

8976 Wellington Road Manassas, VA 20109

January 24, 2017

Gary Priscott New York State Department of Environmental Remediation 1679 Route 11 Kirkwood, NY 13795

Re: Periodic Review Report and IC/EC Certification Submittal IBM Gun Club, Former Burn Pit Area Robinson Hill Road, Union, NY 13760 NYSDEC Site # C704044

Dear Mr. Priscott:

This letter serves to transmit copies of the Periodic Review Report and required IC/EC Certifications to the New York State Departments of Conservation (NYSDEC). The remedy performance monitoring work and the preparation of this report were completed by Sanborn, Head Engineering, P.C. (SHPC) in accordance with NYSDEC-approved Site Management Plan (SMP) for this project.

If you have any questions regarding the enclosed report, please contact me at 703-257-2585.

Very truly yours,

Inda

Linda Daubert IBM Program Manager

Enclosures: Periodic Review Report and Certification Form

cc: Kevin O'Hara (Binghamton Country Club) Bridget Boyd (NYSDOH) Maureen Schuck (NYSDOH) Harry Warner (NYSDEC)

20 Foundry Street Concord, NH 03301

January 24, 2017

File No. 63526.05

Linda Daubert, P.E. IBM Corporate Environmental Affairs 8976 Wellington Road Manassas, Virginia 20109

Re: 2016 Periodic Review Report IBM Gun Club – Former Burn Pit Area Union, New York BCP Agreement #C704044

Dear Ms. Daubert:

This letter and attachments comprise the 2016 Periodic Review Report (PRR) of the remedy status for the above-referenced site. The PRR has been prepared on behalf of IBM by Sanborn, Head Engineering P.C. (SHPC) for submittal to the New York State Department of Environmental Conservation (NYSDEC) and Department of Health (NYSDOH), collectively the Agencies, in accordance with the requirements of the Site Management Plan of April 2016 (SMP). We understand that a copy of this PRR will be provided to the Binghamton Country Club (Country Club), who took ownership of the site at the end of 2015.

This PRR includes the following:

Attachment A – Institutional and Engineering Controls Certification Form Attachment B – Remedy Performance Testing Reports of April, June, and September 2016 Attachment C – Site-Wide Inspection Reports for May and September 2016 Attachment D – Maintenance Reports for 2016

For the PRR Certification (Attachment A), the items in boxes 1, 2, and 3 list the questions/statements that the Country Club as the site owner has certified by adding a signature in Box 6. The items in Box 2A are technical matters pertaining to past Remedial Investigation reporting that SHPC certifies as IBM's Designated Representative based on our site inspections conducted in 2016. Additionally, SHPC, as representative of the remedial party (IBM), has endorsed Box 7, certifying that the information provided in Box 4 (pertaining to ECs), and Box 5 (overall certification) is true.

For clarity, a tabular summary of the certification responsibilities of the Country Club, as site owner, and SHPC, as representative of the remedial party, IBM, is provided below:

Binghamton Country Club	SHPC for IBM
Box 1 and 2, Questions 1 through 6 –	Box 2, Question 7 – Engineering
Institutional Controls	Controls
 Box 3 – Institutional Controls 	 Box 2A, Questions 8 and 9
	Box 4
	 Box 5 – Based on Country Club
	Certification of Boxes 1 through 3

The remaining components of this PRR have been previously submitted to the Agencies, and include: remedy performance testing summary memoranda based on field sampling and laboratory analyses conducted in accordance with the SMP; and semi-annual site-wide inspection reports to assess the integrity of the remedy Engineering Controls (ECs) and compliance with Institutional Controls (ICs) outlined in the SMP. Routine and non-routine maintenance reports are also included.

As discussed with the NYSDEC, IBM intends to prepare a comprehensive remedy evaluation every two years as part of the PRR, with the next such evaluation to cover 2016 and 2017, and will be submitted with the next PRR in 2018.

If you have any questions or comments, please contact us. We appreciate the opportunity to provide service to you on this important project.

Very truly yours, Sanborn, Head Engineering, P.C.

id Shea.

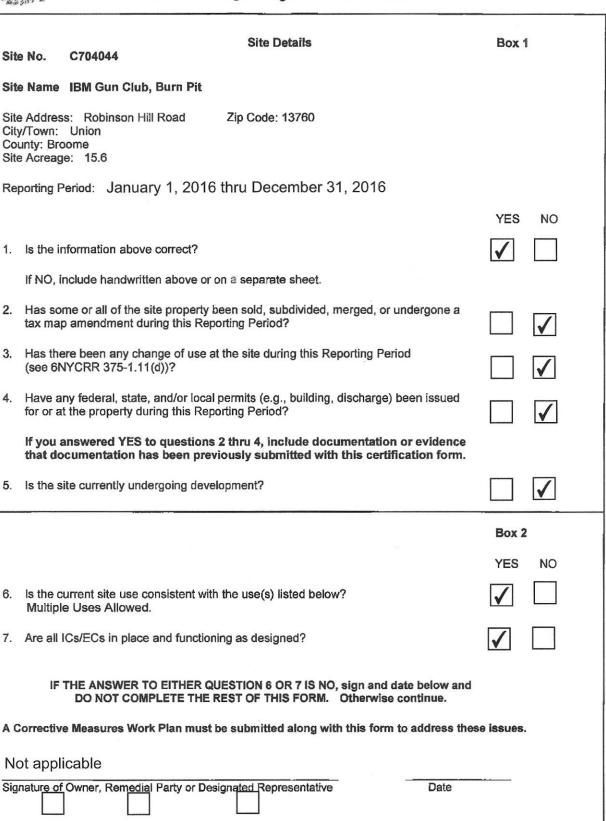
David Shea, P.E. *President SANBORN HEAD ENGINEERING, P.C.* 20 Foundry Street Concord, NH 03301

Euco Bosse

Erica M. Bosse, P.G. *Project Manager SANBORN HEAD & ASSOCIATES, INC.* 1 Technology Park Drive Westford, MA 01886

Encl. Attachment A – Executed Certification Form
 Attachment B – Performance Testing Memorandum Reports
 Attachment C – Site Inspection Memorandum Reports
 Attachment D – Maintenance Reports

P:\3500s\3526.02\Source Files\2016 PRR\20170124_PRR cover letter.docx


ATTACHMENT A

CERTIFICATION FORM

SANBORN 📕 HEAD ENGINEERING

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Box 2A
Assessment regard	nation revealed that assumptions made in t ling offsite contamination are no longer vali ES to question 8, include documentation	d?	YES NO
	in has been previously submitted with th		
	s in the Qualitative Exposure Assessment posure Assessment must be certified every		
	O to question 9, the Periodic Review Re re Exposure Assessment based on the r		
SITE NO. C704044			Box 3
	nstitutional Controls		
Parcel 126.18-1-20	<u>Owner</u> Binghamton Country Club	Institutional Control Ground Water Use Res Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan O&M Plan	
The site is covered by an Environmental Easement which calls for the adherence to a Site Management Plan (SMP). The property is restricted from use as a farm and/or a livestock breeding facility via local ordinance/zoning. Residential use is allowed throughout the property, except for within the capped area, where restricted residential use is allowed. Groundwater use restrictions apply throughout the site, and a requirement to assess and abate impacts, if any, for soil vapor contamination applies throughout the site as well. Off-site property within the contaminated plume area is also controlled institutionally via agreement between IBM and the owners of the Binghamton Country Club. This agreement restricts groundwater use in a manner consistent with the above, and similarly requires assessment and abatement, as needed, for soil vapor contamination.			
Description of E	Engineering Controls		Box 4
Parcel 126.18-1-20	Engineering Control Groundwater Treatment S Cover System Fencing/Access Control	System	
The site contains a capped area that is covered via Environmental Easement and is managed through the SMP. Groundwater is being treated in-situ via an enhanced biological degradation system.			

	Box 5	
	Periodic Review Report (PRR) Certification Statements	
1.	certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 	
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO 	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	
	 (a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department; 	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Not applicable	
	Signature of Owner, Remedial Party or Designated Representative Date	

Г

IC CERTIFICATIONS SITE NO. C704044		
1	Box 6	
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a fa statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.4 Penal Law.		
at 1505 Buffeld St, Enderth, 1 print name print business address am certifying as Representative of Binghamton Country Club as the Owner Owner or Reme	1413760	
am certifying as Representative of Bingnamton Country Club as the Owner or Remedial Party)		
for the Site named in the Site Details Section of this form.		
Signature of Øwner, Remedial Party, or Designated Representative Date	7	

		IC	EC CERTIFIC	ATIONS	
		Profe	essional Engin	eer Signature	Box 7
				understand that a false action 210.45 of the Pe	statement made herein is nal Law.
Davi	d Shea,	P.E.	Sanborn Head	Engineering P.C. 20 Foundry	y Street, Concord NH.03301
	print name			nt business address	
am certifyin	g as a Professio	nal Engineer	for the	Corporation as th	e Remedial Party
	mil then			THE OF NEW CONVID SHEE	Date
Remedial F	arty, Rendering	Certification		(Required for PE	1

ATTACHMENT B

PERFORMANCE TESTING MEMORANDUM REPORTS

SANBORN 📗 HEAD ENGINEERING

APRIL 2016 PERFORMANCE TESTING

SUMMARY OF APRIL 2016 WATER QUALITY MONITORING

IBM Gun Club – Former Burn Pit Area Union, New York

INTRODUCTION AND SUMMARY

This memorandum is intended to summarize the program of remedy performance monitoring conducted in April 2016. It documents and summarizes the sampling event and provides tabular and figure summaries of the field and laboratory data. The field work was conducted the week of April 11, 2016 in general accordance with the scope and procedures discussed in Appendix J of the approved Site Management Plan (SMP)¹.

This memorandum will be included as a component of the next Periodic Review Report, due in March 2018, and has been prepared consistent with the Monitoring Reporting Requirements discussed in Section 3.6 of the SMP. The Sanborn Head field staff included: Sam Warner, Chris Norton and Neal Orosz.

The field and laboratory data indicate continued remedy performance consistent with project performance goals established in the SMP. The data indicate sufficient concentrations of electron donor constituents and the presence of geochemical conditions conducive to reductive dehalogenation such that additional injection is not necessary at this time. The data continue to support a substantial reduction in downgradient volatile organic compound (VOC) mass flux of approximately 90% and nearly 99% for total chlorinated ethenes and TCE, respectively. The data support the validity of the qualitative exposure assessment.

SCOPE OF WORK

The scope of work included:

- Limited groundwater elevation survey;
- Water quality sampling associated with the performance monitoring program;
- Water quality parameter field screening and field geochemical testing.

Groundwater Elevation Survey

On April 11, 2016, prior to starting the water quality sampling program, the depths to water in select monitoring wells and injection boreholes were gauged in accordance with procedures detailed in Appendix G of the SMP. Water levels were also measured and recorded for monitoring points at the time sampling was conducted. Based on the depth to

¹ Sanborn, Head & Associates, Inc., March 2016, <u>Site Management Plan – April 2016 Revision, Brownfield</u> <u>Cleanup Program, IBM Gun Club – Former Burn Pit area, Union, New York, NYSDEC Site #C704044, BCA</u> <u>Index #B7-0661004-05.</u>

water data and survey information, groundwater elevations were calculated for each location. Depth to water measurements and groundwater elevations are summarized on Table 2.

Water Quality Sampling

The scope of sampling as originally planned is included as Table 1. The scope was modified as follows as a result of field conditions:

- Water from BP-6A was deemed too turbid for geochemical field testing , and samples were collected for laboratory analysis;
- Insufficient water was present in monitoring well BP-13A to sample using low-flow techniques. A grab sample was collected instead using the dedicated bladder pump;
- BP-15A had insufficient volume to perform sampling. No samples were collected;
- Purge water collected during previous sampling and contained on site in one of several poly tanks was discharged onto the ground after results from prior sampling indicated that water quality was acceptable.

Exhibit 1 summarizes the sampling methods used during the monitoring event. The quality assurance/quality control (QA/QC) samples collected for VOC analysis are summarized in Exhibit 2. Samples (including QA/QC samples) submitted for fixed laboratory analysis or field screening are tabulated in Exhibit 3. Laboratory and field analytical data are summarized in Table 3A for groundwater and Table 3B for surface water. A summary of groundwater quality data and inference is presented in Figure 1. An interactive plan view figure included as Figure 2 can be used to view the geochemical data used in inferring the geochemical conditions shown on Figure 1. Field sampling records and analytical laboratory reports are kept on file and are available by request.

Sample Method	Number of Locations Sampled
Modified Low-Flow	13
Bladder Pump Grab	1
Submerged Container (surface water)	4
Passive Diffusion Bag	5

Exhibit 1 Summary	of Sampling Methods
-------------------	---------------------

Exhibit 2 Summary of QA/QC Samples for VOC analysis

Total Sample Locations	23
Duplicate Samples	3
Matrix Spikes	1
Matrix Spike Duplicates	1
Field Blanks	3
Equipment Blanks	0
Trip Blanks	3

Sample Type - Fixed Laboratory	Laboratory	Number of Samples
VOCs	Lancaster	34
Total Organic Carbon	Lancaster	21
Volatile Fatty Acids	Microseeps	21
Light Gases (Ethane, Ethene, and Methane)	Microseeps	21
Geochemical Analyses	Microseeps	1
Sample Type - Field Screening	Laboratory	Number of Samples
Field Geochemistry	Sanborn Head	13

Exhibit 3 Summary of Analytical Type

Equipment Calibration

Exhibit 4 summarizes the field instruments utilized during field sampling. The instruments were calibrated each morning and a calibration check was performed at the end of each day.

Exhibit 4 Summary of Field Instrumentation		
INSTRUMENT	FIELD PARAMETER	
YSI Water Quality Parameter Probe	Temperature, pH, Specific Conductance, Dissolved Oxygen, and Oxidation-reduction Potential	
HACH 2100Q Turbidimeter	Turbidity	
HACH DR2800 Spectrophotometer	Total and Ferrous Iron, Nitrate, Sulfate, and Sulfide	

Attachments:

Table 1	Scope of Performance Monitoring
Table 2	Summary of Water Level Data
Table 3A	Summary of April 2016 Performance Monitoring - Groundwater
Table 3B	Summary of April 2016 Performance Monitoring – Surface Water
Figure 1	Summary of April 2016 Groundwater Quality Conditions
Figure 2	Summary of Geochemical Conditions

 $\label{eq:linear} C: \label{eq:linear} C: \label{$

Table 1 **Summary of Routine and Performance Monitoring Program** IBM Gun Club - Former Burn Pit Area Union, New York

				Sample Method				Analytical Laboratory				Field Screening		
Monitoring Type	Monitoring Location	Monitoring Location Type	Low Flow	PDBs	Nitrogen Purge	Surface Water	VOCs	Light Gasses	тос	VFAs	Water Quality Parameter	Field Geochemistry		
	BP-7A	Monitoring Well		х			х				х			
	BP-8A	Monitoring Well		Х			х				Х			
	BP-10A	Monitoring Well		х			х				Х			
	BP-11A	Monitoring Well		Х			х				Х			
	BP-12A	Monitoring Well		Х			Х				Х			
	BP-14A	Monitoring Well		Х			Х				Х			
	BP-16A	Monitoring Well		Х			Х				х			
	BP-17A	Monitoring Well		Х			Х				Х			
	BP-18A	Monitoring Well		Х			Х				х			
	BP-19A	Monitoring Well		Х			Х				х			
	BP-20A	Monitoring Well		Х			Х				х			
	BP-21A	Monitoring Well		Х			Х				х			
Routine	BP-22A	Monitoring Well		Х			Х				Х			
Monitoring	BP-23A	Monitoring Well		Х			Х				Х			
(Annually in	BP-24A	Monitoring Well		Х			Х				Х			
June)	BP-25A	Monitoring Well		Х			Х				х			
	BP-26A	Monitoring Well		Х			Х				Х			
	BP-27A	Monitoring Well		Х			Х				Х			
	BP-30A	Monitoring Well		Х			х				Х			
	BP-32A	Monitoring Well		Х			х				Х			
	GC-2A	Monitoring Well		Х			Х				Х			
	GC-1, P-1	Multi-Depth			Х		х				Х			
	GC-1, P-8	Multi-Depth			Х		х				Х			
	BP-12D, P1	Multi-Depth			Х		х				Х			
	BP-12D, P7	Multi-Depth			Х		х				Х			
	BP-13D, P1	Multi-Depth			Х		х				Х			
	BP-13D, P5	Multi-Depth			Х		х				Х			
	BP-15D, P1 BP-15D, P5	Multi-Depth Multi-Depth			X		X				X			
					Х		Х				Х			
	IB-7	Injection Borehole		X			X	X	X	X				
	A-13 B-4	Injection Borehole		X			X	x	X	X				
	в-4 В-7	Injection Borehole Injection Borehole		X			X	x	X	X				
	В-7 В-9	Injection Borehole		X			X	x	X	X				
	BP-1A	Monitoring Well		Х			X	X	x	X				
	BP-1A BP-2A	Monitoring Well	X				X	x	X	X	X	X		
	BP-2A BP-4A	Monitoring Well	X				X	X	X	X	X	X		
	BP-4A BP-5A	Monitoring Well	X X				X X	X X	X X	X X	X X	X X		
	BP-6A	Monitoring Well												
Performance	BP-9A	Monitoring Well	X X				X X	X X	X X	X X	X X	X		
Monitoring	BP-13A	Monitoring Well	X				X	X	X	X	X	X		
(3x/year in April,	BP-31A	Monitoring Well	X				X	X	X	X	X	X		
June, and	BP-34A	Monitoring Well	X				X	X	X	X	X	X		
Sept/October)	BP-35A	Monitoring Well	X				X	X	X	X	X	X		
	BP-36A	Monitoring Well	X				X	X	X	X	X	X		
	BP-37A	Monitoring Well	X				X	X	X	X	X	X		
	BP-38A	Monitoring Well	X				X	x	X	X	X	X		
	BP-39A	Monitoring Well	X				X	x	X	X	X	X		
	111	Seep/spring				х	x				X			
	111	Seep/spring Seep/spring			-	x	x	1			X			
	112	Seep/spring				x	x				X			
	113	Seep/spring Seep/spring				X	X				X			
	SW-Z	Seep/spring Seep/spring				X	X				X			
		Total	14	26	8	5	53	19	19	19	48	14		

Notes:

1. This table is intended to summarize the programs of routine and performance monitoring for remedy operations at the IBM Gun Club - Former Burn Pit Area starting in 2016. Additional monitoring points may be sampled based on field observations. "SW-Z" serves as a placeholder for sampling any on-site seep or spring that can be reasonably sampled. The table summarizes sample method, analytical laboratory analysis, and field screening.

2. Sample method:

"Low Flow" indicates samples will be collected by bladder pump using low flow techniques. "PDBs" indicates that the well has sufficient water column to sample with passive diffusion bags - if conditions are observed to be different than anticipated, sampling will proceed using low flow techniques.

"Nitrogen purge" indicates that sample will be collected by purging the multi-level port with nitrogen (multi-level systems only). "Surface water" samples will be collected using a clean glass vial.

3. Analytical laboratory samples:

"VOCs" indicates volatile organic compounds.

"Light gasses" includes methane, ethene and ethane. "TOC" indicates total organic carbon. "VFAs" indicates volatile fatty acids.

4. "Water quality parameters" indicates screening during well purging and water quality sampling by multi-parameter probes, e.g. by YSI® 556 multi-Probe meter or similar and HACH[®] turbidity meter or similar (low flow, multi-level system, bailer, and surface water sampling) or by water quality parameter sounding (PDB sampling). The water quality parameters may include temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, pH, and turbidity. In addition surface water samples will include water clarity descriptors (transparency, translucence, or opaqueness, and color).

5. "Field Geochemistry" will be performed during performance monitoring by using reagent kits and a spectrophotometer (HACH® DR 800, DR 2800, or similar). The field geochemistry includes analysis for sulfate, sulfide, ferrous iron, total iron, and oxygen. In some cases elevated turbidity (>10 NTU) or color may interfere with the spectrophotometric analysis. In such cases field geochemistry samples will be supplemented with samples submitted to an analytical laboratory as outlined in Table J.5.

	Reference	Depth to	Equivalent
Well Location	Elevation	Water	Potentiometric
Wen Location	(ft amsl)	(ft bgs)	Elevation
		(10 0 5 5)	(ft amsl)
A-1	1391.11	6.65	1384.46
A-2	1390.68	2.62	1388.06
A-3	1392.74	3.97	1388.77
A-4	1397.56	13.27	1384.29
A-5	1397.4	17.22	1380.18
A-6	1397.86	10.93	1386.93
A-7	1397.28	13.51	1383.77
A-8	1396.81	12.61	1384.2
A-9	1396.47	11.55	1384.92
A-10	1396.06	6.48	1389.58
A-11	1395.73	9.45	1386.28
A-12	1395.59	6.8	1388.79
A-13	1394.25	6.5	1387.75
A-14	1394.61	5.85	1388.76
A-15	1393.47	5.44	1388.03
A-16	1398.14	5.74	1392.4
A-17	1395.48	4.15	1391.33
B-1	1385.26	6.08	1379.18
B-2	1384.71	6.97	1377.74
B-3	1385.48	5.36	1380.12
B-4	1385.03	4.48	1380.55
B-5	1383.99	7.76	1376.23
B-6	1384.48	4.46	1380.02
B-7	1385.33	8.81	1376.52
B-8	1384.9	9.08	1375.82
B-9	1385.21	12.16	1373.05
B-10	1384.69	4.98	1379.71
B-11	1384.4	8.1	1376.3
B-12	1383.87	6.59	1377.28
B-13	1384.5	3.54	1380.96
BP-1A	1395.67	12	1383.67
BP-2A	1396.89	10.42	1386.47
BP-4A	1391.96	12.31	1379.65
BP-5A	1391.09	12.88	1378.21
BP-6A	1393.95	19.21	1374.74
BP-7A	1388.89	9	1379.89
BP-8A	1384.53	6.79	1377.74
BP-9A	1379.17	9.97	1369.2
BP-10A	1381.74	10.81	1370.93
BP-11A	1384.8	11.83	1372.97

	Deference	Donth to	Equivalent
Well Location	Reference Elevation	Depth to Water	Potentiometric
well Location			Elevation
	(ft amsl)	(ft bgs)	(ft amsl)
BP-13A	1398.89	10.15	1388.74
BP-15A	1388.32	15.12	1373.2
BP-16A	1389.69	9.89	1379.8
BP-18A	1386.54	13.24	1373.3
BP-31A	1369.63	9.75	1359.88
BP-32A	1389.58	7.79	1381.79
BP-34A	1392.55	11.67	1380.88
BP-35A	1391.75	13.92	1377.83
BP-36A	1383.68	11.41	1372.27
BP-37A	1389.92	9.19	1380.73
BP-38A	1375.1	8.91	1366.19
BP-39A	1370.17	5.78	1364.39
IB-1	1392.2	5.8	1386.4
IB-2	1393.47	4.25	1389.22
IB-3	1393.07	12.86	1380.21
IB-4	1393.78	5.29	1388.49
IB-5	1393.88	11.44	1382.44
IB-6	1393.05	7.15	1385.9
IB-7	1393.23	10.54	1382.69
IB-8	1393.43	13.17	1380.26
IB-9	1393.62	7.32	1386.3

Notes:

1. This table summarizes depth to water measurements and calculated water table elevations recorded during the April 2015 performance monitoring round on August 11, 2016. Measurements were collected relative to the marked reference point at each location using a QED MP30 water level meter.

2. Abbreviations ft amsl = feet above mean sea level ft bgs - feet below ground surface

TABLE 3A SUMMARY OF APRIL 2016 PERFORMANCE MONITORING - GROUNDWATER Summary Trip Report

IBM Gun Club - Former Burn Pit Area Union, New York

		DD ((55.04			77		55.01	55.464	77.011	22.011	55.044		DD 044	DD 074	77.001		1.10		
		BP-1A	BP-2A	BP-4A	BP-4A	BP-5A	BP-6A	BP-9A	BP-13A	BP-31A	BP-31A	BP-34A	BP-35A	BP-36A	BP-37A	BP-38A	BP-39A	A-13	B-4	B-7
		BP1A	BP2A	BP4A	DUP2	BP5A	BP6A	BP9A	BP13A	BP31A	DUP1	BP34A	BP35A	BP36A	BP37A	BP38A	BP39A	A13	B4	B7
														Peristaltic				Passive	Passive	Passive
Analyte Name		Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Pump	Low Flow	Low Flow	Low Flow	Diffusion Bag	Diffusion Bag	
																			,	-
		S	S	S	FD	S	S	S	S	S	FD	S	S	S	S	S	S	S	S	S
	Unit	4/12/2016	4/12/2016	4/13/2016	4/13/2016	4/12/2016	4/13/2016	4/12/2016	4/12/2016	4/12/2016	4/12/2016	4/13/2016	4/13/2016	4/13/2016	4/13/2016	4/12/2016	4/12/2016	4/11/2016	4/11/2016	4/11/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)																				•
Trichloroethene (TCE)	μg/l	140	130	210	190	30	4,800	280	31	71	70	30,000	3,900	180	11	270	50	<100	26	55
Dichloroethene (cis-1,2-)	μg/l	130	3,800	26	26	41	8,500	2,100	1.1	23	22	28,000	5,400	10,000	0.9	43	23	9,400	100	230
Dichloroethene (trans-1,2-)	μg/l	1.9	8.0 J	0.7 J	1.0	0.9	30	8.5 J	<0.5	0.1 J	0.1 J	<250	7.1 J	31 J	< 0.5	0.3 J	0.1 J	<100	<5	<25
Dichloroethene (1,1-)	μg/l	0.8	6.0 J	<2.5	0.5	<0.5	22 J	7.0 J	<0.5	0.1 J	0.1 J	81 J	6.4 J	15 J	<0.5	0.4 J	<0.5	<100	<5	<25
Tetrachloroethene (PCE)	μg/l	<0.5	<25	<2.5	0.1 J	<0.5	<25	<25	<0.5	3.6	3.4	<250	<25	<50	< 0.5	0.2 J	<0.5	<100	<5	<25
Vinyl chloride	μg/l	31	1,200	8.0	10	4.9	190	190	<0.5	4.0	4.0	210 J	<25	170	<0.5	0.3 J	<0.5	2,500	27	88
LIGHT GASSES								_					-		-					
Ethane	μg/l	2.4	0.43	8.9	9.8	0.041 J	0.81	1.4	0.18	0.0065 J	0.014 J	3.9	0.20	4.7	0.15	0.011 J	0.024 J	18	5.8	40
Ethene	μg/l	9.0	320	18	20	0.070 J	46	120	0.054 J	0.62	0.57	110	0.042 J	76	0.087 J	0.017 J	0.030 J	3,900	64	510
Methane	μg/l	90	2,000	870	980	1.3	24	3,400	60	0.19 J	0.35 J	1,800	1.6	420	220	0.22 J	0.14 J	3,900	9,100	15,000
MOLAR CONCENTRATION																				
Trichloroethene (TCE)	µmol/l	1.1	0.99	1.6	1.4	0.23	37	2.1	0.24	0.54	0.53	228	30	1.4	0.08	2.1	0.38	ND	0.20	0.42
Dichloroethene (cis-1,2-)	µmol/l	1.3	39	0.27	0.27	0.42	88	22	0.01	0.24	0.23	289	56	103	0.01	0.44	0.24	97	1.0	2.4
Dichloroethene (trans-1,2-)	µmol/l	0.02	0.08	0.01	0.01	0.01	0.31	0.09	ND	0.001	0.001	ND	0.07	0.32	ND	0.003	0.001	ND	ND	ND
Dichloroethene (1,1-)	µmol/l	0.01	0.06	ND	0.01	ND	0.23	0.07	ND	0.001	0.001	0.84	0.07	0.15	ND	0.004	ND	ND	ND	ND
Tetrachloroethene (PCE)	µmol/l	ND	ND	ND	0.001	ND	ND	ND	ND	0.02	0.02	ND	ND	ND	ND	0.001	ND	ND	ND	ND
Vinyl chloride	µmol/l	0.50	19	0.13	0.16	0.08	3.0	3.0	ND	0.06	0.06	3.4	ND	2.7	ND	0.005	ND	40	0.43	1.4
Ethane	µmol/l	0.08	0.01	0.30	0.33	0.001	0.03	0.05	0.01	0.0002	0.0005	0.13	0.007	0.16	0.005	0.0004	0.0008	0.60	0.19	1.3
Ethene	µmol/l	0.32	11	0.64	0.71	0.002	1.6	4.3	0.002	0.02	0.02	3.9	0.001	2.7	0.003	0.0006	0.001	139	2.3	18
Total	µmol/l	3.3	71	2.9	2.9	0.74	129	31	0.26	0.89	0.87	525	86	111	0.10	2.5	0.62	277	4.1	24
MOLAR PERCENTAGE			-	-												-			-	
TCE	%	32	1	54	49	31	28	7	92	61	61	43	35	1	83	82	61	ND	5	2
DCEs	%	41	55	9	10	58	68	70	4	27	26	55	65	94	9	18	38	35	25	10
VC	%	15	27	4	5	11	2	10	ND	7	7	1	ND	2	ND	0	ND	14	10	6
Ethane+Ethene	%	12	16	32	35	1	1	14	3	3	2	1	0	3	8	0	0	50	60	82
VOLATILE FATTY ACIDS								_					-		-					
Acetic Acid	mg/l	0.06 J	0.023 J	0.014 J	0.017 J	0.014 J	0.62 J	0.11	0.016 J	0.015 J	0.0092 J	0.018 J	0.016 J	42	0.013 J	0.018 J	0.015 J	150	380	540
Butyric Acid	mg/l	0.022 J	0.027 J	0.0051 J	<0.1	<0.1	<10	0.017 J	<0.1	<0.1	< 0.1	<0.1	< 0.1	3.1	< 0.1	< 0.1	< 0.1	13	46	270
Hexanoic Acid	mg/l	<0.4	<0.2	< 0.2	<0.2	<0.2	<20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	2.5	< 0.2	< 0.2	<0.2	4.0	22	80
i-Hexanoic Acid	mg/l	< 0.4	<0.2	< 0.2	<0.2	<0.2	<20	<0.2	< 0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.14 J	0.8 J	5.2
i-Pentanoic Acid	mg/l	< 0.2	<0.1	< 0.1	<0.1	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.27	< 0.1	< 0.1	<0.1	1.4	4.4	8.8 J
Lactic Acid	mg/l	0.37 J	<0.2	0.03 J	0.028 J	<0.2	0.33 J	<0.2	0.048 J	0.029 J	<0.2	< 0.2	<0.2	0.12 J	0.014 J	0.046 J	0.026 J	0.13 J	<2.0	0.47 J
Pentanoic Acid	mg/l	0.44	0.043 J	0.011 J	0.01 J	0.026 J	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.62	<0.1	<0.1	<0.1	15	43	260
Propionic Acid	mg/l	<0.2	<0.1	<0.1	<0.1	<0.1	<10	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.9	<0.1	<0.1	<0.1	75	250	480
Pyruvic Acid	mg/l	< 0.2	<0.1	< 0.1	<0.1	0.031 J	36	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.78	<0.1	<0.1	< 0.1	21	9.7	48
OTHER LABORATORY DATA									· · · · · · · · · · · · · · · · · · ·					1						
Total Organic Carbon	mg/l	12.4	4.8	2.8	2.8	22.9	474	1.8	1.3	0.92 J	0.88 J	4.6	2.1	48.7	1.8	1.6	1.7	186	580	3,180
WATER QUALITY PROBE DATA					1			1				1	1		n		1		T.	
Temperature	°C	7.3	7.4	6.3		7.5	8.6	6.3	6.9	6.9		6.6	5.8	8.6	7.8	7.7	6.5			
Specific Conductance	uS/cm	2,040	1,060	470		1,930	13,300	390	89	240		1,100	680	470	560	180	120			
рН	s.u.	7.2	6.9	7.6		6.9	7.1	7.9	6.4	6.8		7.3	7.5	7.3	7.2	6.5	6.3			
	mV	194	-60	37		200	173	131	52	158		149	146	-117	208	128	178			
,		1.7	0.59	0.97		5.7	6.8	3.2	4.1	5.3		1.5	8.6	1.4	2.0	6.4	5.7			
Dissolved Oxygen	mg/l					7.9	6.9	3.4	6.1	2.2		2.6	5.1	12	9.4	1.7	1.0			
Dissolved Oxygen Turbidity	mg/l NTU	3.7	3.5	0.34		1.9	0.7	0.1												
Dissolved Oxygen Turbidity FIELD CHEMISTRY	NTU			•									•	1		1	-			
Dissolved Oxygen Turbidity FIELD CHEMISTRY Iron	NTU mg/l	0.11	5.46 OR	0.03		0.02	3.6	0.02	0.03	0.01		0.04	0.06	3.39 OR	0.07	0.10	0.04			
Dissolved Oxygen Turbidity FIELD CHEMISTRY Iron Iron - Ferrous	NTU mg/l mg/l	0.11 0.04	5.46 OR 4.12 OR	0.03 0.01		0.02 0.0	3.6 7.4	0.02	0.01	0.0		0.03	0.03	3.61 OR	0.07	0.08	0.02			
Dissolved Oxygen Turbidity FIELD CHEMISTRY Iron Iron - Ferrous Nitrate	MTU mg/l mg/l	0.11 0.04 0.60	5.46 OR 4.12 OR 0.50	0.03 0.01 0.40		0.02 0.0 1.1	3.6 7.4 <0.5	0.02 0.02 0.40	0.01 1.3	0.0 0.40		0.03 0.70	0.03 0.40	3.61 OR 0.80	0.07 0.70	0.08 0.40	0.02 0.30		-	
Oxidation/Reduction Potential Dissolved Oxygen Turbidity FIELD CHEMISTRY Iron Iron - Ferrous Nitrate Sulfate Sulfate	NTU mg/l mg/l	0.11 0.04	5.46 OR 4.12 OR	0.03 0.01		0.02 0.0	3.6 7.4	0.02	0.01	0.0		0.03	0.03	3.61 OR	0.07	0.08	0.02			

TABLE 3A SUMMARY OF APRIL 2016 PERFORMANCE MONITORING - GROUNDWATER Summary Trip Report IBM Gun Club - Former Burn Pit Area

n Club - Former Burn Pit A Union, New York

		B-9	IB-7
		B9	IB7
		Passive	Passive
Analyte Name		Diffusion Bag	
		Diffusion bag	Diffusion Dag
		S	S
	Unit	4/11/2016	4/11/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)			
Trichloroethene (TCE)	μg/l	59	<5
Dichloroethene (cis-1,2-)	μg/l	510	1.6 J
Dichloroethene (trans-1,2-)	μg/l	<25	<5
Dichloroethene (1,1-)	μg/l	<25	<5
Tetrachloroethene (PCE)	μg/l	<25	<5
Vinyl chloride	μg/l	29	<5
LIGHT GASSES			
Ethane	μg/l	19	30
Ethene	μg/l	89	0.28
Methane	μg/l	5,400	23,000
MOLAR CONCENTRATION			
Trichloroethene (TCE)	µmol/l	0.45	ND
Dichloroethene (cis-1,2-)	µmol/l	5.3	0.02
Dichloroethene (trans-1,2-)	µmol/l	ND	ND
Dichloroethene (1,1-)	µmol/l	ND	ND
Tetrachloroethene (PCE)	µmol/l	ND	ND
Vinyl chloride	µmol/l	0.46	ND
Ethane	µmol/l	0.63	1.0
Ethene	µmol/l	3.2	0.01
Total	µmol/l	10	1.0
MOLAR PERCENTAGE			ND
	%	4	ND
DCEs	%	53	2
	%	5	ND
Ethane+Ethene	%	38	98
VOLATILE FATTY ACIDS		100	11
Acetic Acid	mg/l	190	1.1
Butyric Acid	mg/l	140	0.025 J
Hexanoic Acid i-Hexanoic Acid	mg/l	16	<0.4
i-Pentanoic Acid	mg/l	7.3	< 0.4
Lactic Acid	mg/l	<10 0.62 J	<0.2
Pentanoic Acid	mg/l mg/l	0.62 J 87	<0.4
Propionic Acid	mg/l	970	0.036 J
Propionic Acid Pyruvic Acid	mg/l	970 5.1 J	<0.2
OTHER LABORATORY DATA	····ˈˈˈˈ/ ·	5.13	NU.2
	mg/l	4,260	59.5
Total Organic Carbon WATER QUALITY PROBE DATA	III8/1	4,200	33.3
Temperature	°C		
Specific Conductance	uS/cm		
pH	s.u.		
рн Oxidation/Reduction Potential	mV		
Dissolved Oxygen	mg/l		
Turbidity	NTU		
	NIU		
FIELD CHEMISTRY Iron	ma/l		
Iron - Ferrous	mg/l mg/l		
	III III 8/1		
	-		
Nitrate Sulfate	mg/l		

Notes:

1. The table summarizes samples collected during the week of April 11, 2016 as part of performance testing at the IBM Gun Club former Burn Pit Area. Samples were analyzed both in the field and at fixed analytical laboratories as indicated on the table.

2. Analytical laboratory analysis was performed by Eurofins Lancaster Laboratories of Lancaster, Pennsylvania (Lancaster) and/or Microseeps, Inc. of Pittsburgh, Pennsylvania (Microseeps). Results of compounds are recorded in units indicated on the table. Detections of compounds are emboldened.

3. Definitions:

"--" indicates the compounds were not analyzed for that particular sample.

"U" indicates the result was below the analytical detection limit.

"J" indicates that the laboratory data was below the lowest quantifiable limit and therefore estimated.

"*" indicates that the sample exhibited high turbidity and could not be analyzed in the field. Recorded results are from analysis at Lancaster and/or Microseeps.

"UR" indicates results were under the calibration range and no result was obtained. "OR" indicates results were over the calibration range and should be considered estimated. "ND" indicates that results were not detected above the analytical reporting limit or the calibration range of the field screening device.

4. Refer to the report text for further discussion. The sample plan can be referenced in the Site Management Plan .

Sanborn, Head & Associates, Inc.

TABLE 3B SUMMARY OF APRIL 2016 PERFORMANCE MONITORING - SURFACE WATER Summary Trip Report

IBM Gun Club - Former Burn Pit Area

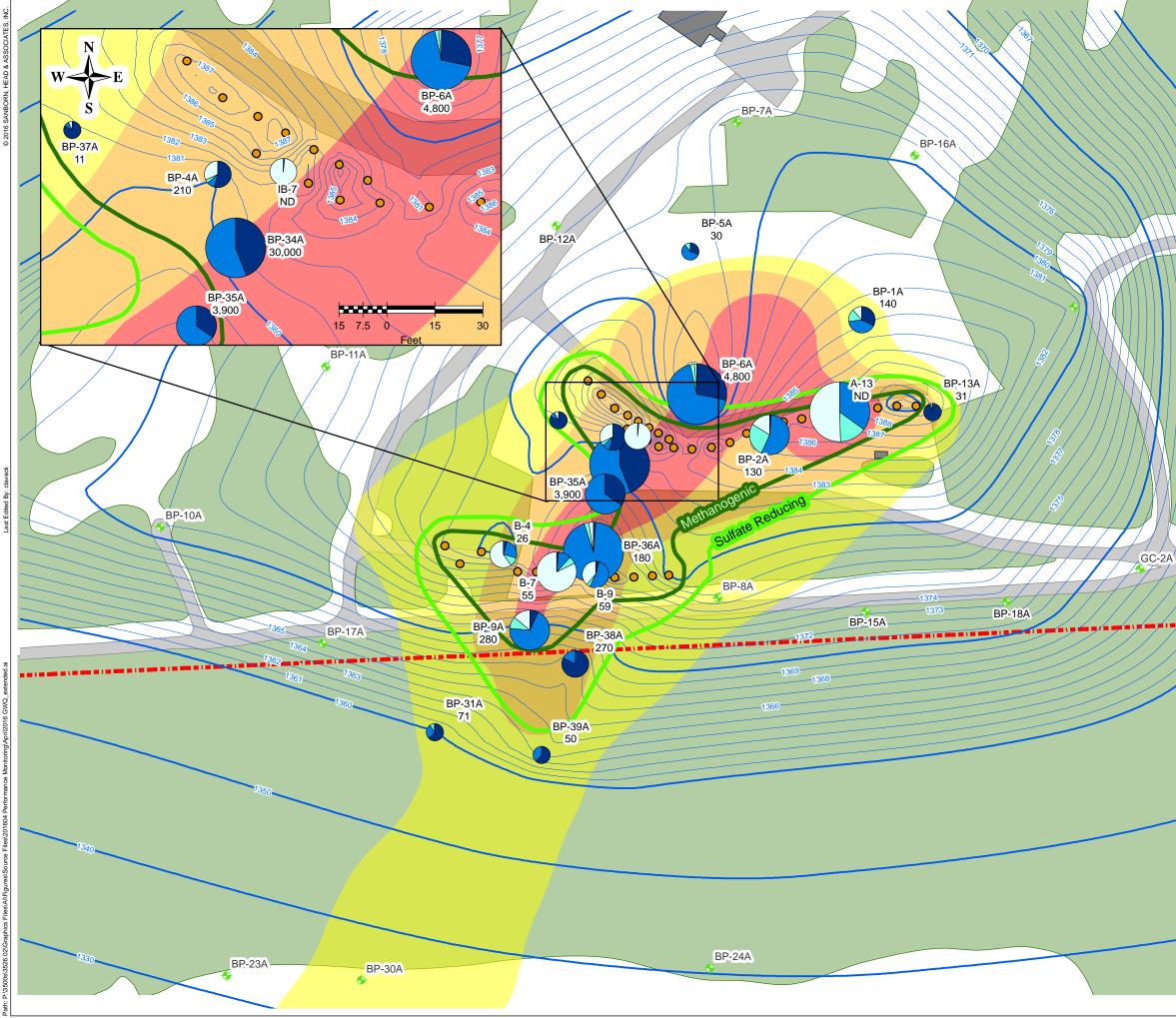
Union, New York

		111	112	113	113	118
		111	112	113	DUP3	118
		Surface Water				
		S	S	S	FD	S
Analyte Name	Unit	4/13/2016	4/13/2016	4/13/2016	4/13/2016	4/13/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)						
Dichloroethene (1,1-)	ug/l	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloroethene (cis-1,2-)	ug/l	<0.5	<0.5	<0.5	<0.5	<0.5
Dichloroethene (trans-1,2-)	ug/l	<0.5	<0.5	<0.5	<0.5	<0.5
Tetrachloroethene (PCE)	ug/l	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (TCE)	ug/l	0.2 J	1.0	1.3	1.3	0.4 J
Vinyl chloride	ug/l	<0.5	<0.5	<0.5	<0.5	<0.5
WATER QUALITY PROBE DATA						
Oxidation/Reduction Potential	mv	67	48	87	-	114
Specific Conductance	us/cm	83	70	128	-	508
Temperature	°C	9.6	7.4	7.6	-	7.3
рН	su	7.3	7.5	7.0	-	7.2

Notes:

1. The table summarizes samples collected during the week of April 11, 2016 as part of performance testing at the IBM Gun Club former Burn Pit Area.

2. Analytical laboratory analysis was performed by Eurofins Lancaster Laboratories of Lancaster, Pennsylvania (Lancaster). Results of compounds are recorded in units indicated on the table. Detections of compounds are emboldened.


3. Definitions:

"--" indicates the compounds were not analyzed for that particular sample.

"<" indicates the result was below the analytical detection limit.

"J" indicates that the laboratory data was below the lowest quantifiable limit and therefore estimated.

4. Refer to the report text for further discussion. The sample plan can be referenced in the Site Management Plan.

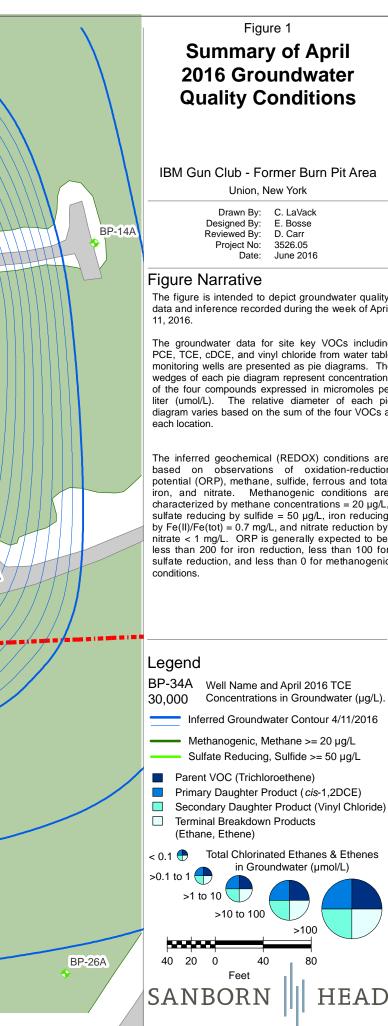


Figure 1

Summary of April 2016 Groundwater **Quality Conditions**

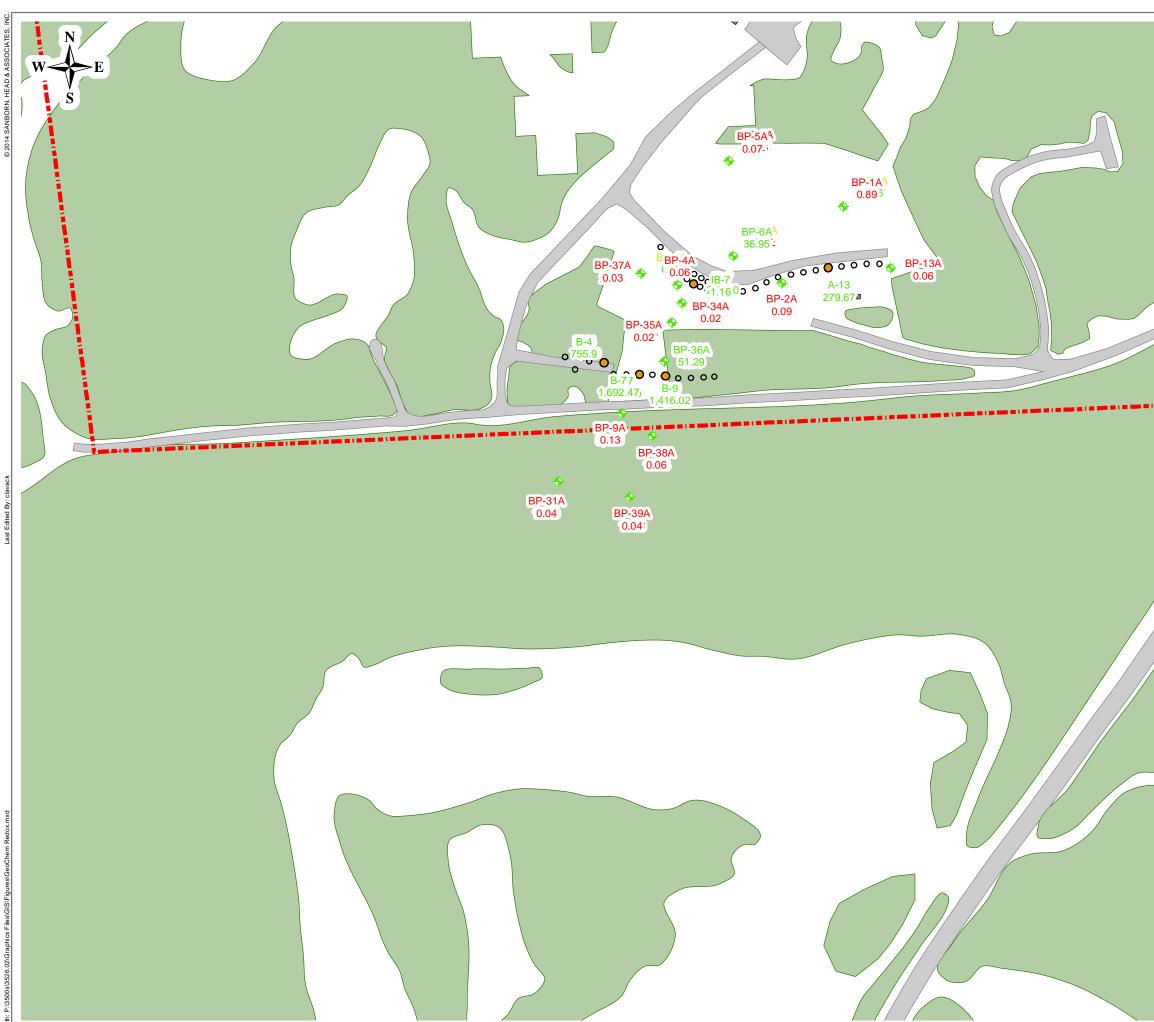
IBM Gun Club - Former Burn Pit Area

Union, New York

Drawn By:	С
esigned By:	Е
eviewed By:	D
Project No:	3
Date:	Jı

. LaVack . Bosse . Carr 526.05 une 2016

The figure is intended to depict groundwater quality data and inference recorded during the week of April


The groundwater data for site key VOCs including PCE, TCE, cDCE, and vinyl chloride from water table monitoring wells are presented as pie diagrams. The wedges of each pie diagram represent concentrations of the four compounds expressed in micromoles per liter (umol/L). The relative diameter of each pie diagram varies based on the sum of the four VOCs at

The inferred geochemical (REDOX) conditions are based on observations of oxidation-reduction potential (ORP), methane, sulfide, ferrous and total iron, and nitrate. Methanogenic conditions are characterized by methane concentrations = $20 \ \mu g/L$, sulfate reducing by sulfide = $50 \ \mu g/L$, iron reducing by Fe(II)/Fe(tot) = 0.7 mg/L, and nitrate reduction by nitrate < 1 mg/L. ORP is generally expected to be less than 200 for iron reduction, less than 100 for sulfate reduction, and less than 0 for methanogenic

>100

80

HEAD

April 2016 Summary of **Geochemical Conditions**

IBM Gun Club - Former Burn Pit Area

Union, New York

Drawn By:	S. Warner
Designed By:	E. Bosse
Reviewed By:	D. Carr
Project No:	3526.05
Date:	May, 2016

Figure Narrative

This figure is intended to assess multiple lines of evidence to assess what proportion of the primary and secondary source rock are under sulfate reducing and methanogenic conditions.

Posted data is from the April 2016 sampling round.

Legend

I		
>5	2-5	<=2
>100	0-100	<=0
<10	10-50	>=50
<0.5	0.5-20	>=20
<1		>=1
6.3-7.5	5 <6	.3 or >7.5
<1		>=1
<4		>=4
<10	10-50	>=50
	>100 <10 <0.5 <1 6.3-7.5 <1 <1 <4	>100 0-100 <10 10-50 <0.5 0.5-20 <1 6.3-7.5 <6 <1 <4

60

Feet

120

HEAD

60 30 0

SANBORN

JUNE 2016 PERFORMANCE TESTING

SUMMARY OF JUNE 2016 WATER QUALITY MONITORING

IBM Gun Club – Former Burn Pit Area Union, New York

INTRODUCTION AND SUMMARY

This memorandum is intended to summarize the program of remedy performance monitoring conducted in June 2016. It documents and summarizes the sampling event and provides tabular and figure summaries of the field and laboratory data. The field work was conducted the week of June 20, 2016 in general accordance with the scope and procedures discussed in Appendix J of the approved Site Management Plan (SMP)¹.

This memorandum will be included as a component of the next Periodic Review Report, due in March 2018, and has been prepared consistent with the Monitoring Reporting Requirements discussed in Section 3.6 of the SMP. The Sanborn Head field staff included: Chris Norton, Neal Orosz, Paula Pryor, and Matthew Stein.

The field and laboratory data indicate continued remedy performance consistent with project performance goals established in the SMP. There is some evidence that the area of subsurface where methanogenic and sulfate-reducing conditions may exist is smaller than that observed in the April sampling. The proportion of TCE on a molar basis measured in June was larger than in April 2016 in water from locations BP-1A, BP-5A, BP-6A, and BP-31A, suggesting some rebound at these locations. However, geochemical conditions remain conducive to reductive dehalogenation over much of the primary source rock. The terminal breakdown product ethene is now the predominant species in water from four of the five injection boreholes sampled regularly (A-13, B-4, B-7, and IB-7), with A-13 exhibiting ethene at about 4,300 micrograms per liter (µg/l), or over half of the mass on a molar basis. The data support compete destruction of chlorinated ethene mass and continued reductions in TCE mass discharge off site to the south which, based on the data from June 2016, may be 99% lower than what was recorded in June 2014 before the remedy was fully operational, and slightly better than the 97% reported in the recent PRR in March 2016.

The data depicted for key VOCs on Figure 2 for the majority of monitoring locations further downgradient to the south on the Binghamton Country Club property indicate water quality generally consistent with or improved when compared with the last sampling conducted in September 2015.

Sampling results from the multilevel monitoring installations, which screen productive fracture zones between the primary source rock and residential water supplies, do not indicate any adverse change in water quality.

¹ Sanborn, Head & Associates, Inc., March 2016, <u>Site Management Plan – April 2016 Revision, Brownfield</u> <u>Cleanup Program, IBM Gun Club – Former Burn Pit area, Union, New York, NYSDEC Site #C704044, BCA</u> <u>Index #B7-0661004-05.</u>

Groundwater temperatures at all locations are observed to be in the range conducive to processes contributing to reductive dehalogenation (9 to 35°Celsius); some locations are several degrees higher than that observed in the first two years of operation which also may reflect recent hotter and/or drier weather patterns. Total organic carbon concentrations in injection boreholes continue to decline, which is consistent with consumption of electron donor, but still exceeds 100 milligrams per liter (mg/l) at all locations, a threshold below which we have observed evidence of diminishing remediation performance.

Accordingly, it is Sanborn Head's opinion that additional introduction of electron donor amendment is not warranted at this time. We would prefer to limit amendment injections until we observe clear evidence of diminishing returns with the goal of injections every two years or less. Field conditions and water quality data will continue to be monitored and reassessed to determine the need for additional injections. Our next performance monitoring event is to be conducted in September 2016.

JUNE 2016 MONITORING SCOPE OF WORK

The scope of work included:

- Limited groundwater elevation survey;
- Annual well inspection including depth-to-bottom measurements;
- Water quality sampling associated with the performance monitoring program as outlined in the SMP;
- Calibration of dedicated water quality probes installed in five monitoring wells; and
- Water quality parameter field screening and field geochemical testing.

During this visit representative photographs were recorded showing the condition of the tree and grass vegetation at the time the sampling was conducted.

Groundwater Elevation Survey

On June 20, 2016, prior to starting the water quality sampling program, the depths to water in select monitoring wells and injection boreholes were gauged in accordance with procedures detailed in Appendix G of the SMP. Water levels were also measured and recorded for monitoring points at the time sampling was conducted. Based on the depth to water data and survey information, groundwater elevations were calculated for each location. Depth to water measurements and groundwater elevations are summarized on Table 2.

Page 3 3526.05

Condition of Tree and Grass Cover

The tree and grass cover appeared greener and more vigorous following fertilizer application completed in May 2016 as shown in the following pictures.

Photo 1 Soil Cap Over Primary Source Rock Area Looking Northeast from the Gravel Access Road towards Monitoring Well BP-1A.

Photo 2 – Looking Southwest across the seep fill area with Deed Restriction Cap Monument in the Distance (Yellow Standpipe)

A routine maintenance mowing is to be conducted in August 2016.

Water Quality Sampling

The scope of sampling as originally planned is included as Table 1. The scope was modified as follows as a result of field conditions:

- Monitoring points BP-10A, BP-17A, BP-26A, and GC-2A were to be sampled via Passive Diffusion Bag (PDB), however, no PDBs were deployed prior to the June 2016 event and the wells were sampled via modified low-flow techniques;
- Flute Port BP-15D, P1 was found to be dry. We inadvertently sampled Flute ports 14D P1, and P4 after purging these points to record water levels;
- Water from BP-6A and BP-37A were deemed too turbid for geochemical field testing , and samples were collected for laboratory analysis;
- Surface water points 112 and 118 were dry during June 2016 and no samples were collected. No additional seeps or springs were observed; and

August 12, 2016	Page 5
20160812 June 2016 WQ Memo.docx	3526.05

BP-16A had insufficient volume to perform sampling. No samples were collected.

Exhibit 1 summarizes the sampling methods used during the monitoring event. The quality assurance/quality control (QA/QC) samples collected for VOC analysis are summarized in Exhibit 2. Samples (including QA/QC samples) submitted for fixed laboratory analysis or field screening are tabulated in Exhibit 3. Laboratory and field analytical data are summarized in Table 3.

A summary of groundwater quality data and inference is presented in Figure 1. A figure depicting the entire monitoring area south into the golf course and summarizing key site VOCs including carbon tetrachloride in included as Figure 2. An interactive layered plan view figure included as Figure 3 can be used to view the geochemical data used in inferring the geochemical conditions shown on Figure 1. Field sampling records and analytical laboratory reports are kept on file and are available by request.

Exhibit I Summary of Sampting Methods						
Sample Method	Number of Locations Sampled					
Modified Low-Flow	18					
Submerged Container (surface water)	2					
Passive Diffusion Bag	21					
fLUTE® Purge	9					
Sampling Event Purge Water	1					

Exhibit 1 Summary of Sampling Methods

Exhibit 2 Summary of QA/QC Samples for VOC analysis

Total Primary Samples	51
Duplicate Samples	5
Matrix Spikes	3
Matrix Spike Duplicates	3
Field Blanks	4
Equipment Blanks	1
Trip Blanks	4

Exhibit 3 Summary of	of Analytical T	ype including QA/QC
----------------------	-----------------	---------------------

Sample Type - Fixed Laboratory	Laboratory	Number of Samples
VOCs	Lancaster	71
Total Organic Carbon	Lancaster	21
Volatile Fatty Acids	Microseeps	21
Light Gases (Ethane, Ethene, and Methane)	Microseeps	21
Geochemical Analyses	Microseeps	2
Sample Type - Field Screening	Laboratory	Number of Samples
Field Geochemistry	Sanborn Head	12

Page 6 3526.05

Equipment Calibration

Exhibit 4 summarizes the field instruments utilized during field sampling. The instruments were calibrated each morning and a calibration check was performed at the end of each day.

Lambit 4 Summary of	
INSTRUMENT	FIELD PARAMETER
YSI Water Quality Parameter Probe	Temperature, pH, Specific Conductance, Dissolved
	Oxygen, and Oxidation-reduction Potential
HACH 2100Q Turbidimeter	Turbidity
HACH DR2800 Spectrophotometer	Total and Ferrous Iron, Nitrate, Sulfate, and Sulfide

Exhibit 4 Summary of Field Instrumentation

Attachments:

- Table 1Scope of Performance Monitoring
- Table 2Summary of Water Level Data
- Table 3Summary of June 2016 Performance Monitoring
- Figure 1 Summary of June 2016 Groundwater Quality Conditions
- Figure 2 Summary of Key Site VOCs June 2016
- Figure 3 Summary of Geochemical Conditions

P:\3500s\3526.02\Source Files\201606 Trip Report\20160812_June 2016 WQ Memo.docx

Table 1Summary of Routine and Performance Monitoring ProgramIBM Gun Club - Former Burn Pit AreaUnion, New York

		Monitoring		Samj	ple Methoo	ł	Anal	ytical La	borat	ory	Field	Screening
Monitoring Type	nitoring Type Monitoring Location		Low Flow	PDBs	Nitrogen Purge	Surface Water	VOCs	Light Gasses	тос	VFAs	Water Quality Parameter	Field Geochemistry
	BP-7A	Monitoring Well		х			х				Х	
	BP-8A	Monitoring Well		Х			х				Х	
	BP-10A	Monitoring Well		х			х				Х	
	BP-11A	Monitoring Well		Х			х				Х	
	BP-12A	Monitoring Well		Х			Х				Х	
	BP-14A	Monitoring Well		Х			Х				х	
	BP-16A	Monitoring Well		Х			Х				х	
	BP-17A	Monitoring Well		Х			Х				Х	
	BP-18A	Monitoring Well		Х			Х				х	
	BP-19A	Monitoring Well		Х			Х				х	
	BP-20A	Monitoring Well		Х			Х				х	
	BP-21A	Monitoring Well		Х			Х				х	
Routine	BP-22A	Monitoring Well		Х			Х				Х	
Monitoring	BP-23A	Monitoring Well		Х			Х				Х	
(Annually in	BP-24A	Monitoring Well		Х			Х				Х	
June)	BP-25A	Monitoring Well		Х			Х				х	
	BP-26A	Monitoring Well		Х			Х				Х	
	BP-27A	Monitoring Well		Х			Х				Х	
	BP-30A	Monitoring Well		Х			х				Х	
	BP-32A	Monitoring Well		Х			х				Х	
	GC-2A	Monitoring Well		Х			Х				Х	
	GC-1, P-1	Multi-Depth			Х		х				Х	
	GC-1, P-8	Multi-Depth			Х		х				Х	
	BP-12D, P1	Multi-Depth			Х		х				Х	
	BP-12D, P7	Multi-Depth			Х		х				Х	
	BP-13D, P1	Multi-Depth			Х		х				Х	
	BP-13D, P5	Multi-Depth			Х		х				Х	
	BP-15D, P1 BP-15D, P5	Multi-Depth Multi-Depth			X		X				X	
					Х		Х				Х	
	IB-7	Injection Borehole		X			X	X	X	X		
	A-13 B-4	Injection Borehole		X			X	x	X	X		
	в-4 В-7	Injection Borehole Injection Borehole		X			X	x	X	X		
	в-7 В-9	Injection Borehole		X			X	x	X	X		
	BP-1A	Monitoring Well		Х			X	X	x	X		
	BP-1A BP-2A	Monitoring Well	X				X	x	X	X	X	X
	BP-2A BP-4A	Monitoring Well	X				X	X	X	X	X	X
	BP-4A BP-5A	Monitoring Well	X X				X X	X X	X X	X X	X X	X X
	BP-6A	Monitoring Well										
Performance	BP-0A BP-9A	Monitoring Well	X X				X X	X X	X X	X X	X X	X
Monitoring	BP-13A	Monitoring Well	X				X	X	X	x	X	X
(3x/year in April,	BP-31A	Monitoring Well	X				X	X	X	X	X	X
June, and	BP-34A	Monitoring Well	X				X	x	X	X	X	X
Sept/October)	BP-35A	Monitoring Well	X				x	x	X	X	X	X
	BP-36A	Monitoring Well	X				X	X	x	X	X	X
	BP-37A	Monitoring Well	X		-		X	X	X	X	X	X
	BP-38A	Monitoring Well	X				X	x	X	X	X	X
	BP-39A	Monitoring Well	X				X	x	X	X	X	X
	111	Seep/spring				x	X	~	~		X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	111	Seep/spring Seep/spring			-	x	x	1			X	
	112	Seep/spring				x	x				X	
	113	Seep/spring Seep/spring				X	X				X	
	SW-Z	Seep/spring Seep/spring				X	X				X	
		Total	14	26	8	5	53	19	19	19	48	14

Notes:

1. This table is intended to summarize the programs of routine and performance monitoring for remedy operations at the IBM Gun Club - Former Burn Pit Area starting in 2016. Additional monitoring points may be sampled based on field observations. "SW-Z" serves as a placeholder for sampling any on-site seep or spring that can be reasonably sampled. The table summarizes sample method, analytical laboratory analysis, and field screening.

2. Sample method:

"Low Flow" indicates samples will be collected by bladder pump using low flow techniques.

"PDBs" indicates that the well has sufficient water column to sample with passive diffusion bags - if conditions are observed to be different than anticipated, sampling will proceed using low flow techniques.

"Nitrogen purge" indicates that sample will be collected by purging the multi-level port with nitrogen (multi-level systems only). "Surface water" samples will be collected using a clean glass vial.

3. Analytical laboratory samples:

"VOCs" indicates volatile organic compounds.

"Light gasses" includes methane, ethene and ethane. "TOC" indicates total organic carbon. "VFAs" indicates volatile fatty acids.

4. "Water quality parameters" indicates screening during well purging and water quality sampling by multi-parameter probes, e.g. by YSI® 556 multi-Probe meter or similar and HACH® turbidity meter or similar (low flow, multi-level system, bailer, and surface water sampling) or by water quality parameter sounding (PDB sampling). The water quality parameters may include temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, pH, and turbidity. In addition surface water samples will include water clarity descriptors (transparency, translucence, or opaqueness, and color).

5. "Field Geochemistry" will be performed during performance monitoring by using reagent kits and a spectrophotometer (HACH® DR 800, DR 2800, or similar). The field geochemistry includes analysis for sulfate, sulfide, ferrous iron, total iron, and oxygen. In some cases elevated turbidity (>10 NTU) or color may interfere with the spectrophotometric analysis. In such cases field geochemistry samples will be supplemented with samples submitted to an analytical laboratory as outlined in the Site Management Plan.

			Equivalent
*** 11 *	Reference	Depth to	Potentiometric
Well Location	Elevation	Water	Elevation
	(ft amsl)	(ft bgs)	(ft amsl)
A-1	1391.11	6.12	1384.99
A-2	1390.68	6.56	1384.12
A-3	1392.74	9.88	1382.86
A-4	1397.56	6.95	1390.61
A-5	1397.4	6.89	1390.51
A-6	1397.86	6.33	1391.53
A-7	1397.28	6.46	1390.82
A-8	1396.81	6.22	1390.59
A-9	1396.47	4.66	1391.81
A-10	1396.06	3.04	1393.02
A-11	1395.73	4.28	1391.45
A-12	1395.59	13.01	1382.58
A-13	1394.25	17.37	1376.88
A-14	1394.61	10.88	1383.73
A-15	1393.47	13.09	1380.38
A-16	1398.14	12.61	1385.53
A-17	1395.48	11.64	1383.84
B-1	1385.26	7.96	1377.30
B-2	1384.71	8.20	1376.51
B-3	1385.48	5.74	1379.74
B-4	1385.03	5.85	1379.18
B-5	1383.99	8.15	1375.84
B-6	1384.48	7.45	1377.03
B-7	1385.33	8.86	1376.47
B-8	1384.9	9.17	1375.73
B-9	1385.21	12.05	1373.16
B-10	1384.69	5.36	1379.33
B-11	1384.4	7.73	1376.67
B-12	1383.87	7.14	1376.73
B-13	1384.5	6.48	1378.02
BP-1A	1395.67	15.23	1380.44
BP-2	1396.98	29.73	1367.25
BP-2A	1396.89	11.85	1385.04
BP-3	1394.81	37.47	1357.34
BP-4	1392.81	25.88	1366.93
BP-4A	1391.96	13.36	1378.60
BP-5A	1391.09	15.12	1375.97
BP-6	1394.32	27.09	1367.23
BP-6A	1393.95	18.49	1375.46
BP-7A	1388.89	16.57	1372.32

			Equivalent
	Reference	Depth to	Potentiometric
Well Location	Elevation	Water	Elevation
	(ft amsl)	(ft bgs)	(ft amsl)
BP-8A	1384.53	16.60	1367.93
BP-9A	1379.17	13.20	1365.97
BP-10A	1381.74	14.05	1367.69
BP-11A	1384.8	14.55	1370.25
BP-12A	1386.64	16.71	1369.93
BP-13A	1398.89	14.54	1384.35
BP-16A	1389.69	>15.88	<1373.81
BP-17A	1376.3	13.24	1363.06
BP-18A	1386.54	16.81	1369.73
BP-19A	1309.4	21.32	1288.08
BP-20A	1274.6	9.04	1265.56
BP-21	1244.12	20.81	1223.31
BP-21A	1244.29	7.92	1236.37
BP-22A	1242.9	6.78	1236.12
BP-23A	1333.39	15.44	1317.95
BP-24A	1338.73	16.06	1322.67
BP-25A	1301.92	7.24	1294.68
BP-26A	1336.96	16.00	1320.96
BP-27A	1299.96	4.10	1295.86
BP-30A	1336.2	13.86	1322.34
BP-31A	1369.63	13.41	1356.22
BP-32A	1389.58	17.64	1371.94
BP-33A	1369.48	20.65	1348.83
BP-34A	1392.55	13.19	1379.36
BP-35A	1391.75	15.25	1376.50
BP-36A	1383.68	13.54	1370.14
BP-37A	1389.92	10.78	1379.14
BP-38A	1375.1	13.68	1361.42
BP-39A	1370.17	11.81	1358.36
BP-40A	1358.71	17.40	1341.31
BP-12D Port 1	1385.37	2.57	1382.80
BP-12D Port 7	1385.37	68.22	1317.15
BP-13D Port 1	1397.04	89.51	1307.53
BP-13D Port 5	1397.04	89.87	1307.17
BP-14D Port 1	1378.07	142.50	1235.57
BP-14D Port 5	1378.07	71.54	1306.53
BP-15D Port 5	1386.35	76.63	1309.72
GC-1 Port 1	1383.71	13.79	1369.92
GC-1 Port 8	1383.71	64.24	1319.47
GC-2A	1383.32	17.65	1365.67

Well Location	Reference Elevation (ft amsl)	Depth to Water (ft bgs)	Equivalent Potentiometric Elevation (ft amsl)
IB-1	1392.2	6.95	1385.25
IB-2	1393.47	8.31	1385.16
IB-3	1393.07	12.31	1380.76
IB-4	1393.78	8.62	1385.16
IB-5	1393.88	11.21	1382.67
IB-6	1393.05	7.86	1385.19
IB-7	1393.23	8.04	1385.19
IB-8	1393.43	12.83	1380.60
IB-9	1393.62	8.43	1385.19
RP-9-380	1240.73	6.40	1234.33
RP-13-885	1266.48	5.53	1260.95

Notes:

1. This table summarizes depth to water measurements and calculated water table elevations recorded during the June 2016 performance monitoring round on June 21, 2016. Measurements were collected relative to the marked reference point at each location using a QED MP30 water level meter.

2. Abbreviations

ft amsl = feet above mean sea level ft bgs = feet below ground surface

TABLE 3 SUMMARY OF JUNE 2016 PERFORMANCE MONITORING

Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

		BP-1A	BP-2A	BP-4A	BP-5A	BP-6A	BP-7A	BP-8A	BP-9A	BP-10A	BP-11A	BP-12A	BP-13A	BP-17A	BP-18A	BP-18A	BP-19A	BP-20A	BP-21A
4 1 . N		BP-1A	BP-2A	BP-4A	BP-5A	BP-6A	BP-7A	BP-8A	BP-9A	BP-10A	BP-11A	BP-12A	BP-13A	BP-17A	BP-18A	DUP-5	BP-19A	BP-20A	BP-21A
Analyte Name		Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	PDB	Low Flow	Low Flow	PDB	PDB	PDB	PDB	PDB
	II	5	S	S	5	5	S	S	5	S	S	S	5	S	S	FD	5	S	S
	Unit	6/21/2016	6/21/2016	6/21/2016	6/22/2016	6/22/2016	6/24/2016	6/24/2016	6/21/2016	6/23/2016	6/23/2016	6/23/2016	6/21/2016	6/23/2016	6/23/2016	6/23/2016	6/22/2016	6/22/2016	6/22/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)	4	450	00	200		45 000	0.5	16	240		2.4		05	4.0	40	44	0.5	40	0.5
Trichloroethene (TCE)	μg/l	170	98	200	22	15,000	< 0.5	16	210	2.3	2.6	2.4	95	1.0	10	11	< 0.5	10	<0.5
Dichloroethene (cis-1,2-)	μg/l	130	4200	47	21	6,100	< 0.5	1.3	1,400	0.30 J	< 0.5	0.20 J	3.7	< 0.5	0.30 J	0.40 J	< 0.5	0.20 J	< 0.5
Dichloroethene (trans-1,2-) Dichloroethene (1,1-)	μg/l μg/l	1.5 0.70	17 J 7.9 J	1.5 J 0.50 J	0.50 <0.5	<100 <100	<0.5 <0.5	<0.5 <0.5	10 J 5.1 J	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 0.20 J	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Tetrachloroethene (PCE)	μg/1 μg/l	<0.5	<25	1.3 J	<0.5	<100	<0.5	<0.5	<25	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.20	< 0.5
Vinyl chloride	μg/1 μg/l	4.3	980	1.3 J	0.20 J	<100	< 0.5	< 0.5	85	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
LIGHT GASSES	μ6/ 1	1.5	700	15	0.20)	100	\$0.5	\$0.5	05	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	\$0.5	30.5	\$0.5	\$0.5	\$0.5
Ethane	μg/l	0.10	0.42	16	0.013 J	0.47			0.99				0.13						
Ethene	μg/1 μg/l	0.10	430	34	0.013 J	2.2			52				0.13						
Methane	μg/I μg/I	1.5	1,700	1,800	0.020 J	6.2			1,700				16						
MOLAR CONCENTRATION	P6/1	110	1,700	1,000	0110)	012			1,700				10						
Trichloroethene (TCE)	µmol/l	1.3	0.75	1.5	0.17	114	ND	0.12	1.6	0.02	0.02	0.02	0.72	0.01	0.08	0.08	ND	0.08	ND
Dichloroethene (cis-1,2-)	μmol/l	1.3	43	0.48	0.17	63	ND	0.12	1.0	0.002	0.02 ND	0.02	0.72	ND	0.003	0.004	ND	0.002	ND
Dichloroethene (trans-1,2-)	μmol/l	0.02	0.18	0.02	0.01	ND	ND	ND	0.10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichloroethene (1,1-)	µmol/l	0.02	0.08	0.02	ND	ND	ND	ND	0.05	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND
Tetrachloroethene (PCE)	µmol/l	ND	ND	0.01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.001	ND
Vinyl chloride	µmol/l	0.07	16	0.21	0.003	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethane	µmol/l	0.003	0.01	0.53	0.0004	0.02			0.03				0.004						
Ethene	µmol/l	0.004	15	1.2	0.001	0.08			1.9				0.01						
Total	µmol/l	2.7	75	4.0	0.39	177	ND	0.14	19	0.02	0.02	0.02	0.78	0.01	0.08	0.09	ND	0.08	ND
MOLAR PERCENTAGE									•			•			•		•	•	
ТСЕ	%	47	1	38	43	64	ND	90	8	85	100	90	93	100	96	95	ND	96	ND
DCEs	%	50	58	13	56	36	ND	10	75	15	ND	10	5	ND	4	5	ND	3	ND
VC	%	3	21	5	1	ND	ND	ND	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethane+Ethene	%	0.28	20	44	0.35	0.05			10				2						
VOLATILE FATTY ACIDS																			
Acetic Acid	mg/l	0.22 J	0.035 J	0.021 J	0.021 J	0.11 J			0.023 J				0.036 J						
Butyric Acid	mg/l	<1.0	0.037 J	0.0094 J	< 0.1	<1.0			0.013 J				< 0.1						
Hexanoic Acid	mg/l	<2.0	<0.2	<0.2	<0.2	<2.0			< 0.2				< 0.2						
i-Hexanoic Acid	mg/l	<2.0	<0.2	<0.2	<0.2	<2.0			< 0.2				< 0.2						
i-Pentanoic Acid	mg/l	<1.0	<0.1	<0.1	< 0.1	<1.0			< 0.1				< 0.1						
Lactic Acid	mg/l	<2.0	0.017 J	0.049 J	<0.2	0.078 J			0.015 J				0.0080 J						
Pentanoic Acid	mg/l	0.40 J	0.031 J	<0.1	< 0.1	<1.0			< 0.1				0.030 J						
Propionic Acid	mg/l	<1.0	<0.1	< 0.1	< 0.1	<1.0			< 0.1				0.0090 J						
	mg/l	<1.0	<0.1	<0.1	0.017 J	<1.0			< 0.1				< 0.1						
OTHER LABORATORY DATA	/1		1.0		10.4		1						1.0				1	1	
Total Organic Carbon	mg/l	15.4	4.2	3.9	18.6	252			1.5				<1.0						
WATER QUALITY PROBE DATA																			
Temperature	°C	16.4	14.9	16.3	14.4	15.1			11.1	14.9	15.7	10.4	14.4	14.2	10.7		9.6	9.4	9.3
Specific Conductance	uS/cm	2,400	710	560	1,400	9,300			340	130	150	380	150	270	150		71	180	530
pH Osidation (Deduction Detection	s.u.	7.2	6.5	7.4	6.9	6.8			7.5	6.4	5.2	6.9	6.6	6.4	6.7		6.4	6.2	7.5
Oxidation/Reduction Potential	mV	210	13	120	80	17			99	68	210	98	150	110	96		75	81	74
Dissolved Oxygen	mg/l NTU	6.6 1.2	0.28	0.16 0.98	3.7 3.3	0.41			0.56	6.9 0.92	8.5 128	1.7	6.8 0.43	7.0 2.3	1.8		9.6	2.2	0.60
Turbidity	NIU	1.2	2.4	0.98	3.3	3.5			0.82	0.92	120		0.43	2.3					
FIELD CHEMISTRY		0.02	6500	0.02	0.10	1.0			0.14				0.04						
Iron Iron Forrous	mg/l	0.03	6.5 OR	0.03	0.10	1.0 0.82			0.11 0.09				0.01 0.02						
Iron - Ferrous	mg/l		4.8 OR 0.90	0.01	0.04														
Nitrate Sulfate	mg/l	1.3 166 OR		0.80 42	2.5 3.5	<0.5 2,400			1.0 20				0.60						
Sulfide	mg/l μg/l	166 UK	54 25	42	3.5 5	2,400 <10			20 19				4						
Juniue	μg/1	<u> </u>	43	4	3	×10			19				4						

TABLE 3 SUMMARY OF JUNE 2016 PERFORMANCE MONITORING

Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

						-	-						-		r		1		r	
		BP-22A	BP-23A	BP-24A	BP-24A	BP-25A	BP-26A	BP-27A	BP-30A	BP-31A	BP-31A	BP-32A	BP-34A	BP-35A	BP-35A	BP-36A	BP-36A	BP-37A	BP-38A	BP-39A
		BP-22A	BP-23A	BP-24A	DUP-4	BP-25A	BP-26A	BP-27A	BP-30A	BP-31A	DUP-1	BP-32A	BP-34A	BP-35A	DUP-2	BP-36A	DUP-3	BP-37A	BP-38A	BP-39A
Analyte Name		PDB	PDB	PDB	PDB	PDB	Low Flow	PDB	PDB	Low Flow	Low Flow	PDB	Low Flow							
		S	S	S	FD	S	S	S	S	S	FD	S	S	S	FD	S	FD	S	S	S
	Unit	6/22/2016	6/20/2016	6/22/2016	6/22/2016	6/22/2016	6/22/2016	6/22/2016	6/20/2016	6/21/2016	6/21/2016	6/23/2016	6/21/2016	6/21/2016	6/21/2016	6/22/2016	6/22/2016	6/22/2016	6/21/2016	6/21/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)																				
Trichloroethene (TCE)	μg/l	< 0.5	2.5	1.6	1.7	0.80	0.70	3.3	42	12	11	0.60	33,000	3,600	4,000	180	170	10	120	53
Dichloroethene (cis-1,2-)	μg/l	< 0.5	0.2 J	0.50	0.60	< 0.5	< 0.5	1.1	17	1.4	1.3	< 0.5	36,000	5,000	5,700	9,100	9,100	1.1	23	55
Dichloroethene (trans-1,2-)	μg/l	< 0.5	< 0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	52 J	13 J	<50	14 J	12 J	< 0.5	0.10 J	0.3 J
Dichloroethene (1,1-)	μg/l	< 0.5	< 0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	51 J	6.2 J	<50	19 J	19 J	< 0.5	0.20 J	0.1 J
Tetrachloroethene (PCE)	μg/l	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.2	0.80	0.80	< 0.5	50 J	<25	32 J	<50	82	< 0.5	0.10 J	< 0.5
Vinyl chloride	μg/l	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	100 J	<25	<50	390	400	<0.5	<0.5	<0.5
LIGHT GASSES																				
Ethane	μg/l									0.0070 J	0.0097 J		3.3	0.15	0.20	6.5		0.089 J	0.014 J	0.013 J
Ethene	μg/l									0.045 J	0.0053 J		39	0.026 J	0.030 J	130		0.084 J	0.011 J	0.013 J
Methane	μg/l									0.16 J	0.31 J		1,100	0.77	1.1	960		340	0.24 J	0.14 J
MOLAR CONCENTRATION																				
Trichloroethene (TCE)	µmol/l	ND	0.02	0.01	0.01	0.01	0.01	0.03	0.32	0.09	0.08	0.005	251	27	30	1.4	1.3	0.08	0.91	0.40
Dichloroethene (cis-1,2-)	µmol/l	ND	0.002	0.01	0.01	ND	ND	0.01	0.18	0.01	0.01	ND	371	52	59	94	94	0.01	0.24	0.57
Dichloroethene (trans-1,2-)	µmol/l	ND	0.54	0.13	ND	0.14	0.12	ND	0.001	0.003										
Dichloroethene (1,1-)	µmol/l	ND	0.53	0.06	ND	0.20	0.20	ND	0.002	0.001										
Tetrachloroethene (PCE)	µmol/l	ND	0.01	0.005	0.005	ND	0.30	ND	0.19	ND	0.49	ND	0.001	ND						
Vinyl chloride	µmol/l	ND	1.6	ND	ND	6.2	6.4	ND	ND	ND										
Ethane	µmol/l									0.0002	0.0003		0.11	0.005	0.01	0.22		0.003	0.0005	0.0004
Ethene	µmol/l									0.002	0.0002		1.4	0.001	0.001	4.6		0.003	0.0004	0.0005
Total	µmol/l	ND	0.02	0.02	0.019	0.01	0.01	0.04	0.51	0.11	0.10	0.005	627	79	89	107	102	0.09	1.2	0.98
MOLAR PERCENTAGE	-														-	-		-		-
TCE	%	ND	90	70	68	100	100	69	63	81	82	100	40	35	34	1	1	81	79	41
DCEs	%	ND	10	30	32	ND	ND	31	35	13	13	ND	59	65	66	88	92	12	21	59
VC	%	ND	0.3	ND	ND	6	6	ND	ND	ND										
Ethane+Ethene	%									2	0.5		0.2	0.01	0.01	5		6	0.1	0.1
VOLATILE FATTY ACIDS																				
Acetic Acid	mg/l									0.015 J	0.022 J		0.034 J	0.027 J	0.02 J	32		0.015 J	0.012 J	0.020 J
Butyric Acid	mg/l									< 0.1	< 0.1		0.015 J	< 0.1	< 0.1	4.1		< 0.1	< 0.1	< 0.1
Hexanoic Acid	mg/l									< 0.2	< 0.2		< 0.2	< 0.2	<0.2	3.1		< 0.2	< 0.2	< 0.2
i-Hexanoic Acid	mg/l									<0.2	< 0.2		< 0.2	<0.2	<0.2	< 0.2		< 0.2	< 0.2	< 0.2
i-Pentanoic Acid	mg/l									<0.1	< 0.1		< 0.1	<0.1	< 0.1	0.11		< 0.1	< 0.1	< 0.1
Lactic Acid	mg/l									0.0063 J	0.013 J		0.0069 J	0.016 J	0.017 J	<2.0		0.0098 J	< 0.2	0.016 J
Pentanoic Acid	mg/l									< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	0.30		< 0.1	< 0.1	< 0.1
Propionic Acid	mg/l									< 0.1	< 0.1		< 0.1	< 0.1	< 0.1	1.4		< 0.1	< 0.1	< 0.1
Pyruvic Acid	mg/l									<0.1	< 0.1		< 0.1	<0.1	< 0.1	0.054 J		<0.1	<0.1	<0.1
OTHER LABORATORY DATA	1 /		1	-				-				1					1	1 4 -		
Total Organic Carbon	mg/l									<1.0	<1.0		4.6	1.5	1.5	34.1		1.8	0.73 J	1.3
WATER QUALITY PROBE DATA	П			_	_	-					1	1								1
Temperature	°C	9.3	9.4	9.9	9.9	9.9	15.0	10.0	11.5	12.2			14.6	13.6	13.6	12.0	12.0	16.0	13.1	12.3
Specific Conductance	uS/cm	750	210	160	160	280	280	410	130	330			910	810	810	550	550	670	210	130
	s.u.	7.7		6.7	6.7	7.3	5.4	6.4		7.6			7.1	7.6	7.6	7.1	7.1	7.1	6.6	6.2
Oxidation/Reduction Potential	mV	79	250	91	91	73	170	104	99	57			110	91	91	-150	-150	94	150	160
Dissolved Oxygen	mg/l	0.73	0.27	3.2	3.2	1.3	8.9	1.3	6.6	1.8			0.71	5.5	5.5	0.22	0.22	1.8	3.8	3.1
Turbidity	NTU						3.2			0.27			2.9	2.2	2.2	3.6	3.6	34	2.3	0.37
FIELD CHEMISTRY		L	-								-	-						-	-	
Iron	mg/l									0.03			0.04	0.01	0.01	5.4 OR	5.4 OR	0.27	0.06	0.03
Iron - Ferrous	mg/l									0.12			0.04	0.02	0.02	5.1 OR	5.1 OR	< 0.5	0.04	0.01
Nitrate	mg/l									0.90			1.1	0.80	0.80	0.90	0.90	< 0.5	0.70	0.70
Sulfate	mg/l									28			82 OR	11	11	2.0	2.0	7.4	13	9.0
Sulfide	μg/l									10			8	11	11	96	96	<1	14	10

TABLE 3 SUMMARY OF JUNE 2016 PERFORMANCE MONITORING

Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

Analysis 62-2 1-3 0 0 <t< th=""><th>r</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	r																
Analyte Name Imar Parton Parton Parton Parton Par			GC-2A	A-13	B-4	B-7	B-9										
best i							-		,		,	,	,	- , -	,	, -	- , -
Image Desize and process of process o	Analyte Name																
VOLUME ORANGE VOLOGEupped <t< td=""><td></td><td></td><td>0</td><td>•</td><td>0</td><td>0</td><td>-</td><td>5</td><td>0</td><td>÷</td><td>÷</td><td>-</td><td>5</td><td>-</td><td>5</td><td>0</td><td>-</td></t<>			0	•	0	0	-	5	0	÷	÷	-	5	-	5	0	-
momenta per loci adi 5.5 7.5		Unit	6/23/2016	6/20/2016	6/20/2016	6/20/2016	6/20/2016	6/20/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016	6/23/2016
Dechomenence (m. 1)ngl160160160160160170<							=0	.				. .					
Dechember land-land parketdeg <t< td=""><td></td><td></td><td></td><td>,</td><td>· · · ·</td><td></td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></t<>				,	· · · ·					,				,			
phonoment 11 by phonoment 11 by product over 11 by phonoment 11 by phonom				,	1		,	· · · · ·									
SchedungenergicClwightendsetable		10.			· · · ·												
Mind JachendendsZ.700J.00J.700F.300S.10F.300													,				
Light Casses uppl u 27 6.3 2.0 7.0 7.0 1.0						,											
Plane ind yead ind 20 20 20 20 10 ind		µg/I	<0.5	2,700	19	71	90	<5.0	3.1	5.6	<0.5	<0.5	1.0	0.20 J	<0.5	<0.5	<0.5
Schore Schor Schor <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
(advacrame)(up) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>							-										
MOLAR GONZENTRATION image image <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								,									
Technologener (EC) µmed, 0.44 0.43 0.04 0.44 0.02 ND ND 0.012 ND		μg/l		5,700	12,000	7,400	6,300	22,000									
Deblomether (1-)pmmd/lPort		1	ļ		1												
Debloscher imms/l Nm Qu Nm													-				
Delforment (1,1) pmod/l ND ND <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>													-				
frame μmo/h ND ND ND 0.00 0.11 4 ND ND <		µmol/l															
Viny Chernels umol/l ND ND A3 0.30 1.1 1.4 ND 0.05 0.09 ND ND D02 0.003 ND ND ND Chane µmol/l 153 2.0 9.3 4.6 0.001																	
Ethane ymol/h - 0.09 0.28 0.07 0.03 -																	
bluenc ymol/ 0.0 2.0 9.3 4.4 0.0	· · · · · · · · · · · · · · · · · · ·		ND						0.05	0.09	ND	ND	0.02	0.003	ND	ND	ND
Total ymol/l 0.05 2.99 4.1 1.4 2.7 0.65 0.32 ND ND 0.65 0.02 ND N	Ethane	µmol/l															
NOLA PERCENTAGE NO NO NO NO NO NO CG % 83 0.12 1 3 2 ND ND ND Add 74 ND ND ND CG % ND 15 7 8 5 ND 14 28 ND ND 24 15 ND <																	
TCE % 83 0.12 1 3 2 ND 18 0.5 ND ND 6.3 11 ND ND <t< td=""><td></td><td>µmol/l</td><td>0.05</td><td>289</td><td>4.1</td><td>14</td><td>27</td><td>0.65</td><td>0.35</td><td>0.32</td><td>ND</td><td>ND</td><td>0.65</td><td>0.02</td><td>ND</td><td>ND</td><td>ND</td></t<>		µmol/l	0.05	289	4.1	14	27	0.65	0.35	0.32	ND	ND	0.65	0.02	ND	ND	ND
Decision % 17 32 36 18 72 2 67 72 ND ND 34 74 ND ND ND Ethanes/Hene % ND 15 7 8 57 ND 14 28 ND ND 34 74 ND ND ND Ethanes/Hene % - 53 56 71 20 98 - <td>MOLAR PERCENTAGE</td> <td></td>	MOLAR PERCENTAGE																
Vic.MNND15785NDND28NDND215NDNDNDEthanettenene%355785ND98Hecanoic Acidmg/110					1	-	2										
Ethanes % 53 56 71 20 98 n. n. n. n.																	
VOLATILE FATTY ACIDS Image: Constraint of the constraint of th			ND		-		-		14	28	ND	ND	2	15	ND	ND	ND
Aceta Acid mg/l mg/l mg/l mg/l mg/l for for for mg/l mg/l mg/l mg/l mg/l for for for mg/l mg/l mg/l mg/l mg/l for for for mg/l mg/l mg/l mg/l mg/l for for mg/l		%		53	56	71	20	98									
butyric Add mg/l 13 45 340 100 <1.0	VOLATILE FATTY ACIDS																
Hexanolc Acid mg/l 4.0 19 130 21 <2.0 <td>Acetic Acid</td> <td>mg/l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.27 J</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Acetic Acid	mg/l						0.27 J									
i+H-samoic Acid mg/l ··· 0.121 0.37 5.4 4.9 <2.0 ···	Butyric Acid																
Pertanoic Acid mg/l 1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 </td <td></td> <td>mg/l</td> <td></td> <td>-</td> <td></td>		mg/l		-													
Lactic Acid mg/l < < 0.40				,													
Pentanolc Acid mg/l · 9.5 39 330 72 <1.0 ·		-					-										
Projoin Acid mg/l 51 130 490 670 <1.0		<u> </u>			-	,											
Pyruvic Acid mg/l 17 44 1.3 J 1.1 <1.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																	
OTHER LABORATORY DATA mg/l 137 435 3440 1750 57.5	· · · ·																
Total Organic Carbon mg/l 137 435 3440 1750 57.5 <t< td=""><td></td><td>mg/l</td><td></td><td>17</td><td>44</td><td>1.3 J</td><td>1.1</td><td><1.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		mg/l		17	44	1.3 J	1.1	<1.0									
WATER QUALITY PROBE DATA Temperature 'C 12.2 11.0 11.7 11.2 11.4 11.2 12.3 11.0 10.7 Specific Conductance uS/cm 120 400 430 440 1,200 580 560 320 600 720 pH s.u. 5.5 6.9 7.2 7.1 7.3 7.4 7.3 7.2 7.2 7.3 Oxidation/Reduction Potential mV 110 444 -120 2.3 -84 160 -140 83 -110 -86 Dissolved Oxygen mg/ 7.0 2.3 3.1 1.1 1.8 120 1.5 8.6 1.1 1.0 Urbidity NTU 2.0 2.3 3.1 1.1 1.8 120 <																	
Temperature °C 12.2 ·- ·- ·- ·- 11.0 11.7 11.2 11.4 11.2 12.3 11.0 10.7 Specific Conductance uS/cm 120 ·- ·- ·- ·- 400 430 440 1,200 580 560 320 600 720 pH s.u. 5.5 ·- ·- ·- ·- 6.9 7.2 7.1 7.3 7.4 7.3 7.2 7.2 7.3 Oxidation/Reduction Potential mV 110 ·- ·- ·- ·- 6.9 7.2 7.1 7.3 7.4 7.3 7.2 7.2 7.3 Oxidation/Reduction Potential mV 110 ·- ·- ·- ·- ·- 2.3 3.1 1.1 1.8 160 ·140 83 ·110 .66 Disolved Oxygen mg/l r.0 ·- ·- ·- ·- ·- ·- <td>0</td> <td>mg/l</td> <td></td> <td>137</td> <td>435</td> <td>3440</td> <td>1750</td> <td>57.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0	mg/l		137	435	3440	1750	57.5									
Specific Conductance us/cm 120 400 430 440 1,200 580 560 320 600 720 pH s.u. 5.5 6.9 7.2 7.1 7.3 7.4 7.3 7.2 7.2 7.3 Oxidation/Reduction Potential mV 110 444 -120 233 -84 160 -140 83 -110 -86 Dissolved Oxygen mg/l 7.0 2.3 3.1 1.1 1.8 12 1.5 8.6 1.1 1.0 Turbidity NTU 2.0		1	ļ		1												
pH s.u. 5.5 6.9 7.2 7.1 7.3 7.4 7.3 7.2 7.2 7.3 Oxidation/Reduction Potential mV 110 44 -120 23 -84 160 -140 83 -110 -86 Disolved Oxygen mg/l 7.0 44 -120 23 -84 160 -140 83 -110 -86 Disolved Oxygen mg/l 7.0 2.3 3.1 1.1 1.8 12 1.5 8.6 1.1 1.0 Turbidity NTU 2.0								1									
Oxidation/Reduction Potential mV 110 $\cdot \cdot$ \cdot	Specific Conductance																
Image mg/l 7.0 2.3 3.1 1.1 1.8 12 1.5 8.6 1.1 1.0 Turbidity NTU 2.0 <td>pH</td> <td></td>	pH																
Turbidity NTU 2.0	,																
FIELD CHEMISTRY FIELD CHE	10																
Iron mg/l <th< td=""><td></td><td>NTU</td><td>2.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		NTU	2.0														
Iron - Ferrous mg/l <			ļ														
Nitrate mg/l																	
		-															
mg/ -																	
	Sulfate	mg/l															
Sulfide µg/l	Sulfide	μg/l															

Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

		111	113	POLY3
		111	113	TOTE 1
Analyte Name			Surface Water	-
<u>-</u>		S	S	S
	Unit	6/20/2016	6/20/2016	6/24/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)	ome		- / - /	
Trichloroethene (TCE)	μg/l	< 0.5	2.2	100
Dichloroethene (cis-1,2-)	μg/l	< 0.5	< 0.5	240
Dichloroethene (trans-1,2-)	μg/l	< 0.5	< 0.5	<10
Dichloroethene (1,1-)	μg/l	< 0.5	< 0.5	<10
Tetrachloroethene (PCE)	μg/l	< 0.5	< 0.5	<10
Vinyl chloride	μg/l	< 0.5	< 0.5	<10
LIGHT GASSES	10,			
Ethane	μg/l			
Ethene	μg/l			
Methane	μg/l			
MOLAR CONCENTRATION	10,			
Trichloroethene (TCE)	µmol/l	ND	0.02	
Dichloroethene (cis-1,2-)	μmol/l	ND	ND	
Dichloroethene (trans-1,2-)	µmol/l	ND	ND	
Dichloroethene (1,1-)	umol/l	ND	ND	
Tetrachloroethene (PCE)	umol/l	ND	ND	
Vinyl chloride	µmol/l	ND	ND	
Ethane	µmol/l			
Ethene	µmol/l			
Fotal	µmol/l	ND	0.02	
MOLAR PERCENTAGE	,			
TCE	%	ND	100	
DCEs	%	ND	ND	
VC	%	ND	ND	
Ethane+Ethene	%			
VOLATILE FATTY ACIDS	<u>U</u>			
Acetic Acid	mg/l			
Butyric Acid	mg/l			
, Hexanoic Acid	mg/l			
-Hexanoic Acid	mg/l			
-Pentanoic Acid	mg/l			
Lactic Acid	mg/l			
Pentanoic Acid	mg/l			
Propionic Acid	mg/l			
Pyruvic Acid	mg/l			
OTHER LABORATORY DATA				
Total Organic Carbon	mg/l			
WATER QUALITY PROBE DATA				
Temperature	°C	20.3	12.9	
Specific Conductance	uS/cm	120	230	
рН	s.u.	5.8		
Oxidation/Reduction Potential	mV	-61	-240	
Dissolved Oxygen	mg/l	5.7	5.7	
Turbidity	NTU			
FIELD CHEMISTRY	<u>u</u>	1		
Iron	mg/l			
Iron - Ferrous	mg/l			
Nitrate	mg/l			
Sulfate	mg/l			
Sulfide	μg/l			

Notes:

1. The table summarizes samples collected during the week of June 20, 2016 as part of performance testing at the IBM Gun Club former Burn Pit Area. Samples were analyzed both in the field and at fixed analytical laboratories as indicated on the table.

2. Analytical laboratory analysis was performed by Eurofins Lancaster Laboratories of Lancaster, Pennsylvania (Lancaster) and/or Microseeps, Inc. of Pittsburgh, Pennsylvania (Microseeps). Results of compounds are recorded in units indicated on the table. Detections of compounds are emboldened.

3. Definitions:

"S" indicates primary sample

"FD" indicates field duplicate

"PDB" indicates the sample was collected via a

passive diffusion bag "--" indicates the compounds were not analyzed

for that particular sample.

"U" indicates the result was below the analytical detection limit.

"J" indicates that the laboratory data was below the lowest quantifiable limit and therefore estimated.

"*" indicates that the sample exhibited high turbidity and could not be analyzed in the field. Recorded results are from analysis at Lancaster and/or Microseeps.

"UR" indicates results were under the calibration range and no result was obtained. "OR" indicates results were over the calibration range and should be considered estimated. "ND" indicates that results were not detected above the analytical reporting limit or the calibration range of the field screening device.

4. Refer to the report text for further discussion. The sample plan can be referenced in the Site Management Plan .

Sanborn, Head & Associates, Inc.

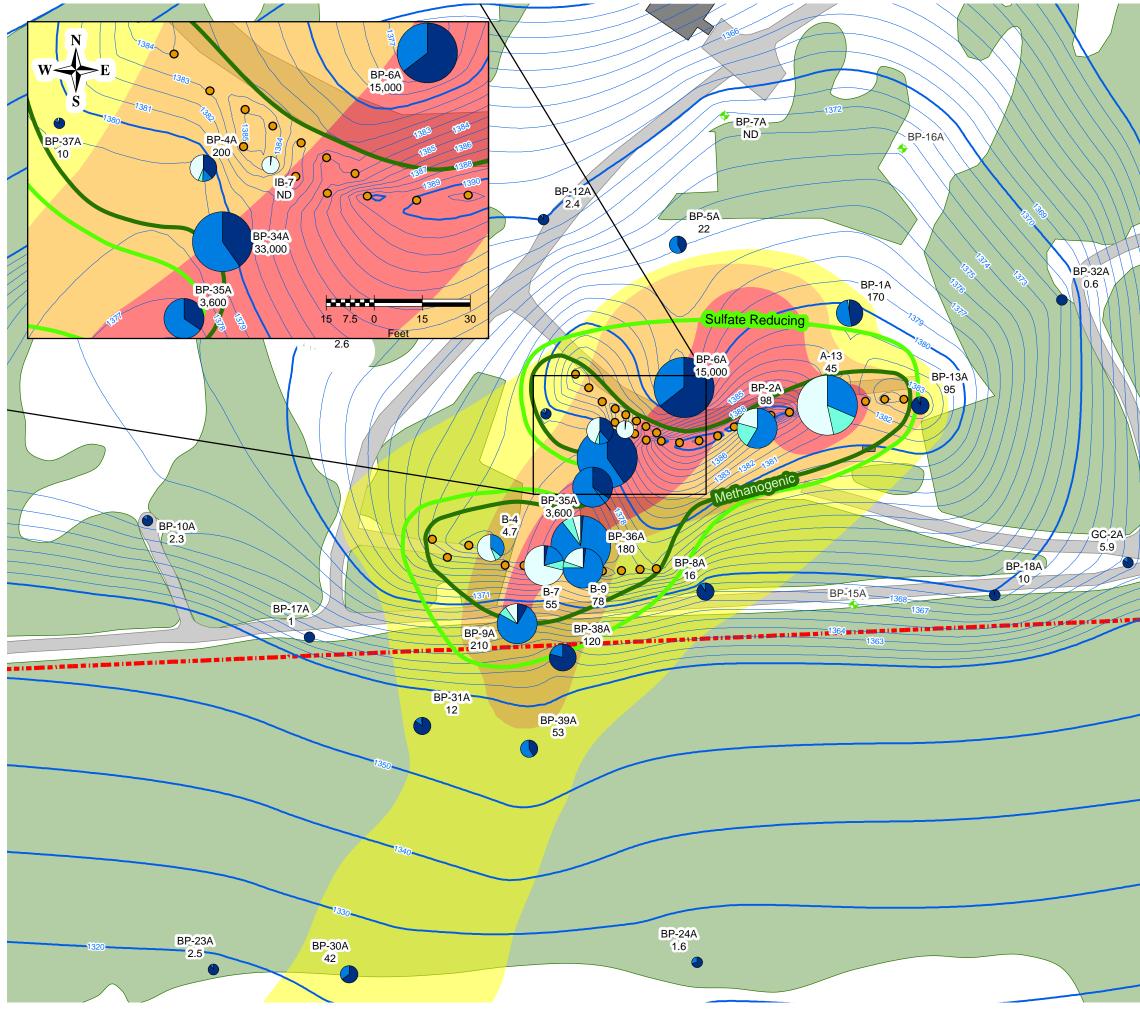


Figure 1

Summary of June 2016 Groundwater Quality Conditions

2016 Annual Routine Monitoring

IBM Gun Club - Former Burn Pit Area Union, New York

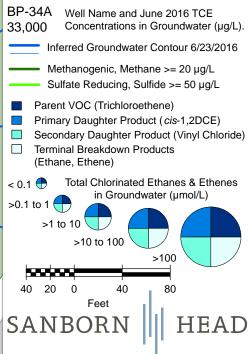
Drawn By:	C. LaVack
Designed By:	E. Bosse
Reviewed By:	D. Carr
Project No:	3526.05
Date:	August 2016

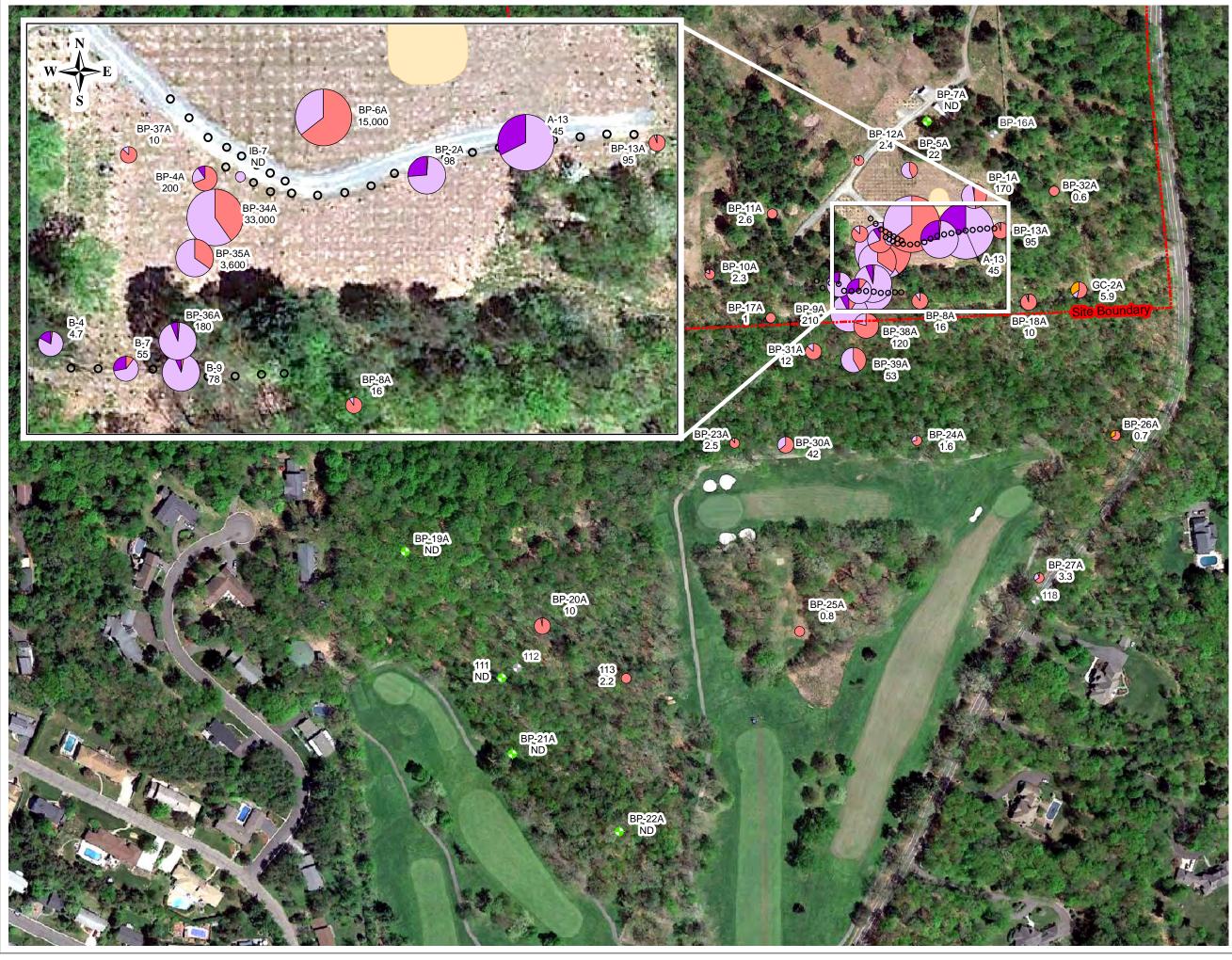
Figure Narrative

BP-14A

The figure is intended to depict groundwater quality data and inference recorded during the week of June 21, 2016.

The groundwater data for site key VOCs including PCE, TCE, cDCE, vinyl chloride from water table monitoring wells are presented as pie diagrams. The wedges of each pie diagram represent concentrations of the four compounds expressed in micromoles per liter (umol/L). The relative diameter of each pie diagram varies based on the sum of the four VOCs at each location.


The inferred geochemical (REDOX) conditions are based on observations of oxidation-reduction potential (ORP), methane, sulfide, ferrous and total iron, and nitrate. Methanogenic conditions are characterized by methane concentrations = $20 \ \mu g/L$, sulfate reducing by sulfide = $50 \ \mu g/L$, iron reducing by Fe(II)/Fe(tot) = $0.7 \ m g/L$, and nitrate reduction by nitrate < 1 mg/L. ORP is generally expected to be less than 200 for iron reduction, less than 100 for sulfate reduction, and less than 0 for methanogenic conditions.


Refer to the report text for further discussion.

Legend

BP-26A

0.7

I act Edited By: clavach

Groundwater Quality Conditions for Key Site VOCs - June 2016

2016 Annual Routine Monitoring

IBM Gun Club - Former Burn Pit Area Union, New York

Drawn By:	C. LaVack
Designed By:	E. Bosse
Reviewed By:	D. Carr
Project No:	3526.05
Date:	August 2016

Figure Narrative

This figure depicts groundwater data for key site VOCs from monitoring of water table wells in June 2016.

The data for TCE, selected breakdown products, and carbon tetrachloride are presented as pie diagrams. The wedges of each pie diagram represent concentrations expressed in micrograms per liter (ug/L). The relative diameter of each pie diagram varies based on the sum of the VOCs at each location.

Refer to report text for further discussion.

0 Injection Boring Dry Well/Surface Water Location BP-34A Well Name and June 2016 TCE 33,000 Concentrations in Groundwater (µg/L). Trichloroethene (TCE) cis-1,2 Dichloroethene (cis-1,2 DCE) Vinyl Chloride (VC) Carbon Tetrachloride (CCl4) Total Chlorinated Ethenes and Carbon Tetrachloride in Groundwater (µg/L) Not detected above lab reporting limits <10 🕂 >10 to 100 >100 to 1,000 >1,000 to 10,000 >10,000 30000 25 12.5 0 25 Feet SANBORN || HEAD ENGINEERING

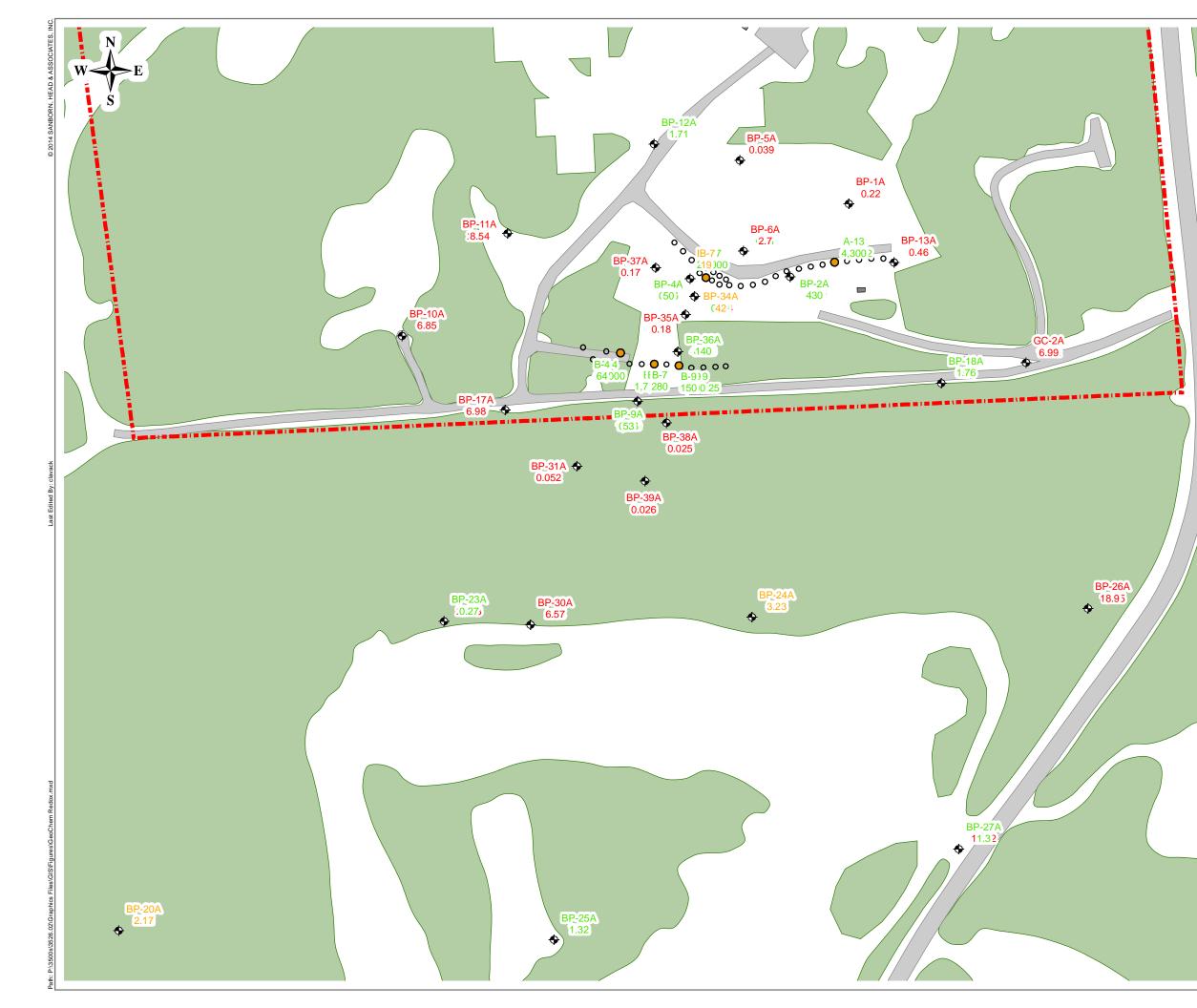


Figure 3

June 2016 Assessment of Reducing Conditions

Working

IBM Gun Club - Former Burn Pit Area Union, New York

Drawn By:	C. LaVack
Designed By:	E. Bosse
Reviewed By:	D. Carr
Project No:	3526.05
Date:	August, 2016
	0

Figure Narrative

This figure is intended to assess multiple lines of evidence to assess what proportion of the primary and secondary source rock are under sulfate reducing and methanogenic conditions. Green labels indicate conditions conducive to reductive dehalogenation. Orange labels indicate reductive dehalogenation may be possible, but conditions are less conducive. Red labels indicate more oxidizing conditions where reductive dehalogenation is less likely.

Posted data is from the June 2016 sampling round.

Legend

DO mg/L	>5	2-5	<=2
ORP mV	>100	0-100	<=0
Sulfide µg/L	<10	10-50	>=50
Methane µg/L	<0.5	0.5-20	>=20
Fell mg/L	<1		>=1
pH SU	6.3-7.5	5 <6	.3 or >7.5
Total VFA mg/L	<1		>=1
TOC mg/L	<4		>=4
Ethane + Ethene μg/L	<10	10-50	>=50

60 30 0 60 Feet

SANBORN

120

HEAD

SEPTEMBER 2016 PERFORMANCE TESTING

SUMMARY OF SEPTEMBER 2016 WATER QUALITY MONITORING

IBM Gun Club – Former Burn Pit Area Union, New York

INTRODUCTION AND SUMMARY

This memorandum is intended to summarize the program of remedy performance monitoring conducted in September 2016. It documents and summarizes the sampling event and provides tabular and figure summaries of the field and laboratory data. The field work was conducted during the week of September 19, 2016 in general accordance with the scope and procedures discussed in Appendix J of the amended Site Management Plan (SMP)¹.

This memorandum will be included as a component of the next Periodic Review Report, due in March 2018, and has been prepared consistent with the Monitoring Reporting Requirements discussed in Section 3.6 of the SMP. The Sanborn Head field staff included Chris Norton and Matthew Stein.

The field and laboratory data indicate continued remedy performance consistent with project performance goals established in the SMP. The area of subsurface where methanogenic and sulfate-reducing conditions may exist is similar to that observed in the June sampling. In general, the proportion of TCE on a molar basis was marginally lower compared to June in water from the majority of monitoring wells within the injection displacement zone and just downgradient to the north and south, while similar to marginally higher in water from locations further downgradient such as BP-5A, BP-34A, and BP-38A.

Geochemical conditions remain conducive to reductive dehalogenation over much of the primary source rock. The terminal breakdown products ethene and ethane are the predominant species in water from four of the five injection boreholes sampled regularly (A-13, B-4, B-7, and IB-7). The five injection boreholes continue to exhibit order of magnitude or greater decreases in TCE concentrations compared to historical high concentrations at these locations. The data support gradual destruction of chlorinated ethene mass to its terminal breakdown products, and continued reduced TCE mass discharge off site to the south by nearly 99% compared to pre-remediation conditions. The data suggest some rebound in the presence of biochemical breakdown products in the samples from the B-series injection wells.

Groundwater temperatures at all locations are observed to be in the range conducive to processes contributing to reductive dehalogenation. The average temperature in boreholes recorded during September sampling was about 2 °C higher compared to June sampling. In

¹ <u>Site Management Plan – April 2016 Revision, Brownfield Cleanup Program, IBM Gun Club – Former Burn Pit area, Union, New York, NYSDEC Site #C704044, BCA Index #B7-0661004-05, prepared on behalf of IBM by Sanborn, Head & Associates, Inc., April 25, 2016.</u>

general, monitoring wells exhibited temperatures in the top 10% of observations over the last several years.

Total organic carbon (TOC) concentrations in injection boreholes continue to decline consistent with consumption of electron donor. Concentrations exceed 100 milligrams per liter (mg/l), in water from 4 of 5 sampled injection boreholes. One hundred milligrams per liter is a threshold below which we have observed evidence of diminishing remediation performance.

Accordingly, it is our opinion that additional introduction of electron donor amendment is not warranted at this time. We would prefer to limit amendment injections until we observe clear evidence of diminishing returns with the goal of injections at most every two years. Our last injection was conducted over a year ago in August 2015. While there is some evidence that conditions conducive to reductive dehalogenation may be lessening, especially in down gradient locations, overall geochemical conditions indicate reductive dehalogenation continues to occur over much of the primary source rock. We recommend that IBM plan for the next injection in 2017.

The next performance monitoring event is to be conducted in April 2017.

SCOPE OF WORK

The scope of work included:

- Limited groundwater elevation survey;
- Water quality sampling associated with the performance monitoring program;
- Calibration of dedicated water quality probes installed in five monitoring wells; and
- Water quality parameter field screening and field geochemical testing.

Groundwater Elevation Survey

On September 19, 2016, prior to starting the water quality sampling program, the depths to water in select monitoring wells and injection boreholes were gauged in accordance with procedures detailed in Appendix G of the SMP. Water levels were also measured and recorded for monitoring points at the time sampling was conducted. Based on the depth to water data and survey information, groundwater elevations were calculated for each location. Depth to water measurements and groundwater elevations are summarized on Table 2.

Water Quality Sampling

The scope of sampling as originally planned is included as Table 1. The scope was modified as follows as a result of field conditions:

- Water from BP-6A and BP-37A was deemed too turbid for geochemical field testing, and samples were collected for laboratory analysis;
- The sample collected from BP-13A was not submitted for VFA analysis, and field screening was not conducted due to lack of sufficient water volume; and
- Surface water points 111, 112, 113 and 118 were dry during September 2016 and could not be sampled.

Exhibit 1 below summarizes the sampling methods used during the monitoring event. The quality assurance/quality control (QA/QC) samples collected for VOC analysis are summarized in Exhibit 2. Samples (including QA/QC samples) submitted for fixed laboratory analysis or field screening are tabulated in Exhibit 3. Laboratory and field analytical data are summarized in Table 3.

Exhibit I building of building Methous						
Number of Locations Sampled						
14						
0						
1						
I						
0						
0						
5						
0						

Exhibit 1 Summary of Sampling Methods

t 2	2 <u>Summary of QA/QC Samples for VOC</u>							
	Total Sample Locations	20						
	Duplicate Samples	3						
	Matrix Spikes	1						
	Matrix Spike Duplicates	1						
	Field Blanks	3						
	Equipment Blanks	1						
	Trip Blanks	2						

Exhibit analysis

Exhibit 3 Summar	y of Analytical Type
-------------------------	----------------------

Sample Type - Fixed Laboratory	Laboratory	Number of Samples
VOCs	Lancaster	31
Total Organic Carbon	Lancaster	22
Volatile Fatty Acids	Microseeps	21
Light Gases (Ethane, Ethene, and Methane)	Microseeps	22
Geochemical Analyses	Microseeps	2
Sample Type - Field Screening	Laboratory	Number of Samples
Field Geochemistry	Sanborn Head	11

A summary of groundwater quality data and inference is presented in Figure 1. An interactive plan view figure included as Figure 2 can be used to view the geochemical data used in inferring the geochemical conditions shown on Figure 1. Field sampling records and analytical laboratory reports are kept on file and are available by request.

Equipment Calibration

Exhibit 4 below summarizes the field instruments utilized during field sampling. The instruments were calibrated each morning and a calibration check was performed at the end of each day.

INSTRUMENT	FIELD PARAMETER
YSI Water Quality Parameter Probe	Temperature, pH, Specific Conductance, Dissolved
	Oxygen, and Oxidation-reduction Potential
HACH 2100P Turbidimeter	Turbidity
HACH DR2800 Spectrophotometer	Total and Ferrous Iron, Nitrate, Sulfate, and Sulfide

Exhibit 4 Summary of Field Instrumentation

Attachments:

- Table 1Scope of Performance Monitoring
- Table 2Summary of Water Level Data
- Table 3Summary of September 2016 Performance Monitoring
- Figure 1 Summary of September 2016 Groundwater Quality Conditions
- Figure 2 Summary of Geochemical Conditions

P:\3500s\3526.02\Source Files\201609 Trip Report\20161116 Sept 2016 WQ Memo.docx

Table 1Summary of Routine and Performance Monitoring ProgramIBM Gun Club - Former Burn Pit AreaUnion, New York

				Samj	ple Methoo	ł	Anal	ytical La	borat	ory	Field	Screening
Monitoring Type	Monitoring Location	Monitoring Location Type	Low Flow	PDBs	Nitrogen Purge	Surface Water	VOCs	Light Gasses	тос	VFAs	Water Quality Parameter	Field Geochemistry
	BP-7A	Monitoring Well		х			х				х	
	BP-8A	Monitoring Well		Х			х				Х	
	BP-10A	Monitoring Well		х			х				Х	
	BP-11A	Monitoring Well		Х			х				Х	
	BP-12A	Monitoring Well		Х			Х				Х	
	BP-14A	Monitoring Well		Х			Х				Х	
	BP-16A	Monitoring Well		Х			Х				х	
	BP-17A	Monitoring Well		Х			Х				Х	
	BP-18A	Monitoring Well		Х			Х				х	
	BP-19A	Monitoring Well		Х			Х				х	
	BP-20A	Monitoring Well		Х			Х				х	
	BP-21A	Monitoring Well		Х			Х				х	
Routine	BP-22A	Monitoring Well		Х			Х				Х	
Monitoring	BP-23A	Monitoring Well		Х			Х				Х	
(Annually in	BP-24A	Monitoring Well		Х			Х				Х	
June)	BP-25A	Monitoring Well		Х			Х				х	
	BP-26A	Monitoring Well		Х			Х				Х	
	BP-27A	Monitoring Well		Х			Х				Х	
	BP-30A	Monitoring Well		Х			х				Х	
	BP-32A	Monitoring Well		Х			х				Х	
	GC-2A	Monitoring Well		Х			Х				Х	
	GC-1, P-1	Multi-Depth			Х		х				Х	
	GC-1, P-8	Multi-Depth			Х		х				Х	
	BP-12D, P1	Multi-Depth			Х		х				Х	
	BP-12D, P7	Multi-Depth			Х		х				Х	
	BP-13D, P1	Multi-Depth			Х		х				Х	
	BP-13D, P5	Multi-Depth			Х		х				Х	
	BP-15D, P1 BP-15D, P5	Multi-Depth Multi-Depth			X		X				X	
					Х		Х				Х	
	IB-7	Injection Borehole		X			X	X	X	X		
	A-13 B-4	Injection Borehole		X			X	x	X	X		
	в-4 В-7	Injection Borehole Injection Borehole		X			X	x	X	X		
	в-7 В-9	Injection Borehole		X			X	x	X	X		
	BP-1A	Monitoring Well		Х			X	X	x	X		
	BP-1A BP-2A	Monitoring Well	X				X	x	X	X	X	X
	BP-2A BP-4A	Monitoring Well	X				X	X	X	X	X	X
	BP-4A BP-5A	Monitoring Well	X X				X X	X X	X X	X X	X X	X X
	BP-6A	Monitoring Well										
Performance	BP-9A	Monitoring Well	X X				X X	X X	X X	X X	X X	X
Monitoring	BP-13A	Monitoring Well	X				X	X	X	X	X	X
(3x/year in April,	BP-31A	Monitoring Well	X				X	X	X	X	X	X
June, and	BP-34A	Monitoring Well	X				X	X	X	X	X	X
Sept/October)	BP-35A	Monitoring Well	X				X	X	X	X	X	X
	BP-36A	Monitoring Well	X				X	X	X	X	X	X
	BP-37A	Monitoring Well	X				X	X	X	X	X	X
	BP-38A	Monitoring Well	X				X	x	X	X	X	X
	BP-39A	Monitoring Well	X				X	x	X	X	X	X
	111	Seep/spring				х	x				X	
	111	Seep/spring Seep/spring			-	x	x	1			X	
	112	Seep/spring				x	x				X	
	113	Seep/spring Seep/spring				X	X				X	
	SW-Z	Seep/spring Seep/spring				X	X				X	
		Total	14	26	8	5	53	19	19	19	48	14

Notes:

1. This table is intended to summarize the programs of routine and performance monitoring for remedy operations at the IBM Gun Club - Former Burn Pit Area starting in 2016. Additional monitoring points may be sampled based on field observations. "SW-Z" serves as a placeholder for sampling any on-site seep or spring that can be reasonably sampled. The table summarizes sample method, analytical laboratory analysis, and field screening.

2. Sample method:

"Low Flow" indicates samples will be collected by bladder pump using low flow techniques.

"PDBs" indicates that the well has sufficient water column to sample with passive diffusion bags - if conditions are observed to be different than anticipated, sampling will proceed using low flow techniques.

"Nitrogen purge" indicates that sample will be collected by purging the multi-level port with nitrogen (multi-level systems only). "Surface water" samples will be collected using a clean glass vial.

3. Analytical laboratory samples:

"VOCs" indicates volatile organic compounds.

"Light gasses" includes methane, ethene and ethane. "TOC" indicates total organic carbon. "VFAs" indicates volatile fatty acids.

4. "Water quality parameters" indicates screening during well purging and water quality sampling by multi-parameter probes, e.g. by YSI® 556 multi-Probe meter or similar and HACH® turbidity meter or similar (low flow, multi-level system, bailer, and surface water sampling) or by water quality parameter sounding (PDB sampling). The water quality parameters may include temperature, specific conductance, oxidation-reduction potential, dissolved oxygen, pH, and turbidity. In addition surface water samples will include water clarity descriptors (transparency, translucence, or opaqueness, and color).

5. "Field Geochemistry" will be performed during performance monitoring by using reagent kits and a spectrophotometer (HACH® DR 800, DR 2800, or similar). The field geochemistry includes analysis for sulfate, sulfide, ferrous iron, total iron, and oxygen. In some cases elevated turbidity (>10 NTU) or color may interfere with the spectrophotometric analysis. In such cases field geochemistry samples will be supplemented with samples submitted to an analytical laboratory as outlined in the Site Management Plan.

Table 2 Summary of Water Level Data Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

Well Location	Reference Elevation (ft amsl)	Depth to Water (ft bgs)	Equivalent Potentiometric Elevation (ft amsl)
A-13	1394.25	17.30	1376.95
B-4	1385.03	7.76	1377.27
B-7	1385.33	9.70	1375.63
B-9	1385.21	13.46	1371.75
BP-1A	1396.03	17.65	1378.38
BP-2A	1397.15	11.91	1385.24
BP-4A	1392.28	15.00	1377.28
BP-5A	1391.23	17.72	1373.51
BP-6A	1394.10	18.02	1376.08
BP-9A	1379.54	13.51	1366.03
BP-10A	1381.74	14.83	1366.91
BP-11A	1384.80	15.02	1369.78
BP-13A	1399.17	18.37	1380.80
BP-17A	1376.72	13.47	1363.25
BP-31A	1370.63	13.98	1356.65
BP-34A	1392.73	16.45	1376.28
BP-35A	1392.01	17.92	1374.09
BP-36A	1383.88	14.85	1369.03
BP-37A	1390.31	12.90	1377.41
BP-38A	1375.84	14.58	1361.26
BP-39A	1370.47	14.75	1355.72
GC-2A	1384.66	21.20	1363.46
IB-7	1393.23	8.93	1384.30

Notes:

1. This table summarizes depth to water measurements and calculated water table elevations recorded during the September 2016 performance monitoring round on September 20-22, 2016. Measurements were collected relative to the marked reference point at each location using a QED MP30 water level meter.

2. Abbreviations

ft amsl = feet above mean sea level

ft bgs = feet below ground surface

TABLE 3 SUMMARY OF SEPTEMBER 2016 PERFORMANCE MONITORING Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

		BP-1A	BP-2A	BP-4A	BP-4A	BP-5A	BP-6A	BP-9A	BP-13A	BP-31A	BP-34A	BP-35A	BP-36A	BP-36A
		BP-1A	BP-2A	BP-4A	DUP-3	BP-5A	BP-6A	BP-9A	BP-13A	BP-31A	BP-34A	BP-35A	BP-36A	DUP-2
Analyte Name		Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow	Low Flow
		S	S	S	FD	S	S	S	S	S	S	S	S	FD
	Unit	9/21/2016	9/21/2016	9/21/2016		9/21/2016	9/21/2016	9/20/2016	9/21/2016	9/20/2016	9/21/2016	9/20/2016	9/20/2016	9/20/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)	ome		,,,	,,,		,,,	,,,	,,,	,,,	,,,	,,,	,,,	1/20/2020	,,,
Trichloroethene (TCE)	μg/l	65	24 J	290	300	32	4,600	270	54	11	23,000	3,900	170	210
Dichloroethene (cis-1,2-)	μg/l	100	5,300	87	78	22	18,000	2,400	2.0	1.3	16,000	5,100	7,100	7,500
Dichloroethene (trans-1,2-)	μg/l	1.0	9.8 J	3.7	2.1]	0.50	291	11]	< 0.5	< 0.5	<250	38	15 J	191
Dichloroethene (1,1-)	μg/l	0.40 J	7.3 [0.80 I	0.901	< 0.5	45 [7.1	<0.5	< 0.5	<250	5.2 [101	14 j
Tetrachloroethene (PCE)	μg/l	< 0.5	<25	<2.5	<2.5	<0.5	<100	<25	<0.5	0.60	<250	<25	<50	<50
Vinyl chloride	μg/l	0.20]	1,800	34	29	0.301	64 J	190	<0.5	< 0.5	<250	<25	870	900
LIGHT GASSES	F-0/		_,			,	<i></i> ,							
Ethane	μg/l	0.025 I	1.1	12	13	0.017 I	0.47	2.0	0.0066 J	0.0035 J	3.0	0.80	4.1	3.6
Ethene	μg/l	0.023 J	370	62	71	0.017 J	10	77	0.0026 J	0.014 J	2.2	0.044 I	140	140
Methane	μg/l	0.16 J	1,300	1.400	1,600	0.92	7.7	2.000	0.46 [0.48 [1.000	1.4	1,900	1.900
MOLAR CONCENTRATION	P-8/1	0.10)	1,500	1,100	1,000	0.72	7.17	2,000	0.10 j	0.10 j	1,000	1.1	1,700	1,700
Trichloroethene (TCE)	µmol/l	0.49	0.18	2.2	2.3	0.24	35	2.1	0.41	0.08	180	30	1.3	1.6
Dichloroethene (cis-1,2-)	μmol/l	1.0	55	0.90	0.80	0.24	190	2.1	0.41	0.08	170	53	73	77
Dichloroethene (cis-1,2-) Dichloroethene (trans-1,2-)	μmol/l	0.01	0.10	0.90	0.80	0.23	0.30	0.11	0.02 ND	0.01 ND	ND	0.39	0.15	0.20
Dichloroethene (1,1-)	μmol/l	0.01	0.10	0.04	0.02	0.01 ND	0.30	0.11	ND	ND	ND	0.39	0.15	0.20
Tetrachloroethene (PCE)	μmol/l	0.004 ND	0.08 ND	ND	ND	ND	0.46 ND	ND	ND	0.004	ND	0.05 ND	0.10 ND	0.14 ND
Vinyl chloride	μmol/l	0.003	29	0.54	0.46	0.005	1.0	3.0	ND	0.004 ND	ND	ND	14	14
Ethane	umol/l	0.003	0.04	0.34	0.40	0.003	0.02	0.07	0.0002	0.0001	0.10	0.03	0.14	0.12
Ethene	- · · ·	0.001	13	2.2	2.5	0.001	0.02	2.7	0.0002	0.0001	0.10	0.003	5.0	5.0
Total	μmol/l μmol/l	1.5	97	6.3	6.5	0.003	227	33	0.43	0.0003	350	83	94	98
MOLAR PERCENTAGE	μποι/ι	1.5	97	0.3	0.3	0.49	227	33	0.45	0.10	350	03	94	90
MOLAR PERCENTAGE	0/	32	0.19	35	35	50	15	6.4	95	83	51	36	1.4	1.6
	%	68	57	15	13	48	84	76	4.8	13	49	50 64	78	79
DCEs	%	0.21	-	-	-		-	-		-	49 ND	-		
VC Ethane+Ethene	%	-	30	8.6	7.1	1.0	ND	9.1	ND	ND		ND	15	14
	%	0.13	14	41	45	0.66	0.16	8.6	0.07	0.61	0.05	0.03	5.5	
VOLATILE FATTY ACIDS	(1	0.053.1	0.0201	0.022.1	0.0443	0.022.1	241	0.0401		0.020 1	0.0551	0.0241		= 4
Acetic Acid	mg/l	0.052 J	0.030 J	0.023 J	0.044 J	0.022 J	3.1 J	0.049 J		0.030 J	0.055 J	0.024 J	44	54
Butyric Acid	mg/l	0.029 J	0.011 J	< 0.1	0.0094 J	0.014 J	<10	<0.1		0.011 J	0.015 J	0.0077 J	6.0	6.9
Hexanoic Acid	mg/l	<0.2	<0.2	0.011 J	< 0.2	1.6	<20	< 0.2		<0.2	0.0098 J	< 0.2	3.3	3.3
i-Hexanoic Acid	mg/l	< 0.2	< 0.2	< 0.2	< 0.2	0.068 J	<20	< 0.2		< 0.2	<0.2	< 0.2	< 0.2	< 0.2
i-Pentanoic Acid	mg/l	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	<10	<0.1		<0.1	< 0.1	<0.1	0.045 J	0.07 J
Lactic Acid	mg/l	0.041 J	0.016 J	0.033 J	0.029 J	0.060 J	1.2 J	0.052 J		0.036 J	0.017 J	0.033 J	< 0.2	< 0.2
Pentanoic Acid	mg/l	<0.1	0.028 J	0.086 J	0.094 J	0.056 J	3.4 J	0.023 J		<0.1	0.050 J	0.036 J	0.51	0.46
Propionic Acid	mg/l	0.0048 J	0.0048 J	<0.1	<0.1	<0.1	<10	<0.1		0.0047 J	0.0028 J	0.0022 J	2.5	2.4
Pyruvic Acid	mg/l	0.0075 J	<0.1	<0.1	0.0086 J	0.027 J	18	<0.1		<0.1	0.022 J	<0.1	0.14	0.12
OTHER LABORATORY DATA		1-												
Total Organic Carbon	mg/l	17	4.0	6.9	6.9	29	360	2.6	<1.0	<1.0	4.5	1.6	38	36
WATER QUALITY PROBE DATA														
Temperature	°C	21.5	17.0	15.3		17.7	14.4	13.9		14.2	15.2	17.2	16.8	
Specific Conductance	uS/cm	2,900	950	730		2,300	16,000	390		280	1,300	680	480	
pH	s.u.	7.8	6.6	7.4		6.8	7.0	7.3		7.7	7.2	7.5	7.3	
Oxidation/Reduction Potential	mV	180	-22	-23		82	-200	110		120	21	81	-120	
Dissolved Oxygen	mg/l	6.8	1.7	1.0		1.1	0.63	1.1		3.2	0.36	3.9	0.38	
Turbidity	NTU	2.3	1.2	0.53		1.2	5.1	1.5		0.99	2.4	20	9.9	
FIELD CHEMISTRY													a -	
Iron	mg/l	0.01	6.1 OR	0.02		ND	4,300	0.06		0.09	0.04	1.0	OR	
Iron - Ferrous	mg/l	0.01	5.2 OR	0.02		0.04	3.8	0.04		ND	0.03	0.70	OR	
Nitrate	mg/l	1.8	0.30	0.30		0.80	1.0	3.8		0.20	0.40	1.9	0.60	
Sulfate	mg/l	153 OR	23	49		3.5	3,000	23		27	85 OR	34	11	
Sulfide	µg/l	46	72	13		55	<2	150		8.0	17	120	140	

TABLE 3 SUMMARY OF SEPTEMBER 2016 PERFORMANCE MONITORING Summary Trip Report IBM Gun Club - Former Burn Pit Area Union, New York

I						1.10					
		BP-37A	BP-38A	BP-38A	BP-39A	A-13	B-4	B-7	B-9	IB-7	POLY3
		BP-37A	BP-38A	DUP-1	BP-39A	A-13	B-4	B-7	B-9	IB-7	TOTE 1
Analyte Name		Low Flow	Low Flow	Low Flow	Low Flow	PDB	PDB	PDB	PDB	PDB	Purge Water
		S	S	FD	S	S	S	S	S	S	S
	Unit	9/21/2016	9/20/2016	9/20/2016	9/20/2016	9/22/2016	9/22/2016	9/22/2016	9/22/2016	9/22/2016	9/22/2016
VOLATILE ORGANIC COMPOUNDS (VOCs)											
Trichloroethene (TCE)	μg/l	14	130	110	21	<100	5.3	64	100	<5.0	<10
Dichloroethene (cis-1,2-)	μg/l	0.70	16	15	25	8,700	100	310	2,400	2.4 J	<10
Dichloroethene (trans-1,2-)	μg/l	< 0.5	< 0.5	<1.0	0.10 J	22 J	<5.0	<25	<25	<5.0	<10
Dichloroethene (1,1-)	μg/l	< 0.5	0.10 J	<1.0	<0.5	<100	<5.0	<25	<25	<5.0	<10
Tetrachloroethene (PCE)	μg/l	< 0.5	<0.5	<1.0	< 0.5	<100	<5.0	<25	<25	<5.0	<10
Vinyl chloride	μg/l	< 0.5	<0.5	<1.0	0.10 J	2,900	4.8 J	67	100	<5.0	<10
LIGHT GASSES											
Ethane	μg/l	0.0033 J	0.019 J	0.018 J	0.022 J	49	15	44	21	32	
Ethene	μg/l	0.018 J	0.010 J	0.014 J	0.023 J	4,200	44	490	170	0.064 J	
Methane	μg/l	0.43 J	0.72	2.0	0.58	5,600	27,000	17,000	10,000	26,000	
MOLAR CONCENTRATION											
Trichloroethene (TCE)	µmol/l	0.11	0.99	0.84	0.16	ND	0.04	0.49	0.76	ND	ND
Dichloroethene (cis-1,2-)	μmol/l	0.01	0.17	0.15	0.26	90	1.0	3.2	25	0.02	ND
Dichloroethene (trans-1,2-)	μmol/l	ND	ND	ND	0.001	0.23	ND	ND	ND	ND	ND
Dichloroethene (1,1-)	μmol/l	ND	0.001	ND							
Tetrachloroethene (PCE)	μmol/l	ND									
Vinyl chloride	µmol/l	ND	ND	ND	0.002	46	0.08	1.1	1.6	ND	ND
Ethane	µmol/l	0.0001	0.001	0.001	0.001	1.6	0.50	1.5	0.70	1.1	
Ethene	µmol/l	0.001	0.0004	0.000	0.001	150	1.6	17	6.1	0.002	
Total	µmol/l	0.12	1.2	1.0	0.42	288	3.2	24	34	1.1	
MOLAR PERCENTAGE											
TCE	%	93	86	85	38	ND	1.3	2.1	2.2	ND	
DCEs	%	6.1	14	15	62	31	32	14	73	2.3	
VC	%	ND	ND	ND	ND	16	2.4	4.5	4.7	ND	
Ethane+Ethene	%	0.64	0.09	0.11	0.37	53	64	80	20	98	
VOLATILE FATTY ACIDS											
Acetic Acid	mg/l	0.035 J	0.042 J	0.029 J	0.04 I	190	600	520	160	0.096 I	
Butyric Acid	mg/l	0.012	<0.1	<0.1	0.00981	17	76	320	77	0.029	
Hexanoic Acid	mg/l	< 0.2	< 0.2	< 0.2	< 0.2	5.1	45	120	26	< 0.2	
i-Hexanoic Acid	mg/l	< 0.2	< 0.2	< 0.2	< 0.2	0.21	0.14 J	3.2	3.1	< 0.2	
i-Pentanoic Acid	mg/l	< 0.1	< 0.1	< 0.1	< 0.1	1.3	6.7	14	1.5	< 0.1	
Lactic Acid	mg/l	0.13 J	0.015 J	0.0075 J	0.013 J	0.59	<2.0	<20	0.089 J	< 0.2	
Pentanoic Acid	mg/l	0.024 J	0.021 J	0.026 J	0.032 J	7.5	42	320	63	< 0.1	
Propionic Acid	mg/l	0.0029 J	<0.1	<0.1	<0.1	40	120	440	540	<0.1	
Pyruvic Acid	mg/l	0.0040 J	< 0.1	< 0.1	< 0.1	22	64	86	13	< 0.1	
OTHER LABORATORY DATA	-										
Total Organic Carbon	mg/l	1.8	<1.0	0.95 J	1.7	170	550	2,300	1,000	58	
WATER QUALITY PROBE DATA		I		i i					·		
Temperature	°C	14.7	13.1		15.2						
Specific Conductance	uS/cm	750	300		140						
pH	s.u.	7.3	7.2		6.0						
Oxidation/Reduction Potential	mV	140	110		130						
Dissolved Oxygen	mg/l	6.6	1.9		5.4						
Turbidity	NTU	39	1.7		3.2						
FIELD CHEMISTRY					-						
Iron	mg/l	200	ND		0.14						
Iron - Ferrous	mg/l	<0.5	ND		0.14						
Nitrate	mg/l	< 0.5	0.30		1.7						
Sulfate	mg/l	32	34		45						
Sulfide	μg/l	<1	290		82						
Sunac	μ <u>β</u> /1	~1	270		04						

Notes:

1. The table summarizes samples collected during the week of September 19, 2016 as part of performance testing at the IBM Gun Club former Burn Pit Area. Samples were analyzed both in the field and at fixed analytical laboratories as indicated on the table.

2. Analytical laboratory analysis was performed by Eurofins Lancaster Laboratories of Lancaster, Pennsylvania (Lancaster) and/or Microseeps, Inc. of Pittsburgh, Pennsylvania (Microseeps). Results of compounds are recorded in units indicated on the table. Detections of compounds are emboldened.

3. Definitions:

"S" indicates primary sample

"FD" indicates field duplicate "PDB" indicates the sample was collected

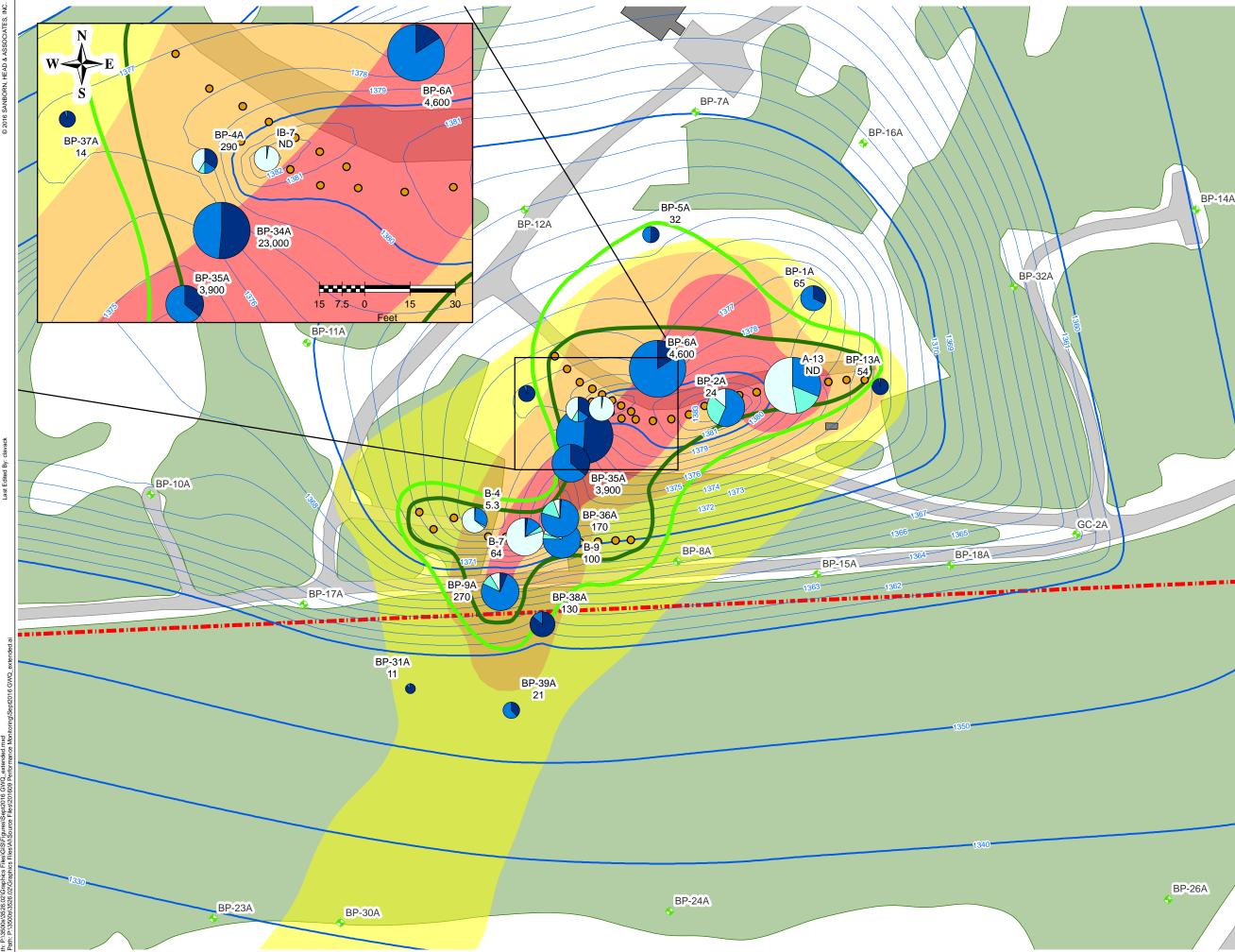
via a passive diffusion bag

"--" indicates the compounds were not

analyzed for that particular sample.

"U" indicates the result was below the

analytical detection limit. "I" indicates that the laboratory data was


below the lowest quantifiable limit and therefore estimated.

"*" indicates that the sample exhibited high turbidity and could not be analyzed in the field. Recorded results are from analysis at Lancaster and/or Microseeps. "UR" indicates results were under the calibration range and no result was

obtained. "OR" indicates results were over the

calibration range and should be considered estimated.

"ND" indicates that results were not detected above the analytical reporting limit or the calibration range of the field screening device.

Files/GIS/Figures/Sept2016 GWQ_e cs Files/A/\Source Files\201609 Perf

Figure 1

Summary of September 2016 Groundwater **Quality Conditions**

September 2016 Performance Testing Memo Report

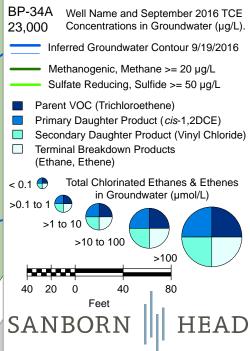
IBM Gun Club - Former Burn Pit Area Union, New York

Drawn By:	C. LaVack
Designed By:	E. Bosse
Reviewed By:	D. Carr
Project No:	3526.05
Date:	November 2016

Figure Narrative

BP-14A

The figure is intended to depict groundwater quality data and inference recorded during the week of September 19, 2016.


The groundwater data for site key VOCs including PCE, TCE, cDCE, and vinyl chloride from water table monitoring wells are presented as pie diagrams. The wedges of each pie diagram represent concentrations of the four compounds expressed in micromoles per liter (umol/L). The relative diameter of each pie diagram varies based on the sum of the four VOCs at each location.

The inferred geochemical (REDOX) conditions are based on observations of oxidation-reduction potential (ORP), methane, sulfide, ferrous and total iron, and nitrate. Methanogenic conditions are characterized by methane concentrations = 20 μ g/L, sulfate reducing by sulfide = 50 μ g/L, iron reducing by Fe(II)/Fe(tot) = 0.7 mg/L, and nitrate reduction by nitrate < 1 mg/L. ORP is generally expected to be less than 200 for iron reduction, less than 100 for sulfate reduction, and less than 0 for methanogenic conditions.

Refer to the report text for further discussion.

Legend

BP-26A

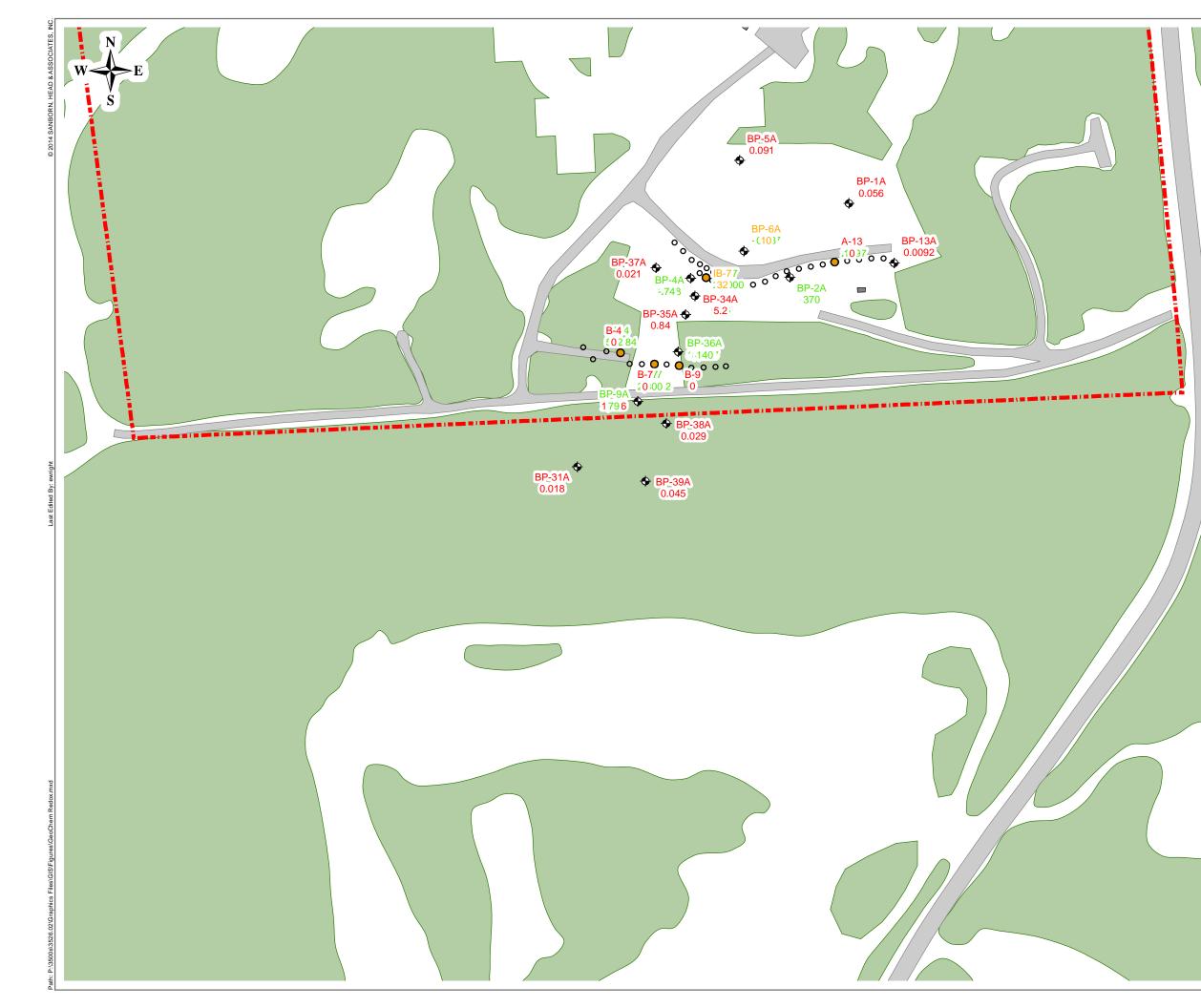


Figure 2

September 2016 Assessment of Reducing Conditions

IBM Gun Club - Former Burn Pit Area Union, New York

Drawn By:	C. LaVack
Designed By:	E. Bosse
Reviewed By:	D. Carr
Project No:	3526.05
Date:	October, 2016

Figure Narrative

This figure is intended to assess multiple lines of evidence to assess what proportion of the primary and secondary source rock are under sulfate reducing and methanogenic conditions. Green labels indicate conditions conducive to reductive dehalogenation. Orange labels indicate reductive dehalogenation may be possible, but conditions are less conducive. Red labels indicate more oxidizing conditions where reductive dehalogenation is less likely.

Posted data is from the September 2016 sampling round.

Legend

DO mg/L	>5 2.	-5 <=2
ORP mV	>100 0-1	00 <=0
Sulfide µg/L	<10 10	-50 >=50
Methane µg/L	<0.5 0.5	-20 >=20
Fell mg/L	<1	>=1
pH SU	6.3-7.5	<6.3 or >7.
Total VFA mg/L	<1	>=1
TOC mg/L	<4	>=4
Ethane + Ethene μg/L	< 10 10	-50 >=50

60 30 0 60 120 Feet

HEAD

SANBORN

ATTACHMENT C

SITE INSPECTION MEMORANDUM REPORTS

SANBORN 🛛 HEAD ENGINEERING

MAY 2016 SITE WIDE INSPECTION

Ms. Linda Daubert International Business Machines Corporation Corporate Environmental Affairs 8976 Wellington Road Manassas, VA 20109 June 20, 2016 File No. 3526.05

Re: Site-Wide Inspection – May 2016 IBM Gun Club – Former Burn Pit Area Union, New York NYSDEC Site # C704044, BCA Index #B7-0661004

Dear Ms. Daubert:

This letter is intended to transmit the findings of a Site-Wide Inspection completed of the IBM Gun Club, Burn Pit Area (Site). As you are aware, under the project Site Management Plan (SMP) Site-Wide inspections are to be conducted semi-annually in the spring and fall in 2016 and annually thereafter.

This letter serves to transmit the inspection record and communicate our findings. It is formatted with the assumption that IBM could submit this to the New York State Departments of Environmental Conservation and Health as a follow up to the Spring 2016 inspection and will be included with the Periodic Review Report required under the SMP, the next of which is due March 2018.

BACKGROUND AND SCOPE

The Site-Wide inspection was conducted in accordance with Monitoring Plan included as Section 3.0 of the SMP using the Site Wide Inspection Checklist included as Appendix K.1 of that document. The inspection included visual review of the condition of the soil cap covering contaminated soils and soil fill placed within the area of historical seeps. The site visit was conducted on May 10, 2016 and included:

- A review of Site and conditions on lands downgradient of the Site related to compliance with the Institutional Controls (ICs) outlined in SMP Section 2.3 and the Environmental Easement;
- A visual review of the cover system associated with the deed restricted area as outlined in SMP Section 3.2 and seep fill area to observe for settlement, erosion, or other conditions that could be considered detrimental to the effectiveness of these components of the remedy which is considered an Engineering Control (EC);
- A review of the conditions of tree plantings and grass cover that constitute the phytoremediation component of the EC remedy as described under SMP Section 4.2.1.

We conducted a systematic review of all rows of tree plantings to assess the conditions of the plantings and estimate the proportion of apparent mortality rates against the standards outlined in the SMP.

In addition, we reviewed general Site conditions related to site fencing and security and against the list of notifications required under the SMP. The findings and observations from this visit are noted in the inspection checklist included as Attachment A. An annotated inspection figure is included as Attachment B and inspection photos are included in Attachment C.

SUMMARY OF FINDINGS

In general, as outlined in the attached checklist, the inspection found the condition of the Site to be consistent with the design intent of the ECs and use of the Site and surrounding area consistent with the ICs and the human exposure assessment on which the remedy is based. The capped area remains intact with no evidence of settlement, cracking, animal burrows, or other breaches, and is vegetated with grass and tree cover.

Tree Mortality

The condition of the tree plantings was found to be good after their second winter. In fact, poles and cuttings thought to be dead at the tree inspection in May 2015 appeared to have sprouted new growth this spring. The grass cover is somewhat thin in areas within the cap area and fill extension, but the condition of the grass is improved over the last inspection and no large-scale bare spots were observed. A systematic review of all tree planting rows indicated approximately 14 to 33% mortality about 23 months after planting, or an overall 23% mortality. Eight-inch cuttings planted with a few inches of plant material above the soil surface average on the order of 2 feet in height up to about 4 feet. Trees planted as poles have grown to over 10 feet in areas, doubling or tripling in height since planting.

As noted in the inspection form, mortality greater than 25% was observed in Areas 1, 2, and 4 at 26%, 30%, and 33%, respectively. Areas 1 and 2 have a southern exposure with little shade and the inferred mortality was generally similar to that observed in the May 2015 inspection. Mortality in Area 4 was below 25% in 2015; increased mortality in this area may be due to encroachment of woody brush and competition for moisture in area of relatively thin soil cover. Under the SMP, IBM had proposed to replant as needed to bring the tree cover up to 75% of the initial planting density, allowing for 25% mortality. Only approximately 3 and 9 cuttings would be required to replant Areas 1 and 2, respectively, to reach 25% mortality and approximately 12 poles would be required for Area 4.

The larger clusters of mortality were observed in Areas 1 and 4 outside of the primary source rock where groundwater concentrations are modest and phytoremediation will be less effective. We had discussed the possible replanting of poplar poles to address mortality after the 2015 spring inspection. However, we do not think that replanting of trees (poles or cuttings) is warranted given 1) the apparent progress of tree growth, 2) the overall mortality below 25%, which is unchanged or slightly improved from the last year, and 3) that replanting will involve tracking of mechanized equipment across the cap area, which may actually cause more soil compaction and damage.

June 20, 2016	
20160620 Inspection Cover Letter.docx	

Tree survival, growth, and mortality will continue to be assessed on an annual basis. We note that the tree mortality is influenced by many factors including but not limited to weather and infiltration rates, exposure to heat and sun, and variable soil thickness, and that a mortality rate less than 25% may not be achievable in areas that exhibit shallow bedrock or where gas generation (methane and carbon dioxide) in the subsurface may be occurring (downgradient of the pilot test injection boreholes).

Logging & Other Activity

We note that since the last inspection, the Binghamton Country Club has logged a portion of their property southwest of the Burn Pit parcel, hauling the logs to Robinson Hill Road along a temporary logging haul road south of the Burn Pit parcel. The haul road ran roughly southwest to northeast across the slope between the Burn Pit parcel and the golf course and resulted in removal of some tree cover along the 12 to 14 foot wide route. It also appears that selective cutting of some larger trees was completed along this slope. All of the removed trees were outside the Burn Pit parcel. Photo-documentation of the logging activities can be found in Attachment D.

The presence of track ruts along the haul road has altered surface runoff somewhat and, although there is some evidence of erosion and sedimentation, we believe that this disturbance does not change the conditions of exposure for the Gun Club in that the soil disturbance is outside of the Gun Club parcel, and we did not observe new seep or spring activity. Water accumulated in several ruts was sampled during the normal sampling period in April 2016 and was determined to be rainwater. We do not believe that this changed condition is likely to adversely change VOC fate and transport in groundwater at depth. Country Club representatives indicated during the inspection that no additional logging is planned this season. Further logging by Binghamton Country Club is anticipated in winter 2016-2017. We will continue to monitor the condition of the haul road during sampling and inspection events Of course groundwater monitoring is on-going.

During our reconnaissance of the logging area, we noted increased evidence of use of an area northwest of monitoring well BP-10A as a bonfire and gathering spot, which contained wood pallets and scrap wood from the Country Club, chairs, tables, and a substantial accumulation of other refuse. Although this area is well outside of the Burn Pit Parcel and, while this use does not in our opinion change the conditions of the exposure assessment, it is evidence of trespassing in the area that we bring to the attention of the Binghamton Country Club.

CLOSING

If you have any questions, please contact us. We appreciate the opportunity to provide service to IBM on this important project.

Very truly yours, Sanborn, Head Engineering, P.C.

 \langle 1 June BC

Daniel B. Carr, P.E., P.G. *Sr. Project Director* 20 Foundry Street Concord, New Hampshire

EMB/DBC:emb

- Encl. Attachment A Site Wide Inspection Checklist Attachment B – Annotated Site Inspection Map Attachment C – Inspection Photographs Attachment D – Logging Photographs
- cc: D. Shea

P:\3500s\3526.02\Source Files\20160620 Inspection Cover Letter.docx

Part 1: General Information

Site Name: IBM Gun Club, Former Burn Pit Area

Date of Inspection:

May 10, 2016

Summary of Remedy:

-Capping the primary VOC source area and residual surficial soils with an engineered low permeability clean soil fill;

-Placement and compaction of engineered soil fill within a topographic depression south of the Burn Pit Area;

-Phytoremediation - establishing and maintaining grass and tree cover to limit infiltration recharge and enhance direct uptake of VOC-containing shallow groundwater; and

-Enhanced biochemical degradation - engineered introduction of amendments shown to enhance biochemical destruction of VOCs.

Part 2: Inspection Specifics

Inspector:	D.B. Carr/ E.M. Bosse	Title:	Sr.	Project Director/ Project Manager		
Inspector (Contact Information: Sanbo	rn Head Engii	n Head Engineering, P.C./Sanborn, Head & Associates, Inc.			
Type of Ins	pection:					
	Site-wide inspection					
	Soil cover system monitoring					
	Routine well inventory and review			_ 🗆		
	Routine phytoremediation monitori	ng				
	Non-routine storm event or other en	nergency				
	Non-routine EC failure/ performanc	e modificatio	ns	_ 🗆		
	Other					
	Remarks			_		
Weather/ 7	Cemperature: <u>Mostly sunny</u>	y, 50-60 degre	ees			
Part 3: On	-site Documents & Records Verifica	tion				
		Readily Available	Up-to- date	Location/ remarks		
Daily acces	s/security logs	\checkmark	\checkmark	Red binder in site trailer		
Site Manag	ement Plan	\checkmark	\checkmark	Filing cabinet		
Health & Sa	afety Plan	\checkmark	\checkmark	Appendix of Site Management Plan		
Current un	derground injection control permit			N/A		
Monitoring	records	\checkmark	\checkmark			
Routine ma	aintenance reports			In PRR, to bring next time at site		
Non-routin	e maintenance reports			In PRR, to bring next time at site		
Site-wide in	nspection reports	\checkmark	V	Through September 2015 inspection, will add this report next time at the site		

Part 4: Review of Institutional Controls (SMP Section 2.3)

True √	False	Not Applicable					
\checkmark							
√							
v							
V							
I							
V							
ılture							
The current site owner, the Binghamton Country Club has logged a portion of the slope south of the Burn							
Pit parcel, including creation of logging roads parallel to and outside of the Site perimeter fence. We							
observed silty runoff from the edges of the logging road mid-way down the slope north of the golf course.							
Logs were evidently staged inside the southern access road gate , at Robinson Hill Road and surface runoff							
from this staging area will tend to flow onto Robinson Hill Road							
	 ✓ ✓	☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □ ☑ □					

Part 5: Rev	view of Engineering Controls		
5a: Soil Co	ver System Monitoring - Deed Rest	ricted Area (SM	P Section 3.2)
Monumen	ts and Signage		
	Damaged/missing signage		Photo-documented
	Damaged monuments	Remarks:	Signage is as constructed
	Location(s) shown on map		
Settlemen	t (Low spots)		
	Location(s) shown on map	Approx. ft ²	
	Photo-documented	Depth	
\checkmark	Settlement not evident		None observed
Cracks			
	Location(s) shown on map	Length	
	Photo-documented	Width	
\checkmark	Cracking not evident		
Remarks	None observed		
Erosion			
\checkmark	Location(s) shown on map	Approx. ft ²	
\checkmark	Photo-documented		
	Erosion not evident		Minor erosion rills at top of cap slope in an
area of thin	ner grass - Areas 2 and 3		
Holes			
	Location(s) shown on map	Approx. ft ²	
	Photo-documented	Depth	
\checkmark	Holes not evident		None observed
Vegetative	cover		
\checkmark	Photo-documented		
\checkmark	Grass properly established		
	No signs of stress	Remarks	Grass was observed to be thin in areas, but
improved o	over the last inspection.		

Wet Areas	/Water Damage	None apparen	t		
	Wet areas				Shown on site map
	Ponding	Approx. ft ²			Photo-documented
	Seeps	Approx. ft ²		\checkmark	Wet areas not evident
	Soft subgrade				s None observed
No evidenc	e of water damage				
Slope Insta	ability None app	arent			
	Location(s) shown or	n map	Approx. ft ²		
	Photo-documented		Remarks N	lone observed	
\checkmark	Slope instability not e	evident			
Narrative/	other notes:	Overall, the gra	ss and tree cov	erage showed impro	vements from the
	2015 inspection, whic				
			ander a perioa (

5b: Soil Fi	ll - Seep Area					
Settlemen	it (Low spots)					
	Location(s) shown on map)	Approx. ft ²			
	Photo-documented		Depth			
\checkmark	Settlement not evident					
Cracks						
	Location(s) shown on map)	Length			
	Photo-documented					
\checkmark	Cracking not evident					
Remarks	None observed					
Erosion						
	Location(s) shown on map)	Approx. ft ²			
	Photo-documented		Depth			
\checkmark	Erosion not evident		Remarks	None observed		
Holes						
	Location(s) shown on map)	Approx. ft ²			
	Photo-documented					
\checkmark	Holes not evident			None observed		
Vegetativ	e Cover					
Ū	Photo-documented					
\checkmark	Grass properly established	ł	Remarks			
\checkmark	No signs of stress		-			
Wet Areas	s/Water Damage					
\checkmark		Approx. ft ²	20-25		\checkmark	Shown on site map
		Approx. ft ²			\checkmark	Photo-documented
\checkmark		Approx. ft ²				Wet areas not evident
\checkmark		Approx. ft ²		Re	emarks	The wet area is off of
the soil fill	area to the east.					

Slope Insta			
	Location shown on map	Approx. ft ²	
	Photo-documented	Remarks	None observed
\checkmark	Slope instability not evident		
N /			
Narrative /	other notes:		

5c: Phytoremediation	Tree Condition	(SMP Section 4.2.1)
----------------------	----------------	---------------------

Area #1	Poles	Representative height	4.5-10'	_	
✓ Photo				— % Mortality	33%
	Cuttings	Representative height	2-4.5'	— % MOLTAILY	5570
Mark Map 🗸					
Area #2	Poles	Representative height	4-10'	_	
✓ Photo				—% Mortality	28%
	Cuttings	Representative height	3-4'	— % MOLTAILY	2070
Mark Map 🗸					
Area #3	Poles	Representative height	4-10'	_	
✓ Photo				0/ Martalita	220/
	Cuttings	Representative height	2-3'	— % Mortality —	22%
Mark Map ✓					
Area #4	Poles	Representative height	4-7'	_	
✓ Photo				0/ Mortality	33%
	Cuttings	Representative height	2.5-4'	— % Mortality —	33%
Mark Map ✓					
Area #5	Poles	Representative height	4-10'	_	
✓ Photo				0/ Mostality	220/
	Cuttings	Representative height	3-4'	— % Mortality —	22%
Mark Map ✓					

Area #6	Poles	Representative height	6-12'		
✓ Photo				— % Mortality	17%
	Cuttings	Representative height	2-4'	70 100 cancy	1770
Mark Map 🗸					
Area #7	Poles	Representative height	4-12'		
✓ Photo				— % Mortality	18%
	Cuttings	Representative height	N/A		10%
Mark Map ✓	Ŭ				
Area #8	Poles	Representative height	4-12'		
✓ Photo				— % Mortality	14%
	Cuttings	Representative height	N/A		1170
Mark Map 🗸					
Area #9	Poles	Representative height	5-15'		
🗌 Photo				— % Mortality	20%
	Cuttings	Representative height	N/A		2070
Mark Map ✓					

Narrative / other notes:

Poplar tree mortality by area ranged from 33% to 14% with a median of about 23%. Estimated tree

mortalities exceeded the 25% threshold specified in the SMP in Area 1 (26%), Area 2 (30%), and

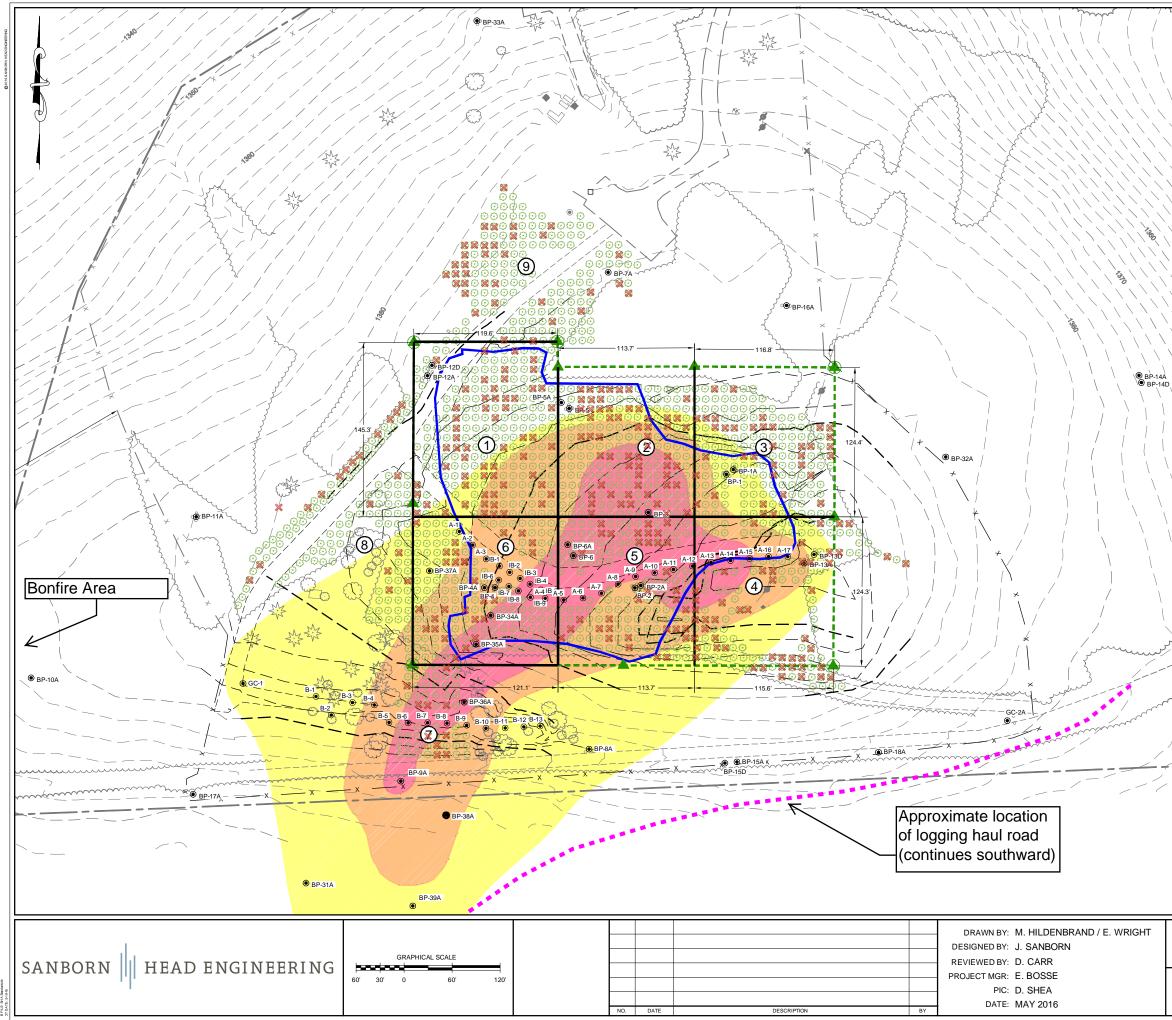
Area 4 (33%). In Areas 1 and 2, the mortality may be explained sun exposure

depth to rock/planting depth, and possible gas generation downgradient of pilot test injection boreholes.

Poplar poles in Area 4 were observed to be crowded by newer woody bushes and is generally more shaded

which may contribute to mortality.

	itoring and Injection Well Network Inspection ith Monitoring and Injection Well Inspection Checklist
List deviations, if any I	Last comprehensive well inspection was completed in September 2015
<u></u>	
-	
-	
-	
-	
- Seep Area Monitoring	
Seep area dry	
Remarks Several seep	os were sampled during routine monitoring in April 2016.
Narrative / other notes:	


Part 7 - Review of Access/Genera	al Site Conditions		
Condition of fencing Intact as con	nstructed.		
Remarks			
Condition of monuments and signa	ge Intact as cons	tructed	
Remarks			
Obvious signs of vandalism/trespa	ssing? None inside tl	ne perimeter fence	
Remarks			
Condition of access roads and lanes	Good, intact a	s constructed	
Remarks			
Investigation derived waste			
Frac Tank/ Water Tank			
□ N/A	Remarks About 50 galle	ons of sampling purge	water in Tote #1
Good condition	IDW samples will be collecte		
□ Needs maintenance	k		0
Approximate volume generated sin	ce last inspection	50	
FF FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF		Yes	No
Documentation of IDW analytical r	esults readily available		
-	IDW samples were not colled	cted in April 2016	
	10 W sumples were not cone.		
Narrative / other notes:			
Narrative / other notes.			

Part #8 Notifications

	Not Applicable	Yes	No
A. 60-day advance notice of any proposed changes in site use	\checkmark		
B. 7-day advance notice of proposed ground-intrusive activities	\checkmark		
C. 48-hour notice of any damage or defect to the engineering controls	\checkmark		
D. Verbal notice by noon the following day of any emergency (fire,			
flood, etc.) that reduces the effectiveness of engineering controls	\checkmark		
E. Follow-up status report on emergency actions within 45 days	\checkmark		
F. 60-day advance notice of any change in site ownership		\checkmark	
G. New owner's contact information confirmed in writing within 15			
days of ownership change		\checkmark	

Part #9 Action Items

	Action Item	Proposed time frame
	Replace internal batteries in	June 2016 sampling round
	dedicated water quality probes	
Routine maintenance		
Non-routine maintenance	Repair BP-15A PVC riser	Next time drill rig is on site
Other		

NOTES:

THIS FIGURE IS INTENDED TO ACCOMPANY THE SITE-WIDE INSPECTION CHECKLIST AND WILL BE USED TO MARK CONDITIONS OF NOTE RECORDED ON THE INSPECTION CHECKLIST FORM. THE SITE WIDE INSPECTION IS REQUIRED AS AN ELEMENT OF THE REMEDIAL PROGRAM AT THE IBM GUN CLUB, BURN PIT UNDER THE NEW YORK STATE REWIEVAL PROGRAMATION TION CLUB, BURNETH ONDER THE NEW TORK STATE BROWNFIELD CLEANUP PROGRAM ADMINISTERED BY NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION. THE SITE IS IN THE PROCESS OF BEING REMEDIATED IN ACCORDANCE WITH BROWNFIELD CLEANUP AGREEMENT 4C7044, WHICH WAS EXECUTED ON AUGUST 26, 2005 AND LAST AMENDED ON APRIL 26, 2012.

2. REFER TO THE SITE MANAGEMENT PLAN AND FINAL ENGINEERING REPORT FOR ADDITIONAL NOTES AND LEGEND INFORMATION.

Site-Wide Inspection May 10, 2016

Conducted by Dan Carr P.E.

See the completed inspection form and cover letter for additional details.

LEGEND

\`5I				
' B	— — 1350 — —	EXISTING 10-FOOT CONTOUR		
		EXISTING 2-FOOT CONTOUR		
\}	1380	AS-BUILT 10-FOOT CONTOUR		
1		AS-BUILT 2-FOOT CONTOUR		
1 5	x	EXISTING CHAIN-LINK FENCE		
	x	AS-BUILT CHAIN-LINK FENCE		
\	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EXISTING TREE LINE		
1	······································	EXISTING UTILITY LINE		
\		EXISTING EDGE OF PAVED ROAD		
$\langle \rangle$		EXISTING EDGE OF GRAVEL PATH		
		AS-BUILT EDGE OF GRAVEL PATH		
\		SURVEYED EXTENT OF MARKER LAYER		
\	• BP-6	EXISTING MONITORING WELL LOCATION AND DESIGNATION		
\	IB-4	EXISTING INJECTION WELL LOCATION AND DESIGNATION		
	● A-1	AS-BUILT INJECTION WELL LOCATION AND DESIGNATION		
njin		DEED RESTRICTION BOUNDARY		
	A	MONUMENT TO DOCUMENT DEED RESTRICT	ED AREA	
and a		MONUMENT TO DOCUMENT DEED RESTRICT WITH SIGNAGE INSTALLED	ED AREA	
/	Ø	SURVEYED TREE PLANTING LIMITS		
	3	PHYTOREMEDIATION AREA BOUNDARY AND DESIGNATION		
		PRIMARY SOURCE ROCK		
		SECONDARY SOURCE ROCK		
	×	LOCATION OF DEAD POPLAR CUTTING (INSIDE CAP AREA) AND POPLAR POLE (OUTSIDE CAP AREA)		
	SITE WIDE INSPECTION MEMO PROJECT NUMBER:			

IBM GUN CLUB - FORMER BURN PIT AREA

UNION, NEW YORK

PROJECT NUMBER:

ATTACHMENT C INSPECTION PHOTOGRAPHS

Photo 1: Tree and Grass Cover – Phytoremediation Area 1 looking southeast

Photo 2: Tree and grass cover looking west across Phytoremediation Area 2. Monitoring well BP-6A in foreground, Well BP-5A instrumentation installation is visible back right.

Photo 3: Looking north across Phytoremediation Area 3 towards BP-1A and instrumentation enclosure.

Photo 4: Looking east at poplar poles planted along the margin of Phytoremediaion Area 4.

Photo 5: Looking east across Phytoremediation Area 5.

Photo 6: Phytoremediation Area 6 looking north to BP-37A instrumentation.

Photo 7: Phytoremediation Area 7 – Seep Fill Area looking west.

Photo 8: Phytoremediation Area 8 looking south from gravel access lane.

Photo 9: Phytoremediation Area 9 looking northeast

Photo 10: Flowing seep present on the eastern edge of seep fill area, looking at injection borehole B-10.

Photo 11: Area of thin grass, minor erosion rills on the north side of Phytoremediation Area 3.

Photo 12: Standing at BP-10, looking northeast to bonfire area.

Photo 13: Close up of bonfire/gathering area.

P:\3500s\3526.02\Work\20160510 Site Wide Inspection\20160513_Inspection photolog.docx

ATTACHMENT D LOGGING PHOTOGRAPHS

Photo 1: Log staging area at southern access road gate, looking east to Robinson Hill Road

SANBORN || HEAD

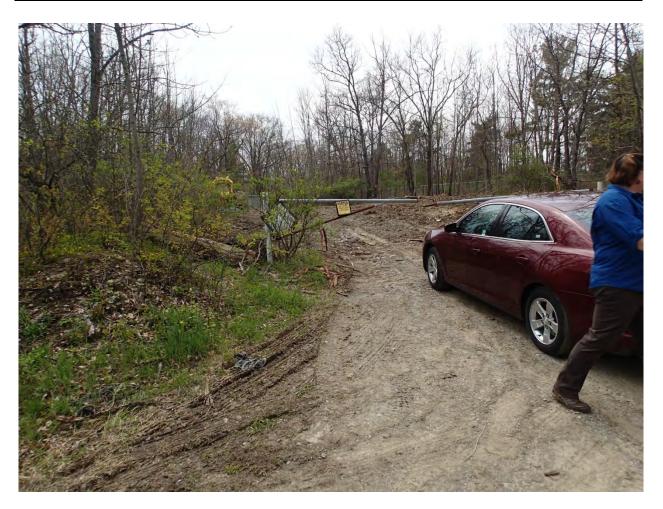


Photo 2: Southern access road gate, looking west from Robinson Hill Road

Photo 3: Logging haul road parallel to and just outside BP site fence (to the right), looking west.

Photo 4: Standing at BP-40A, looking north to low point of logging road. Site fence just visible at the top of the hill

Photo 5: Standing on logging road, looking south to BP-40A and the golf course.

Photo 6: General condition of logging road/ debris disposal. Located on logging road, approximately due south of BP-10A, looking east

Photo 7: East of photo above, looking east

P:\3500s\3526.02\Work\20160510 Site Wide Inspection\Logging photolog.docx

SEPTEMBER 2016 SITE WIDE INSPECTION

Linda Daubert International Business Machines Corporation Corporate Environmental Affairs 8976 Wellington Road Manassas, VA 20109 October 5, 2016 File No. 3526.05

Re: Site-Wide Inspection – September 2016 IBM Gun Club – Former Burn Pit Area Union, New York NYSDEC Site # C704044, BCA Index #B7-0661004

Dear Ms. Daubert:

This letter is intended to transmit the findings of a Site-Wide Inspection completed for the IBM Gun Club, Burn Pit Area (Site). As you are aware, under the project Site Management Plan (SMP), Site-Wide inspections were conducted semi-annually through May 2016, and are to be conducted annually thereafter.

This letter serves to transmit the inspection record and communicate our findings. This inspection report will be included with the next Periodic Review Report required under the SMP, due March 2018. IBM may also wish to submit this report to NYSDEC along with the Owner's Annual Certification associated with property use that is due to the Agencies before the end of the year (2016).

BACKGROUND AND SCOPE

The Site-Wide inspection was conducted in accordance with Monitoring Plan included as Section 3.0 of the SMP using the Site Wide Inspection Checklist included as Appendix K.1 of that document. The inspection included visual review of the condition of the soil cap covering contaminated soils and soil fill placed within the area of historical seeps. The site visit was conducted on September 21, 2016 and included:

- A review of the Site, and conditions on lands downgradient of the Site, related to compliance with the Institutional Controls (ICs) outlined in SMP Section 2.3 and the Environmental Easement;
- A visual review of the cover system associated with the deed restricted area as outlined in SMP Section 3.2, and seep fill area, to observe for settlement, erosion, or other conditions that could be considered detrimental to the effectiveness of these components of the remedy which is considered an Engineering Control (EC);
- A review of the conditions of tree plantings and grass cover that constitute the phytoremediation component of the EC remedy as described under SMP Section 4.2.1.

During this visit we conducted a general reconnaissance and completed photo documentation of the tree and grass cover. A more extensive assessment of tree mortality was completed in May 2016 and will be repeated at the next annual inspection in the fall of 2017.

In addition, we reviewed general Site conditions related to site fencing and security, and against the list of notifications required under the SMP. The findings and observations from this visit are noted in the inspection checklist included as Attachment A. An annotated inspection figure is included as Attachment B and photos are included in Attachment C.

SUMMARY OF FINDINGS

In general, as outlined in the attached checklist, the inspection found the condition of the Site to be consistent with the design intent of the ECs, and the use of the Site and surrounding area is consistent with the ICs and the human exposure assessment on which the remedy is based.

- The capped area remains intact with no evidence of settlement, cracking, animal burrows, or other breaches;
- The capped area is vegetated with grass and tree cover; the vegetative cover exhibited visual evidence of stress believed associated with dry weather conditions, but the grass and trees are well established. NYSDEC has posted a drought watch for Broome County, which is indicated to be under moderate drought conditions¹;
- Despite the dry weather, poplar poles appear to have grown 3 to 5 feet since May 2016 to an average height of 10 to 15 feet, while cuttings have grown 1 to 2 feet to an average of 4 to 5 feet;
- The grass in the area of tree planting was cut in August with no damage to the capped area;
- Approximately two sections of fence in the proximity of BP-16A were damaged by a large fallen tree limb. The barbed wire extension arm brackets and wire were also damaged, along an approximately 100-ft section of the fence; refer to Photos 15 through 17. We are currently coordinating its repair.
- There is still evidence that the bonfire gathering spot in the vicinity of monitoring well BP-10A is being utilized, but there was less debris present than during the May 2016 inspection. Apparent ATV tracks are visible outside the northwest portion of the fence heading toward the bonfire area, see Photos 11 and 12. An aerial photo of the area suggests vehicles are entering the greater Gun Club property from Robinson Hill Road at the northeast corner of the parcel. Although this area is outside of the Burn Pit Parcel, it is evidence of trespassing in the area that we will bring to the attention of the Binghamton Country Club.

¹ http://www.plantmaps.com/interactive-national-drought-conditions-map.php

Page 3 3526.05

CLOSING

If you have any questions, please contact us. We appreciate the opportunity to provide service to IBM on this important project.

Very truly yours, Sanborn, Head Engineering, P.C.

1 June BC

Daniel B. Carr, P.E., P.G. *Sr. Project Director* 20 Foundry Street Concord, New Hampshire

EMB/DBC:emb

Encl. Attachment A - Site Wide Inspection Checklist Attachment B - Annotated Site Inspection Map Attachment C - Photographs

cc: D. Shea

 $\label{eq:point} P:\3500s\3526.02\Work\20160921\ Site\ Wide\ Inspection\20161005\ Inspection\ Cover\ Letter.docx$

Part 1: General Information

Site Name: IBM Gun Club, Former Burn Pit Area

Date of Inspection: S

September 21, 2016

Summary of Remedy:

-Capping the primary VOC source area and residual surficial soils with an engineered low permeability clean soil fill;

-Placement and compaction of engineered soil fill within a topographic depression south of the Burn Pit Area;

-Phytoremediation - establishing and maintaining grass and tree cover to limit infiltration recharge and enhance direct uptake of VOC-containing shallow groundwater; and

-Enhanced biochemical degradation - engineered introduction of amendments shown to enhance biochemical destruction of VOCs.

Part 2: Inspection Specifics

Inspector:	Erica Bosse	Title:		Project Manager
Inspector Contact Information: San		nborn Head Engineering, P.C./Sanborn, Head & Associates, Inc.		P.C./Sanborn, Head & Associates, Inc.
Type of Ins	pection:			
	Site-wide inspection			
	Soil cover system monitoring			
	Routine well inventory and review			
	Routine phytoremediation monitori	ng		
	Non-routine storm event or other en	nergency		
	Non-routine EC failure/ performance	e modification	15	
	Remarks As noted below we did no	ot complete a	detailed mo	ortality survey of the trees. In accordance
	with our May 2016 site inspection a	and 2015 Peri	odic Reviev	v Report, mortality will be reassessed
	in Fall of 2017.			
Weather/ 7	Cemperature: <u>Sunny, uppe</u>	r 70s		
Part 3: On	-site Documents & Records Verifica	ation		
		Readily Available	Up-to- date	Location/ remarks
Daily acces	s/security logs	\checkmark	\checkmark	Red binder in site trailer
Site Manag	ement Plan	\checkmark	\checkmark	Filing cabinet
Health & Sa	afety Plan	\checkmark	\checkmark	Appendix of Site Management Plan
Current un	derground injection control permit			N/A
Monitoring	records	\checkmark	\checkmark	Sept 2016 sampling in progress
Routine ma	intenance reports	\checkmark	\checkmark	Filing cabinet, in PRR appendix
Non-routin	e maintenance reports	\checkmark	\checkmark	Filing cabinet, in PRR appendix Through May 2016, will add this report next time at the
Site-wide in	nspection reports	\checkmark	\checkmark	Through May 2016, will add this report next time at the site

Part 4: Review of Institutional Controls (SMP Section 2.3)

True False Not Applicable

Attachment A Site Wide Inspection Checklist - September 2016 IBM Gun Club - Former Burn Pit Area BCP Site No. C704044				
The property is only used for restricted residential, commercial, and industrial uses within the Track 4 Cleanup area;	\checkmark			
The property is only used for residential, restricted residential, commercial, and industrial uses throughoutt the remainder of the site;	V			
The property is not used for a higher level use, such as unrestricted use without additional remediation and amendment of the Easement with approval by NYSDEC;	V			
Activities on the property that will disturb remaining contaminated material conducted in accordance with the SMP;	\checkmark			
The use of groundwater within and adjacent to the currently established plume or updated plume based on groundwater monitoring is prohibited as a source of potable or process water, without necessary water quality treatment	√			
Any buildings developed within the Track 4 Cleanup area evaluated for vapor intrusion, and any potential impacts that are identified are monitored or mitigated	V			
No vegetable gardens or farming within the Track 4 Cleanup area	V			
Narrative/ Other Notes:				
The site remains undeveloped with no buildings and is not used for agric	ulture			
The current site owner, the Binghamton Country Club logged a portion of the slope south of the Burn				
Pit parcel in early 2016, including creation of logging roads parallel to and outside of the Site perimeter fence.				
The logging roads have developed grass cover since the last inspection, no silty runoff was observed.				

Part 5: Rev	view of Engineering Controls		
5a: Soil Co	ver System Monitoring - Deed Rest	ricted Area (SM	P Section 3.2)
Monumen	ts and Signage		
	Damaged/missing signage	\checkmark	Photo-documented
	Damaged monuments	Remarks:	Signage is as constructed, bollards could use a
	Location(s) shown on map		coat of paint.
Settlemen	t (Low spots)		
	Location(s) shown on map	Approx. ft ²	
	Photo-documented		
\checkmark	Settlement not evident		None observed
Cracks			
	Location(s) shown on map	Length	
	Photo-documented	Width	
\checkmark	Cracking not evident		
Remarks	None observed		
Erosion			
	Location(s) shown on map	Approx. ft ²	
	Photo-documented		
\checkmark	Erosion not evident	Remarks	Minor rills at the NE edge of cap slope observed in
May 2016 l	have filled in with grass.		
Holes			
	Location(s) shown on map	Approx. ft ²	
	Photo-documented	Depth	
\checkmark	Holes not evident	Remarks	None observed
_			
Vegetative	e Cover		
\checkmark	Photo-documented		
\checkmark	Grass properly established		
	No signs of stress	Remarks	Grass was observed to be stressed due to
recent dry	weather in August and September b	ut no major bare	areas were observed.

Wet Areas/Water Damage	None apparent		
Wet areas	Approx. ft ²		Shown on site map
Ponding	Approx. ft ²		Photo-documented
Seeps	Approx. ft ²	 ✓	Wet areas not evident
□ Soft subgrade	Approx. ft ²		No evidence of water damage
The base of the cap slope in the NE	portion of the cap is vegetated	with phreatophyte p	lants but is presently dry.
Slope Instability None appa	rent		
Location(s) shown on			
Photo-documented		one observed	
✓ Slope instability not ev		Jile observed	
Narrative/ other notes:	The grass and tree cover are sh	owing minor signs o	f drought stress.
The grass was observed to be start	ting to brown in areas, and the p	oplar trees are exhib	iting some yellowing/
leaf loss. A review of rainfall reco	rds for Binghamton NY (Nationa	l Climatic Data Cente	er) indicate that August
rainfall was 1.9 inches above avera			
Tulliul was 1.9 menes above aver		wus 2.1 menes bere	w average.

5b: Soil Fil	l - Seep Area	
Settlemen	t (Low spots)	
	Location(s) shown on map	Approx. ft ²
\checkmark	Photo-documented	Depth
\checkmark	Settlement not evident	Remarks None observed
Cracks		
	Location(s) shown on map	Length
	Photo-documented	Width
\checkmark	Cracking not evident	Depth
Remarks	None observed	
Erosion		
	Location(s) shown on map	Approx. ft ²
	Photo-documented	Depth
\checkmark	Erosion not evident	Remarks None observed
		······
Holes		
	Location(s) shown on map	Approx. ft ²
	Photo-documented	Depth
\checkmark	Holes not evident	Remarks None observed
		······
Vegetative	Cover	
V	Photo-documented	
\checkmark	Grass properly established	Remarks Less signs of stress in the seep area compared to
	No signs of stress the cap area.	, the former of which is generally more shaded and historically wet.
Wet Areas	/Water Damage None appar	
	Wet areas Approx. ft	
		t ² Photo-documented
		t ² Wet areas not evident
	Soft subgrade Approx. ft	
activity. Th		re vegetated with phreatophyte plants but are presently dry.

Slope Insta	ability Location shown on map Photo-documented Slope instability not evident	Approx. ft ² Remarks <u>None observed</u>
Narrative /	other notes:	
NOTE: The	tree condition survey information belo	w reflects what was recorded in May 2016. This
inspection	did not include a detailed mortality sur	vey. The next survey is scheduled for fall 2017.
On average	, both poles and cuttings were observed	d to have grown 2-4 ft since the May 2016 inspection.

5c: Phytoremediation\Tree Condition (SMP Section 4.2.1)

Area #1	Poles	Representative height Representative canopy width	4.5-10'		
✓ Photo					220/
	Cuttings	Representative height	2-4.5'	— % Mortality —	33%
Mark Map 🗸	outtings	Representative canopy widt <u>h</u>		_	
Area #2	Poles	Representative height	4-10'		
	Poles	Representative canopy width			
✓ Photo				—% Mortality	28%
	Cuttings	Representative height	3-4'	/0 Wor carry	2070
Mark Map 🗸		Representative canopy widt <u>h</u>		_	
Area #3	Poles	Representative height	4-10'		
	1 0105	Representative canopy widt <u>h</u>			
✓ Photo				—% Mortality	22%
	Cuttings		2-3'		
Mark Map 🗸	C C	Representative canopy widt <u>h</u>		_	
Area #4	Poles	Representative height	4-7'		
	1 0105	Representative canopy width			
✓ Photo				—% Mortality	33%
	Cuttings	Representative height	2.5-4'		0070
Mark Map 🗸	Ŭ	Representative canopy widt <u>h</u>		_	
Area #5	Poles	Representative height	4-10'		
	1 0103	Representative canopy width		_	
✓ Photo				—% Mortality	22%
	Cuttings	Representative height	3-4'	70 Mortanty	2270
Mark Map ✓	Guttings	Representative canopy widt <u>h</u>			

Area #6	Poles	Representative height	6-12'		
	roles	Representative canopy width			
✓ Photo					1 - 0 /
	C :	Representative height	2-4'	—% Mortality	17%
Mark Map	Cuttings	Representative canopy width			
V					
Area #7		Representative height	4-12'		
	Poles	Representative canopy width			
✓ Photo		· · · · ·			
		Representative height	N/A		18%
Mad Maa	Cuttings	Representative canopy width	11/11		
Mark Map 🗸					
Area #8		Representative height	4-12'		
	Poles	Representative canopy width	1 12		
✓ Photo					
L Inoto		Representative height	N/A		14%
	Cuttings	Representative canopy width			
Mark Map 🗸		Representative canopy whith			
Area #9		Derus senteting height	F 1F'		
	Poles		5-15'		
		Representative canopy widt <u>h</u>			
Photo					20%
	Cuttings		N/A		
Mark Map 🗸		Representative canopy width			
Narrative /	other notes:	FROM May 2016 survey:			
Poplar tree	mortality by area rar	ged from 33% to 14% with a median	of about 23%.	Estimated tree	
mortalities	exceeded the 25% th	reshold specified in the SMP in Area 1	(26%), Area 2	2 (30%), and	
Area 4 (33%	6). In Areas 1 and 2,	the mortality may be explained sun ex	posure depth	to rock/planting dep	oth,
and possibl	e gas generation dow	ngradient of pilot test injection boreh	oles. Poplar po	oles in Area 4	
		newer woody bushes and is generally			te
	the second duby	suches and a generally			

to mortality.

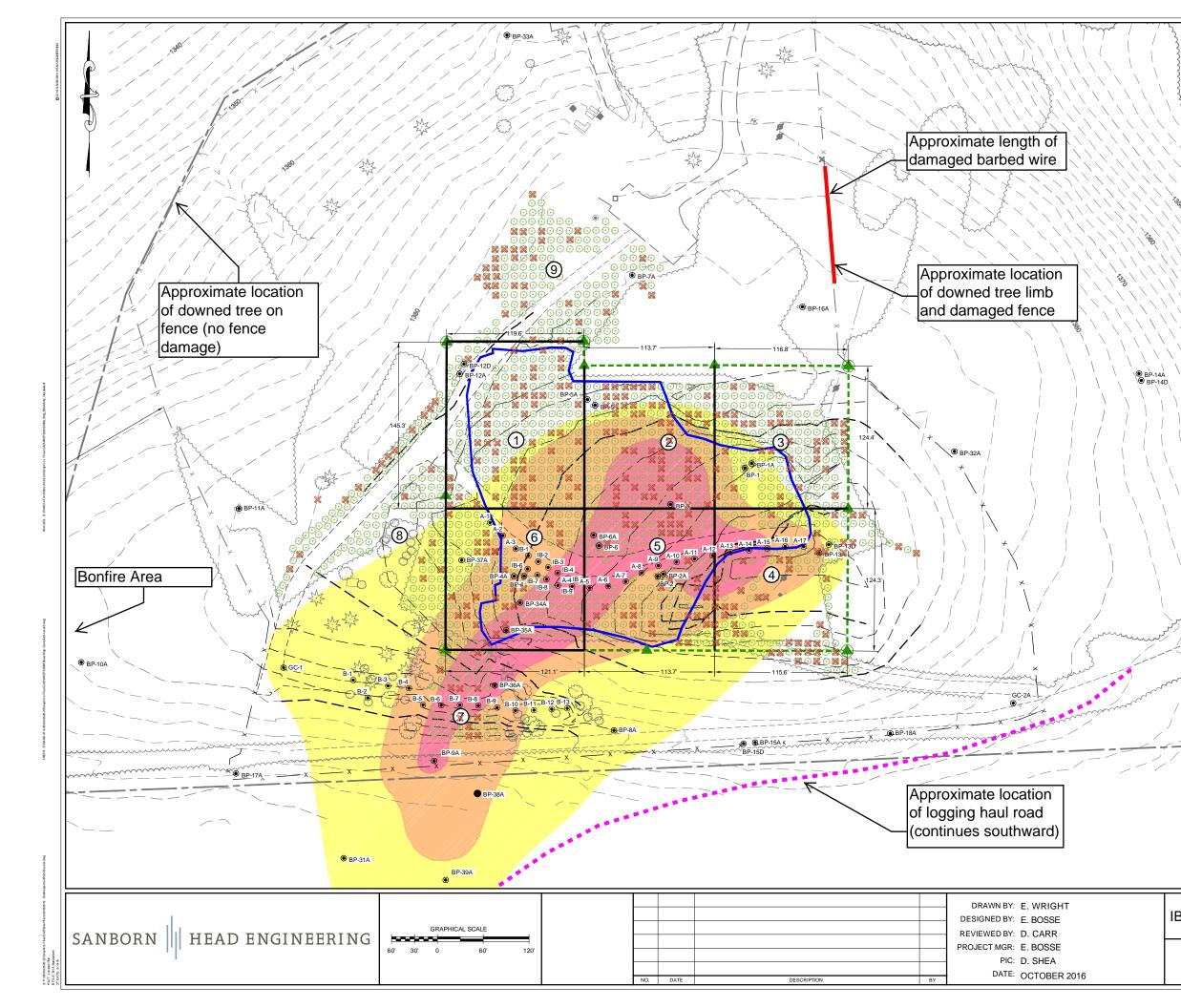
Part 6: Review of Monitoring and Injection Well Network Inspection

Conditions consistent with Monitoring and Injection Well Inspection Checklist

 \checkmark

List deviations, if any The comprehensive well inspection was completed in June 2016, conditions

	Attachment A Site Wide Inspection Checklist - September 2016
	IBM Gun Club - Former Burn Pit Area BCP Site No. C704044
	were observed to be similar. A barrier bollard at GC-2A was apparently struck
	by a vehicle and is partially tipped over. No damage to the well was observed.
Seep Area Monitoring Seep area dry	
Remarks No seeps e	vident on-site during this dry-weather visit. Good, tree growth and survival
in the seep	o fill area.
Narrative / other notes	3:


Part 7 - Review of Access/General Site Conditions				
Condition of fencing damaged in the vicinity or BP-16A				
Remarks One small tree is resting on the fence in the NW corner of the larger parcel, no fence damage was				
observed. A large downed limb has damaged approximately 2 fence panels NE of BP-16A.				
Condition of monuments and signage Intact as constructed				
Remarks				
Obvious signs of vandalism/trespassing? None inside the perimeter fence				
Remarks				
Condition of access roads and lanes Intact as constructed. Some woody brush is starting to				
Remarks encroach on the southern access road.				
Investigation derived waste				
Frac Tank/ Water Tank				
 N/A <u>Remarks</u> About 100 gallons of sampling purge water in Tote #1. ✓ Good condition 				
└┘ Needs maintenance				
Approximate volume generated since last inspection 50				
Yes No				
Documentation of IDW analytical results readily available				
Location/ Remarks June 2016 sampling of un-bubbled purge water indicated levels of cDCE above threshold for				
on-site discharge. Tote was being bubbled during September sampling and samples collected. Results are				
pending and will be added to the filing cabinet during the next visit to the site.				
Narrative / other notes:				

Part #8 Notifications

	Not		
We are not aware of any planned change in use by the Binghamton Countr	<u> </u>	Yes	No
A. 60-day advance notice of any proposed changes in site use	\checkmark		
B. 7-day advance notice of proposed ground-intrusive activities	\checkmark		
C. 48-hour notice of any damage or defect to the engineering controls	\checkmark		
D. Verbal notice by noon the following day of any emergency (fire,			
flood, etc.) that reduces the effectiveness of engineering controls	\checkmark		
E. Follow-up status report on emergency actions within 45 days	\checkmark		
F. 60-day advance notice of any change in site ownership	\checkmark		
G. New owner's contact information confirmed in writing within 15			
days of ownership change	\checkmark		

Part #9 Action Items

	Action Item	Proposed time frame
Destine as interest		
Routine maintenance		-
-	Repair BP-15A PVC riser	Next time drill rig is on site
Non-routine maintenance	Removed downed limbs and repair	As soon as practicable
	permimeter fence	
Other		

NOTES:

THIS FIGURE IS INTENDED TO ACCOMPANY THE SITE-WIDE INSPECTION CHECKLIST AND THIS FIGURE 13 INTERVED 10 ACCOMPANY THE STEEWIDE INSPECTION CHECKLIST WILL BE USED TO MARK CONDITIONS OF NOTE RECORDED ON THE INSPECTION CHECKLIST FORM. THE SITE WIDE INSPECTION IS REQUIRED AS AN ELEMENT OF THE REMEDIAL PROGRAM AT THE IBM GUN CLUB, BURN PIT UNDER THE NEW YORK STATE BROWNFIELD CLEANUP PROGRAM ADMINISTERED BY NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION. THE SITE IS IN THE PROCESS OF BEING REMEDIATED IN ACCORDANCE WITH BROWNFIELD CLEANUP AGREEMENT #C7044, WHICH WAS EXECUTED ON AUGUST 26, 2005 AND LAST AMENDED ON APRIL 26, 2012.

2. REFER TO THE SITE MANAGEMENT PLAN AND FINAL ENGINEERING REPORT FOR ADDITIONAL NOTES AND LEGEND INFORMATION.

Site-Wide Inspection September 21, 2016

Conducted by Erica Bosse, P.G.

See the completed inspection form and cover letter for additional details.

LEGEND

— — 1350 — —	EXISTING 10-FOOT CONTOUR
	EXISTING 2-FOOT CONTOUR
1380	AS-BUILT 10-FOOT CONTOUR
	AS-BUILT 2-FOOT CONTOUR
X	EXISTING CHAIN-LINK FENCE
x	AS-BUILT CHAIN-LINK FENCE
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EXISTING TREE LINE
\	EXISTING UTILITY LINE
	EXISTING EDGE OF PAVED ROAD
	EXISTING EDGE OF GRAVEL PATH
	AS-BUILT EDGE OF GRAVEL PATH
	SURVEYED EXTENT OF MARKER LAYER
● BP-6	EXISTING MONITORING WELL LOCATION AND DESIGNATION
● IB-4	EXISTING INJECTION WELL LOCATION AND DESIGNATION
A-1	AS-BUILT INJECTION WELL LOCATION AND DESIGNATION
	DEED RESTRICTION BOUNDARY
	MONUMENT TO DOCUMENT DEED RESTRICTED AREA
	MONUMENT TO DOCUMENT DEED RESTRICTED AREA WITH SIGNAGE INSTALLED
٢	SURVEYED TREE PLANTING LIMITS
3	PHYTOREMEDIATION AREA BOUNDARY AND DESIGNATION
	PRIMARY SOURCE ROCK
	SECONDARY SOURCE ROCK
*	LOCATION OF DEAD POPLAR CUTTING (INSIDE CAP AREA) AND POPLAR POLE (OUTSIDE CAP AREA) Based on May 2016 Inspection

SITE WIDE INSPECTION MEMO PROJECT NUMBER IBM GUN CLUB - FORMER BURN PIT AREA UNION, NEW YORK

SITE INSPECTION PLAN

3526.05

FIGURE NUMBER:

1

## ATTACHMENT C INSPECTION PHOTOGRAPHS



Photo 1: Tree and grass cover looking east across Phytoremediation Areas 1 and 2. Well BP-5A instrumentation is visible in the center.



Photo 2: Tree and grass cover looking south across the cap from Phytoremediation Area 2 to Area 5.

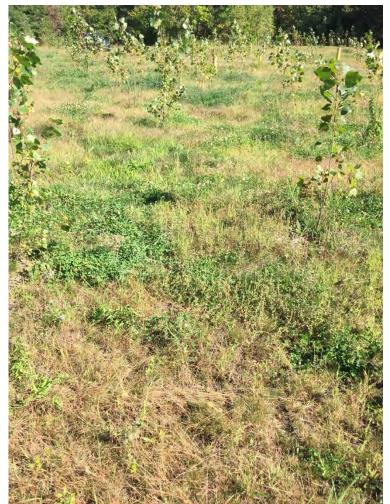



Photo 3: Close up of grass cover in Phytoremediation Area 2, looking southeast.



Photo 4: Looking northwest from Phytoremediation Area 4 towards Areas 2 and 3. BP-1A and instrumentation enclosure are faintly visible in the back right corner.



Photo 5: Looking west across Phytoremediation Area 4 towards the A-line of injection boreholes.



Photo 6: Looking west from Phytoremediation Area 6 towards Area 8 in an area of poplar poles averaging 10 feet or more in height.



Photo 7: Phytoremediation Area 6 looking northeast to BP-37A instrumentation.



Photo 8: Phytoremediation Area 7 – Seep Fill Area looking north.



Photo 9: Phytoremediation Area 7 – Seep Fill Area looking south.



Photo 10: Phytoremediation Area 9 looking northwest.



Photo 11: ATV/vehicle track outside the perimeter fence in the northwest portion of the perimeter fence heading towards the bonfire area.



Photo 12: Looking northwest at the bonfire area outside the perimeter fence.



Photo 13: Damaged bollard at GC-2A



Photo 14: Small tree resting on fence in the northwest corner of the perimeter fence.



Photo 15: Damaged barbed wire arm brackets and downed wire in the vicinity of the fallen tree limb near BP-16A



Photo 16: Large downed limb and damaged fence just northeast of BP-16A.



Photo 17: Large downed limb and damaged fence just northeast of BP-16A.



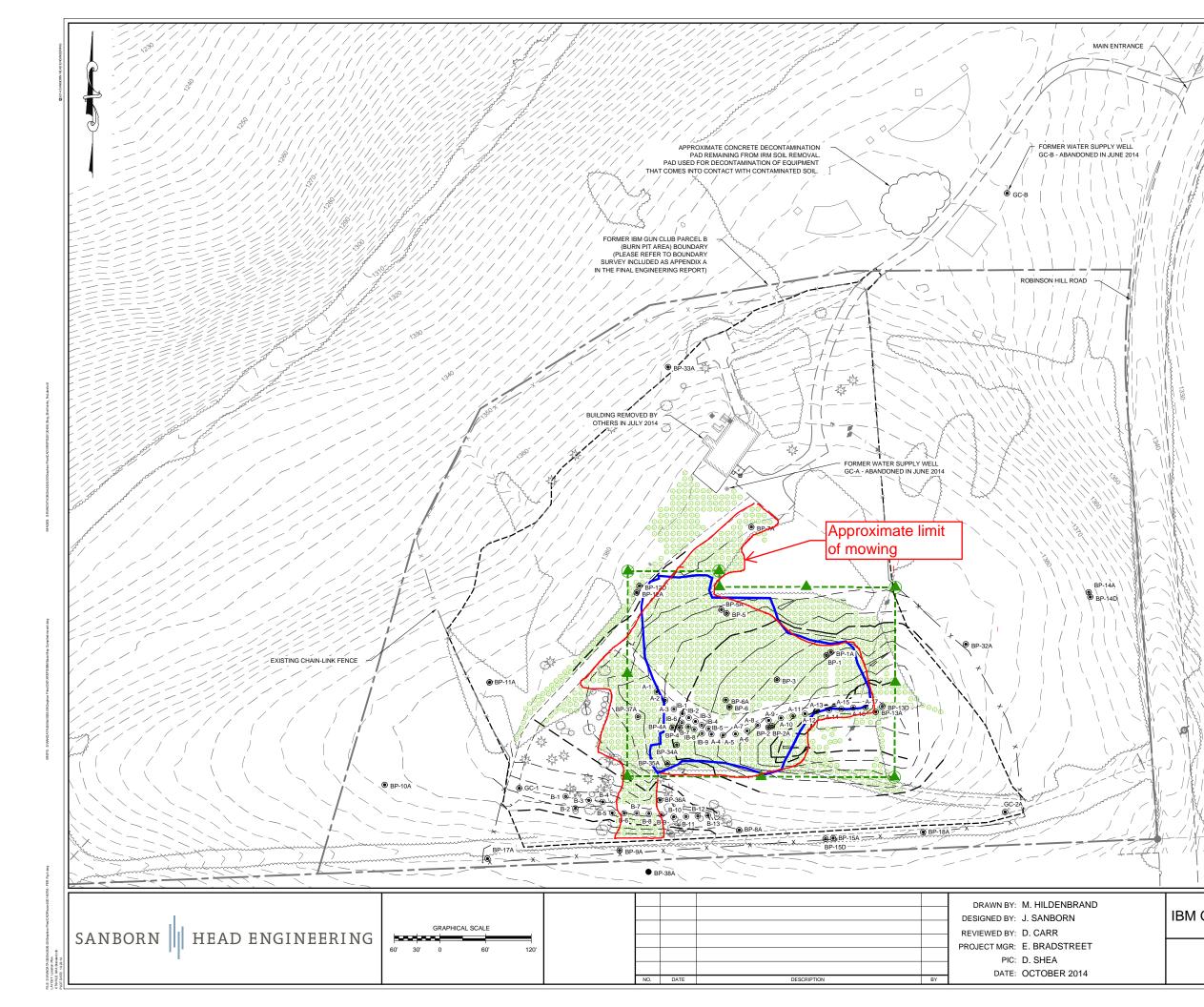
Photo 18: Current condition of logging road outside perimeter fence approximately due south from BP-10A, looking east.



Photo 19: East of photo above, looking east.

P:\3500s\3526.02\Work\20160921 Site Wide Inspection\20161005_Inspection photolog.docx

## ATTACHMENT D


## **MAINTENANCE REPORTS**

SANBORN 📕 HEAD ENGINEERING

### Routine Maintenance Report Form IBM Gun Club - Former Burn Pit Area BCP Site No. C704044

Field Representative:	Erica Bosse	(Sanborn Head)	Position: Project Manager
Company:	Glenn Carso	on (Groundwater Sciences)	·
	Monitoring	g Well	Soil Cap
System Type (circle one)	Injection V	Vell	Phytoremediation
	Soil Fill in	Seep Area	
Maintenance activiti	es:		
planting. We provided	d a marked u he site sever	p field sketch of the areas to mow, b	now the grass within the area of tree out were not present at the time of ved that mowing was completed with no
Modifications to the			
Field Representative Eucobo 8/3/2016 Reviewed By D David Ahea 8/3/2016	JSC ate	Attachments: None Photographs Field Sketch Invoices/ Receipts Other	SANBORN 📗 HEAD

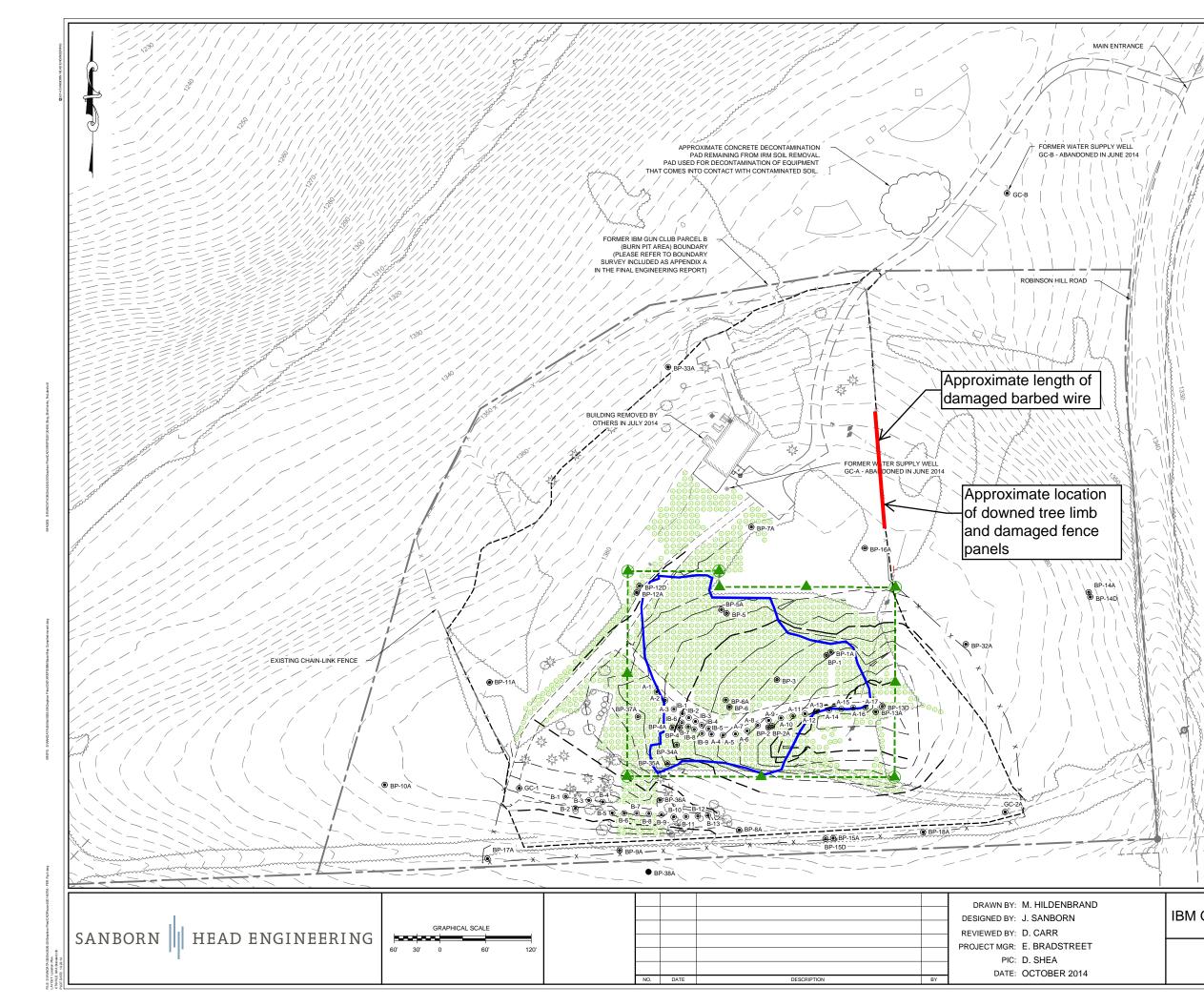
P:\3500s\3526.02\Source Files\2016 Annual Certification\20170113_Routine Maintenance.docx



NI	$\cap$	T	c

WITH THE EXCEPTION OF THE FEATURES IDENTIFIED UNDER NOTE 3, THE BASE MAP WAS DEVELOPED FROM THE FOLLOWING SURVEY DATA MERGED BY SANBORN, HEAD & ASSOCIATES, INC. (SANBORN HEAD):

- A. WITHIN THE LIMITS SHOWN ON THE PLAN VIEW FIGURE AS DENOTED IN THE LEGEND THE TOPOGRAPHY AND SITE FEATURES REFLECT FIELD GROUND SURVEY DOCUMENTED ON A PLAN ENTITLET 'TOPOGRAPHIC SURVEY OF FORMER IBM GUN CLUB', PREPARED BY BUTLER LAND SURVEYING, LLC (BUTLER) OF LITTLE MEADOWS, PENNSYLVANIA AND PROVIDED TO SANBORN HEAD IN DIGITAL FORMAT. TOPOGRAPHY REPRESENTS SITE CONDITIONS ON MARCH 28, 2012. ORIGINAL SCALE: 1° = 50. THE MARCH 2012 SURVEY WAS CONDUCTED TO OBTAIN REFINED TOPOGRAPHIC DATA FOR THE AREA THAT WILL BE AFFECTED BY SOIL EXCAVATION AND CAPPING AND TO ESTABLISH PROJECT BENCHMARKS.
- B. OUTSIDE THE AREA OF MARCH 2012 FIELD SURVEY THE TOPOGRAPHY AND SITE FEATURES ARE FROM A PHOTOGRAMMETRIC SURVEY PLAN PREPARED BY BUTLER AND PROVIDED TO SANBORN HEAD IN DIGITAL FORMAT. THE PHOTOGRAMMETRIC MANUSCRIPT DATED AUGUST 11, 2008 WAS BASED ON AERIAL PHOTOGRAPHY FLOWN IN AUGUST, 2007.
- C. AS-BUILT CONTOURS WERE DEVELOPED BY KEYSTONE ASSOCIATES OF BINGHAMTON, NEW YORK AND WERE BASED ON FIELD SURVEYS CONDUCTED BY KEYSTONE ON OCTOBER 29 AND 30 AND NOVEMBER 7, 2013, AND JUNE 24, 2014.
- THE VERTICAL DATUM IS BASED ON THE NAVD OF 1988 AND THE HORIZONTAL DATUM IS BASED ON THE NEW YORK STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE. THE APPROXIMATE GLOBAL COORDINATES FOR THE SITE ARE: LONGITUDE - W76° 0' 20°, LATITUDE - N42° 7 57.6°.
- THE EXTENT OF THE MARKER LAYER WAS SURVEYED BY KEYSTONE ASSOCIATES OF BINGHAMTON, NY ON SEPTEMBER 18, 2013. THE REMAINING AS-BUILT FEATURES WERE SURVEYED BY KEYSTONE ON OCTOBER 29 AND 30, 2013 AND NOVEMBER 7, 2013.


LEGEND			
— — 1350 — —	EXISTING 10-FOOT CONTOUR		
	EXISTING 2-FOOT CONTOUR		
1380	AS-BUILT 10-FOOT CONTOUR		
	AS-BUILT 2-FOOT CONTOUR		
x	EXISTING CHAIN-LINK FENCE		
x	AS-BUILT CHAIN-LINK FENCE		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EXISTING TREE LINE		
······	EXISTING UTILITY LINE		
	APPROXIMATE LIMIT OF MARCH 2012 FIELD S (SEE NOTE 1A)	SURVEY	
	EXISTING EDGE OF PAVED ROAD		
	EXISTING EDGE OF GRAVEL PATH		
	AS-BUILT EDGE OF GRAVEL PATH		
	SURVEYED EXTENT OF MARKER LAYER		
• BP-6	EXISTING MONITORING WELL LOCATION AND DESIGNATION		
IB-4	EXISTING INJECTION WELL LOCATION AND DESIGNATION		
A-1	AS-BUILT INJECTION WELL LOCATION AND DESIGNATION		
	DEED RESTRICTION BOUNDARY		
A	MONUMENT TO DOCUMENT DEED RESTRICT	ED AREA	
	MONUMENT TO DOCUMENT DEED RESTRICT WITH SIGNAGE INSTALLED	ED AREA	
Ø	SURVEYED TREE PLANTING LIMITS		
1			
/			
1			
Į.			
FINAL ENGINEER	NG REPORT	PROJECT NUMBE	
UN CLUB - FORM	N CLUB - FORMER BURN PIT AREA		
UNION, NEW			

LOCATION PLAN

Non-Routine Maintenance Report Form IBM Gun Club - Former Burn Pit Area BCP Site No. C704044

Field Representative:	Erica Bosse	Position: Project Manager	
Company:	Sanborn Head		
	Monitoring Well	Soil Cap	
System Type (circle one)	Injection Well	Phytoremediation	
(Soil Fill in Seep Area	Other: Perimeter Fence	
Nature of problem or incident:	A large downed tree limb and damaged perimeter fence was discovered upon arrival for the September performance testing round. Approximately two fencing panels and 100' of extension arm brackets and barbed wire were damaged by the falling limb		
Maintenance activiti	es:		
fence repair and contr York to repair the fe	acted with a local fencing company, I nce. The fence was repaired by Budg	nel to remove the downed tree limb in advance of Budget Fence of America, of Binghamton, New get Fence with observation from Groundwater ch and before and after photos are attached.	
Modifications to the	system:		
The fence was repaired with no modifications to the systems.			
	$/21/2016$ \Box Invoices/ Receipts	SANBORN 📗 HEAD	
David Shea	ate 🗌 Other	1,h	
11/21/2016	D) 2500-) 252(02) Comment	s\2016 Annual Certification\20170113 Non Routine Maintenance do	

P:\3500s\3526.02\Source Files\2016 Annual Certification\20170113_Non Routine Maintenance.docx

NI	\cap	T	c

WITH THE EXCEPTION OF THE FEATURES IDENTIFIED UNDER NOTE 3. THE BASE MAP WAS DEVELOPED FROM THE FOLLOWING SURVEY DATA MERGED BY SANBORN, HEAD & ASSOCIATES, INC. (SANBORN HEAD):

- WITHIN THE LIMITS SHOWN ON THE PLAN VIEW FIGURE AS DENOTED IN THE LEGEND THE TOPOGRAPHY AND SITE FEATURES REFLECT FIELD GROUND SURVEY DOCUMENTED ON A PLAN ENTITLED "TOPOGRAPHIC SURVEY OF FORMER IBM GUN CLUB", PREPARED BY BUTLER LAND SURVEYING, LLC (BUTLER) OF LITTLE MEADOWS, PENNSYLVANIA AND PROVIDED TO SANBORN HEAD IN DIGITAL FORMAT. TOPOGRAPHY REPRESENTS SITE CONDITIONS ON MARCH 28, 2012. ORIGINAL SCALE: 1° = 50'. THE MARCH 2012 SURVEY WAS CONDUCTED TO OBTAIN REFINED TOPOGRAPHIC DATA FOR THE AREA THAT WILL BE AFFECTED BY SOIL EXCAVATION AND CAPPING AND TO ESTABLISH PROJECT BENCHMARKS.
- OUTSIDE THE AREA OF MARCH 2012 FIELD SURVEY THE TOPOGRAPHY AND SITE FEATURES ARE FROM A PHOTOGRAMMETRIC SURVEY PLAN PREPARED BY BUTLER AND PROVIDED TO SANBORN HEAD IN DIGITAL FORMAT. THE PHOTOGRAMMETRIC MANUSCRIPT DATED AUGUST 11, 2008 WAS BASED ON AERIAL PHOTOGRAPHY FLOWN IN AUGUST, 2007.
- AS-BUILT CONTOURS WERE DEVELOPED BY KEYSTONE ASSOCIATES OF BINGHAMTON, NEW YORK AND WERE BASED ON FIELD SURVEYS CONDUCTED BY KEYSTONE ON OCTOBER 29 AND 30 AND NOVEMBER 7, 2013, AND JUNE 24, 2014. C.
- THE VERTICAL DATUM IS BASED ON THE NAVD OF 1988 AND THE HORIZONTAL DATUM IS BASED ON THE NEW YORK STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE. THE APPROXIMATE GLOBAL COORDINATES FOR THE SITE ARE: LONGITUDE W76° 0' 20°, LATITUDE - N42° 7' 57.6".
- THE EXTENT OF THE MARKER LAYER WAS SURVEYED BY KEYSTONE ASSOCIATES OF BINGHAMTON, NY ON SEPTEMBER 18, 2013. THE REMAINING AS-BUILT FEATURES WERE SURVEYED BY KEYSTONE ON OCTOBER 29 AND 30, 2013 AND NOVEMBER 7, 2013.

LEGEND			
— — 1350 — —	EXISTING 10-FOOT CONTOUR		
	EXISTING 2-FOOT CONTOUR		
1380	AS-BUILT 10-FOOT CONTOUR		
	AS-BUILT 2-FOOT CONTOUR		
x	EXISTING CHAIN-LINK FENCE		
x	AS-BUILT CHAIN-LINK FENCE		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	EXISTING TREE LINE		
······	EXISTING UTILITY LINE		
	APPROXIMATE LIMIT OF MARCH 2012 FIELD S (SEE NOTE 1A)	SURVEY	
	EXISTING EDGE OF PAVED ROAD		
	EXISTING EDGE OF GRAVEL PATH		
	AS-BUILT EDGE OF GRAVEL PATH		
	SURVEYED EXTENT OF MARKER LAYER		
<b>•</b> BP-6	EXISTING MONITORING WELL LOCATION AND DESIGNATION		
IB-4	EXISTING INJECTION WELL LOCATION AND DESIGNATION		
A-1	AS-BUILT INJECTION WELL LOCATION AND DESIGNATION		
	DEED RESTRICTION BOUNDARY		
<b>A</b>	MONUMENT TO DOCUMENT DEED RESTRICT	ED AREA	
	MONUMENT TO DOCUMENT DEED RESTRICT WITH SIGNAGE INSTALLED	ED AREA	
Ø	SURVEYED TREE PLANTING LIMITS		
1			
/			
1			
Į.			
FINAL ENGINEER	NG REPORT	PROJECT NUMBE	
UN CLUB - FORM	N CLUB - FORMER BURN PIT AREA		
UNION, NEW			

LOCATION PLAN

## ATTACHMENT D PHOTOGRAPHS



Photo 1: Downed tree limb and fence damage, discovered upon arrival for sampling during the week of September 19, 2016



Photo 2: Close up of fence showing damaged fence panels and barbed wire.



Photo 3: Repaired fence, taken east (outside) of the perimeter fence, looking generally north.



Photo 4: Repaired fence, taken east (outside) of the perimeter fence, looking generally west towards field trailers.

P:\3500s\3526.02\Work\20160921 Site Wide Inspection\20161005_Inspection photolog.docx