Phase II Environmental Investigation Report

160 Center Street Canastota, New York

May 2021 B0258-021-002

Prepared For:

Savarino Companies, LLC

Prepared By:

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

160 Center Street Canastota, New York

May 2021 B0258-021-002

Prepared for:

Savarino Companies, LLC 500 Seneca Street, Suite 508 Buffalo, New York 14204

Prepared by:

Benchmark Environmental Engineering & Science, PLLC 2558 Hamburg Turnpike, Suite 300 Buffalo, NY 14218 (716)856-0599

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

160 Center Street Canastota, New York

TABLE OF CONTENTS

1.0	INT	RODUCTION	1
	1.1	Background and Site Description	
	1.2	Previous Studies	1
2.0	PHA	ASE II Investigation Activities	4
		Test Pit Investigation	
3.0		ESTIGATION FINDINGS	
	3.1	Site Geology	0
	3.2	Field Observations	6
	3.3	Analytical Results	7
		3.3.1 Soil/Fill Analytical Results	/
		3.3.2 Groundwater Results	8
4.0	Con	NCLUSIONS AND RECOMMENDATIONS	9
5.0	Lim	IITATIONS	10

PHASE II ENVIRONMENTAL INVESTIGATION REPORT

160 Center Street Canastota, New York

LIST OF TABLES

Table 1	Summary of Subsurface Observation Table
Table 2	Summary of Soil/Fill Analytical Sampling Program
Table 3	Summary of Soil/Fill Analytical Results
	LIST OF FIGURES
Figure 1	Site Location and Vicinity Map
Figure 2	Site Plan (Aerial) with Investigation Locations
	APPENDICES

Appendix A Laboratory Analytical Data Summary Package

1.0 Introduction

1.1 Background and Site Description

Benchmark Environmental Engineering & Science, PLLC (Benchmark) performed a Phase II Environmental Investigation (Phase II) on behalf of Savarino Companies, LLC (Savarino) on a parcel located at 160 Center Street, Village of Canastota, Madison County, New York (Site, see Figure 1).

The Site is located in a highly developed commercial, industrial, and residential area of the Village of Canastota (see Figure 1). The Site consists of one (1) parcel (SBL # 36.63-1-2) and is ±2.57 acres in size. The Site consists of a concrete slab with associated ramp and large pile of debris from the demolition of the former 5-story building back in August 2011. The remaining portions of the Site are wooded or grass areas and the former Erie Canal is adjacent to the Site to the north.

The purpose of Benchmark's Phase II work was to assess if historic activities have contaminated the Site, and if those impacts would potentially complicate the redevelopment/reuse of the Site.

Additional information relative to the work completed by Benchmark and others is provided below.

1.2 Previous Studies

Phase I Environmental Site Assessment

A Phase I Environmental Site Assessment¹ (ESA) was performed by GHD at the Site in August 2019. According to the ESA, the Site building was constructed sometime prior to 1890 by the former Canastota Casket Company and was later used by several furniture companies and an agricultural supply company before becoming vacant. The building partially collapsed in July 2011, leading to its full emergency demolition in August 2011. The ESA identified the following findings for the Site:

• Potential Benzine Underground Storage Tank (UST): According to historical Sanborn maps, an unknown capacity UST was installed at the Site sometime between 1906 and 1911 and was reportedly used to store benzine. No additional information

¹ Phase I Environmental Site Assessment, Former Canastota Casket Company Property, 160 Center Street, Canastota, New York. Prepared by GHD. August 2019.

1

was provided or able to be reasonably ascertained, including information regarding specific location, closure, and removal. A surface feature with the potential to connect to subsurface structures was identified in the approximate reported location of the historical UST.

- **Historical Site Use:** The Site has been utilized for various operations that involved varnishing, painting, and machining, including casket manufacturing, furniture manufacturing, and boat building, for over 120 years. These operations utilize significant quantities of petroleum products and hazardous substances.
- Historical Railroad Spurs: Historically, three (3) railroad spurs were located on-Site and entered the Site from its southeastern corner. One railroad spur crossed the central portion of the Site and terminated on the adjoining property to the west. One railroad spur terminated in the central portion of the Site adjacent to the northern wall of the main historical Site building. One railroad spur crossed the central portion of the Site and terminated near the Site's northern boundary. In addition, one railroad spur was located immediately adjacent to the Site's eastern boundary and terminated near the Erie Canal, which adjoins the northern Site boundary. They were present from sometime prior to 1890 until an unknown date after 1963.
- On-Site Building Debris: A significant quantity of intermixed brick, stone, concrete, and wood pieces were observed along the southern portion of the Site, generally within the basement of the historical main Site building. The debris pile is documented to contain potential asbestos-containing materials.
- Former Septic Systems: Based on the development of the Site dating back to at least the 1890s, it is assumed that at some point in the Site's past, prior to connecting to the municipal sanitary sewer system, a septic system(s) was previously located on-Site.

Limited Phase II Environmental Site Assessment

A Limited Phase II Environmental Site Assessment² (Limited Phase II) was also completed by GHD to assess soil and groundwater in the vicinity of the potential UST and was not intended to characterize subsurface conditions for the entirety of the Site.

A ground penetrating radar survey was completed but was not able to confirm or deny the presence of the UST. Five (5) soil borings were completed around the UST area, from which three (3) soil samples and three (3) groundwater samples were collected for

² Limited Phase II Environmental Site Assessment, Soil and Groundwater sampling and Laboratory Analysis Results, 160 Center Street, Village of Canastota, New York. Prepared by GHD. November 25, 2019.

laboratory analysis which included volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and polychlorinated biphenyls (PCBs).

Subsurface conditions consisted of approximately 2 to 5 feet of fill material overlying native soils. Low-level (0.3 to 1.5 parts per million (ppm) total volatile organic field measurements were noted at the boring locations. Groundwater was encountered at approximately 3 feet below ground surface (fbgs) at the boring locations.

The Limited Phase II concluded the sample results taken from the reported vicinity of the historical UST did not exhibit evidence of impacts associated with petroleum or organic compounds. However, metal impacts from an unknown source were identified, in both soil and groundwater samples.

Benchmark generally agrees with the conclusions of the Limited Phase II report for the area of the UST. However, SVOCs were detected at SB-5, 4 to 6 feet and metals (arsenic and barium) were detected at SB-1, 0 to 4 feet at concentration above their respective 6NYCRR Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs), which would be the applicable soil cleanup objectives (SCOs) for the proposed reuse of the Site (multi-family housing), as discussed in Section 3.3.1. It is Benchmark's opinion that the metals contamination identified at TP-1 is likely associated with fill materials (ash and cinders) encountered that location.

The ESA did identify other concerns which were not investigated as part of the Limited Phase II. Due to the concerns detailed above, Benchmark recommended completion of a Phase II Environmental Investigation to assess the Site and other concerns which were not investigated.

2.0 PHASE II INVESTIGATION ACTIVITIES

2.1 Test Pit Investigation

On March 24, 2021, Benchmark's subcontractor, Trec Environmental Inc. (Trec), mobilized an excavator to complete test pits at the Site. Benchmark's environmental scientist provided oversight of the test pit activities which were completed to assess subsurface conditions associated with soil/fill and groundwater conditions at the Site. Twelve (12) test pits, designated TP-1 through TP-12, were completed across the Site as shown on Figure 2. The test pits were advanced to depths of approximately 3 to 7 fbgs into underlying native soil or until refusal was encountered. Refusal was encountered at several test pit locations due to weathered bedrock.

The soil/fill samples were retrieved from the test pit locations to allow for field characterization of the subsurface lithology and collection of soil/fill samples by Benchmark's environmental scientist. The physical characteristics of the subsurface soil/fill at the test pit locations were classified using the ASTM D2488 Visual-Manual Procedure Description. Soil/fill was also field screened using a MiniRae 3000 Photoionization Detector (PID) to screen for total volatile organics. Visual and/or olfactory observations were noted, if observed. Field observations, including lithology, depths, PID field screen results, etc., at the test pit locations are summarized in the Summary of Subsurface Field Observations provided in Table 1.

Four (4) soil/fill samples were selected for laboratory analysis from the test pits and were transported under chain-of custody command to Alpha Analytical (Alpha) in Westborough, Massachusetts (see Table 2). Sample analysis included SVOCs using the Total Compound List (TCL) base-neutral list, and Resource Conservation and Recovery Act (RCRA) 8 metals. Samples were collected in laboratory provided sample bottles, cooled to 4° C in the field, and transported to the laboratory for analysis.

2.2 Groundwater Sampling

Three (3) groundwater samples were taken from test pit locations, TP-3, TP-5, and TP-10 and were designated TP-3W, TP-5W and TP-10W, respectively (see Table 3). Groundwater samples were collected directly from the groundwater water encountered within those test pits after completion using a dedicated and disposable polyethylene bailer.

The three (3) groundwater samples were placed in pre-cleaned laboratory provided sample bottles, cooled to 4° C in the field and transported under chain-of-custody to Alpha for analysis of TCL plus CP-51 list VOCs.

3.0 INVESTIGATION FINDINGS

3.1 Site Geology

The surface of the Site was mainly covered with vegetation (grass and wooded areas) except in the southern central portion of the Site in the vicinity of the former building where a concrete slab with associated ramp and pile of debris was present from the demolition of the former 5-story building back in August 2011. Test pits were completed in the wooded/grass areas of the Site due to the presence of debris and concrete slab.

The subsurface conditions of the Site consisted of varying types of fill materials ranging in depth from 6-inches to 6 fbgs. Evidence of fill materials were observed at each of the test pit locations. A sandy lean clay (potentially native soil) was encountered underlying the fill material at most of the test pit locations.

Field observations, including lithology, depths, PID scan results, etc., at the test pit locations are summarized in the Summary of Subsurface Field Observations Table provided in Table 1.

Groundwater was encountered at some of the test pit locations during the Phase II activities at depths between 3 to 5 fbgs. Groundwater flow is assumed to be in a northern direction toward the old Erie canal which is adjacent to the Site to the north and consistent with the general topography for the area of the Site. However, local groundwater flow may be influenced by subsurface features such as excavations, utilities, and localized fill-conditions.

3.2 Field Observations

Soil/fill samples from the test pit investigation were observed and field screened for total volatile organics using a PID. No olfactory evidence of impacts were observed, nor were elevated PID readings identified at the test pit locations.

Visually, fill materials contained various amounts of ash, cinders, glass, metal, and brick were observed in test pits across the Site.

3.3 Analytical Results

3.3.1 Soil/Fill Analytical Results

Table 2 is summary of the four (4) soil/fill analytical samples submitted for base-neutral SVOCs and RCRA 8 metals analysis. For comparative purposes, Table 2 includes the Part 375 SCOs.

Part 375 SCOs are specific to the intended reuse of a site and are typically employed for comparison at other investigation or remediation sites with NYSDEC oversight, such as Brownfield sites. The Site is being proposed for redevelopment with ten (10) buildings, consisting of 45 residential units and 6,600 square feet of commercial/retail space in a mixed-income community. Based upon this anticipated future use of the Site in a multistory, multi-unit residential/commercial capacity, the RRSCOs are the considered applicable comparative criteria.

A copy of the laboratory analytical report is included in Appendix A.

Semi-Volatile Organic Compounds

SVOCs were detected above method detection limits (MDLs) in the four (4) samples analyzed for analysis. SVOCs, specifically polycyclic aromatic hydrocarbons (PAHs), were detected above their respective Part 375 RRSCOs, Commercial SCOs (CSCOs), and/or Industrial SCOs (ISCOs) at two (2) of the four (4) investigation locations, TP-5 and TP-8. These sample locations are shown in on Figure 2.

- Benzo(a)anthracene, benzo(b)fluoranthene and indeno(1,2,3-cd)pyrene exceeded their respective RRSCOs at TP-5, 3 to 4 ft and TP-8, 3 to 4 ft.
- Benzo(a)pyrene exceeded its ISCO at TP-5, 3 to 4 ft and TP-8, 3 to 4 ft.

Metal Analytes

Metal analytes were detected above MDLs in the four (4) samples analyzed for RCRA 8 list metals. Metal analytes were detected above their respective Part 375 RRSCOs and/or ISCOs at four (4) investigation locations, TP-1, TP-5, TP-8, and TP-9. These sample locations are shown on Figure 2.

• Arsenic exceeded its respective ISCO at three (3) locations: TP-5, 3 to 4 ft; TP-8, 3 to 4 ft; and TP-9, 2 to 3 ft.

• Mercury exceeded it RRSCO at two (2) locations: TP-1, 1 to 3 ft and TP-5, 3 to 4 ft.

3.3.2 Groundwater Results

Table 3 is summary of the three (3) groundwater analytical samples submitted for VOC analysis. For comparative purposes, Table 3 includes the Class GA Groundwater Quality Standards and Guidance Values (GWQS) per NYSDEC's Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1), June 1998, amended April 2000.

Two (2) VOCs (acetone and bromomethane) were detected above MDLs among the three (3) samples submitted for analysis, the concentrations were below their respective GWQS.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the previous investigations and our Phase II investigation, Benchmark offers the following conclusions and recommendations:

- The former building was constructed sometime prior to 1890 by the Canastota Casket Company and was later used by several furniture companies and an agricultural supply company before becoming vacant. The building partially collapsed in July 2011, leading to its full emergency demolition in August 2011. A debris pile from the demolition and the former building slab are still present.
- Sample results from the previous Limited Phase II identified SVOCs (SB-5, 4 to 6 ft) and metals (SB-1, 0 to 4 ft) at concentrations exceeding their respective RRSCOs and/or ISCOs.
- Fill materials consisting of black fines, ash, cinders, brick, glass, and metal were observed across that Site at depths of approximately 2 to 6 fbgs during the Phase II. Native soil and weathered bedrock were present underlying the fill materials.
- PAHs were detected in two (2) of the four (4) samples analyzed for base-neutral list SVOCs at concentrations exceeding their respective RRSCOs and/or ISCOs.
- Metals (arsenic and/or mercury) were detected in three (3) of the four (4) samples analyzed for RCRA 8 metals at concentrations exceeding respective RRSCOs and CSCOs.
- The presence of the contamination and fill materials identified during the Limited Phase II and subsequent Phase II will complicate the redevelopment of the Site, particularly if used for residential purposes.

We understand that the Site is proposed for redevelopment with ten (10) buildings, consisting of 45 residential units and 6,600 square feet of commercial/retail space. The proposed redevelopment would be considered a restricted-residential use. Based on the findings detailed above, the Site is a potential candidate for the New York Brownfield Cleanup Program (BCP) as exceedances of the RRSCOs, CSCOs, and ISCOs were identified.

The Site meets the definition of a BCP site per the current BCP law which states a "brownfield site or site shall mean any real property where a contaminant is present at levels exceeding the soil cleanup objectives or other health-based or environmental standards, criteria, or guidance adopted by the department that are applicable based on the reasonably anticipated use of the property, in accordance with applicable regulations."

5.0 LIMITATIONS

This report has been prepared for the exclusive use of Savarino Companies, LLC. The contents of this report are limited to information available at the time of the Phase II Environmental Investigation activities and to data referenced herein and assume all referenced historic information sources to be true and accurate. The findings herein may be relied upon only at the discretion of Savarino Companies, LLC. Use of or reliance on this report or its findings by any other person or entity is prohibited without written permission of Benchmark Environmental Engineering & Science, PLLC.

SUMMARY OF SUBSURFACE FIELD OBSERVATIONS PHASE II ENVIRONMENTAL INVESTIGATION REPORT 160 CENTER STREET CANNASTOTA, NEW YORK

Location	Fill Present	Water Present	Depth of Test Pit (fbgs)	Thickness of Fill (ft)	Length of Test Pits (ft)	Test Pit Width (ft)	PID Measurements	Sample Depth (ft)	Depth (fbgs) and Soil Description
							0		<u>0 - 1'- Subangular gravel and fine sand</u> - Grey, moist, mostly subangular gravel, some fine sand, loose when disturbed
TP-1	Yes	No	6	3	10	1.5	0	1 to 3 ft	<u>1' - 3'- Fill</u> - Black, moist, mostly fill (black fines, cinders, ash, glass, metal), some fine sand, loose when disturbed
							0		3' - 6'- Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
							0		0 - 0.5'- Subangular gravel and fine sand- Grey, moist, mostly subangular gravel, some fine sand, loose when disturbed
TP-2	Yes	No	6	0.5	15	1.5	0		<u>0.5' - 2'- Reworked Sandy Lean Clay</u> - Reddish brown/ tan, moist, mostly sandy lean clay, reworked, no odors
							0		2' - 6'- Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
							0		<u>0 - 3'- Fill</u> - Brown, moist, mostly fine sand, little fill (cinders, brick), some well sorted gravel, loose when disturbed
TP-3	Yes	Yes	7	5	15	1.5	0		3'- 5'- Ash Fill- Black/ white, moist to wet (5'), mostly ash, some cinders, brick, and glass, loose when disturbed
							0		<u>5' - 7' Sandy Lean Clay</u> - Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
							0		<u>0 - 2'- Fill</u> - Brown, moist, mostly fine sand, little fill (cinders, brick), some well sorted gravel, loose when disturbed
TP-4	Yes	Yes	6	4	15	1.5	0		<u>2'- 4'- Ash Fill-</u> Black/ white, moist to wet (4'), mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		4' - 6' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
							0		0 - 2'- Reworked Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay,reworked, no odors
TP-5	Yes	Yes	7	6	10	1.5	0	3 to 4 ft	2'- 6'- Ash Fill- Black/ white, moist to wet (5'), mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		6' - 7' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
TP-6	No	Yes	3	3	10	1.5	0		<u>0'- 3'- Ash Fill-</u> Black/ white, water rushing in at 3', mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		<u>0 - 1'- Reworked Sandy Lean Clay</u> - Reddish brown/ tan, moist, mostly sandy lean clay,reworked, no odors
TP-7	Yes	Yes	7	3	15	1.5	0		1'- 3'- Ash Fill- Black/ white, moist to wet (3'), mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		3' - 7' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors

SUMMARY OF SUBSURFACE FIELD OBSERVATIONS PHASE II ENVIRONMENTAL INVESTIGATION REPORT 160 CENTER STREET CANNASTOTA, NEW YORK

Location	Fill Present	Water Present	Depth of Test Pit (fbgs)	Thickness of Fill (ft)	Length of Test Pits (ft)	Test Pit Width (ft)	PID Measurements	Sample Depth (ft)	Depth (fbgs) and Soil Description
							0		0 - 1'- Reworked Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay,reworked, no odors
TP-8	Yes	Yes	6.5	4	20	1.5	0		1 - 2'- Fill- Black, moist, mostly fill (black fines, cinders, ash, glass, metal), some fine sand, loose when disturbed
117-0	165	165	0.5	4	20	1.5	0	3 to 4 ft	<u>2'- 4'- Ash Fill-</u> Black/ white, moist to wet (4'), mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		4' - 6.5' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
							0		<u>0 - 2'- Fill</u> - Black, moist, mostly fill (black fines, cinders, ash, glass, metal), some fine sand, loose when disturbed
TP-9	Yes	No	6	3.5	10	1.5	0		<u>2'- 3.5'- Ash Fill-</u> Black/ white, moist, mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		3.5' - 6.0' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
TP-10	Yes	Yes	7	1.5	10	1.5	0		<u>0'- 1.5'- Ash Fill-</u> Black/ white, moist , mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
17-10	165	165	,	1.5	10	1.0	0		1.5' - 7.0' Sandy Lean Clay- Reddish brown/ tan, moist to wet (5'), mostly sandy lean clay, very stiff, no odors
							0		<u>0 - 2'- Reworked Sandy Lean Clay</u> - Reddish brown/ tan, moist, mostly sandy lean clay,reworked, no odors
TP-11	Yes	Yes	6	3	10	1.5	0		2'- 3'- Ash Fill- Black/ white, moist to wet (3'), mostly ash, some cinders, black fines, brick, and glass, loose when disturbed
							0		3.0' - 6.0' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors
							0		0 - 8"- Crushed gravel
TP-12	Yes	Yes	5	2.5	10	1.5	0		8" - 2'- Reworked Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay,reworked, no odors
							0	-	2.0' - 5.0' Sandy Lean Clay- Reddish brown/ tan, moist, mostly sandy lean clay, very stiff, no odors

Definitions:

ft = feet

fbgs = feet below ground surface

SUMMARY OF SOIL ANALYTICAL RESULTS

160 CENTER STREET CANASTOTA, NEW YORK

					SAMPLE LOCATION & DEPTH			
PARAMETER ¹	Unrestricted Use SCOs ²	Restricted Residential Use SCOs ²	Commercial Use SCOs ²	Industrial Use SCOs ²	TP-1 1 to 3 ft	TP-5 3 to 4 ft	TP-8 3 to 4 ft	TP-9 2 to 3 ft
Sample Date						03/24	/2021	
Semi-Volatile Organic Compounds (SVOCs) - m	g/kg ³							
Acenaphthene	20	100	500	1000	ND	0.15 J	0.12 J	0.028 J
Fluoranthene	100	100	500	1000	0.24	2.7	2.5	0.28
Naphthalene	12	100	500	1000	0.038 J	0.19 J	0.93	0.061 J
Benzo(a)anthracene	1	1	5.6	11	0.16	1.6	1.3	0.19
Benzo(a)pyrene	1	1	1	1.1	0.13 J	1.3	1.1	0.14 J
Benzo(b)fluoranthene	1	1	5.6	11	0.19	1.7	1.6	0.2
Benzo(k)fluoranthene	0.8	3.9	56	110	0.054 J	0.57	0.56	0.07 J
Chrysene	1	3.9	56	110	0.16	1.4	1.4	0.23
Acenaphthylene	100	100	500	1000	ND	0.24	0.31	0.038 J
Anthracene	100	100	500	1000	ND	0.59	0.38	0.076 J
Benzo(ghi)perylene	100	100	500	1000	0.088 J	0.95	0.65	0.099 J
Fluorene	30	100	500	1000	ND	0.17 J	0.14 J	0.038 J
Phenanthrene	100	100	500	1000	0.17	2.1	1.8	0.34
Dibenzo(a,h)anthracene	0.33	0.33	0.56	1.1	ND	0.22	0.19	0.031 J
Indeno(1,2,3-cd)pyrene	0.5	0.5	5.6	11	0.092 J	1	0.76	0.083 J
Pyrene	100	100	500	1000	0.21	2.5	2.2	0.26
Biphenyl		-	-		ND	ND	0.13 J	ND
2-Methylnaphthalene		-	-		0.044 J	0.18 J	1.1	ND
Dibenzofuran	7	59	350	1000	ND	0.13 J	0.33	0.033 J
Acetonphenone					ND	ND	0.17 J	0.08 J
Carbazole					ND	0.2 J	0.19 J	0.032 J
Metals - mg/Kg								
Arsenic	13	16	16	16	7.47	28.6	20.7	52.6
Barium	350	400	400	10000	349	241	168	31.4
Cadmium	2.5	4.3	9.3	60	0.587	0.452 J	0.703	0.436 J
Chromium	31	180	1500	6800	7.15	6.65	7.94	2.54
Lead	64	400	1000	3900	93.6	63.8	127	5.3
Mercury	0.18	0.81	2.8	5.7	1.64	0.887	0.553	0.096
Selenium	3.9	180	1500	6800	0.405 J	1.03 J	1.32	1.12

- Notes:
 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
 2. Values per 6NYCRR Part 375 Soil Cleanup Objectives (SCOs).
 3. Sample results were reported by the laboratory in ug/kg and converted to mg/kg for comparisons to SCOs.

Definitions:

- ND = Parameter not detected above laboratory detection limit.

 "--" = No value available for the parameter. Or parameter not analyzed for.

 J = Estimated value; result is less than the sample quantitation limit but greater than zero.

Bold	: Results Exceed Unrestricted Use Soil Cleanup Objectives
Bold	: Results Exceed Restricted Residential Use Soil Cleanup Objectives
Bold	: Results Exceed Commercial Use Soil Cleanup Objectives
Bold	: Results Exceed Industrial Use Soil Cleanup Objectives

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS PHASE II ENVIRONMENTAL INVESTIGATION 160 CENTER STREET CANASTOTA, NY

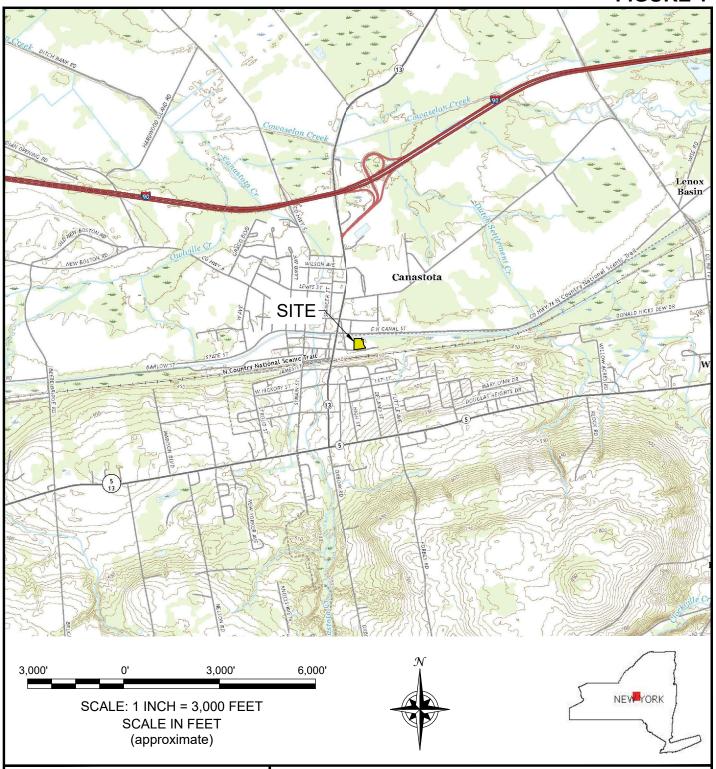
		Sample Location				
PARAMETER ¹	GWQS ²	TP-3W	TP-5W	TP-10W		
		03/24/21				
Volatile Organic Compounds (VOCs)	- ug/L					
Acetone	50	3.9 J	2.8 J	3.2 J		
Bromomethane	5	0.7 J	ND	ND		

Notes:

- 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-
- 2. Values per NYSDEC Division of Water Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Class

Definitions:

ND = Parameter not detected above laboratory detection limit.


J = Estimated Value - Below calibration range.

BOLD = Result exceeds GWQS.

FIGURES

FIGURE 1

2558 HAMBURG TURNPIKE SUITE 300 BUFFALO, NY 14218 (716) 856-0599

PROJECT NO.: B0258-021-001

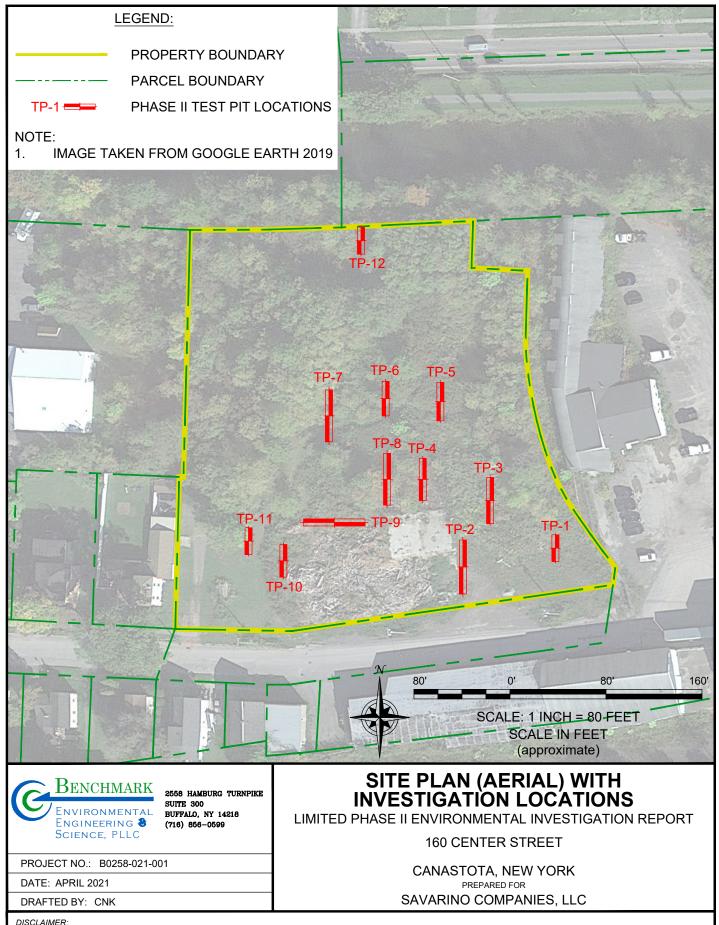
DATE: APRIL 2021

DRAFTED BY: CNK

SITE LOCATION AND VICINITY MAP

LIMITED PHASE II ENVIRONMENTAL INVESTIGATION REPORT 160 CENTER STREET

CANASTOTA, NEW YORK
PREPARED FOR


SAVARINO COMPANIES, LLC

DISCLAIMER:

DISCLAIMENT.

PROPERTY OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC. IMPORTANT: THIS DRAWING PRINT IS LOANED FOR MUTUAL ASSISTANCE AND AS SUCH IS SUBJECT TO RECALL AT ANY TIME. INFORMATION CONTAINED HEREON IS NOT TO BE DISCLOSED OR REPRODUCED IN ANY FORM FOR THE BENEFIT OF PARTIES OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

FIGURE 2

DECOMBENIANCE OF SERVICE OF SERVI OTHER THAN NECESSARY SUBCONTRACTORS & SUPPLIERS WITHOUT THE WRITTEN CONSENT OF BENCHMARK ENVIRONMENTAL ENGINEERING & SCIENCE, PLLC.

APPENDIX A

LABORATORY ANALYTICAL DATA SUMMARY PACKAGE

ANALYTICAL REPORT

Lab Number: L2115023

Client: Benchmark & Turnkey Companies

2558 Hamburg Turnpike

Suite 300

Buffalo, NY 14218

ATTN: Chris Boron
Phone: (716) 856-0599

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Report Date: 04/05/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

 Lab Number:
 L2115023

 Report Date:
 04/05/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2115023-01	TP-1 1-3 FT	SOIL	CANASTOTA, NY	03/24/21 09:30	03/25/21
L2115023-02	TP-5 3-4 FT	SOIL	CANASTOTA, NY	03/24/21 11:00	03/25/21
L2115023-03	TP-8 3-4 FT	SOIL	CANASTOTA, NY	03/24/21 12:45	03/25/21
L2115023-04	TP-9 2-3 FT	SOIL	CANASTOTA, NY	03/24/21 13:00	03/25/21
L2115023-05	TP-3W	WATER	CANASTOTA, NY	03/24/21 11:30	03/25/21
L2115023-06	TP-5W	WATER	CANASTOTA, NY	03/24/21 11:45	03/25/21
L2115023-07	TP-10W	WATER	CANASTOTA, NY	03/24/21 14:00	03/25/21
L2115023-08	TP-8 2-3 FT	SOIL	CANASTOTA, NY	03/24/21 12:00	03/25/21
L2115023-09	TP-3 3-5 FT	SOIL	CANASTOTA, NY	03/24/21 10:30	03/25/21
L2115023-10	TP-7 1-3 FT	SOIL	CANASTOTA, NY	03/24/21 11:45	03/25/21
L2115023-11	TP-11 2-3 FT	SOIL	CANASTOTA, NY	03/24/21 15:15	03/25/21
L2115023-12	TP-10 0-1.5 FT	SOIL	CANASTOTA, NY	03/24/21 15:30	03/25/21
L2115023-13	TP-4 2-4 FT	SOIL	CANASTOTA, NY	03/24/21 10:40	03/25/21
L2115023-14	TP-12 2-2.5 FT	SOIL	CANASTOTA, NY	03/24/21 15:00	03/25/21

L2115023

Lab Number:

Project Name: 160 CENTER STREET

Project Number: B0258-021-001 **Report Date:** 04/05/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2115023

Lab Number:

Project Name: 160 CENTER STREET

Project Number: B0258-021-001 **Report Date:** 04/05/21

Case Narrative (continued)

Report Submission

April 05, 2021: This final report includes the results of all requested analyses.

April 02, 2021: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 04/05/21

600, Shawow Kelly Stenstrom

ORGANICS

VOLATILES

L2115023

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Report Date: 04/05/21

Lab Number:

Lab ID: Date Collected: 03/24/21 11:30 L2115023-05

Client ID: Date Received: 03/25/21 TP-3W

Field Prep: Sample Location: CANASTOTA, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/30/21 10:46

Analyst: PD

Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND					
			ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	0.70	J	ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2115023

Dilution Factor

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Qualifier

Units

Result

Date Collected: 03/24/21 11:30

Report Date: 04/05/21

Lab Number:

RL

Lab ID: L2115023-05

Client ID: TP-3W

Sample Location: CANASTOTA, NY

Date Received: 03/25/21 Field Prep: Not Specified

MDL

Sample Depth:

Parameter

i alaliletei	resuit	Qualifici	Office			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	3.9	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	105	70-130	

03/24/21 11:45

Not Specified

03/25/21

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Lab Number: L2115023

Report Date: 04/05/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2115023-06

Client ID: TP-5W

Sample Location: CANASTOTA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/30/21 11:11

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbook	ough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

L2115023

Dilution Factor

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Qualifier

Units

Result

Date Collected: 03/24/21 11:45

Report Date: 04/05/21

Lab Number:

RL

Lab ID: L2115023-06

Client ID: TP-5W

Sample Location: CANASTOTA, NY

Date Received: 03/25/21 Field Prep: Not Specified

MDL

Sample Depth:

Parameter

i didilicici	Nosuit	Qualifici	Onito			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	2.8	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	103	70-130	
4-Bromofluorobenzene	107	70-130	
Dibromofluoromethane	106	70-130	

03/24/21 14:00

Not Specified

03/25/21

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Lab Number: L2115023

Report Date: 04/05/21

Date Collected:

Date Received:

Field Prep:

Lab ID: L2115023-07

Client ID: TP-10W

Sample Location: CANASTOTA, NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 03/30/21 11:36

Analyst: PD

Volatile Organics by GC/MS - Westborough Methylene chloride	n Lab ND				
Methylene chloride	ND				
		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND	ug/l	2.5	0.70	1
Chloroform	ND	ug/l	2.5	0.70	1
Carbon tetrachloride	ND	ug/l	0.50	0.13	1
1,2-Dichloropropane	ND	ug/l	1.0	0.14	1
Dibromochloromethane	ND	ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	1
Tetrachloroethene	ND	ug/l	0.50	0.18	1
Chlorobenzene	ND	ug/l	2.5	0.70	1
Trichlorofluoromethane	ND	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND	ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	1
Bromodichloromethane	ND	ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	1
Bromoform	ND	ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	1
Benzene	ND	ug/l	0.50	0.16	1
Toluene	ND	ug/l	2.5	0.70	1
Ethylbenzene	ND	ug/l	2.5	0.70	1
Chloromethane	ND	ug/l	2.5	0.70	1
Bromomethane	ND	ug/l	2.5	0.70	1
Vinyl chloride	ND	ug/l	1.0	0.07	1
Chloroethane	ND	ug/l	2.5	0.70	1
1,1-Dichloroethene	ND	ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1

L2115023

03/25/21

Not Specified

Dilution Factor

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Date Collected: 03/24/21 14:00

MDL

Report Date: 04/05/21

Lab Number:

Date Received:

RL

Lab ID: L2115023-07

Client ID: TP-10W Sample Location: CANAST

CANASTOTA, NY Field Prep:

Qualifier

Units

Result

Sample Depth:

Parameter

i alaliletei	Nosuit	Qualifici	Onito			Dilation Lactor	
Volatile Organics by GC/MS - Westbo	orough Lab						
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1	
p/m-Xylene	ND		ug/l	2.5	0.70	1	
o-Xylene	ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Styrene	ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1	
Acetone	3.2	J	ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	1.0	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1	
2-Hexanone	ND		ug/l	5.0	1.0	1	
Bromochloromethane	ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
Methyl Acetate	ND		ug/l	2.0	0.23	1	
Cyclohexane	ND		ug/l	10	0.27	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
Freon-113	ND		ug/l	2.5	0.70	1	
Methyl cyclohexane	ND		ug/l	10	0.40	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	103		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	102		70-130	

L2115023

Lab Number:

Project Name: 160 CENTER STREET

Project Number: B0258-021-001 **Report Date:** 04/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/30/21 09:04

Analyst: PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	05-07 Batch:	WG1480801-5
Methylene chloride	ND	ug/	2.5	0.70
1,1-Dichloroethane	ND	ug/	2.5	0.70
Chloroform	ND	ug/	2.5	0.70
Carbon tetrachloride	ND	ug/	0.50	0.13
1,2-Dichloropropane	ND	ug/	1.0	0.14
Dibromochloromethane	ND	ug/	0.50	0.15
1,1,2-Trichloroethane	ND	ug/	1.5	0.50
Tetrachloroethene	ND	ug/	0.50	0.18
Chlorobenzene	ND	ug/	2.5	0.70
Trichlorofluoromethane	ND	ug/	2.5	0.70
1,2-Dichloroethane	ND	ug/	0.50	0.13
1,1,1-Trichloroethane	ND	ug/	1 2.5	0.70
Bromodichloromethane	ND	ug/	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/	0.50	0.14
Bromoform	ND	ug/	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/	0.50	0.17
Benzene	ND	ug/	0.50	0.16
Toluene	ND	ug/	2.5	0.70
Ethylbenzene	ND	ug/	2.5	0.70
Chloromethane	ND	ug/	2.5	0.70
Bromomethane	0.73	J ug/	2.5	0.70
Vinyl chloride	ND	ug/	1.0	0.07
Chloroethane	ND	ug/	2.5	0.70
1,1-Dichloroethene	ND	ug/	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/	2.5	0.70
Trichloroethene	ND	ug/	0.50	0.18
1,2-Dichlorobenzene	ND	ug/	2.5	0.70
1,3-Dichlorobenzene	ND	ug/	1 2.5	0.70

L2115023

Project Name: 160 CENTER STREET Lab Number:

Project Number: B0258-021-001 **Report Date:** 04/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/30/21 09:04

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sampl	e(s): 05-07	Batch:	WG1480801-5
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70
Methyl tert butyl ether	ND		ug/l	2.5	0.70
p/m-Xylene	ND		ug/l	2.5	0.70
o-Xylene	ND		ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Styrene	ND		ug/l	2.5	0.70
Dichlorodifluoromethane	ND		ug/l	5.0	1.0
Acetone	2.3	J	ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	1.0
2-Butanone	ND		ug/l	5.0	1.9
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0
2-Hexanone	ND		ug/l	5.0	1.0
Bromochloromethane	ND		ug/l	2.5	0.70
1,2-Dibromoethane	ND		ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70
Isopropylbenzene	ND		ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70
Methyl Acetate	ND		ug/l	2.0	0.23
Cyclohexane	ND		ug/l	10	0.27
1,4-Dioxane	ND		ug/l	250	61.
Freon-113	ND		ug/l	2.5	0.70
Methyl cyclohexane	ND		ug/l	10	0.40

L2115023

Lab Number:

Project Name: 160 CENTER STREET

Project Number: Report Date: 04/05/21 B0258-021-001

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 1,8260C

Analytical Date: 03/30/21 09:04

Analyst: PD

> Result Qualifier Units RL MDL **Parameter**

Volatile Organics by GC/MS - Westborough Lab for sample(s): 05-07 Batch: WG1480801-5

	Acceptance					
Surrogate	%Recovery Q	ualifier Criteria				
1,2-Dichloroethane-d4	107	70-130				
Toluene-d8	100	70-130				
4-Bromofluorobenzene	106	70-130				
Dibromofluoromethane	110	70-130				

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s):	05-07 Batch:	WG1480801-3	WG1480801-4		
Methylene chloride	100		100		70-130	0	20
1,1-Dichloroethane	110		110		70-130	0	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	100		100		63-132	0	20
1,2-Dichloropropane	100		110		70-130	10	20
Dibromochloromethane	100		110		63-130	10	20
1,1,2-Trichloroethane	100		110		70-130	10	20
Tetrachloroethene	110		110		70-130	0	20
Chlorobenzene	100		110		75-130	10	20
Trichlorofluoromethane	110		110		62-150	0	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Bromodichloromethane	97		100		67-130	3	20
trans-1,3-Dichloropropene	100		110		70-130	10	20
cis-1,3-Dichloropropene	100		110		70-130	10	20
Bromoform	92		89		54-136	3	20
1,1,2,2-Tetrachloroethane	100		96		67-130	4	20
Benzene	100		100		70-130	0	20
Toluene	100		100		70-130	0	20
Ethylbenzene	100		110		70-130	10	20
Chloromethane	91		91		64-130	0	20
Bromomethane	68		71		39-139	4	20
Vinyl chloride	110		110		55-140	0	20

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

arameter		LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - '	Westborough La	ab Associated	sample(s):	05-07 Batch:	WG1480801-3	WG1480801-4				
Chloroethane		140	Q	150	Q	55-138	7		20	
1,1-Dichloroethene		100		100		61-145	0		20	
trans-1,2-Dichloroethene		100		100		70-130	0		20	
Trichloroethene		100		100		70-130	0		20	
1,2-Dichlorobenzene		110		110		70-130	0		20	
1,3-Dichlorobenzene		110		110		70-130	0		20	
1,4-Dichlorobenzene		110		110		70-130	0		20	
Methyl tert butyl ether		100		110		63-130	10		20	
p/m-Xylene		110		120		70-130	9		20	
o-Xylene		110		120		70-130	9		20	
cis-1,2-Dichloroethene		100		100		70-130	0		20	
Styrene		105		115		70-130	9		20	
Dichlorodifluoromethane		92		93		36-147	1		20	
Acetone		130		90		58-148	36	Q	20	
Carbon disulfide		110		110		51-130	0		20	
2-Butanone		120		100		63-138	18		20	
4-Methyl-2-pentanone		94		91		59-130	3		20	
2-Hexanone		90		91		57-130	1		20	
Bromochloromethane		110		100		70-130	10		20	
1,2-Dibromoethane		100		110		70-130	10		20	
1,2-Dibromo-3-chloropropane		93		90		41-144	3		20	
Isopropylbenzene		100		110		70-130	10		20	
1,2,3-Trichlorobenzene		98		99		70-130	1		20	

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number:

L2115023

Report Date:

04/05/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	-		05-07 Batch:	WG1480801-4	2			
1,2,4-Trichlorobenzene	100		99	70-130	1		20	
Methyl Acetate	120		120	70-130	0		20	
Cyclohexane	100		100	70-130	0		20	
1,4-Dioxane	116		124	56-162	7		20	
Freon-113	100		100	70-130	0		20	
Methyl cyclohexane	96		93	70-130	3		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	96	99	70-130
Toluene-d8	102	101	70-130
4-Bromofluorobenzene	98	100	70-130
Dibromofluoromethane	101	102	70-130

SEMIVOLATILES

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Report Date:

04/05/21

L2115023

Lab ID: L2115023-01 Client ID: TP-1 1-3 FT

Sample Location: CANASTOTA, NY

Sample Depth:

Matrix: Soil 1,8270D Analytical Method: Analytical Date: 04/04/21 18:20

Analyst: IM 78% Percent Solids:

Date Collected:

03/24/21 09:30

Date Received:

03/25/21

Field Prep:

Lab Number:

Not Specified

Extraction Method: EPA 3546

Extraction Date: 04/02/21 14:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Acenaphthene	ND		ug/kg	170	22.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	210	24.	1	
Hexachlorobenzene	ND		ug/kg	130	24.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	190	29.	1	
2-Chloronaphthalene	ND		ug/kg	210	21.	1	
1,2-Dichlorobenzene	ND		ug/kg	210	38.	1	
1,3-Dichlorobenzene	ND		ug/kg	210	36.	1	
1,4-Dichlorobenzene	ND		ug/kg	210	37.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	210	56.	1	
2,4-Dinitrotoluene	ND		ug/kg	210	42.	1	
2,6-Dinitrotoluene	ND		ug/kg	210	36.	1	
Fluoranthene	240		ug/kg	130	24.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	210	23.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	210	32.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	250	36.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	230	21.	1	
Hexachlorobutadiene	ND		ug/kg	210	31.	1	
Hexachlorocyclopentadiene	ND		ug/kg	610	190	1	
Hexachloroethane	ND		ug/kg	170	34.	1	
Isophorone	ND		ug/kg	190	28.	1	
Naphthalene	38	J	ug/kg	210	26.	1	
Nitrobenzene	ND		ug/kg	190	31.	1	
NDPA/DPA	ND		ug/kg	170	24.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	210	33.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	210	73.	1	
Butyl benzyl phthalate	ND		ug/kg	210	53.	1	
Di-n-butylphthalate	ND		ug/kg	210	40.	1	
Di-n-octylphthalate	ND		ug/kg	210	72.	1	

L2115023

04/05/21

Dilution Factor

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Date Collected:

MDL

Lab Number:

Report Date:

RL

Lab ID: L2115023-01 03/24/21 09:30 Date Received: TP-1 1-3 FT 03/25/21

Qualifier

Units

Client ID: Sample Location: Field Prep: CANASTOTA, NY Not Specified

Result

Sample Depth:

Parameter

1 didiliotoi							
Semivolatile Organics by GC/MS	- Westborough Lab						
Diethyl phthalate	ND		ug/kg	210	20.	1	
Dimethyl phthalate	ND		ug/kg	210	44.	1	
Benzo(a)anthracene	160		ug/kg	130	24.	1	
Benzo(a)pyrene	130	J	ug/kg	170	52.	1	
Benzo(b)fluoranthene	190		ug/kg	130	36.	1	
Benzo(k)fluoranthene	54	J	ug/kg	130	34.	1	
Chrysene	160		ug/kg	130	22.	1	
Acenaphthylene	ND		ug/kg	170	33.	1	
Anthracene	ND		ug/kg	130	41.	1	
Benzo(ghi)perylene	88	J	ug/kg	170	25.	1	
Fluorene	ND		ug/kg	210	21.	1	
Phenanthrene	170		ug/kg	130	26.	1	
Dibenzo(a,h)anthracene	ND		ug/kg	130	24.	1	
Indeno(1,2,3-cd)pyrene	92	J	ug/kg	170	30.	1	
Pyrene	210		ug/kg	130	21.	1	
Biphenyl	ND		ug/kg	480	49.	1	
4-Chloroaniline	ND		ug/kg	210	38.	1	
2-Nitroaniline	ND		ug/kg	210	41.	1	
3-Nitroaniline	ND		ug/kg	210	40.	1	
4-Nitroaniline	ND		ug/kg	210	88.	1	
Dibenzofuran	ND		ug/kg	210	20.	1	
2-Methylnaphthalene	44	J	ug/kg	250	26.	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	210	22.	1	
Acetophenone	ND		ug/kg	210	26.	1	
Benzyl Alcohol	ND		ug/kg	210	65.	1	
Carbazole	ND		ug/kg	210	21.	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	25-120
Phenol-d6	67	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	71	30-120
2,4,6-Tribromophenol	67	10-136
4-Terphenyl-d14	54	18-120

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Report Date: 04/05/21

Lab ID: L2115023-02 Client ID: TP-5 3-4 FT Sample Location: CANASTOTA, NY

Date Received: 03/25/21

Field Prep:

Date Collected:

Lab Number:

Not Specified

03/24/21 11:00

L2115023

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 04/04/21 18:44

Analyst: IM 62% Percent Solids:

Extraction Method: EPA 3546

Extraction Date: 04/02/21 14:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Acenaphthene	150	J	ug/kg	210	27.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	260	30.	1	
Hexachlorobenzene	ND		ug/kg	160	30.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	240	36.	1	
2-Chloronaphthalene	ND		ug/kg	260	26.	1	
1,2-Dichlorobenzene	ND		ug/kg	260	48.	1	
1,3-Dichlorobenzene	ND		ug/kg	260	46.	1	
1,4-Dichlorobenzene	ND		ug/kg	260	46.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	260	70.	1	
2,4-Dinitrotoluene	ND		ug/kg	260	53.	1	
2,6-Dinitrotoluene	ND		ug/kg	260	45.	1	
Fluoranthene	2700		ug/kg	160	30.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	260	28.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	260	40.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	320	45.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	280	26.	1	
Hexachlorobutadiene	ND		ug/kg	260	39.	1	
Hexachlorocyclopentadiene	ND		ug/kg	760	240	1	
Hexachloroethane	ND		ug/kg	210	43.	1	
Isophorone	ND		ug/kg	240	34.	1	
Naphthalene	190	J	ug/kg	260	32.	1	
Nitrobenzene	ND		ug/kg	240	39.	1	
NDPA/DPA	ND		ug/kg	210	30.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	260	41.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	260	92.	1	
Butyl benzyl phthalate	ND		ug/kg	260	67.	1	
Di-n-butylphthalate	ND		ug/kg	260	50.	1	
Di-n-octylphthalate	ND		ug/kg	260	90.	1	

L2115023

04/05/21

Project Name: 160 CENTER STREET

L2115023-02

Project Number: Report Date: B0258-021-001

SAMPLE RESULTS

Date Collected: 03/24/21 11:00

Date Received: 03/25/21

Lab Number:

Client ID: TP-5 3-4 FT Sample Location: Field Prep: CANASTOTA, NY Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Diethyl phthalate	ND		ug/kg	260	24.	1
Dimethyl phthalate	ND		ug/kg	260	56.	1
Benzo(a)anthracene	1600		ug/kg	160	30.	1
Benzo(a)pyrene	1300		ug/kg	210	64.	1
Benzo(b)fluoranthene	1700		ug/kg	160	44.	1
Benzo(k)fluoranthene	570		ug/kg	160	42.	1
Chrysene	1400		ug/kg	160	28.	1
Acenaphthylene	240		ug/kg	210	41.	1
Anthracene	590		ug/kg	160	52.	1
Benzo(ghi)perylene	950		ug/kg	210	31.	1
Fluorene	170	J	ug/kg	260	26.	1
Phenanthrene	2100		ug/kg	160	32.	1
Dibenzo(a,h)anthracene	220		ug/kg	160	31.	1
Indeno(1,2,3-cd)pyrene	1000		ug/kg	210	37.	1
Pyrene	2500		ug/kg	160	26.	1
Biphenyl	ND		ug/kg	600	61.	1
4-Chloroaniline	ND		ug/kg	260	48.	1
2-Nitroaniline	ND		ug/kg	260	51.	1
3-Nitroaniline	ND		ug/kg	260	50.	1
4-Nitroaniline	ND		ug/kg	260	110	1
Dibenzofuran	130	J	ug/kg	260	25.	1
2-Methylnaphthalene	180	J	ug/kg	320	32.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	260	28.	1
Acetophenone	ND		ug/kg	260	33.	1
Benzyl Alcohol	ND		ug/kg	260	81.	1
Carbazole	200	J	ug/kg	260	26.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	80	25-120
Phenol-d6	81	10-120
Nitrobenzene-d5	90	23-120
2-Fluorobiphenyl	84	30-120
2,4,6-Tribromophenol	92	10-136
4-Terphenyl-d14	57	18-120

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Report Date: 04/05/21

Lab ID: L2115023-03

Client ID: TP-8 3-4 FT Sample Location: CANASTOTA, NY Date Collected: 03/24/21 12:45 Date Received: 03/25/21

Field Prep:

Lab Number:

Not Specified

L2115023

Sample Depth:

Matrix: Soil 1,8270D Analytical Method: Analytical Date: 04/04/21 19:07

Analyst: IM 75% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 04/02/21 14:10

Acenaphthene 120	
1,2,4-Trichlorobenzene ND ug/kg 220 25. 1 Hexachlorobenzene ND ug/kg 130 24. 1 Bis(2-chloroethyl)ether ND ug/kg 200 30. 1 2-Chloronaphthalene ND ug/kg 220 22. 1 1,2-Dichlorobenzene ND ug/kg 220 39. 1 1,3-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzidine ND ug/kg 220 38. 1 2,4-Dinitrotoluene ND ug/kg 220 58. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 33. 1 4-Bromophenyl phenyl ether ND ug/kg 220<	
1,2,4-Trichlorobenzene ND ug/kg 220 25. 1 Hexachlorobenzene ND ug/kg 130 24. 1 Bis(2-chloroethyl)ether ND ug/kg 200 30. 1 2-Chloronaphthalene ND ug/kg 220 22. 1 1,2-Dichlorobenzene ND ug/kg 220 39. 1 1,3-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 2,4-Dinitrotoluene ND ug/kg 220 38. 1 2,4-Dinitrotoluene ND ug/kg 220 38. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 4-Chlorophenyl phenyl ether ND ug/kg 220	
Bis(2-chloroethyl)ether	
2-Chloronaphthalene ND ug/kg 220 22. 1 1,2-Dichlorobenzene ND ug/kg 220 39. 1 1,3-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 3,3'-Dichlorobenzidine ND ug/kg 220 58. 1 2,4-Dinitrotoluene ND ug/kg 220 44. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 220 38. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 38. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 33. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg	
1,2-Dichlorobenzene ND ug/kg 220 39. 1 1,3-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 3,3'-Dichlorobenzidine ND ug/kg 220 58. 1 2,4-Dinitrotoluene ND ug/kg 220 44. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 220 38. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 38. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 38. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg </td <td></td>	
1,3-Dichlorobenzene ND ug/kg 220 38. 1 1,4-Dichlorobenzene ND ug/kg 220 38. 1 3,3'-Dichlorobenzidine ND ug/kg 220 58. 1 2,4-Dinitrotoluene ND ug/kg 220 44. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 130 25. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 20 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg <t< td=""><td></td></t<>	
1,4-Dichlorobenzene ND ug/kg 220 38. 1 3,3'-Dichlorobenzidine ND ug/kg 220 58. 1 2,4-Dinitrotoluene ND ug/kg 220 44. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 130 25. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
3,3'-Dichlorobenzidine ND ug/kg 220 58. 1 2,4-Dinitrotoluene ND ug/kg 220 44. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 130 25. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 20 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
2,4-Dinitrotoluene ND ug/kg 220 44. 1 2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 130 25. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
2,6-Dinitrotoluene ND ug/kg 220 38. 1 Fluoranthene 2500 ug/kg 130 25. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Fluoranthene 2500 ug/kg 130 25. 1 4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
4-Chlorophenyl phenyl ether ND ug/kg 220 23. 1 4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachlorocyclopentadiene ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
4-Bromophenyl phenyl ether ND ug/kg 220 33. 1 Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Bis(2-chloroisopropyl)ether ND ug/kg 260 37. 1 Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Bis(2-chloroethoxy)methane ND ug/kg 240 22. 1 Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Hexachlorobutadiene ND ug/kg 220 32. 1 Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Hexachlorocyclopentadiene ND ug/kg 630 200 1 Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Hexachloroethane ND ug/kg 180 36. 1 Isophorone ND ug/kg 200 28. 1	
Isophorone ND ug/kg 200 28. 1	
Nanhthalene 930 ug/kg 220 27 1	
taphiliation ug/kg 225 27.	
Nitrobenzene ND ug/kg 200 32. 1	
NDPA/DPA ND ug/kg 180 25. 1	
n-Nitrosodi-n-propylamine ND ug/kg 220 34. 1	
Bis(2-ethylhexyl)phthalate ND ug/kg 220 76. 1	
Butyl benzyl phthalate ND ug/kg 220 55. 1	
Di-n-butylphthalate ND ug/kg 220 42. 1	
Di-n-octylphthalate ND ug/kg 220 75. 1	

L2115023

04/05/21

Project Name: 160 CENTER STREET

L2115023-03

TP-8 3-4 FT

CANASTOTA, NY

Project Number: B0258-021-001

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 03/24/21 12:45

Date Received: 03/25/21 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Diethyl phthalate	ND		ug/kg	220	20.	1
Dimethyl phthalate	ND		ug/kg	220	46.	1
Benzo(a)anthracene	1300		ug/kg	130	25.	1
Benzo(a)pyrene	1100		ug/kg	180	54.	1
Benzo(b)fluoranthene	1600		ug/kg	130	37.	1
Benzo(k)fluoranthene	560		ug/kg	130	35.	1
Chrysene	1400		ug/kg	130	23.	1
Acenaphthylene	310		ug/kg	180	34.	1
Anthracene	380		ug/kg	130	43.	1
Benzo(ghi)perylene	650		ug/kg	180	26.	1
Fluorene	140	J	ug/kg	220	21.	1
Phenanthrene	1800		ug/kg	130	27.	1
Dibenzo(a,h)anthracene	190		ug/kg	130	25.	1
Indeno(1,2,3-cd)pyrene	760		ug/kg	180	30.	1
Pyrene	2200		ug/kg	130	22.	1
Biphenyl	130	J	ug/kg	500	51.	1
4-Chloroaniline	ND		ug/kg	220	40.	1
2-Nitroaniline	ND		ug/kg	220	42.	1
3-Nitroaniline	ND		ug/kg	220	41.	1
4-Nitroaniline	ND		ug/kg	220	91.	1
Dibenzofuran	330		ug/kg	220	21.	1
2-Methylnaphthalene	1100		ug/kg	260	26.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	220	23.	1
Acetophenone	170	J	ug/kg	220	27.	1
Benzyl Alcohol	ND		ug/kg	220	67.	1
Carbazole	190	J	ug/kg	220	21.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	62	25-120	
Phenol-d6	61	10-120	
Nitrobenzene-d5	90	23-120	
2-Fluorobiphenyl	84	30-120	
2,4,6-Tribromophenol	80	10-136	
4-Terphenyl-d14	58	18-120	

L2115023

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Lab Number:

Report Date: 04/05/21

L2115023-04

Lab ID: Client ID: TP-9 2-3 FT Sample Location: CANASTOTA, NY Date Collected: 03/24/21 13:00

Date Received: 03/25/21 Field Prep: Not Specified

Sample Depth:

Matrix: Soil Analytical Method: 1,8270D Analytical Date: 04/04/21 19:31

Analyst: IM 74% Percent Solids:

Extraction Method: EPA 3546 **Extraction Date:** 04/02/21 14:10

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	tborough Lab						
Acenaphthene	28	J	ug/kg	180	23.	1	
1,2,4-Trichlorobenzene	ND		ug/kg	220	25.	1	
Hexachlorobenzene	ND		ug/kg	130	25.	1	
Bis(2-chloroethyl)ether	ND		ug/kg	200	30.	1	
2-Chloronaphthalene	ND		ug/kg	220	22.	1	
1,2-Dichlorobenzene	ND		ug/kg	220	40.	1	
1,3-Dichlorobenzene	ND		ug/kg	220	38.	1	
1,4-Dichlorobenzene	ND		ug/kg	220	38.	1	
3,3'-Dichlorobenzidine	ND		ug/kg	220	59.	1	
2,4-Dinitrotoluene	ND		ug/kg	220	44.	1	
2,6-Dinitrotoluene	ND		ug/kg	220	38.	1	
Fluoranthene	280		ug/kg	130	25.	1	
4-Chlorophenyl phenyl ether	ND		ug/kg	220	24.	1	
4-Bromophenyl phenyl ether	ND		ug/kg	220	34.	1	
Bis(2-chloroisopropyl)ether	ND		ug/kg	260	38.	1	
Bis(2-chloroethoxy)methane	ND		ug/kg	240	22.	1	
Hexachlorobutadiene	ND		ug/kg	220	32.	1	
Hexachlorocyclopentadiene	ND		ug/kg	630	200	1	
Hexachloroethane	ND		ug/kg	180	36.	1	
Isophorone	ND		ug/kg	200	29.	1	
Naphthalene	61	J	ug/kg	220	27.	1	
Nitrobenzene	ND		ug/kg	200	33.	1	
NDPA/DPA	ND		ug/kg	180	25.	1	
n-Nitrosodi-n-propylamine	ND		ug/kg	220	34.	1	
Bis(2-ethylhexyl)phthalate	ND		ug/kg	220	76.	1	
Butyl benzyl phthalate	ND		ug/kg	220	56.	1	
Di-n-butylphthalate	ND		ug/kg	220	42.	1	
Di-n-octylphthalate	ND		ug/kg	220	75.	1	

L2115023

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

SAMPLE RESULTS

Report Date: 04/05/21

Lab ID: L2115023-04

Client ID: TP-9 2-3 FT Sample Location: CANASTOTA, NY Date Collected: 03/24/21 13:00

Lab Number:

Date Received: 03/25/21 Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - V	Vestborough Lab					
Diethyl phthalate	ND		ug/kg	220	20.	1
Dimethyl phthalate	ND		ug/kg	220	46.	1
Benzo(a)anthracene	190		ug/kg	130	25.	1
Benzo(a)pyrene	140	J	ug/kg	180	54.	1
Benzo(b)fluoranthene	200		ug/kg	130	37.	1
Benzo(k)fluoranthene	70	J	ug/kg	130	35.	1
Chrysene	230		ug/kg	130	23.	1
Acenaphthylene	38	J	ug/kg	180	34.	1
Anthracene	76	J	ug/kg	130	43.	1
Benzo(ghi)perylene	99	J	ug/kg	180	26.	1
Fluorene	38	J	ug/kg	220	21.	1
Phenanthrene	340		ug/kg	130	27.	1
Dibenzo(a,h)anthracene	31	J	ug/kg	130	26.	1
Indeno(1,2,3-cd)pyrene	83	J	ug/kg	180	31.	1
Pyrene	260		ug/kg	130	22.	1
Biphenyl	ND		ug/kg	500	51.	1
4-Chloroaniline	ND		ug/kg	220	40.	1
2-Nitroaniline	ND		ug/kg	220	42.	1
3-Nitroaniline	ND		ug/kg	220	42.	1
4-Nitroaniline	ND		ug/kg	220	91.	1
Dibenzofuran	33	J	ug/kg	220	21.	1
2-Methylnaphthalene	80	J	ug/kg	260	27.	1
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	220	23.	1
Acetophenone	ND		ug/kg	220	27.	1
Benzyl Alcohol	ND		ug/kg	220	68.	1
Carbazole	32	J	ug/kg	220	21.	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	58	25-120
Phenol-d6	63	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	80	30-120
2,4,6-Tribromophenol	76	10-136
4-Terphenyl-d14	78	18-120

L2115023

Lab Number:

Project Name: 160 CENTER STREET

Project Number: B0258-021-001 **Report Date:** 04/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 04/02/21 12:16 Extraction Date: 04/02/21 03:40

Analyst: JG

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborougl	n Lab for s	sample(s):	01-04	Batch:	WG1481673-1
Acenaphthene	ND		ug/kg	130		17.
1,2,4-Trichlorobenzene	ND		ug/kg	160		19.
Hexachlorobenzene	ND		ug/kg	99		18.
Bis(2-chloroethyl)ether	ND		ug/kg	150		22.
2-Chloronaphthalene	ND		ug/kg	160		16.
1,2-Dichlorobenzene	ND		ug/kg	160		30.
1,3-Dichlorobenzene	ND		ug/kg	160		28.
1,4-Dichlorobenzene	ND		ug/kg	160		29.
3,3'-Dichlorobenzidine	ND		ug/kg	160		44.
2,4-Dinitrotoluene	ND		ug/kg	160		33.
2,6-Dinitrotoluene	ND		ug/kg	160		28.
Fluoranthene	ND		ug/kg	99		19.
4-Chlorophenyl phenyl ether	ND		ug/kg	160		18.
4-Bromophenyl phenyl ether	ND		ug/kg	160		25.
Bis(2-chloroisopropyl)ether	ND		ug/kg	200		28.
Bis(2-chloroethoxy)methane	ND		ug/kg	180		16.
Hexachlorobutadiene	ND		ug/kg	160		24.
Hexachlorocyclopentadiene	ND		ug/kg	470		150
Hexachloroethane	ND		ug/kg	130		27.
Isophorone	ND		ug/kg	150		21.
Naphthalene	ND		ug/kg	160		20.
Nitrobenzene	ND		ug/kg	150		24.
NDPA/DPA	ND		ug/kg	130		19.
n-Nitrosodi-n-propylamine	ND		ug/kg	160		26.
Bis(2-ethylhexyl)phthalate	ND		ug/kg	160		57.
Butyl benzyl phthalate	ND		ug/kg	160		42.
Di-n-butylphthalate	ND		ug/kg	160		31.
Di-n-octylphthalate	ND		ug/kg	160		56.
Diethyl phthalate	ND		ug/kg	160		15.

L2115023

Lab Number:

Project Name: 160 CENTER STREET

Project Number: B0258-021-001 **Report Date:** 04/05/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 04/02/21 12:16 Extraction Date: 04/02/21 03:40

Analyst: JG

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	S - Westborough	n Lab for s	ample(s):	01-04	Batch:	WG1481673-1
Dimethyl phthalate	ND		ug/kg	160		35.
Benzo(a)anthracene	ND		ug/kg	99		19.
Benzo(a)pyrene	ND		ug/kg	130		40.
Benzo(b)fluoranthene	ND		ug/kg	99		28.
Benzo(k)fluoranthene	ND		ug/kg	99		26.
Chrysene	ND		ug/kg	99		17.
Acenaphthylene	ND		ug/kg	130		26.
Anthracene	ND		ug/kg	99		32.
Benzo(ghi)perylene	ND		ug/kg	130		19.
Fluorene	ND		ug/kg	160		16.
Phenanthrene	ND		ug/kg	99		20.
Dibenzo(a,h)anthracene	ND		ug/kg	99		19.
Indeno(1,2,3-cd)pyrene	ND		ug/kg	130		23.
Pyrene	ND		ug/kg	99		16.
Biphenyl	ND		ug/kg	380		38.
4-Chloroaniline	ND		ug/kg	160		30.
2-Nitroaniline	ND		ug/kg	160		32.
3-Nitroaniline	ND		ug/kg	160		31.
4-Nitroaniline	ND		ug/kg	160		68.
Dibenzofuran	ND		ug/kg	160		16.
2-Methylnaphthalene	ND		ug/kg	200		20.
1,2,4,5-Tetrachlorobenzene	ND		ug/kg	160		17.
Acetophenone	ND		ug/kg	160		20.
Benzyl Alcohol	ND		ug/kg	160		51.
Carbazole	ND		ug/kg	160		16.

L2115023

Project Name: 160 CENTER STREET

Project Number: Report Date: B0258-021-001

04/05/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546

Analytical Date: 04/02/21 12:16 04/02/21 03:40 **Extraction Date:**

Analyst: JG

> Result Qualifier Units RL MDL **Parameter**

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-04 Batch: WG1481673-1

Surrogate	%Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	90		25-120
Phenol-d6	101		10-120
Nitrobenzene-d5	96		23-120
2-Fluorobiphenyl	89		30-120
2,4,6-Tribromophenol	90		10-136
4-Terphenyl-d14	122	Q	18-120

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	, RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01-04 Batch:	WG1481673-2 WG14	181673-3	
Acenaphthene	97		107	31-137	10	50
1,2,4-Trichlorobenzene	87		94	38-107	8	50
Hexachlorobenzene	84		99	40-140	16	50
Bis(2-chloroethyl)ether	97		102	40-140	5	50
2-Chloronaphthalene	91		104	40-140	13	50
1,2-Dichlorobenzene	94		98	40-140	4	50
1,3-Dichlorobenzene	94		98	40-140	4	50
1,4-Dichlorobenzene	94		98	28-104	4	50
3,3'-Dichlorobenzidine	82		93	40-140	13	50
2,4-Dinitrotoluene	102		120	40-132	16	50
2,6-Dinitrotoluene	98		117	40-140	18	50
Fluoranthene	100		115	40-140	14	50
4-Chlorophenyl phenyl ether	89		100	40-140	12	50
4-Bromophenyl phenyl ether	91		104	40-140	13	50
Bis(2-chloroisopropyl)ether	102		107	40-140	5	50
Bis(2-chloroethoxy)methane	91		100	40-117	9	50
Hexachlorobutadiene	87		94	40-140	8	50
Hexachlorocyclopentadiene	97		107	40-140	10	50
Hexachloroethane	90		95	40-140	5	50
Isophorone	92		103	40-140	11	50
Naphthalene	97		106	40-140	9	50
Nitrobenzene	97		106	40-140	9	50
NDPA/DPA	97		111	36-157	13	50

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS -	Westborough Lab Associa	ated sample(s):	01-04 Batch:	WG1481673-2 WG14816	73-3	
n-Nitrosodi-n-propylamine	99		109	32-121	10	50
Bis(2-ethylhexyl)phthalate	107		119	40-140	11	50
Butyl benzyl phthalate	104		119	40-140	13	50
Di-n-butylphthalate	102		116	40-140	13	50
Di-n-octylphthalate	99		110	40-140	11	50
Diethyl phthalate	95		109	40-140	14	50
Dimethyl phthalate	93		108	40-140	15	50
Benzo(a)anthracene	96		110	40-140	14	50
Benzo(a)pyrene	109		122	40-140	11	50
Benzo(b)fluoranthene	106		116	40-140	9	50
Benzo(k)fluoranthene	102		114	40-140	11	50
Chrysene	95		107	40-140	12	50
Acenaphthylene	91		105	40-140	14	50
Anthracene	100		112	40-140	11	50
Benzo(ghi)perylene	101		112	40-140	10	50
Fluorene	95		107	40-140	12	50
Phenanthrene	97		108	40-140	11	50
Dibenzo(a,h)anthracene	104		114	40-140	9	50
Indeno(1,2,3-cd)pyrene	102		113	40-140	10	50
Pyrene	97		111	35-142	13	50
Biphenyl	80		91	37-127	13	50
4-Chloroaniline	95		105	40-140	10	50
2-Nitroaniline	99		121	47-134	20	50

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - We	estborough Lab Associa	ted sample(s): 01-04 Batch	n: WG14816	373-2 WG14816	373-3			
3-Nitroaniline	88		104		26-129	17		50	
4-Nitroaniline	100		119		41-125	17		50	
Dibenzofuran	93		105		40-140	12		50	
2-Methylnaphthalene	94		105		40-140	11		50	
1,2,4,5-Tetrachlorobenzene	77		86		40-117	11		50	
Acetophenone	97		106		14-144	9		50	
Benzyl Alcohol	104		114		40-140	9		50	
Carbazole	101		114		54-128	12		50	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	95	100	25-120
Phenol-d6	101	111	10-120
Nitrobenzene-d5	99	106	23-120
2-Fluorobiphenyl	93	103	30-120
2,4,6-Tribromophenol	92	107	10-136
4-Terphenyl-d14	91	103	18-120

METALS

Project Name: 160 CENTER STREET Lab Number: L2115023

Project Number: B0258-021-001 **Report Date:** 04/05/21

SAMPLE RESULTS

Lab ID:L2115023-01Date Collected:03/24/21 09:30Client ID:TP-1 1-3 FTDate Received:03/25/21Sample Location:CANASTOTA, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 78%

Percent Solids:	1070					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Taral Martala Mara	- C - L - L - L										
Total Metals - Man	stield Lab										
Arsenic, Total	7.47		mg/kg	0.506	0.105	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV
Barium, Total	349		mg/kg	0.506	0.088	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV
Cadmium, Total	0.587		mg/kg	0.506	0.050	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV
Chromium, Total	7.15		mg/kg	0.506	0.049	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV
Lead, Total	93.6		mg/kg	2.53	0.136	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV
Mercury, Total	1.64		mg/kg	0.081	0.053	1	03/30/21 08:45	5 03/30/21 17:30	EPA 7471B	1,7471B	EW
Selenium, Total	0.405	J	mg/kg	1.01	0.130	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV
Silver, Total	ND		mg/kg	0.506	0.143	1	03/30/21 07:35	5 04/01/21 21:19	EPA 3050B	1,6010D	BV

Project Name: 160 CENTER STREET Lab Number: L2115023

Project Number: B0258-021-001 **Report Date:** 04/05/21

SAMPLE RESULTS

Lab ID:L2115023-02Date Collected:03/24/21 11:00Client ID:TP-5 3-4 FTDate Received:03/25/21Sample Location:CANASTOTA, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil
Percent Solids: 62%

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Method Total Metals - Mansfield Lab Arsenic, Total 28.6 mg/kg 0.611 0.127 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Barium, Total 241 mg/kg 0.611 0.106 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Cadmium, Total 0.452 J mg/kg 0.611 0.060 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Chromium, Total 6.65 mg/kg 0.611 0.059 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Selenium, Total 1.03 J mg/kg	reident Solius.	0270					Dilution	Date	Date	Prep	Analytical	
Arsenic, Total 28.6 mg/kg 0.611 0.127 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Barium, Total 241 mg/kg 0.611 0.106 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Cadmium, Total 0.452 J mg/kg 0.611 0.060 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Chromium, Total 6.65 mg/kg 0.611 0.059 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Parameter	Result	Qualifier	Units	RL	MDL	Factor			•	Method	Analyst
Arsenic, Total 28.6 mg/kg 0.611 0.127 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Barium, Total 241 mg/kg 0.611 0.106 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Cadmium, Total 0.452 J mg/kg 0.611 0.060 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Chromium, Total 6.65 mg/kg 0.611 0.059 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Total Matala, Man	ما ما ما										
Barium, Total 241 mg/kg 0.611 0.106 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Cadmium, Total 0.452 J mg/kg 0.611 0.060 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Chromium, Total 6.65 mg/kg 0.611 0.059 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 08:45 03/30/21 17:33 EPA 7471B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	rotai wetais - wan	sileid Lab										
Cadmium, Total 0.452 J mg/kg 0.611 0.060 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Chromium, Total 6.65 mg/kg 0.611 0.059 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 08:45 03/30/21 17:33 EPA 7471B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Arsenic, Total	28.6		mg/kg	0.611	0.127	1	03/30/21 07:35	5 04/01/21 21:24	EPA 3050B	1,6010D	BV
Chromium, Total 6.65 mg/kg 0.611 0.059 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 08:45 03/30/21 17:33 EPA 7471B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Barium, Total	241		mg/kg	0.611	0.106	1	03/30/21 07:35	5 04/01/21 21:24	EPA 3050B	1,6010D	BV
Lead, Total 63.8 mg/kg 3.06 0.164 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 08:45 03/30/21 17:33 EPA 7471B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Cadmium, Total	0.452	J	mg/kg	0.611	0.060	1	03/30/21 07:35	5 04/01/21 21:24	EPA 3050B	1,6010D	BV
Mercury, Total 0.887 mg/kg 0.103 0.067 1 03/30/21 08:45 03/30/21 17:33 EPA 7471B 1,7471B Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Chromium, Total	6.65		mg/kg	0.611	0.059	1	03/30/21 07:35	5 04/01/21 21:24	EPA 3050B	1,6010D	BV
Selenium, Total 1.03 J mg/kg 1.22 0.158 1 03/30/21 07:35 04/01/21 21:24 EPA 3050B 1,6010D	Lead, Total	63.8		mg/kg	3.06	0.164	1	03/30/21 07:35	5 04/01/21 21:24	EPA 3050B	1,6010D	BV
00002101100	Mercury, Total	0.887		mg/kg	0.103	0.067	1	03/30/21 08:45	5 03/30/21 17:33	EPA 7471B	1,7471B	EW
Silver Total ND malka 0.611 0.173 1 03/30/34 07:35 04/01/31 31:34 EDA 3050B 1.6010D	Selenium, Total	1.03	J	mg/kg	1.22	0.158	1	03/30/21 07:3	5 04/01/21 21:24	EPA 3050B	1,6010D	BV
Silver, Total ND Hig/kg 0.011 0.175 1 03/30/21 07.33 04/01/21 21.24 LFX 3030B 1,0010B	Silver, Total	ND		mg/kg	0.611	0.173	1	03/30/21 07:35	5 04/01/21 21:24	EPA 3050B	1,6010D	BV

Project Name:160 CENTER STREETLab Number:L2115023Project Number:B0258-021-001Report Date:04/05/21

SAMPLE RESULTS

 Lab ID:
 L2115023-03
 Date Collected:
 03/24/21 12:45

 Client ID:
 TP-8 3-4 FT
 Date Received:
 03/25/21

Sample Location: CANASTOTA, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 75%

Dilution Date Date Prep Analytical Method **Parameter** Result Qualifier Units Factor **Prepared** Analyzed Method RLMDL Analyst Total Metals - Mansfield Lab Arsenic, Total 20.7 mg/kg 0.517 0.108 1 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D BV Barium, Total 168 mg/kg 0.517 0.090 1 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D ΒV 1 Cadmium, Total 0.703 mg/kg 0.517 0.051 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D BV 1 Chromium, Total 7.94 mg/kg 0.517 0.050 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D ΒV ΒV 127 2.58 0.138 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D Lead, Total mg/kg 1 1,7471B Mercury, Total 0.553 0.083 0.054 1 03/30/21 08:45 03/30/21 17:37 EPA 7471B ΕW mg/kg Selenium, Total 1.32 mg/kg 1.03 0.133 1 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D ΒV Silver, Total ND 0.517 0.146 1 03/30/21 07:35 04/01/21 21:28 EPA 3050B 1,6010D ΒV mg/kg

Project Name: 160 CENTER STREET Lab Number: L2115023

Project Number: B0258-021-001 **Report Date:** 04/05/21

SAMPLE RESULTS

Lab ID:L2115023-04Date Collected:03/24/21 13:00Client ID:TP-9 2-3 FTDate Received:03/25/21Sample Location:CANASTOTA, NYField Prep:Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 74%

reiteili 30ilus.	7 4 70					Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Matala, Man	ما ا ما م										
Total Metals - Man	sileid Lab										
Arsenic, Total	52.6		mg/kg	0.532	0.111	1	03/30/21 07:35	5 04/01/21 21:33	EPA 3050B	1,6010D	BV
Barium, Total	31.4		mg/kg	0.532	0.093	1	03/30/21 07:35	5 04/01/21 21:33	EPA 3050B	1,6010D	BV
Cadmium, Total	0.436	J	mg/kg	0.532	0.052	1	03/30/21 07:35	5 04/01/21 21:33	EPA 3050B	1,6010D	BV
Chromium, Total	2.54		mg/kg	0.532	0.051	1	03/30/21 07:35	5 04/01/21 21:33	EPA 3050B	1,6010D	BV
Lead, Total	5.30		mg/kg	2.66	0.143	1	03/30/21 07:35	5 04/01/21 21:33	EPA 3050B	1,6010D	BV
Mercury, Total	0.096		mg/kg	0.087	0.056	1	03/30/21 08:45	03/30/21 17:40	EPA 7471B	1,7471B	EW
Selenium, Total	1.12		mg/kg	1.06	0.137	1	03/30/21 07:35	04/01/21 21:33	EPA 3050B	1,6010D	BV
Silver, Total	ND		mg/kg	0.532	0.151	1	03/30/21 07:35	5 04/01/21 21:33	EPA 3050B	1,6010D	BV

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number:

L2115023

Report Date:

04/05/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01-04 B	atch: W	G14801	69-1				
Mercury, Total	ND	mg/kg	0.083	0.054	1	03/30/21 08:45	03/30/21 16:21	1,7471B	EW

Prep Information

Digestion Method: EPA 7471B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-04 B	atch: Wo	G14802	62-1				
Arsenic, Total	ND	mg/kg	0.400	0.083	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV
Barium, Total	ND	mg/kg	0.400	0.070	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV
Cadmium, Total	ND	mg/kg	0.400	0.039	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV
Chromium, Total	ND	mg/kg	0.400	0.038	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV
Lead, Total	ND	mg/kg	2.00	0.107	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV
Selenium, Total	ND	mg/kg	0.800	0.103	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV
Silver, Total	ND	mg/kg	0.400	0.113	1	03/30/21 07:35	04/01/21 17:18	3 1,6010D	BV

Prep Information

Digestion Method: EPA 3050B

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number:

L2115023

Report Date:

04/05/21

Parameter	LCS %Recove	ry Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-04	Batch: WG14	80169-2 SI	RM Lot Number:	: D109-540			
Mercury, Total	82		-		60-140	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-04	Batch: WG14	80262-2 SI	RM Lot Number:	: D109-540			
Arsenic, Total	94		-		70-130	-		
Barium, Total	90		-		75-125	-		
Cadmium, Total	88		-		75-125	-		
Chromium, Total	93		-		70-130	-		
Lead, Total	90		-		72-128	-		
Selenium, Total	90		-		68-132	-		
Silver, Total	95		-		68-131	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-04	QC Bat	ch ID: WG148	0169-3	QC Sam	ple: L2114825-01	Client ID: MS	S Sample	
Mercury, Total	ND	0.138	0.174	126	Q	-	-	80-120	-	20
Total Metals - Mansfield Lab	Associated san	nple(s): 01-04	QC Bat	ch ID: WG148	0262-3	QC Sam	ple: L2115039-01	Client ID: MS	S Sample	
Arsenic, Total	6.59	10.4	13.0	61	Q	-	-	75-125	-	20
Barium, Total	31.0	174	349	183	Q	-	-	75-125	-	20
Cadmium, Total	0.766	4.44	3.91	71	Q	-	-	75-125	-	20
Chromium, Total	41.4	17.4	49.0	44	Q	-	-	75-125	-	20
Lead, Total	42.2	44.4	70.4	64	Q	-	-	75-125	-	20
Selenium, Total	0.346J	10.4	7.77	74	Q	-	-	75-125	-	20
Silver, Total	ND	26.1	19.6	75		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number:

L2115023

Report Date:

04/05/21

Parameter		Native Sample	Duplica	ate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 01-0	4 QC Batch ID:	WG1480169-4	QC Sample:	L2114825-01	Client ID:	DUP Samp	le
Mercury, Total		ND		ND	mg/kg	NC		20
Total Metals - Mansfield Lab	Associated sample(s): 01-0	4 QC Batch ID:	WG1480262-4	QC Sample:	L2115039-01	Client ID:	DUP Samp	le
Arsenic, Total		6.59		6.47	mg/kg	2		20

INORGANICS & MISCELLANEOUS

Project Name: 160 CENTER STREET

Project Number: B0258-021-001 Lab Number:

L2115023

Report Date: 04/05/21

SAMPLE RESULTS

Lab ID: L2115023-01

Client ID: TP-1 1-3 FT Sample Location: CANASTOTA, NY Date Collected:

03/24/21 09:30

Date Received: Field Prep:

03/25/21 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab									
Solids, Total	78.4		%	0.100	NA	1	-	03/27/21 13:34	121,2540G	RI

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number:

L2115023

Report Date: 04/05/21

SAMPLE RESULTS

Lab ID: L2115023-02

Client ID: TP-5 3-4 FT Sample Location: CANASTOTA, NY

Date Collected:

03/24/21 11:00

Date Received:

03/25/21

Field Prep:

Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	61.5		%	0.100	NA	1	-	03/27/21 13:34	121,2540G	RI

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023

Report Date: 04/05/21

SAMPLE RESULTS

Lab ID: L2115023-03

Client ID: TP-8 3-4 FT Sample Location: CANASTOTA, NY

Date Collected: 03

03/24/21 12:45

Date Received: Field Prep:

03/25/21 Not Specified

Sample Depth:

Matrix:

Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab)								
Solids, Total	75.3		%	0.100	NA	1	-	03/27/21 13:34	121,2540G	RI

Project Name: 160 CENTER STREET

L2115023 **Project Number:** B0258-021-001

Report Date: 04/05/21

Lab Number:

SAMPLE RESULTS

Lab ID: Date Collected: L2115023-04 03/24/21 13:00

Client ID: TP-9 2-3 FT Date Received: 03/25/21 Not Specified Sample Location: CANASTOTA, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result Qualifi	ult Qualifier Units RL I		MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - \	Westborough Lab									
Solids, Total	73.5	%	0.100	NA	1	-	03/27/21 13:34	121,2540G	RI	

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2115023

160 CENTER STREET **Project Number:** B0258-021-001

Project Name:

Report Date:

04/05/21

Parameter	Native Sample	e Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associa	ted sample(s): 01-04 Q0	C Batch ID: WG1479587-1	QC Sample:	L2114949-01	Client ID:	DUP Sample
Solids, Total	85.7	88.5	%	3		20

160 CENTER STREET

Project Number: B0258-021-001

Lab Number: L2115023 **Report Date:** 04/05/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Container Information

Project Name:

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2115023-01A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		AS-TI(180),BA-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2115023-01B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		NYTCL-8270(14),TS(7)
L2115023-02A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2115023-02B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		NYTCL-8270(14),TS(7)
L2115023-03A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),PB-TI(180),SE-TI(180),HG-T(28),CD- TI(180)
L2115023-03B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		NYTCL-8270(14),TS(7)
L2115023-04A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		BA-TI(180),AS-TI(180),AG-TI(180),CR- TI(180),SE-TI(180),PB-TI(180),HG-T(28),CD- TI(180)
L2115023-04B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		NYTCL-8270(14),TS(7)
L2115023-05A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-05B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-05C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-06A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-06B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-06C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-07A	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-07B	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-07C	Vial HCl preserved	Α	NA		4.7	Υ	Absent		NYTCL-8260-R2(14)
L2115023-08A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)
L2115023-08B	Vial Large Septa unpreserved (4oz)	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)
L2115023-09A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)

Lab Number: L2115023

Report Date: 04/05/21

Project Name: 160 CENTER STREET

Project Number: B0258-021-001

Container Information		Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2115023-09B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)	
L2115023-10A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)	
L2115023-10B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)	
L2115023-11A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)	
L2115023-11B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)	
L2115023-12A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)	
L2115023-12B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)	
L2115023-13A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)	
L2115023-13B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)	
L2115023-14A	Metals Only-Glass 60mL/2oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-METAL(180)	
L2115023-14B	Glass 120ml/4oz unpreserved	Α	NA		4.7	Υ	Absent		HOLD-WETCHEM(),HOLD-8270(14)	

Project Name:160 CENTER STREETLab Number:L2115023Project Number:B0258-021-001Report Date:04/05/21

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:160 CENTER STREETLab Number:L2115023Project Number:B0258-021-001Report Date:04/05/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 160 CENTER STREET
 Lab Number:
 L2115023

 Project Number:
 B0258-021-001
 Report Date:
 04/05/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 160 CENTER STREET
 Lab Number:
 L2115023

 Project Number:
 B0258-021-001
 Report Date:
 04/05/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

	CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 10			Page / of Z					Date in I		03	ALPHA Job# L 2115023				
Westborough, MA 01581	Mansfield, MA 02048	Project Information	100 100	TO 55771	Market Co.	100	1000	Deliv	erable		0 -	0	0 2	THE RESERVE OF THE PARTY OF THE	12		
8 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300			004	er stree	e.L				ASP-	3		ASI	D.B	Billing Information Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: Co	100	C 343	4 11/4	7		_				lo)				Linio	
Client Information		Project # Bo25	0 -	5/01	01/109				님	EQui:		ie)	EQ	ulS (4 File)	PO#		
Client: Benchmark	EEC	SERVICE CONTRACT TO SERVICE		-	01		_			Other	-						
Address: 2 6CE 11	mh Talm	(Use Project name as			0100							rement			Disposal Site Inform	NAME OF TAXABLE PARTY.	
Address: 2553 H	1/2/18	Project Manager: C	1115	00101	1/Consu	e rox			님	NY TO		w.	_	Part 375	Please identify below to		
BUFFAID, US, 1	3077	ALPHAQuote #:	-				-			AWQ S			_	CP-51	applicable disposal fac	lities.	
Phone: 7/6- 7/3-	3937	Turn-Around Time	1	MAN CL	STAY SEA	NAME OF TAXABLE PARTY.				NY Re	stricted	Use	Othe	er	Disposal Facility:		
Fax:	0		ard 🔀		Due Date	2;				NY Un	restrict	ed Use			□ NJ □	NY	
Email: CBoron O I		Rush (only if pre approx	ved)		# of Days	ii .				NYC S	ewer D	ischarge			Other:		
These samples have be Other project specific									ANA	LYSIS	ij				Sample Filtration	T	
Please specify Metals o	or TAL.								SVOC3 (Buse more	P.C.R.A. S. POUTUS	C/+CP-5/ UNES.				□ Done □ Lab to do Preservation □ Lab to do (Please Specify be	a l	
ALPHA Lab ID	Sa	mple ID		Coll	ection	Sample	San	npler's	15	18	14					t	
(Lab Use Only)			_	Date	Time	Matrix	Ini	tials	12	2	12				Sample Specific Com	ments e	
15023-01		3 F+	3/	24/21	9:30	5011	N	AS	X	X						2	
-02		-4F+		1	11:00		1		X	Y						2	
_03		-yft			12:45		П		X	X						2	
-04	TP-9 2	-3 FH			13:60	V	П		X	X						2	
-05	TP-3W				11:30	GW					X					3	
-06	TP-5W				11:45	GW	П				X					3	
-07	TR-10W				14:00	GW					X					3	
-08	TP-83:	2-3 Ft			12:00	5011	\vdash		$\overline{}$			\neg	_		on 166	2	
-09	TP- 3	3-5 Ft		/	10:30	SON		_				_		+	on find	2	
-10	TP-7 1-	3 F4			11:45	301	1					\rightarrow	_		on the	Į.	
A = None P B = HCl A C = HNO ₃ V O = H ₂ SO ₄ G	Container Code P = Plastic A = Amber Glass / = Vial G = Glass B = Bacteria Cup	Westboro: Certification Mansfield: Certification			111 211	Con	resen	Type vative	A	A 0	UB				Please print clear and completely. S not be logged in a turnaround time of	ly, legibly Samples can and lock will not	
N-1000000000000000000000000000000000000	C = Cube	Relinquishe	ed By:		Date	/Time		-	Receiv	ed By:			Dat	te/Time	start until any ami resolved. BY EXE	CUTING	
H = Na ₂ S ₂ O ₃ E	D = Other E = Encore D = BOD Bottle	SECURE ST	5RAG		3/25/21 3/25/21	12:04	12	Ces	F	701	961	AL 3	3/2	15/21 11:0 12 12:0	THIS COC, THE HAS READ AND TO BE BOUND B	CLIENT AGREES Y ALPHA'S	
= Other - 1/ce		Recennently	m	AAL	3/25/2	1 12:01	1	Non	180	yer	77		7/7/	2101105	TERMS & COND	HONS.	

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288		Way poper Ave, Suite 1	AL-S	Pag 2			Date Re in Lai erables ASP-A EQuIS (0	3	26 ASP-I		ALPHA Job # Billing Information Same as Clie	723
Client Information	1 20 10 10		8-02		1		1 7	Other	11110)		Laur	3 (41 110)	100	
Client: Ben4 mere	EES	(Use Project name as P					Regu	latory Re	quireme	nt	TO ST		Disposal Site Infor	mation
Address: 2559 A	14218		Project Manager: Chris Born / Consent For								rt 375 -51	Please identify below location of applicable disposal facilities.		
Phone: 7/6 - 7/3 Fax: Email: C Boron 6		Turn-Around Time Standar Rush (only if pre approve		Due Date # of Days				Disposal Facility: NJ Other:] NY					
These samples have be				7			ANA	NYC Sew					Sample Filtration	UT.
Other project specific Please specify Metals		nents:											□ Done □ Lab to do Preservation □ Lab to do (Please Specify b	o t a l
ALPHA Lab ID (Lab Use Only)	Sa	ample ID		lection	Sample	Sampler's	1		1					t
CS 00 0	TP 11	2 2 6 1	Date	Time	Matrix	Initials	_						Sample Specific Cor	
15023-11	18-11	2-3F+	3/24/21		5017	TURS	_		_				07 6062	2
-12	781	0-1.5 Ft		15:30	1		_						onhow	2
-13		2.4Ft	1	10:40	1/	1.	_						02 how	2
-14	14-12	2-2.5 #+	V	15:00	N/	<i>y</i>							on Moil	
A = None	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification No: MA935 Mansfield: Certification No: MA015 Container Ty											Please print clea and completely. not be logged in	Samples can
The County of th	G = Glass B = Bacteria Cup				F	reservative							turnaround time	clock will not
F = MeOH		Relinquished RELINE ST RELINATION	3/24/21/11:11 SECUR.			Received By: = STORAGE AAL nninghow AAV.			3125121 12:04			start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.		
Form No: 01-25 HC (rev. 30-	Sept-2013)	The state of the s	4 241	3/25/2	12:04	100	41,00	4	5	15/0	KOIN	101:05	(See reverse sid	
Page 57 of 57	Annah Carlotte Carlo					-		1	/	I.				