. Groundwater contamination consists of both VOCs and metals. However, the metal exceedance levels seen are for iron, manganese, selenium, and sodium which are not typically associated with adverse health effects but rather adverse effects to supply well and conveyance infrastructure. As mentioned, it is likely the levels seen are associated with subject property background concentrations. VOC exceedances in groundwater were concentrated on the eastern portion of the subject property. This area is located downgradient from an area previously identified as having VOC impacted soil and is likely to have been the source area. Based on these groundwater concentrations, the contamination is likely from random discharge of wash or rinse waters to the ground surface and not the results of any major TCE/PCE release. The onsite buildings were determined to be unsuitable for internal access, therefore, no sampling was conducting within the buildings. Due to the subject property's history, there is a possibility for asbestos containing materials (ACMs). During the future demolition or rehabilitation of the onsite buildings, proper identification and removal of any ACMs should be performed. It is unlikely that contamination exist below the main building since this building has a basement and below that is a one-million-gallon water storage tank. #### Recommendations Based on the results of the Phase II Site Investigation activities and an evaluation of subject property information based on previous environmental investigations, the following recommendations are made: • VOC-impacted groundwater may be easily managed at these relatively low levels via natural attenuation if the proper site conditions exist and no significant source was identified. TCE, cis-1,2-DCE, trans-1,2-DCE, and VC are all present in groundwater samples indicating that PCE is breaking down. A sample for Dehalococcoides, the dechlorinating bacteria, in addition to, their catalyzing enzymes BAV1 vinyl chloride reductase (BVC), tceA reductase (tceA), and vinyl chloride reductase (VCR) are recommended to confirm bacteria are present. The presence of these bacteria would indicate that there is a potential for reductive dechlorination. If the bacteria and specific site conditions are not present other remedial options may be considered. - It is recommended that the contaminated subsurface soil adjacent to the main building be excavated and disposed of off-site at an appropriate state or federally regulated landfill. At DF-SB-11 the lead concentration exceeds the Industrial Use SCO of 3,900 mg/kg by more than 20 times at 84,200 mg/kg at depth of 4 to 5 feet bgs. This area should be sampled for TCLP metals again to confirm soil is not hazardous and to determine the proper handling and disposal of the material. Additional subsurface soil samples should be taken to delineate the extent of subsurface contamination. - Surface soil (0-6 inches) throughout the subject property exhibited metal contamination at levels exceeding Unrestricted Use SCOs but below Residential Use SCOs. Depending on future site use, these levels are manageable at the residential level. However, it is recommended that continuous subsurface soil sampling is performed at 1-foot intervals down to approximately 4-feetto determine if contamination exists beneath surface soil. Subsurface soil samples were collected from 1 foot discrete intervals above the top of the water table or the 1-foot interval where the highest PID reading was observed at each sample location. Metal exceedances were observed in subsurface soil; however, it is unknown if exceedances exist between the discrete sample depth and surface soil. It would be recommended that either a surface scrape be conducted in some areas removing 6 to 12 inches if no further contamination exists beneath the surface soil or a cap be placed over these areas to reduce exposure to the general public. Capping of surface soil would require periodic cap inspections, development of an operations and maintenance plan and placement of deed restriction or environmental easement on the subject property. If contamination does exist further below surface soil, a deeper excavation may be required. All areas would be backfilled with clean fill. A deed restriction or environmental easement may also be required. - A comprehensive inventory of all contents of the on-site structures should be performed prior to removal. Development of a recycling/waste disposal recycling plan can assist with sustainable disposal of discarded and abandoned materials. All waste removal should be conducted in accordance with state and federal regulations and guidance documents. In general, the contamination detected at the subject property appears to be manageable so long as direct contact is prevented. Remediation by subsurface soil removal and backfill or isolation by capping of surface soils of areas where concentrations are above applicable standards would be recommended depending on future use. Based on the Phase II ESA sampling results, soil removal would be targeted to areas where subsurface contamination was identified such as the areas identified adjacent to the main building. Groundwater impacted by VOCs addressed using other remedial methods such as bioaugmentation to promote biological, chemical, and/or biochemical processes that result in the transformation of contaminants, if natural attenuation is not viable. A deed restriction or environmental easement may be required for any contamination that is left in place. When undertaking subject property development, it is recommended that the developer enlist a professional engineer or scientist to prepare a health and safety plan, construction contingency plans, and a soils management plan, in order to safely and appropriately remove (and control) impacted materials. It is recommended that any work performed at the subject property be performed by an
environmental professional (or if necessary a professional engineer) following approved plans and a site-specific health and safety plan approved by a certified industrial hygienist (CIH). In the absence of excavation, engineering controls should be implemented. These controls would require (1) the installation of pavement or topsoil/vegetative cover or installation and maintenance of a perimeter fence; and (2) that any construction involving the disturbance of soils, fill materials, or demolition of uncharacterized structures located within the subject property (including non-emergency excavation, which may be part of utility repair or maintenance, or construction) should not be performed without the involvement of a professional engineer, and must be conducted in accordance with local state and federal rules and regulations and provide adequate engineering controls and worker protection. In the absence of remediation, the values of adjacent and surrounding properties may be (and currently be) negatively impacted. The loss of property value may represent some risk to public welfare, yet this risk may not be considered significant risk. ### Section 1 ### Introduction This report presents the results of CDM Federal Programs Corporation's (CDM Smith) Phase II Environmental Site Assessment (ESA) for the Targeted Brownfield Assessment (TBA) at the Former Duofold Corporation (the "subject property") located in Ilion, New York (**Figure 1-1** Site Location Map). This Phase II ESA was conducted on behalf of the United States Environmental Protection Agency (EPA) as a result of a TBA request from the Village of Ilion. ### 1.1 Purpose This Phase II ESA was conducted on behalf of the EPA, as part of a TBA performed for Village of Ilion, to investigate the potential for contamination associated with the areas of concern identified during the previous investigations and the site reconnaissance. The objective of this Phase II ESA was to: - confirm the presence/absence of previously identified underground storage tanks (USTs) and identify additional potential anomalies on the subject property - determine if onsite soil and groundwater contamination exists above applicable criteria in areas not previously investigated and confirm previous sample data - collect hydrogeological information The subject property is zoned for Manufacturing (M-1). There is no current remedial goal, however all sampling results were compared to New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use to allow for the Village of Ilion to weigh all alternatives before determining the fate of the subject property. ### 1.2 Special Terms and Conditions Special terms and conditions in relation to this project have been addressed throughout various sections of this assessment. ### 1.3 Limitations, Methodology and Exceptions of Investigation The Phase II investigation conducted by CDM Smith in May of 2016 was executed in accordance with the following documents: - "U.S. EPA Region 2 Brownfields Project Planning Guidance" (EPA 2000) - "Generic Brownfields Quality Assurance Project Plan" (CDM Smith 2008) - Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites, May 2014 (EPA) - NYSDEC Division Environmental Remediation (DER)-10 Technical Guidance for Site Investigations and Remediation, May 2010 (DER-10) - 6 New York Codes Rules and Regulations (NYCRR) Part 375 Environmental Remediation Programs - NYSDEC Technical & Operational Guidance Series (TOGS), Section 1.1.1 Ambient Water Quality Standards & Guidance Values and Groundwater Effluent - 6 NYCRR Part 703 Water Quality Standards - "Final Site-Specific Quality Assurance Project Plan (QAPP), Former Duofold Corporation, Targeted Brownfields Assessment, Ilion, New York" (CDM Smith 2016) - "Site-Specific Health and Safety Plan (HASP), Former Duofold Corporation, Targeted Brownfields Assessment, Ilion, New York" (CDM Smith 2016) - "Final Work Plan, Targeted Brownfields Assessments for Selected Region 2 Brownfields Initiative Sites" (CDM Smith 2010) - "Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process, Designation: E 1903-11" (ASTM International 2000) (Reapproved 2002) - "Quality Assurance Guidance for Conducting Brownfields Site Assessments" (EPA 1998) Site assessment activities, including reporting of findings and conclusions, were conducted in accordance with ASTM International site assessment guidance to the extent practicable with respect to the information gathered. The results for this TBA Phase II ESA are based on a review of available information obtained through a review of historic records and previous environmental investigations, an on-site reconnaissance, a geophysical survey, and field sampling analytical data. The Phase II ESA was completed to identify, locate, and characterize contamination present at the subject property. To meet this objective, sample locations were chosen based on the subject property history obtained by CDM Smith. The results of the Phase II ESA only characterize the nature of contamination at the subject property; the ESA has not fully characterized the extent of contamination. This assessment has been prepared and conducted under the guidance of a qualified environmental professional as defined in NYSDEC's DER-10, 40 CFR Part 312, Standards and Practices for All Appropriate Inquiries (AAI) and ASTM E1903-11. The conclusions represent CDM Smith's professional opinions based on these aforementioned sources of information. A Phase II investigation is not a comprehensive site characterization or regulatory compliance audit, and should not be construed as such. CDM Smith cannot represent that the subject property contains no hazardous or toxic materials, products, or other latent conditions beyond those observed during the ESA. Further, the services herein shall not be construed, designed or intended to be relied upon as legal interpretation or advice. This report was prepared for the exclusive use by EPA, and is not intended for use by any other parties. Use of this report by any other party is at their sole risk without liability to CDM Smith. ### Section 2 ### Site Description ### 2.1 Site Description The subject property is currently owned by Ilion Properties and is located at 7 Spruce Street in the Village of Ilion, Herkimer County, New York. The subject property is 12.30 acres with the north side of the parcel bordered by Spruce Street and the south side by West River Street. The subject property is comprised of three Herkimer County tax parcels 120.29-1-63; 120.29-2-74.1; and 120.29-1-26. Refer to **Figure 2-1**, Overall Site Plan and Herkimer County Tax Map. ### 2.2 Physical Setting, Site History and Land Use The subject property is located in an area with mixed residential and commercial development. The main building housed the former manufacturing and office operations of the facility and includes an approximately 106,000-square foot, 4-story brick structure. The middle portion of the structure has a basement with a 1,000,000-gallon underground fire protection water storage tank beneath the floor. The in-feed to this tank is unknown, but it is assumed to be from a municipal water source. The main building is vacant. The powerhouse building complex is located adjacent to the west side of the main building. The powerhouse building complex contains boilers, a former coal silo and a 30,000-gallon aboveground No. 6 fuel oil tank located in a separate building. The volume of product remaining in the tank, if any, is unknown. There is an approximately 5,600-square foot maintenance garage located to the west of the powerhouse building. The interior of the garage was not available for inspection and the contents of the garage are unknown. The remainder of tax parcel 120.29-1-63 consists of former building foundations/slabs to the east and a grassed area to the west. The area north of main building (parcel 120.29-1-26) is a paved parking lot area, and the area south (parcel 120.29.2-74.1) is an open grassy area with a paved unnamed roadway that gives access to the main building (Figure 2-1). From the subsurface investigations, soil types at the subject property were generally consistent. The top 0 to 4 feet consisted of a brown, fine to medium sand, with trace gravel. Wet, very stiff, gray-brown silt and clayey silt was encountered below 4 feet below ground surface (bgs) to a maximum depth of 10 feet bgs. Groundwater is relatively shallow across the subject property at approximately 6 to 8 feet bgs. No intrusive analysis below the overburden was performed to determine the lithology and physical characteristics of the underlying bedrock. The subject property was last used to cut and sew wither clothes and underwear from pre-dyed and pretreated materials. Manufacturing ceased around 2000, from which time the subject property has been vacant. Prior to use for clothing manufacturing, Sperry-Univac (formerly the Sperry-Rand Corporation) utilized the subject property to manufacture computers from the late 1940's until approximately 1968. The subject property was used to manufacture naval shells during World War II. Remington-Rand Corporation utilized the subject property for manufacturing adding machines and typewriters in the 1930's. Through the early 1900's the subject property was owned by the Library Bureau and was used to manufacture wood and veneer. ### 2.3 Adjacent Property Land Use The subject property is primarily surrounded by mixed use residential and some commercial parcels. The adjacent parcel located along the southeast corner of the subject property was split between two companies; a former restaurant operation and a plumbing supply company. Parcels located further east across Central Avenue consists of a FastTrack Markets, an office building, Young's General Store and ACE, and an Aldi's Supermarket. The parcel located west of the subject property across Pleasant Avenue is a
Bernie Bus Operations Facility. ### 2.4 Summary of Previous Assessment A site inspection and sampling investigation was conducted by NUS Corporation, Region 2 FIT, in 1990 for the EPA in which low levels of polyaromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) including chlorinated constituents (tetrachloroethene (PCE)) were noted in subject property soils. Elevated levels of metals (lead, arsenic, antimony and copper) were also present. In 2014-2015 Nature's Way Environmental Consultants & Contractors, Inc. performed a subsurface investigation for NYSDEC that included sampling of surface soils, subsurface soils and groundwater quality. Low levels of polychlorinated biphenyls (PCBs), PAHs, and VOCs were seen in surface and subsurface soils. Elevated levels of metals (arsenic, barium, copper, lead, total mercury, nickel, and magnesium) were present in the installed monitoring wells. The 12 monitoring wells installed by Nature's Way are still present at the subject property. ### Section 3 ### Phase II Activities ### 3.1 Scope CDM Smith performed a Phase II ESA at the subject property from October 2016 through November 2016 to investigate the contaminants of concern identified during a previous Phase I ESA and subsurface investigation. The activities performed as part of this Phase II ESA included: - Preparation of a Site-Specific QAPP - Preparation of a Site-Specific HASP - Conducting a field planning meeting on May 9, 2016 - Site Reconnaissance - Site Investigation: - *Geophysical Survey*: An Electromagnetic (EM) 31 and Ground Penetrating Radar (GPR) survey was performed by Delta Geophysics Inc. (Delta) of the property to identify any subsurface anomalies including USTs, septic tanks, buried drums, utilities and automotive parts. The survey was conducted using electromagnetic conductivity, GPR and utility detection equipment. - Passive Soil Gas Sampling: Beacon Environmental Services, Inc. performed a passive soil gas survey across the subject property with the exception of within the onsite buildings. A total of 81 sorbent tubes were deployed in a 100-foot grid pattern to determine VOC concentration gradients across the subject property to assist in the placement of soil borings and temporary well points. - *Soil Borings*: Twenty Geoprobe soil borings were advanced by Talon Drilling Company and sampled by CDM Smith. - Temporary Groundwater Monitoring Wells: The installation of 10 temporary groundwater wells were also advanced/installed by Talon Drilling Company while CDM Smith provided oversight. - Existing Groundwater Monitoring Wells: Gauging and sampling of the 12 existing monitoring wells. - *Surface Soil Sampling:* Ten surface soil samples were collected from 0 to 0.5 feet bgs via disposable trowel. - *Surface Soil Borings*: Four shallow soil boring samples were collected across the subject property from a depth of 0 to 2 feet bgs. These locations were only analyzed for Toxicity Characteristic Leaching Procedure (TCLP) metals. All sample locations are indicated on **Figure 3-1** Sample Location Plan. All samples were analyzed via EPA Contract Laboratory Program (CLP) laboratory. Surface soil samples were analyzed for pesticides, target analyte list (TAL) metals and TCLP metals. Surface soil borings were only analyzed for TCLP metals. Subsurface soil was analyzed for target compounds list (TCL) VOCs, semi-volatile organic compounds (SVOCs), PCBs, TCLP Metals, and TAL Metals. The groundwater samples were analyzed for TCL VOCs, SVOCs, TCLP metals, TAL metals and field filtered TAL metals. #### 3.2 Site Access and Reconnaissance A site reconnaissance was performed by CDM Smith on January 26, 2016. During the reconnaissance, the subject property was observed to be vacant, unsecured, and covered in mowed grassy areas and overgrown vegetation. With the exception of the maintenance shop, all the onsite buildings were visually inspected. ### 3.3 Geophysical Survey A complete geophysical survey was performed by Delta to identify any subsurface anomalies including USTs and utilities. The survey was completed from October 3 through October 6, 2016, the geophysical survey included the following: - A GPR survey using a Geophysical Survey System Inc. SIR-3000 cart-mounted GPR unit with a 400-megahertz antenna System 2. The GPR unit was configured to transmit to a depth of approximately 10 feet bgs, but actual signal penetration was approximately 3 feet bgs. The limiting factor was signal attenuation near surface soils. - A utility locator survey using a Radiodetection RD7000 precision utility detector and Fisher M- Scope TW-6 magnetic locator. The TW-6 and RD7000, used in conjunction, are designed to find subsurface pipes, cables and other metallic objects such as USTs. The TW-6 operates by generating a magnetic field at the transmitter which causes metallic objects in the subsurface to generate a secondary magnetic field. The induced secondary field is detected by the RD7000, which generates an audible tone when the instrument passes over an underground metallic object causing a change in balance between the primary and secondary electromagnetic fields. - A Genomics EM-61 Mark II time-domain metal detector was used to complete an EM conductivity survey. The EM method uses the principle of electromagnetic induction to measure the variability of electrical conductivity of subsurface materials. The EM-61 was used to detect both ferrous and non-ferrous metals buried up to 8 feet bgs. - Coordinate mapping using a Trimble Global Positioning System (GPS) Pathfinder Pro XRS. - All accessible areas within the survey areas were examined during this investigation. Based on the data gathered, the following utilities were detected: water, gas, sanitary sewer and storm sewer. Additionally, a potential building foundations was detected. All detected utilities were marked onsite with appropriate colors. Anomalous features and unknown utilities were marked onsite in pink. The complete report can be found in **Appendix A**. ### 3.4 Sampling Activities and Sample Analysis Field log book notes and sampling information recorded during investigation activities, including sampling equipment calibration forms, are provided in **Appendix B**. Sample locations are shown on **Figure 3-1** and a summary of the samples collected and sample parameters are presented in **Table 2-1**. Sampling locations were selected based on contamination impacted areas identified during the passive soil gas sampling, previous environmental sample locations, and evidence of staining. Analytical results are discussed in Section 4. #### 3.4.1 Passive Soil Gas Survey Beacon Environmental Services, Inc. performed a passive gas survey across the subject property with the exception of inside the onsite buildings. A total of 81 sorbent tubes were deployed in a 100x100-foot grid pattern to screen for VOCs across the subject property to assist in the placement of soil borings and temporary well points. Passive soil gas survey results are given in **Appendix C**. #### 3.4.2 Soil Borings and Subsurface Soil Samples Twenty Geoprobe soil borings were advanced from November 8 to 9, 2016 by Talon Drilling Company via direct push technology (DPT), to characterize environmental media and to screen for potential impacts. **Appendix D** presents Soil Boring and Temporary Well Construction Logs. The soil borings were advanced to a maximum depth of 15 feet bgs. The locations of the soil borings that were sampled are shown in **Figure 3-1**. The first few feet of soil encountered at the subject property was generally fill material. Just above the water table, moderately dense, brown fine to medium moist sand was observed at approximately 4 to 5 feet. Wet, moderately dense, gray-tan, silt and clay was then observed from 5 to 10 feet. A total of 20 subsurface samples were collected from the 20 soil borings based on the location of the borings, historical data and visual and olfactory observations. Subsurface soil samples were collected from the interval above the groundwater table. Lithologic logging and PID field screening was performed at all 20 locations. With the exemption of SB-11 and SB-12 located in the northeast corner of the building, PID readings across the subject property were non-detect for all samples. Elevated PID readings were recorded at 834 parts per million (ppm) from 4 to 5 feet bgs at SB-11 and 65.3 ppm in the sample collected from 6 to 7 feet bgs at SB-12. Subsurface soil samples were analyzed by a CLP laboratory (Chemtech Consulting Group) for the following organic compound analyses: TCL VOCs, SVOCs, PCBs, TAL metals and TCLP metals. Subsurface soil samples, analytical parameters, and associated QC samples are presented in Table 3-1A through Table 3-1F. ### 3.4.3 Shallow Soil Borings Four shallow soil borings were advanced by Talon Drilling Company on November 8 and 9, 2016. The borings were advanced to a depth of 2 feet bgs and one sample was collected from a depth of 1 to 2 feet bgs. The lithology of the sample was recorded and field screened with a photoionization detector (PID). The samples were homogenized in a disposable aluminum pan then collected using a sample-dedicated hand trowel. The locations where these borings were advanced was as close as possible to previous sample locations in 2014 (MW-09, SB-12, SB-23) and SB-24) that were identified as having significantly high levels of lead. By analyzing for TCLP metals, it could be determined if lead was leaching. Shallow soil borings were analyzed by a CLP laboratory (Chemtech Consulting Group) for TCLP metals. Shallow soil boring samples, analytical parameters, and associated QC samples are presented in **Table 3-1F**. #### 3.4.4 Surface Soil Samples A total of 10 surface samples were collected from a depth of 0 to 0.5 feet bgs using a sample-dedicated disposable trowel. The lithology of the samples was recorded and field screened with a PID. Soil was homogenized in disposable aluminum pans
and filled into appropriate sample bottleware. The sample-dedicated hand trowel was used to collect additional quality assurance/quality control (QA/QC) soil volume if needed. Surface soil samples were analyzed by a CLP laboratory (Chemtech Consulting Group) for the following analyses: pesticides, TAL metals and TCLP metals. Surface soil samples, analytical parameters, and associated QC samples are presented in **Table 3-1D** through **Table 3-1F**. #### 3.4.5 Existing and Temporary Monitoring Well Installation and Sampling Groundwater samples were collected from temporary monitoring wells installed via DPT drilling methods at 10 of the subsurface borings. Locations were determined based on the Phase II ESA field observations, passive soil gas sampling results and previous environmental sampling. The temporary wells were comprised of one-inch diameter polyvinyl chloride (PVC) with 5 foot screens with 0.010 inch slots. The total depth of the temporary wells ranged from 11 to 14 feet bgs. Each temporary well was screened from approximately one foot above to four feet below the water table. Groundwater samples were collected from the 12 existing monitoring wells and 10 installed temporary well points. A synoptic round of water levels from all well locations was recorded prior to sampling. **Figure 3-1** shows the existing well locations and the temporary well point locations. The direction of groundwater flow is to the north and northeast as indicated by previous reports. A groundwater contour map is presented in **Figure 3-2** for the existing monitoring wells. Temporary well points were not surveyed therefore, water level readings for those locations were not included in the creation of the contour map. Groundwater samples were collected using ¼-inch inner diameter TeflonTM-lined polyethylene tubing and a peristaltic pump. Prior to low-flow sampling, each temporary well was developed for a minimum of 30 minutes or until water quality parameters (pH, specific conductivity, and temperature) recorded at five-minute intervals stabilized. The time between development and well purging ranged from 3 to 24 hours. Prior to sample collection, water quality parameters (pH, specific conductivity, turbidity, dissolved oxygen, temperature and redox potential) were again collected at five minute intervals. Groundwater samples were collected once water quality parameters stabilized. Final groundwater parameters are summarized in **Table 2-2** and the groundwater sampling logs can be found in **Appendix E**. The groundwater samples were submitted to a CLP laboratory (Chemtech Consulting Group) for the following analyses: TCL VOCs, SVOCs, TAL metals, filtered TAL metals and TCLP metals. The TAL metal samples were filtered using a disposable inline 0.45-micron (μ m) field filters that were attached to the end of the well dedicated tubing after all other samples for analysis were collected. Groundwater samples, analytical parameters, and associated QC samples are presented in **Table 3-2A** through **Table 3-2C**. #### 3.4.6 Investigative Derived Waste Sampling and Disposal All soil cuttings and purge water were collected and containerized in 55 gallon drums and stored on site. Capital Environmental collected investigative derived waste (IDW) soil and groundwater samples on November 14, 2016 and the drums were later removed for off-site disposal on December 14, 2016. Waste manifests are provided in **Appendix F**. ### 3.5 Deviations from the QAPP No deviations from the QAPP were made. This page intentionally left blank. ### Section 4 ### Summary and Evaluation of Data This section describes the selection of evaluation criteria and summarizes the analytical results of the Phase II ESA samples. The results of this Phase II ESA will assist the Village of Ilion in identifying areas and media of concern, determine if there is a need for additional delineation, and identify some appropriate options for remediation, if necessary, based on future use. The Data Validation Reports for all data are included in **Appendix G**. ### 4.1 Selection of Evaluation Criteria In accordance with the site-specific QAPP, analytical results are compared to both federal and state project action limits (PALs) presented in Worksheet #15 and listed below. #### Soil Criteria - EPA RSLs for Chemical Contaminants at Superfund Sites (May 2014) for residential soil, adjusted to a cancer risk of 1E-6 and hazard quotient of 1 - NYSDEC CP-51/Soil Cleanup Guidance NYSDEC Subpart 375-6: Table 375-6.8(a): Unrestricted Use soil cleanup objectives (SCOs) VOC and SVOC soil results have been compared to Soil Cleanup Levels for Gasoline Contaminated Soils and for Fuel Oil Contaminated Soils, which are listed in Tables 2 and 3 of NYSDEC's CP-51 Soil Cleanup Guidance Documented issued October 21, 2010. The soil cleanup criteria presented in NYSDEC's CP-51 Tables 2 and 3 are comparable to NYSDEC's Unrestricted Use SCOs. The subject property is currently zoned for manufacturing use however, soil results were compared to Unrestricted Use to assist the Village of Ilion with determining all alternative reuse scenarios for future development. Other NYSDEC use SCOs will be mentioned in this report to further provide insight to the Village. The proposed remedial goal is currently unknown. Soil analytical results are presented in **Tables 3-1A** through **Table 3-1F** for surface and subsurface soil samples. #### **Groundwater Criteria** - EPA National Primary Drinking Water Standards, EPA 816-F-09-0004, May 2009 - NYSDEC Part 703.5 Ambient Water Quality Standards (AWQS) for Class GA Groundwater (TOGS 1.1.1. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations) Although the PALs are based on federal and state groundwater guidance values (referenced as "evaluation criteria" in this report), the federal regulations are less stringent than the remediation goals established for the subject property; therefore, groundwater analytical results are compared to NYSDEC evaluation criteria. EPA guidance criteria will be included where applicable. The groundwater organic and inorganic PALs and analytical results are presented in **Table 3-2A** through **Table 3-2C**. ### 4.2 Soil Sample Results #### 4.2.1 Surface Soil Analytical Results **Tables 3-1A through 3-1F** present the results of the subsurface soil samples collected during this Phase II ESA. **Figure 4-1** shows exceedances for metals in surface soil samples. Section 4.5 – Evaluation of Results provides a discussion on the relationship between the sample results and the environmental matrices that were sampled. #### 4.2.1.1 Pesticides Pesticides were not detected in any surface soil samples. #### 4.2.1.2 Metals Five metals were detected at concentrations exceeding the NYSDEC Unrestricted Use SCOs in surface soil samples. A summary of all metals results can be found in **Table 3-1E** and exceedances are presented below. - Copper Concentrations were observed at five surface soil locations, DF-SS-01(193 milligrams per kilogram (mg/kg)), DF-SS-02 (61.9 mg/kg), DF-SS-05 (83.8 mg/kg), DF-SS-06 (62 mg/kg) and DF-SS-08 (117 mg/kg), which exceeded the Unrestricted Use SCO of 50 mg/kg. - Lead Concentrations were observed at seven surface soil locations, DF-SS-01 (144 mg/kg), DF-SS-02 (183 mg/kg), DF-SS-03 (112 mg/kg), DF-SS-05 (175 mg/kg), DF-SS-06 (215 mg/kg), DF-SS-08 (334 mg/kg) and DF-SS-10 (381 mg/kg), which exceeded the Unrestricted Use SCO of 63 mg/kg. - *Nickel* Concentrations were observed at two surface soil locations, DF-SS-06 (65.9 mg/kg) and DF-SS-10 (90.5 mg/kg), which exceeded the Unrestricted Use SCO of 30 mg/kg. - *Silver* One sample location, DF-SS-06 indicated a concentration of 3.9 mg/kg, which exceeded the Unrestricted Use SCO of 2 mg/kg. - Zinc Concentrations were observed at six surface soil locations, DF-SS-01 (136 mg/kg), DF-SS-02 (194 mg/kg), DF-SS-05 (175 mg/kg), DF-SS-06 (212 mg/kg), DF-SS-08 (629 mg/kg) and DF-SS-10 (212 mg/kg), which exceeded the Unrestricted Use SCO of 109 mg/kg. #### 4.2.1.3 TCLP Metals Several metals were detected in surface soil samples at low levels that did not exceed EPA Regulatory Levels for TCLP metals. #### 4.2.2 Subsurface Soil Analytical Results **Table 3-1A** through **Table 3-1F** present the results of the organic and inorganic analytes detected in subsurface soil samples collected during this Phase II ESA. **Figure 4-2** shows exceedances of metals in subsurface soil samples. Section 4.5 provides a discussion on the relationship between the sample results and the environmental matrices that were sampled. #### 4.2.2.1 VOCs Several VOCs were detected at low levels in subsurface soil samples at levels that did not exceed Unrestricted Use SCOs. Acetone was detected in three samples above Unrestricted Use SCOs. #### 4.2.2.2 SVOCs Several SVOCs were detected at low levels in subsurface soil samples in levels that did not exceed Unrestricted Use SCOs. #### 4.2.2.3 PCBs PCBs were not detected in any subsurface soil samples. #### 4.2.2.4 Metals Eight metal compounds were detected at concentrations exceeding the NYSDEC Unrestricted Use SCOs in a majority of the subsurface soil samples. **Table 3-1E** details all detections and exceedances. Metal concentrations that exceed the SCOs are listed below for all subsurface soil locations. - Arsenic Concentrations above the NYSDEC Unrestricted Use SCO of 13 mg/kg was detected in DF-SB-02 from 4 to 5 feet bgs (25.5 mg/kg), DF-SB-06 from 4 to 5 feet bgs (41.3 mg/kg), DF-SB-07 from 7 to 8 feet bgs (13.6 mg/kg), DF-SB-10 from 5 to 6 feet bgs (18.3 mg/kg), SB-900-A (Duplicate at DF-SB-10) from 5 to 6 feet bgs (15.2 mg/kg), DF-SB-11 from 4 to 5 feet bgs (20.5 mg/kg), DF-SB-14 from 6 to 7 feet bgs (39.5 mg/kg), and DF-SB-16 from 5 to 6 feet bgs (13.9 mg/kg). - Barium Concentration above the NYSDEC Unrestricted Use SCO of 350 mg/kg was detected in Df-SB-11 from 4 to 5 feet bgs (1,730 mg/kg). - *Cadmium* Concentrations
were detected above the NYSDEC Unrestricted Use SCO of 2.5 mg/kg in DF-SB-11 from 4 to 5 feet bgs (5.7 mg/kg). - Chromium Concentrations were detected above the NYSDEC Unrestricted Use SCO of 30 mg/kg in DF-SB-11 from 4 to 5 feet bgs (2,090 mg/kg) and DF-SB-13 from 4 to 5 feet bgs (49.4 mg/kg). - Copper Concentrations were detected above the NYSDEC Unrestricted Use SCO of 50 mg/kg in DF-SB-02 from 4 to 5 feet bgs (251 mg/kg), DF-SB-08 from 2 to 3 feet bgs (54 J mg/kg), DF-SB-11 from 4 to 5 feet bgs (219 mg/kg), DF-SB-13 from 4 to 5 feet bgs (235 J mg/kg), DF-SB-17 from 4 to 5 feet bgs (87 J mg/kg) and SB-900-B (Duplicate at DF-SB-17) from 4 to 5 feet bgs (94.4 J mg/kg). - Lead Concentrations above the NYSDEC Unrestricted Use SCO of 63 mg/kg were detected in DF-SB-02 from 4 to 5 feet bgs (397 mg/kg), DF-SB-05 from 5 to 6 feet bgs (130 mg/kg), DF-SB-07 from 7 to 8 feet bgs (97.9 mg/kg), DF-SB-11 from 4 to 5 feet bgs (84,200 mg/kg), DF-SB-13 from 6 to 7 feet bgs (674 mg/kg), DF-SB-17 from 4 to 5 feet bgs (553 J mg/kg), and SB-900-B (Duplicate at DF-SB-17) from 4 to 5 feet bgs (139 J mg/kg). - Nickel Concentrations were detected above the NYSDEC Unrestricted Use SCO of 30 mg/kg in DF-SB-02 from 4 to 5 feet bgs (32.6 mg/kg), DF-SB-08 from 2 to 3 feet bgs (76 mg/kg), DF-SB-10 from 5 to 6 feet bgs (36.9 mg/kg), and DF-SB-11 from 4 to 5 feet bgs (442 mg/kg). - Selenium Concentration above the NYSDEC Unrestricted SCO of 3.9 mg/kg was detected in DF-SB-10 from 5 to 6 feet bgs (6.5 J mg/kg). - Zinc Concentrations were detected above the NYSDEC Unrestricted Use SCO of 109 mg/kg in DF-SB-01 from 4 to 5 feet bgs (186 mg/kg), DF-SB-02 from 4 to 5 feet bgs (206 mg/kg), DF-SB-07 from 7 to 8 feet bgs (211 mg/kg), DF-SB-09 from 5 to 6 feet bgs (125 mg/kg), DF-SB-10 from 5 to 6 feet bgs (171 mg/kg), SB-900-A (Duplicate at DF-SB-10) from 5 to 6 feet bgs (143 mg/kg), DF-SB-11 from 4 to 5 feet bgs (10,500 mg/kg), DF-SB-12 from 6 to 7 feet bgs (142 mg/kg), DF-SB-13 from 4 to 5 feet bgs (339 mg/kg) and DF-SB-14 from 6 to 7 feet bgs (112 mg/kg). #### 4.2.2.5 TCLP Metals Several metals were detected in subsurface soil samples at low levels that did not exceed EPA Regulatory Levels for TCLP metals. # 4.3 Temporary Well Point and Existing Monitoring Well Sample Results ### 4.3.1 Monitoring Well Sample Analytical Results **Tables 3-2A** through **3-2C** present the results of the analytes detected in the existing and temporary monitoring well samples collected during this Phase II ESA. **Figure 4-3** shows exceedances for VOCs detected in groundwater. Section 4.5 – Evaluation of Results provides a discussion on the relationship between the sample results and the environmental matrices that were sampled. #### 4.3.1.1 VOCs Four VOCs were detected at concentrations above the NYSDEC AWQS in six of the 22 groundwater wells sampled. VOC concentrations that exceed the AWQS are listed below for all groundwater well locations and the complete summary of VOCs in groundwater can be found in Table 3A. Cis-1,2-Dichloroethene (cis-1,2-DCE) – Concentrations were detected above the NYSDEC AWQS of 5 μg/L in DF-MW-02 (26 μg/L), DF-MW-08 (240 J- μg/L), DF-MW-10 (64 μg/L), DF-TWP-15 (340 J- μg/L) and DF-TWP-16 (110 J- μg/L). - Trans-1,2-Dichloroethene (trans-1,2-DCE) Concentrations were detected above the NYSDEC AWQS of 5 μg/L in DF-MW-02 (17 μg/L), DF-TWP-15 (14 J- μg/L) and DF-TWP-16 (8.1 J- μg/L). - Trichloroethene (TCE) Concentrations were detected above the NYSDEC AWQS of 5 μg/L in DF-MW-02 (10 μg/L), DF-MW-10 (20 μg/L), DF-TWP-14 (34 μg/L) and DF-TWP-16 (5.8 μg/L). - Vinyl Chloride (VC) Concentrations were detected above the NYSDEC AWQS of 2 μ g/L in DF-MW-02 (5.4 μ g/L), DF-MW-08 (11 μ g/L), DF-MW-10 (5.8 μ g/L), DF-TWP-15 (2.4 μ g/L) and DF-TWP-16 (33 μ g/L). #### 4.3.1.2 SVOCs No SVOCs were detected in groundwater samples and Table 3-2B presents a complete summary of SVOC results. #### 4.3.1.3 Metals Iron, manganese, selenium, and sodium were detected at concentrations exceeding the NYSDEC AWQS exceedances in a majority both unfiltered and filtered groundwater samples. Filtered samples indicate the dissolved component of each metal analyte. Sample identification (ID) numbers with the suffix "-F" indicate the filtered sample. **Table 3-3C** details all exceedances. - Iron Concentrations were detected above the NYSDEC AWQS of 300 μg/L in samples DF-MW-01-1 (484 μg/L), DF-MW-02-1 (953 μg/L), DF-MW-02-1-F (393 μg/L), DF-MW-03-1 (6,170 μg/L), DF-MW-03-1-F (4,240 μg/L), DF-TWP-02-1 (8,870 μg/L), DF-TWP-02-1-F (8,540 μg/L), DF-TWP-18-1 (7,190 μg/L), DF-TWP-18-1-F (6,580 μg/L), DF-TWP-19-1 (476 μg/L), and DF-TWP-19-1-F (423 μg/L). - Manganese Concentrations were detected above the NYSDEC AWQS of 300 μg/L in samples DF-MW-02-1 (944 μg/L), DF-MW-02-1-F (894 μg/L), DF-MW-03-1 (5,320 μg/L), DF-MW-03-1-F (5,280 μg/L), DF-MW-08-1 (343 μg/L), DF-MW-08-1-F (341 μg/L), DF-MW-09-1 (1,010 μg/L), DF-MW-09-1-F (984 μg/L), DF-MW-10-1 (1,280 μg/L), DF-MW-10-1-F (1,220 μg/L), DF-TWP-02-1 (553 μg/L), DF-TWP-02-1-F (544 μg/L), DF-TWP-18-1 (1,140 μg/L), DF-TWP-18-1-F (1,100 μg/L), DF-TWP-19-1 (1,350 μg/L), and DF-TWP-19-1-F (1,340 μg/L). - *Selenium* Concentrations were detected above the NYSDEC AWQS of 10 μg/L in two samples, DF-TWP-02-1 (21.1 J μg/L) and DF-TWP-02-1-F (18.7 J μg/L). - Sodium Concentrations were detected above the NYSDEC AWQS of 20,000 μg/L in samples DF-MW-01-1 (32,200 μg/L), DF-MW-01-1-F (32,000 μg/L), DF-MW-02-1 (27,600 μg/L), DF-MW-02-1-F (28,600 μg/L), DF-MW-04-1 (42,100 μg/L), DF-MW-04-1-F (41,600 μg/L), DF-MW-06-1 (45,300 μg/L), DF-MW-06-1-F (45,600 μg/L), DF-MW-07-1 (44,600 μg/L), DF-MW-07-1-F (44,300 μg/L), DF-MW-08-1 (39,200 μg/L), DF-MW-08-1-F (38,600 μg/L), DF-MW-10-1 (28,300 μg/L), DF-MW-10-1-F (28,800 μg/L), DF-MW-11-1 (47,800 μg/L), DF-MW-11-1-F (48,200 μg/L), DF-MW-12-1 (49,700 μg/L), DF-MW-12-1-F (49,500 μg/L), DF-TWP-03-1 (35,300 μg/L), GW-900-2 (35,900 μg/L, duplicate of DF-TWP-03-1), DF-TWP-03-1-F (35,300 μ g/L), GW-900-2-F (35,200 μ g/L, duplicate of DF-TWP-03-1-F), DF-TWP-07-1 (44,500 μ g/L), and DF-TWP-07-1-F (45,200 μ g/L). ### 4.4 Quality Assurance/Quality Control Three field rinsate blanks were collected, one by pouring deionized water over dedicated soil sampling equipment, and the other two by pouring deionized water over dedicated groundwater sampling equipment. Field rinsate blanks were submitted with the environmental samples and analyzed for the same parameters (VOCs, SVOC, pesticides, PCBs, metals and mercury, and TCLP metals). The field rinsate blank associated with soil collection had detections of VOCs (acetone and methylene chloride), SVOCs (4-chloro-3-methypenol and benzaldehyde), one metal (barium), and TCLP metals (calcium and zinc). All results were below the contract required quantitation limit (CRQL), except the VOC acetone, which was above the CRQL. Five trip blanks were collected and shipped with the aqueous field samples for VOC analysis. Analytical results for field rinsate and trip blank samples are provided in **Table 3-3A** through **Table 3-3F** All data were validated by EPA and have been reviewed to assess whether data quality is sufficient to support the project objectives. Some QC parameters were outside criteria; associated sample results were qualified accordingly. Data qualified as estimated J, J+, J-, U, or UJ are usable for project decisions; rejected data (R) are not considered usable for project purposes. Data validation reports are included in **Appendix G**. QC outliers noted within the EPA validation reports are described below. - Analytical Blanks Laboratory method blanks had detections of VOCs and metals. Associated sample results were appropriately qualified as estimated non-detect (U). - *Field Rinsate Blanks* Field rinsate blanks had VOC detections. Associated sample results were appropriately qualified as estimated non-detect (U). - Trip Blanks Trip blanks had detections of VOCs, acetone, and methylene chloride. Associated sample results were appropriately qualified as estimated non-detect (U). - Deuterated Monitoring Compounds (DMCs) and Surrogate Recoveries Several DMCs and surrogates exceeded QC criteria. This affected sample results for VOCs, SVOCs, pesticides and PCBs which were estimated by the data validator. In addition, two compounds (1,1,2,2tetrachloroethane and 1,2-dibromo-3-chloropropane) in one VOC sample (DF-SB-11-A) were rejected due to DMC criteria. - Percent Relative Standard Deviation (% RSD) and Percent Difference (% D) These %RSD and %D were calculated from the initial calibrations and the continuing calibration checks to indicate the stability of specific compound response factors over increasing concentration, and the instrument's daily performance. A value outside these limits indicates potential detection and quantitation errors. Some % RSD and % D recoveries were outside control limits for VOC results; associated results required estimation. - Matrix Spike/Matrix Spike Duplicate (MS/MSD) These QC data were generated to determine the long-term precision and accuracy of the analytical method in various matrices. Several MS/MSDs did not meet QC criteria. The affected PCB and arsenic sample results were qualified as estimated by the data validator. - *Field Duplicate* Several metals were above the validation criteria in the field duplicate sample pairs. These metal results were qualified estimated by the data validator. - Internal Standards Internal standards performance criteria ensure that gas chromatography (GC)/ mass spectrometry (MS) sensitivity and response are stable during every analytical run. Some VOC and SVOC internal standards results were outside criteria and were estimated. Additionally, seven VOC compounds (1,2,3-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2-dibromo-3-chloropropane, 1,2-dichlorobenzene,1,3-dichlorobenzene, 1,4-dichlorobenzene, bromoform) in one sample (DF-SB-02-A) were rejected due to poor
internal standards recovery. - Inductively Coupled Plasma (ICP) Serial Dilution (Inorganics) Several ICP serial dilutions did not yield acceptable percent difference. The affected detected metal result was estimated. - Spike Sample Analysis (Inorganics) Several iron spike sample analysis results did not meet QC criteria. The spike sample analysis results affected metals sample results, which were qualified as estimated by the data validator. The final percentages of valid data are 99.9 percent (%) for soil and 100% for groundwater. The rejected data should not be used for project decisions. The ninety percent completeness goal for usable data has been met. Data failing QC criteria were appropriately qualified as estimated, non-detected, or rejected during data validation. Almost all data reported herein are usable with the data validation qualifiers. The data generated during this Phase II are considered definitive level data and, except for the rejected data, are usable for the intended purpose which is to determine the extent of VOC, PAH and metal contamination and to allow for the grantee to best determine the appropriate future use of the Site based on the nature of the contamination. ### 4.5 Evaluation of Results #### 4.5.1 VOCs VOC exceedances in subsurface soil samples were limited to DF-SB-10 (5 to 6 feet bgs) and DF-SB-11 (4 to 5 feet bgs) in the area closest to the main building. Acetone exceeded the NYSDEC Unrestricted SCO at these locations. The highest PID measurements were observed at DF-SB-11 but PID readings were non-detect at DF-SB-10. Neither location exhibited any soil staining. Subsurface soil had low detections of several VOCs but no exceedances of the Unrestricted Use SCOs. Groundwater also had several detections of VOCs, in addition to exceedances of cis-1,2-DCE, trans-1,2-DCE, TCE and VC in the area of the wooden foundation to the east of the main building. #### 4.5.2 SVOCs Low PAH detections were seen throughout the subsurface soil. No exceedances were observed in either soil or groundwater. #### 4.5.3 PCBs and Pesticides No pesticides were detected in surface soil and no PCBs were detected in subsurface soil. #### **4.5.4 Metals** Metals were detected across the subject property in subsurface soil, surface soil, and groundwater. Arsenic, cadmium, chromium, copper, lead, nickel, selenium, silver, and zinc exceeded Unrestricted Use SCOs in the subsurface and surface soil. The significant metal exceedances are concentrated directly adjacent to the main building. In groundwater, iron, manganese and sodium were detected above AWQS in a vast majority of samples located across the subject property. Selenium exceeded the AWQS in one temporary well location in the far northeast corner of the subject property. #### 4.5.5 TCLP Metals TCLP metals including arsenic, barium, cadmium, chromium, lead, mercury, and selenium were detected in surface, shallow subsurface soil, and subsurface soil at fairly low levels and they did not exceed EPA Regulatory Levels. This indicates that those metals listed are not leaching into the groundwater at the locations sampled. #### 4.5.6 Evaluation of Sampled Environmental Matrices Within the surface soil and subsurface soil metal concentrations were observed above the Unrestricted Use SCOs. Subsurface soil had detections for VOCs, SVOCs and TCLP Metals but no exceedances. PCBs were not detected subsurface soil. Surface soil had no detections for pesticides but did have detections for TCLP metals below EPA Regulatory Levels. The four shallow subsurface soil samples from 0 to 2 feet bgs that were only analyzed TCLP metals did have detections for TCLP metals but not above the EPA Regulatory Levels. Groundwater had VOC and metals exceedances but had no detections for SVOCs. A summary of the analytical results associated with the various matrices are below: Surface Soil: Pesticides were not detected in surface soil; however, several metals (copper, lead, nickel, silver and zinc) were detected at concentrations exceeding Unrestricted Use SCOs. Copper was observed from 61.9 mg/kg to 193 mg/kg above the SCO of 50 mg/kg. Lead was observed from 112 mg/kg to 381 mg/kg above the SCO of 63 mg/kg. Nickel (65.9 mg/kg) and silver (3.9 mg/kg) were only observed above the SCOs of 30 mg/kg and 2 mg/kg, respectively in one location, DF-SS-06. Zinc was observed from 136 mg/kg to 629 mg/kg above the SCO of 109 mg/kg. DF-SS-06 had exceedances for all 5 of the metals listed above and DF-SS-10 had the highest exceedance of lead in surface soil at 381 mg/kg. Both of these locations were in close proximity to the main building and former coal silo. DF-SS-08 also had a significant exceedance of lead (334 mg/kg), in addition, to the maximum concentration seen in surface soil for zinc (629 mg/kg). DF-SS-08 was located in the far northeast corner of the subject property. It should be noted that when comparing the levels of these metals to Residential Use SCOs, there are no metal exceedances. Surface soil was also analyzed for TCLP metals. There were detections for TCLP metals (barium, cadmium, chromium, lead and selenium) but there were no exceedances of the EPA Regulatory Levels. No exceedances of EPA Regulatory Levels for TCLP Metals indicates that metals are not leaching. - Shallow Subsurface Soil: Four shallow subsurface soil samples were collected from 0 to 2 feet bgs and analyzed for TCLP metals. As mentioned, these sample locations were placed in areas previously identified as having high concentrations of lead. Lead was only detected at DF-SSB-01(located near former soil boring SB-24 from the Nature's Way investigation) at a level of 0.1 J mg/L below the EPA Regulatory Level of 5 mg/L. Barium, cadmium, chromium, lead and selenium were all detected but did not exceed Regulatory Levels, this indicates that leaching of metals is not a concern in these areas. - Subsurface Soil: Subsurface soil samples ranged from 2 to 8 feet bgs. VOC and SVOC detections in the subsurface soil did not exceed Unrestricted Use SCOs during the Phase II ESA and were consistent with previous environmental investigation reports. Benzene and toluene were detected well below Unrestricted Use SCOs in DF-SB-11, a location near the former coal silo and smoke stack. Chlorinated solvents (cis-1,2-DCE, trans-1,2-DCE, PCE, TCE and VC) were detected primarily at borings located in the eastern portion of the subject property at levels below 10 micrograms per kilogram (µg/kg) (with the exception of cis-1,2-DCE which had detections as high as 72 µg/kg in DF-SB-15 from 5 to 6 feet bgs). Twenty SVOCs were detected at levels below their respective Unrestricted Use SCOs in subsurface soil samples across the subject property. While most concentrations were orders of magnitude below their respective Unrestricted Use SCOs, phenol was detected at 280 μg/kg just shy of its Unrestricted SCO of 330 μg/kg. Phenol was also detected at all but two subsurface soil locations (DF-SB-11 and DF-SB-12). Unrestricted Use SCOs are often more stringent than EPA RSLs however, for various PAHs, EPA RSLs are more stringent. The EPA RSLs for benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene at 160 μg/kg, 16 μg/kg, and 160 μg/kg, respectively were exceeded in DF-SB-04, DF-SB-05, DF-SB-06, DF-SB-07, DF-SB-11, DF-SB-12, and DF-SB-13. No PCBs were detected. Several metal concentrations (arsenic, barium, cadmium, chromium, copper, lead, nickel, selenium, and zinc) were detected above SCOs throughout the subject property. Copper, nickel, selenium and zinc were generally seen at similar levels (with the exception of DF-SB-11) throughout the subject property and may be associated with background concentrations rather than activities at the subject property. Arsenic, barium, cadmium, chromium, and lead can be seen as the primary COCs within subsurface soil. DF-SB-11 had most exceedances of metals above Unrestricted Use SCOs and a majority of the concentrations were the maximum levels seen within the subsurface soil. The concentrations of the metal exceedances in DF-SB-11 are listed in the table below. | Metal Compound | Concentration in Subsurface Soil
at DF-SB-11
(mg/kg) | NYSDEC Unrestricted Use SCO (mg/kg) | |----------------|--|-------------------------------------| | Arsenic | 20.5 | 13 | | Barium | 1,730 | 350 | | Cadmium | 5.7 | 2.5 | | Chromium | 2,090 | 30 | | Metal Compound | Concentration in Subsurface Soil
at DF-SB-11
(mg/kg) | NYSDEC Unrestricted Use SCO (mg/kg) | |----------------|--|-------------------------------------| | Copper | 219 | 50 | | Lead | 84,200 | 63 | | Nickel | 442 | 30 | | Zinc | 10,500 | 109 | Unlike surface soil, four soil borings located immediately adjacent to the main building, DF-SB-06, DF-SB-10, DF-SB-11, and DF-SB-13 has samples all collected from 4 to 5 feet bgs with concentrations of metals that exceeded Restricted Use SCOs. Subsurface soil was also analyzed for TCLP metals. There were detections for TCLP metals (arsenic, barium, cadmium, chromium, lead, mercury, and selenium) but there were no exceedances of the EPA Regulatory Levels. No exceedances of EPA Regulatory Levels for TCLP Metals indicate that metals are not leaching. Exceedances of metals in surface soil and presented in **Figure 4-2**. Groundwater: All 22 groundwater wells sampled were analyzed for VOCs, SVOCs, and TAL metals. No SVOCs were detected in groundwater samples. VOCs, cis-1,2-DCE, trans-1,2-DCE, TCE, and VC were detected at concentrations exceeding AWQS at 6 well locations (DF-MW-02, DF-MW-08, DF-MW-10, DF-TWP-14, DF-TWP-15 and DF-TWP-16). Cis-1,2-DCE was observed from 26 μg/L to 340 μg/L above the AWQS for 5 μg/L. Trans-1,2-DCE was observed from 8.1 μg/L to 17 μg/L above the AWQS for 5 μg/L. TCE was observed from 5.8 μg/L to 34 μg/L above the AWQS for 5 μg/L. VC was observed from 2.4 μg/L to 33 μg/L above the
AWQS of 2 μg/L. The VOC exceedances are mainly in the vicinity of the wooden foundation on the eastern portion of the subject property directly downgradient of the loading dock area, with the exception of MW-02. It is common to see any contamination in an area where utilities are present to follow the utility bedding paths. MW-02 is located at the end of a pipe chase that is connected to the eastern portion of the subject property (see GPR utility mark out figure included in Appendix A). It is likely that VOC impacted groundwater followed the utility path to MW-02 ### Section 5 ### **Conclusions and Recommendations** CDM Smith's conclusions are based on analytical results, historic information, and visual observations summarized in Section 5.1. ### 5.1 Conclusions Based on the data generated during the Phase II ESA, CDM Smith concludes that contamination detected at the subject property is fairly wide spread in the surface soil and more concentrated near the main building in the subsurface soil. Contamination in the surface and subsurface soil mainly consists of metals. Groundwater contamination consists of both VOCs and metals. However, the metal exceedance levels seen are for iron, manganese, selenium, and sodium which are not typically associated with adverse health effects but rather adverse effects to supply well and conveyance infrastructure. As mentioned, it is likely the levels seen are associated with subject property background concentrations. VOC exceedances in groundwater were concentrated on the eastern portion of the subject property. This area is located downgradient from an area previously identified as having VOC impacted soil and is likely to have been the source area. Based on these groundwater concentrations, the contamination is likely from random discharge of wash or rinse waters to the ground surface and not the results of any major TCE/PCE release. The onsite buildings were determined to be unsuitable for internal access, therefore, no sampling was conducting within the buildings. Due to the subject property's history, there is a possibility for asbestos containing materials (ACMs). During the future demolition or rehabilitation of the onsite buildings, proper identification and removal of any ACMs should be performed. It is unlikely that contamination exist below the main building since this building has a basement and below that is a one-million-gallon water storage tank. ### 5.2 Recommendations Based on the results of the Phase II Site Investigation activities and an evaluation of subject property information based on previous environmental investigations, the following recommendations are made: • VOC-impacted groundwater may be easily managed at these relatively low levels via natural attenuation if the proper site conditions exist and no significant source was identified. TCE, cis-1,2-DCE, trans-1,2-DCE, and VC are all present in groundwater samples indicating that PCE is breaking down. A sample for Dehalococcoides, the dechlorinating bacteria, in addition to, their catalyzing enzymes BAV1 vinyl chloride reductase (BVC), tceA reductase (tceA), and vinyl chloride reductase (VCR) are recommended to confirm bacteria are present. The presence of these bacteria would indicate that there is a potential for reductive dechlorination. If the bacteria and specific site conditions are not present other remedial options may be considered. - It is recommended that the contaminated subsurface soil adjacent to the main building is excavated and disposed of off-site at an appropriate state or federally regulated landfill. At DF-SB-11 the lead concentration exceeds the Industrial Use SCO of 3,900 mg/kg by more than 20 times at 84,200 mg/kg at depth of 4 to 5 feet bgs. This area should be sampled for TCLP metals again to confirm soil is not hazardous and to determine the proper handling and disposal of the material. Additional subsurface soil samples should be taken to delineate the extent of subsurface contamination. - Surface soil (0-6 inches) throughout the subject property exhibited metal contamination at levels exceeding Unrestricted Use SCOs but below Residential Use SCOs. Depending on future site use, these levels are manageable at the residential level. However, it is recommended that continuous subsurface soil sampling is performed at 1-foot intervals down to approximately 4-feetto determine if contamination exists beneath surface soil. Subsurface soil samples were collected from 1 foot discrete intervals at the water table or the 1-foot interval where the highest PID reading was observed at each sample location. Metal exceedances were observed in subsurface soil; however, it is unknown if exceedances exist between the discrete sample depth and surface soil. It would be recommended that either a surface scrape be conducted in some areas removing 6 to 12 inches if no further contamination exists beneath the surface soil or a cap be placed over these areas to reduce exposure to the public. Capping of surface soil would require periodic cap inspections, development of an operations and maintenance plan and placement of deed restriction or environmental easement on the subject property. If contamination does exist further below surface soil, a deeper excavation should be considered and backfill with clean fill. - A comprehensive inventory of all contents of the on-site structures should be performed prior to removal. Development of a recycling/waste disposal recycling plan can assist with sustainable disposal of discarded and abandoned materials. All waste removal should be conducted in accordance with state and federal regulations and guidance documents. In general, the contamination detected at the subject property appears to be manageable so long as direct contact is prevented. Remediation by subsurface soil removal and removal or isolation by capping of surface soils of areas where concentrations are above applicable standards would be recommended depending on future use. Based on the Phase II ESA sampling results, soil removal would be targeted to areas where subsurface contamination was identified such as the areas identified adjacent to the main building. Groundwater impacted by VOCs addressed using other remedial methods such as bioaugmentation to promote biological, chemical, and/or biochemical processes that result in the transformation of contaminants, if natural attenuation is not viable. In the absence of excavation, engineering controls should be implemented. These controls would require (1) the installation of pavement or topsoil/vegetative cover or installation and maintenance of a perimeter fence; and (2) that any construction involving the disturbance of soils, fill materials, or demolition of uncharacterized structures located within the subject property (including non-emergency excavation, which may be part of utility repair or maintenance, or construction) should not be performed without the involvement of a professional engineer, and must be conducted in accordance with local state and federal rules and regulations and provide adequate engineering controls and worker protection. In the absence of remediation, the values of adjacent and surrounding properties may be (and currently be) negatively impacted. The loss of property value may represent some risk to public welfare, yet this risk may not be considered significant risk. This page intentionally left blank. ### Section 6 ### References ASTM International. 2002. E 1903-97 Standard Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process. | If Ellyli offinefical site Assessment Flocess. | |---| | CDM Smith. 2016. Final Site-Specific Quality Assurance Project Plan, Former Duofold Corporation, Targeted Brownfields Assessment, Ilion, New York. October. | | 2016. Site-Specific Health and Safety Plan, Former Duofold Corporation, Targeted Brownfields Assessment, Ilion, New York. July. | | United States Environmental Protection Agency (EPA). 2014. Regional Screening Levels (RSL) for Chemical Contaminants at Superfund Sites. May. | | 2010. Final Work Plan, Targeted Brownfields Assessments for Selected Region 2 Brownfields Initiative Sites. December. | | 2009. United States Environmental Protection Agency (EPA) National Primary Drinking Water Standards, EPA 816-F-09-0004. May. | | 2008. Final Generic Quality Assurance Project Plan Target Brownfields Assessments. May. | | 2000. Region 2 Brownfields Project Planning Guidance. May. | | 1998. Quality Assurance Guidance for Conducting Brownfields Site Assessments. September. | | New York State Department of Environmental Conservation (NYSDEC). 2010. CP-51/Soil Cleanup Guidance. October. | | 2010. DER-10 Technical Guidance for Site Investigations and Remediation. May. | | 2008. 6 NYCRR Part 703 – Water Quality Standards Subparts 703.5. January. | | 2006. 6 NYCRR Part 375 Environmental Remediation Programs Subparts 375-1 to 375-4 & 375-6. December. | | 2004. Technical & Operational Guidance Series (TOGS), Section 1.1.1 Ambient Water Quality Standards & Guidance Values and Groundwater Effluent. June. | This page left intentionally blank **Tables** #### Table 1-1 Sampling Scope and Rationale Summary Table Former Duofold Corporation Ilion, New York | | | | | | | | | Surfac | ce and Su | ıbsurfac | e Soil | Gro | undwate | er Air | |----------------
--|---|--|--|-----------------------------------|---------------------|----------------------|------------|--------------------------|------------|-------------|-----------|----------------------------|---------------------------| | Field
Event | Site Conditions | Investigation Objective | Media | Proposed Scope | Sample Method | Number of Locations | Number of
Samples | TCL VOCs | TCL SVOCs PCBs | Pesticides | TCLP Metals | TCL VOCs | TCL SVOCs TAL Total Metals | TAL Dissolved Metals VOCs | | 1 | Former manufacturing facility, approximately 10.7-acres.
Subsurface features unknown. Twelve existing monitoring
wells installed to depths of 14 to 16 feet bgs. Elevated | Identify subsurface anomolies, preferential pathways, potential sources, subsurface utilities, etc. in advance of intrusive work. | thways, dvance of Surface Surface Geophysical Survey. Inspect 12 existing monitoring wells, including noting ovservations regarding surface of water, depth to product (if any), and depth to bottom. Soil Gas Sorbent tubes will be deployed (to ~3 ft bgs) with a hammer drill in a 100-foot grid pat concentration gradients across the site. Tubes will be retrieved 14 days following depl concentrations. Subsurface Soil Soil borings will be advanced using 5-foot macrocore samplers at up to 16 locations (to geophysical survey and passive soil gas survey results) via DPT to 15 feet bgs or the growing foot in the sample will be collected at each location for soil logging and Samples will be collected from each boring with the sample exhibiting the highest PID laboratory analysis. If no visual, olfactory, or headspace values are identified in a boring submitted from the interval above the water table for laboratory analysis. Surface san below and will be the 0-6 inches at each location for TAL metals only. In addition, 4 bor feet bgs at or as close as possible to MW-09, SB-12 (SF), SB-23, and SB-24. These are la 2. Samples will be collected and analyzed for TCLP Metals analysis nolly. Collect a surface soil sample in 0-6 inches in unpaved areas during the 16 Geoprobe in metals analysis. It is estimated that about 10 of the soil borings will be in unpaved area for TAL Metals, TCLP Metals, and Pesticides. Groundwater Install five 1-inch temporary monitoring wells into geoprobe locations previously advaice installed within the wood and concrete foundation area, one well will be installed it soil boring SB-29, and one well will be installed at the upgradient end of the site near 2 Other two monitoring well locations will be determined based on the passive soil gas socreening. Depth/length of screen to be determined based on the passive soil gas socreening. Depth/length of screen to be determined based on the passive soil gas socreening. Depth/length of screen to be determined based on the passive soil gas socreening. Dept | | GPR | | No | samples v | vill be colle | ected duri | ing GPR S | urvey | | | | | CVOCs detected in soil and groundwater onsite during prior investigations. | Confirm viability of existing monitoring wells for sampling. | Groundwater | Inspect 12 existing monitoring wells, including noting ovservations regarding surface construction, riser, depth to water, depth to product (if any), and depth to bottom. | Interface Probe | 12 | | No sam | nples will b | e collecte | ed during | well insp | ection. | | | | | Identify potential source/release areas related to VOC impacts at the site. Aid in placement of DPT soil borings and evaluation of the potential for vapor intrusion. | | Sorbent tubes will be deployed (to ~3 ft bgs) with a hammer drill in a 100-foot grid pattern to determine VOC concentration gradients across the site. Tubes will be retrieved 14 days following deployment. | Sorbent Tubes | 137 | 137 | | | | | | | 137 | | | | Collect coordinate data on each passive soil gas sample location for use in mapping. | Surface | Collect GPS data for each passive soil gas location | GPS | 137 | | No sa | amples wil | be collec | cted durin | ng GPS su | rvey. | | | 2 | Prior use of the facility includes: clothing manufacturing, computer manufacturing, naval shell manufacturing, adding machine and typewriter manufacturing, wood and veneer manufacturing. Existing above ground features include: 30,000-gallon No. 6 fuel oil above ground storage tank, main building with three segments, powerhouse building, silo, smoke stack, metal building, maintenance garage, former spray booth foundation, and wood and concrete foundation. Elevated VOCs, SVOCs, and metals detected in soil onsite during prior investigations. | | | Soil borings will be advanced using 5-foot macrocore samplers at up to 16 locations (to be refined based on the geophysical survey and passive soil gas survey results) via DPT to 15 feet bgs or the groundwater table, whichever is first. Continuous 5-foot soil cores will be collected at each location for soil logging and headspace screening. Samples will be collected from each boring with the sample exhibiting the highest PID reading submitted for laboratory analysis. If no visual, olfactory, or headspace values are identified in a boring, samples will be submitted from the interval above the water table for laboratory analysis. Surface samples for metals is covered below and will be the 0-6 inches at each location for TAL metals only. In addition, 4 borings will be advanced to 2 feet bgs at or as close as possible to MW-09, SB-12 (SF), SB-23, and SB-24. These are labeled as SSB on the Figure 2. Samples will be collected and analyzed for TCLP Metals analysis only. Collect a surface soil sample in 0-6 inches in unpaved areas during the 16 Geoprobe installations and submit for metals analysis. It is estimated that about 10 of the soil borings will be in unpaved areas and all will be analyzed | DPT (advanced only to 2 feet bgs) | 4 16 | 16
4
10 | 16 1 | 16 16 | | 4 0 10 | - | | | | | | limit of 5 mg/L (i.e. total lead greater than 100 ppm) Install monitoring points to determine impacts to groundwater due to former
site operations. | Groundwater | Install five 1-inch temporary monitoring wells into geoprobe locations previously advanced. At least one well will be installed within the wood and concrete foundation area, one well will be installed in parking lot area near 2014 soil boring SB-29, and one well will be installed at the upgradient end of the site near 2014 soil boring SB-25. Other two monitoring well locations will be determined based on the passive soil gas survey and soil boring screening. Depth/length of screen to be determined based on subsurface conditions identified during drilling; estimated at 5 feet of screen and 10 feet of riser. | | 5 | No | samples to | | | | | Ü | ells. | | | | Collect coordinate data on each soil boring and monitoring well location for use in mapping. | | | Surge and Purge
GPS | 5
17 | | | ples to be
amples wil | | | | • | | #### Table 1-1 Sampling Scope and Rationale Summary Table Former Duofold Corporation Ilion, New York | | | enorth- to 8 feet bgs. Determine impacts to groundwater due to former site Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater Groundwater one round of low groundwater samples. Metals will be collected for both total and dis- | | | | | Surfa | e and S | ubsurfa | ce Soil | Grou | ındwater | Air | | |----------------|--|---|----------------|---|------------------------|----|-------|----------|------------|------------------------|------------------------|--------------------------------|---------------|--------| | Field
Event | Site Conditions | | Proposed Scope | Sample Method | Number of
Locations | | | PCBs | Pesticides | TAL Metals TCLP Metals | TCL VOCs | TAL Total Metals TAL Dissolved | Metals | | | | Existing network of 12 monitoring wells onsite from prior investigation. Groundwater flow toward the north- | Understand groundwater flow direction. | | Conduct synoptic round of groundwater gauging at all existing permanent and newly installed temporary monitoring wells. | Interface Probe | 17 | | No | samples v | will be col | lected du | ing gaugin | g. | | | 3 | disting network of 12 monitoring wells onsite from prior vestigation. Groundwater flow toward the north-ortheast. Depth to water approximately 6 to 8 feet bgs. Understand groundwater flow direction. Groundwater Groundwater flow toward the north-ortheast. Depth to water approximately 6 to 8 feet bgs. Determine impacts to groundwater due to former site Groundwater Conduct synoptic round of groundwater monitoring wells. Determine impacts to groundwater due to former site Groundwater Conduct synoptic round of groundwater monitoring wells. | Collect one round of low flow groundwater samples. Metals will be collected for both total and dissolved (field filtered) analysis. | Low Flow | 17 | 17 | | | | | 17 1 | 7 17 17 | | | | | | | | | | | | | Surf | ace and S | ubsurfac | e Soil | Gro | undwater | Air | | | | | | | | | | TCL VOCs | PCBs | Pesticides | TAL Metals TCLP Metals | TCL VOCS | TAL Dissolved | Metais | The information above represents the proposed field events for the Phase II Environmental Site Assessment for the Former Duofold Corporation subject property. All field events have been completed as of November 2016. Notes: TCL - Target Compound List TAL - Target Analyte List TCLP - toxicity characteristic leaching procedure CVOC - chlorinated volatile organic compounds bgs - below ground surface VOCs - volatile organic compounds SVOCs - semi-volatile organic compounds ft - feet GPR - ground penetrating radar DPT - direct push technology GPS - global positioning system PCBs - polychlorinated biphenyls mg/L - milligrams per liter ppm - parts per million No. - number | Location | Sample ID | Collection Date-
Time | Depth Interval
(feet) | PID Response
(ppm) | QA/QC | Analyses | |----------|------------|--------------------------|--------------------------|-----------------------|-----------------|--| | | | | | Subsurface So | il Samples | | | DF-SB-01 | DF-SB-01-A | 11/8/2016 8:20 | 4 - 5 | Non-Detect | | | | DF-SB-02 | DF-SB-02-A | 11/8/2016 8:45 | 4 - 5 | Non-Detect | | | | DF-SB-03 | DF-SB-03-A | 11/8/2016 9:10 | 4 - 5 | Non-Detect | | | | DF-SB-04 | DF-SB-04-A | 11/8/2016 10:00 | 3 - 4 | Non-Detect | | | | DF-SB-05 | DF-SB-05-A | 11/8/2016 9:35 | 5 - 6 | Non-Detect | | | | DF-SB-06 | DF-SB-06-A | 11/8/2016 10:30 | 4 - 5 | Non-Detect | | | | DF-SB-07 | DF-SB-07-A | 11/8/2016 10:45 | 7 - 8 | Non-Detect | | | | DF-SB-08 | DF-SB-08-A | 11/9/2016 9:25 | 2 - 3 | Non-Detect | | | | DF-SB-09 | DF-SB-09-A | 11/9/2016 9:40 | 5 - 6 | Non-Detect | | | | DF-SB-10 | DF-SB-10-A | 11/9/2016 8:55 | 5 - 6 | Non-Detect | Field Duplicate | VOCs, %Moisture, SVOCs, PCBs, TCLP Metals and Metals | | DF-SB-11 | DF-SB-11-A | 11/8/2016 12:15 | 4 - 5 | 834 | | | | DF-SB-12 | DF-SB-12-A | 11/8/2016 11:55 | 6 - 7 | 65.3 | | | | DF-SB-13 | DF-SB-13-A | 11/8/2016 11:20 | 4 - 5 | Non-Detect | | | | DF-SB-14 | DF-SB-14-A | 11/8/2016 13:35 | 6 - 7 | Non-Detect | | | | DF-SB-15 | DF-SB-15-A | 11/8/2016 13:10 | 4 - 5 | Non-Detect | | | | DF-SB-16 | DF-SB-16-A | 11/8/2016 14:25 | 5 - 6 | Non-Detect | | | | DF-SB-17 | DF-SB-17-A | 11/8/2016 13:50 | 4 - 5 | Non-Detect | Field Duplicate | | | DF-SB-18 | DF-SB-18-A | 11/9/2016 10:50 | 5 - 6 | Non-Detect | | | | DF-SB-19 | DF-SB-19-A | 11/9/2016 10:15 | 4 - 5 | Non-Detect | | | | DF-SB-20 | DF-SB-20-A | 11/9/2016 10:30 | 4- 5 | Non-Detect | | | | Location | Sample ID | Collection Date-
Time | Depth Interval
(feet) | PID Response
(ppm) | QA/QC | Analyses | |-------------|--------------|--------------------------|--------------------------|-----------------------|-----------------|--| | DF-SSB-1 | DF-SSB-1-A | 11/8/2016 10:15 | 0 - 2 | | | | | DF-SSB-2 | DF-SSB-2-A | 11/8/2016 9:20 | 0 - 2 | | | | | DF-SSB-3 | DF-SSB-3-A | 11/9/2016 13:30 | 0 - 2 | | | VOCs, %Moisture, SVOCs, PCBs, TCLP Metals and Metals | | DF-SSB-4 | DF-SSB-4-A | 11/8/2016 14:45 | 0 - 2 | | | | | | | | | Surface Soil | Samples | | | DF-SS-01 | DF-SS-01-A | 10/10/2016 10:20 | 0 - 0.5 | Non-Detect | | | | DF-SS-02 | DF-SS-02-A | 10/10/2016 10:10 | 0 - 0.5 | Non-Detect | | | | DF-SS-03 | DF-SS-03-A | 10/10/2016 10:00 | 0 - 0.5 | Non-Detect | | | | DF-SS-04 | DF-SS-04-A | 10/10/2016 11:10 | 0 - 0.5 | Non-Detect | Field Duplicate | | | DF-SS-05 | DF-SS-05-A | 10/10/2016 12:00 | 0 - 0.5 | Non-Detect | | | | DF-SS-06 | DF-SS-06-A | 10/10/2016 11:35 | 0 - 0.5 | Non-Detect | | Metals, Pesticides, TCLP Metals | | DF-SS-07 | DF-SS-07-A | 10/10/2016 12:40 | 0 - 0.5 | Non-Detect | Field Duplicate | | | DF-SS-08 | DF-SS-08-A | 10/10/2016 12:30 | 0 - 0.5 | Non-Detect | | | | DF-SS-09 | DF-SS-09-A | 10/10/2016 12:20 | 0 - 0.5 | Non-Detect | | | | DF-SS-10 | DF-SS-10-A | 10/19/2016 10:00 | 0 - 0.5 | Non-Detect | | | | | | | | Groundwate | Samples | | | DF-MW-01 | DF-MW-01-1 | 11/7/16 13:40 | 30 - 35 | | | | | 5 01 | DF-MW-01-1-F | 11,7,10 15.40 | | | | | | DF-MW-02 | DF-MW-02-1 | 11/7/16 14:55 | 30 - 35 | No Reading | | VOCs, SVOCs, and Metals | | DF-IVIVV-UZ | DF-MW-02-1-F | 11///10 14:55 | SU - 35 | Taken | | vocs, svocs, allu ivietais | | DF-MW-03 | DF-MW-03-1 | 11/8/16 9:00 | 5 - 10 | | | | | DF-IVIVV-U3 | DF-MW-03-1-F | 11/8/16 9:00 | 2 - 10 | Idkell | | | | Location | Sample ID | Collection Date-
Time | Depth Interval
(feet) | PID Response
(ppm) | QA/QC | Analyses | |-------------|---------------|--------------------------|--------------------------|-----------------------|-----------------|-------------------------| | DE MAN OA | DF-MW-04-1 | 11/0/16 10:25 | F 10 | | | | | DF-MW-04 | DF-MW-04-1-F | 11/8/16 10:35 | 5 - 10 | | | | | DF-MW-05 | DF-MW-05-1 | 11/8/16 11:55 | 8 - 13 | | Field Duplicate | | | DF-IVIVV-05 | DF-MW-05-1-F | 11/8/10 11:55 | 8 - 13 | | Field Duplicate | | | DF-MW-06 | DF-MW-06-1 | 11/9/16 12:40 | 5 - 10 | | | | | DF-IVIVV-06 | DF-MW-06-1-F | 11/8/16 13:40 | 2 - 10 | | | | | DF-MW-07 | DF-MW-07-1 | 11/9/16 12:15 | 5 - 10 | | | | | DF-IVIVV-07 | DF-MW-07-1-F | 11/9/10 12:15 | 2 - 10 | | | | | DF MM/ 09 | DF-MW-08-1 | 11/7/16 14.55 | 15 20 | | | | | DF-MW-08 | DF-MW-08-1-F | 11/7/16 14:55 | 15 - 20 | | | | | DF-MW-09 | DF-MW-09-1 | 11/10/16 10:10 | F 4F | | | | | DF-WW-09 | DF-MW-09-1-F | 11/10/16 10:10 | 5 - 15 | No Reading | | VOCs, SVOCs, and Metals | | DF-MW-10 | DF-MW-10-1 | 11/9/16 13:40 | 4 - 14 | Taken | | | | DF-MM-10 | DF-MW-10-1-F | 11/9/16 13:40 | 4 - 14 | | | | | DF-MW-11 | DF-MW-11-1 | 11/0/16 0:00 | 4 - 14 | | | | | DE-IMM-11 | DF-MW-11-1-F | 11/9/16 9:00 | 4 - 14 | | | | | DF-MW-12 | DF-MW-12-1 | 11/9/16 10:45 | 3 - 13 | | | | | DF-IVIVV-12 | DF-MW-12-1-F | 11/9/16 10:45 | 3 - 13 | | | | | DF-TWP-02 | DF-TWP-02-1 | 11/10/16 8:40 | 3 - 13 | | | | | DI-1WF-02 | DF-TWP-02-1-F | 11/10/10 0.40 | 3-13 | | | | | DF-TWP-03 | DF-TWP-03-1 | 11/10/16 10:05 | 3 - 13 | | Field Duplicate | | | 2 03 | DF-TWP-03-1-F | 11/10/16 10:05 | 3 13 | | Field Duplicate | | | DF-TWP-07 | DF-TWP-07-1 | 11/10/16 11:25 | 5 - 15 | | | | | | DF-TWP-07-1-F
 , , , , , , , , | | | | | | Location | Sample ID | Collection Date-
Time | Depth Interval
(feet) | PID Response
(ppm) | QA/QC | Analyses | |------------|---------------|--------------------------|--------------------------|-----------------------|-------|----------------------------| | DF-TWP-09 | DF-TWP-09-1 | 11/10/16 12:10 | 3 - 13 | | | | | DF-1WP-09 | DF-TWP-09-1-F | 11/10/16 12:10 | 3 - 13 | | | | | DF-TWP-12 | DF-TWP-12-1 | 11/11/16 10:15 | 4 - 14 | | | | | D1-1VVF-12 | DF-TWP-12-1-F | 11/11/10 10:13 | 4-14 | | | | | DF-TWP-14 | DF-TWP-14-1 | 11/11/16 9:00 | 4 - 11 | | | | | D1-1001-14 | DF-TWP-14-1-F | 11/11/10 5.00 | 4-11 | | | | | DF-TWP-15 | DF-TWP-15-1 | 11/11/16 9:45 | 4 - 14 | No Reading | | VOCs, SVOCs, and Metals | | DI-1WF-13 | DF-TWP-15-1-F | 11/11/10 9.43 | 4 - 14 | Taken | | . See, si e es, and metale | | DF-TWP-16 | DF-TWP-16-1 | 11/11/16 8:45 | 5 - 11 | | | | | D1-1WF-10 | DF-TWP-16-1-F | 11/11/10 8.43 | 3-11 | | | | | DF-TWP-18 | DF-TWP-18-1 | 11/10/16 12:10 | 4 - 14 | | | | | DF-1445-19 | DF-TWP-18-1-F | 11/10/16 13:10 | 4 - 14 | | | | | DF-TWP-19 | DF-TWP-19-1 | 11/10/16 12:10 | 4 - 14 | | | | | DL-1444-13 | DF-TWP-19-1-F | 11/10/10 12:10 | 4 - 14 | | | | #### Acronyms PID - photoionization detector ID - identification QA/QC - quality assurance/quality control ppm - parts per million VOCs - volatile organic compounds SVOCs - semi-volatile organic compounds PCBs - polychlorinated biphenyls TCLP - toxicity characteristic leaching procedure Table 2-2 Groundwater Water Quality Parameters Former Duofold Corporation Ilion, New York | Location ID | MW-01 | MW-02 | MW-03 | MW-04 | MW-05 | MW-06 | MW-07 | MW-08 | MW-09 | MW-10 | MW-11 | MW-12 | |------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | Sample Date | 11/7/2016 | 11/7/2016 | 11/8/22016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/9/2016 | 11/10/2016 | 11/10/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | | Sample ID | DF-MW-01-1 | DF-MW-02-1 | DF-MW-03-1 | DF-MW-04-1 | DF-MW-05-1 | DF-MW-06-1 | DF-MW-07-1 | DF-MW-08-1 | DF-MW-09-1 | DF-MW-10-1 | DF-MW-11-1 | DF-MW-12-1 | | Matrix | WG | Sample Type | N | N | N | N | N | N | N | N | N | N | N | N | | Parent Sample Code | | | | | | | | | | | | | | CLP # | BD4Q3 | BD4Q4 | BD4Q5 | BD4Q6 | BD4Q7 | BD4Q8 | BD4Q9 | BD4R0 | BD4R1 | BD4R2 | BD4R3 | BD4R4 | | Parameter | Result | рН | 6.97 | 6.74 | 6.62 | 7.07 | 6.78 | 7.11 | 7.08 | 7.38 | 6.58 | 7.12 | 7.14 | 7.27 | | Specific Conductivity (mS/cm | 0.866 | 0.86 | 1.14 | 0.868 | 0.73 | 0.914 | 0.958 | 0.749 | 1.13 | 0.818 | 0.971 | 0.874 | | Dissolved Oxygen (mg/L) | 0.01 | 0.01 | 0.01 | 0.01 | 0.82 | 1.28 | 1.26 | 0.01 | 0.01 | 0.01 | 0.01 | 0.67 | | Tempature (°C) | 12.62 | 15.27 | 11.02 | 12.28 | 14.6 | 15.92 | 12.90 | 10.98 | 11.19 | 12.68 | 13.76 | 13.63 | | Redox Potential (mV) | 115 | 10 | -41 | 118 | 152 | 147 | 254 | -91 | 173 | 184 | 255 | 248 | | Turbidity (NTUs) | 17.4 | 30.3 | 152 | 20.9 | 24.9 | 50.2 | 31.4 | 21.8 | 0.1 | 2.5 | 21.8 | 10.4 | Notes: °C - degrees Celsius mV - millivolts CLP - Contract Laboratory Program N - normal field sample ID - identification NTUs - nephelometric turbidity units mg/L - milligram per liter WG - groundwater mS/cm³ - millisiemens per cubic centimeter ### Table 2-2 Groundwater Water Quality Parameters Former Duofold Corporation Ilion, New York | Location ID | TWP-02 | TWP-03 | TWP-07 | TWP-09 | TWP-12 | TWP-14 | TWP-15 | TWP-16 | TWP-18 | TWP-19 | |---|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | Sample Date | 11/10/2016 | 11/10/2016 | 11/10/2016 | 11/10/2016 | 11/11/2016 | 11/11/2016 | 11/11/2016 | 11/10/2016 | 11/10/2016 | 11/10/2016 | | Sample ID | DF-TWP-02-1 | DF-TWP-03-1 | DF-TWP-07-1 | DF-TWP-09-1 | DF-TWP-12-1 | DF-TWP-14-1 | DF-TWP-15-1 | DF-TWP-16-1 | DF-TWP-18-1 | DF-TWP-19-1 | | Matrix | WG | Sample Type | N | N | N | N | N | N | N | N | N | N | | Parent Sample Code | | | | | | | | | | | | CLP # | BD4R5 | BD4R6 | BD4R7 | BD4R8 | BD4R9 | BDQN1 | BDQN2 | BDQN3 | BDQN4 | BDQN5 | | Parameter | Result | pH | 6.74 | 7.15 | 6.98 | 6.86 | 7.15 | 6.85 | 7.31 | 7.06 | 7.21 | 7.19 | | Specific Conductivity (mS/cm ⁶ | 0.686 | 0.686 | 0.757 | 0.753 | 0.686 | 0.633 | 0.671 | 0.731 | 0.626 | 0.907 | | Dissolved Oxygen (mg/L) | 0.01 | 0.01 | 2.34 | 0.01 | 0.01 | 2.44 | 8.38 | 0.01 | 0.01 | 0.01 | | Tempature (°C) | 8.61 | 11.37 | 12.12 | 14.39 | 10.73 | 12.01 | 12.92 | 15.49 | 17.59 | 16.93 | | Redox Potential (mV) | -59 | -33 | 120 | 33 | 82 | 96 | -67 | -47 | -108 | -54 | | Turbidity (NTUs) | 11.7 | 42.3 | 12.2 | 160 | 21.2 | 7.1 | 46.2 | 0.1 | 0.1 | 0.1 | Notes: °C - degrees Celsius CLP - Contract Laboratory Proj ID - identification mg/L - milligram per liter mS/cm³ - millisiemens per cub Table 3-1A Soil Sample Detections - VOCs Former Duofold Corporation Ilion, New York | | | | Sai | mple ID | DF-SB-01- | -Δ | DF-SB-02 | '-Δ | DF-SB-03- | -Δ | DF-SB-04- | .Δ | DF-SB-05- | -Δ | DF-SB-06-A | DF-SB-07-A | D | F-SB-08- | .Δ | DF-SB-09-A | Δ | DF-SB-10-A | SB-900- |)_ ^ | |---------------------|--|---------------|----------------------------|----------------|-----------|-----|------------|-------|------------|-----|------------|----|------------|-----|----------------|------------|-----|-----------|-----|------------|----|----------------|------------|----------| | | | | | ation ID | DF-SB-0 | | DF-SB-C | | DF-SB-0 | - | DF-SB-0 | | DF-SB-0 | | DF-SB-06 | DF-SB-07 | - | F-SB-08 | | DF-SB-09 | | DF-SB-10 | DF-SB-1 | | | | | | | le Date | 11/8/201 | _ | 11/8/20: | | 11/8/201 | | 11/8/201 | | 11/8/201 | | 11/8/2016 | 11/8/2016 | - | 1/9/201 | | 11/9/2016 | _ | 11/9/2016 | 11/9/20 | | | | | | Sump | Matrix | SO | .0 | SO | | SO | .0 | SO | | SO | .0 | SO | SO | + - | SO SO | | SO | _ | SO SO | SO | 710 | | | | | Sample | Depth | 4 - 5 fee | ıt. | 4 - 5 fee | a† | 4 - 5 fee | ıt. | 3 - 4 fee | t | 5 - 6 fee | ıt. | 4 - 5 feet | 7 - 8 feet | 1 2 | ! - 3 fee | t | 5 - 6 feet | | 5 - 6 feet | 5 - 6 fe | et. | | | | | • | le Type | N N | | N N | - (| 4 - 3 Tee | | N N | | N N | . (| N N | N N | - | N | | N N | | N | FD | Ct | | | | | Parent Samp | | - 11 | | 11 | | 11 | | IN | | 11 | | IN | IN . | | 11 | | 11 | | 114 | DF-SB-10 | 0.4 | | | | | i drent Samp | CLP# | BD4L5 | | BD4L6 | | BD4L7 | | BD4L8 | | BD4L9 | | BD4M0 | BD4M1 | | BD4M2 | | BD4M3 | | BD4M4 | BD4P9 | | | | | | NIVEDEC | <u> </u> | 55.10 | | 32 .10 | | 55 .1. | | 55 .20 | | 35.25 | | 220 | | 1 | | | 22 | | 55 | DD 11 3 | | | CAS No. | Compound | EPA RSLs | NYSDEC
Unrestricted Use | Unit | Result | Q | Result | i Q | Result | . Q | Result | Q | Result | Q | Result Q | Result Q | | Result | : Q | Result | Q | Result Q | Res | ult Q | | 71-55-6 | 1,1,1-Trichloroethane | 810000 | 680 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 79-34-5 | 1,1,2,2-Tetrachloroethane | 600 | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 76-13-1 | 1,1,2-Trichloro-1,2,2-trifluoroethan | 4000000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 79-00-5 | 1,1,2-Trichloroethane | 150 | NL
270 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 75-34-3 | 1,1-Dichloroethane | 3600 | 270 | μg/kg | 6.4 | U | 5.6 | U
 | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 75-35-4 | 1,1-Dichloroethene | 23000
6300 | 330 | μg/kg | 6.4 | U | 5.6 | Ü | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 87-61-6 | 1,2,3-Trichlorobenzene | | NL
NI | μg/kg | 6.4 | UJ | 5.6 | R | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U
7.3 U | 6.7
6.7 | UJ
UJ | | 120-82-1
96-12-8 | 1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloropropane | 5800 | NL
NL | μg/kg | 6.4 | UJ | 5.6 | K | 4.8 | U | 4.7 | U | 5.6 | U | | 6.9 L | | 6.3 | U | 6.2 | 0 | 7.3 U
7.3 U | 6.7 | UJ | | 106-93-4 | 1,2-Dibromoethane | 36 | NL NL | μg/kg | 6.4 | UJ | 5.6 | K | 4.8 | U | 4.7
4.7 | U | 5.6
5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | 5 | 7.3 U | 6.7 | UJ | | 95-50-1 | 1,2-Dichlorobenzene | 180000 | 1100 | μg/kg | | U | 5.6 | UJ | 4.8
4.8 | U | 4.7 | U | 5.6 | U | 4.6 U
4.6 U | 6.9 L | - | 6.3 | U | 6.2 | 5 | 7.3 U | 6.7 | UJ | | 107-06-2 | 1,2-Dichloroethane | 460 | 20 | μg/kg
μg/kg | 6.4 | UJ | 5.6
5.6 | II. | 4.8 | 11 | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | J | 7.3 U | 6.7 | U U | | 78-87-5 | 1,2-Dichloropropane | 1000 | NL NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | - | 7.3 U | 6.7 | UJ | | 541-73-1 | 1,3-Dichlorobenzene | NL | 2400 | μg/kg | 6.4 | ΟJ | 5.6 | D | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | | 7.3 U | 6.7 | UJ | | 106-46-7 | 1,4-Dichlorobenzene | 2600 | 1800 | μg/kg | 6.4 | ΩJ | 5.6 | D D | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | | 7.3 U | 6.7 | UJ | | 78-93-3 | 2-Butanone (MEK) | 2700000 | NL NL | μg/kg | 13 | U | 11 | II. | 9.6 | 11 | 9.4 | U | 11 | U | 9.2 U | 14 L | _ | 13 | U | 7.9 | - | 37 | 47 | J | | 591-78-6 | 2-Hexanone | 20000 | NL NL | μg/kg | 13 | U | 11 | UI | 9.6 | U | 9.4 | U | 11 | U | 9.2 U | 14 L | | 13 | U | 12 | 11 | 15 U | 13 | UJ | | 108-10-1 | 4-Methyl-2-Pentanone (MIBK) | 3300000 | NL | μg/kg | 13 | U | 11 | UJ | 9.6 | П | 9.4 | U | 11 | U | 9.2 U | 14 L | - | 13 | U | 12 | П | 15 U | 13 | UJ | | 67-64-1 | Acetone | 6100000 | 50 | μg/kg | 13 | U | 11 | IJ | 9.6 | IJ | 9.4 | U | 11 | U | 9.2 U | 14 L | _ |
13 | U | 30 | | 130 | 170 | J | | 71-43-2 | Benzene | 1200 | 60 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | IJ | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 74-97-5 | Bromochloromethane | 15000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | IJ | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 75-27-4 | Bromodichloromethane | 290 | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 75-25-2 | Bromoform | 19000 | NL | μg/kg | 6.4 | UJ | 5.6 | R | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | U | | 74-83-9 | Bromomethane | 680 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | | U | 7.3 U | 6 | U | | 75-15-0 | Carbon Disulfide | 77000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | Ú | 7.3 U | 2.5 | J | | 56-23-5 | Carbon Tetrachloride | 650 | 760 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 108-90-7 | Chlorobenzene | 28000 | 1100 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 75-00-3 | Chloroethane | 1400000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 67-66-3 | Chloroform | 320 | 370 | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 74-87-3 | Chloromethane | 11000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 156-59-2 | cis-1,2-Dichloroethene | 16000 | 250 | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 10061-01-5 | cis-1,3-Dichloropropene | NL | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 110-82-7 | Cyclohexane | 650000 | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | _ | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 124-48-1 | Dibromochloromethane | 8300 | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | - | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 75-71-8 | Dichlorodifluoromethane | 8700 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | ı | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 100-41-4 | Ethylbenzene | 5800 | 1000 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | ı | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 98-82-8 | Isopropylbenzene | 190000 | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 179601-23-1 | M,P-Xylene | 58000 | 260 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 | U | 4.7 | U | 5.6 | U | 4.6 U | 6.9 L | 1 | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | U | | | | | Sar | nple ID | DF-SB-01 | -A | DF-SB-02 | 2-A | DF-SB-03-A | I | DF-SB-04- | Α | DF-SB-05 | -A | DF-SB-06- | Α | DF-SB-07-A | D | F-SB-08 | 3-A | DF-SB-09- <i>F</i> | | DF-SB-10-A | SB-900-A | | |------------|---------------------------|----------|----------------------------|------------|-----------|------------|----------|-----|------------|---|-----------|---|-----------|------|-----------|---|------------|---|-----------|------|--------------------|---|------------|------------|--------------| | | | | Loca | tion ID | DF-SB-0 | | DF-SB-(| | DF-SB-03 | 1 | DF-SB-04 | | DF-SB-0 | | DF-SB-06 | | DF-SB-07 | + | DF-SB-0 | | DF-SB-09 | | DF-SB-10 | DF-SB-10 | | | | | | Samp | le Date | 11/8/201 | | 11/8/20 | | 11/8/2016 | 1 | 11/8/201 | _ | 11/8/201 | | 11/8/201 | | 11/8/2016 | 4 | 1/9/20 | | 11/9/2016 | _ | 11/9/2016 | 11/9/2016 | | | | | | • | Matrix | SO | | SO | | SO | 1 | SO | SO | | | | | | | Depth | 4 - 5 fee | ' † | 4 - 5 fe | et | 4 - 5 feet | 1 | 3 - 4 fee | t | 5 - 6 fee | rt - | 4 - 5 fee | t | 7 - 8 feet | | 2 - 3 fee | et | 5 - 6 feet | | 5 - 6 feet | 5 - 6 feet | , | | | | | • | le Type | N | - | N | | N | ╅ | N | | N | | N | | N | | N | | N | _ | N | FD | | | | | | Parent Sampl | <i>,</i> , | | | | | | ╁ | | | | | | | | 1 | | | | - | | DF-SB-10-/ | Δ | | | | | | CLP# | BD4L5 | | BD4L6 | ; | BD4L7 | 1 | BD4L8 | | BD4L9 | | BD4M0 | | BD4M1 | 1 | BD4M2 | 2 | BD4M3 | | BD4M4 | BD4P9 | ` | | CAS No. | Compound | EPA RSLs | NYSDEC
Unrestricted Use | Unit | Result | : Q | Resul | t Q | Result Q | | Result | Q | Result | Q | Result | Q | Result Q | | Resu | lt Q | Result | Q | Result Q | Result | : Q | | 79-20-9 | Methyl Acetate | 7800000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 U | j | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 1634-04-4 | Methyl tert-butyl ether | 47000 | 930 | μg/kg | 6.4 | U | 5.6 | U | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 108-87-2 | Methylcylohexane | NL | NL | μg/kg | 6.4 | U | 2.3 | J+ | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 75-09-2 | Methylene Chloride | 35000 | 50 | μg/kg | 6.5 | | 8.8 | | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 8.8 | | 8.2 | | 11 | 6 | U | | 95-47-6 | O-Xylene | 65000 | 260 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 100-42-5 | Styrene | 600000 | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 127-18-4 | Tetrachloroethene | 8100 | 1300 | μg/kg | 6.4 | U | 7.8 | J+ | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 108-88-3 | Toluene | 490000 | 700 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 156-60-5 | Trans-1,2-Dichloroethene | 160000 | 190 | μg/kg | 6.4 | U | 5.6 | U | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 10061-02-6 | Trans-1,3-Dichloropropene | NL | NL | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 U | , | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 79-01-6 | Trichloroethene | 410 | 470 | μg/kg | 6.4 | U | 5.6 | UJ | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6.7 | UJ | | 75-69-4 | Trichlorofluoromethane | 2300000 | NL | μg/kg | 6.4 | U | 5.6 | U | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | | 75-01-4 | Vinyl Chloride | 59 | 20 | μg/kg | 6.4 | U | 5.6 | U | 4.8 U | J | 4.7 | U | 5.6 | U | 4.6 | U | 6.9 U | | 6.3 | U | 6.2 | U | 7.3 U | 6 | U | > NYSDEC Unrestricted Bolded > detection ### Acronyms $\mu g/kg$ - microgram by kilograms CLP - Contract Laboratory Program NL - not listed NYSDEC - New York State Department of EPA - Environmental Protection Agency Environmental Conservation FD - field duplicate Q - qualifier ID - identification RSLs - Regional Screening Levels J - estimated result SO - soil J + - biased high estimated result U - undetected N - normal UJ - esitmated undetected Table 3-1A Soil Sample Detections - VOCs Former Duofold Corporation Ilion, New York | 4 | | | Sar | nple ID | DF-SB-1 | 1-Δ | DF-SB-12 | 2-Δ | DF-SB-13- | Δ | DF-SB-14- | Δ | DF-SB-15-/ | Δ | DF-SB-16- | Δ | DF-SB-17 | '-Δ | SB-900- | R | DF-SB-18 | 2 | DF-SB-19 | q | DF-SB-20-A | _ | |--|---------------------------------------|---------------|----------------------------|----------------|------------|----------|------------|------|------------|-----|------------|---------|------------|--------------|-----------|---|------------|------|------------|----------|------------|----|------------|----|------------|---| | 1 | | | | tion ID | DF-SB- | | DF-SB-: | | DF-SB-13- | _ | DF-SB-14 | _ | DF-SB-15- | - | DF-SB-16 | | DF-SB-1 | _ | DF-SB-1 | | DF-SB-18 | _ | DF-SB-1 | | DF-SB-20-A | — | | 1 | | | | le Date | 11/8/2 | | 11/8/20 | | 11/8/2016 | | 11/8/2016 | _ | 11/8/2016 | _ | 11/8/201 | _ | 11/8/201 | | 11/8/201 | | 11/9/201 | _ | 11/9/201 | _ | 11/9/2016 | — | | 1 | | | • | Matrix | SO | | SO | | SO | _ | SO | _ | SO | _ | SO | | SO | | SO | | SO | _ | SO | - | SO | — | | 1 | | | Sample | | 4 - 5 fe | | 4 - 5 fe | Ωt | 6 - 7 feet | _ | 4 - 5 feet | | 5 - 6 feet | , | 4 - 5 fee | t | 4 - 5 fee | at . | 5 - 6 fee | <u>+</u> | 4 - 5 fee | + | 12 - 10 fe | et | 4 - 5 feet | — | | 1 | | | • | • | 4 - 3 TC | | 4 - 3 le | Ct | N N | _ | N N | | N N | • | N N | | N N | | FD | - (| N N | | N | | N N | _ | | 1 | | | Parent Sampl | le Type | IN | - | IN | | DF-SB-17 | . ^ | IN | _ | ĮN | | IN | _ | | 1 | | | r arent sampi | CLP# | BD4N | 15 | BD4M | 6 | BD4M7 | | BD4M8 | | BD4M9 | | BD4N0 | | BD4N1 | | BD4Q0 | | BD4N2 | | BD4N3 | | BD4N4 | — | | | | | ADVED 5.0 | CL: " | DD-11V | 15 | DD-1141 | • | DD-HW17 | | DD-HVIO | | DDHIVIS | | DD-110 | | DD-INI | | BB-1Q0 | | DDTIVE | | DDTNS | | DD4N4 | _ | | CAS No. | Compound | EPA RSLs | NYSDEC
Unrestricted Use | Unit | Resul | t Q | Resu | lt Q | Result | Q | Result (| Q | Result (| Q | Result | Q | | 71-55-6 | 1,1,1-Trichloroethane | 810000 | 680 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | 5.2 | U | 6 | J | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | J | | 79-34-5 | 1,1,2,2-Tetrachloroethane | 600 | NL | μg/kg | 6.2 | R | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | J | | 76-13-1 | 1,1,2-Trichloro-1,2,2-trifluoroethan | 4000000 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | J | | 79-00-5 | 1,1,2-Trichloroethane | 150 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | 75-34-3 |
1,1-Dichloroethane | 3600 | 270 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | 75-35-4 | 1,1-Dichloroethene | 23000
6300 | 330 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | 87-61-6 | 1,2,3-Trichlorobenzene | | NL
NI | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | | | 120-82-1 | 1,2,4-Trichlorobenzene | 5800 | NL
NI | μg/kg | 6.2 | UJ
R | 7.4 | U | 4.8 | U | 5.9 | U | | U | 6
6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | 96-12-8
106-93-4 | 1,2-Dibromo-3-chloropropane | 5.3
36 | NL
NI | μg/kg | 6.2 | + | 7.4
7.4 | U | 4.8 | 11 | 5.9
5.9 | U | | U | | U | 5.1
5.1 | _ | 5.9 | U | 3.7 | _ | 6.8 | U | | υ | | 95-50-1 | 1,2-Dibromoethane 1,2-Dichlorobenzene | 180000 | NL
1100 | μg/kg | 6.2 | UJ | | U | 4.8 | 11 | | U | | U | 6
6 | U | 5.1 | U | 5.9 | U | 3.7 | U | | U | | υ | | 107-06-2 | 1,2-Dichloroethane | 460 | 20 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | | - | | U | 5.9 | U | 3.7 | _ | 6.8 | U | | υ | | 78-87-5 | 1,2-Dichloropropane | 1000 | NL | μg/kg | 6.2 | | 7.4 | U | 4.8 | 11 | 5.9
5.9 | U
11 | | U | 6
6 | U | 5.1
5.1 | U | 5.9
5.9 | U | 3.7
3.7 | U | 6.8 | U | | υ | | | 1,3-Dichlorobenzene | NL | 2400 | μg/kg
μg/kg | 6.2
6.2 | UJ | 7.4
7.4 | U | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | υ | | 106-46-7 | 1,4-Dichlorobenzene | 2600 | 1800 | | 6.2 | - | 7.4 | U | 4.8 | U | 5.9 | U | _ | U | 6 | - | 5.1 | U | 5.9 | 11 | 3.7 | _ | 6.8 | U | | υ | | 78-93-3 | 2-Butanone (MEK) | 2700000 | NL | μg/kg | 12 | UJ | 14 | 1 | 9.5 | II. | 12 | U | 4.6 | - | 4.8 | U | 10 | U | 12 | U | 7.3 | U | 14 | U | 8.4 | J | | 591-78-6 | 2-Hexanone | 20000 | NL NL | μg/kg | 12 | UJ
03 | 15 | U | 9.5 | П | 12 | U | | U | 12 | U | 10 | U | 12 | 11 | 7.3 | U | 14 | U | | Ŋ | | 108-10-1 | 4-Methyl-2-Pentanone (MIBK) | 3300000 | NL NL | μg/kg | 12 | UJ
03 | 15 | U | 9.5 | П | 12 | U | | U | 12 | U | 10 | U | 12 | 11 | 7.3 | U | 14 | U | | υ | | 67-64-1 | Acetone | 6100000 | 50 | μg/kg
μg/kg | 82 | J+ | 33 | - 0 | 9.5 | П | 12 | U | 16 | - | 17 | 0 | 10 | U | 12 | U | 7.3 | U | 29 | 0 | 33 | _ | | 71-43-2 | Benzene | 1200 | 60 | μg/kg
μg/kg | 8.4 | J+ | 7.4 | - | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | U | | 74-97-5 | Bromochloromethane | 15000 | NL | | | UJ | 7.4 | U | 4.8 | 11 | 5.9 | | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | υ | | 75-27-4 | Bromodichloromethane | 290 | NL NL | μg/kg
μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | IJ | | U | | U | | 75-27-4 | Bromoform | 19000 | NL
NL | | 6.2 | - | | U | | 11 | | 11 | | _ | 6 | | 5.1 | | | 11 | | | 6.8 | U | | U | | 73-23-2
74-83-9 | Bromomethane | 680 | NL
NL | μg/kg
ug/kg | 6.2
6.2 | U | 7.4
7.4 | U | 4.8 | 11 | 5.9
5.9 | U | | U | 6 | U | 5.1 | U | 5.9
5.9 | U | 3.7
3.7 | U | 6.8 | IJ | 5.9
5.9 | U | | 74-63-9
75-15-0 | Carbon Disulfide | 77000 | NL NL | μg/kg
μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.5 | U | | U | | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 0.5 | υ | | 56-23-5 | Carbon Tetrachloride | 650 | 760 | μg/kg
μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | II. | 5.9 | U | | U | | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | υ | | | Chlorobenzene | 28000 | 1100 | μg/kg
μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | II. | 5.9 | U | | U | | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | 75-00-3 | Chloroethane | 1400000 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | II. | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | U | | 67-66-3 | Chloroform | 320 | 370 | μg/kg | 6.2 | UJ
03 | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | υ | | 74-87-3 | Chloromethane | 11000 | NL | μg/kg | 6.2 | UJ
03 | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | υ | | | cis-1,2-Dichloroethene | 16000 | 250 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | 11 | 4.2 | 7 | 72 | - | | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | | cis-1,3-Dichloropropene | NL NL | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | 5.9 | U | | U | | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | U | | 110-82-7 | Cyclohexane | 650000 | NL NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | П | 5.9 | U | | U | | U | 5.1 | U | 5.9 | II. | 3.7 | U | 6.8 | U | | υ | | | Dibromochloromethane | 8300 | NL NL | μg/kg | 6.2 | UJ
03 | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | U | | | Dichlorodifluoromethane | 8700 | NL NL | μg/kg | 6.2 | UJ
03 | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | υ | | | Ethylbenzene | 5800 | 1000 | μg/kg | 6.2 | UJ
03 | 7.4 | U | 4.8 | 11 | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | 11 | 3.7 | U | 6.8 | U | | υ | | 98-82-8 | Isopropylbenzene | 190000 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | П | 5.9 | U | | U | 6 | U | 5.1 | U | 5.9 | II. | 3.7 | U | 6.8 | U | | υ | | | M,P-Xylene | 58000 | 260 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 | U | | U | | U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | | υ | | | | | Sar | nple ID | DF-SB-12 | L-A | DF-SB-12- | ·A | DF-SB-13-A | DF-SB-14-A | DF- | -SB-15-A | DF-SB-16 | 5-A | DF-SB-17- | -A | SB-900- | В | DF-SB-1 | 8 | DF-SB-1 | .9 | DF-SB-20-A | |------------|---------------------------|----------|----------------------------|---------|----------|-----|-----------|----|--------------|------------|-----|---------------|----------|-----|-----------|----|-----------|-----|----------|-----|------------|-----|------------| | | | | | tion ID | DF-SB-: | _ | DF-SB-12 | | DF-SB-13-A | DF-SB-14 | _ | -SB-15-A | DF-SB-1 | | DF-SB-20 | | | | | Samp | le Date | 11/8/20 | | 11/8/201 | 6 | 11/8/2016 | 11/8/2016 | - | /8/2016 | 11/8/20 | | 11/8/201 | | 11/8/201 | | 11/9/20 | | 11/9/20 | | 11/9/2016 | | | | | · | Matrix | SO | | SO | | SO | SO | | SO | SO | | | | | Sample | Depth | 4 - 5 fe | et | 4 - 5 fee | t | 6 - 7 feet | 4 - 5 feet | 5 - | - 6 feet | 4 - 5 fe | et | 4 - 5 fee | et | 5 - 6 fee | et | 4 - 5 fe | et | 12 - 10 fe | eet | 4 - 5 feet | | | | | Samp | le Type | N | | N | | N | N | | N | N | | N | | FD | | N | | N | | N | | | | | Parent Sampl | e Code | | | | | | | | | | | | | DF-SB-17 | '-A | | | | | | | | | | | CLP# | BD4M | 5 | BD4M6 | | BD4M7 | BD4M8 | В | 3D4M9 | BD4N0 |) | BD4N1 | | BD4Q0 |) | BD4N2 | ! | BD4N3 | 3 | BD4N4 | | CAS No. | Compound | EPA RSLs | NYSDEC
Unrestricted Use | Unit | Result | Q | Result | Q | Result Q | Result Q | | Result Q | Resul | t Q | Result | Q | Result | Q | Resul | t Q | Result | t Q | Result Q | | 79-20-9 | Methyl Acetate | 7800000 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 1634-04-4 | Methyl tert-butyl ether | 47000 | 930 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 108-87-2 | Methylcylohexane | NL | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 75-09-2 | Methylene Chloride | 35000 | 50 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 95-47-6 | O-Xylene | 65000 | 260 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 100-42-5 | Styrene | 600000 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 127-18-4 | Tetrachloroethene | 8100 | 1300 | μg/kg | 6.2 | UJ | 7.4 | U | 2.1 J | 5.9 U | 5 | 5.2 U | 6 | U | 3 | J | 3 | J | 3.7 | U | 6.8 | U | 5.9 U | | 108-88-3 | Toluene | 490000 | 700 | μg/kg | 17 | J+ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 156-60-5 | Trans-1,2-Dichloroethene | 160000 | 190 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 1 | L. 7 J | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 10061-02-6 | Trans-1,3-Dichloropropene | NL | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 79-01-6 | Trichloroethene | 410 | 470 | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 4 | l.1 J | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 75-69-4 | Trichlorofluoromethane | 2300000 | NL | μg/kg | 6.2 | UJ | 7.4 | U | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | | 75-01-4 | Vinyl Chloride | 59 | 20 | μg/kg | 2.4 | J+ | 2.6 | J | 4.8 U | 5.9 U | 5 | 5.2 U | 6 | U | 5.1 | U | 5.9 | U | 3.7 | U | 6.8 | U | 5.9 U | > NYSDEC Unrestricted Bolded > detection ### Acronyms μg/kg - microgram by kilograms CLP - Contract Laboratory Program NL - not listed NYSDEC - New York State Department of EPA - Environmental Protection Agency Environmental Conservation FD - field duplicate Q - qualifier ID - identification RSLs - Regional Screening Levels J - estimated result SO - soil J + - biased high estimated result U - undetected N - normal UJ - esitmated undetected Table 3-1B Soil Sample Detections - SVOCs Former Duofold Corporation Ilion, New York | | | | | Sample ID | DF-SB-01-A | | DF-SB-02-A | -1 | DF-SB-03-A | Т | DF-SB-04-A | DE- | SB-05-A | | DF-SB-06-A | | DF-SB-07-A | | DF-SB-08-A | 1 | |---------------------|------------------------------------|-----------------|---------------------|----------------|------------|---|------------|----|------------|--------|-------------------------|-----|-----------|----|------------|-------------|------------------|---------------|------------|-------| | | | | | Location ID | DF-SB-01 | | DF-SB-02 | 1 | DF-SB-03 | + | DF-SB-04 | | -SB-05 | | DF-SB-06 | |
DF-SB-07 | | DF-SB-08 | | | | | | | Sample Date | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | 1 | 11/8/2016 | | 8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/9/2016 | | | | | | | Matrix | SO | | SO | _ | SO | 1 | SO SO | 11/ | SO | 1 | SO | <u> </u> | SO | | SO | | | | | | | Sample Depth | 4 - 5 feet | | 4 - 5 feet | 1 | 4 - 5 feet | T | 3 - 4 feet | 5 - | 6 feet | | 4 - 5 feet | | 7 - 8 feet | | 2 - 3 feet | | | | | | | Sample Type | N | | N | 1 | N | + | N | | N | | N | | N | | N | | | | | | Pare | nt Sample Code | | | | - | | 1 | | | | | | | | | ., | - | | | | | | CLP# | BD4L5 | | BD4L6 | | BD4L7 | T | BD4L8 | В | D4L9 | | BD4M0 | | BD4M1 | | BD4M2 | | | | | | NYSDEC Unrestricted | | | | | | | T | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | | Unit | DI | | Danile 4 | _ | DIt 0 | | Daniel O | | DI | | D l | ام | D | 4.0 | | م با | | | Compound | | Use | | Resul | Ť | Result (| | Result Q | + | Result Q | | Resul | ιQ | Result | | Resu | $\overline{}$ | Resu | IIT Q | | 92-52-4 | 1,1-Biphenyl | 4700 | NL | μg/kg | 250 | U | | U | | U | 200 U | 4 | 10 | U | 200 | U | 220 | U | 210 | U | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | 2300 | NL | μg/kg | 250 | U | | U | | U | 200 U | 4 | 10 | U | 200 | U | 220 | U | 210 | U | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | 190000 | NL | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 95-95-4 | 2,4,5-Trichlorophenol | 630000 | NL
NI | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 88-06-2 | 2,4,6-Trichlorophenol | 6300 | NL
NI | μg/kg | 250 | U | | U | | U | 200 U | + | 10 | U | 200 | U | 220 | U | 210 | U | | 120-83-2 | 2,4-Dichlorophenol | 19000 | NL
NI | μg/kg | 250 | U | | U | | U | 200 U | _ | 10 | U | 200 | U | 220 | U | 210 | U | | 105-67-9 | 2,4-Dimethylphenol | 130000 | NL
NI | μg/kg | 250 | U | . | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 51-28-5 | 2,4-Dinitrophenol | 13000 | NL
NI | μg/kg | 480 | U | . | U | | U | 390 U | 4 | 20 | U | 380 | U | 430 | U | 400 | U | | 121-14-2 | 2,4-Dinitrotoluene | 1700 | NL
NI | μg/kg | 250 | U | | U | | U | 200 U | 4 | 10 | U | 200 | U | 220 | U | 210 | U | | 606-20-2 | 2,6-Dinitrotoluene | 360 | NL
NL | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 91-58-7 | 2-Chloronaphthalene | 480000 | NL
NL | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 95-57-8 | 2-Chlorophenol | 39000 | NL
••• | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | | | 91-57-6 | 2-Methylnaphthalene | 24000 | NL | μg/kg | 250 | U | | | | U | 200 U | | 10 | U | 200 | U | 220 | U | 92 | J | | 95-48-7 | 2-Methylphenol | 320000 | 330 | μg/kg | 480 | U | | U | | U | 390 U | _ | 20 | U | 380 | U | 430 | U | 400 | U | | 88-74-4 | 2-Nitroaniline | 63000 | NL | μg/kg | 250 | U | | U | | U | 200 U | _ | 10 | U | 200 | U | 220 | U | 210 | U | | 88-75-5 | 2-Nitrophenol | NL
1200 | NL
NI | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 91-94-1 | 3,3 -Dichlorobenzidine | 1200 | NL
NI | μg/kg | 480 | U | . | U | | U | 390 U | | 20 | U | 380 | U | 430 | U | 400 | | | 99-09-2 | 3-Nitroaniline | NL
540 | NL
NI | μg/kg | 480 | U | | U | | U | 390 U | | 20 | U | 380 | U | 430 | U | 400 | U | | 534-52-1 | 4,6-Dinitro-2-methylphenol | 510 | NL
NI | μg/kg | 480 | U | | U | | U | 390 U | _ | 20 | U | 380 | U | 430 | U | 400 | U | | 101-55-3 | 4-Bromophenyl phenyl ether | NL | NL
NL | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 59-50-7 | 4-Chloro-3-methylphenol | 630000 | NL
 | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 106-47-8 | P-Chloroaniline | 2700 | NL
NI | μg/kg | 480 | U | | U | | U | 390 U | 4 | 20 | U | 380 | U | 430 | U | 400 | U | | 7005-72-3 | | NL | NL
220 | μg/kg | 250 | U | | U | | U | 200 U | | 10 | U | 200 | U | 220 | U | 210 | U | | 106-44-5 | 4-Methylphenol | 630000 | 330 | μg/kg | 480 | U | | U | | U | 390 U | | 20 | U | 380 | U | 430 | U | 400 | U | | 100-02-7 | 4-Nitrophenol | NL | NL
2000 | μg/kg | 480 | U | | U | | U | 390 U | + | 20 | U | 380 | U | 430 | U | 400 | | | 83-32-9 | Acenaphthene | 360000 | 20000 | μg/kg | 250
250 | U | | U | | U
U | 200 U
200 U | | 10
10 | U | 200
200 | U | 220
220 | U | 210
210 | U | | 208-96-8 | Acetanhanana | NL | 100000 | μg/kg | | | | _ | | _ | | | 20 | | 380 | | 430 | | 400 | U | | 98-86-2 | Acetophenone | 780000 | NL
100000 | μg/kg | 480
250 | U | | J | | U | | | 20
10 | U | 200 | U | 220 | U | 210 | U | | 120-12-7 | Anthracene | 1800000
2400 | 100000 | μg/kg | 480 | U | | U | | U | 60 J
390 U | | 20 | U | 380 | U | 430 | U | 400 | U | | 1912-24-9 | | | NL
NI | μg/kg | 480 | U | | U | | U
U | | - | 20
20 | U | 380 | U | 430 | U | 400 | U | | 100-52-7
56-55-3 | Benzaldehyde
Benzo(a)anthracene | 780000
160 | NL
1000 | μg/kg | 250 | U | | J | | U | 390 U
170 J | _ | <u>19</u> | 1 | 78 | 1 | 93 | 1 | 210 | U | | 50-33-8 | Benzo(a)pyrene | 160 | 1000 | μg/kg
μg/kg | 250 | U | | J | | U | 140 J | _ | i9
i0 | J | 62 | J | 82 | J | 210 | U | | 205-99-2 | Benzo(b)fluoranthene | 160 | 1000 | | 250 | U | | J | | U | 190 J | 4 | <u>'3</u> | 1 | 77 | J | 130 | J | 210 | U | | 191-24-2 | Benzo(g,h,i)perylene | NL | 100000 | μg/kg | 250 | _ | | _ | | U | | | | , | | - | | + + | | U | | | | | | μg/kg | 250 | U | | U | | U | 81 J 69 J | | 10 | U | 200
200 | U | 46
220 | J | 210
210 | U | | 207-08-9 | Benzo(k)fluoranthene | 1600 | 800 | μg/kg | | U | | U | | U | | | 10 | U | | | 220 | U | 210 | U | | 111-91-1 | Bis(2-Chloroethoxy)methane | 19000 | NL
NI | μg/kg | 250 | _ | | _ | | _ | | | 10 | - | 200 | U | | | | U | | 111-44-4 | Bis(2-Chloroethyl) ether | 230 | NL
NI | μg/kg | 480 | U | | U | | U
U | 390 U | | 20 | U | 380 | U | 430 | U | 400 | U | | 117-81-7 | Bis(2-Ethylhexyl)phthalate | 39000 | NL
NI | μg/kg | 250 | U | | U | | | 200 U | | 10 | U | 200 | U | 220 | U | 210 | | | 108-60-1 | Benzyl Butyl Phthalate | 290000 | NL | μg/kg | 250 | U | 200 | U | 190 L | U | 200 U | 1 2 | 10 | U | 200 | U | 220 | U | 210 | U | | | | | | Sample ID | DF-SB-01-A | | DF-SB-02-A | DF-SB-03-A | | DF-SB-04-A | | DF-SB-05-A | T | DF-SB-06-A | | DF-SB-07-A | | DF-SB-08-A | 4 | |----------|----------------------------|----------|---------------------|----------------|------------|-----|--------------|------------|-----|------------|---|------------|---|------------|-----|------------|------|------------|-------| | | | | | Location ID | DF-SB-01 | | DF-SB-02 | DF-SB-03 | | DF-SB-04 | | DF-SB-05 | | DF-SB-06 | | DF-SB-07 | | DF-SB-08 | | | | | | | Sample Date | 11/8/2016 | | 11/8/2016 | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/9/2016 | , | | | | | | Matrix | SO | | SO | SO | | | | | | | Sample Depth | 4 - 5 feet | | 4 - 5 feet | 4 - 5 feet | | 3 - 4 feet | | 5 - 6 feet | | 4 - 5 feet | | 7 - 8 feet | | 2 - 3 feet | | | | | | | Sample Type | N | | N | N | | N | | N | | N | | N | | N | | | | | | Parei | nt Sample Code | CLP# | BD4L5 | | BD4L6 | BD4L7 | | BD4L8 | | BD4L9 | | BD4M0 | | BD4M1 | | BD4M2 | | | | | | NYSDEC Unrestricted | | | | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Use | Unit | Resul | t Q | Result Q | Result | t Q | Result C | Q | Result (| Q | Result | : Q | Resul | lt Q | Resu | ılt Q | | 105-60-2 | Caprolactam | 3100000 | NL | μg/kg | 480 | U | 390 U | 370 | U | 390 l | U | 420 | U | 380 | U | 430 | U | 400 | U | | 86-74-8 | Carbazole | NL | NL | μg/kg | 480 | U | 390 U | 370 | U | 390 l | U | 420 | U | 380 | U | 430 | U | 400 | U | | 53-70-3 | Dibenzo(a,h)anthracene | 16 | 330 | μg/kg | 250 | U | 200 U | 190 | U | 200 ا | U | 210 | U | 200 | U | 220 | U | 210 | U | | 132-64-9 | Dibenzofuran | 7300 | NL | μg/kg | 250 | U | 69 J | 190 | U | 200 ا | U | 210 | U | 200 | U | 220 | U | 210 | U | | 84-66-2 | Diethyl phthalate | 5100000 | NL | μg/kg | 250 | U | 200 U | 190 | U | 200 ا | U | 210 | U | 200 | U | 220 | U | 210 | U | | 131-11-3 | Dimethyl phthalate | NL | NL | μg/kg | 1900 | | 980 | 950 | | 620 | | 1400 | | 800 | | 1200 | | 660 | | | 84-74-2 | Di-n-butylphthalate | 630000 | NL | μg/kg | 250 | U | 200 U | 190 | U | | U | 210 | U | 200 | U | 220 | U | 210 | U | | 117-84-0 | Di-n-octylphthalate | 63000 | NL | μg/kg | 480 | U | 390 U | 370 | U | 390 l | U | 420 | U | 380 | U | 430 | U | 400 | U | | 206-44-0 | Fluoranthene | 240000 | 100000 | μg/kg | 480 | U | 88 J | 370 | U | 410 | | 150 | J | 160 | J | 190 | J | 400 | U | | 86-73-7 | Fluorene | 240000 | 30000 | μg/kg | 250 | U | 200 U | 190 | U | | U | 210 | U | 200 | U | 220 | U | 210 | U | | 87-68-3 | Hexachloro-1,3-butadiene | 1200 | NL | μg/kg | 250 | U | 200 U | 190 | U | | U | | U | 200 | U | 220 | U | 210 | U | | 118-74-1 | Hexachlorobenzene | 210 | NL | μg/kg | 250 | U | 200 U | 190 | U | 200 l | U | 210 | U | 200 | U | 220 | U | 210 | U | | 77-47-4 | Hexachlorocyclopentadiene | 180 | NL | μg/kg | 480 | U | 390 U | 370 | U | 390 l | U | 420 | U | 380 | U | 430 | U | 400 | U | | 67-72-1 | Hexachloroethane | 1800 | NL | μg/kg | 250 | U | 200 U | 190 | U | 200 ل | U | 210 | U | 200 | U | 220 | U | 210 | U | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 160 | 500 | μg/kg | 250 | U | 200 U | 190 | U | 79 . | J | 210 | U | 200 | U | 53 | J | 210 | U | | 91-20-3 | Naphthalene | 3800 | 12000 | μg/kg | 250 | U | 230 | 190 | U | 200 l | U | 210 | U | 200 | U | 220 | U | 56 | J | | 98-95-3 | Nitrobenzene | 5100 | NL | μg/kg | 250 | U | 200 U | 190 | U | 200 ل | U | 210 | U | 200 | U | 220 | U | 210 | U | | 621-64-7 | N-Nitroso-di-n-propylamine | 78 | NL | μg/kg | 250 | U | 200 U | 190 | U | 200 ا | U | 210 | U | 200 | U | 220 | U | 210 | U | | 86-30-6 | N-Nitrosodiphenylamine | 110000 | NL | μg/kg
 250 | U | 200 U | 190 | U | 200 ا | U | 210 | U | 200 | U | 220 | U | 210 | U | | 87-86-5 | Pentachlorophenol | 1000 | 800 | μg/kg | 480 | U | 390 U | 370 | U | 390 l | U | 420 | U | 380 | U | 430 | U | 400 | U | | 85-01-8 | Phenanthrene | NL | 100000 | μg/kg | 250 | U | 130 J | 190 | U | 280 | | 150 | J | 96 | J | 64 | J | 53 | J | | 108-95-2 | Phenol | 1900000 | 330 | μg/kg | 200 | J | 120 J | 110 | J | 69 . | J | 170 | J | 120 | J | 130 | J | 170 | J | | 129-00-0 | Pyrene | 180000 | 100000 | μg/kg | 250 | U | 83 J | 190 | U | 350 | | 140 | J | 130 | J | 160 | J | 210 | U | **Bolded** > detection ### Acronyms $\mu g/kg$ - microgram by kilograms NL - not listed NYSDEC - New York State Department of Environmental CLP - Contract Laboratory Program Conservation EPA - Environmental Protection Agency Q - qualifier FD - field duplicate RSLs - Regional Screening Levels ID - identification SO - soil J - estimated result U - undetected N - normal Table 3-1B Soil Sample Detections - SVOCs Former Duofold Corporation Ilion, New York | | | | | Sample ID | DF-SB-09-A | | DF-SB-10-A | | SB-900-A | ı | DF-SB-11-A | | DF-SB-12-A | - | DF-SB-13-A | | DF-SB-14-A | T | DF-SB-15-A | |-----------|---|-----------------|---------------------|----------------|------------|---|------------|---|----------------|----------|------------------------|----|------------|--------|------------|----|------------|--------------|----------------| | | | | | Location ID | DF-SB-09-A | | DF-SB-10-A | | DF-SB-10 | 1 | DF-SB-11-A
DF-SB-11 | | DF-SB-12-A | + | DF-SB-13-A | - | DF-SB-14-A | + | DF-SB-15-A | | | | | | Sample Date | 11/9/2016 | | 11/9/2016 | | 11/9/2016 | 1 | 11/8/2016 | | 11/8/2016 | 1 | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | | | | | Matrix | SO | | SO | | SO | 1 | SO SO | | SO | \top | SO | T | SO | 1 | SO | | | | | | Sample Depth | 5 - 6 feet | | 5 - 6 feet | | 5 - 6 feet | 1 | 4 - 5 feet | | 6 - 7 feet | | 4 - 5 feet | T | 6 - 7 feet | T | 4 - 5 feet | | | | | | Sample Type | N | | N | | FD | 1 | N | | N | 1 | N | | N | | N | | | | | Pare | nt Sample Code | | | | | DF-SB-10-A | 1 | | | | 1 | | | | | | | | | | | CLP# | BD4M3 | | BD4M4 | | BD4P9 | | BD4M5 | | BD4M6 | | BD4M7 | | BD4M8 | | BD4M9 | | | | | NYSDEC Unrestricted | | | | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Use | Unit | Danul | | Dooulk | | Danult O | | Dogula (| _ | Desult O | | Dagult | ٦ | Dogult C | \mathbf{I} | Desult O | | | , | | | | Resu | | Result | | Result Q | - | Result (| Ų | Result Q | 1 | Result | -+ | Result C | - | Result Q | | | 1,1-Biphenyl | 4700 | NL | μg/kg | 230 | U | | U | 240 U | <u> </u> | 370 | | 260 L | _ | 200 | U | | U | 220 U | | | 1,2,4,5-Tetrachlorobenzene | 2300 | NL
 | μg/kg | 230 | U | | U | 240 U | 1 | | U | | J | 200 | U | | U | 220 U | | - | 2,3,4,6-Tetrachlorophenol | 190000 | NL
NI | μg/kg | 230 | U | | U | 240 U | | | U | 260 L | _ | 200 | U | | U | 220 U | | - | 2,4,5-Trichlorophenol | 630000 | NL
NI | μg/kg | 230 | U | | U | 240 U | | | U | 260 L | _ | 200 | U | | U | 220 U | | | 2,4,6-Trichlorophenol | 6300 | NL
NI | μg/kg | 230 | U | | U | 240 U | 1 | | U | 260 L | _ | 200 | U | | U | 220 U | | | 2,4-Dichlorophenol | 19000 | NL
NI | μg/kg | 230 | U | | U | 240 U
240 U | 1 | | U | 260 L | _ | 200 | U | | U | 220 U
220 U | | _ | 2,4-Dimethylphenol 2,4-Dinitrophenol | 130000
13000 | NL
NL | μg/kg | 230
450 | U | | U | 240 U
470 U | - | | U | 260 L | J | 200
400 | U | | U
U | 220 U
420 U | | | 2,4-Dinitropnenoi
2,4-Dinitrotoluene | 1700 | NL
NL | μg/kg
μg/kg | 230 | U | | U | 240 U | - | | U | 260 L | - | 200 | U | | U | 220 U | | | 2,6-Dinitrotoluene | 360 | NL
NL | μg/kg
μg/kg | 230 | U | | U | 240 U | - | | U | 260 L | _ | 200 | U | | U | 220 U | | - | 2-Chloronaphthalene | 480000 | NL
NL | μg/kg
μg/kg | 230 | U | | U | 240 U | - | | U | 260 | _ | 200 | U | | U | 220 U | | | 2-Chlorophenol | 39000 | NL
NL | μg/kg
μg/kg | 230 | U | | U | 240 U | + | | U | | J | 200 | U | | U | 220 U | | | 2-Methylnaphthalene | 24000 | NL NL | μg/kg | 230 | U | | U | 240 U | 1 | 650 | | | J | 200 | U | | U | 220 U | | | 2-Methylphenol | 320000 | 330 | μg/kg
μg/kg | 450 | U | | U | 470 U | 1 | + | IJ | | J | 400 | U | | U | 420 U | | | 2-Nitroaniline | 63000 | NL NL | μg/kg | 230 | U | | U | 240 U | 1 | | U | | J | 200 | U | | U | 220 U | | | 2-Nitrophenol | NL | NL | μg/kg | 230 | U | | U | 240 U | 1 | | U | 260 L | _ | 200 | U | | U | 220 U | | - | 3,3 -Dichlorobenzidine | 1200 | NL | μg/kg | 450 | U | | U | 470 U | | | U | | J | 400 | U | | U | 420 U | | | 3-Nitroaniline | NL | NL | μg/kg | 450 | Ū | | U | 470 U | 1 | | U | 500 L | _ | 400 | U | | U | 420 U | | | 4,6-Dinitro-2-methylphenol | 510 | NL | μg/kg | 450 | U | | U | 470 U | 1 | | U | | J | 400 | U | | U | 420 U | | | 4-Bromophenyl phenyl ether | NL | NL | μg/kg | 230 | U | | U | 240 U | 1 | | U | 260 L | _ | 200 | U | | U | 220 U | | | 4-Chloro-3-methylphenol | 630000 | NL | μg/kg | 230 | U | | U | 240 U | 1 | | U | 260 L | - | 200 | U | | U | 220 U | | | P-Chloroaniline | 2700 | NL | μg/kg | 450 | U | | U | 470 U | 1 | | U | 500 L | - | 400 | U | | U | 420 U | | 7005-72-3 | 4-Chlorophenyl phenyl ether | NL | NL | μg/kg | 230 | U | 250 | U | 240 U | | 250 | U | 260 l | J | 200 | U | | U | 220 U | | 106-44-5 | 4-Methylphenol | 630000 | 330 | μg/kg | 450 | U | 480 | U | 470 U | | 480 | U | 500 L | J | 400 | U | 480 l | U | 420 U | | 100-02-7 | 4-Nitrophenol | NL | NL | μg/kg | 450 | U | 480 | U | 470 U | | 480 | U | 500 L | J | 400 | U | 480 l | U | 420 U | | | Acenaphthene | 360000 | 20000 | μg/kg | 230 | U | | U | 240 U | | 120 | J | 260 L | J | 200 | U | | U | 220 U | | 208-96-8 | Acenaphthylene | NL | 100000 | μg/kg | 230 | U | 250 | U | 240 U | | 250 | U | 260 L | J | 200 | U | 250 l | U | 220 U | | | Acetophenone | 780000 | NL | μg/kg | 450 | U | 73 | J | 470 U | | 480 | U | 500 L | J | 43 | J | 480 l | U | 420 U | | 120-12-7 | Anthracene | 1800000 | 100000 | μg/kg | 230 | U | | U | 240 U | | 150 | J | 68 | J | 200 | U | | U | 220 U | | 1912-24-9 | Atrazine | 2400 | NL | μg/kg | 450 | U | | U | 470 U | | | U | | J | 400 | U | | U | 420 U | | 100-52-7 | Benzaldehyde | 780000 | NL | μg/kg | 450 | U | | J | 470 U | | | U | | J | 400 | U | | U | 420 U | | 56-55-3 | Benzo(a)anthracene | 160 | 1000 | μg/kg | 230 | U | | U | 240 U | | 490 | | 230 | J | 260 | | | U | 220 U | | | Benzo(a)pyrene | 16 | 1000 | μg/kg | 230 | U | | U | 240 U | | 160 | J | 130 | J | 270 | | | U | 220 U | | | Benzo(b)fluoranthene | 160 | 1000 | μg/kg | 230 | U | | U | 240 U | 1 | 530 | | 170 | J | 340 | | | U | 220 U | | | Benzo(g,h,i)perylene | NL | 100000 | μg/kg | 230 | U | | U | 240 U | | 150 | J | 56 | J | 150 | J | | U | 220 U | | | Benzo(k)fluoranthene | 1600 | 800 | μg/kg | 230 | U | | U | 240 U | | 160 | J | 71 | J | 140 | J | | U | 220 U | | | Bis(2-Chloroethoxy)methane | 19000 | NL | μg/kg | 230 | U | | U | 240 U | | | U | | J | 200 | U | | U | 220 U | | 111-44-4 | Bis(2-Chloroethyl) ether | 230 | NL | μg/kg | 450 | U | | U | 470 U | | | U | | J | 400 | U | | U | 420 U | | | Bis(2-Ethylhexyl)phthalate | 39000 | NL | μg/kg | 230 | U | | U | 240 U | | | U | 260 l | _ | 200 | U | | U | 220 U | | 108-60-1 | Benzyl Butyl Phthalate | 290000 | NL | μg/kg | 230 | U | 250 | U | 240 U | 1 | 250 | U | 260 ل | J | 200 | U | 250 l | U | 220 U | | | | | | Sample ID | DF-SB-09-A | | DF-SB-10-A | | SB-900-A | | DF-SB-11-A | | DF-SB-12-A | | DF-SB-13-A | | DF-SB-14-A | | DF-SB-15-A | |----------|----------------------------|----------|---------------------|----------------|------------|------|------------|---|--------------|---|------------|---|------------|---|------------|-----|------------|-----|--------------| | | | | | Location ID | DF-SB-09 | | DF-SB-10 | | DF-SB-10 | | DF-SB-11 | | DF-SB-12 | | DF-SB-13 | | DF-SB-14 | | DF-SB-15 | | | | | | Sample Date | 11/9/2016 | | 11/9/2016 | | 11/9/2016 | | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | | | | | Matrix | SO | | | | | Sample Depth | 5 - 6 feet | | 5 - 6 feet | | 5 - 6 feet | | 4 - 5 feet | | 6 - 7 feet | | 4 - 5 feet | | 6 - 7 feet | | 4 - 5 feet | | | | | | Sample Type | N | | N | | FD | | N | | N | | N | | N | | N | | | | | Pare | nt Sample Code | | | | | DF-SB-10-A | | | | | | | | | | | | | | | | CLP # | BD4M3 | | BD4M4 | | BD4P9 | | BD4M5 | | BD4M6 | | BD4M7 | | BD4M8 | | BD4M9 | | | | | NYSDEC Unrestricted | | | | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Use | Unit | Resu | lt Q | Result | Q | Result Q | | Result | Q | Result | Q | Resul | t Q | Resul | t Q | Result Q | | 105-60-2 | Caprolactam | 3100000 | NL | μg/kg | 450 | U | 480 | U | 470 U | J | 480 | U | 500 | U | 400 | U | 480 | U | 420 U | | 86-74-8 | Carbazole | NL | NL | μg/kg | 450 | U | 480 | U | 470 U | J | 480 | U | 500 | U | 400 | U | 480 | U | 420 U | | 53-70-3 | Dibenzo(a,h)anthracene | 16 | 330 | μg/kg | 230 | U | 250 | U | 240 U | J | 50 | J | 260 | U | 50 | J | 250 | U | 220 U | | 132-64-9 | Dibenzofuran | 7300 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 600 | | 260 | U | 200 | U | 250 | U | 220 U | | 84-66-2 | Diethyl phthalate | 5100000 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 131-11-3 | Dimethyl phthalate | NL | NL | μg/kg | 520 | | 890 | | 520 | | 300 | | 1800 | | 1200 | | 340 | | 330 | | 84-74-2 | Di-n-butylphthalate | 630000 | NL | μg/kg | 230 | U | | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 117-84-0 | Di-n-octylphthalate | 63000 | NL | μg/kg | 450 | U | 480 | U | 470 U | J | 480 | U | 500 | U | 400 | U | 480 | U | 420 U | | 206-44-0 | Fluoranthene | 240000 | 100000 | μg/kg | 450 | U | | U | 470 U | J | 2600 | | 650 | | 360 | J | 480 | U | 420 U | | 86-73-7 | Fluorene | 240000 | 30000 | μg/kg | 230 | U | | U | 240 U | J | 940 | | 260 | U | 200 | U |
250 | U | 220 U | | 87-68-3 | Hexachloro-1,3-butadiene | 1200 | NL | μg/kg | 230 | U | | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 118-74-1 | Hexachlorobenzene | 210 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 77-47-4 | Hexachlorocyclopentadiene | 180 | NL | μg/kg | 450 | U | | U | 470 U | J | 480 | U | 500 | U | 400 | U | 480 | U | 420 U | | 67-72-1 | Hexachloroethane | 1800 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 160 | 500 | μg/kg | 230 | U | 250 | U | 240 U | J | 160 | J | 55 | J | 160 | J | 250 | U | 220 U | | 91-20-3 | Naphthalene | 3800 | 12000 | μg/kg | 230 | U | 250 | U | 240 U | J | 880 | | 260 | U | 200 | U | 250 | U | 220 U | | 98-95-3 | Nitrobenzene | 5100 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 250 | U | 260 | U | 200 | С | 250 | U | 220 U | | 621-64-7 | N-Nitroso-di-n-propylamine | 78 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 86-30-6 | N-Nitrosodiphenylamine | 110000 | NL | μg/kg | 230 | U | 250 | U | 240 U | J | 250 | U | 260 | U | 200 | U | 250 | U | 220 U | | 87-86-5 | Pentachlorophenol | 1000 | 800 | μg/kg | 450 | U | 480 | U | 470 U | J | 480 | U | 500 | U | 400 | U | 480 | U | 420 U | | 85-01-8 | Phenanthrene | NL | 100000 | μg/kg | 230 | U | 250 | U | 240 U | J | 3000 | | 260 | U | 97 | J | 250 | U | 220 U | | 108-95-2 | Phenol | 1900000 | 330 | μg/kg | 110 | J | 200 | J | 150 J | J | 480 | U | 500 | U | 120 | J | 220 | J | 200 J | | 129-00-0 | Pyrene | 180000 | 100000 | μg/kg | 230 | U | 250 | U | 240 U | J | 1900 | | 640 | | 320 | | 250 | U | 220 U | **Bolded** > detection > NYSDEC Unrestricted ### Acronyms $\mu g/kg$ - microgram by kilograms NL - not listed NYSDEC - New York State Department of Environmental CLP - Contract Laboratory Program Conservation EPA - Environmental Protection Agency Q - qualifier FD - field duplicate RSLs - Regional Screening Levels ID - identification SO - soil J - estimated result U - undetected N - normal Table 3-1B Soil Sample Detections - SVOCs Former Duofold Corporation Ilion, New York | | | | | Sample ID | DF-SB-16-A | | DF-SB-17-A | | SB-900-B | - 1 | DF-SB-18-A | | DF-SB-19-A | 1 | DF-SB-20- | ۸ | |-----------|-----------------------------|----------|---------------------|----------------|------------|---|------------|------|------------|-----|------------|---|------------|-----|------------|-----| | | | | | Location ID | DF-SB-16 | | DF-SB-17 | | DF-SB-17 | | DF-SB-18 | | DF-SB-19-A | | DF-SB-20 | | | | | | | Sample Date | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/9/2016 | | 11/9/2016 | | 11/9/2010 | | | | | | | Matrix | SO | | | | | | | Sample Depth | 5 - 6 feet | | 4 - 5 feet | | 4 - 5 feet | | 5 - 6 feet | | 4 - 5 feet | | 4 - 5 feet | | | | | | | Sample Type | N N | | N N | | FD | | N | | N N | | N N | - | | | | | Pare | nt Sample Code | IN | | IN | | DF-SB-17-A | | IN . | | IN | | IN | | | | | | Ture | CLP # | BD4N0 | | BD4N1 | | BD4Q0 | | BD4N2 | | BD4N3 | | BD4N4 | | | | <u> </u> | l | | <u> </u> | DD4NO | | DD-INI | | 55400 | - 1 | DD-1112 | | 554143 | | דוודטט | | | | | | NYSDEC Unrestricted | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Use | Unit | Result | Q | Resul | lt Q | Result | Q | Result | Q | Resul | t Q | Resul | t Q | | 92-52-4 | 1,1-Biphenyl | 4700 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | 2300 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | 190000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 95-95-4 | 2,4,5-Trichlorophenol | 630000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 88-06-2 | 2,4,6-Trichlorophenol | 6300 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 120-83-2 | 2,4-Dichlorophenol | 19000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | 2,4-Dimethylphenol | 130000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 51-28-5 | 2,4-Dinitrophenol | 13000 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 121-14-2 | 2,4-Dinitrotoluene | 1700 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 606-20-2 | 2,6-Dinitrotoluene | 360 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 91-58-7 | 2-Chloronaphthalene | 480000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 95-57-8 | 2-Chlorophenol | 39000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 91-57-6 | 2-Methylnaphthalene | 24000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 95-48-7 | 2-Methylphenol | 320000 | 330 | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 88-74-4 | 2-Nitroaniline | 63000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 88-75-5 | 2-Nitrophenol | NL | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 91-94-1 | 3,3 -Dichlorobenzidine | 1200 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 99-09-2 | 3-Nitroaniline | NL | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 534-52-1 | 4,6-Dinitro-2-methylphenol | 510 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 101-55-3 | 4-Bromophenyl phenyl ether | NL | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 59-50-7 | 4-Chloro-3-methylphenol | 630000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 106-47-8 | P-Chloroaniline | 2700 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 7005-72-3 | 4-Chlorophenyl phenyl ether | NL | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 106-44-5 | 4-Methylphenol | 630000 | 330 | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 100-02-7 | 4-Nitrophenol | NL | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 83-32-9 | Acenaphthene | 360000 | 20000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | Acenaphthylene | NL | 100000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | Acetophenone | 780000 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | | Anthracene | 1800000 | 100000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 1912-24-9 | | 2400 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | | Benzaldehyde | 780000 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | - | Benzo(a)anthracene | 160 | 1000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | Benzo(a)pyrene | 16 | 1000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | Benzo(b)fluoranthene | 160 | 1000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | Benzo(g,h,i)perylene | NL | 100000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 207-08-9 | Benzo(k)fluoranthene | 1600 | 800 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 111-91-1 | Bis(2-Chloroethoxy)methane | 19000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 111-44-4 | Bis(2-Chloroethyl) ether | 230 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | | Bis(2-Ethylhexyl)phthalate | 39000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 76 | J | 65 | J | 230 | U | | 108-60-1 | Benzyl Butyl Phthalate | 290000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | | | | | Sample ID | DF-SB-16-A | | DF-SB-17-A | | SB-900-B | | DF-SB-18-A | | DF-SB-19-A | | DF-SB-20- | A | |----------|----------------------------|----------|---------------------|----------------|------------|-----|------------|-----|------------|-----|------------|-----|------------|-----|------------|-----| | | | | | Location ID | DF-SB-16 | | DF-SB-17 | | DF-SB-17 | | DF-SB-18 | | DF-SB-19 | | DF-SB-20 | | | | | | | Sample Date | 11/8/2016 | | 11/8/2016 | | 11/8/2016 | | 11/9/2016 | | 11/9/2016 | | 11/9/2016 | 6 | | | | | | Matrix | SO | | | | | | | Sample Depth | 5 - 6 feet | | 4 - 5 feet | | 4 - 5 feet | | 5 - 6 feet | | 4 - 5 feet | | 4 - 5 feet | : | | | | | | Sample Type | N | | N | | FD | | N | | N | | N | | | | | | Pare | nt Sample Code | | | | | DF-SB-17-A | | | | | | | | | | | | | CLP# | BD4N0 | | BD4N1 | | BD4Q0 | | BD4N2 | | BD4N3 | | BD4N4 | | | | | | NYSDEC Unrestricted | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Use | Unit | Resul | t Q | Resul | t Q | Result | : Q | Resul | t Q | Resu | t Q | Resul | t Q | | 105-60-2 | Caprolactam | 3100000 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 86-74-8 | Carbazole | NL | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 53-70-3 | Dibenzo(a,h)anthracene | 16 | 330 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 132-64-9 | Dibenzofuran | 7300 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 84-66-2 | Diethyl phthalate | 5100000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 131-11-3 | Dimethyl phthalate | NL | NL | μg/kg | 1400 | | 1100 | | 600 | | 920 | | 670 | | 290 | | | 84-74-2 | Di-n-butylphthalate | 630000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 117-84-0 | Di-n-octylphthalate | 63000 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 206-44-0 | Fluoranthene | 240000 | 100000 | μg/kg | 550 | U | 380 | U | 54 | J | 500 | U | 480 | U | 450 | U | | 86-73-7 | Fluorene | 240000
 30000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 87-68-3 | Hexachloro-1,3-butadiene | 1200 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 118-74-1 | Hexachlorobenzene | 210 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 77-47-4 | Hexachlorocyclopentadiene | 180 | NL | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 67-72-1 | Hexachloroethane | 1800 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | J | 250 | U | 230 | U | | 193-39-5 | Indeno(1,2,3-cd)pyrene | 160 | 500 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 91-20-3 | Naphthalene | 3800 | 12000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 98-95-3 | Nitrobenzene | 5100 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 621-64-7 | N-Nitroso-di-n-propylamine | 78 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 86-30-6 | N-Nitrosodiphenylamine | 110000 | NL | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 87-86-5 | Pentachlorophenol | 1000 | 800 | μg/kg | 550 | U | 380 | U | 400 | U | 500 | U | 480 | U | 450 | U | | 85-01-8 | Phenanthrene | NL | 100000 | μg/kg | 280 | U | 190 | U | 210 | U | 260 | U | 250 | U | 230 | U | | 108-95-2 | Phenol | 1900000 | 330 | μg/kg | 280 | J | 140 | J | 110 | J | 250 | J | 160 | J | 110 | J | | 129-00-0 | Pyrene | 180000 | 100000 | μg/kg | 280 | U | 190 | U | 52 | J | 260 | U | 250 | U | 230 | U | **Bolded** > detection > NYSDEC Unrestricted ### Acronyms $\mu g/kg$ - microgram by kilograms NL - not listed NYSDEC - New York State Department of Environmental CLP - Contract Laboratory Program Conservation EPA - Environmental Protection Agency Q - qualifier FD - field duplicate RSLs - Regional Screening Levels ID - identificationSO - soilJ - estimated resultU - undetected N - normal | | | | | 1 | | | | | 1 | | 1 | 1 | | 1 | ī | T | T | |------------|--------------|----------|-------------------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------| | | | | Sa | ample ID | DF-SB-01-A | DF-SB-02-A | DF-SB-03-A | DF-SB-04-A | DF-SB-05-A | DF-SB-06-A | DF-SB-07-A | DF-SB-08-A | DF-SB-09-A | DF-SB-10-A | SB-900-A | DF-SB-11-A | DF-SB-12-A | | | | | Lo | cation ID | DF-SB-01 | DF-SB-02 | DF-SB-03 | DF-SB-04 | DF-SB-05 | DF-SB-06 | DF-SB-07 | DF-SB-08 | DF-SB-09 | DF-SB-10 | DF-SB-10 | DF-SB-11 | DF-SB-12 | | | | | Sam | ple Date | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/8/2016 | 11/8/2016 | | | | | | Matrix | SO | | | | Samp | le Depth | 4 - 5 feet | 4 - 5 feet | 4 - 5 feet | 3 - 4 feet | 5 - 6 feet | 4 - 5 feet | 7 - 8 feet | 2 - 3 feet | 5 - 6 feet | 5 - 6 feet | 5 - 6 feet | 4 - 5 feet | 6 - 7 feet | | | | | Sam | ple Type | N | N | N | N | N | N | N | N | N | N | FD | N | N | | | | | Parent Sam | ple Code | | | | | | | | | | | DF-SB-10-A | | | | | | | | CLP# | BD4L5 | BD4L6 | BD4L7 | BD4L8 | BD4L9 | BD4M0 | BD4M1 | BD4M2 | BD4M3 | BD4M4 | BD4P9 | BD4M5 | BD4M6 | | | | | NYSDEC Restricted | | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Residential Use | Unit | Result Q | Result (| Q Result Q | Result Q | Result Q | Result C | Result C | Result Q | | 11096-82-5 | Aroclor 1260 | 240 | 1000 | μg/kg | 48 U | 39 | J 37 U | 39 U | 42 U | 38 U | J 43 L | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 11097-69-1 | Aroclor 1254 | 120 | 1000 | μg/kg | 48 U | 39 1 | U 37 U | 39 U | 42 U | 38 U | J 43 U | J 10 J | 45 U | 48 U | 47 U | 48 U | 50 U | | 11100-14-4 | Aroclor 1268 | NL | 1000 | μg/kg | 48 U | 39 | U 37 U | 39 U | 42 U | 38 U | J 43 U | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 11104-28-2 | Aroclor 1221 | 200 | 1000 | μg/kg | 48 U | 39 1 | U 37 U | 39 U | 42 U | 38 U | J 43 U | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 11141-16-5 | Aroclor 1232 | 170 | 1000 | μg/kg | 48 U | 39 1 | U 37 U | 39 U | 42 U | 38 U | J 43 U | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 12672-29-6 | Aroclor 1248 | 230 | 1000 | μg/kg | 48 U | 39 | U 37 U | 39 U | 42 U | 38 U | J 43 U | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 12674-11-2 | Aroclor 1016 | 410 | 1000 | μg/kg | 48 U | 39 1 | J 37 U | 39 U | 42 U | 38 U | J 43 U | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 37324-23-5 | Aroclor 1262 | NL | 1000 | μg/kg | 48 U | 39 | U 37 U | 39 U | 42 U | 38 U | J 43 L | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | | 53469-21-9 | Aroclor 1242 | 230 | 1000 | μg/kg | 48 U | 39 1 | U 37 U | 39 U | 42 U | 38 U | J 43 L | J 40 U | 45 U | 48 U | 47 U | 48 U | 50 U | ### Acronyms μg/kg - microgram by kilograms CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - field duplicate ID - identification N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier RSLs - Regional Screening Levels SO - soil U - undetected | | | | Sa | mple ID | DF-SB-13 | S-A | DF-SB-14 | -A | DF-SB-15 | -A | DF-SB-16- | A | DF-SB-17- | Α | SB-900-E | 3 | DF-SB-18- | Α | DF-SB-19-A | DF-S | SB-20-A | |------------|--------------|----------|-------------------|----------|-----------|-----|-----------|----|-----------|-----|-----------|----|------------|---|------------|----|------------|---|------------|------|----------| | | | | Loc | ation ID | DF-SB-1 | | DF-SB-1 | | DF-SB-1 | | DF-SB-16 | _ | DF-SB-17 | _ | DF-SB-17 | | DF-SB-18 | | DF-SB-19 | 1 | -SB-20 | | | | | Samı | ole Date | 11/8/20 | 16 | 11/8/201 | 16 | 11/8/202 | 16 | 11/8/201 | .6 | 11/8/2010 | 6 | 11/8/201 | 6 | 11/9/201 | 6 | 11/9/2016 | 11/ | 9/2016 | | | | | | Matrix | SO | | | | Sampl | e Depth | 4 - 5 fee | et | 6 - 7 fee | et | 4 - 5 fee | t | 5 - 6 fee | t | 4 - 5 feet | | 4 - 5 feet | t | 5 - 6 feet | t | 4 - 5 feet | 4 - | 5 feet | | | | | Samp | ole Type | N | | N | | N | | N | | N | | FD | | N | | N | | N | | | | | Parent Samp | le Code | | | | | | | | | | | DF-SB-17- | ·A | | | | | | | | | | | CLP# | BD4M7 | 7 | BD4M8 | 3 | BD4M9 |) | BD4N0 | | BD4N1 | | BD4Q0 | | BD4N2 | | BD4N3 | ВІ | D4N4 | | | | | NYSDEC Restricted | CAS No. | Compound | EPA RSLs | Residential Use | Unit | Resul | : Q | Result | Q | Result | : Q | Result | Q | Result | Q | Result | Q | Result | Q | Result C | l I | Result Q | | 11096-82-5 | Aroclor 1260 | 240 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 11097-69-1 | Aroclor 1254 | 120 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 13 | J | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 11100-14-4 | Aroclor 1268 | NL | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 11104-28-2 | Aroclor 1221 | 200 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 11141-16-5 | Aroclor 1232 | 170 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 12672-29-6 | Aroclor 1248 | 230 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 12674-11-2 | Aroclor 1016 | 410 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 37324-23-5 | Aroclor 1262 | NL | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | | 53469-21-9 | Aroclor 1242 | 230 | 1000 | μg/kg | 40 | U | 48 | U | 42 | U | 55 | U | 38 | U | 40 | U | 50 | U | 48 U | J 4 | 14 U | ### Acronyms μg/kg - microgram by kilograms CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - field duplicate ID - identification N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier RSLs - Regional Screening Levels SO - soil U - undetected | | | | Sa | mple ID | DF-SS-01-A | ١. | DF-SS-02 | -A | DF-SS-03- | -A | DF-SS-04- | ١ | DF-SS-05- | Α | DF-SS-06-A | DF-SS-07-A | Т | SB-900-0 | : 1 | DF-SS-08-A | D | F-SS-09- | Α | DF-SS-10-A | |-----------|---------------------|----------|-------------|----------|-------------|----|------------|-----|-------------|-----|-------------|-----|-------------|----|--------------|--------------|----|-------------|-----|--------------|-----|-----------|----|--------------| | | | | Loc | ation ID | | T | DF-SS-0 | | DF-SS-03 | 3 | DF-SS-04- | | DF-SS-05- | _ | DF-SS-06 | DF-SS-07 | 7 | DF-SS-07 | _ | DF-SS-08 | 1 | DF-SS-09 | , | DF-SS-10 | | | | | Samp | ole Date | 11/7/2016 | 5 | 11/7/20 | 16 | 11/7/201 | .6 | 11/7/201 | 5 | 11/7/201 | 6 | 11/7/2016 | 11/7/2016 | 7 | 11/7/201 | 6 | 11/7/2016 | 1 | 1/7/201 | 6 | 11/7/2016 | | | | | | Matrix | SO | SO | | | | | Sampl | e Depth | 0 - 0.5 fee | t | 0 - 0.5 fe | et | 0 - 0.5 fee | et | 0 - 0.5 fee | t | 0 - 0.5 fee | et | 0 - 0.5 feet | 0 - 0.5 feet | | 0 - 0.5 fee | et | 0 - 0.5 feet | 0 | - 0.5 fee | et | 0 - 0.5 feet | | | | | Samp | ole Type | N | T | N | | N | | N | | N | | N | N | T | FD | | N | | N | | N | | | | F | Parent Samp | le Code | | T | | | | | | | | | | | T | DF-SS-07- | Α | | | | | | | | | | | CLP# | BD4N9 | T | BD4P0 | | BD4P1 | | BD4P2 | | BD4P3 | | BD4P4 | BD4P5 | T | BD4Q1 | | BD4P6 | | BD4P7 | | BD4P8 | | | | | NYSDEC | Restricted | ŀ | | CAS No. | Compound | EPA RSLs | Residential | Unit | Result | Q | Result | : Q | Result | t Q | Resul | : Q | Result | Q | Result Q | Result C | Q | Result | Q | Result Q | | Result | Q | Result Q | | 72-54-8 | 4,4'-DDD | 2300 | 13000 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | 4.7 | UJ | 4 UJ | 4.1 U | IJ | 4.1 | UJ | 5.6 UJ | I | 3.7 | UJ | 3.7 U | | 72-55-9 | 4,4'-DDE | 200 | 8900 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | 4.7 |
UJ | 4 UJ | 4.1 U | JJ | 4.1 | UJ | 5.6 UJ | I | 3.7 | UJ | 3.7 U | | 50-29-3 | 4,4'-DDT | 1900 | 7900 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | | | UJ | 3.7 U | | 309-00-2 | Aldrin | 39 | 97 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | | _ | UJ | 1.9 U | | 319-84-6 | alpha-BHC | 86 | 480 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | | | UJ | 1.9 U | | 319-85-7 | beta-BHC | 300 | 360 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | 2.4 | UJ | 2.1 UJ | 2.1 | JJ | 2.1 | UJ | 2.9 UJ | I I | 1.9 | UJ | 1.9 U | | 5103-71-9 | cis-Chlordane | NL | 4200 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | _ | | UJ | 1.9 U | | 319-86-8 | delta-BHC | NL | 100000 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | | _ | UJ | 1.9 U | | 60-57-1 | Dieldrin | 34 | 200 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | | _ | UJ | 3.7 U | | 959-98-8 | Endosulfan I | NL | 24000 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | _ | | UJ | 1.9 U | | | Endosulfan II | NL | 24000 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | _ | | UJ | 3.7 U | | 1031-07-8 | Endosulfan sulfate | NL | 24000 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | | | UJ | 3.7 U | | | Endrin | 1900 | 11000 | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | | _ | UJ | 3.7 U | | | Endrin aldehyde | NL | NL | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | _ | | UJ | 3.7 U | | | Endrin ketone | NL | NL | μg/kg | 4 | U | 4.5 | UJ | 4.5 | UJ | 4.1 | UJ | | UJ | 4 UJ | | JJ | 4.1 | UJ | 5.6 UJ | _ | | UJ | 3.7 U | | 58-89-9 | gamma-BHC (Lindane) | 570 | 1300 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | _ | | UJ | 1.9 U | | 76-44-8 | Heptachlor | 130 | 2100 | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | IJ | 2.1 | UJ | 2.9 UJ | _ | | UJ | 1.9 U | | | Heptachlor epoxide | 70 | NL | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | | UJ | 2.1 UJ | | JJ | 2.1 | UJ | 2.9 UJ | | | UJ | 1.9 U | | 72-43-5 | Methoxychlor | 32000 | NL | μg/kg | 21 | U | 23 | UJ | 23 | UJ | 21 | UJ | | UJ | 21 UJ | | JJ | 21 | UJ | 29 UJ | 1 | | UJ | 19 U | | 8001-35-2 | Toxaphene | 490 | NL | μg/kg | 210 | U | 230 | UJ | 230 | UJ | 210 | UJ | | UJ | 210 UJ | | JJ | 210 | UJ | 290 UJ | | | UJ | 190 U | | 5103-74-2 | trans-Chlordane | NL | NL | μg/kg | 2.1 | U | 2.3 | UJ | 2.3 | UJ | 2.1 | UJ | 2.4 | UJ | 2.1 UJ | 2.1 | JJ | 2.1 | UJ | 2.9 UJ | | 1.9 | UJ | 1.9 U | #### Acronyms $\mu g/kg$ - microgram by kilograms CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - field duplicate ID - identification N - normal NYSDEC - New York State Department of Environmental Conservation Q - qualifier RSLs - Regional Screening Levels SO - soil U - undetected | | | | | Sample ID | DF-SB-01-A | DF-SB-02-A | DF-SB-03-A | DF-SB-04-A | DF-SB-05-A | DF-SB-06-A | DF-SB-07-A | DF-SB-08-A | |------------------------|-----------|------------|--------------|----------------|-------------|------------|------------|-------------|--------------|------------|-------------|-------------| | | | | | Location ID | DF-SB-01 | DF-SB-02 | DF-SB-03 | DF-SB-04 | DF-SB-05 | DF-SB-06 | DF-SB-07 | DF-SB-08 | | | | | Sa | ample Date | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/9/2016 | | | | | | Matrix | SO | | | | San | nple Depth | 4 - 5 feet | 4 - 5 feet | 4 - 5 feet | 3 - 4 feet | 5 - 6 feet | 4 - 5 feet | 7 - 8 feet | 2 - 3 feet | | | | | Sa | mple Type | N | N | N | N | N | N | N | N | | | | | | mple Code | | | | | | | | | | | | | | CLP# | BD4L5 | BD4L6 | BD4L7 | BD4L8 | BD4L9 | BD4M0 | BD4M1 | MBD4M2 | | | _ | | NYSDEC | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Unrestricted | | Result Q | 7429-90-5 | Aluminum | 7700 | NL | mg/kg | 6070 | 4090 | 4220 | 7590 | 4800 | 9280 | 5490 | 6680 | | 7440-36-0 | Antimony | 3.1 | NL | mg/kg | 0.91 | 11 | 0.87 U | 0.87 U | 0.9 U | 0.88 U | 0.82 U | 0.82 U | | 7440-38-2 | Arsenic | 0.68 | 13 | mg/kg | 4 | 25.5 | 3.7 | 5.2 | 8.8 | 41.3 | 13.6 | 7.8 | | 7440-39-3 | Barium | 1500 | 350 | mg/kg | 39.2 | 124 | 28 | 53.3 | 80.2 | 44.1 | 134 | 60.3 | | 7440-41-7 | Beryllium | 16 | 7.2 | mg/kg | 0.45 U | 0.51 | 0.44 U | 0.52 | 0.54 | 0.44 U | 0.56 | 0.42 | | 7440-43-9 | Cadmium | 7.1 | 2.5 | mg/kg | 0.34 J | 0.42 J | 0.21 J | 0.21 J | 0.23 J | 0.37 J | 0.4 J | 0.18 J | | 7440-70-2 | Calcium | NL | NL | mg/kg | 3880
9.5 | 26300 | 17300 | 40300 | 29700 | 23100 | 24300 | 27600 | | 7440-47-3 | Chromium | NL
2.2 | 30 | mg/kg | 10.3 | 9.5
7.9 | 6.7
5.1 | 10.9
9.1 | 13.9
10.4 | 7.2
6.5 | 15.7
8.4 | 9.9
7.9 | | 7440-48-4 | Cobalt | 2.3
310 | NL
50 | mg/kg | 19.2 | 251 | 15.3 | 28.1 | 29.1 | 25.5 | 43.3 | 7.9
54 J | | 7440-50-8
7439-89-6 | Copper | 5500 | NL | mg/kg
mg/kg | 15600 | 33700 | 9760 | 19300 J | 15500 | 23.5 | 17400 | 17900 J | | 7439-89-6 | Lead | 400 | 63 | mg/kg | 8.9 | 397 | 22.5 | 11.6 | 1300 | 23700 | 97.9 | 42.2 | | 7439-92-1 | Magnesium | NL | NL | mg/kg | 3130 | 3650 | 3860 | 8340 | 7830 | 4550 | 8000 | 6580 | | 7439-96-5 | Manganese | NL NL | 1600 | mg/kg | 348 | 239 | 138 | 579 | 666 | 605 | 566 | 427 | | 7440-02-0 | Nickel | 150 | 30 | mg/kg | 24.6 | 32.6 | 13.5 | 20.2 | 24 | 12.9 | 20.9 | 76 | | 7440-09-7 | Potassium | NL NL | NL | mg/kg | 707 | 523 | 456 | 1080 | 621 | 954 | 694 | 938 | | 7782-49-2 | Selenium | 39 | 3.9 | mg/kg | 2.2 U | 1.5 J | 0.4 J | 2.2 U | 2.3 U | 2.2 U | 0.41 J | 0.52 J | | 7440-22-4 | Silver | 39 | 2 | mg/kg | 0.058 J | 0.13 J | 0.052 J | 0.065 J | 0.094 J | 0.1 J | 0.14 J | 0.41 UJ | | 7440-23-5 | Sodium | NL | NL | mg/kg | 441 U | 457 U | 430 U | 430 U | 415 U | 406 U | 558 U | 110 J | | 7440-28-0 | Thallium | 0.078 | NL | mg/kg | 0.071 J | 0.18 J | 0.11 J | 0.083 J | 0.45 U | 0.097 J | 0.1 J | 0.41 U | | 7440-62-2 | Vanadium | 39 | NL | mg/kg | 13.3 | 14 | 10.1 | 16.2 | 18 | 11.6 | 19.7 | 12.3 | | 7440-66-6 | Zinc | 2300 | 109 | mg/kg | 186 | 206 | 47.3 | 77.4 | 79.8 | 49.2 | 211 | 89.1 | Bolded > detection > NYSDEC Unrestricted #### Acronyms mg/kg - microgram per kilogram Q - qualifier RSLs - Regional Screening CLP - Contract Laboratory Program Levels SO - soil EPA - Environmental Protection Agency FD - field duplicate ID - identification U - undetected J - estimated result N - normal NL - not listed | | | | | Sample ID | DF-SB-09-A | DF-SB-10-A | SB-900-A | DF-SB-11-A | DF-SB-12-A | DF-SB-13-A | DF-SB-14-A | DF-SB-15-A | DF-SB-16-A | |------------------------|----------------------|-----------|--------------|----------------|-------------|--------------|------------------|------------------|----------------|------------------|----------------|------------------|---------------| | | | | ı | ocation ID | DF-SB-09 | DF-SB-10 | DF-SB-10 | DF-SB-11 | DF-SB-12 | DF-SB-13 | DF-SB-14 | DF-SB-15 | DF-SB-16 | | | | | Sa | mple Date | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | | | | | | Matrix | SO | | | | San | nple Depth | 5 - 6 feet | 5 - 6 feet | 5 - 6 feet | 4 - 5 feet | 6 - 7 feet | 4 - 5 feet | 6 - 7 feet | 4 - 5 feet | 5 - 6 feet | | | | | Sa | mple Type | N | N | FD | N | N | N | N | N | N | | | | | Parent Sa | mple Code | | | DF-SB-10-A | | | | | | | | | | | | CLP# | MBD4M3 | MBD4M4 | MBD4P9 | MBD4M5 | MBD4M6 | MBD4M7 | MBD4M8 | MBD4M9 | MBD4N0 | | 245.11 | | 504.00 | NYSDEC | | | | | | | | | | | | CAS No. | Compound | 7700 | Unrestricted | Unit | Result Q | Result Q | Result Q
9770 | Result Q
5490 | Result Q | Result Q
7730 | Result Q | Result Q
4600 | Result Q | | 7429-90-5
7440-36-0 | Aluminum | 3.1 | NL
NL | mg/kg | 7720
1 U | 14700
2.2 | 9770
1 U | 3.6 | 12300
1 U | 8.3 | 10800
1.2 U | 0.79 U | 9380
1.2 U | | 7440-36-0 | Antimony
Arsenic | 0.68 | 13 | mg/kg | 4.3 | 18.3 | 15.2 | 20.5 | 4.9 | 8.3
12.9 J | 39.5 | 4.4 | 13.9 | | 7440-38-2 | Barium | 1500 | 350 | mg/kg
mg/kg | 4.3 | 131 | 80.8 | 1730 | 82.1 | 66.8 | 39.5 | 19.5 | 62 | | | | | 7.2 | | 0.51 | 2.2 J | 0.72 J | 0.54 U | 0.85 | 0.45 U | 0.64 | 0.4 U | 0.64 | | 7440-41-7
7440-43-9 | Beryllium
Cadmium | 16
7.1 | 2.5 | mg/kg
mg/kg | 0.12 J | 1.8 J | 0.72 J | 5.7 | 0.83
0.18 J | 0.43 U | 0.84
0.36 J | 0.4 U | 0.64 | | 7440-43-9 | Calcium | NL | NL | mg/kg | 94100 | 6830 | 8210 | 24300 | 3500 | 15000 | 31100 | 1360 | 18300 | | 7440-70-2 | Chromium | NL
NL | 30 | mg/kg | 14.5 | 25.4 | 17.4 | 2090 | 19.3 | 49.4 | 15.2 | 6.4 | 13.7 | | 7440-47-3 | Cobalt | 2.3 | NL | mg/kg | 10.1 | 21.9 | 14.9 | 9.8 | 10.2 | 7.3 | 10.9 | 4.4 | 12.3 | | 7440-50-8 | Copper | 310 | 50 | mg/kg | 20.2 J | 46.4 J | 29 J | 219 | 29.9 J | 235 J | 30 J | 26.1 J | 32.3 J | | 7439-89-6 | Iron | 5500 | NL
NL | mg/kg | 18800 J | 33100 J | 26900 J | 17400 | 23500 J | 21900 J | 32800 J | 13100 J | 26300 J | | 7439-92-1 | Lead | 400 | 63 | mg/kg | 13.9 | 54.1 J | 22.1 J | 84200 | 20.8 | 674 | 17 | 12.5 | 16.4 | | 7439-95-4 | Magnesium | NL | NL | mg/kg | 5960 | 5440 | 4740 | 8000 | 4730 | 5180 | 10600 | 1670 | 6700 | | 7439-96-5 | Manganese | NL | 1600 | mg/kg | 219 | 496 | 516 | 552 | 186 | 528 | 184 | 375 | 306 | | 7440-02-0 | Nickel | 150 | 30 | mg/kg | 22.7 | 36.9 | 27.9 | 442 | 24.8 | 17.5 | 26 | 15.2 | 27.5 | | 7440-09-7 | Potassium | NL | NL | mg/kg | 1060 | 1330 | 920 | 964 | 1190 | 944 | 1380 | 686 | 1110 | | 7782-49-2 | Selenium | 39 | 3.9 | mg/kg | 2.5 U | 6.5 J | 1.1 J | 2.7 U | 0.79 J | 0.68 J | 0.61 J | 2 U | 0.93 J | | 7440-22-4 | Silver | 39 | 2 | mg/kg | 0.5 UJ | 0.61 UJ | 0.5 UJ | 0.18 J | 0.14
J | 0.23 J | 0.13 J | 0.04 J | 0.094 J | | 7440-23-5 | Sodium | NL | NL | mg/kg | 88.7 J | 105 J | 87.3 J | 558 U | 88.1 J | 99.3 J | 132 J | 54.2 J | 110 J | | 7440-28-0 | Thallium | 0.078 | NL | mg/kg | 0.5 U | 1.4 | 0.5 U | 1 | 0.5 U | 0.45 U | 0.57 U | 0.4 U | 0.59 U | | 7440-62-2 | Vanadium | 39 | NL | mg/kg | 15.7 | 32.7 | 20.1 | 13 | 18.7 | 14.7 | 19.6 | 7.9 | 19.8 | | 7440-66-6 | Zinc | 2300 | 109 | mg/kg | 125 | 171 | 143 | 10500 | 142 | 339 | 112 | 36.6 | 70.4 | Bolded > detection > NYSDEC Unrestricted #### Acronyms mg/kg - microgram per kilogram Q - qualifier RSLs - Regional Screening CLP - Contract Laboratory Program Levels SO - soil EPA - Environmental Protection Agency FD - field duplicate U - undetected ID - identification J - estimated result N - normal NL - not listed | | | | | Sample ID | DF-SB-17-A | SB-900-B | DF-SB-18-A | DF-SB-19-A | DF-SB-20-A | DF-SS-01-A | DF-SS-02-A | DF-SS-03-A | DF-SS-04-A | |-----------|-----------|----------|--------------|------------|-------------|------------|------------|------------|------------|--------------|---|--------------|--------------| | | | | | ocation ID | | DF-SB-17 | DF-SB-18 | DF-SB-19 | DF-SB-20 | DF-SS-01 | DF-SS-02 | DF-SS-03 | DF-SS-04-A | | | | | = | mple Date | 11/8/2016 | 11/8/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | | | | | 54 | Matrix | SO | SO | SO | SO SO | | | | | Sam | nple Depth | 4 - 5 feet | 4 - 5 feet | 5 - 6 feet | 4 - 5 feet | 4 - 5 feet | 0 - 0.5 feet | | | | | | mple Type | | FD | N N | N N | N N | N N | N N | N N | N N | | | | | Parent Sa | | Ï | DF-SB-17-A | i | ï | ì | ï | ï | ï | ï | | | | | r drent 3d | CLP # | MBD4N1 | MBD4Q0 | MBD4N2 | MBD4N3 | MBD4N4 | MBD4N9 | MBD4P0 | MBD4P1 | MBD4P2 | | | | | | <u> </u> | IVIDDANI | WIBBAQO | WIDDAIVE | WIDDANS | WIDDANA | IVIDDANS | 111111111111111111111111111111111111111 | WIDD-11 1 | IVIDD-11 Z | | | | | NYSDEC | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | Unrestricted | Unit | Result Q | 7429-90-5 | Aluminum | 7700 | NL | mg/kg | 5230 | 4770 | 5810 | 10400 | 10700 | 2530 | 3020 | 2760 | 6490 | | 7440-36-0 | Antimony | 3.1 | NL | mg/kg | 12.8 J | 3.1 J | 0.89 U | 0.89 U | 0.84 U | 1.1 | 2.1 | 1 U | 0.88 U | | 7440-38-2 | Arsenic | 0.68 | 13 | mg/kg | 9.7 | 9.5 | 7.4 | 7.6 | 8.9 | 6.5 | 11.6 | 6.5 | 5.9 | | 7440-39-3 | Barium | 1500 | 350 | mg/kg | 51.4 | 63.2 | 48.3 | 56.6 | 52.6 | 163 | 67.4 | 56.6 | 42.2 | | 7440-41-7 | Beryllium | 16 | 7.2 | mg/kg | 0.42 | 0.48 | 0.48 | 0.57 | 0.51 | 0.42 U | 0.5 U | 0.51 U | 0.45 | | 7440-43-9 | Cadmium | 7.1 | 2.5 | mg/kg | 0.38 J | 0.31 J | 0.27 J | 0.13 J | 0.2 J | 0.39 J | 0.62 | 0.48 J | 0.23 J | | 7440-70-2 | Calcium | NL | NL | mg/kg | 19700 | 12500 | 44600 | 5070 | 61000 | 52200 | 94300 J | 23400 | 22100 | | 7440-47-3 | Chromium | NL | 30 | mg/kg | 10.6 | 9.9 | 11.7 | 13.1 | 18.1 | 6.1 | 8.9 | 5.6 | 9.4 | | 7440-48-4 | Cobalt | 2.3 | NL | mg/kg | 6.3 | 7.9 | 10.2 | 9.7 | 9.9 | 2.5 | 4.5 | 2.7 | 8.3 | | 7440-50-8 | Copper | 310 | 50 | mg/kg | 87 J | 94.4 J | 30.2 J | 20.9 J | 40.1 J | 193 | 61.9 | 26.4 | 24.7 | | 7439-89-6 | Iron | 5500 | NL | mg/kg | 17500 J | 23400 J | 15400 J | 28600 J | 32200 J | 11300 | 14000 | 13500 | 16800 | | 7439-92-1 | Lead | 400 | 63 | mg/kg | 553 J | 139 J | 16.9 | 13.5 | 24.7 | 144 | 183 | 112 | 13.2 | | 7439-95-4 | Magnesium | NL | NL | mg/kg | 2680 | 2680 | 17900 | 4760 | 13100 | 26900 | 20700 | 10200 | 5130 | | 7439-96-5 | Manganese | NL | 1600 | mg/kg | 434 | 306 | 767 | 244 | 470 | 304 | 317 | 234 | 523 | | 7440-02-0 | Nickel | 150 | 30 | mg/kg | 22.5 | 20.6 | 23.9 | 23 | 23.8 | 12 | 15.5 | 22.9 | 19.5 | | 7440-09-7 | Potassium | NL | NL | mg/kg | 620 | 770 | 768 | 795 | 610 | | 612 | 285 J | 1110 | | 7782-49-2 | Selenium | 39 | 3.9 | mg/kg | 2 U | 0.56 J | 0.56 J | 0.41 J | 0.64 J | 0.45 J | 0.67 J | 2.6 U | 2.2 U | | 7440-22-4 | Silver | 39 | 2 | mg/kg | 0.23 J | 0.31 J | 0.45 UJ | 0.45 UJ | 0.42 UJ | 0.16 J | 0.24 J | 0.16 J | 0.079 J | | 7440-23-5 | Sodium | NL | NL | mg/kg | 96.8 J | 94 J | 82.3 J | 85.5 J | 117 J | 447 U | 468 U | 491 U | 452 U | | 7440-28-0 | Thallium | 0.078 | NL | mg/kg | 0.4 U | 0.44 U | 0.45 U | 0.45 U | 0.42 U | 0.42 U | 0.5 U | 0.51 U | 0.44 U | | 7440-62-2 | Vanadium | 39 | NL | mg/kg | 13.9 | 15.8 | 15.5 | 15.7 | 18 | 15.5 | 31.6 | 20.9 | 14.3 | | 7440-66-6 | Zinc | 2300 | 109 | mg/kg | 96 | 74.1 | 67.4 | 103 | 89.9 | 136 | 194 | 60.9 | 65.2 | Bolded > detection > NYSDEC Unrestricted #### Acronyms mg/kg - microgram per kilogram Q - qualifier CLP - Contract Laboratory Program RSLs - Regional Screening Levels EPA - Environmental Protection Agency SO - soil FD - field duplicate ID - identification U - undetected J - estimated result N - normal NL - not listed | | | | | Sample ID | DF-SS-0 | - | DF-SS-06-A | DF-SS-07-A | DF-SS-08-A | DF-SS-0 | | |-----------|-----------|----------|--------------|------------|---------|------|--------------|--------------|--------------|-----------|------------------| | | | | L | ocation ID | DF-SS-0 |)5-A | DF-SS-06 | DF-SS-07 | DF-SS-08 | DF-SS- | 09 DF-SS-10 | | | | | Sa | mple Date | 11/7/2 | 016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/20 | 11/7/2016 | | | | | | Matrix | SO | | SO | SO | SO | SO | SO | | | | | Sam | ple Depth | 0 - 0.5 | feet | 0 - 0.5 f | eet 0 - 0.5 feet | | | | | Sa | mple Type | N | | N | N | N | N | N | | | | | Parent Sai | nple Code | | | | | | | | | | | | | CLP# | MBD4 | P3 | MBD4P4 | MBD4P5 | MBD4P6 | MBD4I | P7 MBD4P8 | | | | | | | | | | | | | | | | | | NYSDEC | | | | | | | | | | CAS No. | Compound | EPA RSLs | Unrestricted | Unit | Result | Q | Result Q | Result Q | Result Q | Result Q | | | 7429-90-5 | Aluminum | 7700 | NL | mg/kg | 4960 | | 5060 | 5150 | 4200 | 4170 | 2070 | | 7440-36-0 | Antimony | 3.1 | NL | mg/kg | 2.9 | | 0.85 U | 0.93 U | 4 | 0.84 U | 0.81 U | | 7440-38-2 | Arsenic | 0.68 | 13 | mg/kg | 11 | | 9.4 | 6.4 | 5.7 | 5.1 | 3.4 | | 7440-39-3 | Barium | 1500 | 350 | mg/kg | 119 | | 135 | 45.1 | 96.5 | 24 | 42.3 | | 7440-41-7 | Beryllium | 16 | 7.2 | mg/kg | 0.52 | U | 0.42 U | 0.47 U | 0.62 U | 0.42 U | 0.4 U | | 7440-43-9 | Cadmium | 7.1 | 2.5 | mg/kg | 0.58 | | 1.1 | 0.23 J | 2.4 | 0.28 J | 0.62 | | 7440-70-2 | Calcium | NL | NL | mg/kg | 31500 | | 42700 | 32600 | 52800 | 59000 | 14900 | | 7440-47-3 | Chromium | NL | 30 | mg/kg | 10.4 | | 19.3 | 10.5 | 22.8 | 8.7 | 9 | | 7440-48-4 | Cobalt | 2.3 | NL | mg/kg | 6.7 | | 6.3 | 6.7 | 5.5 | 3.4 | 4 | | 7440-50-8 | Copper | 310 | 50 | mg/kg | 83.8 | | 62 | 23.2 | 117 | 25.2 | 41.3 | | 7439-89-6 | Iron | 5500 | NL | mg/kg | 20600 | | 24500 | 13900 | 14000 | 11400 | 12200 | | 7439-92-1 | Lead | 400 | 63 | mg/kg | 175 | | 215 | 18.8 | 334 | 33.4 | 381 | | 7439-95-4 | Magnesium | NL | NL | mg/kg | 7660 | | 8220 | 5060 | 16000 | 9980 | 2240 | | 7439-96-5 | Manganese | NL | 1600 | mg/kg | 307 | | 401 | 446 | 253 | 245 | 134 | | 7440-02-0 | Nickel | 150 | 30 | mg/kg | 27.3 | | 65.9 | 16.9 | 27.8 | 9.9 | 90.5 | | 7440-09-7 | Potassium | NL | NL | mg/kg | 729 | | 835 | 844 | 899 | 470 | 324 J | | 7782-49-2 | Selenium | 39 | 3.9 | mg/kg | 0.54 | | 2.1 U | 2.3 U | 3.1 U | 2.1 U | | | 7440-22-4 | Silver | 39 | 2 | mg/kg | 0.21 | | 3.9 | 0.079 J | 1.1 | 0.2 J | 0.3 J | | 7440-23-5 | Sodium | NL | NL | mg/kg | 531 | - | 454 U | 436 U | 619 U | 406 U | 398 U | | 7440-28-0 | Thallium | 0.078 | NL | mg/kg | 0.52 | U | 0.42 U | 0.47 U | 0.62 U | 0.42 U | 0.4 U | | 7440-62-2 | Vanadium | 39 | NL | mg/kg | 20.4 | | 28.9 | 12.5 | 16 | 9.1 | 337 | | 7440-66-6 | Zinc | 2300 | 109 | mg/kg | 175 | | 212 | 66.1 | 629 | 62.9 | 212 | Bolded > detection > NYSDEC Unrestricted #### Acronyms mg/kg - microgram per kilogram Q - qualifier RSLs - Regional Screening CLP - Contract Laboratory Program EPA - Environmental Protection Agency Levels SO - soil U - undetected FD - field duplicate ID - identification J - estimated result N - normal NL - not listed | | | | | DE CD 04 A | DE CD 02 A | DE CD 03 A | DE CD 04.4 | DE CD OF A | DE CD 0C 4 | DE CD 07 A | DE CD 00 A | DE CD 00 A | DE CD 40 A | CD 000 A | |-----------|----------|-----------|-------------|-----------------|------------------|-----------------|-----------------|------------------|-----------------|-----------------|----------------|-----------------|------------------|------------------| | | | | Sample ID | DF-SB-01-A | DF-SB-02-A | DF-SB-03-A | DF-SB-04-A | DF-SB-05-A | DF-SB-06-A | DF-SB-07-A | DF-SB-08-A | DF-SB-09-A | DF-SB-10-A | SB-900-A | | | | ı | Location ID | DF-SB-01 | DF-SB-02 | DF-SB-03 | DF-SB-04 | DF-SB-05 | DF-SB-06 | DF-SB-07 | DF-SB-08 | DF-SB-09 | DF-SB-10 | DF-SB-10 | | | | Sa | mple Date | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | | | | | Matrix | SO | | | San | nple Depth | 4 - 5 feet | 4 - 5 feet | 4 - 5 feet | 3 - 4 feet | 5 - 6 feet | 4 - 5 feet | 7 - 8 feet | 2 - 3 feet | 5 - 6 feet | 5 - 6 feet | 5 - 6 feet | | | | Sa | mple Type | N | N | N | N | N | N | N | N | N | N | FD | | | | Parent Sa | mple Code | | | | | | | | | | | DF-SB-10-A | | | | | CLP# | MBD4L5 | MBD4L6 | MBD4L7 | MBD4L8 | MBD4L9 | MBD4M0 | MBD4M1 | MBD4M2 | MBD4M3 | MBD4M4 | MBD4P9 | | | | EPA | | | | | | | | | | | | | | | | Regulated | | | | | | | | | | | | | | CAS No. | Compound | Level | Unit | Result Q | 7440-38-2 | Arsenic | 5 | mg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | | 7440-39-3 | Barium | 100 | mg/L | 0.52 J | 0.36 J | 0.33 J | 0.6 J | 0.54 J | 0.54 J | 0.57 J | 0.34 J | 0.74 J | 0.16 J | 0.23 J | | 7440-43-9 | Cadmium | 1 | mg/L | 0.0011 J | 0.00046 J | 0.0005 J | 0.0011 J | 0.00075 J | 0.01 J | 0.011 J | 0.00059 J | 1 U | 0.00093 J | 0.00025 J | | 7440-47-3 | Chromium | 5 | mg/L | 0.0016 J | 0.0027 J | 0.0018 J |
0.0021 J | 0.0029 J | 0.0018 J | 0.0018 J | 0.00085 J | 5 UJ | 0.0017 J | 0.0021 J | | 7439-92-1 | Lead | 5 | mg/L | 5 U | 0.039 J | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | | 7439-97-6 | Mercury | 0.2 | mg/L | 0.2 U | 7782-49-2 | Selenium | 1 | mg/L | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 1 U | 0.013 J | 0.0085 J | 0.014 J | 0.0076 J | | 7440-22-4 | Silver | 5 | mg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | **Bolded** > detection ### Acronyms mg/L - milligram per liter CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - field duplicate ID - identification J - estimated result TCLP - toxicity characteristic leaching procedure N - normal Q - qualifier SO - soil U - undetected | | | | Sample ID | DF-SB-11-A | DF-SB-12-A | DF-SB-13-A | DF-SB-14-A | DF-SB-15-A | DF-SB-16-A | DF-SB-17-A | SB-900-B | DF-SB-18-A | DF-SB-19-A | DF-SB-20-A | DF-SSB-01-A | |-----------|----------|------------------|-------------|-----------------------|-----------------|------------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|-----------------|-----------------| | | | | Location ID | | DF-SB-12 | DF-SB-13 | DF-SB-14 | DF-SB-15 | DF-SB-16 | DF-SB-17 | DF-SB-17 | DF-SB-18 | DF-SB-19 | DF-SB-20 | DF-SSB-01 | | | | Sa | ample Date | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/8/2016 | | | | | Matrix | SO SO | | SO | SO | SO | SO | SO | | | SO | SO | SO | | | | Sar | mple Depth | 4 - 5 feet 6 - 7 feet | | 4 - 5 feet | 6 - 7 feet | 4 - 5 feet | 5 - 6 feet | 4 - 5 feet | 4 - 5 feet | 5 - 6 feet | 4 - 5 feet | 4 - 5 feet | 0 - 2 feet | | | | Sa | ample Type | N | N | N | N | N | N | N | FD | N | N | N | | | | | Parent Sa | ample Code | | | | | | | | DF-SB-17-A | | | | | | | | | CLP# | MBD4M5 | MBD4M6 | MBD4M7 MBD4M8 | | MBD4M9 | MBD4N0 | MBD4N1 | MBD4Q0 | MBD4N2 | MBD4N3 | MBD4N4 | MBD4N5 | | | | EPA
Regulated | | | | | | | | | | | | | | | CAS No. | Compound | Level | Unit | Result Q | 7440-38-2 | Arsenic | 5 | mg/L | 5 U | 0.045 J | 5 UJ | 0.015 J | 5 U | 0.035 J | 5 U | 5 U | 0.011 J | 0.012 J | 0.054 J | 5 U | | 7440-39-3 | Barium | 100 | mg/L | 0.54 J | 0.85 J | 0.4 J | 0.31 J | 0.62 J | 1.6 J | 0.79 J | 1.2 J | 1.8 J | 2 J | 1.1 J | 0.75 J | | 7440-43-9 | Cadmium | 1 | mg/L | 0.0003 J | 0.0013 J | 0.00074 J | 1 U | 0.0075 J | 0.0011 J | 0.00043 J | 0.00026 J | 0.00059 J | 0.00072 J | 0.0019 J | 0.001 J | | 7440-47-3 | Chromium | 5 | mg/L | 0.0019 J | 5 UJ | 0.0021 J | 0.0027 J | 5 UJ | 5 UJ | 0.0047 J | 0.0039 J | 5 UJ | 5 UJ | 5 UJ | 0.0046 J | | 7439-92-1 | Lead | 5 | mg/L | 5 U | 5 U | 5 U | 5 U | 0.024 J | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 0.1 J | | 7439-97-6 | Mercury | 0.2 | mg/L | 0.2 U | 0.0013 | 0.2 U 0.000087 | | 7782-49-2 | Selenium | 1 | mg/L | 1 U | 0.0076 J | 1 U | 0.0047 J | 1 U | 0.0094 J | 0.01 J | 0.018 J | 0.0088 J | 0.014 J | 0.0074 J | 1 U | | 7440-22-4 | Silver | 5 | mg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | **Bolded** > detection ### Acronyms mg/L - milligram per liter CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - field duplicate ID - identification J - estimated result TCLP - toxicity characteristic leaching procedure N - normal Q - qualifier SO - soil U - undetected | | | | Sample ID | DF-SSB-02-A | DF-SSB-03-A | DF-SSB-04-A | DF-SS-01-A | DF-SS-02-A | DF-SS-03-A | DF-SS-04-A | DF-SS-05-A | DF-SS-06-A | DF-SS-07-A | DF-SS-08-A | DF-SS-09-A | DF-SS-10-A | |-----------|----------|-----------|-------------|-----------------|------------------|------------------|------------------|------------------|-----------------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | | | • | | | | | | | | | | | . | | | | | | | Location ID | | DF-SSB-03 | DF-SSB-04 | DF-SS-01 | DF-SS-02 | DF-SS-03 | DF-SS-04-A | DF-SS-05-A | DF-SS-06 | DF-SS-07 | DF-SS-08 | DF-SS-09 | DF-SS-10 | | | | Sa | ample Date | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | 11/7/2016 | | | Matrix | | | | SO | | | San | nple Depth | 0 - 2 feet | 0 - 2 feet | 0 - 2 feet | 0 - 0.5 | | | Sa | ample Type | N | N | N | N | N | N | N | N | N | N | N | N | N | | | | Parent Sa | mple Code | | | | | | | | | | | | | | | | CLP # | | | MBD4N6 | MBD4N3 | MBD4N4 | MBD4N9 | MBD4P0 | MBD4P1 | MBD4P2 | MBD4P3 | MBD4P4 | MBD4P5 | MBD4P6 | MBD4P7 | MBD4P8 | | | | EPA | | | | | | | | | | | | | | | | | | Regulated | | | | | | | | | | | | | | | | CAS No. | Compound | Level | Unit | Result Q | 7440-38-2 | Arsenic | 5 | mg/L | 5 U | 5 U | 5 UJ | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | | 7440-39-3 | Barium | 100 | mg/L | 0.12 J | 0.99 J | 0.8 J | 0.92 J | 0.46 J | 0.36 J | 0.34 J | 0.94 J | 1.4 J | 0.45 J | 0.56 J | 0.3 J | 0.95 J | | 7440-43-9 | Cadmium | 1 | mg/L | 1 U | 0.00085 J | 0.00062 J | 0.00065 J | 0.00092 J | 0.001 J | 0.00029 J | 0.0013 J | 0.0027 J | 1 U | 0.0042 J | 0.0012 J | 0.01 J | | 7440-47-3 | Chromium | 5 | mg/L | 0.0024 J | 0.0023 J | 0.0025 J | 0.0037 J | 0.003 J | 0.002 J | 0.0018 J | 0.0023 J | 0.0019 J | 0.0019 J | 0.0024 J | 0.002 J | 0.0016 J | | 7439-92-1 | Lead | 5 | mg/L | 5 U | 5 U | 5 U | 0.01 J | 0.0022 J | 0.0052 J | 5 U | 0.0023 J | 0.0032 J | 5 U | 0.013 J | 5 U | 0.027 J | | 7439-97-6 | Mercury | 0.2 | mg/L | 0.2 U | 7782-49-2 | Selenium | 1 | mg/L | 1 U | 0.016 J | 0.0053 J | 1 U | 0.005 J | 1 U | 1 U | 0.0065 J | 1 U | 1 U | 1 U | 1 U | 1 U | | 7440-22-4 | Silver | 5 | mg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | **Bolded** > detection ### Acronyms mg/L - milligram per liter CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - field duplicate ID - identification J - estimated result TCLP - toxicity characteristic leaching procedure N - normal Q - qualifier SO - soil U - undetected ### Table 3-2A Groundwater Sample Detections - VOCs Former Duofold Corporation Ilion, New York | | | | ocation ID | DE 1414 04 | DE 1411/02 | DE 1414 02 | DE 1414 04 | 55.1414.05 | DE 1411 0C | DE 141/07 | DE 1414 00 | D5 1414 00 | DE 1414 40 | DE 101/44 | DE 101/42 | DE 1414 42 | DE TIME 02 | | |--------------------|---------------------------------------|----------|--------------|--------------|------------------|------------------|-----------------------|------------------|-------------------------|------------------|-----------------------|------------------------|------------------------|------------------|------------------|-----------------------|----------------|-------------------| | | | | | mple Date | DF-MW-01 | DF-MW-02 | DF-MW-03
11/8/2016 | DF-MW-04 | DF-MW-05 | DF-MW-06 | DF-MW-07 | DF-MW-08
11/10/2016 | DF-MW-09
11/10/2016 | DF-MW-10 | DF-MW-11 | DF-MW-12
11/9/2016 | DF-MW-12 | DF-TWP-02 | | | | | | Sample ID | 11/7/2016 | 11/7/2016 | | 11/8/2016 | 11/8/2016
DF-MW-05-1 | 11/8/2016 | 11/9/2016
DF-MW-07 | | | 11/9/2016 | 11/9/2016 | | 11/8/2016 | 11/10/2016 | | | | | , | Matrix | DF-MW-01-1
WG | DF-MW-02-1
WG | DF-MW-03-1
WG | DF-MW-04-1
WG | WG | DF-MW-06-1
WG | WG | DF-MW-08-1
WG | DF-MW-09-1
WG | DF-MW-10-1
WG | DF-MW-11-1
WG | DF-MW-12-1
WG | GW-900-1
WG | DF-TWP-02-1
WG | | | | | Sai | mple Type | N | N | N | N | N | N | N | N | N | N N | N | N | FD | N | | | | | Parent Sar | | IN IV | DF-MW-12-1 | - IN | | | | | i arciic sai | CLP # | BD4Q3 | BD4Q4 | BD4Q5 | BD4Q6 | BD4Q7 | BD4Q8 | BD4Q9 | BD4R0 | BD4R1 | BD4R2 | BD4R3 | BD4R4 | BDQN6 | BD4R5 | | | EPA NYSDEC | | | | BB4Q3 | вычач | DD+Q3 | 554Q0 | DD+Q1 | BB4Q0 | BB4Q3 | BBARO | BBAKI | BBARZ | DD4KS | ВВЧКЧ | BBQNO | BB41(3 | | CAS No. | Compound | RSLs | AWQS | Unit | Result Q | 71-55-6 | 1,1,1-Trichloroethane | 200 | 5 | μg/L | 0.5 U | 79-34-5 | 1,1,2,2-Tetrachloroethane | NL | 5 | μg/L | 0.5 U U 0.5 U | | 76-13-1 | 1,1,2-Trichloro-1,2,2-trifluoroethane | NL | 5 | μg/L | 0.5 U 0.67 | 0.5 U | | 79-00-5 | 1,1,2-Trichloroethane | 5 | 1 | μg/L | 0.5 U U 0.5 U | | 75-34-3 | 1,1-Dichloroethane | NL | 5 | μg/L | 0.5 U | 75-35-4 | 1,1-Dichloroethene | 7 | 5 | μg/L | 0.5 U | 0.5 U | 0.5 UJ | 0.5 U | 0.5 U | 0.5 U | 0.5 U | 0.36 J- | 0.5 U | UJ 0.5 UJ | | 87-61-6 | 1,2,3-Trichlorobenzene | NL | 5 | μg/L | 0.5 U U 0.5 U | | 120-82-1 | 1,2,4-Trichlorobenzene | 70 | 5 | μg/L | 0.5 U U 0.5 U | | 96-12-8 | 1,2-Dibromo-3-Chloropropane | 0.2 | 0.04 | μg/L | 0.5 U U 0.5 U | | 106-93-4 | 1,2-Dibromoethane | 0.05 | 0.0006 | μg/L | 0.5 U U 0.5 U | | 95-50-1 | 1,2-Dichlorobenzene | 600 | 3 | μg/L | 0.5 U | 107-06-2 | 1,2-Dichloroethane | 5 | 0.6 | μg/L | 0.5 U | 78-87-5 | 1,2-Dichloropropane | 5 | 1 | μg/L | 0.5 U | 541-73-1 | 1,3-Dichlorobenzene | NL | 3 | μg/L | 0.5 U | 106-46-7 | 1,4-Dichlorobenzene | 75 | 3 | μg/L | 0.5 U | 78-93-3 | 2-Butanone (MEK) | NL | 50 | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | J 5 U | | 591-78-6 | 2-Hexanone | NL | 50 | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5
U | 5 U | 5 U | 5 U | 5 U | | 108-10-1 | 4-Methyl-2-Pentanone (MIBK) | NL | NL | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | | 67-64-1 | Acetone | NL | 50 | μg/L | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 5 U | 0.5 U | | 71-43-2 | Benzene | 5
NII | 1
5 | μg/L
ug/L | 0.5 U | 0.5 U | 0.5 U
0.5 U | 0.5 U
0.5 U | 0.5 U
0.5 U | 0.5 U | 0.5 U | 0.15 J
0.5 U | 0.5 U
0.5 U | 0.5 U
0.5 U | 0.5 U
0.5 U | 0.5 U | 0.5 U | 0.5 U | | 74-97-5
75-27-4 | Bromochloromethane | NL
80 | 50 | μg/L
μg/L | 0.5 U | 75-27-4
75-25-2 | Bromodichloromethane
Bromoform | 80 | 50 | μg/L
μg/L | 0.5 U | 74-83-9 | Bromomethane | NL | 5 | μg/L | 0.5 U | 75-15-0 | Carbon Disulfide | NL | 60 | μg/L | 0.5 U | 56-23-5 | Carbon Tetrachloride | 5 | 5 | μg/L | 0.5 U | 108-90-7 | Chlorobenzene | 100 | 5 | ug/L | 0.5 U | 75-00-3 | Chloroethane | NL | 5 | μg/L | 0.5 U | 67-66-3 | Chloroform | 80 | 7 | μg/L | 1.5 | 0.5 U | 0.5 U | 1.6 | 0.5 U | 3.2 | 1.4 | 1.1 | 0.5 U | 0.5 U | 2.1 | 0.5 U | 0.5 U | 0.5 U | | 74-87-3 | Chloromethane | NL | 5 | μg/L | 0.5 U | 0.5 U | 0.5 U | 0.33 J | 0.5 U | 156-59-2 | cis-1,2-Dichloroethene | 70 | 5 | μg/L | 0.5 U | 26 | 0.5 UJ | 0.5 U | 0.5 U | 0.5 U | 0.5 U | 240 J- | 0.38 J | 64 | 0.5 U | 0.5 U | 0.5 U | J 0.5 UJ | | 10061-01-5 | cis-1,3-Dichloropropene | NL | 0.4 | μg/L | 0.5 U U 0.5 U | | 110-82-7 | Cyclohexane | NL | NL | μg/L | 0.5 U | 124-48-1 | Dibromochloromethane | 80 | 50 | μg/L | 0.5 U | 75-71-8 | Dichlorodifluoromethane | NL | 5 | μg/L | 0.5 U | 0.5 U | 0.5 U 0.5 U | | 100-41-4 | Ethylbenzene | 700 | 5 | μg/L | 0.5 U U 0.5 U | | 98-82-8 | Isopropylbenzene | NL | 5 | μg/L | 0.5 U U 0.5 U | | 179601-23-1 | M,P-Xylene | 10000 | 19 | μg/L | 0.5 U | | 0.5 U U 0.5 U | | 79-20-9 | Methyl Acetate | NL | NL | μg/L | 0.5 U U 0.5 U | | 1634-04-4 | Methyl tert-butyl ether | NL | 10 | μg/L | 0.5 U | 108-87-2 | Methylcylohexane | NL | NL | μg/L | 0.5 U | | | 0.5 U | | 0.5 U | | 75-09-2 | Methylene Chloride | 5 | 5 | μg/L | 0.5 U 1.3 U | 0.5 U | 0.5 U | | 95-47-6 | O-Xylene | 10000 | 19 | μg/L | 0.5 U | 100-42-5 | Styrene | 100 | 5 | μg/L | 0.5 U | 127-18-4 | Tetrachloroethene | 5 | 5 | μg/L | 1.6 | 3.3 | 0.5 U | 0.55 | 0.5 U | 0.5 U | 3.2 | 1.1 | 0.5 U | 3 | 0.22 J | 0.5 U | 0.5 U | 0.5 U | | 108-88-3 | Toluene | 1000 | 5 | μg/L | 0.5 U | | | | | 15 | | 1 | 1 | T | | 1 | | ı | 1 | 1 | 1 | 1 | | 1 | |------------|---------------------------|------|------------|-----------|------------|------------|------------|---------------|------------|------------|---------------|-------------|---------------|------------|--------------|------------|------------|-------------| | | | | Lo | cation ID | DF-MW-01 | DF-MW-02 | DF-MW-03 | DF-MW-04 | DF-MW-05 | DF-MW-06 | DF-MW-07 | DF-MW-08 | DF-MW-09 | DF-MW-10 | DF-MW-11 | DF-MW-12 | DF-MW-12 | DF-TWP-02 | | | | | San | iple Date | 11/7/2016 | 11/7/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/8/2016 | 11/9/2016 | 11/10/2016 | 11/10/2016 | 11/9/2016 | 11/9/2016 | 11/9/2016 | 11/8/2016 | 11/10/2016 | | | | | S | ample ID | DF-MW-01-1 | DF-MW-02-1 | DF-MW-03-1 | DF-MW-04-1 | DF-MW-05-1 | DF-MW-06-1 | DF-MW-07 | DF-MW-08-1 | DF-MW-09-1 | DF-MW-10-1 | DF-MW-11-1 | DF-MW-12-1 | GW-900-1 | DF-TWP-02-1 | | | | | | Matrix | WG | | | | Sam | ıple Type | N | N | N | N | N | N | N | N | N | N | N | N | FD | N | | | | | Parent Sam | ple Code | | | | | | | | | | | | | DF-MW-12-1 | | | | | | | CLP# | BD4Q3 | BD4Q4 | BD4Q5 | BD4Q6 | BD4Q7 | BD4Q8 | BD4Q9 | BD4R0 | BD4R1 | BD4R2 | BD4R3 | BD4R4 | BDQN6 | BD4R5 | | | | EPA | NYSDEC | | | | | | | | | | | | | | | | | CAS No. | Compound | RSLs | AWQS | Unit | Result C | Result Q | 156-60-5 | Trans-1,2-Dichloroethene | 100 | 5 | μg/L | 0.5 l | 17 | 0.5 UJ | 0.5 U | 0.5 U | 0.5 U | 0.5 U | 2 J- | 0.5 U | 4.6 | 0.5 U | 0.5 U | 0.5 U | 0.5 UJ | | 10061-02-6 | Trans-1,3-Dichloropropene | NL | 0.4 | μg/L | 0.5 l | 0.5 U | 79-01-6 | Trichloroethene | 5 | 5 | μg/L | 0.22 | 10 | 0.5 U | 0.37 J | 0.5 U | 0.5 U | 0.27 J | 1.7 | 0.21 J | 20 | 0.1 J | 0.5 U | 0.5 U | 0.5 U | | 75-69-4 | Trichlorofluoromethane | NL | 5 | μg/L | 0.5 l | 0.5 U | 75-01-4 | Vinyl Chloride | 2 | 2 | μg/L | 0.5 l | 5.4 | 0.5 U | 11 | 0.5 U | 5.8 | 0.5 U | 0.5 U | 0.5 U | 0.5 U | **Bolded** > detection > NYSDEC AWQS Acronyms $\mu g/L$ - microgram per liter Q - qualifier RSLs - Regional Screening AWQS - Ambient Water Quality Standards Levels WG - groundwater CLP - Contract Laboratory Program EPA - Environmental Protection Agency U - undetected FD - Field Duplicate UJ - estimated undetected ID - identification J - estimated results J- - biased low estimated result N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation | | | | Lo | cation ID | DF-TWP-0 | 13 | DF-TWP- | U3 | DF-TWP-07 | 7 | DF-TWP-09 | Т | DF-TWP-12 | Т | DF-TWP-14 | | DF-TWP-15 | . 1 | DF-TWP-16 | Г | OF-TWP-18 | Ω | DF-TWP-: | 10 | |-------------|---------------------------------------|-------|------------|-----------|-----------|-----|----------|------|------------|-----|---------------|-----------|----------------|-------------------------|-------------|----|------------|-----|---------------|----|-----------|---|----------|---------------| | | | | | ple Date | 11/10/20: | | 11/10/20 | | 11/10/2010 | _ | 11/10/2016 | \dagger | 11/11/2016 | t | 11/11/2016 | + | 11/11/201 | _ | 11/11/2016 | _ | 1/10/201 | _ | 11/10/20 | | | | | | | ample ID | DF-TWP-03 | | GW-900 | | DF-TWP-07- | _ | DF-TWP-09-1 | t | DF-TWP-12-1 | ╅ | DF-TWP-14-1 | | DF-TWP-15- | _ | DF-TWP-16-1 | - | F-TWP-18- | _ | DF-TWP-1 | | | | | | | Matrix | WG | | WG | _ | WG | _ | WG | t | WG | + | WG | Ŧ | WG | | WG | +- | WG | | WG | <u>-</u> | | | | | Sam | ple Type | N | | FD | | N | | N | t | N | ╅ | N | | N | | N | ╁ | N | - | N | \neg | | | | | Parent Sam | | | | DF-TWP-0 |)3-1 | | | | t | | + | ., | 1 | | | | 1 | | - | | $\overline{}$ | | | | | | CLP# | BD4R6 | | BDQN | | BD4R7 | | BD4R8 | Ť | BD4R9 | 1 | BDQN1 | T | BDQN2 | | BDQN3 | 1 | BDQN4 | 1 | BDQN5 | - | | | | EPA | NYSDEC | | | | | | | | | Ť | | 1 | | T | | | -, - | 1 | | _ | | | | CAS No. | Compound | RSLs | AWQS | Unit | Result | t Q | Result | Q | Result | . Q | Result Q | Q | Result Q | | Result C | Q | Result | Q | Result Q | | Result | Q | Result | : Q | | 71-55-6 | 1,1,1-Trichloroethane | 200 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 79-34-5 | 1,1,2,2-Tetrachloroethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | l | 0.5 | U | 0.5 | U | | 76-13-1 | 1,1,2-Trichloro-1,2,2-trifluoroethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.34 J | ı | 0.5 | U | 0.5 | U | 0.5 U | ı | 0.5 | U | 0.5 | U | | 79-00-5 | 1,1,2-Trichloroethane | 5 | 1 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | l | 0.5 | U | 0.5 | U | | 75-34-3 | 1,1-Dichloroethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.14 J | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.24 | J | | 75-35-4 | 1,1-Dichloroethene | 7 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | IJ | 0.5 l | UJ | 1.4 | J- | 0.3 J- | | 0.5 | U | 0.5 | U | | 87-61-6 | 1,2,3-Trichlorobenzene | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 120-82-1 | 1,2,4-Trichlorobenzene | 70 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | l | 0.5 | U | 0.5 | U | | 96-12-8 | 1,2-Dibromo-3-Chloropropane | 0.2 | 0.04 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | l | 0.5 | U | 0.5 | U | | 106-93-4 | 1,2-Dibromoethane | 0.05 | 0.0006 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 95-50-1 | 1,2-Dichlorobenzene | 600 | 3 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 107-06-2 | 1,2-Dichloroethane | 5 | 0.6 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | ı | 0.5 | U | 0.5 | U | | 78-87-5 | 1,2-Dichloropropane | 5 | 1 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 541-73-1 | 1,3-Dichlorobenzene | NL | 3 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 106-46-7 | 1,4-Dichlorobenzene | 75 | 3 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 78-93-3 | 2-Butanone (MEK) | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 U | J | 5 U | J | 5 | U | 5 | U | 5 U | 1 | 5 | U | 5 | U | | 591-78-6 | 2-Hexanone | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 U | J | 5 U | J | 5 | U | 5 | U | 5 U | 1 | 5 | U | 5 | U | | 108-10-1 | 4-Methyl-2-Pentanone (MIBK) | NL | NL | μg/L | 5 | U | 5 | U | 5 | U | 5 U | J | 5 U | J | 5 | U | 5 | U | 5 U | ı | 5 | U | 5 | U | | 67-64-1 | Acetone | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 U | J | 5 U | J | 5 | U | 5 | U | 5 U | 1 | 5 | U | 5 | U | | 71-43-2 | Benzene | 5 | 1 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.3 | J | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 74-97-5 | Bromochloromethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 75-27-4 | Bromodichloromethane | 80 | 50 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | 1 | 0.5 | U | 0.5 | U | | 75-25-2 | Bromoform | 80 | 50 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | ı | 0.5 | U | 0.5 | U | | 74-83-9 |
Bromomethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | UJ | 0.5 U | ı | 0.5 | U | 0.5 | U | | 75-15-0 | Carbon Disulfide | NL | 60 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | UJ | 0.5 U | | 0.5 | U | 0.5 | U | | 56-23-5 | Carbon Tetrachloride | 5 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | ı | 0.5 | U | 0.5 | U | | 108-90-7 | Chlorobenzene | 100 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | ı | 0.5 | U | 0.5 | U | | 75-00-3 | Chloroethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | UJ | 0.5 U | l | 0.5 | U | 0.5 | U | | 67-66-3 | Chloroform | 80 | 7 | μg/L | 0.5 | U | 0.5 | U | 5.1 | | 0.5 U | J | 1.3 | | 0.5 | U | 0.5 | U | 0.5 U | l | 0.5 | U | 0.5 | U | | 74-87-3 | Chloromethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | UJ | 0.5 U | l | 0.5 | U | 0.5 | U | | 156-59-2 | cis-1,2-Dichloroethene | 70 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.33 J- | - | 2.1 | J- | 340 | J- | 110 J- | - | 0.5 | U | 1.7 | | | 10061-01-5 | cis-1,3-Dichloropropene | NL | 0.4 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | l | 0.5 | U | 0.5 | U | | 110-82-7 | Cyclohexane | NL | | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | | | U | 0.5 | U | 0.5 U | _ | 0.5 | U | 0.5 | U | | | Dibromochloromethane | 80 | 50 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | _ | 0.5 U | | 0.5 | U | 0.5 | U | 0.5 | | 0.5 | U | 0.5 | U | | 75-71-8 | Dichlorodifluoromethane | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | _ | | U | | UJ | 0.5 U | | 0.5 | U | 0.5 | U | | 100-41-4 | Ethylbenzene | 700 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | | | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 98-82-8 | Isopropylbenzene | NL | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | IJ | 0.5 l | UJ | 0.5 | U | 0.5 UJ | J | 0.5 | U | 0.5 | U | | 179601-23-1 | M,P-Xylene | 10000 | 19 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | _ | | U | 0.5 | U | 0.5 U | _ | 0.5 | U | 0.5 | U | | 79-20-9 | Methyl Acetate | NL | NL | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | _ | 0.5 U | | | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 1634-04-4 | Methyl tert-butyl ether | NL | 10 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 108-87-2 | Methylcylohexane | NL | NL | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 75-09-2 | Methylene Chloride | 5 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 95-47-6 | O-Xylene | 10000 | 19 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 100-42-5 | Styrene | 100 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | | 127-18-4 | Tetrachloroethene | 5 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.29 J | J | 2.8 | $oldsymbol{\mathbb{I}}$ | 2.2 | | 0.5 | U | 2 | | 0.5 | U | 1.9 | | | 108-88-3 | Toluene | 1000 | 5 | μg/L | 0.11 | J | 0.1 | J | 0.5 | U | 0.5 U | J | 0.5 U | J | 0.5 | U | 0.5 | U | 0.5 U | | 0.5 | U | 0.5 | U | _ | | | | | | |------------|---------------------------|------|------------|--|----------|-----|----------|-----|------------|---|------------|---|------------|----|------------|----|-----------|----|-----------|-----|-----------|-----|-------------| | | | | Lo | ocation ID | DF-TWP- | 03 | DF-TWP- | 03 | DF-TWP-07 | | DF-TWP-09 |) | DF-TWP-12 | | DF-TWP-14 | | DF-TWP-15 | 5 | DF-TWP-1 | 6 | DF-TWP-1 | .8 | DF-TWP-19 | | | | | San | nple Date | 11/10/20 | 16 | 11/10/20 |)16 | 11/10/2016 | ; | 11/10/2016 | 5 | 11/11/2016 | 5 | 11/11/2016 | ; | 11/11/201 | 6 | 11/11/201 | .6 | 11/10/201 | ا6 | 11/10/2016 | | | | | 5 | Sample ID | DF-TWP-0 | 3-1 | GW-900 | -2 | DF-TWP-07- | 1 | DF-TWP-09- | 1 | DF-TWP-12- | 1 | DF-TWP-14- | 1 | DF-TWP-15 | -1 | DF-TWP-16 | i-1 | DF-TWP-18 | 3-1 | DF-TWP-19-1 | | | | | | Matrix \ Sample Type Parent Sample Code CLP # BE | | | WG | | | San | | | | FD | | N | | N | | N | | N | | N | | N | | N | | N | | | | | Parent San | | | | DF-TWP-0 | 3-1 | CLP# | BD4R6 | | BDQN: | 7 | BD4R7 | | BD4R8 | | BD4R9 | | BDQN1 | | BDQN2 | | BDQN3 | | BDQN4 | | BDQN5 | | | | EPA | NYSDEC | ple Code CLP # BD4R6 | | | | | T | | | | | | | | | | | | | | | | CAS No. | Compound | RSLs | AWQS | Unit | Resul | t Q | Result | : Q | Result | Q | Result Q | | 156-60-5 | Trans-1,2-Dichloroethene | 100 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 | UJ | 0.23 | J- | 14 | J- | 8.1 | J- | 0.5 | U | 0.5 U | | 10061-02-6 | Trans-1,3-Dichloropropene | NL | 0.4 | μg/L | 0.5 | U U | | 79-01-6 | Trichloroethene | 5 | 5 | μg/L | 0.5 | U | 0.5 | U | 0.16 | J | 0.54 | | 1.8 | | 34 | | 0.77 | | 5.8 | П | 0.5 | U | 2.2 | | 75-69-4 | Trichlorofluoromethane | NL | 5 | μg/L | 0.5 | U U | | 75-01-4 | Vinyl Chloride | 2 | 2 | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.5 | U | 0.44 | J | 0.5 | U | 2.4 | | 33 | П | 0.5 | U | 0.5 U | **Bolded** > detection ### Acronyms μg/L - microgram per liter Q - qualifier RSLs - Regional Screening AWQS - Ambient Water Quality Standards Levels CLP - Contract Laboratory Program WG - groundwater EPA - Environmental Protection Agency U - undetected FD - Field Duplicate ID - identification UJ - estimated undetected J - estimated results J- - biased low estimated result N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation | | | | Locatio | on ID | DF-MW-01 | - | DF-MW-02 | DF-MW-03 | DF-MW-0 | 1 | DF-MW-0 | 15 | DE-M | 1W-05 | DF-MW-06 | | DF-MW-07 | DF-MW-10 | DF-MW-11 | DE-M | 1W-12 | DF-M\ | M-08 | |---------------------|--|-----------|---------------------------------------|--------------|------------|-----|----------------|---------------|-----------|-----|------------|-----|---------|--------|------------|---------|----------------|---------------|-------------|----------|--------|------------|------| | | | | Sample I | _ | 11/7/2016 | | 11/7/2016 | 11/8/2016 | 11/8/201 | | 11/8/201 | | | /2016 | 11/8/2016 | - | 11/9/2016 | 11/9/2016 | 11/9/2016 | | /2016 | 11/10/ | | | | | | Samp | _ | DF-MW-01-1 | | DF-MW-02-1 | DF-MW-03-1 | DF-MW-04 | | DF-MW-05 | | | 900-1 | DF-MW-06-1 | - | DF-MW-07-1 | DF-MW-10-1 | DF-MW-11-1 | | W-12-1 | DF-MW | | | | | | • | atrix | WG | | WG | WG | WG | . 1 | WG | , 1 | | VG | WG | - | WG | WG | WG | | /G | W | | | | | | Sample 1 | _ | N | | N | N | N N | | N | | | D . | N | | N | N | N | | N N | N | | | | | | Parent Sample (| | ., | | 11 | | | | | | | W-05-1 | | | ., | ., | ., | <u> </u> | • | | | | | | | • | CLP# | BD4Q3 | _ | BD4Q4 | BD4Q5 | BD4Q6 | | BD4Q7 | | | QN6 | BD4Q8 | | BD4Q9 | BD4R2 | BD4R3 | BD | 4R4 | BD4 | RO. | | | | | | | | 1 | | | | | | | | | | | | | | | | | | | CAS No. | Compound | EPA RSLs | NYSDEC AWQS | Unit | Result C | Q | Result Q | Result Q | Result | t Q | Result | t Q | Result | : Q | Result Q | Į | Result Q | Result Q | Result Q | Result | Q | Result | Q | | 92-52-4 | 1,1'-Biphenyl | NL | 5 μ | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | NL | 5 μ | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 123-91-1 | 1,4-Dioxane | NL | | ıg/L | | U | 2.1 UJ | 2 UJ | 2 | UJ | 2 | UJ | 2 | UJ | | UJ | 2 UJ | 2 UJ | 2 UJ | 2 | UJ | 2 | UJ | | 108-60-1 | 2,2'-Oxybis(1-chloropropane) | NL | | ıg/L | 10 | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 3.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 95-95-4 | 2,4,5-Trichlorophenol | NL | + | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 88-06-2 | 2,4,6-Trichlorophenol | NL | · ' | ıg/L | 512 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 120-83-2 | 2,4-Dichlorophenol | NL
 | | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 105-67-9 | 2,4-Dimethylphenol | NL
NI | + | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 51-28-5 | 2,4-Dinitrophenol | NL
NI | | ıg/L | | U | 10 U
5.2 U | 10 U
5.1 U | 10
5.1 | U | 10 | UJ | 10 | U | 10
5.1 | U | 10 U
5.1 U | 10 U
5.1 U | 10 U | 10 | U | 10
5.1 | U | | 121-14-2 | 2,4-Dinitrotoluene | NL
NI | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1
5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 606-20-2
91-58-7 | 2,6-Dinitrotoluene 2-Chloronaphthalene | NL
NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | | U
II | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 95-57-8 | 2-Chlorophenol | NL
NL | | ıg/L | 5.1 | 11 | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | 11 | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 91-57-6 | 2-Methylnaphthalene | NL
NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | | П | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 95-48-7 | 2-Methylphenol | NL NL | | ıg/L | | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | П | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 88-74-4 | 2-Nitroaniline | NL NL | | ıg/L | 5.1 | ш | 5.2 U | 5.1 U | 5.1 | U | 5.1 | UJ | 5 | U | 5.1 | П | 5.1 U | 5.1 U | 5 U | 5 | U
 5.1 | U | | 88-75-5 | 2-Nitrophenol | NL NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | Ü | | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 91-94-1 | 3,3'-Dichlorobenzidine | NL | | ıg/L | | Ü | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | Ü | 10 | U | | 99-09-2 | 3-Nitroaniline | NL | | .g/L | 10 | U | 10 U | 10 U | 10 | U | 10 | UJ | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 534-52-1 | 4,6-Dinitro-2-methylphenol | NL | | ıg/L | 10 | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 101-55-3 | 4-Bromophenyl-phenylether | NL | | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 59-50-7 | 4-Chloro-3-methylphenol | NL | NL µ | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 7005-72-3 | 4-Chlorophenyl-phenylether | NL | NL µ | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 106-44-5 | 4-Methylphenol | NL | NL µ | ıg/L | 10 | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 100-01-6 | 4-Nitroaniline | NL | 5 μ | ıg/L | 10 | U | 10 U | 10 U | 10 | U | 10 | UJ | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 100-02-7 | 4-Nitrophenol | NL | | ıg/L | | U | 10 U | 10 U | 10 | U | 10 | UJ | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 83-32-9 | Acenaphthene | NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 208-96-8 | Acenaphthylene | NL | | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 98-86-2 | Acetophenone | NL | · · | ıg/L | | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 120-12-7 | Anthracene | NL
2 | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 1912-24-9 | Atrazine | 3 | | ıg/L | | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 100-52-7 | Benzaldehyde | NL
NI | + | ıg/L | 10 | U | 10 U
5.2 U | 10 U
5.1 U | 10
5.1 | U | 10 | U | 10
5 | U | 10 | U | 10 U | 10 U
5.1 U | 10 U
5 U | 10
5 | U | 10 | U | | 56-55-3
50-32-8 | Benzo(a)anthracene | NL
0.2 | · · | ıg/L
ıg/L | | U | 5.2 U
5.2 U | 5.1 U | 5.1 | U | 5.1
5.1 | U | 5 | U | 5.1
5.1 | 11 | 5.1 U
5.1 U | 5.1 U | 5 U | 5 | U | 5.1
5.1 | U | | 205-99-2 | Benzo(a)pyrene Benzo(b)fluoranthene | NL | | | 5.1 | JI. | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | 11 | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 191-24-2 | Benzo(g,h,i)perylene | NL
NL | | ıg/L
ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 207-08-9 | Benzo(k)fluoranthene | NL
NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 111-91-1 | Bis(2-chloroethoxy)methane | NL NL | | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 111-44-4 | Bis(2-chloroethyl)ether | NL NL | | ıg/L | | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 117-81-7 | Bis(2-ethylhexyl)phthalate | 6 | · · · · · · · · · · · · · · · · · · · | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 105-60-2 | Caprolactam | NL | | ıg/L | 10 | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | 10 | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 86-74-8 | Carbazole | NL NL | | ıg/L | | U | 10 U | 10 U | 10 | U | 10 | U | 10 | U | | U | 10 U | 10 U | 10 U | 10 | U | 10 | U | | 53-70-3 | Dibenzo(a,h)anthracene | NL | | .g/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 132-64-9 | Dibenzofuran | NL | | ıg/L | 5.1 | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | 84-66-2 | Diethylphthalate | NL | | ıg/L | | U | 5.2 U | 5.1 U | 5.1 | U | 5.1 | U | 5 | U | 5.1 | U | 5.1 U | 5.1 U | 5 U | 5 | U | 5.1 | U | | | | | J | - Jr - | | | 1 - | 1 - | | - | | | | | | | 1 - | | <u> </u> | | | l l | | | | | | Locatio | n ID | DF-MW-01 | | DF-MW-02 | , | DF-MW-03 | . 1 | DF-MW-04 | Т | DF-MW-0 | 5 | DF-1 | MW-05 | DF-MW-06 | Т | DF-MW-07 | 1 | DF-MW-10 | DF-MV | N-11 | \neg | DF-M | W-12 | DF-M | 1W-08 | |----------|----------------------------|----------|---------------------------------------|-------|------------|---|-----------|---|-----------|-----|------------|----------|-----------|---|-------|---------|------------|---|------------|---|------------|--------|---------|----------|--------|------|--------|--------| | | | | Sample D | | 11/7/2016 | | 11/7/2016 | | 11/8/2016 | | 11/8/2016 | \dashv | 11/8/2010 | | | 8/2016 | 11/8/2016 | + | 11/9/2016 | + | 11/9/2016 | 11/9/2 | | \dashv | 11/9/ | | | 0/2016 | | | | | Sample | | DF-MW-01-1 | | DF-MW-02- | | DF-MW-03- | _ | DF-MW-04-1 | - | DF-MW-05 | | | -900-1 | DF-MW-06-1 | 1 | DF-MW-07-1 | + | DF-MW-10-1 | DF-MW | | \neg | DF-MV | | | W-08-1 | | | | | Ma | atrix | WG | | , | WG | WG | 1 | WG | | WG | W | | | W | G | ٧ | VG | | | | | Sample T | уре | N | | N | | N | | N | | N | | | FD | N | 1 | N | | N | N | | | N | ı | | N | | | | | Parent Sample C | ode | | | | | | | | 1 | | | DF-N | IW-05-1 | | | | | | | | | | | | | | | | | CI | LP# | BD4Q3 | | BD4Q4 | | BD4Q5 | | BD4Q6 | | BD4Q7 | | ВС | QN6 | BD4Q8 | | BD4Q9 | | BD4R2 | BD4 | R3 | | BD4 | IR4 | BD | 94R0 | CAS No. | Compound | EPA RSLs | NYSDEC AWQS L | Jnit | Result | Q | Result | Q | Resul | t Q | Result Q | | Result | Q | Resul | t Q | Result Q | | Result Q | | Result Q | R | esult (| Q | Result | Q | Result | . Q | | 131-11-3 | Dimethylphthalate | NL | 50 д | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 84-74-2 | Di-n-butylphthalate | NL | 50 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 117-84-0 | Di-n-octylphthalate | NL | 50 με | g/L | 10 | U | 10 | U | 10 | U | 10 l | U | 10 | U | 10 | U | 10 U | J | 10 L | J | 10 U | 10 | | U | 10 | U | 10 | U | | 206-44-0 | Fluoranthene | NL | 50 με | g/L | 10 | U | 10 | U | 10 | U | 10 l | U | 10 | U | 10 | U | 10 U | J | 10 L | J | 10 U | 10 | | U | 10 | U | 10 | U | | 86-73-7 | Fluorene | NL | 50 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 118-74-1 | Hexachlorobenzene | 1 | 0.04 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 87-68-3 | Hexachlorobutadiene | NL | 0.5 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 77-47-4 | Hexachlorocyclopentadiene | 50 | 5 με | g/L | 10 | U | 10 | U | 10 | U | 10 l | U | 10 | U | 10 | U | 10 U | J | 10 L | J | 10 U | 10 | | U | 10 | U | 10 | U | | 67-72-1 | Hexachloroethane | NL | 5 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 193-39-5 | Indeno(1,2,3-cd)pyrene | NL | 0.002 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 78-59-1 | Isophorone | NL | 50 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 91-20-3 | Naphthalene | NL | NL μ | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 98-95-3 | Nitrobenzene | NL | 0.4 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 621-64-7 | N-Nitroso-di-n-propylamine | NL | NL μ | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 86-30-6 | N-Nitrosodiphenylamine 1 | NL | 50 με | g/L | 5.1 | U | | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 87-86-5 | Pentachlorophenol | 1 | 2 με | g/L | 10 | U | 10 | U | 10 | U | 10 U | U | 10 | U | 10 | U | 10 U | J | 10 L | J | 10 U | 10 | | U | 10 | U | 10 | U | | 85-01-8 | Phenanthrene | NL | | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | | 108-95-2 | Phenol | NL | · · · · · · · · · · · · · · · · · · · | g/L | 10 | U | 10 | U | 10 | U | 10 U | _ | 10 | U | 10 | U | 10 U | J | 10 L | J | 10 U | 10 | | U | 10 | U | 10 | U | | 129-00-0 | Pyrene | NL | 50 με | g/L | 5.1 | U | 5.2 | U | 5.1 | U | 5.1 l | U | 5.1 | U | 5 | U | 5.1 U | J | 5.1 L | J | 5.1 U | 5 | | U | 5 | U | 5.1 | U | ### Acronyms μg/L - microgram per liter AWQS - Ambient Water Quality Standards CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - Field Duplicate ID - identification N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier RSLs - Regional Screening Levels WG - groundwater U - undetected UJ - estimated undetected | Second Performance | | | | | | | | | | T | | | | | | | | 1 | | | 1 | | |
--|-----------|---|----------|-------------|-------|--------|-----|--------|-----|-----------|--------|----------|-----------|-----------------|-----|--------|-----|-----------|--------|-----|-----------|-----------|-----------| | Processor Proc | | | | | _ | | | | | DF-TWP-03 | | | DF-TWP-07 | | | | | DF-TWP-14 | | | DF-TWP-16 | DF-TWP-18 | DF-TWP-19 | | Part | | | | | _ | | · | | | <u> </u> | | <u> </u> | | <u> </u> | | | | <u> </u> | | · | | | | | Part | | | | | · - | | | | | | | | | + | | | | | _ | | | | | | Column C | | | | | _ | Column | | | | • | | | N | 1 | N | N | | | N | 1 | N | N | V | N | ı | N | N | N | N | | Color Company | | | | Parent Samp | H | 1.15 | | 1 | 1 | | CLP # | BD- | 4R1 | BD | 4R5 | BD4R6 | BDO | QN7 | BD4R7 | BD ₄ | 4R8 | BD4 | 4R9 | BDQN1 | BD | QN2 | BDQN3 | BDQN4 | BDQN5 | | ## 13.45 Transferencement | CAS No. | Compound | EPA RSLs | NYSDEC AWQS | Unit | Result | Q | Result | Q | Result Q | Result | Q | Result Q | Result | Q | Result | Q | Result Q | Result | Q | Result Q | Result Q | Result Q | | 1939 | 92-52-4 | 1,1'-Biphenyl | NL | 5 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | Description | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | NL | 5 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | 992 2 A,A6 Framentophone Nt. Nt. ggl 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 | 123-91-1 | 1,4-Dioxane | NL | NL | μg/L | 2 | UJ | 2 | UJ | 2 UJ | 2 | UJ | 2 UJ | 2 | UJ | 2 | IJ | 2 UJ | 2 | UJ | 2 UJ | 2 UJ | 2 UJ | | Page | 108-60-1 | 2,2'-Oxybis(1-chloropropane) | NL | 5 | μg/L | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 U | 10 U | | 2.66 2.66 First Interpretent Ni | 58-90-2 | 2,3,4,6-Tetrachlorophenol | NL | NL | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | 19-98-12 2-6-follocorphaned NIL S U/L S U S | | | | _ | | | | | | | 5 | | | - | | | | <u> </u> | | | | | | | 15.67 2.4 Demethylehrorid Ni | 88-06-2 | 2,4,6-Trichlorophenol | NL | NL | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | | | 24.95 24.0 Interoplement N. 110 IEPL 10 U | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | 5 | | | | | | | | | | | 121-14-22 2.4-Dintroclusier | | | | | | | | | | | | | | 5 | | | | | | | | | | | Page | | - ' · · · · · · · · · · · · · · · · · · | | | 1 0" | | | | - | | | | | _ | - | | | <u> </u> | | | | | | | 9.58-7 Chromophimbere Ni Ni Ni Ni Ni Ni Ni N | | | | - J | | | | | | | _ | | | 5 | | | | <u> </u> | | | | | | | 95-78 2-CHorophenol NL NL NL Ng/L 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 | | , | | | | | | | | | | | | 5 | | | | | | | | | | | 1975 2-Ametrylophasplate | | ' | | | 1 0, | | | | | ! | | | | | | | | | | | | | | | 95-487 2-Methylphenol NL NL Ig/L 10 U | | | | | | | | | | | _ | | | | | | | <u> </u> | | | | | | | Section Sect | | ' ' | | | 1 0, | | | | | | _ | | | | | | | | | | | | | | September N.L. N.L. M.L. M. | | · · · · · · · · · · · · · · · · · · · | | | | | | | | ! | | | | | | | | | | | | | | | 93-94-1 3.3**Orientoelexidine N.L 5 kg/L 10 U | | | | | 1 0, | | ~ | | | | | | | _ | | | | | | | | | | | 99-92 3 Nitroanline NL 5 g/L 10 U | | | | | | | | | | | | | | - | | | | <u> </u> | | | | | | | S45-52-1 G5-Dintro-2-methylphenol N.L N. | | | | | | | | | | ! | | | | | | | | | | | | | | | 201-55-3 4-Bromophenyl-phenylether | | | | | 1 0 | | | | | | | | | | | | | <u> </u> | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | 5 | | | | <u> </u> | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | - | | _ | | | 5 | | | | | | | | | | | 106-44-5 | | | | | 1 0 | | | 5 | | | 5 | | | 5 | | | | | | | | | | | 100-01-6 4-Nitrophenol A-Nitrophenol NL NL NL NL NL NL NL N | | _ ' ' ' ' | | | | | | | | | | | | _ | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | / 1 | | | | | | | | | | | | | | | | <u> </u> | | | | | | | 83-32-9 Acenaphthene | | | | NL | | | | | 1 | | | | | | | | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | <u>'</u> | | | | | U | | | ł | | | | 5 | - | | | <u> </u> | _ | | | | | | 98-86-2 Acetophenone NL NL µg/L 10 U | | · | NL | NL | | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | | 5.1 U | | 1912-24-9 Atrazine 3 7.5 µg/L 10 U | 98-86-2 | Acetophenone | NL | NL | μg/L | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 U | 10 U | | | 120-12-7 | Anthracene | NL | 50 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1912-24-9 | Atrazine | 3 | 7.5 | μg/L | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 U | 10 U | | | 100-52-7 | Benzaldehyde | NL | NL | μg/L | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 U | 10 U | | 205-9-2 Benzo(b)fluoranthene NL 0.002 μg/L 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 | 56-55-3 | Benzo(a)anthracene | NL | 0.002 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | |
$\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 50-32-8 | Benzo(a)pyrene | 0.2 | NL | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | 207-08-9 Benzo(k)fluoranthene NL 0.002 μg/L 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5.1 | 205-99-2 | Benzo(b)fluoranthene | NL | 0.002 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | 111-91-1 Bis(2-chloroethoxy)methane NL 5 µg/L 5 U 5 U 5 U 5 U 5 U 5 U 5.1 5. | 191-24-2 | Benzo(g,h,i)perylene | NL | NL | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | | 207-08-9 | Benzo(k)fluoranthene | NL | 0.002 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | | | 111-44-4 Bis(2-chloroethyl)ether NL 1 lug/L 10 U 1 | 111-91-1 | Bis(2-chloroethoxy)methane | NL | 5 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | | 111-44-4 | Bis(2-chloroethyl)ether | NL | 1 | μg/L | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 | U | 10 | U | 10 U | 10 | U | 10 U | 10 U | 10 U | | | 117-81-7 | Bis(2-ethylhexyl)phthalate | 6 | 5 | μg/L | | U | | U | | | | | _ | | | U | | | U | | | | | | | _ ' | | | 1 0, | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | _ | | | | | - | | 10 | | | 10 | | | | <u> </u> | | | | | | | | | . , , | | | μg/L | | | | - | | 5 | | | 5 | | | | <u> </u> | | | | | | | | | | | _ | 1 0, | | | , , | | | , | | | , | | | | | | | | | | | 84-66-2 Diethylphthalate NL 50 μg/L 5 U 5 U 5 U 5 U 5 U 5.1 | 84-66-2 | Diethylphthalate | NL | 50 | μg/L | 5 | U | 5 | U | 5 U | 5 | U | 5.1 U | 5 | U | 5.1 | U | 5.1 U | 5.1 | U | 5.1 U | 5.1 U | 5.1 U | | | | | | ation ID | DF-M\ | M 00 | DET | WP-02 | DE T | NP-03 | ם די | WP-03 | ם די | WP-07 | DF-TW | D 00 | DF-TV | VD 12 | DF-TV | VD 14 | DE TV | VP-15 | DF-TV | VD 16 | DE T | WP-18 | DF-TWP-19 | |----------|----------------------------|----------|-------------|----------|--------|------|--------|---------|--------|--------|--------|--------|--------|-------|----------|------|--------|-------|--------|-------|--------|-------|--------|-------|--------|---------|-------------| ole Date | 11/10/ | | | 0/2016 | , | 0/2016 | , , | 0/2016 | | /2016 | 11/10/ | | 11/11 | , | 11/11 | | | /2016 | 11/11 | | | 0/2016 | 11/10/2016 | | | | | Sa | mple ID | DF-MW | | | /P-02-1 | DF-TW | | GW- | | DF-TW | | DF-TWP | | DF-TW | | DF-TW | | DF-TW | | DF-TW | | | VP-18-1 | DF-TWP-19-1 | | | | | | Matrix | W | | V | VG | | /G | | VG . | | /G | W | | W | /G | W | | | /G | W | G | | VG | WG | | | | | | ole Type | N | | | N | | N | | N | | N | N | | ١ | ١ | 1 | ı | 1 | V | N | J | ı | N | N | | | | | Parent Samp | | | | | | | | DF-TW | | | | | | | | | | | | | | | | | | | | 1 | | CLP# | BD4 | R1 | BD | 4R5 | BD | 4R6 | BD | QN7 | BD | 4R7 | BD4 | R8 | BD4 | 4R9 | BDO | QN1 | BDC | QN2 | BDC | QN3 | BDO | QN4 | BDQN5 | | CAS No. | Compound | EPA RSLs | NYSDEC AWQS | Unit | Result | 0 | Result (|) | Result | 0 | Result Q | | 131-11-3 | Dimethylphthalate | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 84-74-2 | Di-n-butylphthalate | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 117-84-0 | Di-n-octylphthalate | NL | 50 | μg/L | 10 | U U | | 206-44-0 | Fluoranthene | NL | 50 | μg/L | 10 | U U | | 86-73-7 | Fluorene | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 118-74-1 | Hexachlorobenzene | 1 | 0.04 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 87-68-3 | Hexachlorobutadiene | NL | 0.5 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 77-47-4 | Hexachlorocyclopentadiene | 50 | 5 | μg/L | 10 | U U | | 67-72-1 | Hexachloroethane | NL | 5 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 193-39-5 | Indeno(1,2,3-cd)pyrene | NL | 0.002 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 78-59-1 | Isophorone | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 91-20-3 | Naphthalene | NL | NL | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 98-95-3 | Nitrobenzene | NL | 0.4 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 621-64-7 | N-Nitroso-di-n-propylamine | NL | NL | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 86-30-6 | N-Nitrosodiphenylamine 1 | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 87-86-5 | Pentachlorophenol | 1 | 2 | μg/L | 10 | U U | | 85-01-8 | Phenanthrene | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | | 108-95-2 | Phenol | NL | 2 | μg/L | 10 | U U | | 129-00-0 | Pyrene | NL | 50 | μg/L | 5 | U | 5 | U | 5 | U | 5 | U | 5.1 | U | 5 | U | 5.1 U | ### Acronyms μg/L - microgram per liter AWQS - Ambient Water Quality Standards CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - Field Duplicate ID - identification N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier RSLs - Regional Screening Levels WG - groundwater U - undetected UJ - estimated undetected | | | | Locat | ion ID | | DF-N | 1W-01 | | | DF-N | /W-02 | | | DF-M | W-03 | | | P-M۱ | W-04 | | |-----------|---------------|------|-------------|---------|----------|------|------------|-----|----------|------|------------|-----|----------|------|----------|-----|----------|-------------|----------|------| | | | | Sample | e Date | 11/7/201 | .6 | 11/7/2016 | 5 | 11/7/201 | 6 | 11/7/2016 | 5 | 11/8/201 | 16 | 11/8/201 | .6 | 11/8/201 | .6 | 11/8/201 | 16 | | | | | Sam | ple ID | DF-MW-02 | 1-1 | DF-MW-01-1 | 1-F | DF-MW-02 | 2-1 | DF-MW-02-1 | L-F | DF-MW-03 | 3-1 | DF-MW-03 | 1-F | DF-MW-04 | l -1 | DF-MW-04 | -1-F | | | | | r | ∕latrix | WG | | | | | Sample | е Туре | N | | N | | N | | N | | N | | N | | N | | N | | | | | Pa | rent Sample | Code | | | | | | | | | | | | | | | | | | | • | | | CLP# | MBD4Q3 | 3 | MBDQP4 | | MBD4Q4 | 1 | MBDQP5 | | MBD4Q | 5 | MBDQP | ŝ | MBD4Q6 | õ | MBDQP? | 7 | | | | EPA | NYSDEC | | | | | | | | | | | | | | | | | | | CAS No. | Compound | RSLs | AWQS | Unit | Result | Q | 7429-90-5 | Aluminum | NL | NL | μg/L | 22.3 | | 20 | U | 11.4 | J | 26.9 | | 73.5 | | 1.7 | J | 19.7 | | 20 | U | | 7440-36-0 | Antimony | 6 | 3 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | | 7440-38-2 | Arsenic | 10 | 25 | μg/L | 0.76 | J | 0.18 | J | 1.9 | | 0.82 | J | 15.2 | | 6.5 | | 0.34 | J | 0.17 | J | | 7440-39-3 | Barium | 2000 | 1000 | μg/L | 62.8 | | 61 | | 77.7 | | 74.6 | | 204 | | 193 | | 69.9 | | 66.5 | | | 7440-41-7 | Beryllium | 4 | 3 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-43-9 | Cadmium | 5 | 5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-70-2 | Calcium Metal | NL | NL | μg/L | 138000 | | 135000 | | 146000 | | 142000 | | 217000 | | 209000 | | 125000 | | 125000 | | | 7440-47-3 | Chromium | 100 | 50 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 0.07 | J | 2 | J | 38 | | 38.5 | | | 7440-48-4 | Cobalt | NL | NL | μg/L | 1 | U | 1 | U | 0.24 | J | 0.24 | J | 0.94 | J | 0.89 | J | 1 | U | 1 | U | | 7440-50-8 | Copper | 1300 | 200 | μg/L | 0.3 | J | 0.95 | J | 0.42 | J | 1.3 | J | 2 | | 0.14 | J | 0.72 | J | 0.73 | J | | 7439-89-6 | Iron | NL | 300 | μg/L | 484 | | 37 | J | 953 | | 393 | | 6170 | | 4240 | | 35.8 | J | 7.6 | J | | 7439-92-1 | Lead | 15 | 25 | μg/L | 0.13 | J | 1 | U | 0.15 | J | 0.07 | J | 0.6 | J | 1 | U | 0.08 | J | 1 | U | | 7439-95-4 | Magnesium | NL | 35000 | μg/L | 20600 | | 20300 | | 20600 | | 21000 | | 26000 | | 26000 | | 19200 | | 19100 | | | 7439-96-5 | Manganese | NL | 300 | μg/L | 83.2 | | 70.5 | | 944 | | 894 | | 5320 | | 5280 | | 194 | | 24.7 | | | 7440-02-0 | Nickel | NL | 100 | μg/L | 0.08 | J | 0.16 | J | 0.42 | J | 0.35 | J | 1.1 | | 1 | | 0.91 | J | 0.27 | J | | 7440-09-7 | | | | μg/L | 3390 | | 3350 | | 1630 | | 1710 | | 1350 | | 1350 | | 3600 | | 3570 | | | 7782-49-2 | Selenium | 50 | 10 | μg/L | 4.3 | J | 4.8 | J | 2.1 | J | 2 | J | 5 | UJ | 5 | UJ | 2.2 | J | 2.4 | J | | 7440-22-4 | Silver | NL | 50 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-23-5 | Sodium | NL | 20,000 | μg/L | 32200 | | 32000 | | 27600 | | 28600 | | 14800 | | 14900 | | 42100 | | 41600 | | | 7440-28-0 | Thallium | 2 | 0.5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-62-2 | Vanadium | NL | NL | μg/L | 0.18 | J | 0.03 | J | 0.69 | J | 0.32 | J | 0.79 | J | 0.03 | J | 0.12 | J | 0.05 | J | | 7440-66-6 | Zinc | NL | 2000 | μg/L | 0.82 | J | 2.1 | | 1.8 | J | 3.8 | | 2.2 | | 1.8 | J | 1.4 | J | 3 | | Bolded >detection > NYSDEC AWQS #### Acronyms $\mu g/L$ - microgram per liter AWQS - Ambient Water Quality Standards CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - Field Duplicate ID - identification J - estimated results N - normal NL - not listed NYSDEC - New York State Department of Environmental Conservation Q - qualifier RSLs - Regional Screening Levels WG - groundwater | | San Parent San | | | | | | | DF-N | 1W-05 | | | | | DF-M' | W-06 | | [| F-M | W-07 | | [| DF-M | W-08 | \neg | |---------------------------------
---|------|-------------|--------------|----------|--------|----------|--------|-----------|--------|----------|--------|----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|--------|-----------|---------| | | | | Sample | Date | 11/8/201 | 16 | 11/8/201 | 16 | 11/8/201 | 6 | 11/8/201 | 16 | 11/8/201 | .6 | 11/8/201 | 6 | 11/9/2016 | 5 | 11/9/201 | 6 | 11/10/201 | 16 | 11/10/202 | 16 | | | | | Sam | ple ID | DF-MW-0 | 5-1 | GW-900- | 1 | DF-MW-05- | 1-F | GW-900-1 | L-F | DF-MW-06 | 5-1 | DF-MW-06- | 1-F | DF-MW-07- | -1 | DF-MW-07- | 1-F | DF-MW-08 | -1 | DF-MW-08- | 1-F | | | | | N | /latrix | WG | | | | | Sample | Туре | N | | FD | | N | | FD | | N | | N | | N | | N | | N | | N | | | | | Pa | rent Sample | Code | | | DF-MW-05 | 5-1 | | | DF-MW-05 | -1-F | | | | | | | | | | | | | | CLP # | | | CLP# | MBD4Q | 7 | MBDQN | 6 | MBDQP8 | | MBDQR | 6 | MBD4Q8 | 3 | MBDQP9 |) | MBD4Q9 | | MBDQQ0 |) | MBD4R0 | | MBDQQ1 | ī | | | EPA NYSDEC | CAS No. Compound RSLs AWQS Unit | | | Result | Q | | | 7429-90-5 | Aluminum | NL | NL | μg/L | 6.4 | J | 3.8 | J | 20 | U | 3 | J | 16.9 | J | 2.4 | J | 46.4 | | 1.8 | J | 21.4 | | 20 | U | | 7440-36-0 | Antimony | | 3 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | | 7440-38-2 | Arsenic | 10 | 25 | μg/L | 0.12 | J | 1 | U | 1 | U | 1 | U | 0.17 | J | 0.12 | J | 0.14 | J | 0.11 | J | 3.1 | | 2.3 | | | 7440-39-3 | Barium | 2000 | 1000 | μg/L | 65.6 | | 65.4 | | 66.9 | | 65.8 | | 60.5 | | 60 | | 84.1 | | 84.1 | | 86.1 | | 80.5 | | | 7440-41-7 | Beryllium | 4 | 3 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-43-9 | Cadmium | 5 | 5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-70-2 | 7440-36-0 Antimony 6 3 µg, 7440-38-2 Arsenic 10 25 µg, 7440-39-3 Barium 2000 1000 µg, 7440-41-7 Beryllium 4 3 µg, 7440-43-9 Cadmium 5 5 µg, 7440-70-2 Calcium Metal NL NL µg, 7440-47-3 Chromium 100 50 µg, 7440-48-4 Cobalt NL NL µg, 7440-50-8 Copper 1300 200 µg, 7439-89-6 Iron NL 300 µg, 7439-92-1 Lead 15 25 µg, | | μg/L | 142000 | | 143000 | | 144000 | | 141000 | | 132000 | | 131000 | | 152000 | | 153000 | | 113000 | | 110000 | | | | 7440-47-3 | 7440-36-0 Antimony 6 3 µg/ 7440-38-2 Arsenic 10 25 µg/ 7440-39-3 Barium 2000 1000 µg/ 7440-41-7 Beryllium 4 3 µg/ 7440-43-9 Cadmium 5 5 µg/ 7440-70-2 Calcium Metal NL NL µg/ 7440-47-3 Chromium 100 50 µg/ 7440-48-4 Cobalt NL NL NL µg/ 7439-89-6 Iron NL 300 µg/ 7439-92-1 Lead 15 25 µg/ 7439-95-4 Magnesium NL 300 µg/ 7439-96-5 Manganese NL 300 µg/ | | μg/L | 0.08 | J | 0.07 | J | 2 | U | 2 | U | 2 | U | 2 | U | 0.21 | J | 0.18 | J | 7.4 | | 6 | | | | 7440-48-4 | Cobalt | | | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-50-8 | Copper | 1300 | | μg/L | 0.39 | J | 0.38 | J | 0.75 | J | 0.5 | J | 0.21 | J | 0.54 | J | 0.47 | J | 0.86 | J | 0.23 | J | 0.34 | J | | | | | | μg/L | 17.4 | J | 16.7 | J | 9.6 | J | 10.9 | J | 33.3 | J | 9.3 | J | 42.8 | J | 10.5 | J | 2390 | | 1860 | \perp | | 7439-92-1 | Lead | 15 | | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 0.16 | J | 1 | U | 0.18 | J | 1 | U | 0.09 | J | 1 | U | | | | | | μg/L | 13600 | | 13800 | | 13500 | | 13700 | | 21800 | | 21700 | | 21700 | | 21400 | | 15700 | | 15700 | | | | | | | μg/L | 0.78 | J | 0.64 | J | 0.86 | J | 1.2 | | 5.2 | | 0.85 | J | 10.9 | | 0.6 | J | 343 | | 341 | | | 7440-02-0 | Nickel | NL | | μg/L | 1 | U | 1 | U | 0.2 | J | 1 | U | 1 | U | 1 | U | 0.19 | J | 0.07 | J | 0.14 | J | 0.17 | J | | | | NL | | μg/L | 2110 | | 2130 | | 2090 | | 2110 | | 3060 | | 3110 | | 2720 | | 2690 | | 2730 | | 2730 | \perp | | | | | 10 | μg/L | 2.4 | J | 2.9 | J | 2.2 | J | 1.9 | J | 2.7 | J | 2.8 | J | 2.2 | J | 2.8 | J | 1.4 | J | 2.5 | J | | 7440-22-4 | 0-36-0 Antimony 6 3 0-38-2 Arsenic 10 25 0-39-3 Barium 2000 1000 0-41-7 Beryllium 4 3 0-42-9 Cadmium 5 5 0-70-2 Calcium Metal NL NL 0-47-3 Chromium 100 50 0-48-4 Cobalt NL NL 0-50-8 Copper 1300 200 0-89-6 Iron NL 300 0-99-1 Lead 15 25 0-99-5 Magnesium NL 300 0-99-7 Potassium NL 100 0-09-7 Potassium NL 10 0-09-7 Potassium NL NL 0-22-4 Silver NL 50 0-22-5 Sodium NL 20,000 0-28-0 Thallium 2 0.5 0-62-2 Vanadium NL | | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | | | 9-90-5 Aluminum NL NL 0-36-0 Antimony 6 3 0-38-2 Arsenic 10 25 0-39-3 Barium 2000 1000 0-41-7 Beryllium 4 3 0-43-9 Cadmium 5 5 0-70-2 Calcium Metal NL NL 0-47-3 Chromium 100 50 0-48-4 Cobalt NL NL 0-50-8 Copper 1300 200 9-89-6 Iron NL 300 9-92-1 Lead 15 25 9-95-4 Magnesium NL 35000 9-96-5 Manganese NL 300 0-02-0 Nickel NL 100 0-09-7 Potassium NL NL 0-02-24-9 Selenium 50 0-02-3-5 Sodium NL 50 0-02-8 Thallium 2 0.5 0-06-2-2 Vanadium NL NL | | μg/L | 7590 | | 7730 | | 7510 | | 7650 | | 45300 | | 45600 | | 44600 | | 44300 | | 39200 | | 38600 | 4 | | | | No. Compound RSLs AWQS -90-5 Aluminum NL NL -36-0 Antimony 6 3 -38-2 Arsenic 10 25 -39-3 Barium 2000 1000 -41-7 Beryllium 4 3 -43-9 Cadmium 5 5 -70-2 Calcium Metal NL NL -70-2 Calcium Metal NL NL -47-3 Chromium 100 50 -48-4 Cobalt NL NL -50-8 Copper 1300 200 -89-6 Iron NL 300 -92-1 Lead 15 25 -95-4 Magnesium NL 35000 -96-5 Manganese NL 300 -02-0 Nickel NL 100 -09-7 Potassium NL NL -09-7 Potassium NL NL< | | | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | | -36-0 Antimony 6 3 -38-2 Arsenic 10 25 -39-3 Barium 2000 1000 41-7 Beryllium 4 3 -43-9 Cadmium 5 5 -70-2 Calcium Metal NL NL -47-3 Chromium 100 50 -48-4 Cobalt NL NL -50-8 Copper 1300 200 -89-6 Iron NL 300 -92-1 Lead 15 25 -95-4 Magnesium NL 35000 -96-5 Manganese NL 100 -90-7 Potassium NL NL -09-7 Potassium NL NL -49-2 Selenium 50 10 -22-2 Silver NL 50 -23-5 Sodium NL 20,000 -28-0 Thallium 2 0.5 -62-2 Vanadium NL NL | | | μg/L
μg/L | 0.06 | J | 0.05 | J | 0.05 | J | 0.06 | J | 0.08 | J | 0.04 | J | 0.1 | J | 0.06 | J | 0.14 | J | 0.06 | J | | 7440-66-6 | Parent Sa S No. Compound RSLs AW 3-9-0-5 Aluminum NL NI 3-36-0 Antimony 6 6 3 3-38-2 Arsenic 10 25 3-39-3 Barium 2000 100 3-41-7 Beryllium 4 3 3-43-9 Cadmium 5 5 3-70-2 Calcium Metal NL NI 3-47-3 Chromium 100 50 3-48-4 Cobalt NL NI 3-47-3 Chromium 100 50 3-88-6 [Iron NL 30 3-9-9-1 Lead 15 25 3-95-4 Magnesium NL 350 3-9-9-5 Manganese NL 30 3-9-9-5 Manganese NL 30 3-9-9-7 Potassium NL NI 3-49-2 Selenium 50 10 3-24-9-2 Selenium 50 11 3-24-9-2 Selenium 50 11 3-25-5 Sodium NL 20,0 3-28-0 Thallium 2 0.1 3-28-0 Thallium 2 0.1 3-28-0 Thallium 2 0.1 3-28-0 Thallium 2 0.1 3-20-0-0 Thallium 2 0.1 3-20-0-0 Thallium 2 0.1 | | | | 0.43 | J | 0.35 | J | 1.3 | J | 0.41 | J | 0.53 | J | 1.1 | J | 0.82 | J | 2.3 | | 0.83 | J | 0.71 | J | #### Acronyms μg/L - microgram per liter AWQS - Ambient Water Quality Standards CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - Field Duplicate ID - identification J - estimated results N - normal NL - not listed NYSDEC - New York State Department of Environmental Cons Q - qualifier RSLs - Regional Screening Levels WG - groundwater | | | | Locati | ion ID | | DF-N | ЛW-09 | | | F-M | W-10 | | | F-M | IW-11 | | | DF-M | W-12 | | | DF-T | WP-02 | | |-----------|---------------|------|-------------|---------|----------|------|----------|-------|----------|-----|----------|------|-----------|-----|-----------|-----|----------|------|----------|-------|----------|------|-----------|------------| | | | | Sample | Date | 11/10/20 | 16 | 11/10/20 |)16 | 11/9/201 | 6 | 11/9/201 | .6 | 11/9/2010 | 6 | 11/9/2016 | ŝ | 11/9/201 | .6 | 11/9/20 | 16 | 11/10/20 |)16 | 11/10/20 |)16 | | | | | Sam | ple ID | DF-MW-0 | 9-1 | DF-MW-09 | 9-1-F | DF-MW-10 | -1 | DF-MW-10 | -1-F | DF-MW-11 | -1 | DF-MW-11- | 1-F | DF-MW-12 | 2-1 | DF-MW-12 | 2-1-F | DF-TWP-0 |)2-1 | DF-TWP-02 | 2-1-F | | | | | N | /latrix | WG | | | | | Sample | Туре | N | | N | | N | | N | | N |
| N | | N | | N | | N | | N | | | | | Pa | rent Sample | Code | CLP# | MBD4R | 1 | MBDQC | (2 | MBD4R2 | | MBDQQ | 3 | MBD4R3 | | MBDQQ4 | | MBD4R4 | ļ | MBDQC | Ղ5 | MBD4R | .5 | MBDQQ | 1 6 | | | | EPA | NYSDEC | CAS No. | Compound | RSLs | AWQS | Unit | Result | Q | 7429-90-5 | Aluminum | NL | NL | μg/L | 26.8 | | 3.8 | J | 19.6 | | 20 | U | 14.7 | J | 2.4 | J | 121 | | 20 | U | 67.2 | | 1.4 | J | | 7440-36-0 | Antimony | 6 | 3 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | | 7440-38-2 | Arsenic | 10 | 25 | μg/L | 0.48 | J | 0.29 | J | 0.17 | J | 0.12 | J | 0.15 | J | 0.11 | J | 0.32 | J | 1 | U | 12.1 | | 11.5 | | | 7440-39-3 | Barium | 2000 | 1000 | μg/L | 126 | | 118 | | 78.1 | | 76.8 | | 71.5 | | 70.7 | | 61.2 | | 58.2 | | 90.4 | | 85.4 | | | 7440-41-7 | Beryllium | 4 | 3 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-43-9 | Cadmium | 5 | 5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-70-2 | Calcium Metal | NL | NL | μg/L | 246000 | | 230000 | | 137000 | | 136000 | | 145000 | | 144000 | | 129000 | | 125000 | | 180000 | | 171000 | | | 7440-47-3 | Chromium | 100 | 50 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 0.45 | J | 0.42 | J | 0.11 | J | 2 | U | 2 | U | 2 | U | | 7440-48-4 | Cobalt | NL | NL | μg/L | 0.25 | J | 0.29 | J | 0.42 | J | 0.32 | J | 1 | U | 1 | U | 0.08 | J | 1 | U | 0.74 | J | 0.61 | J | | 7440-50-8 | Copper | 1300 | 200 | μg/L | 0.88 | J | 1.4 | J | 0.54 | J | 0.62 | J | 0.36 | J | 0.65 | J | 0.81 | J | 0.51 | J | 6 | | 1.1 | J | | 7439-89-6 | Iron | NL | 300 | μg/L | 209 | | 28.9 | J | 30 | J | 12.6 | J | 27.4 | J | 9.8 | J | 149 | J | 10.5 | J | 8870 | | 8540 | | | 7439-92-1 | Lead | 15 | 25 | μg/L | 0.72 | J | 0.07 | J | 0.16 | J | 1 | U | 0.18 | J | 1 | U | 0.39 | J | 1 | U | 13.7 | | 0.23 | J | | 7439-95-4 | Magnesium | NL | 35000 | μg/L | 21000 | | 20700 | | 17900 | | 17900 | | 21100 | | 21200 | | 20200 | | 18900 | | 10100 | | 9750 | | | 7439-96-5 | Manganese | NL | 300 | μg/L | 1010 | | 984 | | 1280 | | 1220 | | 26.7 | | 2.5 | | 39.2 | | 3.1 | | 553 | | 544 | | | 7440-02-0 | Nickel | NL | 100 | μg/L | 1.5 | | 1.4 | | 0.83 | J | 0.76 | J | 0.28 | J | 0.24 | J | 0.43 | J | 0.09 | J | 1.8 | | 1.4 | | | 7440-09-7 | Potassium | NL | NL | μg/L | 5920 | | 5900 | | 3020 | | 3040 | | 2800 | | 2840 | | 2560 | | 2540 | | 3690 | | 3670 | | | 7782-49-2 | Selenium | 50 | 10 | μg/L | 4.2 | J | 3.9 | J | 5 | UJ | 5 | UJ | 4.3 | J | 3.5 | J | 2 | J | 1.8 | J | 21.1 | J | 18.7 | J | | 7440-22-4 | Silver | NL | 50 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-23-5 | Sodium | NL | 20,000 | μg/L | 6200 | | 8900 | | 28300 | | 28800 | | 47800 | | 48200 | | 49700 | | 49500 | | 2830 | | 2840 | | | 7440-28-0 | Thallium | 2 | 0.5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-62-2 | Vanadium | NL | NL | μg/L | 0.52 | J | 0.4 | J | 0.05 | J | 0.03 | J | 0.09 | J | 0.06 | J | 0.29 | J | 0.05 | J | 0.38 | J | 0.11 | J | | 7440-66-6 | Zinc | NL | 2000 | μg/L | 6.3 | | 6.8 | | 1 | J | 1.6 | J | 2.1 | | 2.3 | | 1.7 | J | 1 | J | 10.2 | | 9.2 | | Bolded >detection > NYSDEC AWQS #### Acronyms μg/L - microgram per liter AWQS - Ambient Water Quality Standards CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - Field Duplicate ID - identification J - estimated results N - normal NL - not listed NYSDEC - New York State Department of Environmental Con: Q - qualifier RSLs - Regional Screening Levels WG - groundwater | | | | Locat | ion ID | | | DF | -TV | VP-03 | | | | | DF-TV | WP-07 | | D | F-TW | /P-18 | | 0 | F-TV | VP-19 | \neg | |-----------|---------------|------|-------------|---------|-----------|----|-----------|-----|-----------|------|------------|------|-----------|-------|-------------|-----|-----------|------|------------|-----|-----------|------|-----------|-----------------| | | | | Sample | Date | 11/10/201 | .6 | 11/10/201 | .6 | 11/10/20: | 16 | 11/10/201 | 16 | 11/10/201 | 16 | 11/10/201 | 6 | 11/10/201 | 16 | 11/10/201 | 16 | 11/10/201 | 16 | 11/10/201 | 16 | | | | | Sam | ple ID | DF-TWP-03 | -1 | GW-900-2 | 2 | DF-TWP-03 | -1-F | GW-900-2 | -F | DF-TWP-07 | 7-1 | DF-TWP-07-2 | 1-F | DF-TWP-18 | 3-1 | DF-TWP-18- | 1-F | DF-TWP-19 | 9-1 | DF-TWP-19 |) -1 | | | | | N | ∕latrix | WG | | | | | Sample | у Туре | N | | FD | | N | | FD | | N | | N | | N | | N | | N | | N | | | | | Pa | rent Sample | Code | | | DF-TWP-03 | -1 | | | DF-TWP-03- | -1-F | | | | | | | | | | | | | | | | | | CLP# | MBD4R6 | | MBDQN7 | | MBDQQ | 7 | MBDQR7 | 7 | MBD4R7 | , | MBDQQ8 | | MBDQN4 | ļ | MBDQR4 | ŀ | MBDQNS | 5 | MBDQR5 | , | | | | EPA | NYSDEC | CAS No. | Compound | RSLs | AWQS | Unit | Result | Q | 7429-90-5 | Aluminum | NL | NL | μg/L | 134 | | 119 | | 20 | U | 20 | U | 2.5 | J | 20 | U | 13 | J | 38.2 | | 17.5 | J | 20 | U | | 7440-36-0 | Antimony | 6 | 3 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | | 7440-38-2 | Arsenic | 10 | 25 | μg/L | 0.79 | J | 0.64 | J | 0.67 | J | 0.55 | J | 1 | U | 0.12 | J | 18.4 | | 17 | | 2.2 | | 2 | | | 7440-39-3 | Barium | 2000 | 1000 | μg/L | 74.7 | | 75.3 | | 72.4 | | 72.8 | | 79.5 | | 79.7 | | 214 | | 203 | | 69 | | 67.7 | | | 7440-41-7 | Beryllium | 4 | 3 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-43-9 | Cadmium | 5 | 5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-70-2 | Calcium Metal | NL | NL | μg/L | 133000 | | 134000 | | 130000 | | 131000 | | 141000 | | 142000 | | 122000 | | 122000 | | 147000 | | 144000 | | | 7440-47-3 | Chromium | 100 | 50 | μg/L | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 2 | U | 0.11 | J | 2 | U | | 7440-48-4 | Cobalt | NL | NL | μg/L | 0.28 | J | 0.26 | J | 0.17 | J | 0.17 | J | 1 | U | 1 | U | 0.14 | J | 0.22 | J | 0.32 | J | 0.31 | J | | 7440-50-8 | Copper | 1300 | 200 | μg/L | 0.48 | J | 0.36 | J | 2 | U | 0.11 | J | 0.09 | J | 0.15 | J | 2 | U | 2 | U | 0.2 | J | 0.23 | J | | 7439-89-6 | Iron | NL | 300 | μg/L | 272 | | 219 | | 128 | J | 102 | J | 11.7 | J | 8 | J | 7190 | | 6580 | | 476 | | 423 | | | 7439-92-1 | Lead | 15 | 25 | μg/L | 0.52 | J | 0.41 | J | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 0.07 | J | 0.11 | J | 1 | U | | 7439-95-4 | Magnesium | NL | 35000 | μg/L | 23600 | | 23700 | | 23400 | | 23200 | | 21800 | | 22100 | | 13300 | | 13600 | | 16200 | | 16300 | | | | Manganese | NL | 300 | μg/L | 241 | | 223 | | 242 | | 221 | | 1.6 | | 1.1 | | 1140 | | 1100 | | 1350 | | 1340 | | | 7440-02-0 | Nickel | NL | 100 | μg/L | 0.26 | J | 0.21 | J | 0.06 | J | 0.08 | J | 1 | U | 1 | U | 0.14 | J | 0.37 | J | 0.73 | J | 0.73 | J | | 7440-09-7 | Potassium | NL | NL | μg/L | 1550 | | 1570 | | 1500 | | 1530 | | 3290 | | 3350 | | 827 | | 848 | | 3290 | | 3330 | | | 7782-49-2 | | 50 | 10 | μg/L | 1.7 | J | 1.8 | J | 2.3 | J | 2.4 | J | 3.2 | J | 3.5 | J | 5 | UJ | 5 | UJ | 5 | UJ | 5 | UJ | | 7440-22-4 | Silver | NL | 50 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-23-5 | | NL | 20,000 | μg/L | 35300 | | 35900 | | 35300 | | 35200 | | 44500 | | 45200 | | 4400 | | 4710 | | 43400 | | 43800 | | | 7440-28-0 | | 2 | 0.5 | μg/L | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | 1 | U | | 7440-62-2 | Vanadium | NL | NL | μg/L | 0.29 | J | 0.27 | J | 5 | U | 5 | U | 0.04 | J | 0.05 | J | 0.06 | J | 0.12 | J | 0.07 | J | 0.04 | J | | 7440-66-6 | Zinc | NL | 2000 | μg/L | 1.1 | J | 1.2 | J | 0.28 | J | 0.38 | J | 1.1 | J | 2.8 | | 0.47 | J | 0.92 | J | 0.77 | J | 1.5 | J | Bolded >detection > NYSDEC AWQS #### Acronyms μg/L - microgram per liter AWQS - Ambient Water Quality Standards CLP - Contract Laboratory Program EPA - Environmental Protection Agency FD - Field Duplicate ID - identification J - estimated results N - normal NL - not listed NYSDEC - New York State Department of Environmental Con: Q - qualifier RSLs - Regional Screening Levels WG - groundwater ### Table 3-3A Trip Blank and Field Blank Detections - VOCs **Former Duofold Corporation** Ilion, New York | | Sam | ple ID | TB-01 | | TB-02 | | TB-03 | | TB-04 | | TB-05 | | FB-GW-1 | | FB-SB-A | _ | |------------|---------------------------------------|---------|-----------|---|-----------|---|----------|----|-----------|---|-----------|----|-----------|----------|----------|---| | | Sample | Date | 11/7/2016 | , | 11/8/2016 | | 11/9/201 | .6 | 11/10/201 | 6 | 11/11/201 | .6 | 11/9/2016 | | 11/9/201 | 6 | | | N | /latrix | WQ | | | Sample | | TB | | FB | | FB | | | | | CLP# | BDQN9 | | BDQP0 | | BDQP1 | | BDQP2 | | BDQP3 | | BDQN8 | | BD4Q2 | | | CAS No. | Compound | Unit | Result | _ | Result | _ | Resul | _ | Result | _ | Result | _ | Result | _ | Resul | | | 71-55-6 | 1,1,1-Trichloroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 79-34-5 | 1,1,2,2-Tetrachloroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 76-13-1 | 1,1,2-Trichloro-1,2,2-trifluoroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 79-00-5 | 1,1,2-Trichloroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-34-3 | 1,1-Dichloroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-35-4 | 1,1-Dichloroethene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | UJ | 0.5 | U | 5 | U | | 87-61-6 | 1,2,3-Trichlorobenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 120-82-1 | 1,2,4-trichlorobenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 96-12-8 | 1,2-Dibromo-3-chloropropane | μg/L |
0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 106-93-4 | 1,2-Dibromoethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 95-50-1 | 1,2-Dichlorobenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 107-06-2 | 1,2-Dichloroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 78-87-5 | 1,2-Dichloropropane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 541-73-1 | 1,3-Dichlorobenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 106-46-7 | 1,4-Dichlorobenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 78-93-3 | 2-Butanone | μg/L | 5 | U | 5 | U | 5 | U | _ | U | 5 | U | 5 | U | 10 | U | | 591-78-6 | 2-Hexanone | μg/L | 5 | U | 5 | U | 5 | U | , | U | 5 | U | 5 | U | 10 | U | | 108-10-1 | 4-Methyl-2-pentanone | μg/L | 5 | U | 5 | U | 5 | U | | U | 5 | U | 5 | U | 10 | U | | 67-64-1 | Acetone | μg/L | 14 | | 11 | | 12 | | 10 | | 11 | | 12 | <u> </u> | 9.2 | J | | 71-43-2 | Benzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 74-97-5 | Bromochloromethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-27-4 | Bromodichloromethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-25-2 | Bromoform | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 74-83-9 | Bromomethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-15-0 | Carbon disulfide | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 56-23-5 | Carbon tetrachloride | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 108-90-7 | Chlorobenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-00-3 | Chloroethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 67-66-3 | Chloroform | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 74-87-3 | Chloromethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.0 | U | 0.5 | U | 0.5 | U | 5 | U | | 156-59-2 | cis-1,2-Dichloroethene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | UJ | 0.5 | U | 5 | U | | 10061-01-5 | cis-1,3-Dichloropropene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 110-82-7 | Cyclohexane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 124-48-1 | Dibromochloromethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-71-8 | Dichlorodifluoromethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 100-41-4 | Ethylbenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 98-82-8 | Isopropylbenzene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | UJ | 0.5 | U | 5 | U | | | m,p-xylene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 79-20-9 | Methyl Acetate | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 1634-04-4 | Methyl tert-butyl Ether | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 108-87-2 | Methylcyclohexane | μg/L | 0.5 | U | 0.5 | C | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-09-2 | Methylene chloride | μg/L | 0.39 | J | 0.37 | J | 0.39 | J | 0.5 | U | 0.5 | U | 0.39 | J | 5 | U | | 95-47-6 | o-xylene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 100-42-5 | Styrene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 127-18-4 | Tetrachloroethene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | 0.0 | U | 0.5 | U | 0.5 | U | 5 | U | | 108-88-3 | Toluene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 156-60-5 | trans-1,2-Dichloroethene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | UJ | 0.5 | U | 5 | U | | 10061-02-6 | trans-1,3-Dichloropropene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | ι | | 79-01-6 | Trichloroethene | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | ι | | 75-69-4 | Trichlorofluoromethane | μg/L | 0.5 | U | 0.5 | U | 0.5 | U | | U | 0.5 | U | 0.5 | U | 5 | U | | 75-01-4 | Vinyl chloride | μg/L | 0.5 | U | 5 | ι | **Bolded** > detection Acronyms μg/L - micrograms per liter CLP - Contract Laboratory Program FB - field blank ID - identification J - estimated results Q - qualifier TB - trip blank VOCs - volatile organic compounds WQ - water quality U - undetected UJ - estimated undetected # Table 3-3B Field Blank Detections - SVOCs Former Duofold Corporation Ilion, New York | | | Sample ID | FB-GW-1 | | FB-SB-A | | |-----------|-----------------------------|-------------|-----------------|----|-----------------|----| | | | Sample Date | 11/9/2016
FB | | 11/9/2016
FB | | | | | | | | | | | | | Sample Type | WQ WQ | | | | | | | CLP# | BDQN8 | | BD4Q2 | | | CAS No. | Compound | Unit | Result | Q | Result Q | | | 92-52-4 | 1,1-Biphenyl | μg/L | 5.1 | U | 5.1 | U | | 95-94-3 | 1,2,4,5-Tetrachlorobenzene | μg/L | 5.1 | U | 5.1 | U | | 123-91-1 | 1,4-Dioxane | μg/L | 2 | UJ | 2 | UJ | | 108-60-1 | 2,2-oxybis(1-Chloropropane) | μg/L | 10 | U | 10 | U | | 58-90-2 | 2,3,4,6-Tetrachlorophenol | μg/L | 5.1 | U | 5.1 | U | | 95-95-4 | 2,4,5-Trichlorophenol | μg/L | 5.1 | U | 5.1 | U | | 88-06-2 | 2,4,6-Trichlorophenol | μg/L | 5.1 | U | 5.1 | U | | 120-83-2 | 2,4-Dichlorophenol | μg/L | 5.1 | U | 5.1 | U | | 105-67-9 | 2,4-Dimethylphenol | μg/L | 5.1 | U | 5.1 | U | | 51-28-5 | 2,4-Dinitrophenol | μg/L | 10 | U | 10 | U | | 121-14-2 | 2,4-Dinitrotoluene | μg/L | 5.1 | U | 5.1 | U | | 606-20-2 | 2,6-Dinitrotoluene | μg/L | 5.1 | U | 5.1 | U | | 91-58-7 | 2-Chloronaphthalene | μg/L | 5.1 | U | 5.1 | U | | 95-57-8 | 2-Chlorophenol | μg/L | 5.1 | U | 5.1 | U | | 91-57-6 | 2-Methylnaphthalene | μg/L | 5.1 | U | 5.1 | U | | 95-48-7 | 2-Methylphenol | μg/L | 10 | U | 10 | U | | 88-74-4 | 2-Nitroaniline | μg/L | 5.1 | U | 5.1 | U | | 88-75-5 | 2-Nitrophenol | μg/L | 5.1 | U | 5.1 | U | | 91-94-1 | 3,3-Dichlorobenzidine | μg/L | 10 | U | 10 | U | | 99-09-2 | 3-Nitroaniline | μg/L | 10 | U | 10 | U | | 534-52-1 | 4,6-Dinitro-2-methylphenol | μg/L | 10 | U | 10 | U | | 101-55-3 | 4-Bromophenyl-phenylether | μg/L | 5.1 | U | 5.1 | U | | 59-50-7 | 4-Chloro-3-methylphenol | μg/L | 4.8 | J | 4.3 | J | | 106-47-8 | 4-Chloroaniline | μg/L | 10 | U | 10 | UJ | | 7005-72-3 | 4-Chlorophenyl-phenylether | μg/L | 5.1 | U | 5.1 | U | | 106-44-5 | 4-Methylphenol | μg/L | 10 | U | 10 | U | | 100-01-6 | 4-Nitroaniline | μg/L | 10 | U | 10 | U | | 100-02-7 | 4-Nitrophenol | μg/L | 10 | U | 10 | U | | 83-32-9 | Acenaphthene | μg/L | 5.1 | U | 5.1 | U | | 208-96-8 | Acenaphthylene | μg/L | 5.1 | U | 5.1 | U | | 98-86-2 | Acetophenone | μg/L | 10 | U | 10 | U | | 120-12-7 | Anthracene | μg/L | 5.1 | U | 5.1 | U | | 1912-24-9 | Atrazine | μg/L | 10 | U | 10 | U | | 100-52-7 | Benzaldehyde | μg/L | 2 | J | 1.8 | J | | 56-55-3 | Benzo(a)anthracene | μg/L | 5.1 | U | 5.1 | U | | 50-32-8 | Benzo(a)pyrene | μg/L | 5.1 | U | 5.1 | U | | 205-99-2 | Benzo(b)fluoranthene | μg/L | 5.1 | U | 5.1 | U | | 191-24-2 | Benzo(g,h,i)perylene | μg/L | 5.1 | U | 5.1 | U | | 207-08-9 | Benzo(k)fluoranthene | μg/L | 5.1 | U | 5.1 | U | | 111-91-1 | Bis(2-Chloroethoxy)methane | μg/L | 5.1 | U | 5.1 | U | | 111-44-4 | Bis(2-Chloroethyl)ether | μg/L | 10 | U | 10 | U | | 117-81-7 | Bis(2-ethylhexyl)phthalate | μg/L | 5.1 | U | 5.1 | U | | 85-68-7 | Butylbenzylphthalate | μg/L | 5.1 | U | 5.1 | U | | 105-60-2 | Caprolactam | μg/L | 10 | U | 10 | U | # Table 3-3B Field Blank Detections - SVOCs Former Duofold Corporation Ilion, New York | Sample | | | FB-GW-1 | | FB-SB-A | | | |----------|----------------------------|-------------|-----------|---|-----------|----|--| | | | Sample Date | 11/9/2016 | | 11/9/2016 | | | | | | Matrix | FB | | FB | | | | | | Sample Type | e WQ V | | WQ | WQ | | | | | CLP # | BDQN8 | | BD4Q2 | | | | CAS No. | Compound | Unit | Result | Q | Result Q | | | | 86-74-8 | Carbazole | μg/L | 10 | U | 10 | U | | | 218-01-9 | Chrysene | μg/L | 5.1 | U | 5.1 | U | | | 53-70-3 | Dibenzo(a,h)anthracene | μg/L | 5.1 | U | 5.1 | U | | | 132-64-9 | Dibenzofuran | μg/L | 5.1 | U | 5.1 | U | | | 84-66-2 | Diethylphthalate | μg/L | 5.1 | U | 5.1 | U | | | 131-11-3 | Dimethylphthalate | μg/L | 5.1 | U | 5.1 | U | | | 84-74-2 | Di-n-butylphthalate | μg/L | 5.1 | U | 5.1 | U | | | 117-84-0 | Di-n-octyl phthalate | μg/L | 10 | U | 10 | U | | | 206-44-0 | Fluoranthene | μg/L | 10 | U | 10 | U | | | 86-73-7 | Fluorene | μg/L | 5.1 | U | 5.1 | U | | | 118-74-1 | Hexachlorobenzene | μg/L | 5.1 | U | 5.1 | U | | | 87-68-3 | Hexachlorobutadiene | μg/L | 5.1 | U | 5.1 | U | | | 77-47-4 | Hexachlorocyclopentadiene | μg/L | 10 | U | 10 | U | | | 67-72-1 | Hexachloroethane | μg/L | 5.1 | U | 5.1 | U | | | 193-39-5 | Indeno(1,2,3-cd)pyrene | μg/L | 5.1 | U | 5.1 | U | | | 78-59-1 | Isophorone | μg/L | 5.1 | U | 5.1 | U | | | 91-20-3 | Naphthalene | μg/L | 5.1 | U | 5.1 | U | | | 98-95-3 | Nitrobenzene | μg/L | 5.1 | U | 5.1 | U | | | 621-64-7 | N-Nitroso-di-n-propylamine | μg/L | 5.1 | U | 5.1 | U | | | 86-30-6 | N-Nitrosodiphenylamine | μg/L | 5.1 | U | 5.1 | U | | | 87-86-5 | Pentachlorophenol | μg/L | 10 | U | 10 | U | | | 85-01-8 | Phenanthrene | μg/L | 5.1 | U | 5.1 | U | | | 108-95-2 | Phenol | μg/L | 10 | U | 10 | U | | | 129-00-0 | Pyrene | μg/L | 5.1 | U | 5.1 | U | | ### **Bolded** > detection ### Acronyms μg/L - micrograms per liter CLP - Contract Laboratory Program FB - field blank ID - identification J - estimated results Q - qualifier SVOCs - semi-volatile organic compounds WQ - water quality U - undetected UJ - estimated undetected # Table 3-3C Field Blank Detections - PCBs Former Duofold Corporation Ilion, New York | Sample ID | | | FB-SB-A | | | | | |------------|--------------|--------|---------|--------|---|--|--| | | 11/9/2016 | | | | | | | | | | N | ∕latrix |
FB | | | | | | | Sample | Туре | WQ | | | | | | | | CLP# | BD4Q2 | CAS No. | Compound | | Unit | Result | Q | | | | 11096-82-5 | Aroclor 1260 | | μg/L | 1 | U | | | | 11097-69-1 | Aroclor 1254 | | μg/L | 1 | U | | | | 11100-14-4 | Aroclor 1268 | | μg/L | 1 | U | | | | 11104-28-2 | Aroclor 1221 | | μg/L | 1 | U | | | | 11141-16-5 | Aroclor 1232 | | μg/L | 1 | U | | | | 12672-29-6 | Aroclor 1248 | | μg/L | 1 | U | | | | 12674-11-2 | Aroclor 1016 | | μg/L | 1 | U | | | | 37324-23-5 | Aroclor 1262 | | μg/L | 1 | U | | | | 53469-21-9 | Aroclor 1242 | | μg/L | 1 | U | | | ### Acronyms $\mu g/L$ - micrograms per liter CLP - Contract Laboratory Program FB - field blank ID - identification PCBs - polychlorinated biphenyls Q - qualifier WQ - water quality # Table 3-3D Field Blank Detections - Pesticides Former Duofold Corporation Ilion, New York | | FB-SB-A | | | | |------------|---------------------|---------|--------|---| | | 11/9/2016 | | | | | | FB | | | | | | Samp | le Type | WQ | | | | | CLP# | BD4Q2 | | | | | | | | | | | | | | | CAS No. | Compound | Unit | Result | Q | | 72-54-8 | 4,4'-DDD | μg/L | 0.1 | U | | 72-55-9 | 4,4'-DDE | μg/L | 0.1 | U | | 50-29-3 | 4,4'-DDT | μg/L | 0.1 | U | | 309-00-2 | Aldrin | μg/L | 0.05 | U | | 319-84-6 | alpha-BHC | μg/L | 0.05 | U | | 319-85-7 | beta-BHC | μg/L | 0.05 | U | | 5103-71-9 | cis-Chlordane | μg/L | 0.05 | U | | 319-86-8 | delta-BHC | μg/L | 0.05 | C | | 60-57-1 | Dieldrin | μg/L | 0.1 | U | | 959-98-8 | Endosulfan I | μg/L | 0.05 | U | | 33213-65-9 | Endosulfan II | μg/L | 0.1 | U | | 1031-07-8 | Endosulfan sulfate | μg/L | 0.1 | U | | 72-20-8 | Endrin | μg/L | 0.1 | U | | 7421-93-4 | Endrin aldehyde | μg/L | 0.1 | C | | 53494-70-5 | Endrin ketone | μg/L | 0.1 | U | | 58-89-9 | gamma-BHC (Lindane) | μg/L | 0.05 | U | | 76-44-8 | Heptachlor | μg/L | 0.05 | U | | 1024-57-3 | Heptachlor epoxide | μg/L | 0.05 | U | | 72-43-5 | Methoxychlor | μg/L | 0.5 | U | | 8001-35-2 | Toxaphene | μg/L | 5 | U | | 5103-74-2 | trans-Chlordane | μg/L | 0.05 | U | ### Acronyms $\mu g/L$ - micrograms per liter CLP - Contract Laboratory Program FB - field blank ID - identification Q - qualifier WQ - water quality # Table 3-3E Field Blank Detections - Metals Former Duofold Corporation Ilion, New York | | FB-GW-1 | FB-GW-1 | | FB-SB-A | | | |-------------|-----------|---------|-----------|---------|-----------|----| | Sample Date | | | 11/9/2016 | | 11/9/2016 | | | Mat | | | FB | | FB | | | | Samp | le Type | WQ | | WQ | | | | | CLP# | MBDQN8 | | MBD4Q2 | | | | | | | | | | | CAS No. | Compound | Unit | Result | Q | Result | Q | | 7429-90-5 | Aluminum | μg/L | 20 | U | 200 | U | | 7440-36-0 | Antimony | μg/L | 2 | U | 60 | U | | 7440-38-2 | Arsenic | μg/L | 1 | U | 10 | U | | 7440-39-3 | Barium | μg/L | 10 | U | 200 | U | | 7440-41-7 | Beryllium | μg/L | 1 | U | 5 | U | | 7440-43-9 | Cadmium | μg/L | 1 | U | 5 | U | | 7440-70-2 | Calcium | μg/L | 5.5 | J | 5000 | U | | 7440-47-3 | Chromium | μg/L | 2 | U | 10 | UJ | | 7440-48-4 | Cobalt | μg/L | 1 | U | 50 | U | | 7440-50-8 | Copper | μg/L | 2 | U | 25 | U | | 7439-89-6 | Iron | μg/L | 200 | U | 100 | UJ | | 7439-92-1 | Lead | μg/L | 1 | U | 10 | U | | 7439-95-4 | Magnesium | μg/L | 500 | U | 5000 | U | | 7439-96-5 | Manganese | μg/L | 1 | U | 15 | U | | 7440-02-0 | Nickel | μg/L | 1 | U | 40 | U | | 7440-09-7 | Potassium | μg/L | 500 | U | 5000 | U | | 7782-49-2 | Selenium | μg/L | 5 | UJ | 35 | U | | 7440-22-4 | Silver | μg/L | 1 | U | 10 | U | | 7440-23-5 | Sodium | μg/L | 500 | U | 5000 | U | | 7440-28-0 | Thallium | μg/L | 1 | U | 25 | U | | 7440-62-2 | Vanadium | μg/L | 5 | U | 50 | UJ | | 7440-66-6 | Zinc | μg/L | 0.23 | J | 60 | U | ### **Bolded** > detection ### Acronyms $\mu g/L$ - micrograms per liter CLP - Contract Laboratory Program FB - field blank ID - identification J - estimated results Q - qualifier WQ - water quality U - undetected UJ - estimated undetected # Table 3-3F Field Blank Detections - TCLP Metals Former Duofold Corporation Ilion, New York | | FB-SB-A | | | | | |-----------|-----------|---------|--------|----|--| | | 11/9/2016 | | | | | | | | Matrix | WQ | | | | | Samp | le Type | FB | | | | | | CLP# | MBD4Q2 | | | | | | | | | | | | | | | | | | CAS No. | Compound | Unit | Result | Q | | | 7440-38-2 | Arsenic | μg/L | 5 | UJ | | | 7440-39-3 | Barium | μg/L | 0.096 | J | | | 7440-43-9 | Cadmium | μg/L | 1 | U | | | 7440-47-3 | Chromium | μg/L | 5 | U | | | 7439-92-1 | Lead | μg/L | 0.053 | J | | | 7439-97-6 | Mercury | μg/L | 0.2 | U | | | 7782-49-2 | Selenium | μg/L | 1 | U | | | 7440-22-4 | Silver | μg/L | 1 | U | | ### **Bolded** > detection ### Acronyms $\mu g/L$ - micrograms per liter **CLP - Contract Laboratory Program** FB - field blank ID - identification J - estimated results Q - qualifier TCLP - toxicity characteristic leaching procedure WQ - water quality U - undetected UJ - estimated undetected Figures **Site Location Map** 0 760 Feet Figure 1-1 Ilion, NY **Overall Site Plan and Herkimer County Tax Map** 0 200 Feet ### **Sample Location Plan** 0 140 Feet Figure 3-1 Ilion, NY - 1. Existing monitoring well top of casing elevations were taken from the 2014 Nature's Way Investigation. - 2. bgs below ground surface **Existing Monitoring Well Groundwater Contour Map** > 140 ⊐ Feet Figure 3-2 Ilion, NY ### Notes: 1. mg/kg - milligrams per kilogram 2. Results highlighted in red exceed Unrestricted Use SCOs. 3. SCO - Soil Cleanup Objective 4. bgs - below ground surface 5. ID - identification **Metal Exceedances in Surface Soil** 1. J - estimated result value. 2. bgs - below ground surface 3. Results highlighted in red exceed Unrestricted Use SCOs. 4. ID - identification 5. mg/kg - milligrams per kilogram 6. SCO - Soil Cleanup Objective **Metal Exceedances in Subsurface Soil** 1. J- = estimated result value, biased low 4. μg/L - micrograms per liter 5. ID - identification 2. bgs - below ground surface 3. Results highlighted in red exceed AWQS. **Volatile Organic Compound Exceedances in Groundwater** N ### Notes: 1. J- = estimated result value, biased low 4. μg/L - micrograms per liter 5. ID - identification 2. bgs - below ground surface 3. Results highlighted in red exceed AWQS. ### **Metal Exceedances in Groundwater** 0 140 Feet Figure 4-4 Ilion, NY # Appendix A ### Appendix A Geophysical Investigation Report ### GEOPHYSICAL INVESTIGATION REPORT SITE LOCATION: 7 Spruce Street, Ilion, New York PREPARED FOR: CDM Smith 14 Wall Street, Suite 1702, New York, New York PREPARED BY: Joshua Hess Delta Geophysics Inc. 738 Front Street Catasauqua, PA 18032 October 6, 2016 Delta Geophysics, Inc. (Delta) is pleased to provide the results of the geophysical survey conducted at 7 Spruce Street, Ilion, New York. ### 1.0 INTRODUCTION From October 3rd through October 6th, 2016 Delta Geophysics personnel performed a limited geophysical investigation at 7 Spruce Street, Ilion, New York. Field activities concluded on October 6th, 2016. Multiple areas throughout the site were to be surveyed and were specified by the client. Subsurface conditions were unknown at the time of survey. Surface conditions consisted of asphalt, concrete, grass, soil and dense vegetation. ### 2.0 SCOPE OF WORK The survey was conducted to locate and mark detectable underground utilities and/or anomalies throughout the client specified survey areas. ### 3.0 METHODOLOGY Selection of survey equipment is dependent site conditions and project objectives. For this project the technician utilized the following equipment to survey the area of concern: - Geophysical Survey Systems Inc. SIR-3000 cart-mounted Ground Penetrating Radar (GPR) unit with a 400 Mhz antenna. - Geonics EM-31 Terrain Conductivity meter - Radiodetection RD7000 precision utility locator. - Fisher M-Scope TW-6 pipe and cable locator. - Trimble Pathfinder Pro XRS DGPS. Ground penetrating radar (commonly called GPR) is a geophysical method that has been developed over the past thirty years for shallow, high-resolution, subsurface investigations of the earth. GPR uses high frequency pulsed electromagnetic waves (generally 10 MHz to 1,000 MHz) to acquire subsurface information. Energy is propagated downward into the ground and is reflected back to the surface from boundaries at which there are electrical property contrasts. GPR is a method that is commonly used for environmental, engineering, archeological, and other shallow investigations. The GSSI SIR-3000 GPR can accept a wide variety of antennas which provide various depths of penetration and levels of resolution. The 400 MHz antenna can achieve depths of penetration up to about 20 feet, but this depth may be greatly reduced due to site-specific conditions. Signal penetration decreases with increased soil conductivity. Conductive materials attenuate or absorb the GPR signal. As depth increases the return signal becomes weaker. Penetration is the greatest in unsaturated sands and fine gravels. Clayey, highly saline or saturated soils, areas covered by steel reinforced concrete, foundry slag, or other highly conductive materials significantly reduces GPR depth of penetration. The GPR was configured to transmit to a depth of approximately 10 feet below the subsurface, but actual signal penetration was limited to approximately 1-2 feet below ground surface (bgs). The limiting factor was signal attenuation from near surface soils. The electromagnetic (EM) method uses the principle of electromagnetic induction to measure the variability of electrical conductivity of subsurface materials. The large EM response to metal makes this technique particularly well suited to identifying buried metal objects such as underground storage tanks, buried drums, pipelines, reinforced building foundations, or other metal components of buried structures. It is, however, equally sensitive to metal objects on the ground surface, and it is important to take careful field notes that indicate the
position of surface metal to avoid misinterpretation. Instruments of this type are more sensitive to near surface features i.e. reinforced concrete and this fact may sometimes mask features underneath. The EM-31 is an electromagnetic surveying technique where the direct readout of the instrument is the bulk electrical conductivity of an equivalent homogeneous earth at that position referred to as "terrain conductivity". Terrain conductivity is commonly used to detect lateral variations in electrical conductivity along a traverse or over a broad region. These variations can be due to conductive contaminant plumes in the groundwater, shallow discontinuous clay and silt horizons, shallow bedrock features such as voids, disturbed filled-in areas such as buried trenches, or buried metallic objects such as drums, tanks, or utility lines. For the interpretation of high conductivity targets (like steel drums or metallic containers in this case), the in-phase component is the most discriminative. Lower contrast targets such as clay layers, contaminant plumes, and filled-in trenches are better indicated in the conductivity or quadrature data set. For this survey the EM-31 was set to record at 1 second intervals, a distance equivalent of approximately 2.5 feet. Survey line spacing was approximately 5 feet on center. The RD7000 precision utility locator uses radio emission to trace the location of metal bearing utilities. This radio emission can be active or passive. Active tracing requires the attachment of a radio transmitter to the utility, passive tracing uses radio emissions that are present on the utility. Underground electrical utilities typically emit radio signals that this device can detect. The TW-6 is designed to find pipes, cables and other metallic objects such as underground storage tanks. One surveyor can carry both the transmitter and receiver together, making it ideally suited for exploration type searches of ferrous metal masses. Metal detectors of this type operate by generating a magnetic field at the transmitter which causes metallic objects in the subsurface to generate a secondary magnetic field. The induced secondary field is detected by the receiver, which generates an audible tone equal to the strength of the secondary field. The Pathfinder Pro XRS Mapping System is a 12 channel differential beacon GPS receiver. The Pro XRS uses an integrated differential beacon receiver and antenna to receive real-time differential corrections from a subscription-based satellite correction service. This system provides for real-time sub-meter position data collection. This system is used in a wide range of applications, including utility asset management, environmental monitoring, and natural resource and land management. Feature and attribute data are input with a hand-held Asset Surveyor data logger. The GPS Pathfinder was used to tag each EM-61 reading with geographic coordinate for processing and mapping purposes. ### 4.0 SURVEY FINDINGS All accessible areas within the survey areas were examined during this investigation. All areas were examined with the RD7000 for potential subsurface utilities then surveyed with GPR and TW-6 for other potential anomalies. EM data was collected where possible. Based on the data gathered, the following utilities were detected: water, gas, sanitary sewer and storm sewer. Additionally, a potential building foundation was detected. All detectable utilities were marked onsite with appropriate colors. Anomalous features and unknown utilities were marked onsite in pink paint. Site map (100316.1) is included with all located subsurface features. ### 5.0 SURVEY LIMITATIONS GPR depth of penetration was limited to approximately 1-2 feet bgs. The limiting factor was due to conductive soils. Building walls, parked cars, dense vegetation, area fencing and debris limited equipment usage over portions of the survey area. Delta did not have access to buildings located adjacent to the property. Interior access may aid Delta in detecting unknown utilities or utilities otherwise not detectable without a direct connection to the pipe or conduit. ### **6.0 WARRANTIES AND DISCLAIMER** As with any geophysical method, it must be stressed that caution be used during any excavation or intrusive testing in proximity to any anomalies indicated in this report. In addition, the absence of detected signatures does not preclude the possibility that targets may exist. To the extent the client desires more definitive conclusions than are warranted by the currently available facts; it is specifically Delta's intent that the conclusions stated herein will be intended as guidance. This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based on the facts currently available within the limit or scope of work, budget and schedule. Delta represents that the services were performed in a manner consistent with currently accepted professional practices employed by geophysical/geological consultants under similar circumstances. No other representations to Client, express or implied, and no warranty or guarantee is included or intended in this agreement, or in any report, document, or otherwise. This report was prepared pursuant to the contract Delta has with the Client. That contractual relationship included an exchange of information about the property that was unique and between Delta and its client and serves as the basis upon which this report was prepared. Because of the importance of the understandings between Delta and its client, reliance or any use of this report by anyone other than the Client, for whom it was prepared, is prohibited and therefore not foreseeable to Delta. Reliance or use by any such third party without explicit authorization in the report does not make said third party a third party beneficiary to Delta's contract with the Client. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at the third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made to any such third party. DATE 10/6/16 SCALE 1" = 120' DWG NO. 100316.1 SHT NO. 1 OF 1 PROJECT. GEOPHYSICAL INVESTIGATION 7 SPRUCE STREET, ILION, NEW YORK FOR CDM SMITH ## Appendix B Field Log Bo Field Log Book and Equipment Calibration Forms | 30 | CONTENTS | | |------|-----------|------| | PAGE | REFERENCE | DATE | | | | | | | • | | | | | | | - 9 | - | | | | | | | | | " | - | | | | | | | - | | | | | | 12 | | 4 | | | | | | | Location Ilion, NY Date 10/3/16 3 Project/Client Duafold, EPA Geophysica) 0700 Eric Kosenzuseia Blackon on site CDM smith to passive Gas survey (PGS) and Geophysica on site Morgenveck Della to Conduct GPR SUTURY Conducted morning meeting ather overlast \$760 veted site walk 220 Starting Plas JB & ER phicos Project / Client Duafal | Epa Date 10/3/16 GPR Survey/PGS R 100% locations Grid Rs propused ton mayor 800 leonard Ensite/(3/5) 895on site, Asked DPW could brush hog overgrown area along Pleasant Ave & Sprice St. Lim Trevett (I/ion fire Chief) on site to see when need Access we would the onsite Bldg's. Cell: (315) 868-0551 Fire dept: (315) 894-6048 Buildings spene 900 - while inside discovered probable Asbestos Containing (ACM'S) in the orm of pipe insolution 9x9 in Elour tile call to exit Building and Not Conduct further work | Location I (in Ny Date | e 16/3 | 116 | 5 | |----------------------------------|--------|-------------|----| | Project / Client Deafold / E.P.A | | | | | GPR Survey / PGS | | | | | until an offical | ACW | 1 | | | Survey is done | | | | | 1020 Jack I Sterling of | n 5.17 | te | | | From The I From | DPU |) | | | - Showed him area be cleared | 2 70 | | | | 1130 Jack back on | cita | | | | and began of | | | | | area us/ a b | | | | | \$ 570 wil a B. | rush | 209 | | | attachment. | | | | | # - JB off site | 0 | | | | 1230 Delta off site | 101 | | | | 1245 Area cleared | L T | ion | | | DPW off site | | ,0,, | | | - Delta Back on | 5.7 | 7 | | | | | | | | | | _ | | | | | | | | | | £ | | | | | 4 | 35 | | | | | 10 | | | Ro | to in the R | 2 | 20 Location III NY Date 18/4/16 Project/Client Duofold EPA Project/Client Dafold F.P.A. GPR 51416 21 GPR Survey PGS installed DF-865-22 1343 installoo DF-PGS-65 Delta off sile for 1320 installed DF- PGS- 71 1354 ingtalled DF- DSG - 24 installed DF-PG5-23 1141 1409 installed 30F-154-244 instalicat DF-P65-35 413 installed DF-1956-39 1159 DF- PG5-36 installed. installed DF-PSG-25 1204 installed DF-156-37 1423 installed DF-PSG-39 A 1208 1431 installed, DF-P5G-74 1215 installed, DF-PGG-49 1437 Installed, DF- PSG- 73 1218 installed DF- PSG - 48 1441 installed DF-P56-72 installed DF-PSG-40 1225 1446 installed DF-P3G-75 - Note: Hit concrete pag 1448 installed OF-PSG-Delta back on site 1230 1455 Installed DF-PSG-Installed DF-PSG-46 1232 1501 installed DF.PBG-1234 installed DF.PSG - 55 1506 installed 79 DF.PSG -1240 installed DF. PGG-52 1520 installed DF-Paginstalled DF. PSG - 5 1243 1577 installed DF-885-1248 installed DF-PSG-33 1544 installed DF. 265 installed DF.854-59 1256 1547 installed DF-165 -28 1300 installed DF. PSG - 90 155 Cinstalled DFPG5 - 29 1307 installed 1603 instaled DF-PGS -30 installed DF-PSC9-68 1606 installed DF-PGS-1318 installed DF-P56 -07 is and * 1: Thed 1325 installed DF-PSG-66 Chargery 10/4/16 22 Location Thon, NY Project / Client Desofold / EPA GPR Survey / PGS Project/Client Drafold / EPA BPR Survey/ PGS 0700 Ellasenzuxio en 5.70 form Cope Weather: Clear = 50 Completed the install - Task & Complete installation of Plas points start EMM-31 portion of GPR Survey Conducted H& 5 meeting glovered w/ (someth 715 Retraval when BF- PG5-26 Mummork 827 installed DF- 795-40 installed DF-865installed DF-866
installed DF-866 installed DF-866 installed DF-866 Pipe in sel 856 hydro Phab. S 936 installed Jamp 101 installed installed 50 installe of 10/5/16 installed 145 Talley 1005 justalled Manyo Project / Client Dua Fold | EPA Date 10/5/16 Date 10/5/16 25 Location Flore NY Project / Client Doofold GPR Survey / PGS GPR Survey Collecting DF-PG5-8 -HAZE 5737058.89 N 5737304.74'N HAE 12413894.96 E 287.36 12413206 72'E 287.21 DF-1745-9 DF-PG5-2 5737028.911 HAE 124/3991. ZZ'E 5737263,96'N HAE 287.09 124/3301.11'E 290.16 DF-PG5-10 DF PG5-3 HAE 5736993.15 W 5737246,71 N MAG 12410088,69 E 292.63 124/3395.50'E 290.77 DF- AGS-11 DF PG5-4 573695307'N HAE 5737190.06 N HAE 1241418124 E 289 16 12413506,64E 291.16 DF-PG5-12 DP-PGS-5 5736925.78 N HAE 5737153 66'N HAE 22414275,40 E 12413608, 79 % DF- PG5-13 289.42 DF- PG5- 6 HAE 5736912.40' N 5737124.90 N HAE 287.30 12414379, 45 E 124/3703,84 E 290.59 DF-PG5-14 DF- PG5-7 5736865,27 N 5737090.78'N HAE 12414470, 01'E 12413799.51 G 258.98 5736837, 22'10 10/5/16 10/5/16 Rete in the Rais | 5737039.37 N ALE | GPR. SUNVEY DE SONS DF PGS 29 5736988 99 N HAE 12413837.43 E 285.80 5736936.87 HAE 1241373724.07 298.38 5736083 65 N HAE 1241410.32 E 321.78 57368-22 57368-22 57368-22 DF PGS - 20 57368-20 12414902.35 E 291.12 57368-20 DF OGS - 30 5736779 14 N HAE | |---|--| | 5737039.37 N ALE
1241373134 E 289-36 | DE-0695-31 E 291.26
573674,50N HAE
3414567,98 E 287-94 | | 28 Location I libry, NU Date 10/5/10 Project/Client Dwo Gold EP 4 GPR SURVE, PGS DF-PGS-34 5736764, 11 N HAE 1241320443'E 29052 DF-PGS-33 5737102 74'N HAE 12413358.17'E 296, 16 DF-PGS-35 5737021, 79'N HAE 124135470.99'E 294, 71 DF-PGS-36 573691, 50'N HAE 12413571.04'E 293.88 DF-PGS-38 5736952, 54'N HAE 12413671.04'E 293.88 5736370 45'N HAE 12413240.04'E 287.85 | Project / Client Doctol / CP A (GD C Survey PG 5 DF-PG 5-39 5736723.18 / W HAE 1241323.24 & 320.57 DF-PG 5-40 5736848.35 / W HAE 12414038.62 / 287.67 DF-PG 5-41 \$736812.83 W HAE 12414121.59 / E 287.67 DF-PG 5-42 5736788.09 W HAE 12414211.26 / E 289.85 DF-PG 5-49 5736788.09 W HAE 12414211.26 / E 289.85 DF-PG 5-49 5736783.85 / E 290.94 5736723.30 W HAE 1241413.01 E 290.05 DF-PG 5-45 573690.96 W HAE 573690.96 W HAE | |---|---| | 5736390.45'N HAE
12413746.04'E 287.85
Maximum 10/5/16 | 01-140-45 | | 30 posation I/ion, NV Date 10/5/16 | | |--|--| | Date 10/5/16 Project/Client Dopfold EPA PROJECT/Client Survey PGS | | | DF-865-46
5736928 13'N HAE | | | 124/3487. 64'E 296.69 | | | DF-PG5-47
573688932N HAE
12413500 14 E 291.40 | | | 573684932
12413590.14 E 291.40
DF PG 5-48
5736860.07 N HAE
5736860.07 N 291.25 | | | 12915100 | | | DF-845-47
5736823.47 N HAE
5736823.47 N HAE | | | DF-P45-50 | | | 12414050.06'E 288.21 | | | DF-845-51
5736721.66 N HAE
1241414821'E 289.54 | | | 7291419001 | | | 1241423023 E 291.26 | | | DF-865-53
5736675.71'N HAE
5736675.71'N HAE | | | 1241435056'E 298.88
1241435056'E 298.88
10/5/16 | | | | 1 /42 | |---|--------------------------| | Project/Client Dun Pold / EP/
GPR Sorvey P | ate 10/5/16 | | Location Duo Pala Epi | 6.5 | | GPR SUNLY IT | Ca J | | 02-193 | HAE | | 57216(39. (0) | 297.60 | | 12414451.11 = | | | DF-PG5+55
5736846-44 N | HAG | | 124/35/1.56 E | 291,15 | | NE- P15-56 | ALE | | 5736799. 61 N
12413618.04'E | 291.72 | | DE-P65-57 | | | 573171D.50N | HAE
292.20 | | 12413736.74 = | | | DF-PG5-58
5736726.93 N | HAE | | 12413835.29 | 292.55 | | - 015 59 | HRE | | 673/50/67 | 292.85 | | 124/3930.85 É
DF-PG5-GO | | | CT36CT0 10 1/ | HAE | | 72414028.39'E | 270.20 | | DF-868-6 | HAE | | 5756636.51D | 300.38 | | [2414-) Can | 16/5/16 Rete in the Kein | | 1 | | | 32 Location Ilion, NY | 1 -1 | |----------------------------|-------------------| | Project / Client Disa to / | TEPA Date 10/5/16 | | GIR JOHN | ey/ PGS | | DF-PGS-GZ | | | 13414199,29 E | HAE | | DF-PG5-63 | 284.74 | | 5736579.28 N | HAE | | 12414301.72 E | 304.51 | | 5736558.51/11 | HAE | | 12414391.47'E
DF-PGS-65 | 290.64 | | 5736770.4911 | | | 124/3476.911 | HAE
292.85 | | DF-PG5-66
5736729.20 N | | | 12413565.137 | HRE
293,28 | | Dr-165-67 | | | 12413664,39 | HAE | | DF-065-68 | 490.50
HAE | | 5736663.23 | 291.25 | | DF-PG5-69 | | | 5701 000 | ME | | 12413885.98 2 | 85,37 | | 10/57 | 16 | | Maria III | | |-------------------------------|-----------------------------| | Project / Client Dus Fold / E | 12/5/11 33 | | Project / Client Doofs 13/2 | PA Date 10(5)16 | | LAPR Survey | PGS | | DF-865-70 | | | 5736590 D5 | (1/0) | | 12413960,00 | HAZ . | | DF-PG5-71 | 292.46 | | 5736650.32 | 210- | | 1241365917 | HAE
28002 | | DF-065-72 | 77002 | | 5737121.35'N | HAE | | 12413843.59' | 287.15 | | DF-PGS-73 | | | 5737101.01'N
12413926.67'E | HAE | | DF-PG5-74 | 293.38 | | 5737076.83'N | 21.1 | | 12414016.731 | HAE | | DF-PGS-75 | 288.65 | | 5737181.27 N | HUE | | 124/391Z, 81'E | 28750 | | DF-0G5-76 | 00/132 | | 5737173.55 N | HAE | | 124/3996.80'E | 289.40 | | DF-8GS-77 | | | 5/37897,67 N | HAZE | | 72413890. 28/6 | 290.53
2/5/16 Retendokun | | 1000 | 15/16 Retein the Rain | 26 Location J. Lon, My Date 10/6/16 Project/Client DV0fold EPA GPR Survey well id comments DTW 9.02 nur 10 14.07 9,15 13.10 mW-12 1530 Delfa Completed Survey - oft Ellas myer | Location Ilion, NY | Date 10/20/16 37 | |--------------------------|--------------------------| | Project / Client Doofold | IEPA . | | ASG Sample | Refreival. | | 0700 Ryan | | | Site From | n Beocon | | Environn | ental to Roberce | | Samples | | | 0715 E Rosenza | seig on Site | | From CON | | | - Weathors. | Ocercust 2 50° | | arao Begon Re | H&S meeting | | | | | Sample traces. | DFPG51 | | | DFPG52 | | 0728 | DFPG5 3 | | 0730 | DFPGS 4 | | 0732 | DFPGS 5 | | 0736 | DFPGS 6 | | 0737 | DF825 7 | | 0737 | DFPGS 8 | | 0741 | DFP45 9 | | 0743 | DFPGS 10 | | 0753 | DFPGS (1 | | 0754 | DFP65 13 | | 07512 | DFPG 5 134 | | Chrim | 10/20/16 But in the Rain | Date 10/20/16 Project / Client Dvotold / E.P.A. PSCa Sample Retreival Missing DFRGS B Project / Client Dusfold / Es A. PSG Barryla Retrieval 813 DEFENS 823 DEFENS DEFENS DEFENS DEFENS DEFENS DEFENS DFPGS 27 DFPGS Z3 DFPGS 26 DFPGS 27 DFPG5 28 5% 5% 821 DFPGS 834 DFPGS 835 (uncovered) DFPGS Har Gen 10 /20/1 Shite in the Rain Project/Client Dusfold) EPA PGS fample retrained Project/Client Deofold / EPA Plas Soil Sangling 133 Lia Estrada & Eric 64 65 69 69 935 Rosenzweig on Site 904 from CDAN Smith to 906 911 915 Surface & Sub collect 5aughts Weather 920 - Reviewed HASP 15 Walking 921 910 78 745 1024 72 mark dot Sampling 1023 73 locations 75 1021 Collected lucated as SIB-COI lusis Pest / TAL Metals 1026 1028 1030 79 1032 955 55-02 1033 79 ,53-02 843 24.4 847 390 1000 Colocated w SB-03 Analysis : Pest IT AL Metals TCUP Metals Project/Client Dvofold | EPA | 5511 | Location Il. on 194 Date 11/7/16 43 Project / Client Duofold Soil & Sub Surface Soi) Soil & Subserface Soil Sampling 1010 Collected [55-05] [55-09] 1100 Collected Colorated W/ SB-05 Analysis. Pest/TCLP Metals Colocated W/ SB-09 Analysic: Pert/TCL Metals TAL Metals 1015 Collected [SS-04] A MS/MSD, SAMPLE Colocated w/ SB-04 1110 Collected (55-08) Analysis Pest/TCLP Metals w/ 5B-17 Colocated (55-06) Analysis: Pest/TCC Metals 1025 Collected Colocated w/ ST3-OL Choic from Talon Drilling Analysis: Pest/TCLP Metals Called and intermed us TAL Metals that they were having 1030 Collected car trouble and Colocated w/ 58-07 would not be arriving Analysis: Pest / Tous Metals until later today Therefor will N Cellected 1035 Dup of 55-07 Starting drilling until 1D:15B-900-C tomortan Analysis: Pest - LES ER Labeling bottles Collected 155-10) 1055 and taping on lables Colocated as \$13-10 1230 Alison Rhelly on Site Analysis: Pest TAL Metals tran com smith w TCLP Metals equipment and to Sampling existing wells Project/Client Dwofold/EiA Cow/55/5is Sampling Project / Client Duata / EPA Date 11/7/16 45 Project/Client Duotold Sampling Estrada E. De senzures Analysis: VOC, SUOC TAL Metals (2) (filtered & Unlitered) Air bil # 777653014820 ppr Soil - Conducted morning HES Meeting 800 Set up om DF-513-01-A 0-5 Keinson 47" Pid 0.0/00 Dark Brown M SANIS V. B. Jun 5:16 & Clay - wet 5-10' Kelovery 53" PID 8.0/0,0 Lollected Sample from RELPS TAL Metals Project / Client Duofold EPS SS /SB / Cole Sampling 915 Setup on [55B-02] Dark Brown VF-M 5 AUS Some Ash 720 Collected Sample Analysis ICLP Metals CIBIH MBDYNG 930 Sy up on (DF-50-5-A) 0-5' Resvery 40" PID 0.0/0,0 4 13.000 VF-F SAND Title Brick, Ash Great 5-10' feesvery 29" 00 0.0/0.0 & Brown F SAND AND GRAVEL 935 Collected Sample from 5-6' Analysis:
VOC SUDC, PCB, TCIGTAL metals & To Moiston CLP # BD4 69 950 Set up on IDF-513-04-A M5/MSD SAMPLE -8R 118/16 Refusal @ 4' First Attempt Retivial @ 4' Second Attempt Retivial @ 4' Think Attended Ekssengery HIBLIL Project / Client Dush 18/16 49 55/513/6W Sampling 58-04 Confinced 0-5 Recovery 36" PID 00/00 Brown FM SAUD Some brick, Gravel & Concrete 1000 Sample +ime (3-4'BCs) Analysis: Voc / supcliff / Teco /TAL netals To moistore 1010 Set US on DF-55B-01-A Recovery 18" PID O.D 2 Dark Bown F-6 SAND Some Brick & Ash 1015 Collected Jourge from 1-21 Analysis Tell Matals CLA-# MBD4NS 1020 Set up in DF-5B-06-A 05 Recovery 39" PID 0.0/0.0 11" Dark Brown F 5 AND AND ASA 8" Light Brown UF-F SALD 4" Dark Brown F SAND AND ASII 12" light Brown SILT-UF SANT Trace Borch & Dank Grey F 3 AND AND ASH Wet @ 41 ERosy 11/8/16 Reten the Rain 1115 Set up on [DE-SI3-13-A 0-5' Recovery 22" PID 0-0/0.0 4" Concrete 2" Black F SANDAND ASH V Brown F SAND 1: HIr Brick 5-10 - NO Recovery 10-15' Reavery 13" PM 00/0.0 1120 Collected Sample from 4-5 Analysis: VOE SVOC PCB, TKLB, TAL CLP # BD4 MC To Maisture MS/MSD SAMPLE A had to advance 3-0-5 Cores to get sample Volume Bothett Set up on DF-573 Must -12-2 05 Recovery 34 810 0,0/0.0 Brown FS AND 1. HIP ASA Brick, Grenel 5-10' Lecovery 42" PID 653/11.6 & Crean 512T & CRAY Strong Petrolium ader Skar 11/8/16 Reteiner Rain Project / Client Dootold - (EBA) Location Alton, NON Date 11(9)16 Project / Client Dootold - (EBA) GW / 53/513 Man / Well development 1600 developed the following TWF-07 TWP-03 TWP-67 TWP-18 TWP-19 TWP-09 Shipped 7 Coolers to Chentach with air Bill # 777674213037 - Jampled the following wells: Project/Client Dvotold | EPA 63 730 E Rosenzweig L. Estrada 6 A. Rielly on site from - Ryan & Chris on site from TAlon - Weather Clear # 30° - Conducted AM ALS meeting 800 Talon Developing the following wells: TWP- 17 TWP- 14 TWP-15 TWP 16 -> CDM Sampling the tollowing TWP-2 mw-9 TWP-3 MW-10 TWP-7 TWP-18 TWP-9 TWP-A 1600 - Sligged a total & 5 Casters to Chamtech w/ Air Bill # 777683547082 Project / Client Dua Fold | EPA Date ////4/16 IDL Butopland GPS 1000 E Rosenzweig on site to GPS Sample locations - Weather Clear & 40° SB-01/55-01 43.020904 E 75.037703 SB/TWP/55-02 N 43.020567 E-75.037597 SB/TWP/59-03 N 43.020638 E-75.036953 58/55-04 N 43.019991 E -75.036639 SB/SS-05 N 43.020306 E -75.036350 53/55-06 N 43.019921 E 75.035 836 Project/Client Dosfo/2/EPA TOW Sampling GPS 107 5B/TWP/55-07 N 43.019753 E -75-035 936 5B+08 55-08 N 43.02000C E 75 035202 5B/TW8/CS-09 10 43.020297 E -75.035037 15B-10 / SS-10 CF IMMINION 43.019980 5B-11 58-11 N 43.0198 43.01970Z C -75.0356/7 SB/TWP-12 N 43.019653 E 75.034728 SB-13 N 43.019659 E 75.034586 SB TWP-14 N 43.019247 E-75.034251 Eloanom 11/14/16 Appendix C # Appendix C Passive Soil Gas Survey Report CDM Smith 14 Wall Street, Suite 1702 New York, NY 10005 Attn: Ms. Tonya Bennett Passive Soil Gas Survey – Analytical Report Date: November 23, 2016 Beacon Project No. 3378 | Project Reference: | Former Duofold Site, Herkimer, NY | |--------------------------------|-----------------------------------| | Samplers Installed: | October 4 and 5, 2016 | | Samplers Retrieved: | October 20, 2016 | | Samples Received: | October 21, 2016 | | Analyses Completed: | October 26, 2016 | | Laboratory Data Issued: | November 2, 2016 | ### EPA Method 8260C All samples were successfully analyzed using thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) instrumentation to target a custom compound list following EPA Method 8260C. Laboratory results are reported in nanograms (ng) of specific compound per sample. Laboratory QA/QC procedures included internal standards, surrogates, and blanks based on EPA Method 8260C. Analyses and reporting were in accordance with BEACON's Quality Assurance Project Plan. ### **Reporting limits** The reporting limit (RL) is 10 nanograms (ng) for vinyl chloride, 1,1-dichloroethene, trans-1,2-dichloroethene, cis-1,2-dichloroethene, trichloroethene, and tetrachloroethene; 25 ng for the remaining individual compounds; and 5,000 ng for Total Petroleum Hydrocarbons (TPH). **Table 1** provides survey results in nanograms per sampler by sample-point number and compound name. For the six (6) compounds listed above, measurements below the limit of quantitation (10 ng) but above the limit of detection (5 ng) are flagged with a "J." The RLs represent a baseline above which results exceed laboratory-determined limits of precision and accuracy. Any field sample measurements above the upper calibration standard are estimated; however, these values are reported without qualifiers because all reported measurements are relative to each other and are appropriate to meet the survey objectives of locating source areas and vapor intrusion pathways and defining the lateral extent of contamination. ### **Calibration Verification** The continuing calibration verification (CCV) values for the calibration check compounds were all within $\pm 20\%$ of the true values as defined by the initial five-point calibration and met the requirements specified in Beacon Environmental's Quality Assurance Project Plan. ### Method Blanks/Trip Blanks Laboratory method blanks are run with each sample batch to identify contamination present in the laboratory. If contamination is detected on a method blank, measurements of identical compounds in that sample batch are flagged in the laboratory report. The laboratory method blanks analyzed in connection with the present samples revealed no contamination. The trip blank is a sampler prepared, transported, and analyzed with other samples but intentionally not exposed. Any target compounds identified on the trip blanks are reported in the laboratory data. The analyses of the trip blanks (Trip-1 through Trip-4 in **Table 1**) reported none of the targeted compounds. ### **Passive Soil-Gas Survey Notes** When sample locations are covered with or near the edge of an artificial surface (e.g., asphalt or concrete), the concentrations of compounds in soil gas are often significantly higher than the concentrations would be if the surfacing were not present. Thus, a reading taken below or near an impermeable surface is much higher than it would be in the absence of such a cap. Therefore, the sample location conditions should be evaluated when comparing results between locations. Survey findings are exclusive to this project and when the spatial relationships are compared with results of other BEACON Surveys it is necessary to incorporate survey and site information from both investigations (*e.g.*, depth to sources, soil types, porosity, soil moisture, presence of impervious surfacing, sample collection times). BEACON recommends the guidelines stated in **Attachment 1** to establish a relationship between reported soil-gas measurements and actual subsurface contaminant concentrations, which will indicate those measurements representing significant subsurface contamination. BEACON's passive soil-gas samplers are prepared with two sets of adsorbent cartridges for subsequent duplicate or confirmatory sample analysis. At the client's request, duplicate analysis was performed for four (4) field samples. The field sample duplicates were designated "D" following the sample number. When comparing quantitative results, a duplicate correspondence should be considered when the relative percent difference (RPD) between the two samples is less than or equal to 100%. For the purpose of calculating correspondences, all non-detections should be assigned, as a baseline value, the RL for the specific contaminant. Based on these assumptions, a 100% correlation was found between the field sample duplicates and their base samples. ### **Project Details** Samplers were deployed on October 4 and 5, 2016, and were retrieved on October 20, 2016. **Attachment 2** describes standard field procedures. Individual deployment and retrieval times will be found in the Chain of Custody Form (**Attachment 3**). Eighty (80) field samples, four (4) field sample duplicates, and four (4) trip blanks were received by BEACON on October 21, 2016. Adsorbent cartridges from the passive samplers were thermally desorbed, then analyzed using gas chromatography/mass spectrometry (GC/MS) equipment, in accordance with EPA Method 8260C, as described in **Attachment 4**. BEACON's laboratory analyzed each sample for the targeted compounds; analyses were completed on October 26, 2016. Following a laboratory review, results were provided on November 2, 2016. ### **Attachments:** - -1- Applying Results From Passive Soil-Gas Surveys - -2- Field Procedures - -3- Chain-of-Custody Form - -4- Laboratory Procedures ALL DATA MEET REQUIREMENTS AS SPECIFIED IN THE BEACON ENVIRONMENTAL SERVICES, INC. QUALITY ASSURANCE PROJECT PLAN AND THE RESULTS RELATE ONLY TO THE SAMPLES REPORTED. BEACON ENVIRONMENTAL SERVICES IS ACCREDITED TO ISO/IEC 17025:2005, AND THE WORK PERFORMED WAS IN ACCORDANCE WITH ISO/IEC 17025:2005 REQUIREMENTS, WITH THE EXCEPTION THAT SAMPLES WERE ANALYZED WITHIN A 24-HOUR TUNE WINDOW AND 2-METHYLNAPHTHALENE AND TPH $\rm C_4-C_9$ AND TPH $\rm C_{10}-C_{15}$ ARE NOT INCLUDED IN BEACON'S SCOPE OF ACCREDITATION. THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF THE LABORATORY. RELEASE OF THE DATA CONTAINED IN THIS DATA PACKAGE HAS BEEN AUTHORIZED BY THE LABORATORY DIRECTOR OR HIS SIGNEE, AS VERIFIED BY THE FOLLOWING SIGNATURES: Steven C. Thornley Laboratory Director Steven (Thornley Patti J. Riggs Quality Manager Table 1 | Client Sample ID:
Project Number: | Lb161024s | Trip-1
3378 | Trip-2
3378 | Trip-3
3378 | Trip-4
3378 | DFPGS-1
3378 | |---|------------|----------------|----------------|----------------|----------------|-----------------| | Lab File ID: | S16102403 | S16102405 | S16102406 | S16102407 | S16102408 | S16102409 | | | 310102403 | | | | | | | Received Date: | 10/24/2016 |
10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | | Analysis Time: | 11:09 | 11:56 | 12:20 | 12:43 | 13:06 | 13:30 | | Matrix: | | | | | | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | <25 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C ₄ -C ₉ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | < 5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-2 | DFPGS-3 | DFPGS-4 | DFPGS-5 | DFPGS-6 | DFPGS-7 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102410 | S16102411 | S16102412 | S16102413 | S16102414 | S16102415 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | | Analysis Time: | 13:53 | 14:16 | 14:40 | 15:03 | 15:26 | 15:50 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | <25 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | <10 | 9 J | 174 | 25 | 7 J | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-8 | DFPGS-9 | DFPGS-10 | DFPGS-11 | DFPGS-12 | DFPGS-13 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102416 | S16102417 | S16102418 | S16102419 | S16102420 | S16102421 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | | Analysis Time: | 16:13 | 16:37 | 17:00 | 17:23 | 17:46 | 18:09 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | 185 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | 11 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | 10 J | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | 242 | 17 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | <25 | 147 | 38 | | Trichloroethene | <10 | <10 | <10 | <10 | 214 | 8 J | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | 33 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | <10 | <10 | <10 | <10 | 19 | 241 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | <25 | <25 | 30 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-14 | DFPGS-16 | DFPGS-16-D | DFPGS-17 | DFPGS-18 | DFPGS-19 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102422 | S16102423 | S16102424 | S16102425 | S16102426 | S16102427 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | | Analysis Time: | 18:33 | 18:56 | 19:19 | 19:43 | 20:07 | 20:29 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | ng | ng | ng | ng | ng | ng | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | <25 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane |
<25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 9 J | <10 | <10 | <10 | 13 | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-20 | DFPGS-21 | DFPGS-22 | DFPGS-23 | DFPGS-24 | DFPGS-24A | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102428 | S16102429 | S16102430 | S16102431 | S16102432 | S16102433 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | 10/24/2016 | | Analysis Time: | 20:53 | 21:16 | 21:39 | 22:03 | 22:26 | 22:49 | | • | Soil Gas | | Matrix: | | | | | | | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | 26 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | 319 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 7 J | <10 | <10 | 8 J | <10 | 100 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | 27 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | 101 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | 37 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C ₄ -C ₉ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | < 5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-25 | DFPGS-26 | DFPGS-27 | DFPGS-28 | DFPGS-29 | DFPGS-30 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102434 | S16102435 | S16102436 | S16102437 | S16102438 | S16102439 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/24/2016 | 10/24/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 23:13 | 23:37 | 0:00 | 0:23 | 0:46 | 1:09 | | Matrix: | Soil Gas | | Units: | | | | | ng | | | COMPOUNDS | ng | ng | ng | ng | ng | ng | | Vinyl Chloride | <10 | 245 | <10 | <10 | 35 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | 172 | <10 | <10 | 50 | <10 | | Chloroform | <25 | 102 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | 6,562 | 28 | <25 | 58 | 39 | | Trichloroethene | 10 | <10 | 287 | 12 | 12 | 15 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | 440 | 55 | 30 | 35 | 38 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 44 | 7 J | 46 | 658 | 564 | 595 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | 40 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | 165 | 50 | <25 | <25 | 269 | | p & m-Xylene | <25 | 658 | 219 | 34 | 77 | 1,793 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | 444 | 114 | 29 | 79 | 1,872 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | 2,149 | <25 | <25 | 59 | 704 | | 1,3,5-Trimethylbenzene | <25 | 245 | <25 | 275 | 423 | 8,865 | | 1,2,4-Trimethylbenzene | <25 | 232 | <25 | 611 | 1,164 | 14,604 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | 1,060 | 31 | 121 | 154 | 4,818 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | 1,161 | 30 | 58 | 49 | 1,236 | | TPH C_4 - C_9 | <5,000 | 270,956 | <5,000 | 19,130 | 15,893 | 103,547 | | TPH C ₁₀ -C ₁₅ | <5,000 | 321,883 | 10,885 | 63,531 | 49,516 | 389,683 | Table 1 | Client Sample ID: | DFPGS-31 | DFPGS-32 | DFPGS-33 | DFPGS-34 | DFPGS-35 | DFPGS-35-D | |---|------------|------------------|------------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102440 | S16102441 | S16102442 | S16102443 | S16102444 | S16102445 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 1:33 | 1:56 | 2:19 | 2:43 | 3:06 | 3:30 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | 27 | <25 | <25 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | 504 | 363 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | <10 | 8 J | <10 | <10 | 6 J | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | 37 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | 36 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | 38
212 | <25
61 | <25
42 | <25
34 | <25
<25 | <25
<25 | | 1,2,4-Trimethylbenzene
1,3-Dichlorobenzene | | | | | | | | 1,4-Dichlorobenzene | <25
<25 | <25
<25 | <25
<25 | <25
<25 | <25
<25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25
<25 | <25
<25 | | Naphthalene | 95 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25
 <25 | <25 | <25 | | 2-Methylnaphthalene | 25 | <25 | <25 | <25 | <25 | <25 | | TPH C ₄ -C ₉ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | 10,682 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | 10 13 | -, | , | , | , | , | , | Table 1 | Client Sample ID: | DFPGS-36 | DFPGS-37 | DFPGS-38 | DFPGS-39 | DFPGS-39A | DFPGS-40 | |---|------------|------------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102446 | S16102447 | S16102448 | S16102449 | S16102450 | S16102451 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 3:53 | 4:17 | 4:40 | 5:03 | 5:27 | 5:50 | | Matrix: | Soil Gas | | Units: | | | | | | | | COMPOUNDS | ng | ng | ng | ng | ng | ng | | | 246 | <10 | <10 | <10 | <10 | -10 | | Vinyl Chloride
1,1-Dichloroethene | 42 | <10
<10 | <10
<10 | <10 | <10 | <10
<10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | 42 | <10
57 | 729 | <25 | <10 <25 | <25 | | | 34 | | | | | | | trans-1,2-Dichloroethene | | <10 | <10
<25 | <10
<25 | <10
<25 | <10 | | Methyl-t-butyl ether | <25
<25 | <25
<25 | <25
<25 | <25 | <25 | <25
<25 | | 1,1-Dichloroethane | | | | | | | | cis-1,2-Dichloroethene | 21,543 | 64 | 6 J | <10 | <10 | 13 | | Chloroform 1,2-Dichloroethane | <25
<25 | <25
<25 | <25
<25 | <25
<25 | <25
<25 | <25
<25 | | , | | | | | | | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | 41 | 34 | <25 | <25 | 171 | | Trichloroethene | 6,703 | 32 | <10 | <10 | <10 | 943 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | 43 | 28 | <25 | <25 | 1,213 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 10,581 | 112 | 17 | 6 J | 9 J | 619 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | 67 | | p & m-Xylene | <25 | 33 | <25 | <25 | <25 | 238 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | 28 | 38 | <25 | <25 | 115 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | 2,504 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | 104 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | 159 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | 3,171 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | 4,393 | | TPH C ₄ -C ₉ | <5,000 | <5,000 | 6,331 | <5,000 | <5,000 | 164,785 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | 341,895 | Table 1 | Client Sample ID: | DFPGS-41 | DFPGS-42 | DFPGS-43 | DFPGS-44 | DFPGS-45 | DFPGS-46 | |---|------------|------------|------------|--------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | S16102452 | S16102453 | C16102540 | C16102539 | C16102538 | S16102457 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/26/2016 | 10/26/2016 | 10/26/2016 | 10/25/2016 | | Analysis Time: | 6:13 | 6:36 | 0:54 | 0:33 | 0:11 | 8:10 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | 5 | | 6 | ₅ | 5 | ***5 | | Vinyl Chloride | <10 | 12 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | 9 J | 232 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | 175 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | 8 J | 143 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | 9 J | 5,803 | 5 J | <10 | <10 | <10 | | Chloroform | 103 | 147 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | 65 | 131 | <25 | <25 | <25 | 44 | | Trichloroethene | 1,797 | 253,885 | 205 | 10 | <10 | 310 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | 122 | 35 | 34 | <25 | <25 | 28 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 4,431 | 8,790 | 13,418 | 221 | <10 | 21 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | 68 | <25 | 36 | <25 | <25 | 25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | 31 | <25 | <25 | <25 | <25 | 25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | 28 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | 1,019 | 192 | <25 | 25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | 542 | 122 | <25 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | 6,215 | | TPH C ₁₀ -C ₁₅ | 14,024 | <5,000 | 6,242 | 6,562 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-47 | DFPGS-48 | DFPGS-49 | DFPGS-50 | DFPGS-51 | LB161025c | |---|---------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | | | Lab File ID: | S16102458 | S16102459 | S16102460 | S16102461 | S16102462 | C16102503 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 8:33 | 8:57 | 9:20 | 9:43 | 10:07 | 10:53 | | Matrix: | Soil Gas | | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | 2,284 | 61 | 40 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | 58 | 50 | <25 | | Trichloroethene | 28 | 23 | 17 | 496 | 69 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | 35 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 779 | 135 | 8 J | 1,894 | 2,384 | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | 27 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | 1,715 | 25 | 250 | 164 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | 388 | <25 | 109 | 50 | <25 | | TPH C ₄ -C ₉ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | | \3,000 | \3,000 | \5,000 | \3,000 | \3,000 | \5,000 | Table 1 | Client Sample ID: | DFPGS-52 | DFPGS-53 | DFPGS-54 | DFPGS-55 | DFPGS-55-D | DFPGS-56 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | C16102505 | C16102506 | C16102507 | C16102508 | C16102509 | C16102510 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 11:36 | 11:58 | 12:19 | 12:41 | 13:37 | 13:59 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | **5 | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 |
<10 | | 1,1-Dichloroethene | 85 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | 73 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | 743 | 35 | <10 | <10 | <10 | <10 | | Chloroform | 37 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | 523 | 115 | 42 | <25 | <25 | <25 | | Trichloroethene | 52,465 | 386 | 78 | 37 | 22 | 15 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | 193 | 30 | 26 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 1,257 | 2,037 | 229 | <10 | <10 | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | 99 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | 249 | <25 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | 108 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | 90 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | 132 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | 67 | 581 | 260 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | 343 | 353 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | 9,807 | 17,350 | 6,778 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-57 | DFPGS-58 | DFPGS-59 | DFPGS-60 | DFPGS-61 | DFPGS-62 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | C16102511 | C16102512 | C16102513 | C16102514 | C16102515 | C16102516 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 14:21 | 14:41 | 15:03 | 15:25 | 15:47 | 16:09 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS Compounds | ng | ng | ng | ng | ng | ng | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | 43 | 658 | 39 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | 40 | <25 | <25 | 60 | <25 | <25 | | Carbon Tetrachloride | <25 | 271 | 79 | <25 | 53 | <25 | | Benzene | <25 | <25 | <25 | 73 | 177 | 88 | | Trichloroethene | 11 | 9 J | 10 J | 478 | 45 | 169 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | 36 | 90 | 52 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 61 | <10 | 1,491 | 72 | 3,121 | 3,197 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | <25 | 66 | 37 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | 29 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | 39 | 35 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | 173 | 424 | 139 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | 78 | 78 | 30 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | < 5,000 | <5,000 | <5,000 | <5,000 | 5,357 | <5,000 | Table 1 | Client Sample ID: | DFPGS-63 | DFPGS-64 | DFPGS-65 | DFPGS-66 | DFPGS-67 | DFPGS-68 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | C16102517 | C16102518 | C16102519 | C16102520 | C16102521 | C16102522 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 16:31 | 16:53 | 17:15 | 17:36 | 17:59 | 18:20 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS Compounds | ng | ng | ng | ng | ng | ng | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | 28 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | 29 | 28 | <25 | <25 | <25 | <25 | | Trichloroethene | 137 | 27 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | 1,079 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 428 | 57 | <10 | <10 | <10 | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | 112 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | 699 | 30 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | 734 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | 359 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | 2,920 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | 5,100 | 29 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | 5,648 | 329 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | 9,261 | 514 | 80 | <25 | <25 | <25 | | TPH C_4 - C_9 | 182,661 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | 326,850 | 10,012 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-69 | DFPGS-70 | DFPGS-71 | DFPGS-72 | DFPGS-73 | DFPGS-74 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | C16102523 | C16102524 | C16102525 | C16102526 | C16102527 | C16102528 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 18:42 | 19:04 | 19:27 | 19:49 | 20:10 | 20:32 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS Compounds | ng | ng | ng | ng | ng | ng | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | 65 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | <25 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | <10 | <10 | <10 | 15 | <10 | 16 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 |
<25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | Table 1 | Client Sample ID: | DFPGS-75 | DFPGS-75-D | DFPGS-76 | DFPGS-77 | DFPGS-78 | DFPGS-79 | |---|------------|------------|------------|------------|------------|------------| | Project Number: | 3378 | 3378 | 3378 | 3378 | 3378 | 3378 | | Lab File ID: | C16102529 | C16102530 | C16102531 | C16102532 | C16102533 | C16102534 | | Received Date: | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | 10/21/2016 | | | | | | | | | | Analysis Date: | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | 10/25/2016 | | Analysis Time: | 20:54 | 21:16 | 21:38 | 21:59 | 22:21 | 22:43 | | Matrix: | Soil Gas | | Units: | ng | ng | ng | ng | ng | ng | | COMPOUNDS | | | | | | | | Vinyl Chloride | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,1,2-Trichlorotrifluoroethane (Fr.113) | <25 | <25 | <25 | <25 | <25 | <25 | | trans-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Methyl-t-butyl ether | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | cis-1,2-Dichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | Chloroform | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,1-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Carbon Tetrachloride | <25 | <25 | <25 | <25 | <25 | <25 | | Benzene | <25 | <25 | <25 | <25 | <25 | <25 | | Trichloroethene | <10 | <10 | <10 | <10 | <10 | <10 | | 1,4-Dioxane | <25 | <25 | <25 | <25 | <25 | <25 | | 1,1,2-Trichloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Toluene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dibromoethane (EDB) | <25 | <25 | <25 | <25 | <25 | <25 | | Tetrachloroethene | 6 J | <10 | 88 | 321 | 7 J | <10 | | 1,1,1,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | Chlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Ethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | p & m-Xylene | 35 | 35 | <25 | <25 | <25 | 28 | | 1,1,2,2-Tetrachloroethane | <25 | <25 | <25 | <25 | <25 | <25 | | o-Xylene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichloropropane | <25 | <25 | <25 | <25 | <25 | <25 | | Isopropylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3,5-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trimethylbenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,3-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,4-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2-Dichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,4-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | Naphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | 1,2,3-Trichlorobenzene | <25 | <25 | <25 | <25 | <25 | <25 | | 2-Methylnaphthalene | <25 | <25 | <25 | <25 | <25 | <25 | | TPH C_4 - C_9 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | | TPH C ₁₀ -C ₁₅ | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | <5,000 | **Attachments** ### Attachment 1 # APPLYING RESULTS FROM PASSIVE SOIL-GAS SURVEYS The utility of soil-gas surveys is directly proportional to their accuracy in reflecting and representing changes in the subsurface concentrations of source compounds. Passive soil-gas survey results are the mass collected from the vapor-phase emanating from the source(s). The vapor-phase is merely a fractional trace of the source(s) and, as a matter of convenience, the units used in reporting detection values from passive soil-gas surveys are smaller than those employed for source-compound concentrations. Passive soil gas data are reported in mass of compounds identified per sample location (e.g., nanograms (ng) or micrograms (μ g) per sampler). Results from a passive soil gas survey typically are then used to guide where follow-on intrusive samples should be collected to obtain corresponding concentrations of the contaminants in soil, soil gas, and/or groundwater, as well as eliminate those areas where intrusive samples are not required. It is not practical to report passive soil gas data as concentration because the sampler's uptake rates of the compounds are often greater than the replenishment rates of the compounds around the sampler, which results in low bias measurements, and the replenishment rates will be dependent on several factors that include, at a minimum, soil gas concentrations, soil porosity and permeability, and soil moisture level. Whatever the relative concentrations of source and associated soil gas, best results are realized when the ratio of soil-gas measurements to actual subsurface concentrations remains as close to constant as the real world permits. It is the reliability and consistency of this ratio, not the particular units of mass (e.g., nanograms) that determine usefulness. Thus, BEACON emphasizes the necessity of conducting — at minimum — follow-on intrusive sampling in areas that show relatively high soil-gas measurements to obtain corresponding concentrations of soil and groundwater contaminants. These correspondent values furnish the basis for approximating a relationship. For extrapolating passive soil gas results to vapor intrusion evaluations, we recommend a minimum of three passive soil gas locations be converted to a shallow vapor well then sampled using an active soil gas method. Once a relationship is established, it can be used in conjunction with the remaining soil-gas measurements to estimate subsurface contaminant concentrations across the survey field. (See www.beacon-usa.com/passivesoilgas.html, Publication 1: Mass to Concentration Tie-In for PSG Surveys and Publication 4: Groundwater and PSG Correlation.) It is important to keep in mind, however, that specific conditions at individual sample points, including soil-gas measurements at those locations. When passive soil-gas surveys are utilized as described above, the data provide information that can yield substantial savings in drilling costs and in time. They furnish, among other things, a checklist of compounds expected at each survey location and help to determine how and where drilling budgets can most effectively be spent. Passive soil-gas surveys can also be used as a remediation or general site monitoring tool that can be implemented on a quarterly, semi-annual or annual basis. ### Attachment 2 # FIELD PROCEDURES FOR PASSIVE SOIL-GAS SURVEYS The following field procedures are routinely used during a BEACON Passive Soil-Gas Survey. Modifications can be and are incorporated from time to time in response to individual project requirements. In all instances, BEACON adheres to EPA-approved Quality Assurance and Quality Control practices. - A. Field personnel carry a BESURE Sample Collection KitTM and support equipment to the site and deploy the passive samplers in a prearranged survey pattern. A passive sampler consists of a borosilicate glass vial containing hydrophobic adsorbent cartridges with a length of wire attached to the vial for retrieval. Although samplers require only one person for emplacement and retrieval, the specific number of field personnel required depends upon the scope and schedule of the project. Each Sampler emplacement generally takes less than two minutes. - B. At each survey point a field technician clears vegetation as needed and, using a hammer drill with a 1"- to 1½"-diameter bit, creates a hole 12 to 14 inches deep. [Note: For locations covered with asphalt, concrete, or gravel surfacing, the field technician drills a 1"- to 1½"-diameter hole through the surfacing to the soils beneath]. The technician then, using a hammer drill with a ½" diameter bit, creates a hole three-feet deep. The hole is then sleeved with a 1"-diameter metal sleeve. - C. The technician then removes the solid plastic cap from a sampler and replaces it with a Sampling Cap (a plastic cap with a hole covered by screen meshing). The technician inserts the sampler, with the Sampling Cap end facing down, into the hole (see attached figure). The sampler is then covered with an aluminum foil plug and soils for uncapped locations or, for capped locations, an aluminum foil plug and a concrete patch. The sampler's location, time and date of emplacement, and other relevant information are recorded on the Field Deployment Form. - D. One or more trip blanks are included as part of the quality-control procedures. - E. Once all the samplers have been deployed, field personnel schedule sampler recovery and depart, taking all other equipment and materials with them. - F. Field personnel retrieve the samplers at the end of the exposure period. At each location, a field technician withdraws the sampler from its hole, removes the retrieval wire, and wipes the outside of the vial clean using gauze cloth; following removal of the Sampling Cap, the threads of the vial are also cleaned. A solid plastic cap is screwed onto the vial and the sample location number is written
on the label. The technician then records sample-point location, date, time, etc. on the Field Deployment Form. - G. Sampling holes are refilled with soil, sand, or other suitable material. If samplers have been installed through asphalt or concrete, the hole is filled to grade with a plug of cold patch or cement. - H. Following retrieval, field personnel ship or transport the passive samplers to BEACON's laboratory. # BEACON'S PASSIVE SOIL-GAS SAMPLER ### **DEPLOYMENT THROUGH SOILS** ### DEPLOYMENT THROUGH AN ASPHALT/CONCRETE CAP **Attachment 3** **Chain of Custody Form** 2203A Commerce Road, Suite 1 Forest Hill, MD 21050 USA P: 1-410-838-8780 | F: 1-410-838-8740 | The same of sa | |--| | | | | | | Y | | |-----------------------------|-----------------------|----------------|-----------------------|----------------------|-------------------------|---| | | Project Information | u | 2 | | Client Information | | | Beacon Project No.: | 3378 | | Company Name: | ame: CDM | | Client PO No.: | | Site Name: | Former Doofold | 6) | Office Location: | tion: | | | | Site Location: | Herbiner, N | , , | Samples Submitted By: | omitted By: School & | Ser / Rosenzwen | Expedited Turnaround Time | | Analytical Method: | U.S. EPA Method 8260C | \$260C | Contact Phone No.: | | 1 | Rush (Specify): days | | Target Compounds: | | * ' | | 16.2 | | | | | Date Emplaced | Date Retrieved | Sampling | Type of Surface | Optional Sar | Optional Sample Information | | Field Sample ID | 10-11-16 | 10-02-01 | Hole Depth | (Soil/Asphalt/ | (e.g., Description of S | (e.g., Description of Sample Location, Sample | | | Time Emplaced | Time Retrieved | (inches) | Concrete/Gravel) | Condition, Pl | Condition, PID/FID Readings) | | DFP65-1 | 10:10 | 52:to | 36 | Soil | Interest How of S | Interest by Specif + Pless samp | | 7 | 01.15 | 97: E0 | 11 | SOIL | | 10 | | 3 | 1:060 | se:to | こ | 5016 | , | | | * | 57.60 | 0C:E0 | 2 | 3016 | | | | | · 62:50 ~ | さいたの | 2 | Soil | | | | 9 | 101:33 | 7: t | 3 | 2010 | | | | ** | 01.37 | すごと | 2 | 2016 | 3.4 | | | de | 14:10 × | 6€:± | 3 | 5012 | Y . | | | 5 | 31.40 | 14:4 · | 4 | 7705 | | | | 0) | 09:51 | tins . | | J105 | 144 | | | | 25: ba | 7:45 | 9 | Soil | | | | 243 | 10:01 | 4:53 | 8. | ASTINGUE / LA DATE | At 20 trunce | to PKG. 11600 | | . 13 | F0:01 | , h5:t | - 1 | 7105 | | | | 1.1. W | (0.13 | 25:t | | SOIL | | | | 51 | 27:01 | 2 | 3 | ASPHMT/ GAMVEL | | | | Special Notes/Instructions: | uctions: | | | | | | Special Notes/Instructions: | Shipment of Field Kit to Laboratory — Custody Seal # | atory Custody Seal # | | Intact? Y N | Intact? Y N RYAN Delivered | |--|----------------------|----------------|-------------------------|----------------------------| | Relinquished by: | Date/Time | Courier | Received by: | Date/Time | | | | Ryan schneider | Augusto Benny des 10.21 | 10.21.16 8:56h | | 1 | | | 200 | | | 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 | 100 | * | | | | ENVIRONI
SERVICES, INC | ENVIRONMENTAL
SERVICES, INC. | J ₹ | SSIVE SOIL- | CHAIN-OF-CUSTODY PASSIVE SOIL-GAS SAMPLES | | 2203A Commerce Road, Suite 1
Forest Hill, MD 21050 USA
P: 1-410-838-8780 F: 1-410-838-8740 | Suite 50 US 38-874 | |-----------------------------|---------------------------------|----------------|-----------------------|---|-----------------------|--|--------------------| | 0 | Project Information | u(| | | Clicat L.f. | | | | Beacon Project No.: | | | Company Name | ame. | Circuit Information | 300 | | | Site Name: | FORMER DUDFOLD | SOLN | Office Location: | | | Client PO No.: | | | Site Location: | 7.4 | | Samples Submitted Bv- | ed Bv. | School | E | | | Analytical Method: | | 18260C | Contact Phone No . | | 20.00 | Expedited Lumaround Lime | ime. | | Target Compounds: | Beacon Standard TCI | TCL | | 4 | | Kush (Specify): | days | | | Date Emplaced | Date Retrieved | Sampling | Tyne of Surface | Ontional | mal: I.e. | | | Field Sample ID | 91/4/01 | 10.22.01 | Hole Depth | (Soil/Asphalt/ | (e.g., Description of | (e.g., Description of Sample Location Sample | | | | Time Emplaced | Time Retrieved | (inches) | Concrete/Gravel) | - | Condition, PID/FID Readings | | | VFP65 - (5) | OP-05 10:14 | \$ 8:03 | 36 | Sare 5012 | | 69 | | | 177 | 806.0 | 72:40 | 9 | | | | 1 | | 13 | 11:00 | 4:13 | 11 | Yold | | | 7 | | - John | ho: II | 4.15 | | 3 | | | 1 | | 20 | be: II | 4:73 | 1,1 | 100 | | | | | 12 | 11:74 | 4:75 | 11 | 100 | | | 11 | | 11 | 10.30 | ירני ש | 11 | | | | I P | | 1. | 111.111 | 420 | | Soil | | - | | | 631 | 14.71 | X 47 m | 1 | SOF | | | 1 | | 47 | 13:54 | 840° | 11 | ASOROLIT | + | 8 | | | 2 | 14:19 | AP4S | * | Aspuper | | | | | 97. | 10/5 08:06 | 10/ | W | Court | | | 1 | | 4 | 12:41 | (900 | N N | CONCRETE | | | 1 | | 22 | 14:51 | 1001 | ν | CONCLETE | 4 | | | | 62 | 15:56 | 200 | n | Soil/Colucrett | Rosell hoster un | Courte M. | | | 30 | 16:03 | H 901 | br | Concrede | 1000 | - 1 | | | 31 | 90:91 | 1007 | 11 | Soil | | | + | | 32 | 11:14 | 8:16 | 11 | 5016 | | | | | 33 | 8118 | 4:19 | 7 | Soll | | | 1 | | 7.7 | 11:23 | 12:8 | n n | 718> | | ne" | 1 | | 35 | 11:42 | 7.8 | 3) |) los | | | | | Special Notes/Instructions: | ctions: | | | | | | | | | | | | | | | | # CHAIN-OF-CUSTODY PASSIVE SOIL-GAS SAMPLES 2203A Commerce Road, S., Forest Hill, MD 21050 USA P: 1-410-838-8780 | F: 1-410-838-8740 | Site Name: Site Name: Company Name: Company Name: Site Name: Site Name: Site Name: Site Name: Site Name: Site Location: Reference Contact Plane Not: Co | | Project Information | n | | | Client Information | | |--|---------------------|---------------------|----------------|--------------|------------------|--------------------------
---------------------------| | Simples Submitted By: Defect Online Location: Office Location: Expedited Tunaround Tile By: Expedit By: Expedit By: Expedited Tunaround Tile By: Expedit <t< th=""><th>Beacon Project No.:</th><th></th><th></th><th>Company Na</th><th>me:</th><th></th><th>Client PO No.:</th></t<> | Beacon Project No.: | | | Company Na | me: | | Client PO No.: | | Time Emplaced Date Retrieved Sampliss Submitted By: Expedited Turnaround Timelhood: Italy March Sampliss Submitted By: Italy I | Site Name: | | old | Office Locat | ion: | | | | Method: U.S. EPA Method 8260C Contact Phone No. Mounds: Beacon Standard TCL Date Emplaced Date Retrieved Contact Phone No. Date Emplaced Time Retrieved Contact Phone of Sample Information | Site Location: | Herkiner, NY | | Samples Sub | mitted By: | | Expedited Turnaround Time | | Descent Standard TCL Peaceton Standard TCL Descent Standard TCL Photopounds: Descention of Sampling Type of Surface Optional Sample Location, Sample Concrete Gravel) | Analytical Method: | U.S. EPA Methoc | 1 8260C | Contact Phor | ne No.: | | Rush (Specify): days | | Date Emplaced Date Emplaced Date Retrieved Sampling (Soil/Asphalt) 10.4-16 Time Emplaced Time Emplaced Time Emplaced 11.59 355 36 Soil/Coil/Asphalt 34 12:04 837 1 Soil/Cavel 38 12:08 878 1 Soil/Cavel 39 12:08 878 1 Soil/Cavel 40 12:08 878 1 Soil/Cavel 40 12:08 878 1 Soil/Cavel 41 12:08 878 1 Soil/Cavel 41 12:05 95 1 Concrete 42 10:05 95 1 Concrete 44 10:5 975 1 Concrete 45 10:05 95 1 Concrete 46 12:18 856 1 Soil/Cavel 47 12:18 858 1 Concrete 50 10:15 08:34 9 | Target Compounds: | | TCL | | | | | | 1 10 10 10 10 10 10 10 | | | Date Retrieved | Sampling | Type of Surface | Optional Sam | ple Information | | Time Emplaced Time Retrieved (inches) Concrete/Gravel) 34 | Field Sample ID | 91-4-01 | | Hole Depth | (Soil/Asphalt/ | (e.g., Description of Sa | ample Location, Sample | | 25 15:36 355 36 36 36 36 36 36 | | Time Emplaced | Time Retrieved | (inches) | Concrete/Gravel) | Condition, PII | O/FID Readings) | | 200 15:00 15 | DFP45-36 | 11:59 | 335 | 36 | SOIL | | | | 14:58 828 " 14:50 84:48 828 " 15:50 08:34 84:3 " 10:50 08:34 84 | te | ho:21 | 837 | 11 | SolL | | | | 14:15 8472 11:11 14:15 08:24 8448 " 15:75 08:34 9488 " 15:75 08:34 9483 " 17:35 88:52 8443 " 17:36 88:54 9443 " 17:37 88:54 9443 " 18:50 08:34 9443 " 18:50 08:34 9443 " 19:50 08:34 9443 " 10:51 08:52 8488 " 10:51 08:52 8488 " 11:32 88:52 11 10:51 08:34 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:52 08:54 9443 " 10:53 08:54 9443 " 10:54 08:54 9443 " 10:55 08:54 9443 " 10:55 08:54 9443 " 10:55 08:54 9443 " 10:55 08:54 9443 " 10:55 08:54 9443 " 10:55 08:54 9443 " 10:55 08:54 9443 " 10:56 08:54 9443 " 10:56 08:54 9443 " 10:57 08:54 9443 " 10:58 08:54 9444 | 38 | 80:21 | 838 | N. | 501L | | | | 10/5 08:27 444 944 9 10/5 08:48 953 10 10/5 07:50 958 10 10/5 07:50 958 10 10/5 07:50 958 10 10/5 08:34 9443 10 10/5 08:34 9443 10 10/5 08:34 9443 10 10/5 08:34 943 10 10/5 08:51 943 | 39 | 14:13 | 248 | 11 | Sal | | | | 1015 08:48 953 - " 1015 08:48 953 - " 1015 08:44 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34 943 " 1015 08:34
943 " 1015 08:34 943 " 10 | oh | | 176 | 6 3 | Concrede | | | | 10/5 09:48 953 - " 10/5 01:44 9555 - " 10/5 01:44 9555 " 10/5 05:44 9556 " 10/5 05:44 9443 " 10/5 05:44 9441 " 10/5 05:44 9443 " 10/5 05:44 9441 " 10/5 05:44 9443 " 10/5 05:44 9441 " 10/5 05:44 9443 " 10/5 05:44 9441 " 10/5 05:44 9443 " 10/5 05:44 9444 9443 " 10/5 05:44 9444 9444 9444 9444 9444 9444 9444 | 7 | | 951 | ä | Concrete | | . 4 | | 10/5 07:94 9555 " 10/5 07:50 9556 " 10/5 07:50 9556 " 10/5 08:34 9443 " 10/5 08:51 941 " 10/5 08:51 9443 " 10/5 08:51 9443 " 10/5 08:51 9443 " 10/5 08:51 9443 " 10/5 08:51 9443 " 10/5 08:51 9443 " 10/5 08:51 9450 " 10/5 08:51 94 | 24 | | 953 | | ASPHALT | | | | 10/5 09:50 9588 "" 11:32 846 "" 11:32 856 "" 11:32 856 "" 11:32 856 "" 11:32 8588 "" 11:32 86:51 941 "" 10/5 08:54 9443 "" 10/5 08:54 9441 "" 10/5 08:54 9443 "" 10/5 08:54 9443 "" 11:34 995 | 43 | | 925 | ** | concrete | | | | 1015 10:05 1001 " 12:25 8956 " 12:25 8556 " 1 12:25 8556 " 1 12:25 8556 " 1 12:5 08:34 9443 " 1015 08:34 9443 " 1015 08:51 940 " 1015 08:51 940 " 11:34 9857 " 11:34 9827 " | 44 | | 856 | 11 | Concrete | | ~ | | 11:32 8956 " 12:25 8558 " 12:25 8558 " 1015 08:34 9443 " 1015 08:51 941 " 1015 08:51 941 " 1015 08:51 941 " 1015 08:51 941 " 1015 08:51 943 " 11:34 9927 " | Sh | | 1001 | 11 | 501r | | | | 1 12:25 356 11 12:25 3558 12 12:55 3600 12:15 | 94 | 26:21 | 826 | ** | 7/05 | | | | 1 12:18 | 九 | 52:21 | 35% | и | Soil | | | | 1 12:15 900 " " 9000 " " 9446 " " 1015 08:34 9443 " " 1015 08:52 9411 " " 1015 08:51 940 " " 1015 08:51 937 " " 1015 08:51 937 " " 1015 08:51 937 " " 1015 08:51 937 " " 1015 08:51 937 " " 1015 08:51 937 " " 1015 08:51 937 " " 1015 08:51 937 " 1015 08:51 | 84 | 81:7) | 858 | 11 | Soll | | | | 1015 08:34 946 " 1015 08:52 941 " 1015 08:51 940 " 1015 08:51 940 " 1015 1015 09:36 940 " 11:34 9827 " | 49 | 12:15 | 900 | N | 2016 | | | | 1015 08:36 943 " 1015 08:52 941 " 1015 08:51 940 " 1015 101:51 937 " | 20. | | 246 | a a | concrete | | | | 1015 08:52 9411 " 1015 08:56 940 " 1015 08:51 937 " 1015 1015 1015 1015 1015 1015 1015 10 | 15 | | 943
 11 | concet | | | | 1015 59:36 940 " 1015 1015 937 " 12:34 902 " " | 25 | | 11/16 | 9 | Concrete | | | | 10.5 09:59 937 " | 53 | | 940 | n | concrede | | | | 12:34 902 " | 54 | | 937 | 3 | concrete | | | | | 55 | 17:34 | 902 | | 501L | | | 2203A Commerce Road, Suite 1 Forest Hill, MD 21050 USA P: 1-410-838-8780 | F: 1-410-838-8740 # CHAIN-OF-CUSTODY PASSIVE SOIL-GAS SAMPLES | Expedited Turnaround Ting ample Information of Sample Location, Sample PID/FID Readings) | | 20000 | Contract of the Park | | | | | | |--|----------------------|-------|----------------------|----------------|--------------|------------------|-------------------------|--| | Signation Signature Company Name: Contact Phone No. | | afora | Ct Information | | | | Chent throt manon | 04 | | Farest Dos fold Contact Plane Pl | Beacon Project No .: | | | | Company Na | ame: | | Client PO No.: | | Hold: | Site Name: | 120 | | ple | Office Locat | tion: | | | | Time Emplaced U.S. EPA Method 8260C Contact Phone No. | Site Location: | Her | Kiner, NY | | Samples Sub | omitted By: | | Expedited Turnaround Time | | mple ID Date Emplaced Date Retrieved Sampling Type of Surface | Analytical Method: | U.S | . EPA Method | 8260C | Contact Pho | ne No.: | | | | Date Emplaced Date Retrieved Sampling Type of Surface | Target Compounds: | Bea | con Standard | LCL | | | | | | Time Emplaced Time Retrieved Ginches Concrete/Gravel | | Date | Emplaced | Date Retrieved | Sampling | Type of Surface | Optional San | nple Information | | 56 (2)4 (12:40 90.8 36 50.1C 10.00.00.00.00.00.00.00.00.00.00.00.00.0 | Field Sample ID | Ē | | i. | Hole Depth | (Soil/Asphalt/ | (e.g., Description of S | Sample Location, Sample
D/FID Readings) | | 7. 10/4 12:40 1/2 10.5 1. 1. 10/4 12:40 1/2 1. 1. 1. 1. 1. 1. 1. 1 | | Lime | Emplaced | I me Ketrieved | (menes) | Concrete Graver) | Condition, 1.1 | Dir in wearings) | | 7 10/4 12:48 913 " SOIL CAMEL 7 10/4 12:48 917 " SOIL CAMEL 8 10/4 15:20 925 " SOIL 8 10/4 15:20 925 " ASMAT 8 10/5 09:04 935 " ASMAT 8 10/5 09:04 935 " ASMAT 8 10/4 15:20 925 16:10 9 | - 56 | 1/01 | 04:21 | 800 | 36 | SOIL | | | | 9 19/4 12:16 917 " Sold Sold Sold Sold Sold Sold Sold Sold | | hoi | 12:43 | 913 | 10 | 5012 | | | | 9 1974 12:56 918 " Soil 10 1074 15:72 92.3 " Aspunt 10 15:74 93.2 17 13:14 92.2 " Aspunt 10 17 13:15 91.0 " Soil 10 17 13:15 91.0 " Soil 10 17 13:15 91.0 " Soil 10 17 14:31 10 24 " Soil 10 17 14:34 10 2.3 | | 1/01 | 81.21 | 21.2 | 11 | SOIL/GRAVEL | | | | 19/4 15:20 922 | 65 | 12/4 | 17:56 | 816 | n | SOIL | | | | 19/5 08:56 932 " ASPWALT 19/5 08:56 932 " ASPWALT 19/5 09:04 933 " ASPWALT 19/4 13:19 904 " Soil AspWalt 19/4 13:10 9/10 14:31 1024 1025 14:41 1025 " Soil AspWalt 19/4 14:41 1025 " Soil AspWalt 19/4 14:41 1025 " | 00) | h/ot | 15:20 | 5.7.6 | ý)- | Soil | | | | 1975 08:56 932 " ASPWALT 1975 19:04 9353 " ASPWALT 1974 19:12 976 " Soll 19:14 1024 " Soll 1974 19:14 1024 " Soll 1974 19:14 1024 " Soll 1974 19:14 1025 " Soll 1974 19:14 1025 " Soll 1974 19:14 1025 " Soll 1974 19:17 1025 " | 10 | h/o! | 15:27 | 220 | 111 | ASMACT | | | | 10/5 09:04 933 11 WOOF COLLECTURE OF PKL LOT ACLASS 10/4 13:13 904 11 Sold 10/4 13:10 9/15 | 79 | 5/01 | 08:56 | 932 | 11 | ASPHALT | | | | 15/5 15:07 935 1 Soll/GANEL 10/4 13:18 9/1 11 Soll/GANEL 10/4 13:10 9/15 11 Soll/ASSIMIT 14:31 1022 10/ | 63 | sia | 40:60 | 923 | 10 | woor/conce le | | | | 19/4 13:13 904 11 Sollawer Sollawer Sollawer Soll 19/4 13:18 911 11 Soll 19/4 13:10 911 11 Soll 19/4 13:10 9110 19/2 19/4 19/2 11 Soll 19/4 19/4 19/4 19/4 19/4 19/4 19/4 19/4 | 49 | 5/01 | 20:01 | 935 | 13 | ASOMALT | | | | 1974 13:15 906 " Solt 1974 13:15 9016 1074 | 65 | 1/01 | 13:43 | 404 | 11 | soir/craver | | | | 1974 13:18 911 III SOIL 1974 13:12 975 II SOIL 1974 13:20 975 II SOIL 1974 13:20 972 II SOIL 1974 13:30 972 II SOIL 1974 13:10 972 II SOIL 1974 14:31 1024 II SOIL 1974 14:31 10224 12:31 II SOIL 1974 14:31 | 99 | h/cl | 13:25 | 20% | W. | 5016 | | | | 1974 13:12 915 " Soil 1974 13:07 920 " Soil 1974 13:07 910 " Soil/Assimt 1974 13:10 910 " Soil/Assimt 1974 14:37 1024 " Soil/Assimt 1974 19:40 1024 " Soil/Assimt | 19 | 1/01 | 13:18 | 116 | н | Soll | | | | 1974 13:07 920 II SOIL ASPHART 1974 13:00 921 II SOIL /ASPHART 1974 14:31 1024 II SOIL /ASPHART 1974 14:34 1023 II SOIL/ASPHART 1974 14:34 1023 II SOIL/ASPHART SOIL/ASPHART SOIL/ASPHART SOIL/ASPHART ACKNOSS 1974 14:34 107CP II ACKNOSS | 89 | h/c1 | 13:12 | 516 | 11. | Soil | | | | 1974 13:30 921 11 Soll 1024 11 Soll/ASPINAT CORNER OF PKL LOT ACLOSS 10/4 14:34 1022 11 Soll/ASPINAT CORNER OF PKL LOT ACLOSS | 69 | hich | 13:07 | 026 | W | Soil | | | | 10/4 13:70 910 " SOIL/ASPHART 5 10/4 14:41 1024 " SOIL/ASPHART 5 10/4 14:31 (022) " SOIL/ASPHART 6 10/4 14:34 (022) " SOIL/ASPHART 7 10/4 14:34 (022) " SOIL/ASPHART 8 10/4 14:34 (022) " ASPHART | 24 | 4/61 | 00:51 | 921 | ri e | 7105 | | | | 10/4 14:41 1024 " SOIL/ASPIMET CORNER OF PKL LOT ACKOSS 10/4 14:31 1024 II ASPIMET | 7 | h/ol | 02:51 | 910 | и | Soil | | | | 10/4 14:34 (02) . SOIL/ANGHART CORNER OF PKL LOT ACKOSS 10/4 14:31 (02/4 11):46 (02/4) 11 SOIL/ANGHART CORNER OF PKL LOT ACKOSS | 24 | h/ol | 14:41 | 1024 | 33. | SOIL / ASPITALT | , | × 100 | | 10/4 14:31 102CP 11 SOIL/ASPART CORNER OF PKG LOT ACKOSS | 73 | h/01 | 4:14 | 6220 | 3 | SOIL/ASPART | | | | 10/4 ldsd 102Ce 11 | 7.1 | hjoi | 14:31 | 1201 | 11 | SOLLASPHALT | 一旦の | ACK055 | | | 345 | 10/4 | 14:46 | 220 | ri I | ASPAMT | | | Page 4 of 2203A Commerce Road, Suite 1 Forest Hill, MD 21050 USA P: 1-410-838-8780 | F: 1-410-838-8740 # CHAIN-OF-CUSTODY PASSIVE SOIL-GAS SAMPLES | | Project Information | uc | | | Client Information | | |-----------------------------|-----------------------|----------------|--------------------|-----------------------|-----------------------|---| | Beacon Project No.: | 3378 | | Company Name: | fame: | | Client PO No.: | | Site Name: | | | Office Location: | ition: | | | | Site Location: | | | Samples Su | Samples Submitted By: | | Expedited Turnaround Time | | Analytical Method: | U.S. EPA Method 8260C | d 8260C | Contact Phone No.: | one No.: | | Rush (Specify): days | | Target Compounds: | Beacon Standard TCL | TCL | | | | | | | Date Emplaced | Date Retrieved | Sampling | Type of Surface | Optional Sar | Optional Sample Information | | Field Sample ID | | | Hole Depth | (Soil/Asphalt/ | (e.g., Description of | (e.g., Description of Sample Location, Sample |
 | Time Emplaced | Time Retrieved | (inches) | Concrete/Gravel) | Condition, P | Condition, PID/FID Readings) | | 244 | 10/4 14:05 | 243 | 36 | ASPHALT | | | | 39.4 | 52:HI Wol | 248 | h | ASPART | | | | 9E | 84:41 4/6 | 1,023 | н | SOIL/ASPHACT | IN SOIL IN ERACK IN | IN PKG LOT | | 社 | 55-hl Was | 020) | 4 | Soil /ASPHALT | n 16 | | | 84 | 10:51 H/01 | 7501 | Ik | Soil | | | | 46 | 90:51 1/01 | 1033 | 2 | 5216 | × | Special Notes/Instructions: | uctions: | | | | | | ### Attachment 4 ### LABORATORY PROCEDURES FOR PASSIVE SOIL-GAS SAMPLES Following are laboratory procedures used with BEACON Passive Soil-Gas Surveys, a screening technology for expedited site investigation. After exposure, adsorbent cartridges from the passive samplers are analyzed using U.S. EPA Method 8260C as a guidance document, a capillary gas chromatographic/mass spectrometric method, modified to accommodate high temperature thermal desorption of the adsorbent cartridges and to meet the objectives of reporting semi-quantitative data. This procedure is summarized as follows: - A. The adsorbent cartridges are loaded with internal standards and surrogates prior to loading the autosampler with the cartridges. The loaded cartridges are purged in a helium flow. Then the cartridges are thermally desorbed in a helium flow onto a focusing trap. Any analytes in the helium stream are adsorbed onto a focusing trap. - B. Following trap focusing, the trap is thermally desorbed onto a Rxi-624Sil MS 20m, 0.18 mm ID, 1.00 micron film thickness capillary column. - C. The GC/MS is scanned between 35 and 300 Atomic Mass Units (AMU) at 3.12 scans per second. - D. BFB tuning criteria and the initial five-point calibration procedures are those stated in method SW846-8260C. System performance and calibration check criteria are met prior to analysis of samples. A laboratory method blank is analyzed after the daily standard to determine that the system is contaminant-free. - E. The instrumentation used for these analyses includes: - Agilent 7890-5975c Gas Chromatograph/Mass Spectrometer; - Markes Unity2 thermal desorber; - Markes UltrA2 autosampler; and - Markes Mass Flow Controller Modules. and - Agilent 7890-5975c Gas Chromatograph/Mass Spectrometer; and - Markes TD100 thermal desorption system. Appendix D | Appendix D | |--| | Soil Boring and Temporary Well Construction Logs | G | | ich | 1 | aritan Plaz
10 Fieldcre
dison, New | a I
st Ave, 6th F
Jersey 0883 | Boring Name: 53-0/ Project Name: Doofs 1d | | |---|---|-----------------------------------|------------------------------|--|--|---|--| | Clien | t: EPA | | | | | | | | | | | ion, | | | Project Number: 101995, 3323, 029. D | | | Drillin
Drillin
Samp
Drillin
North
East: | ng Contr
ng Metho
ole Metho
ng Date:
n: <i>43,026</i> | actor: od: Director od: Ace 0/8/0 | Talon
ext Pusi
tate li | her | Surface Elevation (ft amsl): NM Total Depth: IO' Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | | | Depth
(ft. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ff) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | NA | | | | | 8" Dark Brown M SAND | | - | | 1 | | 47" | 0.0 | | 18" Brown FSAND
1 Brown SILT&CLAY-wet | | 5 | X | | 4-5' | | D.O | | | | 3 | | | | 53 | 0.0 | | Same As Above (SAA) | | - | | | | 2,2 | | | | | 10 | | | | | Ø .D | | | | | | | | |)- | | | | - | | | | | | | | | - | | | | | | | | | | | | | | | | | | - | | | | | | | | | emarks: | | | | | | . P | Boring Completion Depth ft bgs/o ' | | Client | DM
t: EPA
ct Locati | | 1 | dison, New | a I
st Ave, 6th F
Jersey 088 | Page of Boring Name: SB /TWP-OZ Project Name: Doofs d Project Number: 101995, 3323,029. DI Surface Elevation (ft amsl): NM Total Depth: /3' Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | |--|---------------------------|---------------------------|-------------------------------------|---------------|------------------------------------|--|---| | Drillir
Drillir
Samp
Drillir
North | | actor: Tod: Director: Ace | Talon
et Pusi
tate la
1016 | | | | | | Depth
(ft. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ff) | Recovery (ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | 10 | X | NA | 4-5 | 41"
35" | | | Dark brown F-M SAVD
Some coal, Ash, and Brick
at 4.5' | |
Remarks: | | | , | | | | Boring Completion Depth ft bgs/3 | | Client: CPA Project Locat Drilling Contr | ion:II | ion, | ison, New | st Ave, 6th F
Jersey 088 | 37 | Project Name: Dofold Project Number: 101995, 3323,029. Di Surface Elevation (ft amsl): NM | |--|-----------------------------------|----------------------------|---------------|-----------------------------|---|---| | Drilling Control Drilling Methor Sample Methor Drilling Date: North: 43.03 East: 75.03 | od: Direction od: Ace 11/8/300638 | tate la
2016 | ne C | I m | Total Depth: \(\sum_{\mathcal{S}} \) Depth to Initial Water Level (ft bgs): Field Screening Instrument: \(P \sum_{\mathcal{D}} \) Logged by: \(E \sum_{\mathcal{R}} \) | | | Depth
(ff. bgs)
Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ff) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | 4-5 | 40° | nA | | 14" dark brown F-M SAND Some Ash. I brown F-C SAND ■ at 4' 8" SAA I brown CLAY | | Client: EPA | | 110 Fieldcrest Av
Edison, New Jers | Project Name: Doofs 1d Project Number: 101995, 3323, 029. DI | | |---|--|---------------------------------------|---|--| | Project Location | on: Ilion, | NY | | | | Drilling Contra
Drilling Metho
Sample Metho
Drilling Date:
North: 43.019
East: 75.03 | actor: Talor
d: Direct Pu
d: Acetate 1
1/8/2016 | n
she
sher | Surface Elevation (ft amsl): Total Depth: Depth to Initial Water Level (ft bgs): Field Screening Instrument: Logged by: ESR | | | (ff. bgs)
Sample
Number | Blows per 6 inches Sample Interval | Recovery (ft) | OVM Reading (ppm) Graphic Log | Material Description | | | 3-4 | 36 - | 0,0 | brown F-M SAND some
brick, gravel, and concrete | Frow 3-4' 1365 | Project Drilling Drilling Sampl Drilling North: | g Contra
g Metho
e Metho
g Date:
43.00 | actor: de Dire | ion, late late late late late | | Page of Boring Name: 513-05 Project Name: Doofs of Project Number: 101995, 3323,029. D Surface Elevation (ft amsl): NM Total Depth: 10' Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID | | | |--|--|--------------------|-------------------------------|-----|--|----------------|---| | Depth (ff. bgs) | Sample Number | Blows per 6 inches | Sample
Interval
(ft) | _ | OVM Reading (ppm) | Graphic
Log | Logged by: ESR Material Description | | | X | | 5-6 | 42" | 0.0 | | 10" SAA - Wet 10" SAA - Wet 10 brown F SAND AND GRAVEL | Remarks: | Proje | t: EPA | | ion, | lison, New | st Ave, 6th Fl
Jersey 0883 | Project Number: 101995, 3323.029. DI | | |--------------------|---|-----------------------|----------------------------|---------------|-------------------------------|---|---| | D | ng Methoole Methoole Methoole Methoole Methoole 12 13 10 15 15 15 15 15 15 15 15 15 15 15 15 15 | -I | A 17.00 | 4 | | Surface Elevation (ft amsl): NM Total Depth: 10 Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | | Depth
(ft. bgs) |
Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | NA | | 39" | 0.0 | | 11"dark brown F SAND AND AST
8"light brown VF-F SAND
4"dark brown F SAND AND AST | | - | × | | 4-5 | 3 | 0.0 | | 11"dark brown F SAND AND AST
8"light brown VF-F SAND
4"dark brown F SAND AND AST
12"light brown SILT& VF-SAND
trace brick
dark gray F-SAND AND ASH
V at 4' 13GS | | - | | | | 31" | 0.0 | | 4" SAA
Ight brown SILT AND
CLAY 1:He gravel | | - | | 1 | | | 0.0 | | CLITTI | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | - | | | | | | | | | Client: EPA Project Location: | Edison, New | I
t Ave, 6th Floor
Jersey 08837 | Page of Page of Page Point Name: 58/TWP-07 Project Name: Duofold | |--|-------------|---------------------------------------|--| | Drilling Contracto Drilling Method: 1 Sample Method: 1 Drilling Date: 1 North: 43.019 75 East: 75.0359 | r: Talon | 794/s | Project Number: 101995, 3323, 029. DIR Surface Elevation (ft amsl): NM Total Depth: 15 Depth to Initial Water Level (ft bgs): 7' Field Screening Instrument: PID Logged by: ESR | | Depth (ft. bgs) Sample Number Blows per | | OVM Reading (ppm) Graphic | Material Description | | 15 | 38" | 0.0 | 14" Brown F SAND little Ash Brick 4" SAA brown NF-F SAND trace ash, Brick wet @ 7'B45 | | Remarks: | | | Boring Completion Depth ft bgs | | | ith | 11 | 0 Fieldcres | t Ave, 6th Fle | Page of Boring Name: 53-08 | | | |---|--|---|---|--|---|--|--| | Locati | | | | | | Project Name: Doofs 1d Project Number: 101995, 3323,029. DIR | | | Contra
Metho
Metho
Date: /
13・の | actor: 7
d: Dire
d: Ace
1/9/1
2000 6 | talon
et Push
tate la
1016 | ي ا | | Surface Elevation (ft amsl): NM Total Depth: 3 Depth to Initial Water Level (ft bgs): NA Field Screening Instrument: PID Logged by: ESR | | | | Sample | Blows per
6 inches | Sample
Interval
(ft) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | X | | 2-3 | 22" | 0.0 | | dark brown F.M SAND
some ash, gravel trace brick | Y . | | | | Contra Metho Metho Date: 13.00 | Contractor: Method: Dire Method: Ace Date: M/9/13.02006 | Contractor: Talon, Blows between Post Method: Direct Post Method: Acetate 13 Date: M/9/2016 13.02006 15.035202 | In Fieldcres Edison, New Ediso | Contractor: Talon Blows ber Posk Method: Direct Posk Method: Acetate line Date: 11/9/2016 13.02006 75.035207 (t) (bbm) (bbm) (c) (bbm) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c | In Fieldcrest Ave, 6th Floor Edison, New Jersey 08837 EPA Location: Tion, NY Contractor: Talon, Method: Direct Posts Method: Acetate line Date: N/9/2016 13.02006 75.035207 Output | | | Client: EPA Project Locat Drilling Contr Drilling Methor Sample Methor Drilling Date: North: 43. 020 East; ~75.00 | ion: TI: | ion, / Talon et Push tate la | UY | st Ave, 6th F
Jersey 088 | Boring Name: SISTWP-09 Project Name: Doofs 1d Project Number: 101995, 3323,029. DI Surface Elevation (ft amsl): NM Total Depth: 13 Depth to Initial Water Level (ft bgs): Sield Screening Instrument: PID Logged by: ESR | | |--|-----------------------|------------------------------|------------------|-----------------------------|--|--| | Depth
(ft. bgs)
Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | 5 X | | 5-6 | 6"
7" | 0.0 | | I dark brown UF-F SAND
little gravel I brown SILT AND CIAY | | Client | DIM
SMI
EPA | ith | 11 | aritan Plaza
0 Fieldcres
dison, New | a I
st Ave, 6th FI
Jersey 0883 | Boring Name: 513 ~ 10 Project Name: Doofs ld | | |-------------------------------------|--|-----------------------|-------------------------------------|---|--------------------------------------|--|--| | | | on:II | ion, | NY | | | Project Number: 101995, 3323, 029. DI | | Drillin
Samp
Drillin
North | ig Contra
ig Metho
le Metho
ig Date:
: 43.01 | d: Dire | Talon
et Push
tate la
1016 | her | 31 | Surface Elevation (ft amsl): NM Total Depth: 10' Depth to Initial Water Level (ft bgs): 5 Field Screening Instrument: PID Logged by: ESR | | | Depth
(ff. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | | OVM Reading
(ppm) | Graphic
Log |
Material Description | | | | NA | | 41" | 0.0 | | I dark brown F-M SAND
Some brick, ash, gravel | | | X | | 5-6 | 42" | 0.0 | | 6" SAA
17" brown VF SAND
little gravel
V brown CLAY | | | | 1 | | | 0.0 | | 4 prown Chil | | - | | | | | | | | | | ,,, | | | | | | | | Remarks: | | | | | | | Boring Completion Depth ft bgs | | Client: EPA Project Locat | ion:II | ion, | ison, New
レゲ | st Ave, 6th F
Jersey 088 | Project Number: 101995, 3323.029. DI | | |---|---|-----------------------------|-----------------|-----------------------------|---|--| | Drilling Contr
Drilling Metho
Sample Metho
Drilling Date:
North: 43.0
East: ~75. | actor: 10 de: Director: 10 de: Director: 10 de: | t push
tate live
1016 | e | | Surface Elevation (ft amsl): NM Total Depth: /o Depth to Initial Water Level (ft bgs): 4 Field Screening Instrument: PID Logged by: ESR | | | (ft. bgs)
Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ff) | OVM Reading
(ppm) | Graphic
Log | Material Description | | <i>x</i> | | 4-5 | | 834 | | 2" Concrete V dark brown F-C SAND- Seturated V SAA | | | DM
i: EPA
ct Locati | ith | 11 | dison, New | a I
st Ave, 6th F
Jersey 088 | Page of Boring Name: SB TWP-1Z Project Name: Duofold Project Number: 101995, 3323,029. D | | |--|---------------------------|---------------------------------|-----------------------------|---------------|------------------------------------|--|--| | Drillin
Drillin
Samp
Drillin
North | | actor: 7 od: Dire od: Ace M/8/2 | Talon
et Push
tate la | | 9 | Surface Elevation (ft amsl): NM Total Depth: Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | | Depth
(ff. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | - | | NA | | 34" | 20 | | 34" brown F SAND little ash, brick, gravel | | - | | | ì | | 0.0 | MIII | | | - | X | | 6-7 | 42" | 65.3 | MANITAMILI | 6" SAA
I Gray SILT AND CLA
- Strong petrolium odor | | | | | | | 11.6 | HUMINU | | | - | | | | 72 | | MILLIAMENTINE | | | | | | | | | | | | | | | or . | | | | | | Remarks: | : | | | | | | Boring Completion Depth ft bgs | RG | C | | ith | 1. | | a I
st Ave, 6th Fl
Jersey 0883 | | Page of Boring Name: 513-13 | | | | | |--------------------|---------------------|-----------------------|-------------------------------------|-----|--------------------------------------|----------------|--|--|--|--|--| | | t: EPA
ct Locati | ion:T1 | ion, | NY | | | Project Name: Doofs ld Project Number: 101995, 3323,029. DIR | | | | | | Dellie | an Masha | a. A man | talon
et Pusi
tate la
1016 | | | | | | | | | | Depth
(ff. bgs) | Sample | Blows per
6 inches | Sample
Interval
(ff) | > | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | | | 5 | X | | 4-5 | 22" | 0.0 | | 4" Concrete 2" black F SAND AND ASH brown F SAND little brick and ash-wet@5' No Recovery Brown F SAND trace gravel | | | | | |
Remarks: | | | | | | 1 | Boring Completion Depth ft bgs | | | | | | Client: EPA Project Location: | Edison, New | Jersey 0883 | | Project Number: 101995, 3323, 029. D | | | | |---|--|----------------------|----------------|--|--|--|--| | Drilling Contractor:
Drilling Method: から
Sample Method: Ac
Drilling Date: ル/る
North: 43・01924 イ
East: フS・03425 | 12016 | - | (\$4,2 m) | Surface Elevation (ft amsl): NM Total Depth: 1 Depth to Initial Water Level (ft bgs): 5 Field Screening Instrument: PID Logged by: ESR | | | | | (ff. bgs) Sample Number Blows per | Sample
Interval
(ft)
Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | | | 6-7 | 0.0 | | 3" Concrete 3" black M-C SAND I brown SILT AND CLAY 6" SAA 8" Brown F-M SAND AND GRAVEL I brown SILT AND CLAY | | | | | Clien
Proje | | ion:TI | 11 Ec | wy | a I
st Ave, 6th F
Jersey 088 | | Page of o | |---|--|--|-------------------------------------|---------------|------------------------------------|----------------|--| | Drilliı
Drilliı
Samş
Drilliı
North
East; | ng Contr
ng Metho
ble Metho
ng Date:
n: 43,019 | actor: 7
od: Director: Ace
M/8/2
1702 | Talon
et Push
tate la
1016 | her | |) | | | Depth
(ft. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | 5 | X | MA | 4-5 | 39" | 0.0 | | 3" Concrete brown F SAND- wet @ 4' 10" SAA grag CLAY | | 10 | | 1 | ¥ | | | | | Remarks: Boring Completion Depth ft bgs __ 14 | CDM
Smit
Client: EPA
Project Location: I | Edison, New | t I
st Ave, 6th Floor
Jersey 08837 | Page
of Boring Name: SB/TWP-16 Project Name: Duofo 1d | |---|--|--|---| | Drilling Contractor: Drilling Method: 15 Sample Method: Ac Drilling Date: 15 North: 43.01556 East: 775.0332 | rest Pushe
cetate liner
/2016 | Val. | Project Number: 101995, 3323,029. DIR Surface Elevation (ft amsl): NM Total Depth: // Depth to Initial Water Level (ft bgs): 5 Field Screening Instrument: PID Logged by: ESR | | Depth (ft. bgs) Sample Number Blows per | Sample
Interval
(ft)
Recovery
(ft) | OVM Reading (ppm) Graphic Log | | | N | 5-6
57' | 0.0 | 6" Concrete I dark grey UF SAND trace brick 10" SAA V Gray CLAY | | Remarks: | 8 | • | Boring Completion Depth ft bgs// | | | | ith | 11 | aritan Plaza
0 Fieldcres
lison, New | a I
st Ave, 6th I
Jersey 088 | Floor
337 | Boring Name: 53/TWP - 18 | | | | |--------------------------------------|--------------------|-----------------------|-------------------------------------|---|------------------------------------|--|---|--|--|--| | | : EPA
ct Locati | on:II | ion, | NY | | | Project Name: Duofold Project Number: 101995, 3323,029. DIR | | | | | Drillin
Samp
Drillin
North: | a Metho | d: Dire | Talon
et Push
tate la
1016 | 2 | 9 | Surface Elevation (ft amsl): NM Total Depth: 14' Depth to Initial Water Level (ft bgs): 5 Field Screening Instrument: PID Logged by: ESR | | | | | | Depth
(ff. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | | | | M | | 31" | | | 7" black F.M SAND some
coal and Ash
brown F-M SAND some
gravel | | | | | 5 | X | | 5-6 | 49" | 0.0 | | 16" SAA
15" gray CLAY
I brown SAND AND
GRAVEL | | | | | 15 | | | | 2 | | | | | | | | | | v 64 | · | | | | | | | | | S | | ith | 11 | aritan Plaza
0 Fieldcrea
dison, New | a I
st Ave, 6th Fl
Jersey 0883 | oor
37 | Page of Page Name: 55 / TWP-19 | |--|------------------|--|-------------------------------------|---|--------------------------------------|---------------------------------------|---| | Client
Project | t: EPA | on:TI | ion, | NY | | | Project Name: Duofold | | Drillin
Drillin
Samp
Drillin
North | | actor: 6 od: Director: 6 od: Ace N/9/5 | Talon
et Pusi
tate la
1016 | | 4. | · · · · · · · · · · · · · · · · · · · | Project Number: 101995, 3323,029. DI Surface Elevation (ft amsl): NM Total Depth: 14 Depth to Initial Water Level (ft bgs): 5 Field Screening Instrument: PID Logged by: ESR | | Depth
(ff. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ff) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | 15 | X | | 4-5 | 37 | 0.0 | | 25" brown FSAND little gravel, Ash I Gray CLAY 30" SAA I light brown SAND AND GRAVEL | |
Remarks: | | | | | | I | Boring Completion Depth ft bgs 14' | P | C | | ith | 11 | | a I
st Ave, 6th FI
Jersey 0883 | | Page of Page Page | | | |-------------------------------------|---|----------------------------|-------------------------------------|------------------|--------------------------------------|---|--|--|--| | | : EPA
ct Locati | on:II | ion, | NY | | | Project Name: Doofs 1 d Project Number: 101995, 3323, 029. DI | | | | Drillin
Samp
Drillin
North | ng Contra
ng Metho
le Metho
ng Date:
: 43.021 | d: Dire
d: Ace
M/9/1 | lalon
et push
tate la
1016 | er | | Surface Elevation (ft amsl): NM Total Depth: /D' Depth to Initial Water Level (ft bgs): 4' Field Screening Instrument: PID Logged by: ESR | | | | | Depth
(ff. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | | X | | 4-5' | 37" | 0.0 | | 6" dark brown FSAND I brown FSAND AND GRAVEL 6" SAA 17" brown SILT AND CLAY I brown FSAND AND GRAVEL | | | |
Remarks: | | | | | | | Boring Completion Depth ft bgs/ | | | | Proje | | | 11 Ed | ison, New | t Ave, 6th Fl
Jersey 0883 | loor
37 | Page of Boring Name: SSB-01 Project Name: Doofs 14 Project Number: 101995, 3323.029. Di | |---|---|---|----------------------------|---------------|------------------------------|----------------|---| | Drillir
Drillir
Samp
Drillir
North
East: | ng Contra
ng Metho
ple Metho
ng Date:
n: 43.219 | actor: 1. d: Director: 1. d: Ace 01: Ace 11:8/3 17:4 3668 | Talon et Push tate la 1016 | her . | |).3.(.2) | | | Depth
(ft. bgs) | Sample | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | × | | 1-2' | 18" | 0.0 | | * dark brown F-CSAND
Some brick and ash | |
Remarks: | | | | | | | Boring Completion Depth ft bgs Z | RG | Client | ct Locati | | ion, | NY | Jersey 088 | | Boring Name: 55B-02 Project Name: Doofs 14 Project Number: 101995, 3323, 029. DI | | | |--|--|--|-------------------------------------|------------------|----------------------|---|--|--|--| | Drillin
Drillin
Samp
Drillin
North:
East; | g Contra
g Metho
le Metho
g Date:
: 43, 82 | actor: 7
od: Dire
od: Ace
11/8/1
037/1 | Talon
et Push
tate la
1016 | her her | | Surface Elevation (ft amsl): NM Total Depth: Z' Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | | | | (ft. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | 2' | X | NA
L | 1-2' | 20" | D.O. | | dark brown VF-F SAND
little gravel | | | | 3 | | ith | 11 | aritan Plaza
0 Fieldcres
lison, New | a I
st Ave, 6th F
Jersey 088 | loor
37 | Page / of / Boring Name: 5573-03 | | | | |---|--|--|----------------------------|---|------------------------------------|--|---|--|--|--| | Proje | t: <i>EPA</i>
ct Locati | on:II | ion, | NY | | | Project Name: Duofold Project Number: 101995, 3323, 029. DIR 60 | | | | | Drillir
Drillir
Samp
Drillir
North
East; | ng Contra
ng Metho
ole Metho
ng Date:
1:43.026 | actor: 7. de Director de Ace 1/9 / 2 387 | Talon et Push tate la 1016 | er er | | Surface Elevation (ft amsl): NM Total Depth: 2 Depth to Initial Water Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | | | | | Depth
(ft. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ff) | Recovery
(ft) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | | 2 | X | NA I | 1-2 | - /4" | 0.0 | | I dark brown F SAND
some ash, Gravel, and
brick | | | | | Remarks | : | | | | | | Boring Completion Depth ft bgs | | | | | | | ith | 110 | ritan Plaza
) Fieldcres
ison, New | I
t Ave, 6th Fl
Jersey 0883 | Page of Page Page Page | | | | | |--|---------------------------------|---|--------------------------------------|---|-----------------------------------|---|--|--|--|--| | Client:
Projec | €₽A
t Locati | on:II | ion, / | UY | | Project Name: Doofold Project Number: 101995, 3323,029. DIR | | | | | | Drilling
Drilling
Sampl
Drilling
North:
East; | g Contrag Methors Methors Date: | actor: 7
od: Dire
od: Ace
11/9/1
3300 8 | Talon
et Push
tate lin
1016 | er
er | | Surface Elevation (ft amsl): NM Total Depth: 2' Depth to Initial Water
Level (ft bgs): Field Screening Instrument: PID Logged by: ESR | | | | | | Depth
(ff. bgs) | Sample
Number | Blows per
6 inches | Sample
Interval
(ft) | Recovery (ff) | OVM Reading
(ppm) | Graphic
Log | Material Description | | | | | 2 | X | | 1-2 | 18" | O.D | | brown VF-F SAND trace
brick and gravel. | | | | | Remarks: | | | | | | | Boring Completion Depth ft bgs | | | | Appendix E # Appendix E Groundwater Sampling Logs # PAGE 1 UF 2 # LOW FLOW GROUNDWATER SAMPLING PURGE RECORD Former Duofold Corporation Ilion, New York DATE: 11/7/16 WELL#: MW-1 SAMPLERS: ATZ DEPTH OF PUMP INTAKE: 13 (ft TIC or ft BGS (circle one) WEATHER CONDITIONS: SVAM 50 7 SCREENED/OPEN BOREHOLE INTERVAL: SAMPLE ID: DF-MW 01-1/-F SAMPLE TIME: SAMPLE FLOW RATE: 200 ml/minute | CLP ID: (W | 35 T C 3 | Instrument Type | | 1340
ght | YSI Model
Other (spec | Instrument: | | | | | |------------|------------------|------------------------------|--------------|---------------------|--------------------------|---|--------------------------------|--------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC / ft BGS (circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cm ^c) or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 13:00 | 1.25 | | 250 | | 7.06 | 0871 | 0.34 | 18.15 | 103 | 0.0 N | | 1305 | | 10 | 1 | | 7.00 | 0.869 | 0-00 | 12.87 | 111 | | | 1310 | | MILL | | - 6 | 6.99 | 0.870 | | 12.61 | 113 | 291 | | 1315 | | , | | | 6.98 | 0.870 | | 12.57 | 115 | 99.8 | | 1320 | | | | | 6.48 | 0.868 | against time | 12.60 | 117 | 45.4 | | 1325 | | 3/4/ | | | 6.97 | 0.867 | - Carrier | 12.64 | 117 | 41.6 | | 1338 | 2 1 | / | 1 | | 6.97 | 0.868 | | 12.58 | 118 | 17.6 | | 1333 | | \ | | | (,97 | 0.868 | | 12.60 | 117 | 16.5 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing PAGE 20F2 DATE: 11/7/16 WELL#: MW-01 SAMPLERS: AR **DEPTH OF PUMP INTAKE:** ft TIC or ft BGS (circle one) WEATHER CONDITIONS: SURNY \$500F SCREENED/OPEN BOREHOLE INTERVAL: 4-14 ft TIC or ft BGS (circle one) SAMPLE ID: DF-MW-01-1/F CLP ID: BD493 SAMPLE TIME: 1340 SAMPLE FLOW RATE: ml/minute 13 | | | Instrument Type/Model: Complete and/or Circle at right | | | YSI Model #(circle one) Other (specify) | | | | | | |---------|---------------------------|--|--------------|------------------------|---|---------------------------------------|--------------------------------|------------------|---------------------------|----------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN
(± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY
(± 10%) | | 24-Hour | gallons / (liters (circle | ft TIC/ ft BGS
(circle one) | Units: | ft TIC ft
BGS | SU | S/cm, mS/cm/ or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1336 | | | 250 | | 6.97 | 0.860 | Mayor contract | 12.62 | 115 | 17.4 | | 1340 | SAMPLE | 1001 | | | Υ | | | | | | 7 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DATE: 11/7/16 WELL#: MW-07 SAMPLERS: ALL DEPTH OF PUMP INTAKE: 15 ft TIC or ft BGS (circle one) WEATHER CONDITIONS: SURNY 55°F SCREENED/OPEN BOREHOLE INTERVAL: 5-15 ft TIC or ft BGS (circle one) SAMPLE ID: DF-MW-02-1 (-F) CLP ID: (MYBD4Q4 SAMPLE TIME: 1455 SAMPLE FLOW RATE: ml/minute | | 1 | Instrument Type/Model: Complete and/or Circle at right | | | YSI Model
Other (spec | | (circle on | e) | Instrument: | | |---------|------------------|--|--------------|---------------------|--------------------------|--|--------------------------------|------------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cm ^e or µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1420 | 1.25 | 1,11 | 250 | | 6.66 | 0.928 | 0.33 | 15.79 | -2.0 | 275 | | 1425 | 1 | No WLY | 1 | | 6.63 | 0.916 | 6.01 | 15.80 | -12.0 | 146 | | 1430 | | \ 0/ | | | 6.63 | 0.909 | 0.01 | 15.33 | LO | 70.7 | | 1435 | | | | | 6.66 | 0.897 | 0.01 | 15.14 | 70 | 57.8 | | 1440 | | X | | Į. | 6.69 | 0.881 | 0.01 | 15.27 | 7.0 | 37.1 | | 1445 | 4 | | | | 6.71 | 0.873 | 0.01 | 15.25 | 9.0 | 32.4 | | 1448 | 1 | | | | 6.13 | 0.864 | 0.01 | 15,30 | 9.0 | 30.8 | | 1451 | 100 | | | | 6.74 | 0.860 | 0.01 | 15 27 | 10.0 | 30.3 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DTW: 7.05 TIC DTB: 14.15 TIC WELL#: MW-03 SAMPLERS: AR DEPTH OF PUMP INTAKE: ft TIC or ft BGS (circle one) WEATHER CONDITIONS: SURAY 35'F SCREENED/OPEN BOREHOLE INTERVAL: ft TIC or ft BGS SAMPLE ID: DF. MW-03-2 (-F) CLP ID: (M)30405 SAMPLE TIME: 900 SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type Complete and/or | | ght | YSI Model
Other (spec | 0 | oriba U-22 | (circle on | Instrument: | | |---------|------------------|---------------------------------|--------------|---------------------|--------------------------|--|--------------------------------|------------------|---------------------------|-----------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY | | 24-Hour | gallons / | ft TIC/ ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cmc/ or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 8 25 | 1.25 | 7.08 | 250 | - | 6.63 | 1.16 | 0.01 | 10.36 | -52 | 1000 | | 830 | 1 | 7.08 | 1 | 0.03 | 6.74 | 1.15 | 0.01 | 11.01 | -44 | 499 | | 835 | | 7.05 | | 0 | 6.62 | 1.14 | 0.01 | 11.18 | -38 | 411 | | 840 | | 7.05 | | 0 | 6.60 | 1.14 | 0.01 | 11.13 | -40 | 308 | | 345 | | 7.05 | | 0 | 6.61 | 1.14 | 0.01 | 11.17 | -42 | 134 | | \$50 | | 7.05 | | 0 | 6.61 | 1.14 | 0.01 | 11.08 | -42 | 147 | | 853 | 1 | 7.05 | | 0 | 6.61 | 1.14 | 0.01 | 11.07 | -42 | 153 | | 857 | | 7.05 | V | 0 | 6.62 | 1.14 | 0.0) | 11.07 | -41 | 152 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing Dru 856 TIC DATE: 11/8/16 WELL#: MW-OLF SAMPLERS: A **DEPTH OF PUMP INTAKE:** ft TIC or ft BGS (circle one) WEATHER CONDITIONS: Clear 45° F SCREENED/OPEN BOREHOLE INTERVAL: 5-15 (circle one) SAMPLE ID: DF-MW-C4-1(-F) SAMPLE TIME: 1035 SAMPLE FLOW RATE: 700 ml/minute 14.5 | | | Instrument Type
Complete and/or | | ght | YSI Model
Other (spec | , | (circle on | e) | Instrument: | | |---------|------------------|------------------------------------|--------------|---------------------|--------------------------|---------------------------------------|--------------------------------|--------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. |
REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | fTIC ft BGS
(circle one) | Units: | ft TIO / ft
BGS | SU | S/cm, mS/cm° or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1005 | 1.25 | 8.60 | 250 | _ | 7.07 | 0,880 | 2.29 | 11.69 | 109 | 734 | | 1010 | 1 | 8.60 | | 0 | 7.10 | 0.837 | 0.01 | 12.10 | 107 | 231 | | 1015 | | 8.61 | | 6.01 | 7.09 | 0.838 | 001 | 12.18 | 110 | 92.2 | | 1020 | | 8.61 | | 0 | 7.08 | 0.850 | 0,01 | 12.23 | 114 | 46.8 | | 1025 | | 8.61 | | 6 | 7.07 | 0.860 | 0.01 | 12.28 | 116 | 24.1 | | 1028 | | 8.61 | | 0 | 7.07 | 0.862 | 0.01 | 12.30 | 118 | 22.3 | | 1031 | • | 8.61 | 1 | 0 | 7.07 | 0.868 | 6.01 | 12.28 | 118 | 20.9 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing Pg 10 +2 # LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DTW 7,38 TIC DTB 14.95 TIC 11/8/16 DATE: MW-05 WELL #: SAMPLERS: M **DEPTH OF PUMP INTAKE:** ft (TIC or ft BGS (circle one) WEATHER CONDITIONS: SUNNY 50'F SAMPLE ID: MW - US-1(-F) SCREENED/OPEN BOREHOLE INTERVAL: 5-15 (ft TIC or ft BGS (circle one) CLP ID (M)BD4Q7 SAMPLE TIME: 155 SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type. Complete and/or | | ght | YSI Model
Other (spec | e) | Instrument: | | | | |---------|------------------|----------------------------------|--------------|---------------------|--------------------------|---------------------------------------|--------------------------------|--------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | (circle one) | Units: | ft TIC) ft
BGS | SU | S/cm, mS/cmc/or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1115 | 1.25 | 7.62 | 250 | _ ' | 6.81 | 0.751 | 2.99 | 12.73 | 150 | 743 | | 1120 | 1 | 7.68 | 250 | +0.66 | 6.80 | 0.741 | 1.65 | 13.54 | 149 | 244 | | 1125 | | 7.68 | / | 0 | 6.79 | 0.738 | 1.48 | 13.82 | 148 | 122 | | 1130 | | 7.68 | | 6 | 6.79 | 0.730 | 1.36 | 13.93 | 149 | 77.6 | | 1135 | | 7.68 | | 0 | 6.79 | 0.727 | 1.21 | 14.03 | 151 | 55,1 | | 1140 | | 7.10 | | +0.02 | 4.79 | 0.729 | 1.08 | 14,14 | 151 | 42.1 | | 1145 | V | 7.10 | | Ó | 6.78 | 0.731 | 0.90 | 14.41 | 152 | 28.0 | | 1148 | | 7.70 | V | 0 | 6.78 | 0.730 | 0.86 | 14.51 | 152 | 26.3 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DATE: 11/8/16 WELL #: MW-05 SAMPLERS: ATL **DEPTH OF PUMP INTAKE:** 14 (ft TIC or ft BGS (circle one) WEATHER CONDITIONS: SURRY 50'F SCREENED/OPEN BOREHOLE INTERVAL: 5-15 SAMPLEID: DF-MW-05-1(-F) SAMPLE TIME: SAMPLE FLOW RATE: ml/minute | | | Instrument Type. Complete and/or | | ght | YSI Model
Other (spec | e) | Instrument: | | | | |---------|------------------|----------------------------------|--------------|---------------------|--------------------------|-------------------------------------|--------------------------------|------------------|---------------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX
POTENTIAL
(± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC ft BGS
(circle one) | Units: C | ft TIC / ft
BGS | su | S/cm, nS/cm²/ or µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1151 | 0.75 | 7.70 | 250 | , | 6.78 | 0.730 | 0.85 | 14.58 | 152 | 24.6 | | 1154 | / | 7.70 | | | 6.78 | 0.730 | 0.82 | 14.60 | 152 | 24.9 | | 1155 | Collect | DF-MW-O | 5-1 | | | | | | | | | | 1200 | Collect | 9w-9 | 00-1, CLA | + BDGN | 6 | 50 ml/min during compl | | | | | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DTW 7.45 TIC DTB 12.35 TIC DATE: 11/8/16 WELL#: MW-06 SAMPLERS: AT- CLPID: CM/BD408 **DEPTH OF PUMP INTAKE:** (ft TIC or ft BGS (circle one) WEATHER CONDITIONS: Sunny 65°F SCREENED/OPEN BOREHOLE INTERVAL: ft TIC or ft BGS (circle one) SAMPLE ID: DF-MW-06-16F) SAMPLE TIME: 1340 SAMPLE FLOW RATE: ml/minute | | | Instrument Type
Complete and/or | | ght | YSI Model
Other (spec | e) | Instrument: | | | | |---------|------------------|------------------------------------|--------------|---------------------|--------------------------|-------------------------------------|--------------------------------|--------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC ft BGS
(circle one) | Units: | ft TIC // ft
BGS | SU | S/cm, mS/cm³/ or µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1305 | 1.25 | 7.45 | 250 | - ' | 7.12 | 0.905 | 3,38 | 16.52 | 149 | 168 | | 1310 | | 7.48 | / | 0.03 | 7.11 | 0.908 | 2.07 | 16.32 | 147 | 149 | | 1315 | | 7,48 | | 6 | 7:11 | 0.909 | 1.63 | 16.13 | 147 | 112 | | 1320 | | 7.48 | | 6 | 7.11 | 0.912 | 1,47 | 15.95 | 148 | 105 | | 1325 | | 7.48 | | 6 | 7.11 | 0.910 | . 1,34 | 15.93 | 148 | 77.6 | | 1330 | | 7.48 | | 0 | 7.11 | 0.909 | 1.31 | 15.89 | 149 | 59.7 | | 1333 | | 7.48 | 1/ | 0 | 7.11 | 0.911 | 1.35 | 15.88 | 149 | 54.4 | | 1336 | V | 7.48 | ~ | 0 | 7.11 | 0.914 | 1.28 | 15,92 | 147 | 50.2 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing WELL#: MW-07 SAMPLERS: **DEPTH OF PUMP INTAKE:** ft TIC or ft BGS (circle one) WEATHER CONDITIONS: Cloudy 50F SCREENED/OPEN BOREHOLE INTERVAL: 3-13 ft TIO or ft BGS (circle one) SAMPLE ID: DF. MW-07-1 (-F) CLP IDIMBD409 SAMPLE TIME: 1215 SAMPLE FLOW RATE: 7.06 ml/minute | | | Instrument Type Complete and/or | | ht | YSI Model
Other (spec | Instrument: | | | | | |---------|------------------|---------------------------------|--------------|---------------------|--------------------------|---|--------------------------------|--------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | file / ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cm ^c / or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1148 | | 7.48 | 250 | | 7.14 | 0.954 | 3,43 | 17.59 | 241 | 196 | | 1153 | 1 | 7,48 | 1 | | 7.08 | 0.959 | 1.54 | 12.86 | 246 | 106 | | 1158 | | 7.48 | | | 7.08 | 0.956 | 1.31 | 12.93 | 250 | 48.1 | | 1203 | | 7.48 | | | 7.05 | 0.953 | 1.37 | 12.72 | 251 | 36.5 | | 1206 | | 7,48 | | | 7.07 | 0.951 | 1.29 | 12.92 | | 31.4 | | 1209 | | 7.48 | | | 7.08 | 0.952 | 1.26 | 12,92 | 253 | 31.7 | | 1212 | | 7.48 | V | | 7.08 | 0.958 | 1.26 | 1290 | 254 | 31.4 | | 1215 | | | SAN | IPLE - | | | | | | | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DATE: 11/10/16 WELL
#: 10008 SAMPLERS: AR **DEPTH OF PUMP INTAKE:** 12 ft TIC or ft BGS (circle one) WEATHER CONDITIONS: clear 34F SCREENED/OPEN BOREHOLE INTERVAL: 3-13 (ft TIO or ft BGS (circle one) SAMPLE ID: DF-MW-08-1(-F) CLP ID: (M) BD 420 SAMPLE TIME: \$45 SAMPLE FLOW RATE: 200 ml/minute | | 70011 | Instrument Type
Complete and/or | | ght | YSI Model #/ Horiba U-22 (circle one) Other (specify) | | | | | Instrument: | |---------|------------------|------------------------------------|--------------|---------------------|---|---|--------------------------------|------------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cm ^e / or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 805 | 1.25 | 6.70 | 150 | - " | 7.37 | 0.826 | 001 | 10.81 | -90 | 392 | | 810 | 1 | 6,70 | 1 | 0 | 7,36 | 0817 | 0.01 | 10.58 | -55.0 | 228 | | 315 | | 6.70 | | 0 | 7.37 | 0:782 | 001 | 10.86 | -83.0 | 124 | | 520 | | 4.70 | | 0 | 7.38 | 0.764 | 0.01 | 10.87 | -90.0 | 74.2 | | 825 | | 6.70 | | 0 | 7.38 | 0,753 | . 0.01 | 10,98 | -92.0 | 40.0 | | 53c | | 6.70 | | 0 | 7.38 | 0,750 | 0,01 | 10,99 | -92.0 | 26.1 | | 835 | | 4.70 | | 6 | 7.38 | 0.750 | 0.01 | 10,97 | | 19.9 | | 540 | Y | Qno | V | 0 | 7.38 | 0.749 | 0.01 | 10.93 | | 21.8 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L TIC = Top of Inner Casing Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm WELL #: MW-09 SAMPLERS: A DEPTH OF PUMP INTAKE: (4) (ft TIC or ft BGS (circle one) WEATHER CONDITIONS: O'VE Cast 42°F SCREENED/OPEN BOREHOLE INTERVAL: 5-15 CLPID: (M) BD4R1 SAMPLE ID: DF-MW-U9-1(-F) SAMPLE TIME: 1010 SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type Complete and/or | | ght | YSI Model
Other (spec | e) | Instrument: | | | | |---------|------------------|---------------------------------|--------------|---------------------|--------------------------|-----------------------------------|--------------------------------|------------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cm or uS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 946 | 1.25 | 8.65 | 250 | - 4 | 6.62 | 1.13 | 0.13 | 10.17 | 163 | 60.7 | | 951 | 13 | | | | 6.58 | 1.12 | 0.01 | 10.99 | 161 | 14,7 | | 954 | 0.75 / | 8.65 | | | 6.58 | 1.12 | 0.01 | 11.15 | 165 | 7.4 | | 957 | | ≥ 65 | | | 6.57 | 1.13 | 0.01 | 11.20 | 168 | 4.2 | | 1000 | | 3.65 | | | 6.58 | 1.13 | 0.01 | 11,71 | 171 | 1.0 | | 1003 | | 8.65 | | | 6.58 | 1.13 | 0.01 | 11,20 | 172 | 01 | | 1000 | V | 8.65 | 1 | | 658 | 1.13 | 0.01 | 11.19 | 173 | 0,1 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing WELL#: MW-10 SAMPLERS: WEATHER CONDITIONS: Many 45 °F SAMPLE ID: DF-MW-10-1(-F) SAMPLE ID: (M) BD4R7 SAMPLE ID: (M) BD4R7 **DEPTH OF PUMP INTAKE:** ft TIC or ft BGS (circle one) SCREENED/OPEN BOREHOLE INTERVAL: 5 ← 15 (tircle one) SAMPLE TIME: SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type. Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|---------------------------|----------------------------------|--------------|---------------------|--------------------------|--|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / (liters (circle | ft TIC / ft BGS
(circle one) | Units: (| ft TIO / ft
BGS | SU | S/cm/mS/cm ^c) or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1310 | 1.25 | 7.4 | 250 | 0 | 7.18 | 0.826 | 0.01 | 11.96 | 238 | 365 | | 1315 | 1 | 7.4 | 1 | 0 | 7.14 | 0.817 | 0.01 | 12:44 | 236 | 172 | | 1320 | | 7.4 | | 0 | 7.13 | 0.818 | 0.01 | 12.60 | 216 | 51.L | | 1325 | | 7-4 | | 0 | 7.13 | 0.818 | 6.01 | 12.64 | 206 | 16.0 | | 1336 | 4 | 7.4 | | 0 | 7.13 | 0.817 | 0.01 | 12.68 | 192 | 5.7 | | 1333 | 0.75 | 7-4 | ./ | 0 | 7.12 | 0.817 | 0.01 | 12.69 | 186 | 2.2 | | 1336 | 4 | 7.4 | V | 0 | 7.12 | 0.818 | 0.01 | 12.68 | 184 | 2.5 | | 1340 | | | SAT | APLE - | | | | - | | - | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DTW 8.1 TIL DATE: 11 9 11 6 WELL #: MW-11 SAMPLERS: AND DEPTH OF PUMP INTAKE: 12.8 ft (TIC) or ft BGS (circle one) WEATHER CONDITIONS: rainy 47°F SCREENED/OPEN BOREHOLE INTERVAL: SAMPLE ID: DF-MW-12-1(-F) CLP ID: MBD4 RB SAMPLE TIME: 900 SAMPLE FLOW RATE: ml/minute | , | | Instrument Type,
Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|-------------------------------------|--------------|---------------------|--------------------------|--|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC/ ft BGS
(circle one) | Units: (| ft TIC Litt
BGS | SU | S/cm, mS/cm// or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 830 | 1. 25 | 8.1 | 250 | 0 | 7.03 | 0.983 | 0.77 | 13.56 | 259 | in | | 835 | 1 | 8.1 | | 0 | 7.11 | 0.978 | 0.01 | 13:71 | 255 | 84.7 | | 840 | | 8.1 | | 6 | 7.13 | 0.977 | 0.01 | 13.72 | 255 | 44.3 | | 845 | | 8,1 | | 0 | 7.13 | 0.972 | 0.0(| 13.77 | 255 | 33.5 | | 850 | 1 | 8.1 | | 0 | 7.15 | 0.971 | 0.01 | 13.77 | 256 | 22.1 | | 253 | 0.75 | 8.1 | | 0 | 7.15 | 0, 911 | 0.01 | 13.18 | 255 | 22.4 | | 856 | 1 | 8.1 | 1 | 0 | 7.14 | 0.971 | 0.01 | 13.76 | 11 | Z1.8 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing 11/9/16 DATE: MW-12 WELL #: SAMPLERS: AT **DEPTH OF PUMP INTAKE:** ft/TIC or ft BGS (circle one) WEATHER CONDITIONS: Closey 46'F, light rain SCREENED/OPEN BOREHOLE INTERVAL: (circle one) SAMPLE ID: DF-MW-12-1 CLP ID: BP4RL SAMPLE TIME: \OHS SAMPLE FLOW RATE: ml/minute | | | Instrument Type
Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | ne) | Instrument: | |---------|------------------|------------------------------------|--------------|---------------------|--------------------------|--|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ff TIO / ft
BGS | SU | S/cm, nS/omc/ or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1005 | 1.25 | 8.27 | 250 | _ | 7.45 | 0.893 | 4.50 | 12.65 | 233 | - MZ | | 1012 | 1 | 8.25 | 1 | 0.02 | 7.31 | 0.872 | 1,78 | 13.84 | 241 | 352 | | 1017 | | 8,25
 | 0 | 7.30 | 0.874 | 1.12 | (3.90 | 244 | 243 | | 1022 | | 8,25 | | 0 | 7.30 | 0.874 | 0.68 | 13.76 | 246 | 168 | | 1027 | | 8.25 | | 6 | 7.30 | 0.874 | 1,24 | 13,70 | 247 | 84,6 | | 1032 | | 8.25 | | 6 | 7.30 | 0.813 | 0.57 | 13.67 | 0 | 36.7 | | 1037 | | 8.25 | 1 | 6 | 7.28 | 0.873 | 0.66 | 13.67 | 247 | 10.3 | | 1042 | V 1000 | 8.25 | V | 6 | 7.27 | 0.874 | 0.67 | 13.63 | 248 | 10.4 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DTW 6.88 Riser ALS: 2.27 ## LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DATE: Aliolic WELL #: TWP-Z SAMPLERS: ER CLP ID: BP4RS DEPTH OF PUMP INTAKE: 10 #TIO or ft BGS (circle one) WEATHER CONDITIONS: Clear & 30 SCREENED/OPEN BOREHOLE INTERVAL: ft TIC or ft BGS SAMPLE ID: OF-TWP-02-1(-F) SAMPLE TIME: 840 SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type
Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|------------------------------------|--------------|---------------------|--------------------------|-----------------------------------|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ft TIC ft
BGS | SU | S/cm, mS/cm or uS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 800 | 2.5 | 6.98 | ,500 | 0.10 | 7.07 | 0.725 | 0.01 | 6.42 | -39 | 47.8 | | 305 | 5 | 7.04 | ,500 | 0.14 | 6.91 | 0.713 | 0.01 | 7.15 | -42 | 36.2 | | 810 | 7.5 | 7.10 | -500 | 0.22 | 6.90 | 0.704 | 0.01 | 7.23 | -45 | 27.9 | | 815 | 10 | 7.14 | .506 | With | 6.78 | 0,697 | 0.01 | 7.57 | -47 | 22.3 | | 920 | 12.5 | 7.15 | .500 | 0.27 | 6.78 | 0.693 | 0.01 | 7.94 | -50 | 18.2 | | 825 | 15 | 7.16 | .500 | 0.23 | 6.76 | 0.693 | 0.01 | 8.14 | -53 | 14.6 | | 830 | 17.5 | 7.17 | .500 | 0.29 | ie.74 | 0.689 | 0,01 | 8.29 | -55 | 129 | | 835 | 20 | 7.17 | ,500 | 0.29 | 6.74 | 0.686 | 0.01 | 8.61 | -59 | 11.7 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs TIC = Top of Inner Casing Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm BGS = Below Ground Surface of Z DUP SAMPLE 12: GW-900-Z LOW FLOW GROUNDWATER SAMPLING PURGE RECORD Former Duofold Corporation Sample time 1010 Illion, New York DATE: 11/10/16 WELL #: 760 P-03 SAMPLERS: ER DEPTH OF PUMP INTAKE: // ITTIC or ft BGS (circle one) WEATHER CONDITIONS: Clear 232 SCREENED/OPEN BOREHOLE INTERVAL: 3-13 (ft TIC or ft BGS SAMPLE ID: DF. 762P-03-1(-F) CLP ID: BD4R6 SAMPLE TIME: SAMPLE FLOW RATE: MI/minute (circle one) DTW: 8.35 Riser AGS: 0.95 | | | Instrument Type | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|---------------------------------|--------------|---------------------|--------------------------|---|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, nS/cm ^s or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 910 | 2.5 | 8.36 | ,500 | 0-01 | 7.07 | 0.710 | 0.01 | 10.34 | -36 | 638 | | 915 | 5 | 8.36 | ,500 | 0.01 | 7,09 | 0.703 | 0.01 | 10.57 | -38 | 478 | | 900 | 7.5 | 8,37 | ,500 | 0.07 | 7.11 | 0.699 | 0.01 | 10.76 | -34 | 176 | | 925 | 10 | 8.37 | ,500 | 0.0.2 | 7,13 | 0.695 | 0.01 | 10.90 | - 78 | 130 | | 930 | 12,5 | 8.37 | .500 | 0.02 | 7.14 | 0.694 | 0.01 | 10,95 | -37 | 97.6 | | 935 | 15 | 8.37 | . 500 | 0.02 | 7.14 | 0.694 | 0.01 | 11.00 | - 37 | 89.7 | | 940 | 17.5 | 8.37 | ,500 | 0.02 | 7,14 | 0.693 | 0.01 | 11-11 | -36 | 73.Z | | 945 | ro | 8.37 | · 500 | 0.02 | 7.15 | 6. 691 | 001 | 11.79 | -36 | 59.8 | should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L TIC = Top of Inner Casing Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (μ S/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 μ S/cm = 1 mS/cm 2 682 ## LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DATE: 11/10/16 WELL#: TWF-03 SAMPLERS: ER DEPTH OF PUMP INTAKE: 17_ ft/1fC or ft BGS (circle one) WEATHER CONDITIONS: Chara 35° SCREENED/OPEN BOREHOLE INTERVAL: 3-13 ft TIC or ft BGS (circle one) SAMPLE ID: DF-TWP-03-1(-F) SAMPLE TIME: WOSSAMPLE FLOW RATE: MI/minute CLP ID: 130486 | | | Instrument Type Complete and/or | | ght | YSI Model
Other (spec | e) | Instrument: | | | | |---------|------------------|---------------------------------|--------------|------------------------|--------------------------|------------------------------------|--------------------------------|------------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN
(± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / (| ft TIC ft BGS
(circle one) | Units: | ft TIC ft | SU | S/cm, nS/cm/ or µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 950 | 22-5 | 8.37 | .500 | 0.02 | 7.15 | 0.690 | 0.01 | 11.31 | -36 | 48.7 | | 955 | 25 | 8.37 | .500 | 0.02 | 7.16 | 0.689 | 0.01 | 11.32 | -35 | 45.4 | | 1000 | 27.5 | 8.37 | ,560 | 0.02 | 7.15 | 0.636 | 0.01 | 11.37 | -33 | 42,3 | ingt. Flaurets show | | | | 50 11 : 1 : | | | | | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DTW 9.32 Riser 145: 0.20 ## LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DATE: 4/10/16 WELL #: 72P-7 SAMPLERS: EL DEPTH OF PUMP INTAKE: // (TIG or ft BGS (circle one) WEATHER CONDITIONS: Clear & 40 SCREENED/OPEN BOREHOLE INTERVAL: 5-15 (ft TIC or ft BGS (circle one) SAMPLE ID: DF-TW9-07-1 (-F) SAMPLE TIME: ING SAMPLE FLOW RATE: ml/minute | | | Instrument Type. Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|----------------------------------|--------------|---------------------|--------------------------|--------------------------------------|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft BGS
(circle one) | Units: (| ft DC / ft
BGS | SU | S/cm, mS/cm or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1045 | 2.5 | 9.82 | 1500 | 0.00 | 7.15 | 0.779 | 7.53 | 11.53 | 89 | 331 | | 1050 | 5 | 9.82 | ده5. | 0.00 | 7.02 | 0.769 | 2.74 | 11.86 | 101 | 236 | | lo 55 | 7.5 | 9.82 | ,600 | 0.00 | 7.00 | 0.767 | 2.66 | 11.98 | 106 | 120 | | 1100 | 13 | 9.82 | . 503 | 0.00 | 6.99 | 0.767 | 2.68 | 12,03 | 109 | 87.0 | | 1105 | 12.5 | 9,82 | 1500 | 0.00 | 6.99 | 0.765 | 2.56 | 12.05 | | 29.4 | | 1110 | 15 | 9.82 | .500 | 0.00 | 6.89 | 0.767 | 2.50 | 1208 | 116 | 15.2 | | 1115 | 17.5 | 9.82 | . 500 | 0.00 | 6.98 | 0.760 | 2-10 | 12.10 | 118 | 13.7 | | 1120 | 70 | 9.82 | .500 | 0.00 | 6.98 | 0.757 | 2.34 | 12.12 | 120 | 12.2 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized
for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs TIC = Top of Inner Casing Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm BGS = Below Ground Surface DTW: 8,57 Kizer AGS: ## LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DATE: 14/10/16 WELL#: TWP-09 SAMPLERS: DEPTH OF PUMP INTAKE: 12 (ft TIC or ft BGS (circle one) WEATHER CONDITIONS: Clear \$ 45 SCREENED/OPEN BOREHOLE INTERVAL: 3-13 Of The or ft BGS (circle one) SAMPLE ID: DF-76-09-1 (-F) CLP ID: B0488 SAMPLE TIME: 1210 SAMPLE FLOW RATE: 200 Hml/minute / Horiba U-22 Instrument Type/Model: YSI Model # (circle one) Instrument: Complete and/or Circle at right Other (specify) CURRENT VOLUME **DEPTH TO** FLOW DRAWDOWN pH SPECIFIC DISSOLVED TEMP. REDOX TURBIDITY TIME **PURGED** WATER RATE CONDUCTIVITY **OXYGEN** POTENTIAL (± 0.3 FT) (± 0.1 SU) (± 3%) (± 10%) (± 10%) (± 10 mV) (± 10%) ff TIC) / ft BGS ft TIO / ft 24-Hour gallons / Units: S/cm, mS/cm° or SU mq/L Units: mV **NTUs** liters (circle 6/Min BGS (circle one) µS/cm (circle one) °C (not %) 8,57 1140 7.17 2.5 0.01 0.01 12.29 .500 0.785 101 323 8.58 1145 58 12.8% 5 259 6.99 ,500 0.01 0.01 0.775 8.98 6.93 39 212 7.5 0.762 1150 13.10 0.01 0.01 ,500 8.58 6.10 0.759 B.57 185 455 34 10 0.01 0.01 .500 9.58 12.5 33 0.01 172 6.37 0.754 14.11 1200 ,500 0.01 33 6.36 15 8158 1205 .500 14.39 001 0.01 160 Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing # STICKY AGS.0.84 ## LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DATE: 11/11/16 WELL #: TWP-12 7 SAMPLERS: Overcast & 40 DEPTH OF PUMP INTAKE: 17 ft PC or ft BGS (circle one) WEATHER CONDITIONS: EC CLPID: BAY R.9 SCREENED/OPEN BOREHOLE INTERVAL: 4-14 ft TIC or ft BGS (circle one) SAMPLE ID: DF-TWA-12-1(-F) SAMPLE TIME: 1015 SAMPLE FLOW RATE: 200 1/2 ml/minute | | | Instrument Type/
Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|-------------------------------------|--------------|---------------------|--------------------------|--|--------------------------------|------------------|---------------------------|-------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, nS/cm ^c or µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 925 | 2.5 | 10.07 | .500 | 0.0 | 7.20 | 0.639 | 0.01 | 10.72 | 134 | 543 | | 930 | 8 | 10.07 | .500 | 0.0 | 7.16 | 0.659 | 0.01 | 10.73 | 122 | 365 | | 935 | 7.5 | 10.07 | .500 | 0.0 | 7.16 | 0.667 | 0.01 | 10.71 | 108 | 211 | | 940 | lo | 10.07 | ,500 | 0.0 | 7.16 | 0.472 | 0.01 | 10.71 | 163 | 148 | | 945 | 12.5 | 10.07 | .600 | 0.0 | 7.16 | 0.675 | 0.01 | 10.70 | 96 | 71.4 | | 950 | 15 | (0.07 | .500 | 0.0 | 7.16 | 0.677 | 0.01 | 10.63 | 97 | 25.6 | | 955 | 17.5 | 10.07 | . 500 | 0.0 | 7.14 | 0.675 | 0.01 | 10.63 | 89 | 20.3 | | 1000 | 20 | 10.07 | .200 | 0.0 | 7.16 | 0.677 | 0.01 | 10.61 | 36 | 24.8 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing Ilion, New York DATE: 11/1/16 WELL#: TWP-12 SAMPLERS: FR DEPTH OF PUMP INTAKE: 17 ft TIC or ft BGS (circle one) WEATHER CONDITIONS: Quercost & 400 SCREENED/OPEN BOREHOLE INTERVAL: 4-14 Of The or ft BGS (circle one) SAMPLE ID: DF-TWP- 12-1 CLP ID: 1304 R9 SAMPLE TIME: 1015 SAMPLE FLOW RATE: 200 JE ml/minute | | | Instrument Type | | ght | | # | | (circle on | e) | Instrument: | | |---------|------------------|---------------------------------|--------------|---------------------|------------------|---------------------------------------|--------------------------------|------------------|---------------------------|-------------------|--| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | | 24-Hour | gallons / | ft TIC / ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, nS/cmc or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | | 1005 | 225 | 10.07 | .500 | 0.0 | 7.15 | 0.681 | 0.01 | 10.61 | 84 | 22.7 | | | 1010 | 25 | 16,07 | .500 | 0.0 | 7.15 | 0.686 | 0.01 | 16.73 | 82 | 21.2 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DTW-13.12 Riser: AGS-3.55 ## LOW FLOW GROUNDWATER SAMPLING PURGE RECORD **Former Duofold Corporation** Ilion, New York DATE: ////// SAMPLERS: ER WELL #: TWP- 14 M5/MSD 5 Ample DEPTH OF PUMP INTAKE: / S ft TIC or ft BGS (circle one) WEATHER CONDITIONS: Clear \$ 400 SAMPLE ID: DF-Thomb - 14-1 (-F) CLP ID: BORNI SAMPLE TIME: SCREENED/OPEN BOREHOLE INTERVAL: SAMPLE FLOW RATE: 260 JE ml/minute ft TIC or ft BGS (circle one) | | | Instrument Type
Complete and/or | | ght | YSI Model | _ | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|------------------------------------|--------------|---------------------|------------------|-----------------------------------|--------------------------------|------------------|---------------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX
POTENTIAL
(± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIO / ft BGS
(circle one) | Units: (| ft TIC/ ft
BGS | SU | S/cm, nS/cm or uS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 815 | 2.5 | 13.13 | 1500 | 0.01 | 7.02 | 0.652 | 0.01 | 9.44 | 152 | 451 | | 820 | 5 | 13.13 | .500 | 0.01 | 6.92 | 0.654 | 283 | 10.28 | 143 | 300 | | 825 | 7.5 | 13.14 | 1500 | 0.07 | 6.38 | 0.653 | 2.32 | 11.08 | 133 | 182 | | 830 | 14 | 13.14 | .500 | 0.02 | 6.87 | 0.647 | 2.31 | 11.57 | 123 | 112 | | 835 | R5 | 13.14 | ,500 | 0.02 | 6.84 | 0.642 | 3,72 | 11.77 | | | | 840 | 15 | 13.14 | ,500 | 0,02 | 6.86 | 0.639 | 3.40 | 11.96 | 340 | 30.8 | | 843 | 17.5 | 13.14 | .500 | 50,0 | 6.85 | 0.633 | 3.30 | 12.01 | 104 | 19.1 | | 846 | 20 | 13.14 | .500 | 0.02 | e-86 | 0.631 | 2,80 | 12.04 | 102 | 6.8 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing DATE: 11 11/14 SAMPLERS: 4 WELL #: TWP-14 MS MSD DEPTH OF PUMP INTAKE: ft IC or ft BGS (circle one) WEATHER CONDITIONS: CLEBY = 40 SCREENED/OPEN BOREHOLE INTERVAL: 4-14 ft TIC or ft BGS SAMPLE ID: DF-TWP-14-1(-F) SAMPLE TIME: 900 SAMPLE FLOW RATE: 200 1/2 ml/minute (circle one) CLPID: BRQNI | | | Instrument Type Complete and/or | | ght | YSI Model
Other (spec | e) | Instrument: | | | | |---------|-------------------------|---------------------------------|--------------|---------------------|--------------------------|-------------------------------------|--------------------------------|------------------|---------------------------|-----------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY | | 24-Hour | gallons / (iters/circle | ft IIe / ft BGS
(circle one) | Units: | ft TIC> ft
BGS | SU | S/cm, S/cm or
µS/cm (circle one) | mg/L
(not %)
 Units: | mV | NTUs | | 849 | 22.5 | 13.14 | .500 | 0.02 | 6.89 | 6.628 | 2.71 | 17.01 | 100 | 8.7 | | 852 | 25 | 13.14 | 1500 | 0.07 | 6.85 | 0.632 | 2.56 | 11.98 | 747 | 7.8 | | 955 | 27.5 | 13.14 | 1500 | 0.02 | 6.85 | 0 \$ 33 | 2.44 | 17:01 | 96 | 7.1 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L TIC = Top of Inner Casing Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm DATE: 11/6/16 WELL#: TWATIS SAMPLERS: AR **DEPTH OF PUMP INTAKE:** ft TIQ or ft BGS (circle one) WEATHER CONDITIONS: Cain SCREENED/OPEN BOREHOLE INTERVAL: 4-14 CHILLOTH BGS (circle one) SAMPLE ID: DF-TWP-15-1(-F) SAMPLE TIME: 945 SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type
Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |--------------|------------------|------------------------------------|--------------|---------------------|--------------------------|---------------------------------------|--------------------------------|------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft TIC)/ ft BGS
(circle one) | Units: | ft TIC ft
BGS | SU | S/cm, mS/cm° or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 926 | | 7.1 | 100 | | 7.34 | 0.69 | 6.51 | 13,0 | -16 | 27 | | 931 | | 7.8 | | | 7.23 | 0.662 | 5.31 | 13.30 | -30 | 186 | | 935 | | 9.6 | | | 7:32 | 0.666 | 696 | 12.89 | -39 | 116 | | 941 | | 12.1 | | | 7.31 | 0.671 | 8.38 | 12.92 | -67 | 46,2 | | 945 | well | Soine | dy- | collect | Sam | ple | | | | | | j | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing Ilion, New York WELL#: TWP -16 SAMPLERS: AF DATE: 11/11/16 WEATHER CONDITIONS: Closby, 45% DEPTH OF PUMP INTAKE: /3.9 ft TIC or ft BGS (circle one) SCREENED/OPEN BOREHOLE INTERVAL: 5-15 ft TIC or ft BGS SAMPLE ID: DF-TWP-16-1 (-F) SAMPLE TIME: 845 SAMPLE FLOW RATE: 200 (circle one) ml/minute | | | Instrument Type Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|---------------------------------|--------------|---------------------|--------------------------|---------------------------------------|--------------------------------|------------|---------------------------|-------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH (± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP. | REDOX POTENTIAL (± 10 mV) | TURBIDITY | | 24-Hour | gallons / | ft TIC ft BGS
(circle one) | Units: | ft TIC / ft
BGS | su | S/cm, mS/cm/ or
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 820 | 1.25 | 9.95 | 250 | _ | 7.10 | 0.696 | 1.12 | 14.62 | -64 | 286 | | 825 | | 9.65 | | 0.3 | 7.06 | 0,710 | 0.01 | 15.29 | -51 | 63.9 | | 830 | | 9.45 | | ٥ | 7.06 | 0.722 | 0.01 | 15.37 | -47 | 16.2 | | 835 | 1 | 9.65 | | 6 | 7.06 | 0.727 | 0.01 | 15.46 | -46 | 3.6 | | 838 | 0.45 | 9.45 | | 6 | 7.06 | 0.730 | 001 | 15.46 | -46 | 0.5 | | 841 | 1 | 9.65 | 1.1 | 0 | 7.06 | 0.731 | 0.01 | 15.47 | +47 | 6.1 | | 844 | | 9.65 | V | 0 | 7.06 | 0.73\ | 16.0 | 15.49 | - 47 | 0.1 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing WELL#: TWP-18 TIC = ~14" AG5 DTB 14.8 71C SAMPLERS: A DATE: 11/10/16 WEATHER CONDITIONS: SUNNY 50'F DEPTH OF PUMP INTAKE: /3 8 ft TIC or ft BGS (circle one) SCREENED/OPEN BOREHOLE INTERVAL: 5-15 ft TIC or ft BGS (circle one) SAMPLE ID: DF-TWP-18-1(-F) CLPID: RNANG SAMPLE TIME: 1310 SAMPLE FLOW RATE: 200 ml/minute | | | Instrument Type
Complete and/or | | ght | YSI Model
Other (spec | | oriba U-22 | (circle on | e) | Instrument: | |---------|------------------|------------------------------------|--------------|---------------------|--------------------------|---------------------------------------|--------------------------------|------------------|---------------------------|-------------------| | CURRENT | VOLUME
PURGED | DEPTH TO
WATER | FLOW
RATE | DRAWDOWN (± 0.3 FT) | pH
(± 0.1 SU) | SPECIFIC CONDUCTIVITY (± 3%) | DISSOLVED
OXYGEN
(± 10%) | TEMP.
(± 10%) | REDOX POTENTIAL (± 10 mV) | TURBIDITY (± 10%) | | 24-Hour | gallons / | ft_TIC ft BGS
(circle one) | Units: | ft TIC / ft
BGS | SU | S/cm, mS/cm*/dr
µS/cm (circle one) | mg/L
(not %) | Units: | mV | NTUs | | 1246 | 1.25 | 6.85 | 250 | - | 7.27 | 0.636 | 2.33 | 16.96 | -73.0 | 64.1 | | 1251 | 1 | 6.85 | 1 | 0 | 7:18 | 0.618 | 0.01 | 17.34 | -77.0 | 13.7 | | 1256 | | 685 | | 6 | 7.18 | 0.616 | 0.01 | 17.48 | - 90.0 | 0.5 | | 1301 | | 6.85 | | 0 | 7,20 | 0.620 | 0.01 | 17.52 | -101 | 0.1 | | 1306 | 1 | 6.85 | | 0 | 7.20 | 0.624 | 0.01 | 17.58 | | 0 (| | 1309 | 0.75
SAMPLÉ | 6.85 | 4 | 6 | 7,21 | 0.626 | 0.01 | 17.59 | - 108 | 0.1 | Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing Ilion, New York DATE: 11/10/16 WELL#: 1418-19 TIC= "16" +95 SAMPLERS: AR **DEPTH OF PUMP INTAKE:** 13 8 ft TIO or ft BGS (circle one) WEATHER CONDITIONS: SUNNY 500F SCREENED/OPEN BOREHOLE INTERVAL: 5-15 ft TIC or ft BGS (circle one) SAMPLE ID: DF -TWP-19-1(-F) SAMPLE TIME: 1210 SAMPLE FLOW RATE: 200 ml/minute CLPID: BDQN5 Horiba U-22 Instrument Type/Model: YSI Model # (circle one) Instrument: Complete and/or Circle at right Other (specify) CURRENT VOLUME **DEPTH TO** FLOW DRAWDOWN SPECIFIC pH DISSOLVED TEMP. REDOX TURBIDITY TIME **PURGED** WATER RATE CONDUCTIVITY **OXYGEN** POTENTIAL (± 0.3 FT) (± 0.1 SU) (± 3%) (± 10%) (± 10%) (± 10 mV) (± 10%) A TIC / ft BGS ft TIO/ ft S/cm, mS/cmc) or 24-Hour gallons / Units: SU Units: mg/L mV **NTUs** liters (circle (circle one) mlmin BGS uS/cm (circle one) °C (not %) 7.23 1 25 250 0 136 7.35 0.959 15 42 -86.0 253 0.01 7.31 0 0.936 0.01 7.20 75.0 15.93 192 6 0.914 7.1 16,36 -62.0 0,01 12.3 6 10.1 7,19 -62.0 7.35 0,912 16.44 1151 10,0 6 1156 7.35 7.19 0.912 - 60,0 5.2 0.01 6 0.75 1201 7.19 57.0 7.35 0,911 0.01 7.55 0 1204 0.909 U81 0.1 7.19 0.01 55.0 1693 7.19 0.907 1000 1707 Drawdown is not to exceed 0.3 feet. Flow rate should not exceed 500 ml/min during purging or 250 ml/min during sampling. Readings should be taken every three to five minutes. The well is considered stabilized and ready for sampling when the indicator parameters have stabilized for three consecutive readings by the measurements indicated in parenthesis. Typical values: DO = 0.3 - 10 mg/L Redox Potential = -100 - +600 mV Turbidity = 0 - >500 NTUs Spec. Conductivity (µS/cm) = 0.01 - 5,000; up to 10,000 in industrial, ~55,000 in high salt content water. Note: 1,000 µS/cm = 1 mS/cm TIC = Top of Inner Casing # Appendix F Waste Manifests # **NON-HAZARDOUS WASTE MANIFEST** | NON-HAZARDOUS
WASTE MANIFEST | Generator's US EPA | | Manifest
Document No. | 121416-2 | 2. Page 1
of | | | | | |
--|---|--|----------------------------|------------------|-------------------------------------|---------------------------|--|--|--|--| | Generator's Name and Mailing Address | | v | | | | | | | | | | U.S. EPA REGION 2/DUOF | | | | | | | | | | | | 290 BROADWAY, 19th FL. | | 007 | | | | | | | | | | 4. Generator's Phone (212) 637-415 | 8 | | | | | | | | | | | | 5. Transporter 1 Company Name 6. US EPA ID Number | | | | | A. State Transporter's ID | | | | | | FREEDHOLD CARTAGE, INC. | | B. Transporter 1 Phone 732 - 462 - 1001 | | | | | | | | | | 7. Transporter 2 Company Name | | 8. US EPA ID Number | | C. State Trans | sporter's ID | | | | | | | | | | | D. Transporte | r 2 Phone | | | | | | | 9. Designated Facility Name and Site Address | | US EPA ID Number | | E. State Facili | | | | | | | | ENVIRONMENTAL RECOVERY | CORP | | | | 301344 | | | | | | | 1076 OLD MANHEIM PIKE | | | | F. Facility's Ph | none | | | | | | | LANCASTER, PA 17601 | | PAD 987 266 749 | | 717-39 | 3-2627 | | | | | | | 11. WASTE DESCRIPTION | | | 12. C | ontainers | 13.
Total | Un 14 | | | | | | | | | No. | Туре | Quantity | Wt./ | | | | | | a NONHAZARDOUS, NON REC | CHEATER | | | | | | | | | | | (GROUNDWATER) | | | -7 | | 500 | | | | | | | (| AFRROVAL S | # 1612-06648-L#T | of. | D85 | 500 | F | | | | | | b. NONHAZARDOUS, NON REC | THATED | | | | | | | | | | | (SOIL CUTTINGS) | | | 11 | | | | | | | | | (3022 3012203) | APPROVAL # | 1612-06649-SOT | 1 | DM | 200 | P | | | | | | C. NONHAZARDONS NON BRO | | | | | | | | | | | | MONHAZARDOUS, NON REG
(PPE/DEBRIS) | SULUTED | SPT | 1 | | | | | | | | | (KED) NUDUTO) | APPROVAL # | 1612-06650mmer | 1 | DK | 200 | 12 | | | | | | | | | | | | | | | | | | d. | | | | | | | | | | | | d. | | 7 | | | | | | | | | | d. G. Additional Descriptions for Materials Listed Above | е | 7 | | H. Handling C | odes for Wastes Listed Above | | | | | | | | е | 7 | | H. Handling C | odes for Wastes Listed Above | | | | | | | | | , E | | H. Handling C | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above The state of sta | ormation | T., ILION, NY 1335 | 7 | H. Handling C | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above The state of sta | ormation 7 SPRUCS 5 | T., ILION, NY 1335 | 7 | H. Handling C | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above The state of sta | ormation | T., ILION, NY 1335 | 7 | H. Handling C | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above The state of sta | ormation 7 SPRUCS 5 | T., ILION, NY 1335 | 7 | H. Handling C | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above The state of sta | ormation 7 SPRUCE S | | | | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info | ormation 7 SPRUCE 5 | is shipment are fully and accurately describ | ed and are in | | odes for Wastes Listed Above | | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info | ormation 7 SPRUCE 5 | is shipment are fully and accurately describ | ed and are in | | odes for Wastes Listed Above | Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descriptions and section in proper condition for transport. | ormation 7 SPRIJCS 5 tify that the contents of this escribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste | ed and are in | | | Date Day | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descriptions and the second s | ormation 7 SPRUCE 5 | is shipment are fully and accurately describ
are not subject to federal hazardous waste | ed and are in | | odes for Wastes Listed Above Month | Date Day | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described by the proper condition for transport. | ormation SPRICE Tify that the contents of this escribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste | ed and are in | | | Day | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described by the printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M. | ormation SPRICE Tify that the contents of this escribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Day
Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described by the printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M. | ormation SPRICE Tify that the contents of this escribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste | ed and are in | | | Day | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described in proper condition for transport. The materials described in proper condition for transport of the materials described in proper condition for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in proper conditions for transport of the materials described in | ormation SPRUCES tify that the contents of this lescribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Day Date Day | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described by the materials of the proper condition for transport of Receipt of Market
Printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of Market Printed/Typed Name | ormation SPRUCES tify that the contents of this lescribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described in proper and the materials of the printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M | ormation SPRUCES tify that the contents of this lescribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Day Date Day | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descripted/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name | ormation SPRUCES tify that the contents of this lescribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials described in proper and the materials of the printed/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M | ormation SPRUCES tify that the contents of this lescribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descripted/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name | ormation SPRUCES tify that the contents of this lescribed on this manifest | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature | ed and are in | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descripted/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space | tify that the contents of this described on this manifest laterials | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature
Signature | ed and are in regulations. | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descripted/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space | tify that the contents of this described on this manifest laterials | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature
Signature | ed and are in regulations. | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descripted/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name | tify that the contents of this described on this manifest laterials | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature
Signature | ed and are in regulations. | | Month | Date Day Date | | | | | | G. Additional Descriptions for Materials Listed Above 15. Special Handling Instructions and Additional Info 16. GENERATOR'S CERTIFICATION: I hereby cert in proper condition for transport. The materials descripted/Typed Name 17. Transporter 1 Acknowledgement of Receipt of M Printed/Typed Name 18. Transporter 2 Acknowledgement of Receipt of M Printed/Typed Name 19. Discrepancy Indication Space | tify that the contents of this described on this manifest laterials | is shipment are fully and accurately describ
are not subject to federal hazardous waste
Signature
Signature | ed and are in regulations. | | Month | Date Date Date Date | | | | | # Appendix G Data Validation Report #### **EXECUTIVE NARRATIVE** Case No.: 46633SDG No.: BD4L5Site: Former Duofold Corp. (Brownfield)Laboratory: CHM Number of Samples: 60 Soil Sampling dates: 11/08/16 Analysis: VOA, BNA, PCB Validation SOP: HW-33A (Rev 0), HW-35A (Rev 0) HW-37A (Rev 0) QAPP: Contractor: CDM Smith Contractor Document: DCN # 3323-029-02902 **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. **Critical Findings:** VOA, Sample BD4M5 have analytes that have been qualified R. **Major Findings**: **VOA:** Several samples have anyaltes qualified J. **BNA:** Two samples have analytes qualified J. **Aroclor:** One sample has analytes qualified J. **Minor Findings:** None. **COMMENTS: None** Reviewer Name(s): Russell Arnone Approver's Signature: Date: 01/11/17 Name: Affiliation: USEPA/R2/HWSB/HWSS | | Data Qual | ifier Definitions (National Functional Guidelines) | | | | |-----------|---|--|---|--|--| | Qualifier | | Explanation | | | | | Symbol | INORGANICS | ORGANICS | CHLORINATED DIOXIN/FURAN | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may
or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | #### DATA ASSESSMENT **ANALYSIS: VOA** The current SOP HW-33A/VOA (Revision 0) July 2015, USEPA Region II Data Validation SOP for Statement of Work SOM02.2 for evaluating organic data has been applied. Data has been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi- Automated Screening Results Report. Tentatively Indentified Compounds (TICS) for VOA organic fraction is not validated. #### 1. **HOLDING TIME:** The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. **DEUTERATED MONITORING COMPOUNDS (DMC's)** All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery concentrations were outside contract specifications, qualifications were applied to the samples and analytes as shown below. The following volatile samples have one or more DMC/SMC recovery values less than the primary lower limit but greater than or equal to the expanded lower limit of the criteria window. Detected compounds are qualified J-. Non-detected compounds are qualified UJ. #### 1,2-Dichloroethane-d4 BD4M5 Trichlorofluromethane, 1,1,2-Trichloro-1,2,2-trifluoroethane, Methyl acetate, Methylene chloride, Methyl-tert-butyl ether, 1,1,1-Trichloroethane, Carbon tetrachloride, 1,2-Dibromoethane, 1,2-Dichloroethane The following samples have DMC/Surrogate percent recoveries less than the expanded minimum criteria. Detects are qualified as estimated J. Non-detects are qualified as unusable R. #### **1,1,2,2-Tetrachloroethane-d2** BD4M5 1,1,2,2 Tetrachloroethane, 1,2 Dibromo 3 chloropropane The following samples have DMC/Surrogate perecent recoveries greater than the primary maximum criteria. Detects are estimated J+. Non-detects compounds are not qualified. Benzene-d6 BD4L5, BD4L6, BD4M5, BD4L9 Benzene **1,2-Dichloropropane-d6** BD4N0, BD4L9, BD4M5, BD4L6, BD4L9(RX), BD4L5 Cyclohexane, Methylcyclohexane, 1,2-Dichloropropane, Bromodichloromethane #### Toluene-d8 BD4M5, BD4L6 Trichloroethene, Toluene, Tetrachloroethene, Ethylbenzene, O-Xylene, m,p Xylene, Styrene, Isopropylbenzene #### 2-Hexanone-d5 BD4M5, BD4L6 4-Methyl-2-pentanone, 2-Hexanone #### 1,1,2,2-Tetrachloroethane-d2 BD4L6, BD4L9, BD4M5ME 1,1,2,2 Tetrachloroethane, 1,2 Dibromo 3 chloropropane #### **1,2-Dichlorobenzene-d4** BD4L6, BD4M5ME, BD4L6 Chlorobenzene, 1,3Dichlorobenzene, 1,4Dichlorobenzene, 1,2Dichlorobenzene, 1,2,4 Trichlorobenzene, 1,2,3 Trichlorobenzene ## 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. #### 4. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as non-detects, "U". Qualifications were applied to the samples and analytes as shown below. #### A) Method blank contamination: The following volatile samples have common contaminant analyte concentrations reported less than the CRQL. The associated method blank has common contaminant analyte concentration less than the CRQL. Detected compounds are qualified U. Sample concentrations have been reported at the CRQLs. Methylene chloride BD4L7, BD4L8, BD4L9, BD4M1, BD4M6, BD4M7, BD4M8, BD4M9, BD4N0, BD4N1, BD4N2, BD4Q0 #### B) Field or rinse blank contamination: The following sample is reported less than the CRQL. The trip blank is reported less than the CRQL. Report sample result as CRQL value with a U. NONE #### C) Trip blank contamination for VOA aqueous samples: No qualification applied due to trip blank contamination. ## D) Storage Blank associated with VOA samples only: No qualification applied due to trip blank contamination. #### E) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for VOA organic fraction are not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene. If the mass calibration is in error, all associated data will be classified as unusable "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. #### A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. The response factor for the Target Compound List (TCL) must be \geq 0.05, and \geq 0.01 for the twenty-two analytes with poor response, and \geq 0.005 for 1,4-Dioxane in both the initial and opening CCV. For a closing CCV RRF for all Target compounds must \geq 0.01 and \geq 0.005 for 1,4-Dioxane. A value < 0.05, or < 0.01 for the poor performers and < 0.005 for 1,4-Dioxane indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be < 20% for Target compounds, < 40% for the poor performers, and < 50% for 1,4-Dioxane. %D must be < 25% for Target compounds, < 40% for the poor performers, and < 50% for 1,4-Dioxane for the opening CCV. For the closing CCV %D must be < 50% for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J". Non-detects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, non-detects may be qualified using professional judgment. Qualifications were applied to the samples and analytes as shown below. The following samples are associated with an initial calibration percent relative deviation (%RSD) outside criteria. Detects are qualified as estimated J, Non-detects are not qualified. **O-Xylene** BD4L5, BD4L6, BD4L7, BD4L8, BD4L9, BD4M0, BD4M1, BD4M2, BD4M3, BD4M4, BD4M5, BD4M6, BD4M7, BD4M8, BD4M9, BD4N0, BD4N1, BD4N2, BD4N3, BD4Q0, #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range of 50% - 200 % of the associated continuing calibration internal standard area. The retention time of the internal standards must not vary more than 30 seconds from the associated continuing calibration standard. If the area count is greater than 200%, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than 50% of the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time varies by more
than 30 seconds, the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. The following volatile samples have internal standard area response greater than or equal to expanded minimum criteria and less than primary minimum criteria. Detects are qualified as estimated J+. Non-detects are qualified as estimated UJ. # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 The following volatile samples have internal standard area counts that are outside the lower limit of primary criteria. Detected compounds are qualified J+. Non-detected compounds are qualified UJ. #### **1,4-Dichlorobenzene-d4** BD4L9, BD4L5, BD4L9RE 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2-Dibromo-3-chloropropane, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Bromoform Chlorobenzene-d5 BD4L6, BD4L9, BD4M5 #### 1,4-Difluorobenzene BD4M5 The following volatile samples have internal standard area counts that are outside the EXPANDED lower limit of primary criteria. Detected compounds are qualified J+. Non-detected compounds are qualified R. #### 1,4-Dichlorobenzene-d4 BD4L6 1,2,3-Trichlorobenzene, 1,2,4-Trichlorobenzene, 1,2-Dibromo-3-chloropropane, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene, Bromoform #### 8. FIELD DUPLICATES: Not applicable. #### 9. COMPOUND IDENTIFICATION: Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within a window of 0.06 RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary m/z intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None. #### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None. #### 13. DILUTIONS, RE-EXTRACTIONS & REANALYSIS: Samples may be reanalyzed after dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. ## **ANALYSIS: BNA** The current SOP HW-35A (Revision 0) July 2015, USEPA Region II for the evaluation of Semi-Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data has been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for BNA organic fraction is not validated. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded, qualifications will be applied as per SOP HW-35A (Rev 0). No problems were found for this criterion. ## 2. DEUTERATED MONITORING COMPOUNDS (DMCs) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of SOP HW-35A (Revision 0), qualifications were applied as per Table 7 of SOP HW-35A (Revision 0) to all the samples and analytes as shown below. The following semivolatile samples have one or more DMC/SMC recovery values less than the primary lower limit but greater than or equal to the expanded lower limit of the criteria window. Detected compounds are qualified J-. Non-detected compounds are qualified UJ. #### 1,4-Dioxane-d8 1,4 Dioxane BD4L8 #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **REGION 2** DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 The following samples have DMC % recoveries greater than primary maximum criteria. Detects are qualified as estimated estimated J. Nondetects are not qualified. #### Bis-(2-Chloroethyl) ether-d8 Bis-(2-Chloroethyl) ether, 2,2'-Oxybis (1-chloropropane), Bis (2-chloroethoxy) methane BD4M5 #### 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATES (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. #### 4. **BLANK CONTAMINATION:** Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-,m No problems were found for this criterion. #### C) **Tentatively Identified Compounds:** Tentatively Identified Compounds (TICs) for BNA organic fraction are not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for Semi-volatiles is Decafluorotriphenyl-phosphine (DFTPP). If the mass calibration is in error, all associated data will be classified as unusable "R". No problems were found for this criterion. #### 6. **CALIBRATION:** Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental The continuing calibration checks document that the instrument is giving satisfactory daily performance. ## A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 35A (Rev 0). If RRF is less than minimum RRF as specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 35A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 35A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Non-detects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 10 of SOP HW 35A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards must be within the range as specified in Table 10 of SOP HW 35A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time were not met as specified in Table 10 of SOP HW 35A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. The following semivolatile samples have internal standard area response greater than or equal to expanded minimum criteria and less than primary minimum criteria. Detects are qualified as estimated J+. Non-detects are qualified as estimated UJ. No problems were found for this criterion #### 8. FIELD DUPLICATES: Not applicable. #### 9. COMPOUND IDENTIFICATION: #### A) Semi-Volatile
Fractions: TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within 0.06 RRT units of the standard compound and have ion spectra which have a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None. #### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None #### 13. DILUTIONS, RE-EXTRACTIONS and REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. ## **ANALYSIS: PCB** The current SOP HW-37A (Revision 0) July 2015, USEPA Region II for the evaluation of PCB data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". Use professional judgment to qualify the non-detects (sample quantitation limits), if the holding times are grossly exceeded. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. SURROGATES: All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate recovery were outside Table 5 of the SOP HW-37A (Revision 0), qualifications were applied to the samples and analytes as shown below. The following sample has DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified J-. Nondetects are qualified as estimated UJ. **Decachlorobiphenyl** BD4M4 ### 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 4. Laboratory Control Samples (LCS): LCS data provides information on the accuracy of the analytical method and laboratory performance. If LCS recoveries fell outside of the acceptable limits, qualifications were applied to the associated samples and compounds as shown below. No problems were found for this criterion. #### 5. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the concentration of the analyte in the blank, the analytes are qualified as non-detects U. Qualifications were applied to the samples and analytes as shown below. #### A) Method blank contamination: No problems were found for this criterion. #### B) Field or rinse blank contamination: No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. ## A) Percent Relative Standard Deviation (%RSD): For the PCB fraction, if %RSD exceeds 20% for all analytes and the two surrogates, qualify all associated positive results "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### B) Percent Difference (%D): For opening CCV, or closing CCV that is used as an opening CCV for the next 12-hour period, if %D exceeds 25% for analytes and the two surrogates, qualify all associated positive results "J" and non-detects "UJ". For closing CCV, if %D exceeds 50% for all analytes and the two surrogates, qualify all associated positive results "J" and non-detects "UJ". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 7. FIELD DUPLICATES: Not applicable. #### 8. COMPOUND IDENTIFICATION: #### A) PCB Fraction: The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract. Qualifications were applied to the samples and analytes as shown below. **Percent Differences** 0% - 25% 26% - 200% 101% - 200% (interference detected, either column) Qualifier No qualification Professional Judgment JN > 50% (pesticide value < CRQL, value raised to CRQL) $$\sf U$$ > 200% ${\sf R}$ The following samples were qualified for % difference on the two columns. No problems were found for this criterion. #### 9. CONTRACT PROBLEMS NON-COMPLIANCE: None. #### 10. FIELD DOCUMENTATION: No problems were identified. #### 11. OTHER PROBLEMS: None. ### 12. DILUTIONS, RE-EXTRACTIONS & RE-ANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. # 2890, Woodbridge Avenue, Edison, NJ 08837 SDG No.: BD4N4 Laboratory: Chemtech ### **EXECUTIVE NARRATIVE** Case No.: 46633 Site Name: Former Duofold Corporation Number of Samples: 19(Soil) **Analysis:** VOA, SVOA and Aroclors Sampling dates: 11/09/2016 Validation SOP: HW-33A (Rev 0), HW-35A (Rev 0), HW-36A (Rev 0), HW-37A (Rev 0) QAPP: Contractor: CDM Smith, 14 Wall Street, Suite 1701, New York Reference: Document No. 3323-02960, Dated October 10, 2016 #### **SUMMARY OF DEFINITIONS:** **Critical:** Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. **Major:** A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. # **Critical Findings:** None #### **Major Findings:** Samples have analytes that have been qualified J, J+ or J-; #### **Minor Findings:** Detect values between MDL and CRQL are reported as estimated "J" values unless otherwise stated. **COMMENTS:** Qualifications applied are summarized in Summary Reports. Name: Narendra Kumar Date: 01/ 05 /2017 Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | | Data Qual | ifier Definitions (National Functional Guidelines) | | | | |-----------|---|--|---|--|--| | Qualifier | Explanation | | | | | | Symbol | INORGANICS | ORGANICS | CHLORINATED DIOXIN/FURAN | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate
concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 #### DATA ASSESSMENT **ANALYSIS: VOA** The current SOP HW-33A (Revision 0) July 2015, USEPA Region II for the evaluation of Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for VOA organic fraction is not validated. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMC's) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of the SOP HW-33A (Revision 0) qualifications were applied as per Table 7 SOP HW-33A (Revision 0) to all the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries greater than the primary maximum criteria Detects are qualified as estimated J+. Non detects are not qualified. 1,2-Dichloropropane-d6, BD4P9 #### 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. # 4. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during 2890, Woodbridge Avenue, Edison, NJ 08837 sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-33A (Rev 0). # A) Method blank contamination: The following samples have analyte results reported less than CRQLs. The associated method blank results are less than CRQLs. Detects are qualified U. Sample results have been reported at CRQLs. Methylene chloride, BD4N4 # B) Field or rinse blank contamination: Sample BD4Q2 is the field blank sample (VOA analysis reported in SDG # BD4Q3) and has Acetone (9.2 ug/L) < CRQL. The following samples have analyte concentration > CRQL. No qualifications were applied. **Acetone**, BD4N4 (33 ug/kg), BD4P9 (170 ug/kg), BD4P9RE (170ug/kg) # C) Trip blank contamination for VOA aqueous samples: BDQP1 identified as trip blank is in the SDG# BD4Q3. This has analyte concentration (12 ug/mL) > CRQL. The following samples have analyte results reported > CRQL and > trip blank concentrations. No qualifications were applied. **Acetone**, BD4N4 (33 ug/kg), BD4P9 (170 ug/kg), BD4P9RE (170ug/kg) # D) Storage Blank associated with VOA samples only: The following samples have analyte results reported less than CRQLs. The associated storage blank results are less than CRQLs. Detects are qualified U. Sample results have been reported at CRQLs. Methylene chloride, BD4N4 # E) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for VOA organic fractions are not validated. # 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene. If the mass calibration 2890, Woodbridge Avenue, Edison, NJ 08837 is in error, all associated data will be classified as unusable "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. ### A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 33A (Rev 0). If RRF is less than minimum RRF as specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No issues were identified for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 33A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 33A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. The following samples are associated with an initial calibration percent relative standard deviation (%RSD) outside criteria. Detects are qualified as estimated J. Non detects are not qualified. o-Xylene, BD4N4, BD4P9 #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: 2890, Woodbridge Avenue, Edison, NJ 08837 Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 9 of SOP HW 33A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards must be within the range as specified in Table 9 of SOP HW 33A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard
retention time were not met as specified in Table 9 of SOP HW 33A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. The following samples have internal standard area response greater than or equal to expanded minimum criteria and less than primary minimum criteria. Detects are qualified as estimated J+. Nondetects are qualified as estimated UJ. Chlorobenzene-d5, 1,4-Dichlorobenzene-d4, BD4P9, BD4P9RE #### 8. FIELD DUPLICATES: Samples BD4P9 in this SDG is field duplicate of the sample BD4M4 which is in the SDG # BD4L5. Detects Acetone, 2-Butanone and Methylene chloride are present in both samples at comparable levels. No qualifications were applied for this criterion. ## 9. COMPOUND IDENTIFICATION: Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within a window of 0.06 RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary m/z intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. No qualifications were applied for this criterion. ### 10. CONTRACT PROBLEMS NON-COMPLIANCE: The laboratory reported lower quality results (3 failed internal standard) from reanalysis. Initial analysis with two IS failure was not reported by the laboratory. SMO was unable to get the issue corrected. # 2890, Woodbridge Avenue, Edison, NJ 08837 #### 11. FIELD DOCUMENTATION: None. #### 12. OTHER PROBLEMS: The laboratory reported inferior results (3 failed internal standard) from reanalysis. Initial analysis with two IS failure was not reported by the laboratory. SMO was unable to get the issue corrected. #### 13. DILUTIONS, RE-EXTRACTIONS & REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. The following sample had a reanalysis. BD4L9 # **ANALYSIS: Semivolatiles** The current SOP HW-35A (Revision 0) July 2015, USEPA Region II for the evaluation of Semi-Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for BNA organic fraction is not validated. ### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded, qualifications will be applied as per SOP HW-35A (Rev 0). No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMCs) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of SOP HW-35A (Revision 0), qualifications were applied as per Table 7 of SOP HW-35A (Revision 0) to all the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. 4-Chloroaniline-d4, BD4Q2 2890, Woodbridge Avenue, Edison, NJ 08837 The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. 1,4-Dioxane-d8, BD4Q2 # 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATES (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. #### 4. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-35A (Rev 0). No problems were found for this criterion. #### A) Method blank contamination: No problems were found for this criterion. # B) Field or rinse blank contamination: Sample BD4Q2 is field blank which has the following detects < CRQL Benzaldehyde, 4-Chloro-3-methylphenol Compounds were nondetects in the samples. No qualification was applied. # C) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for SVOA organic fraction are not validated. ### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The 2890, Woodbridge Avenue, Edison, NJ 08837 tuning standard for Semi-volatiles is Decafluorotriphenyl-phosphine (DFTPP). If the mass calibration is in error, all associated data will be classified as unusable "R". No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. # A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 35A (Rev 0). If RRF is less than minimum RRF as specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 35A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 35A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 10 of SOP HW 35A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards 2890, Woodbridge Avenue, Edison, NJ 08837 must be within the range as specified in Table 10 of SOP HW 35A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time were not met as specified in Table 10 of SOP HW 35A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. No issues were identified for this criterion. #### 8. FIELD DUPLICATES: Samples BD4P9 in this SDG is field duplicate of the sample BD4M4 which is in the SDG # BD4L5. Dimethylphthalate Conc (ug/kg) BD4P9 BD4M4 520 890 No Qualifications were applied. Phenol Conc.(ug/kg) BD4P9 BD4M4 150 200 No qualifications were applied.
9. COMPOUND IDENTIFICATION: ### A) Semi-Volatile Fractions: TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within 0.06 RRT units of the standard compound and have ion spectra which have a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None 2890, Woodbridge Avenue, Edison, NJ 08837 #### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None ### 13. DILUTIONS, RE-EXTRACTIONS and REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. # **ANALYSIS: Aroclors** The current SOP HW-37A (Revision 0) July 2015, USEPA Region II for the evaluation of PCB data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". Use professional judgment to qualify the non-detects (sample quantitation limits), if the holding times are grossly exceeded. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. SURROGATES: All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate recovery were outside Table 5 of the SOP HW-37A (Revision 0), qualifications were applied to the samples and analytes as shown below. No problems were identified in the samples for this criterion. ### 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with 2890, Woodbridge Avenue, Edison, NJ 08837 other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. The relative percent difference (RPD) between the following matrix spike and matrix spike duplicate recoveries is outside criteria. Detects are qualified as estimated J. Nondetects are not qualified. Aroclor 1060, BD3H1 ### 4. Laboratory Control Samples (LCS): LCS data provides information on the accuracy of the analytical method and laboratory performance. If LCS recoveries fell outside of the acceptable limits, qualifications were applied to the associated samples and compounds as shown below. No problems were found for this criterion. #### 5. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the concentration of the analyte in the blank, the analytes are qualified as non-detects U. Qualifications were applied to the samples and analytes as shown below. # A) Method blank contamination: No problems were found for this criterion. #### B) Field or rinse blank contamination: No problems were found for this criterion #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. # A) Percent Relative Standard Deviation (%RSD): For the PCB fraction, if %RSD exceeds 20% for all analytes and the two surrogates, qualify all associated positive results "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 2890, Woodbridge Avenue, Edison, NJ 08837 ### B) Percent Difference (%D): For opening CCV, or closing CCV that is used as an opening CCV for the next 12-hour period, if %D exceeds 25% for analytes and the two surrogates, qualify all associated positive results "J" and non-detects "UJ". For closing CCV, if %D exceeds 50% for all analytes and the two surrogates, qualify all associated positive results "J" and non-detects "UJ". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 7. FIELD DUPLICATES: Samples BD4P9 in this SDG is field duplicate of the sample BD4M4 which is in the SDG # BD4L5. Analytes are nondetects in both samples. No qualification was required for this criterion. #### 8. COMPOUND IDENTIFICATION: #### A) PCB Fraction: The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract. Qualifications were applied to the samples and analytes as shown below. | Percent Differences | Qualifier | |---------------------|-----------| |---------------------|-----------| | 0% - 25% | No qualification | |--|-----------------------| | 26% - 200% | Professional Judgment | | 101% - 200% (interference detected, either column) | JN | | > 50% (Aroclor value < CRQL, value raised to CRQL) | U | | > 200% | R | Samples and analytes were all nondetects. #### 9. CONTRACT PROBLEMS NON-COMPLIANCE: None #### 10. FIELD DOCUMENTATION: No problems were identified. #### 11. OTHER PROBLEMS: None #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 # 12. DILUTIONS, RE-EXTRACTIONS & RE-ANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. 2890, Woodbridge Avenue, Edison, NJ 08837 ### **EXECUTIVE NARRATIVE** Case No.: 46534SDG No.: BD3G6Site Name: SKYBELL MILLLaboratory: KAP Number of Samples: 19(Soil) Analysis: PEST Sampling dates: 11/07, 09/2016 Validation SOP: HW-36A (Rev 0) QAPP: Contractor: CDM Smith, 14 Wall Street, Suite 1701, New York Reference: Document No. 3323-02960, Dated October 10, 2016 #### **SUMMARY OF DEFINITIONS:** **Critical:** Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. **Major:** A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. # **Critical Findings:** None #### **Major Findings:** Samples have analytes that have been qualified J, J+ or J-; #### **Minor Findings:** Detect values between MDL and CRQL are reported as estimated "J" values unless otherwise stated. **COMMENTS:** Qualifications applied are summarized in Summary Reports. Name: Narendra Kumar Date: 01/ 05/2017 Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | | Data Qual | ifier Definitions (National Functional Guidelines) | | | | |-----------|---|--|---|--|--| | Qualifier | Explanation | | | | | | Symbol | INORGANICS | ORGANICS | CHLORINATED DIOXIN/FURAN | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate
concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 ### **DATA ASSESSMENT** # **ANALYSIS: PESTICIDES** The current SOP HW-36A (Revision 0) July 2015, USEPA Region II for the evaluation of Pesticides data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". Use professional judgment to qualify the non-detects (sample quantitation limits), if the holding times are grossly exceeded. If the holding times are grossly exceeded. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. SURROGATES All samples are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured surrogate recovery were outside Table 7 of the SOP HW-36A (Revision 0), qualifications were applied to the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. Decachlorobiphenyl, BD4P0, BD4P1, BD4P3, BD4P7, BD4P6, BD4P2, BD4P4, BD4P5, BD4P1 # 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATES (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. The relative percent difference (RPD) between the following matrix spike and matrix spike duplicate recoveries is outside criteria. Detects are qualified as estimated J. Nondetects are not qualified. No problems were found for this criterion. 2890, Woodbridge Avenue, Edison, NJ 08837 ### 4. LABORATORY CONTROL SAMPLE RECOVERY (LCS): LCS data is generated to determine the long-term precision and accuracy of the analytical method. The LCS may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. No issues were identified for this criterion. #### 5. GPC CALIBRATION VERIFICATION: The following samples are associated to a GPC Calibration Verification Check with percent recoveries greater than the maximum criteria. Detects and non-detects were not qualified. qualified. No issues were identified for this criterion #### 6. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the concentration of the analyte in the blank, the analytes are qualified as non-detects, "U". Qualifications were applied to the samples and analytes as shown below. # A) Method/Instrument blank contamination: No problems were found for this criterion. # B) Field or rinse blank contamination: BD4Q2 is the field blank sample. No contaminant was found. #### 7. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. #### A) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): For the PESTICIDE fraction, if %RSD exceeds 20% for all analytes except alpha-BHC and delta-BHC 25%, for the two surrogates and Toxaphene 30%, qualify all associated positive 2890, Woodbridge Avenue, Edison, NJ 08837 results "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. A) The Percent Difference (%D) for each of the SCP and surrogate in the PEM used for CCV must be greater than or equal to -25% and less than or equal to 25.0%. The Percent Difference (%D) between the calibration Factor (CF) for each of the SCP and surrogate in the Calibration Verification Standard (CS3) and the mean calibration factor from the initial calibration must be greater than or equal to -25% and less than or equal to 25.0%. The Percent Difference not within limits, detected associated compounds are qualified "J" and non-detected associated compounds are qualified "UJ". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 8. FIELD DUPLICATES: Samples BD4Q1 is field duplicate of the sample BD4P5. All analytes were non-detects in both samples. No qualifications were required for this criterion. #### 9. COMPOUND IDENTIFICATION: The retention times of reported compounds must fall within the calculated retention time windows for the two chromatographic columns and a GC/MS confirmation is required if the concentration exceeds 10ng/ml in the final sample extract. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 10. CONTRACT PROBLEMS NON-COMPLIANCE: Laboratory did not fill out the forms correctly. ## 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None # 13. DILUTIONS, RE-EXTRACTIONS & REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** **Case No.**: 46633 **SDG No.**: BD4Q3 Site Name: Former Duofold Corporation Laboratory: Chemtech Number of Samples: 19(Soil) Sampling dates: 11/07-09/2016 Analysis: TVOA, VOA and SVOA Validation SOP: HW-33A (Rev 0), HW-35A (Rev 0), HW-34A (Rev 0) QAPP: Contractor: CDM Smith, 14 Wall Street, Suite 1701, New York Reference: Document No. 3323-02960, Dated October 10, 2016 #### SUMMARY OF DEFINITIONS: **Critical:** Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. **Major:** A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. **Minor:** The level of uncertainty is acceptable. No significant bias in the data was observed. # **Critical Findings**: None # **Major Findings**: Samples have analytes that have been qualified J, J+ or J-; #### **Minor Findings:** Detect values between MDL and CRQL are reported as estimated "J" values unless otherwise
stated. **COMMENTS:** Qualifications applied are summarized in Summary Reports. Name: Narendra Kumar Date: 01/05/2016 Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | | Data Qual | ifier Definitions (National Functional Guidelines) | | | | |-----------|---|--|---|--|--| | Qualifier | Explanation | | | | | | Symbol | INORGANICS | ORGANICS | CHLORINATED DIOXIN/FURAN | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 #### DATA ASSESSMENT **ANALYSIS: TVOA** The current SOP HW-34A (Revision 0) July 2015, USEPA Region II for the evaluation of Trace Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for TVOA organic fraction is not validated. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as unusable, "R". Use professional judgment to qualify detects and non-detects for aqueous sample whose temperature is above 6° C or below 2° C Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMC's) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of the SOP HW 34A (Rev 0), qualifications were applied as per Table 7 of the SOP HW 34A (Rev 0) to all the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified as estimated J-. Non-detects are qualified as estimated UJ. # 1,1-Dichloroethene-d2 BD4Q5 #### 3. MATRIX SPIKE/ MATRIX SPIKE RECOVERY: MS/MSD data is generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Not applicable. # 4. BLANK CONTAMINATION: 2890, Woodbridge Avenue, Edison, NJ 08837 Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-34A (Rev 0). #### A) Method blank contamination: No problems were found for this criterion. # B) Field or rinse blank contamination: Sample BDQN8 is field blank sample and has Acetone (12ug/L) as the only contaminant. Associated Samples are BDQP1(trip blank), BDQN8, BD4R4, BD4R3, BD4R2 and BD4Q9 (Sampling date 11/9/2016). Samples were qualified as below: #### Acetone: BDQP1, BDQP0, BDQN9, trip blanks, not qualified BD4R2 and BD4Q9 (Sampling date 11/9/2016), "U" at CRQL BD4Q8, BD4Q6 and BD4Q5 (Sampling date 11/8/2016), "U" at CRQL. **BD4Q4 and BD4Q3** (Sampling date 11-7-2016) were qualified using higher trip blank sample as below. # C) Trip blank contamination: Sample BDQP1 is the trip blank associated with samples BDQN8, BD4R4, BD4R3, BD4R2 and BD4Q9 (Sampling date 11/9/2016). This sample has Acetone and Methylene chloride as contaminants. Acetone: This trip blank sample has Acetone as the same contaminant at the same level (12ug/L) as the field blank above. Samples were qualified using field blank as above. Methylene chloride: This trip blank sample has Methylene chloride also as a contaminant at (0.39 ug/L), <CRQL. The following samples were qualified. BD4Q9, BD4R4 2890, Woodbridge Avenue, Edison, NJ 08837 Sample BDQP0 is trip blank associated with samples BDQN6, BD4Q8, BD4Q7, BD4Q6 and BD4Q5 (Sampling date 11/8/2016). Acetone: This trip blank sample has Acetone as the same contaminant at lower level (11ug/L) as the field blank above. Samples were qualified using field blank. Methylene chloride: This trip blank sample has Methylene chloride as the contaminant at (0.37 ug/L), <CRQL. Associated samples were qualified as follows: No associated sample has methylene chloride detected. Sample BDQN9 is trip blank has Acetone (14 ug/L) >CRQL and Methylene chloride (0.39 ug/L) < CRQL. Associated samples BD4Q4 and BD4Q3 (Sampling date 11-7-2016) were qualified as follows. Acetone: BD4Q3 Methylene chloride: None # D) Storage Blank associated with VOA samples only: No problems were found for this criterion. # E) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for TVOA organic fraction are not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene. If the mass calibration is in error, all associated data will be classified as unusable "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 6.
CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. ### A) Response Factor GC/MS: 2890, Woodbridge Avenue, Edison, NJ 08837 The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 34A (Rev 0). If RRF is less than minimum RRF specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 34A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 34A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No qualifications were applied for this criterion. # 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 9 of SOP HW 34A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards must be within the range as specified in Table 9 of SOP HW 34A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time were not met as specified in Table 9 of SOP HW 34A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 8. FIELD DUPLICATES: 2890, Woodbridge Avenue, Edison, NJ 08837 Samples BDQN6 and BD4Q7 are field duplicates. Samples did not contain any analytes of interest. No qualifications were required for this criterion. #### 9. COMPOUND IDENTIFICATION: Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within a window of 0.06 RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary m/z intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None. #### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None. #### 13. DILUTIONS, RE-EXTRACTIONS & REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. # **ANALYSIS: VOA** The current SOP HW-33A (Revision 0) July 2015, USEPA Region II for the evaluation of Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for VOA organic fraction is not validated. There is only one sample, BD4Q2 for VOA analysis in this SDG. This is field blank per trip report. #### 1. HOLDING TIME: 2890, Woodbridge Avenue, Edison, NJ 08837 The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMC's) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of the SOP HW-33A (Revision 0) qualifications were applied as per Table 7 SOP HW-33A (Revision 0) to all the samples and analytes as shown below. No issues were found for this criterion. ### 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. # 4. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-33A (Rev 0). #### A) Method blank contamination: No problems were identified for this criterion. #### B) Field or rinse blank contamination: Sample BD4Q2 is the field blank sample itself and has Acetone (9.2 ug/L) <CRQL. No qualifications were applied to this result. #### C) Trip blank contamination for VOA aqueous samples: Not applicable 2890, Woodbridge Avenue, Edison, NJ 08837 # D) Storage Blank associated with VOA samples only: No problems were identified for this criterion. ### E) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for VOA organic fractions are not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene. If the mass calibration is in error, all associated data will be classified as unusable "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. # A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 33A (Rev 0). If RRF is less than minimum RRF as specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No issues were identified for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be less than maximum %RSD
in Table 2 of SOP HW 33A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening 2890, Woodbridge Avenue, Edison, NJ 08837 or closing maximum %D limits as listed in Table 2 of SOP HW 33A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No issues were found for this criterion. #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 9 of SOP HW 33A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards must be within the range as specified in Table 9 of SOP HW 33A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time were not met as specified in Table 9 of SOP HW 33A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. No issues were found for this criterion. #### 8. FIELD DUPLICATES: Not applicable. #### 9. COMPOUND IDENTIFICATION: Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within a window of 0.06 RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary m/z intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. No qualifications were applied for this criterion. #### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None. 2890, Woodbridge Avenue, Edison, NJ 08837 #### 11. FIELD DOCUMENTATION: None. #### 12. OTHER PROBLEMS: None. #### 13. DILUTIONS, RE-EXTRACTIONS & REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. # **ANALYSIS: Semivolatiles** The current SOP HW-35A (Revision 0) July 2015, USEPA Region II for the evaluation of Semi-Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for BNA organic fraction is not validated. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded, qualifications will be applied as per SOP HW-35A (Rev 0). No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMCs) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of SOP HW-35A (Revision 0), qualifications were applied as per Table 7 of SOP HW-35A (Revision 0) to all the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. 4-Chloroaniline-d4, BD4Q7, BD4R3 4-Nitrophenol-d4, BD4Q7 2890, Woodbridge Avenue, Edison, NJ 08837 The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. 1,4-Dioxane-d8, BD4R2, BD4R3, BD4Q5, BD4Q6, BD4R4, BD4Q7, BD4Q8, BD4Q9, BDQN6, BDQN8, BD4Q4 # 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATES (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. #### 4. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-35A (Rev 0). No problems were found for this criterion. #### A) Method blank contamination: No problems were found for this criterion. # B) Field or rinse blank contamination: Sample BDQN8 is field blank and has the following detects < CRQL Benzaldehyde (2ug/L) and 4-Chloro-3-methylphenol (4.8 ug/L) Compounds were nondetects in the samples. No qualification was applied. # C) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for SVOA organic fraction are not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The 2890, Woodbridge Avenue, Edison, NJ 08837 tuning standard for Semi-volatiles is Decafluorotriphenyl-phosphine (DFTPP). If the mass calibration is in error, all associated data will be classified as unusable "R". No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. # A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 35A (Rev 0). If RRF is less than minimum RRF as specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 35A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 35A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 10 of SOP HW 35A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards 2890, Woodbridge Avenue, Edison, NJ 08837 must be within the range as specified in Table 10 of SOP HW 35A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all
positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time were not met as specified in Table 10 of SOP HW 35A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. No issues were identified for this criterion. #### 8. FIELD DUPLICATES: Samples BDQN6 and BD4Q7 are field duplicates. Samples did not contain any analytes of interest. No qualifications were required for this criterion. #### 9. COMPOUND IDENTIFICATION: #### A) Semi-Volatile Fractions: TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within 0.06 RRT units of the standard compound and have ion spectra which have a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 10. CONTRACT PROBLEMS NON-COMPLIANCE: None #### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None ## 13. DILUTIONS, RE-EXTRACTIONS and REANALYSIS: #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** Case No.: 46633 SDG No.: BD4R0 Site Name: Former Duofold Corporation Laboratory: Chemtech Number of Samples: 28 water Sampling dates: 11/10-11/2016 Analysis: TVOA and SVOA Validation SOP: HW-33A (Rev 0), HW-35A (Rev 0), HW-34A (Rev 0) QAPP: Contractor: CDM Smith, 14 Wall Street, Suite 1701, New York Reference: Document No. 3323-02960, Dated October 10, 2016 #### SUMMARY OF DEFINITIONS: **Critical:** Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. **Major:** A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. **Minor:** The level of uncertainty is acceptable. No significant bias in the data was observed. # **Critical Findings**: None # **Major Findings**: Samples have analytes that have been qualified J, J+ or J-; #### **Minor Findings:** Detect values between MDL and CRQL are reported as estimated "J" values unless otherwise stated. **COMMENTS:** Qualifications applied are summarized in Summary Reports. Name: Narendra Kumar Date: 01/05/2016 Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | | Data Qual | ifier Definitions (National Functional Guidelines) | | | | |-----------|---|--|---|--|--| | Qualifier | Explanation | | | | | | Symbol | INORGANICS | ORGANICS | CHLORINATED DIOXIN/FURAN | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | ΠΊ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 #### DATA ASSESSMENT **ANALYSIS: TVOA** The current SOP HW-34A (Revision 0) July 2015, USEPA Region II for the evaluation of Trace Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for TVOA organic fraction is not validated. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimated, "J". The non-detects (sample quantitation limits) will be flagged as unusable, "R". Use professional judgment to qualify detects and non-detects for aqueous sample whose temperature is above 6° C or below 2° C Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMC's) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of the SOP HW 34A (Rev 0), qualifications were applied as per Table 7 of the SOP HW 34A (Rev 0) to all the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified as estimated J-. Non-detects are qualified as estimated UJ. 1,1-Dichloroethene-d2, BD4R0, BD4R5, BD4R9, BDQN1, BDQN2, BDQN3, BDQP3 #### 3. MATRIX SPIKE/ MATRIX SPIKE RECOVERY: MS/MSD data is generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Not applicable. # 4. BLANK CONTAMINATION: 2890, Woodbridge Avenue, Edison, NJ 08837 Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination which may
have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-34A (Rev 0). #### A) Method blank contamination: No problems were found for this criterion. # B) Field or rinse blank contamination: Not applicable # C) Trip blank contamination: Sample BDQP2 is the trip blank associated with samples BD4R0, BD4R1, BD4R5, BD4R6, BD4R7, BD4R8, BDQN4, BDQN5, BDQN7, BDQP2 (Sampling date 11/10/2016). This sample has Acetone = CRQL (10 ug/L). Samples were qualified as below Acetone: BD4R6 Sample BDQP3 is trip blank associated with samples BDQN1, BDQN2 and BDQN3 (Sampling date 11/11/2016). This trip blank sample has Acetone > CRQL (10 ug/L). Samples were qualified as below: Acetone, not detected in any associated sample. No qualification was required. # D) Storage Blank associated with VOA samples only: No problems were found for this criterion. #### E) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for TVOA organic fraction are not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is (BFB) Bromofluorobenzene. If the mass calibration is in error, all associated data will be classified as unusable "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. 2890, Woodbridge Avenue, Edison, NJ 08837 #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. ### A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 34A (Rev 0). If RRF is less than minimum RRF specified in Table 2 for all target analytes, use professional judgment and all detects in the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 34A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 34A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. The following samples are associated with an opening or closing CCV with % Difference exceeding criteria. Detecteds are qualified as estimated J. Nondetects are qualified as estimated UJ. Isopropylbenzene, BD4R0, BD4R9, BDQN1, BDQN2, BDQN3, BDQP3 #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 9 of SOP HW 34A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards must be within the range as specified in Table 9 of SOP HW 34A (Rev 0). If the area count is greater 2890, Woodbridge Avenue, Edison, NJ 08837 than, all positive results quantitated using that IS are qualified as estimated "J-", and nondetects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all nondetects are qualified "R". If an internal standard retention time were not met as specified in Table 9 of SOP HW 34A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 8. FIELD DUPLICATES: Samples BDQN7 is duplicate of BD4R6. No problems were found for this criterion. No qualification was required. #### 9. COMPOUND IDENTIFICATION: Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within a window of 0.06 RRT units of the standard compound and have ion spectra which has a ratio of the primary and secondary m/z intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None. ### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None. #### 13. DILUTIONS, RE-EXTRACTIONS & REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. 2890, Woodbridge Avenue, Edison, NJ 08837 # **ANALYSIS: Semivolatiles** The current SOP HW-35A (Revision 0) July 2015, USEPA Region II for the evaluation of Semi-Volatile organic data generated through Statement of Work SOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. Tentatively Identified Compounds (TICs) for BNA organic fraction is not validated. #### 1. HOLDING TIME: The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Those analytes detected in the samples whose holding time has been exceeded, qualifications will be applied as per SOP HW-35A (Rev 0). No problems were found for this criterion. # 2. DEUTERATED MONITORING COMPOUNDS (DMCs) All samples are spiked with DMC compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. If the measured DMC recovery limits were outside Table 6 of SOP HW-35A (Revision 0), qualifications were applied as per Table 7 of SOP HW-35A (Revision 0) to all the samples and analytes as shown below. The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. 4-Chloroaniline-d4, BD4R1, BD4R5, BD4R6, BD4R7, BD4R8, BDQN7 The following samples have DMC/surrogate percent recoveries less than the primary minimum criteria but greater than or equal to the expanded minimum criteria. Detects are qualified as estimated J-. Nondetects are qualified as estimated UJ. 1,4-Dioxane-d8, BD4R7, BD4R1, BD4R0, BDQN5, BDQN3, BDQN2, BD4R9, BDQN7, BDQN4, BD4R8, BD4R5, BDQN1, BD4R6. # 3. MATRIX SPIKE/MATRIX SPIKE DUPLICATES (MS/MSD): MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices. The MS/MSD data may be used in conjunction with other QC criteria for additional qualification of data. Qualifications were applied to the samples and analytes as shown below. Not applicable. 2890, Woodbridge Avenue, Edison, NJ 08837 #### 4. BLANK CONTAMINATION: Quality assurance (QA) blanks, i.e., method, trip, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field and rinse blanks measure cross-contamination of samples during field operations. Depending on the amount of contamination present in the QA blanks, the analytes are qualified as per Table 5 of SOP HW-35A (Rev 0). No problems were found for this criterion. # A) Method blank contamination: No problems were found for this criterion. # B) Field or rinse blank contamination: Not applicable. # C) Tentatively Identified Compounds: Tentatively Identified Compounds (TICs) for SVOA organic fraction are
not validated. #### 5. MASS SPECTROMETER TUNING: Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for Semi-volatiles is Decafluorotriphenyl-phosphine (DFTPP). If the mass calibration is in error, all associated data will be classified as unusable "R". No problems were found for this criterion. #### 6. CALIBRATION: Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration checks document that the instrument is giving satisfactory daily performance. #### A) Response Factor GC/MS: The response factor measures the instrument's response to specific chemical compounds. All analytes for initial and continuing calibration should meet the minimum RRF criteria as listed in Table 2 of SOP HW 35A (Rev 0). If RRF is less than minimum RRF as specified in Table 2 for all target analytes, use professional judgment and all detects in 2890, Woodbridge Avenue, Edison, NJ 08837 the sample will be qualified as "J+" or "R". All non-detects for that compound will be rejected "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be less than maximum %RSD in Table 2 of SOP HW 35A (Rev 0) for all target analytes. For the opening or closing CCV %D must be within the inclusive opening or closing maximum %D limits as listed in Table 2 of SOP HW 35A (Rev 0) for all Target compounds. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and Nondetects are flagged "UJ" for %D values outside criteria only. If %RSD exceeds QC criteria, detects may be qualified as "J" and use professional judgment to qualify non-detects. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 7. INTERNAL STANDARDS PERFORMANCE GC/MS: Internal standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must be in the range as specified in Table 10 of SOP HW 35A (Rev 0) of the associated continuing calibration internal standard area. The retention time of the internal standards must be within the range as specified in Table 10 of SOP HW 35A (Rev 0). If the area count is greater than, all positive results quantitated using that IS are qualified as estimated "J-", and non-detects are not qualified. If the area count is less than the associated standard, all positive results for compounds quantitated with that IS are qualified as estimated "J+" and all non-detects are qualified "R". If an internal standard retention time were not met as specified in Table 10 of SOP HW 35A (Rev 0), the reviewer will use professional judgment to determine either partial or total rejection of the data for that sample fraction. Qualifications were applied to the samples and analytes as shown below. Qualifications were applied to the samples and analytes as shown below. No issues were identified for this criterion. #### 8. FIELD DUPLICATES: Samples BDQN7 is duplicate of BD4R6. No analytes were detected. No qualification was required. ï 2890, Woodbridge Avenue, Edison, NJ 08837 #### 9. COMPOUND IDENTIFICATION: #### A) Semi-Volatile Fractions: TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within 0.06 RRT units of the standard compound and have ion spectra which have a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound. For the tentatively identified compounds (TIC) the ion spectra must match accurately. In the cases where there is not an adequate ion spectrum match, the laboratory may have provided false positive identifications. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 10. CONTRACT PROBLEMS NON-COMPLIANCE: None #### 11. FIELD DOCUMENTATION: No problems were identified. #### 12. OTHER PROBLEMS: None # 13. DILUTIONS, RE-EXTRACTIONS and REANALYSIS: Samples may be re-analyzed for dilution, re-extraction and for other QC reasons. In such cases, the best result values are used. See summary report and EDD for applicable samples and analytes. 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** **Case No.**: 46633 **SDG No.**: MBD4M6 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) Number of Samples: 17 (16 Soil, 1 Water) Analysis: TCLP Metals (ICP-AES), TCLP Mercury (CVAA) Sampling dates: 11/08/2016, 11/09/2016 Validation SOP: HW-3a and 3c (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.: 3323-029-02960** **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. **Major:** A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. Critical Findings: None Major Findings: Samples have analyte(s) that have been qualified J. Minor Findings: None COMMENT: Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 1/06/2017 Name: Narendra Kumar Affiliation: USEPA/R2/HWSB/HWSS ### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | Data Qualifier Definitions (National Functional Guidelines) | | | | | | | |---|---|--|---|--|--|--| | Qualifier | Explanation | | | | | | | Symbol | INORGANICS | ORGANICS | CHLORINATED DIOXINS/FURANS | | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | | R | The data are unusable. The sample results are
rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 #### **DATA ASSESSMENT** **ANALYSIS: METALS ICP-AES (TCLP)** The current SOP HW-3a (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-AES metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines (NFG) Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (\leq 2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. #### **A) INITIAL CALIBRATION** A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the Contract Required Quantitation Limit (CRQL). The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient ≥ 0.995. The percent differences calculated for all of the non-zero standards must be within ±30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # **B) INITIAL AND CONTINUING CALIBRATION VERIFICATION** Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV 2890, Woodbridge Avenue, Edison, NJ 08837 standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks — Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB), are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The Preparation Blank (PB) is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks (FB and RB) measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results less than or equal to CRQLs. The associated **CCB** analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Lead – MBD4M6, MBD4N8, MBD4Q2 Silver – MBD4M2, MBD4M9, MBD4N7, MBD4P9 FIELD BLANK (MBD4Q2) **MBD4Q2** was identified as field blank (FB-SB-A) sample in the trip report for the sampling dates. No analyte was above CRQL, no data was qualified with the *Field Blank criterion*. # 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or ±CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 5. SPIKE SAMPLE ANALYSIS 2890, Woodbridge Avenue, Edison, NJ 08837 The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. #### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values > five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is \leq 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. #### 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. **MBD4N1** (DF-SB-17-A, parent) and **MBD4Q0** (SB-900-B, duplicate), and **MBD4M4** (DF-SB-10-A, parent) and **MBD4P9** (SB-900-A, duplicate) are Field Duplicate (FD) samples, respectively. No problems were found for this criterion. #### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. 2890, Woodbridge Avenue, Edison, NJ 08837 #### 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a
five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. No problems were found for this criterion. #### 10. PERCENT SOLIDS The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. Not applicable. #### 11. OTHER ISSUES Per laboratory narrative, it appears that the aqueous Field Blank (FB) sample **MBD4Q2** was preserved with nitric acid (HNO₃), pH less than 2, by the contractor/sampler. Water samples should not be preserved for TCLP Metals and TCLP Mercury analyses. Region 2 instructed the laboratory to proceed with the analyses and note the issue in the SDG Narrative. No other issues were found for this SDG. 2890, Woodbridge Avenue, Edison, NJ 08837 #### **DATA ASSESSMENT** ANALYSIS: MERCURY (TCLP) The current SOP HW-3c (Revision 0) July 2015, USEPA Region II for the evaluation of Mercury generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-**Automated Screening Results Report.** #### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time, pH (aqueous samples), or cooler temperature are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (28 days) and pH (<2) have not been met, will be qualified as estimated, "J"; the non-detects (sample quantitation limits) will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for mercury. Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. #### A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of the standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient ≥ 0.995. The percent differences calculated for all of the non-zero standards must be within ± 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for mercury by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every hour during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. The percent recovery acceptable limits for ICV/CCV are 85 - 115%. Qualifications were applied to the samples and analytes as shown below. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. FIELD BLANK (MBD4Q2) **MBD4Q2** was identified as field blank (FB-SB-A) sample in the trip report for the sampling dates. No analyte was above CRQL, no data was qualified with the *Field Blank criterion*. #### 4. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 − 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. ### 5. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values > five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is \leq 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. # **6. FIELD DUPLICATE** Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 20% for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. 2890, Woodbridge Avenue, Edison, NJ 08837 MBD4N1 (DF-SB-17-A, parent) and MBD4Q0 (SB-900-B, duplicate), and MBD4M4 (DF-SB-10-A, parent) and MBD4P9 (SB-900-A, duplicate) are Field Duplicate (FD) samples, respectively. No problems were found for this criterion. #### 7. PERCENT SOLIDS The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. Not applicable. #### 8. OTHER ISSUES Per laboratory narrative, it appears that the aqueous Field Blank (FB) sample MBD4Q2 was preserved with nitric acid (HNO₃), pH less than 2, by the contractor/sampler. Water samples should not be preserved for TCLP Metals and TCLP Mercury analyses. Region 2 instructed the laboratory to proceed with the analyses and note the issue in the SDG Narrative. No other issues were found for this SDG. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** **Case No.:** 46633 **SDG No.:** MBD4M7 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) Number of Samples: 15 (14 Soil, 1 Water) Analysis: Metals (ICP-AES & ICP-MS) Sampling dates: 11/08 and 11/09/2016 Validation SOP: HW-3a & 3b (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.:** 3323-029-02960 #### **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. **Critical Findings: None** Major Findings: Samples have analyte(s) that have been qualified J and UJ. Minor Findings: None **COMMENT:** Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 1/17/2017 Name: Narendra Kumar Affiliation: USEPA/R2/HWSB/HWSS #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 #### **Data Qualifier Definitions (National Functional Guidelines) Explanation** Qualifier Symbol **INORGANICS ORGANICS** CHLORINATED DIOXINS/FURANS The analyte was analyzed for but not detected. The value preceding the "U" The analyte was analyzed for, but was not may represent the adjusted Contract The analyte was analyzed for, but was detected at a level greater than or equal to the Required Quantitation Limit (see П not detected above the level of the level of the adjusted Contract Required DLM02.X, Exhibit D, Section 1.2 and reported quantitation limit. Quantitation Limit (CRQL) for sample and Table 2), or the sample specific estimated method detection limit (EDL, see Method 8290A, Section 11.9.5). The analyte was positively identified and The analyte was positively identified and the the associated numerical value is the associated numerical value is the approximate The result is an estimated quantity. approximate concentration of the analyte concentration of the analyte in the sample (due in the sample (due either to an issue with The associated numerical value is the either to the quality of the data generated approximate concentration of the
the quality of the data generated because because certain quality control criteria were not analyte in the sample. certain QC criteria were not met, or the met, or the concentration of the analyte was concentration of the analyte was below below the CRQL. the adjusted CRQL). The result is an estimated quantity, but The result is an estimated quantity, but the result J+ the result may be biased high. may be biased high. The result is an estimated quantity, but The result is an estimated quantity, but the result Jthe result may be biased low. may be biased low. The analyte was analyzed for, but was The analyte was not detected at a level greater The analyte was not detected (see not detected. The reported than or equal to the adjusted CRQL. However, UJ definition of "U" flag, above). The reported quantitation limit is approximate and the reported adjusted CRQL is approximate and value should be considered approximate. may be inaccurate or imprecise. may be inaccurate or imprecise. The data are unusable. The sample The sample results are unusable due to The sample results are unusable due to the results are rejected due to serious quality of the data generated because certain the quality of the data generated because R deficiencies in meeting Quality Control criteria were not met. The analyte may or may certain criteria were not met. The analyte (QC) criteria. The analyte may or may not be present in the sample. may or may not be present in the sample. not be present in the sample. The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". The analysis indicates the presence of an analyte that has been "tentatively identified" and NJ the associated numerical value represents its approximate concentration. This qualifier applies to pesticide and Aroclor results when the identification has been С confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but \mathbf{x} was unsuccessful. 2890, Woodbridge Avenue, Edison, NJ 08837 #### **DATA ASSESSMENT** **ANALYSIS: METALS ICP-AES** The current SOP HW-3a (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-AES metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (\leq 2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. #### **A) INITIAL CALIBRATION** A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient \geq 0.995. The percent differences calculated for all of the non-zero standards must be within $\pm 30\%$ of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank (PB) is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. FIELD BLANK (MBD4Q2) Sample **MBD4Q2** was identified as field blank (FB-SB-A) sample in the trip report for the sampling dates. No analyte was above CRQL, no data was qualified with the *Field Blank criterion*. #### 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or ±CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. 2890, Woodbridge Avenue, Edison, NJ 08837 No spike sample analysis performed for this SDG. No problems were found for this criterion. #### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values \geq five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. #### 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. **MBD4M4** (DF-SB-10-A, parent) and **MBD4P9** (SB-900-A, duplicate), and **MBD4N1** (DF-SB-17-A, parent) and **MBDQR7** (SB-900-B, duplicate) are Field Duplicate (FD) samples, respectively. No problems were found with the Field Duplicate criterion for ICP-AES. #### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent
Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution 2890, Woodbridge Avenue, Edison, NJ 08837 analysis that does not meet the technical criteria, the action was applied to <u>only</u> the field sample used to prepare the serial dilution sample. No problems were found for this criterion. # **10. PERCENT SOLIDS** The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 11. OTHER ISSUES None. 2890, Woodbridge Avenue, Edison, NJ 08837 # **DATA ASSESSMENT** **ANALYSIS: METALS ICP-MS** The current SOP HW-3b (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-MS metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (<2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. ### A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient \geq 0.995. The percent differences calculated for all of the non-zero standards must be within \pm 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated <u>ICB</u> analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBD4M2, MBD4M3, MBD4M6, MBD4M8, MBD4M9, MBD4N0, MBD4N2, MBD4N3, MBD4N4, MBD4P9, MBD4Q2 Beryllium – MBD4M7, MBD4M9, MBD4Q2 Copper – MBD4Q2 Sodium – MBD4Q2 The following samples have analyte results less than or equal to CRQLs. The associated <u>CCB</u> analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBD4M2, MBD4M3, MBD4M6, MBD4M8, MBD4M9, MBD4N0, MBD4N2, MBD4N3, MBD4N4, MBD4P9, MBD4Q2 Beryllium – MBD4M7, MBD4M9, MBD4Q2 Copper – MBD4Q2 Silver – MBD4M2, MBD4M3, MBD4M4, MBD4N2, MBD4N3, MBD4N4, MBD4P9 Sodium – MBD4Q2 Thallium – MBD4M2, MBD4M6, MBD4M7, MBD4M8, MBD4M9, MBD4N0, MBD4N1, MBD4N2, MBD4N3, MBD4N4, MBD4P9, MBD4Q0 The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated <u>PB</u> analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Antimony** – MBD4M2, MBD4M3, MBD4M6, MBD4M8, MBD4M9, MBD4N0, MBD4N2, MBD4N3, MBD4N4, MBD4P9 Beryllium – MBD4Q2 Sodium – MBD4Q2 FIELD BLANK (MBD4Q2) Sample **MBD4Q2** was identified as field blank (FB-SB-A) sample in the trip report for the sampling dates. No analyte was above CRQL, no data was qualified with the *Field Blank criterion*. 2890, Woodbridge Avenue, Edison, NJ 08837 #### 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or ±2X CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. The following sample is associated with Matrix Spike sample that has spike analyte %R within 30 -74% and Post-digestion spike analyte %R greater than or equal to 75%. Detects are qualified as J. Nondetects are qualified as UJ. Arsenic - MBD4M7 #### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. 2890, Woodbridge Avenue, Edison, NJ 08837 #### 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is <
5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. MBD4M4 (DF-SB-10-A, parent) and MBD4P9 (SB-900-A, duplicate), and MBD4N1 (DF-SB-17-A, parent) and MBD4Q0 (SB-900-B, duplicate) are Field Duplicate (FD) samples, respectively. The following original and their field duplicate samples have analyte results greater than or equal to 5xCRQL and Relative Percent Difference (RPD) between the two samples is greater than 50%. Detected analytes are qualified **J** and non-detects, **UJ**. Lead – MBD4N1 and MBD4Q0; MBD4M4 and MBD4P9 The following original and/or duplicate sample results are less than 5xCRQL and absolute difference between original and duplicate samples is greater than the 2xCRQL. Detected analytes are qualified **J**. Nondetects are qualified **UJ**. **Antimony** – MBD4N1 and MBD4Q0 Beryllium - MBD4M4 and MBD4P9 Cadmium – MBD4M4 and MBD4P9 Selenium – MBD4M4 and MBD4P9 #### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. # 10. ICP-MS TUNE ANALYSIS The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tune serves as an initial demonstration of instrument stability and precision. Prior to calibration, the laboratory shall analyze or scan the ICP-MS tuning solution at least five times (5x) consecutively. The tuning solution contains 100 µg/L of Be, Mg, Co, In, and Pb. The solution shall contain all required isotopes of the above elements. The laboratory shall make any adjustments necessary to bring peak width within the instrument manufacturer's specifications and adjust mass resolution to within 0.1 u over the range of 6-210 u. The Percent Relative Standard Deviation (%RSD) of the absolute signals for all analytes in the tuning solution must be < 5%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 11. ICP-MS INTERNAL STANDARDS The analysis of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) internal standards determines the existence and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all analytical and Quality Control (QC) samples analyzed during the run, beginning with the calibration. All samples analyzed during a run, with the exception of the ICP-MS tune, shall contain internal standards. A minimum of five internal standards shall be added to each sample. The laboratory shall monitor the same internal standards throughout the entire analytical run and shall assign each analyte to at least one internal standard. The Percent Relative Intensity (%RI) in the sample shall fall within 60-125% of the response in the calibration blank. If the %RI of the response in the sample falls outside of these limits, the laboratory shall reanalyze the original sample at a two-fold dilution with internal standard added. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 12. PERCENT SOLIDS The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 13. OTHER ISSUES None. 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** **Case No.**: 46633 **SDG No.**: MBD4N9 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) Number of Samples: 20 (Soil) Analysis: TCLP Metals (ICP-AES), TCLP Mercury (CVAA) Sampling dates: 11/07/2016, 11/08/2016 Validation SOP: HW-3a and 3c (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.: 3323-029-02960** **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. **Critical Findings: None** Major Findings: Samples have analyte(s) that have been qualified J. Minor Findings: None COMMENT: Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 1/06/2017 Name: Narendra Kumar Affiliation: USEPA/R2/HWSB/HWSS #### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 #### **Data Qualifier Definitions (National Functional Guidelines) Explanation** Qualifier Symbol **INORGANICS ORGANICS** CHLORINATED DIOXINS/FURANS The analyte was analyzed for but not detected. The value preceding the "U" The analyte was analyzed for, but was not may represent the adjusted Contract The analyte was analyzed for, but was detected at a level greater than or equal to the Required Quantitation Limit (see П not detected above the level of the level of the adjusted Contract Required DLM02.X, Exhibit D, Section 1.2 and reported quantitation limit. Quantitation Limit (CRQL) for sample and Table 2), or the sample specific estimated method detection limit (EDL, see Method 8290A, Section 11.9.5). The analyte was positively identified and The analyte was positively identified and the the associated numerical value is the associated numerical value is the approximate The result is an estimated quantity. approximate concentration of the analyte concentration of the analyte in the sample (due The associated numerical value is the in the sample (due either to an issue with either to the quality of the data generated approximate concentration of the the quality of the data generated because because certain quality control criteria were not analyte in the sample. certain QC criteria were not met, or the met, or the concentration of the analyte was concentration of the analyte was below below the CRQL. the adjusted CRQL). The result is an estimated quantity, but The result is an estimated quantity, but the result J+ the result may be biased high. may be biased high. The result is an estimated quantity, but The result is an estimated quantity, but the result Jmay be biased low. the result may be biased low. The analyte was analyzed for, but was The analyte was not detected at a level greater The analyte was not detected (see not detected. The reported than or equal to the adjusted CRQL. However, UJ definition of "U" flag, above). The reported quantitation limit is approximate and the reported adjusted CRQL is approximate and value should be considered approximate. may be inaccurate or imprecise. may be inaccurate or imprecise. The data are unusable. The sample The sample results are unusable due to the The sample results are unusable due to results are rejected due to serious quality of the data generated because certain the quality of the data generated because R deficiencies in meeting Quality Control criteria were not met. The analyte may or may certain criteria were not met. The analyte (QC) criteria. The analyte may or may not be present in the sample. may or may not be present in the sample. not be present in the sample. The analysis indicates the presence of an analyte for which there is presumptive evidence Ν to make a "tentative identification". The analysis indicates the presence of an analyte that has been "tentatively identified" and NJ the associated numerical value represents its approximate concentration. This qualifier applies to pesticide and Aroclor results when the identification has been С confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but \mathbf{x} was unsuccessful. 2890, Woodbridge Avenue, Edison, NJ 08837 #### **DATA ASSESSMENT** **ANALYSIS: METALS ICP-AES (TCLP)** The current SOP HW-3a (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-AES metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines (NFG) Report and the CCS Semi-Automated Screening Results Report. #### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical
instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (\leq 2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. #### **A) INITIAL CALIBRATION** A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the Contract Required Quantitation Limit (CRQL). The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient ≥ 0.995. The percent differences calculated for all of the non-zero standards must be within ±30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # **B) INITIAL AND CONTINUING CALIBRATION VERIFICATION** Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV 2890, Woodbridge Avenue, Edison, NJ 08837 standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. The percent recovery acceptable limits for ICV/CCV are 90 - 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks — Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB), are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The Preparation Blank (PB) is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks (FB and RB) measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. FIELD BLANK - None No Field Blank sample was identified in the Trip Report for this SDGs sampling dates. #### 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or +CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values > five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is ≤ 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ### 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. Samples MBD4N1 (DF-SB-17-A, parent) and MBD4Q0 (SB-900-B, duplicate) are Field Duplicate (FD) samples for the sampling date, 11/8/2016 but were not included in this SDG. No problems were found for this criterion. ## 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution 2890, Woodbridge Avenue, Edison, NJ 08837 analysis that does not meet the technical criteria, the action was applied to <u>only</u> the field sample used to prepare the serial dilution sample. No problems were found for this criterion. ### **10. PERCENT SOLIDS** The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. Not applicable. ## 11. OTHER ISSUES Sample MBD4L5 was not included in the sampling Trip Report. No other issues were found for this SDG. 2890, Woodbridge Avenue, Edison, NJ 08837 # **DATA ASSESSMENT** ANALYSIS: MERCURY (TCLP) The current SOP HW-3c (Revision 0) July 2015, USEPA Region II for the evaluation of Mercury generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-**Automated Screening Results Report.** ## 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time, pH (aqueous samples), or cooler temperature are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (28 days) and pH (<2) have not been met, will be qualified as estimated, "J"; the non-detects (sample quantitation limits) will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for mercury. Initial Calibration Verification
(ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. ## A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of the standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient ≥ 0.995. The percent differences calculated for all of the non-zero standards must be within ± 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for mercury by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every hour during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. The percent recovery acceptable limits for ICV/CCV are 85 - 115%. Qualifications were applied to the samples and analytes as shown below. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. FIELD BLANK - None No Field Blank sample was identified in the Trip Report for this SDG's sampling dates. ### 4. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. ### 5. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values > five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is \leq 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ## **6. FIELD DUPLICATE** Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 20% for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. 2890, Woodbridge Avenue, Edison, NJ 08837 Samples MBD4N1 (DF-SB-17-A, parent) and MBD4Q0 (SB-900-B, duplicate) are Field Duplicate (FD) samples for the sampling date, 11/8/2016 but were not included in this SDG. No problems were found for this criterion. ## 7. PERCENT SOLIDS The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. Not applicable. ## 8. OTHER ISSUES Sample MBD4L5 was not included in the sampling Trip Report. No other issues were found for this SDG. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** Case No.: 46633 SDG No.: MBD4P0 Site: Former Duofold Corporation (Brownfield) Chemtech Consulting Group (CHM) Laboratory: **Sampling dates:** 11/07 and 11/08/2016 Number of Samples: 18 (Soil) Analysis: Metals (ICP-AES & ICP-MS) Validation SOP: HW-3a & 3b (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.: 3323-029-02960** ## **SUMMARY OF DEFINITIONS:** **Critical:** Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. The level of uncertainty is acceptable. No significant bias in the data was observed. Minor: **Critical Findings: None** Major Findings: Samples have analyte(s) that have been qualified J. Minor Findings: None DAR revision considers Field Duplicate samples results not included in this SDG. COMMENT: Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) **Approver's Signature:** Date: 12/19/2016 Name: Narendra Kumar Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | Data Qualifier Definitions (National Functional Guidelines) | | | | | | |---|---|--|---|--|--| | Qualifier | Qualifier Explanation | | | | | | Symbol | INORGANICS | INORGANICS ORGANICS | | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of
an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 # **DATA ASSESSMENT** ANALYSIS: METALS ICP-AES The current SOP HW-3a (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-AES metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-**Automated Screening Results Report.** ### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (≤ 2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. ## A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient ≥ 0.995. The percent differences calculated for all of the non-zero standards must be within ±30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## **B) INITIAL AND CONTINUING CALIBRATION VERIFICATION** Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank (PB) is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **PB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Sodium** – MBD4L5, MBD4L6, MBD4L7, MBD4L8, MBD4L9, MBD4M0, MBD4M1, MBD4M5, MBD4N9, MBD4P0, MBD4P1, MBD4P2, MBD4P3, MBD4P4, MBD4P5, MBD4P6, MBD4P7, MBD4P8 ### 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or ±CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 − 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35 - 120% for soil/sediment and 20 - 100% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values \geq five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ### 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. No field duplicates were included in this SDG. SDG's sampling dates' field duplicate samples included in other SDG(s) were the following: **MBD4N1** (DF-SB-17-A, parent) and **MBD4Q0** (SB-900-B, duplicate) are Field Duplicate (FD) samples. No problems were found with the *Field Duplicate criterion for ICP-AES*. ### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 9. ICP SERIAL DILUTION 2890, Woodbridge Avenue, Edison, NJ 08837 The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. The following soil/sediment samples are associated with Serial Dilution (SD) sample that has analyte percent different %D greater than 15% but less than 120%. The original sample analyte concentrations are greater than 50xMDLs. Detects are qualified as estimated **J**. Nondetects are not qualified. Iron – MBD4L8 ### **10. PERCENT SOLIDS** The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50%
are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 11. OTHER ISSUES None. 2890, Woodbridge Avenue, Edison, NJ 08837 ## DATA ASSESSMENT **ANALYSIS: METALS ICP-MS** The current SOP HW-3b (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-MS metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. ### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (<2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. ## A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient \geq 0.995. The percent differences calculated for all of the non-zero standards must be within \pm 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **ICB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Antimony** – MBD4L7, MBD4L8, MBD4L9, MBD4M0, MBD4M1, MBD4P1, MBD4P2, MBD4P4, MBD4P5, MBD4P7, MBD4P8 **Beryllium** – MBD4L5, MBD4L7, MBD4M0, MBD4M5, MBD4N9, MBD4P0, MBD4P1, MBD4P3, MBD4P4, MBD4P5, MBD4P6, MBD4P7, MBD4P8 The following samples have analyte results less than or equal to CRQLs. The associated **CCB** analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Antimony** – MBD4L7, MBD4L8, MBD4L9, MBD4M0, MBD4M1, MBD4P1, MBD4P2, MBD4P4, MBD4P5, MBD4P7, MBD4P8 **Beryllium** – MBD4L5, MBD4L7, MBD4M0, MBD4M5, MBD4N9, MBD4P0, MBD4P1, MBD4P3, MBD4P4, MBD4P5, MBD4P6, MBD4P7, MBD4P8 **Thallium** – MBD4L9, MBD4N9, MBD4P0, MBD4P1, MBD4P2, MBD4P3, MBD4P4, MBD4P5, MBD4P6, MBD4P7, MBD4P8 The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **PB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Antimony** – MBD4L7, MBD4L8, MBD4L9, MBD4M0, MBD4M1, MBD4P1, MBD4P2, MBD4P4, MBD4P5, MBD4P7, MBD4P8 # 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or 2890, Woodbridge Avenue, Edison, NJ 08837 $\pm 2X$ CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are \geq MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is \geq MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 − 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. ## 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35 - 120% for soil/sediment and 20 - 100% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values \geq five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ### 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. No field duplicates were included in this SDG. The <u>SDG's sampling dates</u>' field duplicate samples included in other SDG(s) for the requested analyses were the following: MBD4N1 (DF-SB-17-A, parent) and MBD4Q0 (SB-900-B, duplicate) 2890, Woodbridge Avenue, Edison, NJ 08837 The following original and their field duplicate samples have analyte results greater than or equal to 5xCRQL and Relative Percent Difference (RPD) between the two samples is greater than 50%. Detected analytes are qualified **J** and non-detects, **UJ**. Lead - MBD4N1 and MBD4Q0 The following original and/or duplicate sample results are less than 5xCRQL and absolute difference between original and duplicate samples is greater than the 2xCRQL. Detected analytes are qualified **J**. Nondetects are qualified **UJ**. Antimony – MBD4N1 and MBD4Q0 ### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found
for this criterion. ### 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. No problems were found for this criterion. ### 10. ICP-MS TUNE ANALYSIS The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tune serves as an initial demonstration of instrument stability and precision. Prior to calibration, the laboratory shall analyze or scan the ICP-MS tuning solution at least five times (5x) consecutively. The tuning solution contains 100 μ g/L of Be, Mg, Co, In, and Pb. The solution shall contain all required isotopes of the above elements. The laboratory shall make any adjustments necessary to bring peak width within the instrument manufacturer's specifications and adjust mass resolution to within 0.1 u over the range of 6-210 u. The Percent Relative Standard Deviation (%RSD) of the absolute signals for all analytes in the tuning solution must be < 5%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. 2890, Woodbridge Avenue, Edison, NJ 08837 ## 11. ICP-MS INTERNAL STANDARDS The analysis of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) internal standards determines the existence and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all analytical and Quality Control (QC) samples analyzed during the run, beginning with the calibration. All samples analyzed during a run, with the exception of the ICP-MS tune, shall contain internal standards. A minimum of five internal standards shall be added to each sample. The laboratory shall monitor the same internal standards throughout the entire analytical run and shall assign each analyte to at least one internal standard. The Percent Relative Intensity (%RI) in the sample shall fall within 60-125% of the response in the calibration blank. If the %RI of the response in the sample falls outside of these limits, the laboratory shall reanalyze the original sample at a two-fold dilution with internal standard added. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 12. PERCENT SOLIDS The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 13. OTHER ISSUES None. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** **Case No.:** 46633 **SDG No.:** MBD4Q3 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) **Number of Samples:** 20 (Water) **Sampling dates:** 11/07, 08, 09 and 11/10/2016 Analysis: Metals (ICP-MS) Validation SOP: HW-3b (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.:** 3323-029-02960 **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. Critical Findings: None Major Findings: Samples have analyte(s) that have been qualified UJ, and J. Minor Findings: None **COMMENT:** Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 12/29/2016 Name: Russell Arnone Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | Data Qualifier Definitions (National Functional Guidelines) | | | | | | |---|---|--|---|--|--| | Qualifier | Qualifier Explanation | | | | | | Symbol | INORGANICS | INORGANICS ORGANICS | | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 ## **DATA ASSESSMENT** **ANALYSIS: METALS ICP-MS** The current SOP HW-3b (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-MS metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. ### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (≤2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic
Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. ## A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient \geq 0.995. The percent differences calculated for all of the non-zero standards must be within \pm 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **ICB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBD4Q3, MBD4Q4, MBD4Q6, MBD4Q7, MBD4Q9, MBD4R1, MBD4R3, MBD4R5, MBDQN6 Sodium - MBDQN8 The following samples have analyte results less than or equal to CRQLs. The associated **CCB** analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Antimony** – MBD4Q3, MBD4Q4, MBD4Q6, MBD4Q7, MBD4Q9, MBD4R1, MBD4R3, MBD4R5, MBDQN6 Sodium – MBDQN8 The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **PB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBD4Q3, MBD4Q4, MBD4Q6, MBD4Q7, MBD4Q9, MBD4R1, MBD4R3, MBD4R5, MBDQN6 ## FIELD BLANK (MBDQN8) MBDQN8 was identified as field blank (FB-GW-1) sample in the trip report for the sampling dates. No analyte was above CRQL, no data was qualified with the *Field Blank criterion*. ## 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution 2890, Woodbridge Avenue, Edison, NJ 08837 AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or +2X CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution. the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. #### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35 - 120% for soil/sediment and 20 - 100% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ## 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. MBD4Q7 (DF-MW-05-1, parent) and MBDQN6 (GW-900-1, duplicate), and MBD4R6 (DF-TWP-03-1, parent) and MBDQN7 (GW-900-2, duplicate) are Field Duplicate (FD) samples, respectively. No problems were found for this criterion. 2890, Woodbridge Avenue, Edison, NJ 08837 ### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. No problems were found for this criterion. ### 10. ICP-MS TUNE ANALYSIS The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tune serves as an initial demonstration of instrument stability and precision. Prior to calibration, the laboratory shall analyze or scan the ICP-MS tuning solution at least five times (5x) consecutively. The tuning solution contains 100 μ g/L of Be, Mg, Co, In, and Pb. The solution shall contain all required isotopes of the above elements. The laboratory shall make any adjustments necessary to bring peak width within the instrument manufacturer's specifications and adjust mass resolution to within 0.1 u over the range of 6-210 u. The Percent Relative Standard Deviation (%RSD) of the absolute signals for all analytes in the tuning solution must be < 5%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 11. ICP-MS INTERNAL STANDARDS The analysis of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) internal standards determines the existence and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all analytical and Quality Control (QC) samples analyzed during the run, beginning with the calibration. All samples analyzed during a run, with the exception of the ICP-MS tune, shall contain internal standards. A
minimum of five internal standards shall be added to each sample. The laboratory shall monitor the same internal standards throughout the entire analytical run and shall assign each analyte to at least one internal standard. The Percent Relative Intensity (%RI) in the sample shall fall within 60-125% of the response in the calibration 2890, Woodbridge Avenue, Edison, NJ 08837 blank. If the %RI of the response in the sample falls outside of these limits, the laboratory shall reanalyze the original sample at a two-fold dilution with internal standard added. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## **12. PERCENT SOLIDS** The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. Not applicable for this SDG. None found. ### 13. OTHER ISSUES None. ## 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** **Case No.:** 46633 **SDG No.:** MBD4R8 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) Number of Samples: 5 (Water) Sampling dates: 11/10 and 11/11/2016 Analysis: Metals (ICP-MS) Validation SOP: HW-3b (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.:** 3323-029-02960 **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. Critical Findings: None Major Findings: Samples have analyte(s) that have been qualified UJ, and J. Minor Findings: None **COMMENT:** Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 1/13/2017 Name: Narendra Kumar Affiliation: USEPA/R2/HWSB/HWSS ### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 #### **Data Qualifier Definitions (National Functional Guidelines) Explanation** Qualifier Symbol **INORGANICS ORGANICS** CHLORINATED DIOXINS/FURANS The analyte was analyzed for but not detected. The value preceding the "U" The analyte was analyzed for, but was not may represent the adjusted Contract The analyte was analyzed for, but was detected at a level greater than or equal to the Required Quantitation Limit (see u not detected above the level of the level of the adjusted Contract Required DLM02.X, Exhibit D, Section 1.2 and reported quantitation limit. Quantitation Limit (CRQL) for sample and Table 2), or the sample specific estimated method detection limit (EDL, see Method 8290A, Section 11.9.5). The analyte was positively identified and The analyte was positively identified and the the associated numerical value is the associated numerical value is the approximate The result is an estimated quantity. approximate concentration of the analyte concentration of the analyte in the sample (due The associated numerical value is the in the sample (due either to an issue with either to the quality of the data generated approximate concentration of the the quality of the data generated because because certain quality control criteria were not analyte in the sample. certain QC criteria were not met, or the met, or the concentration of the analyte was concentration of the analyte was below below the CRQL. the adjusted CRQL). The result is an estimated quantity, but The result is an estimated quantity, but the result J+ the result may be biased high. may be biased high. The result is an estimated quantity, but The result is an estimated quantity, but the result Jthe result may be biased low. may be biased low. The analyte was analyzed for, but was The analyte was not detected at a level greater The analyte was not detected (see not detected. The reported than or equal to the adjusted CRQL. However, UJ definition of "U" flag, above). The reported quantitation limit is approximate and the reported adjusted CRQL is approximate and value should be considered approximate. may be inaccurate or imprecise. may be inaccurate or imprecise. The data are unusable. The sample The sample results are unusable due to the The sample results are unusable due to results are rejected due to serious quality of the data generated because certain the quality of the data generated because R deficiencies in meeting Quality Control criteria were not met. The analyte may or may certain criteria were not met. The analyte (QC) criteria. The analyte may or may not be present in the sample. may or may not be present in the sample. not be present in the sample. The analysis indicates the presence of an analyte for which there is presumptive evidence Ν to make a "tentative identification". The analysis indicates the presence of an analyte that has been "tentatively identified" and NJ the associated numerical value represents its approximate concentration. This qualifier applies to pesticide and Aroclor results when the identification has been С confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but \mathbf{x} was unsuccessful. 2890, Woodbridge Avenue, Edison, NJ 08837 # **DATA ASSESSMENT** ANALYSIS: METALS ICP-MS The current SOP HW-3b (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-MS metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines (NFG) Report and the CCS Semi-**Automated Screening Results Report.** ### 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (<2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. ## A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient ≥ 0.995. The percent differences calculated for all of the non-zero standards must be within ± 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. #### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **ICB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQN1, MBDQN2 Arsenic – MBD4R8, MBD4R9, MBDQN1 Copper – MBD4R8, MBD4R9, MBDQN1, MBDQN3 Lead – MBDQN2, MBDQN3, MBD4R8 The following samples have analyte results less than or equal to CRQLs. The associated **CCB** analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQN1, MBDQN2 Arsenic – MBD4R8, MBD4R9, MBDQN1 The following samples have analyte results greater than or equal to MDLs and less
than or equal to CRQLs. The associated **PB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQN1, MBDQN2 FIELD BLANK - None No Field Blank sample was identified in the Trip Report for this SDG's sampling dates. ## 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of \pm 20% or \pm 2X CRQL (whichever is greater) of the true value for the analytes and interferents included in the 2890, Woodbridge Avenue, Edison, NJ 08837 solution. If results that are \geq MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is \geq MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. ## 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35 - 120% for soil/sediment and 20 - 100% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values \geq five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ## 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. Samples **MBD4R6** (DF-TWP-03-1, parent) and **MBDQN7** (GW-900-2, duplicate); and **MBDQQ7** (DF-TWP-03-1-F, parent) and **MBDQR7** (GW-900-2-F, duplicate) are Field Duplicate (FD) samples, respectively, for the sampling date, 11/10/2016 but were not included in this SDG. No problems were found for this criterion. ### 8. LABORATORY CONTROL SAMPLE 2890, Woodbridge Avenue, Edison, NJ 08837 The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL), the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. No problems were found for this criterion. #### 10. ICP-MS TUNE ANALYSIS The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tune serves as an initial demonstration of instrument stability and precision. Prior to calibration, the laboratory shall analyze or scan the ICP-MS tuning solution at least five times (5x) consecutively. The tuning solution contains 100 μ g/L of Be, Mg, Co, In, and Pb. The solution shall contain all required isotopes of the above elements. The laboratory shall make any adjustments necessary to bring peak width within the instrument manufacturer's specifications and adjust mass resolution to within 0.1 u over the range of 6-210 u. The Percent Relative Standard Deviation (%RSD) of the absolute signals for all analytes in the tuning solution must be < 5%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 11. ICP-MS INTERNAL STANDARDS The analysis of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) internal standards determines the existence and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all analytical and Quality Control (QC) samples analyzed during the run, beginning with the calibration. All samples analyzed during a run, with the exception of the ICP-MS tune, shall contain internal standards. A minimum of five internal standards shall be added to each sample. The laboratory shall monitor the same internal standards throughout the entire analytical run and shall assign each analyte to at least one internal standard. The Percent Relative Intensity (%RI) in the sample shall fall within 60-125% of the response in the calibration blank. If the %RI of the response in the sample falls outside of these limits, the laboratory shall reanalyze the original sample at a two-fold dilution with internal standard added. Qualifications were applied to the samples and analytes as shown below. ### UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ## 12. PERCENT SOLIDS The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. Not applicable for this SDG. None found. ## 13. OTHER ISSUES None. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** Case No.: 46633 SDG No.: MBDQP4 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) **Number of Samples:** 20 (Water) **Sampling dates:** 11/07, 08, 09 and 11/10/2016 Analysis: Metals (ICP-MS) Validation SOP: HW-3b (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.:** 3323-029-02960 **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. Critical Findings: None Major Findings: Samples have analyte(s) that have been qualified UJ, and J. Minor Findings: None **COMMENT:** Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 12/29/2016 Name: Russell Arnone Affiliation: USEPA/R2/HWSB/HWSS # UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 | Data Qualifier Definitions (National Functional Guidelines) | | | | | | |---|---|--
---|--|--| | Qualifier | Qualifier Explanation | | | | | | Symbol | INORGANICS | INORGANICS ORGANICS | | | | | U | The analyte was analyzed for, but was not detected above the level of the reported quantitation limit. | The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method | The analyte was analyzed for but not detected. The value preceding the "U" may represent the adjusted Contract Required Quantitation Limit (see DLM02.X, Exhibit D, Section 1.2 and Table 2), or the sample specific estimated detection limit (EDL, see Method 8290A, Section 11.9.5). | | | | J | The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the CRQL. | The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to an issue with the quality of the data generated because certain QC criteria were not met, or the concentration of the analyte was below the adjusted CRQL). | | | | J+ | The result is an estimated quantity, but the result may be biased high. | The result is an estimated quantity, but the result may be biased high. | | | | | J- | The result is an estimated quantity, but the result may be biased low. | The result is an estimated quantity, but the result may be biased low. | | | | | υJ | The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise. | The analyte was not detected at a level greater than or equal to the adjusted CRQL. However, the reported adjusted CRQL is approximate and may be inaccurate or imprecise. | The analyte was not detected (see definition of "U" flag, above). The reported value should be considered approximate. | | | | R | The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample. | | | | N | | The analysis indicates the presence of an analyte for which there is presumptive evidence to make a "tentative identification". | | | | | NJ | | The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration. | | | | | С | | This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). | | | | | X | | This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but was unsuccessful. | | | | 2890, Woodbridge Avenue, Edison, NJ 08837 # DATA ASSESSMENT **ANALYSIS: METALS ICP-MS** The current SOP HW-3b (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-MS metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines Report and the CCS Semi-Automated Screening Results Report. ## 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (≤2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. # A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient \geq 0.995. The percent differences calculated for all of the non-zero standards must be within \pm 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **ICB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. **Antimony** – MBDQP4, MBDQP5, MBDQP7, MBDQP8, MBDQQ0, MBDQQ2, MBDQQ4, MBDQQ6, MBDQR6 Sodium – MBDQR8 The following samples have analyte results less than or equal to CRQLs. The associated **CCB** analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQP4, MBDQP5, MBDQP7, MBDQP8, MBDQQ0, MBDQQ2, MBDQQ4, MBDQQ6, MBDQR6 Calcium – MBDQR8 Sodium – MBDQR8 The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **PB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQP4, MBDQP5, MBDQP7, MBDQP8, MBDQQ0, MBDQQ2, MBDQQ4, MBDQQ6, MBDQR6 FIELD BLANK (MBDQR8) MBDQR8 was identified as field blank (FB-GW-1-F) sample in the trip report for the sampling dates. No analyte was above CRQL, no data was qualified with the *Field Blank criterion*. ## 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution 2890, Woodbridge Avenue, Edison, NJ 08837 AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of \pm 20% or \pm 2X CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are \geq MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is \geq MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of AI, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect
of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is $\geq 4x$ the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. ### 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35 - 120% for soil/sediment and 20 - 100% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values \geq five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. ## 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the Contract Required Quantitation Limit (CRQL). A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. **MBDQP8** (DF-MW-05-1-F, parent) and **MBDQR6** (GW-900-1-F, duplicate), and **MBDQQ7** (DF-TWP-03-1-F, parent) and **MBDQR7** (GW-900-2-F, duplicate) are Field Duplicate (FD) samples, respectively. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ### 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL)], the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. No problems were found for this criterion. ## 10. ICP-MS TUNE ANALYSIS The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tune serves as an initial demonstration of instrument stability and precision. Prior to calibration, the laboratory shall analyze or scan the ICP-MS tuning solution at least five times (5x) consecutively. The tuning solution contains 100 µg/L of Be, Mg, Co, In, and Pb. The solution shall contain all required isotopes of the above elements. The laboratory shall make any adjustments necessary to bring peak width within the instrument manufacturer's specifications and adjust mass resolution to within 0.1 u over the range of 6-210 u. The Percent Relative Standard Deviation (%RSD) of the absolute signals for all analytes in the tuning solution must be < 5%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 11. ICP-MS INTERNAL STANDARDS The analysis of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) internal standards determines the existence and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all analytical and Quality Control (QC) samples analyzed during the run, beginning with the calibration. All samples analyzed during a run, with the exception of the ICP-MS tune, shall contain internal standards. A minimum of five internal standards shall be added to each sample. The laboratory shall monitor the same internal standards throughout the entire analytical run and shall assign each analyte to at least one internal standard. The Percent 2890, Woodbridge Avenue, Edison, NJ 08837 Relative Intensity (%RI) in the sample shall fall within 60-125% of the response in the calibration blank. If the %RI of the response in the sample falls outside of these limits, the laboratory shall reanalyze the original sample at a two-fold dilution with internal standard added. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## **12. PERCENT SOLIDS** The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. Not applicable for this SDG. None found. ## 13. OTHER ISSUES None. # 2890, Woodbridge Avenue, Edison, NJ 08837 # **EXECUTIVE NARRATIVE** Case No.: 46633 SDG No.: MBDQQ9 Site: Former Duofold Corporation (Brownfield) Laboratory: Chemtech Consulting Group (CHM) Number of Samples: 5 (Water) Sampling dates: 11/10 and 11/11/2016 Analysis: Metals (ICP-MS) Validation SOP: HW-3b (Rev 0) **QAPP** Contractor: CDM-Smith **Contractor Document No.:** 3323-029-02960 **SUMMARY OF DEFINITIONS:** Critical: Results have an unacceptable level of uncertainty and should not be used for making decisions. Data have been qualified "R" rejected. Major: A level of uncertainty exists that may not meet the data quality objectives for the project. A bias is likely to be present in the results. Data has been qualified "J" estimated. "J+" and "J-" represent likely direction of the bias. Minor: The level of uncertainty is acceptable. No significant bias in the data was observed. Critical Findings: None Major Findings: Samples have analyte(s) that have been qualified UJ, and J. Minor Findings: None COMMENT: Results greater than detection limits (MDL) and below quantitation limits (CRQL) are qualified as estimated J. Reviewer Name(s): A Aoanan (SEE) Approver's Signature: Date: 1/18/2017 Name: Narendra Kumar Affiliation: USEPA/R2/HWSB/HWSS ## UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 DESA/HWSB/HWSS 2890, Woodbridge Avenue, Edison, NJ 08837 #### **Data Qualifier Definitions (National Functional Guidelines) Explanation** Qualifier Symbol **INORGANICS ORGANICS** CHLORINATED DIOXINS/FURANS The analyte was analyzed for but not detected. The value preceding the "U" The analyte was analyzed for, but was not may represent the adjusted Contract The analyte was analyzed for, but was detected at a level greater than or equal to the Required Quantitation Limit (see П not detected above the level of the level of the adjusted Contract Required DLM02.X, Exhibit D, Section 1.2 and reported quantitation limit. Quantitation Limit (CRQL) for sample and Table 2), or the sample specific estimated method detection limit (EDL, see Method 8290A, Section 11.9.5). The analyte was positively identified and The analyte was positively identified and the the associated numerical value is the associated numerical value is the approximate The result is an estimated quantity. approximate concentration of the analyte concentration of the analyte in the sample (due The associated numerical value is the in the sample (due either to an issue with either to the quality of the data generated approximate concentration of the the quality of the data generated because because certain quality control criteria were not analyte in the sample. certain QC criteria were not met, or the met, or the concentration of the analyte was concentration of the analyte was below below the CRQL. the adjusted CRQL). The result is an estimated quantity, but The result is an estimated quantity, but the result J+ the result may be biased high. may be biased high. The result is an estimated quantity, but The result is an estimated quantity, but the result Jthe result may be biased low. may be biased low. The analyte was analyzed for, but was The analyte was not detected at a level greater The analyte was not detected (see not detected. The reported than or equal to the adjusted CRQL. However, UJ definition of "U" flag, above). The reported quantitation limit is approximate and the reported adjusted CRQL is approximate and value should be considered approximate. may be inaccurate or imprecise. may be inaccurate or imprecise. The data are unusable. The sample The sample results are unusable due to the The sample results are unusable due to results are rejected due to serious quality of the data generated because certain the quality of the data generated because R deficiencies in meeting Quality Control criteria were not met. The analyte may or may certain criteria were not met. The analyte (QC) criteria. The analyte may or may not be present in the sample. may or may not be present in the sample. not be present in the sample. The analysis indicates
the presence of an analyte for which there is presumptive evidence Ν to make a "tentative identification". The analysis indicates the presence of an analyte that has been "tentatively identified" and NJ the associated numerical value represents its approximate concentration. This qualifier applies to pesticide and Aroclor results when the identification has been С confirmed by Gas Chromatograph/Mass Spectrometer (GC/MS). This qualifier applies to pesticide and Aroclor results when GC/MS analysis was attempted but \mathbf{x} was unsuccessful. 2890, Woodbridge Avenue, Edison, NJ 08837 # DATA ASSESSMENT **ANALYSIS: METALS ICP-MS** The current SOP HW-3b (Revision 0) July 2015, USEPA Region II for the evaluation of ICP-MS metals generated through Statement of Work ISOM02.2 has been applied. Data have been reviewed according to TDF specifications, the National Functional Guidelines (NFG) Report and the CCS Semi-Automated Screening Results Report. ## 1. HOLDING TIME AND PRESERVATION The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time or pH (aqueous samples are not within the acceptable range, the data may not be valid. Those analytes detected in the samples whose holding time (180 days) or pH (≤2) have not been met, will be qualified as estimated, "J"; the non-detects will be flagged as unusable, "R". Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 2. CALIBRATION Method requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing acceptable quantitative data for the metals on the Inorganic Target Analyte List (TAL). Initial Calibration Verification (ICV) demonstrates that the instrument is capable of acceptable performance at the beginning of the analytical run. Continuing Calibration Verification (CCV) demonstrates that the initial calibration is still valid by checking the performance of the instrument on a continuing basis. # A) INITIAL CALIBRATION A blank and at least five calibration standards shall be used to establish each analytical curve. At least one of these standards shall be at or below the CRQL. The calibration curve shall be fitted using linear regression or weighted linear regression. The curve may be forced through zero. The curve must have a correlation coefficient \geq 0.995. The percent differences calculated for all of the non-zero standards must be within \pm 30% of the true value of the standard. The y-intercept of the curve must be less than the CRQL. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. # B) INITIAL AND CONTINUING CALIBRATION VERIFICATION Immediately after each system has been calibrated, the accuracy of the initial calibration must be verified and documented for each target analyte by the analysis of an ICV solution(s). The CCV standard shall be analyzed at a frequency of every two hours during an analytical run. The CCV standard shall also be analyzed at the beginning of the run, and again after the last analytical sample. 2890, Woodbridge Avenue, Edison, NJ 08837 The percent recovery acceptable limits for ICV/CCV are 90 – 110%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ### 3. BLANK CONTAMINATION Quality assurance (QA) blanks, i.e., method, field, or rinse blanks are prepared to identify any contamination, which may have been introduced into the samples during sample preparation or field activity. Calibration blanks (ICB and CCB) are used to ensure a stable instrument baseline before and during the analysis of analytical samples. The preparation blank is used to assess the level of contamination introduced to the analytical samples throughout the sample preparation process. Field and rinse blanks measure cross-contamination of samples during field operations. Qualifications were applied to the samples and analytes as shown below. The following samples have analyte results greater than or equal to MDLs and less than or equal to CRQLs. The associated **ICB** analyte results are greater than or equal to MDLs and less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQR1, MBDQR2 Arsenic – MBDQQ9, MBDQR0, MBDQR1 Copper – MBDQQ9, MBDQR0, MBDQR1, MBDQR2, MBDQR3 The following samples have analyte results less than or equal to CRQLs. The associated **CCB** analyte results are less than or equal to CRQLs. Detects are qualified as **U**. Sample results are reported at CRQLs. Antimony – MBDQR1, MBDQR2 Arsenic – MBDQQ9, MBDQR0, MBDQR1 FIELD BLANK - None No Field Blank sample was identified in the Trip Report for this SDG's sampling dates. # 4. INTERFERENCE CHECK SAMPLE The Interference Check Sample (ICS) verifies the analytical instrument's ability to overcome interferences typical of those found in samples. The laboratory should have analyzed and reported ICS results for all elements being reported from the analytical run and for all interferents (target and non-target) for these reported elements. The ICS consists of two solutions: Solution A and Solution AB. Solution A consists of the interferents, and Solution AB consists of the analytes mixed with the interferents. Results for the analysis of ICS Solution must fall within the control limits of ± 20% or ±2X CRQL (whichever is greater) of the true value for the analytes and interferents included in the solution. If results that are ≥ MDL are observed for analytes that are not present in the ICS solution, the possibility of false positives exists. If negative results are observed for analytes that are not present in the ICS solution, and their absolute value is ≥ MDL, the possibility of false negatives in the samples exists. In general, ICP sample data can be accepted if the concentrations of Al, Ca, Fe, and Mg in the sample are found to be less than or equal to their respective concentrations in the ICS. Qualifications were applied to the samples and analytes as shown below. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ### 5. SPIKE SAMPLE ANALYSIS The spiked sample analysis is designed to provide information about the effect of each sample matrix on the sample preparation procedures and the measurement methodology. The spike Percent Recovery (%R) shall be within the established acceptance limits of 75 - 125%. However, spike recovery limits do not apply when the sample concentration is ≥ 4x the spike added. For a matrix spike analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the matrix spike sample. No problems were found for this criterion. ## 6. DUPLICATE SAMPLE ANALYSIS The objective of duplicate sample analysis is to demonstrate acceptable method precision by the laboratory at the time of analysis. A control limit of 35 - 120% for soil/sediment and 20 - 100% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For a duplicate sample analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the duplicate sample. No problems were found for this criterion. # 7. FIELD DUPLICATE Field duplicates may be taken and analyzed as an indication of overall precision. These analyses measure both field and laboratory precision. A control limit of 50% for soil/sediment and 20% for aqueous for the Relative Percent Difference (RPD) shall be used for original and duplicate sample values ≥ five times (5x) the CRQL. A control limit of the CRQL shall be used if either the sample or duplicate value is < 5x the CRQL. For field duplicates analysis that does not meet the technical criteria, the action was applied to only the field sample and it's duplicate. Samples MBD4R6 (DF-TWP-03-1, parent) and MBDQN7 (GW-900-2, duplicate); and MBDQQ7 (DF-TWP-03-1-F, parent) and MBDQR7 (GW-900-2-F, duplicate) are Field Duplicate (FD) samples. respectively, for the sampling date, 11/10/2016 but were not included in this SDG. No problems were found for this criterion. ## 8. LABORATORY CONTROL SAMPLE The Laboratory Control Sample (LCS) serves as a monitor of the overall performance of each step during the analysis, including the sample preparation. Aqueous/water, soil/sediment, wipe, and filter LCSs shall be analyzed for each analyte utilizing the same sample preparations, analytical methods, and Quality Assurance/Quality Control (QA/QC) procedures as employed for the samples. All LCS Percent Recoveries (%R) must fall within the control limits of 70-130%, except for Sb and Ag which must fall within the control limits of 50-150%. Qualifications were applied to the samples and analytes as shown below. 2890, Woodbridge Avenue, Edison, NJ 08837 No problems were found for this criterion. ## 9. ICP SERIAL DILUTION The serial dilution of samples quantitated by Inductively Coupled Plasma determines whether or not significant physical or chemical interferences exist due to sample matrix. If the analyte concentration is sufficiently high [concentration in the original sample is > 50 times (50x) the Method Detection Limit (MDL), the Percent Difference (%D) between the original determination and the serial dilution analysis (a five-fold dilution) after correction for dilution shall be less than 10. For a serial dilution analysis that does not meet the technical criteria, the action was applied to only the field sample used to prepare the serial dilution sample. No problems were found for this criterion. ## 10. ICP-MS TUNE ANALYSIS The Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) tune serves as an initial
demonstration of instrument stability and precision. Prior to calibration, the laboratory shall analyze or scan the ICP-MS tuning solution at least five times (5x) consecutively. The tuning solution contains 100 μ g/L of Be, Mg, Co, In, and Pb. The solution shall contain all required isotopes of the above elements. The laboratory shall make any adjustments necessary to bring peak width within the instrument manufacturer's specifications and adjust mass resolution to within 0.1 u over the range of 6-210 u. The Percent Relative Standard Deviation (%RSD) of the absolute signals for all analytes in the tuning solution must be < 5%. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 11. ICP-MS INTERNAL STANDARDS The analysis of Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) internal standards determines the existence and magnitude of instrument drift and physical interferences. The criteria for evaluation of internal standard results apply to all analytical and Quality Control (QC) samples analyzed during the run, beginning with the calibration. All samples analyzed during a run, with the exception of the ICP-MS tune, shall contain internal standards. A minimum of five internal standards shall be added to each sample. The laboratory shall monitor the same internal standards throughout the entire analytical run and shall assign each analyte to at least one internal standard. The Percent Relative Intensity (%RI) in the sample shall fall within 60-125% of the response in the calibration blank. If the %RI of the response in the sample falls outside of these limits, the laboratory shall reanalyze the original sample at a two-fold dilution with internal standard added. Qualifications were applied to the samples and analytes as shown below. No problems were found for this criterion. ## 12. PERCENT SOLIDS 2890, Woodbridge Avenue, Edison, NJ 08837 The laboratory is required to perform the percent solids determination prior to sample preparation and analysis. All results of a sample with percent solids less than 50% are qualified estimated, "J". Qualifications were applied to the samples and analytes as shown below. Not applicable for this SDG. None found. # 13. OTHER ISSUES None.