

Ash Road Properties BROOME COUNTY, NEW YORK Final Engineering Report

NYSDEC Site Number: C704032

Prepared for:

West Covina Royale, LP 5150 Overland Avenue, Culver City, CA 90230

Prepared by:

GeoLogic NY, Inc.
PO Box 350, Homer, NY 13077
607-749-5000

CERTIFICATIONS

I, Vernety J. Teter, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Remedial Action Work Plan was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Action Work Plan.

I certify that the data submitted to the Department with this Final Engineering Report demonstrates that the remediation requirements set forth in the Remedial Action Work Plan and in all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, established in for the remedy.

I certify that all use restrictions, Institutional Controls, Engineering Controls, and/or any operation and maintenance requirements applicable to the Site are contained in an environmental easement created and recorded pursuant ECL 71-3605 and that all affected local governments, as defined in ECL 71-3603, have been notified that such easement has been recorded.

I certify that a Site Management Plan has been submitted for the continual and proper operation, maintenance, and monitoring of all Engineering Controls employed at the Site, including the proper maintenance of all remaining monitoring wells, and that such plan has been approved by Department.

I certify that all documents generated in support of this report have been submitted in accordance with the DER's electronic submission protocols and have been accepted by the Department.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, Kenneth Teter, P.E., of 32 Clinton Street, Homer, New York, 13077, am certifying as Owner's Designated Site Representative and I have been authorized and designated by all site owners to sign this certification for the site.

Date

Signature

SE Engineer #

TABLE OF CONTENTS

CERT	IFICATIONS	I
FINAL	ENGINEERING REPORT	1
1.0	BACKGROUND AND SITE DESCRIPTION	1
2.0	SUMMARY OF SITE REMEDY	1
2.1 2.2	Remedial Action Objectives Description of Selected Remedy	
3.0	INTERIM REMEDIAL MEASURES	3
4.0	DESCRIPTION OF REMEDIAL ACTIONS PERFORMED	4
4.1 4.2 4.3	Pre-Injection Monitoring Injection of Biostimulants Post-Injection Monitoring and Sampling	5
5.0	GOVERNING DOCUMENTS	6
5.1 5.2 5.3	Site Specific Health & Safety Plan (HASP) Quality Assurance Project Plan (QAPP) Remedial Program Contractors and Consultants	7
6.0	REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING	7
6.1 6.2 6.3	Field Parameters	9
7.0	CONTAMINATION REMAINING AT THE SITE	12
7.1 7.2 7.3	Soil	12

8.0	ENGINEERING CONTROLS13
9.0	INSTITUTIONAL CONTROLS
10.0	REFERENCE14
List	of Tables
Ta	able 1, Groundwater Elevation
Ta	able 2, Field Parameters
Ta	able 3, Groundwater Chemistry
Ta	able 4, Injection Point Grid Data
Ta	able 5, Post-Remediation Contaminant Concentration Summary
Ta	able 6, Groundwater Data Summary
Ta	able 7, Contaminant Concentrations and Groundwater Elevations Chart, MW-02S
Ta	able 8, Contaminant Concentrations and Groundwater Elevations Chart, MW-09S
List	of Figures
Fi	igure 1, Site Location Plan
Fi	gure 2, Site Layout Map
Fi	gure 3, Injection Location Plan
Fi	gure 4, Groundwater Table Map For 6/01/2015
Fi	gure 5, Groundwater Table Map For 7/06/2015
Fi	gure 6, Groundwater Table Map For 8/05/2015
List (of Appendices
	Appendix A - Survey Map, Metes and Bounds
A	Appendix B - Remedial Action Work Plan Approval
A	Appendix C – Environmental Easement
A	Appendix D – Laboratory Data
A	Appendix E – Data Usability Summary Reports
A	Appendix F – Digital Copy of the FER

List of Acronyms

BCA Brownfield Cleanup Agreement
BCP Brownfield Cleanup Program
BOD Biological Oxygen Demand
COC Contaminants of Concern

DER Division of Environmental Remediation

DO Dissolved Oxygen

DUSR Data Usability Summary Report

EC Engineering Control
HASP Health and Safety Plan
IC Institutional Control

IRM Interim Remedial Measure

NYSDEC New York State Department of Environmental Conservation

NYCRR New York Codes, Rules and Regulations

ORP Oxidation reduction Potential

OSHA Occupational Safety and Health Administration

PID Photoionization Detector

QAPP Quality Assurance Project Plan RAO Remedial Action Objective RAWP Remedial Action Work Plan

SCG Standards, Criteria and Guidelines

SCO Soil Cleanup Objective
SMP Soil Management Plan
TCL Target Compound List
TOC Total Organic Carbon

FINAL ENGINEERING REPORT

1.0 BACKGROUND AND SITE DESCRIPTION

West Covina Royale, LLP entered into a Brownfield Cleanup Agreement (BCA), with the New York State Department of Environmental Conservation (NYSDEC) in July 2009, to investigate and remediate a 1.557-acre property located in Town of Vestal, Broome County, New York. The property was remediated to commercial use.

The site is located in Broome County and is identified as Section 158.10 Block 2 Lot 13 on the Broome County tax map. The site occupies the southern portion of the Lowe's Home Center 14.47-acre property, tax map number 158.10-2-13. The Site has been identified by four tax map parcel designations prior to the incorporation of these four parcels, as well as other parcels, into the one current 14.47-acre parcel. The site is bounded by Lowes Home Center parking lot to the north, Ash Road to the south, a residential mobile home park to the east, and Sycamore Road to the west (see Figures 1 and 2). The boundaries of the site are fully described in Appendix A, Survey Map, Metes and Bounds.

An electronic copy of this FER with all supporting documentation is included as Appendix F.

2.0 SUMMARY OF SITE REMEDY

2.1 Remedial Action Objectives

Based on the results of the Remedial Investigation/Interim Remedial Measure, the following Remedial Action Objectives (RAOs) were identified for this site.

2.1.1 Groundwater RAOs

RAOs for Public Health Protection

- Prevent ingestion of groundwater containing contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles emanating from contaminated groundwater.

GeoLogic

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Remove the source of ground or surface water contamination.

2.1.2 Soil RAOs

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure from contaminants volatilizing from contaminated soil.

RAOs for Environmental Protection

 Prevent migration of contaminants that would result in groundwater or surface water contamination.

2.1.3 Soil Vapor RAOs

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the site.

2.2 Description of Selected Remedy

The site was remediated in accordance with the remedy selected by the NYSDEC in the Remedial Action Work Plan (RAWP) dated March 2015 with an addendum to the RAWP submitted May 2015. See Appendix B for the NYSDEC approval letters for both documents.

The factors considered during the selection of the remedy are those listed in 6NYCRR 375-1.8. The following are the components of the selected remedy:

1. Injection of a biostimulant to accelerate the already occurring biodegradation of the primary contaminant of concern, tetrachloroethene;

- 2. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site;
- 3. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, and (3) reporting;
- 4. Periodic certification of the institutional and engineering controls listed above.

3.0 INTERIM REMEDIAL MEASURES

An Interim Remedial Measure (IRM) was implemented to remove the source area in order to reduce continuing receptor exposure to the contaminants of concern (COC), which include tetrachloroethene and its transformation products trichloroethene, *cis*-1,2-dichloroethene and vinyl chloride. Source removal was achieved via excavation. The IRM activities were completed between September and November, 2011.

An excavation contractor completed all excavation, staging and backfilling activities, as well as providing the transportation and disposal of all waste materials. The limits of the excavation were approximately 35 feet (east-west) by 40 feet (north-south). The depth of the excavation extended to between 9 and 11 feet bgs to the bottom of an organic soils zone in the south portion of the excavation. The north section of the excavation was extended to depths ranging from approximately 5 to 6 feet bgs. At the northeast corner of the excavation, the remains of a foundation wall and footing were present. These structures were not removed. This observation confirms that the area excavated is the same area identified in previous studies at the site where elevated contaminant levels were observed off the southwest corner of a former automotive body shop building.

Soils exhibiting contaminant characteristics (elevate photoionization detector (PID) readings and olfactory) were removed by the excavation operations. Field observations indicated that contaminant levels decreased with depth, with the highest PID readings recorded within the upper 5 feet of the excavation.

Soil samples were collected from the bottom and sidewalls of the excavation for analysis for volatile compounds on the Target Compound List (TCL). The concentration of COCs in the soil samples collected from the bottom and sidewalls of the IRM excavation were below Commercial Soil Cleanup Objectives (SCOs).

The excavation was backfilled with clean 1-inch minus crushed stone. A total of 196.63 tons of materials were transported off-site to the landfill. The excavated area was repaved with asphalt.

4.0 DESCRIPTION OF REMEDIAL ACTIONS PERFORMED

Remedial activities completed at the site were conducted in accordance with the NYSDEC-approved RAWP for the Ash Road Properties site dated March 2015 with an addendum to the RAWP dated May 2015.

The objective of enhanced in-situ bioremediation is to increase activity of a targeted biological biomass throughout the contaminated aquifer, thereby achieving effective biodegradation of contaminants. While the primary purpose of bioremediation is to increase the viability of a population of a particular group, or groups of microbes to degrade a particular contaminant, these processes are already occurring within the groundwater system at the Site, indicating that the existing geochemical conditions are favorable for anaerobic biodegradation.

The enhanced in-situ bioremediation was accomplished through the introduction of Carus CAP 18[®], an unemulsified oil that provides an auxiliary substrate (carbon source). In this direct anaerobic dechlorination process, hydrogen (an electron donor) is supplied by fermentation of the substrate, and the contaminant serves as the electron acceptor. The auxiliary substrate also provides additional carbon source material to support the growth of transforming microorganisms involved in cometabolic anaerobic reductive dechlorination processes in the environment.

4.1 Pre-Injection Monitoring

The COCs at the site are tetrachloroethene and its transformation products trichloroethene, *cis*-1,2-dichloroethene and vinyl chloride. COCs in groundwater at the site exceed NYSDEC Water Quality Guidance Standards. Monitoring wells MW-01,

MW-02S/D, MW-09S/D and MW-10S/D are located within or just beyond the general limits of the on-site contaminant plume with wells MW-02D, MW-09D and MW-10D being deeper piezometers. Groundwater samples collected from these deeper wells have either low contaminant concentrations or no contaminants detected. Seven sampling events over a two-year period have little to no variation in contaminant concentrations at these deeper wells. These wells were not part of the sampling scheme for pre-injection and post-injection monitoring.

Prior to the injection of CAP 18[®], groundwater samples from monitoring wells MW-01, MW-02S, MW-09S and MW-10S were collected and analyzed for volatile organic compounds on the Target Compounds List (TCL) by EPA Method 8260 in accordance with the Sampling and Analysis Plan (see RAWP, Appendix C). Pre-injection groundwater monitoring also included depth to groundwater measurements, along with dissolved oxygen (DO), oxidation-reduction potential (ORP), pH, temperature, and conductivity field measurements at all four monitoring wells (see Tables 1 and 2). Groundwater samples from these four wells were analyzed for biological oxygen demand (BOD), nitrite, nitrate (field measurement), sulfate, chloride, methane and dissolved iron. Wells MW-02S and MW-09S were also analyzed for total organic carbon (TOC) and manganese to evaluate trends in biological activity (see Table 3). This is an expanded scope of analysis from that proposed in the RAWP.

4.2 Injection of Biostimulants

The application of the biostimulant, CAP $18^{\$}$, a carbon-based substrate, into the subsurface was through direct injection using direct-push equipment and a Geoprobe Grout Pump, an injection machine that features a variable-speed control valve with pulsating fluid delivery.

The number of planned injection points was one hundred-two points; ninety-five points were performed due to slight discrepancies between planned layouts and actual field layout of the injection grid pattern. Additional injection points were completed within the area between the IRM excavation and Ash Road, an area that was not excavated due to the presence of underground utilities.

The ninety-five injection locations were completed in a grid-pattern within the general proximity of the interim remedial measure excavation, encompassing the area south of the excavation (a likely on-going source of contamination) and north of the excavation generally encompassing the contaminant plume with concentrations over 500 parts per billion (ppb) (Figure 3). Direct-push rods were advanced to a depth of approximately 12 feet bgs. After completing the injection, the borings were allowed to collapse in on themselves as the rods are removed. The remaining open boreholes were sealed with granular bentonite. Equipment refusal was encountered at some injection point locations before reaching the planned injection depth of 12 feet. Table 4 summarized the depths achieved, the injection interval and the quantity injected at each injection location. A total of 850 pounds of CAP 18[®] was injected (Figure 3) into the subsurface.

4.3 Post-Injection Monitoring and Sampling

Post-injection groundwater monitoring included DO, ORP, pH, temperature, and conductivity field measurements on a weekly basis for three weeks and then monthly for three months. Laboratory analysis of BOD, nitrite, sulfate/sulfur, chloride, dissolved iron, manganese and methane, and nitrate field measurements were conducted at wells MW-02S and MW-09S on a monthly basis for three months per the RAWP. Analyses at wells MW-01 and MW-10S were also performed in order to monitor any changes that may have occurred near the limits of the on-site contaminant plume.

Groundwater samples from MW-01, MW-02S, MW-09S and MW-10S were also analyzed for TCL volatile compounds monthly for three months, post-injection (see Tables 5 and 6).

5.0 GOVERNING DOCUMENTS

5.1 Site Specific Health & Safety Plan (HASP)

All remedial work performed under this Remedial Action was in full compliance with governmental requirements, including site and worker safety requirements mandated by Federal OSHA.

The Health and Safety Plan (HASP) was complied with for all remedial and invasive work performed at the site.

5.2 Quality Assurance Project Plan (QAPP)

The QAPP was included as Appendix C of the RAWP approved by the NYSDEC (See Appendix C). The QAPP describes the specific policies, objectives, organization, functional activities and quality assurance/ quality control activities designed to achieve the project data quality objectives

5.3 Remedial Program Contractors and Consultants

Environmental Consultant: GeoLogic NY, Inc.

Injection Contractor: GeoLogic NY, Inc.

Biostimulant Vendor: Carus Corporation

Project Engineer: Kenneth Teter, P.E.

Laboratory: Pace Analytical

6.0 REMEDIAL PERFORMANCE/DOCUMENTATION SAMPLING

This section contains groundwater elevations and field parameter measurement data for the pre- and post-injection groundwater monitoring scope proposed in the RAWP, as well as the laboratory analytical data with the exception of the third monthly sampling event performed on September 3, 2015. The September 2015 data will be included in the first Periodic Review Report.

Groundwater elevations (Table 1) were recorded monthly between June and September, 2015. Groundwater Table Maps were prepared for these three dates; the direction of groundwater flow is to the northwest, and is similar to previously recorded flow directions (see Figures 4 through 6).

Field parameters were recorded during seven monitoring events between June and September 2015 at wells MW-01, MW-02S, MW-09S and MW-10S (see Table 2). Wells MW-01 and MW-10S are located along the limits of the contaminant plume. Well MW-09S is located adjacent to the IRM excavation (former source area) and MW-02 is located downgradient of the IRM excavation. It is apparent through the recorded measurements

that the groundwater environment at wells MW-09S and MW-02S have been influenced by the injection event as discussed below.

6.1 Field Parameters

Biodegradation of an organic substrate (e.g. tetrachloroethene) can deplete the aquifer of terminal electron acceptors such as oxygen, lower the ORP as well as pH, and increase conductivity. These field parameters were measured to assist in the evaluation of changes in the groundwater system after the injection of the supplemental carbon source (See Table 2).

There is an upward trend in temperature readings at all four wells and is likely attributed to the summer season.

Although biodegradation of substrates can increase conductivity measurement, it was expected to see a decrease in conductivity at well MW-09S due to the presence of CAP 18[®] in groundwater within the injection zone. The conductivity at MW-09S did decrease post-injection, but has shown an increasing trend over the last 3 months. Minimal fluctuations in conductivity have been observed at wells MW-01 and MW-02S with no discernible trend. Conductivity at well MW-10S has decreased post-injection. Additional data collected during future monitoring events may assist in evaluating these changes in conductivity.

A decrease in ORP and pH was expected within the injection zone at well MW-09S and downgradient of the injection zone at well MW-02S. There is a downward trend for ORP at wells MW-02S and MW-09S. The ORP at MW-09S has changed to a negative measurement, indicating that the groundwater environment in the injection zone has changed to a reducing environment. The pH at wells MW-02S and MW-09S have remained less than 7 since the injection event, another indication of changes in the groundwater to a reducing environment. There are no discernible trends in pH measurements at wells MW-01 and MW-10S, or for ORP measurements at MW-01. Fluctuations in ORP have been observed at well MW-10S with the lowest measurements observed during the last two monitoring events. This may indicate that the groundwater environment at well MW-10S is being influenced by the injection of CAP 18[®].

Additional data collected during future monitoring events may assist in evaluating these changes in ORP.

A decrease of DO concentrations was expected within the injection zone at well MW-09S and possibly downgradient of the injection zone at well MW-02S. An increase in dissolved oxygen has been observed only at well MW-01. Little change in DO has been observed at well MW-02S and MW-10S. There is a decreasing trend of DO at MW-09S, another indicator that the groundwater environment in the injection zone is changing to a reducing environment.

6.2 Groundwater Chemistry

Groundwater samples from the four wells were analyzed for biological oxygen demand (BOD), nitrite, nitrate (field measurement), sulfate, chloride, methane and dissolved iron. Wells MW-02S and MW-09S were also analyzed for total organic carbon (TOC) and manganese to evaluate trends in biological activity.

Chloride is a general water quality parameter and can be an indicator that dechlorination is occurring since chloride is produced during the reduction of tetrachloroethene. A general decrease in chloride concentrations has been observed at all wells since the injection of CAP 18[®]. The reason for this decrease is not clear at this time, but may be related to the overall decrease in the contaminant concentrations in groundwater.

After DO is consumed, anaerobic bacteria will typically use, depending upon availability, nitrate, manganese, ferric iron, sulfate and then carbon dioxide as terminal electron acceptors, in that order. Nitrate is an alternate electron acceptor for microbial respiration in the absence of oxygen. Nitrate can be reduced to nitrite. Both nitrate and nitrite were evaluated since the total of both nitrate and nitrate is a better indicator of total nitrate in the groundwater environment. Depleted levels of nitrate (relative to background) indicate that the groundwater environment is sufficiently reducing nitrate. No nitrate has been detected above the method detection limits within the injection zone at well MW-09S. Low levels of nitrate ranging from >1 mg/L to 7.8 mg/L have been detected outside the injection zone. Nitrite concentrations have generally been <10 ug/L. Although no background samples for nitrate/nitrite analysis have been completed during

this work, it may be assumed that the nitrate/nitrite concentrations reported at MW-10S represent background, since this well has reported the lowest contaminant concentrations.

An increase in soluble manganese was expected within the injection zone at well MW-09S. An increase in soluble manganese indicates that the groundwater environment is sufficiently reducing for dechlorination to occur; solid mineral form of manganese (IV) is being reduced to the soluble form of manganese (II). Manganese concentrations have increased by a factor of three at MW-09S indicating a change toward a reducing environment within the injection zone. Manganese levels at MW-02S are 2 to 3 orders of magnitude lower than at MW-09S.

Ferric iron is an alternate electron acceptor for microbial respiration in the absence of oxygen and nitrate. The reduction of ferric iron produces ferrous iron. Elevated levels of ferrous iron indicate that the groundwater environment is sufficiently reducing to sustain iron reduction and for anaerobic dechlorination to occur. The presence of ferrous iron greater than 1,000 ug/L is considered favorable for reducing conditions. Levels of ferrous iron are lowest at well MW-01, and highest within the injection zone at well MW-09S. Ferrous iron levels in the injection zone have increased from a pre-injection level of 1,106 ug/L to 21,600 ug/L post-injection, supporting that the environment within the injection zone is changing toward a reducing environment.

Sulfate/sulfur concentrations are similar across the study area, and are marginally elevated above the published levels (<20 mg/L) at which a substrate (any carbon source including the contaminant or the injected CAP 18[®]) is efficiently used in the anaerobic dechlorination process. There is a declining trend in sulfate/ sulfur concentrations suggesting that sulfate is being used as an alternate electron acceptor for microbial respiration. It should also be noted that sulfur odors and black sulfur-like staining on sample tubing has been observed at well MW-09S, post-injection; hydrogen sulfide is a by-product of sulfate reduction.

The TOC data collected is limited and indicates similar levels across the study area, except for a marked increase of TOC at well MW-09S, post-injection. Well MW-09S is located in the injection zone and an increase in TOC would be expected since CAP 18[®] is a carbon source. Based on field observations, CAP 18[®] at well MW-09S remains within

the injection zone two months after the injection.

Methane is produced during the reduction of carbon dioxide and is one indicator that fermentation is occurring. A methane concentration of 500 ug/L can be an indicator of favorable reducing conditions. Methane concentrations within and outside the injection zone have been <10 ug/L, with the exception of MW-02S. This data suggests that the other above noted alternative electron acceptors are available at levels to support reducing conditions, and these electron acceptors are being used more by the microbial communities than any available carbon dioxide within the system. A methane concentration of 1,900 ug/L was observed at well MW-02S prior to injection, but has decreased post-injection. Methane concentrations at MW-02S may be influenced by the nearby sewer lines.

BOD is an indirect measure of the concentration of biologically degradable material present in the groundwater. It was anticipated that areas affected by the injected CAP 18[®] would show an increase in BOD. There has been an increase in BOD at well MW-09S from a pre-injection level of <2 mg/L to a level as high as 77 mg/L, post-injection. BOD has remained similar over the monitoring period at the wells outside the injection zone.

6.3 Contaminant Concentrations

Contaminant concentrations post-injection have remained similar to historical concentrations at wells MW-01 and MW-10S (see Table 5 and 6). There is a declining trend in contaminant concentrations of tetrachloroethene and trichloroethene at MW-02S and MW-09S. There is no apparent trend, either increasing or declining, in the concentrations of vinyl chloride at these two wells. Contaminant concentrations and groundwater elevations for wells MW-02S and MW-09S are presented in chart form on Tables 7 and 8.

Although the concentrations of *cis*-1,2-dichloroethene have historically been higher than the tetrachloroethene, the relative difference has been within one order of magnitude. The concentration of *cis*-1,2-dichloroethene at MW-09S during the August 2015 sampling event was 9,500 ug/L with a tetrachloroethene concentration of 12.4 ug/L. This may indicate an exhaustion of tetrachloroethene concentrations within the injection

GeoLogic

zone. Future sampling outlined in the Site Management Plan will provide additional data to evaluate this conclusion.

Data Usability Summary Reports (DUSRs) were prepared for all data generated in this remedial performance evaluation program. These DUSRs are included in Appendix E, and associated raw is provided electronically in Appendix F.

7.0 CONTAMINATION REMAINING AT THE SITE

7.1 Soil

Soils on the site were only impacted by volatile organic compounds, specifically the primary COCs, tetrachloroethene, trichloroethene, *cis*-1,2-dichloroethene and vinyl chloride.

The concentrations of the COCs that remain in soils after completing the interim remedial action that exceed the SCOs for the Protection of Groundwater were located generally within or near the excavation area (see Appendix B, RAWP, Figure 1). All contaminant concentrations at the site are below the SCOs for Commercial Use.

7.2 Groundwater

Elevated concentrations of tetrachloroethene, trichloroethene, *cis*-1,2-dichloroethene and vinyl chloride remain in groundwater at wells MW-01, MW-02S and MW-09S at concentrations exceeding their respective groundwater standards. Tables 5 though 8 provide historical and current contaminant concentrations observed in groundwater at the site.

7.3 Soil Vapor

Soil vapor has been found to be impacted by site-related contaminants. During the soil vapor evaluation in July 2013, maximum concentrations of tetrachloroethene, trichloroethene, *cis*-1,2-dichloroethene and vinyl chloride in soil vapor at levels ranging from 90 to 110 ug/m³. The areas of soil vapor contamination appear to be associated with areas of groundwater contamination.

Because the site is vacant, the inhalation of contaminants due to soil vapor intrusion does not represent a current concern. The potential exists for inhalation of site

contaminants due to soil vapor intrusion for any future on-site development, and will need to be evaluated at that time.

8.0 ENGINEERING CONTROLS

Since the site is currently vacant of buildings, the remedy for the site did not require the construction of any engineering control systems.

9.0 INSTITUTIONAL CONTROLS

The site remedy requires that an environmental easement be placed on the property to (1) prevent future exposure to remaining contamination; and, (2) limit the use and development of the site to commercial and industrial uses only.

The environmental easement for the site was executed by the Department on October 9, 2015, and recorded with the Broome County Clerk on November 2, 2015 on Book 2476 of Deeds at Page 355. The County Recording Identifier number for this filing is 201500033405. A copy of the easement and proof of filing is provided in Appendix C.

10.0 REFERENCE

NYSDEC. 2010. DER-10/Technical Guidance for Site Investigation and Remediation dated May 2010 (DER-10).

NYSDEC. 1998. Division of Water Technical and Operational Guidance Series (1.1.1): Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998 (TOGS 1.1.1).

USEPA. 1998a. Technical Protocol for Evaluating Natural Attenuation of Chlorinated Solvents in Groundwater. Cincinnati, OH; National Risk Management Research Laboratory. USEPA. EPA/600/R-98/128.

USGS. 2006. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Groundwater-A Review of Selected Literature. Open-File 2006-1338.

TABLE 1
GROUNDWATER ELEVATIONS

ASH ROAD PROPERTIES BCP SITE C704032

WELLS	MW-01	MW-02S	MW-02D	MW-03	MW-04	MW-05	MW-07	MW-08	MW-09S	MW-09D	MW-10S	MW-10D
Top of Well Screen Elevation	826.1	824.7	803.3	826.5	826.0	826.3	828.8	826.5	827.7	809.8	826.5	808.5
Bottom of Well Casing Elevation	816.1	814.7	793.3	816.5	816.0	816.3	818.8	816.5	817.7	804.8	816.5	803.5
Reference Elevation ⁽¹⁾	832.52	831.14	831.29	831.00	831.54	831.94	831.46	831.25	832.66	832.81	831.53	831.45
DATE												
8-04-2008 through 8-12-2008	821.68	821.63		822.55	822.43	823.48	829.48	825.60				
10-13-2010	820.86	820.91		821.96	821.33	822.99	829.76	825.48				
5-7-2012 and 5-8-2012	821.80	821.79	822.09	822.80	821.81	823.34	829.30	825.23	824.18	822.63	824.72	822.95
8-3-2012	821.09	821.16	821.39	821.25					823.95	823.01	824.56	822.49
10-13-2012	820.95	821.00	821.38	821.05					823.44	822.90	824.08	822.22
7-16-2013	821.84	821.95	822.26	822.01					824.64	823.00	824.96	823.27
10-24-2013	822.00	822.01	821.99	822.82					824.48	823.51	824.67	822.85
3-11-2014	821.70	821.72	821.88	822.57					824.13	823.15	824.32	822.70
6-12-2014	822.16	822.13	821.82	823.31					824.81	823.61	824.24	822.67
6-01-2015	822.71	822.73							825.36		824.92	
7-06-2015	823.11	823.18							825.45		824.49	
8-05-2015	822.87	822.80							825.24		825.02	
9-03-2015	822.39	822.39							824.24		824.31	

⁽¹⁾ Reference elevation is top of PVC well casing

TABLE 2 FIELD PARAMETERS

ASH ROAD PROPERTIES BCP SITE C704032

Location	Temperature C	Conductivity mS/cm	Dissolved Oxygen mg/L	pН	ORP
MW-01					
6/1/2015	11.44	2.086	0.9	6.62	178.6
6/12/2015	12.41	2.063	1.8	6.29	215.4
6/18/2015	12.70	2.218	1.84	5.90	230.7
6/25/2010	13.26	2.177	3.29	4.26	295.3
7/6/2015	13.82	2.164	2.92	5.72	319.1
8/5/2015	15.63	2.384	4.59	6.65	240.1
9/3/2015	16.67	2.258	3.59	7.25	123.8
MW-02S					
6/1/2015	10.31	2.653	0.69	7.14	285.4
6/12/2015	11.07	2.501	0.43	6.63	53.7
6/18/2015	12.38	2.913	1.75	6.61	159.8
6/25/2015	12.82	2.747	1.98	6.70	305.7
7/6/2015	13.98	2.298	0.87	6.21	281.9
8/5/2015	14.81	2.560	1.62	6.75	84.8
9/3/2015	15.56	2.191	0.73	6.80	4.2
MW-09S					
6/1/2015	12.54	3.022	2.30	7.46	250.6
6/12/2015	14.00	2.443	0.61	6.64	152.2
6/18/2015	14.24	2.981	1.74	6.66	178.9
6/25/2015	15.77	2.976	1.58	6.87	254.5
7/6/2015	16.22	2.476	0.95	6.37	175.8
8/5/2015	18.68	3.210	1.25	6.34	-13.4
9/3/2015	19.61	3.310	0.55	6.29	-56.7
MW-10S					
6/1/2015	13.26	3.022	0.97	7.37	255.5
6/12/2015	13.76	2.155	0.62	6.90	127.4
6/18/2015	14.19	1.929	1.62	6.83	186.4
6/25/2015	15.89	2.160	2.26	7.06	299.5
7/6/2015	16.22	2.110	2.15	6.52	291.2
8/5/2015	17.77	2.300	1.86	7.02	46.5
9/3/2015	18.93	1.904	1.14	7.19	118.6

TABLE 3 GROUNDWATER CHEMISTRY

ASH ROAD PROPERTIES BCP SITE C704032

Location	CHLORIDE mg/L	SULFATE mg/L	SULFUR ug/L	BOD mg/L	NITRITE mg/L	NITRATE mg/L	METHANE ug/L	FERROUS IRON ug/L	TOC mg/L	Manganese ug/L	pН
MW-01											
6/1/2015	682	34.4		<2	< 0.10	<1	2.3	88.9			6.4
7/6/2015	555	45.2		< 6.0	< 0.01	7.8	2.8	31.1			5.8
8/5/2015	548		18,300	6.0	< 0.01	<1	<1.0	<100	2.8		6.7
MW-02S											
6/1/2015	769	15		7	< 0.10	<1	1900	568.1	3.9	496	7.0
7/6/2015	581	24.2		< 6.0	< 0.01	1.8	15	67.9		6.7	6.2
8/5/2015	558		8300	6.0	< 0.01	<1	290	400	4.0	503	6.7
MW-09S											
6/1/2015	942	43.7		<2	< 0.10	<1	21	1106.5	3.7	10,400	7.4
7/6/2015	992	82.7		77.3	< 0.01	<1	6.0	4,700		21,200	6.3
8/5/2015	893		2,680	58.6	< 0.01	<1	7.2	21,600	214	29,300	6.3
MW-10S											
6/1/2015	995	30.8		<2	< 0.10	<1	<1.0	79			7.1
7/6/2015	741	35.4		< 6.0	< 0.01	3.9	<1.0	355			6.5
8/5/2015	609		13,000	6.0	0.015	<1	<1.0	<100	3.0		7.0

TABLE 4
INJECTION POINT GRID DATA

ASH ROAD PROPERTIES BCP SITE C704032

				Inject	tion Rang	e (depth i	n feet) / Q	uantity In	njected (po	ounds)				
	1	2	3	4	5	5.5	6	6.5	7	7.5	8	8.5	9	10
Α	9-12/9	9-12/9	9-12/9	9-12/9	9-12/9									
В	9-12/9	9-12/9	9-12/9	9-12/9	9-12/9		9-12/9		9-12/9		9-12/9			
С	9-12/9	9-12/9	9-12/9	9-12/9	9-12/9		9-12/9		9-12/9		9-10.2/9		9-12/9	9-12/9
D	9-12/9	9-11.2/9	9-12/9	9-12/9	10-12/6		10-12/6		10-12/6		10-12/6		9-12/9	9-12/9
E	9-12/9	9-12/9	9-12/9	9-12/9	10-12/6		10-12/6		10-12/6		10-12/6		9-12/9	9-12/9
F		9-10.7/9	9-12/9	9-12/9	7.2/6		10-12/6		10-12/6		10-12/6		9-12/9	9-12/9
G		9-12/9	9-12/9	7.6/9	10-12/6		10-12/6		10-12/6		10-12/6		9-12/9	9-12/9
Н		9-11/9	9-12/9	9-12/9	10-12/6		10-12/6		10-12/6		10-12/6		9-12/9	9-12/9
ı		9-11/9	9-12/9	9-12/9	10-12/6		10-12/6		10-12/6		10-12/6		9-12/9	9-12/9
J			9-11/9	9-12/9	10-12/9	9-12/12	10-12/9	9-12/12	10-12/9	9-12/12	10-12/9	9-12/12	9-12/9	9-12/9
K							9-12/20		9-12/20		9-12/20		9-12/20	

Reference: Figure 3

TABLE 5 POST-INJECTION CONTAMINANT CONCENTRATION SUMMARY

ASH ROAD PROPERTIES BCP SITE C704032

NYS Standard ⁽¹⁾	1	Tetrachlorothene ug/L	Trichloroethene ug/L	cis-1,2-Dichloroethene ug/L	Vinyl Chloride ug/L
		5 ug/L	5 ug/L	5 ug/L	2 ug/L
LOCATION	DATE				
MW-01	6-1-2015 ⁽²⁾	9.3	23	270	1.9
	7-6-2015	18.7	6.8	135	<1.0
	8-5-2015	12.7	57	92.3	<1.0
MW-02S	6-1-2015	3000	370	490	46
	7-6-2015	6.4	<1.0	<1.0	<1.0
	8-5-2015	372	87.0	130	14.5
MW-09S	6-1-2015	2300	290	1100	90
	7-6-2015	95	34.3	692	19.1
	8-5-2015	12.4	5.0	9500	123
MW-10S	6-1-2015	4.5	<1.0	<1.0	<1.0
	7-6-2015	1.8	<1.0	<1.0	<1.0
	8-5-2015	3.7	<1.0	<1.0	<1.0

⁽¹⁾ NYS Standard – NYS Water Quality Standard and Guidance Value; GA – Source of Drinking Water; 1998 with April 2000 Addendum

⁽²⁾ Sample collected prior to injection event

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

	*NYS	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01	MW-01
Sample Location	Standard	8/13/2008	1/14/2009	10/13/2010	5/7/2012	8/3/2012	7/16/2013	10/24/2013	3/11/2014	6/12/2014	6/1/2015	7/6/2015	8/5/2015
	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Parameter													
W. L. (11 - 12 - 12 - 12 - 12 - 12 - 12 - 12													
Volatile Target Compound List (TCL) Unit	ua/I	/1	ua/I	/1	ua/I	ue/I	/1	/1	a/I	/1	/1	/1	/1
Offit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,2,3-Trichlorobenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U
1,2,4-Trimethylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	4			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromomethane	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	4.7			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-trimethylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dioxane Bromochloromethane	50			100 U 5 U	100 U 5 U	100 U 5 U	1.0 U 1.0 UJ	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Cyclohexane				5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Freon-113	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate				5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
methyl tert-butyl ether	10			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane				5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Propylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
sec-Butylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene Trichlorofluoromethane	, , ,			5 U	5 U 5 U	5 U 5 U	1.0 U 1.0 UJ	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 UJ	1.0 U 1.0 U	1.0 U 1.0 U
Chloromethane	5 5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl chloride	2			5 U	5 U	5 U	1.0 UJ	1.12	1.0 U	1.0 U	1.0 0	1.0 UJ	1.0 U
Bromomethane	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ
Chloroethane	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Acetone	50			10 U	10 U	10 U	5.0 UJ	5.0 U	27.0	10 U	1.0 UJ	10.0 U	10.0 U
1,1-Dichloroethene	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon disulfide	60			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.6	1.6
1,1-Dichloroethane	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK) cis-1,2-Dichloroethene	50 5	5 J	5.8	10 U 3.0 J	10 U	10 U 62	1.0 UJ 24.8J	1.0 U 24.2	5.0 U	5.0 U 27.5	5.0 U 270	10.0 U 135	10.0 U 92.3
Chloroform	7	5.0	3.0	5.0 J	44 5 U	5 U	1.0 UJ	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	5			5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	7.5	5.8	5.0 J	5.8	7.7	6.94	5.07	1.0 U	1.8	23	6.8	5.7
1,2-Dichloropropane	1			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone				10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U	5.0 U	10.0 U	10.0 U
cis-1,3-Dichloropropene Toluene	0.4 5			5 U	5 U 5 U	5 U 5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4			5 U 5 U	5 U	5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
1,1,2-Trichloroethane	1			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	50			10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U	5.0 U	10.0 U	10.0 U
Tetrachloroethene	5	20	15	18	17 J	19	19.9	16.9	5.08	12.0	9.3	18.7	12.7
Dibromochloromethane	50			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m,p-Xylenes	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U
o-Xylene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U
1,1,2,2-Tetrachloroethane	5			5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

^{*} NYS Standards Source:

New York State Water Quality Standards and Guidance Value for GA - Source of Drinking Water (groundwater); 1998 with April 2000 Addendum

Notes:

- U Not detected at the Practical Quantitation Limits
- (---) Compound not listed in Standard
- J Detected below the Practical Quantitation Limit
- This summary table includes the data qualifiers identified in the DUSRs

Highlighed value exceed Standards

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

Sample Locations		*NYS	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S	MW-02S
Value Water Wate	Sample Location														
March Target Compound List (Titls															
Company	Parameter														
Company	V 1471 T 10 1174 (TOL)														
2.25 Trichrordenseries S	<u> </u>	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ug/l	ua/l	ug/l	ug/l	ug/l	ua/l	ug/l	ua/l
1.02 Trientphenomen 5	Offic	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1.02 Trientphenomen 5	1.2.3-Trichlorobenzene	5			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1,2,4-Trichlorobenzene	5													
1.2 Determentment	1,2,4-Trimethylbenzene	5			250 U	5 U	500 U	500 U	1.0 U	<u> </u>	1.0 U				
200 200	1,2-Dibromo-3-chloropropane	4			250 U	5 U	500 U	500 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.3.5 transplacement S	1,2-Dibromomethane	5			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1.3.Demonstratement S	1,2-Dichlorobenzene	4.7				5 U			1.0 U		1.0 U	1.0 U			
Ab-Distribution	1,3,5-trimethylbenzene	5					ļ								
1.4-Docume	,						ļ								
Remonshare 50	,	5								<u> </u>					
December 10	•														
Defended bloomershare S															
Freeze-153 S	,	_													
Secreptification S		├													
Methy facester		<u> </u>													
methylener 10	,	-					ļ								
Methylspycholarane	,	10					ļ								
Publisherame	, ,									1					
Propythateners S	n-Butylbenzene	5				5 U						1.0 U			
See-Butyberaree	n-Propylbenzene	5				5 U	500 U	500 U	1.0 U		1.0 U				
Timelined function	sec-Butylbenzene	5			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	tert-Butylbenzene	5			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Viny Childride	Trichlorofluoromethane	5			250 U	5 U			1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ		1.0 U
Stromershane S	Chloromethane	5											1.0 U		
Chlorosthane	Vinyl chloride	2	400	160 J											
Acetone	Bromomethane						ļ								
1.1-Dichloroethene		<u> </u>													
Carbon disulfide		+	40	50011			<u> </u>		<u> </u>					-	
Methylene chloride	•	, i	13	500 U											
Tens-12-Dichloroethene									1						
11-Dichloroethane	,	_													
2-Butanne (MEK) 50	,	<u> </u>													
District															
Chloroform			4500	2400											
1,1,1-Trichloroethane	Chloroform		.000	2.00											
Carbon tetrachloride	1,1,1-Trichloroethane	5													
1,2-Dichloroethane 5 3700 1600 1200 500 500 1.0 U <	Carbon tetrachloride	5			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene 5 3700 1600 1200 D 5 U 7100 D 2400 D 3.72 1.0 U 1.0 U 1.52 370 1.0 U 87.0 1.2-Dichloropropane 1 1 250 U 5 U 500 U 500 U 1.0 U 1.	Benzene	1			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane 1 250 U 5 U 500 U 500 U 1.0 U	1,2-Dichloroethane	5			250 U	5 U	500 U	500 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane 50 250 U 5 U 500 U 500 U 1.0 U 1.		5	3700	1600											
4-Methyl-2-pentanone 500 U 10 U 1000 U 1000 U 1.0 U 1.0 U 1.0 U 5.0 U 5.0 U 5.0 U 10.0 U 1.0 U 1		1													
Cis-1,3-Dichloropropene 0.4 250 U 5 U 500 U 500 U 1.0	Bromodichloromethane	50													
Toluene S									!						
trans-1,3-Dichloropropene 0.4 250 U 5 U 500 U 500 U 1.0 U<		_													
1,1,2-Trichloroethane 1 250 U 5 U 500 U 410 JD 1.0 U 1.0 U <td></td> <td><u> </u></td> <td></td>		<u> </u>													
Solid Soli		0.4													
Tetrachloroethene 5 3100 8400 4800 D 5 UJ 42000 D 12000 D 15.6 1.01 1.0 U 5.56 3000 6.4 372 Dibromochloromethane 50 250 U 5 U 500 U 500 U 1.0 U		50													
Dibromochloromethane 50 250 U 5 U 500 U 500 U 1.0 U			3100	8400							+				
Chlorobenzene 5 250 U 5 U 500 U 500 U 1.0 U <			3100	0400											
Ethylbenzene 5 250 U 5 U 500 U 500 U 1.0 U <t< td=""><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		5													
m,p-Xylenes 5 250 U 5 U 500 U 500 U 1.0 U <th< td=""><td>Ethylbenzene</td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Ethylbenzene	5													
5 250 U 5 U 500 U 500 U 1.0 U	m,p-Xylenes	5							1	1	+				
Styrene 5 250 U 5 U 500 U 500 U 1.0	o-Xylene														
Bromoform 50 250 U 5 U 500 U 500 U 1.0 U 1.0 U 1.0 U 1.0 U 1.0 UJ 1.0 UJ 1.0 UJ	Styrene	+ -													
1,1,2,2-Tetrachloroethane 5 250 U 5 U 500 U 500 U 1.0 U	Bromoform	50							1	1					
	1,1,2,2-Tetrachloroethane	5													

^{*} NYS Standards Source:

New York State Water Quality Standards and Guidance Val

Notes:

Highlighed value exceed Standards

U - Not detected at the Practical Quantitation Limits

(---) Compound not listed in Standard

J - Detected below the Practical Quantita

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

Sample Location	*NYS Standard	MW-02D 5/7/2012	MW-02D 8/3/2012	MW-02D 10/3/2012	MW-02D 7/16/2013	MW-02D 10/24/2013	MW-02D 3/11/2014	MW-02D 6/12/2014
Campio 200ation	Water	Water	Water	Water	Water	Water	Water	Water
Parameter								
Valadila Tannat Oanna ann deist (TOL)								
Volatile Target Compound List (TCL) Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Offit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	4	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
1,2-Dibromomethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	4.7	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	5	5 U 5 U	5 U 5 U	5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
1,4-Dictrioroberizerie		100 U	100 U	100 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromochloromethane	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Freon-113	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
methyl tert-butyl ether	10	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene	5	5 U 5 U	5 U	5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
n-Propylbenzene sec-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Vinyl chloride	2	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Chloroethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Acetone	50	10 U	10 U	10 U	5.0 UJ	5.0 U	10 U	10 U
1,1-Dichloroethene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon disulfide	60	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene chloride trans-1,2-Dichloroethene	5 5	5 U 5 U	5 U 5 U	5 U 5 U	1.0 U 1.0 U	5.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
1,1-Dichloroethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	50	10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	5	5.9	6.1	5.9	1.0 U	1.0 U	1.0 U	1.0 U
Chloroform	7	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,1-Trichloroethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon tetrachloride	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane Trichloroethene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	6.5 5 U	2.0 J 5 U	2.6J 5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Bromodichloromethane	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone		10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	50	10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U
Tetrachloroethene	5	55J	3.7 J	4.4 J	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane Chlorobenzene	50 5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Cnioropenzene Ethylbenzene	5	5 U 5 U	5 U 5 U	5 U 5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
m,p-Xylenes	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
o-Xylene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U

MW-03 10/13/2010	MW-03 5/7/2012	MW-04 10/13/2010	MW-04 5/7/2012	MW-05 10/13/2010	MW-05 5/7/2012
Water	Water	Water	Water	Water	Water
vvater	Water	Water	Water	VValei	Water
ua/l	ua/I	/1	ua/I	uall	/1
ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U 5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
100 U	100 U	100 U	100 U	100 U	100 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U 5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U 5 U	5 U	5 U 5 U
5 U	5 U 5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
10 U	10 U	10 U	10 U	10 U	10 U
5 U 5 U	5 U 5 U	5 U	5 U 5 U	5 U 5 U	5 U 5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
10 U	10 U	10 U	10 U	10 U	10 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U 5 U	5 U	5 U 5 U	5 U	5 U 5 U	5 U
5 U	5 U 5 U	5 U	5 U 5 U	5 U	5 U 5 U
5 U	5 U	5 U	5 U	2 J	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
10 U 5 U	10 U 5 U	10 U 5 U	10 U 5 U	10 U 5 U	10 U 5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
10 U	10 U	10 U	10 U	10 U	10 U
2 J	5 UJ	5 U	5 UJ	2 J	2 J
5 U	5 U	5 U	5 U	5 U	5 U
5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	5 U 5 U	68 5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U	5 U	5 U

New York State Water Quality Standards and Guidance Val

Notes:

Highlighed value exceed Standards

U - Not detected at the Practical Quantitation Limits

(---) Compound not listed in Standard

^{*} NYS Standards Source:

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

MW-08 10/13/2010	MW-08 5/7/2012
Water	Water
ug/L	ug/L
ug/L	ug/L
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
100 U	100 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
10 U	10 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
10 U	10 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 UJ
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
10 U	10 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
10 U	10 U
5 U	5 UJ
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
5 U	5 U
	5 U

	*NYS	MW-07	MW-07	MW-08	MW-08	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S	MW-09S
	Standard	10/13/2010	5/7/2012	10/13/2010	5/7/2012	5/8/2012	8/3/2012	10/3/2012	7/16/2013	10/24/2013	3/11/2014	6/12/1014	6/1/2015	7/6/2015	8/5/2015
	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
	Trato	Trato.	- Tratoi	Trato.	Trator	Trator	Trato.	Trator	Trato.	Trucos	Trucor	Trator	Truio.	rrator	Trato
_)			-										-		
nit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
	F	511	511	511	5.11	2500 11	500 11	250 11	4.011	50.011	4.011	4.011	4.011	4.011	4.011
	5 5	5 U 5 U	5 U	5 U 5 U	5 U 5 U	2500 U 2500 U	500 U 500 U	250 U 250 U	1.0 U 1.0 U	50.0 U 50.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U
	4	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 UJ	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	4.7	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
		100 U	100 U	100 U	100 U	50000 U	10000 U	5000 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	50	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	 E	5 U 5 U	5 U	5 U	5 U 5 U	2500 U	500 U	250 U 250 U	1.0 U	50.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U 1.0 U
	5 5	5 U	5 U	5 U	5 U	2500 U 2500 U	500 U 500 U	250 U	1.0 UJ 1.0 U	50.0 U 50.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
		5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	10	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	3.66	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
		5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U
	5	5 U 5 U	5 U	5 U	5 U 5 U	2500 U 2900 D	500 U 1000 D	250 U 370 D	1.0 UJ 593 D	50.0 U 915 D	1.0 U 1.0 U	1.0 U	1.0 U 90	1.0 U 19.1	1.0 U 123.0
	2 5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 UJ	50.0 U	1.0 U	59.5 1.0 U	1.0 UJ	1.0 UJ	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 UJ	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	50	10 U	10 U	10 U	10 U	5000 U	1000 U	500 U	5.0 UJ	250 U	10 U	10 U	35J	72.4	10.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	6.70	50.0 U	1.0 U	2.5	2.1	1.0 UJ	2.4
	60	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	250 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	21.1	50.0 U	1.0 U	7.82	4.7	7.2	49.7
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	50	10 U	10 U	10 U	10 U	5000 U	1000 U	500 U	1.0 U	50.0 U	5.0 U	5.0 U	5.0 U	10.0 U	10.0 UJ
	5 7	5 U	5 U	5 U	5 U	15000 D	6500 D	4900 D	3480 D	4160 D	4.57	1310	1100	692	9500
	5	5 U 5 U	5 U	5 U 5 U	5 U 5 U	2500 U 2500 U	500 U 500 U	250 U 250 U	1.0 U 1.0 U	50.0 U 50.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	1	5 U	5 UJ	5 U	5 UJ	2500 U	500 U	250 U	1.38	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ
	5	5 U	5 U	5 U	5 U	1500 JD	490 JD	370 D	486 D	798 D	1.0 U	342	290	34	5.0
	1	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	50	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
		10 U	10 U	10 U	10 U	5000 U	1000 U	500 U	1.0 U	50.0 U	5.0 U	5.0 U	5.0 U	10.0 U	10.0 U
	0.4	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5 0.4	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.26	50.0 U	1.0 U	1.27	1.27	1.0 U	1.0 U
	0.4 1	5 U 5 U	5 U	5 U 5 U	5 U 5 U	2500 U 2500 U	500 U 500 U	250 U 250 U	1.0 U 1.0 U	50.0 U 50.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
	50	10 U	10 U	10 U	10 U	5000 U	1000 U	500 U	1.0 U	50.0 U	5.0 U	5.0 U	5.0 U	1.0 U	27.1J
	5	5 U	5 UJ	5 U	5 UJ	2200 JD	660 D	430 D	901 D	1090 D	2.49	2010	2300	95.0	12.4
	50	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
	5	5 U	5 U	5 U	5 U	2500 U	500 U	250 U	1.0 U	50.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
						1 0-0011	I 500 II	1 05011	1 4011	1 50011	1 1011	1011	4011	4 ^ 1 1 1	4 0 1 1
	50 5	5 U 5 U	5 U	5 U 5 U	5 U 5 U	2500 U 2500 U	500 U 500 U	250 U 250 U	1.0 U 1.0 U	50.0 U 50.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 UJ 1.0 U	1.0 U 1.0 U

* NYS Standards Source: New York State Water Quality Standards and Guidance Val

Notes:

Highlighed value exceed Standards

- U Not detected at the Practical Quantitation Limits
- (---) Compound not listed in Standard
- This summary table includes the data qualifiers identified in
- J Detected below the Practical Quantitation Limit

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

Sample Location Standard Water		*NYS	MW-09D						
Water Wate	Sample Location								6/12/2014
Value Valu	<u>.</u>		Water	Water	Water	Water		Water	Water
Unit Ug/L	Parameter								
Unit Ug/L	Valadila Tannat Oammann II ist (TOL)								
2.2 Frichlorobenzene		ua/l	ua/l	ua/l	ua/l	ua/l	ua/l	ua/l	ua/l
12.4-Trinchlorcherzene	Offic	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
12.4-Trinchlorcherzene	1.2.3-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
12-Dibromos-chicropropage	1,2,4-Trichlorobenzene								
12-Disconsementane	1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1.2-Dichrordenzene	1,2-Dibromo-3-chloropropane	4	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
13.5-timethytherazene	1,2-Dibromomethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1.3-Dichlorochenzene	1,2-Dichlorobenzene								
IA-Dichrochenzene	· · ·								
IA-Dixorane									
Stromporthoromethane	•	+							
Syclohazane	•								
Dichistordifuromethane 6 5 U 5 U 1.0 U 1.0 1.0 U 1.0 1.0 U 1.0 U									
Freehold 19 10 10 10 10 10 10 10									
Soprogybenzene									
Methyl acetate									
methyl tert-butyl ether									
Methylosychohexane	,								
Purybenzene	Methylcyclohexane								
Second S	n-Butylbenzene	5					1.0 U		
Sert-Buty/benzene	n-Propylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Frichloroffluoromethane	sec-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	tert-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Variety Vari	Trichlorofluoromethane	5	5 U		5 U	1.0 U	1.0 U	1.0 U	1.0 U
Section Sect	Chloromethane								
Chloroethane	Vinyl chloride								
Section So									
1-Dichloroethene									
Carbon disulfide									
Methylene chloride	•								
Trans-1,2-Dichloroethene		_							
1-Dichloroethane	<u> </u>								
Patricolor (MEK) 50 10 U 10 U 10 U 1.0 U 1.0 U 5.0 U 5.0 U 5.0 U 5.1 U 5.1 U 5.1 U 5.1 U 5.2 U									
Size 1,2-Dichloroethene 5	•								
Chloroform	•								
1,1-Trichloroethane	Chloroform								
Service Serv	1,1,1-Trichloroethane	5							
3-Dichloroethane 5 5 U 5 U 5 U 1.0	Carbon tetrachloride	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Second Content	Benzene	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1 5 U 5 U 5 U 1.0 U	1,2-Dichloroethane		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Stomodichloromethane Stomodichloromethane	Trichloroethene							1.0 U	
Temple	1,2-Dichloropropane								
cis-1,3-Dichloropropene 0.4 5 U 5 U 5 U 1.0 U		 							
Toluene 5 5 U 5 U 5 U 5 U 1.0 U <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
rans-1,3-Dichloropropene 0.4 5 U 5 U 5 U 1.0 U 2.17 2.2 U 2.2 U 5 U 1.0 U									
1,1,2-Trichloroethane 1 5 U 5 U 1.0 U 5.0 U 1.0 U									
C-Hexanone									
Tetrachloroethene 5 4.9 J 2.2 J 5 U 1.0 U 1.0 U 1.0 U 2.17 Dibromochloromethane 50 5 U 5 U 5 U 1.0 U									
Dibromochloromethane 50 5 U 5 U 5 U 1.0 U									
Chlorobenzene 5 5 U 5 U 5 U 1.0 U 1									
Ethylbenzene 5 5 U 5 U 5 U 1.0 U 1.		_							
m,p-Xylenes 5 5 U 5 U 5 U 1.0									
5 5U 5U 1.0U 1.0U 1.0U 1.0U 1.0U 5tyrene 5 5U 5U 5U 1.0U 1.0U 1.0U 1.0U 1.0U 50 5U 5U 5U 1.0U 1.0U 1.0U 1.0U 1.0U 50 5U 5U 5U 1.0U 1.0U 1.0U 1.0U 1.0U									
Styrene 5 5 U 5 U 5 U 1.0 U </td <td>o-Xylene</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	o-Xylene								
Bromoform 50 5 U 5 U 5 U 1.0 U 1.0 U 1.0 U 1.0 U	Styrene								
	Bromoform								
	1,1,2,2-Tetrachloroethane	5							

* NYS Standards Source:

New York State Water Quality Standards and Guidance Val

Notes: Highlighed value exceed Standards

U - Not detected at the Practical Quantitation Limits

(---) Compound not listed in Standard

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

	*NYS	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S	MW-10S
Sample Location	Standard	5/8/2012	8/3/2012	10/3/2012	7/16/2013	10/24/2013	3/11/2014	6/12/2014	6/1/2015	7/6/2015	8/5/2015
	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water
Parameter											
Valatile Tayant Compound List (TCL)											
Volatile Target Compound List (TCL) Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Offic	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromomethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	4.7	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dioxane Bromochloromethane	 50	100 U 5 U	100 U	100 U 5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	50	5 U	5 U 5 U	5 U	1.0 UJ 1.0 UJ	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U					
Freon-113	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
methyl tert-butyl ether	10	5 U	5 U	5 U	1.0 UJ	1.0 U					
Methylcyclohexane		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
n-Propylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
sec-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane Chloromethane	5 5	5 U 5 U	5 U 5 U	5 U 5 U	1.0 UJ 1.0 UJ	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Vinyl chloride	2	5 U	5 U	5 U	1.0 UJ	1.0 U					
Bromomethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ
Chloroethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U					
Acetone	50	10 U	10 U	10 U	5.0 UJ	5.0 U	10 U	10 U	10 UJ	10.0 U	10.0 U
1,1-Dichloroethene	5	5 U	5 U	5 U	1.0 UJ	1.0 U					
Carbon disulfide	60	5 U	5 U	5 U	1.0 UJ	1.0 U					
Methylene chloride	5	5 U	5 U	5 U	1.0 UJ	5.0 U	1.0 U				
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	1.0 UJ	1.0 U					
1,1-Dichloroethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U					
2-Butanone (MEK)	50	10 U	10 U	10 U	1.0 UJ	1.0 U	5.0 U	5.0 U	5.0 U	10.0 U	10.0 U
cis-1,2-Dichloroethene Chloroform	5 7	5 U 5 U	1.6 J 5 U	5 U 5 U	1.0 UJ 1.0 UJ	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 UJ 1.0 U
1,1,1-Trichloroethane	5	5 U	1.9 J	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.1J	1.0 UJ
Carbon tetrachloride	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.13 1.0 U	1.0 U
Benzene	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	5 U	1.5 J	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone		10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U	5.0 U	10.0 U	10.0 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane 2-Hexanone	50	5 U 10 U	5 U 10 U	5 U 10 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 10.0 U
Tetrachloroethene	5	5 UJ	5.6	5 U	1.0 U 1.0 U	1.0 U 1.0 U	5.0 U 1.0 U	5.0 U 1.1	5.0 U 4.5	10.0 U 1.8	3.7
Dibromochloromethane	50	5 U	5.0 5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U
Chlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
m,p-Xylenes	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.0 U	2.0 U
o-Xylene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

* NYS Standards Source:

New York State Water Quality Standards and Guidance Val

Notes:

Highlighed value exceed Standards

U - Not detected at the Practical Quantitation Limits

(---) Compound not listed in Standard

GROUNDWATER DATA SUMMARY 2010 through 2015

ASH ROAD PROPERTIES BCP #C704032

	*NYS	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D	MW-10D
Sample Location	Standard	5/8/2012	8/3/2012	10/3/2012	7/16/2013	10/24/2013	3/11/2014	6/12/2014
	Water	Water	Water	Water	Water	Water	Water	Water
Parameter								
Volatile Target Compound List (TCL)	/1	/1	/1	/1	/1	/1	/1	/1
Unit	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
1,2,3-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2,4-Trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromo-3-chloropropane	4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dibromomethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichlorobenzene	4.7	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3,5-trimethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,3-Dichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dichlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,4-Dioxane		100 U	100 U	100 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromochloromethane	50	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Cyclohexane		5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Freon-113	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl acetate		5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
methyl tert-butyl ether	10	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Methylcyclohexane n-Butylbenzene	5	5 U 5 U	5 U 5 U	5 U 5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
n-Propylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
sec-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
tert-Butylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Chloromethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Vinyl chloride	2	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Bromomethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Chloroethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Acetone	50	10 U	10 U	10 U	5.0 UJ	5.0 U	10 U	10 U
1,1-Dichloroethene	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Carbon disulfide	60	5 U	5 U	5 U	1.0 UJ	1.02	1.0 U	1.72
Methylene chloride	5	5 U	5 U	5 U	1.0 UJ	5.0 U	1.0 U	1.0 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
1,1-Dichloroethane	5	5 U	5 U	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
2-Butanone (MEK)	50	10 U	10 U	10 U	1.0 UJ	1.0 U	5.0 U	5.0 U
cis-1,2-Dichloroethene	5 7	5 U	2.7 J	5 U	1.0 UJ	1.0 U	1.0 U	1.0 U
Chloroform 1,1,1-Trichloroethane	5	5 U 5 U	5 U 2.5 J	5 U 3.5 J	1.0 UJ 2.17J	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Carbon tetrachloride	5	5 U	5 U	5.5 J	1.0 UJ	1.0 U	1.0 U	1.0 U
Benzene	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloroethane	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene	5	5 U	2.3 J	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,2-Dichloropropane	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
4-Methyl-2-pentanone		10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U
cis-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Toluene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
trans-1,3-Dichloropropene	0.4	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
2-Hexanone	50	10 U	10 U	10 U	1.0 U	1.0 U	5.0 U	5.0 U
Tetrachloroethene	5	5 UJ	5.9	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	50	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylbenzene	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
m,p-Xylenes	5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
o-Xylene Styrene	5 5	5 U	5 U	5 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene Bromoform	50	5 U 5 U	5 U 5 U	5 U 5 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U
1,1,2,2-Tetrachloroethane	50	5 U	5 U	5 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U
1,1,4,4 TOLIAUTIONUCHIANG		J U	J U	1 30	1.0 0	1.00	1.0 0	1.0 U

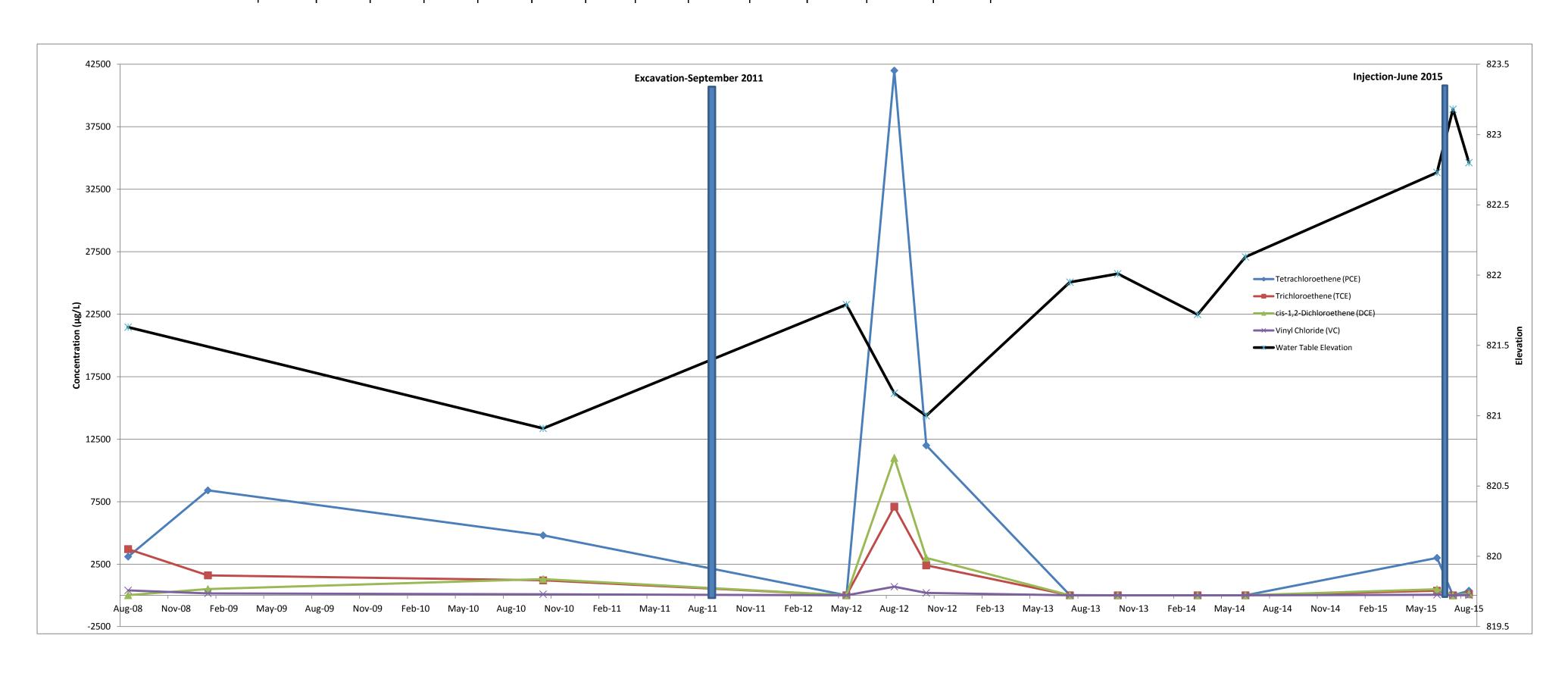
* NYS Standards Source:

New York State Water Quality Standards and Guidance Val

Notes:

Highlighed value exceed Standards

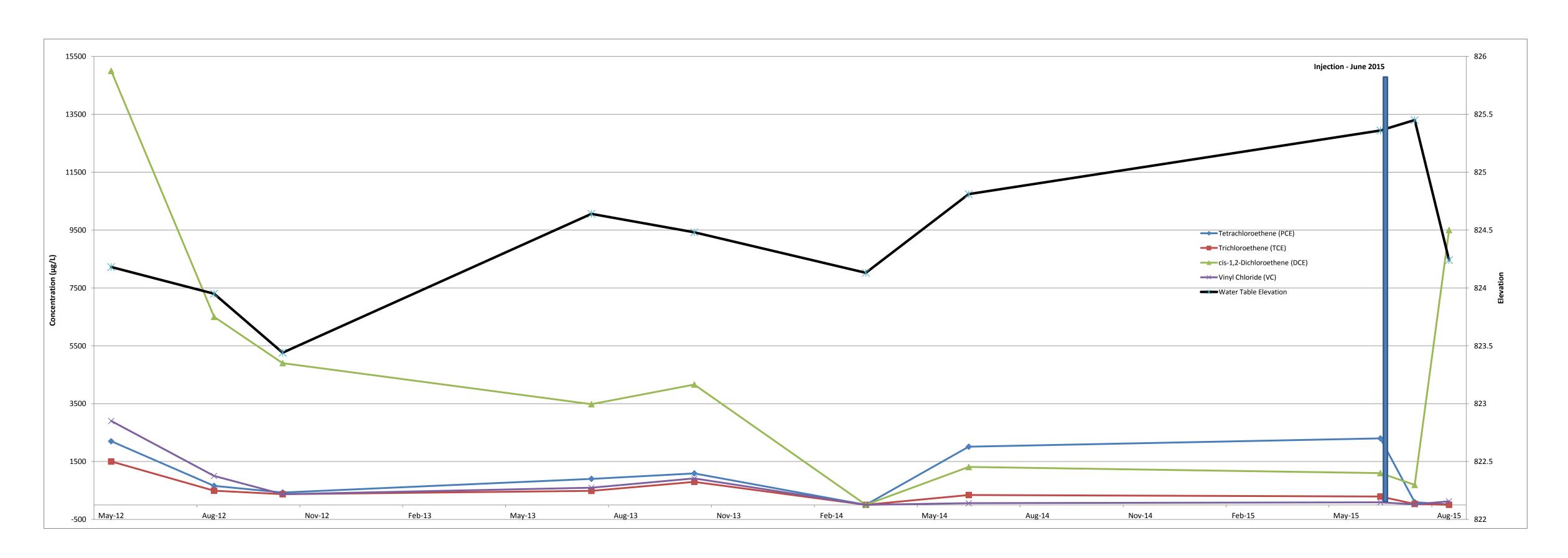
U - Not detected at the Practical Quantitation Limits

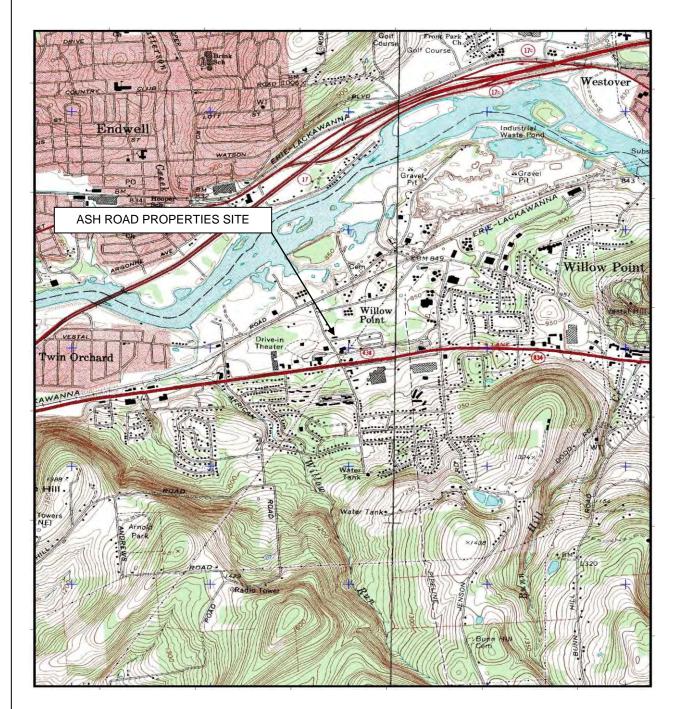

(---) Compound not listed in Standard

J - Detected, below the Practical Quantit

MW-02S	Aug-08	Jan-09	Oct-10	May-12	Aug-12	Oct-12	Jul-13	Oct-13	Mar-14	Jun-14	Jun-15	Jul-15	Aug-15
Tetrachloroethene (PCE)	3100	8400	4800	5	42000	12000	16	1	1	6	3000	6	372
Trichloroethene (TCE)	3700	1600	1200	5	7100	2400	3	1	2	2	370	1	87
cis-1,2-Dichloroethene (DCE)	13	500	1300	5	11000	3000	2	3	2	2	490	1	130
Vinyl Chloride (VC)	400	160	90	5	690	200	1	1	1	1	46	1	14.5
Water Table Elevation	821.63		820.91	821.79	821.16	821	821.95	822.01	821.72	822.13	822.73	823.18	822.8

Monitoring Well MW-02S CONTAMINANT CONCENTRATIONS AND GROUNDWATER ELEVATIONS Ash Road Properties BCP Site C704032


Table 7

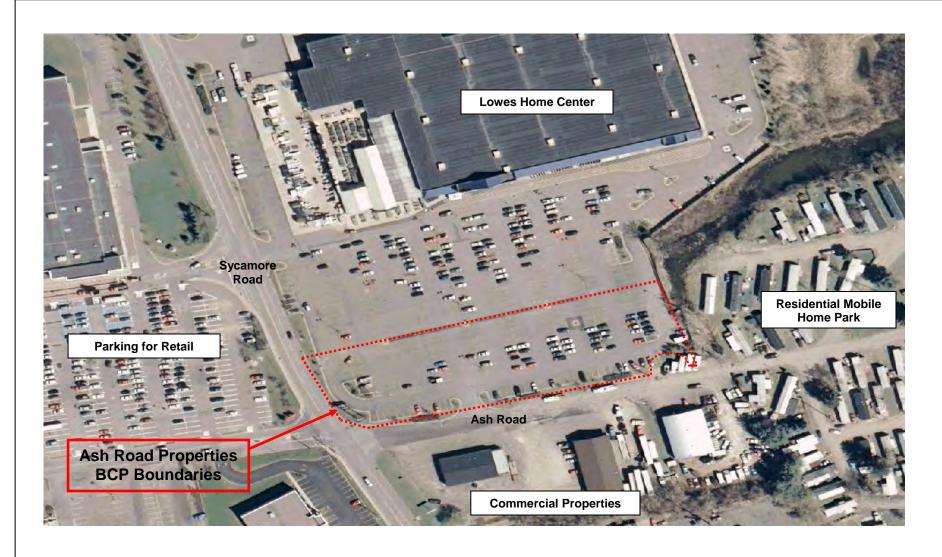


MW-09S	May-12	Aug-12	Oct-12	Jul-13	Oct-13	Mar-14	Jun-14	Jun-15	Jul-15	Aug-15
Tetrachloroethene (PCE)	2200	660	430	901	1090	2	2010	2300	95	12.4
Trichloroethene (TCE)	1500	490	370	486	798	1	342	290	34.3	5
cis-1,2-Dichloroethene (DCE)	15000	6500	4900	3480	4160	4.57	1310	1100	692	9500
Vinyl Chloride (VC)	2900	1000	370	593	915	1	60	90	19.1	123
Water Table Elevation	824.18	823.95	823.44	824.64	824.48	824.13	824.81	825.36	825.45	824.24

Monitoring Well MW-09S CONTAMINANT CONCENTRATIONS AND GROUNDWATER ELEVATIONS Ash Road Properties BCP Site C704032

Table 8

Reference: Base Map USGS 7.5 MIN. Quad. Endicott, NY, 1976 Approximate Scale: 1" = 2000'

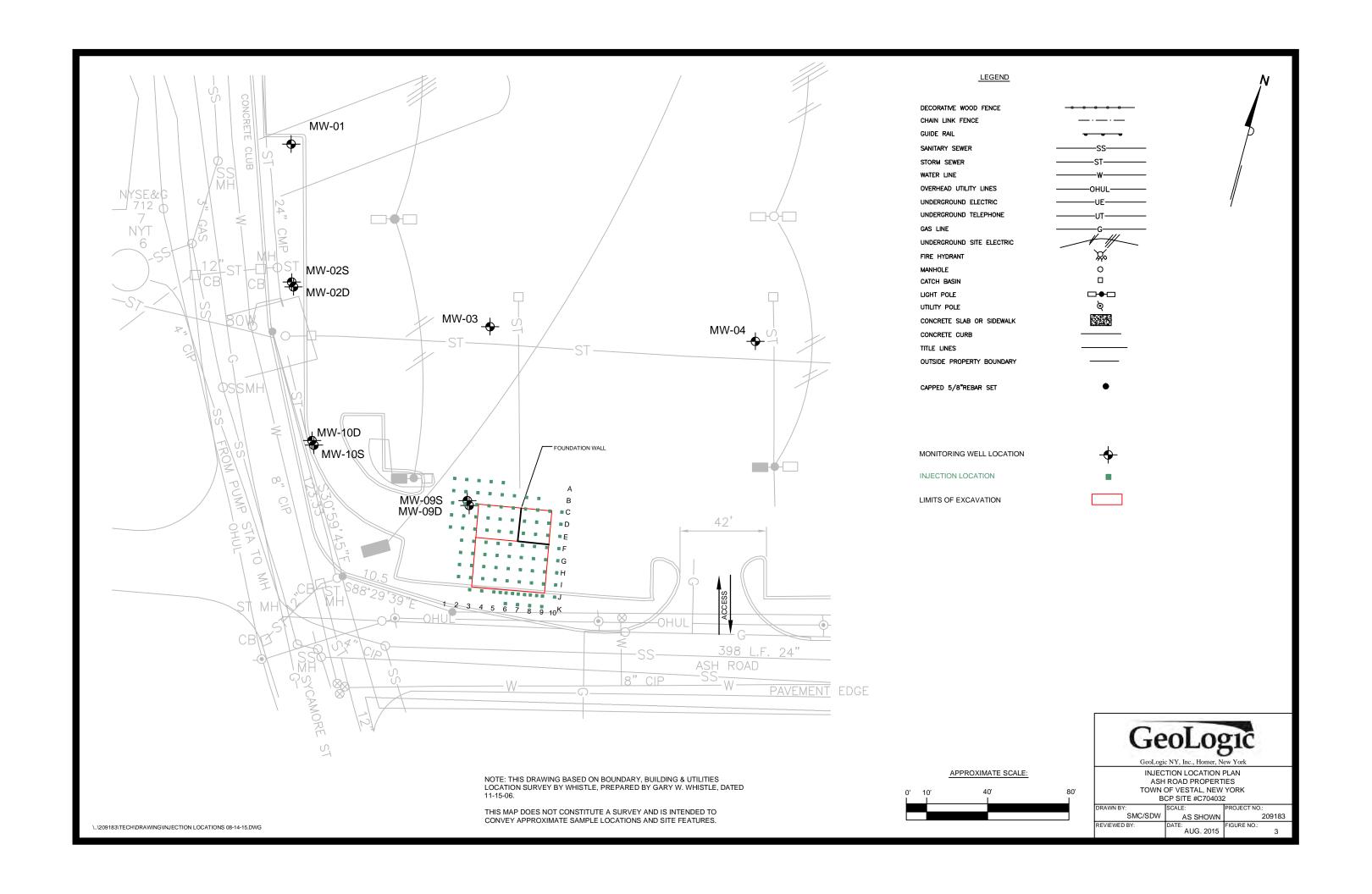


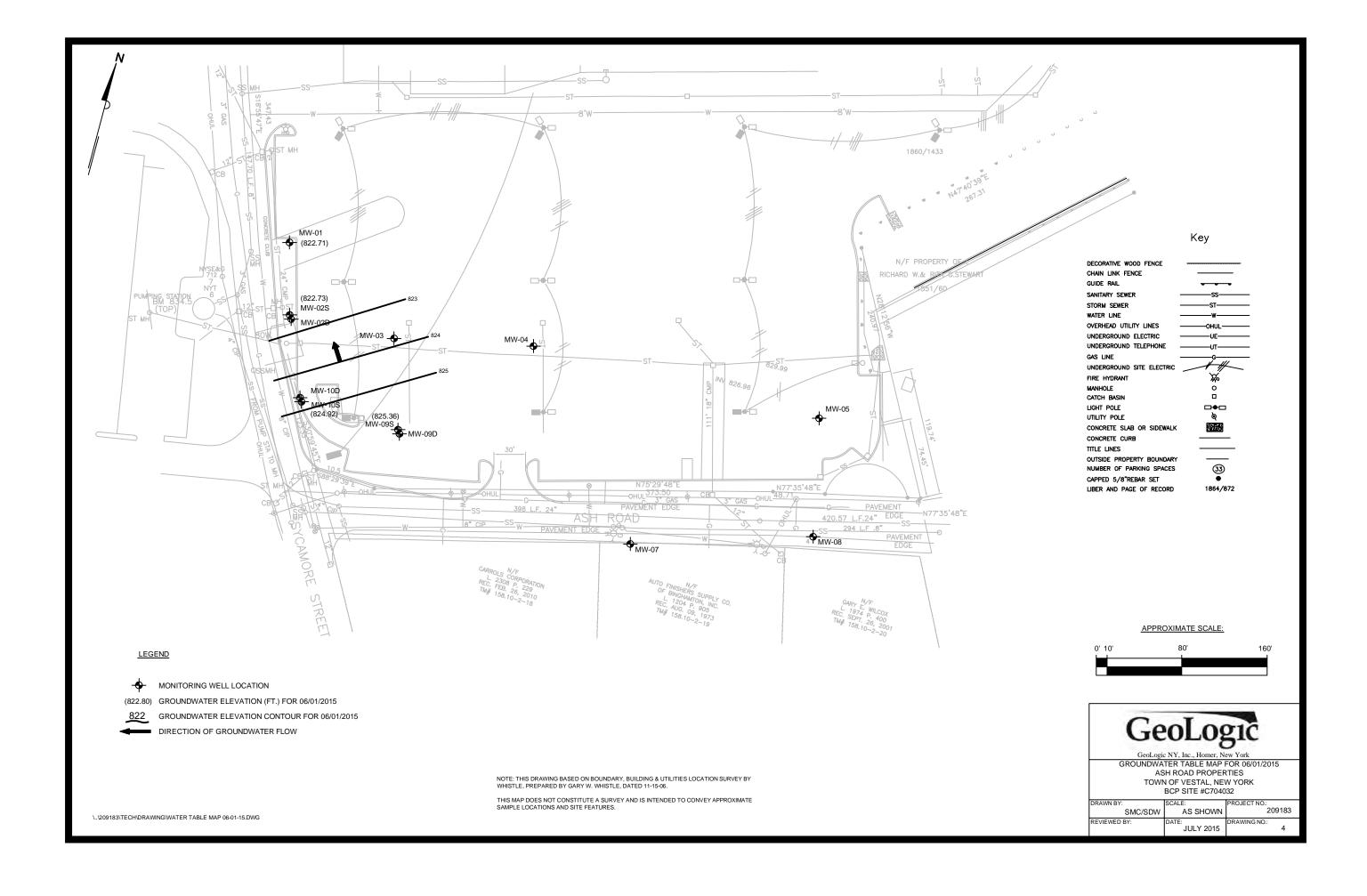
GeoLogic

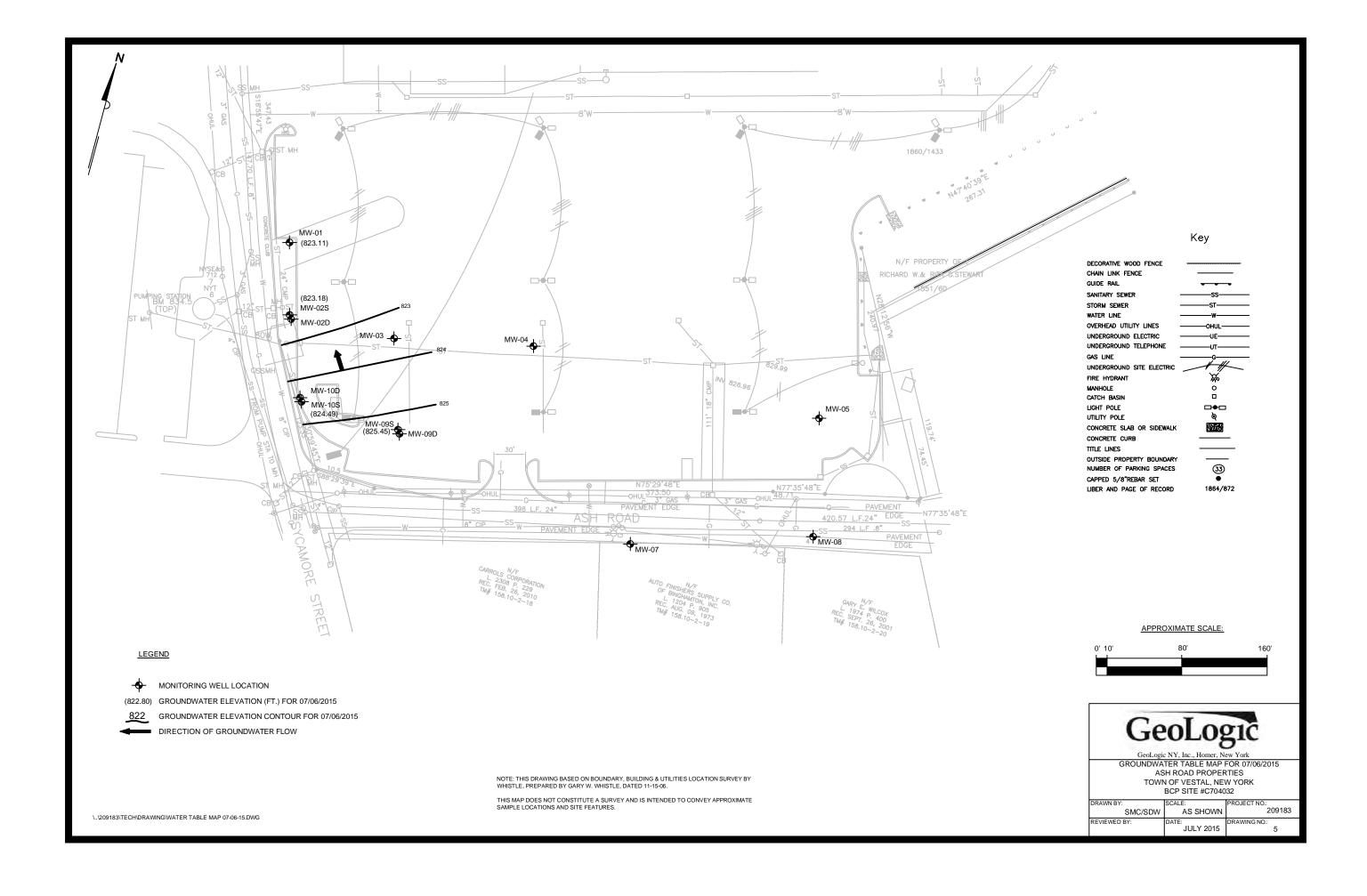
GeoLogic NY, Inc.

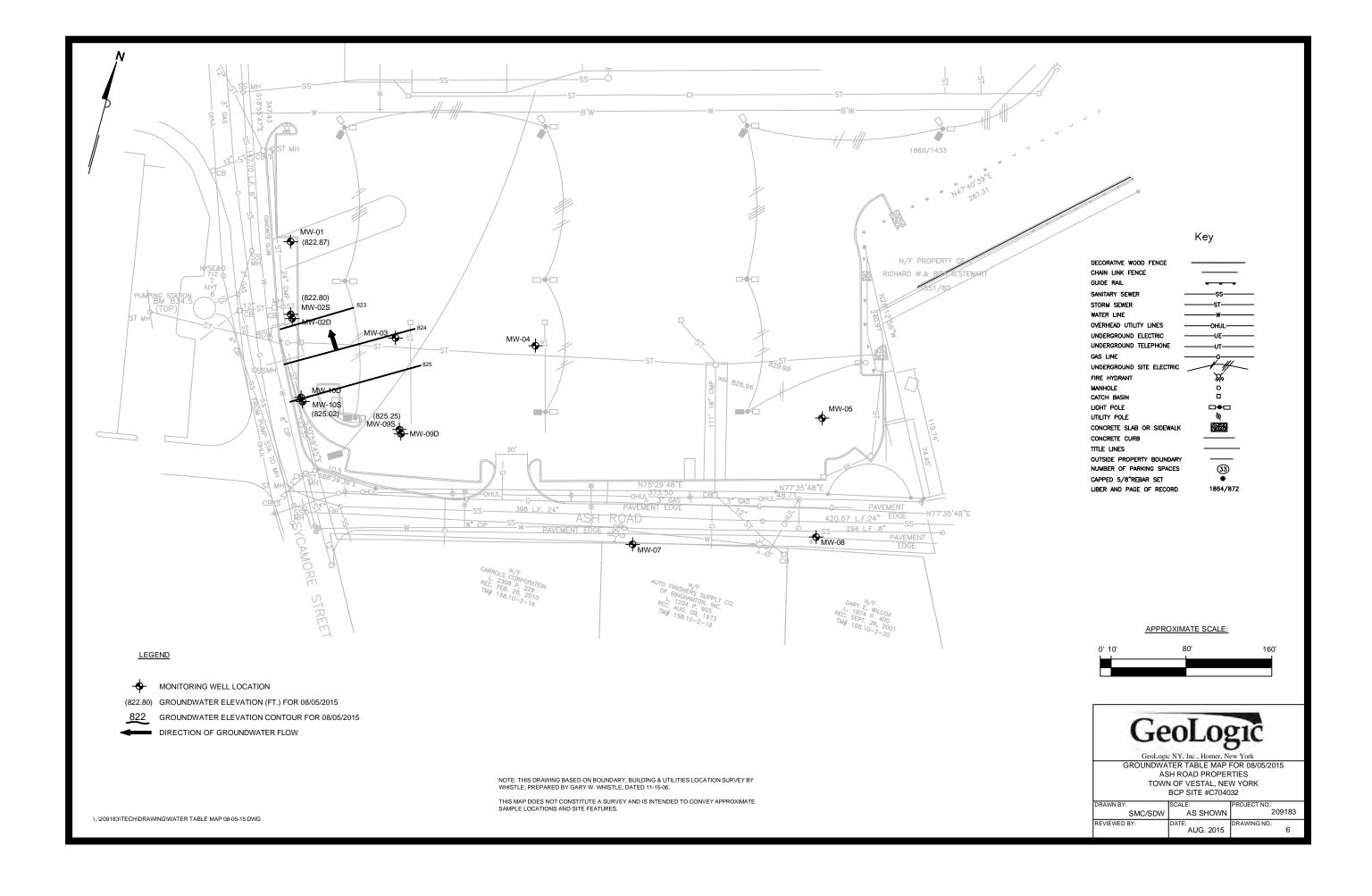
SITE LOCATION PLAN ASH ROAD PROPERTIES TOWN OF VESTAL, NEW YORK BCP Site #C704032

DRAWN BY:	SCALE:	PROJECT NO:			
sc	As Noted	209183			
REVIEWED BY:	DATE:	FIGURE NO:			
fce	July 2015	1			

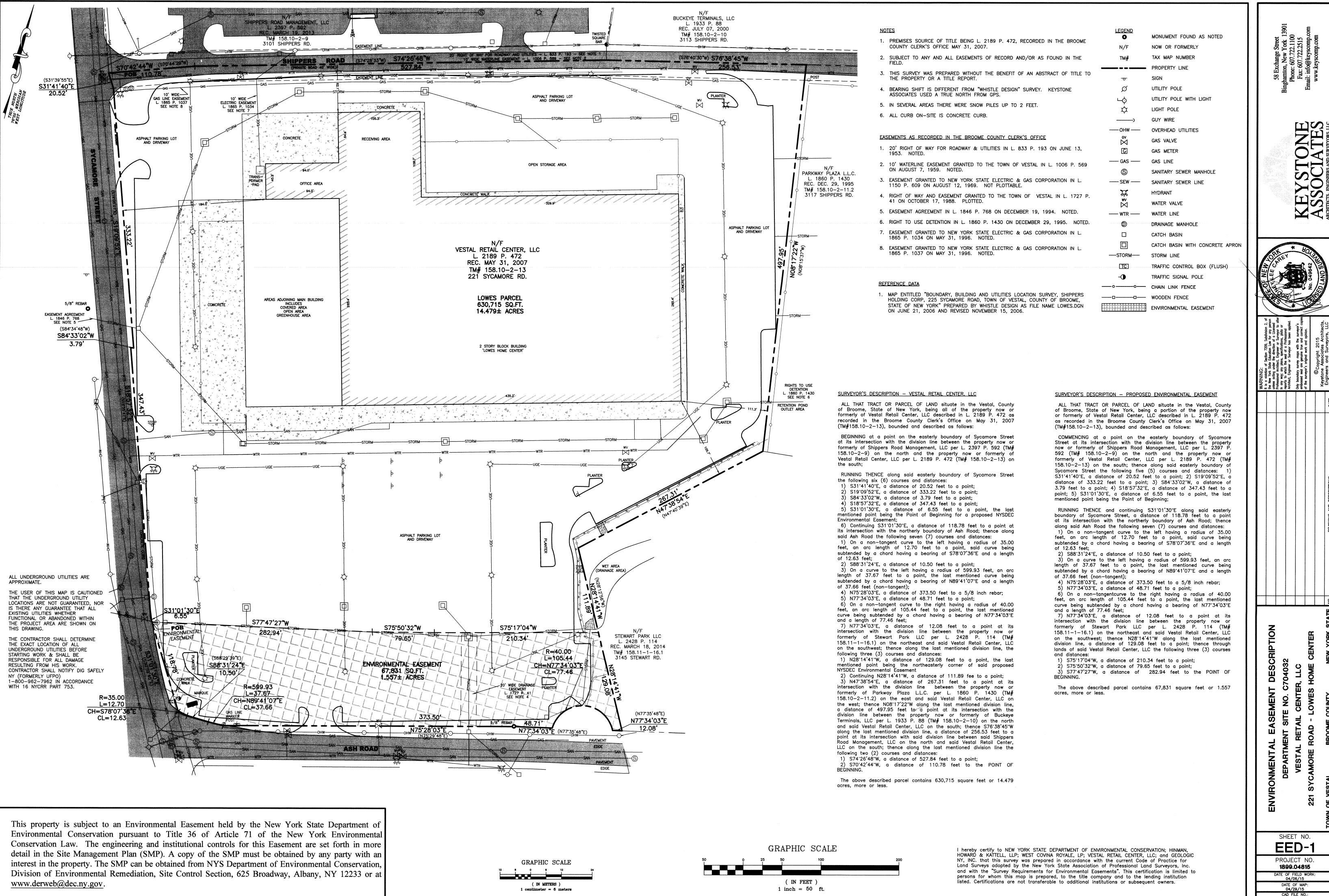







GeoLogic NY, Inc. SITE LAYOUT MAP **ASH ROAD PROPERTEIS** TOWN OF VESTAL, NEW YORK BCP Site #C704032

DRAWN BY:	SCALE:	PROJECT NO:
SC	Not To Scale	209183
REVIEWED BY:	DATE:	FIGURE NO:
FCE	July 2015	2



APPENDIX A

Survey Map, Metes and Bounds

CAD FILE NO.: 167703615EED-1.d

APPENDIX B

Remedial Action Work Plan Approval

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 1679 NYS Route 11, Kirkwood, NY 13795 P: (607) 775-2545 | F: (607) 775-2019 www.dec.ny.gov

April 29, 2015

Susan M. Cummins GeoLogic NY, Inc. P.O. Box 350 Homer, New York 13077

Re: Ash Road Properties, C704032

Town of Vestal, Broome County

Dear Ms. Cummins:

The New York Department of Environmental Conservation and the New York State Department of Health (NYSDEC and NYSDOH, respectively; collectively referred to the Departments) have completed our review of the work plan titled, "Remedial Action Work Plan, Ash Road Properties, 221 Sycamore Road, Town of Vestal, New York" (RWP) dated March 2015. Based on our review, the Departments hereby approve the RWP with the following conditions:

- 1. A projected schedule for the remedial action phase of the project will be submitted to the Departments as part of the pre-injection plan. The remedial action schedule should be developed in accordance to DER-10 Section 5.7.
- A post-injection monitoring and sampling plan including specific details (e.g., number of wells, well locations, sampling depths) will be submitted with the preinjection plan for review by the Departments.
- A quality assurance and quality controls plan for sampling, analysis and construction will be submitted with the pre-injection plan for review by the Departments.

If you have any questions, please do not hesitate to contact me by electronic mail at gary.priscott@dec.ny.gov or by telephone at 607-775-2545 extension 116.

Respectfully,

Gary Priscott Project Manager

H. Warner, NYSDEC ec:

B. McGinn, Esq., NYSDEC M. Doroski, NYSDOH

J. Baran, West Covina Royale K. Fitzgerald, Esq., HHK

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 7 1679 NYS Route 11, Kirkwood, NY 13795 P: (607) 775-2545 | F: (607) 775-2019 www.dec.ny.gov

May 27, 2015

Susan M. Cummins GeoLogic NY, Inc. P.O. Box 350 Homer, New York 13077

Re: Ash Road Properties, C704032

Town of Vestal, Broome County

Dear Ms. Cummins:

The New York State Department of Environmental Conservation and the New York State Department of Health have completed our review of the work plan addendum titled, "Addendum to Remedial Action Work Plan, Ash Road Properties, 221 Sycamore Road, Town of Vestal, New York", re-submitted on May 26, 2015. Based on our review, the Work Plan is hereby approved.

Sincerely,

Garý Priscott Project Manager

ec: H. Warner, NYSDEC

B. McGinn, Esq., NYSDEC

M. Doroski, NYSDOH

J. Baran, West Covina Royale

K. Fitzgerald, Esq., HHK

APPENDIX C

Environmental Easement

STATE OF NEW YORK **BROOME COUNTY**

I, Richard R. Blythe, Clerk of the County of Broome of the County Court of said County and of the Supreme Court, both being courts of Record having a common seal, DO HEREBY CERTIFY that I have compared this copy with the original

DESCRIPTION: EASEMENT

DATE:

11/02/2016

BOOK/PAGE: D2476 / 355

filed, recorded, or entered in this office and that the same is a correct transcript thereof and of the whole of said original.

IN WITNESS WHERBOF, I have hereunto set my hand and affixed the seal of said County and Courts on

Date: 11/02/2015

Frances Master Childe

By Frances Martin-Childs

Deputy County Clerk

BROOME COUNTY - STATE OF NEW YORK

RICHARD R. BLYTHE, COUNTY CLERK 60 HAWLEY STREET, P.O. BOX 2062 **BINGHAMTON, NY 13902**

COUNTY CLERK'S RECORDING PAGE ***THIS PAGE IS PART OF THE DOCUMENT - DO NOT DETACH***

BOOK/PAGE: D2476 / 355

INSTRUMENT #: 201500033405

Receipt#: 20150770720

clerk: GG

Rec Date: 11/02/2015 04;21:32 PM

Doc Grp: D

Descrip: EASEMENT

Num Pgs: 11,

Rec'd Frm: HINMAN HOWARD & KATTELL LLP

Party1: VESTAL RETAIL CENTER LLC

Party2: NEW YORK STATE DEPARTMENT OF

ENVIRONMENTAL CONSERVATION Town: TOWN OF VESTAL

Recording:

5.00 Cover Page Recording Fee 70.00 Cultural Ed 14.25 Records Management - Coun 1.00 Records Management - Stat 4.75

Sub Total:

95.00

Transfer Tax

Transfer Tax - State 0.00 Transfer Tax - County 0.00

Sub Total:

0.00

Total:

95.00 **** NOTICE; THIS IS NOT A BILL ****

***** Transfer Tax ***** Transfer Tax #: TT001336 Transfer Tax

Consideration: 0.00

Total:

0.00

WARNING***

This sheet constitutes the clerks endorsement, required by Section 316-A (5) & Section 319 of the Real Property Law of the State of New York. DO NOT DETACH.

Richard R. Blythe Brooms County Clerk

Record and Return To:

HINMAN HOWARD & KATTELL LLP 700 SECURITY MUTUAL BLDG 80 EXCHANGE ST PO BOX 5250 BINGHAMTON NY 13902

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 221 Sycamore Road in the Town of Vestal, County of Broome and State of New York, known and designated on the tax map of the County Clerk of Broome as tax map parcel numbers: Section 158.10 Block 2 Lot 13, being a portion of the property conveyed to Grantor by deed dated May 15, 2007 and recorded in the Broome County Clerk's Office in Liber and Page 2189/472. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 1.557 +/-acres, and is hereinafter more fully described in the Land Title Survey dated April 29, 2015 prepared by Rodney L. Carey, PLS of Keystone Associates, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C704032-05-10, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the Controlled Property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Broome County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- (6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;
- (7) All future activities on the Controlled Property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the Controlled Property must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property shall not be used for Residential or Restricted Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section
Division of Environmental Remediation
NYSDEC
625 Broadway
Albany, New York 12233
Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

- F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.
- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the Controlled Property to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
- (2) the institutional controls and/or engineering controls employed at such Controlled Property:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to the Controlled Property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;
- B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

A. This Environmental Easement is enforceable in law or equity in perpetuity by

Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C704032

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to:

Site Control Section

Division of Environmental Remediation

NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. Recordation. Grantor shall record this instrument, within thirty (30) days of execution of

this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Controlled Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

County: Broome

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

VESTAL RETAIL CENTER, LLC, a Delaware limited liability company

By: West Covina Royale, L.P., a California limited partnership, its managing member

> By: JG GROUP GP, LLC, a California limited liability company, a general partner

> > By: Barry Cayton, Manager

Date: September 30, 2015

Grantor's Acknowledgment SEE ATTACHE) CERTIFICATE

A notary public or other officer completing this certificate verifies only the identity of the individual who signed the document to which this certificate is attached, and not the truthfulness, accuracy, or validity of that document.

State of California) County of Los Angeles)	
Subscribed and sworn to (or affirmed) be	efore me on this day of, 20 by
(and (2)	
proved to me on the basis of satisfactory	evidence to be the person(s) who appeared before me.
Signature	
Signature of the Notary Public	

Environmental Easement Page 7

CIVIL CODE & 1189

CALIFORNIA ALL-PURPOSE ACKNOWLEDGN	IEM I CIVIL CODE 3 1 109
A notary public or other officer completing this certificat document to which this certificate is attached, and not the	e verifies only the identity of the individual who signed the atruthfulness, accuracy, or validity of that document.
State of California) County of Los Angeles)	
on October 1,2015 before me, 10th	icia R. Estrada Notary Public
On October 1, 2015 before me, Patr	Here Insert Name and Title of the Officer
Bara Cant	ממ
Date personally appeared Barry Cayt	Name(s) of Signer(s)
subscribed to the within instrument and acknowled his/her/their authorized capacity(ies), and that by his or the entity upon behalf of which the person(s) ac	
	certify under PENALTY OF PERJURY under the laws of the State of California that the foregoing paragraphs true and correct.
Commission # 2049783 Notary Public - California	WITNESS my hand and official seal.
My Comm. Expires Dec 20, 2017	Signature of Notary Public
Place Notary Seal Above	
	TIONAL
Though this section is optional, completing this fraudulent reattachment of this	information can deter alteration of the document or form to an unintended document.
Description of Attached Document	
Title or Type of Document:	Document Date:
Number of Pages: Signer(s) Other Tha	n Named Above:
Capacity(ies) Claimed by Signer(s)	
Signer's Name:	Signer's Name:
☐ Corporate Officer — Title(s):	☐ Corporate Officer — Title(s):
☐ Partner — ☐ Limited ☐ General	☐ Partner — ☐ Limited ☐ General
☐ Individual ☐ Attorney in Fact	☐ Individual ☐ Attorney in Fact
☐ Trustee ☐ Guardian or Conservator	☐ Trustee ☐ Guardian or Conservator
Other:	☐ Other:Signer Is Representing:
Signer Is Representing:	orginal is napresenting.

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W. Schick, Director

Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)
) ss
COUNTY OF ALBANY)

On the day of day of day, in the year 2015, before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and hat by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual accedes executed the instrument.

Notary Public - State of New York

David J. Chiusano
Notary Public, State of New York
No. 01CH5032146
Qualified in Schenectady County
Commission Expires August 22, 20

SCHEDULE "A" PROPERTY DESCRIPTION

ENVIRONMENTAL EASEMENT DESCRIPTION VESTAL RETAIL CENTER, LLC 221 SYCAMORE ROAD TOWN OF VESTAL BROOME COUNTY, NEW YORK STATE

ALL THAT TRACT OR PARCEL OF LAND situate in the Vestal, County of Broome, State of New York, being a portion of the property now or formerly of Vestal Retail Center, LLC described in L. 2189 P. 472 as recorded in the Broome County Clerk's Office on May 31, 2007 (TM#158.10-2-13), bounded and described as follows:

COMMENCING at a point on the easterly boundary of Sycamore Street at its intersection with the division line between the property now or formerly of Shippers Road Management, LLC per L. 2397 P. 592 (TM# 158.10-2-9) on the north and the property now or formerly of Vestal Retail Center, LLC per L. 2189 P. 472 (TM# 158.10-2-13) on the south; thence along said easterly boundary of Sycamore Street the following five (5) courses and distances: 1) S31°41'40"E, a distance of 20.52 feet to a point; 2) S19°09'52"E, a distance of 333.22 feet to a point; 3) S84°33'02"W, a distance of 3.79 feet to a point; 4) S18°57'32"E, a distance of 347.43 feet to a point; 5) S31°01'30"E, a distance of 6.55 feet to a point, the last mentioned point being the Point of Beginning;

RUNNING THENCE and continuing S31°01'30"E along said easterly boundary of Sycamore Street, a distance of 118.78 feet to a point at its intersection with the northerly boundary of Ash Road; thence along said Ash Road the following seven (7) courses and distances:

- 1) On a non-tangent curve to the left having a radius of 35.00 feet, an arc length of 12.70 feet to a point, said curve being subtended by a chord having a bearing of S78°07'36"E and a length of 12.63 feet:
 - 2) S88°31'24"E, a distance of 10.50 feet to a point;
- 3) On a curve to the left having a radius of 599.93 feet, an arc length of 37.67 feet to a point, the last mentioned curve being subtended by a chord having a bearing of N89°41'07"E and a length of 37.66 feet (non-tangent);
 - 4) N75°28'03"E, a distance of 373.50 feet to a 5/8 inch rebar;
 - 5) N77°34'03"E, a distance of 48.71 feet to a point;
- 6) On a non-tangent curve to the right having a radius of 40.00 feet, an arc length of 105.44 feet to a point, the last mentioned curve being subtended by a chord having a bearing of N77°34'03"E and a length of 77.46 feet;
- 7) N77°34'03"E, a distance of 12.08 feet to a point at its intersection with the division line between the property now or formerly of Stewart Park LLC per L. 2428 P. 114 (TM# 158.11-16.1) on the northeast and said Vestal Retail Center, LLC on the southwest; thence N28°14'41"W along the last mentioned division line, a distance of 129.08 feet to a point; thence through said Vestal Retail Center, LLC the following three (3) courses and distances:
 - 1) S75°17'04"W, a distance of 210.34 feet to a point;
 - 2) S75°50'32"W, a distance of 79.65 feet to a point;
 - 3) S77°47'27"W, a distance of 282.94 feet to the POINT OF BEGINNING.

The above described parcel contains 67,831 square feet or 1.557 acres, more or less.

APPENDIX D

Laboratory Data

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-001 Client Sample ID: MW-01

Sample Information:

Type: Aqueous

Attn To: Project Manager Collected

:6/1/2015 11:10:00 AM :6/2/2015 9:45:00 AM

ASH ROAD, 209183

Origin:

Collected By CLIENT

Received

Analytical Method: SW8260C:		Prep N	<u>1ethod:</u> 503	30C		Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,1,2-Trichloro-1,2,2-trifluoroethan	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,1,2-Trichloroethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,1-Dichloroethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,1-Dichloroethene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,2,4-Trichlorobenzene	< 1.0	С	1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,2-Dibromo-3-chloropropane	< 1.0	С	1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,2-Dibromoethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,2-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,2-Dichloroethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,2-Dichloropropane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,3-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
1,4-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
2-Butanone	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
2-Hexanone	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
4-Methyl-2-pentanone	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Acetone	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Benzene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Bromodichloromethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Bromoform	< 1.0	С	1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Bromomethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Carbon disulfide	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Carbon tetrachloride	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Chlorobenzene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Chloroethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Chloroform	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Chloromethane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
cis-1,2-Dichloroethene	270	D	3	μg/L	06/06/2015 4:53 PM	Container-02 of 06
cis-1,3-Dichloropropene	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06
Cyclohexane	< 1.0		1	μg/L	06/06/2015 2:02 PM	Container-01 of 06

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full,

Date Reported: 6/25/2015 without the written approval of the laboratory.

Nicoles Johnson

Project Manager

Page 1 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

Collected

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-001

Sample Information:

Type: Aqueous

Attn To: Project Manager

:6/1/2015 11:10:00 AM

Client Sample ID: MW-01

Origin:

ASH ROAD, 209183 :6/2/2015 9:45:00 AM Received

Collected By CLIENT

Analytical Method: SW8260C:	Prep	Method: 503	80C			Analyst: GKB
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Dibromochloromethane	< 1.0 c	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Dichlorodifluoromethane	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Ethylbenzene	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Isopropylbenzene	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Methyl Acetate	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Methyl tert-butyl ether	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Methylcyclohexane	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Methylene chloride	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Styrene	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Tetrachloroethene	23	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Toluene	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
trans-1,2-Dichloroethene	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
trans-1,3-Dichloropropene	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Trichloroethene	9.3	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Trichlorofluoromethane	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Vinyl chloride	1.9	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Xylene (total)	< 1.0	1	μg/L		06/06/2015 2:02 PM	Container-01 of 06
Surr: 1,2-Dichloroethane-d4	116	1	%REC	Limit 53-183	06/06/2015 2:02 PM	Container-01 of 06
Surr: 4-Bromofluorobenzene	116	1	%REC	Limit 63-140	06/06/2015 2:02 PM	Container-01 of 06
Surr: Toluene-d8	121	1	%REC	Limit 60-135	06/06/2015 2:02 PM	Container-01 of 06

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicoles Johnson

Project Manager

This report shall not be reproduced except in full,

Date Reported: 6/25/2015 without the written approval of the laboratory.

Page 2 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-002 Client Sample ID: MW-02S Sample Information:

Type: Aqueous

Origin:

Attn To:
Collected:6/

Received

Project Manager

:6/1/2015 10:05:00 AM :6/2/2015 9:45:00 AM

ASH ROAD, 209183

Collected By CLIENT

1,1,1-Trichloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,1,2-Trichloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,1,2-Trichloro-1,2,2-trifluoroethan < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,1,2-Trichloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,1-Dichloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,1-Dichloroethane 1.9 1 μg/L 06/06/2015 2:23 PM Correct PM 1,2,4-Trichlorobenzene < 1.0 c 1 μg/L 06/06/2015 2:23 PM Correct PM 1,2-Dibromo-3-chloropropane < 1.0 c 1 μg/L 06/06/2015 2:23 PM Correct PM 1,2-Dichlorobenzene < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,2-Dichloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,2-Dichloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Correct PM 1,2-Dichloroethane < 1.0 1 <th>Container: ontainer-01 of 06 ontainer-01 of 06</th>	Container: ontainer-01 of 06
1,1,2,2-Tetrachloroethane < 1.0	ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06
1,1,2-Trichloro-1,2,2-trifluoroethan < 1.0	ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06
1,1,2-Trichloroethane < 1.0	ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06
1,1-Dichloroethane < 1.0	ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06
1,1-Dichloroethene 1.9 1 μg/L 06/06/2015 2:23 PM Col 1,2,4-Trichlorobenzene < 1.0	ontainer-01 of 06 ontainer-01 of 06 ontainer-01 of 06
1,2,4-Trichlorobenzene < 1.0	ontainer-01 of 06 ontainer-01 of 06
1,2-Dibromo-3-chloropropane < 1.0	ontainer-01 of 06
1,2-Dibromoethane < 1.0	
1,2-Dichlorobenzene < 1.0 1 µg/L 06/06/2015 2:23 PM Col 1,2-Dichloroethane < 1.0 1 µg/L 06/06/2015 2:23 PM Col	ontainer-01 of 06
1,2-Dichloroethane < 1.0 1 µg/L 06/06/2015 2:23 PM Cor	
1,2 2,6,11,6,12,11,11,11,11,11,11,11,11,11,11,11,11,	ontainer-01 of 06
1.2 Dichloropropage 2.1.0 1 ug/l 06/06/2015 2:22 PM Co	ontainer-01 of 06
1,2-Dichloropropane < 1.0 1 µg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
1,3-Dichlorobenzene < 1.0 1 µg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
1,4-Dichlorobenzene < 1.0 1 µg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
2-Butanone < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
2-Hexanone < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
4-Methyl-2-pentanone < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Acetone < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Benzene < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Bromodichloromethane < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Bromoform < 1.0 c 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Bromomethane < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Carbon disulfide < 1.0 1 μg/L 06/06/2015 2:23 PM Cor	ontainer-01 of 06
Carbon tetrachloride < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Chlorobenzene < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Chloroethane < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Chloroform < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Chloromethane < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
cis-1,2-Dichloroethene 490 D 25 µg/L 06/06/2015 3:27 PM Co	ontainer-04 of 06
cis-1,3-Dichloropropene < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06
Cyclohexane < 1.0 1 μg/L 06/06/2015 2:23 PM Co	ontainer-01 of 06

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicoles Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported : 6/25/2015

Page 3 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-002

Client Sample ID: MW-02S

Sample Information:

Type: Aqueous

Origin:

Attn To:

Collected

Received

Project Manager

:6/1/2015 10:05:00 AM

ASH ROAD, 209183 :6/2/2015 9:45:00 AM

Collected By CLIENT

Analytical Method: SW8260C:		Prep M	lethod: 503	30C			Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Dibromochloromethane	< 1.0	С	1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Dichlorodifluoromethane	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Ethylbenzene	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Isopropylbenzene	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Methyl Acetate	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Methyl tert-butyl ether	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Methylcyclohexane	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Methylene chloride	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Styrene	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Tetrachloroethene	3,000	D	25	μg/L		06/06/2015 3:27 PM	Container-04 of 06
Toluene	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
trans-1,2-Dichloroethene	1.1		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
trans-1,3-Dichloropropene	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Trichloroethene	370	D	25	μg/L		06/06/2015 3:27 PM	Container-04 of 06
Trichlorofluoromethane	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Vinyl chloride	46		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Xylene (total)	< 1.0		1	μg/L		06/06/2015 2:23 PM	Container-01 of 06
Surr: 1,2-Dichloroethane-d4	118		1	%REC	Limit 53-183	06/06/2015 2:23 PM	Container-01 of 06
Surr: 4-Bromofluorobenzene	118		1	%REC	Limit 63-140	06/06/2015 2:23 PM	Container-01 of 06
Surr: Toluene-d8	119		1	%REC	Limit 60-135	06/06/2015 2:23 PM	Container-01 of 06

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: 6/25/2015 Page 4 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-003 Client Sample ID: MW-09S Sample Information:

Type: Aqueous

Origin:

Attn To: Project Manager

Collected : 6/1/2015 8:00:00 AM

:6/2/2015 9:45:00 AM ASH ROAD, 209183

Collected By CLIENT

Received

Analytical Method: SW8260C:	Prep Method: 5030C					Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,1,2-Trichloro-1,2,2-trifluoroethan	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,1,2-Trichloroethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,1-Dichloroethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,1-Dichloroethene	2.1		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,2,4-Trichlorobenzene	< 1.0	С	1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,2-Dibromo-3-chloropropane	< 1.0	С	1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,2-Dibromoethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,2-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,2-Dichloroethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,2-Dichloropropane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,3-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
1,4-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
2-Butanone	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
2-Hexanone	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
4-Methyl-2-pentanone	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Acetone	35		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Benzene	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Bromodichloromethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Bromoform	< 1.0	С	1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Bromomethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Carbon disulfide	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Carbon tetrachloride	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Chlorobenzene	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Chloroethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Chloroform	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Chloromethane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
cis-1,2-Dichloroethene	1,100	D	40	μg/L	06/06/2015 4:10 PM	Container-02 of 0
cis-1,3-Dichloropropene	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0
Cyclohexane	< 1.0		1	μg/L	06/06/2015 3:49 PM	Container-01 of 0

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported : 6/25/2015

Page 5 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

Collected

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-003

Sample Information:

Type: Aqueous

Attn To: Project Manager

:6/1/2015 8:00:00 AM

Client Sample ID: MW-09S

ASH ROAD, 209183

Origin:

Received : 6/2/2015 9:45:00 AM

Collected By CLIENT

Analytical Method: SW8260C:		Prep M	<u>1ethod:</u> 503	30C			Analyst: GKB
Parameter(s)	Results	Qualifier	D.F.	<u>Units</u>		Analyzed:	Container:
Dibromochloromethane	< 1.0	С	1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Ethylbenzene	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Isopropylbenzene	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Methyl Acetate	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Methylcyclohexane	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Methylene chloride	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Styrene	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Tetrachloroethene	2,300	D	40	μg/L		06/06/2015 4:10 PM	Container-02 of 03
Toluene	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
trans-1,2-Dichloroethene	4.7		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Trichloroethene	290	D	40	μg/L		06/06/2015 4:10 PM	Container-02 of 03
Trichlorofluoromethane	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Vinyl chloride	90		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Xylene (total)	< 1.0		1	μg/L		06/06/2015 3:49 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	118		1	%REC	Limit 53-183	06/06/2015 3:49 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	116		1	%REC	Limit 63-140	06/06/2015 3:49 PM	Container-01 of 03
Surr: Toluene-d8	119		1	%REC	Limit 60-135	06/06/2015 3:49 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Nicoles Johnson

Project Manager

Date Reported : 6/25/2015

Page 6 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-004 Client Sample ID: MW-10S Sample Information:

Type: Aqueous

Origin:

Attn To: Project Manager

Collected : 6/1/2015 9:10:00 AM

ASH ROAD, 209183

Received : 6/2/2015 9:45:00 AM Collected By CLIENT

Analytical Method: SW8260C:		Prep N	<u>1ethod:</u> 503	30C		Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,1,2-Trichloro-1,2,2-trifluoroethan	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,1,2-Trichloroethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,1-Dichloroethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,1-Dichloroethene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,2,4-Trichlorobenzene	< 1.0	С	1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,2-Dibromo-3-chloropropane	< 1.0	С	1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,2-Dibromoethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,2-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,2-Dichloroethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,2-Dichloropropane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,3-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
1,4-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
2-Butanone	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
2-Hexanone	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
4-Methyl-2-pentanone	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Acetone	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Benzene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Bromodichloromethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Bromoform	< 1.0	С	1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Bromomethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Carbon disulfide	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Carbon tetrachloride	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Chlorobenzene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Chloroethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Chloroform	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Chloromethane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
cis-1,2-Dichloroethene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
cis-1,3-Dichloropropene	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03
Cyclohexane	< 1.0		1	μg/L	06/06/2015 4:31 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC

unless otherwise noted.

Nicole Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported : 6/25/2015

Page 7 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-004

Client Sample ID: MW-10S

Sample Information:

Type: Aqueous

Attn To: Project Manager

Collected :6/1/2015 9:10:00 AM Received :6/2/2015 9:45:00 AM

ASH ROAD, 209183

Origin:

Collected By CLIENT

Analytical Method: SW8260C:	<u>P</u>	rep Method: 503	0C			Analyst: GKB
Parameter(s)	Results Qualifi	er <u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Dibromochloromethane	< 1.0 c	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Dichlorodifluoromethane	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Ethylbenzene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Isopropylbenzene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Methyl Acetate	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Methyl tert-butyl ether	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Methylcyclohexane	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Methylene chloride	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Styrene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Tetrachloroethene	4.5	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Toluene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
trans-1,2-Dichloroethene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
trans-1,3-Dichloropropene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Trichloroethene	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Trichlorofluoromethane	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Vinyl chloride	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Xylene (total)	< 1.0	1	μg/L		06/06/2015 4:31 PM	Container-01 of 03
Surr: 1,2-Dichloroethane-d4	116	1	%REC	Limit 53-183	06/06/2015 4:31 PM	Container-01 of 03
Surr: 4-Bromofluorobenzene	116	1	%REC	Limit 63-140	06/06/2015 4:31 PM	Container-01 of 03
Surr: Toluene-d8	120	1	%REC	Limit 60-135	06/06/2015 4:31 PM	Container-01 of 03

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicoles Johnson

Project Manager

This report shall not be reproduced except in full,

Date Reported: 6/25/2015 without the written approval of the laboratory.

Page 8 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-005 Client Sample ID: STORAGE BLANK **Sample Information:**

Type: Trip Blank

Attn To: Project Manager

Collected :6/2/2015

ASH ROAD, 209183

Origin:

Received :6/2/2015 9:45:00 AM

Collected By PACE

Analytical Method: SW8260C:		Prep N	<u> 1ethod:</u> 503	30C		Analyst: GKB
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
1,1,1-Trichloroethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,1,2,2-Tetrachloroethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,1,2-Trichloro-1,2,2-trifluoroethan	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,1,2-Trichloroethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,1-Dichloroethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,1-Dichloroethene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,2,4-Trichlorobenzene	< 1.0	С	1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,2-Dibromo-3-chloropropane	< 1.0	С	1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,2-Dibromoethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,2-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,2-Dichloroethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,2-Dichloropropane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,3-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
1,4-Dichlorobenzene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
2-Butanone	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
2-Hexanone	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
4-Methyl-2-pentanone	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Acetone	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Benzene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Bromodichloromethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Bromoform	< 1.0	С	1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Bromomethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Carbon disulfide	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Carbon tetrachloride	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Chlorobenzene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Chloroethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Chloroform	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Chloromethane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
cis-1,2-Dichloroethene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
cis-1,3-Dichloropropene	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02
Cyclohexane	< 1.0		1	μg/L	06/06/2015 1:40 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC

unless otherwise noted.

Nicole Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: 6/25/2015

Page 9 of 12

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506421-005

Sample Information:

Type: Trip Blank

Attn To:

Project Manager

Client Sample ID: STORAGE BLANK

Origin:

Collected :6/2/2015

Received :6/2/2015 9:45:00 AM

ASH ROAD, 209183

Collected By PACE

Analytical Method: SW8260C:	Prep Method: 5030C					Analyst: GKB
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Dibromochloromethane	< 1.0 c	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Dichlorodifluoromethane	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Ethylbenzene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Isopropylbenzene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Methyl Acetate	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Methyl tert-butyl ether	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Methylcyclohexane	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Methylene chloride	1.2	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Styrene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Tetrachloroethene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Toluene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
trans-1,2-Dichloroethene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
trans-1,3-Dichloropropene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Trichloroethene	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Trichlorofluoromethane	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Vinyl chloride	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Xylene (total)	< 1.0	1	μg/L		06/06/2015 1:40 PM	Container-01 of 02
Surr: 1,2-Dichloroethane-d4	116	1	%REC	Limit 53-183	06/06/2015 1:40 PM	Container-01 of 02
Surr: 4-Bromofluorobenzene	115	1	%REC	Limit 63-140	06/06/2015 1:40 PM	Container-01 of 02
Surr: Toluene-d8	118	1	%REC	Limit 60-135	06/06/2015 1:40 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Date Reported: 6/25/2015 Page 10 of 12

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Client Name GEO				Date and T	ime Received:	6/2/2015 9:45:00 AM
Work Order Number: 150	6421 RcptNo: 1			Received b	y Linda Sicili	ano
Completed by:	SiliDe		Revi	ewed by:	Semfor	ar
Completed Date: 6/24/2015 5:49:46 PM			Revi	ewed Date:	6/24/201	<u>5 5:48:24 PM</u>
Carrier name: FedEx						
Chain of custody present?	Yes	✓	No 🗌			
Chain of custody signed when relinquished and received?		Yes	✓	No 🗌		
Chain of custody agrees with sample labels?		Yes	✓	No 🗌		
Are matrices correctly identified on Chain of custody?		Yes	✓	No 🗌		
Is it clear what analyses were requested?		Yes	✓	No 🗌		
Custody seals intact on sam	nple bottles?	Yes		No \square	Not Present	✓
Samples in proper containe	r/bottle?	Yes	✓	No 🗌		
Were correct preservatives		Yes	✓	No 🗌	NA	
Preservative added to bottle						
Sample Condition?		Intact	✓	Broken	Leaking	
Sufficient sample volume for indicated test?		Yes	✓	No 🗌	J	
Were container labels complete (ID, Pres, Date)?		Yes	✓	No 🗆		
All samples received within	holding time?	Yes	✓	No 🗌		
Was an attempt made to co	ool the samples?	Yes	✓	No 🗌	NA	
All samples received at a te		Yes	✓	No 🗌	NA	
Response when temperatur	·					
Sample Temp. taken and re		Yes	✓	No 🗌	To 2	2.1 °
Water - Were bubbles abse		Yes	✓	No 🗆	No Vials	
Water - Was there Chlorine	Present?	Yes		No 🗆	NA	✓
Water - pH acceptable upor	receipt?	Yes	✓	No 🗆	No Water	
Are Samples considered acceptable?		Yes	✓	No 🗆		
Custody Seals present?		Yes		No 🗸		
Airbill or Sticker?		Air Bill	~	Sticker	Not Present	. 🗇
Airbill No:		773728			NOT FIESEII	. 🗀
Alibili No.		113120				
Case Number:	SDG:		S	SAS:		
	GEO005					
Any No response should be	e detailed in the comments section	n below, if appl	icable	<u>. </u>	. — — — — -	
Client Contacted?	Yes □ No ☑ NA	Person Cont	acted.		· — — — -	
			acica.	☐ In Doroon.		
Contact Mode:	Phone: Fax:	Email:		☐ In Person:		
Client Instructions:						
Date Contacted: Contacted By:						
Regarding:						
Comments:						
CorrectiveAction:						

<u>WorkOrder :</u> 1506421

Certifications

STATE	CERTIFICATION #			
NEW YORK	10478			
NEW JERSEY	NY158			
CONNECTICUT	PH-0435			
MARYLAND	208			
MAS S ACHUS ETTS	MNY026			
NEW HAMPS HIRE	2987			
RHODE IS LAND	LAO00340			
PENNS YLVANIA	68-00350			

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

Collected

Received

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506184-001

Client Sample ID: MW-01

Sample Information:

Type: Aqueous

Attn To: Project Manager

: 6/1/2015 11:10:00 AM : 6/2/2015 9:45:00 AM

ASH ROAD, 209183

Origin:

Collected By : CLIENT

Analytical Method: E300.0: Analyst: bka Qualifier Parameter(s) Results D.F Units Analyzed: Container: Chloride 682 20 06/12/2015 8:30 AM Container-01 of 02 D mg/L Sulfate 34.4 1 mg/L 06/10/2015 6:46 AM Container-01 of 02 Analytical Method: SM5210B: Prep Method: SM5210B Prep Date: 6/3/2015 6:55:47 AM Analyst: VaS Parameter(s) Container: Results Qualifier D.F. Units Analyzed: Biochemical Oxygen Demand 1 06/03/2015 10:25 AM Container-01 of 01 < 2 mg/L Analytical Method: E353.2: Analyst: AW Parameter(s) Qualifier D.F. Units Analyzed: Container: Results 06/03/2015 10:16 AM Container-01 of 02 Nitrite as N < 0.10 Н 1 mg/L Analytical Method: RSK-175: Analyst: MaiN Parameter(s) Analyzed: Qualifier Container: Results D.F <u>Units</u> 06/04/2015 3:43 PM Container-01 of 02 Methane 2.3 1 μg/L Analytical Method: SUB: Analyst: Sub Parameter(s) Analyzed: Container: Qualifier D.F **Units** 06/02/2015 Subcontract (See Attached) 1

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

without the written approval of the laboratory.

Date Reported:

7/8/2015

Page 1 of 12

LABORATORY RESULTS

Results for the samples and analytes requested

Lab No. : 1506184-002

Client Sample ID: MW-02S

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Attn To: Project Manager

Collected : 6/1/2015 10:03:00 AM : 6/2/2015 9:45:00 AM Received

Collected By: CLIENT

Sample Information:

Type: Aqueous

Origin:

Collected by . CLIENT							
Analytical Method:	E200.7:		Prep N	Method: E2	00.7	Prep Date: 6/9/2015 10:30:00 AM	Analyst: CGZ
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Manganese		496		1	ug/L	06/10/2015 3:33 AM	Container-01 of 01
Analytical Method:	E300.0:						Analyst: bka
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride		769	D	20	mg/L	06/12/2015 8:44 AM	Container-01 of 02
Sulfate		15.0		1	mg/L	06/10/2015 7:27 AM	Container-01 of 02
Analytical Method:	SM5210B:		Prep N	<u>/lethod:</u> SN	15210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)		<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen Der	mand	7		1	mg/L	06/03/2015 10:30 AM	Container-01 of 01
Analytical Method:	E353.2 :						Analyst: AW
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N		< 0.10	Н	1	mg/L	06/03/2015 10:17 AM	Container-01 of 02
Analytical Method:	RSK-175 :						Analyst: MaiN
Parameter(s)		<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane		1,900	D	215	μg/L	06/04/2015 4:38 PM	Container-01 of 02
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attach	ned)	3.9	+	1	mg/L	06/26/2015	Container-01 of 01
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attach	ned)	-	+	1		06/02/2015	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 7/8/2015 Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 12

Geologic NY

37 Copeland Avenue Homer, NY 13077

Attn To: Project Manager Collected : 6/1/2015 8:00:00 AM : 6/2/2015 9:45:00 AM Received

Collected By: CLIENT

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Lab No. : 1506184-003 Type: Aqueous Client Sample ID: MW-09S

Origin:

Collected By : CLIEN I						
Analytical Method: E200.7:		Prep M	Method: E2	00.7	Prep Date: 6/9/2015 10:30:00 AM	Analyst: CGZ
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Manganese	10,400		1	ug/L	06/10/2015 3:40 AM	Container-01 of 01
Analytical Method: E300.0:						Analyst: bka
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride	942	D	20	mg/L	06/12/2015 8:59 AM	Container-01 of 02
Sulfate	43.7		1	mg/L	06/10/2015 7:40 AM	Container-01 of 02
Analytical Method: SM5210B:		Prep I	Method: SM	15210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen Demand	< 2		1	mg/L	06/03/2015 10:35 AM	Container-01 of 01
Analytical Method: E353.2 :						Analyst: AW
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N	< 0.10	Н	1	mg/L	06/03/2015 10:18 AM	Container-01 of 02
Analytical Method: RSK-175:						Analyst: MaiN
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane	21		1	μg/L	06/04/2015 4:05 PM	Container-01 of 02
Analytical Method: SUB:						Analyst: Sub
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attached)	3.7	+	- 1	mg/L	06/26/2015	Container-01 of 01
Analytical Method: SUB:						Analyst: Sub
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attached)	-	+	- 1		06/02/2015	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

Date Reported:

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

7/8/2015

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 12

Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

Geologic NY

37 Copeland Avenue Homer, NY 13077

Attn To: Project Manager Collected : 6/1/2015 9:10:00 AM : 6/2/2015 9:45:00 AM Received

Collected By: CLIENT

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Lab No. : 1506184-004 Type: Aqueous Client Sample ID: MW-10S

Origin:

Analytical Method:	E300.0:						Analyst: bka
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride		995	D	20	mg/L	06/12/2015 9:13 AM	Container-01 of 02
Sulfate		30.8		1	mg/L	06/10/2015 7:54 AM	Container-01 of 02
Analytical Method:	SM5210B:		Prep	Method: SM	5210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen Der	mand	< 2		1	mg/L	06/03/2015 10:40 AM	Container-01 of 01
Analytical Method:	E353.2 :						Analyst: AW
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N		< 0.10	Н	1	mg/L	06/03/2015 10:20 AM	Container-01 of 02
Analytical Method:	RSK-175 :						Analyst: MaiN
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane		< 1.0		1	μg/L	06/04/2015 4:16 PM	Container-01 of 02
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attach	ied)	-	-	+ 1		06/02/2015	

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 7/8/2015 Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 12

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: 50245

Website: www.pacelabs.com

Sample ID: MB-50245 SampType: MBLK TestCode: BOD5_W_SM Units: mg/L Prep Date: 6/3/2015 RunNo: 76493 Client ID: **PBW** Batch ID: 50245 TestNo: SM5210B SM5210B Analysis Date: 6/3/2015 SeqNo: 1666590 Result **PQL** SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val **RPDLimit** Analyte %REC %RPD Qual

Biochemical Oxygen Demand < 2 2

Sample ID: LCS-50245 Client ID: LCSW	SampType: LCS Batch ID: 50245		le: BOD5_W_5 lo: SM5210B	SM Units: mg/L SM5210B		Prep Da Analysis Da	te: 6/3/201 te: 6/3/201		RunNo: 76 4 SeqNo: 16 6		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Biochemical Oxygen Demand	211	2	198	0	107	84.5	115.5				

Qualifiers: * Value exceeds Maximum Contaminant Level

H Holding times for preparation or analysis exceeded

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: 50352

Website: www.pacelabs.com

Sample ID: MB-50352 Client ID: PBW	SampType: MBLK Batch ID: 50352	TestCode: 200.7_w_clp Units: ug/L TestNo: E200.7 E200.7	Prep Date: 6/9/2015 Analysis Date: 6/10/2015	RunNo: 76421 SeqNo: 1665258
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese	< 15.0	15.0		

Sample ID: LCS-50352 Client ID: LCSW	SampType: LCS Batch ID: 50352		le: 200.7_w_c lo: E200.7	Ip Units: ug/L E200.7		•	te: 6/9/201 te: 6/10/20		RunNo: 764 SeqNo: 166		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	2,680	15.0	2,500	0	107	85	115				

Qualifiers: *	Value exceeds Maximum Contaminant L	Level
---------------	-------------------------------------	-------

H Holding times for preparation or analysis exceeded

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

ND Not Detected at the Reporting Limit

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: R76120

Website: www.pacelabs.com

Troject.	ologie			Buthib. R/0120	
Sample ID: LCS-060215 Client ID: LCSW	SampType: Ics Batch ID: R76120	TestCode: no2-a_w TestNo: E353.2	Units: mg/L	Prep Date: RunNo: 76120 Analysis Date: 6/3/2015 SeqNo: 1657412	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua	al
Nitrite as N	1.01	0.10 1.00	0	101 90 110	
Sample ID: MB-060215 Client ID: PBW	SampType: mblk Batch ID: R76120	TestCode: no2-a_w TestNo: E353.2	Units: mg/L	Prep Date: RunNo: 76120 Analysis Date: 6/3/2015 SeqNo: 1657413	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qua	al

Qualifiers:	
-------------	--

Nitrite as N

- Value exceeds Maximum Contaminant Level
- H Holding times for preparation or analysis exceeded

< 0.10

0.10

- O RSD is greater than RSDlimit
- S Spike Recovery outside accepted recovery limits
- D Dilution was required.
- M Manual Integration used to determine area response
- P Second column confirmation exceeds

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: R76164

Website: www.pacelabs.com

Sample ID: MB060415 Client ID: PBW	SampType: mblk Batch ID: R76164		de: RSK-175_\ lo: RSK-175	W Units: μg/L		Prep Da Analysis Da		5	RunNo: 761 SeqNo: 165		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane Surr: Propene	< 1.0 10	1.0	10.00		100	21	187				

Sample ID: LFB060415	SampType: Ifb	TestCod	de: RSK-175_ \	W Units: μg/L		Prep Da	te:		RunNo: 76 1	164	
Client ID: ZZZZZZ	Batch ID: R76164	TestN	lo: RSK-175			Analysis Da	te: 6/4/201	5	SeqNo: 165	59224	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	1.4	1.0	5.500	0	25.5	22	166				
Surr: Propene	1.9		10.00		19.0	21	187				S

Value exceeds Maximum Contaminant Level

H Holding times for preparation or analysis exceeded

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

ND Not Detected at the Reporting Limit

Website: www.pacelabs.com

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Geologic NY **Client:**

Project:	Geologic			BatchID: F	R76522
Sample ID: LC:		SampType: LCS Batch ID: R76522	TestCode: ANION300_W Units: mg/L TestNo: E300.0	Prep Date: Analysis Date: 6/9/2015	RunNo: 76522 SeqNo: 1667151
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate		9.70	5.00 10.00 0	97.0 90 110	
Sample ID: Ifb-	-060915	SampType: Ifb	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76522
Client ID: ZZ	ZZZZ	Batch ID: R76522	TestNo: E300.0	Analysis Date: 6/9/2015	SeqNo: 1667153
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate		9.75	5.00 10.00 0	97.5 90 110	
Sample ID: MB	3-060915	SampType: MBLK	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76522
Client ID: PB	W	Batch ID: R76522	TestNo: E300.0	Analysis Date: 6/9/2015	SeqNo: 1667154
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	•	< 5.00	5.00		

Sample ID: MB-060915	SampType: MBLK	TestCode: ANION30	0_W Units: mg/L		Prep Date:):		RunNo: 765	522	
Client ID: PBW	Batch ID: R76522	TestNo: E300.0			Analysis Date:	e: 6/9/2015	5	SeqNo: 166	37154	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Sulfate	< 5.00	5.00								

- Value exceeds Maximum Contaminant Level
- Holding times for preparation or analysis exceeded
- RSD is greater than RSDlimit O
- Spike Recovery outside accepted recovery limits
- D Dilution was required.
- M Manual Integration used to determine area response
- Second column confirmation exceeds

- Е Value above quantitation range
- Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

Website: www.pacelabs.com

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Geologic NY **Client:**

Project:	Geologic			BatchID: R	276739	
Sample ID: LC	CS-061115 CSW	SampType: LCS Batch ID: R76739	TestCode: ANION300_W Units: mg/L TestNo: E300.0	Prep Date: Analysis Date: 6/11/2015	RunNo: 76739 SeqNo: 1672074	
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	
Chloride		9.43	2.00 10.00 0	94.3 90 110		
Sample ID: Ifb	o-061015	SampType: Ifb	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76739	
Client ID: ZZ	ZZZZZ	Batch ID: R76739	TestNo: E300.0	Analysis Date: 6/11/2015	SeqNo: 1672076	
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	
Chloride		9.85	2.00 10.00 0	98.5 90 110		
Sample ID: ME	B-061015	SampType: MBLK	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76739	
Client ID: PE	BW	Batch ID: R76739	TestNo: E300.0	Analysis Date: 6/11/2015	SeqNo: 1672077	
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual	
Chloride	•	< 2.00	2.00			

Sample ID: M	B-061015 SampType: MBLK	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76739
Client ID: PE	Batch ID: R76739	TestNo: E300.0	Analysis Date: 6/11/2015	SeqNo: 1672077
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	< 2.00	2.00		

- Value exceeds Maximum Contaminant Level
- Holding times for preparation or analysis exceeded
- RSD is greater than RSDlimit O
- Spike Recovery outside accepted recovery limits
- D Dilution was required.
- M Manual Integration used to determine area response
- Second column confirmation exceeds

- Е Value above quantitation range
- Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Date and Time Received: Client Name: GEO 6/2/2015 9:45:00 AM Received by: Linda Siciliano RcptNo: 1 Work Order Number: 1506184 Completed by: Reviewed by: 6/24/2015 9:58:10 AM Completed Date: Reviewed Date: 6/24/2015 9:56:49 AM Carrier name: **FedEx** Chain of custody present? No 🗀 Yes **V** No 🗌 Chain of custody signed when relinquished and received? Yes ✓ No 🗀 Chain of custody agrees with sample labels? Yes **~** No 🗀 Are matrices correctly identified on Chain of custody? Yes Is it clear what analyses were requested? Yes **~** No 🗀 **V** No 🗀 Not Present Custody seals intact on sample bottles? Yes **V** Samples in proper container/bottle? Yes No 🗀 No 🗌 Were correct preservatives used and noted? Yes **✓** NA Preservative added to bottles: **✓** Broken 🗀 Sample Condition? Intact Leaking **~** No 🗌 Sufficient sample volume for indicated test? Yes **~** No 🗌 Were container labels complete (ID, Pres, Date)? Yes **✓** No 🗌 All samples received within holding time? Yes **~** No Was an attempt made to cool the samples? NA Yes **V** All samples received at a temp. of > 0° C to 6.0° C? Yes No 🗀 NA Response when temperature is outside of range: No 🗀 Sample Temp. taken and recorded upon receipt? То 2.1 ° No \square Water - Were bubbles absent in VOC vials? Yes No Vials **V** No 🗀 Water - Was there Chlorine Present? Yes NΑ ✓ No 🗀 Water - pH acceptable upon receipt? No Water Yes ✓ No 🗀 Are Samples considered acceptable? Yes No 🗹 Custody Seals present? Yes Air Bill Sticker Not Present Airbill or Sticker? Airbill No: 773728468265 Case Number: SDG: SAS: Any No response should be detailed in the comments section below, if applicable. ✓ Yes No ■ NA Client Contacted? Person Contacted: S. CUMMINS Fax: Contact Mode: ✔ Phone: Email: In Person: Client Instructions: Only Level 4 (Cat B) on Volatile data, MS/MSD/DUP only for the volatiles for sam Date Contacted: 6/4/2015 Contacted By: Nicole Johnson Cat B and QC listed on COC Regarding: Comments: CorrectiveAction:

<u>WorkOrder :</u> 1506184

Certifications

STATE	CERTIFICATION #
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MAS S AC HUS ETTS	M-NY026
NEW HAMPSHIRE	2987
RHODE IS LAND	LAO00340
PENNS YLVANIA	68-00350

July 7, 2015

Pace Analytical Services, Inc. ATTN: Nicole Johnson 2190 Technology Drive Schenectady, NY 12308 Nicole.johnson@pacelabs.com

RE: Project PAC-SN1501 Client Project: Geologic #209183

Dear Ms. Johnson,

On June 2, 2015, Brooks Rand Labs (BRL) received four (4) water samples. The samples were logged-in for the contracted analyses of dissolved ferrous iron [Fe(II)] and were field-filtered by the client. All samples were received, prepared, analyzed, and stored according to BRL SOPs and EPA methodology.

All Fe speciation results were not method blank-corrected in accordance to BRL SOPs. Sample results may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

No laboratory fortified blanks (BS) were available for the Fe(II) analysis. A conversion test BS was performed, though not reportable, and internal confirmed the analysis was not converting Fe(II) to Fe(III).

All data was reported without qualification and all other associated quality control sample results met the acceptance criteria.

BRL, an accredited laboratory, certifies that the reported results of all analyses for which BRL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page in your report. Please feel free to contact me if you have any questions regarding this report.

Sincerely,

Tiffany Stilwater

Client Services Manager tiffany@brooksrand.com

Project ID: PAC-SY1502 PM: Tiffany Stilwater

BRL Report 1523004
Client PM: Nicole Johnson

Report Information

Laboratory Accreditation

BRL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BRL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksrand.com/about/accreditations-certifications/>. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK	method blank	MS	matrix spike
BRL	Brooks Rand Labs	MSD	matrix spike duplicate
BS	laboratory fortified blank	ND	non-detect
CAL	calibration standard	NR	non-reportable
CCB	continuing calibration blank	N/C	not calculated
CCV	continuing calibration verification	PS	post preparation spike
COC	chain of custody record	REC	percent recovery
D	dissolved fraction	RPD	relative percent difference
DUP	duplicate	RSD	relative standard deviation
IBL	instrument blank	scv	secondary calibration verification
ICV	initial calibration verification	SOP	standard operating procedure
MDL	method detection limit	SRM	standard reference material
MRL	method reporting limit	Т	total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- B Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- E An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- **J** Estimated value. A full explanation is presented in the narrative.
- **J-M** Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- M Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- N Spike recovery was not within acceptance criteria. Result is estimated.
- R Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- X Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Rand Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010</u>. These supersede all previous qualifiers ever employed by BRL.

Project ID: PAC-SY1502 PM: Tiffany Stilwater

Sample Information

Sample	Lab ID	Report Matrix	Туре	Sampled	Received
MW-01	1523004-01	Water	Sample	06/01/2015	06/02/2015
MW-02S	1523004-02	Water	Sample	06/01/2015	06/02/2015
MW-09S	1523004-03	Water	Sample	06/01/2015	06/02/2015
MW-10S	1523004-04	Water	Sample	06/01/2015	06/02/2015

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Fe(II)	Water	SM 3500-Fe B mod.	06/02/2015	06/02/2015	B150821	1500428

Sample Results

Sample	Analyte	Report Matrix	Basis	Result Qualifier	MDL	MRL	Unit	Batch	Sequence
MW-01 1523004-01	Fe(II)	Water	D	88.9	13.4	40.0	μg/L	B150821	1500428
MW-02S 1523004-02	Fe(II)	Water	D	568.1	13.4	40.0	μg/L	B150821	1500428
MW-09S 1523004-03	Fe(II)	Water	D	1106.5	13.4	40.0	μg/L	B150821	1500428
MW-10S 1523004-04	Fe(II)	Water	D	79.0	13.4	40.0	μg/L	B150821	1500428

Project ID: PAC-SN1401 **PM:** Tiffany Stilwater

BRL Report 1523004
Client PM: Nicole Johnson

Accuracy & Precision Summary

Batch: B150821 Lab Matrix: Water

Method: SM 3500-Fe B mod.

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B150821-DUP1	Duplicate (1523004-01) Fe(II)	88.9		108.7	μg/L		13% 25
B150821-MS1	Matrix Spike (1523004-01) Fe(II)	88.9	200	301.3	μg/L	106% 75-125	
B150821-MSD1	Matrix Spike Duplicate (15) Fe(II)	23004-01) 88.9	200	306.3	μg/L	108% 75-125	2% 25

BRL Report 1523004 Client PM: Nicole Johnson

Project ID: PAC-SY1502 PM: Tiffany Stilwater

Method Blanks & Reporting Limits

Batch: B150821 Matrix: Water

Method: SM 3500-Fe B mod.

Analyte: Fe(II)

Sample	Result	Units
B150821-BLK1	0.0	μg/L
B150821-BLK2	0.0	μg/L
B150821-BLK3	0.0	μg/L
B150821-BLK4	0.0	μg/L

 Average: 0.0
 MDL: 6.7

 Limit: 20.0
 Limit: 20.0
 MRL: 20.0

Project ID: PAC-SY1502 PM: Tiffany Stilwater

BRL Report 1523004
Client PM: Nicole Johnson

Sample Containers

	I D: 1523004-01 ple: MW-01		-	ort Matrix: Water ole Type:			ted: 06/01/2015 ved: 06/02/2015
Des A B	Container Vial Glass-SP EXTRA VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler
				()		_	
	I D: 1523004-02 ple: MW-02S		-	ort Matrix: Water ole Type:			cted: 06/01/2015 ved: 06/02/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler
	I D : 1523004-03 ple: MW-09S		-	ort Matrix: Water ole Type:			ted: 06/01/2015 ved: 06/02/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler
	I D: 1523004-04 ple: MW-10S		-	ort Matrix: Water ole Type:			ted: 06/01/2015 ved: 06/02/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler

Shipping Containers

cooler

Received: June 2, 2015 9:30 **Tracking No:** 806663905935 via FedEx

Coolant Type: Ice Temperature: -1.2 °C Description: cooler
Damaged in transit? No
Returned to client? No

Custody seals present? Yes Custody seals intact? Yes COC present? Yes

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

Para Project No. SAMPLE CONDITIONS OTHER MY CA TE TIN TAI THE GROUND WATER | DRINKING WATER OH I SC I'M REGULATORY AGENCY T OTHER TIME DATE T RCRA LOCATION SITE ACCEPTED BY (AFFILIATION NPDES (Reted (YA) Requested T UST **MAZSON** ione risely CASIM HOFN 2 KOH N N 62 SOME tost TIME 1 h 1 4 CONTAINERS 41.113 invaice informstlan: Pace Quote Reference DATE Pace Project Manage E010 Cur. 3 11:10 2:10 DATE TIME Company Name Pace Profile # ENGIGENE ENGIGENE Section C Attention: Address: COLLECTED 15 RELINQUISHED BY / AFFILIATION TIME START Scouces a 209 18.3 Project Number. DATE Required Project Information: D-DISYR C-COMP BOOG MITTAM SectionB Report To: CODY TO: Purchase Order No.: 薩 MICCO E. JUNIOUN D PACELARS. COM Vehicles Methos MIN- 105 ML -095 MIN-025 ADDITIONAL COMMENTS Sample ID: MUST BE UNIQUE MIX-01 SAMPLEID Address: 575 Broad Hollow Rd Company: PACE Analytical Required Clent Information. 62 J. FOR Chart Inflament Acivito, NY 11747 Section Oue Dete/TAT: Section A 0 И 12 ILEM B .49 107

e-Fle(ALLO)20rev 4,29Mar(9)22,Am2005

beint sulums

Custody Sented

no bavisceni los

O. UI dup)

DATE Squid

SAMPLER NAME AND SIGNATURE

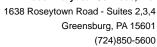
PRINT Name of SAMPLER:

SIGNATURE of SAMPLER.

NUA

N/A

NVA


NIA

6430

17.0

PACE

June 26, 2015

Ms. Jennifer Aracri Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747

RE: Project: 1506184

Pace Project No.: 30151599

Dear Ms. Aracri:

Enclosed are the analytical results for sample(s) received by the laboratory on June 23, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura samantha.bayura@pacelabs.com

Project Manager

Samuella Bayrene

Enclosures

1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

Project: 1506184 Pace Project No.: 30151599

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification
California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification

Idaho Certification

Illinois/PADEP Certification Indiana/PADEP Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification

Missouri Certification #: 235

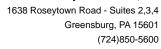
Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14

Nevada Certification

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification


New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

South Dakota Certification

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188 Utah/TNI Certification #: PA014572014-4 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198 Washington Certification #: C868 West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin/PADEP Certification Wyoming Certification #: 8TMS-Q

PROJECT NARRATIVE

Project: 1506184
Pace Project No.: 30151599

Method: SM 5310C Description: 5310C TOC

Client: Pace Analytical Services, Inc. - Melville

Date: June 26, 2015

General Information:

2 samples were analyzed for SM 5310C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

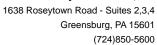
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 1506184
Pace Project No.: 30151599

Date: 06/26/2015 02:23 PM

Sample: 1506184-002B	Lab ID: 301	51599001	Collected:	06/01/	15 10:03	Received:	06/23/15 15:35	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
5310C TOC	Analytical Met	hod: SM 53	10C						
Total Organic Carbon	3.9	mg/L		1.0	1		06/26/15 00:0	05 7440-44-0	
Sample: 1506184-003B	Lab ID: 301	51599002	Collected:	06/01/	15 08:00	Received:	06/23/15 15:35	Matrix: Water	
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
5310C TOC	Analytical Met	hod: SM 53	10C						
Total Organic Carbon	3.7	mg/L		1.0	1		06/26/15 00:2	22 7440-44-0	

QUALITY CONTROL DATA

Project: 1506184
Pace Project No.: 30151599

QC Batch: WETA/20414 Analysis Method: SM 5310C

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

Associated Lab Samples: 30151599001, 30151599002

METHOD BLANK: 913531 Matrix: Water

Associated Lab Samples: 30151599001, 30151599002

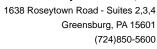
Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L ND 1.0 06/25/15 17:08

LABORATORY CONTROL SAMPLE: 913532

Date: 06/26/2015 02:23 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/L 10 10.0 100 85-115


MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 913533 913534

MS MSD 30151590013 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual **Total Organic Carbon** 2.7 11.6 85-115 mg/L 10 10 11.6 89 89 0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 913535 913536

MS MSD MS MSD MS MSD 30151594003 Spike Spike % Rec Parameter Units % Rec **RPD** Result Conc. Conc. Result Result % Rec Limits Qual ND 9.7 **Total Organic Carbon** mg/L 10 10 9.6 94 93 85-115 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1506184
Pace Project No.: 30151599

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

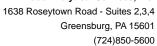
MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up


U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 06/26/2015 02:23 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 1506184
Pace Project No.: 30151599

Date: 06/26/2015 02:23 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30151599001	1506184-002B	SM 5310C	WETA/20414	•	
30151599002	1506184-003B	SM 5310C	WETA/20414		

CHAIN OF CUSTODY RECORD Omega COCID 2976

ADDRESS

OF:

PAGE:

PACE ANALYTICAL 575 Broad Hollow Road

Melville. NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: www.pacelabs.com

WO#:30151599

SUB CONT	SUB CONTRATOR PACE-Pennsylvania	ia COMPANY	Pace Analytical Service, Inc.	ıl Service, Inc.	SPECIAL INSTRUCTIONS : COMMENTS	COMMENTS		
ADDRESS	1638 Roseytown Road Suites 2,3,&4	oad Suites 2,3,&	4		Please analyze for TOC questions, please conta	in water with a ct Jennifer Aracr	Please analyze for TOC in water with a Level 2 package. Results are needed ASAP 11 you have any questions, please contact Jennifer Aracri at ext. 1211 Thanks!	
CITY, STA	CITY, STATE, ZIP Greensburg, PA 15601	5601						
PHONE (PHONE (724) 850-5600 FAX (724)	FAX (724) 850-5601 EMAIL	1					
ACCOUNT #	71:							
ITEM #	SAMPLE ID	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	DATE COLLECTED	NUMBER OF CONTAINERS	COMMENTS Methanol Preserved Weights HOT Sample Notation, Additional Sample Description	
	1506184-002B	:MW-02S	500MLHDPE w/ A	Aqueous	6/1/2015 10:03:00 AM	-	700	
ref	TOC_W_SM (SM5310B)						J. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
C	1506184-003B	S60-MW	500MLHDPE w/ A	Aqueous	6/1/2015 8:00:00 AM		a a constant	
7	TOC_W_SM (SM5310B))	

REPORT TRANSMITTAL DESIRED:	FAX EMAIL ONLINE	FOR LAB USE ONLY	S S C Attempt to Cool?		
REPORT T	HARDCOPY (extra cost)	FOI	Temp of samples	Comments	
2 / au	. 1	S			
6-22-F	Time	15//51 Time		3rd BD	
PO & Date 6- 14 FT	Date Time	7.0 CR5/S 15 S Date Time		2nd BD 3rd BD	quests will incur surcharges!
seived By 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	wived By Date Time	7/10			Note: RUSH requests will incur surcharges!
Received By	Received By L	Received By		2nd BD	
Received By	Received By L	7/10		Next BD 2nd BD	

Sample Condition Upon Receipt

	96)
1	Pace Analytical
1-	

Client Name: Pace 15

Project # 30 1 5 1 5 9 9

acking #:	_	nercial	
ustody Seal on Cooler/Box Present:	no	Seals i	intact:
acking Material: Bubble Wrap Bubble Bags	None	e (Other
hermometer Used 7 Type	of Ice: 🕊	Blue	None Samples on ice, cooling process has begun
ooler Temp.: Observed Temp.: 3.6°C Col			3°C Final Temp: 3.5 °C
amp should be above freezing to 6°C	,		Comments: examining contents:
hain of Custody Present:	□Ves □N	o □N/A	1.
hain of Custody Filled Out:	Des □N	o □N/A	2.
hain of Custody Relinguished:	☑Yes □N	o □N/A	3.
ampler Name & Signature on COC:	□Yes □N		
amples Arrived within Hold Time:	Tes ON	o □N/A	5. Approaching hold time
hort Hold Time Analysis (<72hr):	□Yes □M	o □N/A	6.
tush Turn Around Time Requested:	Toyes De	。 □N/A	7,
ufficient Volume:	☐Yes □N	lo □N/A	8.
Correct Containers Used:	ØYes □N	lo 🗆 N/A	9.
-Pace Containers Used:	□Yes □N	lo 🗆 N/A	
Containers Intact:	⊡Yes □N	lo DN/A	10.
iltered volume received for Dissolved tests	□Yes □N	lo MINA	11.
Sample Labels match COC:	□Yes □N	lo DN/A	12.
-Includes datertimentalization manning	NA		
Il containers needing preservation have been checked.	□Yes □N	to DANIA	13.
all containers needing preservation are found to be in	□Yes □N	40 DANIA	
ompliance with EPA recommendation.	_/		Initial when Lot # of added
xceptions: VOA, coliform, OC, p&G, Phenois	☑Yes ☐	10	completed preservative
Samples checked for dechlorination:	☐Yes ☐I	NO CHIA	14.
Headspace in VOA Vials (>6mm):	□Yes □1	-	
Frip Blank Present:	□Yes □I	NO MINIA	16.
Frip Blank Custody Seals Present	□Yes □I	No DWA	
Tip Dialik Odstody Ocalo i Toboti			
Pace Trip Blank Lot # (if purchased):			
			Field Data Required? Y / N
Pace Trip Blank Lot # (if purchased):		Date	Field Data Required? Y / N

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a dopy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

Collected

Received

37 Copeland Avenue Homer, NY 13077

Lab No. : 1506184-001

Sample Information:

Type: Aqueous

Attn To: Project Manager

: 6/1/2015 11:10:00 AM : 6/2/2015 9:45:00 AM

ASH ROAD, 209183

Client Sample ID: MW-01

Origin:

Collected By : CLIENT

Analytical Method:	E300.0:						Analyst: bka
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride		682	D	20	mg/L	06/12/2015 8:30 AM	Container-01 of 02
Sulfate		34.4		1	mg/L	06/10/2015 6:46 AM	Container-01 of 02
Analytical Method:	SM5210B:		Prep N	Method: SM	5210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen De	mand	< 2		1	mg/L	06/03/2015 10:25 AM	Container-01 of 01
Analytical Method:	E353.2 :						Analyst: AW
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N		< 0.10	Н	1	mg/L	06/03/2015 10:16 AM	Container-01 of 02
Analytical Method:	RSK-175 :						Analyst: MaiN
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane		2.3		1	μg/L	06/04/2015 3:43 PM	Container-01 of 02
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attach	ned)	-	+	- 1		06/02/2015	<u> </u>

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

Date Reported:

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

7/8/2015

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 12

Geologic NY

37 Copeland Avenue Homer, NY 13077

Attn To: Project Manager Collected : 6/1/2015 10:03:00 AM Received : 6/2/2015 9:45:00 AM

Collected By: CLIENT

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Lab No. : 1506184-002 Type: Aqueous Client Sample ID: MW-02S

Origin:

Collected By : CLIENT							
Analytical Method:	E200.7:		Prep I	Method: E2	200.7	Prep Date: 6/9/2015 10:30:00 AM	Analyst: CGZ
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Manganese		496		1	ug/L	06/10/2015 3:33 AM	Container-01 of 01
Analytical Method:	E300.0:						Analyst: bka
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride		769	D	20	mg/L	06/12/2015 8:44 AM	Container-01 of 02
Sulfate		15.0		1	mg/L	06/10/2015 7:27 AM	Container-01 of 02
Analytical Method:	SM5210B:		Prep I	Method: SN	<i>M</i> 5210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen Dem	nand	7		1	mg/L	06/03/2015 10:30 AM	Container-01 of 01
Analytical Method:	E353.2 :						Analyst: AW
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N		< 0.10	Н	1	mg/L	06/03/2015 10:17 AM	Container-01 of 02
Analytical Method:	RSK-175 :						Analyst: MaiN
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane		1,900	D	215	μg/L	06/04/2015 4:38 PM	Container-01 of 02
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attache	ed)	3.9	+	+ 1	mg/L	06/26/2015	Container-01 of 01
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attache	ed)	-	+	+ 1		06/02/2015	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full,

without the written approval of the laboratory.

Nicole Johnson

Project Manager

Date Reported: 7/8/2015 Page 2 of 12

Geologic NY

37 Copeland Avenue Homer, NY 13077

Attn To: Project Manager Collected : 6/1/2015 8:00:00 AM : 6/2/2015 9:45:00 AM Received

Collected By: CLIENT

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Lab No. : 1506184-003 Type: Aqueous Client Sample ID: MW-09S

Origin:

Collected By : CLIEN I						
Analytical Method: E200.7:		Prep M	Method: E2	00.7	Prep Date: 6/9/2015 10:30:00 AM	Analyst: CGZ
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Manganese	10,400		1	ug/L	06/10/2015 3:40 AM	Container-01 of 01
Analytical Method: E300.0:						Analyst: bka
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride	942	D	20	mg/L	06/12/2015 8:59 AM	Container-01 of 02
Sulfate	43.7		1	mg/L	06/10/2015 7:40 AM	Container-01 of 02
Analytical Method: SM5210B:		Prep I	Method: SM	15210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen Demand	< 2		1	mg/L	06/03/2015 10:35 AM	Container-01 of 01
Analytical Method: E353.2:						Analyst: AW
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N	< 0.10	Н	1	mg/L	06/03/2015 10:18 AM	Container-01 of 02
Analytical Method: RSK-175:						Analyst: MaiN
Parameter(s)	Results	<u>Qualifier</u>	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane	21		1	μg/L	06/04/2015 4:05 PM	Container-01 of 02
Analytical Method: SUB:						Analyst: Sub
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attached)	3.7	+	- 1	mg/L	06/26/2015	Container-01 of 01
Analytical Method: SUB:						Analyst: Sub
Parameter(s)	<u>Results</u>	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attached)	-	+	- 1		06/02/2015	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

Date Reported:

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

7/8/2015

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 12

Project Manager

Geologic NY

37 Copeland Avenue Homer, NY 13077

Attn To: Project Manager Collected : 6/1/2015 9:10:00 AM : 6/2/2015 9:45:00 AM Received

Collected By: CLIENT

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Lab No. : 1506184-004 Type: Aqueous Client Sample ID: MW-10S

Origin:

Analytical Method:	E300.0:						Analyst: bka
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Chloride		995	D	20	mg/L	06/12/2015 9:13 AM	Container-01 of 02
Sulfate		30.8		1	mg/L	06/10/2015 7:54 AM	Container-01 of 02
Analytical Method:	SM5210B:		Prep	Method: SM	5210B	Prep Date: 6/3/2015 6:55:47 AM	Analyst: VaS
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Biochemical Oxygen Der	mand	< 2		1	mg/L	06/03/2015 10:40 AM	Container-01 of 01
Analytical Method:	E353.2 :						Analyst: AW
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Nitrite as N		< 0.10	Н	1	mg/L	06/03/2015 10:20 AM	Container-01 of 02
Analytical Method:	RSK-175 :						Analyst: MaiN
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane		< 1.0		1	μg/L	06/04/2015 4:16 PM	Container-01 of 02
Analytical Method:	SUB:						Analyst: Sub
Parameter(s)		Results	Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Subcontract (See Attach	ied)	-	-	+ 1		06/02/2015	

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 7/8/2015 Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 12

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: 50245

Website: www.pacelabs.com

SampType: MBLK Sample ID: MB-50245 TestCode: BOD5_W_SM Units: mg/L Prep Date: 6/3/2015 RunNo: 76493 Client ID: PBW Batch ID: 50245 TestNo: SM5210B SM5210B Analysis Date: 6/3/2015 SeqNo: 1666590 Result **PQL** SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Analyte %REC Qual

Biochemical Oxygen Demand < 2 2

Sample ID: LCS-50245 Client ID: LCSW	SampType: LCS Batch ID: 50245		le: BOD5_W_9 lo: SM5210B	SM Units: mg/L SM5210B		•	ate: 6/3/201 ate: 6/3/201		RunNo: 76 4 SeqNo: 16 6		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Biochemical Oxygen Demand	211	2	198	0	107	84.5	115.5				

Qualifiers: * Value exceeds Maximum Contaminant Level

H Holding times for preparation or analysis exceeded

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: 50352

Website: www.pacelabs.com

Sample ID: MB-50352 Client ID: PBW	SampType: MBLK Batch ID: 50352	TestCode: 200.7_w_clp Units: ug/L TestNo: E200.7 E200.7	Prep Date: 6/9/2015 Analysis Date: 6/10/2015	RunNo: 76421 SeqNo: 1665258
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Manganese	< 15.0	15.0		

Sample ID: LCS-50352 Client ID: LCSW	SampType: LCS Batch ID: 50352		le: 200.7_w_c lo: E200.7	Ip Units: ug/L E200.7		•	te: 6/9/201 te: 6/10/20		RunNo: 764 SeqNo: 166		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Manganese	2,680	15.0	2,500	0	107	85	115				

Qualifiers: *	Value exceeds Maximum Contaminant L	Level
---------------	-------------------------------------	-------

H Holding times for preparation or analysis exceeded

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

ND Not Detected at the Reporting Limit

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: R76120

Website: www.pacelabs.com

	ologie			Batthib. R/0120	
Sample ID: LCS-06021 Client ID: LCSW	SampType: Ics Batch ID: R76120	TestCode: no2-a_w TestNo: E353.2	Units: mg/L	Prep Date: RunNo: 76120 Analysis Date: 6/3/2015 SeqNo: 1657412	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual
Nitrite as N	1.01	0.10 1.00	0	101 90 110	
Sample ID: MB-060215 Client ID: PBW	SampType: mblk Batch ID: R76120	TestCode: no2-a_w TestNo: E353.2	Units: mg/L	Prep Date: RunNo: 76120 Analysis Date: 6/3/2015 SeqNo: 1657413	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit C	Qual

Qualifiers:	
-------------	--

Nitrite as N

- Value exceeds Maximum Contaminant Level
- H Holding times for preparation or analysis exceeded

< 0.10

0.10

- O RSD is greater than RSDlimit
- S Spike Recovery outside accepted recovery limits
- D Dilution was required.
- M Manual Integration used to determine area response
- P Second column confirmation exceeds

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologic BatchID: R76164

Website: www.pacelabs.com

Sample ID: MB060415 Client ID: PBW	SampType: mblk Batch ID: R76164		de: RSK-175_\ lo: RSK-175	W Units: μg/L		Prep Da Analysis Da		5	RunNo: 761 SeqNo: 165		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane Surr: Propene	< 1.0 10	1.0	10.00		100	21	187				

Sample ID: LFB060415	SampType: Ifb	TestCod	de: RSK-175_ \	W Units: μg/L		Prep Da	te:		RunNo: 76 1	164	
Client ID: ZZZZZZ	Batch ID: R76164	TestN	lo: RSK-175			Analysis Da	te: 6/4/201	5	SeqNo: 165	59224	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methane	1.4	1.0	5.500	0	25.5	22	166				
Surr: Propene	1.9		10.00		19.0	21	187				S

Value exceeds Maximum Contaminant Level

H Holding times for preparation or analysis exceeded

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

ND Not Detected at the Reporting Limit

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436 Website: www.pacelabs.com

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Client: Geologic NY

Project: Geologi	ic		BatchID: I	R76522
Sample ID: LCS-060915 Client ID: LCSW	SampType: LCS Batch ID: R76522	TestCode: ANION300_W Units: mg/L TestNo: E300.0	Prep Date: Analysis Date: 6/9/2015	RunNo: 76522 SeqNo: 1667151
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	9.70	5.00 10.00 0	97.0 90 110	
Sample ID: Ifb-060915	SampType: Ifb	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76522
Client ID: ZZZZZZ	Batch ID: R76522	TestNo: E300.0	Analysis Date: 6/9/2015	SeqNo: 1667153
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	9.75	5.00 10.00 0	97.5 90 110	
Sample ID: MB-060915	SampType: MBLK	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76522
Client ID: PBW	Batch ID: R76522	TestNo: E300.0	Analysis Date: 6/9/2015	SeqNo: 1667154
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Sulfate	< 5.00	5.00		

Oualifiers:	*	Value exceeds Maximum Contaminant Level

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

O RSD is greater than RSDlimit

S Spike Recovery outside accepted recovery limits

D Dilution was required.

M Manual Integration used to determine area response

P Second column confirmation exceeds

E Value above quantitation range

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040 FAX: (631) 420-8436

Website: www.pacelabs.com

QC SUMMARY REPORT

WO#:

1506184

08-Jul-15

Geologic NY **Client:**

Project:	Geologic			BatchID: R	276739
Sample ID: LC	CS-061115 CSW	SampType: LCS Batch ID: R76739	TestCode: ANION300_W Units: mg/L TestNo: E300.0	Prep Date: Analysis Date: 6/11/2015	RunNo: 76739 SeqNo: 1672074
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		9.43	2.00 10.00 0	94.3 90 110	
Sample ID: Ifb	o-061015	SampType: Ifb	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76739
Client ID: ZZ	ZZZZZ	Batch ID: R76739	TestNo: E300.0	Analysis Date: 6/11/2015	SeqNo: 1672076
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride		9.85	2.00 10.00 0	98.5 90 110	
Sample ID: ME	B-061015	SampType: MBLK	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76739
Client ID: PE	BW	Batch ID: R76739	TestNo: E300.0	Analysis Date: 6/11/2015	SeqNo: 1672077
Analyte		Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	•	< 2.00	2.00		

Sample ID: M	B-061015 SampType: MBLK	TestCode: ANION300_W Units: mg/L	Prep Date:	RunNo: 76739
Client ID: PE	Batch ID: R76739	TestNo: E300.0	Analysis Date: 6/11/2015	SeqNo: 1672077
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chloride	< 2.00	2.00		

Qualifiers:

- Value exceeds Maximum Contaminant Level
- Holding times for preparation or analysis exceeded
- RSD is greater than RSDlimit O
- Spike Recovery outside accepted recovery limits
- D Dilution was required.
- M Manual Integration used to determine area response
- Second column confirmation exceeds

- Е Value above quantitation range
- Not Detected at the Reporting Limit
- RPD outside accepted recovery limits

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Date and Time Received: Client Name: GEO 6/2/2015 9:45:00 AM Received by: Linda Siciliano RcptNo: 1 Work Order Number: 1506184 Completed by: Reviewed by: 6/24/2015 9:58:10 AM Completed Date: Reviewed Date: 6/24/2015 9:56:49 AM Carrier name: **FedEx** Chain of custody present? No 🗀 Yes **V** No 🗌 Chain of custody signed when relinquished and received? Yes ✓ No 🗀 Chain of custody agrees with sample labels? Yes **~** No 🗀 Are matrices correctly identified on Chain of custody? Yes Is it clear what analyses were requested? Yes **~** No 🗀 **V** No 🗀 Not Present Custody seals intact on sample bottles? Yes **V** Samples in proper container/bottle? Yes No 🗀 No 🗌 Were correct preservatives used and noted? Yes **✓** NA Preservative added to bottles: **✓** Broken 🗀 Sample Condition? Intact Leaking **V** No 🗌 Sufficient sample volume for indicated test? Yes **V** No 🗌 Were container labels complete (ID, Pres, Date)? Yes **✓** No 🗌 All samples received within holding time? Yes **~** No Was an attempt made to cool the samples? NA Yes **V** All samples received at a temp. of > 0° C to 6.0° C? Yes No 🗀 NA Response when temperature is outside of range: No 🗀 Sample Temp. taken and recorded upon receipt? То 2.1 ° No \square Water - Were bubbles absent in VOC vials? Yes No Vials **V** No 🗀 Water - Was there Chlorine Present? Yes NΑ ✓ No 🗀 Water - pH acceptable upon receipt? No Water Yes ✓ No 🗀 Are Samples considered acceptable? Yes No 🗹 Custody Seals present? Yes Air Bill Sticker Not Present Airbill or Sticker? Airbill No: 773728468265 Case Number: SDG: SAS: Any No response should be detailed in the comments section below, if applicable. ✓ Yes No ■ NA Client Contacted? Person Contacted: S. CUMMINS Fax: Contact Mode: ✔ Phone: Email: In Person: Client Instructions: Only Level 4 (Cat B) on Volatile data, MS/MSD/DUP only for the volatiles for sam Date Contacted: 6/4/2015 Contacted By: Nicole Johnson Cat B and QC listed on COC Regarding: Comments: CorrectiveAction:

<u>WorkOrder :</u> 1506184

Certifications

STATE	CERTIFICATION #
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MAS S AC HUS ETTS	M-NY026
NEW HAMPSHIRE	2987
RHODE IS LAND	LAO00340
PENNS YLVANIA	68-00350

Pace Analytical e-Report

*Issuance of this report is prior to full data package.

Report prepared for: GEOLOGIC NY INC. PO BOX 350 HOMER , NY

CONTACT: S CUMMINS

Project ID: ASH ROAD PROPERTIES Sampling Date(s): July 06, 2015 Lab Report ID: 15070234

Client Service Contact: Nicole Johnson (518) 346-4592

Analysis Included: 8260 - Sub Pace PA

Test results meet all National Environmental Laboratory Accreditation Conference (NELAC) requirements unless noted in the case narrative. The results contained within the document relate only to the samples included in this report. Pace Analytical is responsible only for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Roy Smith Technical Director TNI

Certifications: New York (EPA: NY00906, ELAP: 11078), New Jersey (NY026), Connecticut (PH-0337), Massachusetts (M-NY906), Virginia (1884)

Pace Analytical Services, Inc. | 2190 Technology Drive | Schenectady, NY 12308 Phone: 518.346.4592 | internet: www.pacelabs.com This page intentionally left blank.

Table of Contents

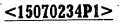
Section 1: QUALIFIERS	. 4
Section 2: SAMPLE CHAIN OF CUSTODY	. 6
Section 3: SAMPLE RECEIPT	. 8
Section 4: Subcontract Analysis	.10

Ξ

3

QUALIFIERS

Definitions


- B Denotes analyte observed in associated method blank or extraction blank. Analyte concentration should be considered as estimated.
- D Surrogate was diluted. The analysis of the sample required a dilution such that the surrogate concentration was diluted outside the laboratory acceptance criteria.
- E Denotes analyte concentration exceeded calibration range of instrument. Sample could not be reanalyzed at secondary dilution due to insufficient sample amount, quick turn-around request, sample matrix interference or hold time excursion. Concentration result should be considered as estimated.
- J Denotes an estimated concentration. The concentration result is greater than or equal to the Method Detection Limit (MDL) but less than the Practical Quantitation Limit (PQL).
- MDL Adjusted Method Detection Limit.
- P Indicates relative percent difference (RPD) between primary and secondary gas chromatograph (GC) column analysis exceeds 40 % or indicates percent difference (PD) between primary and secondary gas chromatograph (GC) column analysis exceeds 25 %.
- PQL Practical Quantitation Limit. PQLs are adjusted for sample weight/volume and dilution factors.
- RL Reporting Limit Denotes lowest analyte concentration reportable for the sample based on regulatory or project specific limits.
- U Denotes analyte not detected at concentration greater than the Practical Quantitation Limit (PQL) or the Reporting Limit (RL) or the Method Detection Limit (MDL) as applicable.
- Z Chromatographic interference due to polychlorinated biphenyl (PCB) co-elution.
- * Value not within control limits.

SAMPLE CHAIN OF CUSTODY

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately.

	ection A equired Client Information:	Section Requires		ect Inf	formation:						ction (£				,						Pag	ge:	1	of	1	
1	mpany: Electogic NY The	Report T	o:	Si	ame						ntion:		Sa	imi					_						170	102	ρq	
Ad	dress: PO BOX 350	Copy To:				Cum	Vm mS			Cor	npany			* / 14				· · · · · · · · · · · · · · · · · ·	-	REGUL	ATO	DV AC	ENC			Fried Service	_ ~	-
ı	Homer NY BOTT		·							Add	ress:			•					- -		DES			بيباسات	ATER [· DDW		
图	ectocicny@geologicnet	Purchase	Orde	er No.:	700	118.	2		<u> </u>	Pace	Quote								\dashv	US		# \			AIER)		KING WATER	
PK	one: 149-5000	Project N	ame:				Prope	م مد پارسان		Pace	rence: Project	:							\dashv	Site Lo		T	CRA		'	OTHE	К	_
Rei	quested Due Date/TAT: 7-20-15	Project N	umbe	r.		1183	: 11-12	13 Cm			ager. Profile	#:							\dashv		Cauoi FATE:		N	Ϋ́				
				-			**			L						7		Request	Δ hei									_
Г	Section D Matrix C		٦				741.0		T	Γ	T					╁		(cquesi	led A	naiysis	Title	T T	1	\dashv				
	Required Client Information MATRIX / Drinking Wate		(see valid codes to left)	(G=GRAB C=COMP)		COL	ECTED		1_	ĺ	<u>_</u>	Pr	reserva	tive	s	2 %	<u> </u>								Syria			
	Water Waste Water	WT WW	Code	5	COMP	POSITE	СОМР	OSITE	COLLECTION																			
	Product Soit/Solid	P SL	e valid	KAB	STA	RT	END/G	RAB	LEC								1							S/N	1			
	SAMPLE ID Oil Wine	OL WP	1	1 2	-	T		T	100	ERS						1 18	[3							\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1			
	(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue	AR TS	8	끭					MP A	AN	<u>g</u>					P	7							Chlorine				
#12	Other	ОТ	×	H.	-				E TE	INO.	Serve			్డ	힏	188	826							<u>5</u>	l			
ITEM#			MATRIX CODE	SAMPLE TYPE					SAMPL	# OF CONTAINERS	Unpreserved	နှိုင့်	2 - 2	Na ₂ S ₂ O ₃	Methanol	Analysis Test	7.8							Residual	1			
	mw-01		├	+	DATE	TIME	DATE.	TIME	ॐ		5	ĔÉ	E E	ž	ŽĈ	∐	V.							æ	Pac	e Project	No./ Lab I.D.	
1	mw 02 5		أنار				7-6-15			3	H	+	17	4-4		4		\dashv	\perp	44			Ш				a AS17	040
3	mw-095		Wi	6	_		7-645		\vdash	3	-	+	X	+	\perp	-	X	\dashv	\bot	4-4-	1					1704		
4	mw-los		VV) Vič	18	 		7-6-15	1345		3	H	+-	 	+		4	X		-	-	+			—		1704		
5	mw of Dupricate		/√ι √∫				74.15			3 3	${\color{red}+}$	+	 }}	\square		▙	X	\dashv	+	++			\vdash	-	AS	170	† 3	
6	mw-025 HS/HSD		Wi	-			7-615		H	3	H	╁	分	+	+	1	쉾	-H	+	++	+			+		1704	_	1,
7	THEBLANK		Wī	1			7615		Н	2		+		+	+	1		\dashv	+	+	+			+	·	704	7 1 7	704
8												+	11	\Box	\top	1	H	++	+	$\dagger \dagger$	+			1	H2	704	Ч	\dashv
9												1			1	1	H		\top	T	$\dagger \dagger$				_			-
10																1	П			\sqcap	11			1				1
11							\$6°				Ш		Ш.														·····	1
12	ADDITIONAL COMMENTS										Ш						L											7
_	ADDITIONAL COMMENTS	1	REL	INQUI	ISHED BY /	AFFILIATI	ON	DATE	_	TI	ME	1	\			÷	/ AFF	LIATION		DAT	E	TIME			SAM	LE CONDI	TIONS	
		V)	<u>au</u>	<u> </u>	um			7-6-1		16	50		Y	(-)	lm	1	PAC	e		76	15	165	0					7
		1 PI	W	Fl	n PA	Ce		71610		7	00		rell	l M	7 -	for	11]	D		77	5	(00/	7					7
:				•	ł										-,		~~		·	<u> </u>		·~~(1	_				-
									1			1		:							_		\dashv					+
						SAMPLE	R NAME AN	ID SIGNAT	URE	i lef										<u> </u>			+			*	5	-
	ORK	GINAL			Ī		PRINT Nam	e of SAMPL	.ER:	S	ن)يرزن	n (Our	3 4. p. s	ا يامۇ ۋ	Ż				*			-	o in °C	ved o	tody Cooli (N)	mples Intact (Y/N)	
	57	_ ,, ,, ,,	•		Ī		SIGNATURI	E of SAMPL	ER:	Du	101	in.	Cur	ルクン	te is	7	DAT	E Signed	٦.	- (a - i	(man)		\dashv	Temp in	Received on ice (Y/N)	Custody sealed Cooler (Y/N)	ample (Y)	

SAMPLE RECEIPT

SAMPLE RECEIPT REPORT 15070234

Pace Analytical Services, Inc. 2190 Technology Drive Schenectady, NY 12308 Phone: 518.346.4592 Fax: 518.381.6055

CLIENT: GEOLOGIC NY INC.

PROJECT: ASH ROAD PROPERTIES

LRF: 15070234

EDD: YES LRF TAT: 1 WEEK

REPORT: DATA PACKAGE

SHIPPING ID: NUMBER OF COOLERS: 0 CUSTODY SEAL INTACT: NA COOLER STATUS: NA

TEMPERATURE(S): 5NA °C

SHIPPED VIA: FEDEX

RECEIVED DATE: 07/07/2015 10:00

³ SAMPLES REC'D IN HOLDTIME: NA **DISPOSAL:** BY LAB (45 DAYS)

^{1,2}SAMPLES PRESERVED PER METHOD GUIDANCE: NA

COC DISCREPANCY: NA

SAMPLE SEALS INTACT: NA

COMMENTS:

SAMPLES SHIPPED DIRECT TO PACE-PITTSBURGH.

CLIENT ID (LAB ID)	TAT-DUE Date ⁴	DATE-TIME SAMPLED	MATRIX	METHOD	TEST DESCRIPTION	QC REQUEST
MW-01 (AS17040)	1 WEEK 07-20-15	07/06/2015 11:50	Water	EPA 8260	8260 - Sub Pace PA	DUP
MW-02S (AS17041)	1 WEEK 07-20-15	07/06/2015 13:00	Water	EPA 8260	8260 - Sub Pace PA	MS, MSD
MW-09S (AS17042)	1 WEEK 07-20-15	07/06/2015 14:30	Water	EPA 8260	8260 - Sub Pace PA	
MW-10S (AS17043)	1 WEEK 07-20-15	07/06/2015 13:45	Water	EPA 8260	8260 - Sub Pace PA	
TRIP BLANK (AS17044)	1 WEEK 07-20-15	07/06/2015	Water	EPA 8260	8260 - Sub Pace PA	

The pH preservation check of Oil and Grease (Method 1664) and Total Organic Carbon (Method 5310B) are performed as soon as possible after sample receipt and may not be included in this report.

Reporting Parameters and Lists

The pH preservation check of aqueous volatile samples is not performed until after the analysis of the sample to maintain zero headspace and is not included in this report.

3 Samples received for pH analysis are not marked as a hold time exceedance here. SW-846 methods suggests analysis to be done within 15 minutes of sample collection. Because of transportation time it 4 is not possible for the laboratory to perform the test in that time. Sample Certificates of Analysis reports are noted as such.

Samples arriving at the laboratory after 4:00 pm are assigned a due date as if they arrived the following business day unless other arrangements have been made.

The due date represents the date the lab report is expected to be completed on or before 5:00 pm (EST) for the date specified.

⁵All samples which require thermal preservation shall be considered acceptable when received greater than 6 degrees Celsius if they are collected on the same day as received and there is evidence that the chilling process has begun, such as arrival on ice. Control limits are between 0-6 Degrees Celsius. Control limits do not apply for metals analysis.

⁶Samples requesting analysis for Orthophosphate (SM 4500-P E-99,-11) require the samples to be filtered in the field within 15 minutes of the sampling event. Samples that are received unfiltered will be noted as not method compliant on the Certificates of Analysis.

Subcontract Analysis

July 16, 2015

Nicole Johnson Pace Analytical New York 2190 Technology Drive Schenectady, NY 12308

RE: Project: 15070234

Pace Project No.: 30152660

Dear Nicole Johnson:

Enclosed are the analytical results for sample(s) received by the laboratory on July 07, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This report was reissued to correct the analyte list for sample 003.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Samantha Bayura

Samuella Bayune

samantha.bayura@pacelabs.com

Project Manager

Enclosures

cc: Jill Grygas, Pace Analytical New York

REPORT OF LABORATORY ANALYSIS

15070234 - Page 11 of 29

CERTIFICATIONS

Project: 15070234 Pace Project No.: 30152660

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification

California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification

Idaho Certification

Illinois/PADEP Certification

Indiana/PADEP Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14

Nevada Certification

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051 New Mexico Certification

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

South Dakota Certification

Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188 Utah/TNI Certification #: PA014572014-4 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198

Washington Certification #: C868

West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C Wisconsin/PADEP Certification Wyoming Certification #: 8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

PROJECT NARRATIVE

Project: 15070234 Pace Project No.: 30152660

Method: EPA 8260C Description: 8260C MSV

Client: Pace Analytical Services, Inc.

Date: July 16, 2015

General Information:

7 samples were analyzed for EPA 8260C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 13 of 29

ANALYTICAL RESULTS

Project: 15070234
Pace Project No.: 30152660

Sample: MW-01	Lab ID: 301	52660001	Collected: 07/06/1	5 11:50	Received:	07/07/15 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Meth	od: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		07/14/15 14:2	3 67-64-1	
Benzene	ND	ug/L	1.0	1		07/14/15 14:2	3 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/14/15 14:2	3 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/14/15 14:2	3 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/14/15 14:2	3 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/14/15 14:2	3 74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		07/14/15 14:2	3 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		07/14/15 14:2	3 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/14/15 14:2	3 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/14/15 14:2	3 108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/14/15 14:2	3 75-00-3	
Chloroform	ND	ug/L	1.0	1		07/14/15 14:2		
Chloromethane	ND	ug/L	1.0	1		07/14/15 14:2		
Dibromochloromethane	ND	ug/L	1.0	1		07/14/15 14:2		
1.2-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 14:2		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 14:2		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 14:2		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/14/15 14:2		
1,2-Dichloroethane	ND	ug/L	1.0	1		07/14/15 14:2		
	136		2.0	1		07/14/15 14:2		
1,2-Dichloroethene (Total)		ug/L				07/14/15 14:2		
1,1-Dichloroethene	ND	ug/L	1.0	1 1				
cis-1,2-Dichloroethene	135	ug/L	1.0	1		07/14/15 14:2		
trans-1,2-Dichloroethene	1.6	ug/L	1.0	-		07/14/15 14:2:		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/14/15 14:2		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			3 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/14/15 14:2		
2-Hexanone	ND	ug/L	10.0	1		07/14/15 14:2		
Methylene Chloride	ND	ug/L	1.0	1		07/14/15 14:2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		07/14/15 14:2		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/14/15 14:2	3 1634-04-4	
Styrene	ND	ug/L	1.0	1		07/14/15 14:2	3 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/14/15 14:2	3 79-34-5	
Tetrachloroethene	18.7	ug/L	1.0	1		07/14/15 14:2	3 127-18-4	
Toluene	ND	ug/L	1.0	1		07/14/15 14:2	3 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/14/15 14:2	3 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/14/15 14:2	3 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/14/15 14:2	3 79-00-5	
Trichloroethene	6.8	ug/L	1.0	1		07/14/15 14:2	3 79-01-6	
Vinyl chloride	ND	ug/L	1.0	1		07/14/15 14:2	3 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		07/14/15 14:2	3 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/14/15 14:2	3 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/14/15 14:2		
Surrogates		3						
4-Bromofluorobenzene (S)	99	%	84-113	1		07/14/15 14:2	3 460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	84-124	1			3 17060-07-0	
Toluene-d8 (S)	97	%	79-118	1		07/14/15 14:2		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 4 of 19

ANALYTICAL RESULTS

Project: 15070234
Pace Project No.: 30152660

Sample: MW-02S	Lab ID: 301	52660002	Collected: 07/06/1	5 13:00	Received:	07/07/15 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	od: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		07/14/15 13:3	2 67-64-1	
Benzene	ND	ug/L	1.0	1		07/14/15 13:3	2 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/14/15 13:3	2 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/14/15 13:3	2 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/14/15 13:3	2 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/14/15 13:3	2 74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		07/14/15 13:3	2 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		07/14/15 13:3	2 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/14/15 13:3	2 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/14/15 13:3	2 108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/14/15 13:3	2 75-00-3	
Chloroform	ND	ug/L	1.0	1		07/14/15 13:3	2 67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/14/15 13:3	2 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/14/15 13:3		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:3		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:3		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:3		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/14/15 13:3		
1,2-Dichloroethane	ND	ug/L	1.0	1		07/14/15 13:3		
1,2-Dichloroethane (Total)	ND ND	ug/L	2.0	1		07/14/15 13:3		
1,1-Dichloroethene	ND ND		1.0	1		07/14/15 13:3		
,	ND ND	ug/L	1.0	1		07/14/15 13:3		
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND	ug/L	1.0	1		07/14/15 13:3		
·		ug/L						
1,2-Dichloropropane	ND	ug/L	1.0	1		07/14/15 13:3		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			2 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			2 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/14/15 13:3		
2-Hexanone	ND	ug/L	10.0	1		07/14/15 13:3		
Methylene Chloride	ND	ug/L	1.0	1		07/14/15 13:3		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		07/14/15 13:3		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/14/15 13:3		
Styrene	ND	ug/L	1.0	1		07/14/15 13:3		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/14/15 13:3		
Tetrachloroethene	6.4	ug/L	1.0	1		07/14/15 13:3	2 127-18-4	
Toluene	ND	ug/L	1.0	1		07/14/15 13:3	2 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:3	2 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/14/15 13:3	2 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/14/15 13:3	2 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/14/15 13:3	2 79-01-6	
Vinyl chloride	ND	ug/L	1.0	1		07/14/15 13:3	2 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		07/14/15 13:3		
m&p-Xylene	ND	ug/L	2.0	1			2 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/14/15 13:3		
Surrogates		· 3· –					-	
4-Bromofluorobenzene (S)	97	%	84-113	1		07/14/15 13:3	2 460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	84-124	1			2 17060-07-0	
Toluene-d8 (S)	97	%	79-118	1		07/14/15 13:3		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 15 of 29

Project: 15070234
Pace Project No.: 30152660

Sample: MW-09S	Lab ID: 301	52660003	Collected: 07/06/1	5 14:30	Received:	07/07/15 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Meth	od: EPA 82	260C					
Acetone	72.4	ug/L	10.0	1		07/14/15 15:1	5 67-64-1	
Benzene	ND	ug/L	1.0	1		07/14/15 15:1	5 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/14/15 15:1	5 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/14/15 15:1	5 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/14/15 15:1	5 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/14/15 15:1	5 74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		07/14/15 15:1	5 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		07/14/15 15:1	5 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/14/15 15:1	5 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/14/15 15:1	5 108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/14/15 15:1	5 75-00-3	
Chloroform	ND	ug/L	1.0	1		07/14/15 15:1		
Chloromethane	ND	ug/L	1.0	1		07/14/15 15:1		
Dibromochloromethane	ND	ug/L	1.0	1		07/14/15 15:1		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 15:1		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 15:1		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 15:1		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/14/15 15:1		
1,2-Dichloroethane	ND	ug/L	1.0	1		07/14/15 15:1		
	699		2.0	1		07/14/15 15:1		
1,2-Dichloroethene (Total)		ug/L						
1,1-Dichloroethene	ND 603	ug/L	1.0	1 20		07/14/15 15:1		
cis-1,2-Dichloroethene	692	ug/L	20.0			07/14/15 16:3		
trans-1,2-Dichloroethene	7.2	ug/L	1.0	1		07/14/15 15:1		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/14/15 15:1		
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			5 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/14/15 15:1		
2-Hexanone	46.0	ug/L	10.0	1		07/14/15 15:1		
Methylene Chloride	ND	ug/L	1.0	1		07/14/15 15:1		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		07/14/15 15:1		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/14/15 15:1		
Styrene	ND	ug/L	1.0	1		07/14/15 15:1	5 100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/14/15 15:1	5 79-34-5	
Tetrachloroethene	95.0	ug/L	1.0	1		07/14/15 15:1	5 127-18-4	
Toluene	ND	ug/L	1.0	1		07/14/15 15:1	5 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/14/15 15:1	5 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/14/15 15:1	5 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/14/15 15:1	5 79-00-5	
Trichloroethene	34.3	ug/L	1.0	1		07/14/15 15:1	5 79-01-6	
Vinyl chloride	19.1	ug/L	1.0	1		07/14/15 15:1	5 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		07/14/15 15:1	5 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/14/15 15:1	5 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/14/15 15:1	5 95-47-6	
Surrogates		ŭ						
4-Bromofluorobenzene (S)	98	%	84-113	1		07/14/15 15:1	5 460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	84-124	1		07/14/15 15:1	5 17060-07-0	
Toluene-d8 (S)	98	%	79-118	1		07/14/15 15:1	5 2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 16 of 29

Project: 15070234
Pace Project No.: 30152660

Sample: MW-10S	Lab ID: 301	52660004	Collected: 07/06/1	5 13:45	Received:	07/07/15 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Meth	od: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		07/14/15 13:5	7 67-64-1	
Benzene	ND	ug/L	1.0	1		07/14/15 13:5	7 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/14/15 13:5	7 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/14/15 13:5	7 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/14/15 13:5	7 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/14/15 13:5	7 74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		07/14/15 13:5	7 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		07/14/15 13:5	7 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/14/15 13:5	7 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/14/15 13:5	7 108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/14/15 13:5	7 75-00-3	
Chloroform	ND	ug/L	1.0	1		07/14/15 13:5	7 67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/14/15 13:5	7 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/14/15 13:5		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:5		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:5		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:5		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/14/15 13:5		
1,2-Dichloroethane	ND	ug/L	1.0	1		07/14/15 13:5		
1,2-Dichloroethene (Total)	ND	ug/L	2.0	1		07/14/15 13:5		
1,1-Dichloroethene	ND	ug/L	1.0	1		07/14/15 13:5		
cis-1,2-Dichloroethene	ND	ug/L	1.0	1		07/14/15 13:5		
trans-1,2-Dichloroethene	ND	ug/L	1.0	1		07/14/15 13:5		
1,2-Dichloropropane	ND	ug/L	1.0	1		07/14/15 13:5		
• •	ND ND		1.0	1		07/14/15 13:5		
cis-1,3-Dichloropropene		ug/L						
trans-1,3-Dichloropropene	ND ND	ug/L	1.0 1.0	1 1		07/14/15 13:5 07/14/15 13:5		
Ethylbenzene		ug/L		1				
2-Hexanone	ND	ug/L	10.0			07/14/15 13:5		
Methylene Chloride	ND	ug/L	1.0	1		07/14/15 13:5		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		07/14/15 13:5		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/14/15 13:5		
Styrene	ND	ug/L	1.0	1		07/14/15 13:5		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/14/15 13:5		
Tetrachloroethene	1.8	ug/L	1.0	1		07/14/15 13:5		
Toluene	ND	ug/L	1.0	1		07/14/15 13:5		
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:5		
1,1,1-Trichloroethane	1.1	ug/L	1.0	1		07/14/15 13:5		
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/14/15 13:5		
Trichloroethene	ND	ug/L	1.0	1		07/14/15 13:5	7 79-01-6	
Vinyl chloride	ND	ug/L	1.0	1		07/14/15 13:5		
Xylene (Total)	ND	ug/L	3.0	1		07/14/15 13:5	7 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/14/15 13:5	7 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/14/15 13:5	7 95-47-6	
Surrogates								
4-Bromofluorobenzene (S)	97	%	84-113	1		07/14/15 13:5		
1,2-Dichloroethane-d4 (S)	105	%	84-124	1		07/14/15 13:5	7 17060-07-0	
Toluene-d8 (S)	101	%	79-118	1		07/14/15 13:5	7 2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 17 of 29

Project: 15070234
Pace Project No.: 30152660

Sample: MW-01 Duplicate	Lab ID: 301	52660005	Collected: 07/06/1	5 11:50	Received: 07/07/15 10:00 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260C MSV	Analytical Meth	nod: EPA 82	260C			
Acetone	ND	ug/L	10.0	1	07/14/15 14:49 67-64-1	
Benzene	ND	ug/L	1.0	1	07/14/15 14:49 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1	07/14/15 14:49 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1	07/14/15 14:49 75-27-4	
Bromoform	ND	ug/L	1.0	1	07/14/15 14:49 75-25-2	
Bromomethane	ND	ug/L	1.0	1	07/14/15 14:49 74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1	07/14/15 14:49 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1	07/14/15 14:49 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1	07/14/15 14:49 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1	07/14/15 14:49 108-90-7	
Chloroethane	ND	ug/L	1.0	1	07/14/15 14:49 75-00-3	
Chloroform	ND	ug/L	1.0	1	07/14/15 14:49 67-66-3	
Chloromethane	ND ND	ug/L ug/L	1.0	1	07/14/15 14:49 07-00-3	
Dibromochloromethane	ND ND	ug/L ug/L	1.0	1	07/14/15 14:49 124-48-1	
,2-Dichlorobenzene	ND	ug/L	1.0	1	07/14/15 14:49 95-50-1	
,3-Dichlorobenzene	ND	ug/L	1.0	1	07/14/15 14:49 541-73-1	
,4-Dichlorobenzene	ND	ug/L	1.0	1	07/14/15 14:49 106-46-7	
,1-Dichloroethane	ND	ug/L	1.0	1	07/14/15 14:49 75-34-3	
,2-Dichloroethane	ND	ug/L	1.0	1	07/14/15 14:49 107-06-2	
,2-Dichloroethene (Total)	143	ug/L	2.0	1	07/14/15 14:49 540-59-0	
,1-Dichloroethene	ND	ug/L	1.0	1	07/14/15 14:49 75-35-4	
is-1,2-Dichloroethene	142	ug/L	1.0	1	07/14/15 14:49 156-59-2	
ans-1,2-Dichloroethene	1.6	ug/L	1.0	1	07/14/15 14:49 156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1	07/14/15 14:49 78-87-5	
sis-1,3-Dichloropropene	ND	ug/L	1.0	1	07/14/15 14:49 10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1	07/14/15 14:49 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1	07/14/15 14:49 100-41-4	
2-Hexanone	ND	ug/L	10.0	1	07/14/15 14:49 591-78-6	
Methylene Chloride	ND	ug/L	1.0	1	07/14/15 14:49 75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1	07/14/15 14:49 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	1.0	1	07/14/15 14:49 1634-04-4	
Styrene	ND	ug/L	1.0	1	07/14/15 14:49 100-42-5	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	07/14/15 14:49 79-34-5	
etrachloroethene	19.8	ug/L	1.0	1	07/14/15 14:49 127-18-4	
oluene	ND	ug/L	1.0	1	07/14/15 14:49 108-88-3	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1	07/14/15 14:49 120-82-1	
,1,1-Trichloroethane	ND	ug/L	1.0	1	07/14/15 14:49 71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1	07/14/15 14:49 79-00-5	
richloroethene		_		1		
	7.3	ug/L	1.0		07/14/15 14:49 79-01-6	
(inyl chloride	ND	ug/L	1.0	1	07/14/15 14:49 75-01-4	
(ylene (Total)	ND	ug/L	3.0	1	07/14/15 14:49 1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1	07/14/15 14:49 179601-23-1	
-Xylene	ND	ug/L	1.0	1	07/14/15 14:49 95-47-6	
Surrogates	^=	0/	04.440		07/44/45 14 10 100 00 7	
-Bromofluorobenzene (S)	97	%	84-113	1	07/14/15 14:49 460-00-4	
,2-Dichloroethane-d4 (S)	100	%	84-124	1	07/14/15 14:49 17060-07-0	
Toluene-d8 (S)	100	%	79-118	1	07/14/15 14:49 2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 18 of 29

Project: 15070234
Pace Project No.: 30152660

Sample: MW-02S MS/MSD	Lab ID: 301	52660006	Collected: 07/06/1	5 13:00	Received:	07/07/15 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	l Analyzed	CAS No.	Qual
8260C MSV	Analytical Meth	od: EPA 82	260C					
Acetone	11.6	ug/L	10.0	1		07/14/15 15:4	1 67-64-1	
Benzene	16.8	ug/L	1.0	1		07/14/15 15:4	1 71-43-2	
Bromochloromethane	15.2	ug/L	1.0	1		07/14/15 15:4	1 74-97-5	
Bromodichloromethane	16.1	ug/L	1.0	1		07/14/15 15:4	1 75-27-4	
Bromoform	13.6	ug/L	1.0	1		07/14/15 15:4	1 75-25-2	
Bromomethane	16.2	ug/L	1.0	1		07/14/15 15:4	1 74-83-9	
2-Butanone (MEK)	14.1	ug/L	10.0	1		07/14/15 15:4	1 78-93-3	
Carbon disulfide	23.1	ug/L	1.0	1		07/14/15 15:4	1 75-15-0	
Carbon tetrachloride	17.1	ug/L	1.0	1		07/14/15 15:4	1 56-23-5	
Chlorobenzene	16.0	ug/L	1.0	1		07/14/15 15:4		
Chloroethane	18.0	ug/L	1.0	1		07/14/15 15:4		
Chloroform	14.9	ug/L	1.0	1		07/14/15 15:4		
Chloromethane	15.4	ug/L	1.0	1		07/14/15 15:4		
Dibromochloromethane	14.3	ug/L	1.0	1		07/14/15 15:4		
1,2-Dichlorobenzene	15.7	ug/L	1.0	1		07/14/15 15:4		
1.3-Dichlorobenzene	15.6	ug/L	1.0	1		07/14/15 15:4		
I,4-Dichlorobenzene	15.4	ug/L	1.0	1		07/14/15 15:4		
,1-Dichloroethane	15.4	ug/L	1.0	1		07/14/15 15:4		
	15.3	•	1.0	1		07/14/15 15:4		
,2-Dichloroethane		ug/L		1				
,2-Dichloroethene (Total)	30.9	ug/L	2.0			07/14/15 15:4		
,1-Dichloroethene	14.7	ug/L	1.0	1		07/14/15 15:4		
sis-1,2-Dichloroethene	15.2	ug/L	1.0	1		07/14/15 15:4		
rans-1,2-Dichloroethene	15.7	ug/L	1.0	1		07/14/15 15:4		
,2-Dichloropropane	16.1	ug/L	1.0	1		07/14/15 15:4		
cis-1,3-Dichloropropene	15.0	ug/L	1.0	1			1 10061-01-5	
rans-1,3-Dichloropropene	15.2	ug/L	1.0	1			1 10061-02-6	
Ethylbenzene	16.4	ug/L	1.0	1		07/14/15 15:4		
2-Hexanone	15.0	ug/L	10.0	1		07/14/15 15:4		
Methylene Chloride	13.8	ug/L	1.0	1		07/14/15 15:4		
I-Methyl-2-pentanone (MIBK)	16.2	ug/L	10.0	1		07/14/15 15:4		
Methyl-tert-butyl ether	21.0	ug/L	1.0	1		07/14/15 15:4	1 1634-04-4	
Styrene	16.9	ug/L	1.0	1		07/14/15 15:4	1 100-42-5	
,1,2,2-Tetrachloroethane	15.8	ug/L	1.0	1		07/14/15 15:4	1 79-34-5	
etrachloroethene	22.6	ug/L	1.0	1		07/14/15 15:4	1 127-18-4	
oluene	16.7	ug/L	1.0	1		07/14/15 15:4	1 108-88-3	
,2,4-Trichlorobenzene	15.0	ug/L	1.0	1		07/14/15 15:4	1 120-82-1	
,1,1-Trichloroethane	15.5	ug/L	1.0	1		07/14/15 15:4	1 71-55-6	
,1,2-Trichloroethane	15.8	ug/L	1.0	1		07/14/15 15:4	1 79-00-5	
richloroethene	16.2	ug/L	1.0	1		07/14/15 15:4	1 79-01-6	
/inyl chloride	16.2	ug/L	1.0	1		07/14/15 15:4		
(ylene (Total)	49.8	ug/L	3.0	1		07/14/15 15:4		
n&p-Xylene	33.7	ug/L	2.0	1			1 179601-23-1	
-Xylene	16.0	ug/L	1.0	1		07/14/15 15:4		
Surrogates		g [,] -	0	•		2	·· •	
-Bromofluorobenzene (S)	98	%	84-113	1		07/14/15 15:4	1 460-00-4	
,2-Dichloroethane-d4 (S)	107	%	84-124	1			1 17060-07-0	
Toluene-d8 (S)	100	%	79-118	1		07/14/15 15:4		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 19 of 29

ANALYTICAL RESULTS

Project: 15070234
Pace Project No.: 30152660

Sample: Trip Blank	Lab ID: 301	52660007	Collected: 07/06/1	5 00:00	Received:	07/07/15 10:00	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Meth	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		07/14/15 13:0	6 67-64-1	
Benzene	ND	ug/L	1.0	1		07/14/15 13:0	6 71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		07/14/15 13:0	6 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		07/14/15 13:0	6 75-27-4	
Bromoform	ND	ug/L	1.0	1		07/14/15 13:0	6 75-25-2	
Bromomethane	ND	ug/L	1.0	1		07/14/15 13:0	6 74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		07/14/15 13:0	6 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		07/14/15 13:0	6 75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		07/14/15 13:0	6 56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		07/14/15 13:0	6 108-90-7	
Chloroethane	ND	ug/L	1.0	1		07/14/15 13:0	6 75-00-3	
Chloroform	ND	ug/L	1.0	1		07/14/15 13:0	6 67-66-3	
Chloromethane	ND	ug/L	1.0	1		07/14/15 13:0	6 74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		07/14/15 13:0		
1,2-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:0		
1,3-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:0		
1,4-Dichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:0		
1,1-Dichloroethane	ND	ug/L	1.0	1		07/14/15 13:0		
1,2-Dichloroethane	ND	ug/L	1.0	1		07/14/15 13:0		
1,2-Dichloroethane (Total)	ND		2.0	1		07/14/15 13:0		
1,1-Dichloroethene	ND ND	ug/L	1.0	1		07/14/15 13:0		
,	ND ND	ug/L ug/L	1.0	1		07/14/15 13:0		
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	ND ND		1.0	1		07/14/15 13:0		
·		ug/L		1		07/14/15 13:0		
1,2-Dichloropropane	ND	ug/L	1.0					
cis-1,3-Dichloropropene	ND	ug/L	1.0	1			6 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	1.0	1			6 10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		07/14/15 13:0		
2-Hexanone	ND	ug/L	10.0	1		07/14/15 13:0		
Methylene Chloride	ND	ug/L	1.0	1		07/14/15 13:0		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		07/14/15 13:0		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		07/14/15 13:0		
Styrene	ND	ug/L	1.0	1		07/14/15 13:0		
1,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		07/14/15 13:0		
Tetrachloroethene	ND	ug/L	1.0	1		07/14/15 13:0	6 127-18-4	
Toluene	ND	ug/L	1.0	1		07/14/15 13:0	6 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	1.0	1		07/14/15 13:0	6 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	1.0	1		07/14/15 13:0	6 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	1.0	1		07/14/15 13:0	6 79-00-5	
Trichloroethene	ND	ug/L	1.0	1		07/14/15 13:0	6 79-01-6	
Vinyl chloride	ND	ug/L	1.0	1		07/14/15 13:0	6 75-01-4	
Xylene (Total)	ND	ug/L	3.0	1		07/14/15 13:0	6 1330-20-7	
m&p-Xylene	ND	ug/L	2.0	1		07/14/15 13:0	6 179601-23-1	
o-Xylene	ND	ug/L	1.0	1		07/14/15 13:0	6 95-47-6	
Surrogates		-						
4-Bromofluorobenzene (S)	98	%	84-113	1		07/14/15 13:0	6 460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	84-124	1		07/14/15 13:0	6 17060-07-0	
Toluene-d8 (S)	99	%	79-118	1		07/14/15 13:0	6 2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 20 of 29

QUALITY CONTROL DATA

Project: 15070234
Pace Project No.: 30152660

QC Batch: MSV/24178 Analysis Method: EPA 8260C
QC Batch Method: EPA 8260C Analysis Description: 8260C MSV

Associated Lab Samples: 30152660001, 30152660002, 30152660003, 30152660004, 30152660005, 30152660006, 30152660007

METHOD BLANK: 921833 Matrix: Water

Associated Lab Samples: 30152660001, 30152660002, 30152660003, 30152660004, 30152660005, 30152660006, 30152660007

	•	Blank	Reporting	,	•
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	ND ND	1.0	07/14/15 12:40	
1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	07/14/15 12:40	
1,1,2-Trichloroethane	ug/L	ND	1.0	07/14/15 12:40	
1,1-Dichloroethane	ug/L	ND	1.0	07/14/15 12:40	
1,1-Dichloroethene	ug/L	ND	1.0	07/14/15 12:40	
1,2,4-Trichlorobenzene	ug/L	ND	1.0	07/14/15 12:40	
1,2-Dichlorobenzene	ug/L	ND	1.0	07/14/15 12:40	
1,2-Dichloroethane	ug/L	ND	1.0	07/14/15 12:40	
1,2-Dichloropropane	ug/L	ND	1.0	07/14/15 12:40	
1,3-Dichlorobenzene	ug/L	ND	1.0	07/14/15 12:40	
1,4-Dichlorobenzene	ug/L	ND	1.0	07/14/15 12:40	
2-Butanone (MEK)	ug/L	ND	10.0	07/14/15 12:40	
2-Hexanone	ug/L	ND	10.0	07/14/15 12:40	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	07/14/15 12:40	
Acetone	ug/L	ND	10.0	07/14/15 12:40	
Benzene	ug/L	ND	1.0	07/14/15 12:40	
Bromochloromethane	ug/L	ND	1.0	07/14/15 12:40	
Bromodichloromethane	ug/L	ND	1.0	07/14/15 12:40	
Bromoform	ug/L	ND	1.0	07/14/15 12:40	
Bromomethane	ug/L	ND	1.0	07/14/15 12:40	
Carbon disulfide	ug/L	ND	1.0	07/14/15 12:40	
Carbon tetrachloride	ug/L	ND	1.0	07/14/15 12:40	
Chlorobenzene	ug/L	ND	1.0	07/14/15 12:40	
Chloroethane	ug/L	ND	1.0	07/14/15 12:40	
Chloroform	ug/L	ND	1.0	07/14/15 12:40	
Chloromethane	ug/L	ND	1.0	07/14/15 12:40	
cis-1,2-Dichloroethene	ug/L	ND	1.0	07/14/15 12:40	
cis-1,3-Dichloropropene	ug/L	ND	1.0	07/14/15 12:40	
Dibromochloromethane	ug/L	ND	1.0	07/14/15 12:40	
Ethylbenzene	ug/L	ND	1.0	07/14/15 12:40	
m&p-Xylene	ug/L	ND	2.0	07/14/15 12:40	
Methyl-tert-butyl ether	ug/L	ND	1.0	07/14/15 12:40	
Methylene Chloride	ug/L	ND	1.0	07/14/15 12:40	
o-Xylene	ug/L	ND	1.0	07/14/15 12:40	
Styrene	ug/L	ND	1.0	07/14/15 12:40	
Tetrachloroethene	ug/L	ND	1.0	07/14/15 12:40	
Toluene	ug/L	ND	1.0	07/14/15 12:40	
trans-1,2-Dichloroethene	ug/L	ND	1.0	07/14/15 12:40	
trans-1,3-Dichloropropene	ug/L	ND	1.0	07/14/15 12:40	
Trichloroethene	ug/L	ND	1.0	07/14/15 12:40	
Vinyl chloride	ug/L	ND	1.0	07/14/15 12:40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 11 of 19

QUALITY CONTROL DATA

Project: 15070234
Pace Project No.: 30152660

METHOD BLANK: 921833 Matrix: Water

Associated Lab Samples: 30152660001, 30152660002, 30152660003, 30152660004, 30152660005, 30152660006, 30152660007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Xylene (Total)	ug/L	ND	3.0	07/14/15 12:40	
1,2-Dichloroethane-d4 (S)	%	104	84-124	07/14/15 12:40	
4-Bromofluorobenzene (S)	%	100	84-113	07/14/15 12:40	
Toluene-d8 (S)	%	98	79-118	07/14/15 12:40	

LABORATORY CONTROL SAMPLE:	921834					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		17.5		62-130	
1,1,2,2-Tetrachloroethane	ug/L	20	18.5	92	74-115	
1,1,2-Trichloroethane	ug/L	20	17.4	87	73-121	
1,1-Dichloroethane	ug/L	20	16.9	84	64-125	
1,1-Dichloroethene	ug/L	20	16.8	84	58-126	
1,2,4-Trichlorobenzene	ug/L	20	18.5	92	72-136	
1,2-Dichlorobenzene	ug/L	20	18.3	91	76-117	
1,2-Dichloroethane	ug/L	20	17.1	86	66-124	
1,2-Dichloropropane	ug/L	20	17.4	87	66-119	
1,3-Dichlorobenzene	ug/L	20	18.1	91	73-116	
1,4-Dichlorobenzene	ug/L	20	17.6	88	75-119	
2-Butanone (MEK)	ug/L	20	17.8	89	69-126	
2-Hexanone	ug/L	20	16.5	83	53-118	
4-Methyl-2-pentanone (MIBK)	ug/L	20	17.2	86	68-124	
Acetone	ug/L	20	11.7	58	56-142	
Benzene	ug/L	20	17.7	89	69-123	
Bromochloromethane	ug/L	20	16.1	80	61-133	
Bromodichloromethane	ug/L	20	18.3	92	64-120	
Bromoform	ug/L	20	15.9	80	56-133	
Bromomethane	ug/L	20	17.2	86	19-151	
Carbon disulfide	ug/L	20	21.7	108	53-173	
Carbon tetrachloride	ug/L	20	19.3	97	52-133	
Chlorobenzene	ug/L	20	17.2	86	72-121	
Chloroethane	ug/L	20	16.6	83	53-143	
Chloroform	ug/L	20	17.2	86	63-123	
Chloromethane	ug/L	20	15.8	79	48-139	
cis-1,2-Dichloroethene	ug/L	20	15.8	79	63-123	
cis-1,3-Dichloropropene	ug/L	20	17.5	88	65-121	
Dibromochloromethane	ug/L	20	16.6	83	58-132	
Ethylbenzene	ug/L	20	17.7	88	70-123	
m&p-Xylene	ug/L	40	36.0	90	71-124	
Methyl-tert-butyl ether	ug/L	20	21.0	105	69-133	
Methylene Chloride	ug/L	20	14.8	74	55-134	
o-Xylene	ug/L	20	17.4	87	69-118	
Styrene	ug/L	20	18.4	92	66-126	
Tetrachloroethene	ug/L	20	17.9	89	62-131	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 22 of 29

Page 13 of 19

QUALITY CONTROL DATA

Project: 15070234
Pace Project No.: 30152660

Date: 07/16/2015 04:00 PM

rans-1,2-Dichloroethene ug/L 20 16.1 80 61-124 rans-1,3-Dichloropropene ug/L 20 17.1 86 70-111 richloroethene ug/L 20 16.8 84 66-125 rinyl chloride ug/L 20 14.9 74 58-131 rylene (Total) ug/L 60 53.5 89 70-123 r,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	LABORATORY CONTROL SAMPLE:	921834					
violuene ug/L 20 17.9 89 73-123 rans-1,2-Dichloroethene ug/L 20 16.1 80 61-124 rans-1,3-Dichloropropene ug/L 20 17.1 86 70-111 richloroethene ug/L 20 16.8 84 66-125 rinyl chloride ug/L 20 14.9 74 58-131 sylene (Total) ug/L 60 53.5 89 70-123 ,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113			Spike	LCS	LCS	% Rec	
rans-1,2-Dichloroethene ug/L 20 16.1 80 61-124 rans-1,3-Dichloropropene ug/L 20 17.1 86 70-111 richloroethene ug/L 20 16.8 84 66-125 rinyl chloride ug/L 20 14.9 74 58-131 rylene (Total) ug/L 60 53.5 89 70-123 r,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
rans-1,3-Dichloropropene ug/L 20 17.1 86 70-111 Trichloroethene ug/L 20 16.8 84 66-125 (inyl chloride ug/L 20 14.9 74 58-131 (ylene (Total) ug/L 60 53.5 89 70-123 ,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	Toluene	ug/L	20	17.9	89	73-123	
ririchloroethene ug/L 20 16.8 84 66-125 rinyl chloride ug/L 20 14.9 74 58-131 (ylene (Total) ug/L 60 53.5 89 70-123 ,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	trans-1,2-Dichloroethene	ug/L	20	16.1	80	61-124	
(inyl chloride ug/L 20 14.9 74 58-131 (ylene (Total) ug/L 60 53.5 89 70-123 ,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	trans-1,3-Dichloropropene	ug/L	20	17.1	86	70-111	
Kylene (Total) ug/L 60 53.5 89 70-123 ,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	Trichloroethene	ug/L	20	16.8	84	66-125	
,2-Dichloroethane-d4 (S) % 105 84-124 -Bromofluorobenzene (S) % 97 84-113	Vinyl chloride	ug/L	20	14.9	74	58-131	
-Bromofluorobenzene (S) % 97 84-113	Xylene (Total)	ug/L	60	53.5	89	70-123	
` '	1,2-Dichloroethane-d4 (S)	%			105	84-124	
	4-Bromofluorobenzene (S)	%			97	84-113	
oluene-d8 (S) 96 79-118	Toluene-d8 (S)	%			96	79-118	

MATRIX SPIKE & MATRIX SPIKE	E DUPLICATE	E: 92183	5		921836						
			MS	MSD							
		52660002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD _	Qual
1,1,1-Trichloroethane	ug/L	ND	20	20	15.5	15.9	77	79	62-130	2	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	15.8	16.4	79	82	74-115	3	
1,1,2-Trichloroethane	ug/L	ND	20	20	15.8	15.8	79	79	73-121	0	
1,1-Dichloroethane	ug/L	ND	20	20	15.4	14.8	77	74	64-125	4	
1,1-Dichloroethene	ug/L	ND	20	20	14.7	15.3	74	77	58-126	4	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	15.0	15.9	75	79	72-136	6	
1,2-Dichlorobenzene	ug/L	ND	20	20	15.7	16.6	79	83	76-117	6	
1,2-Dichloroethane	ug/L	ND	20	20	15.3	15.6	77	78	66-124	2	
1,2-Dichloropropane	ug/L	ND	20	20	16.1	15.9	81	80	66-119	1	
1,3-Dichlorobenzene	ug/L	ND	20	20	15.6	16.3	78	81	73-116	4	
1,4-Dichlorobenzene	ug/L	ND	20	20	15.4	16.0	77	80	75-119	4	
2-Butanone (MEK)	ug/L	ND	20	20	14.1	14.9	70	74	69-126	5	
2-Hexanone	ug/L	ND	20	20	15.0	16.3	75	81	53-118	8	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	20	20	16.2	16.9	81	84	68-124	4	
Acetone	ug/L	ND	20	20	11.6	12.6	58	63	56-142	9	
Benzene	ug/L	ND	20	20	16.8	16.5	84	82	69-123	2	
Bromochloromethane	ug/L	ND	20	20	15.2	15.8	76	79	61-133	4	
Bromodichloromethane	ug/L	ND	20	20	16.1	16.4	80	82	64-120	2	
Bromoform	ug/L	ND	20	20	13.6	13.8	68	69	56-133	2	
Bromomethane	ug/L	ND	20	20	16.2	16.8	81	84	19-151	4	
Carbon disulfide	ug/L	ND	20	20	23.1	21.8	115	109	53-173	6	
Carbon tetrachloride	ug/L	ND	20	20	17.1	16.8	86	84	52-133	2	
Chlorobenzene	ug/L	ND	20	20	16.0	16.3	80	81	72-121	2	
Chloroethane	ug/L	ND	20	20	18.0	17.6	90	88	53-143	2	
Chloroform	ug/L	ND	20	20	14.9	15.8	74	79	63-123	6	
Chloromethane	ug/L	ND	20	20	15.4	15.2	77	76	48-139	2	
cis-1,2-Dichloroethene	ug/L	ND	20	20	15.2	15.8	74	77	63-123	4	
cis-1,3-Dichloropropene	ug/L	ND	20	20	15.0	15.1	75	76	65-121	1	
Dibromochloromethane	ug/L	ND	20	20	14.3	14.6	72	73	58-132	2	
Ethylbenzene	ug/L	ND	20	20	16.4	16.6	82	83	70-123	1	
m&p-Xylene	ug/L	ND	40	40	33.7	33.9	84	85	71-124	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: 15070234
Pace Project No.: 30152660

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 92183	5		921836						
			MS	MSD							
	30	152660002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Methyl-tert-butyl ether	ug/L	ND	20	20	21.0	20.0	105	100	69-133		
Methylene Chloride	ug/L	ND	20	20	13.8	14.5	69	72	55-134	5	
o-Xylene	ug/L	ND	20	20	16.0	16.2	80	81	69-118	1	
Styrene	ug/L	ND	20	20	16.9	16.7	85	83	66-126	2	
Tetrachloroethene	ug/L	6.4	20	20	22.6	23.4	81	85	62-131	4	
Toluene	ug/L	ND	20	20	16.7	16.5	84	82	73-123	2	
trans-1,2-Dichloroethene	ug/L	ND	20	20	15.7	16.1	79	80	61-124	2	
trans-1,3-Dichloropropene	ug/L	ND	20	20	15.2	15.3	76	76	70-111	0	
Trichloroethene	ug/L	ND	20	20	16.2	16.0	78	77	66-125	1	
Vinyl chloride	ug/L	ND	20	20	16.2	15.7	81	79	58-131	3	
Xylene (Total)	ug/L	ND	60	60	49.8	50.0	83	83	70-123	1	
1,2-Dichloroethane-d4 (S)	%						107	101	84-124		
4-Bromofluorobenzene (S)	%						98	98	84-113		
Toluene-d8 (S)	%						100	98	79-118		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 24 of 29

QUALIFIERS

Project: 15070234
Pace Project No.: 30152660

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

REPORT OF LABORATORY ANALYSIS

15070234 - Page 25 of 29

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 15070234
Pace Project No.: 30152660

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30152660001	MW-01	EPA 8260C	MSV/24178		
30152660002	MW-02S	EPA 8260C	MSV/24178		
30152660003	MW-09S	EPA 8260C	MSV/24178		
30152660004	MW-10S	EPA 8260C	MSV/24178		
30152660005	MW-01 Duplicate	EPA 8260C	MSV/24178		
30152660006	MW-02S MS/MSD	EPA 8260C	MSV/24178		
30152660007	Trip Blank	EPA 8260C	MSV/24178		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

15070234 - Page 26 of 29

WO#:30152660

CHAIN-OF-CUSTODY / Analytical Request Document

DRINKING WATER OTHER NPDES 🐶 GROUND WATER 🖵 Z REGULATORY AGENCY **BCRA** Site Location STATE The Chain-of-Custody is a LEGAL DOCUMENT, All relevant fields must be completed accurately. 181 Same Invoice Information: Company Name: Reference Pace Project Vaneger Pace Profile A: Section C Sce Grote Attention: /gqueee; Presentes Susan Gemmins Ash Road 1200 Tolor No. 20918 Amalon: Same Tolera Number roject Name: Inc 20 dichy go enlogic nel Homer NY 13077 Pace Analytical Services, Inc. Streets Due Date/TAT:

													-	Re	Requested Analysis Filtered (Y/N)	Amah	isis Fill) peued	(N/	_			
	Section D RequiredClast Internation	Matrix Codes	Quest	ſaw		COLLECTED	CTED			ď	Preservatives	88	N/A							1	-		
		Drinking Water DW Waste Water WY Product P 804/Solid SL	d eeban bilan see	00=0 6AA9=	START	ä.	COMPOSITE							72						(N/A) 6	1		
July 16, 2015	SAMPLE ID (A.Z. 09 (~) Semple ID: MUST BE UNIQUE	Mr Ar Tasue Other	MATRIX CODE	E) 34YT 3J4MA8	DATE	IME	DATE	TA MAT EJAMAS	# OF CONTAINER	Unpreserved H ₂ SO ₂ HIO ₃	Mach HCI	Cosenie Nethend	Other Test sisylanA	L 0728 V43						Residual Chlorine	Pace	Project N	Pace Project No / Lab I.D.
	MW-0-1		13	Y			Totals 1	G	50		ż			×							1		(i)
	6		15	Ģ			145	30	10		>			×								1	200
0	mu-045		7	d			445	430	7		×			×									000
4	201-mm		15				4.15	348	N		×			×									8
VD.	MW-OI Dub!	ovi Cale	5				12.15	3	'n		7			×					_				00
φ	4 520-mW	-	Š	0			1-6-15	(2051	M		×			×									900
-	THEBIONK		٤	ø			1.615		Ä		4			×							١		00
60																							
6										+		1	T	1	1	1	1	1					
10													Т						4				
Ξ							Y. I					4				4		7					
2													-							Ι			
	ADDITIONAL COMMENTS	BNTS	REL	INQUIS	HED BY /	RELINQUISHED BY / APPILIATION	×	DATE	F	TIME		ACCEPT	E0 5	ACCEPTED BY / APPLIATION	LIATION	-	DATE	TIME	E		SAMP	SAMPLE CONDITIONS	ONS
1		7	Agein	7	nun	munn		7615	5	280	POCA	T	3	BE	a	ŕ	7/6/1	21/2	1650	ī			
1 1			Pail	F.	PAGE	3		١١٩١١ر	1700	00	breu		25	17	a		7715	_	00	12	-	- -	5
	Page																						
	17 (SAMPLER	NAMEAN	SAMPLER NAME AND SIGNATURE	E.											0,		y	toativ
	of 19	NING COLOR					RINT Name	PRINT Name of SAMPLER:		Susan Cummins	Sum	4.14	2							uj di	pavio NYN)	(NV) oO po vo po	(NVA)
	9	ORIGINAL	J				SCNATURE	SIGNATURE of SAMPLER:		Lucian Cummeria	Cur	mun	-2	DATE	DATE Signed	Г	VIT'Y	1		Ton		ojpog) dwe;
)									-		,			(MM)	í				1			4	В

F-ALL-Q-020vev.07, 15-May-2007

Treporter Note: By signing this form you are accoupting Place's NET 30 day payment there and agreeing to late charges of 4.5% per month for any among and paid within 30 days.

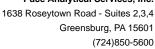
Sample Condition Upon Recept

Pace Analytical

	Sample Condition Upon Receive	
	Client Name: Geo log CN IInc	Project #
UPS	S USPS Client Commercial Pace Other	

Courier: Fed Ex UPS USPS Client Tracking #: 17398976 9320	Comm	nercial	Pace	Other		-		
Custody Seal on Cooler/Box Present: Ves	□ no	Seals	intact: Æ	yes	no no	Blologic	al Tissue is Frozen: Yes No	
Packing Material: Bubble Wrap Bubble Bags Thermometer Used Type	of Ice: We	Blue	Other None	Ø	Samples	on loe, coolin	process has begun	7
Cooler Temp.: Observed Temp.: Z. 6 °C Cor	rection Fac	tor: <u>" ()</u>	.Z_°c Fi	nal Ten	np:	<u>/_</u> °C	examining contents:	
Temp should be above freezing to 6°C			Comments	l:				-
Chain of Custody Present:	ZYes □No							-
Chain of Custody Filled Out:	ØYes □No							1
Chain of Custody Relinquished:	Yes No	□N/A	3.					-
Sampler Name & Signature on COC:	ØYes □N:	□N/A	4.					-
Samples Arrived within Hold Time:	Gres □Ne	□N/A	5.					-
Short Hold Time Analysis (<72hr):	□Yes ZN	□N/A	6-					-
Rush Turn Around Time Requested:	□Yes DN	□ N/A	7-					-
Sufficient Volume:	ØYes □N	□ □N/A	9.					\dashv
Correct Containers Used:	Øfee □N	□ N/A	9.					
-Pace Containers Used:	□Yes ZN	□ N/A		_				-
Containers Intact:	ZYes DN	□ □N/A	10.					\dashv
Filtered volume received for Dissolved tests	□Yes □N	- DAVA	11:					-
Sample Labels match COC:	ØY∞ □N	□ □N/A	12.					Т
-Includes date/time/ID/Analysis Matrix: W	1							-
All containers needing preservation have been checked.	□Yes □N	Z nm	13.					1
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □N	. ZNA			li			-
exceptions: yOA, coliform, TOC, OSG, Phenois	Æ]Yes □N	3	Initial when completed	JL		of added ervative		_
Samples checked for dechlorination:	□Yes □N	. ฮ เพล	14.					-
Headspace in VOA Vials (>6mm):	ØYes □N	. DNA	15.					-
Trip Blank Present	∕dYes □N	o □N/A	16.					
Trip Blank Custody Seals Present	Yes 🗆 N	o □NIA						İ
Pace Trip Blank Lot # (if purchased):								
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:			/Time:		F	leid Data Re	quired? Y / N	
Project Manager Review:	Tha	B	up	<u> </u>		Date:	7815	_ _ _ _

Note: Whenever there is a discrepancy affecting North Caroline compliance samples a copy of this form will be sent to the North Caroline DEHNR Cartification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)


J:\QAQC\Master\Document Management\Sample Nigt\SCURF\FALLC003-09 SCUR Front 3MPage\G019

Project Number:

SCURF Back (C016-4 15May/2012) xts

39450 poldi (JP \ Im 003) henistidud Redchem Melgene (1/2 gal. 1 yal.L) (1t \ 008 \ 032 \ 32f) enegleM merbbe? hettii \neema \eqiwa \ eeq\/ (1m OSt) enerong (im 000) ebitius, Cyanide (250 ml) (Im 06 (m 0b) AOV لہ (11) Hall 08G(1L) Dissolved Metals preserved Fotal Metals (Im 02S) XOT: 7OC (40 ml \ 250 ml) Phenolics (250 ml) (003 \ 03S) InentuM (Jf) spinsgrQ Chemistry (250 / 500 / 1L) Soil kit (2 SB, 1M, soil Jar) (120 / 220 / 280 / 388 (17) Astrix Code 1007 oM medi

Page 19 of 19

July 31, 2015

Ms. Susan Cummins Geologic NY 37 Copeland Avenue Homer, NY 13077

RE: Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

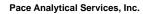
Dear Ms. Cummins:

Enclosed are the analytical results for sample(s) received by the laboratory on July 07, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

The samples were subcontracted to Pace Analytical Services, Inc., 575 Broad Hollow Road, Melville NY 11747 for Methane analysis. Results of the analysis are reported on the Pace Analytical, New York data tables.

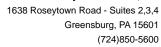
The samples were subcontracted to Brooks Rond,3958 Sixth Ave. North West, Seattle WA 98107 for Ferrous Iron analysis. Results of the analysis are reported on the Brooks Rond data tables.


If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Pachel D Unistrian

Rachel Christner rachel.christner@pacelabs.com Project Manager


July 31, 2015 Page 2

Enclosures

cc: Chris Gabriel, Geologic NY Geologic NY Inc., Geologic NY

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

ACLASS DOD-ELAP Accreditation #: ADE-1544

Alabama Certification #: 41590 Arizona Certification #: AZ0734

Arkansas Certification
California/TNI Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Guam/PADEP Certification Hawaii/PADEP Certification

Idaho Certification

Illinois/PADEP Certification Indiana/PADEP Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14

Nevada Certification

New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification

New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

South Dakota Certification

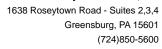
Tennessee Certification #: TN2867 Texas/TNI Certification #: T104704188 Utah/TNI Certification #: PA014572014-4

Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 460198

Washington Certification #: C868 West Virginia DEP Certification #: 143
West Virginia DHHR Certification #: 9964C

Wisconsin/PADEP Certification Wyoming Certification #: 8TMS-Q

REPORT OF LABORATORY ANALYSIS


SAMPLE ANALYTE COUNT

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30152657001	MW-01	SM 5210B	KAS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		ASTM D516-90,02	BMS	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA
30152657002	MW-02S	EPA 6010C	CTS	1	PASI-PA
		SM 5210B	KAS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		ASTM D516-90,02	BMS	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA
30152657003	MW-09S	EPA 6010C	CTS	1	PASI-PA
		SM 5210B	KAS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		ASTM D516-90,02	BMS	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA
30152657004	MW-10S	SM 5210B	KAS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		ASTM D516-90,02	BMS	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA

REPORT OF LABORATORY ANALYSIS

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Method: EPA 6010C
Description: 6010C MET ICP
Client: Geologic NY
Date: July 31, 2015

General Information:

2 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

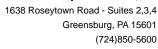
Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Method: SM 5210B

Description: 5210B BOD, 5 day **Client:** Geologic NY **Date:** July 31, 2015

General Information:

4 samples were analyzed for SM 5210B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

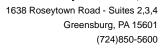
Sample Preparation:

The samples were prepared in accordance with SM 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:


All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Method: SM 4500-CI-E
Description: 4500 Chloride
Client: Geologic NY
Date: July 31, 2015

General Information:

4 samples were analyzed for SM 4500-CI-E. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

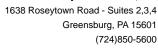
Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:


All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Method: ASTM D516-90,02

Description: ASTM D516-90, 02 Sulfate Water

Client: Geologic NY

Date: July 31, 2015

General Information:

4 samples were analyzed for ASTM D516-90,02. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

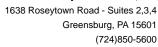
Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: WETA/20563


A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30152631001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 920405)
 - Sulfate

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Method: SM 4500-NO2 B

Description: SM4500NO2-B, Nitrite, unpres

Client: Geologic NY

Date: July 31, 2015

General Information:

4 samples were analyzed for SM 4500-NO2 B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Date: 07/31/2015 01:51 PM

Sample: MW-01	Lab ID: 301	2657001	Collected: (07/06/15	11:50	Received: 0	7/07/15 10:00	Matrix: Water	
Comments: • Preseved 250mL chen	n w/ H2SO4 for nut	rient testin	g, 7/715 @ 12:	00					
Parameters	Results	Units	Report I	_imit [OF	Prepared	Analyzed	CAS No.	Qual
5210B BOD, 5 day	Analytical Meth	od: SM 52	10B Preparati	on Metho	d: SM	5210B			
BOD, 5 day	ND	mg/L		6.0	1	07/08/15 08:35	5 07/13/15 21:40	0	
4500 Chloride	Analytical Meth	od: SM 45	00-CI-E						
Chloride	555	mg/L		60.0	20		07/09/15 11:03	3 16887-00-6	
ASTM D516-90, 02 Sulfate Water	Analytical Meth	od: ASTM	D516-90,02						
Sulfate	45.2	mg/L		10.0	1		07/09/15 21:50	6 14808-79-8	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	od: SM 45	00-NO2 B						
Nitrite as N	ND	mg/L	(0.010	1		07/07/15 19:23	3 14797-65-0	
Sample: MW-02S Comments: • Preseved 250mL chen	Lab ID: 3015		Collected: (13:00	Received: 0	7/07/15 10:00	Matrix: Water	
Parameters	Results	Units	g, 777 13 @ 12. Report I)F	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical Meth	od: EPA 60	010C Preparat	tion Metho	od: EE	PA 3005A	<u> </u>		
Manganese	6.7	ug/L	7700 Tropara		1		07/09/15 08:09	9 7439-96-5	
5210B BOD, 5 day	Analytical Meth	•	10B Preparati				01700710 00.00	7 100 00 0	
BOD, 5 day	ND	mg/L			1		3 07/13/15 21:40	0	
4500 Chloride	Analytical Meth	•	00-CI-E						
Chloride	581	mg/L		60.0	20		07/09/15 11:03	3 16887-00-6	
ASTM D516-90, 02 Sulfate Water	Analytical Meth	•	D516-90,02						
Sulfate	24.2	mg/L	,	10.0	1		07/09/15 21:5	7 14808-79-8	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	•	00-NO2 B						
Nitrite as N	ND	mg/L		0.010	1		07/07/15 19:2	5 14797-65-0	
Sample: MW-09S	Lab ID: 3015	2657003	Collected: (07/06/15	14:30	Received: 0	7/07/15 10:00	Matrix: Water	
Comments: • Preseved 250mL chen			-						
Parameters	Results —	Units	Report I	_imit [DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical Meth	od: EPA 60	010C Preparat	tion Metho	od: EF	PA 3005A			
Manganese	21200	ug/L		5.0	1	07/08/15 16:30	07/09/15 08:12	2 7439-96-5	
5210B BOD, 5 day	Analytical Meth	od: SM 52	10B Preparati	on Metho	d: SM	5210B			
BOD, 5 day	77.3	mg/L		60.0	1	07/08/15 08:40	07/13/15 21:40	0	

ANALYTICAL RESULTS

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Date: 07/31/2015 01:51 PM

Sample: MW-09S	Lab ID: 3015	52657003	Collected: 07/06/1	5 14:30	Received: 07	7/07/15 10:00 N	Matrix: Water	
Comments: • Preseved 250mL chen	n w/ H2SO4 for nut	rient testing	, 7/715 @ 12:00					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
4500 Chloride	Analytical Meth	od: SM 450	00-CI-E					
Chloride	992	mg/L	60.0	20		07/09/15 11:04	16887-00-6	
ASTM D516-90, 02 Sulfate Water	Analytical Meth	od: ASTM I	D516-90,02					
Sulfate	82.7	mg/L	10.0	1		07/09/15 21:58	14808-79-8	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	od: SM 450	00-NO2 B					
Nitrite as N	ND	mg/L	0.010	1		07/07/15 19:26	14797-65-0	
Sample: MW-10S Comments: • Preseved 250mL chen	Lab ID: 301 5 m w/ H2SO4 for nut		Collected: 07/06/1	5 13:45	Received: 07	7/07/15 10:00 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
5210B BOD, 5 day	Analytical Meth	od: SM 521	0B Preparation Met	hod: SM	1 5210B			
					102108			
BOD, 5 day	ND	mg/L	6.0	1		07/13/15 21:40)	
BOD, 5 day	ND Analytical Meth	mg/L	6.0			07/13/15 21:40	1	
		mg/L	6.0			07/13/15 21:40 07/09/15 11:05		
BOD, 5 day 4500 Chloride	Analytical Meth	mg/L nod: SM 450 mg/L	6.0 00-CI-E 60.0	1				
BOD, 5 day 4500 Chloride Chloride	Analytical Meth	mg/L nod: SM 450 mg/L	6.0 00-CI-E 60.0	1			16887-00-6	
BOD, 5 day 4500 Chloride Chloride ASTM D516-90, 02 Sulfate Water	Analytical Meth 741 Analytical Meth	mg/L nod: SM 450 mg/L nod: ASTM I mg/L	6.0 00-CI-E 60.0 0516-90,02	20		07/09/15 11:05	16887-00-6	

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

QC Batch: MPRP/15943 Analysis Method: EPA 6010C QC Batch Method: EPA 3005A Analysis Description: 6010C MET

Associated Lab Samples: 30152657002, 30152657003

METHOD BLANK: 919393 Matrix: Water

Associated Lab Samples: 30152657002, 30152657003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

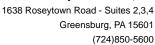
Manganese ug/L ND 5.0 07/09/15 07:53

LABORATORY CONTROL SAMPLE: 919394

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Manganese ug/L 500 505 101 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 919396 919397

MS MSD 30152603001 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Qual ug/L 16.6 500 517 512 75-125 Manganese 500 100 99 1


SAMPLE DUPLICATE: 919395

Date: 07/31/2015 01:51 PM

 Parameter
 Units
 30152603001 Result
 Dup Result
 RPD
 Qualifiers

 Manganese
 ug/L
 16.6
 15.4
 7

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

QC Batch: WET/29088 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Analysis Description: 5210B BOD, 5 day

Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

METHOD BLANK: 919492 Matrix: Water
Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

BOD, 5 day mg/L ND 2.0 07/13/15 21:40

LABORATORY CONTROL SAMPLE: 919493

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers BOD, 5 day mg/L 198 201 102 84.6-115.4

SAMPLE DUPLICATE: 919494

Date: 07/31/2015 01:51 PM

 Parameter
 Units
 Result Result Result
 RPD Result
 Qualifiers

 BOD, 5 day
 mg/L
 ND
 ND

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

QC Batch: WETA/20546 Analysis Method: SM 4500-CI-E
QC Batch Method: SM 4500-CI-E Analysis Description: 4500 Chloride

Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

METHOD BLANK: 919612 Matrix: Water
Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chloride mg/L ND 3.0 07/09/15 10:58

METHOD BLANK: 919616 Matrix: Water

Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chloride mg/L ND 3.0 07/09/15 10:59

LABORATORY CONTROL SAMPLE: 919613

Date: 07/31/2015 01:51 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 40 40.3 101 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 919614 919615

MS MSD 30152631001 Spike Spike MS MSD MS MSD % Rec Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Result 9.6 Chloride mg/L 20 20 30.4 30.2 104 103 85-115 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

ASH ROAD PROPERTIES Project:

Pace Project No.: 30152657

QC Batch: WETA/20563 Analysis Method: ASTM D516-90,02

QC Batch Method: ASTM D516-90,02 Analysis Description: ASTM D516-90, 02 Sulfate Water

30152657001, 30152657002, 30152657003, 30152657004 Associated Lab Samples:

METHOD BLANK: 920403 Matrix: Water Associated Lab Samples:

30152657001, 30152657002, 30152657003, 30152657004

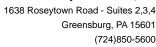
Blank Reporting

Parameter Limit Qualifiers Units Result Analyzed Sulfate ND 10.0 07/09/15 21:52 mg/L

LABORATORY CONTROL SAMPLE: 920404

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 30 28.0 93 85-115

MATRIX SPIKE SAMPLE: 920405


30152631001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 16.7 Sulfate 20 30.1 67 85-115 M1 mg/L

SAMPLE DUPLICATE: 920411

Date: 07/31/2015 01:51 PM

30152631001 Dup RPD Parameter Units Result Result Qualifiers 16.7 Sulfate mg/L 17.6 5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

QC Batch: WETA/20529 Analysis Method: SM 4500-NO2 B

QC Batch Method: SM 4500-NO2 B Analysis Description: SM4500NO2-B, Nitrite, unpres

Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

METHOD BLANK: 918709 Matrix: Water

Associated Lab Samples: 30152657001, 30152657002, 30152657003, 30152657004

Blank Reporting

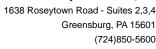
 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 Nitrite as N
 mg/L
 ND
 0.010
 07/07/15 19:18

LABORATORY CONTROL SAMPLE: 918710

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Nitrite as N mg/L 0.096 96 90-110

MATRIX SPIKE SAMPLE: 918712


30152657004 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND 0.10 103 .1 85-115 Nitrite as N mg/L

SAMPLE DUPLICATE: 918711

Date: 07/31/2015 01:51 PM

 Parameter
 Units
 Result Result Result ND
 RPD ND
 Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 07/31/2015 01:51 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: ASH ROAD PROPERTIES

Pace Project No.: 30152657

Date: 07/31/2015 01:51 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30152657002	MW-02S	EPA 3005A	MPRP/15943	EPA 6010C	ICP/15122
30152657003	MW-09S	EPA 3005A	MPRP/15943	EPA 6010C	ICP/15122
30152657001	MW-01	SM 5210B	WET/29088	SM 5210B	WET/29153
30152657002	MW-02S	SM 5210B	WET/29088	SM 5210B	WET/29153
30152657003	MW-09S	SM 5210B	WET/29088	SM 5210B	WET/29153
30152657004	MW-10S	SM 5210B	WET/29088	SM 5210B	WET/29153
30152657001	MW-01	SM 4500-CI-E	WETA/20546		
30152657002	MW-02S	SM 4500-CI-E	WETA/20546		
30152657003	MW-09S	SM 4500-CI-E	WETA/20546		
30152657004	MW-10S	SM 4500-CI-E	WETA/20546		
30152657001	MW-01	ASTM D516-90,02	WETA/20563		
30152657002	MW-02S	ASTM D516-90,02	WETA/20563		
30152657003	MW-09S	ASTM D516-90,02	WETA/20563		
30152657004	MW-10S	ASTM D516-90,02	WETA/20563		
30152657001	MW-01	SM 4500-NO2 B	WETA/20529		
30152657002	MW-02S	SM 4500-NO2 B	WETA/20529		
30152657003	MW-09S	SM 4500-NO2 B	WETA/20529		
30152657004	MW-10S	SM 4500-NO2 B	WETA/20529		

WO#:30152657

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Project No./ Lab I.D. (N/Y)DRINKING WATER samples intact 000 SAMPLE CONDITIONS 30 00 (N/X) OTHER Custody Sealed Cooler Ice (Y/N) Received on K GROUND WATER Residual Chlorine (Y/N) O° ni qmeT 7 N Page: REGULATORY AGENCY RCRA 1650 8 TIME Requested Analysis Filtered (Y/N) WIL 74-15 DISSOIVED PRINCES 71914 NPDES Site Location STATE DATE UST Hanganese メメメイ Shriola DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION da Sulfate Dece 16thank DOD ↓ tesT sisylsnA↓ N/A Susantimmins SIGNATURE of SAMPLERY LUGUR LUMMENTE Other Methanol Na₂S₂O₃ Preservatives Same NaOH HCI Invoice Information: HNO3 Company Name: [⊅]OS^ZH 0021 Reference:
Pace Project
Manager:
Pace Profile #: Section C TIME Unpreserved Attention: ace Quote Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION 71/9/1 DATE 74.5 1345 12-15 1430 TIME 1-6-15 1150 300 Ash Road Properties COMPOSITE END/GRAB 1-6-15 DATE COLLECTED しばかかって RELINQUISHED BY / AFFILIATION Lummin 209183 TIME 209183 PACL COMPOSITE START DATE ation: Susan Same Ø V J (G=GRAB C=COMP) SAMPLE TYPE 9 Purchase Order No : (see valid codes to left) MATRIX CODE Project Number Project Name: DELGIBAL Copy To: \mathbb{A}^{\times} Matrix Codes
MATRIX / CODE Drinking Water Water Waste Water Product Soil/Solid Geologichy @ Geologic viet Air Tissue Other Oil The -20-15 Hamer Ny 1307 ADDITIONAL COMMENTS mm-los (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 350 220- mw Company Geo Logic NY mu-095 SAMPLE ID Q 607-149 50d Required Client Information Requested Due Date/TAT: Address: Po Box 310 3015265 Section D Page 19 of 29 10 1 2 9 7 æ 6 12 7 က 4 ITEM # S &

F-ALL-Q-020rev 07, 15-May-2007

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 15% per mouth for any invoices not paid within 30 days.

Sample Condition Upon Receipt

Sono Applytical"		120	Project#	
Face Analytical Client Name	Geologi	C-)V7	r roject #	
courier: Fed Ex UPS USPS Clie	nt Commercial	Pace Other		
racking #: 773989709320		_		
custody Seal on Cooler/Box Present: yes	no Seals	intact: yes	no Biologica	al Tissue is Frozen: Yes No
Rubble Bar	None	Other		
hermometer UsedTyp	e of Ice: (Wet Blue	None S	amples on ice, cooling	process has begun
Cooler Temp.: Observed Temp.: 2. C C	organian Easter: To	2°C Final Temn	2,4°C	Date and initials of person
	orrection Factor.	Comments:		examining contents:
emp should be above freezing to 6°C	Die The DNA			
Chain of Custody Present:	Yes No N/A			
Chain of Custody Filled Out:	EYes ONO ON/A			
Chain of Custody Relinquished:	□Yes □No □N/A		1111	
Sampler Name & Signature on COC:	ØYes □No □N/A	1		
Samples Arrived within Hold Time:	Yes No N/A			
Short Hold Time Analysis (<72hr):	□Yes □No □N/A □Yes □No □N/A	1		
Rush Turn Around Time Requested:	-			
Sufficient Volume:	DYes DNo DN/A			
Correct Containers Used:	Tyes No N/A			
-Pace Containers Used:	Yes No N/A			
Containers Intact:	Yes No N/A			
Filtered volume received for Dissolved tests	□Yes □No □N/A			
Sample Labels match COC:	A A	12.		
-Includes date/time/ID/Analysis Matrix:	M	Ovestern	ed 250 C	hems for mutrie
All containers needing preservation have been checked.	Pes □No □N/A	testing.	7/7/15 1	200 2m H2804
All containers needing preservation are found to be in	□Yes ☑No □N/A		•	
compliance with EPA recommendation.	□Yes ☑No	Initial when	Lot # of added	040615-24GK
exceptions: VOA, collform, TOC, O&G, Phenois	Malitibility	completed Viv	preservative	040613-240 K
Samples checked for dechlorination:	Pres □No □N/A	A CONTRACTOR OF THE PROPERTY O		
Headspace in VOA Vials (>6mm):	□Yes □No ☑N/A			
Trip Blank Present:	□Yes □No □N/A			
Trip Blank Custody Seals Present	□Yes □No to N/A	`		
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution:			Field Data Red	quired? Y / N
Person Contacted:	Date	/Time:		
Comments/ Resolution:				
P		-		7.1
Project Manager Review:	willy &	3000	Date:	7/8/15
	PENNA AND INC			
Project Manager Review: Note: Whenever there is a discrepancy affecting North				,

J:\QAQC\Master\Document Management\Sample Mgt\SCURF\FALLC003-09 SCUR Front 3March2015

Project Number: Geology' C-NY

Ofher								
194fO				100				
poldiZ								
Cubitainer (500 ml / 4L)								
Radchem Malgene (1/2 gal. / 1 gal.L)								
Radchem Walgene (125 / 250 / 500 / 1L)								
Wipes / swipe/ smear/ filter								
Bacteria (120 ml)								
(fm 003) ebiîlu8								
Cyanide (250 ml)								
(Im 0€ Im 0₱) AOV								
(лг) нат								
O & G (1L)								
Dissolved Metals preserved Y								
sisteM istoT		_	-					
(Im 05S) XOT								
TOC (40 ml / 250 ml)								
Phenolics (250 ml)								
(003 \ 0 (1) tneintuN	-	-		5				
(11) spinsgiO								
Chemistry (250 / 500 /(1))	-			7				
Soil kit (2 SB, 1M, soil jar)								
Glass Jar (120 / 250 / 500 / 1L)								
eboO xirisM	3	-		7				
.oM mefl	100	037	903	400				

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1507341-001

Sample Information:

Type: Groundwater

Attn To: Project Manager

: 7/6/2015 11:50:00 AM

Client Sample ID: MW-01

Ash Road Properties

Origin:

Received : 7/7/2015 10:45:00 AM

Collected By: SC99

Collected

Analytical Method: RSK-175:					Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane	2.8	1	μg/L	07/17/2015 12:07 PM	Container-01 of 02
Surr: Propene	126	1	%REC Limit 21-187	7 07/17/2015 12:07 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported : 7/20/2015

Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

Nicole Johnson

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 7

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1507341-002

Sample Information:

Type: Groundwater

Attn To: Project Manager

: 7/6/2015 1:00:00 PM

Client Sample ID: MW-02S

Ash Road Properties

Origin:

Collected : 7/7/2015 10:45:00 AM Received

Collected By: SC99

Analytical Method: RSK	(-175 :					Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Methane	15	1	μg/L		07/17/2015 12:30 PM	1 Container-01 of 02
Surr: Propene	124	1	%REC	Limit 21-187	07/17/2015 12:30 PM	1 Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 7/20/2015 Project Manager

Nicole Johnson

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 2 of 7

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

Collected

37 Copeland Avenue Homer, NY 13077

Lab No. : 1507341-003

Sample Information:

Type: Groundwater

Attn To: Project Manager

: 7/6/2015 2:30:00 PM

Client Sample ID: MW-09S

Ash Road Properties

Origin:

Received : 7/7/2015 10:45:00 AM Collected By : SC99

Analytical Method: RSK-175 :						Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Methane	6.0	1	μg/L		07/17/2015 12:59 PM	Container-01 of 02
Surr: Propene	126	1	%REC	Limit 21-187	07/17/2015 12:59 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported : 7/20/2015

Project Manager

Nicole Johnson

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 7

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Geologic NY

37 Copeland Avenue Homer, NY 13077

Lab No. : 1507341-004

Sample Information:

Type: Groundwater

Attn To: Project Manager

Client Sample ID: MW-10S

Origin:

Collected : 7/6/2015 1:45:00 PM

Received : 7/7/2015 10:45:00 AM

Ash Road Properties

Collected By: SC99

Analytical Method: RSK-175	:				Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>	Analyzed:	Container:
Methane	< 1.0	1	μg/L	07/17/2015 1:12 PM	Container-01 of 01
Surr: Propene	124	1	%REC Limit 21-187	07/17/2015 1:12 PM	Container-01 of 01

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported : 7/20/2015

Project Manager

Nicole Johnson

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 7

575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040

Quality Control Report

PACE ANALYTICAL

10478

Analysis: DISSOLVED GASES WorkOrder: 1507341

Method: RSK-175_W Lab Batch ID: R79010

Method Blank

RunID: 79010 SeqNo 1724127 Units: μg/L Analysis Date: 7/17/2015 11:16:26 AM Analyst: MaiN

Analyte	Result	Rep Limit	Rep Qual
Methane	< 1.0	1.0	
Surr: Propene	10	1.0	

Laboratory Control Sample (LCS/LFB)

RunID: 79010 SeqNo 1724128 Units: μg/L Analysis Date: 7/17/2015 11:32:12 AM Analyst: MaiN

Analyte	LCS Spike Added	LCS Result	LCS % Recovery	LCSD Spike Added	LCSD % Recovery	RPD	RPD Limit	Low Limit	High Limit	Qual
Methane	5.320	5.2	97.2					22	166	
Surr: Propene	10.00	6.1	61.0	1				21	187	

NOTES:

Sample received not preserved to a pH < 2.

Qualifiers: * Value exceeds Maximum Contaminant Level

D Dilution was required.

H Holding times for preparation or analysis exceeded
 M Manual Integration used to determine area response

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

 $N \quad \ \ Tentatively \ identified \ compounds$

O RSD is greater than RSDlimit

Page 5 of 7

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

Sample Receipt Checklist

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u>

Client Name: GEO		Date and T	ime Received:	7/7/2015 10:45:00 AM
Work Order Number: 1507341 RcptNo: 1		Received b	y: Linda Sicilia	ano
Completed by: Reversible De	Revie	ewed by:	Nicole	Johnson
Completed Date: <u>7/7/2015 12:39:15 PM</u>	Revie	ewed Date:	<u>7/16/201</u>	<u>5 3:37:02 PM</u>
Carrier name: FedEx				
Chain of custody present? Chain of custody signed when relinquished and received? Chain of custody agrees with sample labels? Are matrices correctly identified on Chain of custody? Is it clear what analyses were requested? Custody seals intact on sample bottles?	Yes V Yes V Yes V Yes V Yes V Yes I	No	Not Present	✓
Samples in proper container/bottle? Were correct preservatives used and noted? Preservative added to bottles:	Yes ✓ Yes ✓	No No	NA	
Sample Condition? Sufficient sample volume for indicated test? Were container labels complete (ID, Pres, Date)? All samples received within holding time?	Intact Yes Yes Yes Yes	Broken	Leaking	
Was an attempt made to cool the samples? All samples received at a temp. of > 0° C to 6.0° C? Response when temperature is outside of range:	Yes ✓ Yes ✓	No 🗌 No 🗆	NA NA	
Sample Temp. taken and recorded upon receipt?	Yes 🗸	No 📙		.7 °
Water - Were bubbles absent in VOC vials?	Yes 🗹	No 🗀	No Vials	∠
Water - Was there Chlorine Present?	Yes ☐	No ☐ No ☐	NA No Water	✓
Water - pH acceptable upon receipt? Are Samples considered acceptable?	res □ Yes ✓	No 🗆	NO Water	
Custody Seals present?	Yes 🗹	No \square		
Airbill or Sticker?	Air Bill	Sticker	Not Present	
Airbill No:	80810037463			
Case Number: SDG:	S.	AS:		
Any No response should be detailed in the comments section below,	if applicable.	=====	=====	========
Client Contacted? Yes No No NA Per Contact Mode: Fax: Client Instructions:	rson Contacted:	☐ In Person:		
Date Contacted: Contacted B Regarding: Comments:	Ву:			
CorrectiveAction:				

<u>WorkOrder:</u> 1507341

Certifications

STATE	CERTIFICATION #							
NEW YORK	10478							
NEW JERSEY	NY158							
CONNECTICUT	PH-0435							
MARYLAND	208							
MAS S AC HUS E TTS	M-NY026							
NEW HAMPSHIRE	2987							
RHODE IS LAND	LAO00340							
PENNS YLVANIA	68-00350							

Page 7 of 7

CHAIN-UF-CUS I UD Y / Analytical Kequest Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com

	www.paceiaus.com						-				
Se	Section A Required Clear Information	Section B Benuited Proiest Information:		Section C	,			Page:	_	ot ot	
New Year		Nedule of Folest mornanon.		Invoice Information:	ation:			A.			
	Company Section CNY Truc	Report 10. Same	•	Ameridori.	Allendon. Sarne			-	10 ST 2 3	うすう	
Adc		COPY TO: SUSCEN CUMMINS		Company Name:	ле:	į da	REGULATORY AGENCY	ζζ			
	Hamer 24 13017			Address:			NPDES 🛠 GR	GROUND WATER	TER (DRINKING WATER	ATER
点び	Greet ocicon @ Gealoge net	Purchase Order No.: 204183		Pace Quote Reference:			UST (* RC	RCRA	ing	OTHER	
Eつ	on-149, 500	Project Name: ASh "Read Presento		Pace Project			Site Location	73			
Re	quested Due Date/TAT: 7-70 (5	1 N 3		ace Profile #:	The second secon		STATE:	Z			
I L							Requested Analysis Filtered (Y/N)			A Company of the Comp	
		()			-	1 N					
	Required Client Information MATRIX / CODE	30 PE	1		Preservatives	//		1			
		MY COMPOSITE COMPOSITE ENDIGRAB	STE SAB SAB SAB SAB SAB SAB SAB SAB SAB SAB	S		1		(N/A)	*	KN124	
- William Company of the I	SAMPLE ID Oil Wipe (A-Z, 0-9 / -) Air Sample IDs MUST BE UNIQUE	CODE (a	TA 9MB	NTAINER: bev		Store Shre	rite Genesa Ived Pe	Chlorine		<u> </u>	
# M∃TI		S XIRTAM S AMPLE T TIME DATE	H M T 3J 4WAS	Unpreser H ₂ SO₄	Otper Methanol Na ₂ S ₂ O ₃ HCI HNO ₃	गंपा	Hang	Residual		Pace Project No./ Lab I.D.	ab I.D.
-	10- WIN	W16 1.6K	38	/ /	\ \ \	× × ×	>		1 WOLX	JM / HC	1
2	mw-02s		1300	;	\ \ \	×	× × ×			J	
က	حني:	WTG 12.15		7	//	X X X X	マ ママ			-	
4	MW-105	NT 6	5421	is)	\ \ \	X X X X X X	×		I XYO M	MI-HC	
ις											
9											
^											
80											
6											
9											
5 2									-		
<u>:</u>	ADDITIONAL COMMENTS	RELINQUISHED BY / AFFILIATION	DATE	TIME	ACCEPTE	ACCEPTED BY / AFFILIATION	DATE TIME		SAMPL	SAMPLE CONDITIONS	
		Dusan Cummin	7-6-13	257/	10.00 CM	Pog	7/6/15/1650				
		/ Pail Paul Page		1700	Ann H		1	3.7			
						-					
ı ay	Paç										
j e ∠\	i.	SAMPLER NAME AND SIGNATURE	ND SIGNATURE					၁.		19lo	tact
	からして かんとり このがか	PRINT Name	ne of SAMPLER:	SUSER	Susuntummins			uị du	bəviə √Y) e	Sd Co	ll sək (N/Y)
V	*************************************	SIGNATURE	RE OF SAMPLERSY	1 were	OF SAMPLERY JUST CHIMMENT	DATE Signed	27.76	Ten		90916	
			,			1	3	1	١,	-	3

July 7, 2015

Pace Analytical Services, Inc. ATTN: Nicole Johnson 2190 Technology Drive Schenectady, NY 12308 Nicole.johnson@pacelabs.com

RE: Project PAC-SN1501 Client Project: Geologic #209183

Dear Ms. Johnson,

On June 2, 2015, Brooks Rand Labs (BRL) received four (4) water samples. The samples were logged-in for the contracted analyses of dissolved ferrous iron [Fe(II)] and were field-filtered by the client. All samples were received, prepared, analyzed, and stored according to BRL SOPs and EPA methodology.

All Fe speciation results were not method blank-corrected in accordance to BRL SOPs. Sample results may have been evaluated using reporting limits that have been adjusted to account for sample aliquot size. Please refer to the *Sample Results* page for sample-specific MDLs, MRLs, and other details.

No laboratory fortified blanks (BS) were available for the Fe(II) analysis. A conversion test BS was performed, though not reportable, and internal confirmed the analysis was not converting Fe(II) to Fe(III).

All data was reported without qualification and all other associated quality control sample results met the acceptance criteria.

BRL, an accredited laboratory, certifies that the reported results of all analyses for which BRL is NELAP accredited meet all NELAP requirements. For more information please see the *Report Information* page in your report. Please feel free to contact me if you have any questions regarding this report.

Sincerely,

Tiffany Stilwater

Client Services Manager tiffany@brooksrand.com

Project ID: PAC-SY1502 **PM:** Tiffany Stilwater

BRL Report 1523004 Client PM: Nicole Johnson

Report Information

Laboratory Accreditation

BRL is accredited by the *National Environmental Laboratory Accreditation Program* (NELAP) through the State of Florida Department of Health, Bureau of Laboratories (E87982) and is certified to perform many environmental analyses. BRL is also certified by many other states to perform environmental analyses. For a current list of our accreditations/certifications, please visit our website at http://www.brooksrand.com/about/accreditations-certifications/>. Results reported relate only to the samples listed in the report.

Field Quality Control Samples

Please be notified that certain EPA methods require the collection of field quality control samples of an appropriate type and frequency; failure to do so is considered a deviation from some methods and for compliance purposes should only be done with the approval of regulatory authorities. Please see the specific EPA methods for details regarding required field quality control samples.

Common Abbreviations

BLK	method blank	MS	matrix spike
BRL	Brooks Rand Labs	MSD	matrix spike duplicate
BS	laboratory fortified blank	ND	non-detect
CAL	calibration standard	NR	non-reportable
CCB	continuing calibration blank	N/C	not calculated
CCV	continuing calibration verification	PS	post preparation spike
COC	chain of custody record	REC	percent recovery
D	dissolved fraction	RPD	relative percent difference
DUP	duplicate	RSD	relative standard deviation
IBL	instrument blank	SCV	secondary calibration verification
ICV	initial calibration verification	SOP	standard operating procedure
MDL	method detection limit	SRM	standard reference material
MRL	method reporting limit	T	total recoverable fraction

Definition of Data Qualifiers

(Effective 9/23/09)

- B Detected by the instrument, the result is > the MDL but ≤ the MRL. Result is reported and considered an estimate.
- **E** An estimated value due to the presence of interferences. A full explanation is presented in the narrative.
- **H** Holding time and/or preservation requirements not met. Result is estimated.
- **J** Estimated value. A full explanation is presented in the narrative.
- **J-M** Duplicate precision (RPD) for associated QC sample was not within acceptance criteria. Result is estimated.
- J-N Spike recovery for associated QC sample was not within acceptance criteria. Result is estimated.
- M Duplicate precision (RPD) was not within acceptance criteria. Result is estimated.
- N Spike recovery was not within acceptance criteria. Result is estimated.
- **R** Rejected, unusable value. A full explanation is presented in the narrative.
- U Result is ≤ the MDL or client requested reporting limit (CRRL). Result reported as the MDL or CRRL.
- **X** Result is not BLK-corrected and is within 10x the absolute value of the highest detectable BLK in the batch. Result is estimated.

These qualifiers are based on those previously utilized by Brooks Rand Labs, those found in the EPA <u>SOW ILM03.0</u>, Exhibit B, Section III, pg. B-18, and the <u>USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review; USEPA; January 2010. These supersede all previous qualifiers ever employed by BRL.</u>

Project ID: PAC-SY1502 **PM:** Tiffany Stilwater

BRL Report 1523004 Client PM: Nicole Johnson

Sample Information

Sample	Lab ID	Report Matrix	Type	Sampled	Received
MW-01	1523004-01	Water	Sample	06/01/2015	06/02/2015
MW-02S	1523004-02	Water	Sample	06/01/2015	06/02/2015
MW-09S	1523004-03	Water	Sample	06/01/2015	06/02/2015
MW-10S	1523004-04	Water	Sample	06/01/2015	06/02/2015

Batch Summary

Analyte	Lab Matrix	Method	Prepared	Analyzed	Batch	Sequence
Fe(II)	Water	SM 3500-Fe B mod.	06/02/2015	06/02/2015	B150821	1500428

Sample Results

Sample	Analyte	Report Matrix	Basis	Result Qualifier	MDL	MRL	Unit	Batch	Sequence
MW-01 1523004-01	Fe(II)	Water	D	88.9	13.4	40.0	μg/L	B150821	1500428
MW-02S 1523004-02	Fe(II)	Water	D	568.1	13.4	40.0	μg/L	B150821	1500428
MW-09S 1523004-03	Fe(II)	Water	D	1106.5	13.4	40.0	μg/L	B150821	1500428
MW-10S 1523004-04	Fe(II)	Water	D	79.0	13.4	40.0	μg/L	B150821	1500428

Project ID: PAC-SN1401 **PM:** Tiffany Stilwater

BRL Report 1523004 Client PM: Nicole Johnson

Accuracy & Precision Summary

Batch: B150821 Lab Matrix: Water

Method: SM 3500-Fe B mod.

Sample	Analyte	Native	Spike	Result	Units	REC & Limits	RPD & Limits
B150821-DUP1	Duplicate (1523004-01) Fe(II)	88.9		108.7	μg/L		13% 25
B150821-MS1	Matrix Spike (1523004-01) Fe(II)	88.9	200	301.3	μg/L	106% 75-125	
B150821-MSD1	Matrix Spike Duplicate (15) Fe(II)	23004-01) 88.9	200	306.3	μg/L	108% 75-125	2% 25

Project ID: PAC-SY1502 PM: Tiffany Stilwater

BRL Report 1523004 Client PM: Nicole Johnson

Method Blanks & Reporting Limits

Batch: B150821 Matrix: Water

Method: SM 3500-Fe B mod.

Analyte: Fe(II)

Sample	Result	Units
B150821-BLK1	0.0	μg/L
B150821-BLK2	0.0	μg/L
B150821-BLK3	0.0	μg/L
B150821-BLK4	0.0	μg/L

Limit: 20.0 Limit: 20.0 MRL: 20.0 **Project ID:** PAC-SY1502 **PM:** Tiffany Stilwater

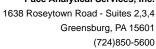
BRL Report 1523004 Client PM: Nicole Johnson

Sample Containers

	ID: 1523004-01 ple: MW-01		-	ort Matrix: Water ple Type:			cted: 06/01/2015 ived: 06/02/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler
	ID: 1523004-02 ple: MW-02S		•	ort Matrix: Water ple Type:			cted: 06/01/2015 ived: 06/02/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler
	ID: 1523004-03 ple: MW-09S		•	ort Matrix: Water ple Type:			cted: 06/01/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size 50ml vial 50ml vial	Lot 14-0182 14-0182	Preservation 1.6ml 6N HCL(PP) 1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler
	ID: 1523004-04 ple: MW-10S		-	ort Matrix: Water ple Type:			cted: 06/01/2015
Des A B	Container Vial Glass-SP EXTRA_VOL	Size Lot Preservation 50ml vial 14-0182 1.6ml 6N HCL(PP) 50ml vial 14-0182 1.6ml 6N HCL(PP)		1.6ml 6N HCL(PP)	P-Lot 1503005 1503005	pH <2 <2	Ship. Cont. cooler cooler

Shipping Containers

cooler


Received: June 2, 2015 9:30 **Tracking No:** 806663905935 via FedEx

Coolant Type: Ice Temperature: -1.2 °C Description: cooler
Damaged in transit? No
Returned to client? No

Custody seals present? Yes
Custody seals intact? Yes
COC present? Yes

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section Required		t Infor	mation:		Secti	on C e Informati	on:																				Pa	age:		of	
Company: PACE Analytical	Report To	20,000				Atten		3111	1													R	EGI	JLA	TO	RY	AG	ENC	Υ			
Address: 575 Broad Hollow Rd	Сору То:					Comp	any Name	:							7	T	- NF	DES	3	Г	GR	OUN	D W	ATE	R	Г	DR	INKIN	IG W	ATER	1.	_
Melville, NY 11747					= 7	Addre	ess:		1				_			Г	- u	ST		г	RCF	RA				Г	ОТН	IER_		_		
Email To: NICOLE. JUHNSUN ED PACE LABS. COM	Purchase Order No.:					Pace C	uote Refer	ence:											SIT	E			ľ	- (GA	Г	IL	Fi	N I	Гм	T	IC
Phone: Fax:	Project Na	ame:	# 2	2610	2	Pace P	roject Mana	iger.	7			_				Н		LC	CA	TIO	N		1	- (ЭН	F	sc	Γ.	wi I	r 0	THER_	NY
Requested Due Date/TAT:	Project Nun	mber.	-	0116		Pace F	Profile #:		- 3							Filt	ered	(Y/N	1)	//	1	//	7	1/	7	11	1/	77	11	77	11	
Section D Required Client Information Chinary WATER WATER	CODE	DE	PE		COLL	ECTE	D	P AT	IERS		F	rese	rvativ	es	i la	Rec	ques	ted	//	1	7	1	. /	1/	//	1	//	17,	1/	77	7	
SAMPLE ID SOLID (A-Z, 0-9 / ,-) (A-Z, 0-9 / ,-) SOLID WASHEWATER PRODUCT SOLID SOLID WASHEWATER PRODUCT WASHEWATER PRODUCT SOLID SOLID WASHEWATER PRODUCT SOLID SOLID WASHEWATER PRODUCT WASHEWATER PRODUCT SOLID SOLID WASHEWATER PRODUCT WASHEWATER PRODUCT WASHEWATER PRODUCT WASHEWATER PRODUCT WASHEWATER PRODUCT SOLID WASHEWATER PRODUCT PRO	DW WT WW P SL OL WP AR OT IS	MATRIX CODE	SAMPLE TYPE G=GRAB C=COMP	COM	POSITE ART	CON	MPOSITE D/GRAB	SAMPLE TEMI	# OF CONTAINERS	pserved			-	203	anol O4		/3			1		To Tall		/		//		//		Chome (1979)	Pres	Project No
Sample IDs MUST BE UNIQUE OTHER TISSUE			L	DATE	TIME	DATE	TIME		. 138	Unpreserv	H SC	豆	NaOH	Na ₂ S ₂ O ₃	Methanol Na2SO4	L	17	1	7/	Z		1	4	1	4	//	4	14	S. 1	_	Pace	Lab I.D
M14-01						411	11:10		2			2	-					10			X				Ц							
2 Mid-025					=1		10:03	3	2	П		Z									XI.				Ц							
8 MH-095							8:00		2			2	1 3								XI.				Ц			Ш	Ц			
4 1711-105					I E B	4	9:10		Z			2		5							X				Ц			Ш				
5										Н	-						4		4		1	\perp	4	\downarrow	H		\mathbb{H}					
6																						L		1	Ц	W.						
7																				Ш					Ц		П	4		-		3.1
8									3	Ш															П							
9															ij.										Ц		Ц					
10															i II															111		
11												П			(II)														I			ûnûr-
12			= 1				50	E					1					l V														
ADDITIONAL COMMENTS	REL	LINQL	JISHE	D BY /	AFFILIA	TION	DA	-	Т	IME		A	CCE		D BY								ATE			TIN	ΛE	V	SAN	IPLE	CONDI	IONS
	11	1.2	n	la	PAC	2	61.11	15	17:	a			(Q	YE	Щ	_	8	5R	L		61	11	5		69	3U		<u> </u>	Y.	X.N	×
			1																											¥.	X.N	××××××××××××××××××××××××××××××××××××××
-		/					i i																							X.	ΥN	×
																												M		YIN	N/A	Y.N
							ME AND		ATUR	E																		5	c ui dwa i	Received on Ice	Custody Sealed Cooler	Samples Intact
					SIGNA	TURE 0	of SAMPL	ER:	1	_									TE Sig);			_				1	E	Rece	Custod	Sampl

August 14, 2015

Ms. Susan Cummins Geologic NY 37 Copeland Avenue Homer, NY 13077

RE: Project: 209183 Ash Road Properties

Pace Project No.: 30155530

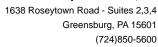
Dear Ms. Cummins:

Enclosed are the analytical results for sample(s) received by the laboratory on August 06, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rachel Christner rachel.christner@pacelabs.com


arrhol D Christman

Project Manager

Enclosures

cc: Chris Gabriel, Geologic NY Geologic NY Inc., Geologic NY

CERTIFICATIONS

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590

Arizona Certification #: AZ0734 **Arkansas Certification**

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification

Illinois Certification

Indiana Certification Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082

Nebraska Certification #: NE-05-29-14 Nevada Certification #: PA014572015-1

New Hampshire/TNI Certification #: 2976 New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

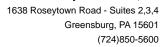
South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213

Vermont Dept. of Health: ID# VT-0282

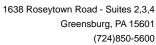

Virgin Island/PADEP Certification

Virginia/VELAP Certification #: 460198
Washington Certification #: C868

West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C Wisconsin Certification

Wyoming Certification #: 8TMS-L



SAMPLE ANALYTE COUNT

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
30155530001	MW-01	EPA 8260C	RES	46	PASI-PA
30155530002	MW-02S	EPA 8260C	RES	46	PASI-PA
30155530003	MW-02S MS	EPA 8260C	RES	46	PASI-PA
30155530004	MW-02S MSD	EPA 8260C	RES	46	PASI-PA
30155530005	MW-10S	EPA 8260C	RES	46	PASI-PA
30155530006	MW-10S Duplicate	EPA 8260C	RES	46	PASI-PA
30155530007	MW-09	EPA 8260C	RES	46	PASI-PA
30155530008	Trip Blank	EPA 8260C	RES	46	PASI-PA

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Method: EPA 8260C
Description: 8260C MSV
Client: Geologic NY
Date: August 14, 2015

General Information:

8 samples were analyzed for EPA 8260C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/24524

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 30155530002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

MSD (Lab ID: 935843)cis-1,2-Dichloroethene

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 209183 Ash Road Properties

Date: 08/14/2015 04:06 PM

Sample: MW-01	Lab ID: 301	55530001	Collected: 08/05/1	5 11:40	Received: 08/06/15 10:50	Matrix: Water
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No. Qua
8260C MSV	Analytical Meth	nod: EPA 82	260C			
Acetone	ND	ug/L	10.0	1	08/11/15 15:	12 67-64-1
Benzene	ND	ug/L	1.0	1	08/11/15 15:	12 71-43-2
Bromochloromethane	ND	ug/L	1.0	1	08/11/15 15:	12 74-97-5
Bromodichloromethane	ND	ug/L	1.0	1	08/11/15 15:	12 75-27-4
Bromoform	ND	ug/L	1.0	1	08/11/15 15:	12 75-25-2
Bromomethane	ND	ug/L	1.0	1	08/11/15 15:	12 74-83-9
2-Butanone (MEK)	ND	ug/L	10.0	1	08/11/15 15:	12 78-93-3
Carbon disulfide	ND	ug/L	1.0	1	08/11/15 15:	12 75-15-0
Carbon tetrachloride	ND	ug/L	1.0	1	08/11/15 15:	12 56-23-5
Chlorobenzene	ND	ug/L	1.0	1	08/11/15 15:	12 108-90-7
Chloroethane	ND	ug/L	1.0	1	08/11/15 15:	12 75-00-3
Chloroform	ND	ug/L	1.0	1	08/11/15 15:	
Chloromethane	ND	ug/L	1.0	1	08/11/15 15:	
Dibromochloromethane	ND	ug/L	1.0	1		12 124-48-1
1.2-Dichlorobenzene	ND	ug/L	1.0	1	08/11/15 15:	
1,3-Dichlorobenzene	ND	ug/L	1.0	1		12 541-73-1
1,4-Dichlorobenzene	ND	ug/L	1.0	1		12 106-46-7
,1-Dichloroethane	ND	ug/L	1.0	1	08/11/15 15:	
,2-Dichloroethane	ND ND	ug/L	1.0	1		12 107-06-2
,2-Dichloroethene (Total)	92.7	ug/L	2.0	1		12 540-59-0
. ,		•		1		
,1-Dichloroethene	ND	ug/L	1.0	1		12 75-35-4
cis-1,2-Dichloroethene	92.3	ug/L	1.0			12 156-59-2
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		12 156-60-5
,2-Dichloropropane	ND	ug/L	1.0	1	08/11/15 15:	
cis-1,3-Dichloropropene	ND	ug/L	1.0	1		12 10061-01-5
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		12 10061-02-6
Ethylbenzene	ND	ug/L	1.0	1		12 100-41-4
2-Hexanone	ND	ug/L	10.0	1		12 591-78-6
Methylene Chloride	ND	ug/L	1.0	1		12 75-09-2
I-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		12 108-10-1
Methyl-tert-butyl ether	ND	ug/L	1.0	1		12 1634-04-4
Styrene	ND	ug/L	1.0	1		12 100-42-5
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1	08/11/15 15:	
Tetrachloroethene	12.7	ug/L	1.0	1	08/11/15 15:	12 127-18-4
Toluene	ND	ug/L	1.0	1	08/11/15 15:	12 108-88-3
,2,4-Trichlorobenzene	ND	ug/L	1.0	1	08/11/15 15:	12 120-82-1
,1,1-Trichloroethane	ND	ug/L	1.0	1	08/11/15 15:	12 71-55-6
,1,2-Trichloroethane	ND	ug/L	1.0	1	08/11/15 15:	12 79-00-5
Frichloroethene Trichloroethene	5.7	ug/L	1.0	1	08/11/15 15:	12 79-01-6
/inyl chloride	ND	ug/L	1.0	1	08/11/15 15:	12 75-01-4
(ylene (Total)	ND	ug/L	3.0	1	08/11/15 15:	12 1330-20-7
n&p-Xylene	ND	ug/L	2.0	1		12 179601-23-1
o-Xylene	ND	ug/L	1.0	1	08/11/15 15:	
Surrogates		3				
I-Bromofluorobenzene (S)	97	%	84-113	1	08/11/15 15:	12 460-00-4
,2-Dichloroethane-d4 (S)	102	%	84-124	1		12 17060-07-0
Foluene-d8 (S)	98	%	79-118	1		12 2037-26-5

Project: 209183 Ash Road Properties

Date: 08/14/2015 04:06 PM

Sample: MW-02S	Lab ID: 301	55530002	Collected: 08/05/1	5 12:30	Received: 08	/06/15 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Meth	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		08/11/15 15:38	67-64-1	
Benzene	ND	ug/L	1.0	1		08/11/15 15:38	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		08/11/15 15:38	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		08/11/15 15:38	75-27-4	
Bromoform	ND	ug/L	1.0	1		08/11/15 15:38	75-25-2	
Bromomethane	ND	ug/L	1.0	1		08/11/15 15:38	74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		08/11/15 15:38	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		08/11/15 15:38	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		08/11/15 15:38	56-23-5	
Chlorobenzene	ND	ug/L	1.0	1		08/11/15 15:38	108-90-7	
Chloroethane	ND	ug/L	1.0	1		08/11/15 15:38	75-00-3	
Chloroform	ND	ug/L	1.0	1		08/11/15 15:38	67-66-3	
Chloromethane	ND	ug/L	1.0	1		08/11/15 15:38	74-87-3	
Dibromochloromethane	ND	ug/L	1.0	1		08/11/15 15:38	124-48-1	
1.2-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 15:38		
,3-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 15:38		
,4-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 15:38		
,1-Dichloroethane	ND	ug/L	1.0	1		08/11/15 15:38		
,2-Dichloroethane	ND	ug/L	1.0	1		08/11/15 15:38		
,2-Dichloroethene (Total)	130	ug/L	2.0	1		08/11/15 15:38		
,1-Dichloroethene	ND	ug/L	1.0	1		08/11/15 15:38		
is-1,2-Dichloroethene	130	ug/L	1.0	1		08/11/15 15:38		M1
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 15:38		
,2-Dichloropropane	ND	ug/L	1.0	1		08/11/15 15:38		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 15:38		
rans-1,3-Dichloropropene	ND ND	ug/L	1.0	1		08/11/15 15:38		
Ethylbenzene	ND ND	ug/L ug/L	1.0	1		08/11/15 15:38		
2-Hexanone	ND ND	ug/L	10.0	1		08/11/15 15:38		
Nethylene Chloride	ND ND	_	1.0	1		08/11/15 15:38		
		ug/L		1				
-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0			08/11/15 15:38		
Methyl-tert-butyl ether	ND	ug/L	1.0	1 1		08/11/15 15:38		
Styrene ,1,2,2-Tetrachloroethane	ND	ug/L	1.0			08/11/15 15:38		
	ND	ug/L	1.0	1		08/11/15 15:38		
etrachloroethene	372	ug/L	10.0	10		08/11/15 19:03		
oluene	ND	ug/L	1.0	1		08/11/15 15:38		
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		08/11/15 15:38		
,1,1-Trichloroethane	ND	ug/L	1.0	1		08/11/15 15:38		
,1,2-Trichloroethane	ND	ug/L	1.0	1		08/11/15 15:38		
richloroethene	87.0	ug/L	1.0	1		08/11/15 15:38		
/inyl chloride	14.5	ug/L	1.0	1		08/11/15 15:38		
(ylene (Total)	ND	ug/L	3.0	1		08/11/15 15:38		
n&p-Xylene	ND	ug/L	2.0	1		08/11/15 15:38		
-Xylene	ND	ug/L	1.0	1		08/11/15 15:38	95-47-6	
Surrogates								
-Bromofluorobenzene (S)	95	%	84-113	1		08/11/15 15:38		
,2-Dichloroethane-d4 (S)	102	%	84-124	1		08/11/15 15:38		
Toluene-d8 (S)	98	%	79-118	1		08/11/15 15:38	2037-26-5	

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

Sample: MW-02S MS	Lab ID: 301	55530003	Collected: 08/05/1	5 12:30	Received:	08/06/15 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C MSV	Analytical Meth	nod: EPA 82	260C					
Acetone	12.4	ug/L	10.0	1		08/11/15 17:21	l 67-64-1	
Benzene	16.9	ug/L	1.0	1		08/11/15 17:21	71-43-2	
Bromochloromethane	17.1	ug/L	1.0	1		08/11/15 17:21	74-97-5	
Bromodichloromethane	17.2	ug/L	1.0	1		08/11/15 17:21	75-27-4	
Bromoform	14.4	ug/L	1.0	1		08/11/15 17:21	75-25-2	
Bromomethane	11.0	ug/L	1.0	1		08/11/15 17:21	74-83-9	
P-Butanone (MEK)	16.3	ug/L	10.0	1		08/11/15 17:21	78-93-3	
Carbon disulfide	22.4	ug/L	1.0	1		08/11/15 17:21	75-15-0	
Carbon tetrachloride	17.1	ug/L	1.0	1		08/11/15 17:21		
Chlorobenzene	17.5	ug/L	1.0	1		08/11/15 17:21		
Chloroethane	19.3	ug/L	1.0	1		08/11/15 17:21		
Chloroform	16.7	ug/L	1.0	1		08/11/15 17:21		
Chloromethane	19.8	ug/L	1.0	1		08/11/15 17:21		
Dibromochloromethane	16.5		1.0	1		08/11/15 17:21		
		ug/L						
,2-Dichlorobenzene	16.2	ug/L	1.0	1		08/11/15 17:21		
,3-Dichlorobenzene	16.5	ug/L	1.0	1		08/11/15 17:21		
,4-Dichlorobenzene	16.8	ug/L	1.0	1		08/11/15 17:21		
,1-Dichloroethane	17.1	ug/L	1.0	1		08/11/15 17:21		
,2-Dichloroethane	16.1	ug/L	1.0	1		08/11/15 17:21		
,2-Dichloroethene (Total)	165	ug/L	2.0	1		08/11/15 17:21	1 540-59-0	
,1-Dichloroethene	18.1	ug/L	1.0	1		08/11/15 17:21	75-35-4	
is-1,2-Dichloroethene	148	ug/L	1.0	1		08/11/15 17:21	156-59-2	
ans-1,2-Dichloroethene	17.6	ug/L	1.0	1		08/11/15 17:21	156-60-5	
,2-Dichloropropane	16.7	ug/L	1.0	1		08/11/15 17:21	78-87-5	
sis-1,3-Dichloropropene	16.1	ug/L	1.0	1		08/11/15 17:21	10061-01-5	
rans-1,3-Dichloropropene	16.8	ug/L	1.0	1		08/11/15 17:21	10061-02-6	
Ethylbenzene	17.1	ug/L	1.0	1		08/11/15 17:21	I 100-41-4	
-Hexanone	18.2	ug/L	10.0	1		08/11/15 17:21	591-78-6	
Methylene Chloride	13.9	ug/L	1.0	1		08/11/15 17:21	75-09-2	
-Methyl-2-pentanone (MIBK)	16.2	ug/L	10.0	1		08/11/15 17:21		
Methyl-tert-butyl ether	20.3	ug/L	1.0	1		08/11/15 17:21		
Styrene	17.9	ug/L	1.0	1		08/11/15 17:21		
,1,2,2-Tetrachloroethane	16.5	ug/L	1.0	1		08/11/15 17:21		
etrachloroethene	605	ug/L	10.0	10		08/11/15 17:46		
oluene	17.0	ug/L	1.0	10		08/11/15 17:40		
,2,4-Trichlorobenzene	16.2	•	1.0	1		08/11/15 17:21		
,1,1-Trichloroethane	17.6	ug/L	1.0	1		08/11/15 17:21		
		ug/L						
,1,2-Trichloroethane	16.8	ug/L	1.0	1		08/11/15 17:21		
richloroethene	102	ug/L	1.0	1		08/11/15 17:21		
/inyl chloride	36.5	ug/L	1.0	1		08/11/15 17:21		
(ylene (Total)	52.4	ug/L	3.0	1		08/11/15 17:21		
n&p-Xylene	34.8	ug/L	2.0	1			179601-23-1	
-Xylene	17.5	ug/L	1.0	1		08/11/15 17:21	l 95-47-6	
Surrogates								
-Bromofluorobenzene (S)	95	%	84-113	1		08/11/15 17:21		
,2-Dichloroethane-d4 (S)	102	%	84-124	1		08/11/15 17:21		
Toluene-d8 (S)	99	%	79-118	1		08/11/15 17:21	2037-26-5	

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

Sample: MW-02S MSD	Lab ID: 301	55530004	Collected: 08/05/1	5 12:30	Received:	08/06/15 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C MSV	Analytical Meth	nod: EPA 82	260C					
Acetone	13.7	ug/L	10.0	1		08/11/15 18:12	2 67-64-1	
Benzene	16.2	ug/L	1.0	1		08/11/15 18:12	2 71-43-2	
Bromochloromethane	17.2	ug/L	1.0	1		08/11/15 18:12	2 74-97-5	
Bromodichloromethane	16.9	ug/L	1.0	1		08/11/15 18:12	2 75-27-4	
Bromoform	14.9	ug/L	1.0	1		08/11/15 18:12	2 75-25-2	
Bromomethane	13.8	ug/L	1.0	1		08/11/15 18:12	2 74-83-9	
-Butanone (MEK)	15.6	ug/L	10.0	1		08/11/15 18:12	2 78-93-3	
Carbon disulfide	21.8	ug/L	1.0	1		08/11/15 18:12	2 75-15-0	
Carbon tetrachloride	17.3	ug/L	1.0	1		08/11/15 18:12		
Chlorobenzene	17.1	ug/L	1.0	1		08/11/15 18:12		
Chloroethane	19.9	ug/L	1.0	1		08/11/15 18:12		
Chloroform	17.1	ug/L	1.0	1		08/11/15 18:12		
Chloromethane	19.6	ug/L	1.0	1		08/11/15 18:12		
Dibromochloromethane	16.5	ug/L	1.0	1		08/11/15 18:12		
	17.5	-		1				
,2-Dichlorobenzene		ug/L	1.0			08/11/15 18:12		
,3-Dichlorobenzene	17.1	ug/L	1.0	1		08/11/15 18:12		
,4-Dichlorobenzene	17.7	ug/L	1.0	1		08/11/15 18:12		
,1-Dichloroethane	17.4	ug/L	1.0	1		08/11/15 18:12		
,2-Dichloroethane	16.8	ug/L	1.0	1		08/11/15 18:12		
,2-Dichloroethene (Total)	176	ug/L	2.0	1		08/11/15 18:12		
,1-Dichloroethene	18.5	ug/L	1.0	1		08/11/15 18:12		
is-1,2-Dichloroethene	158	ug/L	1.0	1		08/11/15 18:12	2 156-59-2	
ans-1,2-Dichloroethene	17.9	ug/L	1.0	1		08/11/15 18:12	2 156-60-5	
,2-Dichloropropane	15.7	ug/L	1.0	1		08/11/15 18:12	2 78-87-5	
is-1,3-Dichloropropene	16.3	ug/L	1.0	1		08/11/15 18:12	10061-01-5	
ans-1,3-Dichloropropene	16.3	ug/L	1.0	1		08/11/15 18:12	10061-02-6	
thylbenzene	16.7	ug/L	1.0	1		08/11/15 18:12	2 100-41-4	
-Hexanone	16.9	ug/L	10.0	1		08/11/15 18:12	2 591-78-6	
lethylene Chloride	14.7	ug/L	1.0	1		08/11/15 18:12	2 75-09-2	
-Methyl-2-pentanone (MIBK)	15.5	ug/L	10.0	1		08/11/15 18:12	2 108-10-1	
Methyl-tert-butyl ether	19.7	ug/L	1.0	1		08/11/15 18:12	2 1634-04-4	
Styrene	17.3	ug/L	1.0	1		08/11/15 18:12	2 100-42-5	
,1,2,2-Tetrachloroethane	17.6	ug/L	1.0	1		08/11/15 18:12		
etrachloroethene	552	ug/L	10.0	10		08/11/15 18:38		
oluene	16.8	ug/L	1.0	1		08/11/15 18:12		
,2,4-Trichlorobenzene	17.0	ug/L	1.0	1		08/11/15 18:12		
,1,1-Trichloroethane	17.8	ug/L	1.0	1		08/11/15 18:12		
,1,2-Trichloroethane	16.5	ug/L	1.0	1		08/11/15 18:12		
richloroethene	106			1		08/11/15 18:12		
		ug/L	1.0					
inyl chloride	37.0	ug/L	1.0	1		08/11/15 18:12		
(ylene (Total)	50.6	ug/L	3.0	1		08/11/15 18:12		
n&p-Xylene	33.6	ug/L	2.0	1		08/11/15 18:12		
-Xylene	17.0	ug/L	1.0	1		08/11/15 18:12	2 95-47-6	
Surrogates	27	0.4	04.440			00/44/45 46 15	100.00 4	
-Bromofluorobenzene (S)	97	%	84-113	1		08/11/15 18:12		
,2-Dichloroethane-d4 (S)	104	%	84-124	1		08/11/15 18:12		
「oluene-d8 (S)	93	%	79-118	1		08/11/15 18:12	2 2037-26-5	

Project: 209183 Ash Road Properties

Date: 08/14/2015 04:06 PM

Sample: MW-10S	Lab ID: 301	55530005	Collected: 08/05/1	5 13:25	Received:	08/06/15 10:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C MSV	Analytical Met	hod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		08/11/15 16:04	1 67-64-1	
Benzene	ND	ug/L	1.0	1		08/11/15 16:04	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		08/11/15 16:04	1 74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		08/11/15 16:04	75-27-4	
Bromoform	ND	ug/L	1.0	1		08/11/15 16:04	75-25-2	
Bromomethane	ND	ug/L	1.0	1		08/11/15 16:04	1 74-83-9	
P-Butanone (MEK)	ND	ug/L	10.0	1		08/11/15 16:04	1 78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		08/11/15 16:04	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		08/11/15 16:04		
Chlorobenzene	ND	ug/L	1.0	1		08/11/15 16:04		
Chloroethane	ND	ug/L	1.0	1		08/11/15 16:04		
Chloroform	ND	ug/L	1.0	1		08/11/15 16:04		
Chloromethane	ND	ug/L	1.0	1		08/11/15 16:04		
Dibromochloromethane	ND ND	•	1.0	1		08/11/15 16:04		
		ug/L						
,2-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:04		
,3-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:04		
,4-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:04		
,1-Dichloroethane	ND	ug/L	1.0	1		08/11/15 16:04		
,2-Dichloroethane	ND	ug/L	1.0	1		08/11/15 16:04	1 107-06-2	
,2-Dichloroethene (Total)	ND	ug/L	2.0	1		08/11/15 16:04	1 540-59-0	
,1-Dichloroethene	ND	ug/L	1.0	1		08/11/15 16:04	75-35-4	
is-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 16:04	156-59-2	
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 16:04	156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		08/11/15 16:04	78-87-5	
is-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 16:04	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 16:04	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		08/11/15 16:04	1 100-41-4	
-Hexanone	ND	ug/L	10.0	1		08/11/15 16:04	591-78-6	
Methylene Chloride	ND	ug/L	1.0	1		08/11/15 16:04	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		08/11/15 16:04		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		08/11/15 16:04		
Styrene	ND	ug/L	1.0	1		08/11/15 16:04		
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		08/11/15 16:04		
etrachloroethene	3.7	ug/L	1.0	1		08/11/15 16:04		
	ND	_	1.0	1				
oluene		ug/L		•		08/11/15 16:04		
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:04		
,1,1-Trichloroethane	ND	ug/L	1.0	1		08/11/15 16:04		
,1,2-Trichloroethane	ND	ug/L	1.0	1		08/11/15 16:04		
richloroethene	ND	ug/L	1.0	1		08/11/15 16:04		
'inyl chloride	ND	ug/L	1.0	1		08/11/15 16:04		
(ylene (Total)	ND	ug/L	3.0	1		08/11/15 16:04		
n&p-Xylene	ND	ug/L	2.0	1			179601-23-1	
-Xylene	ND	ug/L	1.0	1		08/11/15 16:04	95-47-6	
Surrogates								
-Bromofluorobenzene (S)	97	%	84-113	1		08/11/15 16:04		
,2-Dichloroethane-d4 (S)	103	%	84-124	1		08/11/15 16:04	17060-07-0	
oluene-d8 (S)	100	%	79-118	1		08/11/15 16:04	2037-26-5	

Project: 209183 Ash Road Properties

Date: 08/14/2015 04:06 PM

Sample: MW-10S Duplicate	Lab ID: 301	55530006	Collected: 08/05/1	5 13:25	Received:	08/06/15 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3260C MSV	Analytical Met	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		08/11/15 16:29	67-64-1	
Benzene	ND	ug/L	1.0	1		08/11/15 16:29	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		08/11/15 16:29	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		08/11/15 16:29	75-27-4	
Bromoform	ND	ug/L	1.0	1		08/11/15 16:29	75-25-2	
Bromomethane	ND	ug/L	1.0	1		08/11/15 16:29	74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		08/11/15 16:29	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		08/11/15 16:29	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		08/11/15 16:29		
Chlorobenzene	ND	ug/L	1.0	1		08/11/15 16:29		
Chloroethane	ND	ug/L	1.0	1		08/11/15 16:29		
Chloroform	ND	ug/L	1.0	1		08/11/15 16:29		
Chloromethane	ND	ug/L	1.0	1		08/11/15 16:29		
Dibromochloromethane	ND	ug/L	1.0	1		08/11/15 16:29		
,2-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:29		
,3-Dichlorobenzene	ND ND		1.0	1		08/11/15 16:29		
,4-Dichlorobenzene	ND ND	ug/L	1.0	1		08/11/15 16:29		
		ug/L						
,1-Dichloroethane	ND	ug/L	1.0	1		08/11/15 16:29		
,2-Dichloroethane	ND	ug/L	1.0	1		08/11/15 16:29		
,2-Dichloroethene (Total)	ND	ug/L	2.0	1		08/11/15 16:29		
,1-Dichloroethene	ND	ug/L	1.0	1		08/11/15 16:29		
is-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 16:29		
rans-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 16:29		
,2-Dichloropropane	ND	ug/L	1.0	1		08/11/15 16:29		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 16:29		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 16:29		
Ethylbenzene	ND	ug/L	1.0	1		08/11/15 16:29		
-Hexanone	ND	ug/L	10.0	1		08/11/15 16:29	591-78-6	
Methylene Chloride	ND	ug/L	1.0	1		08/11/15 16:29	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		08/11/15 16:29	108-10-1	
flethyl-tert-butyl ether	ND	ug/L	1.0	1		08/11/15 16:29	1634-04-4	
Styrene	ND	ug/L	1.0	1		08/11/15 16:29	100-42-5	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		08/11/15 16:29	79-34-5	
etrachloroethene	3.0	ug/L	1.0	1		08/11/15 16:29	127-18-4	
oluene	ND	ug/L	1.0	1		08/11/15 16:29	108-88-3	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:29		
,1,1-Trichloroethane	ND	ug/L	1.0	1		08/11/15 16:29	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		08/11/15 16:29	79-00-5	
richloroethene	ND	ug/L	1.0	1		08/11/15 16:29		
'inyl chloride	ND	ug/L	1.0	1		08/11/15 16:29		
(ylene (Total)	ND	ug/L	3.0	1		08/11/15 16:29		
n&p-Xylene	ND	ug/L	2.0	1		08/11/15 16:29		
-Xylene	ND	ug/L	1.0	1		08/11/15 16:29		
Surrogates	IND	ug/L	1.0	'		00/11/10 10.28	33 41-0	
-Bromofluorobenzene (S)	95	%	84-113	1		08/11/15 16:29	460-00-4	
.2-Dichloroethane-d4 (S)	101	%	84-124	1		08/11/15 16:29		
Foluene-d8 (S)	101	% %	79-118	1		08/11/15 16:29		

Project: 209183 Ash Road Properties

Date: 08/14/2015 04:06 PM

Sample: MW-09	Lab ID: 301	55530007	Collected: 08/05/1	5 13:50	Received:	08/06/15 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260C MSV	Analytical Metl	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		08/11/15 16:55	67-64-1	
Benzene	ND	ug/L	1.0	1		08/11/15 16:55	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		08/11/15 16:55	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		08/11/15 16:55	75-27-4	
Bromoform	ND	ug/L	1.0	1		08/11/15 16:55	75-25-2	
Bromomethane	ND	ug/L	1.0	1		08/11/15 16:55	74-83-9	
2-Butanone (MEK)	ND	ug/L	10.0	1		08/11/15 16:55	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		08/11/15 16:55	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		08/11/15 16:55		
Chlorobenzene	ND	ug/L	1.0	1		08/11/15 16:55		
Chloroethane	ND	ug/L	1.0	1		08/11/15 16:55		
Chloroform	ND	ug/L	1.0	1		08/11/15 16:55		
Chloromethane	ND	ug/L	1.0	1		08/11/15 16:55		
Dibromochloromethane	ND	ug/L	1.0	1		08/11/15 16:55		
I.2-Dichlorobenzene	ND ND	ug/L	1.0	1		08/11/15 16:55		
,3-Dichlorobenzene	ND ND		1.0	1		08/11/15 16:55		
•	ND ND	ug/L	1.0	1		08/11/15 16:55		
,4-Dichlorobenzene		ug/L						
,1-Dichloroethane	ND	ug/L	1.0	1		08/11/15 16:55		
,2-Dichloroethane	ND	ug/L	1.0	1		08/11/15 16:55		
,2-Dichloroethene (Total)	9550	ug/L	100	50		08/12/15 12:49		
,1-Dichloroethene	2.4	ug/L	1.0	1		08/11/15 16:55		
cis-1,2-Dichloroethene	9500	ug/L	50.0	50		08/12/15 12:49		
rans-1,2-Dichloroethene	49.7	ug/L	1.0	1		08/11/15 16:55		
,2-Dichloropropane	ND	ug/L	1.0	1		08/11/15 16:55		
is-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 16:55		
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 16:55		
Ethylbenzene	ND	ug/L	1.0	1		08/11/15 16:55		
?-Hexanone	27.1	ug/L	10.0	1		08/11/15 16:55	5 591-78-6	
Methylene Chloride	ND	ug/L	1.0	1		08/11/15 16:55	75-09-2	
-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		08/11/15 16:55	108-10-1	
Nethyl-tert-butyl ether	ND	ug/L	1.0	1		08/11/15 16:55	1634-04-4	
Styrene	ND	ug/L	1.0	1		08/11/15 16:55	100-42-5	
,1,2,2-Tetrachloroethane	ND	ug/L	1.0	1		08/11/15 16:55	79-34-5	
etrachloroethene	12.4	ug/L	1.0	1		08/11/15 16:55	127-18-4	
oluene	ND	ug/L	1.0	1		08/11/15 16:55	108-88-3	
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		08/11/15 16:55		
,1,1-Trichloroethane	ND	ug/L	1.0	1		08/11/15 16:55	71-55-6	
,1,2-Trichloroethane	ND	ug/L	1.0	1		08/11/15 16:55	79-00-5	
richloroethene	5.0	ug/L	1.0	1		08/11/15 16:55		
/inyl chloride	123	ug/L	1.0	1		08/11/15 16:55		
(ylene (Total)	ND	ug/L	3.0	1		08/11/15 16:55		
n&p-Xylene	ND	ug/L	2.0	1		08/11/15 16:55		
o-Xylene	ND	ug/L	1.0	1		08/11/15 16:55		
Surrogates	ND	ug/L	1.0	•		00,11,10 10.00	, 50 -11-0	
-Bromofluorobenzene (S)	98	%	84-113	1		08/11/15 16:55	460-00-4	
,2-Dichloroethane-d4 (S)	103	%	84-124	1		08/11/15 16:55		
oluene-d8 (S)	98	%	79-118	1		08/11/15 16:55		

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

Sample: Trip Blank	Lab ID: 301	55530008	Collected: 08/05/1	5 00:01	Received: 08	3/06/15 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
2260C MSV	Analytical Meth	nod: EPA 82	260C					
Acetone	ND	ug/L	10.0	1		08/11/15 14:46	67-64-1	
Benzene	ND	ug/L	1.0	1		08/11/15 14:46	71-43-2	
Bromochloromethane	ND	ug/L	1.0	1		08/11/15 14:46	74-97-5	
Bromodichloromethane	ND	ug/L	1.0	1		08/11/15 14:46	75-27-4	
Bromoform	ND	ug/L	1.0	1		08/11/15 14:46	75-25-2	
Bromomethane	ND	ug/L	1.0	1		08/11/15 14:46	74-83-9	
P-Butanone (MEK)	ND	ug/L	10.0	1		08/11/15 14:46	78-93-3	
Carbon disulfide	ND	ug/L	1.0	1		08/11/15 14:46	75-15-0	
Carbon tetrachloride	ND	ug/L	1.0	1		08/11/15 14:46		
Chlorobenzene	ND	ug/L	1.0	1		08/11/15 14:46		
Chloroethane	ND	ug/L	1.0	1		08/11/15 14:46		
Chloroform	ND	ug/L	1.0	1		08/11/15 14:46		
Chloromethane	ND	•	1.0	1		08/11/15 14:46		
Dibromochloromethane	ND ND	ug/L		1		08/11/15 14:46		
		ug/L	1.0					
,2-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 14:46		
,3-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 14:46		
,4-Dichlorobenzene	ND	ug/L	1.0	1		08/11/15 14:46		
,1-Dichloroethane	ND	ug/L	1.0	1		08/11/15 14:46		
,2-Dichloroethane	ND	ug/L	1.0	1		08/11/15 14:46		
,2-Dichloroethene (Total)	ND	ug/L	2.0	1		08/11/15 14:46	540-59-0	
,1-Dichloroethene	ND	ug/L	1.0	1		08/11/15 14:46	75-35-4	
is-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 14:46	156-59-2	
ans-1,2-Dichloroethene	ND	ug/L	1.0	1		08/11/15 14:46	156-60-5	
,2-Dichloropropane	ND	ug/L	1.0	1		08/11/15 14:46	78-87-5	
is-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 14:46	10061-01-5	
rans-1,3-Dichloropropene	ND	ug/L	1.0	1		08/11/15 14:46	10061-02-6	
Ethylbenzene	ND	ug/L	1.0	1		08/11/15 14:46	100-41-4	
-Hexanone	ND	ug/L	10.0	1		08/11/15 14:46	5 591-78-6	
Methylene Chloride	ND	ug/L	1.0	1		08/11/15 14:46		
-Methyl-2-pentanone (MIBK)	ND	ug/L	10.0	1		08/11/15 14:46		
Methyl-tert-butyl ether	ND	ug/L	1.0	1		08/11/15 14:46		
Styrene	ND	ug/L	1.0	1		08/11/15 14:46		
,1,2,2-Tetrachloroethane	ND	•	1.0	1		08/11/15 14:46		
etrachloroethene	ND ND	ug/L	1.0	1		08/11/15 14:46		
		ug/L						
oluene	ND	ug/L	1.0	1		08/11/15 14:46		
,2,4-Trichlorobenzene	ND	ug/L	1.0	1		08/11/15 14:46		
,1,1-Trichloroethane	ND	ug/L	1.0	1		08/11/15 14:46		
,1,2-Trichloroethane	ND	ug/L	1.0	1		08/11/15 14:46		
richloroethene	ND	ug/L	1.0	1		08/11/15 14:46		
'inyl chloride	ND	ug/L	1.0	1		08/11/15 14:46	75-01-4	
(ylene (Total)	ND	ug/L	3.0	1		08/11/15 14:46	1330-20-7	
n&p-Xylene	ND	ug/L	2.0	1		08/11/15 14:46	179601-23-1	
-Xylene	ND	ug/L	1.0	1		08/11/15 14:46	95-47-6	
Surrogates								
-Bromofluorobenzene (S)	95	%	84-113	1		08/11/15 14:46	460-00-4	
,2-Dichloroethane-d4 (S)	102	%	84-124	1		08/11/15 14:46	17060-07-0	
oluene-d8 (S)	100	%	79-118	1		08/11/15 14:46	2037-26-5	

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

QC Batch: MSV/24524 Analysis Method: EPA 8260C
QC Batch Method: EPA 8260C Analysis Description: 8260C MSV

Associated Lab Samples: 30155530001, 30155530002, 30155530003, 30155530004, 30155530005, 30155530006, 30155530007,

30155530008

METHOD BLANK: 935840 Matrix: Water

Associated Lab Samples: 30155530001, 30155530002, 30155530003, 30155530004, 30155530005, 30155530006, 30155530007,

30155530008

Parameter Units Result Reporting Analyzed Qualifiers 1,1,1-Trichloroethane ug/L ND 1.0 08/11/15 14:21 1,1,2-Trichloroethane ug/L ND 1.0 08/11/15 14:21 1,1,2-Trichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Trichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropenpane ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Buanone (MEK) ug/L ND 1.0 08/11/15 14:21 2-Hexanone ug/L </th <th>3013330</th> <th>00000</th> <th>Diami</th> <th>Danamina</th> <th></th> <th></th>	3013330	00000	Diami	Danamina		
1,1,1-Trichloroethane ug/L ND 1.0 08/11/15 14:21 1,1,2,2-Tetrachloroethane ug/L ND 1.0 08/11/15 14:21 1,1,2-Trichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2,4-Trichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L	Parameter	Unite			Analyzed	Qualifiers
1,1,2,2-Tetrachloroethane ug/L ND 1.0 08/11/15 14:21 1,1,2-Trichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropropane ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Busanone ug/L ND 1.0 08/11/15 14:21 2-Hexanone ug/L ND		_				— Qualificis
1,1,2-Trichloroethane		-		_		
1,1-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,1-Dichloroethene ug/L ND 1.0 08/11/15 14:21 1,2-A-Trichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropenzene ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L<		•		_		
1,1-Dichloroethene ug/L ND 1.0 08/11/15 14:21 1,2,4-Trichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropropane ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Busine ug/L ND 1.0 08/11/15 14:21 2-Busine ug/L ND 1.		-				
1,2,4-Trichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropropane ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 10.0 08/11/15 14:21 Benzene	•					
1,2-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,2-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropropane ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 <	,			_		
1,2-Dichloroethane ug/L ND 1.0 08/11/15 14:21 1,2-Dichloropropane ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 <td></td> <td>· ·</td> <td></td> <td></td> <td></td> <td></td>		· ·				
1,2-Dichloropropane ug/L ND 1.0 08/11/15 14:21 1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21	,	-				
1,3-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21	•					
1,4-Dichlorobenzene ug/L ND 1.0 08/11/15 14:21 2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21	1,2-Dichloropropane			1.0	08/11/15 14:21	
2-Butanone (MEK) ug/L ND 10.0 08/11/15 14:21 2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloroptopene ug/L ND 1.0 08/11/15 14:21 </td <td>1,3-Dichlorobenzene</td> <td>ug/L</td> <td>ND</td> <td>1.0</td> <td>08/11/15 14:21</td> <td></td>	1,3-Dichlorobenzene	ug/L	ND	1.0	08/11/15 14:21	
2-Hexanone ug/L ND 10.0 08/11/15 14:21 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromodichloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloropropene ug/L ND 1.0 08/11/15 14:21	1,4-Dichlorobenzene			1.0	08/11/15 14:21	
4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 08/11/15 14:21 Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromodichloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloroethene ug/L ND 1.0 08/11/15 14:21 Chloropropene ug/L ND 1.0 08/11/15 14:21	2-Butanone (MEK)		ND	10.0	08/11/15 14:21	
Acetone ug/L ND 10.0 08/11/15 14:21 Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromodichloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	2-Hexanone	ug/L	ND	10.0	08/11/15 14:21	
Benzene ug/L ND 1.0 08/11/15 14:21 Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromodichloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloroethene ug/L ND 1.0 08/11/15 14:21 Chloropropene ug/L ND 1.0 08/11/15 14:21	4-Methyl-2-pentanone (MIBK)	ug/L	ND	10.0	08/11/15 14:21	
Bromochloromethane ug/L ND 1.0 08/11/15 14:21 Bromodichloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Acetone	ug/L	ND	10.0	08/11/15 14:21	
Bromodichloromethane ug/L ND 1.0 08/11/15 14:21 Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Benzene	ug/L	ND	1.0	08/11/15 14:21	
Bromoform ug/L ND 1.0 08/11/15 14:21 Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Bromochloromethane	ug/L	ND	1.0	08/11/15 14:21	
Bromomethane ug/L ND 1.0 08/11/15 14:21 Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Bromodichloromethane	ug/L	ND	1.0	08/11/15 14:21	
Carbon disulfide ug/L ND 1.0 08/11/15 14:21 Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Bromoform	ug/L	ND	1.0	08/11/15 14:21	
Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Bromomethane	ug/L	ND	1.0	08/11/15 14:21	
Carbon tetrachloride ug/L ND 1.0 08/11/15 14:21 Chlorobenzene ug/L ND 1.0 08/11/15 14:21 Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Carbon disulfide	ug/L	ND	1.0	08/11/15 14:21	
Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Carbon tetrachloride	ug/L	ND	1.0	08/11/15 14:21	
Chloroethane ug/L ND 1.0 08/11/15 14:21 Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Chlorobenzene	ug/L	ND	1.0	08/11/15 14:21	
Chloroform ug/L ND 1.0 08/11/15 14:21 Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Chloroethane	-	ND	1.0	08/11/15 14:21	
Chloromethane ug/L ND 1.0 08/11/15 14:21 cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Chloroform		ND	1.0	08/11/15 14:21	
cis-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21 cis-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21	Chloromethane		ND	1.0	08/11/15 14:21	
, , , , ,	cis-1,2-Dichloroethene	-	ND	1.0	08/11/15 14:21	
	cis-1,3-Dichloropropene	ug/L	ND	1.0	08/11/15 14:21	
· · · · · · · · · · · · · · · · · · ·	Dibromochloromethane		ND	1.0	08/11/15 14:21	
Ethylbenzene ug/L ND 1.0 08/11/15 14:21	Ethylbenzene	-	ND	1.0	08/11/15 14:21	
m&p-Xylene ug/L ND 2.0 08/11/15 14:21	-	-	ND	2.0	08/11/15 14:21	
Methyl-tert-butyl ether ug/L ND 1.0 08/11/15 14:21	. ,	· ·	ND	1.0	08/11/15 14:21	
Methylene Chloride ug/L ND 1.0 08/11/15 14:21			ND	1.0	08/11/15 14:21	
o-Xylene ug/L ND 1.0 08/11/15 14:21		-				
Styrene ug/L ND 1.0 08/11/15 14:21		-				
Tetrachloroethene ug/L ND 1.0 08/11/15 14:21		-	ND	1.0		
Toluene ug/L ND 1.0 08/11/15 14:21		· ·		_		
trans-1,2-Dichloroethene ug/L ND 1.0 08/11/15 14:21		-				
trans-1,3-Dichloropropene ug/L ND 1.0 08/11/15 14:21		-				
Trichloroethene ug/L ND 1.0 08/11/15 14:21		-				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

METHOD BLANK: 935840 Matrix: Water

Associated Lab Samples: 30155530001, 30155530002, 30155530003, 30155530004, 30155530005, 30155530006, 30155530007,

30155530008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Vinyl chloride	ug/L	ND ND	1.0	08/11/15 14:21	
Xylene (Total)	ug/L	ND	3.0	08/11/15 14:21	
1,2-Dichloroethane-d4 (S)	%	102	84-124	08/11/15 14:21	
4-Bromofluorobenzene (S)	%	96	84-113	08/11/15 14:21	
Toluene-d8 (S)	%	97	79-118	08/11/15 14:21	

LABORATORY CONTROL SAMPLE	: 935841					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		19.8	99	62-130	
1,1,2,2-Tetrachloroethane	ug/L	20	20.2	101	74-115	
1,1,2-Trichloroethane	ug/L	20	19.7	99	73-121	
1,1-Dichloroethane	ug/L	20	20.3	102	64-125	
1,1-Dichloroethene	ug/L	20	19.3	97	58-126	
1,2,4-Trichlorobenzene	ug/L	20	20.4	102	72-136	
1,2-Dichlorobenzene	ug/L	20	19.8	99	76-117	
1,2-Dichloroethane	ug/L	20	18.9	94	66-124	
1,2-Dichloropropane	ug/L	20	19.1	96	66-119	
1,3-Dichlorobenzene	ug/L	20	19.9	99	73-116	
1,4-Dichlorobenzene	ug/L	20	19.6	98	75-119	
2-Butanone (MEK)	ug/L	20	18.9	95	69-126	
2-Hexanone	ug/L	20	20.2	101	53-118	
4-Methyl-2-pentanone (MIBK)	ug/L	20	19.1	95	68-124	
Acetone	ug/L	20	16.7	84	56-142	
Benzene	ug/L	20	19.5	98	69-123	
Bromochloromethane	ug/L	20	19.2	96	61-133	
Bromodichloromethane	ug/L	20	20.4	102	64-120	
Bromoform	ug/L	20	17.6	88	56-133	
Bromomethane	ug/L	20	14.3	71	19-151	
Carbon disulfide	ug/L	20	25.2	126	53-173	
Carbon tetrachloride	ug/L	20	19.7	99	52-133	
Chlorobenzene	ug/L	20	20.3	102	72-121	
Chloroethane	ug/L	20	20.1	100	53-143	
Chloroform	ug/L	20	19.7	98	63-123	
Chloromethane	ug/L	20	20.5	103	48-139	
cis-1,2-Dichloroethene	ug/L	20	18.6	93	63-123	
cis-1,3-Dichloropropene	ug/L	20	19.2	96	65-121	
Dibromochloromethane	ug/L	20	20.4	102	58-132	
Ethylbenzene	ug/L	20	20.1	100	70-123	
m&p-Xylene	ug/L	40	41.1	103	71-124	
Methyl-tert-butyl ether	ug/L	20	23.6	118	69-133	
Methylene Chloride	ug/L	20	17.1	86	55-134	
o-Xylene	ug/L	20	20.8	104	69-118	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

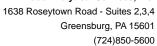
Date: 08/14/2015 04:06 PM

ABORATORY CONTROL SAMPLE:	935841					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
rene	ug/L		21.4	107	66-126	
chloroethene	ug/L	20	17.7	89	62-131	
ne	ug/L	20	19.6	98	73-123	
-1,2-Dichloroethene	ug/L	20	19.4	97	61-124	
1,3-Dichloropropene	ug/L	20	19.8	99	70-111	
proethene	ug/L	20	19.3	97	66-125	
chloride	ug/L	20	20.5	102	58-131	
ie (Total)	ug/L	60	61.9	103	70-123	
ichloroethane-d4 (S)	%			100	84-124	
nofluorobenzene (S)	%			96	84-113	
ne-d8 (S)	%			99	79-118	

MATRIX SPIKE & MATRIX SPIKE	2		935843								
			MS	MSD					o. 5		
Danasatan		155530002	Spike	Spike	MS	MSD	MS 0/ Date	MSD	% Rec	DDD	0
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
1,1,1-Trichloroethane	ug/L	ND	20	20	17.6	17.8	88	89	62-130	1	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	20	16.5	17.6	83	88	74-115	7	
1,1,2-Trichloroethane	ug/L	ND	20	20	16.8	16.5	84	83	73-121	2	
1,1-Dichloroethane	ug/L	ND	20	20	17.1	17.4	86	87	64-125	1	
1,1-Dichloroethene	ug/L	ND	20	20	18.1	18.5	90	93	58-126	3	
1,2,4-Trichlorobenzene	ug/L	ND	20	20	16.2	17.0	81	85	72-136	4	
1,2-Dichlorobenzene	ug/L	ND	20	20	16.2	17.5	81	88	76-117	8	
1,2-Dichloroethane	ug/L	ND	20	20	16.1	16.8	81	84	66-124	4	
J.2-Dichloropropane	ug/L	ND	20	20	16.7	15.7	84	78	66-119	6	
,3-Dichlorobenzene	ug/L	ND	20	20	16.5	17.1	83	85	73-116	3	
,4-Dichlorobenzene	ug/L	ND	20	20	16.8	17.7	84	89	75-119	5	
2-Butanone (MEK)	ug/L	ND	20	20	16.3	15.6	81	78	69-126	4	
2-Hexanone	ug/L	ND	20	20	18.2	16.9	91	85	53-118	7	
I-Methyl-2-pentanone (MIBK)	ug/L	ND	20	20	16.2	15.5	81	78	68-124	4	
Acetone	ug/L	ND	20	20	12.4	13.7	62	69	56-142	10	
Benzene	ug/L	ND	20	20	16.9	16.2	84	81	69-123	4	
Bromochloromethane	ug/L	ND	20	20	17.1	17.2	85	86	61-133	1	
Bromodichloromethane	ug/L	ND	20	20	17.2	16.9	86	85	64-120	2	
Bromoform	ug/L	ND	20	20	14.4	14.9	72	74	56-133	3	
Bromomethane	ug/L	ND	20	20	11.0	13.8	55	69	19-151	23	
Carbon disulfide	ug/L	ND	20	20	22.4	21.8	112	109	53-173	3	
Carbon tetrachloride	ug/L	ND	20	20	17.1	17.3	86	87	52-133	1	
Chlorobenzene	ug/L	ND	20	20	17.5	17.1	88	86	72-121	2	
Chloroethane	ug/L	ND	20	20	19.3	19.9	97	100	53-143	3	
Chloroform	ug/L	ND	20	20	16.7	17.1	84	86	63-123	2	
Chloromethane	ug/L	ND	20	20	19.8	19.6	99	98	48-139	1	
sis-1,2-Dichloroethene	ug/L	130	20	20	148	158	91	143	63-123	7 M1	
cis-1,3-Dichloropropene	ug/L	ND	20	20	16.1	16.3	80	82	65-121	2	
Dibromochloromethane	ug/L	ND	20	20	16.5	16.5	83	83	58-132	0	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

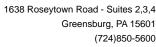

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

MATRIX SPIKE & MATRIX SPIR	KE DUPLICAT	E: 93584	2		935843						
			MS	MSD							
	30	155530002	Spike	Spike	MS	MSD	MS	MSD	% Rec		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	Qual
Ethylbenzene	ug/L	ND	20	20	17.1	16.7	86	83	70-123	3	
m&p-Xylene	ug/L	ND	40	40	34.8	33.6	87	84	71-124	4	
Methyl-tert-butyl ether	ug/L	ND	20	20	20.3	19.7	102	99	69-133	3	
Methylene Chloride	ug/L	ND	20	20	13.9	14.7	69	73	55-134	6	
o-Xylene	ug/L	ND	20	20	17.5	17.0	88	85	69-118	3	
Styrene	ug/L	ND	20	20	17.9	17.3	89	87	66-126	3	
Tetrachloroethene	ug/L	372	200	200	605	552	116	90	62-131	9	
Toluene	ug/L	ND	20	20	17.0	16.8	85	84	73-123	1	
trans-1,2-Dichloroethene	ug/L	ND	20	20	17.6	17.9	86	88	61-124	2	
trans-1,3-Dichloropropene	ug/L	ND	20	20	16.8	16.3	84	81	70-111	3	
Trichloroethene	ug/L	87.0	20	20	102	106	77	96	66-125	4	
Vinyl chloride	ug/L	14.5	20	20	36.5	37.0	110	112	58-131	1	
Xylene (Total)	ug/L	ND	60	60	52.4	50.6	87	84	70-123	3	
1,2-Dichloroethane-d4 (S)	%						102	104	84-124		
4-Bromofluorobenzene (S)	%						95	97	84-113		
Toluene-d8 (S)	%						99	93	79-118		

SAMPLE DUPLICATE: 935844					
		30155530005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
1,1,1-Trichloroethane	ug/L	ND	ND		
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		
1,1,2-Trichloroethane	ug/L	ND	ND		
1,1-Dichloroethane	ug/L	ND	ND		
1,1-Dichloroethene	ug/L	ND	ND		
1,2,4-Trichlorobenzene	ug/L	ND	ND		
1,2-Dichlorobenzene	ug/L	ND	ND		
1,2-Dichloroethane	ug/L	ND	ND		
1,2-Dichloropropane	ug/L	ND	ND		
1,3-Dichlorobenzene	ug/L	ND	ND		
1,4-Dichlorobenzene	ug/L	ND	ND		
2-Butanone (MEK)	ug/L	ND	ND		
2-Hexanone	ug/L	ND	ND		
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		
Acetone	ug/L	ND	ND		
Benzene	ug/L	ND	ND		
Bromochloromethane	ug/L	ND	ND		
Bromodichloromethane	ug/L	ND	ND		
Bromoform	ug/L	ND	ND		
Bromomethane	ug/L	ND	ND		
Carbon disulfide	ug/L	ND	ND		
Carbon tetrachloride	ug/L	ND	ND		
Chlorobenzene	ug/L	ND	ND		
Chloroethane	ug/L	ND	ND		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

SAMPLE DUPLICATE: 935844					
		30155530005	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Chloroform	ug/L	ND	ND		
Chloromethane	ug/L	ND	ND		
cis-1,2-Dichloroethene	ug/L	ND	ND		
cis-1,3-Dichloropropene	ug/L	ND	ND		
Dibromochloromethane	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
m&p-Xylene	ug/L	ND	ND		
Methyl-tert-butyl ether	ug/L	ND	ND		
Methylene Chloride	ug/L	ND	ND		
o-Xylene	ug/L	ND	ND		
Styrene	ug/L	ND	ND		
Tetrachloroethene	ug/L	3.7	3.0	20	
Toluene	ug/L	ND	ND		
trans-1,2-Dichloroethene	ug/L	ND	ND		
trans-1,3-Dichloropropene	ug/L	ND	ND		
Trichloroethene	ug/L	ND	ND		
Vinyl chloride	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
1,2-Dichloroethane-d4 (S)	%	103	101	2	
4-Bromofluorobenzene (S)	%	97	95	2	
Toluene-d8 (S)	%	100	102	2	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

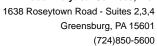
SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.


LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 08/14/2015 04:06 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 209183 Ash Road Properties

Pace Project No.: 30155530

Date: 08/14/2015 04:06 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30155530001	MW-01	EPA 8260C	MSV/24524		
30155530002	MW-02S	EPA 8260C	MSV/24524		
30155530003	MW-02S MS	EPA 8260C	MSV/24524		
30155530004	MW-02S MSD	EPA 8260C	MSV/24524		
30155530005	MW-10S	EPA 8260C	MSV/24524		
30155530006	MW-10S Duplicate	EPA 8260C	MSV/24524		
30155530007	MW-09	EPA 8260C	MSV/24524		
30155530008	Trip Blank	EPA 8260C	MSV/24524		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical"
www.pacelabs.com

Pace Project No./ Lab I.D. Samples Intact (V/V) DRINKING WATER SAMPLE CONDITIONS 5 OTHER (N/X) Custody Sealed Cooler တ ŏ 282 9 X 0 3 Ice (Y/N) GROUND WATER Received on Resid N/Y) 4.9 O° ni qmaT Page: シブ REGULATORY AGENCY RCRA TILLS 0 Requested Analysis Filtered (Y/N) TIME 8-62105 Site Location 8-5-15 STATE: NPDES DATE UST DATE Signed (MM/DD/YY): mac ACCEPTED BY / AFFILIATION Pact ED48500. Analysis Test Susan ammins Lucantiemmon N/A Same Other Methanol Na₂S₂O₃ Preservatives NaOH HCI Invoice Information: HNO Company Name "OSZH Manager: Pace Profile #: Section C Reference: Pace Project 18:00 ace Quote TIME 8-5-15 17:17 Unpreserved Address: # OF CONTAINERS 3 3 M 3 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER; SAMPLE TEMP AT COLLECTION DATE 2/12/18 1325 1230 子二 1325 8-545 1350 TIME 1234 COMPOSITE END/GRAB 8-5.15 8575 8.5.15 8-515 8-515 8-515 DATE COLLECTED Susan Cummins 6240 81602 GNY RELINQUISHED BY / AFFILIATION 20918 Ash Road TIME COMPOSITE DATE Same Required Project Information: A 46 ME SAMPLE TYPE 9 MA STO Purchase Order No.: (G=GRAB C=COMP) 5 (see valid codes to left) MATRIX CODE Project Number Project Name: Section B Report To: ORIGINAL Copy To: Matrix Codes
MATRIX / CODE Drinking Water Deplicat Water Waste Water MSI MSD Cacologicny@Geologic,nel Product Soil/Solid Oil Wipe Inc Hamer, Ny 1307 ADDITIONAL COMMENTS 350 Cologic Ny IND Blank Q (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE MW-025 SAMPLE ID 201-mw MW-025 mu-105 MW-09 Po. Box Requested Due Date/TAT: / Required Client Information Section A Required Client Information: mm-o Section D Company: Address: Page 20 of 22 9 Ŧ 12 # MJTI ~ က 4 ro. 9 1 00 o

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 15% per month for any involces not paid within 30 days.

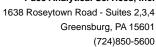
F-ALL-Q-020rev.07, 15-May-2007

Sample Condition Upon Receipt

Pace Analytical Client Name	: Geologic	Project # 30 1 5 5 5 3 0
Courler: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Clien		
Custody Seal on Cooler/Box Present: Yes	no Seals	sintact: 🗹 yes 🔲 no Biological Tissue is Frozen: Yes No
Packing Material: Bubble Wrap Bubble Bag	s None	Other
Thermometer Used 5 Type	of Ice: Wet Blu	e None
Cooler Temp.: Observed Temp.: 0 , 6 °C Co		
Temp should be above freezing to 6°C		Comments:
Chain of Custody Present:	ØYes □No □N/A	
Chain of Custody Filled Out:	☐Yes ☐No ☐N/A	2.
Chain of Custody Relinquished:	☑Yes ☐No ☐N/A	3.
Sampler Name & Signature on COC:	dYes □No □N/A	4.
Samples Arrived within Hold Time:	tyes □No □N/A	5.
Short Hold Time Analysis (<72hr):	□Yes ☑No □N/A	6,
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.
Sufficient Volume:	ØYBS □No □N/A	8,
Correct Containers Used:	r Yes □No □N/A	9.
-Pace Containers Used:	ÓYes □No □N/A	
Containers Intact:	Myes □No □N/A	10.
Filtered volume received for Dissolved tests	□Yes □No ☑N/A	11.
Sample Labels match COC:	Myes □No □N/A	12.
-Includes date/time/ID/Analysis Matrix:	wo	
All containers needing preservation have been checked.	□Yes □No ☑N/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No 🍎N/A	
exceptions: VOA coliform, TOC, O&G, Phenois	☑Yes ☐No	Initial when completed Completed Completed Completed Completed Complete Com
Samples checked for dechlorination:	□Yes □No □N/A	
Headspace in VOA Vials (>6mm):	☐Yes ☐No ☐N/A	7-1
Trip Blank Present:	Myes ONO MAR	र्शिक्य
Trip Blank Custody Seals Present	☑Yes □No □N/A	A Company of the Comp
Pace Trip Blank Lot # (if purchased):		
		Field Data Required? Y / N

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

30155530


Client Name: [-ea l Bg.)

Project Number:

page 2

Page 22 of 22

Other								
ТөйбО								
poldIS								
Cubitainer (500 ml / 4L)								
Radchem Nalgene (1/2 gal. / 1 gal.L)								
Radchem Walgene (125 / 250 / 500 / 1L)								
Wipes / swipe\ smear\ filter								
Sacteria (120 ml)								
(lm 003) abiilus								
Cyanide (250 ml)								
(Im 06 (m 04) AOV	~	2	2					
(1१) मवा								
O & G (1L)								
V besolved Metals preserved V						-		
sletal Metals								
(Im 03S) XOT								
TOC (40 ml / 250 ml)								
Im 03S) soilonad								
Nutrient (250 / 500)								
(1t) soinsgio								
(Jr \ 005 \ 055) yitsimed								
Soil Kit (2 SB, 1M, soil jar)								
Glass Jar (120 / 250 / 500 / 1L)								
ebo⊃ xinteM	3		>					
o V metl	100	900	007		000			

August 18, 2015

Ms. Susan Cummins Geologic NY 37 Copeland Avenue Homer, NY 13077

RE: Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Dear Ms. Cummins:

Enclosed are the analytical results for sample(s) received by the laboratory on August 06, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

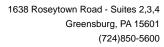
The samples were subcontracted to Pace Analytical Services, Inc., 575 Broad Hollow Road, Melville, NY 11747 for RSK-175 analysis. Results of the analysis are reported on the Pace Analytical, Melville data tables.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Rachel Christner

annal D Unistruct


rachel.christner@pacelabs.com

Project Manager

Enclosures

cc: Chris Gabriel, Geologic NY Geologic NY Inc., Geologic NY

CERTIFICATIONS

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Pennsylvania Certification IDs

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601

L-A-B DOD-ELAP Accreditation #: L2417

Alabama Certification #: 41590

Arizona Certification #: AZ0734 **Arkansas Certification**

California Certification #: 04222CA

Colorado Certification

Connecticut Certification #: PH-0694

Delaware Certification

Florida/TNI Certification #: E87683

Georgia Certification #: C040

Guam Certification Hawaii Certification Idaho Certification

Illinois Certification Indiana Certification

Iowa Certification #: 391

Kansas/TNI Certification #: E-10358

Kentucky Certification #: 90133

Louisiana DHH/TNI Certification #: LA140008 Louisiana DEQ/TNI Certification #: 4086

Maine Certification #: PA00091

Maryland Certification #: 308

Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification

Missouri Certification #: 235

Montana Certification #: Cert 0082 Nebraska Certification #: NE-05-29-14

Nevada Certification #: PA014572015-1 New Hampshire/TNI Certification #: 2976

New Jersey/TNI Certification #: PA 051

New Mexico Certification #: PA01457 New York/TNI Certification #: 10888

North Carolina Certification #: 42706

North Dakota Certification #: R-190

Oregon/TNI Certification #: PA200002 Pennsylvania/TNI Certification #: 65-00282

Puerto Rico Certification #: PA01457

Rhode Island Certification #: 65-00282

South Dakota Certification

Tennessee Certification #: TN2867

Texas/TNI Certification #: T104704188-14-8 Utah/TNI Certification #: PA014572015-5

USDA Soil Permit #: P330-14-00213 Vermont Dept. of Health: ID# VT-0282

Virgin Island/PADEP Certification

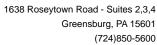
Virginia/VELAP Certification #: 460198
Washington Certification #: C868

West Virginia DEP Certification #: 143

West Virginia DHHR Certification #: 9964C

Wisconsin Certification

Wyoming Certification #: 8TMS-L



SAMPLE ANALYTE COUNT

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
0155528001	MW-01	EPA 6010C	CTS	1	PASI-PA
		SM 3500-Fe D	BMS	1	PASI-PA
		SM 5210B	BMS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		SM 5310C	MM1	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA
0155528002	MW-02S	EPA 6010C	CTS	2	PASI-PA
		SM 3500-Fe D	BMS	1	PASI-PA
		SM 5210B	BMS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		SM 5310C	MM1	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA
0155528003	MW-09S	EPA 6010C	CTS	2	PASI-PA
		SM 3500-Fe D	BMS	1	PASI-PA
		SM 5210B	BMS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		SM 5310C	MM1	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA
0155528004	MW-10S	EPA 6010C	CTS	1	PASI-PA
		SM 3500-Fe D	BMS	1	PASI-PA
		SM 5210B	BMS	1	PASI-PA
		SM 4500-CI-E	EHW	1	PASI-PA
		SM 5310C	MM1	1	PASI-PA
		SM 4500-NO2 B	PAS	1	PASI-PA

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Method:EPA 6010CDescription:6010C MET ICPClient:Geologic NYDate:August 18, 2015

General Information:

4 samples were analyzed for EPA 6010C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3005A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

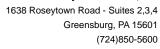
All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Method: SM 3500-Fe D
Description: Iron, Ferrous
Client: Geologic NY
Date: August 18, 2015

General Information:

4 samples were analyzed for SM 3500-Fe D. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

H1: Analysis conducted outside the EPA method holding time.

MW-01 (Lab ID: 30155528001)
MW-02S (Lab ID: 30155528002)
MW-09S (Lab ID: 30155528003)
MW-10S (Lab ID: 30155528004)

H6: Analysis initiated outside of the 15 minute EPA recommended holding time.

MW-01 (Lab ID: 30155528001)
MW-02S (Lab ID: 30155528002)
MW-09S (Lab ID: 30155528003)

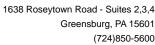
• MW-10S (Lab ID: 30155528004)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Method: SM 5210B

Description: 5210B BOD, 5 day **Client:** Geologic NY **Date:** August 18, 2015

General Information:

4 samples were analyzed for SM 5210B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with SM 5210B with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

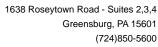
All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:


QC Batch: WET/29516

B1: Less than 1.0 mg/L DO remained for all dilutions set. The reported value is an estimated greater than value and is calculated for the dilution using the least amount of sample.

- MW-09S (Lab ID: 30155528003)
 - BOD, 5 day

B2: Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.

- MW-01 (Lab ID: 30155528001)
 - BOD, 5 day
- MW-02S (Lab ID: 30155528002)
 - BOD, 5 day
- MW-10S (Lab ID: 30155528004)
 - BOD, 5 day

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Method: SM 4500-CI-E
Description: 4500 Chloride
Client: Geologic NY
Date: August 18, 2015

General Information:

4 samples were analyzed for SM 4500-CI-E. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

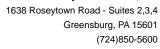
All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.


Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Method: SM 5310C
Description: 5310C TOC
Client: Geologic NY
Date: August 18, 2015

General Information:

4 samples were analyzed for SM 5310C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

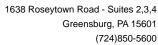
All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.


Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Method: SM 4500-NO2 B

Description: SM4500NO2-B, Nitrite, unpres

Client: Geologic NY

Date: August 18, 2015

General Information:

4 samples were analyzed for SM 4500-NO2 B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Date: 08/18/2015 09:40 AM

Sample: MW-01	Lab ID: 3015	5528001	Collected: 08/05/1	15 11:40	Received: 08	3/06/15 10:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical Meth	od: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
Sulfur	18300	ug/L	50.0	1	08/10/15 17:50	08/11/15 08:39)	
Iron, Ferrous	Analytical Meth	od: SM 35	00-Fe D					
Iron, Ferrous	ND	mg/L	0.10	1		08/07/15 02:13	3	H1,H6
5210B BOD, 5 day	Analytical Meth	od: SM 52	10B Preparation Me	thod: SN	M 5210B			
BOD, 5 day	6.0	mg/L	6.0	1	08/07/15 10:35	08/12/15 16:00)	B2
4500 Chloride	Analytical Meth	od: SM 45	00-CI-E					
Chloride	548	mg/L	300	100		08/10/15 12:06	16887-00-6	
5310C TOC	Analytical Meth	od: SM 53	10C					
Total Organic Carbon	2.8	mg/L	1.0	1		08/11/15 18:18	7440-44-0	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	od: SM 45	00-NO2 B					
Nitrite as N	ND	mg/L	0.010	1		08/06/15 20:10	14797-65-0	

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Date: 08/18/2015 09:40 AM

Sample: MW-02S	Lab ID: 3015	5528002	Collected: 08/05/	15 12:30	Received: 08	3/06/15 10:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical Meth	od: EPA 60	10C Preparation Me	ethod: E	PA 3005A			
Manganese	503	ug/L	5.0	1	08/10/15 17:50	08/11/15 08:55	7439-96-5	
Sulfur	8380	ug/L	50.0	1	08/10/15 17:50	08/11/15 08:55		
Iron, Ferrous	Analytical Meth	od: SM 350	0-Fe D					
Iron, Ferrous	0.40	mg/L	0.10	1		08/07/15 02:13		H1,H6
5210B BOD, 5 day	Analytical Meth	od: SM 521	0B Preparation Me	thod: SN	Л 5210B			
BOD, 5 day	6.0	mg/L	6.0	1	08/07/15 10:37	08/12/15 16:00		B2
4500 Chloride	Analytical Meth	od: SM 450	0-CI-E					
Chloride	558	mg/L	300	100		08/10/15 12:07	16887-00-6	
5310C TOC	Analytical Meth	od: SM 531	0C					
Total Organic Carbon	4.0	mg/L	1.0	1		08/11/15 18:36	7440-44-0	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	od: SM 450	0-NO2 B					
Nitrite as N	ND	mg/L	0.010	1		08/06/15 20:10	14797-65-0	

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Date: 08/18/2015 09:40 AM

Sample: MW-09S	Lab ID: 3015	5528003	Collected: 0	08/05/1	5 13:50	Received: 08	3/06/15 10:50 N	Matrix: Water	
Parameters	Results	Units	Report L	_imit	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical Meth	od: EPA 60	10C Preparat	ion Me	thod: Ef	PA 3005A			
Manganese Sulfur	29300 2680	ug/L ug/L		5.0 50.0	1 1	08/10/15 17:50 08/10/15 17:50			
Iron, Ferrous	Analytical Meth	od: SM 350	00-Fe D						
Iron, Ferrous	21.6	mg/L		1.0	10		08/07/15 02:13		H1,H6
5210B BOD, 5 day	Analytical Meth	od: SM 52	I0B Preparation	on Met	nod: SM	I 5210B			
BOD, 5 day	58.6	mg/L		20.0	1	08/07/15 10:40	08/12/15 16:00		B1
4500 Chloride	Analytical Meth	od: SM 450	00-CI-E						
Chloride	893	mg/L		300	100		08/10/15 12:08	16887-00-6	
5310C TOC	Analytical Meth	od: SM 53′	10C						
Total Organic Carbon	214	mg/L		10.0	10		08/12/15 10:31	7440-44-0	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	od: SM 450	00-NO2 B						
Nitrite as N	ND	mg/L	C	0.010	1		08/06/15 20:10	14797-65-0	

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Date: 08/18/2015 09:40 AM

Sample: MW-10S	Lab ID: 301	55528004	Collected: 08/05/	15 13:25	Received: 08	3/06/15 10:50 I	Matrix: Water	•
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010C MET ICP	Analytical Meth	od: EPA 60	010C Preparation Me	ethod: E	PA 3005A			
Sulfur	13000	ug/L	50.0	1	08/10/15 17:50	08/11/15 08:59		
Iron, Ferrous	Analytical Meth	od: SM 350	00-Fe D					
Iron, Ferrous	ND	mg/L	0.10	1		08/07/15 02:13		H1,H6
5210B BOD, 5 day	Analytical Meth	od: SM 52	10B Preparation Me	thod: SN	/I 5210B			
BOD, 5 day	6.0	mg/L	6.0	1	08/07/15 10:43	08/12/15 16:00)	B2
4500 Chloride	Analytical Meth	od: SM 450	00-CI-E					
Chloride	609	mg/L	300	100		08/10/15 12:08	16887-00-6	
5310C TOC	Analytical Meth	od: SM 53	10C					
Total Organic Carbon	3.0	mg/L	1.0	1		08/11/15 19:10	7440-44-0	
SM4500NO2-B, Nitrite, unpres	Analytical Meth	od: SM 450	00-NO2 B					
Nitrite as N	0.015	mg/L	0.010	1		08/06/15 20:10	14797-65-0	

209183 Ash Road Properties Project:

Pace Project No.: 30155528

Sulfur

QC Batch: MPRP/16184 Analysis Method: **EPA 6010C** QC Batch Method: **EPA 3005A** Analysis Description: 6010C MET

30155528001, 30155528002, 30155528003, 30155528004 Associated Lab Samples:

METHOD BLANK: 935572 Matrix: Water Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Reporting Blank

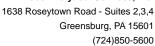
Limit Qualifiers Parameter Units Result Analyzed ND 08/11/15 08:17 Manganese ug/L 5.0 ug/L ND 50.0 08/11/15 08:17

LABORATORY CONTROL SAMPLE: 935573

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Manganese	ug/L	500	513	103	80-120	
Sulfur	ug/L	5000	5200	104	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 935576 935575 MSD MS 30155528001 Spike Spike MS MSD MS MSD % Rec Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual 403 Manganese ug/L 500 500 910 907 101 101 75-125 0 18300 Sulfur ug/L 5000 5000 23400 23800 103 111 75-125 2

MATRIX SPIKE SAMPLE:	935578						
		30154937004	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Manganese	ug/L	19.6	500	530	102	75-125	
Sulfur	ug/L	14100	5000	19500	108	75-125	


SAMPLE DUPLICATE: 935574 30155528001 Dup Units Result Result RPD Qualifiers Parameter Manganese 403 392 3 ug/L Sulfur ug/L 18300 18000 2

SAMPLE DUPLICATE: 935577

Date: 08/18/2015 09:40 AM

Parameter	Units	30154937004 Result	Dup Result	RPD	Qualifiers
Manganese	ug/L	19.6	19.4	1	
Sulfur	ug/L	14100	14200	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

QC Batch: WET/29508 Analysis Method: SM 3500-Fe D
QC Batch Method: SM 3500-Fe D Analysis Description: Iron, Ferrous

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

METHOD BLANK: 934234 Matrix: Water
Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

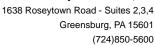
 Iron, Ferrous
 mg/L
 ND
 0.10
 08/07/15 02:13
 H6

LABORATORY CONTROL SAMPLE: 934235

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Ferrous mg/L 1.0 103 85-115 H6

MATRIX SPIKE SAMPLE: 934237

30155528001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers ND Iron, Ferrous 1 1.0 102 85-115 H1,H6 mg/L


SAMPLE DUPLICATE: 934236

Date: 08/18/2015 09:40 AM

 Parameter
 Units
 Result Result Result
 RPD Result
 Qualifiers

 Iron, Ferrous
 mg/L
 ND
 ND
 H1,H6

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

QC Batch: WET/29516 Analysis Method: SM 5210B

QC Batch Method: SM 5210B Analysis Description: 5210B BOD, 5 day

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

METHOD BLANK: 934672 Matrix: Water

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 BOD, 5 day
 mg/L
 ND
 2.0
 08/12/15 16:00

LABORATORY CONTROL SAMPLE: 934673

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers BOD, 5 day mg/L 198 214 108 84.6-115.4

SAMPLE DUPLICATE: 934674

Date: 08/18/2015 09:40 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 BOD, 5 day
 mg/L
 6.0
 6.0
 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

QC Batch: WETA/20862 Analysis Method: SM 4500-CI-E QC Batch Method: SM 4500-CI-E Analysis Description: 4500 Chloride

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

METHOD BLANK: 935179 Matrix: Water
Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chloride mg/L ND 3.0 08/10/15 12:00

METHOD BLANK: 935181 Matrix: Water

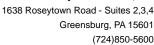
Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Chloride mg/L ND 3.0 08/10/15 12:01

LABORATORY CONTROL SAMPLE: 935180


Date: 08/18/2015 09:40 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/L 40 40.6 102 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 935182 935183

MS MSD MS 30155018002 Spike Spike MS MSD MSD % Rec Parameter Units Conc. Conc. Result Result % Rec % Rec Limits **RPD** Qual Result 2.9J 85-115 Chloride mg/L 20 20 22.5 22.5 98 98 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

QC Batch: WETA/20881 Analysis Method: SM 5310C

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

METHOD BLANK: 935919 Matrix: Water

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersTotal Organic Carbonmg/LND1.008/11/15 17:58

LABORATORY CONTROL SAMPLE: 935920

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/L 10 10.6 106 85-115

MATRIX SPIKE SAMPLE: 935923

30155290001 Spike MS MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 1.2 **Total Organic Carbon** 10 10.7 95 85-115 mg/L

SAMPLE DUPLICATE: 935924

Date: 08/18/2015 09:40 AM

Parameter Units September 20155290002 Dup Result RPD Qualifiers

Total Organic Carbon mg/L 1.4 1.3 1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

QC Batch: WETA/20846 Analysis Method: SM 4500-NO2 B

QC Batch Method: SM 4500-NO2 B Analysis Description: SM4500NO2-B, Nitrite, unpres

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

METHOD BLANK: 934198 Matrix: Water

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Nitrite as N mg/L ND 0.010 08/06/15 20:07

METHOD BLANK: 934199 Matrix: Water

Associated Lab Samples: 30155528001, 30155528002, 30155528003, 30155528004

Blank

Reporting

Qualifiers

Parameter Units Result Limit Analyzed

mg/L ND 0.010 08/06/15 20:07

LABORATORY CONTROL SAMPLE: 934200

Nitrite as N

Parameter Units Spike LCS LCS % Rec
Conc. Result % Rec Limits Qualifiers

Nitrite as N mg/L .1 0.096 96 90-110

MATRIX SPIKE SAMPLE: 934202

30155316002 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

Nitrite as N mg/L ND .1 0.095 95 85-115

SAMPLE DUPLICATE: 934201

Date: 08/18/2015 09:40 AM

 Parameter
 Units
 Result Result Result
 RPD Qualifiers

 Nitrite as N
 mg/L
 ND
 ND

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-PA Pace Analytical Services - Greensburg

ANALYTE QUALIFIERS

Date: 08/18/2015 09:40 AM

B1	Less than 1.0 mg/L DO remained for all dilutions set. The reported value is an estimated greater than value and is
	calculated for the dilution using the least amount of sample.

B2 Oxygen usage is less than 2.0 for all dilutions set. The reported value is an estimated less than value and is calculated for the dilution using the most amount of sample.

H1 Analysis conducted outside the EPA method holding time.

H6 Analysis initiated outside of the 15 minute EPA recommended holding time.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 209183 Ash Road Properties

Pace Project No.: 30155528

Date: 08/18/2015 09:40 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
30155528001	MW-01	EPA 3005A	MPRP/16184	EPA 6010C	ICP/15363
30155528002	MW-02S	EPA 3005A	MPRP/16184	EPA 6010C	ICP/15363
30155528003	MW-09S	EPA 3005A	MPRP/16184	EPA 6010C	ICP/15363
30155528004	MW-10S	EPA 3005A	MPRP/16184	EPA 6010C	ICP/15363
30155528001	MW-01	SM 3500-Fe D	WET/29508		
30155528002	MW-02S	SM 3500-Fe D	WET/29508		
30155528003	MW-09S	SM 3500-Fe D	WET/29508		
30155528004	MW-10S	SM 3500-Fe D	WET/29508		
30155528001	MW-01	SM 5210B	WET/29516	SM 5210B	WET/29572
30155528002	MW-02S	SM 5210B	WET/29516	SM 5210B	WET/29572
30155528003	MW-09S	SM 5210B	WET/29516	SM 5210B	WET/29572
30155528004	MW-10S	SM 5210B	WET/29516	SM 5210B	WET/29572
30155528001	MW-01	SM 4500-CI-E	WETA/20862		
30155528002	MW-02S	SM 4500-CI-E	WETA/20862		
30155528003	MW-09S	SM 4500-CI-E	WETA/20862		
30155528004	MW-10S	SM 4500-CI-E	WETA/20862		
30155528001	MW-01	SM 5310C	WETA/20881		
30155528002	MW-02S	SM 5310C	WETA/20881		
30155528003	MW-09S	SM 5310C	WETA/20881		
30155528004	MW-10S	SM 5310C	WETA/20881		
30155528001	MW-01	SM 4500-NO2 B	WETA/20846		
30155528002	MW-02S	SM 4500-NO2 B	WETA/20846		
30155528003	MW-09S	SM 4500-NO2 B	WETA/20846		
30155528004	MW-10S	SM 4500-NO2 B	WETA/20846		

REPORT OF LABORATORY ANALYSIS

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical *

 ∞ Pace Project No./ Lab I.D. DRINKING WATER S (N/Y)Samples Intact SAMPLE CONDITIONS S OTHER (N/Y)Custody Sealed Cooler 91 ₽ 200 B 8 Ice (Y/N) > GROUND WATER Received on Residual Chlorine (Y/N) 0 O° ni qmaT Page: REGULATORY AGENCY RCRA 1050 Requested Analysis Filtered (Y/N) TIME LOI DISSOINC HUMAN 8-5-15 Site Location STATE: 2/12/8 8416 NPDES X X X メメメメ DATE Manganest Manganest UST L 3/410 Chloride PACE (MM/DD/YY): DATE Signed ACCEPTED BY / AFFILIATION SULFUE HEMOUS **God** Lucien Cemmins **↓** test alest N/A SUDAN Cummers Other Methanol Preservatives Na₂S₂O₃ NaOH × HCI メイ nvoice Information HOO3 Company Name: "OSZH Manager: Pace Profile #: 17:5 Reference: Pace Project Section C ace Quote Unpreserved 4 TIME Address: × × # OF CONTAINERS SIGNATURE of SAMPLER: SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION 00 0) O 8/5/13 1330 DATE 123 1325 TIME 042 COMPOSITE END/GRAB Susan Cummins 8-5-15 8515 8518 8-515 Ash Road DATE COLLECTED 209183 204183 RELINQUISHED BY / AFFILIATION TIME COMPOSITE START Sum DATE Section B Required Project Information: MA 15/10 グブマ 979 Purchase Order No : (G=GRAB C=COMP) 39YT 3J9MAS Project Number MATRIX CODE Project Name: Report To: ORIGINAL Copy To: MATRIX / CODE Matrix Codes Drinking Water Water Waste Water Calogichy @geologic net Product Soil/Solid FSC Oil Wipe Air Tissue Other Hamer NY 1307 ADDITIONAL COMMENTS Sompany: Geologic NY 33 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 800 N mw-095 mw-005 SAMPLE ID mun-02 Section A Required Client Information: Required Client Information ddiess Po Box Requested Due Date/TAT: 9216 P41-100 Section D Page 22 of 36 9 7 12 3 4 r0 9 თ ITEM # 2 7 80

for any invoices not paid within 30 days Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per mently

F-ALL-Q-020rev.07, 15-May-2007

יייותווע אוומון ו Allalylical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

400 Pace Project No./ Lab I.D. DRINKING WATER (N/Y)Samples Intact SAMPLE CONDITIONS OTHER Custody Sealed Cooler (Y/N) 91 ₽ Ice (Y/N) GROUND WATER Received on Residual Chlorine (Y/N) J° ni qmeT Page: REGULATORY AGENCY RCRA 13 Requested Analysis Filtered (Y/N) TIME LRI 8-5-15 DISSOLUC FORUNZ 8/8/8 Site Location STATE: **NPDES** Manganest DOT DATE ××× メメ X UST DIMIR イメズ メメイ Chloride DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION Myins HEHMONE त्व Analysis Test 4 SIGNATURE OF SAMPLER: ALLOGIN CEMMINERS N/A SUDAN CURMINS Methanol Other Na₂S₂O₃ Preservatives NaOH HCI イイ Invoice Information: HNO3 × Company Name: H⁵2O⁴ 17:5 Section C Pace Quote Reference: Pace Project toe Profile # Unpreserved X × x TIME Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SAMPLE TEMP AT COLLECTION PRINT Name of SAMPLER: Ø 30 Û S -51/5/8 DATE 1330 325 1740 8615 123 TIME COMPOSITE END/GRAB SUSCEN CHMMINS 8.5.15 Ash Pead 8.515 513 DATE COLLECTED 209183 201183 3 RELINQUISHED BY / AFFILIATION TIME COMPOSITE Scurre DATE Section B Required Project Information: AGBY 10 C urchase Order No.: (G=GRAB C=COMP) SAMPLE TYPE ST 13 ž, Project Number (see valid codes to left) **AMATRIX CODE** roject Name: S4S6 Report To: Copy To: DWW WWW SL OL OL AR AR OT Matrix Codes
MATRIX / CODE Drinking Water Water Waste Water @ Gewleche rry Product Soil/Solid Air Tissue Other Oil 13017 ADDITIONAL COMMENTS Company Geologic NY (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 14- 1500 とのものと MW-095 SAMPLE ID Harner N MUD-07 246 Required Client Information Required Client Information: Address Po Buy mm-0 Requested Due Date/TAT: Sala sach Section D age 23 of 36 7 # MBTI 7 es 4 2 9 9 -00 6 12

Important Note. By signing this fo

Sample Condition Upon Receipt

30155528

Pace Analytical Client Name:	G	20	logic		Project #	
,						
Courier: ☐ Fed Ex ☐ UPS ☐ USPS ☐ Client Tracking #: 14go 2361	ЦС	Comme	ercial	Pace Other		_
Custody Seal on Cooler/Box Present: yes	□ n	10	Seals	intact: yes	no Biologica	il Tissue is Frozen: Yes No
Packing Material: Bubble Wrap Bubble Bags		None .	(Other		
Thermometer Used Type of	of Ice:	(Wet)	Blue	None 🖂 Sam	ples on Ice, cooling	process has begun
Cooler Temp.: Observed Temp.: 0.8 °C Core	rection	Facto	or: <u>-0</u>	<u>.</u> °C Final Temp:	0.4 °C	Date and initials of person
Temp should be above freezing to 6°C				Comments:		examining contents: 1
Chain of Custody Present:	ØYes	□No	□N/A	1.		0
Chain of Custody Filled Out:	D/es	□No	□N/A	2.		
Chain of Custody Relinguished:	Yes	□No	□N/A	3.		
Sampler Name & Signature on COC:	ØYes	□No	□N/A	4.		
Samples Arrived within Hold Time:	ØYes	□No	□n/a	5.		
Short Hold Time Analysis (<72hr):	Yes	□No	□N/A	6,		
Rush Turn Around Time Requested:	□Yes	ŪNo	□N/A	7.	<u></u>	111 = 01400
Sufficient Volume:	Yes	No	□N/A	envila an .8	- 401 1	13 CS - ALI Sampe
Correct Containers Used:	₩Yes	□No	□n/a	9. AAN -025	tas n	o metals both
-Pace Containers Used:	ŪYes	□No	□n/a	in	6/61-5	entra for metho
Containers Intact:	Yes	□No	□n/a	10.		
Filtered volume received for Dissolved tests	□Yes	₽Nº	□N/A	11.		
Sample Labels match COC:	⊠Yes	□No	□n/a	12.		
-Includes date/time/ID/Analysis Matrix:	WT		_			
All containers needing preservation have been checked.	₫Yes	□No	□n/a	13.		
All containers needing preservation are found to be in compliance with EPA recommendation.	√⊡Yes	□No	□n/a			194011941
exceptions: NGA, collform, TOC, O&G, Phenols	Tyes	□No		Initial when completed MJ	Lot # of added preservative	
Samples checked for dechlorination:	□√Yes	□No	□N/A	14.		
Headspace in VOA Vials (>6mm):	□Yes	ДΝο	□N/A	15.		
Trip Blank Present:	□Yes	□No	ďN/A	16.		
Trip Blank Custody Seals Present	□Yes	□No	ŪN/A			1
Pace Trip Blank Lot # (if purchased):						
Client Notification/ Resolution: Person Contacted: 5USIN CLIMMINS Comments/ Resolution: Notified Climit that Too vials w	ere (Yot .	Date/	Time: 8/7/15 10:	Field Data Req	uired? Y / N
-Toc vials mistakenly sent to Pa	ce-li	mg	Islan	d. Vials were	received or	n 818 by Pace-Gbg. Pos
Project Manager Review:	m	mo	0		Date:	8/7/15

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, Incorrect preservative, out of temp, Incorrect containers)

30155528

(real 097)

Project Number:

page 2

Other								
тейТО								
coldiZ								
Cubitainer (500 ml / 4L)								
Radchem Nalgene (1/2 gal. \ 1 gal.L)								
Radchem Nalgene (125 / 250 / 500 / 1L)								
nefliī hsems \eqiws \ seqiW								
(Im 02t) anetza8								
(500 ml)								
(So ml)								
(Jm 06 (m 0a)) AOV	~	2	٦	٦				
(11) मवर								
0 & G (1L)								
V beviesely preserved Y	_	~	-	_				
elsiaMetale	_		-	_				
(lm 03S) XOT								
TOC (40 m) / 250 ml)								
(Im 05S) soiloned9								
Nutrient (250 \ 500)								
(11) apinagtO								
Chemistry (250 (500/dD)	7	¥	7	7				
Soil kit (2 SB, 1M, soil jar)		N						
Glass Jar (120 / 250 / 500 / 1L)								
eboO xirtsM	7)				
ltem No.	100	700	003	000				

Sample Condition Upon Receipt

14		
3	, /	_
/	. Face Analytical	r
1-	a accounting nous	
1		

Client Name:	_ Gel	210	Project # 50155528
Courier: UFed Ex UPS USPS Clien	it 🗆 Comm	nercial	Pace Other
Tracking #: 7742375733			
Custody Seal on Cooler/Box Present: yes	no	Seals	intact: yes no Biological Tissue is Frozen: Yes No
Packing Material: Bubble WrapBubble Bags			
Thermometer UsedType	of Ice: We	∌ Blu	e None Samples on ice, cooling process has begun
Cooler Temp.: Observed Temp.: 5.3 °C Col	rrection Fac	tor:	or C Final Temp: 4.9 °C Date and initials of person examining contents:
Temp should be above freezing to 6°C			Comments:
Chain of Custody Present:	Yes □No	□N/A	1,
Chain of Custody Filled Out:	TYBS NO	□N/A	2.
Chain of Custody Relinquished:	∐Yes □No	□N/A	3.
Sampler Name & Signature on COC:	□Yes □No	□N/A	4.
Samples Arrived within Hold Time:	□XES □No	□N/A	5.
Short Hold Time Analysis (<72hr):	□Yes □Mo	□N/A	6.
Rush Turn Around Time Requested:	□Yes □No	□N/A	7,
Sufficient Volume:	ØYes □No	□n/a	8,
Correct Containers Used:	ØYes □No	□n/A	9,
-Pace Containers Used:	☐Yes ☐No	□N/A	
Containers Intact:	□Yes □No	□N/A	10.
Filtered volume received for Dissolved tests	□Yes □No	DINIA	11.
Sample Labels match COC:	☑Yes □No	□N/A	12.
-Includes date/time/ID/Analysis Matrix:1	No		
All containers needing preservation have been checked.	□Yes □No	MIA	13.
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No	□N/A	
exceptions: VOA, coliform, TOCTO&G, Phenols	DYES DNo		Initial when completed Lot # of added preservative
Samples checked for dechlorination:	□Yes □No	□ N/A	14.
Headspace in VOA Vials (>6mm):	□Yes □No	/	
Trip Blank Present:	□Yes □No	DN/A	16.
Trip Blank Custody Seals Present	□Yes □No	EN/A	
Pace Trip Blank Lot # (if purchased):	- jihili		
Client Notification/ Resolution:			Field Data Required? Y / N
Person Contacted:		_Date/	Time:
Comments/ Resolution:		-	1
Мен			
0 21			THE RESERVE TO SERVE THE RESERVE TO SERVE THE RESERVE
Project Manager Review:	TUNUL)	Date: 8/10/15

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, Incorrect preservative, out of temp, incorrect containers)

Project Number: 301555278

Client Name:

Ofher Other Ziploc Cubitainer (500 ml / 4L) Radchem Nalgene (1/2 gal. / 1 gal.L) Radchem Nalgene (125 / 250 / 500 / 1L) Mipes / swipe/ smear/ filter Bacteria (120 ml) (Im 003) ebillus Cyanide (250 ml) (Im 06 Im 04) AOV (11) H9T 08G(1L) V bevresery alsteM bevlossiO Total Metals TOX (250 ml) TOC (40 m) 250 ml) Phenolics (250 ml) Nutrient (250 / 500) Organics (1L) Chemistry (250 / 500 / 1L) Soil kit (2 SB, 1M, soil jar) Glass Jar (120 / 250 / 500 / 1L) Matrix Code tem No.

SCURF Back (C016-4 15May2012).xls

Page 27 of 36

NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services, Inc

1638 Roseytown Road Greensburgh, PA 15601 Results for the samples and analytes requested

LABORATORY RESULTS

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Type: Aqueous

Origin:

Lab No. : 1508510-001

Client Sample ID: MW-01

Collected : 8/5/2015 11:40:00 AM Received

: 8/6/2015 10:20:00 AM

Penny Westwick

209183, ASH ROAD

Collected By: SC99

Attn To:

Analytical Method: RSK-	-175 :					Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Methane	< 1.0	1	μg/L		08/10/2015 1:22 PM	Container-01 of 02
Surr: Propene	170	1	%REC	Limit 21-187	08/10/2015 1:22 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 8/17/2015 Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 7

NYSDOH ID#10478 www.pacelabs.com

Penny Westwick

Pace Analytical Services, Inc

1638 Roseytown Road Greensburgh, PA 15601 the lab and is responsible only for the certified tests requested.

209183, ASH ROAD

Client Sample ID: MW-02S

Lab No. : 1508510-002

LABORATORY RESULTS Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at

Sample Information:

Type: Aqueous

Origin:

Collected : 8/5/2015 12:30:00 PM

: 8/6/2015 10:20:00 AM Received

Collected By: SC99

Attn To:

Analytical Method: RSK-175 :		<u>'</u>		<u> </u>	·	·	Analyst: MaiN
Parameter(s)	Results	Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Methane	290	D	43	μg/L		08/10/2015 2:50 PM	Container-01 of 02
Surr: Propene	173		1	%REC	Limit 21-187	08/10/2015 1:33 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 8/17/2015

Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Penny Westwick

NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services, Inc

1638 Roseytown Road Greensburgh, PA 15601

209183, ASH ROAD

Lab No. : 1508510-003

LABORATORY RESULTS Results for the samples and analytes requested

the lab and is responsible only for the certified tests requested.

The lab is not directly responsible for the integrity of the sample before receipt at

Client Sample ID: MW-09S

Sample Information:

Type: Aqueous

Origin:

Collected : 8/5/2015 1:50:00 PM

: 8/6/2015 10:20:00 AM Received

Collected By: SC99

Attn To:

Analytical Method: RSK-175:						Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Methane	7.2	1	μg/L		08/10/2015 2:27 PM	Container-01 of 02
Surr: Propene	180	1	%REC	Limit 21-187	08/10/2015 2:27 PM	Container-01 of 02

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 8/17/2015

Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

NYSDOH ID#10478 www.pacelabs.com

Pace Analytical Services, Inc

1638 Roseytown Road Greensburgh, PA 15601

Attn To:

Collected By: SC99

Collected

Received

Penny Westwick

: 8/6/2015 10:20:00 AM

: 8/5/2015 1:25:00 PM

209183, ASH ROAD

LABORATORY RESULTS

Results for the samples and analytes requested

The lab is not directly responsible for the integrity of the sample before receipt at the lab and is responsible only for the certified tests requested.

Sample Information:

Type: Aqueous

Origin:

Analytical Method: RSK-175 :						Analyst: MaiN
Parameter(s)	Results Qualifier	<u>D.F.</u>	<u>Units</u>		Analyzed:	Container:
Methane	< 1.0	1	μg/L		08/10/2015 2:39 PM	Container-01 of 02
Surr: Propene	178	1	%REC	Limit 21-187	08/10/2015 2:39 PM	Container-01 of 02

Lab No. : 1508510-004

Client Sample ID: MW-10S

Qualifiers: E = Value above quantitation range, Value estimated.

B = Found in Blank

D.F. = Dilution Factor D = Results for Dilution

H = Received/analyzed outside of analytical holding time

+ = NYSDOH ELAP does not offer certification for this analyte / matrix / method

c = Calibration acceptability criteria exceeded for this analyte

R = Reporting limit below calibration range. Value estimated.

J = Estimated value - below calibration range

S = Recovery exceeded control limits for this analyte

N = Indicates presumptive evidence of compound

Date Reported: 8/17/2015

Project Manager

Test results meet the requirements of NELAC unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of the laboratory.

575 Broad Hollow Road Melville, NY 11747 TEL: (631) 694-3040

R81044

Quality Control Report

PACE ANALYTICAL

10478

DISSOLVED GASES Analysis:

WorkOrder: 1508510

Lab Batch ID:

Method: RSK-175_W

Method Blank

RunID: 81044 Units: µg/L SeqNo 1754227 Analysis Date: 8/7/2015 1:06:13 PM Analyst: MaiN

Analyte	Result	Rep Limit	Rep Qual
Methane	< 1.0	1.0	
Surr: Propene	10	1.0	

Laboratory Control Sample (LCS/LFB)

RunID: 81044 SeqNo 1754226 Units: μg/L Analysis Date: 8/7/2015 12:43:36 PM Analyst: MaiN

Analyte	LCS Spike Added	LCS Result	LCS % Recovery	 Result	LCSD % Recovery	RPD	RPD Limit	Low Limit	High Limit	Qual
Methane	5.450	3.8	69.0					22	166	
Surr: Propene	10.00	8.5	85.0					21	187	

Matrix Spike (MS) / Matrix Spike Duplicate (MSD)

Sample Spiked: 1508368-008C

SeqNo 1754241 RunID: 81044 Units: μg/L Analysis Date: 8/7/2015 3:51:12 PM Analyst: MaiN

Analyte	Sample Result	-			-	High Limit	MSD Spike Added	MSD Result	MSD % Rec	RPD	RPD Limit		High Limit	Qual	
Methane	0.6600	5.160	6.4	112	10	184	6.800	6.5	5	85.7	0.929	40)	10	184
Surr: Propene		10.00	16	155	21	187	10.00	12	2	117	0	40)	21	187

Qualifiers: Value exceeds Maximum Contaminant Level

> D Dilution was required.

Η Holding times for preparation or analysis exceeded M Manual Integration used to determine area response

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

N Tentatively identified compounds

O RSD is greater than RSDlimit

PACE ANALYTICAL 575 Broad Hollow Road Melville, NY 11747

TEL: (631) 694-3040 FAX: (631) 420-8436 Website: <u>www.pacelabs.com</u> Sample Receipt Checklist

Client Name: PACE-PA

Date and Time Received: 8/6/2015 10:20:00 AM

Work Order Number: 1		RcptNo: 1		Received by	: Jaclyn Kuri	
Completed by:	elyn 2	wi	Reviewed	by:	lemps	Car
Completed Date:	8/6/2015 5:13:16 PM		Reviewed	Date:	8/14/20	15 5:00:04 PM
Carrier name: FedEx						
Chain of custody present	?	Yes	✓	No 🗆		
Chain of custody signed	when relinquished and re	ceived? Yes	✓	No 🗆		
Chain of custody agrees	with sample labels?	Yes	✓	No 🔲		
Are matrices correctly ide	entified on Chain of custoo	dy? Yes	~	No 📙		
Is it clear what analyses	•	Yes		No 📙		
Custody seals intact on s	ample bottles?	Yes		No 🗀	Not Present	✓
Samples in proper contai	ner/bottle?	Yes	✓	No 📙		
Were correct preservative Preservative added to both		Yes	V	No 🗌	NA	
Sample Condition?		Intact		roken 🖳	Leaking	
Sufficient sample volume		Yes	✓	No 🗀		
Were container labels co		Yes	✓	No 📙		
All samples received with	-	Yes	✓	No 🗆		
Was an attempt made to	·	Yes	✓	No 🗌 No 🔲	NA	
•	temp. of > 0° C to 6.0° C	? Yes		NO L	NA	
Response when tempera Sample Temp. taken and		Yes	✓	No 🗌	To 1	1.3 °
Water - Were bubbles at	·	Yes	✓	No \square	No Vials	
Water - Was there Chlori		Yes		No \square	NA	<u></u>
Water - pH acceptable up		Yes	✓	No \square	No Water	
Are Samples considered	•	Yes	✓	No \square	110 TV ato.	_
Custody Seals present?	acceptable:	Yes	✓	No \square		
Airbill or Sticker?		Air Bill		ticker	Not Present	
Airbill No:			971 5956		NOCT TESCHI	
	CDC.	77.12.1				
Case Number:	SDG:		SAS:			
Any No response should	be detailed in the comme	ents section below, if applicat	ole. 			
Client Contacted?	☐ Yes ☐ No	✓ NA Person Conta	acted:			
Contact Mode:		Fax: Email:		In Person:		
Client Instructions:						
Date Contacted:		Contacted By:				
Regarding:		23asida 27.				
Comments:						
CorrectiveAction:						

<u>WorkOrder:</u> 1508510

Certifications

STATE	CERTIFICATION #
NEW YORK	10478
NEW JERSEY	NY158
CONNECTICUT	PH-0435
MARYLAND	208
MAS S AC HUS E TTS	M-NY026
NEW HAMPS HIRE	2987
RHODE IS LAND	LAO00340
PENNS YLVANIA	68-00350

Page 7 of 7

Pace Analytical www.pacelabra.com

Wor	Workorder: 30155528	Workorder Name: 209183 Ash Road Properties	.me:209183 ∌	Ash Road Prop	erties	ð	Owner Received Date:	ed Date:	8/6/2015		ults Requ	Results Requested By:	8/13/2015	
Repo	Report To Mandament III 18		Subcontracento	1676.				Billian State	Reguested Analysis	ted Analy	Sis-			
Ract Pace 1638	Rachel Christner Pace Analytical Services, Inc. 1638 Roseytown Road		Pace A 575 Br Melvilli	Pace Analytical Melville 575 Broad Hollow Road Melville, NY 11747	le ad							·		
Gree Phon	Greensburg, PA 15601 Phone (724)850-5600 Fax (999)999-999		Phone	Phone (631)694-3040			÷							
					1 2.00		200 200 200	ethane						
					The second secon			: W 921						
444	Sample ID	Sample Coffect Type Date/Tin	Collect DafaTime		Ž	.D:4		KSK-					LAB USE ONLY	
-	MW-01	PS 8/	8/5/2015 11:40	30155528001	Water	-		X					ろの多ろに	多
2	MW-028	PS 8/	8/5/2015 12:30	30155528002	Water	-		X						•
3	S60-WW	PS 8/	8/5/2015 13:50	30155528003	Water	-		X			-		,	
4	MW-10S	PS 8/	8/5/2015 13:25	30155528004	Water	-		X					9th00	
2														
										1,180	Comments			
Transfers	sters Roleased By		Date/Time	Receiyed By	, ,	,	Date/Time							
-	XXX		MILE KO	Sch As-	1	7	STAKE K	fo _{CC}						
7	16 - A		15	0	7									
8			-		(
ပ္ပိ	Cooler Temperature on Receipt	eipt 1,3 °C		Custody Seal Y	or (N	Re	Received on Ice		or N		Samples Intact	Intact Y	or N	

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

PEOI 3897 HIM

Page 1 of 1

Friday, August 07, 2015 10:57:09 AM

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be comploted accurately.

Pace Analytical"

Sec	Section A Required Client Information:	Section B Required Project Information:	t mieditr	nformation.				σ.	Section C	:								<u> </u>	Pago:		of	
Com	ypany:	Report To:						Ť	Invoice information:	rrnation											Č	
Addr	ქ.	Color To		SELY																	31.3	*
_	DOX 23	na Adasa		SUSAN	- 1	CHMPIERS	5	ا ر	Company Name:	ame:						JUDES	ATOR	REGULATORY AGENCY	ζ			
	Hamer NY 13017				į			<u>د</u>	Address:							NP	NPDES	GFR	GROUND WATER	/ATER		DRINKING WATER
į į	Tadagichy @ gowiegie net	Purchase Order No.:	Jider No	::6	209	209183		<u>7. ≅</u>	sterence.							: usr		RCRA	₹.			~
	- V 7	Project Name:	ne:	+	ASH	Pound	- }	<u>a 2</u>	Pace Project Manager	 					1	Site Location	cation			L		
Red	Requested Duo Date/TAT:	Project Number;	nber:		201183			2	oce Profile	<u></u>						Š	STATE:					
		1												Reque	sted A	nalysis	Filtere	Requested Analysis Filtered (Y/N)				
	Section D Matrix Codes Required Client Information MAJRIX_I_CQDE	Codes /_CODE		(A MI	Ö	COLLECTED			-	Prese	Preservatives		1 N /									
	D WW	iter DW WWW P P P	98000 blisv 99:	00=0 8AR8:	COMPOSITE	CON	COMPOSITE ENDIGINAL	OFFECTION					1	1	-	~	•	Lea	3.470	(N/A)		
	Sample ID Oil (A-Z, 0.9.7) Sample IDs MUST BE UNIQUE Oillier			=5) #4:					и1Аім <u>Е</u> Ка	<u> </u>			, taaT ela	ana	2(DF)	รวนหวิ	पत्र रेग			Chlorine (
# M∃TI		-	XIRTAM BIGMAS	SAMPLE '		 PAG	 ME		Jubreser	HCI HMO ³ H ⁵ 20 ⁴	HOSN VaOH	Methanci Other					D07	-	,			
-	12/07 CI	1-2	7	!	╂	135	~	œ		`~				, y	Ý	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ţ	-	+	-		AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
7	MW-023	3	1 <u>2</u>		<u> </u>	7, 7, 28	1 -	Œ	<u></u>		-		<u>\</u>	\ \	7	×		-	-	<u>}</u>		3
٣	mw-095	<u> </u>	77 77 70 70 70 70	- 65	!	8.515		23	×		1 = 1		<u>4 ×</u>	X		゚゙ヹ	1	<u> </u>		_		
4	-mw-405	78	77			8-518	525	30	3	77			7	77	X		イベ		!	<u> </u>		18C-13
ю ·			\dashv		_	_	-		1	-	Ţ				<u> </u>)
Δ -			-	-	_			\pm	+	+	\pm		<u> </u>	+	\downarrow							
60			+	-		-			+	\perp		$oxed{T}$	<u>!</u>				+		+			
5			;							 			·			<u> </u>		-	 			
21 ;			-			-							<u>i </u>									
12			+-		_	-			<u> </u>	+					-	+		1	+			
<u> </u>	ADDIŤIONAL COMMENTS		RELING	VISHED B	RELINQUISHED BY / AFFILIATION	TION	DATE	-	TIME T		¥	ZEPTED	BY / AF	ACCEPTED BY / AFFILIATION	- - - - - - - -	- A	DATE	TIME	1	SAN	SAMPLE CONDITIONS	TIONS
		J. J.	アメ	my	1/6	Ž	21/5/8	-	7:5	1	3	3	2	PAC	ر الإ ^ر ا	12/2	1	7.6				
·	· · · · · · · · · · · · · · · · · · ·	ant,	Z	1/2	DO	371			16.75		W.C.	dens	17	Pail	ZZ ZZ	19/19	13	7 7 7	71.4	7	7	\
)	175	Medi	oth 4	Thank	Wille	S) 140	81	3 90								╟┤					
Pla		//	Ì	/	1			$\vdash \mid$		Ш									<u> </u>			
ige 3	も20 35 to 2	The A	₹'	,	SAMPL	ER NAME	SAMPLER NAME AND SIGNATURE	URE) ၁.		voler.	
36 of	1401 147	である。	<u>\$</u>	5		PRINT Name of	me of SAMPLER:	<u> </u>	2	Š	SUSAN CUMMINS	Ment	. J						or da	covie: AVO p	(N/A) eq go nalogi	ni abic (V/V)
36	3	<i>⊙</i>	ی	ري		SIGNATURE of	IRE of SAMPLER;	- >	Trown		Cemerano	mer		DATE Signed (MM/DD/YY):	- 1	5-5	-575		ĕL		lea2	
	ifficotiant Rote: By symblin this form were severely	errenlinn Bonn'e NST	- L-	delivery	3	1	ر ال 1 م		4	· ` 	٠ ۲۲.	2										
)			-		-		~ /	_	7)										

APPENDIX E

Data Usability Summary Reports

DATA USABILITY SUMMARY REPORT ASH ROAD PROPERTIES 221 SYCAMORE ROAD TOWN OF VESTAL, NEW YORK

VOLATILE ANALYSES Order No. 1506421

Analyses performed by:

Pace Analytical Services, Inc. Melville, New York

Review performed by:

GeoLogic NY, Inc.

DATA SUMMARY

The following review of the data package is for the sample deliver group noted below from the Ash Road Properties site. Analyses were performed on the following samples.

Sample ID	Laboratory ID	Matrix	Sample	Analysis
			Date	VOA GC/MS
				8260
MW-01	1506421-001A	Water	6-01-2015	X
MW-02S	1506421-002A	Water	6-01-2015	X
MW-02S MS	1506421-002MS	Water	6-01-2015	X
MW-02S MSD	1506421-002MSD	Water	6-01-2015	X
MW-09S	1506421-003A	Water	6-01-2015	X
MW-10S	1506421-004A	Water	6-01-2015	X
Trip Blank	1506421-005A	Water	6-01-2015	X

INTRODUCTION

Analyses were performed according to USEPA SW-846 Method 8260C.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical methodology. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines, Region II.

- U The compound was analyzed for but not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- N The analysis indicates the presence of an analyte for which there is a presumptive evidence to make a tentative identification.
- NJ The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.
- R The sample results are unstable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

It should be noted that a compound concentration, even if quality control parameters have been met, is not a guarantee of accuracy, but adherence to quality control does increase confidence in data.

DATA REVIEW FOR VOLATILE ANALYSIS

Pace Analytical Services, Inc. (Pace) prepared a Sample Data Package for four water sample locations obtained on June 1, 2015 for the Ash Road Properties (GeoLogic Project No. 209183). The samples were received by the laboratory on June 2, 2015.

The Sample Data Package is complete as defined under the NYSDEC ASP as Level 2 Deliverables; there is a narrative and end results.

Holding Times

The specified holding times for the laboratory method and matrix are presented in the following table.

Analytical Method SW-8260B	
	Water
Holding Time	14 days from sample collection
Preservation	pH less than 2; cooled at 4° C ± 2°

All samples were analyzed within the specified holding times and samples were received in iced coolers, temperature of 2.1°C. The water samples were preserved with HCL and analyzed using EPA Method 8260C holding time for the preserved water samples. All samples had a pH 2 or less.

Quality Control Blanks

The quality assurance (QA) preparation blanks are prepared to identify contamination that may be attributed to laboratory contaminants. All compounds associated with the QA method blank exhibited a concentration less than the MDL, except for methylene chloride. Methylene chloride was detected in the Storage Blank at a concentration of 1.2 ug/L. Methylene chloride was not detected in any sample above the MDL; no action taken.

Field Duplicate Analysis

A field duplicate was collected, but was inadvertently not analyzed by the laboratory.

Calibrations

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions. All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05). Each target analyte produced the required levels of instrument response and acceptable degree of linearity except for dichlorodifluoromethane. It may be assumed that dichlorodifluoromethane would be detected, if present in the sample. Because dichlorodifluoromethane was not detected in samples, data qualifications are not required.

The continuing calibration verifies that the instrument's daily performance is satisfactory for all compounds except for bromomethane (%D 75.2), trichlorofluoromethane (%D 36.8), acetone (%D 23.2), dibromochloromethane (%D 26.5), bromoform (%D -23.2), and 1,2,4-trichlorobenzene (%D -22.1). The associated samples have been qualified with a "J" for these compounds.

Internal Standards

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC

exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD samples are collected to assess the precision and accuracy of the analytical methodology for a sample set. The compounds introduced into the MS/MSD samples must be recovered within the established acceptance limits. The relative percentage difference (RPD) between the MS/MSD recoveries must be within the laboratory established acceptance limits RPDs.

A review of the LCS analysis report indicates RPDs within the established criteria except for those compounds noted in the calibration section. None of these compounds were detected in the samples, only in the spikes samples.

Surrogates / System Monitoring Compounds

Soil samples were spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

The review of the Quantitation Reports indicates that all surrogate recovery ranges were met.

System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. The Data Package is complete as defined under the NYSDEC ASP Category B Deliverables. There is a narrative and end result. The package includes laboratory quality control/quality assurance calibration curves, chromatograms, and sample preparation forms.

File:P:\..209183\DUSR 1506421

DATA USABILITY SUMMARY REPORT ASH ROAD PROPERTIES 221 SYCAMORE ROAD TOWN OF VESTAL, NEW YORK

VOLATILE ANALYSES Order No. 30152660

Analyses performed by:

Pace Analytical Services, Inc. Greensburg, Pennsylvania

Review performed by:

GeoLogic NY, Inc.

DATA SUMMARY

The following review of the data package is for the sample deliver group noted below from the Ash Road Properties site. Analyses were performed on the following samples.

Sample ID	Laboratory ID	Matrix	Sample Date	Analysis VOA GC/MS 8260
MW-01	30152660001	Water	7-06-2015	X
MW-02S	30152660002	Water	7-06-2015	X
MW-02S MS	921835	Water	7-06-2015	X
MW-02S MSD	921836	Water	7-06-2015	X
MW-10S	30152660004	Water	7-06-2015	X
MW-01 Duplicate	30152660005	Water	7-06-2015	X
MW-09S	30152660003	Water	7-06-2015	X
Trip Blank	30152660007	Water	7-06-2015	Χ

INTRODUCTION

Analyses were performed according to USEPA SW-846 Method 8260C.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical methodology. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines, Region II.

- U The compound was analyzed for but not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- N The analysis indicates the presence of an analyte for which there is a presumptive evidence to make a tentative identification.
- NJ The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.
- R The sample results are unstable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

It should be noted that a compound concentration, even if quality control parameters have been met, is not a guarantee of accuracy, but adherence to quality control does increase confidence in data.

DATA REVIEW FOR VOLATILE ANALYSIS

Pace Analytical Services, Inc. (Pace) prepared a Sample Data Package for four water sample locations obtained on August 5, 2015 for the Ash Road Properties (GeoLogic Project No. 209183). The samples were received by the laboratory on June 6, 2015.

The Sample Data Package is complete as defined under the NYSDEC ASP as Level 2 Deliverables; there is a narrative and end results.

Holding Times

The specified holding times for the laboratory method and matrix are presented in the following table.

Analytical Method SW-8260B	
	Water
Holding Time	14 days from sample collection
Preservation	pH less than 2; cooled at 4° C ± 2°

All samples were analyzed within the specified holding times and samples were received in iced coolers, temperature of 2.4°C. The water samples were preserved with HCL and analyzed using EPA Method 8260C holding time for the preserved water samples. All samples had a pH of 2 or less.

Quality Control Blanks

The quality assurance (QA) preparation blanks are prepared to identify contamination that may be attributed to laboratory contaminants. All compounds associated with the QA method blank exhibited a concentration less than the MDL.

Field Duplicate Analysis

A field duplicate is collected for analysis to assess the precision and accuracy of the field sampling procedures as well as the analytical method. A control limit of 50% for water samples is applied to the RPD between the parent sample and the duplicate sample.

The RPDs between the parent sample and the duplicate sample were acceptable.

Calibrations

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions. All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05). Each target analyte produced the required levels of instrument response and acceptable degree of linearity except for dichlorodifluoromethane. It may be assumed that dichlorodifluoromethane would be detected, if present in the sample. Because dichlorodifluoromethane was not detected in samples, data qualifications are not required.

The continuing calibration verifies that the instrument's daily performance was satisfactory for all compounds except for bromomethane (%D 26.8) and bromoform (24.2%). The associated samples have been gualified with a "J" for these compounds.

Internal Standards

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD samples are collected to assess the precision and accuracy of the analytical methodology for a sample set. The compounds introduced into the MS/MSD samples must be recovered within the established acceptance limits. The relative percentage difference (RPD) between the MS/MSD recoveries must be within the laboratory established acceptance limits RPDs.

A review of the LCS analysis report indicates RPDs within the established criteria.

Surrogates / System Monitoring Compounds

Soil samples were spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

The review of the Quantitation Reports indicates that all surrogate recovery ranges were met.

System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. The Data Package is complete as defined under the NYSDEC ASP Category B Deliverables. There is a narrative and end result. The package includes laboratory quality control/quality assurance calibration curves, chromatograms, and sample preparation forms.

File:P:\..209183\DUSR 30152660

DATA USABILITY SUMMARY REPORT ASH ROAD PROPERTIES 221 SYCAMORE ROAD TOWN OF VESTAL, NEW YORK

VOLATILE ANALYSES Order No. 30155530

Analyses performed by:

Pace Analytical Services, Inc. Greensburg, Pennsylvania

Review performed by:

GeoLogic NY, Inc.

DATA SUMMARY

The following review of the data package is for the sample deliver group noted below from the Ash Road Properties site. Analyses were performed on the following samples.

Sample ID	Laboratory ID	Matrix	Sample	Analysis
			Date	VOA
				GC/MS
				8260
MW-01	3015530001	Water	8-05-2015	X
MW-02S	3015530002	Water	8-05-2015	X
MW-02S MS	3015530003	Water	8-05-2015	X
MW-02S MSD	3015530004	Water	8-05-2015	X
MW-10S	3015530005	Water	8-05-2015	X
MW-10SDuplicate	3015530006	Water	8-05-2015	X
MW-09S	3015530007	Water	8-05-2015	X
Trip Blank	3015530008	Water	8-05-2015	X

INTRODUCTION

Analyses were performed according to USEPA SW-846 Method 8260C.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical methodology. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines, Region II.

- U The compound was analyzed for but not detected at a level greater than or equal to the level of the adjusted Contract Required Quantitation Limit (CRQL) for sample and method.
- J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
- N The analysis indicates the presence of an analyte for which there is a presumptive evidence to make a tentative identification.
- NJ The analysis indicates the presence of an analyte that has been tentatively identified and the associated numerical value represents its approximate concentration.
- R The sample results are unstable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

It should be noted that a compound concentration, even if quality control parameters have been met, is not a guarantee of accuracy, but adherence to quality control does increase confidence in data.

DATA REVIEW FOR VOLATILE ANALYSIS

Pace Analytical Services, Inc. (Pace) prepared a Sample Data Package for four water sample locations obtained on August 5, 2015 for the Ash Road Properties (GeoLogic Project No. 209183). The samples were received by the laboratory on June 6, 2015.

The Sample Data Package is complete as defined under the NYSDEC ASP as Level 2 Deliverables; there is a narrative and end results.

Holding Times

The specified holding times for the laboratory method and matrix are presented in the following table.

Analytical Method SW-8260B	
	Water
Holding Time	14 days from sample collection
Preservation	pH less than 2; cooled at 4° C ± 2°

All samples were analyzed within the specified holding times and samples were received in iced coolers, temperature of 0.4°C. The water samples were preserved with HCL and analyzed using EPA Method 8260C holding time for the preserved water samples. All samples had a pH 2 or less.

Quality Control Blanks

The quality assurance (QA) preparation blanks are prepared to identify contamination that may be attributed to laboratory contaminants. All compounds associated with the QA method blank exhibited a concentration less than the MDL.

Field Duplicate Analysis

A field duplicate is collected for analysis to assess the precision and accuracy of the field sampling procedures as well as the analytical method. A control limit of 50% for water samples is applied to the RPD between the parent sample and the duplicate sample.

The RPDs between the parent sample and the duplicate sample were acceptable.

Calibrations

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions. All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

The continuing calibration verifies that the instrument's daily performance was satisfactory for all compounds except for bromomethane (%D 34.6). The associated samples have been qualified with a "J" for this compound.

Internal Standards

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD samples are collected to assess the precision and accuracy of the analytical methodology for a sample set. The compounds introduced into the MS/MSD samples must be recovered within the established acceptance limits. The relative percentage difference (RPD) between the MS/MSD recoveries must be within the laboratory established acceptance limits RPDs.

A review of the LCS analysis report indicates RPDs within the established criteria with the following exception.

The % Recovery of *cis*-1,2-dichloroethene exceeded the QC limits. The MS/MSD recovery control limits for *cis*-1,2-dichloroethene do not apply for the MS/MSD performed on sample location since the compound concentration detected in the parent sample exceed the MS/MSD concentration by a factor of four or greater.

Surrogates / System Monitoring Compounds

Soil samples were spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. VOC analysis requires that all surrogates associated with the analysis exhibit recoveries within the laboratory-established acceptance limits.

The review of the Quantitation Reports indicates that all surrogate recovery ranges were met.

System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. The Data Package is complete as defined under the NYSDEC ASP Category B Deliverables. There is a narrative and end result. The package includes laboratory quality control/quality assurance calibration curves, chromatograms, and sample preparation forms.

File:P:\..209183\DUSR 30155530

APPENDIX F Digital Copy of FER

CD TO BE INSERTED