Interim Remedial Measures Report

(Volume 1 of 3)

Midler City Industrial Park Site Brownfield Cleanup City of Syracuse Onondaga County, New York

NYSDEC BROWNFIELD SITE # C734103

Prepared for Pioneer Midler Avenue, LLC

Ву

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

December 2007

TABLE OF CONTENTS

mu	oduction]
1.1	Purpose an	d Format of the Report	
1.2	Summary o	of the Remedy	2
Sun	nmary Of Re	emedial Actions	3
2.1	Areas of C	oncern	3
2.2	Problems E	Encountered During Construction	4
2.3	Changes to	the Design Documents	4
2.4	Volume an	d Concentrations of Materials Removed	4
2.5	Waste Disp	oosal Listing	4
App	olicable Rem	nediation Standards	<i>(</i>
IRM	I Data Revie	ew	7
Site	Restoration	And Source Of Fill Materials	9
Sun	nmary Of Pr	oject Costs	9
"As	-Built" Drav	wings	9
Was	ste Transpor	t Manifests	ر
Eng	ineering Or	Institutional Controls	10
BLES			
Tab	le 1	Verification Sample Identifications and Depths	
Tab	le 2	Verification Sample Results	
Tab	le 3	Average CVOC Calculations	
Tab	le 4	IRM CVOC Reductions	
URES			
Figu	are 1	Verification Sample Locations and Treatment Depths	
Figu	are 2	Heater Well Layout and ISTD Enhancements	
	are 3	IRM Areas and Site Redevelopment Features	
	1.2 Sun 2.1 2.2 2.3 2.4 2.5 App IRM Site Sun "As Was Eng BLES Tab Tab Tab Tab Tab Tab Tab	1.2 Summary of Resummary Of Programmary Of Progr	1.2 Summary of the Remedy

APPENDICES

Appendix A Preliminary Reports and Work Plan Addenda
A-1 IRM ISTD Contractor's Operations Report
A-2 September 22, 2006 B-5 Area Data Report
A-3 December 9, 2005 Total Organic Carbon Sampling Results
A-4 NYSDEC-Approved verification Sampling Protocol
Appendix B Regulatory Documentation (separate cover, Volume 2 of 3)
B-1 Vapor Treatment
B-2 Wastewater Discharge
B-3 Community Air Monitoring Report
Appendix C Waste Disposal Documentation (separate cover, Volume 2 of 3)
Appendix D Data Usability Summary Reports (separate cover, Volume 3 of 3)

PIONEER MIDLER AVENUE BROWNFIELD PROJECT INTERIM REMEDIAL MEASURE REPORT

1.0 Introduction

1.1 Purpose and Format of the Report

This Interim Remedial Measure (IRM) Report documents the performance of an IRM at the Pioneer Midler Avenue Brownfield Site, in the City of Syracuse, Onondaga County, New York. The IRM was conducted by Pioneer Midler Avenue LLC as a volunteer under the New York State Department of Environmental Conservation's (NYSDEC's) "Brownfields Cleanup Program". The IRM addressed the presence of chlorinated volatile organic compounds within identified source areas within the overburden soils at the Pioneer Midler Avenue site. As used in this report, the term *chlorinated volatile organic compounds* (CVOCs) refers to the suite of compounds consisting of tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride, cis-1,2-dichloroethene, and trans-1,2-dichloroethene.

The presence and extent of the CVOCs within the site was established during a multi-phase Remedial Investigation (RI) and documented in a series of Data Reports; the final Data Report, summarizing all phases of the RI, was submitted to NYSDEC in July 2005. The IRM approach of limited excavation and in-situ thermal treatment was established in a July 2006 *Interim Remedial Measure Work Plan* (C&S Engineers, Inc.), which was approved by NYSDEC. The IRM thermal treatment contractor, selected by Pioneer Midler Avenue LLC via competitive bid, was TerraTherm, Inc. (TerraTherm) of Fitchburg, MA. C&S Engineers, Inc. (C&S) was retained by Pioneer Milder Avenue, LLC to perform a variety of support tasks including assistance in obtaining permits and conducting the IRM verification sampling.

This report follows the format for Remedial Action Reports provided in Section 5.8 of NYSDEC's *Draft Technical Guidance for Site Investigation and Remediation* (Draft DER-10, dated December 2002). A separate report, the RI Report, will also be prepared and will include the following:

- Soil and groundwater quality data generated after the July 2005 Data Report (including IRM data);
- A Qualitative Human Health Exposure Assessment (HHEA); and

• A Remedial Action Alternatives (RAA) analysis.

Upon completion of the IRM, TerraTherm submitted an October 2007 Remedial Activities Report – Implementing In-Situ Thermal Desorption (ISTD) Remediation to Pioneer Midler Avenue LLC. That report is provided as Appendix A.

1.2 Summary of the Remedy

The IRM was conducted to remove CVOCs from four source areas identified during the RI. The technology adopted to remove CVOCs was in-situ thermal desorption. The smallest of the four source areas ("B-5" Area) was first excavated and the impacted materials were placed within the two largest treatment areas ("B-1" and "B-3" Areas) for CVOC removal via thermal desorption. The subsurface within the thermal treatment areas was heated by electrical resistance units installed within vertical steel wells to depths of five feet below the depth of detected CVOC impacts within each area or sub-area; vapors released by the heating process were collected in a horizontal extraction system installed above the water table and beneath a concrete (low-permeability) surface pad. The collected CVOC vapors were then thermally destroyed in an aboveground natural gas-fired thermal oxidation unit.

The IRM Work Plan set forth a soil verification sampling plan that included specific sampling locations, depths, and protocols for sample collection and data reduction. Table 1 provides the verification sample identifications, depths, and the RI reference samples used to determine those depths. Figure 1 illustrates the sample locations. In addition to soil verification data, the following data were regularly collected and reported during the IRM:

- Vapor CVOC content prior to and following CVOC destruction within the thermal oxidizer or removal within the vapor-phase carbon units;
- Condensate (water) from the vapor treatment system prior to and following CVOC removal in the aqueous phase carbon unit;
- Ambient air per requirements of the Community Air Monitoring Plan.

Appendix B provides copies of the above data and reports.

2.0 SUMMARY OF REMEDIAL ACTIONS

In July 2006, prior to the installation of the in-situ thermal treatment system, the "B-5" Area was excavated and the CVOC-impacted soils were moved to the "B-1" and "B-3" thermal treatment areas. Bottom and sidewall soil verification samples were collected at the limits of the "B-5" excavation per the work plan. "B-5" Area verification results are included in Table 2. The "B-5" Area verification sampling results were previously provided to NYSDEC in a September 22, 2006 report, a copy of which is provided as Appendix A-2.

Prior to mobilizing to the site, TerraTherm submitted a layout and specifications for the remedial system, with the understanding that additions/modifications to the system could be instituted as necessary to meet the performance and scheduling goals. The system layout was provided to NYSDEC. TerraTherm mobilized for the IRM on July 24, 2006. Heater wells were installed in a hexagonal grid within each of the three ("3D", "B-3", and "B-1") thermal treatment areas (Figure 2). Thermal treatment began on November 1, 2006, with the phased start-up of the heater wells.

Verification sampling was initiated on March 5, 2007. TerraTherm identified areas where, based on temperature data from subsurface thermocouples, CVOC removal to the remedial goals was likely to have occurred. Successive rounds of verification sampling were then conducted until the remedial objective was attained in each treatment area. The vapor collection and treatment system operated continuously throughout the remediation. As the various thermal treatment areas or sub-areas achieved the remedial goals, specific heater wells were taken off-line. As additional resources became available due to those shutdowns, those resources were shifted (via installation of additional heater wells) to other areas as needed

2.1 Areas of Concern

The four CVOC source areas of concern were identified during the RI and addressed by the IRM. As developed in the IRM Work Plan, the areas delineated for source area treatment under the IRM were those areas where RI sample results for CVOCs (total) in soils exceeded $31,200~\mu g/kg$. Figure 1 shows the source areas addressed during the IRM. The following provides a description of each of those areas.

- "B-3" Area: Located generally along the eastern edge of former Building 7, this area included two apparently separate sources of CVOCs, where concentrations in soil were two to three orders of magnitude greater than the concentrations detected at other sampling locations in the surrounding area. CVOC impacts were present to a maximum depth of 26 feet (GPD-3) in the B-3 Area.
- "B-1" Area: Located along the northern edge of former Building 13, this area included two apparently separate source areas defined by the PCE/TCE analytical data for boring B-1 and test pit TP-14 (westernmost source area), and borings DW-4 and GPD-26 (easternmost source area). The CVOC impacts in these areas were relatively shallow (<15 ft. below the ground surface).
- **"B-5" Area**: Located east of Building 12, the IRM work in this area addressed one area (characterized by soil samples B-5 and GPD-14), where the data indicate CVOC concentrations exceeded 31,200 µg/kg to a depth of approximately ten feet.
- "3D" area: The soil sample from this boring did not exhibit significant CVOC impacts during initial investigations, but the groundwater sample from this location exceeded Class GA standards for several parameters. During October 2005, a dense non-aqueous phase liquid (DNAPL) exhibiting the olfactory characteristics of PCE was observed in MW-3D. Subsequent laboratory analysis confirmed that the DNAPL was PCE. Additional borings confirmed the presence of elevated levels of CVOCs in a small area around MW-3D.

2.2 Problems Encountered During Construction

As discussed above, and further discussed in the report prepared by the remedial contractor (Appendix A), the operational approach provided the flexibility to take heaters off-line in an area when verification sampling results indicated that the remedial goals were achieved and, conversely, to install additional heater wells in other areas to accelerate removals in those areas. A proposal for each resource reallocation event was submitted to NYSDEC for approval in advance of implementation (Appendix A, Sections 2.5 and 6). In addition to heater wells, two additional types of installations were utilized by TerraTherm to accelerate treatment in specific areas:

- Sheet piling was installed to inhibit possible surface water flux in several areas; and
- Air sparge points were installed at three locations to enhance vapor movement towards the vapor collection system.

Figure 2 shows the initial heater well grids and where sparge points and sheet piling were subsequently installed.

As the verification sampling proceeded, the data indicated that the thermal processes being used to volatilize CVOCs were also producing measurable quantities of ketones (acetone, 2-butanone) within the subsurface. Literature from other thermal remediation projects and TerraTherm's experience indicated that ketone production is due to either biological or physical/chemical pathways. The physical/chemical pathway would be greatly enhanced by elevated temperatures and by the presence of humic acids within the subsurface strata. The concentrations of ketones are expected to decline relatively rapidly as the treatment areas cool down in the months following shut-down of the thermal treatment system.

2.3 Changes to the Design Documents

As the thermal treatment progressed, protocols for sampling the heated soils and groundwater were developed to assure sample integrity by cooling of the sample media to ambient temperatures as soon as possible after retrieving the sample form the subsurface. Those protocols were submitted to NYSDEC prior to sample collection.

Near the end of the thermal treatment, when only three "B-1" sample locations required further treatment, the vapor stream was routed through a vapor-phase carbon treatment system, and the thermal oxidation unit was taken off-line. The NYSDEC was notified prior to this changeover.

2.4 Volume and Concentrations of Materials Removed

Section 4 provides calculations, based on CVOC concentrations at the inlet and exhaust of the vapor treatment units (thermal oxidizer or vapor-phase carbon), and associated vapor flow rates, for the mass of CVOCs removed during the IRM. These data indicate that a total of approximately 86,205 pounds of CVOCs were removed from the site during the IRM. Similar mass removal calculations for the condensate water (before and after aqueous-phase carbon adsorption) indicated that CVOC mass removals via that pathway were negligible.

2.5 Waste Disposal Listing

The CVOCs removed via vapor extraction were destroyed in the thermal oxidizer; therefore, no waste disposal was associated with that part of the project. Appendix B-1 provides the monthly results of the vapor treatment unit sampling.

After exiting the thermal oxidizer, the hot vapors entered a quench tank and packed tower scrubber that utilized a caustic solution to neutralize the acid-containing vapors. A portion of the quench water was evaporated and, after passing through carbon, the remaining water was discharged to the sanitary sewer system under a permit with the Onondaga County Department of Water Environment Protection. Appendix B-2 contains information relative to the wastewater discharge.

During the last stages of the IRM, when only small thermal treatment sub-areas required treatment, the vapor phase carbon replaced the thermal oxidizer for treatment of the vapor phase. Documentation pertaining to the disposal of spent vapor phase carbon is provided in Appendix C.

3.0 APPLICABLE REMEDIATION STANDARDS

NYSDEC's TAGM 4046 provides Recommended Soil Cleanup Objectives (RSCOs) for contaminated sites. This TAGM also provides a methodology for modifying RSCOs for site-specific conditions such as groundwater elevations and total organic carbon (TOC) content of soils.

As indicated by the NYSDEC, the TAGM 4046 RSCOs were developed based on an assumed soil Total Organic Carbon (TOC) content of one percent. During the RI, soil samples from the Midler site were analyzed for TOC and an average TOC above the clay unit of approximately eight percent was calculated. Appendix A-3 provides the Total Organic Carbon data and averaging. Utilizing the NYSDEC formula for calculating site-specific soil clean-up objectives for protection of groundwater in Section 3, Part A of TAGM 4046, the resulting objectives based on site TOC levels would have been 11,200 $\mu g/kg$ for PCE , 5,600 $\mu g/kg$ for TCE, 2,400 $\mu g/kg$ for trans-1,2-dichloroethene, and 1,600 $\mu g/kg$ for vinyl chloride.

The TAGM 4046 methodology for establishing RSCOs also utilizes a correction factor of 100 to account for soils above the groundwater table. The shallow groundwater conditions and the thickness of the saturated zone at the Midler Avenue site indicated that the correction factor of 100 utilized in the NYSDEC formula could result in site-specific soil cleanup objectives (SSCOs) that would be too high. Therefore, given the need to improve groundwater quality, a more conservative correction factor of 50 was utilized. As shown in the table below, the resulting site-specific soil cleanup objectives within the boundary of each

proposed IRM treatment area was 5,600 μg/kg for PCE; 2,800 μg/kg for TCE; 1,200 μg/kg for trans-1,1-dichloroethene; and 800 μg/kg for vinyl chloride.

CVOC Parameter	TAGM 4046 RSCO	Midler SSCO
PCE	1,400	5,600
TCE	700	2,800
Vinyl chloride	200	800
trans-1,2-Dichloroethene	300	1,200
cis-1,2-Dichloroethene	NA	NA
Total CVOCs	2,600	10,400

All units in µg/kg

For purposes of verifying successful IRM CVOC removals, the average concentration of each individual CVOC needed to be equal or less than the SSCO within each IRM treatment area.

4.0 IRM DATA REVIEW

Table 2 provides the validated analytical results for VOCs from all verification samples collected. A verification sampling data reduction protocol was developed for the site and approved by NYSDEC after comment and revision. Under the protocol, if analytical results from an initial round of verification sampling indicated one or more of the specific sampling locations within a treatment area required further treatment to achieve the IRM goals, each specific location would be re-sampled following the extended treatment period. Subsequent samples were to be collected as close as practical to the location and depth of the related earlier sample. Analytical results for the subsequent samples then replaced the earlier round results from the same discrete area. Those data were incorporated with the earlier results from the same treatment area in calculating that area's average concentration. Table 3 provides the summary CVOCs data for each treatment area and identifies the individual results used in calculating average CVOC concentrations for the individual treatment areas.

Tables 1 and 2 include the depth interval from which each verification sample was collected. PID headspace field screening measurements were made prior to the sample being prepared

for submittal to the analytical laboratory. Figure 1 illustrates the approximate location where each of the verification samples was collected. Appendix D provides the Data Usability Summary Reports (DUSRs) as well as the sample report sheets as modified by the data validator.

Tables 2 and 3 provide analytical results for verification samples, organized by treatment areas and indicating the final samples utilized in calculating the average concentration for each area. The data indicate that the SSCO was achieved for the average concentration of each CVOC in each thermal treatment area. Once the remedial goal was met for an entire treatment area, the remedial contractor requested acknowledgement of completion from NYSDEC for that area and, following receipt of such acknowledgement, decommissioned the treatment infrastructure in the area. By October 1, 2007, TerraTherm had received acknowledgement that treatment was complete in all treatment areas. TerraTherm completed decommissioning and demobilization by October 6, 2007.

Table 4 provides calculations of the total CVOC reductions within the four treatment areas during the IRM. These calculations, using RI samples from within the delineated treatment areas (prior to the IRM) and IRM verification samples from the same areas, indicate that for the combined four treatment areas, 99.92% of CVOCs were removed. The individual treatment area reductions ranged from 99.95% for the "B-3" area to 93.92% for the "B-5" area.

The following table provides a calculation of the mass of CVOCs removed from the combined treatment areas during the IRM. These calculations are based on the laboratory data for CVOCs at the inlet of the vapor treatment systems, along with the vapor flow rates.

CVOC Parameter	Mass Removed
CVOC Farameter	(Pounds)
Tetrachloroethylene	82,793
Trichloroethylene	2,196
cis-1,2-Dichloroethylene	1,055
trans-1,2-Dichloroethylene	33
Vinyl Chloride	128
Total CVOCs	86,205

5.0 SITE RESTORATION AND SOURCE OF FILL MATERIALS

Since there was no removal of subsurface soil from within the thermal treatment areas, fill materials were not required. The materials excavated from the "B-5" area and placed within the "B-1" and "B-3" areas, were replaced with rubblized concrete fill that was previously generated by crushing the floor slabs and concrete foundations of the former site buildings. After the treatment equipment was decommissioned from a treatment area, the areas were subjected to redevelopment work, including placement of imported granular fill to satisfy site construction requirements.

6.0 SUMMARY OF PROJECT COSTS

Under the BCP, costs associated with the RI and associated IRMs may be recoverable by a volunteer entity after the volunteer receives a Certificate of Completion indicating that the project was completed and approved by the NYSDEC. Project cost documents are presently being assembled by Pioneer Midler Avenue LLC, and will be provided under separate cover to become part of the project record.

7.0 "AS-BUILT" DRAWINGS

Figure 1 provides the approximate horizontal limits of the IRM treatment areas as well as the approximate vertical limits of IRM treatment. Figure 1 also indicates the locations of IRM verification samples and Table 1 provides the depths of those samples. Figure 3 shows the relationships between the treatment areas and planned site redevelopment of the site.

8.0 WASTE TRANSPORT MANIFESTS

As described in Section 2.5 of this report, several waste streams were generated during the IRM. Documentation relative to the disposal of these wastes is shown in Appendix C.

9.0 ENGINEERING OR INSTITUTIONAL CONTROLS

During the IRM, the following site engineering controls were maintained for project:

- Air Emissions Data from inlet and exhaust streams associated with the thermal oxidizer and vapor phase carbon treatment systems were collected and reported monthly The data reports are included in Appendix B-1.
- Condensate (water) from the vapor treatment system, discharged to the Onondaga County Department of Water Environment Protection (OCDWEP), was sampled and reported monthly consistent with the permit - The data reports are included in Appendix B-2.
- Community Air Monitoring was maintained consistent with the Community Air Monitoring Plan (June 2006) and Addendum 1 (August 4, 2006) Community Air Monitoring Documentation is provided in Appendix B-3.

Site security during the project was handled as a joint effort between Pioneer Midler LLC and TerraTherm.

There were no institutional controls in effect during the IRM. Such site controls, if appropriate for the future, will be implemented as part of the over-all site remedy, following assessments in the Qualitative Human Health Exposure Assessment and the Remedial Alternatives Assessment.

f:\project\c81 - pioneer development\c81.002 bcp\close out and coc\october 2007\irm report\report-1-final.doc

TABLES

Pioneer-Midier Avenue, LLC IRM Report

Table 1 - Verification Sample Identifications and Depths

Sample ID	Sample Depth (ft)	Sample Elevation	RI Reference Sample(s
-3 Thermal Treati	ment Area Samples		
V83-1	4-8	413.6 - 417.6	GPD-3
VB3-2	15-17	404.6 - 406.6	GPD-3
VB3-3	17-20	401.6 - 404.6	GPD-3
VB3-4	8-10	412.4 - 414.4	GPD-2
VB3-5	6-10	412.3 - 416.3	GPB 3-5
VB3-6	6-10	412.2 - 416.2	GPB 3-7
VB3-7	6-10	412.1 - 416.1	GPB 3-18
VB3-8	6-10	411.9 - 415.9	GPB 3-22
VB3-9	8-10	411.8 - 413.8	GP-13
VB3-10	14-16	405.0 - 409.0	B-3
VB3-11	10-12	409.6 - 411.6	I GP-4
VB3-12	14-17	404.6 - 407.6	GPB 3-8
VB3-13	6-10	411.7 - 415.7	GPB 3-13
VB3-14	14-17	405.1 - 408.1	GPB 3-3
VB3-15	16-19	402.9 - 405.9	GP-3; GP-16
VB3-16	- 14-16	405.9 - 407.9	GP-3
VB3-17	14-17	404.7 - 407.7	GPB 3-9
VB3-18	14-17	404.3 - 407.3	GPB 3-12
VB3-19	14-18	404.0 - 408.0	GPB 3-2; GPD-53
VB3-20	15-18	404.0 - 407.0	GPD-51
VB3-21	23-25	400.1 - 402.1	GP-15
VB3-22	23-25	400.1 - 402.1	GP-15
VB3-23	15-19	402.8 - 406.8	GPD-56
VB3-24	15-18	403.6 - 406.6	GPD-52
VB3-25	15-18	404.0 - 407.0	GPD-51
VB3-26	14-18	403.6 - 407.6	GPB 3-17
1 Thermal Treat	ment Area Samples		
VB1-1	14-18	401.9 - 405.9	GPB 1-4
VB1-2	11-15	405.0 - 409.0	GPD-26
VB1-3	4-7	413.0 - 416.0	GPD-26
VB1-4	16-18	402.1 - 404.1	DW-4
V81-5	14-17	402.1 - 405.1	GPB 1-10
VB1-6	4-6	414.5 - 416.5	B-1; TP-14
VB1-7	14-18	401.6 - 405.6	GPB 1-6
VB1-8	14-18	402.1 - 406.1	GPB 1-2
VB1-9	10-14	406.1 - 410.1	GPB 1-2
VB1-10	11-15	405.0 - 409.0	GPD-26
VB1-11	16-18	402.1 - 404.1	DW-4
VB1-12	14-17	402.1 - 405.1	GPB 1-10
VB1-13	14-18	401.3 - 405.3	GPB 1-7
VB1-14	17-19	400.3 - 402.3	GPD-38
VB1-15	10-12	408.0 - 410.0	GPB 1-3
VB1-16	7-10	409.2 - 412.2	GPD-31
VB1-17	14-17	402.4 - 405.4	GPB 1-1
VB1-18	14-18	401.4 - 405.4	GPB 1-9
VB1-19	7-11	407.9 - 411.9	GPD-27; GPD-35
VB1-20	11-15	404.2 - 408.2	GPD-32
	reatment Area Samples		
V3D-1	14-18	400.8 - 404.8	GP3-9
V3D-2	10-14	404.6 - 408.6	GP3-8
V3D-3	14-18	400.8 - 404.8	GP3-9
V3D-4	10-14	404.8 - 412.8	GP3-9
V3D-5	14-18	400.6 - 404.6	GP3-8

See Figure IRM-3 for verification sample locations.

^{1.} Verification sample elevations are calculated from the individual RI Reference Sample ground surface elevations

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Sample ID ->	Midler	VB3 - 1	VB3 - 1 DL	VB3 - 2	VB3 - 2	VB3 - 3	VB3 - 4	VB3 - 4 DL	VB3 - 5	VB - 5 DL	VB3-5	VB3 - 5 DL
Depth - >	ssco	5.9 - 9.9	5.9 -9.9	16.1 - 20.1	16.1 - 20.1	18.1 - 22.1	8 - 12	8 - 12	7-11	7-11	7-11	7 - 11
Date Sampled ->		03/08/07	03/08/02	03/08/07	05/07/07	03/08/07	03/08/02	03/08/07	03/02/02	03/02/02	02/01/02	02/07/07
Chloromethane		18 UJ	93 U	1,400 ∪	1,500 U	12 UJ	21 W	2,400 U	19 M	2,300 ∪	D 86	2,400 U
Vinyl chloride	800	65 J	85 E	1,400 ∪	1,500 U	12 UJ	220 J	2,400 U	8	2,300 ∪	⊃ 86	2,400 ∪
Bromomethane		18 U	ე წ	1,400 ∪	1,500 U	12 U	24 ∩	2,400 ∪	19 U	2,300 U	⊃ 86	2,400 U
Chloroethane		18 U	ე 88	1,400 ∪	1,500 U	12 U	24 U	2,400 ∪	19 U	2,300 U	⊃ 86	2,400 U
1,1-Dichloroethene		18 U	08	1,400 U	1,500 U	12 U	21 U	2,400 U	19 U	2,300 U	n 86	2,400 U
Carbon disulfide		f 9	10 DJ	1,400 U	1,500 U	2 J	٦°	2,400 ∪	၂၉	2,300 ∪	19 J	2,400 ∪
Acetone		580	580 BD		2,000	130 B	5,600	5,600 D	3,200	3,200 D	12,000 BEJ	4,800 D
Methylene chloride		18 U	70 BDJ		1,500 U	12 UJ	21 ₪	2,400 U	.0 er	2,300 U	100 1	2,400 ∪
1,1-Dichloroethane		18 U	080	1,400 U	1,500 U	12 U	, የ ቱ	2,400 U	19 U	2,300 U	086	2,400 U
2-Butanone		8	84 DJ	1,400 U	820 J	31	1,700 ر	1,700 DJ	1,000 J	1,000 DJ	2,600 EJ	1,500 DJ
Chloroform		18 C	0 SG	1,400 ∪	1,500 U	12 U	1 LZ	2,400 U	19 U	2,300 U	086	2,400 U
1,1,1-Trichloroethane		18 U	0 S6	1,400 U	1,500 U	12 U	21 U	2,400 U	19 U	2,300 U	086	2,400 ∪
Carbon tetrachloride		18 U	O 86	1,400 U	1,500 U	12 U	21 U	2,400 U	19 U	2,300 U	08 N	2,400 ∪
Benzene		18 U	0 S6	1,400 ∪	1,500 U	12 U	24	2,400 U	17 J	2,300 U	∩ 86	2,400 U
1.2-Dichloroethane		18 U	0 SG	1,400 U	1,500 U	12 U	21 U	2,400 U	19 U	2,300 ∪	∩ 86	2,400 U
Trichloroethene	2,800	140	200 D	3,300	L 097	L 4	\$	2,400 U	120	2,300 ∪	18 J	2,400 U
1.2-Dichloropropane		18 U	U 86	1,400 U	1,500 U	12 U	21 U	2,400 U	19 U	2,300 ∪	∩ 86	2,400 U
Bromodichloromethane		18 U	0 S6	1,400 U	1,500 U	12 U	21 U	2,400 ∪	19 U	2,300 U	08 U	2,400 U
cis-1.3-Dichloropropene		18 U	U 56	1,400 ∪	1,500 U	12 U	21 U	2,400 U	19 U	2,300 ∪	N 86	2,400 U
4-Methyl-2-pentanone		18 U	0 S6	1,400 ∪	1,500 U	12 U	Ր9	2,400 ∪	19 U	2,300 U	N 86	2,400 U
Toluene		18 U	0 S6	1,400 ∪	1,500 ∪	12 U	54	2,400 ∪	36	2,300 ∪	13 J	2,400 U
trans-1,3-Dichloropropene		18 U	0 S6	1,400 ∪	1,500 U	12 U	21 U	2,400 ∪	19 U	2,300 U	O 86	2,400 U
1.1.2-Trichloroethane		18 U	∩ 86	1,400 ∪	1,500 U	12 U	21 U	2,400 ∪	19 U	2,300 U	O 86	2,400 U
Tetrachloroethene	5,600	150	260 D	14,000	4,400	ጉ6	99	2,400 U	830 J	830 JD	130	300 EV
2-Hexanone		18 U	93 U	1,400 U	1,500 U	12 U	21	2,400 ∪	Г9	2,300 ∪	∩ 86 ∩	2,400 U
Dibromochloromethane		18 U	ე 86 03 ∩	1,400 ∪	1,500 U	12 U	21.U	2,400 U	19 U	2,300 U	∩ 86	2,400 U
Chlorobenzene		18 U	93 U	1,400 ∪	1,500 U	12 U	21 U	2,400 ∪	19 U	2,300 ∪	∩ 86	2,400 ∪
Ethylbenzene		18 U	03 U	1,400 ∪	1,500 U	12 U	21 U	2,400 U	19 U	2,300 U	08 O	2,400 ∪
Styrene		18 U	93 U	1,400 ∪	1,500 U	12 U	21 U	2,400 U	19 O	2,300 U	⊃ : 86 :	2,400 U
Bromoform		18 U	O 86	1,400 U	1,500 U	15 O	24 0	2,400 U	19.0	2,300 U	0.86	2,400 U
1,1,2,2-Tetrachloroethane		18 U	93 U	1,400 U	1,500 U	12.0	0 12	2,400 U	0.61	2,300 U	288	2,400 U
Total Xylenes		18 U	93 U	1,400 U	1,500 U	12 0	140	2,400 U	49	2,300 U	28	2,400 U
cis-1,2-Dichloroethene		170	200 D	750 J	240)	2 2	4,700	4,700 D	320	320 DA	20.7	2,400 U
trans-1,2-Dichloroethene	1,200	4	55 DJ	1,400 U	1,500 U	12 U	650 J	GC 099	9	2,300 U	286	2,400 U
Dichlorodifluoromethane		18 0	D :	1,400 U	1,500 U	12.0	2 2 2	2,400 0	0 6 9	2,300 0	3 8	2,400 0
Trichlorofluoromethane		0 S	D 56	1,400 C	1,500 U	12 U	21.0	2,400 0	0 6 9	2,300 0	28 8	2,400 0
1,1,2-Trichloro-1,2,2-trifluoroethane		18 0	0.56	1,400 U	0.006,1	0 21	יבו כ	2,400 0	2 5	2,300 0	8 8	2,400 0
Methyl-t-butyl ether (MTBE)		18 0	93 0	1,400 U	U 006,1	12.0	0 2	2,400 U	2 5	2,300 0	8 8	2,400 0
1,2-Dibromoethane		D 81	93 0	1,400 U	0.006,1	12.0	5 Z	2,400 U	2 5	2,300 0	200	2,400 0
Isopropylbenzene		0 8 0	25.0	1,400 0	0 000	מין	7 8	2,400 0	2 5	2,300 0	0 00	2,400
1,3-Dichlorobenzene		0 81 18 0	⊃ :	1,400 U	0.000,1	12.0	0 12	2,400 0	2 3	2,300 0	9 8	2,400 0
1,4-Dichlorobenzene		18 C	∩ 88 03 ∩	1,400 U),500 U	12.0	0 [2	2,400 U	0 2	2,300 U	2 3	2,400 0
1,2-Dichlorobenzene		18 C	ე 83	1,400 U	1,500 U	12 N	21 U	2,400 U	D 61	2,300 U	86	2,400 U
1,2-Dibromo-3-chloropropane		18 U	93 U	1,400 U	1,500 U	12 U	21 U	2,400 U	19 U	2,300 U	∩ 86	2,400 ∪
1,2,4-Trichlorobenzene		D 8₽	98 U	1,400 U	1,500 U	12 N	21 U	2,400 U	19 N	2,300 U	O 86	2,400 ∪
Methyl acetate		18 U	93 U	1,400 U	1,500 U	150	24 0	2,400 U	19 0	270 DJ	98	2,400 U
Cyclohexane		18 O	n :	1,400 U	1,500 U	150	210	2,400 U	19 0	2,300 U	⊃ : 85 8	2,400 U
Methylcyclohexane		18 U	93 U	1,400 ∪	1,500 U	12 U	21 U	2,400 U	D 82	2,300 U	38	2,400 U

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Sample ID ->	Midler	VB3 - 6	VB3 - 6 DL	VB3 - 6	VB3 - 7	VB3 - 7 DL	VB3 - 7 **	VB3 - 7	VB3 - 7	VB3 - 8	VB3 - 8	VB3 - 9	VB3 - 9 DL
	ļ	7-11	7-11	7-11	7.6 - 11.6	7.6 - 11.6	7.6 - 11.6	7-9	9-11.6	7.3 - 11.3	7.3 - 11.3	8.75 - 12.75	8.75 - 12.75
Date Sampled ->	ర	20/20/60	03/02/02	20/02/00	05/07/07	05/07/07	5/16/2007	06/06/07	20/90/90	03/08/07	05/07/07	03/07/02	03/01/07
Chloromethane	2	54,000 UJ	110,000 U	3,500 U	2,600 ∪	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 ∪		2,500 U
Vinyl chloride	800	54,000 UJ	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 ∪	2,400 ∪	11,000 U	3,100 U	Г 9	2,500 U
Bromomethane	S	54,000 UJ	110,000 U	3,500 U	2,600 ∪	100,000 U	1,000 ∪	2,800 ∪	2,400 ∪	11,000 U	3,100 U	20 0	2,500 U
Chloroethane	ഹ	54,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 ∪	2,800 U	2,400 U	11,000 U	3,100 U	200	2,500 U
1,1-Dichloroethene	S	54,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	200	2,500 U
Carbon disulfide	S	74,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 ∪	2,800 U	2,400 ∪	11,000 U	3,100 U	7 J	2,500 U
Acetone	2	54,000 U	110,000 U	14,000	11,000	100,000 U	8,900 B	38,000 J	15,000	5,600 J	28,000	2,900 BE	7,300 D
Methylene chloride	2	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	1,400 J	3,100 U	20 CD	2,500 U
1,1-Dichloroethane	2	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	20 ∩	2,500 U
2-Butanone	2	54,000 U	110,000 U	3,500	2,300 J	100,000 U	1,000 U	7,200 J	3,200	11,000 U	8,300	2,200 J	2,200 DJ
Chioroform	9	54,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	20 N	2,500 U
1,1,1-Trichloroethane	3	54,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	50 U	2,500 U
Carbon tetrachloride	2	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 ∪	20 U	2,500 ∪
Benzene	9	54,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	20 N	2,500 U
1,2-Dichloroethane	2	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	20 C	2,500 U
	2,800	22,000 J	20,000 DJ	3,500 U	50,000	59,000 DJ	660 BJ	1,200 J	2,400 U	17,000	3,100 U	150	2,500 U
pane	_	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	U 000,1	2,800 U	2,400 U	11,000 U	3,100 U	20 ∩	2,500 U
Bromodichloromethane	S	54,000 U	110,000 U	3,500 U	2,600 U	100,000 ∪	1,000 U	2,800 ∪	2,400 U	11,000 U	3,100 U	20 U	2,500 U
cis-1,3-Dichloropropene	3	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 ∪	2,400 U	11,000 U	3,100 U	20 C	2,500 U
4-Methyl-2-pentarione	S	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 ∪	2,400 ∪	11,000 U	3,100 U	8	2,500 U
Toluene	ις)	74,000 U	110,000 U	3,500 U	2,600 ∪	100,000 U	1,000 U	2,800 ∪	2,400 ∪	11,000 U	3,100 U	48	2,500 U
trans-1,3-Dichloropropene	4S	54,000 U	110,000 U	3,500 U	2,600 ∪	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	20 O	2,500 U
		54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	20 U	2,500 U
Tetrachloroethene	5,600 1,00		1,000,000 D	1,100 J	430,000 EJ	830,000 D	8,100	11,000	860 J	62,000	10,000	280	1,100 JD
2-Hexanone	43	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	20	2,500 U
Dibromochloromethane	ς)	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	· 2,800 U	2,400 ∪	11,000 U	3,100 U	n :	2,500 U
Chlorobenzene	3	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	20 U	2,500 U
Ethylbenzene	40	54,000 U	110,000 U	3,500 U	2,600 U	100,000	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	28.8	2,500 U
Styrene	1 (2	54,000 U	110,000 U	3,500 U	2,600 U	100,000	0.000,	7 800 C	2,400 0	11,000 0	2 2 2	20.00	2,500 0
Bromoform	47 14	54,000 U	110,000 01	3,500 0	2,600 U	100,000	1,000	2,800 0	2,400 U	2000	2001.6	202	2500 U
Total Xylanas	, (C	54,000 11	110,000	3,500 U	1.100 J	100,000 U	1.000 U	2.800 U	2,400 U	11,000 U	3,100 ∪	130	2,500 U
cis-1.2-Dichloroethene	,	6,600 U	110,000 U	3,500 U	23,000	23,000 DJ	J 000,1	760 J	2,400 U	16,000	3,100 U	1,800 J	1,800 DJ
91	1,200	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	14 J	2,500 U
Dichlorodifluoromethane	4)	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 ∪	2,400 ∪	11,000 U	3,100 U	20 U	2,500 U
Trichlorofluoromethane	u):	54,000 U	110,000 U	3,500 ∪	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	S0 ∩	2,500 U
1,1,2-Trichloro-1,2,2-trifluoroethane	(J	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 ∪	11,000 U	3,100 U	20 0	2,500 U
Methyl-t-butyl ether (MTBE)	4)	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	11,000 U	3,100 U	20 U	2,500 U
1,2-Dibromoethane	4)	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	0.000,11	3,100 U	2 2	0 000
Isopropylbenzene	47	54,000 U	110,000 U	3,500 U	2,600 U	100,000	U 000,r	2,800 U	2,400 U	000,11	3,100 U	2 2	2,500 0
1,3-Dichlorobenzene	4)	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 U	2,400 U	000,11	3,100 U	20.00	2,500 0
1,4-Dichlorobenzene	42	54,000 U	110,000 U	3,500 U	2,600 U	100,000	O 000'L	2,800 U	2,400 U	U 000,11	3,100 U	20 0	2,500 U
1,2-Dichlorobenzene	47	54,000 U	110,000 U	3,500 U	2,600 U	100,000	D 000'L	2,800 U	2,400 U	U 000,11	3,100 U	2 2	2,500 U
1,2-Dibromo-3-chloropropane	4)	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	1,000 U	2,800 ∪	2,400 U	1,000 U	3,100 U	200	2,500 U
1,2,4-Trichlorobenzene	4)	54,000 U	110,000 U	3,500 U	2,600 U	100,000	1,000 U	2,800 U	2,400 U	000,11	3,100 U	20.0	2,500 U
Methyl acetate	1	54,000 U	110,000 U	3,500 U	2,600 U	100,000 U	J.000 L	2,800 0	2,400 0	000,1	3,100 0	2 2	410 00
Cyclohexane		54,000 U	110,000 01	0.000	7,600 0	000,000	000,	2,800 0	2,400 0	1,000 0	3,100.0	2 20	2,500 0
Methylcyclonexane	-	54,000 0	0 000	o one's	Z,000 C	2 222,001	2 2001,	6,000 v	2 vvT,2	250,11	2016	,	2 2226

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Depth - > Date Sampled - > Chloromethane Vinyl chloride Bromomethane	0000		20,000	VB3 - 10	VB - 11	VD3 - 1	V63 - 11 DL	VB3 - 12	VD3 - 12	VD3 - 12	VB3-13	VB3 - 13 DL
Date Sampled -> Chloromethane Vinyl chloride Bromomethane	3	14.5 - 18.5	14.5 - 18.5	14.5 - 18.5	10.5 - 14.5	10.5 - 14.5	10.5 - 14.5	14.8 - 18.8	14.8 - 18.8	14.8 - 18.8	7.25 - 11.25	7.25 - 11.25
Chloromethane Vinyl chloride Bromomethane		03/02/02	05/07/07	05/21/07	03/15/07	05/07/07	05/07/07	03/15/07	02/08/07	20/90/90	03/08/07	03/08/07
Vinyl chloride Bromomethane		13,000 UJ	1,800 U	U 006,1	O 0027	n ee	1,800 U	2,000 U	2,200 U	2,200 U	∩ 96 ∩	1800 U
Bromomethane	800	13,000 UJ	1,800 U	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 ∪	⊃ &	1800 U
		13,000 UJ	1,800 U	1,900 U	2700 U	33 ∪	1,800 U	2,000 U	2,200 U	2,200 ∪	⊃ 86	1800 U
Chloroethane		13,000 U	1,800 U	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 ∪	⊃ 96	1800 ∪
1,1-Dichloroethene		13,000 U	1,800 U	1,900 U	2700 U	0 EE	1,800 U	2,000 U	2,200 ∪	2,200 ∪	∩ 96	1800 U
Carbon disulfide		13,000 U	1,800 U	1,900 U	00/Z	11 J	1,800 U	2,000 U	2,200 U	2,200 U	∩ %	1800 U
Acetone		13,000 U	2,900	10,000 U	5400	3200 J	4,200 DJ	1,100 J	4,300	15,000 J	2600	2600 D
Methylene chloride		13,000 U	1,800 U	n 98	2700 U	8	1,800 U	2,000 ∪	2,200 U	2,200 ∪	140 U	230 DJ
1,1-Dichloroethane		13,000 U	1,800 U	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 U	⊃ 86	1800 U
2-Butanone		13,000 U	3,100	2,200	L 0081	099	1,300 DJ	590 J	1,400 J	4,100 J	2000 E	2000 D
Chloroform		13,000 U	1,800 U	1,900 U	2700 U	33 U	1,800 U	2,000 ∪	2,200 U	2,200 ∪	⊃ 86	1800 U
1,1,1-Trichloroethane		13,000 U	1,800 U	1,900 U	0072	n ee	1,800 U	2,000 ∪	2,200 U	2,200 U	∩ 96	1800 U
Carbon tetrachloride		13,000 U	1,800 ∪	1,900 U	2700 U	33 0	1,800 U	2,000 ∪	2,200 U	2,200 U	∩ 96	1800 U
Benzene		13,000 U	1,800 U	1,900 ∪	2700 ∪	33 0	1,800 U	2,000 U	2,200 ∪	2,200 U	l 71	1800 U
1,2-Dichloroethane		13,000 U	1,800 U	1,900 ∪	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 U	∩ 96 ∩	1800 U
Trichloroethene	2,800	3,100 J	1,800 U	1,900 ∪	3400	၁၁	1,800 U	5,200	5,700	6,700	220	350 DJ
1,2-Dichloropropane		13,000 U	1,800 U	1,900 ∪	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 U	∩ 96 ∩	1800 U
Bromodichloromethane		13,000 U	1,800 ∪	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 U	⊃ 96	1800 U
cis-1,3-Dichloropropene		13,000 U	1,800 U	1,900 ∪	2700 U	0 88	1,800 U	4,600	2,200 U	2,200 U	∩ 96	1800 U
4-Methyl-2-pentanone		13,000 U	1,800 ∪	1,900 U	N 00/Z	33 U	1,800 U	2,000 U	2,200 U	2,200 U	∩ 96	1800 U
Toluene		13,000 U	1,800 U	1,900 ∪	2700 U	33 ∩	1,800 U	2,000 U	2,200 U	2,200 U	48 J	1800 U
trans-1,3-Dichloropropene		13,000 U	1,800 U	1,900 U	2700 ∪	33 U	1,800 U	2,000 U	2,200 U	2,200 U	N 96	1800 U
1,1,2-Trichloroethane		13,000 U	1,800 U	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 U	n 96 ∩	1800 U
Tetrachloroethene	5,600	260,000	20,000	4,100	4700	160	850 DJ	10,000	25,000	31,000	320	840 DJ
2-Hexanone		13,000 U	1,800 U	1,900 U	2700 U	n &	1,800 U	2,000 U	2,200 U	2,200 U	n 96	1800 U
Dibromochloromethane		13,000 U	1,800 U	1,900 U	2700 U	33 U	1,800'U	2,000 U	2,200 U	2,200 ∪	∩ 96	1800 U
Chlorobenzene		13,000 U	1,800 ∪	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 ∪	∩ 96	1800 U
Ethylbenzene		13,000 U	1,800 ∪	1,900 U	2700 U	33 U	1,800 U	2,000 U	2,200 U	2,200 U	130	1800 U
Styrene		13,000 U	1,800 U	1,900 U	2700 U	0 SE	1,800 U	2,000 U	2,200 U	2,200 U	n %	1800 U
Bromoform		13,000 U	1,800 U	1,900 U	2700 U	33 0	1,800 U	2,000 U	2,200 U	2,200 U	98	1800 U
1,1,2,2-Tetrachloroethane		13,000 U	1,800 U	1,900 U	2700 U	33 በ	1,800 U	2,000 U	2,200 U	2,200 ∪	98	1800 0
Total Xylenes		13,000 U	1,800 U	1,900 U	2700 U	33 0	1,800 U	2,000 U	2,200 U	2,200 U	100	1800 U
cis-1,2-Dichloroethene		13,000 U	1,800 U	1,900 ∪	0089	33 0	1,800 U	2,000 U	5,700	5,700	3100	3100 D
trans-1,2-Dichloroethene	1,200	13,000 U	1,800 U	1,900 U	2700 U	330	1,800 U	2,000 U	2,200 U	2,200 U	31 7	1800 U
Dichlorodifluoromethane		13,000 U	1,800 U	1,900 U	2700 U	38	1,800 U	2,000 U	2,200 U	2,200 U	98	0081
Trichlorofluoromethane		13,000 U	1,800 U	1,900 U	2700 U	8	1,800 U	2,000 U	2,200 U	2,200 U	95	0081
1,1,2-Trichloro-1,2,2-trifluoroethane		13,000 U	008,1	1,900 U	2,000	28.0	0.008,1	2,000 0	2,200 0	2,200 0	8 8	0000
Methyl-t-butyl ether (MTBE)		13,000 U	1,800 U	1,900 U	2700 U	88	008,	2,000 U	2,200 U	2,200 0	98 8	0 0081
1,2-Dibromoethane		13,000 U	1,800 U	U 006,1	2/00 0	28.5	0 008,	2,000 0	2,200 0	2,200 0	8 8	2000
Isopropylbenzene		13,000 U	0.008,1	1,900 U	2/00 0	28	1,800 U	2,000 0	ביצמח ח	2,200 0	8 8	0 000
1,3-Dichlorobenzene		13,000 U	1,800 U	1,900 U	2700 U	88	0 008,	2,000 U	2,200 U	2,200 U	98	0.0081
1,4-Dichlorobenzene		13,000 U	1,800 U	1,900 U	2700 U	330	O 008,	2,000 U	2,200 U	2,200 U	98	1800 0
1,2-Dichlorobenzene		13,000 U	1,800 U	1,900 U	2700 ∪	33 0	1,800 U	2,000 U	2,200 U	2,200 U	⊃ : 88 :	1800 C
1,2-Dibromo-3-chloropropane		13,000 U	1,800 U	1,900 U	2700 ∪	33 ∩	1,800 U	2,000 U	2,200 ∪	2,200 ∪	∩ 96	1800 N
1,2,4-Trichlorobenzene		13,000 ∪	1,800 U	1,900 U	2700 U	33 ∩	1,800 U	2,000 U	2,200 U	2,200 ∪	98	1800 U
Methyl acetate		13,000 €	1,800 U	D 006,	2700 U	33.0	1,800 U	2,000 U	2,200 U	2,200 U	98 8	77 00°C
Cyclohexane		13,000 U	008,1 1,800	D 006,	2700 U	33.0	1,800 U	2,000 U	2,200 U	2,200 U	98 8	1800 0
Methylcyclohexane		13,000 U	1,800 U	1,900 U	2700 U	33.0	J,800 U	2,000 U	2,200 U	2,200 U	98	1800

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Sample ID ->	Midler	VB3 - 14	VB3 - 14 DL	VB3 - 14	VB3 - 14	VB3 - 14	VB3 - 15	VB3 - 15	VB3 - 16	VB3 - 16 DL	VB3 - 17	VB3 - 17	VB3 - 18
	SSCO	7.5 - 11.5	7.5 - 11.5	15.1 - 19.1	15.9 - 19.1	15.1 - 19.1	17.1 - 21.1	17.1 - 21.1	14.4 - 18.4	14.4 - 18.4	14.9 - 18.9	14.9 - 18.9	14.9 - 18.9
Date Sampled ->		03/02/02	03/07/07	03/15/07	05/08/07	20/90/90	03/02/02	05/08/07	03/09/07	03/09/07	20/60/60	05/07/07	03/15/07
Chloromethane	-	-16 UJ	1900 ∪	2500 ∪	2,200 U	2300 U	3700 UJ	1,700 U	16 U	1,800 U	∩ 000'09E	2,200 U	2,000 U
Vinyl chloride	800	2)	1900 ∪	2500 ∪	2,200 U	240 J	3700 UJ	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Bromomethane		16 U	200 DJ	2500 ∪	2,200 U	2300 U	3700 UJ	1,700 U	16 U	290 DJ	360,000 U	2,200 U	290 J
Chloroethane	-	16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1,1-Dichloroethene		U 9F	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 ∪
Carbon disulfide		2	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	2 J	1,800 U	360,000 U	2,200 U	2,000 ∪
Acetone		0 9t	1900 U	2300	2,800	8700 J	7100	7,600	670 J	870 DJ	360,000 U	7,600	540 J
Methylene chloride		16 UJ	1900 U	2500 U	2,200 U	2300 ∪	3700 U	1,700 U	16 U	240 DJ	42,000 J	2,200 U	2,000 ∪
1.1-Dichloroethane		16 U	1900 U	2500 U	2,200 ∪	2300 ∪	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 ∪
2-Butanone	_	-11	1900 U	2200 J	1,200 J	2500 J	2600 €	3,000	210	420 DJ	360,000 U	2,200	450 J
Chloroform	-	16 U	1900 U	2500 U	2,200 ∪	2300 ∪	3700 U	1,700 ∪	16 U	1,800 ∪	O00,09E	2,200 U	2,000 ∪
1.1.1-Trichloroethane		190	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	19 N	1,800 U	360,000 U	2,200 U	2,000 U
Carbon tetrachloride		19	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 ∪	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Banzene		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 ∪	1,700 U	16 U	1,800 ∪	360,000 U	2,200 ∪	2,000 ∪
1.2-Dichloroethane		16 U	1900 U	2500 ∪	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 ∪	360,000 U	2,200 U	2,000 ∪
Trichloroethene	2.800	560 J	360 JD	1700 J	3,100	3400	8800	1,700 U	64	1,800 ∪	F 000'96	2,200 ∪	11,000
1 2-Dichloropropage		19 N	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Bromodichloromethane		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
cis-1 3-Dichloropropene		16 U	1900 U	2500 U	2,200 U	2300 ∪	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 U
4-Mathyl-2-pentanone		16 U	1900 ∪	2500 U	2,200 ∪	2300 ∪	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 ∪
Tolliene	1	n 91	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 U
trans-1 3-Dichlomoronene		19 n	1900 U	2500 U	2.200 U	2300 ∪	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1 1 2-Trichlomethane		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 ∪
Tetrachlomethene	5.600	2900	2900 D	0099	19,000	19000	64000	2,600	2,000	2,000 D	5,200,000	17,000	120,000 €
2-Hexanone	5	U 91	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 ∪
Discomochloromethane		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	71,700 U	16 U	1,800 ∪	360,000 ∪	2,200 U	2,000 ∪
Chlorobenzene		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 ∪	2,000 U
Ethylbenzene		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Styrene		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	∩ 000'09€	2,200 U	2,000 U
Bromoform		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1.1.2.2-Tetrachloroethane		U 91	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Total Xylenes		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
cis-1,2-Dichloroethene		61	1900 U	620 J	2,200	1800 J	1700 J	1,700 U	۲٦	1,800 U	360,000 ∪	2,200 U	7,800
trans-1,2-Dichloroethene	1,200	L 4	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 U
Dichlorodiffuoromethane		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Trichlorofluoromethane		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 ∪	360,000 U	2,200 U	2,000 U
Methyl-t-butyl ether (MTBE)	_	16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 ∪	2,000 U
1,2-Dibromoethane		16 U	1900 U	2500 U	2,200 ∪	2300 U	3700 ∪	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 ∪
Isopropylbenzene		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1,3-Dichlorobenzene		16 U	1900 U	2500 ∪	2,200 U	2300 ∩	3700 ∪	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1,4-Dichlorobenzene		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1,2-Dichlorobenzene		16 U	1900 U	2500 U	2,200 U	2300 U	3200 ∩	1,700 U	16 U	1,800 U	360,000 ∪	2,200 U	2,000 U
1,2-Dibromo-3-chloropropane		16 U	1900 U	2500 U	2,200 U	2300 ∩	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
1,2,4-Trichlorobenzene		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Methyl acetate		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 U
Cyclohexane		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	19 n	1,800 U	360,000 U	2,200 U	2,000 U
Methylcyclohexane		16 U	1900 U	2500 U	2,200 U	2300 U	3700 U	1,700 U	16 U	1,800 U	360,000 U	2,200 U	2,000 0

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Depth - > Date Sampled ->	COSS	VB3 - 18 DL	VB3 - 18	VB3 - 19	VB3 - 19	VB3 - 19	VB3 - 19	VB3-20	VB3 - 20 DL	VB3 - 20	VB3 - 21	VB3 - 21 DL
Date Sampled ->	2	14.9 - 18.9	14.9 - 18.9	15.6 - 19.6	15.6 - 19.6	15.6 - 19.6	15.6 - 19.6	16.9 - 20.9	16.9 - 20.9	16.9 - 20.9	16.9 - 20.9	16.9 - 20.9
		03/15/07	05/08/07	03/07/07	05/08/07	05/21/07	20/90/90	03/09/07	03/09/02	02/08/02	03/08/02	03/09/07
Chloromethane		10,000 U	1,700 ∪	2,200 UJ	2,600 U	2,500 U	2,200 U	93 ∩	23,000 ∪	2,000 U	28 ⊃	10,000 U
Vinyl chloride	800	10,000 U	1,700 ∪	2,200 UJ	2,600 U	2,500 ∪	2,200 U	83 ∩	23,000 U	2,000 U	84 O	10,000 U
Bromomethane		10,000 U	1,700 U	2,200 UJ	2,600 U	2,500 U	2,200 U	ე 83 ∩	23,000 U	2,000 U	88 ⊃	10,000 U
Chloroethane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 ∪	2,200 U	83 ∩	23,000 ∪	2,000 U	84 O	10,000 U
1,1-Dichloroethene		10,000 U	1,700 ∪	2,200 U	2,600 U	2,500 U	2,200 U	83 N	23,000 U	2,000 U	049	10,000 U
Carbon disulfide		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	⊃ 88	23,000 U	2,000 U	240	10,000 U
Acetone		10,000 U	5,500	1,000 J	13,000	15,000 U	12,000 ا	2,100 BEJ	5,000 DJ	11,000	3,400 BEJ	7,400 DJ
Methylene chloride		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	ე წ	23,000 U	2,000 U	98 ∩	10,000 U
1,1-Dichloroethane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	93 U	23,000 U	2,000 U	84 ∩	10,000 U
2-Butanone		10,000 €	2,400	2,200 U	5,500	4,500	4,700 J	850	23,000 U	4,400	1,700 EJ	2,600 DJ
Chloroform		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 N	23,000 U	2,000 U	94 ∩	10,000 U
1.1.1-Trichloroethane		10,000 U	1,700 U	2,200 U	2,600 ∪	2,500 U	2,200 ∪	83 U	23,000 U	2,000 ∪	84 N	10,000 U
Carbon tetrachloride		10,000 U	1,700 ∪	2,200 U	2,600 U	2,500 U	2,200 ∪	83 U	23,000 U	2,000 ∪	94 ∩	10,000 U
Benzene		10.000 U	1,700 U	2,200 ∪	2,600 U	2,500 U	2,200 ∪	n 88	23,000 U	2,000 ∪	94 ∪	10,000 U
1.2-Dichloroethane		10,000 U	1,700 U	2,200 U	2,600 ∪	2,500 U	2,200 ∪	83 U	23,000 U	2,000 ∪	94 ∩	10,000 U
Trichloroethene	2,800	13,000 D	720 J	5,200	4,200	3,000	1,600 J	29,000 EJ	26,000 D	2,000 U	3,100 EJ	5,600 DJ
1.2-Dichloropropane		10,000 U	1,700 U	2,200 ∪	2,600 ∪	2,500 U	2,200 ∪	83 U	23,000 U	2,000 ∪	84 N	10,000 U
Bromodichloromethane		10,000 U	1,700 U	2,200 ∪	2,600 U	2,500 U	2,200 ∪	83 U	23,000 ∪	2,000 ∪	94 ∪	10,000 U
cis-1.3-Dichloropropene		10,000 U	1,700 U	2,200 ∪	2,600 U	2,500 ∪	2,200 ∪	93 0	23,000 U	2,000 ∪	84 ∪	10,000 U
4-Methyl-2-pentanone		10.000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 ∪	93 ∪	23,000 ∪	2,000 ∪	84 U	10,000 U
Toluene		10.000 U	1,700 U	2,200 U	2,600 U	42	2,200 ∪	27 J	23,000 ∪	2,000 ∪	32 J	10,000 U
trans-1.3-Dichloropropene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	93 ∪	23,000 ∪	2,000 U	94 ∩	10,000 U
1.12-Trichloroethane		10,000 U	1.700 U	2,200 ∪	2,600 U	2,500 ∪	2,200 U	93 ∪	23,000 ∪	2,000 ∪	84 N	10,000 U
Tetrachloroethene	5.600	160,000 D	7.400	290 J	30,000	18,000	5,700	93,000 EJ	460,000 D	4,900	36,000 EJ	180,000 D
2-Hexanone		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 0	23,000 ∪	2,000 ∪	18 J	10,000 ∪
Dibromochloromethane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 ∪	2,200 U	93 U	23,000 ∪	2,000 U	84 ∪	10,000 U
Chlorobenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 U	23,000 U	2,000 U	84 ∪	10,000 ∪
Ethylbenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	40 J	23,000 U	2,000 U	Г6	10,000 U
Styrene		10,000 U	U 007,1	2,200 U	2,600 U	2,500 U	2,200 U	83 ∩	23,000 U	2,000 U	84 ∩	10,000 U
Bromoform		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 ∩	23,000 U	2,000 U	84 N	10,000 U
1,1,2,2-Tetrachloroethane		10,000 U	U 007,1	2,200 U	2,600 U	2,500 U	2,200 U	83 ∩	23,000 U	2,000 ∪	84 N	10,000 U
Total Xylenes		10,000 U	1,700 U	2,200 U	2,600 ∪	110 J	2,200 U	170	23,000 U	2,000 ∪	86	10,000 U
cis-1,2-Dichloroethene		8,700 DJ	f 068	18,000	3,000	2,200 ∫	2,300	10,000 EJ	9,500 DJ	2,000 ∪	200	10,000 U
trans-1,2-Dichloroethene	1,200	10,000 U	1,700 U	290	2,600 U	2,500 U	1,900 J	170	23,000 U	2,000 U	28 ∶	10,000
Dichlorodifluoromethane		10,000 U	1,700 U	2,200 ∪	2,600 U	2,500 U	2,200 U	93 U	23,000 U	2,000 U	28 0	10,000 U
Trichlorofluoromethane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 0	23,000 ∪	2,000 U	84 0	10,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	2 2	23,000 U	2,000 U	2 2 2	000,01
Methyl-t-butyl ether (MTBE)		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	200	23,000 0	2,000 U	2 2	10,000 0
1,2-Dibromoethane		U 000,01	1,700 U	2,200 U	2,600 U	0 00¢%	2,200 U	33.0	23,000 U	2,000 0	\$ 5	0.000,01
isopropylbenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	28	Z3,000 U	2,000 0	2 2 2	0 000,01
1,3-Dichlorobenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	28	23,000 U	2,000	0 2 2	O OOO'OL
1,4-Dichlorobenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	33 ∩	23,000 U	2,000 U	28	10,000 U
1,2-Dichlorobenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 C	23,000 U	2,000 U	28	10,000 U
1,2-Dibromo-3-chloropropane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 C	23,000 U	2,000 U	84 ∩	10,000 U
1,2,4-Trichlorobenzene		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	83 0	23,000 U	2,000 U	\$	10,000 U
Methyl acetate		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 ∪	83 U	23,000 U	2,000 U	2 8	10,000 U
Cyclohexane		10,000 U	1,700 U	2,200 U	2,600 ∪	2,500 U	2,200 U	83 O	23,000 U	2,000 U	84 D	10,000 U
Methylcyclohexane		10,000 U	1,700 U	2,200 U	2,600 U	2,500 U	2,200 U	28	23,000 U	2,000 U	84 U	10,000 0

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

8 - 22 16 - 20 16 16 16 16 16 16 16 16 16 16 16 16 16		16.20 166.206	16.6 - 20.6	188,20 B		16.4.20.4	7 00 7 61	1000
1,000				0.0	16.6 - 20.6	10.4	16.4 - 20.4	6.02 - 6.03
100 100	8	0		20/80/90	05/21/07	03/02/02	03/02/02	05/08/07
800 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 2,200 U 1 1,900 U 76 U 99,000 U 2,200 U 2,200 U 1,900 U 76 U 99,000 U 2,200 U 2,200 U 1,900 U 1,900 U 1,900 U 76 U 99,000 U 2,200 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U	6	2,200 U 60,000 UJ	J 120,000 U	2,700 U	2,600 U	10,000 UJ	21,000 U	2,200 U
1,000 U 76 U 99,000 U 2,200 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 76 U 99,000 U 2,200 U 2,200 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,000 U 1,000 U 76 U 99,000 U 2,200 U 1,000 U 1,00	6	2,200 U 60,000 UJ	J 120,000 U	2,700 U	2,600 U	1,900 J	21,000 U	2,200 U
71 U 1900 U 76 U 99,000 U 2,200 U 1 1,900 U 1 1,900 U 76 U 99,000 U 2,200 U 1 1,900 U 1 1,900 U 1 76 U 99,000 U 2,200 U 1 1,900 U 1,90		2,200 U 60,000 UJ		2,700 U	2,600 U	10,000 UJ	21,000 U	2,200 ∪
11.00			120,000 U	2,700 U	2,600 U	10,000 U	21,000 U	2,200 ∪
14.1 1,900 U 76 U 89,000 U 1,200 U 1,000 BEJ 1,000 B				2,700 U	2,600 U	10,000 U	21,000 U	2,200 ∪
13,000 BEJ 3,000 D 1,600 BEJ 99,000 U 13,000		2,200 U 60,000 U	120,000 U	2,700 U	2,600 ∪	10,000 U	21,000 U	2,200 U
66 U 1900 U 30 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 23,000 E 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 77 U 1,	6		120,000 U	9,500	23,000 B	10,000 U	21,000 U	7,200
3,200 E_J 1,900 U 289 J 99,000 U 2,200 U 1,900 U 71 U 1,900 U 76 U 99,000 U 2,200 U 2,200 U 1,900 U 14 J 99,000 U 2,200 U 2,200 U 1,900 U 14 J 99,000 U 2,200 U 2,200 U 1,900 U 1,900 U 14 J 99,000 U 2,200 U 2,200 U 1,900 U 1,900 U 2,200 U 2,200 U 2,200 U 1,900 U 1,900 U 2,200 U 2,20	86			2,700 U	79 U	10,000 U	21,000 U	2,200 U
3,200 EJ 1,000 DJ 880 J 99,000 U 4,400 77 U 1,900 U 76 U 99,000 U 2,200 U 71 U	ði			2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
710 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 14J 99,000 U 2,200 U 2,200 U 77 U 1,900 U 14J 99,000 U 2,200 U 2,200 U 77 U 1,900 U 23,000 EJ 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200		4,400 60,000 U	120,000 U	3,100	7,400	10,000 U	21,000 U	3,000
71 1 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 14 J 900 U 14 J 900 U 14 J 200 U 17 U 1900 U 76 U 99,000 U 2,200 U 190,000 U 2		2,200 U 60,000 U	120,000 U	2,700 U	2,600 ∪	10,000 U	21,000 U	2,200 U
71 U 1,900 U 76 U 99,000 U 2,200 U 7,00 U 14 J 99,000 U 2,200 U 7,0 U 1,900 U 76 U 99,000 U 2,200 U 7,0 U 1,900 U 7,0 U 99,000 U 2,200 U 7,0 U 1,900 U 76 U 99,000 U 2,200 U 7,0 U 7,0 U 1,900 U 76 U 99,000 U 2,200 U 7,0 U 7,0 U 1,900 U 76 U 99,000 U 2,200 U 7,0 U 7,0 U 99,000 U 2,200 U 7,0 U 7,0 U 99,000 U 7,0 U 99,000 U 2,200 U 7,0 U 7,0 U 99,000 U 7,0 U 99,000 U 2,200 U 7,0 U 7,0 U 99,000 U 7,0 U 99,000 U 2,200 U 7,0 U 7,0 U 99,000 U 7,0 U 99,000 U 2,200 U 7,0 U 7,0 U 99,000 U 7,0 U 99,000 U 7,0 U 7,0 U 99,000 U 7,0 U	H		120,000 U	2,700 ∪	2,600 ∪	10,000 U	21,000 U	2,200 U
2,800 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 23,000 EJ 50,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 77 U 99,000 U 77 U	-		120,000 U	2,700 U	2,600 ∪	10,000 U	21,000 U	2,200 U
2,800 71 U 1,900 U 23,000 E, 50,000 DJ 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 77 U 79 U 99,	-		120,000 U	2,700 ∪	2,600 ∪	10,000 U	21,000 U	2,200 ∪
2,800 77 U 1,900 U 23,000 EJ 50,000 DJ 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77			120,000 U	2,700 U	2,600 ∪	U 000,01	21,000 U	2,200 U
71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 1,000 EJ 1,100,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 77 U 77 U 77 U 1,900 U 77 U 99,000 U 7	20		74,000 DJ	1.500 J	2,900	96,000	85,000 D	L 077
71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 77 U 77 U 1,900 U 77 U 99,000 U	6	L	120,000 U	2,700 U	2,600 ∪	10,000 U	21,000 U	2,200 U
71 U 1,900 U 76 U 99,000 U 2,200 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 77 U 99,000 U 77 U 99,000 U 77			120,000 U	2.700 ∪	2,600 U	10,000 U	21,000 U	2.200 ∪
71 U 1,900 U 76 U 99,000 U 2,200 U 1,900 U 1,900 U 76 U 99,000 U 2,200 U 1,900 U 1,900 U 1,900 U 76 U 99,000 U 2,200 U 1,900 U 1,900 U 1,900 U 76 U 99,000 U 2,200 U 1,900 U 1,900 U 76 U 99,000 U 2,200 U 1,900 U 1,900 U 76 U 99,000 U 2,200 U 1,900	-		120.000 U	2.700 U	2.600 U	10,000 U	21,000 U	2.200 U
71 0 1,900 U 74 J 99,000 U 2,200 U 1,600 U 1,600 U 1,600 U 1,600 U 2,200 U 1,600 U 1,600 U 1,600 U 1,600 U 2,200 U 1,600 U 1,6	-	-	120,000 U	2.700 U	2.600 U	10,000 U	21.000 U	2,200 ∪
71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U			120.000 U	2.700 U	62 J	10,000 U	21,000 U	2,200 ∪
5,600 40 J 1,900 U 76 U 99,000 U 2,200 U 1,600 J 1,600	1		120 000 1	2,700 []	2,600 U	10.000 U	21,000 U	2.200 U
5,600 40 J 1,900 U 140,000 EJ 1,100,000 D 1,600 U 1,60			120,000	2 200 1	2,600 U	10.000 U	21.000 U	2.200 U
a, 5000 1 1, 500 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77	Ŧ	7	1 600 000	42 000	3 700	220,000	220,000 D	8 000
T1 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 77 J U 99,000 U 2,200 U 71 U 1,900 U 77 J U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 99,000 U 2,200 U 77 U 99,000 U 77 U 9			120,000 U	2.700 U	2,600 U	10,000 U	21.000 U	2,200 U
T1 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 77 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 100 J 99,000 U 2,200 U 77 U 1,900 U 100 J 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 2,200 U 77 U 79,000 U 77 U 99,000 U 77 U 79,000 U 77 U 99,000 U 77 U 79,00 U 77 U 79,000 U 77 U 79,00 U 77 U 79,000 U 77 U 79,00			· 120,000 U	2.700 U	2,600 ∪	10,000 U	21,000 U	2,200 U
ane 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 77 U 77 U 99,000 U 2,200 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 2,200 U 77 U 1,900 U 77 U 99,000 U 77 U 99			120,000 U	2,700 ∪	2,600 U	10,000 U	21,000 U	2,200 U
ane 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U		2,200 U 60,000 L	120,000 U	2,700 U	2,600 ∪	10,000 U	21,000 U	2,200 U
ane 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 6,700 EJ 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U	ļ		120,000 U	2,700 U	2,600 U	10,000 U	21,000 U	2,200 ∪
ane 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 1,900 U 1,900 U 1,900 U 2,200 U 1,900 U 1,900 U 1,900 U 1,900 U 2,200 U 1,900 U 1,				2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
T1 U 1,900 U 340 J 99,000 U 2,200 U 1,900 U 1,	6			2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
Per 1,200 771 U 1,900 U 100 J 99,000 U 2,200 U 100 J 1	6	2,200 U 60,000 U	120,000 U	2,700 U	190 J	10,000 U	21,000 U	2,200 U
1,200 71 U 1,900 U 100 J 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	6	_	_	1,200 J	3,300	53,000	54,000 D	430 7
methane 71 U 1,900 U 76 U 99,000 U 2,200 U methane 71 U 1,900 U 76 U 99,000 U 2,200 U tric,2-trifluorethane 71 U 1,900 U 76 U 99,000 U 2,200 U trier (MTBE) 71 U 1,900 U 76 U 99,000 U 2,200 U anne 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nchioropropane 71 U 1,900 U 76 U 99,000 U 2,200 U penizene 71 U 1,900 U 76 U 99,000 U 2,200 U nchioropropane 71 U 1,900 U 76 U 99,000 U 2,200 U nchioropropane	6	_		2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
nethanse 71 U 1,900 U 76 U 99,000 U 2,200 U 1-1,2,2-trifluoreathane 71 U 1,900 U 76 U 99,000 U 2,200 U 1,2,2-trifluoreathane 71 U 1,900 U 76 U 99,000 U 2,200 U 1,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U ne 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U chloropropane 71 U 1,900 U 76 U 99,000 U 2,200 U chloropropane 71 U 1,900 U 76 U 99,000 U 2,200 U penizene 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 9	\dashv	_	120,000 U	2,700 U	2,600 U	10,000 U	000,12	2,200 0
1,2,2-Enfiltuoroethane 71 U 1,900 U 76 U 99,000 U 2,200 U Inter (MTBE) 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest 71 U 1,900 U 76 U 99,000 U 2,200 U Interest <th< td=""><td>+</td><td></td><td>120,000 0</td><td>2,700 0</td><td>2,000 0</td><td>0,000,0</td><td>21,000 0</td><td>2,200 0</td></th<>	+		120,000 0	2,700 0	2,000 0	0,000,0	21,000 0	2,200 0
Inter (M I BE) Annual Marie	+	2,200 0 60,000 0		2,700 0	2,600 0	10,000 01	21,000 0	2 200 0
Table 71 1,900 U 76 U 99,000 U 2,200 U 72ene 71 U 1,900 U 76 U 99,000 U 2,200 U 72ene 71 U 1,900 U 76 U 99,000 U 2,200 U 72ene 71 U 1,900 U 76 U 99,000 U 2,200 U 72ene 71 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U 77 U 1,900 U 76 U 99,000 U 2,200 U	+		_	2 700 11	2,600 1	10,000 01	2 000 12	2 200 1
Trans 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U chloropropane 71 U 1,900 U 76 U 99,000 U 2,200 U penzene 71 U 1,900 U 76 U 99,000 U 2,200 U penzene 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	+	-		2,700 U	2.600 U	10,000 U	21,000 U	2,200 U
nzene 71 U 1,900 U 76 U 99,000 U 2,200 U nzene 71 U 1,900 U 76 U 99,000 U 2,200 U chloropropane 71 U 1,900 U 76 U 99,000 U 2,200 U penzene 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	\perp			2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
nzene 71 U 1,900 U 76 U 99,000 U 2,200 U chloropropane 71 U 1,900 U 76 U 99,000 U 2,200 U cenzene 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	6		L	2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
chloropropane 71 U 1,900 U 76 U 99,000 U 2,200 U penzene 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	6		120,000 U	2,700 U	2,600 U	10,000 U	21,000 U	2,200 ∪
Denzene 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	6	2,200 U 60,000 U	120,000 U	2,700 U	2,600 U	10,000 U	21,000 U	2,200 ∪
71 U 1,900 U 76 U 99,000 U 2,200 U 71 U 1,900 U 76 U 99,000 U 2,200 U	6			2,700 U	2,600 U	10,000 U	21,000 U	2,200 U
71 U 1,900 U 76 U 99,000 U 2,200 U	6		-	2,700 U	2,600 U	10,000 ∪	21,000 U	2,200 ∪
	ŏ		_	2,700 U	2,600 U	10,000 ∪	21,000 U	2,200 U
exane 71 U 1,900 U 76 U 99,000 U 2,200 U	ŏ	2,200 U 60,000 U	120,000 U	2,700 ∪	2,600 U	10,000 U	21,000 U	2,200 U

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Sample ID ->	Midler	VB3 - 25	VB3 - 25	VB3 - 25 **	VB3 - 25	VB3 - 25 DL	VB3 - 25	VB3 - 25	VB3 - 25 DL	VB3 - 25	VB3 - 25 DL	VB3 - 25	VB3 - 25 DL
Depth - >	SSCO	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8
Date Sampled ->		03/15/07	20/20/90	20/11/90	06/06/07	06/06/07	06/16/07	07/02/07	07/02/07	07/16/07	07/16/07	08/03/07	08/03/07
Chloromethane		1,800 U	40,000 U	∆ 46,000 U	2,200 U	22,000 U	12,000 U	84 U	10,000 U	82 U	3,900 ∪	150 U	1,800 U
Vinyi chloride	800	1,800 ∪	40,000 U	46,000 ∪	2,200 U	22,000 U	12,000 U	84 U	10,000 U	82 U	3,900 U	150 U	1,800 U
Bromomethane		1,800 U	40,000 U	46,000 ∪	2,200 U	22,000 U	12,000 U	84 ∩	10,000 U	82 N	3,900 U	150 U	1,800 U
Chloroethane		1,800 U	40,000 U	46,000 ∪	2,200 U	22,000 U	12,000 U	84 U	10,000 U	85 U	3,900 U	150 U	1,800 U
1,1-Dichloroethene	 	1,800 U	40,000 U	46,000 ∪	2,200 U	22,000 U	12,000 U	62 J	10,000 U	82 U	3,900 U	150 U	1,800 U
Carbon disulfide		1,800 U	40,000 ∪	46,000 U	2,200 U	22,000 U	12,000 U	28 J	10,000 U	12 J	3,900 U	7 7 7	1,800 ∪
Acetone		1,800 U	40,000 U	33,000 BJ	30,000	77,000 D	19,000 U	4,400 BEJ	14,000 U	9,200 EJ	11,000 U	2,300	2,300
Methylene chloride		1,800 U	40,000 U	46,000 ∪	2,200 U	9,900 U	3,500 U	110 U	300 U	36 ∪	130 U	77 JB	92
1,1-Dichloroethane		1,800 U	40,000 ∪	46,000 U	2,200 ∪	22,000 ∪	12,000 U	84 C	10,000 U	85 U	3,900 U	150 U	1,800 U
2-Butanone		1,800 U	40,000 ∪	46,000 ∪	8,200	LG 000,71	12,000 U	2,100 E	4,300 J	3,100 EJ	3,200 J	750	1,800 U
Chloroform		1,800 U	40,000 ∪	46,000 U	2,200 U	22,000 U	12,000 U	84 0	10,000 U	82 U	3,900 U	150 U	1,800 U
1.1.1-Trichloroethane		1,800 U	40,000 ∪	46,000 U	2,200 ∪	22,000 U	12,000 U	84 ∩	10,000 U	82 U	3,900 U	150 U	1,800 U
Carbon tetrachloride		1,800 ∪	40,000 U	46,000 U	2,200 ∪	22,000 U	12,000 U	84 U	10,000 U	85 U	3,900 U	150 U	1,800 ∪
Benzene		1,800 U	40,000 U	46,000 U	2,200 ∪	22,000 U	12,000 U	13 J	10,000 U	5.5 J	3'900 U	2.6 J	1,800 U
1.2-Dichloroethane		1,800 U	40,000 U	46,000 U	2,200 ∪	22,000 U	12,000 U	84 ∪	10,000 U	82 N	3,900 U	150 U	1,800 U
Trichloroethene	2.800	2,200	21,000 J	50,000 B	3,300	4,600 DJ	3,500 J	5,100 EJ	7,000 J	1,600	2,100 J	3,000	3,200
1.2-Dichloropropane		1,800 ∪	40,000 U	46,000 U	2,200 ∪	22,000 U	12,000 U	84 ∪	10,000 U	82 U	3,900 U	150 U	1,800 U
Bromodichloromethane	-	1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ⊃	10,000 U	82 U	3,900 U	150 U	1,800 U
cis-1.3-Dichloropropene		1.800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∪	10,000 U	82 U	∩ 006′€	150 U	1,800 U
4-Methyl-2-pentanone		1,800 ∪	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∪	10,000 U	82 U	006′€	150 U	1,800 ∪
Toluene		1,800 ∪	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	F 09	10,000 U	85 N	3,900 U	15 JB	1,800 ∪
trans-1.3-Dichloropropene		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	æ ⊃	10,000 U	85 U	3,900 U	150 U	1,800 U
1.1.2-Trichloroethane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∪	10,000 U	85 U	∩ 006′E	150 U	1,800 U
Tetrachloroethene	2,600	5.800	720,000	840,000	120,000 EJ	260,000 D	150,000	11,000 EJ	170,000	14,000 EJ	43,000	21,000 E	31,000
2-Hexanone		1,800 U	40,000 U	46,000 ∪	2,200 U	22,000 ∪	12,000 U	28 J	10,000 U	24 J	∩ 006'E	150 U	1,800 U
Dibromochloromethane		1,800 U	40,000 U	46,000 ∪	2,200 U	22,000 U	12,000 U	. 84 U	10,000 U	85 O	3,900 U	150 U	1,800 U
Chlorobenzene		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 U	10,000 U	85 N	3,900 U	150 U	1,800 U
Ethylbenzene		1,800 U	40,000 U	46,000 U	2,200 U	22,000 ∪	12,000 U	19 J	10,000 U	5.7 J	J 006'E	3.7 J	1,800 U
Styrene		1,800 U	40,000 U	46,000 U	2,200 ∪	22,000 ∪	12,000 U	84 C	10,000 U	85 N	3,900 U	150 U	1,800 U
Bromoform		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∪	10,000 U	85 N	3,900 U	150 U	1,800 U
1,1,2,2-Tetrachloroethane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 N	10,000 U	85 N	3,900 U	150 U	1,800 U
Total Xylenes		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	150	10,000 U	54 7	3,900 U	49 վ	38
cis-1,2-Dichloroethene		7,300	40,000 U	46,000 U	1,900	22,000 U	1,300 J	2,400 EJ	2,700 J	780	850 J	150 U	210 J
trans-1,2-Dichloroethene	1,200	1,800 ∪	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	59 J	10,000 U	15 J	3,900 U	2.2 JM	1,800 U
Dichlorodifluoromethane		1,800 ∪	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 N	10,000 U	82 U	3,900 U	150 U	1,800 U
Trichlorofluoromethane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	94 U	10,000 U	85 O	3,900 U	150 U	1,800 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 N	10,000 U	82 O	3,900 U	150 U	1,800 U
Methyl-t-butyl ether (MTBE)		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∪	10,000 U	85 ∩	3,900 U	150 U	1,800 ∪
1,2-Dibromoethane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∩	10,000 U	85 N	3,900 U	150 U	1,800 U
Isopropylbenzene		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 C	10,000 U	95 ∩	3,900 U	150 U	1,800 U
1,3-Dichlorobenzene		1,800 U	40,000 U	46,000 ∪	2,200 U	22,000 U	12,000 U	84 ∩	10,000 U	85 U	3,900 U	150 U	D 008'F
1,4-Dichlorobenzene		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 ∩	10,000 U	85 U	3,900 ∪	150 U	∩ 008′1
1,2-Dichlorobenzene		1,800 U	40,000 ∪	46,000 U	2,200 U	22,000 U	12,000 U	2 8	10,000 U	∩ 83	3,900 ∪	150 U	1,800 U
1,2-Dibromo-3-chloropropane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 N	10,000 U	85 U	3,900 U	150 U	1,800 ∪
1,2,4-Trichlorobenzene		1,800 U	40,000 U	46,000 U	2,200 ∪	22,000 U	12,000 U	84 N	10,000 U	85 N	3,900 U	150 U	1,800 U
Methyl acetate		1,800 ∪	40,000 U	46,000 U	2,200 ∪	22,000 U	1,200 J	2 ⊃	950	85 N	290 1	150 U	O 008'1
Cyclohexane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	28	10,000 U	0 3 C	3,900 U	150 U	1,800 U
Methylcyclohexane		1,800 U	40,000 U	46,000 U	2,200 U	22,000 U	12,000 U	84 0	10,000 U	85 N	3,900 U	150 U	1,800 U

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-3 Area

Sample ID ->	Midler	VB3 - 25	VB3 - 25 DL	VB3 - 25	VB3 - 25 UL	V63 - 20	VB3 - 25 UL	V53 - 20	VD3 - 20 DL
Depth - >	SSCO	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.4 - 19.4	15.4 - 19.4
Date Sampled ->		08/10/07	08/10/07	08/20/07	08/20/02	08/28/07	08/28/07	03/02/02	03/02/02
Chloromethane		170 U	2,000 U	U 091	1,900 U	170 U	2,000 U	18 W	90 U
Vinyt chtoride	800	170 U	2,000 U	160 U	1,900 U	170 U	2,000 U	18 UJ	90 U
Bromomethane		170 U	2,000 U	160 U	U 006,1	170 U	2,000 ∪	18 U	O 06
Chloroethane		170 U	2,000 ∪	160 U	1,900 U	170 U	2,000 U	18 U	∩ 06
1,1-Dichloroethene		170 U	2,000 U	160 U	1,900 U	170 U	2,000 U	18 U	∩ 06
Carbon disulfide		15 J	2,000 U	28 J	1,900 U	170 U	2,000 U	5 J	12 DJ
Acetone		5,100 BEJ	5,900	8,500 BEJ	13,000	5,600 BEJ	£,900 J	1,200	1,200 BD
Methylene chloride		28	0 89	52 U	∩ 99	U 44	48 U	18 W	62 BDJ
1,1-Dichloroethane		170 U	2,000 ∪	160 U	006,1	170 U	2,000 U	3.1	O 06
2-Butanone		2.500	1,800 J	4,600 EJ	4,700	2,400	2,000 JB	210	360 D
Chloroform		170 U	2,000 ∪	160 U	U 006,1	170 U	2,000 U	18 U	⊃ 86
1.1.1-Trichloroethane		170 U	2,000 ∪	160 U	1,900 U	170 U	2,000 ∪	18 U	⊃ 86
Carbon tetrachloride		170 U	2,000 U	160 U	U 006,1	170 U	2,000 U	18 U	⊃ 8
Benzene		8.3 J	2,000 ∪	15 J	006,1	5.6 J	2,000 ∪	18 U	D 86
2-Dichloroethane		170 ∪	2,000 U	160 U	U 006.1	170 U	2,000 ∪	18 U	⊃ 86
Trichlomethene	2.800	3,100	2,000	1.500	2.200	290 U	740 J	250	360 D
1 2-Dichloropropane	Î	170 U	2,000 U	160 U	U 006.1	170 U	2.000 ∪	18 U	∩ 06
Bromodichloromethane		170 U	2.000 U	160 ∪	1 900 U	170 U	2,000 U	18 U	∩ 06
cis-1 3-Dichloropropene		170 U	2.000 U	160 U	∩ 006:1	170 U	2,000 U	18 U	D 06
4-Methyl-2-pentanone		170 U	2,000 ∪	160 U	006.1	170 U	2,000 ∪	5	∩ 06
Toluene		57	2,000 U	8L 67	100 J	14 U	2,000 U	J. E.	∩ 06
trans-1.3-Dichloropropene		170 U	2,000 U	160 U	1,900 ∪	170 U	2,000 U	18 U	n 06
1.1.2-Trichloroethane		170 U	2,000 ∪	160 U	1,900 U	170 U	2,000 U	18 U	ກ 06
Tetrachloroethene	2,600	20,000 EJ	24,000	8,900 EJ	19,000	6,100 EJ	8,200 B	2)	O 06
2-Hexanone		170 U	2,000 U	160 U	1,900 U	26 J	2,000 U	6 J	∩ 06
Dibromochloromethane		170 U	2,000 ∪	160 U	1,900 ∪	U 071 .	2,000 U	18 U	∩ 06
Chlorobenzene		170 U	2,000 U	160 U	1,900 U	U 071	2,000 U	18 U	∩ 06
Ethylbenzene		8.6 J	2,000 ∪	7.5 J	1,900 ∪	170 U	2,000 U	18 U	∩ 66
Styrene		170 U	2,000 ∪	160 U	1,900 U	170 U	2,000 U	18 U	n 06
Bromoform		170 U	2,000 U	160 U	1,900 U	170 U	2,000 U	18 U	⊃ &
1,1,2,2-Tetrachloroethane		170 U	2,000 U	160 U	1,900 U	170 U	2,000 U	18 U	∩ 06
Total Xylenes		150 J	120 J	190	310 J	35 J	47 J	18 U	∩ 66
cis-1,2-Dichloroethene		1,200	570 J	2,400	2,500	290	210 J	290	380 D
trans-1,2-Dichloroethene	1,200	23 J	2,000 ∪	52 J	1,900 U	170 U	2,000 U	80	110 D
Dichlorodifluoromethane		170 U	2,000 ∪	160 U	1,900 U	170 U	2,000 U	18 U	⊃ 8
Trichlorofluoromethane		170 U	2,000 ∪	U 091	1,900 ∪	170 U	2,000 U	18 U	⊃ 06
1,1,2-Trichloro-1,2,2-trifluoroethane		170 U	2,000 ∪	160 U	1,900 ∪	170 U	2,000 U	18 U	∩ 06
Methyl-t-butyl ether (MTBE)		170 U	2,000 ∪	160 U	1,900 ∪	170 U	2,000 U	18 U	∩ 86
1,2-Dibromoethane		170 U	2,000 U	160 U	1,900 U	170 U	2,000 U	18 U	⊃ 86
sopropylbenzene		170 U	2,000 U	160 U	U 006,1	170 U	2,000 U	18 U	& S
1,3-Dichlorobenzene		170 U	2,000 U	160 U	1,900 U	170 U	2,000 ∪	18 U	⊃ 8
1,4-Dichlorobenzene		170 U	2,000 U	160 U	U 006,1	170 U	2,000 U	18 U	∩ 8
1,2-Dichlorobenzene		170 U	2,000 U	160 U	J 006,1	170 U	2,000 ∪	18 N	⊃ 06
1,2-Dibromo-3-chloropropane		170 U	2,000 U	160 U	1,900 UR	170 U	2,000 ∪	18 U	⊃ 86
1,2,4-Trichlorobenzene		170 U	2,000 U	160 U	1,900 U	170 U	2,000 U	18 U	⊃ 66
Methyl acetate		170 U	2,000 U	160 U	1,900 ∪	170 U	2,000 U	18 U	⊃ 86
Cyclohexane		170 U	2,000 ∪	O 091	1,900 U	170 U	2,000 U	180	8 3
Mathydamalahaman		170 U	2.000 U	160 -	⊃ 006;	170 0	2,000 U	200	8

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - MW-3D Area

Sample ID ->	Midler	V3D - 1	V3D - 1	V3D - 1 DL	V3D - 1 **	V3D - 1	V3D - 1	V3D - 1	V3D - 1 DL	V3D - 2	V3D - 2 DL	e - GEA	V3D - 3 DL
	SSCO	15.1 - 19.1	15.1 - 19.1	15.1 - 19.1	15.1 - 19.1	15.1 - 19.1	15.1 - 19.1	15.1 - 19.1	15.1 - 19.1	10.5 - 14.5	10.5 - 14.5	14.3 - 18.3	14.3 - 18.3
Date Sampled ->		3/5/2007	05/08/07	20/80/90	05/23/07	6/6/2007	6/16/2007	07/02/07	7/2/2007	3/5/2007	3/5/2007	3/5/2007	3/5/2007
Chloromethane	_	41,000 U	2,200 U	22,000 U	O000'6	1,900 U	22,000 U	87 U	170 U	14 U	81 U	2,100 U	420,000 U
Vinyl chloride	800	41,000 U	2,200 U	22,000 ∪	000'6	1,900 U	22,000 U	87 U	170 U	640	640 D	2,100 U	420,000 U
Bromomethane		€,800 ك	2,200 U	22,000 U	∩ 000'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	F 009	420,000 U
Chloroethane		41,000 U	2,200 U	22,000 ∪	U 000,e	1,900 U	22,000 U	87 U	170 U	17 U	84 C	2,100 U	420,000 U
1,1-Dichloroethene		41,000 U	2,200 U	22,000 ∪	U 000,e	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 ∪	420,000 U
Carbon disulfide		41,000 U	2,200 U	22,000 U	O00'6	1,900 U	22,000 U	15 J	170 U	5 1	13 13	2,100 U	420,000 U
Acetone		41,000 U	22,000	Z7,000 D	18,000 JB	9,400 J	18,000 U	3,100 BEJ	2,800 B	92 B	170 BD	1,900 J	420,000 U
Methylene chloride		41,000 U	2,200 U	22,000 ∪	36,000 U	380 U	8,500 U	110 U	120 U	18 U	140 BD	400 J	420,000 U
1,1-Dichloroethane		41,000 U	2,200 U	22,000 ∪	U 000,e	1,900 U	22,000 U	87 ∪	170 U	17.0	84 U	2,100 U	420,000 U
2-Butanone		41,000 U	7,900	10,000 DJ	18,000 U	2,200 J	22,000 U	1,000	860	18	33	r 096	420,000 U
Chloroform		41,000 U	2,200 U	22,000 ∪	U 000,e	1,900 U	22,000 U	87 U	170 U	17 U	અ -	2,100 U	420,000 U
1,1,1-Trichloroethane		41,000 U	2,200 U	22,000 U	000'6	1,900 U	22,000 ∪	87 U	170 U	17 U	81 U	2,100 U	420,000 U
Carbon tetrachloride		41,000 U	2,200 U	22,000 U	000'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
Benzene		41,000 U	2,200 ∪	22,000 ∪	U 000,e	1,900 U	22,000 U	2.1 J	2.9 J	17 U	æ ⊃	2,100 U	420,000 U
1,2-Dichloroethane		41,000 U	2,200 U	22,000 U	O00'6	1,900 U	22,000 U	0 ∠8	170 U	17 U	81 U	2,100 U	420,000 U
Trichloroethene	2,800	41,000 U	1,400 J	22,000 U	1,800 J	320 J	3,300 J	69 J	ี 25 ป	ر 9 9	14 DJ	2,900	420,000 U
1,2-Dichloropropane		41,000 U	2,200 U	22,000 U	O00'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
Bromodichloromethane		41,000 U	2,200 U	22,000 U	9,000 U	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
cis-1,3-Dichloropropene		41,000 U	2,200 U	22,000 U	O000'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
4-Methyl-2-pentanone		41,000 ∪	2,200 U	22,000 U	O00'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
Toluene		41,000 U	2,200 U	22,000 U	O00'6	1,900 U	22,000 U	22 J	18 J	2 J	91 C	200 J	420,000 U
trans-1,3-Dichloropropene		41,000 U	2,200 U	22,000 U	∩ 000'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
1,1,2-Trichloroethane		41,000 U	2,200 U	22,000 U	റ 000'6	1,900 U	22,000 U	87 U	170 U	17 U	81 U	2,100 U	420,000 U
Tetrachloroethene	2,600	570,000	230,000 EJ	330,000 D	170,000	20,000	320,000	· 3,000 EJ	2,200	17 U	91 ∪	440,000 E	2,200,000 D
2-Hexanone		41,000 U	2,200 U	22,000 U	18,000 U	1,900 U	22,000 U	27 J	20 J	17 U	81 U	2,100 U	420,000 U
Dibromochloromethane		41,000 U	2,200 U	22,000 U	O0006	1,900 U	22,000 ∪	87 U	170 U	17 U	81 U	2,100 U	420,000 U
Chlorobenzene		41,000 U	2,200 U	22,000 U	O000'6	1,900 U	22,000 ∪	87 U	170 U	17 U	B1 U	2,100 U	420,000 U
Ethylbenzene		41,000 U	2,200 U	22,000 U	00006	1,900 U	22,000 U	1.2 J	170 U	17 U	84 U	2,100 U	420,000 U
Styrene		41,000 U	2,200 U	22,000 U	9,000 U	1,900 U	22,000 U	87 U	170 U	17 U	æ :	2,100 U	420,000 U
Bromoform		41,000 U	2,200 U	22,000 U	O0006	1,900 U	22,000 U	87 U	1300	0.71	0 : G	2,100 U	420,000 U
1,1,2,2-Tetrachloroethane		41,000 U	2,200 U	22,000 U	0006	1,900 U	22,000 U	87 U	170 U	17.0	91 0 :	2,100 U	420,000 U
Total Xylenes		41,000 U	2,200 U	22,000 U	D 000'6	1,900 U	22,000 U	26 J	37 J	17 U	31 C	920 J	420,000 U
cis-1,2-Dichloroethene		41,000 U	2,200 U	22,000 U	D 000'6	1,900 U	22,000 U	87 U	140 C	110	180 190	420 7	420,000 U
trans-1,2-Dichloroethene	1,200	41,000 U	2,200 U	22,000 U	D 000,6	1,900	22,000 U	87 U	170 U	17	73 E	2,100 U	420,000 U
Dichlorodifluoromethane		41,000 U	2,200 U	22,000 U	D 000'6	1,900 U	22,000 U	0 /8	170 U	17.0	5 3	2,100 U	420,000 U
Trichlorofluoromethane		41,000 U	2,200 0	000077	0 000 6	006	2,000 0	0 / C	70.0	7 1	5 5	2,100	420,000 0
1,1,2-1 rcnioro-1,2,2-triilloroetnane	\dagger	1,000 0	2,200 0	200000	000%	000,	22,000 0	0 /0	2 2 2	124	5 4	2 2 2	420,000 01
Metnyl-t-butyl etner (MTBE)		41,000 0	2 200 0	22 000 11	0 000%	1 900	22,000 5	87.1	120	17.0	- E	2,100 U	420,000 U
l'a-Dibinostianos	+	41,000 1	2,200 U	22.000 U	9.000 U	1.900 U	22,000 U	87 U	170 U	17 U	81 0	2,100 ∪	420,000 U
1.3-Dichlorobenzene		41,000 U	2,200 U	22,000 U	∩ 000′6	1,900 U	22,000 U	0 /8	170 U	N 24	91 ∪	2,100 ∪	420,000 U
1,4-Dichlorobenzene		41,000 U	2,200 U	22,000 ∪	0000'6	1,900 U	22,000 U	0 78	170 U	17 U	81 ∪	2,100 U	420,000 U
1,2-Dichlorobenzene		41,000 U	2,200 ∪	22,000 U	0000'6	1,900 U	22,000 U	87 U	170 U	U 41	84 U	2,100 U	420,000 U
1,2-Dibromo-3-chloropropane		41,000 U	2,200 U	22,000 U	18,000 U	1,900 U	22,000 U	87 U	U 071	14 N	0 t8	2,100 U	420,000 U
1,2,4-Trichlorobenzene		41,000 U	2,200 U	22,000 U	000°6	1,900 U	22,000 U	87 U	170 U	14 U	84 U	2,100 U	420,000 U
Methyl acetate		41,000 U	2,200 U	22,000 ∪	0000°6	1,900 U	22,000 U	87 U	100 C	17 U		2,100 U	420,000 U
Cyclohexane		41,000 U	2,200 U	22,000 U	0006	1,900 U	22,000 U	87 U	170 U	0 21	D :	2,100 U	420,000 U
Methylcyclohexane	1	41,000 U	2,200 U	22,000 U	9,000 U	1,900 U	22,000 0	8/ 0	1/0 0	2 /	D 18	3/0 7	420,000 U

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - MW-3D Area

1.50	SS	1	- OSA	מים כי	6- Oca	ָ מַרְ	-	+ - Co	13D - 4 DL	מ- קפא	2	0-024	,
8000 2,0000 U 82,0000 U 37,000 U 2,200 U 98,000 U 2,200 U 88,000 U 2,200 U			14.3 - 18.3	14.3 - 18.3	14.3 - 18.3	14.3 - 18.3	10.75 - 14.75	10.75 - 14.75	10.75 - 14.75	14.4 - 18.4	14.4 - 18.4	14.4 - 18.4	14.4 - 18.4
2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U			20/08/02	02/08/07	05/21/07	06/07/07	03/05/07	05/08/07	05/08/07	03/05/07	20/80/90	05/22/07	20/20/90
8000 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 82,000 U 37,000 U 2,200 U 98,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 38,000 U 37,000		\vdash	2,000 U	82,000 U	37,000 U	2,200 U	∩ 000'86	08 0	1,900 U	2,100 ∪	3,600 ∪	∩ 068	2,200 ∪
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 98,000 U 2,200 U 98,000 U 2,200 U 98,000 U 92,000 U 82,000 U 37,000 U 2,200 U 98,000 U 98,000 U 2,200 U 98,000 U 98,000 U 2,200 U 98,000 U 98,000 U 37,000 U 2,200 U 98,000 U 98,000 U 37,000 U 2,200 U 98,000 U 98,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 37,000 U 32,000 U 38,000 U 37,000 U 37,000 U 37,000 U 37,000 U 38,000 U 37,000		800	2,000 U	82,000 U	37,000 U	2,200 U	000′86	ე 6	1,900 U	2,100 U	3,600 ∪	ภ 068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,200 U 2,200 U 98,000 U 2,200 U 98,000 U 2,200 U 2,200 U 98,000 U 2,200 U 2,200 U 98,000 U 2,200 U 2,200 U 98,000 U 37,000 U 2,200 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 92,000 U 92			2,000 ∪	82,000 U	37,000 U	2,200 U	∩ 000'86	80 N	1,900 U	260 J	3,600 U	O68	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 88,000 U 82,000 U 37,000 U 2,200 U 88,000 U 37,000 U 37,000 U 37,000 U 37,000 U 37,000 U			2,000 ∪	82,000 U	37,000 U	2,200 U	98,000 U	90 U	1,900 U	2,100 U	3,600 U	068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 37,000 U 38,000 U 2,000 U			2,000 ∪	82,000 U	37,000 U	2,200 U	98,000 U	∩ 08	1,900 ∪	2,100 U	3,600 U	068	2,200 U
8,200 U 82,200 U 77,000 U 2,200 U 82,000 U 2,200 U 82,000 U 2,200 U 82,000 U 2,000 U 2,200 U 82,000 U 2,200 U 82,000 U 2,000 U 2,200 U 82,000 U 2,000 U 2,200 U 82,000 U 2,200 U 82,000 U 2,000			2,000 U	82,000 U	37,000 U	2,200 U	98,000 U	15 J	1,900 U	2,100 U	3,600 U	068 ∩	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37			8,200	82,000 U	2,300 JMB	9,400 J	O00'86	8,200 BEJ	3,000 D	1,700 J	9,200	11,000 B	13,000 J
2,000 U 82,000 U 37,000 U 2,200 U 88,000 U 2,200 U 88,000 U 37,000 U 2,200 U 37,000		_	2,000 ∪	82,000 U	37,000 U	420 U	O00'86	25 J	1,900 U	2,100 U	390 J	068	410 U
3,200 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 88,000 U 37,000 U 2,200 U 98,000 U 2,000 U 88,000 U 37,000 U 2,200 U 98,000 U 2,000 U 88,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,00		-	2,000 ∪	82,000 U	37,000 U	2,200 U	000'86	80 U	1,900 U	2,100 U	3,600 U	∩ 068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,200 U 98,000 U 2,000 U 2,000 U 2,000 U 2,200 U 98,000 U 2,000 U 2,000 U 2,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 32,000 U 32,		_	3,200	82,000 U	37,000 U	2,000 J	∩ 000'86	3,100 EJ	1,200 DJ	F 069	3,900	6,200	4,000 J
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 38,000 U 37,000 U 37,000 U 2,200 U 38,000 U 37,000 U		1	2,000 ∪	82,000 U	37,000 ∪	2,200 U	000 86 ∩	∩ 08	1,900 U	2,100 U	3,600 U	068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 37,000 U 2,200 U 37,000 U 37,000 U 2,200 U 38,000 U 37,000 U 37,000 U 37,000 U 37		-	2,000 U	82,000 U	37,000 U	2,200 ∪	U 000,86	∩ 08	1,900 U	2,100 U	∩ 009'E	N 068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 37,000 U			2,000 ∪	82,000 U	37,000 ∪	2,200 U	000'86 ∩	08	1,900 U	2,100 U	3,600 U	068 n	2,200 U
2,000 U 82,000 U 2,200 U 86,000 U 2,200 U 86,000 U 2,000 U 2,0			2,000 U	82,000 U	37,000 U	2,200 ∪	000'86 ∩	08 0	1,900 U	2,100 U	3,600 ∪	068	2,200 ∪
2,800 3,600 B2,000 U 37,000 U 2,200 U 86,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 86,000 U 37,000 U 2,200 U 86,000 U 37,000 U 2,200 U 86,000 U 2,000 U 82,000 U 37,000 U 2,200 U 86,000 U 37,000 U 37,00			2,000 U	82,000 U	37,000 U	2,200 U	000'86	90 U	U 006,1	2,100 ∪	3,600 ∪	∩ 068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U	22	800	3,600	82,000 U	37,000 U	2,200 U	000'86	∩ 08	1,900 U	2,100 U	f 098	470 JB	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 82,000 U 37,000 U 2,200 U 98,000 U 0 98		_	2,000 ∪	82 000 U	37,000 U	2,200 U	O00'86	90 U	U 006,1	2,100 ∪	3,600 ∪	∩ 068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 2,200 U 98,000 U 2,200 U 2,	<u>a</u>		2,000 ∪	82,000 U	37,000 U	2,200 U	O00,86	90 N	1,900 U	2,100 U	3,600 U	O68	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U	ane	-	2,000 ∪	82,000 U	37,000 U	2,200 U	000'86	80 U	1,900 ∪	2,100 U	3,600 U	N 068	2,200 U
ene 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,000	0	H	2,000 ∪	82,000 U	37,000 U	2,200 U	000′86	16 J	1,900 ∪	2,100 U	3,600 U	O 068	2,200 ∪
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U		\vdash	026 J	82,000 U	37,000 U	2,200 U	U 000,86	46 J	006,1	2,100 ∪	3,600 U	068	2,200 U
5,600 5,600 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 1,100,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 1,200 Z,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,2	poene		2.000 U	82,000 U	37,000 U	2,200 U	98,000 U	90 U	1,900 U	2,100 U	3,600 U	068	2,200 U
5,600 560,000 EJ 1,700,000 D 1,100,000 6,100 740,000 a 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U b 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U c 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U c 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U c 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U c 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne <t< th=""><th>4</th><td>-</td><td>2,000 ∪</td><td>82,000 U</td><td>37,000 U</td><td>2,200 U</td><td>000'86</td><td>D 08</td><td>1,900 U</td><td>2,100 U</td><td>3,600 ∪</td><td>∩ 068</td><td>2,200 U</td></t<>	4	-	2,000 ∪	82,000 U	37,000 U	2,200 U	000'86	D 08	1,900 U	2,100 U	3,600 ∪	∩ 068	2,200 U
ane 2,000 U 82,000 U 2,200 U 98,000 U 2,200 U 98,000 U 2,000 U		Ι.	+	1,700,000 D	1,100,000	6,100	740,000	14 J	L 007	5,300	67,000	27,000	5,900
ane 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37		I	1	82,000 U	37,000 U	2,200 U	98,000 U	28 J	1,900 U	2,100 U	3,600 U	N 068	2,200 U
ane 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37	ine		2,000 ∪	82,000 U	37,000 U	2,200 U	000,8€	90 U	1,900 U	2,100 U	3,600 U	N 068	2,200 U
ane 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U		-	2,000 U	82,000 U	37,000 U	2,200 U	98,000 U	90 U	1,900 U	2,100 U	3,600 U	∩ 068	2,200 ∪
ane 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U 2,000 U 37,000 U 2,200 U 98,000 U 37,000 U 37,000 U 2,200 U 98,000 U			2,000 ∪	82,000 U	37,000 U	2,200 U	000'86	ກ 08	1,900 U	2,100 U	3,600 U	D 068	2,200 U
ane 2,000 U 82,000 U 2,200 U 98,000 U 2,200 U 98,000 U 760 J 82,000 U 37,000 U 2,200 U 98,000 U 98,000 U 760 J 82,000 U 37,000 U 2,200 U 98,000 U 98,000 U 37,000 U 2,200 U 98,000 U 99,000 U 37,000 U 2,200 U 98,000 U 99,000 U 37,000 U 2,200 U 98,000 U 99,000 U 37,000 U 2,200 U 98,000 U			2,000 U	82,000 U	37,000 U	2,200 U	O00'86	80 N	1,900 U	2,100 U	3,600 U	∩ 068	2,200 ∪
ane 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 760 J 82,000 U 37,000 U 2,200 U 98,000 U 98,000 U 760 J 82,000 U 37,000 U 2,200 U 98,000 U 760 U 82,000 U 37,000 U 2,200 U 98,000 U 760 U 82,000 U 37,000 U 2,200 U 98,000 U 760 U 82,000 U 37,000 U 2,200 U 98,000 U 760 U 82,000 U 37,000 U 2,200 U 98,000 U 760 U 82,000 U 37,000 U 2,200 U 98,000 U 760 U 82,000 U 37,000 U 2,200 U 98,000 U 760 U 2,200 U 98,000 U 760 U 37,000 U 2,200 U 98,000 U 760 U 76,000 U 76,00			2,000 U	82,000 U	37,000 U	2,200 ∪	000'86	80 U	1,900 U	2,100 U	3,600 ∪	n 068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 98,000 U	thane		2,000 U	82,000 U	37,000 U	2,200 U	000'86	80 N	D 006,1	2,100 ∪	3,600 U	∩ 068	2,200 U
ne 760 J 82,000 U 37,000 U 2,200 U 98,000 U ne 1,200 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U ne 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U TBE) 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U TBE) 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U TBE) 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 320 J 82,000 U 37,000 U 2,200 U 98,000 U 320 J 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U 2,000 U 82,000 U 37,000 U 2,200 U 98,000 U			2,000 U	82,000 U	37,000 U	2,200 U	000′86	ر 177	1,900 U	2,100 U	3,600 U	068 ∩ 068	2,200 U
1,200 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,200 U 2,200 U 82,000 U 37,000 U 2,200 U 2,200 U 2,200 U 2,200 U 2,200 U 37,000 U 2,200 U 37,000 U 37,000 U 2,200 U 32,000 U 37,000 U 37,000 U 2,200 U 32,000 U 37,000 U 37,000 U 2,200 U 32,000 U 37,000 U 37,000 U 2,200 U 37,000 U 37,000 U 37,000 U 2,200 U 37,000 U 37,0	Je		760 J	82,000 U	37,000 U	2,200 U	98,000 ∪	470	380 J	470 J	3,600 U	068 080 ∩	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 2,000 U 2,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,000 U 2,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,200 U		200	2,000 U	82,000 U	37,000 U	2,200 U	98,000 U	36 J	1,900 U	2,100 U	3,600 U	980 U	2,200 U
cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 3200 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U cethane 2,000 U 82,000 U 37,000 U 2,200 U	ane		2,000 ∪	82,000 U	37,000 U	2,200 U	98,000 U	⊃ 86	006,	2,100 U	3,600 U	0.068	2,200 U
oethane 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 2,000 U 37,000 U 2,200 U 2,000 U 2,000 U 37,000 U 2,200 U 2,000 U 37,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 2,000 U	90		2,000 U	82,000 U	37,000 U	2,200 U	000'86		1,900 U	2,100 U	3,600 U	068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 37,000 U 2,200 U 32,000 U 37,000 U 2,200 U 2,000 U 2,000 U 2,000 U 2,000 U 37,000 U 2,000 U 2,000 U 37,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U	-trifluoroethane	1	2,000 ∪	82,000 U	37,000 U	2,200 U	000'86	S :	1,900 U	2,100 U	3,600 U	0.068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 32,000 U 2,200 U 2,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U 0 2,000 U 82,000 U 37,000 U 2,200 U 0 82,000 U 37,000 U 2,200 U 0 82,000 U 37,000 U 2,200 U	MTBE)		2,000 ∪	82,000 U	37,000 U	2,200 U	98,000 U	20.08	1,900 U	2,100 U	3,600 U	068	2,200 U
320 J 82,000 U 37,000 U 2,200 U 37,000 U 2,200 U			2,000 ∪	82,000 U	37,000 ∪	2,200 ∪	000'86	∩ 88	1,900 U	2,100 U	3,600 U	D 068	2,200 ∪
2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 37,000 U 37,000 U 2,200 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			320 J	82,000 U	37,000 U	2,200 U	98,000 U	⊃ 88	1,900 U	2,100 U	3,600 ∪	∩ 068	2,200 ∪
2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,000 U 2,000 U 37,000 U 2,200 U 2,200 U 2,000 U 37,000 U 2,200 U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2,000 U	82,000 U	37,000 U	2,200 U	98,000 U	⊃ 88	1,900 U	2,100 ∪	3,600 ∪	∩ 068	2,200 ∪
2,000 U 82,000 U 2,200 U 2,200 U 2,200 U 2,200 U 2,200 U 2,200 U 37,000 U 2,200 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2,000 U	82,000 U	37,000 U	2,200 U	000′86	B0 ∩	1,900 U	2,100 ∪	3,600 ∪	∩ 068	2,200 ∪
chloropropane 2,000 U 82,000 U 37,000 U 2,200 U benzene 2,000 U 82,000 U 37,000 U 2,200 U 2,200 U 2,200 U			2,000 U	82,000 U	37,000 U	2,200 U	98,000 U	⊃ 80	1,900 U	2,100 U	3,600 ∪	0 068	2,200 U
Denzene 2,000 U 82,000 U 37,000 U 2,200 U 2,000 U 82,000 U 37,000 U 2,200 U	opropane		2,000 ∪	82,000 U	37,000 U	2,200 U	98,000 U	08 0	1,900 ∪	2,100 ∪	3,600 U	068	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U	ine		2,000 ∪	82,000 U	37,000 U	2,200 U	98,000 U	N 08	1,900 ∪	2,100 ∪	3,600 ∪	∩ 068	2,200 U
			2,000 U	82,000 U	37,000 U	2,200 U	000,86	n 08	1,900 U	2,100 U	3,600 U	O68	2,200 U
2,000 U 82,000 U 37,000 U 2,200 U			2,000 U	82,000 U	37,000 U	2,200 U	08,000 U	D 08	1,900 U	2,100 U	3,600 U	068 068	2,200 U
Methylcyclohexane 360 J 82,000 U 37,000 U 2,200 U 98,000 U		-	G 096	82,000 U	37,000 U	2,200 U	98,000 U	D 08	1,900 U	2,100 U	3,600 U	880 0	2,200 U

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-1 Area

Sample ID ->	Midler	VB1 - 1	VB1-2	VB1 - 3	VB1 - 3 DL	VB1 - 3	VB1 - 3 DL	VB1 - 3	VB1 - 3 DL	VB1 - 3	VB1 - 3 DL	VB1 - 4	VB1 - 4 DL	VB1 - 5
Depth - >	SSCO	16.0 - 20.0	12.9 - 16.9	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	16.8 - 20.8	16.8 - 20.8	16.0 - 20.0
Date Sampled ->		03/16/07	03/16/07	20/20/90	20/20/90	08/03/07	08/03/07	08/21/07	08/21/07	09/04/07	09/04/07	03/16/07	03/16/07	03/16/07
Chloromethane		06	18 U	2,900 ∪	28,000 U	200 U	4,900 U	270 U	006,8	230 U	2,800 U	26 U	120 U	23 U
Vinvi chloride	800	<u>⊃</u> 86	Г 6	2,900 ∪	58,000 U	200 ∪	4,900 U	270 U	3,300 U	f 22	2,800 U	3.1	120 U	23 U
Bromomethane		06	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 U
Chloroethane		∩ 06	18 U	2,900 U	58,000 U	200 U	4,900 ∪	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 ∩
1,1-Dichloroethene		06	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 ∪	230 U	2,800 U	26 U	120 D	23 0
Carbon disulfide		- 82	4 J	2,900 U	58,000 U	200 C	4,900 U	270 U	3,300 ∪	230 N	2,800 U	7.3	120 U	
Acetone		1,300 U	41 ∪	14,000 J	58,000 U	5,700 E	4,900 U	8,600 BEJ	10,000	4,300 B	7,400	47 U	84 B/D	140 B
Methylene chloride		200	42 ∪	280 U	23,000 U	100 JB	120 JB	81 ∩	140 U	170 U	00€	0 69	260 BD	D 82
1,1-Dichloroethane		⊃ 06	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	. 3,300 U	230 U	2,800 ∪	56 U	120 U	23 U
2-Butanone		280	18 ∪	2,900 U	0000 €	1,200	4,900 U	2,500	3,300 U	1,300	2,800 U	13 J	28 DJ	20
Chloroform		∩06	18 U	2,900 ∪	58,000 U	200 C	4,900 U	270 U	O06,E	230 U	2,800 U	26 U	120 U	23 U
11.1.1-Trichloroethane		∩06	18 U	2,900 U	98,000 U	200 €	4,900 ⊔	270 U	3,300 U	230 ∪	2,800 ∪	56 U	120 U	23 U
Carbon tetrachloride		<u>⊃</u> 86	18 U	2,900 U	S8,000 U	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 ∪
Benzene		∩06	18 U	2,900 ∪	28,000 ∪	500 €	4,900 U	8.9 JB	3,300 U	L 4	2,800 ∪	56 U	120 U	23 U
1 2-Dichloroethane		∩06	18 U	2,900 ∪	58,000 U	200 U	4,900 U	270 U	3,300 U	230 ∩	2,800 ∪	56 ∪	120 U	23 ∪
Trichloroethene	2.800	ĺ	4	74 000 EJ	G 000'96	850	L 007	1,400	1,700 J	6,300 EJ	7,200	270	450 D	38
1 2-Dichlomoronana	i		18 U	2.900 U	58,000 U	200 U	4.900 U	270 U	3,300 U	230 ∪	2,800 ∪	26 U	±20 U	23 U
Bronodichloromethane		06	18 U	2,900 U	58,000 U	200 ∩	4,900 ∪	270 U	3,300 ∪	230 ∪	2,800 ∪	26 U	120 U	230
cis-1 3-Dichloropronene		7 06	18 U	2.900 U	58,000 U	200 ∪	4,900 U	270 U	3,300 U	230 €	2,800 ∪	792	120 U	23 U
4-Mathyl-2-pertanone		106	18 0	2,900 ∪	58.000 U	200 ∩	4.900 U	270 U	3,300 U	230 U	2,800 U	26 ∪	120 U	23 ∪
Toluene		26	18 U	2,900 ∪	58,000 U	16 JB	006,4	28 U	3,300 U	21 U	2,800 U	26 U	120 U	23 ∩
trans-1 3-Dichloropropene		N 06	18 U	2,900 ∪	58,000 U	200 ∪	4,900 U	270 U	3,300 U	230 U	2,800 ∪	76 ∪	120 U	23 U
1.1.2-Trichloroethane		∩ 06	18 U	2,900 U	28,000 U	200 ∪	4,900 U	270 U	3,300 U	230 ∪	2,800 ∪	78 ∪	120 U	23 U
Tetrachloroethene	2,600	ſ /9	18 U	430,000 EJ	B80,000 D	43,000 E	57,000	32,000 EJ	96,000	13,000 EJ	16,000	100	170 D	7.1
2-Hexanone		06	18 U	2,900 ∪	28,000 U	200 ∩	4,900 ∪	£9 J	3,300 U	230 U	2,800 U	26 U	120 U	23 ∪
Dibromochloromethane		∩ 06	18 U	2,900 U	000'89	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 U
Chlorohenzene		D 06	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 U	530 €	2,800 ∪	26 U	120 U	23 U
Ethylbenzene		06	18 U	2,900 U	58,000 U	13 J	4,900 ∪	11)	3,300 U	11)	2,800 U	26 U	120 U	23 U
Styrene		006	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 U	230 ∩	2,800 ∪	26 U	120 U	23 U
Bromoform		06	18 U	2,900 U	58,000 U	200 U	4,900 ∪	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 U
1,1,2,2-Tetrachloroethane		∩ 06	18 U	2,900 U	O00,85	200 U	4,900 ∪	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 U
Total Xylenes		∩ 06	18 U	2,900 ∪	58,000 U	F 08	4,900 U	72 J	82	51 J	2,800 U	26 ∪	120 U	23 U
cis-1,2-Dichloroethene		450	88	36,000	42,000 DJ	099	380 ∂	280	510 J	1,0	770	1,100	1,100 D	200
trans-1,2-Dichloroethene	1,200	21)	14 J	360 J	58,000 U	717	4,900 U	270 U	3,300 ∪	ผ	2,800 ∪	27	23 07	27
Dichlorodifluoromethane		N 06	U 81	2,900 U	58,000 U	200 C	4,900 U	270 U	3,300 ∪	230 ∩	2,800 ∪	56 U	120 U	೧
Trichlorofluoromethane		∩06	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 ∪	230 ∩	2,800 U	26 U	120 U	⊃ 82
1,1,2-Trichloro-1,2,2-trifluoroethane		N 06	18 U	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 U	230 ∩	2,800 ∪	26 U	120 U	23 ∩
Methyl-t-butyl ether (MTBE)		ก 06	U 81	2,900 U	58,000 U	200 U	4,900 U	270 U	3,300 U	230 ∩	2,800 ∪	26 ∪	120 U	23 U
1,2-Dibromoethane		∩ 06	18 U	2,900 ∪	58,000 U	200 U	4,900 U	270 U	3,300 U	230 €	2,800 ∪	26 U	120 U	23 U
Isopropylbenzene		⊃ 86	18 U	2,900 ∪	58,000 U	F8	4,900 U	9.1 J	3,300 U	230 €	2,800 U	792	120 U	23 ∩
1,3-Dichlorobenzene		⊃ 86	18 ∪	2,900 ∪	58,000 U	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 ∩
1,4-Dichlorabenzene		∩ 06	18 U	2,900 ∪	∩ 000'89	13 J	4,900 U	5.0 J	3,300 U	230 U	2,800 U	26 ∪	120 U	23 C
1,2-Dichlorobenzene		□ 06	18 U	2,900 U	28,000 U	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 N
1,2-Dibromo-3-chloropropane		∩ 06	18 U	2,900 ∪	58,000 U	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 ∩
1,2,4-Trichlorobenzene		n 06	18 U	2,900 ∪	58,000 U	200 U	4,900 U	270 U	3,300 U	230 €	2,800 U	56 ∪	120 U	23 U
Methyl acetate		∩ 06	18 U	2,900 U	58,000 U	200 U	4,900 ∪	270 U	3,300 ∪	230 ∩	2,800 U	26 U	120 U	23 U
Cyclohexane		n 06	18 U	2,900 ∪	58,000 U	200 U	4,900 ∪	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 U
Methylcyclohexane		<u>⊃</u> 86	18 U	2,900 ∪	58,000 U	200 U	4,900 U	270 U	3,300 U	230 U	2,800 U	26 U	120 U	23 U

** Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-1 Area

Sample ID ->	Midler	VR1 - 6	VB1 - 6	VB1 - 6 DL	VB1-7	VB1 - 8	VB1 - 8 DL	VB1 - 8	VB1 - 8 DL	VB1 - 8	VB1 - 8 DL	VB1 - 8	VB1 - 8 DL	VB1-8
	SSCO	3.9 - 7.9	3.9 - 7.9	3.9 - 7.9	15.8 - 19.8	15.4 - 18.4	15.4 - 18.4	15.4 - 18.4	15.4 - 18.4	15.4 - 19.4	15.4 - 19.4	15.4 - 19.4	15.4 - 19.4	15.4 - 19.4
Date Sampled ->		03/16/07	05/10/07	06/10/07	20/20/90	06/07/07	20/20/90	02/05/07	07/02/07	02/16/07	07/16/07	08/10/07	08/10/07	08/20/07
Chloromethane		1,800 U	100 U	2,500 ∪	2,100 U	2,000 U	41,000 U	N 98	2,100 U	n 96	4,600 U	180 U	4,200 U	170 U
Vinyl chloride	8	310 J	100 F	2,500 ∪	2,100 U	2,000 ∪	41,000 U	0 98	2,100 ∪	⊃ 96	4,600 U	180 ∪	4,200 U	170 U
Bromomethane		230)	100 U	2,500 U	2,100 U	2,000 ∪	41,000 U	0 98	2,100 U	∩ 96	4,600 U	180 U	4,200 U	170 U
Chloroethane		1,800 ∪	100 U	2,500 U	2,100 U	2,000 U	41,000 U	86 U	2,100 U	∩ 96	4,600 ∪	180 ∪	4,200 U	170 U
1,1-Dichloroethene		1,800 U	100 U	2,500 U	2,100 U	2,000 U	41,000 U	98 U	2,100 U	n 96	4,600 ∪	180 U	4,200 U	170 U
Carbon disulfide		1,800 U	17 J	2,500 U	2,100 U	2,000 ∪	41,000 U	98 ∩	2,100 U	⊃ 96	4,600 ∪	9.4 J	4,200 U	170 U
Acetone		2,900	14,000 BEJ	10,000 D	G 000'96	12,000 J	41,000 U	7,500 EJ	15,000 B	12,000 EJ	13,000 U	16,000 BEJ	17,000	13,000 BEJ
Methylene chloride		1,800 ∪	130	2,500 U	920 U	430 U	7,200 ∪	110 U	250 ∪	46 ∪	000	78 ∩	100	51 U
1,1-Dichloroethane		1,800 U	100 U	2,500 U	2,100 U	2,000 U	41,000 U	96 U	· 2,100 U	⊃ 96	4,600 U	180 U	4,200 ∪	170 U
2-Butanone		r 069	3,000 EJ	2,600 D	12,000 J	4,400 J	41,000 U	2,700 EJ	3,800	3,900 EJ	3,500 J	9,200 EJ	6,300	6,600 EJ
Chloroform		1,800 U	100 €	2,500 U	2,100 U	2,000 ∪	41,000 U	∩ 98	2,100 U	∩ 96	4,600 U	180 U	4,200 U	170 U
1,1,1-Trichloroethane		1,800 U	100 L	2,500 U	2,100 ∪	2,000 ∪	41,000 U	0.98	2,100 U	n 96	4,600 U	180 U	4,200 U	170 U
Carbon tetrachloride		1,800 U	O 001	2,500 U	2,100 U	2,000 ∪	41,000 U	∩98	2,100 U	∩ 96	4,600 U	180 U	4,200 U	170 U
Benzene		1,800 U	1001	2,500 U	2,100 U	2,000 ∪	41,000 U	4 ک	2,100 U	5.	4,600 ∪	14.3	4,200 U	69
1 2-Dichloroethane		1.800 ∪	100	2,500 U	2,100 U	2,000 ∪	41,000 U	∩ 98	2,100 U	∩ 96	4,600 U	180 U	4,200 ∪	170 U
Trichloroethene	2,800	1,300 J	12 J	2,500 ∪	1,800 J	1,100 J	41,000 U	78 J	110 J	. 49	4,600 U	430	290 ∫	120 J
1.2-Dichtoropropane		1,800 U	100 L	2,500 U	2,100 U	2,000 U	41,000 U	n 98	2,100 U	06 U	4,600 U	∩ 081	4,200 ∪	170 U
Bromodichloromethane	-	1,800 U	100	2,500 U	2,100 U	2,000 U	41,000 ∪	86 U	2,100 U	n 96	4,600 U	180 U	4,200 ∪	170 U
cis-1,3-Dichloropropene	_	1,800 U	1001	2,500 ∪	2,100 U	2,000 U	41,000 U	96 U	2,100 U	∩ 96	4,600 ∪	180 U	4,200 U	170 U
4-Methyl-2-pentanone		1,800 U	20 J	2,500 ∪	2,100 U	2,000 U	41,000 U	96 U	2,100 U	n 96	4,600 ∪	180 U	4,200 ∪	170 U
Toluene		1,800 U	SO 7	2,500 U	2,100 U	2,000 U	41,000 ∪	24 J	£7.J	19 J	4,600 ∪	78 JB	52 J	59 ∩
trans-1,3-Dichloropropene		1,800 ∪	100 U	2,500 U	2,100 U	2,000 ∪	41,000 U	86 U	2,100 U	D 96	4,600 U	180 U	4,200 U	170 U
1.1.2-Trichloroethane		1,800 U	004	2,500 U	2,100 U	2,000 U	41,000 U	86 U	2,100 U	0-96 ∩	4,600 U	180 U	4,200 U	170 U
Tetrachloroethene	5,600	10,000	240	610 J	6,100	190,000 EJ	550,000 D	12,000 E	42,000	17,000 EJ	56,000	33,000 EJ	46,000	4,000 EJ
2-Hexanone		1,800 U	19 J	2,500 ∪	2,100 U	2,000 U	41,000 U	42 J	2,100 U	36 J	4,600 ∪	ე 06	4,200 U	8
Dibromochloromethane		1,800 U	100 U	2,500 U	2,100 U	2,000 U	41,000 U	86 U	2,100 U	96 U	4,600 ∪	180 C	4,200 ∪	170 U
Chlorobenzene		1,800 U	100 H	2,500 U	2,100 U	2,000 U	41,000 ∪	86 U	2,100 U	n 96	4,600 ∪	08	4,200 U	130 0
Ethylbenzene		1,800 U	100 L	2,500 ∪	2,100 U	2,000 ∪	41,000 U	96 ∪	2,100 U	23	4,600 ∪	5	4,200 U	170 U
Styrene		1,800 ∪	100 L	2,500 ∪	2,100 U	2,000 ∪	41,000 U	98	2,100 ∪	∩ 96	4,600 U	08	4,200 U	1/0 0
Bromoform		1,800 ∪	100 U	2,500 U	2,100 U	2,000 ∪	41,000 U	0 98 ∩	2,100 U	0 S	4,600 U	180 0	4,200 U	170 U
1,1,2,2-Tetrachloroethane		1,800 U	100 0	2,500 U	2,100 U	2,000 U	41,000 U	98.1	0.000,	9 -	0.000	2 5	0.002,4	1000
Total Xylenes		0.008,1	0.001	2,500 U	2,100 0	2,000 0	0 000	0	200	7 97	1,000	200	1,202,4	5 6
cis-1,2-Dichiproethene	1000	000	2 2	0 0000	2,200	2000	41,000 0	200	2,50	90	1 600	1 (8)	1 200 4	26
trans-1,z-Lichlordemene	3,4	2000	28	2,500 0	200	2,000,0	41,000	3 8	2,100 1	3 8	4 600 11	180 1	4 200 11	170
Ticklood outside		200,	2 5	2500	10010	2,000	41,000	- 8	2,100.1	38	4 600 11	180 (1	4.200 11	170 11
1 1 2-Trichloro-1 2 2-triflioroethane		1,000	2 2 2	2,500 11	2,100 U	2,000 U	41,000 U	98 n	2.100 U	∩ 96	4,600 U	180 U	4,200 ∪	170 U
Methyl-t-hith ether (MTBF)		1.800 U	100 0	2.500 U	2.100 ∪	2,000 U	41,000 U	0 98 U	2,100 U	∩ 96	4,600 ∪	180 U	4,200 ∪	170 U
1.2-Dibromoethane		1,800 ∪	100 L	2,500 U	2,100 ∪	2,000 ∪	41,000 U	798	2,100 U	⊃ 96	4,600 ∪	180 €	4,200 U	170 U
Sooroovibenzene		1,800 U	100	2,500 ∪	2,100 ∪	2,000 ∪	41,000 U	98 U	2,100 U	∩ 96 ∩	4,600 U	180 U	4,200 U	170 U
1.3-Dichlorobenzene		1,800 U	100	2,500 ∪	2,100 U	2,000 U	41,000 U	0 98 0	2,100 U	0 96 U	4,600 U	180 U	4,200 U	170 U
1,4-Dichlorobenzene		1,800 U	100 U	2,500 ∪	2,100 U	2,000 U	41,000 U	0 98 ∩	2,100 U	3.1	4,600 U	180 ∪	4,200 U	170 U
1,2-Dichlorobenzene		1,800 U	100 U	2,500 U	2,100 U	2,000 U	41,000 U	0 98	2,100 U	n 96	4,600 U	180 U	4,200 ∪	170 U
1,2-Dibromo-3-chloropropane		1,900 ∪	100 U	2,500 ∪	2,100 U	2,000 ∪	41,000 U	⊃ 98	2,100 U	⊃ 86	4,600 ∪	180 U	4,200 U	170 U
1,2,4-Trichlorobenzene		1,900 ∪	D 001	2,500 U	2,100 ∪	2,000 ∪	41,000 U	⊃ 98	2,100 U	⊃ 86	4,600 U	180 N	4,200 U	130 C
Methyl acetate		1,800 ∪	100 L	2,500 U	460 J	2,000 ∪	41,000 U	088	2,100 ∪	98	760 J	180 C	4,200 U	170 U
Cyclohexane		1,800 U	100 C	2,500 U	2,100 U	2,000 ∪	41,000 U	⊃ 98	2,100 U	n 96	4,600 U	180 C	4,200 U	170 U
Methylcyclohexane		550 J	21 J	2,500 U	2,100 U	2,000 U	41,000 U	98	2,100 ∪	96	4,600 U	180 0	4,200 U	1/0 0

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-1 Area

9-1-1-0	1.00	100	2 70/1	107	704 40 01	107	7 or 10/1	1 10/1	707	VD1 11	VD4 44 D	VP1 - 10	N ct . Fav	VB1 10
Danth -	CON	154-194	116-156	127-167	127.167	127-167	127-167	16.4 - 20.4	16.4-20.4	16.4 - 20.4	16.4 - 20.4	15.9 - 19.9	159-199	15.9 - 19.9
Date Sampled ->	3	08/20/07	20/20/90	20/08/09	20/80/90	08/03/02	08/03/07	20/00/00	20/90/90	08/03/07	08/03/07	06/08/07	20/08/09	08/10/07
Chloromethane		2 100 11	1 800 1	42 000 11	110.000 11	170 []	2.100 U	210.000 U	85.000 ∪	180 U	2.200 U	2.200 U	8.800 U	160 U
Wind chlorida	800		180011	42 000 1	110,000 U	170 [2,100 U	210,000 U	85.000 U	180 U	2,200 U	2.200 U	8,800 ∪	D 091
Bromomethane	3	1	1.800 U	42.000 U	110.000 U	170 U	2,100 ∪	210,000 U	85,000 ∪	180 U	2,200 U	2,200 U	8,800 U	160 U
Chloroethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	0000'88	180 U	2,200 U	2,200 U	9,800 U	160 U
1,1-Dichloroethene		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 U
Carbon disulfide		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	95,000 U	180 U	2,200 U	2,200 U	8,800 U	14 Ս
Acetone		15,000 U	10,000,01	42,000 U	110,000 U	4,100 E	3,700	15,000 J	85,000 U	22,000 E	16,000	∫ r 006′s	6,000 DJ	3,700 BEJ
Methylene chloride		95 U	840 U	17,000 U	20,000 U	90 JB	40 JB	8,400 JU	16,000 ∪	8 €7	2,200 ∪	∩ 086	1,900 U	26 U
1,1-Dichloroethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	. 85,000 U	180 U	2,200 ∪	2,200 U	8,800 U	160 U
2-Butanone		5,600	2,400 J	42,000 U	110,000 U	1,200	2,100 U	210,000 U	85,000 U	8,100 E	5,100	2,200 U	9,800 ∪	2,300
Chloroform		2,100 U	1,800 ປ	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	8,800 U	160 U
1, t, 1-Trichloroethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	8,800 U	160 U
Carbon tetrachloride		2,100 ∪	1,800 U	42,000 ∪	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 ∪
Benzene		2,100 U	1,800 U	42,000 U	110,000 U	1.7 JB	2,100 ∪	210,000 U	95,000 U	۲٦	2,200 ∪	2,200 U	8,800 U	11 J
1.2-Dichtoroethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	008′8	160 ∪
Trichloroethene	2,800		1,800 U	22,000 J	22,000 DJ	32.3	2,100 U	f 008'8	85,000 U	83.	2,200 ∪	1,000 J	980 DJ	130 J
1.2-Dichloropropane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 ∪	2,200 U	008′8	160 ∪
Bromodichloromethane		2,100 ∪	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	000'58	180 U	2,200 U	2,200 ∪	8,800 U	160 U
cis-1.3-Dichloropropene		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	000,58	180 U	2,200 U	2,200 U	8,800 U	160 U
4-Methyl-2-pentanone		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	008′8	160 U
Toluene		2,100 U	1,800 U	42,000 U	110,000 U	9 JB	2,100 U	210,000 U	95,000 U	42 JB	2,200 U	2,200 U	8,800 U	47 U
trans-1,3-Dichloropropene		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	8,800 U	O 091
1,1,2-Trichloroethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 U
Tetrachioroethene	5,600		5,000 U	1,400,000 EJ	1,500,000 D	2,200 E	3,300	910,000 EJ	1,000,000 D	4,000 E	4,900	48,000 EJ	53,000 D	1,800
2-Hexanone		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	9,800 ∪	41 J
Dibromochloromethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 U
Chlorobenzene		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	8,800 U	160 U
Ethylbenzene		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 ∪	160 U
Styrene		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	95,000 ∪	180 U	2,200 U	2,200 U	8,800 U	160 U
Bromaform		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 ∪	2,200 U	9,800 ∪	D 091
1,1,2,2-Tetrachloroethane		2,100 ∪	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 ∪	±60 U
Total Xylenes		2,100 ∪	1,800 U	42,000 U	110,000 U	16 J	2,100 U	210,000 U	85,000 U	65 J	29	2,200 U	8,800 U	80 J
cis-1,2-Dichloroethene			1,800 U	42,000 U	110,000 U	12.7	2,100 U	6,600	85,000 U	41 J	2,200 U	29,000	29,000 D	6,600 E.
trans-1,2-Dichloroethene	02,		1,800 U	42,000 U	00001	170 U	2,100 U	210,000 U	0000'98	180 0	2,200 U	440 3	0.008,8	1001
Dichlorodifluoromethane		2,100 U	008,	42,000 U	0.000,011	0.07	2,100 U	0.000 012	0 000'98	0 000	2,200 0	2,200 0	3,800 0	2 5
Trichlorofluoromethane		2,100 ∪	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 0	2,200 U	2,200 U	9,800 U	160 U
1,1,2-Trichtoro-1,2,2-trifluoroethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 0	2,200 U	2,200 U	8,800 U	0.09
Methyl-t-butyl ether (MTBE)		2,100 U	1,800 ∪	42,000 U	110,000 U	120 U	2,100 ∪	210,000 U	85,000 U	180 0	2,200 U	2,200 ∪	8,800 U	160 U
1,2-Dibromoethane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	95,000 ∪	180 0	2,200 U	2,200 U	8,800 U	0 09
Isopropylbenzene		2,100 ∪	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 U
1,3-Dichlorobenzene		2,100 ∪	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	95,000 ∪	180 U	2,200 U	2,200 ∪	8,800 U	160 U
1,4-Dichlorobenzene		2,100 U	1.800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 U
1,2-Dichlorobenzene		2,100 ∪	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 ∪	2,200 U	8,800 U	160 ∪
1,2-Dibromo-3-chloropropane		2,100 U	J,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	8,800 U	160 U
1,2,4-Trichlorobenzene		2,100 U	n 008't	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 ∪	2,200 ∪	8,800 U	1 60 U
Methyl acetate		2,100 U	1,800 U	42,000 U	110,000 ∪	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 ∪	160 U
Cyclohexane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 U	8,800 U	160 U
Methylcyclohexane		2,100 U	1,800 U	42,000 U	110,000 U	170 U	2,100 U	210,000 U	85,000 U	180 U	2,200 U	2,200 ∪	8,800 U	160 U

** Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-1 Area

Cample ID	Midler	VR1 - 12 DI	VR1 - 13	VR1 - 13	VR1 - 14	VR1 - 14 Di	VR1 - 14	VB1 - 14 DI	VB1 - 14 DI 2	VB1 - 14	VB1 - 14 DI	VB1 - 14	VB1 - 14 DL	VB1 - 14 DI 2
Demth - >	COSS	15.9 - 19.9	16.1 - 20.1	16.1 - 20.1	18.1 - 22.1	18.1 - 22.1	18.1 - 22.1	.l	18.1 - 22.1	18.1 - 22.1	18.1 - 22.1	18.1 - 22.1		18.1 - 22.1
Date Samoled ->		08/10/07	03/15/07	05/10/07	06/11/07	06/11/07	20/06/20	20/06/20	20/08/20	08/10/07	08/10/07	08/28/07	08/28/07	08/28/07
Chloromethane		∩ 006'1	2,100 U	2,100 U	2,000 U	20,000 U	150 U	U 008,1	009′ε	160 U	006'€	160 U	006'1	3,700 U
Vinyl chloride	800	1,900 U	1007	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 ∪	160 U	1,900 U	3,700 U
Bromomethane		1,900 U	2,100 U	2,100 U	2,000 ∪	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 ∪	160 U	1,900 U	3,700 ∪
Chloroethane		1,900 ∪	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 ∪	D 091	1,900 U	3,700 ∪
1,1-Dichloroethene		1,900 U	2,100 U	2,100 ∪	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 U	160 U	1,900 U	3,700 U
Carbon disulfide		1,900:U	2,100 U	2,100 U	2,000 ∪	20,000 U	15 J	1,800 U	3,600 ∪	- O-1	3,900 ∪	160 U	1,900 U	3,700 U
Acetone		4,600	1,300 J	5,200	56,000 J	76,000 D	13,000 EJ	9,100 J	9,300 J	13,000 BEJ	14,000	8,200 BEJ	13,000 J	15,000 J
Methylene chloride		9	2,100 U	2,100 U	260 U	4,100 U	74 0	⊃ 86	260 U	36 U	120 U	320 0	0.69	∩ 96
1,1-Dichloroethane		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	. 3,600 U	160 U	3,900 U	160 U	1,900 U	3,700 ∪
2-Butanone		1,700 J	460 J	2,300	10,000 J	24,000 DJ	6,000 EJ	1,800	3,600 U	6,900 EJ	4,900	3,500 EJ	5,600	5,600 J
Chloroform		006,1	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 U	160 U	1,900 ∪	3,700 U
1,1,1-Trichloroethane		U 006,1	2,100 ∪	2,100 U	2,000 U	20,000 U	150 U	1,800 U	∩ 009′E	160 U	3,900 ∪	1 6 0 U	∩ 006'F	3,700 U
Carbon tetrachloride		U 006,1	2,100 U	2,100 U	2,000 ⊔	20,000 U	150 U	1,800 ∪	3,600 U	160 U	3,900 ∪	160 U	1,900 U	3,700 U
Benzene		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	Г б	1,800 ∪	3,600 ∪	6.9	3,900 U	4 J	1,900 U	3,700 U
1,2-Dichloroethane		-	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 U	160 ∪	1,900 ∪	3,700 U
Trichloroethene	2,800	120 J	2,800	2,100 U	f 049	2,200 DJ	470	500 J	510 J	330	260 JB	230	700 Y	790
1.2-Dichtoropropane		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 U	160 U	1,900 U	3,700 U
Bromodichloromethane		∩ 006'L	2,100 U	2,100 ∪	2,000 U	20,000 U	U 051	1,800 U	3,600 U	160 U	3,900 ∪	160 ∪	1,900 ∪	3,700 U
cis-1.3-Dichloropropene		1,900 U	2,100 ∪	2,100 ∪	2,000 ∪	20,000 ∪	150 U	1,800 U	3,600 U	160 U	3,900 U	160 U	1,900 U	3,700 U
4-Methyl-2-pentanone		1,900 U	2,100 ∪	2,100 U	2,000 ∪	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 U	160 U	1,900 U	3,700 U
Toknene		40 J	2,100 U	2,100 U	2,000 ∪	20,000 ∪	8f 4/	L 9/	L 8/2	48 U	3,900 U	25 U	67 J	5 45
trans-1.3-Dichloropropene		1,900 U	2,100 U	2,100 U	2,000 ∪	20,000 ∪	150 U	1,800 U	3,600 ∪	160 U	006'E	160 U	1,900 U	3,700 U
1.1.2-Trichloroethane		006,1	2,100 ∪	2,100 U	2,000 ∪	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 U	160 ∪	1,900 U	3,700 U
Tetrachloroethene	5,600	2,700	4,800	450 J	51,000 EJ	230,000 D	27,000 EJ	49,000 EJ	51,000	30,000 EJ	49,000	7,800 EJ	46,000 BEJ	49,000
2-Hexanone			2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 ∪	Г96	006′8	42 }	1,900 ∪	3,700 U
Dibromochloromethane		1,900 U	2,100 ∪	2,100 U	2,000 U	20,000 ∪	150 U	1,800 U	3,600 ∪	160 U	3,900 ∪	160 U	1,900 U	3,700 U
Chlorobenzene		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 ∪	3,900 ∪	160 U	1,900 U	3,700 U
Ethylbenzene		1,900 U	2,100 U	2,100 U	2,000 ∪	20,000 U	LE.	1,800 ∪	3,600 ∪	₽	3,900 ∪	160 ∪	1,900 U	3,700 ∪
Styrene		U 000¢1	2,100 U	2,100 U	2,000 ∪	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 ∪	160 U	U 006,1	3,700 ∪
Bromoform		1,900 U	2,100 U	2,100 U	2,000 ∪	20,000 ∪	150 U	1,800 U	3,600 U	160 U	3,900 ∪	160 U	1,900 U	3,700 U
1,1,2,2-Tetrachloroethane		1,900 U	2,100 U	2,100 U	2,000 U	20,000 ∪	150 U	1,800 U	3,600 U	160 U	3,900 ∪	160 U	1,900 U	3,700 ∪
Total Xylenes		72 J	2,100 U	2,100 U	2,000 U	20,000 U	110 J	120 J	92 J	98 J	3,900 U	32 J	130	9
cis-1,2-Dichloroethene		5,5		8,600	730°	20,000 U	130 J	73 J	3,600 U	120 J	3,900 U	83	120]	3,700 U
trans-1,2-Dichloroethene	1,200			2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 UM	3,900 U	0.091	1,900 U	3,700 U
Dichtorodifluoromethane		∩ 006,1	2,100 ∪	2,100 U	2,000 ∪	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 U	160 U	006'L	3,700 U
Trichlorofluoromethane		1,900 U	2,100 U	2,100 U	2,000 U	20 000 U	150 U	1,800 U	3,600 U	160 U	3,900 U	091	1,900 0	3,700 U
1,1,2-Trichloro-1,2,2-triffuoroethane		0061	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 0	200	006,	3,700 0
Methyf-t-buryl ether (MTBE)		006'.	U 001,5	2,100 U	2,000 0	20,000	190	0 000	0.000	3 5	0.000	3 5	0.000	0 200,6
1,2-Dibromoethane		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	0.061	0.00	3,600 U	0.00	0.000	200	0.006,	3,700 0
Isopropyibenzene		1,900	2,100 U	2,100 U	2,000 U	20,000 U	120 C	1,800 U	3,600 U	169 0	3,900 U	0.03	0.006,	00/5
1,3-Dichlorobenzene		1,900 U	2,100 U	2,100 U	2,000 ∪	20,000 ∪	150 U	1,800 U	3,600 ∪	160 0	3,900 U	160 U	1,900 U	3,700 U
1,4-Dichlorobenzene		1,900 U	2,100 ∪	2,100 U	2,000 ∪	20,000 ∪	150 U	1,800 U	3,600 ∪	0.09	3,900 U	160 U	1,900 U	3,700 U
1,2-Dichlorobenzene		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 U	160 U	3,900 U	160	D 006,1	3,700 U
1,2-Dibromo-3-chloropropane		1,900 ∪	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 ∪	180 0	3,900 ∪	160 U	1,900 U	3,700 U
1,2,4-Trichlarobenzene		1,900 ∪	2,100 U	2,100 U	2,000 ∪	20,000 ∪	150 €	1,800 U	3,600 U	- 185 - 1	3,900 U	<u>8</u>	006.	3,700 U
Methyl acetate		006'1	2,100 U	2,100 U	2,000 ∪	20,000 U	150 J	430 ∫	450 J	160 U	3,900 U	D 69	1,900 U	3,700 U
Cyclohexane		006,1	2,100 U	2,100 ∪	2,000 ∪	20,000 U	150 U	1,800 ∪	3,600 U	160 U	3,900 U	160 U	1,900 U	3,700 U
Methylcyclohexane		1,900 U	2,100 U	2,100 U	2,000 U	20,000 U	150 U	1,800 U	3,600 ∪	160 U	3,900 U	160 U	1,900 U	3,700 U
	:													

** Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-1 Area

Sample ID ->	Midler	VB1 - 14	VB1 - 14 DL	VB1 - 14 DL	VB1 - 14	VB1 - 15	VB1 - 16	VB1 - 16	VB1 - 16 DL	VB1 - 17	VB1 - 17 DL	VB1 - 17	VB1 - 17 DL	VB1 - 17 DL2
Depth - >	SSCO	Ľ	18.1 - 22.1	18.1 - 22.1	18.1 - 22.1	10.2 - 14.2	8.8 - 12.8	8.8 - 12.8	8.8 - 12.8	15.5 - 15.9	15.5 - 19.5	15.5 - 15.9	15.5 - 15.9	15.5 - 19.5
Date Sampled ->		20/13/07	09/13/07	09/13/07	09/26/07	06/11/07	06/11/07	07/16/07	02/16/07	20/80/90	20/08/09	08/28/07	08/28/07	08/28/07
Chloromethane		160 U	1,900 U	9,400 U	N 12	2,300 U	3,000 U	110 U	2,700 U	U 000,11	44,000 U	170 U	2,000 U	8,200 U
Vinyl chloride	8	160 U	1,900 ∪	9,400 ∪	n 44	2,300 U	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Bromomethane			1,900 U	9,400 ∪	U 1/2	2,300 ∪	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Chloroethane		160 U	1,900 U	9,400 U	N 44	2,300 U	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
1,1-Dichloroethene		160 U	1,900 U	9,400 U	U 77	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 ∪
Carbon disulfide		160 U	1,900 U	9,400 ∪	0 <i>1</i> 2	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 ∪
Acetone		5,200 EB	12	12	1,100 B	13,000 J	15,000	9,000 E.J	7,700 U	31,000	44,000 ∪	5,300 BEJ	8,100 J	7,700 J
Methylene chloride		80 BB			20 JB	380 U	320 U	49 U	170 U	4,400 U	8,400 ∪	ક્ષ ⊃	47 U	500 ∪
1,1-Dichloroethane		160 ∪	1,900 U	9,400 U	N 44	2,300 U	3,000 U	110 U	· 2,700 U	11,000 J	44,000 U	170 U	2,000 U	8,200 U
2-Butanone		2,000	4,400	9,400 ∪	410	2,400 J	3,900	2,000	2,700 U	8,300 J	44,000 U	2,400	3,500	8,200 U
Chloroform		160 ∪	1,900 ⊔	9,400 U	n <i>11</i>	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
1,1,1-Trichloroethane		160 ∪	1,900 U	9,400 ∪	N 44	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Carbon tetrachloride		160 U	J 006,1	9,400 ∪	014	2,300 U	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Benzene		2.6 JB	1,900 U	9,400 ∪	N 44	2,300 U	3,000 ∪	31	2,700 U	U 000,11	44,000 U	28 J	31 J	8,200 U
1.2-Dichloroethane		160 U		9,400 ∪	n 44	2,300 U	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Trichloroethene	2,800	260	1,200 J	1,200 JB	n 44	2,300 U	1,500 J	19E	2,700 U	27,000	26,000 DJ	1,400	3,800	4,100 J
1.2-Dichloropropane			1,900 U	9,400 ∪	n 1/2	2,300 U	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Bromodichloromethane		160 U	U 006,1	9,400 ∪	N 44	2,300 U	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 U	8,200 U
cis-1.3-Dichloropropene		160 U	1,900 U	9,400 ∪	N 44	2,300 U	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 ∪	9,200 ∪
4-Methyl-2-pentanone		160 U	0061	9,400 ∪	N 14	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
Toluene		18 JB	L	9,400 ∪	1.6 JB	2,300 U	3,000 ∪	f 9	2,700 ∪	11,000 U	44,000 U	57 JB	160 J	150 J
trans-1.3-Dichloropropene		160 U	1.900 U	9,400 ∪	N 44	2,300 ∪	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
1.1.2-Trichloroethane		160 U	1,900 U	9,400 ∪	n 44	2,300 U	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 U	U 071	2,000 ∪	8,200 U
Tetrachioroethene	2,600	10,000 E	100,000 €	100,000	150	2,600	46,000	750	Ր 0/26	390,000 EJ	430,000 D	13,000 EJ	96,000 BEJ	98,000
2-Hexanone		160 U	1,900 U	9,400 ∪	N 44	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	∵ 166 166	2,000 U	8,200 U
Dibromochloromethane		160 U	1,900 U	9,400 ∪	n 44	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Chlorobenzene		160 U	1,900 U	9,400 ∪	77 U	2,300 U	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 ⊔	8,200 U
Ethylbenzene		160 U	1,900 U	9,400 U	N 44	2,300 U	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 ∪	3.0 J	2,000 U	8,200 U
Styrene		160 U	1,900 U	9,400 U	n 44	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
Bromoform		160 U	1,900 U	9,400 ∪	N 44	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 ∪	120 U	2,000 ∪	8,200 U
1,1,2,2-Tetrachloroethane		160 U	1,900 U	9,400 ∪	77 N	2,300 ∪	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Total Xylenes		29	7 00€	240 J	n //	2,300 ∪	3,000 U	10 J	2,700 U	11,000 U	44,000 U	48 ∫	240 J	220 7
cis-1,2-Dichloroethene			110 J	9,400 U	N 44	2,300 U	8,200	780	750	12,000	1,000 DJ	1400	,800	1800
trans-1,2-Dichtoroethene	1,200		1,900 ∪	9,400 U	0 W	2,300 ∪	3,000 U	-C	2,700 U	11,000 U	44,000 U	16 J	2,000 U	8,200 U
Dichlorodifluoromethane		160 U	1,900 ∪	9,400 U	14 n	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	00/1	2,000 U	8,200 U
Trichlorofluoromethane		160 U	1 900 L	9,400 U	17 U	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
1,1,2-Trichloro-1,2,2-triffuoroethane		160 U	1,900 U	9,400 U	1 L	2,300 U	3,000 U	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 U	8,200 U
Methyl-t-butyl ether (MTBE)		160 U	1,900 U	9,400 U	0 77	2,300 U	3,000 U	110 U	2,700 ∪	11,000 U	44,000 ∪	120 U	2,000 U	8,200 U
1,2-Dibromoethane		160 ∪	1,900 U	9,400 U	14 n	2,300 ∪	3,000 U	110 U	2,700 ⊔	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
Isopropylbenzene		160 U	1,900 U	9,400 U	n 14	2,300 U	3,000 ∪	110 U	2,700 U	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
1,3-Dichlorobenzene		160 U	1,900 U	9,400 U	17 U	2,300 U	3,000 U	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
1,4-Dichlorobenzene		160 U	1,900 U	9,400 ∪	14 U	2,300 U	3,000 U	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
1,2-Dichlorobenzene		160 U	1,900 U	9,400 U	n 44	2,300 U	3,000 ⊔	110 C	2,700 U	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
1,2-Dibromo-3-chloropropane		160 U	1,900 U	9,400 U	n 44	2,300 U	3,000 U	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
1,2,4-Trichlorobenzene		160 U	1,900 U	9,400 U	N 14	2,300 ∪	3,000 U	∩ 011	2,700 ∪	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
Methyl acetate		160 ∪	1,900 U	9,400 U	77 N	2,300 ∪	3,000 U	110 U	_069	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U
Cyclohexane		160 U	1,900 U	9,400 U	0 44	2,300 U	3,000 U	110 U	2,700 ∪	11,000 U	44,000 U	130	2,000 U	8,200 ∪
Methylcyclohexane		160 U	1,900 ∪	9,400 ∪	77 U	2,300 U	3,000 ∪	110 U	2,700 ∪	11,000 U	44,000 U	170 U	2,000 ∪	8,200 U

^{**} Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-1 Area

Sample ID ->	Midler	VB1 - 17	VB1 - 17 DL	VB1 - 18	VB1 - 19	VB1 - 19	VB1 - 19 DL	VB1 - 20	VB1 - 20 DL	VB1 - 20	VB1 - 20 DL	VB1 - 20
Depth - >	SSCO	15.5 - 15.9	15.5 - 19.5	15.9 - 19.9	8.8 - 12.8	8.8 - 12.8	8.8 - 12.8	13.0 - 17.0	13.0 - 17.0	13 - 17	13 - 17	13 - 17
Date Sampled ->		09/04/07	09/04/07	05/10/07	03/19/07	05/10/07	05/10/07	03/19/07	20/61/60	05/10/07	05/10/07	06/11/07
Chloromethane		170 U	2,100 ∪	2,000 ∪	2,700 U	110 U	2,600 ∪	2,600 ∪	5,200 U	2,500 U	5,100 U	2,200 U
Vind chloride	8		2,100 U	2,000 ∪	490 J	12.1	2,600 ∪	2,400 J	2,200 DJ	2,500 U	5,100 U	2,200 ∪
Bromomethane		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 ∪	280 J	5,200 U	2,500 U	5,100 U	2,200 U
Chloroethane		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
1,1-Dichloroethene		170 U	2,100 ∪	2,000 U	2,700 U	U 011	2,600 ∪	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Carbon disulfide		170 U	2,100 U	2,000 U	2,700 U	Ր Հ Լ	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Acetone		7,600 BEJ	15,000	Ր 006′L	3,100	17,000 BEJ	12,000 D	9 6 0 J	5,200 U	9'000	Q 008'9	19,000 J
Methylene chloride		130 U	240 ∩	2,000 ∪	2,700 ∪	110	2,600 ∪	2,600 ∪	5,200 ∪	2,500 U	5,100 U	2,200 U
1.1-Dichloroethane		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 ∪	2,600 U	· 5,200 U	2,500 U	5,100 U	2,200 ∪
2-Butanone		4,300 EJ	5,200	L 057	C 096	4,100 EJ	3,500 D	2,600 U	5,200 U	2,300 J	2,300 DJ	£,000,5
Chloroform		170 U	2,100 U	2,000 U	2,700 ∪	U 011	2,600 ∪	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
1.1.1-Trichtoroethane		170 U	2,100 U	2,000 ∪	2,700 U	110 U	2,600 ∪	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Carbon tetrachloride		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 ∪
Benzene		5.3 JB	2,100 U	2,000 ∪	2,700 U	L 71	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 ∪
1.2-Dichloroethane		170 U	2,100 U	2,000 ∪	2,700 U	110 U	2,600 U	2,600 ∪	5,200 U	2,500 U	5,100 U	2,200 U
Trichloroethene	2,800		630 J	2,800	2,900	210	200 DJ	17,000	17,000 D	23,000	25,000 D	2,200 ∪
1.2-Dichloropropane			2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Bromodichtoromethane		170 U	2,100 U	2,000 ∪	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 ∪
cis-1,3-Dichloropropene		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 ∪	5,200 U	2,500 ∪	5,100 ∪	2,200 U
4-Methyl-2-pentanone		170 U	2,100 U	2,000 ∪	2,700 U	54 J	2,600 ∪	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Toluene		40 JB	45 J	2,000 ∪	2,700 U	48 1	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
trans-1,3-Dichloropropene		170 U	2,100 U	2,000 ∪	7,700 U	110 U	2,600 U	2,600 ∪	5,200 U	2,500 U	5,100 ∪	2,200 U
1.1,2-Trichloroethane			2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 ∪
Tetrachloroethene	5,600	9,900 EJ	17,000	f 0#9	14,000	280	2,200 DJ	6,400	6,300 D	60,000 EJ	62,000 D	1,400 J
2-Hexanone			2,100 U	2,000 U	2,700 U	38	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Dibromochloromethane		170 U	2,100 U	2,000 U	2,700 ∪	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
Chlorobenzene		U 071	2,100 U	2,000 U	2,700 ∪	110 U	2,600 ∪	2,600 U	5,200 U	2,500 ∪	5,100 U	2,200 U
Ethylbenzene		170 U	2,100 U	2,000 U	2,700 ∪	110 U	2,600 U	2,600 ∪	5,200 U	2,500 U	5,100 U	2,200 U
Styrene		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	0.001,2	2,200 U
Bromoform		170 U	2,100 U	2,000 U	2,700 U	110 0	2,600 U	2,600 0	5,200 0	7,500 0	2000	2,200 0
1, 1, 2, 2-Tetrachloroethane		170 U	2,100 U	2,000 U	2,700 U	0011	2,600 0	7,000 0	5,200 0	2,500 0	0 00 0	2,200.0
Total Xylenes		74.	120)	2,000 U	2,700 U	283	2,600 0	7,000 0	0.002,6	2,500 0	0 000 00	7 700 0
cis-1,2-Dichtoroethene	1		6,00	23,000	1,/00 0	00,	200	000'00	000'00	00000	2000,50	1 200
trans-1,2-Dichloroethene	1,200		2,1000	3103	2,700 0	200	2,000 0	1 009 0	0,000,0	2,500 0	3 5	2 200 0
Dichlorodifluorometriane		0 0/1	2,100 0	2,000 0	2,700 0	2 5	2,000 0	2,000	1 000	2 500 1	25	2 200 1
1 to Trichles 1 0 0 trifficonthans		1021	1001	2,000 0	1007.5	2 5	2 600 5	2,600 1	2002.5	2 500 1	5.100 13	2200
Mathul-Lhitvi ether (MTRE)		170 []	2,100 U	2,000 U	2.700 U	110 U	2,600 ∪	2,600 ∪	5,200 U	2,500 U	5,100 U	2,200 ∪
1.2-Dibromoethane		170 U	2,100 U	2,000 ∪	2,700 U	110 U	2,600 ∪	2,600 U	5,200 ∪	2,500 U	5,100 U	2,200 U
Isopropylbenzene		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
1,3-Dichlorobenzene		U 021	2,100 U	2,000 U	2,700 U	110 U	2,600 ∪	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
1,4-Dichlorobenzene		170 U	2,100 ∪	2,000 U	2,700 U	110 U	2,600 ∪	2,600 U	5,200 U	2,500 U	5,100 U	2,200 U
1,2-Dichlorobenzene		170 U	2,100 U	2,000 U	2,700 ∪	110 U	2,600 ∪	2,600 U	5,200 ∪	2,500 U	5,100 U	2,200 U
1,2-Dibromo-3-chloropropane		∩ 0∠I	2,100 U	2,000 U	2,700 U	110 U	2,600 ∪	2,600 U	5,200 ∪	2,500 ∪	5,100 U	2,200 U
1,2,4-Trichtorobenzene		170 U	2,100 U	2,000 U	2,700 ∪	110 U	2,600 ∪	2,600 ∪	5,200 ∪	2,500 ∪	5,100 U	2,200 ∪
Methyl acetate		170 ∪	2,100 U	2,000 ∪	2,700 ∪	110 U	2,600 U	2,600 ∪	5,200 U	2,500 U	5,100 U	2,200 U
Cyclohexane		170 U	2,100 U	2,000 U	2,700 U	110 U	2,600 U	2,600 U	5,200 U	2,500 U	0.001,6	2,200 0
Methylcyclohexane		170 U	2,100 U	2,000 U	2,700 U	110 0	2,600 U	2,600 U	ט טטציפ	2,500 0	n ont's	אַ אַנאַ

** Indicates Non-ASP Method Data

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-5 Area

Sample ID ->	Units	Bottom North	Bottom North DL	Bottom South	Bottom South DL	East Wall	North Wall	Slab North
Depth - >		12 feet	12 feet	14 feet	14 feet	6-10 feet	6 - 8 feet	6 - 8 feet
Date Sampled ->		7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006
PID		0.7	0.7	4.5	4.5	13.2	0.3	7.1
VOLATILES	ug/kg							(TOTAL CONTROL OF THE
Chloromethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Bromomethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Vinyl chloride	ug/kg	240	120 D	190	78 D	13	13 J	160
Chloroethane	ug/kg	18 U	81 U	17.0	75 U	13 U		17 U
Methylene chloride	ug/kg	13 U	56 U	12 U	48 U	9 N	12 U	13 U
Acetone	ug/kg	f 9	81 U	17 U	75 U	35	27	7
Carbon disulfide	ug/kg	18 U	81 U	3 J	75 U	2 J	16 U	
1,1-Dichloroethene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	
1,1-Dichloroethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	
Chloroform	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17
1,2-Dichloroethane	ug/kg	18 U	81 U	17 U	75 U	13.0	16 U	17 [1
2-Butanone	ug/kg	18 U	81 U	17 U	75 U	7 8	16 11	17 11
1,1,1-Trichloroethane	ug/kg	18 U	81 U	17 U	75 U		16 U	17 [1]
Carbon tetrachloride	ug/kg	18 U	81 U	17 U	75 U	13.0	16 U	17 []
Bromodichloromethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 [1]
1,2-Dichloropropane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	1710
cis-1,3-Dichloropropene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	
Trichloroethene	ug/kg	18	81 U	12 J	12 DJ	13 U	16 U	
Dibromochloromethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
1,1,2-Trichloroethane	ng/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Benzene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	
trans-1,3-Dichloropropene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	
Bromoform	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
4-Methyl-2-pentanone	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
2-Hexanone	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
l etrachloroethene	ug/kg	18	81 U	7 J	15 DJ	13 U	16 U	U 11
loluene	ug/kg	18	81 U	17 U	75 U	13 U	16 U	17 U
1,1,2,2-l etrachioroethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Chlorobenzene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Ethylbenzene	ug/kg	18	81 U	17 U	75 U	13 U	16 U	17 U
Styrene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
l otal xylenes	ug/kg	18	81 U	17 U	75 U	13 U	16 U	17 U
1,1,2-1 richloro-1,2,2-trifluoroethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
cis-1,2-Uichloroethene	ug/kg	390 EJ	360 D	850 EJ	850 D	25	24	1,100 EJ
trans-1,2-Dichloroethene	ug/kg	19	13 DJ	ე 8	75 U	Г9	16 U	L 7
Dichlorodifluoromethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Irichlorofluoromethane	ug/kg	6 B	17 U	5 U	12 U	5 U	5 U	N 9
Metnyl acetate	ug/kg	18 U	81 U		75 U	13 U	16 U	17 U
Metnyl tert butyl etner	ug/kg	18 C	81 U	17 U	75 U	13 U	16 U	17 U
Cyclonexane	ug/kg	18 0	81 U	17 U	75 U	13 U	16 U	17 U
Memyicyclonexane	ug/kg	18 0	84 ∪	17 U	75 U	2 2	16 U	17 ()

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-5 Area

Sample ID ->	Units	Bottom North	Bottom North DL	Bottom South	Bottom South DI	Fast Wall	North Wall	Slab North
Depth - >		12 feet	12 faat	14 foot	14 foot	10 to to	1000	Oldo Ivol (II)
	-		200	14 1001	<u> </u>	- O - G	1991 o - o	o - 8 leel
Date Sampled ->		7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006
1,2-Dibromoethane	ug/kg	18 U	81 U	17 U	75 11	13.11	1611	17 11
Isopropylhenzene	04/000	101		177) !	2 9	2 !	2
	δυ. Bo	0	5	0 /1	0 6/	13 0	16 U	17 U
1,3-Dichlorobenzene	ng/kg	18 U	910	17 U	75 11	13	191	1711
1,4-Dichlorobenzene	ua/ka	= 85	21 18	11 7+	7 7 1	2 9	0 3) : : !
4 O Dioblombon	0 -	2 :	5	2	0.67	<u>၁</u>	0 0	0
1,4-DICHOLODELIZERE	ug/kg	18 0		17:0	75 U	=======================================	191	17.11
1,2-Dibromo-3-chloropropane	ug/kg	18 U	81 U	17 U	7511	13 [191	11/1
11.2.4-Trichlorobenzene	10//01	18 11	04 11) [0 0	2 9	2
	SV SD	2	0 0	⊃ -) (2)	73	-	17

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-5 Area

Depth - > Date Sampled -> PID			1000	1201	Wal VE	_
Date Sampled ->		0-8 Teet	x teet	6-10 feet	6-10 feet	
PD		7/18/2006	7/18/2006	7/18/2006	7/18/2006	
		7.1	3,8	9.7	2.6	
VOLATILES	ug/kg					**************************************
Chloromethane	ug/kg	0 98	16 U	15 U	1.800 U	
Bromomethane	ug/kg	86 U	16 U	15 U	1,800 U	
Vinyl chloride	ug/kg	72 DJ	٦ /	450 EJ	1,900 D	
Chloroethane	ug/kg	N 98	16 U	15 U	1,800 U	
Methylene chloride	ug/kg	O 89	12 U	N 6	1,800 U	AND THE PARTY OF T
Acetone	ug/kg	N 98	ր 6	77	1,800 U	
Carbon disulfide	ug/kg	N 98	16 U	3 1	1,800 U	THE RESERVE OF THE PROPERTY OF
1,1-Dichloroethene	ug/kg	N 98	16 U	3 J	1,800 U	
1,1-Dichloroethane	ug/kg	86 U	16 U	15 U	1,800 U	
Chloroform	ug/kg	N 98	16 U	15 U	1.800 U	
1,2-Dichloroethane	ug/kg	98 U	16 U	15 U	1,800 U	
2-Butanone	ug/kg	0 98	16 U	15 U	1,800 U	
1,1,1-Trichloroethane	ug/kg	N 98	16 U	15 U	1.800 U	
Carbon tetrachloride	ug/kg	N 98	16 U	15 U	1.800 U	
Bromodichloromethane	ug/kg	98 U	16 U	15 U	1,800 U	
1,2-Dichloropropane	ug/kg	98 U	16 U	15 U	1.800 U	
cis-1,3-Dichloropropene	ug/kg	N 98	16 U	15 U	1,800 U	
Trichloroethene	ug/kg	N 98	16 U	5 J	350 DJ	
Dibromochloromethane	ug/kg	98 U	16 U	15 U	1,800 U	
1,1,2-Trichloroethane	ug/kg	N 98	16 U	15 U	1,800 U	Control of the Contro
Benzene	ug/kg	98 U	16 U	15 U	1,800 U	
trans-1,3-Dichloropropene	ug/kg	N 98	16 U	15 U	1,800 U	
Bromotorm	ug/kg	98 U	16 U	15 U	1,800 U	
4-Methyl-2-pentanone	ug/kg	98 U	16 U	15 U	1,800 U	THE PARTY NAMED AND ADDRESS OF
Z-Hexanone	ug/kg	98 U	16 U	15 U	1,800 U	
l etrachioroethene	ug/kg	98 U	16 U	2 J	330 DJ	
loluene	ug/kg	N 98	16 U	15 U	1,800 U	
1,1,2,2-1 etrachioroethane	ug/kg	N 98	16 U	15 U	1,800 U	
Chiloropenzene	ug/kg	N 98	16 U	15 U	1,800 U	
Einylbenzene	ug/kg	N 98	16 U	15 U	1,800 U	
Styrene Total sulcase	ug/kg	98 U	16 U	15 U	1,800 U	
Total xyleries	ug/kg	N 98	16 U	15 U	1,800 U	
1,1,2-1 richioro-1,2,2-trifluoroethane	ug/kg	86 U	16 U	15 U	1,800 U	
cis-1,2-Dichloroethene	ug/kg	1,200 D	140	1,300 EJ	22,000 D	
trans-1,2-Dichloroethene	ug/kg	98 U	16 U	140	2,600 D	
Dichlorodifluoromethane	ug/kg	N 98	16 U	2 J	1,800 U	
I richlorofluoromethane	ug/kg	15 U	5 U	5 U	1,800 U	
Methyl acetate	ug/kg	N 98	16 U	15 U	1,800 U	
Methyl tert butyl ether	ug/kg	98 U	16 U	15 U	1,800 U	
Cyclohexane	ug/kg	N 98	16 U	15 U	1,800 U	
Methylcyclohexane	ug/kg	0 98 0	16 U	15 U	1.800 U	

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 2 - Verification Sample Results - B-5 Area

Sample ID ->	Inits	Slab Modb Di	ľ	14/004 14/011		
444	3	ממום ואסונון סדום	,	west wall	west wall DL	
De011 - >		6-8 feet		6-10 feet	6-10 faat	
Date Sampled ->		7/18/2006	7/18/2006	7/18/2006	7/18/2006	
1,2-Dibromoethane	ng/kg	98 U		15 1	1 800 11	
Isopropylbenzene	ua/ka	86.11	191	2 4	2 000,1	
1,3-Dichlorobenzene	iia/ka	11 98	0 2 4	2 5	0 000,	And the state of t
1 4-Dichlorobanzana	B. 1.	3 8	2	0 61	0,008,1	
1,1 0,000,000,000,000	ng/kg	N 98	16 U	15 U	1,800 U	
1,2-Dichlorobenzene	ng/kg	98 U	161	15	1 800 11	
1,2-Dibromo-3-chloropropane	ua/ka	86 11	191	2 4	0 000,1	The state of the s
1,2,4-Trichlorobenzene	ua/ka	86 []	1 2 2	0 2 4	1,000 1	
The state of the s			2	2	0 80,-	

Notes: U = Compound not detected at listed reporting limit

B = Compound detected in Method Blank

E = Listed concentration exceeds reporting limit range

D = Listed concentration is from diluted sample

J = Listed concentration is estimated

Average* Concentrations of the Four CVOCs with Site Specific Clean-up Objectives:

0000	5,600	2,800	800	1,200	N
	56.3	59.4	315	379	3514
	PCE	TCE	ΛC	trans-1,2-d	cis-1,2-dce

* METHOD FOR CALCULATING AVERAGES:

1. One value for each sample location

2. Non-detect sample is valued at 1/2 reporting limit

3. If diluted sample and non-diluted sample are both non-detect, 1/2 non-diluted reporting limit is used

4. If both diluted sample and non-diluted sample are "detect", the diluted sample result is used

If the diluted sample is "detect" and the undiluted sample is "non-detect" (or vice-versa), the "detect" value is used.

Shaded cells represent values used to compute average concentrations

pth Date PCE TCE VC trans PCE TCE 9.9 0300607	e 3 - Avera	Table 3 - Average CVOC Calculation	ulations - B-3	Area								Selected Data	fa		
DL 59-99 0000807 5890 2800 66 D 450 D 55 D DL 59-99 0000807 1560 200 D 66 D 55 D x DL 59-99 0000807 1400 200 D 66 D 55 D x 161-20.1 0800807 1400 2300 1400 U 1400 U 1400 U 1500 U x 161-20.1 0800807 4400 76 U 1500 U x 660 U x 161-20.1 0800807 2400 U 2200 U 660 U x 660 U x 161-20.1 0800807 2400 U 2400 U 2400 U x 60 U x x 0 x x 0 x x x 0 x	mole ID	Depth	Date		TCE	ΛC	trans	PCE	TCE.	၁	trans	PCE	TCE	NC	trans
6.9 6.9 9.9 0300807 150 140 65 44 x 16.1-20.1 630-89 0300807 260 D 3.300 1,400 D 1,400 D x 16.1-20.1 030807 1,400 3.300 1,400 D 1,400 D x 16.1-20.1 030807 4,40 763 J 1500 D 1,400 U x 16.1-20.1 030807 2,400 U 2,400 U 2,400 U 2,500 U x 16.1-20.1 030707 830 DD 2,400 U 2,400 U 2,500 U x DL 7-11 030707 1,000,000 2,400 U 2,400 U 2,500 U x DL 7-11 030707 1,000,000 2,200 U 2,400 U 2,500 U x DL 7-11 030707 1,000,000 2,200 U 1,200 U 2,500 U x DL 7-11 030707 1,000 U 2,400 U 2,400 U 1,500 U x DL 7-11			Midler SSCOs ->	5,600	2,800	800	1,200					2,600	2,800	800	1,200
DL 6.9-9.9 G000807 280 D 200 D 65 D 55 D 16.1-20.1 680-9.9 G000807 14,000 3.00 14,00 U 14,00 U 16.1-20.1 G00707 4,400 76,1 15,000 U 15,00 U x 18.1-22.1 G00807 58 J 4,4 12 M 12 M 12 U x 10. 8.12.2 G30807 58 J 12 W 65 D x 10. 7.11 G00707 880 J 2,400 U 2,600 U 2,400	- 1		03/08/07	150	140	65	44	×	×	×	×	150	140	ලද	4
161-201 02/08/07 4,000 3,300 1,400	-1 DL	5.9 - 9.9	03/08/07	260 D	200 D	65 DJ	55 DJ								
161-221 0500077 4,400 760 J 1500 U 1500 U x 161-221 0500077 59 J 4 J 220 J 15 U 1500 U x 150	-2	16.1 - 20.1	03/08/07	14,000	3,300	1,400 U	1,400 U								
181-22.1 G300807 59 4 4.1 12 UM 12 U	-2	16.1 - 20.1	05/07/07	4,400	r 09Z	1,500 U	1,500 U	×	×	×	×	4,400	760	750	750
8 - 12 03/08/07 56 46 220 660 JD X DL 7 - 11 03/07/07 830 JD 2,300 U 2,300 U 2,300 U 89 U 89 U X DL 7 - 11 03/07/07 830 JD 2,300 U 2,300 U 2,300 U X 80 U X	e-	18.1 - 22.1	03/08/07	76	4.0	12 m	15 N	×	×	×	×	6	4	12	9
DL 8-12 G306807 2.400 U 2.400 U 2.400 U 2.400 U 2.400 U 2.300 U 2.30	- 4	8 - 12	03/08/07	56	45	220 J	650 J								
DL 7·11 0307/07 830 JD 120 84 JD 2,300 U 2,300 U <td>- 4 DL</td> <td>8 - 12</td> <td>03/08/07</td> <td>2,400 U</td> <td>2,400 U</td> <td>2,400 U</td> <td>OF 059</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>1,200</td> <td>1,200</td> <td>1,200</td> <td>920</td>	- 4 DL	8 - 12	03/08/07	2,400 U	2,400 U	2,400 U	OF 059	×	×	×	×	1,200	1,200	1,200	920
DL 7-11 G807/07 890 JD 2,300 U 2,300 U 2,300 U 2,300 U 2,300 U 2,300 U 2,400 U 1,000 U 2,400 U 2,400 U 2,400 U 2,400 U 2,600 U 2,600 U 2,400 U 2,600	. 53	7-11	03/02/02	830 J	120	8 J	P 9								
DL 7-11 Ge/07/07 130 18 J 38 U × DL 7-11 Ge/07/07 1300 DJ 22,400 U 2,400 U 5,400 U 7-11 GS/07/07 1,000,000 D 22,000 UJ 110,000 U 110,000 U DL 7-11 GS/07/07 1,000,000 EJ 5,000 UJ 5,400 U 2,600 U DL 7.5-116 GS/07/07 430,000 EJ 5,000 DJ 2,600 U 2,600 U DL 7.6-116 GE/07/07 430,000 EJ 5,000 DJ 2,600 U 2,600 U DL 7.6-116 GE/07/07 430,000 EJ 1,200 J 2,600 U 2,600 U 7.3-113 GE/07/07 430,000 EJ 1,200 J 2,600 U 2,600 U 2,600 U 7.3-113 GE/07/07 10,000 1,200 J 2,400 U 2,600 U 2,600 U DL 8.75-11.75 GS/07/07 1,000 D 2,400 U 2,400 U 2,400 U DL 8.75-11.13 GE/07/07 1,000 D 2,500 U 2,5	- 5 DL	7 - 11	03/02/02	GL 088	2,300 ∪	2,300 U	2,300 U								
DL 7-11 05070707 300 DU 2,400 U 1,000 U 1,100 U 2,200 U 1,10,000 U 1,10,000 U 1,100 U 1,10,000 U 1,10,00	-5	7 - 11	02/01/02	061	7 80	∩ 86	U 86	×	×	×	×	130	18	49	49
DL 7 - 11 0307/07 1,000,000 22,000 J 54,000 U 54,000 U 54,000 U 20,000 D 110,000 U 100,000 U <td>-5DL</td> <td>7 - 11</td> <td>05/07/07</td> <td>300 DJ</td> <td>2,400 U</td> <td>2,400 U</td> <td>2,400 ∪</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-5DL	7 - 11	05/07/07	300 DJ	2,400 U	2,400 U	2,400 ∪								
DL 7-11 03/07/07 1,000,000 D 20,000 DJ 110,000 U 110,000 U 7-11 05/07/07 430,000 EJ 5,500 DJ 2,600 U 2,600 U 2,600 U DL 7.6 - 11.6 05/07/07 830,000 EJ 5,000 DJ 100,000 U 10,000 U 7 - 9 06/06/07 11,000 D 1,200 J 2,600 U 10,000 U 2,600 U 7 - 11.6 06/06/07 11,000 D 1,200 J 2,400 U 2,600 U 1,600 U 7 - 11.6 06/06/07 11,000 D 1,200 U 1,000 U 1,600 U 1,40 U 7 - 11.7 0.000 1,000 U 1,000 U 1,40 U 1,40 U 1,40 U 7 - 12.7 0.000 1,000 U 1,500 U 1,40 U 1,40 U 1,40 U 1 - 12.7 0.000 1,100 U 1,500 U 1,40 U 1,40 U 1,40 U 1 - 12.7 0.000 1,100 U 1,500 U 1,40 U 1,40 U 1,40 U 1 - 12.1 0.000 1,100 U 1,500	- 9	7 - 11	03/01/07	1,000,000	22,000 J	54,000 UJ	54,000 U								
7-11 05/07/07 1,100 J 8,500 U 8,500 U 8,500 U x 7.6-11.6 05/07/07 430,000 E. 59,000 D 2,600 U 0,600 U 0,000	-6 DL	7-11	03/02/07	1,000,000 D	20,000 DJ	110,000 U	110,000 U								
DL 7.6 - 11.6 0.607/07 430,000 EJ 50,000 DJ 2,600 U 2,600 U 7.9 7.9 0.6006/07 830,000 DJ 100,000 U 100,000 U 100,000 U 7.9 0.6006/07 830,000 DJ 2,400 U 2,400 U x 7.3 - 11.3 0.6006/07 860 J 2,400 U 2,400 U x 7.3 - 11.3 0.308/07 10,000 11,000 U 11,000 U 11,000 U 11,000 U 7.3 - 11.3 0.607/07 1,100 D 2,500 U 2,500 U 2,500 U DL 8.75 - 12.75 0.307/07 1,100 D 2,500 U 1,500 U 1 4.5 - 18.5 0.607/07 1,000 D 1,300 U 1,300 U 1,300 U 1 4.5 - 18.5 0.607/07 4,100 1,800 U 1,300 U 1,300 U 1 10.5 - 14.5 0.607/07 4,100 1,800 U 1,300 U 1,300 U 1 10.5 - 14.5 0.607/07 4,000 1,800 U 1,300 U 2,200 U 1 10.5 - 14.5 0.607/07 4	-6	7 - 11	02/02/02	1,100 J	3,500 U	3,500 U	3,500 U	×	×	×	×	1,100	1,750	1,750	1,750
DL 7.6 - 11.6 06/06/07 839,000 D 1200 J 2,800 U 2,500 U 1,000 U 1,400 U 1,400 U 1,400 U 1,400 U 1,400 U 1,500 U 1,450 U 1,450 U 1,500 U 1,450 U <t< td=""><td>-7</td><td>7.6-11.6</td><td>05/07/07</td><td>430,000 EJ</td><td>50,000</td><td>2,600 U</td><td>2,600 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-7	7.6-11.6	05/07/07	430,000 EJ	50,000	2,600 U	2,600 U								
7-9 06/06/07 11,000 1,200 J 2,600 U 2,500 U 2,500 U x 9-116 06/06/07 860 J 2,400 U 2,400 U 2,400 U x 7.3-113 06/06/07 10,000 17,000 11,000 U 11,000 U x 7.3-113 06/07/07 280 150 6 J 14 J x DL 8.75-12.75 03/07/07 280 150 6 J 14 J x DL 8.75-12.75 03/07/07 280 3,000 U 1,300 U 1,40 U x DL 8.75-12.76 03/07/07 20,000 1,800 U 1,800 U 1,900 U 1,40 U x DL 145-18.5 03/07/07 4,100 1,900 U 1,800 U 1,800 U 1,800 U 1,800 U 1,800 U 1,900 U	-7 DL	7.6 - 11.6	05/07/07	830,000 D	59,000 DJ	100,000 U	100,000 U								
9-11.6 06/06/07 86f. J 2,400 U 1,000 U 2,500 U <th< td=""><td>-7-</td><td>7-9</td><td>20/90/90</td><td>11,000</td><td>1,200 J</td><td>2,800 U</td><td>2,800 €</td><td>×</td><td>×</td><td>×</td><td>×</td><td>11,000</td><td>1,200</td><td>1,400</td><td>1,400</td></th<>	-7-	7-9	20/90/90	11,000	1,200 J	2,800 U	2,800 €	×	×	×	×	11,000	1,200	1,400	1,400
7.3-11.3 03/08/07 62,000 17,000 11,000 U 11,000 U 11,000 U 1,000 U 1,000 U 1,000 U 1,000 U 1,000 U 2,100 U X DL 8.75-12.75 03/07/07 280 1500 U 2,500 U	-7	9-11.6	20/90/90	P (198	2,400 U	2,400 U	2,400 U	×	×	×	×	860	1,200	1,200	1,200
7.3-11.3 05/07/07 10,000 3,100 U 3,100 U x 8.75-12.75 03/07/07 280 150 6 J 14 J x 14.5-18.5 03/07/07 260,000 3,100 U 13,000 U 1,800 U 1,8	8	7.3 - 11.3	03/08/07	62,000	17,000	11,000 U	11,000 U								
8.75-12.75 03/07/07 280 150 6 J 14 J x 8.75-12.75 03/07/07 1,100 JD 2,500 U 1,300 U 2,700 U 2,000 U 3,100 U	8-	7.3 - 11.3	20/20/90	10,000	3,100 U	3,100 U	3.100 U	×	×	×	×	10,000	1,550	1,550	1,550
8.75-12.75 03/07/07 1,100 JD 2,500 U 2,500 U 2,500 U 14.5-18.5 03/07/07 260,000 3,100 J 13,000 UJ 13,000 U 13,000 U 14.5-18.5 05/07/07 20,000 1,800 U 1,800 U 1,800 U 1,800 U 10.5-14.5 05/07/07 4,700 3,400 2,700 U 2,700 U 2,700 U 10.5-14.5 05/07/07 160 3,400 2,700 U 2,700 U 2,000 U 10.5-14.5 05/07/07 16,000 5,200 1,800 U 1,800 U 1,800 U 1.4.8-18.8 05/08/07 16,000 5,200 2,200 U 2,000 U 2,000 U 1.4.8-18.8 05/08/07 25,000 5,200 U 2,200 U 2,000 U 2,000 U 1.4.8-18.8 05/08/07 31,000 5,200 U 2,200 U 2,000 U 3,1 J X 1.7.5-11.5 03/08/07 2,200 5,200 U 1,900 U	6-	8.75 - 12.75	03/02/02	280	150	79	14.0	×	×	×	×	280	150	9	4
14.5 - 18.5 G307/07 260,000 3,100 J 13,000 UJ 13,000 UJ 14.5 - 18.5 G5/07/07 20,000 1,800 U 1,800 U 1,800 U 1,800 U 14.5 - 18.5 G5/07/07 20,000 1,800 U 1,800 U 1,800 U 1,800 U 10.5 - 14.5 G5/07/07 4,700 3,400 2,700 U 2,700 U 2,700 U 10.5 - 14.5 G5/07/07 16,000 5,700 2,200 U 2,200 U 2,200 U 14.8 - 18.8 G5/08/07 25,000 5,700 2,200 U 2,200 U 2,200 U 14.8 - 18.8 G5/08/07 25,000 5,700 2,200 U 2,200 U 2,200 U 14.8 - 18.8 G6/08/07 31,000 6,700 2,200 U 2,200 U 2,200 U 14.8 - 18.8 G6/08/07 31,000 5,700 2,200 U 2,200 U 3,1 U 1. 7.25 - 11.25 G3/08/07 2,900 5,600 1,300 U 1,900 U 1,900 U 1. 7.5 - 11.5 G3/07/07 2,900 <t< td=""><td>- 9 DL</td><td>8.75 - 12.75</td><td>03/02/02</td><td>1,100 JD</td><td>2,500 U</td><td>2,500 U</td><td>2,500 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	- 9 DL	8.75 - 12.75	03/02/02	1,100 JD	2,500 U	2,500 U	2,500 U								
14,5 - 18.5 05/07/07 20,000 1,800 U 1,900 U 1,900 U x 10.5 - 14.5 03/15/07 4,100 1,800 U 1,800 U 2,700 U 2,7	- 10	14.5 - 18.5	03/02/02	260,000	3,100 J	13,000 UJ	13,000 U								
14.5 - 18.5 05/21/07 4,100 1,900 U 1,900 U 2,700 U x 10.5 - 14.5 03/15/07 4,700 3,400 2,700 U 2,700 U x 10.5 - 14.5 05/07/07 160 33 U 33 U x x 10.5 - 14.5 05/07/07 160 3,400 2,700 U 2,700 U 2,700 U x 14.8 - 18.8 05/07/07 850 DJ 1,800 U 1,800 U 1,800 U x 14.8 - 18.8 05/08/07 25,000 5,700 2,200 U 2,200 U x 14.8 - 18.8 06/06/07 31,000 6,700 2,200 U 2,200 U x 14.8 - 18.8 06/06/07 31,000 5,700 2,200 U 1,800 U x 14.8 - 18.8 06/06/07 31,000 5,200 U 1,800 U 1,800 U x DL 7.25 - 11.25 03/08/07 2,900 D 560 JD 1,900 U 2,500 U 2,500 U 2,500 U 2,500 U 2,500 U 2,500 U	- 10	14.5 - 18.5	05/07/07	20,000	1,800 U	1,800 U	1,800 U								
10.5 - 14.5 03/15/07 4,700 3,400 2,700 U 2,700 U 10.5 - 14.5 05/07/07 160 33 U 33 U 33 U x 10.5 - 14.5 05/07/07 850 DJ 1,800 U 1,800 U 1,800 U 1,800 U 14.8 - 18.8 03/15/07 10,000 5,200 2,200 U 2,200 U 2,200 U 14.8 - 18.8 06/06/07 31,000 6,700 2,200 U 2,200 U 2,200 U 14.8 - 18.8 06/06/07 31,000 6,700 2,200 U 2,200 U 2,200 U 14.8 - 18.8 06/06/07 320 220 1,800 U 1,800 U 3,1 14.8 - 18.8 06/06/07 320 220 1,800 U 1,800 U 1,800 U 17.25 - 11.25 03/08/07 2,900 D 560 J 1,900 U 1,900 U 1,900 U 15.1 - 19.1 03/08/07 6,600 D 3,100 U 2,200 U 2,200 U 2,200 U 15.1 - 19.1 05/08/07 19,000 U 3,700 U 2,200	- 10	14.5 - 18.5	05/21/07	4,100	1,30 0 U	1,900 U	O06,1	×	×	×	×	4,100	920	950	920
DL 10.5 - 14.5 05/07/07 1660 33 U 33 U 33 U x DL 10.5 - 14.5 05/07/07 850 DJ 1,800 U 1,800 U 1,800 U 1,800 U 2,000 U 2,200 U <t< td=""><td>- 11</td><td>10.5 - 14.5</td><td>03/15/07</td><td>4,700</td><td>3,400</td><td>2,700 U</td><td>2,700 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	- 11	10.5 - 14.5	03/15/07	4,700	3,400	2,700 U	2,700 U								
DL 10.5-14.5 05/07/07 850 DJ 1,800 U 1,800 U 1,800 U 14.8-18.8 03/15/07 10,000 5,200 2,000 U 2,000 U 2,000 U 14.8-18.8 06/08/07 25,000 5,700 2,200 U 2,200 U 2,200 U 14.8-18.8 06/06/07 31,000 6,700 2,200 U 2,200 U 2,200 U 7.25-11.25 03/08/07 320 220 96 U 31 J x DL 7.25-11.5 03/08/07 840 DJ 350 DJ 1,800 U 1,800 U 1,800 U DL 7.25-11.5 03/07/07 2,900 D 560 JD 1,900 U 1,900 U <td>- 11</td> <td>10.5 - 14.5</td> <td>20/20/90</td> <td>160</td> <td>33 U</td> <td>⊃ 88</td> <td>⊃ 8</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>160</td> <td>17</td> <td>17</td> <td>17</td>	- 11	10.5 - 14.5	20/20/90	160	33 U	⊃ 88	⊃ 8	×	×	×	×	160	17	17	17
14.8 - 18.8 03/15/07 10,000 5,200 2,000 U 2,000 U 14.8 - 18.8 06/08/07 25,000 5,700 2,200 U 2,200 U 14.8 - 18.8 06/06/07 31,000 6,700 2,200 U 2,200 U 7.25 - 11.25 03/08/07 320 220 96 U 31 J x DL 7.25 - 11.25 03/08/07 840 DJ 350 DJ 1,800 U 1,800 U x DL 7.25 - 11.25 03/08/07 2,900 D 560 JD 1,800 U 1,800 U 4 J x DL 7.5 - 11.5 03/07/07 2,900 D 560 JD 1,900 U 1,900 U x 4 J x 15.1 - 19.1 05/08/07 19,000 3,100 2,500 U 2,500 U x 2,200 U x	- 11 DL	10.5 - 14.5	05/07/07	850 DJ	1,800 U	1,800 U	1,800 U								
14.8 - 18.8 05/08/07 25,000 5,700 2,200 U 2,200 U x 14.8 - 18.8 06/06/07 31,000 6,700 2,200 U 2,200 U x 7.25 - 11.25 03/08/07 320 220 96 U 31 J x DL 7.25 - 11.25 03/08/07 840 DJ 350 DJ 1,800 U 1,800 U 4 J x DL 7.5 - 11.5 03/07/07 2,900 D 560 JD 1,800 U 1,900 U x DL 7.5 - 11.5 03/07/07 2,900 D 560 JD 1,900 U 1,900 U x 15.1 - 19.1 03/07/07 6,600 1,700 J 2,500 U 2,200 U x 15.1 - 19.1 05/08/07 19,000 3,400 2,200 U x 2,200 U 15.1 - 19.1 05/08/07 19,000 3,400 2,200 U 2,200 U x 17.1 - 21.1 05/08/07 2,600 0 2,40 J 2,200 U x 17.1 - 21.1 05/08/07 <t< td=""><td>- 12</td><td>14.8 - 18.8</td><td>03/15/07</td><td>10,000</td><td>5,200</td><td>2,000 ∪</td><td>2,000 U</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	- 12	14.8 - 18.8	03/15/07	10,000	5,200	2,000 ∪	2,000 U								
14.8 - 18.8 06/06/07 31,000 6,700 2,200 U x 7.25 - 11.25 03/08/07 320 220 96 U 31 J x DL 7.25 - 11.25 03/08/07 840 DJ 350 DJ 1,800 U 1,800 U 4 J DL 7.5 - 11.5 03/07/07 2,900 560 JD 2 J 4 J 4 J DL 7.5 - 11.5 03/07/07 2,900 D 560 JD 1,900 U 1,700 U 2,500 U 2,500 U 1,700 U 2,500 U 2,200 U 1,700 U 1,700 U 2,200 U 1,700 U 1,700 U 2,200 U 1,700 U 1,700 U 2,300 U 1,700 U 1,700 U 2,200 U 1,700 U	- 12	14.8 - 18.8	02/08/02	25,000	5,700	2,200 U	2,200 U								
7.25 - 11.25 03/08/07 320 220 96 U 31 J x DL 7.25 - 11.25 03/08/07 840 DJ 350 DJ 1,800 U 1,800 U 4 J 7.5 - 11.5 03/07/07 2,900 560 JD 1,900 U 1,900 U 4 J DL 7.5 - 11.5 03/07/07 2,900 D 560 JD 1,900 U	- 12	14.8 - 18.8	20/90/90	31,000	6,700	2,200 U	2,200 U	×	×	×	×	31,000	6,700	1,100	1,100
DL 7.25-11.25 03/08/07 840 DJ 350 DJ 1,800 U 1,800 U 7.5-11.5 03/07/07 2,900 560 JD 1,900 U 1,900 U DL 7.5-11.5 03/07/07 2,900 D 560 JD 1,900 U 1,900 U 15.1-19.1 03/15/07 6,600 1,700 J 2,500 U 2,500 U 2,500 U 15.1-19.1 05/08/07 19,000 3,100 2,200 U 2,200 U x 15.1-19.1 05/08/07 19,000 3,400 2,200 U 2,200 U x 17.1-21.1 05/08/07 64,000 8,800 3,700 UJ x x 17.1-21.1 05/08/07 2,600 1,700 UJ 1,700 UJ x x 14.4-18.4 03/09/07 2,000 E 64 16 U x x DL 14.4-18.4 03/09/07 2,000 D 96,000 U 360,000 U x	- 13	7.25 - 11.25	03/08/07	320		∩ 96	31 J	×	×	×	×	320	220	4	31
DL 7.5-11.5 03/07/07 2,900 560 JD 1,900 U 4 J 4 J DL 7.5-11.5 03/07/07 2,900 D 560 JD 1,900 U 1,900 U 2,500 U 2,500 U 2,500 U 2,500 U 2,200 U x 15.1-19.1 05/08/07 19,000 3,100 2,200 U 2,200 U x x 15.1-19.1 06/06/07 19,000 8,800 2,200 U x x x 17.1-21.1 05/08/07 64,000 8,800 3,700 UJ x x x 17.1-21.1 05/08/07 2,600 1,700 U 1,700 U x x DL 14.4-18.4 03/09/07 2,000 E 64 16 U x DL 14.4-18.4 03/09/07 2,000 D 96,000 J 360,000 U 360,000 U	13 DL	7.25 - 11.25	03/08/07	840 DJ	350 DJ	1,800 U	1,800 U								
DL 7.5-11.5 03/07/07 2,900 D 560 JD 1,900 U 1,900 U 1,900 U 15.1-19.1 03/15/07 6,600 1,700 J 2,500 U 2,500 U 2,500 U 15.1-19.1 05/08/07 19,000 3,100 2,200 U 2,200 U x 15.1-19.1 06/06/07 19,000 8,800 2,40 J 2,300 U x 17.1-21.1 05/08/07 2,600 1,700 U 1,700 U x 16 U x 14.4-18.4 03/09/07 2,000 E 64 1,800 U 1,6 U x DL 14.4-18.4 03/09/07 2,000 E 6,000 J 360,000 U 360,000 U x	- 14	7.5 - 11.5	03/02/02	2,900	560 J	2	4 ل								
15.1 - 19.1 03/15/07 6,600 1,700 J 2,500 U 2,500 U 15.1 - 19.1 05/08/07 19,000 3,100 2,200 U 2,200 U x 15.1 - 19.1 06/06/07 19,000 3,400 2,200 U x x 17.1 - 21.1 03/07/07 64,000 8,800 3,700 UJ x x 17.1 - 21.1 05/08/07 2,600 1,700 U 1,700 U x x DL 14.4 - 18.4 03/09/07 2,000 E 64 1,800 U x 16 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U 360,000 U x	- 14 DL	7.5 - 11.5	03/02/07	2,900 D	260 JD	1,900 U	1,900 U								
15.1 - 19.1 05/08/07 19,000 3,100 2,200 U 2,200 U x 15.1 - 19.1 06/06/07 19,000 8,800 240 J 2,300 U x 17.1 - 21.1 03/07/07 64,000 8,800 3,700 UJ 3,700 U x 17.1 - 21.1 05/08/07 2,600 1,700 U 1,700 U x DL 14.4 - 18.4 03/09/07 2,000 D 1,800 U 1,800 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U	- 14	15.1 - 19.1	03/15/07	009'9	ر 700,1	2,500 U	2,500 U				-				
15.1 - 19.1 06/06/07 19,000 8,800 3,700 UJ 2,300 U x 17.1 - 21.1 03/07/07 64,000 8,800 3,700 UJ 3,700 U x 17.1 - 21.1 05/08/07 2,600 1,700 U 1,700 U x DL 14.4 - 18.4 03/09/07 2,000 E 64 16 U 16 U DL 14.4 - 18.4 03/09/07 2,000 D 1,800 U 1,800 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U	- 14	15.1 - 19.1	05/08/07	19,000	3,100	2,200 U	2,200 U								
17.1 - 21.1 03/07/07 64,000 8,800 3,700 UJ 3,700 U x 17.1 - 21.1 05/08/07 2,600 1,700 U 1,700 U x 14.4 - 18.4 03/09/07 2,000 E 64 16 U 16 U DL 14.4 - 18.4 03/09/07 2,000 D 1,800 U 1,800 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U	- 14	15.1 - 19.1	20/90/90	19,000	3,400	240	2,300 U	×	×	×	×	19,000	3,400	240	1,150
17.1 - 21.1 05/08/07 2,600 1,700 U 1,700 U x 14.4 - 18.4 03/09/07 2,000 E 64 16 U 16 U DL 14.4 - 18.4 03/09/07 2,000 D 1,800 U 1,800 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U	- 15	17.1 - 21.1	03/02/02	64,000	8,800	3,700 UJ	3,700 U								
14.4 - 18.4 03/09/07 2,000 E 64 16 U 16 U 14.4 - 18.4 03/09/07 2,000 D 1,800 U 1,800 U 1,800 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U	- 15	17.1 - 21.1	05/08/07	2,600	1,700 U	U 002,1	1,700 U	×	×	×	×	2,600	850	820	820
. 14.4 - 18.4 03/09/07 2,000 D 1,800 U 1,800 U x 14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U 360,000 U	- 16	14.4 - 18.4	03/09/07	2,000 E	49	16 U	16 U								
14.9 - 18.9 03/09/07 5,200,000 96,000 J 360,000 U	- 16 DL	14.4 - 18.4	20/60/60	2,000 D	1,800 U	1,800 U	1,800 ∪	×	×	×	×	2,000	006	006	000
	- 17	14.9 - 18.9	20/60/20	5,200,000	96,000 J	360,000 U	360,000 U								

Pioneer Midler Avenue LLC Interim Remedial Measures Report Table 3 - Average CVOC Calculations - B Sample ID Depth Date

Sample ID Depth Date VB3 - 17 14.9 - 18.9 05/07/07 VB3 - 18 14.9 - 18.9 05/07/07 VB3 - 18 14.9 - 18.9 03/15/07 VB3 - 18 14.9 - 18.9 03/15/07 VB3 - 19 15.6 - 19.6 05/08/07 VB3 - 19 15.6 - 19.6 05/08/07 VB3 - 19 15.6 - 19.6 05/21/07 VB3 - 19 15.6 - 19.6 05/08/07 VB3 - 20 16.9 - 20.9 03/09/07 VB3 - 20 16.9 - 20.9 05/08/07 VB3 - 21 16.9 - 20.9 03/09/07 VB3 - 21 16.9 - 20.9 03/09/07	Depth 14.9 - 18.9 14.9 - 18.9 14.9 - 18.9 14.9 - 18.9 15.6 - 19.6 15.6 - 19.6	Midler SSCOs -> 05/07/07	PCE 5,600	TCE 2,800	VC	trans	PCE	TCE	ζ T	trans	PCE 5,600	TCE 2,800) C	1,200
		Midler SSCOs -> 05/07/07	5,600	2,800	800	1 300					5,600	2,800	008	1,200
	9-18.9 9-18.9 9-18.9 9-18.9 6-19.6 6-19.6	05/07/07	17.000			1,200	7				,		255	
10 10 10	9-18.9 9-18.9 9-18.9 6-19.6 6-19.6 6-19.6	7017		2,200 U	2,200 U	2,200 U	×	×	×	×	17,000	1,100	1,100	1,100
<u>a</u> <u>a</u> a	9 - 18.9 9 - 18.9 6 - 19.6 6 - 19.6 6 - 19.6	20/01/20	120,000 E	11,000	2,000 ∪	2,000 U								
<u> </u>	9 - 18.9 6 - 19.6 6 - 19.6 6 - 19.6	03/15/07	160,000 D	13,000 D	10,000 U	10,000 U								
0 01	6 - 19.6 6 - 19.6 6 - 19.6	05/08/07	7,400	//20	1,700 U	1,700 U	×	×	×	×	7,400	720	850	820
10 10	6 - 19.6 6 - 19.6	03/02/02	£ 280 J	5,200	2,200 UJ	290								
<u> </u>	6-19.6	02/08/02	30,000	4,200	2,600 U	2,600 U								
<u> </u>		05/21/07	18,000	3,000	2,500 U	2,500 U	-		-					
	15.6 - 19.6	20/90/90	5,700	900	2,200 U	J. 006,1	×	×	×	×	5,700	1,600	1,100	1,900
	16.9 - 20.9	20/60/20	93,000 EJ	29,000 EJ	83 U	170							<u> </u>	
	16.9 - 20.9	03/06/02	460,000 D	56,000 D	23,000 U	23,000 U			ļ <u>.</u>					
	16.9 - 20.9	05/08/07	4.900	2,000 U	2,000 U	2,000 ∪	×	×	×	×	4,900	1,000	1,000	1,000
+-	16.9 - 20.9	03/06/02	36,000 EJ	3.100 E	84 U	24 €								
_	16.9 - 20.9	20/60/20	180,000 D	5,600 DJ	10,000 U	10,000 U								
/B3 - 21 16.9	16.9 - 20.9	05/08/07	40 7	1 1 1	J W	71 U	×	×	×	×	40	38	98	36
占	16.9 - 20.9	05/08/07	1.900 U	1,900 U	1,900 U	1,900 U								
-	16-20	03/09/07	140,000 EJ	23,000 EJ	N 9/	100								
占	16 - 20	03/00/02	1,100,000 D	50,000 DJ	U 000,99	U 000,99								:
<u>.</u>	16 - 20	05/08/07	L 009,1	2,200 U	2,200 U	2,200 U	×	×	×	×	1,600	1,100	1,100	1,100
/B3 - 23 16.6	16.6 - 20.6	03/02/02	1,600,000	65,000	CO 000'09	90,000 U								
VB3 - 23 DL 16.6	16.6 - 20.6	03/01/07	1,600,000 D	74,000 DJ	120,000 U	120,000 U								
VB3 - 23 16.0	16.6 - 20.6	20/80/90	42,000	1,500 J	2,700 U	2,700 U								
VB3 - 23 16.0	16.6 - 20.6	05/21/07	3,700	2,900	2,600 U	2,600 U	×	×	×	×	3,700	2,900	1,300	1,300
VB3 - 24 16.4	16.4 - 20.4	03/07/07	220,000	86,000	1,900 ا	10,000 U								
/B3 - 24 DL 16.4	16.4 - 20.4	20/20/60	220,000 D	85,000 D	21,000 U	21,000 U								
	16.9 - 20.9	02/08/02	8,000	707	2,200 U	2,200 U	×	×	×	×	8,000	22	1,100	1,100
	15.8 - 19.8	03/15/07	5,800	2,200	1,800 U	1,800 U								
/B3 - 25 15.8	15.8 - 19.8	05/07/07		21,000 J	40,000 U	40,000 U								
_	15.8 - 19.8	20/90/90	120,000 EJ	3,300	2,200 U	2,200 U								
占	15.8 - 19.8	20/90/90	260,000 D	4,600 DJ	22,000 U	22,000 U								
	15.8 - 19.8	06/16/07		3,500 J	12,000 U	12,000 U								
	15.8 - 19.8	07/02/07	11,000 EJ	5,100 E	84 N	59 J								
- 25	15.8 - 19.8	07/02/07	170,000	7,000 J	10,000 U	10,000 U								
	15.8 - 19.8	02/16/07	14,000 EJ	1,600	282	C 01				+				
占	8 - 19.8	07/16/07	- 1	2,100 J	3,900 U	3,900 U				+			1	
	15.8 - 19.8	08/03/07	21,000 E	3,000	150 U	Z JM								
- 25 DL	15.8 - 19.8	08/03/02	- 1	3,200	1,800 U	1,800 U								
	15.8 - 19.8	08/10/07	20,000 E	3,100	170 U	23 7								
ᆸ	15.8 - 19.8	08/10/07	24,000	2,000	2,000 U	2,000 U			1				+	
	15.8 - 19.8	08/20/07	8,900 EJ	1,500	0.091	1 2 S				+				
	15.8 - 19.8	08/20/07	19,000	2,200	1,900 U	0 006,1				+				
	5.8 - 19.8	08/28/07	6,100 EJ	590 U	1700 c	1 000 c	>	>	>	>	000	740	1 000	1 000
VB3 - 25 UL 15.8	8-19.8	08/28/0/	o'Znn o	7.047	0.000,5	2,000 0	< ;	〈 :	< ;	\ ;	37,0	2 2	30,-	20,

	1000
	0
2	-
Jue	1000
Ą	7
<u>-</u>	7
<u>⊽</u>	
<u>ee</u>	1
ion	-

Interim Remedial Measures Report Table 3 - Average CVOC Calculations - B-3 Area

								İ	ľ	
Sample ID	Depth	Date	PCE	1 0E	<u>۷</u>	trans	PCE	TCE	S V	trans
Sel 1		Midler SSCOs ->	5,600	2,800	800	1,200				
VB3 - 26 DL	15.4 - 19.4	03/07/07	N 06	360 D	<u>0</u> 6	110 D				

							Selected Data	ata		
TCE	οΛ	trans	PCE	TCE	<u>ک</u>	VC trans	PCE	TCE	ΛC	trans
2,800	800	1,200					5,600	2,800	800	1,200
360 D	N 06	110 D								
		Avera	Average of selected samples ->	electer	Same	les ->	5.365	1.156	992	810

Interim Remedial Measures Report Pioneer Midler Avenue LLC Tabl

Table 3 - Average CVOC Calculations - B-1	age CVOC Ca	Iculations -	B-1 Area								Selected Data	a		
Sample ID	Depth	Date	PCE	TCE	ο	trans	PCE	TCE	ΛC	trans	PCE	TCE	ΛC	trans
		Midier SSCOs ->	5,600	2,800	800	1,200					5,600	2,800	800	1,200
VB1 - 1	16.0 - 20.0	03/11/07	ቦ <i>L</i> 9	100	N 06	21 J	×	×	×	×	29	5	45	21
VB1 - 2	12.9 - 16.9	03/17/07	18 U	۵4	6 	14 J	×	×	×	×	6	4	6	14
VB1 - 3	5.5 - 9.5	20/20/90	430,000 EJ	74,000 EJ	2,900 U	360 J								
VB1 - 3 DL	5.5 - 9.5	20/20/90	880,000 D	96,000 D	58,000 U	58,000 U								
VB1 - 3	5.5 - 9.5	08/03/04	43,000 E	850	200 U	11 J			į					
VB1 - 3 DL	5.5 - 9.5	08/03/04	57,000	700 J	4,900 U	4,900 U							•	
VB1 - 3	5.5 - 9.5	08/20/07	32,000 EJ	1,400	270 U	270 U					:			
VB1 - 3 DL	5.5 - 9.5	08/20/07	900099	ر 1,700	3,300 U	3,300 U					:			
VB1 - 3	5.5 - 9.5	09/04/07	13,000 EJ	6,300 EJ	22 J	22 J								
VB1 - 3 DL	5.5 - 9.5	09/04/07	16,000	7,200	2,800 U	2,800 U	×	×	×	×	16,000	7,200	1,400	1,400
VB1 - 4	16.8 - 20.8	03/16/07	100	270	3 J	27								
VB1 - 4 DL	16.8 - 20.8	03/16/07	170 D	450 D	120 C	23 DJ	×	×	×	×	170	450	09	23
VB1 - 5	16.0 - 20.0	03/11/07	7	35	23 U	27	×	×	×	×	7	35	12	27
VB1 - 6	3.9 - 7.9	03/16/07	10,000	1,300 J	310 J	1,800 U								
VB1 - 6	3.9 - 7.9	05/10/07	240	12 J	⊃ 82 ⊃	100 U	×	×	×	×	240	12	20	20
VB1 - 6 DL	3.9 - 7.9	05/10/07	610 J	2,500 U	2,500 U	2,500 U								
VB1 - 7	15.8 - 19.8	20/20/90	6,100	1,800 J	2,100 U	2,100 U	×	×	×	×	6,100	1,800	1,050	1,050
VB1 - 8	15.4 - 18.4	20/20/90	190,000 EJ	1,100 J	2,000 ∪	2,000 U								
VB1 - 8 DL	15.4 - 18.4	20/20/90	550,000 D	41,000 U	41,000 U	41,000 U								
VB1 - 8	15.4 - 18.4	07/02/07	12,000 E	18 շ	98 U	86 U								
VB1 - 8 DL	15.4 - 18.4	07/02/07	42,000	110 J	2,100 U	2,100 U								
VB1 - 8	15.4 - 18.4	02/16/07	17,000 EJ	64 J	N 96	96 U								
VB1 - 8 DL	15.4 - 18.4	02/16/07	26,000	4,600 U	4,600 U	4,600 U								
VB1 - 8	15.4 - 18.4	08/10/02	33,000 EJ	430	180 U	180 U								
VB1 - 8 DL	15.4 - 18.4	08/10/07	46,000	290 J	4,200 U	4,200 U								
VB1 - 8	15.4 - 18.4	08/20/02	4,000 EJ	120 J	170 U	170 U								
VB1 - 8 DL	15.4 - 18.4	08/20/02	6,500	130 J	2,100 U	2,100 U	×	×	×	×	6,500	130	1,050	1,050
VB1 - 9	11.6 - 15.6	20/20/90	5,000 U	1,800 U	1,800 U	1,800 U	×	×	×	×	2,500	8	06	006
VB1 - 10	12.7 - 16.7	06/08/07	1,400,000 EJ	22,000 J	42,000 U	42,000 U								
VB1 - 10 DL	12.7 - 16.7	20/80/90	1,500,000 D	22,000 DJ	110,000 U	110,000 U								
VB1 - 10	12.7 - 16.7	08/03/02	2,200 E	32 J	170 U	170 U								
VB1 - 10 DL	12.7 - 16.7	20/60/80	3,300	2,100 U	2,100 U	2,100 U	×	×	×	×	3,300	1,050	1,050	1,050
VB1 - 11	16.4 - 20.4	20/80/90	910,000 EJ	8,800 J	210,000 U	210,000 U								
VB1 - 11 DL	16.4 - 20.4	20/80/90	1,000,000 D	85,000 U	85,000 U	85,000 U								
VB1 - 11	16.4 - 20.4	20/80/80	4,000 E	83 J	180 U	180 U	ļ							
VB1 - 11 DL	16.4 - 20.4	20/80/80	4,900	2,200 U	2,200 U	2,200 U	×	×	×	×	4,900	1,100	1,100	1,100
VB1 - 12	15.9 -19.9	20/80/90	48,000 EJ	1,000 ا	2,200 U	440 J								
VB1 - 12 DL	15.9 -19.9	20/80/90	53,000 D	980 DJ	8,800 U	8,800 U								

1,100 trans 1,050 7 1,050 ဓ္ဌ 1,150 1,000 91,1 88 55 Š 1,100 210 130 1,050 1,150 36 930 2,800 2,800 ဓ္ဌာ TCE Selected Data 2,600 17,000 1,400 5,600 450 750 640 580 1,800 50 PCE trans × × × × × × × × × 2 × × × × × × × × × TCE × × × × × × × × × PCE × × × × × × × × 86 JM 160 UM 77 U 2,700 U 170 U 20,000 U 3,600 U 9,400 U 2,300 U 5.0.3 8,200 U 500 J 2,200 U 2,100 U 2,100 U 1,800 U 3,900 U 160 U 1,900 U 3,700 ∪ 160 U 1,900 U 3,000 U 2,700 U 11,000 U 44,000 U 2,000 U 2,100 U 310 J 7 9 T 5,200 U 2,500 U 5,100 U 1001 2,000 U 50 □ 2,600 U trans 1,200 2,200 DJ 2,000 U ∩ *1*2 9,400 J 170 U 2,000 U 2,100 U 걸 2,200 U 160 U 2,100 U 20,000 U 1,800 U 3,600 U 1,900 U 2,300 U 110 U 8,200 U 170 U 490 J 2,500 U 1,900 U 7007 2,000 U 3,900 U 160 U 1,900 U 3,700 U 3,000 U 2,700 U 11,000 U 44,000 U 2,600 U 5,100 U 150 U 160 U 180 U 2,400 J 260 JB 1,200 JB 26,000 DJ 500 DJ 2,200 DJ 77 0 2,300 U 7 9E 2,700 U 25,000 D 2,100 U 200 J 200 J 1,500 J 930 17,000 D 2,200 U 510 J 700 J 130 J 640 J 4,100 J 120 J 1,400 210 23,000 230 790 27,000 3,800 2,800 17,000 2,800 330 2/0 2,900 470 260 TCE 2,800 46,000 BEJ 96,000 BEJ 7,800 EJ 2,200 DJ 27,000 EJ 49,000 EJ 30,000 EJ 13,000 EJ 9,900 EJ 60,000 EJ 390,000 EJ 51,000 EJ 230,000 D 430,000 D 10,000 E 6,300 D 62,000 D 000,000 E 970 J 640) 1,400 J 450 J 49,000 2,600 750 98,000 580 6,400 1,800 2,700 4,800 150 17,000 51,000 49,000 100,000 46,000 14,000 5,600 Table 3 - Average CVOC Calculations - B-1 Area Midler SSCOs -> 08/10/07 03/15/07 05/10/07 06/11/07 06/11/07 02/30/07 20/08/20 02/30/07 08/10/07 08/10/07 08/28/07 08/28/07 08/28/07 09/13/07 09/13/07 09/13/07 09/26/07 06/11/07 06/11/07 07/16/07 07/16/07 20/80/90 20/80/90 08/28/07 08/28/07 08/28/07 09/04/07 09/04/07 05/10/07 03/19/07 05/10/07 05/10/07 03/19/07 03/19/07 05/10/07 05/10/07 06/11/07 08/10/07 15.9 -19.9 15.5 - 19.5 15.5 - 19.5 15.5 - 19.5 15.5 - 19.5 15.5 - 19.5 15.5 - 19.5 10.2 - 14.2 15.5 - 19.5 15.9 - 19.9 13.0 - 17.0 13.0 - 17.0 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 15.9 -19.9 16.1 - 20.1 16.1 - 20.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 18.1 - 22.1 8.8 - 12.8 8.8 - 12.8 8.8 - 12.8 8.8 - 12.8 8.8 - 12.8 8.8 - 12.8 13 - 17 13 - 17 13 - 17 Depth VB1 - 20 DL VB1 - 20 Sample ID VB1 - 14 DL VB1 - 14 DL VB1 - 17 DL <u> VB1 - 17 DL</u> VB1 - 17 DL VB1 - 14 DL VB1 - 14 DL VB1 - 16 DL <u>VB1 - 17 DL</u> VB1 - 19 DL VB1 - 20 DL VB1 - 14 DL VB1 - 14 DI VB1 - 12 DI VB1 - 16 VB1 - 18 VB1 - 19 VB1 - 12 VB1 - 13 VB1 - 14 VB1 - 14 VB1 - 14 VB1 - 14 VB1 - 15 VB1 - 16 VB1 - 17 VB1 - 19 VB1 - 20 VB1 - 13 VB1 - 14 VB1 - 14 VB1 - 14 VB1 - 14 VB1 - 17 VB1 - 17 VB1 - 20

1,150

39

100

1,200

Interim Remedial Measures Report

Pioneer Midler Avenue LLC

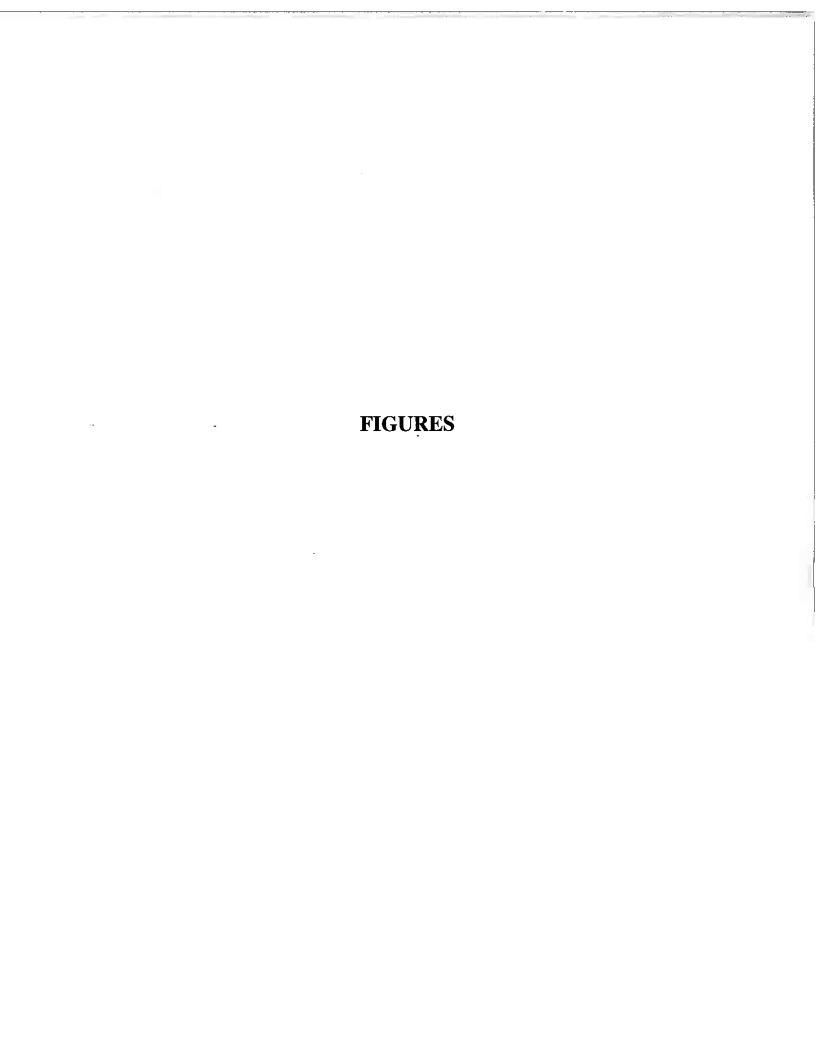
1,050

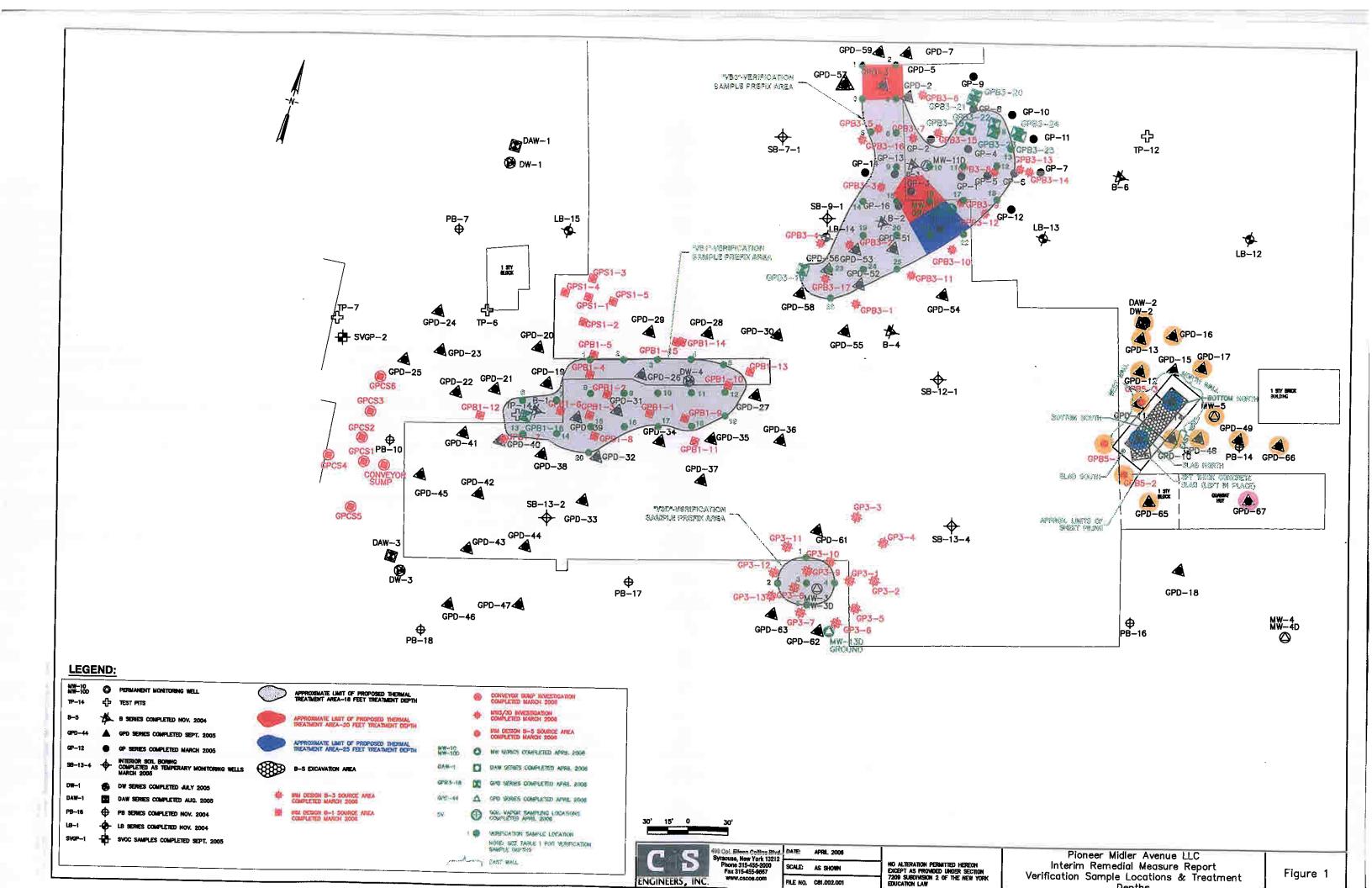
1,050 310

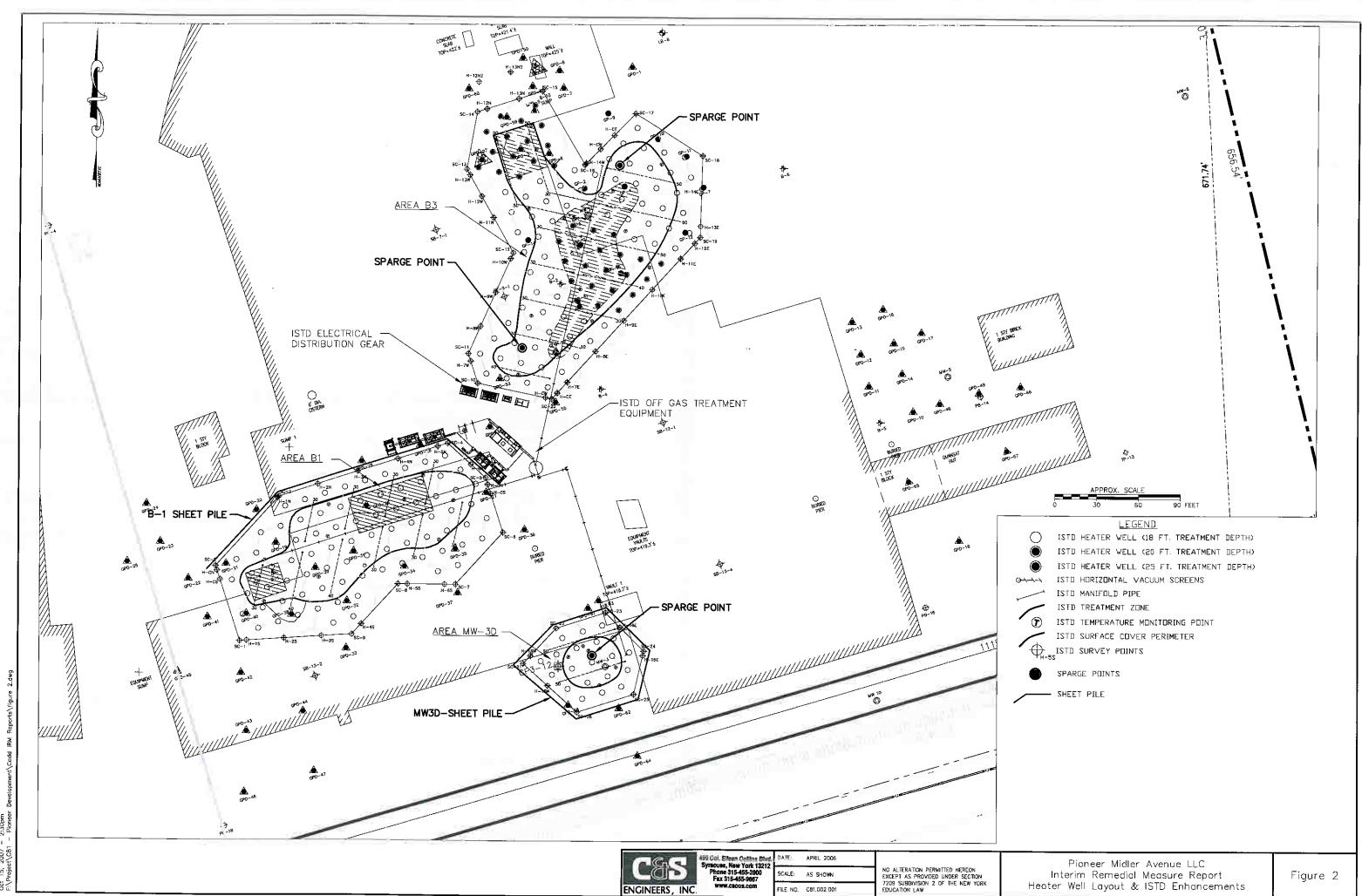
	•
ပ္	1
Avenue L	
Midler	1
ioneer	

		ţ
		ΛC
		TCE
	B-1 Area	PCE
s Report	CVOC Calculations - B-1	Date
dial Measures	age CVOC Cal	Depth
rim Remec	Table 3 - Avera	Imple ID

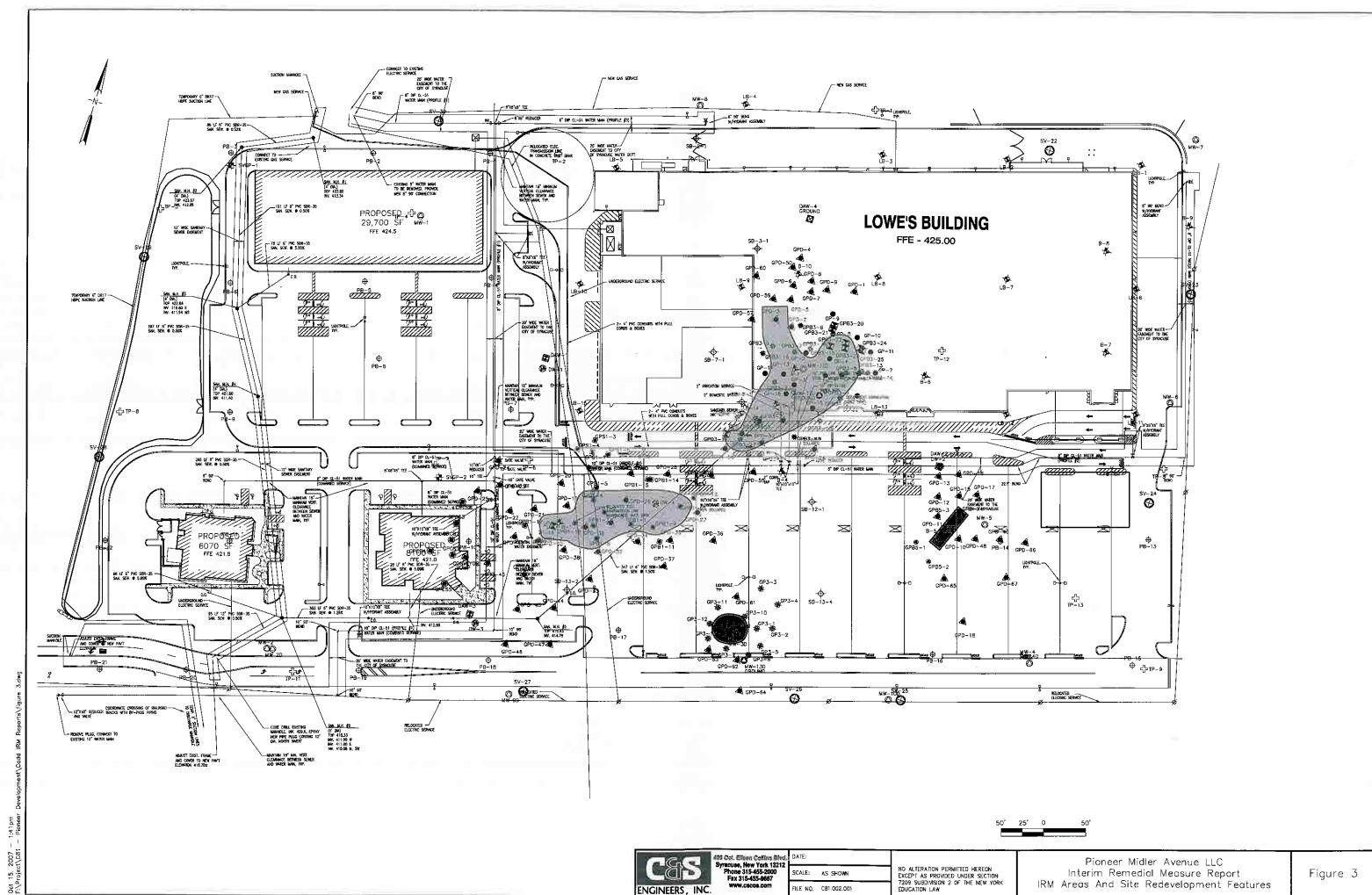
Calculations	- B-1 Area								Selected Data	ıta		
Date	PCE	TCE	ر د	trans	PCE	PCE TCE	VC trans	trans	PCE	TCE	ΛC	trans
Midler SSCOs ->	2,600	2,800	800	1,200					5,600	2,800	800	1,200
				Avera	Average of selected samples ->	elected	samp	les ->	3.258	1.011	613	575


Pioneer Midler Avenue LLC Interim Remedial Measures Report


Table 3 - Ave	Table 3 - Average CVOC Calculations - MW-3D Area	Iculations - I	MW-3D Area								Selected Data	ıta		
Sample ID	Depth	Date	PCE	TCE	۸c	trans	PCE	TCE	ΛC	trans	PCE	TCE	ΛC	trans
	Ī	Midler SSCOs ->	5,600	2,800	800	1,200					5,600	2,800	800	1,200
VB3D - 1	15.1 - 19.1	03/02/07	570,000	41,000 U	41,000 U	41,000 U								
VB3D - 1	15.1 - 19.1	05/08/07	230,000 EJ	1,400 J	2,200 ∪	2,200 U								
VB3D - 1 DL	15.1 - 19.1	20/80/90	330,000 D	22,000 U	22,000 U	22,000 U								
VB3D - 1	15.1 - 19.1	20/90/90	20,000	320 J	1,900 U	1,900 ا								
VB3D - 1	15.1 - 19.1	06/16/07	320,000	3,300 J	22,000 U	22,000 U	-							•
VB3D - 1	15.1 - 19.1	07/02/07	3,000 EJ	Ր 69	87 U	0 78								
VB3D - 1	15.1 - 19.1	07/02/07	2,200	55 J	170 U	170 U	×	×	×	×	2,200	55	85	85
VB3D - 2	10.5 - 14.5	03/02/07	17 U	6 و ا	640	17								
VB3D - 2 DL	10.5 - 14.5	03/05/07	34 C	40	040 D	28 DJ	×	×	×	×	41	14	640	28
VB3D - 3	14.3 - 18.3	03/02/07	440,000 E	2,900	2,100 U	2,100 U								
VB3D - 3 DL	14.3 - 18.3	03/02/07	2,200,000 D	420,000 U	420,000 U	420,000 U								
VB3D - 3	14.3 - 18.3	05/08/07	560,000 EJ	3,600	2,000 U	2,000 U								
VB3D - 3 DL	14.3 - 18.3	05/08/07	1,700,000 D	82,000 U	82,000 U	82,000 U								
VB3D - 3	14.3 - 18.3	20/20/90	6,100	2,200 U	2,200 U	2,200 ∪	×	×	×	×	6,100	1,100	1,100	1,100
VB3D - 4	10.75 - 14.75	03/02/07	740,000	O00,86	000,8€	000'86								
VB3D - 4	10.75 - 14.75	05/08/07	14 0	∩ 08	િ 6	Դ9E	×	×	×	×	14	40	6	98
VB3D - 4 DL	10.75 - 14.75	05/08/07	L 007	1,900 U	1,900 U	1,900 U								
VB3D - 5	14.4 - 18.4	03/02/07	5,300	2,100 ∪	2,100 U	2,100 U								
VB3D - 5	14.4 - 18.4	05/08/07	67,000	F 098	3,600 U	3,600 U	,							
VB3D - 5	14.4 - 18.4	20/20/90	2,900	2,200 U	2,200 U	2,200 U	×	×	×	×	5,900	1,100	1,100	1,100
						Avera	Average of selected samples ->	elected	samp	<- səl	2,851	462	287	470
	F													


= designates sample data used in the average.

Pioneer-Midler Avenue LLC Interim Remedial Measures Report Table 4 - IRM CVOC Reductions


PR	E-IRM	POS	T-IRM	% Reduction (Pre-
Number of Samples	Average Total CVOCs (ug/kg)	Number of Samples	Average Total CVOCs (ug/kg)	IRM/Post IRM)
	B-	3 TREATMENT	AREA	
22	18,927,326	27	9,430	99.95
	B-	1 TREATMENT	AREA	
24	4,481,576	20	8,002	99.82
	3-	D TREATMENT	AREA	
4	1,306,250	5	4,951	99.62
	B-	5 TREATMENT	AREA	
2	57,745	7	3,513	93.92
	COMBINED TOTA	LS FOR FOUR	TREATMENT AF	REAS
52	10,178,326	59	7,864	99.92
ESTIMATED	TOTAL CVOC MA	ASS (POUNDS)	FOR FOUR TRE	EATMENT AREAS
86	,274	6	9	99.92

Oct 15, 2007 - 2:30pm

APPENDIX A - PRELIMINARY REPORTS

- **A-1 IRM ISTD Contractor's Operations Report**
- A-2 September 22, 2006 B-5 Area Data Report
- A-3 December 9, 2005 Total Organic Carbon Sampling Results
- **A-4 NYSDEC-Approved Verification Sampling Protocol**

A-1

IRM ISTD Contractor's Operations Report

Remedial Activities Report Implementing In-Situ Thermal Desorption (ISTD) Remediation

Midler Avenue Brownfield Cleanup Program NYSDEC Site # C734103 Syracuse, Onondaga County, New York

Submitted to:

Pioneer Midler Avenue, LLC 250 South Clinton Street Syracuse, NY 13202

Submitted By:

TerraTherm, Inc. 10 Stevens Road Fitchburg, MA 01420 Phone: (978) 343-0300 Fax: (978) 343-2727

September 2007

TerraTherm is an exclusive licensee/owner of (a) U.S. Patent Nos. 4,984,594; 5,076,727; 5,114,497; 5,190,405; 5,221,827; 5,229,583; 5,244,310; 5,271,693; 5,318,116; 5,553,189; 5,656,239; 5,660,500; 5,997,214; 6,102,622; 6,419,423; 6,485,232; 6,543,539; 6,632,047; 6,824,328; 6,854,929; 6,881,009; 6,951,436; 6,962,466; and 7,004,678, (b) U.S. Patent Publication 2004-0228690, and (c) and certain non-U.S. counterpart applications/patents of the above-referenced patents and application.

Table of	Contents	
1. Introd	duction	
1.1.	ISTD Technology Description	3
1.2.	Project Organization and Roles	
1.3.	Project Objectives	4
1.4.	Chemicals of Concern and Remediation Standards	4
1.5.	ISTD Treatment Area and Volume	5
ISTD	Design Summary	6
2.1.	Borings and Wells	
2.2.	ISTD Heating Equipment & Controls	7
2.3.	Vapor Collection and Control	
2.4.	Vapor Treatment Equipment	
2.5.	Target Treatment Temperature, Operational Objectives and Design Changes	
	edial Activities	
3.1.	Wellfield Installation	
3.2.	Surface Cover Installation1	
3.3.	Wellfield Mechanical Installation1	
3.4.	ISTD Heating Equipment Installation1	
3.5.	Electrical Equipment Installation1	
3.6.	Commissioning1	
3.7.	Operation and Shutdown1	
3.8.	Soil Sampling1	
3.9.	Demobilization1	
	ormance Evaluation1	
4.1.	Subsurface Temperatures1	
4.1.1	· · · · · · · · · · · · · · · · · · ·	
4.1.2	•	
4.2.	Process Data	
4.3. 4.4.	Monitoring and Process Sampling	3
	Soil Sampling and Evaluation of Treatment	4
5. Proje 5.1.	ect Schedule1	
	Schedule1 nges to Design	
	l and Support Staffing	
	TerraTherm Staffing	

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 3 of 18

1. Introduction

This Report presents the remedial activities completed at three separate source zones at the Midler Avenue Redevelopment Brownfield Cleanup Program (BCP) Project in Syracuse, NY. The primary objective of this report is to describe the remedial activities completed at the site. The secondary objective of this report is to describe the changes that were made to the remedial design since TerraTherm's submittal of the Design Work Plan for Implementing In-Situ Thermal Desorption (ISTD) Remediation in August 2006 and the reasons for those changes.

1.1. ISTD Technology Description

ISTD is the simultaneous application of heat by thermal conduction and vacuum to the subsurface, for remediation without excavation. ISTD has been utilized to treat soil, sediments and groundwater contaminated with a wide range of organic chemicals, including volatile organic compounds (VOCs) such as benzene, toluene, ethylbenzene and xylenes (BTEX); chlorinated VOCs (CVOCs) including trichloroethene (TCE), trichloroethane (TCA), tetrachloroethene (PCE), and chlorobenzenes; and semivolatile organic compounds (SVOCs), including polychlorinated biphenyls (PCBs), creosote, coal tar, naphthalene, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins and furans (PCDD/Fs).

The following describes the process by which ISTD heats and treats the soil.

Thermal energy provided by thermal wells heats the soil, water, and Contaminants of Concern (COCs). Thermal conductivity of soil materials varies over a very narrow range; therefore, thermal conduction heating is usually very precise and predictable regardless of the permeability of the soil or its degree of heterogeneity, resulting in excellent sweep efficiency.

The heat front moves away from the heaters through the soil by thermal conduction and convection, and the superposition of heat from the plurality of heaters results in a temperature rise throughout the target treatment zone (TTZ).

As soil temperatures increase, COCs and water contained in the soil matrix are vaporized. While locations immediately adjacent to heaters may achieve temperatures well above the boiling point of water (100°C), locations in between heaters need only achieve 100°C to accomplish steam distillation for effective removal of VOCs (e.g. BTEX and CVOCs). Boiling off more than a fraction of the soil water is not necessary in such cases. Very high (>99%) resulting removal rates having been measured for ISTD of VOCs. (i.,iii) ISTD conducted with much higher target temperatures (e.g., 617°F, 325°C) has achieved similar results for PCBs, PAHs, and petroleum hydrocarbons.

The vacuum applied to the horizontal vapor extraction screens from the process system draws the vapors through the hot soil. Oxidation, hydrolysis, and pyrolysis reactions

occur in the hot soil, typically resulting in significant in-situ destruction of the COCs. Off-gases are collected and treated using an Air Quality Control (AQC) system.

1.2. Project Organization and Roles

Pioneer Midler Avenue, LLC (Pioneer) owns the Midler Avenue Site, and assumed the lead role in managing the assessment and remediation efforts at the site.

C&S Engineers, Inc. (C&S) served as the environmental consultant for Pioneer at the site, providing oversight services on behalf of Pioneer. In addition, C&S was responsible for providing environmental permitting and miscellaneous other services for the ISTD remediation project. C&S also assisted with implementation and monitoring of the ISTD remediation system, as well as performance monitoring and performance evaluation sampling.

TerraTherm, Inc. (TerraTherm) worked under contract to Pioneer, providing ISTD design and implementation services. TerraTherm is a turnkey remediation technology company, capable of delivering a complete project from start to finish. TerraTherm provided design and construction services, start-up assistance and training, and operations both on-site and from our main office in Massachusetts, as well as assisting with post-treatment sampling and decommissioning of the ISTD system.

1.3. Project Objectives

The primary objective of this ISTD remediation project was to reduce the mass and concentration of COCs within the TTZ so the soils/sediments reach numeric standards accepted by New York State Department of Environmental Conservation (NYSDEC), and listed in the Interim Remedial Measure Work Plan (IRM) as prepared by C&S.

1.4. Chemicals of Concern and Remediation Standards

The Contaminants of Concern (COCs) and remediation criteria are listed in Table 1.1. When the average concentration of each individual CVOC within a thermal treatment area is less than the SSCO for that CVOC the IRM will be considered complete for that treatment area.

Table 1.1. Site Specific Cleanup Objectives (SSCO)

Contaminant	SSCO (µg/kg)
PCE	5,600
TCE	2,800
VC	800
t-1,2,-DCE	1,200
c-1,2,-DCE	NA
Total	10,400

The sampling procedures and averaging used to determine if the goals are met is presented in <u>Section 4.4</u>.

1.5. ISTD Treatment Area and Volume

The ISTD treatment area comprised three separate irregularly shaped areas. Soil from the excavation of a fourth area, the B-5 area, was included in the treatment volume of the B-1 area. Table 2.2 lists the areas with approximate dimensions.

Table 2.2. Treatment Areas, Depths, and Volumes

Location	Surface Area (ft²)	Average Depth (ft)	Volume (cy)	Comment
B-3	12,675	20	9,389	In-situ treatment
B-1	8,400	18	5,600	In-situ treatment
B-5	840	13	404	Excavated and placed in B-1 area
MW-3D	1,220	18	813	In-situ treatment
Total	22,295		16,207	

The source areas addressed in the IRM are areas where soil sampling data showed the total VOC (TVOC) concentration exceeded 31,200 μ g/kg. The following provides a description of those areas.

- B-3 Area: Located generally along the eastern edge of former Building 7, this area includes two apparently separate sources of CVOCs. In both of these source areas, maximum CVOC concentrations in soil were two to three orders of magnitude greater than the concentrations detected at other sampling locations in the surrounding area. As indicated above, the source area treatments mandated by the IRM are those areas where remedial investigation (RI) sample results for CVOCs (total) in soils exceeded 31,200 µg/kg.
- B-1 Area: Located along the northern edge of former Building 13, this area includes two apparently separate source areas defined by the PCE/TCE analytical data for boring B-1 and test pit TP-14 (westernmost source area), and borings DW-4 and GPD-26 (easternmost source area). The CVOC impacts in these areas were relatively shallow (<15 ft. below the ground surface). As stated previously, treatment under the IRM was for those areas where RI sample results for CVOCs in soils exceeded 31,200 µg/kg.
- B-5 Area: Located east of former Building 12, the IRM work in this area addresses one area (characterized by soil samples B-5 and GPD-14), where the data indicated that CVOC concentrations exceeded 31,200 µg/kg to a depth of approximately ten feet. This area was excavated and the excavated soils were moved to Area B-1.
- MW-3D area: The soil sample from this boring did not exhibit significant CVOC impacts during initial investigations, but prior to treatment, the groundwater sample concentration of PCE from this location exceeded Class GA groundwater standards. During October 2005, a dense non-aqueous phase liquid (DNAPL) exhibiting the olfactory characteristics of PCE was observed in MW-3D.

Subsequent laboratory analysis confirmed that the DNAPL was PCE. Additional borings in this area confirmed the presence of elevated levels of CVOCs in a small area around MW-3D.

2. ISTD Design Summary

2.1. Borings and Wells

The original ISTD system layout consisted of a total of 211 heater-only wells, approximately 30 multi-level temperature monitoring points and 25 horizontal vapor collectors. The three treatment areas are as follows in Table 2.1:

Table 2.1. Treatment Areas, number of heaters, etc.

Location	Heaters	Vapor Collectors	Temperature Monitoring Locations
B-3	108	13	15
B-1	82	10	10
MW-3D	21	2	5
Total	211	25	30

Field changes to optimize the ISTD system increased the total number of heaters to 288. The revised breakdown by location is noted in the table below in Table 2.2:

Table 2.2. Revised Treatment Areas, number of heaters, etc. (changes to original are italicized)

Location	Heaters	Vapor Collectors	Temperature Monitoring Locations
B-3	110	13	15
B-1	157	10	10
MW-3D	21	2	5
Total	288	25	30

The ISTD heaters extended from slightly below the vapor cover to a depth of approximately 5 ft below the top of the clay aquitard, to deliver heat to a depth approximately 4 ft below the base of the TTZ. The additional heated length below the base of the TTZ helped to offset heat losses through the bottom of the TTZ.

ISTD heater wells were constructed of 3" Schedule 40 carbon steel with an inner stainless steel liner to protect the heater elements. The carbon steel casing and inner stainless steel liner were both capped at the bottom and all subsurface joints were welded to prevent vapor or steam intrusion.

To simulate the shape and depth of the three source areas, three different lengths of heaters were used:

- Heaters in Area B-1 and MW-3D, and the largest portion of Area B-3 extended to approximately 23 ft below grade, or 5 ft below the top of the clay aquitard.
- Heaters in a small area around GPD-3 (in area B-3) extended to 26 ft, treating to a depth of 20 ft below grade.
- Heaters in a small area around GP-3 (in area B-3) extended to 30 ft, treating to a depth of 25 ft below grade.

In addition to the heater wells, a network of temperature and pressure monitoring points were installed in and around the ISTD wellfield. The temperature monitoring points consisted of 1-½ inch carbon steel pipe segments, installed to the maximum treatment depth in the different areas (as listed in Table 2.2). Each point was outfitted with thermocouples starting at a depth of 2 ft below grade and every 4 ft vertically, with the deepest thermocouple located at or near the bottom of the TTZ, to allow evaluation of vertical as well as horizontal temperature distributions:

- In areas with a TTZ depth of 18 ft, thermocouples were located at depths of 2, 6, 10, 14, and 18 ft (5 thermocouples).
- In areas with a TTZ depth of 20 ft, thermocouples were located at depths of 2, 6, 10, 14, 18, and 22 ft (6 thermocouples).
- In areas with a TTZ depth of 25 ft, thermocouples were located at depths of 2, 6, 10, 14, 18, 22, and 26 ft (7 thermocouples).

2.2. ISTD Heating Equipment & Controls

The ISTD heater elements were placed inside the stainless steel sleeves and set inside the heater wells. A group of approximately 5 to 10 heater wells were wired in series, to deliver approximately 350 watts per foot of heated length to the subsurface.

The well heaters are configured to automatically maintain the set-point temperature. Silicon controlled rectifier (SCR) power controllers and remote temperature controllers were used to regulate the power application to the ISTD well heaters, based on temperature input from thermocouples located in the annular space between the carbon steel outer casing and inner stainless steel sleeve, for each individual heater circuit.

After the initial start-up and heater temperature ramping period, the heater set point temperature typically ranged from 1000°F to 1400°F (540°C to 760°C), depending on the site conditions and the temperature response around the particular heater circuit. The soils within the TTZ were heated through a combination of direct thermal conduction, through grain-to-grain heat transfer, and convection through the circulation of hot vapors and steam within the TTZ.

2.3. Vapor Collection and Control

Control of steam and volatilized COC vapors is critical for all ISTD projects. There have been several previous ISTD projects performed in urban areas and all have been successful, with no vapor, odor or other impacts.

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 8 of 18

Previous ISTD implementations have used a variety of combinations of vertical heateronly wells, vertical heater-vacuum wells, and horizontal vapor extraction screens. The approach for the Midler Avenue site was to use vertical heater-only wells and horizontal vapor collectors.

As described previously, the existing surface depression within area B-1 was filled in with materials excavated in the B-5 area and graded to prevent runoff and to shed water away from the TTZ. The fill material was placed such that there was a layer of permeable fill (pea gravel), overlain by a denser compacted layer (crushed concrete), which in turn was overlain by the ISTD surface cover. The network of horizontal vapor collection screens was bedded within the layer of pea gravel fill, so that the pea gravel layer served as a vapor collection plenum over the top of the TTZ.

The horizontal vapor collection pipes were arranged with a main aboveground header, and a network of horizontal screened subsurface "fingers" extending between the ISTD heater wells in each of the three TTZ areas. The horizontal vapor collection screens were placed between every second row of heater wells, resulting in a spacing of approximately 25 ft between the horizontal extraction screens. Vertical risers extended from the interior end of each subsurface screen to connect to the main aboveground vapor header. The vapor collection manifold and air quality control system were maintained under a negative pressure by the vacuum blower. The vacuum on the manifold was adjusted to maintain adequate vapor capture and collection, while minimizing, to the extent possible, the amount of excess air, and thus heat that was withdrawn from the subsurface.

2.4. Vapor Treatment Equipment

The effluent treatment equipment was located centrally in the ISTD wellfield between the three TTZ areas. Conveyance piping connected each area to the off-gas treatment system.

Extracted vapors were conveyed from the main ISTD wellfield manifold to the aboveground AQC system in un-insulated fiberglass piping. The extracted vapors then entered the thermal oxidizer where the organic constituents were destroyed with a minimum of 99% destruction efficiency, as per NYSDEC regulations. Exiting the thermal oxidizer, the vapors entered the wet scrubber system. The wet scrubber system consists of a quench tank to rapidly cool the hot vapors and a packed tower scrubber that utilizes a recirculating caustic solution to neutralize the acid-laden vapors. Vacuum blowers, located downstream of the scrubber served as the prime movers for the vapor stream, such that the entire AQC system was under vacuum. Following treatment by thermal oxidation and wet scrubbing, the treated vapors were exhausted to the atmosphere.

Two vapor-phase carbon beds were provided as an emergency back-up in the event that the thermal oxidizer needed to be shut down for maintenance. Bypass piping was installed around the thermal oxidizer to allow the use of the back-up carbon beds if required. Isolation valves were installed upstream of the thermal oxidizer to allow for rapid installation if needed.

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 9 of 18

The scrubber tower evaporated a portion of the quench water to cool the incoming stream. In addition, a slipstream from the scrubber sump was wasted to the sewer to limit salt buildup in the sump.

2.5. Target Treatment Temperature, Operational Objectives and Design Changes

To achieve the remedial objectives by obtaining the target temperature of 100°C, the ISTD system was designed to operate for approximately 184 days; however, certain areas within the TTZ took longer to heat than this. In an effort to expedite the remediation process, several changes were made to the system to accommodate the variations.

At day 125 of the operational period, soil samples were collected to determine how well the soils were responding in all areas inclusive of those areas that had achieved target temperatures as well as those areas that had not yet achieved target temperature. This provided TerraTherm with important tracking information and with the flexibility to be able to optimize the entire treatment process by reallocating heaters into those areas that had not yet achieved the Site Specific Cleanup Objectives (SSCOs). Heaters located in the areas that had achieved SSCOs were repositioned into certain areas that were running at a slightly slower heat up rate. A detailed reallocation plan was submitted to the NYSDEC on March 23, 2007. Average temperatures in the B-3 and MW-3D areas were above 185 degrees Fahrenheit at that time. First round sample results (samples taken between day 125 and day 128 of heating) varied with location numbers: 1, 3, 4, 9, 13, 16 and 26 in the B-3 area and sample location number 4 in the MW-3D area all meeting the performance criteria. Heaters from areas of B-3 that met the SSCOs were then reallocated as per the reallocation plan. Another sample event was scheduled for early May. Samples were taken during operational days 188 and 189. Refer to Section 6.0 for further discussion of subsequent sampling events.

3. Remedial Activities

3.1. Wellfield Installation

The ISTD heater wells were laid out on a hexagonal grid pattern, with approximately 15-foot spacing between wells. ISTD heater wells consist of a 3" Sch. 40 carbon steel casing ("heater can") installed to a depth of approximately 5 ft below the target treatment depth.

Initial drill casings were installed using hollow stem auger rigs or driven using a rotosonic drill rig. Once the drill casing was advanced to the desired depth, the ISTD heater can

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 10 of 18

was lowered inside the drill casing and the drill casing was then removed, leaving behind the drive point. The annular space was backfilled with sand as the drill casing was withdrawn. The additional heater wells added between existing wells to reduce the spacing pattern and decrease the heat up time were installed using a pile driver.

Temperature monitoring points were installed using similar drilling techniques.

A closer spacing pattern was developed during the project as part of the optimization program identified in <u>Section 2.1</u>. Seventy-five additional wells were added in area B-1 and two wells were added in area B-3.

3.2. Surface Cover Installation

An insulating surface cover was installed to limit heat losses through the ground surface and prevent infiltration of precipitation into the TTZ. The fill material that was placed over a majority of the TTZ also served as an insulating layer and to help to minimize surficial heat losses.

3.3. Wellfield Mechanical Installation

The vapor conveyance piping from the ISTD wellfield to the thermal oxidizer was constructed of flanged sections of fiberglass pipe. Extraction manifold piping was supported on jack stands.

3.4. ISTD Heating Equipment Installation

ISTD heaters were installed inside 2-5/8" O.D. thin wall stainless steel tubing, which was placed inside the 3" carbon steel heater wells. The stainless steel liner protects the heater elements from flaking and scaling of the carbon steel heater can, which may occur as a result of high-temperature corrosion of the carbon steel. Once the liner was lowered into the well, the heater was installed in the liner and the wellhead electrical junction box was secured to the top of the liner.

3.5. Electrical Equipment Installation

There were three basic parts to the electrical installation: the service drop and transformer/distribution equipment feeds; the wellfield electrical installation; and the process equipment and instrument wiring. The electrical installation followed the design plan. An additional separately fed transformer was brought in to feed power to the supplemental heaters that were installed to increase the heating rate.

3.6. Commissioning

Once all of the heating and effluent treatment equipment was installed, TerraTherm staff tested all of the equipment and verified proper operation prior to startup.

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 11 of 18

3.7. Operation and Shutdown

ISTD operation required manual adjustment throughout the operational period. In general, the vapor treatment system operation was controlled and monitored by the PLC system. ISTD heater operation was monitored, but not controlled, by the PLC. Heater operation was controlled by the individual heater circuit SCRs and their individual temperature controllers.

The ISTD system was attended by at least one TerraTherm ISTD system operator on a daily basis, generally 8 to 10 hours per day.

During the operational period, vapor samples were collected from the treatment system to monitor and to track treatment system performance. Soil samples were also collected from within the TTZ at predetermined sample locations to determine the level of treatment achieved as a function of temperature and saturation. The determination of whether to shutdown the ISTD system was based on consideration of the trends in subsurface temperatures, soil vapor concentrations, and concentrations of COCs in the soil in the TTZ. It was determined that additional treatment was warranted in certain areas to achieve further mass removal, so the ISTD heating system was operated for more than the planned duration as previously mentioned in Section 2.2.

Once it was determined that the treatment objectives had been achieved in any given area, the NYSDEC was notified, the ISTD heaters were turned off and decommissioning commenced.

3.8. Soil Sampling

Soil sampling was conducted to assess the level of treatment achieved at particular times in the ISTD treatment period to document remedial soil conditions. Soil sampling followed the plan described in the IRM to determine the degree of treatment achieved at specific locations and depths and specific temperature regimes. Section 4.4 provides additional discussion on the sampling procedures.

3.9. Demobilization

Upon completion of the ISTD treatment by area and confirmatory sampling, TerraTherm mobilized staff to the site to commence the demobilization activities. Electrical power to certain heater circuits was de-energized and the wellfield electrical components were disassembled.

The surface cover has been removed and disposed of by Pioneer. Heater wells, extraction screens, and monitoring points were removed.

4. Performance Evaluation

4.1. Subsurface Temperatures

Wellfield temperatures were monitored using thermocouples (TCs) placed in temperature monitoring points to track the movement of the heat front through the whole depth of the treatment zone.

Table 4.1 summarizes the subsurface temperature monitoring program for the ISTD system. Details of the specific types of monitoring are presented in the following sections.

Table 4.1 Summary of ISTD Well Field Monitoring Program

Type of Monitoring	Description	Objective	Number of Locations	Depth Interval/ Monitoring Frequency
Temperature	TCs immediately adjacent to outside of thermal well casing	Control temp. of heaters on each electrical circuit.	1 per circuit phase – 31 total	~15 ft Continuous/Daily
Temperature	TCs in interwell regions	Rate of heating and attainment of target temp.	30	Every 4 ft from 2 ft down Daily

TC - thermocouple

4.1.1. Heater Controlling Thermocouples

Thermocouples (TCs) were placed in the annular space between the outer heater can and the inner stainless steel liner on at least one heater in each circuit, to allow monitoring and control of the temperature of the heaters on that circuit. One representative heater was selected from each electrical circuit for monitoring (i.e., one per phase of each of 31 circuits). The location of the controlling thermocouple was changed during the heating period, based on the actual temperature of the wells on the individual circuits and the response of the soil to the heating process.

The TC was installed at the approximate mid-depth of the heated interval (i.e., ~11-15 ft below grade), since the middle typically runs hotter than other intervals. Data from the TCs was used to control the amount of power delivered to each heater electrical circuit to maintain an optimal heater temperature (e.g., 1,000-1,400°F). The amount of power being delivered to each circuit was controlled automatically by connecting the controlling TCs to the temperature controller for that circuit's SCR. In addition to the continuous measurements, daily manual measurements were made from the additional TCs not connected to the SCRs, during operation of the ISTD system.

4.1.2. Interwell Thermocouples

Thermocouples were installed at 30 locations in between the thermal wells throughout the three ISTD well fields to monitor heat up of the soil. These TCs were used to determine when the target treatment temperature had been attained within and at the

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 13 of 18

top and bottom of the TTZ and when ISTD treatment could be stopped. Typical temperature monitoring point locations included TCs at approximate distances of 8 feet from nearby heater wells, as well as closer locations to monitor the horizontal and vertical progress of heating. Daily measurements were made during operation of the ISTD system.

4.2. Process Data

The daily data sheets containing records of subsurface temperatures and pressures, energy delivery (amperage and kW-hr), as well as the PLC-logged data of flows, temperatures and pressures in the subsurface and aboveground treatment components were utilized to evaluate the progress of remediation.

Vapor and liquid COC concentration measurements were also utilized to evaluate the progress of remediation.

The COCs in the treated vapor phase were conveyed to the stack where they were measured using a photoionization detector (PID) and periodic quantitative air sampling. As expected, near the end of treatment, the mass removal of COCs diminished and the COC concentrations decreased.

4.3. Monitoring and Process Sampling

TerraTherm operations staff was on-site on a daily basis to monitor, to operate, and to maintain the ISTD system throughout the operational period.

Daily monitoring data was entered onto a Daily Data Sheet at the job site, and then e-faxed to the project manager for entry into an Excel database. A site-specific form was developed for this project and included in the O&M Manual. The Excel spreadsheet was set up with macros that could automatically extract the daily data and convert it to a graphical display so that data such as temperature, pressure, flow, vapor concentration, and other relevant parameters were tracked and monitored throughout the ISTD heating period.

On-site operations staff collected temperature data from thermocouples distributed throughout the wellfield and recorded them on the data sheet. Staff also recorded heater circuit set points and actual temperature data and the operating amperage of the heater circuits.

The operations staff also recorded flows, pressures and temperatures throughout the vapor collection, groundwater extraction, and effluent treatment systems on the Daily Data Sheet to track and to monitor the performance of the aboveground treatment systems. In addition, field staff monitored and logged influent vapor concentrations with a PID.

Changes in influent vapor concentrations were used as an indication of the progress of remediation. To supplement this on-site screening, periodic vapor and liquid samples

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 14 of 18

were collected from the aboveground process system and submitted to a laboratory for quantitative analysis.

The ISTD operators also performed daily, weekly, and monthly inspections and maintenance on operating equipment. These regular maintenance checks included greasing fans and bearings, checking or changing oil, tightening belts, securing guards, and other typical mechanical maintenance functions.

The PLC logged selected system operating data including relevant temperatures, pressures and flows through the aboveground vapor treatment equipment, as well as the position of safety sensors and controls (e.g., motor operated valves, etc.). The PLC was accessible remotely through a dial up modem, allowing engineering and project management staff in the office to access the PLC and observe the same operating information available to the field staff. These data were readily available on-line for TerraTherm on-site operational field personnel and office support staff to review, enabling the progress and operational status of the treatment system to be monitored.

4.4. Soil Sampling and Evaluation of Treatment

Soil sampling was conducted by C&S to assess the level of treatment achieved at various times and locations during the remediation period and followed a pre-approved sampling program.

Sampling of the hot soils was performed according to the guidelines presented by Gaberell and coworkers¹ as described in the Work Plan. This methodology was validated during the Cape Canaveral Inter-Agency demonstration project, and has been used successfully by TerraTherm in several states throughout the US, including Massachusetts, to verify attainment of soil cleanup goals. It has been shown to yield representative samples without significant loss of volatile COCs due to the elevated temperatures.

The thermal treatment verification sampling consisted of soil grab samples from designated areas and depths within each of the treatment areas. Figure IRM-3 of the IRM Work Plan provides the verification sample grid, which is based on a 25-foot sampling grid. The verification sampling grid extends to the treatment area boundaries to address the NYSDEC's concern that boundary areas be sampled. At several locations, boundary samples are less than 25 feet from adjacent sample locations to provide verification samples near the boundary. In all situations, the outermost verification samples were located within the IRM thermal treatment area. Verification sample depths were determined to provide comparability with RI sample data. Exact sample locations needed to be adjusted in the field to avoid treatment system infrastructure while sampling. The following list provides the number of samples collected from each thermal treatment area.

B-3: 26 sampling locations.
B-1: 20 sampling locations.

MW-3D: 5 sampling locations.

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 15 of 18

When TerraTherm determined that adequate treatment had been applied, verification samples were collected from that area(s) by C&S. Consistent with the Work Plan, when the average concentration of each individual CVOC within a treatment area was reduced to less than the SSCO for that CVOC, the IRM was considered complete for that treatment area.

Verification samples from all areas were submitted for laboratory analysis of VOCs consistent with the NYSDEC's Analytical Services Protocol. The verification sampling data was provided to a certified data validator for preparation of a Data Usability Summary Report to confirm that the IRM verification sample results meet the Brownfield Cleanup Program requirements for quality control/quality assurance.

5. Project Schedule

5.1. Schedule

The major phases of the ISTD implementation consisted of premobilization/procurement; construction; shakedown and operation; and decommissioning/demobilization.

The majority of the materials and equipment necessary to implement ISTD for this site were readily available from TerraTherm or manufacturer's stock. A limited amount of fabrication was required to assemble the heater cans and sleeves, wellfield manifold piping and interconnecting piping between the vapor treatment equipment components.

Construction took approximately 12 weeks. Major components of the construction phase included:

- · Grading and placement of the fill and horizontal extraction screens;
- Installation of ISTD wells and monitoring points;
- Surface cover installation:
- Installation of wellfield manifold piping;
- Placement and connection of the off-gas treatment equipment;
- Electrical installation, including the power drop;
- · Installation and connection of instrumentation and the PLC; and
- Connection to water, gas and sewer utilities.

Upon completion of construction, shakedown commenced. TerraTherm staff tested and confirmed proper operation of all instruments and system components, including the thermal oxidizer and scrubber. The shake down checklists included with the O&M plan were reviewed and completed. During this period, TerraTherm staff also provided onsite training for field personnel. Shakedown took approximately 3 days.

Once the system was fully tested and all components were functioning properly, the operation period commenced. The heaters were ramped up to target temperature over a period of several days to a week or more, depending on the response in the subsurface. The ISTD operation was expected to last approximately 6 months to reach

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 16 of 18

the target temperature throughout the entire TTZ. However, as addressed in the following section, some areas took longer than this.

Upon completion of operation in individual areas, TerraTherm staff mobilized to the site and commenced decommissioning, decontamination, and demobilization of the equipment.

6. Changes to Design

To achieve the remedial objectives by obtaining a target temperature of 100°C, the ISTD system was designed to operate for approximately 184 days. However, certain areas within the TTZ did not heat up as quickly as other areas. In an effort to expedite the remediation process, several changes were made to the system to accommodate the variations. As described in Section 2.2, in early March 2007, soil samples were collected to determine how well the soils were responding in all areas inclusive of those areas that had achieved target temperatures as well as those areas that had not yet achieved target temperature. This provided TerraTherm with important tracking information and with the flexibility to optimize the entire treatment process.

Following a review of the results from the analytical lab as well as the temperature monitoring thermocouples and visual observation of surface water impacting two of the treatment areas, a plan to install sheet piling around the MW-3D area and on the north side of the B-1 area was submitted to the NYSDEC, approved, and implemented. After the sheet pile installation was completed, a heater reallocation plan was submitted to the NYSDEC, in late March 2007. Heaters from areas of B-3 that had already met the SSCOs were then reallocated and additional heaters were installed in the B-1 area in accordance with the reallocation plan.

In May 2007, following another round of soil sampling, it was determined that enhancement of volatilization would help expedite the remediation process in locations that had achieved target temperatures, but were still exhibiting elevated soil concentrations. A plan was submitted, approved, and implemented inclusive of several enhanced volatilization systems for use in certain locations of the B-3 and MW-3D areas. In June 2007, following another round of soil sampling and after careful review of the soil temperatures, in order to optimize the performance and expedite the remediation, an additional plan for reallocating heaters and enhanced volatilization in the B-1 area was submitted to the NYSDEC, approved, and implemented.

In mid-July 2007, the MW-3D area achieved remedial goals and the area was decommissioned.

In late August of 2007, the B-3 treatment area achieved remedial goals and the area was decommissioned.

By early September 2007, the majority of the B-1 area had met the SSCO's and most of the heaters in the B-1 area were shut down. The oxidizer was taken off line for repairs and the vapor stream was diverted through the existing back up carbon vessels in mid-September. This left only 12 heaters (one circuit) operational, producing only about 100

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 17 of 18

SCFM, so the two 5,000 lb carbon vessels and the 2000 scfm blowers were replaced with a 150scfm blower and a 400 lb carbon vessel.

In late September 2007, the average concentration of each individual CVOC within the B-1 area was less than the SSCO for that CVOC, so the IRM was considered complete for that treatment area. Final decommissioning was commenced.

7. Field and Support Staffing

7.1. TerraTherm Staffing

TerraTherm provided a single Lead ISTD Operator that was at the site, one shift per day, approximately 50 to 60 hours per week, with occasional supplemental assistance as required for maintenance and support tasks.

The Lead ISTD Operator was responsible for monitoring and adjusting the ISTD system operations, conducting required health and safety and air monitoring, and performing system maintenance and troubleshooting. In addition, TerraTherm engineering staff visited the site on a scheduled and as-needed basis throughout the operation period.

ISTD operations ran continuously 24 hours per day, 7 days per week from the start of heating until the process system was shut down. Each weekday morning, the operator conducted a review of the previous day's instrument readings and data. The operator determined, after the daily review, whether there was any anomalous data that required investigation. Anomalous data was called to the attention of the Project Manager and/or Project Engineer and a plan of investigation/action was developed to verify the anomalous reading or correct the problem. The PLC also had the capability of alerting TerraTherm operations or engineering staff by cell phone and/or pager if an alarm condition occurred while the operator was off-site.

The Lead ISTD Operator was responsible for conducting day-to-day operation and maintenance and monitoring activities at the site and coordinating any required support personnel on an as needed basis. The Lead Operator reported to the Project Manager. TerraTherm engineering staff provided support from the home office and on-site when required, throughout ISTD operation.

Remedial Activities Report Midler Avenue, Syracuse, NY September 2007 Page 18 of 18

ⁱ TerraTherm, Inc. (August 2006), Design Work Plan for Implementing In-Situ Thermal Desorption (ISTD) Remediation. TerraTherm, Inc., Fitchburg, MA.

^{II} Conley, D.M., K.S. Hansen, G.L. Stegemeier, H.J. Vinegar, F.R. Fossati, F.G. Carl, and H.F. Clough. 2000. "In Situ Thermal Desorption of Refined Petroleum Hydrocarbons from Saturated Soil." Pp. 197-206. In: G.D. Wickramanayake and A.R. Gavaskar (eds.) *Physical and Thermal Technologies: Remediation of Chlorinated and Recalcitrant Compounds*. Battelle Press, Columbus, OH.

Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH.

"Vinegar, H.J., G.L. Stegemeier, F.G. Carl, J.D. Stevenson, and R.J. Dudley. 1999. "In Situ Thermal Desorption of Soils Impacted with Chlorinated Solvents." Proceedings of the Annual Meetings of the Air and

Waste Management Association, Paper No. 99-450.

^{iv} Stegemeier, G.L., and Vinegar, H.J. 2001. "Thermal Conduction Heating for In-Situ Thermal Desorption of Soils." Ch. 4.6, pp. 1-37. In: Chang H. Oh (ed.), *Hazardous and Radioactive Waste Treatment Technologies Handbook*, CRC Press, Boca Raton, FL.

^v C&S Engineers, Inc. (July 2006), *Interim Remedial Measure Work Plan*. C&S Engineers, Inc., Syracuse, NY.

A-2

September 2006 B-5 Area Data Report

C&S Engineers, Inc. 499 Col. Eileen Collins Boulevard Syracuse, NY 13212 phone 315-455-2000 fax 315-455-9667 www.cscos.com

September 22, 2006

Ms. Karen A. Cahill
Project Manager
Division of Environmental Remediation – Region 7
New York State Department of Environmental Conservation
615 Erie Boulevard West
Syracuse, New York 13204-2400

Re: B-5 IRM Excavation Area

Data Report

File: C81.002.001

Dear Ms. Cahill:

C&S Engineers, Inc., on behalf of our client Pioneer-Midler Avenue LLC, submits this data report for the B-5 Area excavations that were conducted as part of the ongoing Interim Remedial Measures (IRMs) at the Midler Avenue Brownfields Clean-Up Program (BCP) site. The B-5 Area (identified during the Site Investigation (SI) and delineated in the IRM Work Plan) work was conducted to move soil exhibiting chlorinated volatile organic compound (CVOC) impacts that exceeded the IRM target concentration of 31,000 parts-per-billion (ppb) into the B-3 thermal treatment area for treatment. The B-5 excavation area was identified based on the results of two SI samples (B-5 and GPD-14); approximately twelve surrounding samples exhibited total CVOC concentrations less than the 31,000 ppb target concentration.

Copies of the preliminary laboratory data sheets for the B-5 soil verification samples were previously forwarded to NYSDEC on July 21, 2006. This report provides a data table summarizing the VOCs data for the soil verification samples and a figure showing the general locations where the verification samples were collected. These data and figures will be incorporated into the IRM Construction Certification Report, which will be submitted following completion of the thermal treatment portion of the IRMs. The IRM Construction Certification Report will include a Data Usability Summary Report (DUSR) for the data provided here-in.

The B-5 Area excavations were conducted on July 18, 2006. Approximately 400 cubic yards of soil were moved into the B-3 thermal treatment area from the B-5 area. That soil was characterized utilizing PID headspace screening with a conservative screening criteria of 5 parts-per-million. In general, the soils from the six-foot to twelve-foot depth interval within the excavation area were moved into the thermal treatment area. Soils with PID measurements less than the 5 ppm screening criteria were stockpiled and re-used as partial back-fill for the excavation area.

Mr. Karen A. Cahill September 22, 2006 Page 2

As shown on the attached figure, a sheet-piling containment area was utilized to inhibit groundwater movement into the excavation area. This containment area was placed six to eight feet outside the delineated B-5 area, and excavation was continued to the sheet piling, resulting in the excavation of an area larger than the original B-5 area (sheet pile footprint of 28-ft. by 72 ft. versus delineated area of 16 ft. by 56 ft.).

As also shown on the attached figure, an approximately 170 square foot by approximately three-foot thick concrete structure was encountered within the southern portion of the sheet-piled area. The top of this structure was approximately three feet below the ground surface. Verification samples SLAB NORTH and SLAB SOUTH were collected at the north and south ends of the structure, respectively, at depths of zero to two feet below the bottom of the structure to confirm soil quality in the area.

Soil verification BOTTOM and SLAB samples were grab samples collected at the depths and locations indicated on the summary table. For the sidewall samples, three separate grab samples were collected for PID headspace analysis from each sidewall at the limits of excavation and from the depth interval indicated on the summary table. For each sidewall, the grab sample exhibiting the highest PID headspace measurement was submitted to the laboratory. Verification sample PID headspace measurements are provided on the summary table.

The soil verification analytical data indicate that soil remaining at the limits of excavation contains concentrations of CVOCs that are less than the 31,000 ppb IRM target concentration. In addition, the Site Specific Clean-Up Objective was achieved for the average concentration of each of the four individual CVOC parameters (Vinyl Chloride, TCE, PCE, and trans-1,2-Dichloroethene).

Should you have any questions regarding this report, please contact me.

Very truly yours,

C&S ENGINEERS, INC.

Rory Woodmansee Senior Engineer (Attachment)

Cc: Jed Schneider, Pioneer Midler Avenue, LLC

Mary Jane Peachey, P.E., - NYSDEC 7

Ken Lynch - NYSDEC 7 Jim Burke – NYSDEC 7 Henri Hamel – NYSDOH

Samuel II ->	Units	Bottom North	Bottom North DL	Bottom South	Bottom South DL	East Wall	North Wall	Siab North
Denth - >		12 feet	12 feet	14 feet	14 feet	6-10 feet	6 - 8 feet	6 - 8 feet
Date Sampled ->		7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006
Date Sampled -		0.7	0.7	4.5	4.5	13.2	0.3	7.1
FID VOI ATILES	ua/ka							
Chloromethane	ua/ka	18 U	81 U	U 71	75 U	13 U	16 U	17 U
Bromomethane	ug/kg	18 U	81 0	U 71	75 U	13 U	16 U	17 U
Vinyl chloride	ug/kg	240	120 D	190	78 D	18	13.1	160
Chloroethane	ug/kg	18 U	81 U	N 21	75 U	13 U	16 U	17 U
Methylene chloride	ua/kg	13 BJ	56 BDJ	12 BJ	48 BDJ	8 BJ	12 BJ	13 BJ
Acetone	ua/kg	69	810	17 U	75 U	35	27	۲ ک
Carbon disulfida	na/ka	18 U	81 U	3	75 U	2 J	16 U	2 ا
1 1-Dichlornethane	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	r e
1, Dichloroathane	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	N 21
Chloroform	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U
1 2-Dichloroethane	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U
2-Butanone	uo/ka	18 U	810	17 U	75 U	8 J	16 U	17 U
1 1 1-Trichloroethane	ila/ka	18 U	81 U	17 U	75 U	13 U	16 U	N 21
Carbon tetrachloride	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U
Bromodichloromethane	na/ka	18 U	84 U	17 U	U 57	13 U	16 U	17 U
1 2-Dichloronronane	ua/ka	18 U	94 U	17 U	75 U	13 U	16 U	17 U
cis-1 3-Dichloropropene	ug/kg	18 U	84 U	17 U	. 75 U	13 U	16 U	17 U
Trichloroethene	ua/ka	80	810	12 J	IZ DJ	13 U	16 U	17 U
Dihromochloromethane	ua/kg	18 U	810	U 21	U 52	13 U	16 U	17 U
1.1.2-Trichloroethane	ug/kg	18 U	84 U	U 71	15 U	13 U	16 U	17 U
Benzene	ng/kg	18 U	81 U	U 21	75 U	13 U	16 U	17 U
trans-1,3-Dichloropropene	ug/kg	18 0	81 U	17 U	75 U	13 U	16 U	17 U
Bromoform	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U
4-Methyl-2-pentanone	ug/kg	18 U	81 U	17 U	75 U	130	16 U	17 U
2-Hexanone	ug/kg	18 U	81 U	17 U	75 0	13 0	16 U	17 0
Tetrachloroethene	ng/kg	18	81 C	7 J	15 D	13.0	16 U	0 %
Toluene	ng/kg	18	81 U	17 U	75 U	13 U	16 U	17 U
1,1,2,2-Tetrachloroethane	ng/kg	18 U	<u>ھ</u> ∪	17 U	75 U	13 0	16 U	17 U
Chlorobenzene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 0
Ethylbenzene	ug/kg	18	81 U	17 U	75 U	13 0	16 U	17 U
Styrene	ug/kg	18 (81 U	17 U	75 U	13.0	16 U	1/ n
Total xylenes	ug/kg	18	81 U	17 U	75 U	13 0	16 U	0 /L
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	18 U	84 U	12 U	75 0	13 0	16 U	0 77 0 76
cis-1,2-Dichloroethene	ng/kg	390 E	360 D	850 E	820 D	25	24	1,100 E
trans-1,2-Dichloroethene	ug/kg	19	13D	ec	75 U	6.0	16 U	7
Dichlorodifluoromethane	ug/kg	18 U	81 U	17 U	75 U	13 0	16 U	17 U
Trichlorofluoromethane	ug/kg	(B)	17 BDJ	5 BJ	12 BDJ	5 BJ	5 BJ	6 BJ
Methyl acetate	ug/kg	18 U	81 U	U 21	75 U	13 U	16 U	17 0
Methyl tert butyl ether	ug/kg	18 U	81 U	17 U	75 U	13 U	16 0	17 U
Cyclohexane	ug/kg	18 U	81 U	17 U	75 0	13 U	16 U	17 U
Methylcyclohexane	ug/kg	18 C	84 N	17.0	n c/	2 3	16 U	1/ 0
	,							

Pioneer Midler Avenue LLC B-5 Area Remedial Excavation Verification Sample Results

Ol olamo	Ulnits	Bottom North	Bottom North DL	Bottom South	Bottom South DL	East Wall	North Wall	Siab North
Saliple ID ->	5	12 feet	12 feet	14 feet	14 feet	6-10 feet	6 - 8 feet	6 - 8 feet
Deput - X		7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006
Date Sampled -7	07/01	18 11	8410	17 U	U 5/	13 U	16 U	17 U
1,z-Diprornoeuraire	SV/SD			17 11	7511	1311	11811	11/21
Isopropylbenzene	D3/kd	18 0	0 L8	2	2	2	2 !	. !
4.2 Dioblorohenzene	in/ka	180	8110	17 U	75 0	13 0	16 U	1/10
1,3-Digition and izers	6.1.6		70	47 11	75 11	13 11	161	17 [1]
1.4-Dichlorobenzene	ng/kg	<u> </u>	0	2	2	2	2 !	
4.2 Dichlorobenzene	ııa/ka	18 U	8110	17 U	. 75 U	13 0	16 U	1/ 0
1,2-Dictional Control	no/kn	18 []	84 U	17 U	75 U	13 U	16,U	17 U
1,z-Dibiolio-5-Ciliolopoane	54/50	18 5	841	17 U	75 U	13 U	16 U	17 0

Pioneer Midler Avenue LLC B-5 Area Remedial Excavation Verification Sample Results

d -> ne ne ne ne ne ne the ne the ne thane sthane chloride ooethane oroptopene noethane roethane noethane noethane noethane noethane noethane noethane noethane noethane	6-8 feet 7/18/2006 7.1 86 U 86 U 86 U 86 U 86 U 86 U 86 U 86 U	8 feet 7/18/2006 3.8	6-10 feet 7/18/2006	6-10 feet 7/18/2006	
ne le pene le	7/18/2006 7.1 86 U 86 U 86 U 86 U 86 U 86 U 86 U	3.8	7/18/2006	7/18/2006	
ne lane lane lane lane lane lane lane la	86 U 86 U 88 U 88 U 88 U 88 U	3.8			
ne lane lane lane lane lane lane lane la	88 C C C C C C C C C C C C C C C C C C		9.7	9.7	
ne hane hane hane hane hane hane hane ha	88 U 88 U 88 U 88 U 88 U 88 U				
ne Re Pene Pene Pane Pane Pane Pane Pane Pan	88 U 88 U 88 U 88 U 88 U	16 U	15 U	1,800 U	
ne Nane Peene Peene Poene Nane Nane Nane	88 U 88 U 88 U 88 U	16 U	15 U	1,800 U	
ne nane pene pene nane nane nane	86 U 63 BDJ 86 U	f 2	450 E	1,900 D	
ne Nane Pene Pene Pane Pane Pane Pane Pane P	63 BDJ 86 U	16 U	15 0	1,800 U	
ne lane hane hane nane nane nane	98 U	12 BJ	9 BJ	1,800 U	
nne Sane Sane Sane Sane Sane Sane Sane S		f 6	77	1,800 U	
nne anne anne anne anne anne	98 N	16 U	3 1	1,800 U	
nne anne anne anne anne anne	∩ 98	16 U	3 1	1,800 U	
nne anne anne anne anne anne	0 98	16 U	15 U	1,800 U	
nne anne anne anne anne	N 98	16 U	15 U	1,800 U	
nne ane ane ane	N 98	16 U	15 U	1,800 U	
nne e e e e e e e e e e e e e e e e e e	N 98	16 U	15 U	1,800 U	
nne e e e	N 98	16 U	15 U	1,800 U	
ane e e e e	D 98	16 U	15 U	1,800 U	
ane a s a s a s	N 98	16 U	15 U	1,800 Ū	
ane e e e e e e e	0 98 ∩ 98	16 U	15 U	1,800 U	
٩	N 98	16 U	.15 U	1,800 U	
	N 98	16.0	5 J	70 090	
	98 U	16 U	15 U	1,800 U	
	86 U	16 U	15 U	1,800 U	
	198 0	16 U	15 U	1,800 U	
	n 98	16 U	15 U	1,800 U	
	0 98 □	16 U	15 U	1,800 U	
	N 98	16 U	15 U	1,800 U	
2-Hexanone ug/kg	98 €	16 U	15 U	1,800 U	
thene	N 98	16 U	2 J	730 DZ	
Toluene ug/kg		16 U	15 U	1,800 U	
etrachloroethane		16 U	15 0	1,800 U	
Chlorobenzene ug/kg		16 U	15 U	1,800 U	
Ethylbenzene ug/kg	N 98	16 U	15 U	1,800 U	
Styrene ug/kg		16 U	15 U	1,800 U	-
Total xylenes ug/kg	N 98	16 U	15 U	1,800 U	
1,1,2-Trichloro-1,2,2-trifluoroethane ug/kg		16 U	15 U	1,800 U	
cis-1.2-Dichloroethene	1,2	140	1,300 E	22,000 D	
trans-1,2-Dichtoroethene ug/kg	96 U	16 U	140	2,5d0 D	
Dichlorodifluoromethane ug/kg		16 U	2 J	1,800 U	
Trichlorofluoromethane ug/kg	15 BDJ	5 BJ	5 BJ	1,800 U	
Methyl acetate		16 U	15 U	1,800 U	
Methyl tert butyl ether ug/kg		16 U	15 U	1,800 U	
	98 N	16 U	15.0	1,800 U	
Methylcyclohexane ug/kg	0 98	16 U	15 0	1,800 U	

B-5 Area Remedial Excavation Verification Sample Results Pioneer Midler Avenue LLC

Sample ID ->	Units	Slab North DL	Slab South	West Wall	West Wall DL
Dooth V		6-8 feet	8 feet	6-10 feet	6-10 feet
Date Sampled ->		7/18/2006	7/18/2006	7/18/2006	7/18/2006
1 2-Dibromoethane	ua/ka	U 98	16 U	15 U	1,800 U
leonron/thenzene	ua/ka	N 98	16 U	15 U	1,800 U
1 3-Dichlorobenzene	ua/ka	98 U	16 U	15 U	1,800 U
1,0-Dichlorobenzene	ua/ka	98 U	16 U	15 U	1,800 U
1 2-Dichlorobenzene	ua/ka	N 98	16 U	15 U	1,800 U
1 2-Dibromo-3-chloropropane	ua/ka	N 98	16 U	15 U	1,800 U
1 2 4-Trichlorohenzene	ua/ka	U 98	16 U	15 U	1,800 U

U = Compound not detected at listed reporting limit Notes:

B = Compound detected in Method Blank
E = Listed concentration exceeds reporting limit range

D = Listed concentration is from diluted sample

J = Listed concentration is estimated

Data presented in this table has not been validated at the time of this submittal

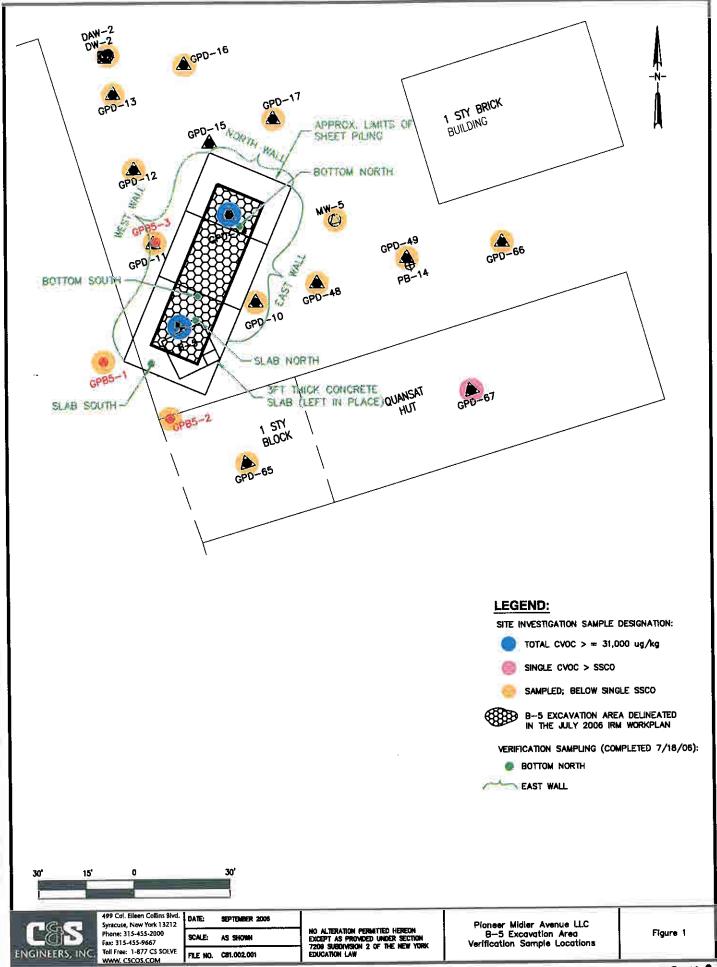
Average* Concentrations of the Four CVOCs with Site Specific Clean-up Objectives:

0000	2,600	2,800.	800	1,200
	56.3	59.4	315	379
	PCE	TCE	S V	trans-12-d

* METHOD FOR CALCULATING AVERAGES:

1. One value for each sample location

2. Non-detect sample is valued at 1/2 reporting limit


3. If diluted sample and non-diluted sample are both non-detect, 1/2 non-diluted reporting limit is used

4. If both diluted sample and non-diluted sample are "detect", the diluted sample result is used

5. If the diluted sample is "detect" and the undiluted sample is "non-detect" (or vice-versa), the

"detect" value is used.

Shaded cells represent values used to compute average concentrations

A-3

December 9, 2005 Total Organic Carbon Sampling Results

C&S Engineers, Inc. 499 Col. Eileen Collins Boulevard Syracuse, NY 13212 phone 315-455-2000 fax 315-455-9667 www.cscos.com

December 9, 2005

Ms. Karen A. Cahill
Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation
615 Erie Boulevard West
Syracuse, New York 13204-2400

Re: Total Organic Carbon Sampling Results Midler City Industrial Park Site No. C734103

File: C81.002.001

Dear Ms. Cahill:

C&S Engineers, Inc., on behalf of our client, Pioneer Midler Avenue LLC, submits analytical results for Total Organic Carbon (TOC) in soils at the Midler City Industrial Park site. Although TOC sampling is not part of the work plan for the project, TOC content in soil has significant potential to affect the design and function of VOC remedial systems as well as the development of appropriate site-specific clean-up objectives. The opportunity to collect samples for TOC analysis presented itself in late November 2005 with mobilization of a geotechnical drill rig to complete seismic analysis borings for the project. In addition, sample quantity from three RI borings remained at the analytical laboratory (STL-Buffalo), and C&S requested the laboratory to analyze those samples for TOC.

Table 1 provides a summary of the TOC analytical results for the twelve samples submitted and Figure 1 provides the boring locations for the samples. Consistent with the information you provided concerning the NYSDEC's preferred method for analyzing TOC in soils, the samples were analyzed using the Lloyd Kahn method. Table 1 includes sample depths and soil descriptions observed for each sample. The table also includes calculations for the mean, median, and standard deviation for the entire sample group. Based on a preliminary analysis of the data, alternative mean, median, and standard deviation calculations were performed for the data set with the high and low data points removed. Attachment 1 provides the laboratory data sheets.

Ms. Karen A. Cahill December 9, 2005 Page 2 of 2

C&S will utilize these TOC data to derive appropriate remedial objectives for Interim Remedial Measures (IRMs) and for communications with prospective IRM contractors. We anticipate augmenting the TOC data for the site as additional subsurface soils are accessed during the upcoming foundation/floor systems demolition, supplemental investigative activities, and during the IRMs.

If you have any questions, please do not hesitate to contact me at (315) 455-2000.

Sincerely yours,

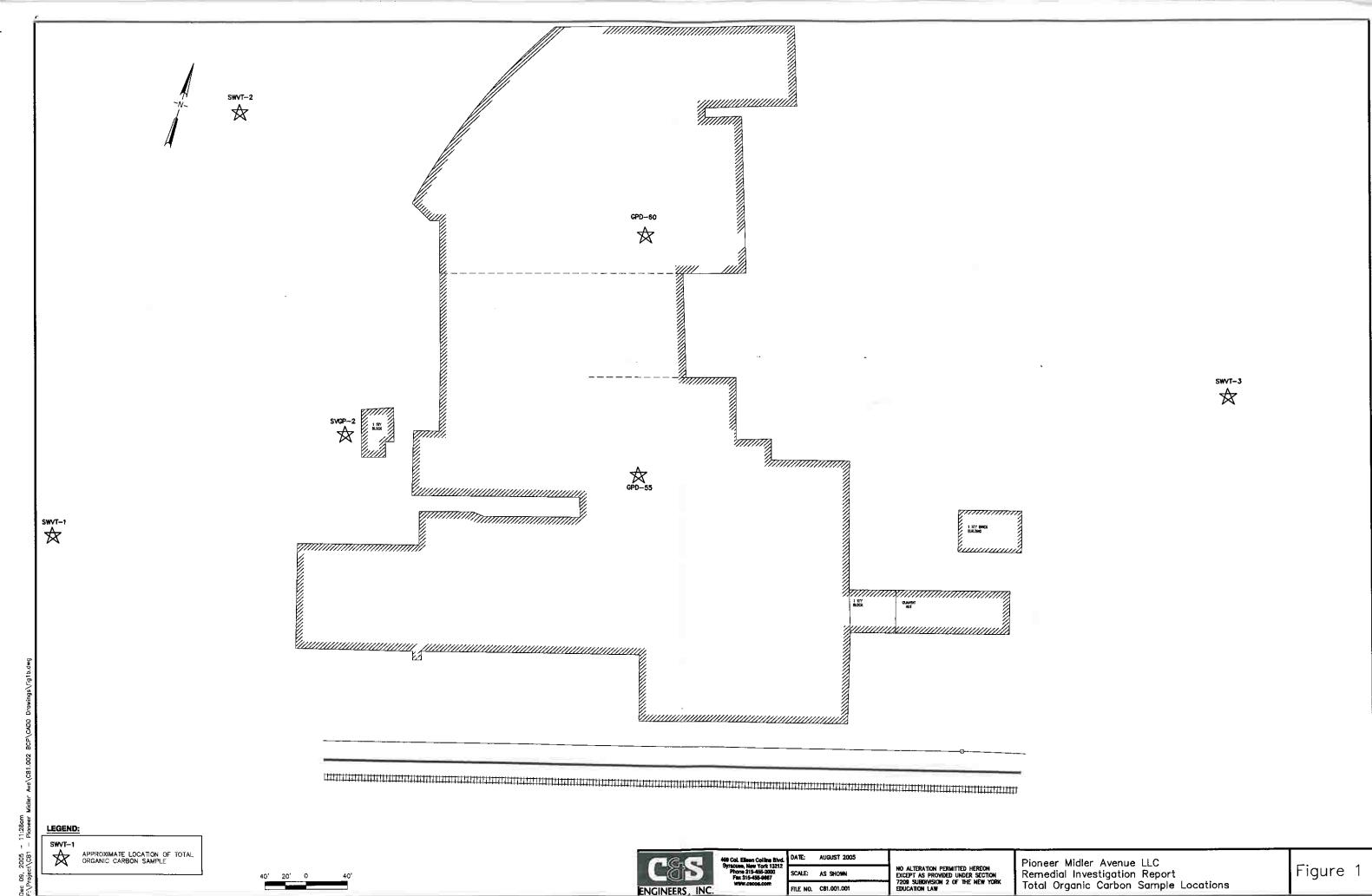
C&S ENGINEERS, INC.

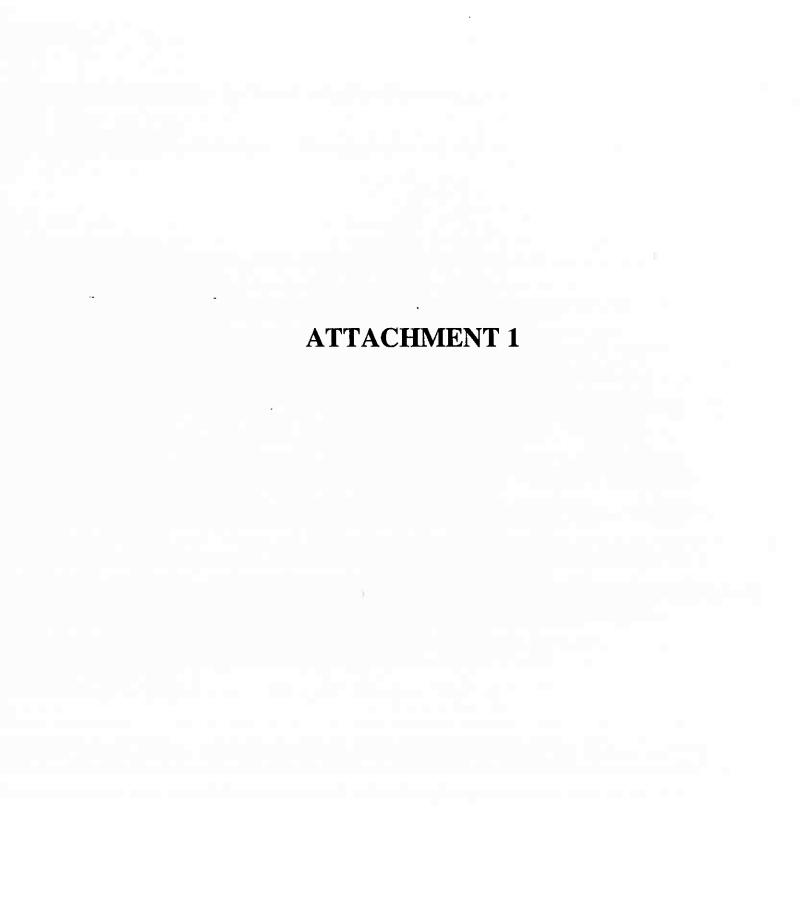
Thomas A. Barba

Manager, Remediation and Compliance

cc: Jed Schneider, Pioneer Midler Avenue LLC

Henriette Hamel, NYSDOH


J. Burke, NYSDEC Region 7


J. Charles, NYSDEC

Att.

Table 1
Pioneer Midler Avenue BCP Site
Total Organic Carbon Results

Sample ID	Sample Depth (feet)	Soil Type	TOC (mg/kg)	TOC (%)
SWVT-3-11-12-P	11-12	Peat	468,000	46.80
SWVT-3-14.5-16-MP	14.5-16	Marl/Peat	85,300	8.53
SWVT-3-16-18-PM	16-18	Peat/Marl	196,000	19.60
SWVT-2-5-6-M	5-6	Marl	37,300	3.73
SWVT-2-8-8.3-P	8-8.3	Peat	29,600	2.96
SWVT-2-8.3-10-M	8.3-10	Marl	34,900	3.49
SWVT-1-12-14-M	12-14	Marl	50,200	5.02
SWVT-1-18-20-M	18-20	Marl	46,500	4.65
SWVT-1-21-22-MC	21-22	Clay	37,300	3.73
SVGP-2-7-10	7-10	Mari	120,000	12.00
GPD-55-4-7	4-7	Marl	71,000	7.10
GPD-60-4-7	4-7	Peat/Marl	120,000	12.00
Mean TOC -			108,008	10.80
Median TOC			60,600	6.06
Standard deviation			123,629	12.36
Mean (minus high/low)			79,850	7.99
Median(minus high/low)			60,600	6.06
Std. dev. (minus high/low)			52,128	5.21

Thomas Wirickx C&S Engineers, Inc. 499 Col. Eileen Collins Blvd N. Syracuse, NY 13212

Phone: (315) 455-2000

FAX: (315) 455-9667

Laboratory Analysis Report For

C&S Engineers, Inc.

Client Project ID:

Midler

LSL Project ID: **0519651**

Receive Date/Time: 11/11/05 14:52

Project Received by: MW

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 NYS DOH ELAP #10900 PA DEP #68-2556

LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667

LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-3-11-12-P

LSL Sample ID:

0519651-001

Location:

Midler

Sampled:

11/11/05 9:40

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte

Result Units

Prep Date Analysis
Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-3-14.5-16-MP

LSL Sample ID:

0519651-002

Location:

Midler

Sampled:

11/11/05 9:50

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte

Result Units

Prep Analysis
Date Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-3-16-18-PM

LSL Sample ID:

0519651-003

Location:

Midler

Sampled:

11/11/05 10:00

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte

Result Units

Prep Date Analysis
Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

See Attached*

Page 4 of 10

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-2-5-6-M

LSL Sample ID:

0519651-004

Location:

Midler

Sampled:

11/11/05 11:05

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method
Analyte

Result Units

Prep Date Analysis
Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-2-8-8.3-P

LSL Sample ID:

0519651-005

Location:

Midler

Sampled:

11/11/05 11:10

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte

Result Units

Prep Date Analysis
Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-2-8.3-10-M

LSL Sample ID:

0519651-006

Location:

Midler

Sampled:

11/11/05 11:15

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte

Result Units

Prep Date Analysis
Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-1-12-14-M

LSL Sample ID:

0519651-007

Location:

Midler

Sampled:

11/11/05 12:40

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte

Result Units

Prep A
Date Dat

Analysis
Date & Time

Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

See Attached*

Page 8 of 10

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-1-18-20-M

LSL Sample ID:

0519651-008

Location:

Midler

Sampled:

11/11/05 13:00

Sampled By: TCW

Sample Matrix: SHW as Recd

Analytical Method Analyte Result Units Prep

Analysis Date & Time Analyst Initials

Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

C&S Engineers, Inc.

N. Syracuse, NY

Sample ID:

SWVT-1-21-22-MC

SWVT-1-21-22-MC

LSL Sample ID:

Prep

Date

0519651-009

Location:

Midler

Sampled:

11/11/05 13:10

Sampled By: TCW

Sample Matrix: SHW as Recd **Analytical Method**

Result Units

Analysis Date & Time Analyst Initials

Analyte Total Organic Carbon, Lloyd Kahn Method

Total Organic Carbon

See Attached*

*This analysis was performed by NYS DOH ELAP laboratory number 10795.

Page 10 of 10

Date: 23-Nov-05

Buck Environmental Labs, Inc.

CLIENT:

LIFE SCIENCE LABORATORIES

Project:

Lab Order:

0511133

CASE NARRATIVE

P. 03

Samples were analyzed using Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, 3rd Edition or other methods specifically approved by NYSDOH-ELAP. All quality control parameters for the analysis of samples under this lab log number met the laboratory acceptance limits and no data were qualified.

Glossary of terms and acronyms on the lab reports:

- Chemical Abstract Series identification for the analyte.

DF - "1" indicates that there was no dilution. Any other number indicates that the sample diluted by that factor. was

- Practical Quantitation Limit - The lowest level that the lab would report a value.

Result -This is the numerical result of the analysis (in bold). An "ND" indicates that the analyte was not detected at greater than the PQL concentration.

Units - The units of measure for the analysis. Ug/L and mg/L are for liquid samples. Ug/kg and mg/kg are for solid based units.

Qual - An entry in this column indicates that the results are "qualified" according to the following codes (generally related to lab QC results):

- J The analyte was detected at less than the PQL, but the amount is not precisely known.
- B The analyte was detected in the lab blank indicating possible contamination.
- E The result is estimated because the measurement exceeded the upper calibration limit.
- D Surrogate recovery was low due to sample dilution.
- S Spike recovery was outside laboratory acceptance limits.
- R RPD was outside laboratory acceptance limits.
- H The measurement is estimated because the sample was analyzed after regulatory holding time expired.
 - * The result exceeds the public drinking water maximum contaminant level.

CLIENT;

LIFE SCIENCE LABORATORIES

BUCK ENVIRONMENTAL LABS

CAS

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID.

Analyses

0511133-01A

Cilent Sample ID: 0519651-001A

Sampled By: CLIENT

Collection Date: 11/11/06 Received at Lab: 11/15/05

Matrix: SOIL

PERCENT MOISTURE BY D2216

Percent Moisture

TOTAL ORGANIC CARBON BY LLOYD KAHN

Total Organic Carbon

Analyst: CR

Analyst: DS

DF

PQL

Analysis Date: Nov 22, 2005 3:00 pm

Result

Units

Qual

Analysis Date: Nov 23, 2005 10:00 am 468000 5680 ug/g-dry

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties ether than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

CAS

7440 44 0

Report Date: 23-Nov-05 Lab Log No: 0511133

CLIENT:

LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project: Lab ID:

Analyses

0511133-02A

Client Sample ID: 0519651-002A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

PERCENT MOISTURE BY D2216 Percent Moisture

TOTAL ORGANIC CARBON BY LLOYD KAHN

Total Organic Carbon

Analyst: CR

DF

PQL

Analyst: DS

Analysis Date: Nov 22, 2005 3:00 pm

68,6

Result

Units

Qual

Analysis Date: Nov 23, 2005 10:00 am ug/g-dry

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

В U

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis Report Date: 23-Nov-05 Lab Log No: 0511133

CLIENT:

LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID:

0511133-03A

Client Sample ID: 0519651-003A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

Analyses

CAS

DF PQL Result

Units

Qual

PERCENT MOISTURE BY D2216

Percent Moisture

Analyst: DS

Analysis Date: Nov 22, 2005 3:00 pm

67.8

Analysis Date: Nov 23, 2005 10:00 am

EPA LAB ID #NY00935

TOTAL ORGANIC CARBON BY LLOYD KAHN Total Organic Carbon

NYSDOH ELAP #10795

7110-11-0

Analyst: CR

3110

196000

ug/g-dry

This leboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

> 3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

CLIENT:

LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project: Lab ID:

PERCENT MOISTURE BY D2216

0511133-04A

Client Sample ID; 0519651-004A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

Analyses

Percent Moisture

CAS

PQL DF

Analysis Date: Nov 22, 2005 3:00 pm

Result

TOTAL ORGANIC CARBON BY LLOYD KAHN

Total Organic Carbon

Analyst: DS

Analyst: CR

Analysis Date: Nov 23, 2005 10:00 am

37300 ug/g-dry

Units

Qual

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

CLIENT:

NOV-23-05 WED 17:13

LIFE SCIENCE LABORATORIES

6854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID;

0511133-05A

Client Sample ID: 0519651-005A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

Analyses

CAS

DF **PQL**

0.100

Result

Units

Qual

PERCENT MOISTURE BY D2216

TOTAL ORGANIC CARBON BY LLOYD KAHN

Analyst: DS

Analyst: CR

Analysis Date: Nov 22, 2005 3:00 pm

40.9

Analysis Date: Nov 23, 2005 10:00 am 1690 29600 ug/g-dry

Percent Moisture

Total Organic Carbon

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

CLIENT: LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID:

0511133-06A

Client Sample ID: 0519651-006A

Sampled By: CLIENT

Collection Date: 11/11/05 Received at Lab: 11/15/05

Matrix: SOIL

CAS DF PQL Result Units Qual **Analyses**

PERCENT MOISTURE BY D2216

Percent Moisture

TOTAL ORGANIC CARBON BY LLOYD KAHN 7440-14-0

Total Organic Carbon

Analyst: CR

Analyst: DS

Analysis Date: Nov 22, 2005 3:00 pm

47.9

Analysis Date: Nov 23, 2005 10:00 am 34900 ug/g-dry 1920

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warrantles other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

IJ

K

CAS

7440-44-0

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis Report Date: 23-Nov-05 Lab Log No: 0511133

CLIENT:

LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID:

Analyses

0511133-07A

Client Sample ID: 0519651-007A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

PERCENT MOISTURE BY D2216

Percent Maisture

TOTAL ORGANIC CARBON BY LLOYD KAHN

Total Organic Carbon

Analyst: CR

DF

PQL

Analyst: DS

Analysis Date: Nov 22, 2005 3:00 pm

0.100 44.7

Result

Units

Qual

Analysis Date: Nov 23, 2005 10:00 am 50200 ug/g-dry 1810

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753,3403 Fax 607.753,3415

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis Report Date: 23-Nov-05 Lab Log No: 0511133

CLIENT:

LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID:

0511133-08A

Client Sample ID; 0519651-008A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

Analyses

CAS

DF PQL

Result

Units Qual

PERCENT MOISTURE BY D2216

Percent Moisture

Total Organic Carbon

TOTAL ORGANIC CARBON BY LLOYD KAHN 7440 44 D

Analyst: CR

Analyst: DS

Analysis Date: Nov 22, 2005 3:00 pm

31.7

Analysis Date: Nov 23, 2005 10:00 am 1460

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program, Buck Environmental Laboratories, Inc. makes no recommendations, representations or warrenties other than as specifically set forth in this report and shall not be responsible or llable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

NYSDOH ELAP #10795

EPA LAB ID #NY00935

3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

В U

ENVIRONMENTAL LABORATORIES, INC. accredited environmental analysis Report Date: 23-Nov-05 Lab Log No: 0511133

CLIENT:

LIFE SCIENCE LABORATORIES

5854 BUTTERNUT DRIVE

EAST SYRACUSE, NY 13057

Project:

Lab ID:

0511133-09A

Client Sample ID: 0519651-009A

Sampled By: CLIENT

Collection Date: 11/11/05

Received at Lab: 11/15/05

Matrix: SOIL

Analyses

CAS

DF PQL

Result

EPA LAB ID #NY00935

Units

Qual

PERCENT MOISTURE BY D2216

NYSDOH ELAP #10795

Percent Maisture

TOTAL ORGANIC CARBON BY LLOYD KAHN

Total Organic Carbon

Analyst: CR

Analyst: DS

Analysis Date: Nov 22, 2005 3:00 pm

41.4

Analysis Date: Nov 23, 2005 10:00 am

37300

This laboratory analysis has been performed in accordance with generally accepted laboratory practices and requirements of the New York State Department of Health ELAP Program. Buck Environmental Laboratories, Inc. makes no recommendations, representations or warranties other than as specifically set forth in this report and shall not be responsible or liable for any action or the consequences of any action taken in connection with this report. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included on the cover letter.

> 3821 Buck Drive, Cortland, NY 13045-5150 Tel 607.753.3403 Fax 607.753.3415

Life Science Laboratories, Inc. **CHAIN OF CUSTODY RECORD** 131 St. Lawrence Ave. LSL North Lab 5854 Butternut Drive LSL Central Lab

0519651 C+SEng Phone: (54 LSt. Finger 16 N. Main Wayland, 1 Waddington, N.Y. 13694 Phone: (315)388-4476 E. Syracuse, N.Y. 13057 Phone: (315)445-1105

EX.

(315)388-4061

Fax:

(315)445-1301

Fax:

TierLab

38-2640

	•						Turnaround Time	l Time	***************************************			
			•					Pre-Authorized	r			
							4 DAY	Next Day* 2-Day *	3-Day* ☐	*Add	*Additional Charges may apply	arges
Company: C&S Engineers							Date Neede	Date Needed or Special Instructions:	nstructions:			
Street: 499 Col. Eileen Collins Blvd.	Blvd.		Zia:	13212				-				
City/State: Syracuse, 100 1011			T.X	315-455-9667	2-9667		Authorizati	Authorization or P.O. #		8	0.00)
Email:							Salsprotect	S. Profectivimbel:	A COLUMN	2.77 2.77	27.5	W.W
Client:Project ID/Client Site ID	Michelle	0		÷					A 002 01	瓣.		
Client's Samole	Sample	Sample	Туре		Preserv	Son	Containers		Analyses	E C	Chook	# <u>C</u>
Identifications			grab/comp	Matrix	Added	#	size/type			5	-	<u>.</u>
9-21-11-12-P	0440 30-11-11	0440	Link	Soil	Now	1	402/alass	Loyd Ko	Kahn TOC	+	7	100
SINT SINCILLAND	797111	Charl		H	II.	o' 	"	5 .	11		0	200
11 18 DW		200	J.	1	E 24	1	ħ.		N.	-	9	003
NWVT-2-16-18-11.	78.11.11	JAN S	<i>[1</i>	4	31		m.		ų		Q	Had
2WV 1 - 2 5 5 1	11.11.05	91	М	2	Į.	1	и		ll.		9	000
NAVI -2-0-0-1	1 10 20	SIII		Sa.	- 11	-	1		115		9	000
SWV1-2-4.5-17-17	No-II-II	0462	0	1/2	N	.=	N		100		~	60
M-07-81-1-1000	11-11-05	1300	N.	П	H	-	100		ū	+	~	800
SWVT-1-21-22-MC	Sould		Ŋ	11	13	-	14		Œ.	+		500
										P	Date	Time
LSL use only:			***************************************			Custouy	Received By:	BV		1		
		Sampled by: Relinquished	Sampled by:	W	I. S. Colors		Received By:	By:				
		Reling	Relinguished By:				Rec'd for Lab By:	Lab By: 👭				11.00
and in the contract of	this C-O-C	Shipme	int Method:				Received	ntact: Y N			diua i aidi	11:11
		100	stody Record M	UST be f	illed out h	n order t	o process s	amples in a 1	imely manner in PE	N ONL		
crait IIY			•		Reg (000			Reg COC			

STL Buffalo 10 Hazelwood Drive, Suite 106 Amherst, NY 14228

Tel: 716 691 2600 Fax: 716 691 7991 www.stl-inc.com

ANALYTICAL REPORT

Job#: A05-C857

SIL Project#: NY4A9350

Site Name: <u>C & S - Pioneer Midler site</u>
Task: <u>C & S - Pioneer Midler site</u>

Mr. Thomas Barba C & S Engineers 499 Col. Eileen Collins Blvd. Syracuse, NY 13212

STL Buffalo

Brian J. Fischer Project Manager

12/01/2005

NON-CONFORMANCE SUMMARY

Job#: A05-C857

STL Project#: NY4A9350

Site Name: <u>C & S - Pioneer Midler site</u>

General Comments

The enclosed data may or may not have been reported utilizing data qualifiers (Q) as defined on the Data Comment Page.

Soil, sediment and sludge sample results are reported on "dry weight" basis unless otherwise noted in this data package.

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH-Field), they were not analyzed immediately, but as soon as possible after laboratory receipt.

Sample dilutions were performed as indicated on the attached Dilution Log. The rationale for dilution is specified by the 3-digit code and definition.

Sample Receipt Comments

A05-C857

Sample Cooler(s) were received at the following temperature(s); 2.0 °C All samples were received in good condition.

Wet Chemistry Data

Total Organic Carbon was subcontracted to STL Chicago. The complete subcontract report is included in this report as Appendix A. Comments pertaining to Total Organic Carbon may be found within the comment summary of the subcontract report.

The results presented in this report relate only to the analytical testing and condition of the sample at receipt. This report pertains to only those samples actually tested. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

"I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on floppy diskette has been authorized by the laboratory Manager or his designee, as verified by the following signature."

Brian J. Fischer Pröject Manager

Date

Appendix A

STL Chicago 2417 Bond Street University Park, IL 60466

Tel: 708 534 5200 Fax: 708 534 5211 www.sti-inc.com

SEVERNMERHUM MABORATORIES ANAMAHEEAN EEREPERE

JOB NUMBER: 241987

Prepared For:

Severn Trent Laboratories 10 Hazelwood Drive Suite 106 Amberst NY 14228

Project Amherst

Attention: Brian Fisher

Date: 11/25/2005

Signature

Name: Bonnie M. Stadelmann

Title: Project Manager

E-Mail: bstadelmann@stl-inc.com

STL Chicago 2417 Bond Street

University Park, IL 60466

PHONE: (708) 534-5200

FAX..: (708) 534-5211

This Report Contains (35) Pages

WET CHEMISTRY DATA PACKAGE AMHERST JOB# 241987

Data Summary	
Chain of Custody	
Case Narrative	
Raw Data	

STL Chicago is part of Severn Trent Laboratories, Inc.

SAMPLE INFORMATION Date: 19/25/2005

Job Number.: 241987

Customer...: Severn Trent Laboratories Attn.....: Brian Fisher

Project Number...... 20000259 Customer Project ID....: AMHERST NY4A9350 Project Description...: Amherst

Laboratory Sample LD	Customer Sample ID	Sample Matrix	Daté :: Sampled	Time Sampled	Bate Received	Time Received	
241987-1	SVGP-2-7-10	Soil	09/27/2005	12:40	11/12/2005	09:30	
241987-2	GPD-55-4-7	Soil	09/21/2005	14:50	11/12/2005	09:30	
241987-3	GPD-60-4-7	Soit	09/22/2005	14:20	11/12/2005	09:30	
							1
		٠					
						-	ŀ
	}						l
	1						
					l		۱
	}						
	į					İ	
	·						İ
	·						
1							
		1					
j			1				
					ı		
			-				
			[}		İ
							i
		ļ	1				
ľ							
		1	Į	1	Ì		

STL Chicago is part of Severn Trent Laboratories, Inc.

		,	Test Method	CUSTONER: Seven
* In Description = Dry Wgt.		TOC Average Duplicates, Solid	PARAMETER/TEST DESCRIPTION	Job Number: 241987 CUSTOMER: Sevent Frent Laboratories Customer Sample ID: SVEP-2-7-10 Date Sampled: 12:40 Sample Matrix: Soil
		•		LA
2		120000	SAMPLE RESULT	BORATORY PROJECTS
Page 2			o FLAGS	A
		3300	.	
		14000		9.1 %
			MOTITING W	1987-1 1/12/2005
-		16 /Kg	unirs	Date
		165722	eatch bi	Date:11/25/2005
		11/15/05 1838 Fhm	SHELL BLYC	Date:11/25/2005
STL Chicago	 	77 8	NOST	

STL Chicago is part of Severn Trent Laboratories, Inc.

	,		TEST HERHOD	fustomer Date Sam Time Sam Sample M	CUSTOMER: Save
* In Description = Dry Wgt.			PARAMETER/JEST DESCRIPTION Total Organic Carbon (Soils) TOC Average Duplicates, Solid		Job Number: 241987 CUSTONER: Severn Treat Laboratorles
Pr			SWIPLE RESULT	- - - - - -	LABORATORY FEST R
Page 3			D FLAGS	Le Ja	ANTEROS.
			1800	Sampl	Esu
			7700	241987-2 11/12/2005 2 09:30	LIS
	= =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			ng/Kg		Date
*184	N P		165722		Date:11/25/2005
		4	11/15/05 1909 Press		
go			99 3ECH		

SIL Chicago is part of Severn Trent Laboratories, Inc.

		FEST HETHOD	Customer Date Sam Time Sam Sample M	CUSTONER: Seve	
* In Description = Bry Wgt.	TOC Average Duplicates, Solid	PARAMETER/TEST DESCRIPTION	Customer Sample ID: GPD-60-4-7 Date Sampled 09/22/2005 Time Sampled 14:20 Sample Matrix 5011	CUSTOMER: Severn Trent Laboratories	Job Number: 241987
Page 4	120000	SANTLE RESULT OF LAGS		PROJECT	LABURATORY
,	3200	A5	Laboratory Sample Date Received Time Received	PROJECT: AMMERST WYLASSSO	TEST RESU
	14000	P	e ID: 241987-3 : 11/12/2005 : 09:30		L → 8
	1 пд/Кд	NO LINE DA			•
	-	(M) (M) (M) (M) (M) (M) (M) (M) (M) (M)		原列電子・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	Date:11/25/2005
	11/15/05 1932	DATE/TIME			

SI

Job	Number: 241987	RATORY CHRONIC	L E Date: 11/25/2005	
MSTOMER: Severn	Frent Laboratories	PROJECT: AMHERST WY4A9350	ATTNS Brian Fisher	
ab ID: 241987-1 METHOD Lloyd Kahn	Client ID: SYGP-2-7-10 DESCRIPTION Total Organic Carbon (Soils)	Date Recyd: 11/12 RUN# BATCH# PI 1 165722 1	REP BT #(S) DATE/TIME ANALYZED	DILUTION
ab ID: 241987-2 METHOD Lloyd Kahn	Client ID: GPD-55-4-7 DESCRIPTION Total Organic Carbon (Soils)	Date Recvd: 11/12, RUM# BATCH# PF 1 1657Z2 16	REP BT #(S) DATE/TIME ANALYZED	DIEUTION
ab 10: 241987-3 METHOD Eloyd Kahn	Client ID: GPD-60-4-7 DESCRIPTION Total Organic Carbon (Soils)	Date Recyd: 11/12/ RUN# BATCH# PF 1 165722 16	REP BT #(S) DATE/TIME ANALYZED	DILUTION
-				

Job Number.: 241987	QUALITY	CONTROL	RESULTS	Report Date.: 11/25/2005
C.CUSTOMER - Savarn Thoma, Fances - and as:	PROJEC	T: MHERST NY4A	9350	ATTW: Brian Fisher

OC.	Lab ID	Reagent	Units	OC Result	QC Result	True Value	Orig. Value	QC Calc.	F *	Limits	Date Tia
ICV MB	165722-002 165722-003		mg/Kg mg/Kg	1989.14 29.00 U	1	2000,00		99	- ~	85-115	11/15/2005 120
			mg/Kg mg/Kg	2211.88 29.00 U		2000.00		111	×	85-115	11/15/2005 121 11/15/2005 161
	165722-015 165722-016	105JSTTCZ	mg/Kg mg/Kg	2105.24 29,00 U		2000.00		105	x	85-115	11/15/2005 162 11/15/2005 202 11/15/2005 202
·	CLINE SECTION	ibriou": • 1	toyd Kahn otal Organic OC Average D	Carbon (Seils		Batch Equipment Cor	: 165722 le : TOC4			Annlyst Test Code	.: rem .r TOCAV2
c	Lab ID	Reagent	Unite	QC Result	QC Result	True Value	Orig, Value	QC Calc.	F #	Limits	Date Tim
ĊŚ	165722-004	IOOFSTLK3	mg/Kg	4621.02		4780.00		97	- - 	53-140	11/15/2005 121

QUALITY ASSURANCE METHODS

REFERENCES AND WOTES

Report Date: 11/25/2005

REPORT | COMMENTS

- 1) All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.
- Soil, sediment and studge sample results are reported on a "dry weight" basis except when analyzed for landfill disposal or incineration parameters. All other solid matrix samples are reported on an "as received" basis unless noted differently.
- 3) Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.
- 4) The test results for the noted analytical method(s) meet the requirements of NELAC. Lab Cert. 10# 100201 5) According to 40CFR Part 136.3, pH, Chlorine Residual and Dissolved Oxygen analyses are to be performed
- immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. pH Field) they were not analyzed immediately, but as soon as possible on laboratory receipt.

Glossary of flags, qualifiers and abbreviations (any number of which may appear in the report) Inorganic Qualifiers (Q-Column)

- Analyte was not detected at or above the stated limit.
- Not detected at or above the reporting limit.
- Result is less than the RL, but greater than or equal to the method detection limit.
- Result is less than the CRDL/RL, but greater than or equal to the IDL/MDL. В
- Result was determined by the Method of Standard Additions.
- AFCEE: Result is less than the RL, but greater than or equal to the method detection limit. Inorganic Flags (Flag Column)
 - ICV,CCV,ICB,CCB,ISA,ISB,CRI,CRA,MRL: Instrument related QC exceed the upper or lower control limits.
- LCS, LCD, MD: Batch QC exceeds the upper or lower control limits.
- MSA correlation coefficient is less than 0.995.
- MS, MSD: The analyte present in the original sample is 4 times greater
- than the matrix spike concentration; therefore, control limits are not applicable.
- SD: Serial dilution exceeds the control limits.

 MB, EB1, EB2, EB3: Batch 9C is greater than reporting limit or had a
- negative instrument reading lower than the absolute value of the reporting limit.
- MS, MSD: Spike recovery exceeds the upper or lower control limits.
- AS(GFAA) Post-digestion spike was outside 85-115% control limits. Organic Qualifiers (Q - Column)
- Analyte was not detected at or above the stated limit.
- ΧĐ Compound not detected.
- Result is an estimated value below the reporting limit or a tentatively identified compound (TIC).
- Result was qualitatively confirmed, but not quantified.
- Pesticide identification was confirmed by GC/MS. C
- The chromatographic response resembles a typical fuel pattern.
- The chromatographic response does not resemble a typical fuel pattern.
- Result exceeded calibration range, secondary dilution required.
- AFCEE:Result is an estimated value below the reporting limit or a tentatively identified compound (TIC) Organic Flags (Flags Column)
- MB: Batch OC is greater than reporting limit.
- LCS, LCD, ELC, ELD, CV, MS, MSD, Surrogate: Batch QC exceeds the upper or lower control limits. EB1, EB2, EB3, MLE: Batch QC is greater than reporting limit
- Concentration exceeds the instrument calibration range
- Concentration is below the method Reporting Limit (RL)
- Compound was found in the blank and sample.
- Surrogate or matrix spike recoveries were not obtained because the extract was diluted for
 - analysis; also compounds analyzed at a dilution will be flagged with a D.
- Alternate peak selection upon analytical review
- Indicates the presence of an interfence, recovery is not calculated.
- Manually integrated compound.
- The lower of the two values is reported when the % difference between the results of two GC columns is

QUALITY ASSURANCE METHODS:

Report Date: 11/25/2005

REFERENCES AND BOTES

```
greater than 25%.
 Abbreviations
          Post Digestion Spike (GFAA Samples - See Note 1 below)
 AS
          Designation given to identify a specific extraction, digestion, preparation set, or analysis set
 Batch
 CAP
          Capillary Column CCB Continuing Calibration Blank
 CCV
          Continuing Calibration Verification
 ÇF
          Confirmation analysis of original
 C1
          Confirmation analysis of A? or D1
 C2
          Confirmation analysis of AZ or DZ
 Ç3
          Confirmation analysis of A3 or p3
          Low Level Standard Check - GFAA; Mercury
 CRA
 -CRI
          Low Level Standard Check - ICP
 CV
          Calilbration Verification Standard
          Dilution Factor - Secondary dilution analysis
 Dil Fac
 01
          Dilution 1
 D2
          Dilution 2
 b3
          Dilution 3
 DLFac
          Detection Limit Factor
 DSH
          Distilled Standard - High Level
 JZd
          Distilled Stendard - Low Level
          Distilled Standard - Medium Level
 DSM
 EB1
          Extraction Blank 1
 EB2
          Extraction Blank 2
 EB3
          DI Blank
ELC
          Method Extracted LCS
 ELD
          Method Extracted LCD
 I CAL
          Initial calibration
 108
          Initial Calibration Blank
          Initial Calibration Verification
ICV
 IDL
          Instrument Detection Limit
ISA
          Interference Check Sample A - ICAP
ISB
          Interference Check Sample B - ICAP
         The first six digits of the sample ID which refers to a specific client, project and sample group
Job No.
          Lab 1D An 8 number Unique Laboratory identification
LCD
          Laboratory Control Standard Duplicate
LCS
         Laboratory Control Standard with reagent grade water or a matrix free from the analyte of interest
          Method Blank or (PB) Preparation Blank
MB
MD
         Method Duplicate
MOL
         Method Detection Limit
MLE
         Medium Level Extraction Blank
         Method Reporting Limit Standard
MRL
MSA
         Method of Standard Additions
MS
         Matrix Spike
MSD
         Matrix Spike Duplicate
ND
         Not Detected
PREPE
         Preparation factor used by the Laboratory's Information Management System (LIMS)
PDS
         Post Digestion Spike (ICAP)
RA
         Re-analysis of original
A1
         Re-analysis of D1
SA
         Re-analysis of b2
A3
         Re-analysis of 03
RO
         Re-extraction of dilution
RE.
         Re-extraction of original
         Re-extraction Confirmation
RC
Rξ
         Reporting Limit
RPD
         Relative Percent Difference of duplicate (unrounded) analyses
RRF
         Relative Response Factor
RT
         Retention Time
```

QUALITY ASSURANCE WEIDODS ABFERENCES AND NOTES

Report Date: 11/25/2005

RTW Retention Time Window Sample ID A 9 digit number unique for each sample, the first six digits are referred as the job number SÇB Seeded Control Blank SD Serial Dilution (Calculated when sample concentration exceeds 50 times the MDL) UCB Unseeded Control Blank SSY Second Source Verification Standard SLCS Solid Laboratory Control Standard(LCS) PHC pH Calibration Check LCSP pH Laboratory Control Sample pH Laboratory Control Sample Duplicate LCDP MDPH PM Sample Duplicate MOFP Flashpoint Sample Duplicate --LCFP Flashpoint LCS Getex Check Standard Range 0-1 G1 G2 Gelex Check Standard Range 1-10 G3 Gelex Check Standard Range 10-100 Gelex Check Standard Range 100-1000 64 Note 1: The Post Spike Designation on Batch QC for GFAA is designated with an "S" added to the current abbreviation used. EX. LCS S=LCS Post Spike (GFAA); MSS=MS Post Spike (GFAA) Note 2: The MD calculates an absolute difference (A) when the sample concentration is less than 5 times the reporting limit. The control limit is represented as +/* the RL.

CHAIN OF CUSTODY

C & S Engineers NY4A9350 CY04-021 0819

Date: 11/11/2005 Time: 09:42:38

STL Buffalo Internal Chain of Custody

Turn Around Required: Purchase Order#: TBD

EO T

PM: Brian J. Fischer

Rept: AN0093

_			,	W 21-	-
(2) // '	(1) Isthmon purpor	gnature(s)		SVGP-2-7-10 GPD-55-4-7 GPD-60-4-7	Client Sample ID
	111	STL Buffalo:		A5C85701 A5C85702 A5C85703	Lab ID
/ /20	11/2005	Date		TIOS	Matrix
	1800	Time		THO COCC	Parameters
(4)	(3)	Received By Signature(s)			ters
		STL - Chicago:		1-80ZGW 1-80ZGW 1-80ZGW	# and Type of Samp Containers
/ /20	11 /IL /2005 0930	Date		09/27/2005 09/21/2005 09/22/2005	Sample Date/Time
	0530	Time		12:40 14:50 14:20	Time

Page: 1 Rept: AN0383

STL Buffalo Sample Inventory

July No: ADJ Cold Client: C & S Engineers Project: NY489350 SDG: Case: SMO No: Q819 No. Samps: 3			Radiation Check: YES Custody Seal: YES Chain of Custody: YES Sample Tags: NO Sample Tag Numbers: NO SMO Forms: NO CLSIS: NO	Check: YES Seal: YES stody: YES Tags: NO mbers: NO Forms: NO	Cooler Temperature: 2.0°C	2.0°C		
							Pre	Pres log
Sample	Client Sample ID	Lab 1D	Condition	Bottles	Parameters	Lab	Code	₹
09/27/2005 12:40 11/11/2005 10:00 8VGP-2-7-10 09/21/2005 14:50 11/11/2005 10:00 GPD-55-4-7 09/22/2005 14:20 11/11/2005 10:00 GPD-60-4-7	0:00 SVGP-2-7-10 0:00 GPD-55-4-7 0:00 GPD-60-4-7	A5C85701 A5C85702 A5C85703	Good	1-8ozGW 1-8ozGW 1-8ozGW		STLCH	955 888	

Analytical Services Coordinator: _

Custodian:_

Preservation Code References:

First Digit: Sample Filtration; 1=Filtered, D=Unfiltered Second Digit: Sample Requires Cooling; (4°) 1=Cooled, D=Not Cooled

Third, Fourth Digits - Preservation Types:
00=Nothing added, 01=NNO3, 02=N2SO4, 03=NCl, 04=Sodium Thiosulfate
05=NaOH, 06=NaOH+Zinc Acetate, 07=Sodium Thiosulfate+NCl, 08=MeOH
09=MCAA (Mono chloroacetic acid)

rpisckl Job Sample Receipt Checklist Report	V2
Job Number.: 241987 Location.: 57222 Check List Number.: ? Description.: Customer Job ID: Job Check List Date.: 11/12/2005 Project Number.: 20000259 Project Description.: Amherst Customer: Severn Trent Laboratories Contact.: Brian Fisher	Date of the Report: 11/25/2005 Project Manager: stadelmb
Questions ? (Y/N) Comments	
Chain-of-Custody Present? Y	
Were samples dropped off at or picked up by STL? N	
Custody seal on shipping container? Y	
If "yes", custody seal intact? Y	
Custody seals on sample containers?	
If "yes", custody seal intact?	
Samples iced?	
emperature of cooler acceptable? (4 deg C +/- 2). N	
Samples received intact (good condition)?, Y	
/olatile samples acceptable? (no headspace)	
Correct containers used?Y	
dequate sample volume provided?	
Samples preserved correctly?	
complex received within holding-time? Y	
greement between COC and sample labels? Y	
adioactivity at or below background tevels? Y	
Sample Discrepancy Report (SDR) was needed? N	
esidual Chlorine Check Required?	
f samples were shipped was there an air bill #? Y	
ample Custodian Signature/Date Y	

Page 1

CASE NARRATIVE

STL Chicago Wet Chemistry Case Narrative

Client:

STL Amherst

Job#:

241987

Date Rec'd:

11/12/05

- 1. This narrative covers the analysis of the soil samples in the above Job # for Total Organic Carbon by the Lloyd Kahn Method. The samples were analyzed by furnace combustion and non-dispersive infrared detection on a Dohmann Phoenix 8000 TOC analyzer, after acidification to remove inorganic carbon, and low-temperature drying. All analysis was done in duplicate with the average reported. Since the samples were dried prior to analysis, no correction was made for moisture content.
- 2. The method-recommended holding time of 2 weeks from collection was not met because the samples were received past that deadline.
- 3. The standard curve and the initial and continuing calibration verification standards were all within acceptance limits. The blanks were less than the reporting limit.
- 4. The LCS recovery was within the statistical control limits of 53-140% recovery. See the Quality Control Results page and the raw data for details.
- 5. The matrix spikes were done on an alternate sample.
- 6. These samples were all over-range at the first analysis and were repeated in duplicate.

Diane L. Harper

Wet Chemistry Section Manager

1/-35-03 Date

RAW DATA

*** RUN LOG

(VŽ)

11/16/05 12:58

Total Organic Ca Method Code: To Batch Code: 1	ocs	Status: Batch Date: Batch Time:	11/16/05	QC Coc	lame: rnm le: TOC: Code: TOC:	•			Equ	nț p	ior Mer	t	Co	đe,	;						
					TEST CODE	T 00 C	T 0 C 2	T O C 3	0 C	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TOURVA	T C S	2	T T C I S C A S Y 2	T 1 C 5 2	I C S					
SAMPLE; Grp Pas	Sample ID		Dilutio	<u> </u>	TEST POS Date / Time	1	2	3	4	5 6	7	17	1	9 0	2	2					I
1 1	ICAL_IO5JSTTC1_					T				T			1	T			0		П	1	
1 2	\$_1CV_105JSTTC2_			· • • • • • • • • • • • • • • • • • • •	11/15/05 1209	0				T				1		П		T	П	1	_
1 3	S_M8				11/15/05 1212	0	Γ	Γ		Ţ			*	1	T	П	П	T	П	Ť	
. 1 4	_s_lcs_roofstlk3_3				11/15/05 1219	1	Γ	Ī	1	1	П		1	1	T	П	П	T	П	T	-
1 5	241814_14_s		•	,	11/15/05 1233	T	Γ		1	7	П	1	1	+		П	Ħ	T		1	
1 6	241814_15_8				11/15/05 1250	1	T		(,	Ħ	7	7	+	T	П		†	П	†	1
1 7	241867_1_s				11/15/05 1316	T			1	1	П	1	1	1	T			-	-	Ť	-
1 8	241867_2_s	· · · · · · · · · · · · · · · · · · ·			11/15/05 1342	T			1	1	П	1	1	+	T			t	H	†	-
1 9	241867_3_s	<u></u> -			11/15/05 1357	T	T		(1	H	1	+	\dagger	t	П		t		-	-
1 10	241867_4_\$	<u> </u>			11/15/05 1424				1	十	Ħ	1	1	\dagger	T	П		+		十	-
1 11	241867_5_s	, # <u></u>			11/15/05 1448	T	İ		H	†	Ħ		+		t	Н	Ħ		H	+	-
1 12	241867_6_S				11/15/05 1503	†			10	†		1		+	l	H	Ħ	\dagger		7	
1 13	241867_7_S		1		11/15/05 1529	T	H		C	+	П	7	†	\dagger	H			T	7	+	-
1 14	241867_8_S				11/15/05 1554	T			c	\dagger	11	7	†	\dagger	t	H			1	十	-
1 15	CCV_105JSTTC2_				11/15/05 1618	0			T	†-	Ħ	7	+	\dagger	t	Н		1	\dashv	+	
1 16	CCB				11/15/05 1627	0		Н	+	1	H	1	1	\dagger	t	Н	+	T	7	\dagger	-
1 17	241920_2_S		1		11/15/05 1635	†~	-		0	+	H	1	\dagger	+	H	$\ \cdot\ $	+	\dagger	\dagger	۱۰,	
1 18	241920_3_s		 		11/15/05 1647				0	+	H	+	+	\dagger		H	-	T	\forall	十	-
1 19	241920_1_s	,	<u> </u>		11/15/05 1707				0	4-	Ħ	7	†	\dagger	H	Н		\dagger	-	\dagger	-
1 20	241920_4_s	·		$\neg \uparrow$	11/15/05 1726	 		7	0	4	Ħ	†	†	十	\vdash		\dagger	†	\dagger	十	-
1 21	241920_5_s		1		11/15/05 1754		T		0			+	+	十	t	H	+		+	†	_
1 22	241920_6_s		1		11/15/05 1814	-			0	T		+	†	Ť	┢	$\dagger \dagger$	+	T	\dagger	†	-
1 23	241 9 87_1_s	* 17.1			11/15/05 1838		H		0	T	Ħ	+	†	+	T		†	Ħ	7	十	-
1 24	241987_2_s	*****			11/15/05 1909				0	-		\dagger	\dagger	†		H	+	Н	\dashv	\dagger	-
1 25	241987_3_s				11/15/05 1932			1	0	T	H	†	†	†	П	H	†	П	\dagger	†	-
1 26	241988_1_s	**************************************			11/15/05 1948	П		1	0	T	$ \cdot $	\dagger	†	\dagger		H	-	$\dagger \dagger$	\dagger	十	-
1 27	241988_1_s_Ms_105JSTTC2	26			11/15/05 2003	Ħ	H	7	0	†~	\parallel	†	\dagger	†	Н	H	+	H	+	t	1
1 28	241988_1_S_MSD_105JSTTC	2. 26			11/15/05 2012	Н	H	┪	D	t	H	~+	+	+	Н	H	+	$\dagger \dagger$	~-	+	4

*** RUN LOG

(V2)

11/16/05 12:58

Total Organic Ca Method Code: T Batch Code: 1	ocs	Status: R Batch Date: 1 Batch Time: 1	1/16/05 QC Cd	Name: rnm ode: Tocs Code: Tocs	3		Eq	uip	tion omer	nt (Cod	ė. :	TO				
				TEST CODE	C 0	T T 0 0 C C 2 3	4	C C A A V V	T O C A V 4	2 2	T T C S S A V Z	S	T T I I C C S S A 2				
SAMPLE: Grp Pos	Sample ID		Dilution	TEST POS Date / Time	1	2 3	4	5 6	7	7 8	1 1	2	2 2				
1 29	CCV_105JSTTC2_			11/15/05 2023	0	T	H	1	$\dagger \dagger$	1	+	H	1	H	\top	T	$\dag \uparrow$
1 30	CCB		,	11/15/05 2028	0	1	П	T	\prod	1	T	П	†		11	Ť	$\dagger \dagger$
1 31	tcs			11/15/05 2048	П	T	П	1	T	†			1	Ħ	$\dagger \dagger$		\prod
1 32	241988_2_s			11/15/05 2114	П		П	1	П	T	-	П			$\dagger \dagger$	1	\dagger
1 33	241995_1_s		7	11/15/05 2127	П		П	1		-	T		†	1	$\dagger \dagger$	T	T
1 34	241995_1_S_MS_105JSTTC2_	33		11/15/05 2141	П			†	\prod	Ť	T.	П	+	П	71		\prod
1 35	241995_1_S_MSD_105JSTTC2	.33		11/15/05 2149	1	†		1		T		H	+	Н	$\dagger \dagger$	\dagger	H
1 36	241995_2_s			11/15/05 2156	\sqcap	1		T	Ħ	T	1		+	H	$\dagger \dagger$	\dagger	\dag
1 37	CCV_105JSTTC2_			11/15/05 2211				T		T		H	1	\prod	\prod	十	廿
1 38	CCB			11/15/05 2115			\sqcap	T	H	T	Ħ	\sqcap	+		\forall	十	${\sf H}$

*** QC Summary

青金金

(VZ)

Total Organic Carbon (Soits)

Bate	ch Coc	ode: TOCS	7		Calc Co	de	TOCS	Equipment Import Co	Code.: I	DC4
Gr	Þ Snap	Sumple ID	Pos	Test	Result	Known	Original	Alternate	QC Res	F QC Res
1	2	s_tcv_105JSTTC2_	1	TOC	1989.14	2000]	99	
1	3	s_MB	1	TOC	-3.81					†¦···
1	4	_s_lcs_[00FSTLK3_3	5	TOCAVZ	4621.02	4780			97	
1	15	CCV_I05JSTTC2_	1	TOC	2211.88	2000		<u> </u>	111	
1	16	CCB	1	TOC	-2.31			·		
1	27	241988_1_s_Ms_105J\$TTC2_26	5	TOCAVE	15603.85	2000	8729_19		92	
1	28	241988_1_5_MSD_[05JSTTC2_26	5	TOCAV2	15356.43	2000	8729.19	15603.85	86	6.7
1	29	CCV_105JSTTC2_	1	TOC	2105.24	2000	.,		105	
1	· 3 0	CCB	1	TOC	-2.48	<u> </u>		1		

(V2)

Total Org	anic Carb	on (Soils)
-----------	-----------	------------

latch Cod	de: TOC e: 165 : RVW	722	Batch Date: 11/16/05 Batch Time: 1047 User Name: rnm	C	ale Code	: TOC: E: TOC: Code: 572	3	Equipment Import Co	Code.: TOC4 de:	
AMPLE:	Grp Pos	Sample 1D		Dil	ution	TOC Ing/Kg	TOÇ2 mg/Kg	TOC3 mg/Kg	TOC4 Ing/Kg	TOCAV2 mg/Kg
	1 1	ICAL_IO	5JSTTC1_			<u>`</u>				\top
	1 2	S ICV IC	ISJSTTCZ_	1		1989.14				}
	1 3	_S_MB		·		-3.81				1
	1 4	S LCS 10	DFSTLK3_3	1		4604.33	4637,71			4621.02
	1 5	241814 14	S			3183.86	3376.87			3280.36
	1 6	241814 <u></u> 15_	<u>s</u>			576.70	566.75			571.73
	1 7	241B67_1_s				9401.95	8350.71			8876.33
	1 8	Z41867_2_S				40819.63	50783.58	1	-1	45801.60
	19	241867 3 s				5437.57	5527.15		1	5482.36
	1 10	241867_4_s				22160.94	28743.55			25452.24
	1 11	241867 5 s		1		2079.23	1668.12			1873.67
	1 12	241867_6_s				1067.70	1060.35			1064.03
	1 13	241867 7 s		1		14608.53	15855.58			15232.0
	1 14	241867 8 S	_			76756.29	66103.70			
	1 15	CCV_105	ISTTC2	1		2211.88	00103.70			71429.9
	1 16	CCB	0011CL_			-2.31				1
	1 17	241920 2 3		1			240 54			
	1 18	241920 3 s		i		6013.99	2440.51		}	4227.25
	1 19	241920 1 S				2909.07	3667.32	1	1	3288.20
	1 20	241920 4 S				4402.19	3667.15			4034.67
	1 21	241920 5 S	_			2929.78	3159.75			3044.76
	1 22					3441.46	2761.69			3101.57
	1 23	241920 6 S				5956.37	4095.47			5025.92
		241987 1 S					135915.73		,	123567.1
	1 24	241987 2 5				65862.04	75708.96			70785.50
	1 25	241987 3 s				148600.62	84635 .87			116618.
	1 26	241988_1_s				7261.07	10197.31			8729.19
	1 27	241988_1_s	MS_105JSTTC2_26							15603.85
	1 28	241988_1_\$	MSD_105JSTTC2_26	ì						15356.43
	1 29	CCV_105	JSTTCZ_			2105.24	1		1	
	1 30	CCB				-2.48	1			
	1 31	tcs				3808.90	4905.27			4357.09
	1 32	241988 Z S		j		12792.47	12102.06			12447.26
	1 33	241995_1_s		1		3530.95	2071.53			2801.24
	1 34	241995_1_s	MS 105JSTTC2 33	1						8430.31
	1 35	241995 1 S	MSD 105JSTTC2 33	1						6932.37
	1 36	241995_2_s		- 1		1830.43	1025.68			
	1 37	CCV_105.	JST TCZ			1977.78	1767.00			1428.06
	1 38	CCB	-			117//4/0				1

(V2)

Total Organic Carbon (50%(s)

Batch Coo	de: 1009 de: 1657 : RVVI	722	Batch Date Batch Time User Name	: 1047	Calc Code	TO Code: 57	ÇS	Equipment Import Cod	Code.: TOC4	412 000
SAMPLE;	Grp Pos	Sample ID			Dilution	TOCAV3 mg/Kg	TOCAV4 mg/Kg	TOCR1	TOCR2 ug	TOCK3 ug
	1 1 2 1 3 1 4 1 5 6 1 7 1 8 9 1 10 1 11 11 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 22 1 22 1 22 1 22 1 22 1 22	S 1CV 10 S M8 S LCS 10 241814 14 241847 1 S 241867 1 S 241867 2 S 241867 6 S 241867 7 S 241867 7 S 241867 7 S 241867 7 S 241867 7 S 241867 7 S 241920 2 S 241920 3 S 241920 4 S 241920 4 S 241920 5 S 241920 5 S 241920 5 S 241920 5 S 241920 5 S 241920 5 S 241920 6 S 241987 1 S 241987 1 S 241988 1 S 241988 1 S 241988 1 S CCV 105	OFSTLK3_3 \$ S	26 _26				99.4572 -0.6089 151.9428 176.7040 28.0275 118.4646 212.2621 257.7408 301.3888 56.9710 47.2152 184.2151 110.5939 -0.3704 93.2169 74.7632 149.6746 100.4914 141.7881 50.0335 144.5862 184.4137 312.0613 153.9346 209.0916 198.0979 105.2618	92.7542 138.4516 38.7655 125.2606 253.9179 218.8751 209.8279 53.2131 51.4272 141.1147 178.4800 39.0482 140.8249 149.8532 112.1710 117.6480 71.6708 203.8736 181.7015 67.7087 165.1964	
	1 31 1 32 1 33 1 34 1 35 1 36 1 37 1 38	CC8 LCS 241988_Z_s 241995_1_s 241995_1_s CCVLOS CC8	NS 105JSTTC2 1	53 ,33				-0.3968 132.9305 222.5889 46.9617 163.5480 144.1932 40.8186 98.8892 -0.5829	168.2508 185.1615 71.6748 39.5913	

(V2)

Total Organic Carbon (Soils)

Batch Cod	de: TOC le: 165 : RVW	722 Batch Time: 1047	Calc Cod	: TO e: TO Code: 57	ićs	Equipment Import Co	Code.: TOO de;	:4
SAMPLE:	Grp Pos	Sample ID	Dilution	TOCR4	WT1 9	WT2	WT3 8	W14
	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 11 12 22 23 24 25 26 27 28 29 20 11 11 12 23 33 11 33 6 37 38				0.05 0.16 0.033 0.0555 0.0486 0.0126 0.0052 0.0474 0.0135 0.024 0.05 0.0135 0.0024 0.05 0.0155 0.0257 0.0340 0.0343 0.0412 0.0084 0.0013 0.0028 0.0021 0.0129 0.0129 0.016 0.0174 0.0133 0.0174 0.0133 0.0174 0.0194 0.0194 0.0223 0.05 0.0223	0.0200 0.0410 0.0684 0.0150 0.0050 0.0396 0.0073 0.0319 0.0485 0.0027 0.0160 0.0384 0.0407 0.0355 0.0426 0.0175 0.0015 0.0024 0.0008 0.0162		

(Y2) ,

Total Organic Carbon (Soits)

Batch Cod	de TOCS e: 1657 : RVW	22 Batch Time: 1047	Calc Cod	: TOO e: TOO Code: 572	: \$	Equipment Import Cod	Code.: TOC	4
SAMPLE:	Grp Pos	Sample ID	Dilution	DLFAC N/A	tcs mg/Kg	TCS2 mg/kg	TCSAV2 mg/Kg	TICS mg/Kg
	1 1 1 2 1 3 1 4 5 1 6 6 1 7 7 1 8 1 9 1 10 1 11 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 30 1 31		Ditation	3.2000 1.0000 6.0377 3.3161 2.7350 11.5942 31.3725 3.6782 15.3110 5.3963 3.4409 14.2857 62.7451 3.2000 10.1587 4.9922 4.2838 4.5845 3.8186 12.3552 114.2857 61.5385 110.3448 8.5561 11.9403 12.4031 3.2000 1.0000	mg/Kg	mg/Kg	mg/Kg	mg/Kg
	1 32 1 33 1 34 1 35 1 36 1 37 1 38	241988		4.6243 9.7859 6.6806 8.2474 7.6923 5.2545 3.2000				

Calibration Report Print Date/Time: 2005/11/15 22:02:53

Cal. Curve ID:

SOILCURVE

Created:

10/13/2005 10:55

Calibration Factor (m): 9.016e+04 Y Intercept (b):

-41304

x-squared:

0.99989

Standard ID	Y Raw Data	X Expected ug C	Measured	Message	Date & Time
0 ugram C 10ugramC 20 ugram C 40 ugram C 80 ugram C 120 ugram C 200 ugram C 300 ugram C	759 901557 1904744 3594471 7069674 10496726 17972838 27172866 35998128	0.000 10.000 20.000 40.000 80.000 120.000 200.000 300.000	_	No Sample Det	10/13/2005 08:41 10/13/2005 08:55 10/13/2005 09:23 10/13/2005 09:35 10/13/2005 09:45 10/13/2005 09:57 10/13/2005 10:07 10/13/2005 10:17 10/13/2005 10:31

165722

Multiple Analysis Report	Print Date/Time:	2005/11/15 22:20:57
--------------------------	------------------	---------------------

Sample ID	Result	Std. Dev	. RSD	Mode	ALT
ICV	99.4572		***=====		52 == =
ICB	99.4572 -0.6089			TC	
LCS	151.9428			TC TC	
LCS	92.7542	_		m/s	
241814-14	176.7040	•	••	TC	•
241814-14	138,4516			TC	
241814-15				TC .	
241814-15	38.7655			TÇ	
241867-1 241867-1	412.8529			TC	
241867-1		-	• •	TC .	•
241867-2	125.2606 511.0553			TC	
241867-2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	210 2621			TC TC	
241867-2	253.9179	•	•	TC	•
241867-3	257 7408			TC	
241867-3	218.8751			ŦĊ	
241867-4	533.5005		*	TC	-
241867-4	301.3888			TC	
241867-4 241867-4		•		TC	
241967-5	209.8279			TC	
241867-5	56.9710			TC	
241867-6	47.5127	•	* *	TC	•
241867-6	51 4272			TC	
241867-7	197.2152			TC	
241867-7	141.1147		•	TC	
241867-8	548.1509			TC	
241867-8		. .		.TC	•
241867-8 CCV	178.4800			TÇ	
CCB	110.5939			TC	
241920-1	93.2169	•	••	.TC	ı
241920-1	39 0497			TC TC	
241920-2	74.7632	_	, ,	.TC	
241920-2	140.8249	•	• •	TC	•
241920-1	-0.2872	•		TC	
241920-1 241920-1		• .		.TC	
241920-4	149.2532			TÇ	
241920-4	100.4914			TC	
241920-5	1/1 7001	•	• •	.TC	
241920-5	117 6490			TC TC	
241920-6	50.0335	_		m/s	
241920-6	71.6708	•	• • • • • • • • • • • • • • • • • • • •	TC	
241987-1	676.9399			TC	
241987-1 241987-1				.TC	
241987-2	203.8736			TC	
241987-2	1690.2710			TC	
241987-2	181.7015	•		TC	
241987-3	1004 7501			TC	
241987-3		_		TC	
241987-3 241988-1	67.7087			TC	
241988-1	153.9346			TC	
241988-1 MS	165.1964 209.0916	•	• • • • • • • • • • • • • • • • • • • •	-TC	
241988-1 MSD	100 ለሰማስ			TC	
CCV	105.2618			TC .TC	
CCB	-0.3968	•	• • • • • • • • • • • • • • • • • • • •	TC	
LCS	168.5156			TC	
LCS				.TC	
LCS	130.3142			TC	
	168.2508			TC	

					32/41	•
241988-2			TC			
241986-2	185.1615	•	TC	, ,	- ,	
241995-1	46.9617		TC			
241995-1	71.6748		TC			
241995-1 MS	163.5480		TÇ			
241995-1 MSD	144.1932		TC			
241995-2			· · · TC			
241995-2 CCV	39.5913		TC			
CCB	98.8892		TC			
			TC			

Detailed Analysis Report Print Date/Time: 2005/11/15 22:21:00

========		:========		z=====================================		
Sample ID:	ICV			Mode:		TC
Method:	boat	;		Filena	ime: camp:	11151203
Cal. Curve	: SOII	CURVE		Timest	camp:	11/15/2005/12:0
Operator II): Rebe	eca		Sample	Type	Cal. Verificati
- F 00-10-1					11	
Rep #	on C	uo C	Raw Data	Beginning	Endin	g Integratio
		-3 -		Baseline	Baseli	ne Time
1 99	4577	99.4572	8925439	1.467	2.4	
	•			- :		
Sample ID:	ICB			Mode:		TC
	boat	•				*
Cal. Curve				LTTETTO		11151209
				TIMES!	amp:	11/15/2005 12:1
Operator II	ı: Kepe	eca		Sampre	Type:	Sample
# .		5		··	- L B	
Rep#	opm C	ug c	Raw Data	Beginning	Rudin	g Integration
				Baseline	Baseli	ne Time
1 -0	.6089	-0.6089	-29129	1.764	1.5	22 120
						*
Last Messag						
=============	:=====	:==========	10Hera=====###	**********	======	
		-		•		
7						
Sample ID:	LCS			Mode:		TC
Method:						11151214
Cal. Curve		.,				11/15/2095 12:1
Operator II): Reb∈	:cca		Sample	Type:	Sample
Rep #	epm C	ug C	Raw Data	Beginning	Endin	g Integratio
				Baseline	Baseli	ne Time
1 151	. 9428	151.9428	13724448	2.290	3.2	90 256
ZZY22222		*********	E 교 및 프 프 프 프 프 프 및 및 플	# = = = = = = = = = = = = = = = = = = =	25#=====	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
A 3	T 200					
Sample ID:				Mode:		TC
	boat			Filena	ene:	11151221
Cal. Curve						11/15/2005 12:2
Operator II): Rebe	icca		Sample	Type:	Sample
Rep #	om C	ng ¢				
	, <u>r</u> •	-a +	Raw Data	Beginning		g Integration
	, <u>p</u> •	- 5 +	Raw Data	Beginning Baseline	Endin Baseli	
1 92	.7542	92.7542				ne Time
	.7542	92.7542	8388192	Baseline 1.521	Baseli 2.5	ne Time
	.7542	92.7542	8388192	Baseline 1.521	Baseli 2.5	ne Time 20 265
	.7542	92.7542	8388192	Baseline 1.521	Baseli 2.5	ne Time 20 265
Sample ID:	.7542	92.7542	8388192	Baseline 1.521	Baseli 2.5	ne Time 20 265
Sample ID:	.7542 	92.7542	8388192	Baseline 1.521 FFEETERS Mode: Filens	Baseli 2.5	ne Time 20 265
Sample ID: Method: Cal. Curve	.7542 	92.7542 	8388192	Baseline 1.521 FFEETERS Mode: Filens	Baseli 2.5	ne Time 20 265
Sample ID:	.7542 	92.7542 	8388192	Baseline 1.521 FFEETON Mode: Filena Timest	Baseli 2.5	TC 11151227 11/15/2005 12:3
Sample ID: Method: Cal. Curve Operator I	2418 boat : SOII	92.7542 	8388192	Baseline 1.521 FERRORE Mode: Filena Timest Sample	Baseli 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	TC 11151227 11/15/2005 12:3
Sample ID: Method: Cal. Curve Operator I	.7542 	92.7542 	8388192	Baseline 1.521 FEEEEEE Mode: Filena Timest Sample Beginning	Baseli 2.5 nme: amp: Type:	TC 11151227 11/15/2005 12:3:
Sample ID: Method: Cal. Curve Operator I	2418 boat : SOII	92.7542 314-14 CCURVE	8388192	Baseline 1.521 FERRORE Mode: Filena Timest Sample	Baseli 2.5 nme: amp: Type:	TC 11151227 12:3: Sample Integration
Sample ID: Method: Cal. Curve Operator I) Rep #	2418 boat : SOII	92.7542 	8388192	Baseline 1.521 FEEEEEE Mode: Filena Timest Sample Beginning	Baseli 2.5 nme: amp: Type:	ne Time 20 265 TC 11151227 11/15/2005 12:3: Sample Integratione Time
Sample ID: Method: Cal. Curve Operator II Rep # 1	2418 boat : SOII D: Rebe	92.7542 314-14 CCURVE	8388192 Raw Data 15956843	Baseline 1.521 FERRORE Mode: Filena Timest Sample Beginning Baseline 2.454	Baseli 2.5 nme: amp: Type: Endin Baseli 3.4	ne Time 20 265 TC 11151227 11/15/2005 12:3: Sample Integratione Time
Sample ID: Method: Cal. Curve Operator II Rep # 1	2418 boat : SOII D: Rebe	92.7542 314-14 5 5CURVE 5CCA ug C	8388192 Raw Data 15956843	Baseline 1.521 FERRORE Mode: Filena Timest Sample Beginning Baseline 2.454	Baseli 2.5 nme: amp: Type: Endin Baseli 3.4	TC 11151227 11/15/2005 12:3: Sample Integration Time 50 285
Sample ID: Method: Cal. Curve Operator I) Rep # 1	2418 boat: SOIL D: Rebe	92.7542 314-14 5 CCURVE 6CCA ug C	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filens Timest Sample Beginning Baseline 2.454	Baseli 2.5 nme: amp: Type: Endin Baseli 3.4	TC 11151227 11/15/2005 12:3: Sample Integration Time 50 285
Sample ID: Method: Cal. Curve Operator I) Rep # 1 1 176	2418 boat: SOILD: Rebe	92.7542 314-14 CCURVE CCA ug C 176.7040	8388192 Raw Data 15956843	Baseline 1.521 FERRORE Mode: Filena Timest Sample Beginning Baseline 2.454	Baseli 2.5 ame: Type: Endin Baseli 3.4	TC 11151227 11/15/2005 12:3: Sample Integration Time 50 285
Sample ID: Method: Cal. Curve Operator I) Rep # 1 1 176 Sample ID: Method:	2418 boat : SOII D: Rebe ppm C .7040	92.7542 314-14 CCURVE CCCA ug C 176.7040	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filena Timest Sample Beginning Baseline 2.454 Mode: Filena	Baseli 2.5 nme: nme: Endin Baseli 3.4	ne Time 20 265 TC 11151227 11/15/2005 12:3: Sample G Integratione Time 50 285
Sample ID: Method: Cal. Curve Operator I) Rep # 1 1 176	2418 boat : SOII D: Rebe ppm C .7040	92.7542 314-14 CCURVE CCCA ug C 176.7040	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filens Timest Sample Beginning Baseline 2.454 Mode: Filens	Baseli 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	TC 11151227 12:3: Sample Time 50 285 TC 11151227 17:4: True Time 50 285 TC 11151237 11/15/2005 12:4:
Sample ID: Method: Cal. Curve Operator I) Rep # 1 1 176 Sample ID: Method:	2418 boat: SOIL 2418 boat: SOIL 2418 boat: SOIL 2418	92.7542 314-14 CCURVE 314-14 314-14 CCURVE	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filens Timest Sample Beginning Baseline 2.454 Mode: Filens	Baseli 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	TC 11151227 12:3: Sample Time 50 285 TC 11151227 17:4: True Time 50 285 TC 11151237 11/15/2005 12:4:
Sample ID: Method: Cal. Curve Operator I) Rep # 1 1 176 Sample ID: Method: Cal. Curve	2418 boat: SOIL 2418 boat: SOIL 2418 boat: SOIL 2418	92.7542 314-14 CCURVE 314-14 314-14 CCURVE	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filens Timest Sample Beginning Baseline 2.454 Mode: Filens	Baseli 2.5 nme: nme: Endin Baseli 3.4	TC 11151227 12:3: Sample Time 50 285 TC 11151227 17:4: True Time 50 285 TC 11151237 11/15/2005 12:4:
Sample ID: Method: Cal. Curve Operator I) Rep # 1 176 Sample ID: Method: Cal. Curve Operator II	2418 boat: SOIL 2418 boat: SOIL 2418 boat: SOIL 2418	92.7542 314-14 3000 3	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filens Timest Sample Beginning Baseline 2.454 Mode: Filens	Baseli 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	TC 11151227 12:3: Sample Time Time Time Time Time Time Time Tim
Sample ID: Method: Cal. Curve Operator I) Rep # 1 176 Sample ID: Method: Cal. Curve Operator II	2418 boat: SOIL 2418 boat: SOIL 2418 boat: SOIL 2418 boat: SOIL D: Rebe	92.7542 314-14 CCURVE 314-14 314-14 CCURVE	8388192 Raw Data 15956843	Baseline 1.521 Mode: Filens Timest Sample Beginning Baseline 2.454 Mode: Filens Timest Sample	Baseli 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	TC 11151227 12:3: Sample Time 50 285 12:3: TC 11151237 11/15/2005 12:4: Sample Time 50 285 12:4: Sample 50 11:51237 11/15/2005 12:4: Sample 50 Integrations of the first

1 51.4272 51.4272	4662277	1.357 2.354 252
`\ =		
Sample ID: 241867-7		Mode: , TC
Method: boat \		Filename: 11151523
Cal. Curve: SOILCURVE		Timestamp: 11/15/2005 (5:29)
Operator ID: Rebecca \		Sample Type: Sample
Rep # ppm C ug/c	Raw Data	Beginning Ending Integration
		Baseline Baseline Time
1 197.2152 197.2192	17806060	1.816 2.815 289
	***============	
`	\	
	1	
Sample 1D: 241867-7		Mode: TC
Method: boat		Filename: 11151530
Cal. Curve: SOILCURVE		Timestamp: 11/15/2005 15:36
Operator ID: Rebecca		Sample Type: Sample
D #	_ \	
Rep # ppm C ug C	Raw Data	Beginning Ending Integration
d 449 8840 dec		Baseline Baseline Time
1 141.1147 141.1147	12748223	1.896 2.895 301
6.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.		:二百名民产工产品自己型品企业工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工工
	\/	
Start The Address of	λ	·
Sample ID: 241867-8 \ Method: boar		∠ Mode: TC
	\setminus \times^{\vee} \mathscr{N}	O Filename: 11151539
Cal. Curve: SOILCURVE	1 0	Timestamp: 11/15/2005 15:45
Operator ID: Rebecca	-	Sample Type: Sample
Rep # ppm C ug C	The state of	_
Rep # ppm C ug C	Raw Daba	Beginning Ending Integration
1 548.1509 548.1509		Baseline Baseline Time
	49445320	1.320 2.918 345
	49445320	1.320 2.918 345
	49445320	1.520 2.918 345
	49445320	
	49445320	Mode: TC
Sample ID: 241867-8 Method: boat	49445320	Mode: TC Filenage: 11151548
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE	49445320	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54
Sample ID: 241867-8 Method: boat	49445320	Mode: TC Filenage: 11151548
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca		Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Raw Data	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C	Raw Data	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2351 184.2151		Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2351 184.2151	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Raw Data 16634018	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.835 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVB Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV Method: boat	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274 Mode: TC Filename: 11151614
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV Method: boat Cal. Curve: SOILCURVE	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274 Mode: TC Filename: 11151614 Timestamp: 11/15/2005 16:T8
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV Method: boat	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274 Mode: TC Filename: 11151614
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVB Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.835 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274 Mode: TC Filename: 11151614 Timestamp: 11/15/2005 16:T8 Sample Type: Cal. Verification
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV Method: boat Cal. Curve: SOILCURVE	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.635 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274 Mode: TC Filename: 11151614 Timestamp: 11/15/2005 16:T8 Sample Type: Cal. Verification Beginning Ending Integration Beginning Ending Integration
Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVR Operator ID: Rebecca Rep # ppm C ug C 1 184.2151 184.2151 Sample ID: 241867-8 Method: boat Cal. Curve: SOILCURVB Operator ID: Rebecca Rep # ppm C ug C 1 178.4800 178.4800 Sample ID: CCV Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Raw Data 16634018 ====================================	Mode: TC Filename: 11151548 Timestamp: 11/15/2005 15:54 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.636 2.835 280 Mode: TC Filename: 11151655 Timestamp: 11/15/2005 16:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.886 2.882 274 Mode: TC Filename: 11151614 Timestamp: 11/15/2005 16:T8 Sample Type: Cal. Verification

28

Sample ID: CCB Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename: 11151625 Timestamp: 11/15/2005 16:27 Sample Type: Sample
Rep # ppm C ug C Raw Data	Beginning Ending Integration Baseline Baseline Time
1 -0.3704 -0.3704 -7632	1.693 1.557 120
Last Message: No Sample Detected	
\ \	
Sample ID: 241920-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename: 11151631 Timestamp: 11/15/2005 16:35 Sample Type: Sample
Rep # ppm C ug Raw Data 1 93.2169 93.2169 8429902	Beginning Ending Integration Baseline Baseline Time 6.423 7.415 200
Sample ID: 241920-1 ON Control of	Mode: TC Filename: 11151636 Timestamp: 11/15/2005 16:40 Sample Type: Sample
Rep # ppm C ug C Raw Data	Beginning Ending Integration Baseline Baseline Time
1 39.0482 39.0482 3546222	2.428 3.425 207
Sample ID: 241920-2 DAME (Sample ID: 241920-2 DAME (Sal. Curve: SOILCURVE (Sal. Curve: SOILCURVE (Sal. Curve: Soilcurve (Sal. Curve: Soilcurve (Sal. Curve: Soilcurve (Sal. Curve: Soilcurve (Sal. Curve: Soilcurve (Sal. Curve: Sal. Curv	Mode: TC Filename: 11151642 Timestamp: 11/15/2005 16:47 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 2.002 3.001 258
Sample ID: 241920-1 (1) (5) Method: boat (1) (6) Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename 11151648 Timestamp: 11/15/2005 16:54 Sample Type: Sample
Rep # ppm C ug C Raw Data 1 140.8249 140.8249 12722089	Beginning Ending Integration Baseline Baseline Time 1.668 2.668 319
Sample l'D: 241920-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C Raw Data	Mode: TC Filename: 1115165 Timestamp: 11/15/2005 17:00 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time

STL Chicago

1 117.6480 117.6480 10632535	Baseline Baseline Time
1 117.6480 117.6480 10632535	1.176 2.176 297
Sample ID: 241920-6	Mode: TC
Method: boat	Filename: 11151808
Cal. Curve: SOILCURVE	Timestamp: 11/15/2005 18:14
Operator ID: Rebecça	Sample Type: Sample
Rep # ppm C ug C Raw Data	Beginning Ending Integration Baseline Baseline Time
1 50.0335 50.0335 4536824	1.410 2.408 285
Sample ID: 241920-6	Mode: TC
Method: boat	Filename: 11151818 Timestamp: 11/15/2005 18:23
Cal. Curve: SOILCURVE	Timestamp: 11/15/2005 18:23
Operator ID: Rebecca	Sample Type: Sample
Rep # ppm C ug C Raw Data	Beginning Ending Integration
n Eline red c utem hater	Beginking Ending Integration Baseline Baseline Time
1 71.6708 71.6708 6487376	1.092 2.089 293
· ·	
Sample ID: 241987-1	Mode: TC
Method: boat	Filename: 11151824 Timestamp: 11/15/2005 18:31
Cal. Curve: SOILCURVE	Timestamp: 11/15/2005 18:31
Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Sample Type: Sample
Rep # ppm C ug C Raw Bata	
TOP # PPW C MS C NAW DECK	
	Daga 14-44 14-4 m2-4
1 676.9399 676.9399 61056528	Baseline Baseline Time
1 676.9399 676.9399 61056528	1.804 2.804 350
7270000	
	1.804 2.804 350
Sample ID: 241987-1	1.804 2.804 350 Mode: TC
Sample ID: 241987-1 Method: boat	1.804 2.804 350 Mode: TC Filename: 11151833
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE	1.804 2.804 350 Mode: TC Filename: 11151833 Timestamp: 11/15/2005/18:38
Sample ID: 241987-1 Method: boat	1.804 2.804 350 Mode: TC Filename: 11151833
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	1.804 2.804 350 Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE	Mode: TC Filename: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11/51840 Timestamp: 11/15/2005 18:51 Sample Type: Sample
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE	Mode: TC Filename: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11/5/2005 18:51 Sample Type: Sample Beginning Ending Integration
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362 Sample ID: 241987-2	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362 Sample ID: 241987-2 Method: boat	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362 Sample ID: 241987-2 Method: boat Cal. Curve: SOILCURVE Operator: Doi: Rebecca	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307 Mode: TC Filename: 11152854 Timestamp: 11/15/2005 19:02
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ug C Raw Data 1 203.8736 203.8736 18406362 Sample ID: 241987-2 Method: boat	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362 Sample ID: 241987-2 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307 Mode: TC Filename: 11151854 Timestamp: 11/15/2005 19:02 Sample Type: Sample
Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 144.5862 144.5862 13061196 Sample ID: 241987-1 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca Rep # ppm C ng C Raw Data 1 203.8736 203.8736 18406362 Sample ID: 241987-2 Method: boat Cal. Curve: SOILCURVE Operator ID: Rebecca	Mode: TC Filename: 11151833 Timestamp: 11/15/2005 18:38 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.971 2.971 275 Mode: TC Filename: 11151840 Timestamp: 11/15/2005 18:51 Sample Type: Sample Beginning Ending Integration Baseline Baseline Time 1.491 2.490 307 Mode: TC Filename: 11152854 Timestamp: 11/15/2005 19:02

1690.2710 1690.2710 152415248 1.462 3.487 Last Message: Over-range Sample ID: 241987-2 Mode: Method: boat Filename: 11151904 Cal. Curve: SOILCURVE Timestamp: 11/15/2005 19:09 Operator ID: Rebecca Sample Type: Sample Rep # ppm C ug C Beginning Raw Data Ending Integration Baseline Baseline Time 184.4137 184.4137 16651917 2.551 3.550 286 Sample ID: 241987-2 Mode: Method: boat Filename: 11151910 Cal. Curve: SOILCURVE Timestamp: 11/15/2005 19:16 Operator ID: Rebecca Sample Type: Sample Rep # ppm C Integration ug C Raw Data Beginning Ending Baseline Baseline Time 1 - 181.7015 181.7015 16407400 1.963 2,963 319 ______ Sample ID: 241987-3 Mode: TC Method: boat Filename: 11151918 Cal. Curve: SOILCURVE Timestamp: 11/15/2005 19:25 Operator ID: Rebecca Sample Type: Sample Rep # ppm C ug C Beginning Ending Integration Baseline Baseline Time 1 1204.7581 1204.7581 108642936 1.872 2.872 395 Last Message: Over-range Sample ID: 241987-3 Mode: ТÇ Method: boat Filename: 11151926 Timestamp: 11/15/2005 19:32 Cal. Curve: SOILCURVE Operator ID: Rebecca Sample Type: Sample Rep # D mag ug C Raw Data Beginning Ending Integration Baseline Baseline Time 312.0613 312.0613 28160222 2.349 3.347 304 Sample ID: 241987-3 Mode: TC Method: boat Filename: 11151934 Cal. Curve: SOILCURVE Timestamp: 11/15/2005 19:39 Operator ID: Rebecca Sample Type: Sample Rep # ppm C ug C Raw Data Beginning Ending Integration Baseline Baseline Time 67.7087 67.7087 6130167 1.806 2.805 252 Sample ID: 241988-1 Mode: Method: boat Filename: 11151943 Cal. Curve: SOILCURVE Timestamp: 11/15/2005 19:4

STL Chicago

Operator ID: Rebecca	Sample Type: Sample
Rep # ppm C ug C Raw D	Data Beginning Ending Integration Baseline Baseline Time
1 153.9346 193.9346 13904	1022 2.726 3.724 274
Sample ID: 241988-1	12-3- ma
Method: boat	Mode: TC
Cal. Curve: SOILCURVE	Filename: 11151950 Timestamp: 11/15/2005 19:55
Operator ID: Rebecca	Sample Type: Sample
	pambre elba. pambre
Rep # ppm C ug C Raw D	ata Beginning Ending Integration
	ata Beginning Ending Integration Baseline Baseline Time
1 165.1964 165.1964 14919	
Sample ID: 241988-1 MS	Mode: TC
Method: boat	Filename: 11151957
Cal. Curve: SOILCURVE	Timestamp: 11/15/2005 20:03
Operator ID: Rebecca	Sample Type: Sample
Rep # ppm C ug C Raw D;	
	ata Beginning Ending Integration Baseline Baseline Time
-1 209.0916 209.0916 18876	802 1.592 2.592 347
Sample ID: 241988-1 MSD	MAR- \
Method: boat	Mode: TC Filename: 11152006
Cal. Curve: SOILCURVE	Timestamp: 11/15/2005 20:12
Operator ID: Rebecca	Sample Type: Sample
Pan #	
Rep # ppm C ug C Raw Da	
1 198.0979 198.0979 178656	Baseline Baseline Time 540 1.739 2.737 330
Sample ID: CCV	Mode: TC
Method: boat	Filename: 11152016
Cal. Curve: SOILCURVE	Timestamp: 11/15/2005 20:23
Operator ID: Rebecca	Sample Type: Cal. Verification
Rep # ppm c ug C Raw Da	ata Beginning Ending Integration
	ata Beginning Ending Integration Baseline Baseline Time
1 105.2618 105.2618 94487	764 1.000 1.999 379
^일 다 그 자 프로 쿠로 중 중 단지 보고 그 로 본 보고 중 중 된 그 로 크 브 드 보고 중 중 된 크 크	
Sample ID: CCB	Mode: TC
Method: boat	Filename: 11152026
Cal. Curve: SOILCURVE Operator ID: Rebecca	Timestamp: 11/15/2005 20:28 Sample Type: Sample
Rep # ppm C ug C Raw Da	Swinners and Turcedirectou
	Baseline Baseline Time 107 1.515 1.352 120
1 -0.3968 -0.3968 -100	1.332 120
	1.332 120
Ast Message: No Sample Detected	1.334 120
ast Message: No Sample Detected	
Last Message: No Sample Detected	1.334 120

STL Chicago	Page No.:
TOC in Soils	Book No.:
Method: Lloyd Kahn	Instrument: Phoenix 8000 (TOC4)
	LabNet Batch: /65700
Calculations:	Date of Standard Curve: 10/13/4
TOC (mg/kg) = ug C / grams sample	Book #Page #
MS, MSD Known Conc. (mg/kg) = 100 ug C / grams sample	
MS, MSD Observed (mg/kg) = ug C / grams sample	
MS, MSD Rec. = [observed mg/kg - avg. sample result (mg/kg	(g)) x 100
known concentration in mg/kg	
·	pared daily from the noted Stock Solutions.)
Stock I (Curve)	IOS JSTIC 2
LCS Source ID JUDFSTLK3 LCS True Value 4780	Acceptance Range 53-140 1/s

Sample ID:	Sample Weight (g)	ug C	Commer	nts:
ICV	0.05	99.4572		
ICR/MB	0.16	-0.6089		
LCS	0.0350	151.9488	ପାର୍ଯ୍ୟନ	
LCS	0.03000.00	927542	978	
241814-14	0.0555	1-76.70+1		
1 -14	0.0410	138,4516		
-15	0.0480	28.0275		
	D. 0490 0.0689	38.7655	overra nge ^{gy}	/lisi00~
241867-1	0.04500	4128529	overtra nge!	Employed (1)
241867-1	0.0186	118,4046		
)	0.0150	125.2606		
a	0.011a	511.6553	Overrange	em 11/15/05
<u> </u>	0.0052	212.2621		
	0.0050	253 9179		
-3	0.0474	257.7408		
-3	0.0396	218.8751		
-4	0.0383	533 5005	overrange	RM IIIIS/05
<u> </u>	0.0091	301,3889		
-4	0.0130	441.4874		
-54	0.0073	209.8279		
-5	0.0274	56.9710		
	0.0319	53.2131		

Prep Analysta		Date: ,	
Analyst:	e beica n Mus	Date: /// /5/05 /2/0	\overline{C}
Reviewed by:/_	Vinil Hon 2	Date: 11/16/16	,

				4
STL	Chicago			Page No.:6
TOC	in Soils			Book No.:
Meth	od: Lloyd K	ahn	V_{i}	Instrument: Phoenix 8000 (TOC4)
0.1		ρ. λ)	P	LabNet Batch: 1657,002
	llations: (mg/kg) = vg C	/ grams sample		f Standard Curve: 10/13/6
		c. (mg/kg) = 100 ug C / g	ooor rams samole	(#Page #
MS, N	ISD Observed (r	ng/kg) = ug C/Lgrams sai	mple	
MS, N	ISD Rec. = <u>[obs</u>	served mg/kg - ava sample known concentration in n	result (mg/kg)] x 1	00 ARK AV
Stand	lard Traceability	(Note: Working Stand	dards are prepared d	ally from the noted Stock Solutions.)
Stock	! (Curve)	Stock II	(ICVICEV)	
LCS S	Source ID	LCS True Value	Accepta	nce Range
Sa	imple ID:	Sample Weight (g)	ug C	_ Comments:
3418	67-6	0.0445	47.5/27	
	-6	0.0485	51,4272	
	-7	0.0135	197, 2152	
	-7	0.0084	141,1147	
	<u>-8</u> _	0.0075	548.1509	
	8	0.0024	184,2151	
4	<u> -8 </u>	0.0027	=	
	Cav	0.05		
	CCO	-0 290401b	-0.3704	
2410	120-12	0.0155	93.26	
	-12	0.0160	39:0481	
	-43	0.0257	74.7632	
	-23	0.0364	140 8249	
-		0.0090	-0.2872	Non Deter RM 11/15/08
		0.0340	+149.6746	
		0,6407	149.2532	
	-4	0.0343	100,4914	
	~.4	0.0355	112,1710	
	5	0.0412	141,7881	
	-5	0.04260	117,0480	
	1-10	0.0094	BO.0335	
0	V -6	0. DI75		
	CR.	. /	7	
Prep A	Inalyst Tue	Justy &	lain /	Date: 11/14/m

Reviewed by:

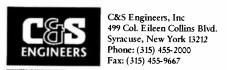
L

Date: ///5/07

CHI-22-12-095/8-05/01

STL Chicago			Page No.:
TOC in Soils			Book No.:
Method: Lloyd Ka	hn	<i>i</i> .	Instrument: Phoenix 8000 (TØC4)
	A A	Date of	LabNet Batch: 165772/165773
Calculations:			Standard Curve: 10/13//05
TOC (mg/kg) = ug C	•		#Page #
•	.`(mg/kg) = 100 ug C / gn g/kg), = ug C / grams sam	•	
	erved mid/ko – avo samnje	result (ma/ka)] x 10	00
	known concentration in m	g/kg	Dea Days 5
Standard Traceability	: (Note: Working-Stand	ards are prepared da	Sel Day 5 Illy from the nexted Stock Solutions.)
	Stock IX		
LCS Source ID	LCS True Value	Acceptar	nce Range
Sample ID:	Sample Weight (g)		Comments:
241987-I	0-0079	6769399	- Overrange RU1/15/05
	0.003113	144.5862	
	0.0015	263.8736	
- la	0.0248	1690.2710	Dromange RM1/15/07
L-a	0.0028	184.4137	
	0.0084	1617015	·
	0.0121	1204-781	Overrange RM11/15/05
N 23	0.0021	312,0613	
<u>-3</u>	8000.0	6207.70	*
241988-1	0.0212	153,9340	L Cong = 8729.248/Kin
	0.0162	165,1964	du de de Dolore
-/MS	0.0134	209,0916	TYL2, 15603.8 92
V-IMSD	0.0129	198,0979	11 7194 15352.4 SLOD
M	0.05	105.2618	177194 15352.4 St. 0
CCB/MB	0.10	-0.3968	
LCS'	C-02589	168.5136	1368 OWN range RHII/15/0
LCQ	0.0349	132,9305	79.68
उपायका व	0.02040.00	130.3142	7316 overrange Ru 1/13/05
1cs_	0.0343	108.2508	1038
241988-2	0.0174	282.5689	
1-2	0.0153	185.1615	
241995-1	0.0133	46.9617	
	1		
Prep Analyst:	Signita Va	nu/ell	Date: ///////////
Analyst:	secret //y	χQ.`	Date: ///5/05
Reviewed by: /	Drew Ftan	2	Date: //////////34

STL Chicago



Project: Midler Ave. Soil Boring ID: SWVT-1 Client: Pioneer Midler, LLC Location: Syracuse, NY Project No.: C81.002.001 Contractor: CME **Equipment: DEIDRICH 120** Date: 11/11/05 Logged By: T. Wirickx NA Easting: Depth to Water: NA Northing: NA **Surface Elevation:** NA

Depth (ft.)	Sample Number	PID Reading (ppm)	Recovery (in.)	Soil Classification	Graphic Log	Physical Description Lithology	Remarks
0				GW	0000	Dark grey and black, moist, fmc SAND and f	
	S-1	NR	16	GW	0000	GRAVEL, trace slag Dark grey and black, moist, fmc SAND and f GRAVEL, little marl and slag	
To the second se	S-2	NR	12	SM		Black, moist, fm SAND, some marl, trace slag	
6	S-3	NR	14	SP		Black, moist, fm SAND, little marl, trace slag	
	S-4	NR	18				
10	S-5	NR	20	sw		Black, wet, fmc SAND, little slag	
12	S-6	NR	14	ML		Beige, wet, MARL	
	S-7	NR	12				
14	S-8	NR	12				
18	S-9	NR	16	SM		Beige, wet, MARL, f concretions	
	S-10	NR	14				

NON	COHESIVE	COHESIVE		
BLOWS FT.	DENSITY	BLOWS FT.	DENSITY	
0-4	VERY LOOSE	0-2	VERY SOFT	
4-10	LOOSE	2-4	SOFT	
10-30	MEDIUM COMPACT	4-8	MEDIUM STIFF	
30-50	COMPACT	8-15	STIFF	
50+	VERY COMPACT	15-30	VERY STIFF	

FIELD SOIL CLASSIFICATION						
% COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE			
40% - 50% 20% - 40%	AND SOME	SILT AND CLAY SAND Coarse	< 0.074 mm 0.074 - 0.42 mm			
10% - 20% 1% - 10%	LITTLE TRACE	Medium Fine GRAVEL	0.42 - 2.00 mm 2.00 - 4.76 mm 4.76 - 76 mm			

Project: Midler Ave. **Soil Boring ID:** SWVT-1 Client: Pioneer Midler, LLC Location: Syracuse, NY Project No.: C81.002.001 Contractor: CME **Equipment:** DEIDRICH 120 Date: 11/11/05 **Logged By:** T. Wirickx NA Northing: Depth to Water: NA Easting: NA **Surface Elevation:** NA

Depth (ft.)	Sample	PID Reading (ppm)	Recovery (in.)	Soil	Graphic Log	Physical Description Lithology	Remarks
222	S-11	NR	16				
22				CH /		Grey, wet, CLAY	
24							
26 							
28							
30							
32							
34							
36							=
38	And the second s		T TOTAL A				
40							

NON	COHESIVE	COHESIVE			
BLOWS FT.	DENSITY	BLOWS FT.	DENSITY		
0-4	VERY LOOSE	0-2	VERY SOFT		
4-10	LOOSE	2-4	SOFT		
10-30	MEDIUM COMPACT	4-8	MEDIUM STIFF		
30-50	COMPACT	8-15	STIFF		
50+	VERY COMPACT	15-30	VERY STIFF		

FIELD SOIL CLASSIFICATION							
% COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE				
40% - 50% 20% - 40%	AND SOME	SILT AND CLAY SAND Coarse	< 0.074 mm 0.074 - 0.42 mm				
10% - 20% 1% - 10%	LITTLE TRACE	Medium Fine GRAVEL	0.42 - 2.00 mm 2.00 - 4.76 mm 4.76 - 76 mm				

Project: Midler Ave. Soil Boring ID: SWVT-2 Client: Pioneer Midler, LLC Location: Syracuse, NY Project No.: C81.002.001 Contractor: CME **Equipment:** DEIDRICH 120 **Date:** 11/11/05 Logged By: T. Wirickx NA Depth to Water: NA Northing: NA Easting: **Surface Elevation:** NA

Depth (ft.)	Sample Number	PID Reading (ppm)	Recovery (in.)	Soil Classification	Graphic Log	Physical Description Lithology	Remarks
2	S-1	NR	8	GW		Dark grey, moist, fmc SAND and f GRAVEL, little slag	
	NS	NR	NS			Not Sampled	
4	S-2	NR	14	SP PT SM		Black, moist to wet, fm SAND Dark brown, moist, PEAT Beige, wet, MARL, f concretions	
8	S-3	NR	16	PT		Brown, wet, PEAT, little wood	
10	S-4	NR	20	GM	.0.0	Beige, wet, MARL, fm concretions	
10	S-5	NR	12	GP		Beige, wet, MARL, fmc concretions	
14	S-6	NR	8	GM	.0.0	Beige, wet, MARL, fm concretions	
16	S-7	NR	12	SM		Red tan, wet, f sand, some silt	
18							
40							

NON	COHESIVE	COHESIVE			
BLOWS FT.	DENSITY	BLOWS FT.	DENSITY		
0-4	VERY LOOSE	0-2	VERY SOFT		
4-10	LOOSE	2-4	SOFT		
10-30	MEDIUM COMPACT	4-8	MEDIUM STIFF		
30-50	COMPACT	8-15	STIFF		
50+	VERY COMPACT	15-30	VERY STIFF		

FIELD SOIL CLASSIFICATION							
% COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE				
40% - 50%	AND	SILT AND CLAY SAND	< 0.074 mm				
20% - 40% 10% - 20%	SOME LITTLE	Coarse Medium	0.074 - 0.42 mm 0.42 - 2.00 mm				
1% - 10%	TRACE	Fine GRAVEL	2.00 - 4.76 mm 4.76 - 76 mm				

Project: Midler Ave. Soil Boring ID: SWVT-3 Client: Pioneer Midler, LLC Location: Syracuse, NY Project No.: C81.002.001 Contractor: CME **Equipment: DEIDRICH 120 Date:** 11/11/05 Logged By: T. Wirickx NA Depth to Water: NA Northing: NA Easting: **Surface Elevation:** NA

Depth (ft.)	Sample Number	PID Reading (ppm)	Recovery (in.)	Soil Classification	Graphic Log	Physical Description Lithology	Remarks
2	S-1	NR		GW		Dark grey, moist, fmc SAND and fc GRAVEL, some silt	
<u> </u>	S-2	NR		SW		Black, wet, fmc SAND and SLAG	
6	S-3	NR		SP		Black, wet, f SAND, trace slag	
8	S-4	NR		O,		Diack, wei, 1971(1), trace stag	
10	S-5	NR		SP		Brown, wet, f SAND, trace slag	
12	S-6	NR					
14	S-7	NR		PT		Dark brown, wet, PEAT	
	S-8	NR		SM		Beige, wet, MARL, little peat, f concretions	
18	S-9	NR		PT		Dark brown, wet, PEAT, little marl and wood	
20							

NON	COHESIVE	COHESIVE			
BLOWS FT.	DENSITY	BLOWS FT.	DENSITY		
0-4	VERY LOOSE	0-2	VERY SOFT		
4-10	LOOSE	2-4	SOFT		
10-30	MEDIUM COMPACT	4-8	MEDIUM STIFF		
30-50	COMPACT	8-15	STIFF		
50+	VERY COMPACT	15-30	VERY STIFF		

% COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE
40% - 50%	AND	SILT AND CLAY SAND	< 0.074 mm
20% - 40%	SOME	Coarse	0.074 - 0.42 mm
10% - 20%	LITTLE	Medium Fine	0.42 - 2.00 mm
1% - 10%	TRACE	GRAVEL	2.00 - 4.76 mm 4.76 - 76 mm

< 0.074 mm

0.074 - 0.42 mm 0.42 - 2.00 mm 2.00 - 4.76 mm

4.76 - 76 mm

SAND Coarse Medium Fine

GRAVEL

SOME

LITTLE

C&S Engineers, Inc 499 Col. Eileen Collins Blvd. Syracuse, New York 13212 Phone: (315) 455-2000 Fax: (315) 455-9667

2-4 4-8 8-15

15-30

0-4 4-10 10-30 30-50

50+

MEDIUM COMPACT

COMPACT VERY COMPACT

SOFT MEDIUM STIFF

STIFF VERY STIFF

SOIL BORING LOG

Project: Midler Ave. Client: Pioneer Midler, LLC		Soil Boring ID:	CDD FF
Location: Syracuse, NY			GPD-55
Contractor: Lyon Drilling Co.	Equipment: Custo	Project No.: C81.002.001	
Northing: NA	Easting: NA	3/21/03	Logged By: T. Wirickx
	Lasting. 14A	Surface Elevation: 421.60	Depth to Water: ~4.0

Depth (R.)	Sample Number	PID	(ppm) Recovery	Se line	Classification	Graphic Log	Physical Description Lithology	Remarks	
				K	0	0000	ASPHALT		
2	S-1	2.1	1.5	SF		0	CONCRETE Dark brown, moist, fm SAND		
	S-2	1.9	2.5	ML			Beige, wa, MARL	Petroleum ede	
— 6 - -			2.5	GP		0	Beige, wet, MARL, finc concretions	Petroleum odor, free product, sampled 4-7	
- 8 - 10	S-3	1.3	3.0	SM			Beige, wer, MARL, f concretions		
- 12	S-4	13.6	3.5						
- 14									
16	S-5	20.2	3.0	ML			Beige, wet, MARL	Sampled 15-18'	
18				PT	Dark brown, wet, PEAT, little mari	-			
-		0.6		СН		G	irey, moist, CLAY		
20	S-6	NR	NR			N	O RECOVERY		
WS FT.	COHESIVE DENSITY	BLOWS	COHESIVE				FIELD SOIL CLASSIFICATION		
3-4 -10	VERY LOOSE LOOSE	0-2 2-4	FT. DEN VERY SO	SOFT			MPOSITION MODIFIER DESCRIPTION 7% - 50% AND SILT AND CLAY	GRAIN SIZE	

20% - 40%

10% - 20%

1% - 10%

C&S Engineers, Inc 499 Col. Eileen Collins Blvd. Syracuse, New York 13212 Phone: (315) 455-2000 Fax: (315) 455-9667

SOIL BORING LOG

Project: Midler Ave. Client: Pioneer Midler, LLC			Sc	oil Boring ID:	GPD-55
Location: Syracuse, NY			Proje	ect No.: C81.002.001	
Contractor: Lyon Drilling Co.	Equipment:	Custom		Date: 9/21/05	
Northing: NA	Easting:	NA	Surfa	ice Elevation: 421.60	Logged By: T. Wirickx Depth to Water: ~4.0

					T	Depth to	water: ~4.0
Depth (ft.)	Sample Number	PID Reading (ppm)	Recovery (ft.)	Soil Classification	Graphic Log	Physical Description Lithology	Remarks
) E				T			
22							Terminated boring at 21'
24	·						
26							
28							
32							
34							
36							
38							
40							
NON COL	IESIVE	COHES	IVE				

	COHESIVE	COHESIVE		
BLOWS FT		BLOWS FT.	DENSITY	
0-4 4-10 10-30 30-50 50+	VERY LOOSE LOOSE MEDIUM COMPACT COMPACT VERY COMPACT	0-2 2-4 4-8 8-15 15-30	VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF	

	FIELD SOIL CL	ASSIFICATION	
& COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE
40% - 50%	AND	SILT AND CLAY	< 0.074 mm
20% - 40%	SOME	SAND	- 00/77 (MIII
10% - 20%	LITTLE	Coarse Medium Fine	0.074 - 0.42 mm 0.42 - 2.00 mm 2.00 - 4.76 mm
1% - 10%	TRACE		
1% - 10%	TRACE	Fine GRAVEL	

C&S Engineers, Inc 499 Col. Eileen Collins Blvd. Syracuse, New York 13212 Phone: (315) 455-2000 Fax: (315) 455-9667

SOIL BORING LOG

Project: Midler Ave. Client: Pioneer Midler, LLC Soil Boring ID: GPD-60 Location: Syracuse, NY Project No.: C81.002.001 Contractor: Lyon Drilling Co. **Equipment:** Custom GP Date: 9/22/05 Logged By: T. Wirickx Northing: NA Easting: NA Surface Elevation: 421.80 Depth to Water: ~3.5

			T				in to water: ~3.
Depth (ft.)	Sample	PID Reading (ppm)	Recovery (ft.)	Soll	Graphic Log	Physical Description Lithology	Remarks
_ 0					.000	CONCRETE	
				GP	0.00	Black and brown, damp, f SAND, SLAG, GLASS and BRICK	
<u> </u>	S-1	137	1.0	ML		White, moist to wet, MARL	
-	S-2	220	1.0	ML		Beige, wet, MARL	
- 6 -				PT		Brown, wet, PEAT, some marl	Sampled 4-7'
- 8				GP	0.0	Beige, wet, MARL, fmc concretions	_
- 10	S-3	0.8	2.5	SM		Beige, wet, MARL, f concretions	
12	S-4	0.8	1.5	PT		Dark brown, wet, PEAT, trace marl	
14		0.7		СН		Grey, moist, CLAY	
16							Terminated boring at 15'
18							
20							
	DENSITY	CC	DHESIVE			EIEI D COIL CL	

NON	COHESIVE	COHESIVE		
BLOWS FT		BLOWS FT.	DENSITY	
0-4 4-10 10-30 30-50 50+	VERY LOOSE LOOSE MEDIUM COMPACT COMPACT VERY COMPACT	0-2 2-4 4-8 8-15 15-30	VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF	

~ CO. (FIELD SOIL CL	ASSIFICATION		
% COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE	
40% - 50% 20% - 40% 10% - 20%	AND SOME	SILT AND CLAY SAND Coarse	< 0.074 mm	
1% - 10%	LITTLE TRACE	Medium Fine GRAVEL	0.42 - 2.00 mm 2.00 - 4.76 mm 4.76 - 76 mm	

C&S Engineers, Inc 499 Col. Eileen Collins Blvd. Syracuse, New York 13212 Phone: (315) 455-2000 Fax: (315) 455-9667

SOIL BORING LOG

Project: Midler Ave. Client: Pioneer Midler, LLC Soil Boring ID: SVGP-2 Location: Syracuse, NY Project No.: C81.002.001 Contractor: Lyon Drilling Co. **Equipment:** Custom GP Date: 9/27/05 Logged By: T. Wirickx Northing: NA Easting: NA Surface Elevation: 421.30 Depth to Water: ~3.8

				1	7		721.30	 valer: ~3.8
Geyish brown, moist, fmc SAND and fc GRAVEL, little silt GRAVEL, little silt GRAVEL, little silt Black and brown, moist to wet, fmc SAND, SLAG and BRICK Dark brown, moist, PEAT, some marl Beige, wet, MARL, f concretions Beige, wet, MARL GP GP Beige, wet, MARL Beige, wet, MARL, fmc concretions	<u> </u>		PID Reading (ppm)	Recovery (ft.)	Soil Classification	Graphic	Physical Description Lithology	Remarks
GRAVEL, little silt GRAVEL, little silt Black and brown, moist to wet, fmc SAND, SLAG and BRICK Black and brown, moist to wet, fmc SAND, SLAG and BRICK SM Beige, wet, MARL, f concretions Beige, wet, MARL Beige, wet, MARL, fmc concretions 12 14 16 18 18	'	0			GP	. 0	Grevish brown moist for GAND	
SM Beige, wet, MARL, f concretions Beige, wet, MARL GP SO Beige, wet, MARL, fmc concretions 12 14 16 18 20			13.4	2.0		0 0 0 0	Black and brown moist to wet for SAN	
GP : 6	6		4.3	2.5				
GP : 6	E				JMI		Beige, wet, MARL, f concretions	
12			12.8	3.0			Beige, wet, MARL	
12	F 10		 		GP Y	· o · o · 1	Beige, wet, MARL, fmc concretions	
	14							
NON COHESIVE COHESIVE	NON	COHESIVE	COL	IFSIVE				

NON	COHESIVE	COHESIVE		
BLOWS FT	DENSITY	BLOWS FT.	DENSITY	
0-4 4-10 10-30 30-50 50+	VERY LOOSE LOOSE MEDIUM COMPACT COMPACT VERY COMPACT	0-2 2-4 4-8 8-15 15-30	VERY SOFT SOFT MEDIUM STIFF STIFF VERY STIFF	

7.00	FIELD SOIL CL	ASSIFICATION	
% COMPOSITION	MODIFIER	DESCRIPTION	GRAIN SIZE
40% - 50%	AND	SILT AND CLAY	
20% - 40%	SOME	SAND	< 0.074 mm
10% - 20%	LITTLE	Coarse Medium	0.074 - 0.42 mm
1% - 10%	TRACE	Fine	0.42 - 2.00 mm 2.00 - 4.76 mm
		GRAVEL	4.76 - 76 mm

A-4

NYSDEC-Approved Verification Sampling Protocol

Pioneer Midler Avenue LLC Revised Thermal Treatment Area (TTA) Verification Sampling Protocol

The following protocol pertains to collection of verification samples from locations and depths proposed in the IRM work Plan and approved by NYSDEC. The purpose of the protocol is to minimize potential volatilization associated with sample cooling and preparation for analysis.

Health and safety issues and PPE associated with verification sampling field work (high temperature sample media and potential electrical hazards) will be reviewed with all onsite personnel.

1. Layout and Survey

Upon consultation with NYSDEC and the Remedial Contractor, verification sampling points will be determined and clearly marked on each TTA surface. The sample points will correspond to the sample designations from Figure IRM-3 of the IRM Work Plan, adjusted as required to avoid treatment system infrastructure. Once established, the surface location for each sample point will be surveyed.

For each verification sample point, a sampling interval from the TTA surface will be calculated from surveyed elevations. Each interval will straddle the RI reference sample from Table 3 of the IRM Work Plan (e.g., if the RI sample was reported from the 17'- 20' depth interval, the verification sample will be collected from the depth corresponding to the 16.5'-20.5' interval).

2. Sample Collection

Soil samples will be collected using a four-foot (nominal) direct push sampling tool with seven six-inch stainless steel or brass sleeve inserts. The recovered sleeved sample cores will be removed from the sampling tool, labeled, and the ends sealed to encapsulate sample media within the sleeves. Each capped and labeled core will be placed in an ice-filled basin and cooled to ambient temperature. Holes in the basin bottom will drain melt-water to reduce the potential for liquid intrusion into the sample.

Following cooling to ground temperature (approximately 55-60 degrees F) or cooler, equal portions from each core from within the target interval (from the 17'-20' interval in the above example) will be transferred to a labeled laboratory-supplied sample jar and placed onto ice in a cooler. The remaining

soil from the sampling sleeves will then be placed within a labeled baggie and will be visually described relative to color, grain size, and moisture content, and surveyed for volatile vapors using a PID. The sampling tool and sleeves will be decontaminated for re-use using an Alconox® wash and potable water rinse.

3. Sample Analysis and Reporting

Per the IRM Work Plan, one sample from each verification sample location and depth, as well as the requisite QA/QC samples, will be submitted for laboratory analysis of TCL VOCs by USEPA Method 8260B.

Laboratory data will be validated per the IRM Work Plan and the Data Usability Summary Report (DUSR) will be included in the IRM Report.

Consistent with the IRM Work Plan: "If the average concentration of each individual CVOC within a thermal treatment area is less than the SSCO for that CVOC (listed in the table in Section 2.1.5), the IRM will be considered complete for that treatment area."

If analytical results from a first round of verification sampling indicate one or more discrete locations and depths within an overall treatment area that require additional treatment to achieve the IRM goals, each of those discrete locations and depths will be re-sampled following the extended treatment period. The second round sample will be collected as close as practical to the location and depth of the related first round sample. Analytical results for the second round samples will then replace the first round results from the same discrete area, and will be utilized with the first round results from the remainder of the treatment area in calculating the average concentration for the treatment area.

4. Sampling Protocol QA/QC

The effectiveness of the above sampling protocol will be reviewed on a continuous basis and revisions to the protocol may be proposed if indicated by experience in the field.