Remedial Investigation and

Remedial Alternatives Analysis Report

(Volume 1 of 5)

Midler City Industrial Park Site Brownfield Cleanup

City of Syracuse Onondaga County, New York

NYSDEC BROWNFIELD SITE # C734103

Prepared for Pioneer Midler Avenue, LLC

By

C&S Engineers, Inc. 499 Col. Eileen Collins Blvd. Syracuse, New York 13212

December 2007

Midler City Industrial Park Site Remedial Investigation and Remedial Alternatives Analysis Report

Table of Contents

Section 1 - Introduction			
1.1	Purpose and Organization of the Report1		
1.2	1.2 Site Background		2
	1.2.1	Site Description	2
	1.2.2	Site History	3
	1.2.3	Previous Investigations	4
1.3	Report	Organization	7
Section 2 -	Study A	rea Investigation	8
2.1	Introdu	ction	8
2.2	Site Ch	aracterization Field Activities	9
	2.2.1	Preliminary Site Reconnaissance	9
	2.2.2	Surface Features	9
	2.2.3	Contaminant Source Investigation	10
	2.2.4	Soil and Vadose Zone Investigations	11
	2.2	.4.1 Summary	11
	2.2	.4.2 Subsurface Investigations Phase 1, November – December 2004	12
	2.2	.4.3 Subsurface Investigation Phase 2, January – March 2005	14
	2.2	.4.4 Subsurface Investigation Phase 3, July – February 2006	15
	2.2.5	Groundwater Investigations	16
	2.2.6	Soil Vapor Sampling	19
Section 3 -	Physical	Characteristics of the Study Area	20
3.1	Surface	e Features	20
3.2	Surface	e Water Hydrology	20
3.3	Geolog	у	21
3.4	Hydrog	geology	21

	3.4.1 Peat/Marl Unit	21	
	3.4.2 Sand Unit	22	
	3.4.3 Hydraulic Conductivity Testing	23	
3.5	Demography and Land Use	24	
Section 4 -	Nature and Extent of Contamination	25	
4.1	Surface and Subsurface Soils		
4.2	Potential Sources of Contamination (Site Utility Sediments and Liquids)	31	
4.3	Groundwater	32	
4.4	Soil Vapor Sampling Results	36	
Section 5 -	Interim Remedial Measures	37	
Section 6 -	Post-IRM Conditions	39	
Section 7 -	Qualitative Human Health Exposure Assessment	40	
7.1	Contaminant Sources in Soil	40	
7.2	Contaminant Sources in Groundwater	41	
7.3	3 Release and Transport Mechanisms (Soil and Groundwater)		
7.4	4 Potential Points and Routes of Exposure		
7.5	Potential Receptor Populations	44	
7.6	Conclusions Regarding Exposure Pathways	45	
Section 8 -	Remedial Alternatives Analysis	47	
8.1	1 Introduction		
8.2	Remedial Goal		
8.3	Remedial Action Objectives for Soil		
8.4	Remedial Action Objectives for Groundwater		
8.5	Remedial Alternatives for Soil	51	
	8.5.1 Excavation and Off-Site Disposal	51	
	8.5.2 In-Situ Thermal Treatment	52	
	8.5.3 Institutional and Engineering Controls	54	
8.6	Potential Remedial Actions for Groundwater	55	

	8.6.1	In-Situ or Ex-Situ Groundwater Treatment	55
	8.6.2	Monitored Natural Attenuation	57
	8.6.3	Institutional and Engineering Controls	60
8.7	The "N	o Action" Alternative	61
8.8	Compa	rative Analyses	62
8.9	Conclu	sions	62

Figures

Figure 1	Site Location Map
Figure 2	Former Site Structures
Figure 3	RI Site Sample Location Map
Figure 3B	IRM Treatment Areas and Verification Sample Locations
Figure 4	Phase 1 and Phase 2 Soils VOC Data Exceeding RSCOs
Figure 5	RI Soils CVOCs Data and IRM Treatment Areas
Figure 6	Pre-IRM Groundwater VOC Data Exceeding Class GA Standards
Figure 6B	IRM and Post-IRM Groundwater VOC Data Exceeding Class GA Standards
Figure 7	Groundwater Contours for December 2004
Figure 8	Groundwater Contours for February 2005
Figure 9	Groundwater Contours for April 2005
Figure 10	Groundwater Contours for May 2005
Figure 11	Groundwater Contours for July 2005
Figure 12	Groundwater Contours for October 2005
Figure 13	Groundwater Contours for May 2006
Figure 14	Groundwater Contours for August 2007
Figure 15	Cross Section Location Map
Figure 16	Generalized Geologic Cross Sections
Figure 17	Post-IRM Soil Data

<u>Tables</u>

Table 1	Phase 1 Soil Boring Data
Table 2	Phase 1 Soil Data for Monitoring Wells and Geotechnical Borings

- Table 3Phase 1 Test Pit Data
- Table 4Phase 2 Soil Boring Data for Clay Unit Wells
- Table 5Phase 2 GeoProbeTM Boring Data
- Table 6Phase 2 Soil Data from Borings within Structures
- Table 7Phase 3 Soil Boring Data for Sand Unit Wells to Till
- Table 8
 Phase 3 GeoProbeTM Boring Data for Source Area Delineation
- Table 9Phase 1 Surface Soil Data for PCBs/Pesticides
- Table 10Summary Subsurface Soils CVOCs Data
- Table 11Phase 1 Site Utility Sediment Data
- Table 12Phase 1 Site Utility Liquid Data
- Table 13Monitoring Well Depths and Screened Intervals
- Table 14Phase 1 Groundwater Data
- Table 15Phase 2 Groundwater Data for Clay Unit Monitoring Wells
- Table 16
 Phase 2 Groundwater Data for Temporary Interior Monitoring Wells
- Table 17Phase 3 Groundwater Data for Temporary Sand Unit Wells to Till
- Table 18Phase 3 Groundwater Data for Permanent Sand Unit Wells to Till
- Table 19Data for Post-IRM Conditions
- Table 20Summary Groundwater VOCs Data
- Table 21Soil Vapor Sampling Data
- Table 22MNA Indicators Data
- Table 23
 Comparative Summary of Remedial Alternatives for Soil
- Table 24
 Comparative Summary of Remedial Alternatives for Groundwater

Appendices

Appendix A	Subsurface Investigation Logs (Bound Separately, Volume 2 of 5)
	Environmental Boring Logs
	Geotechnical Boring Logs
	Test Pit Logs
	PID Logs
	Soil Vapor Sampling Field Logs
Appendix B	Historic and Supplemental Investigations (Bound with Volume 1 of 5)

Hydraulic Conductivity Test Data
 GeoLogic Groundwater and Contaminant Flow Report
 July 2004 Preliminary Site Investigation Report
 Independent Geochemistry and Microbiology Investigations
 Appendix C Data Usability Summary Reports (DUSRs) - (Bound Separately, Volumes 3, 4

and 5 of 5)

PIONEER MIDLER AVENUE SITE

REMEDIAL INVESTIGATION AND REMEDIAL ALTERNATIVES ANALYSIS REPORT

SECTION 1 - INTRODUCTION

1.1 Purpose and Organization of the Report

This Remedial Investigation (RI) and Remedial Alternatives Analysis (RAA) Report documents efforts to characterize environmental quality at the Midler City Industrial Park Site, in the City of Syracuse, New York. This report covers work performed under the New York State Department of Environmental Conservation's (NYSDEC's) "Brownfields Program" and addresses elements, as appropriate, established within the NYSDEC's Brownfield Cleanup Program. This report covers work completed through October 2007.

Section 4 of this report documents the multi-phased Remedial Investigation, which identified the nature and extent of soil and groundwater contamination to be associated with four well-defined source areas where chlorinated volatile organic compounds (CVOCs) were present at concentrations orders of magnitude greater than were present elsewhere at the site. Those source areas were the subject of the year-long Interim Remedial Measure (IRM) which is documented in the <u>OctoOeto</u>ber 2007 *Interim Remedial Measures Report* (separate report). Section 5 summarizes the IRM and documents the removal of CVOCs from within the source areas, significantly altering the nature and extent of site soil and groundwater CVOC impacts (note that ground water continues to be monitored as discussed in a separate document, the *Remedial Work Plan*). Section 6 of this report then discusses post-IRM conditions at the site, which are the basis of subsequent evaluations associated with human health (Section 7) and the remedial alternatives analysis (Section 8).

1.2 Site Background

The following sections provide background information associated with the site, including a description of the site, the history of the site, and a summary of previous investigations or remedial actions undertaken.

1.2.1 Site Description

The Midler City Industrial Park Site is approximately 22 acres and is located in the eastern portion of the City of Syracuse, as shown on Figure 1. The site was developed as an industrial facility in the late nineteenth century and was utilized as such through the mid-twentieth century. The Midler City Industrial Park Site is relatively flat and is bounded as follows:

- To the north by Interstate Route 690;
- To the east by property reportedly held by Sutton Investing Corporation and currently being for mulching/landscaping operation;
- To the south by property owned by CSX Transportation; and
- To the west by Midler Avenue.

Review of United States Geological Survey (USGS) mapping shows that the site lies at an elevation of approximately 410 feet above mean sea level and is located approximately 800 feet north of the former Erie Canal (now Erie Boulevard) and three miles east of Onondaga Creek. Surface drainage in the area is controlled via storm water structures, with the majority of flow toward the west, where subtle sloping topography would result in discharge to Onondaga Creek, which discharges to Lake Ontario via the Seneca/Oswego River system.

According to United States Department of Agriculture - Soil Conservation Service Soil Survey mapping for Onondaga County, the soils in the vicinity of the site are classified as "Cut and Fill Land". These soils have moderate to poor permeability and are characterized by seasonal high water tables. Review of surficial geologic mapping prepared by the New York State Geological Survey indicates that unconsolidated soils in the vicinity of the site consist of lacustrine silt and

clay. Consistent with the topographic setting of the site, shallow groundwater flow in the area of the site would be expected to flow across the site generally from north to south.

Regional bedrock geologic mapping indicates that bedrock underlying the site consists of the Camillus and Syracuse formations of shale, doelostone, gypsum, or salts, generally present at depths of greater than 100 feet. Groundwater within the deeper bedrock generally occurs within fractures, joint sets, and bedding planes.

Residents in the area of the site receive their domestic water from municipal service connections supplied by the City of Syracuse. The source of the municipal water supply is surface water from Lakes Skaneateles and Ontario.

1.2.2 Site History

The early history of the site was characterized by its use as an industrial site and its proximity to transportation infrastructure (railroads and previously, the Erie Canal). Former tenants of note include *Pierce, Butler, & Pierce Manufacturing Company*, a producer of heavy iron wares (boilers, radiators, piping, etc.) and *Prosperity Company*, a producer of laundry and dry cleaning equipment. Since being acquired in 1961 by Sutton Investing Company, the buildings had been utilized as general storage/operations (warehouse) rental space. The nature of these tenants was varied and included the following:

- Auto dealer storage of new and used vehicles
- Electrical contractor
- Landscape contractor
- Rack/storage/pallet system vendor
- Hardwood/plywood storage
- General contractors

Figure 2 identifies the major site structures as they existed at the beginning of the Remedial Investigation. Concurrent with the RI, Pioneer Midler Avenue, LLC proceeded with the

demolition of buildings and structures as well as redevelopment of the site into a multi-tenant commercial property, anchored by a major home improvement chain store. An October 2007 *Demolition Closure Report*, including details regarding incidents associated with subsurface conditions (i.e., encounters with unanticipated subsurface structures), will be submitted under separate cover. Redevelopment of the site is well underway and various components are scheduled for completion in late 2007.

1.2.3 Previous Investigations

A Phase I Environmental Site Assessment (ESA) was completed by C&S for the Midler City Industrial Park Site in 1994. That ESA concluded that evidence of recognized environmental conditions existed within numerous areas at the site. In particular:

- Thirteen areas were identified as having the potential for petroleum contamination due to leakage or spillage;
- Four areas were associated with general debris disposal including ashes/cinders;
- Six areas were identified as having the potential for chemical contamination due to container leakage or spillage;
- Five areas were identified as having the potential for contamination associated with electrical transformer dielectric fluids; and
- Evidence of asbestos-containing materials was also observed at several locations on the site.

Prior to submitting the BCP application, Pioneer Midler, LLC undertook a preliminary investigation in July 2004 (Appendix B). The objective of that investigation was to assess specific areas of the Site that were identified in the 1994 Phase I ESA. The areas of interest for the July 2004 investigation included:

- The former pond;
- The former C&D fill area;
- Area Q former location of a 12,000 gallon fuel oil underground storage tank (UST);
- Area S former location of four partially buried fuel oil storage tanks ranging in size from 900 gallons to 20,000 gallons; and

• Existing electrical powerhouse and maintenance building.

The former pond and C&D areas as well as Area Q and Area S were investigated by making a series of test trench explorations with a track mounted excavator. At the electrical powerhouse, wipe samples were obtained for laboratory analysis to assess the presence or absence of polychlorinated biphenyls (PCBs). In addition to the test pit explorations made to assess specific environmental areas of potential concern, three additional trenches were made along the western boundary of the site. Those excavations were dug to assess shallow groundwater levels in the location where stormwater retention basins have been proposed for the future site development.

Documentation of field observations and analytical laboratory results was presented in a letter report (included in Appendix B to this Report) prepared by C&S Engineers, Inc. for Pioneer Midler Avenue, LLC. The following is a summary of findings relative to the July 2004 investigation.

Former Pond Area

- Ground surface to four feet below grade consisted of soil intermixed with scrap wood, foundry sand, bricks, asphalt, concrete, a cast iron sink, and discarded metal cans.
- 3.5 to 5.5 feet below grade, silty clay, marl, and peat were found.
- Laboratory analysis of two samples for PCBs and volatile organic compounds (VOCs) did not detect the presence of these compounds.

Former C&D Fill Area

- Ground surface to three feet below grade was fill material which did not exhibit discoloration, staining, or odors.
- Below three feet were foundry sands, slag, glass, scrap wood, metal, concrete, asphalt, and tar.
- Six feet below grade, white marl was encountered with peat above.
- Conventional headspace analysis performed in the field revealed the presence of volatile

organic vapors in one test trench.

 Laboratory analysis of samples taken from this area indicated the presence of acetone, 2butanone, and tetrachloroethene. The tetrachloroethene was reported at a concentration of 160 μg/kg.

Area Q – Former 12,000 Gallon UST Location

- Foundry sand, slag, and marble stone fragments were encountered.
- No evidence of a UST was found.
- No physical evidence of staining or discoloration was detected. A petroleum odor was noted in the shallow soils of the boring.
- No samples for laboratory analysis were obtained.

Area S – *Former Location of Four Partially Buried Tanks*

- Foundry sand and slag were observed.
- No physical evidence of a UST was found.
- No volatile organic vapors, stained soil, or sheens were detected.

Electrical Powerhouse

• Wipe samples of surfaces within the Electrical Powerhouse revealed the presence of Aroclor 1260 at 5.5 μ g/100 cm² on the floor and 1.3 μ g/100 cm² on the front of one of the transformers.

West Area Trenches

- Fill materials consisting of slag, foundry sand, rocks, and a sand/silt mixture were found to a depth of approximately six feet below grade.
- Marl was encountered at depths ranging from three feet to ten feet below ground surface.
- No samples for laboratory analysis were obtained.

1.3 Report Organization

This RI Report utilizes the general format recommended in *Draft DER-10, Technical Guidance for Site Investigation and Remediation*. In order to provide a stand-alone document capable of identifying appropriate site remedial actions, the results of the RI, the Interim Remedial Measures, and of the previous investigative activities are included.

Tasks conducted as part of this RI were performed consistent with the NYSDEC's *Draft DER-*10, Technical Guidance for Site Investigation and Remediation and the NYSDEC's Draft Brownfield Cleanup Program Guide.

SECTION 2 - STUDY AREA INVESTIGATION

2.1 Introduction

This Section documents the activities undertaken during this Brownfields Investigation to evaluate the existence and extent of impacts to the Midler City Industrial Park Site from past industrial activities and waste management practices.

The initial round of RI activities was conducted from November 11, 2004 through November 29, 2004, during which eighteen soil borings, eight monitoring well installations, test pit excavations, and utility sediment/liquid sampling programs were conducted. During the week of January 24, 2005, six additional borings were made and completed as deeper interval monitoring wells. In March 2005, sixteen GeoProbe[™] borings were made to delineate a chlorinated hydrocarbon impacted area east of Building 7, and seven borings completed as temporary monitoring wells were installed at locations inside site structures. In July 2005, four GeoProbe[™] exploratory wells were made to investigate groundwater within the sand unit at the top of till. In late 2005 and early 2006, four permanent monitoring wells were installed within the sand at the top of till and sixty-nine GeoProbe[™] borings were made to delineate potential source areas that had been identified during the previous work phases. An additional 54 borings were made during March and April 2006 to complete the delineation of the four source areas. Copies of boring logs, well installation logs, photoionization screening data, and other supporting data are provided in the various appendices to this report.

During the first phase of the investigation, C&S also provided an environmental monitor to observe the geotechnical drilling effort and the geotechnical test-pit excavation effort at the site, both of which were conducted concurrently with the RI. The geotechnical borings utilized continuous sampling methods for the initial twenty feet below the ground surface, during which each split-spoon sample was examined and headspace screened utilizing a PID; samples were selected from five geotechnical borings for laboratory analysis. Soil samples from six test pit locations were also submitted for laboratory analysis.

The NYSDEC-approved site Interim Remedial Measure (IRM), completed in October 2007, successfully removed chlorinated volatile organic compounds (CVOCs) from the source areas. The term *chlorinated volatile organic compounds*, as used in this report, refers to the suite of compounds made up of tetrachloroethene (PCE), trichloroethene (TCE), vinyl chloride (VC), cis-1,2-dichloroethene (cis-DCE), and trans-1,2-dichloroethene (trans-DCE).

The October 2007 *Interim Remedial Measures Report,* submitted under separate cover, documents the verification sampling program, consisting of soil borings at 59 locations to specified depths, associated sampling, and laboratory analysis for CVOCs. Section 5 of this report discusses the IRM.

2.2 Site Characterization Field Activities

This Section summarizes the field activities undertaken to characterize the site.

2.2.1 Preliminary Site Reconnaissance

The layout of the Midler City Industrial Park Site property is shown in Figure 2. The preliminary site reconnaissance consisted of reviewing historical documents from the Phase I ESA and physically orienting the areas of concern identified therein. A room-to-room walkthrough was conducted for site buildings to confirm or clarify historical information. Site utility maps were reviewed and accessible manhole/catch basin covers were removed in an effort to assess the orientation and construction of penetrations and connecting pipelines.

2.2.2 Surface Features

Site structures and utilities are the relevant surface features with respect to the investigation of the presence and migration of chemical constituents, or that may affect future uses of the site. Outside of the site structures, stored equipment of varied condition was scattered somewhat randomly around the eastern portion of the site. A deteriorated perimeter fence surrounded the site. There were entry gates at the western boundary of the site (off Midler Avenue).

There was no observed evidence of specific areas external to the buildings where the condition of surface features (e.g., stained soil or dead vegetation) indicated a recognized environmental condition. One existing tenant in Building 13 had oily equipment stored outside. Accumulated debris and extreme building deterioration (to the point where entry to some areas was not safe) precluded thorough physical inspection of Building 11; however, historical information suggested no concerns.

2.2.3 Contaminant Source Investigation

The contaminant source investigation focused on areas associated with past use of industrial chemicals, as indicated by the Phase I ESA and the previous site investigations. As part of the comprehensive site investigation, sediment and/or liquid samples were collected from subsurface utility locations (see Figure 3), as described in the following table:

Sediment and/or Liquid Sample from Utility Location	Location/Area of Concern
S-1, S-2, S-3	Stormwater catch basins
S4	Sump in southeast corner of "Compressor Room"
S–5	Trench drain
S–6, S–7	Stormwater catch basins in alley
S8	Diamond plate covered trench east of the overhead door.
S–9	Diamond plate covered trench and sump in former "Plating Building" as shown on 1960 mapping.
S-10	Sump in "Building 9"
S-11	Main storm sewer south of "Building 13"
S-12	Trench in western portion of "Building 3".

2.2.4 Soil and Vadose Zone Investigations

2.2.4.1 Summary

During the multiple investigation and IRM phases at the site, more than 300 hollow-stem auger or direct push soil borings were completed, with 32 being completed as permanent or temporary groundwater monitoring wells. Eighteen borings were completed during the initial phase of investigative activities (including eight completed as monitoring wells above the clay layer), six borings (all completed as monitoring wells to the top of the clay unit) were completed during the second phase, seven interior borings with temporary monitoring wells were also installed during the second phase, along with four deep borings (all completed as temporary monitoring wells) followed by installation of four permanent deep wells. The following additional activities were undertaken to assess soil and vadose zone conditions at the site:

- C&S observed continuous sampling and recorded PID measurements for the top twenty feet at each of the 36 geotechnical borings at the site. Five geotechnical soil boring locations (PB3, PB4, PB7, PB12, and LB8) were also sampled for laboratory analysis.
- Sixteen GeoProbe[™] explorations were conducted in March 2005 to delineate the chlorinated hydrocarbon plume in the area around Phase 1 soil boring B-3.
- Three surface soil samples and six test pit samples were collected at locations designated based on their proximity to activities or structures associated with suspect environmental conditions.
- 123 additional GeoProbe[™] borings were completed in late 2005 and early 2006 to complete delineation of the four source areas.
- GeoProbe[™] borings for 59 IRM verification sample locations were made during the period from March 2007 through September 2007. Many of those locations were bored and sampled on multiple occasions.

Figure 3 provides the locations for all site soil borings, test pits, and surface soil samples, and monitoring wells.

Depending on accessibility of a particular boring location, the drilling equipment was either mounted on a truck or a custom-fabricated unit made for interior buildings or small space applications. Drilling spoils created at each borehole (except those completed as groundwater monitoring wells) were placed into the borehole of origin as backfill. Excess spoils including those generated at boreholes completed as groundwater monitoring wells were placed in 55-gallon drums for subsequent disposal.

Each borehole made by rotary drilling methods was sampled continuously (i.e., split spoons) in accordance with ASTM D1586-99. Retrieved soil samples were visually examined to assess subsurface conditions and physical properties of the strata. These properties included: color, moisture content, and visual evidence of discoloration or sheens. Additionally, representative soil samples were field screened for evidence of volatile organic vapors via conventional headspace analysis techniques using a photoionization detector (PID) equipped with a 10.6 eV lamp.

During the initial two phases of work, a minimum of one soil sample from each of the borings was collected for laboratory analysis. The sampling interval was determined in the field based on visual examination of the samples and the results of PID screening. In the absence of evidence of contamination, samples were retrieved from just above the water table. Analysis of the soil samples was for the Superfund Target Compound List (TCL) of parameters as specified in Exhibit C of the NYSDEC ASP.

2.2.4.2 Subsurface Investigations Phase 1, November – December 2004

The following table describes the locations for the Phase 1 environmental soil borings.

Soil Boring	Location/Area of Concern
B-1	Area previously identified in the 1994 Phase I ESA as the locations of an oil tank (1930 mapping) and an 8,000 gallon oil tank (1960 mapping).

Soil Boring	Location/Area of Concern
В–2	Former "Spray Oven and Dip Tank Degreaser" as shown on the 1960 mapping.
В-3	Former "Paint House" as shown on the 1960 mapping.
B-4	Interior courtyard area. 1960 mapping shows plating room was situated immediately south of courtyard.
В–5	Area previously identified in the 1994 Phase I ESA as being the location of "Paint Storage" as shown on the 1960 mapping.
B6	Area previously identified in the Phase I ESA as the location of a 12,000 gallon fuel oil tank as shown on the 1960 mapping. This area was also investigated by test pit explorations in July 2004.
B–7, B–8, B–9	Fill area previously identified in 1994 Phase I ESA. This area was also investigated by test trench explorations in July 2004. VOC's detected.
B–10	Plating Building as shown on the 1960 mapping.
PB3, PB4, PB7, PB12, LB-8.	Samples collected from geotechnical borings.

Surface soil samples P-1 through P-3 (see Figure 3) were composite samples for PCB analysis, collected as part of the Phase 1 investigation from the following areas potentially associated with past use, storage or disposal of electrical transformers.

Surface Soil / Sediment for PCBs Only	Location/Area of Concern
P-1	Area Y, previously identified in the 1994 Phase I ESA as the location of "Transformer Poles".
P-2	Area W - former transformer area.
Р-3	Existing exterior electrical transformer yard.

A fourth planned surface soil sampling location was not sampled as there was no solid media within the vault. Liquid sample IL-3 was collected at that location.

The following six test pit soil samples were collected for laboratory analysis from the thirteen test pits (see Appendix A for test pit logs):

Test Pits	Location/Area of Concern	
TP-4	Geotechnical test pit location selected for sampling based on observation of fuel oil emanating from the north (from under adjacent building)	
TP-5	Geotechnical test pit location selected for sampling based on presence of a sheen on the water entering the test pit at approximately four feet below the ground surface.	
TP-7	Area previously identified in the 1994 Phase I ESA as the location of an aboveground fuel oil tank, as shown on the 1930 mapping.	
TP-12	Area previously identified in the Phase I ESA as being the location of two 500-gallon skid mounted tanks. One tank was labeled as gasoline and the other "Diesel Off Road."	
TP-13	Area previously identified in the 1994 Phase I ESA as being the location of "Open Incinerators" as shown on the 1960 mapping.	
TP -14	Area previously identified as the location of an underground storage tank.	

2.2.4.3 Subsurface Investigation Phase 2, January – March 2005

Six additional Phase 2 borings into the deeper portion of the shallow aquifer above the clay layer were installed in January 2005 for completion as monitoring wells. Three of the six locations (MW-2D, MW-3D, and MW-4D) were selected as companion wells for Phase 1 installations, two of the six (MW-9D and MW-10D) were placed along the southern site boundary, and the final deeper well (MW-11D) was placed near Phase 1 boring B-3 where significant chlorinated hydrocarbons had been detected. The deeper borings were installed to determine soil quality, groundwater flow characteristics, and groundwater quality within that portion of the aquifer directly above the clay unit.

Sixteen GeoProbe[™] soil explorations were performed as part of the Phase 2 investigation in March 2005 to:

- Delineate the chlorinated hydrocarbon plume identified at soil boring B-3 during the first phase of borings; and
- Verify the existence and depth to the top of the clay unit identified during the Phase 1 borings.

PID measurements and soil classifications were made at each of the GeoProbe[™] locations and samples were selected for laboratory analysis based on those observations.

Also in March 2005, seven additional Phase 2 borings completed as temporary groundwater monitoring wells (locations identified with "SB" prefix on Figure 3) were installed at locations within site structures. These locations were selected based on historical information with the objective to:

- Investigate interior areas to determine source areas with respect to the chlorinated hydrocarbon impacts identified during the Phase 1 investigative activities;
- Delineate the chlorinated hydrocarbon plume within the sub-structure areas; and
- Verify the existence and depth to the top of the clay unit in sub-structure locations.

The interior soil boring locations were selected based on knowledge of previous activities in an area or on evidence of surface modifications, such as patched concrete, that may indicate removal of process equipment.

2.2.4.4 Subsurface Investigation Phase 3, July – February 2006

In July 2005, an investigation of the deep soils and aquifer was initiated. Four direct push borings (DW-1, DW-2, DW-3, and DW-4) were advanced to the top of the glacial till unit, with continuous sampling conducted from the top of the clay unit. Soil samples were collected consistent with the selection criteria developed during the Phase 1 and 2 installations. GeoProbe[™] discreet interval sampling tools were utilized to assess the presence or absence of dissolved phase VOCs and dense non-aqueous phase liquids within the sandy strata which lie

above the till. Permanent monitoring wells were installed at three of the four locations (DW-1, DW-2, and DW-3) in September 2005.

The final Phase 3 investigative activities completed in late 2005 and early 2006 included installation of an additional 123 GeoProbeTM soil explorations within the areas surrounding B-1 and B-5, MW-3D and north of B-3, to determine areal and vertical extent of impacted soils associated with the potential VOC source areas identified from the Phase 1 and Phase 2 investigation results.

2.2.5 Groundwater Investigations

Monitoring wells MW-1 through MW-8 were installed during the first round of RI activities at areas of interest. The locations were selected in agreement with NYSDEC preferences.

Monitoring	Location/Area of Concern
Well	
	Area previously identified in the 1994 Phase I ESA. Former
	location of a 500 gallon fuel oil tank as shown on the 1960 mapping.
MW–2	Perimeter monitoring well location.
MANY 2	Area previously identified in the 1994 Phase I ESA as the location
IVI W-3	of a drum storage area and stained soil.
	Area previously identified in the 1994 Phase I ESA as the location
M W-4	of 55-gallon drums of flammable liquid in 1960.
	This well is to assess groundwater quality in the vicinity of the
	following areas identified in the 1994 Phase I ESA:
	Paint storage (1960 mapping)
MAN 5	Lacquer and thinner storage (1960 mapping)
IVI W-3	Electrical transformer storage observed in 1994
	Previously identified ash/cinder debris.
	Storage of containers holding roof tar, epoxy paint, and
	concrete additives as observed in 1994.
	This monitoring well has been placed adjacent to C&D fill area
	identified in the 1994 Phase I ESA. In addition, it will used to
IVI W-0	monitor the presence of tetrachloroethene that was detected during
	the July 2004 investigation.

MW–7	Area previously identified in the 1994 Phase I ESA as being the		
	location of storage tanks situated on the ground surface. The origin		
	of these tanks was suspected to be Area S. This is also a perimeter		
	well and adjacent to the previously described C&D fill area.		
	Additionally, the 1960 mapping shows this area as the location of a		
	275 gallon fuel oil aboveground storage tank (AST).		
MW–8	Perimeter well and assessment of area previously identified in the		
	1994 Phase I ESA as the location of electrical transformers (1960		
	mapping). The 1960 mapping also shows a "Dip Tank" at the		
	interior northwest corner of the current day "Building No. 2."		

Consistent with the RI work plan, monitoring wells MW-1 through MW-8 were constructed with the screened interval straddling the water table.

After assessing the analytical results and field PID logs for the initial borings and monitoring wells, it was observed that impacts from chlorinated hydrocarbons appeared to be present at the site at depths below the level designated for the screened interval within the first eight monitoring wells. Specifically, the VOCs data for boring B-3 (14 ft. to 16 ft. below the ground surface), PID measurements from soil borings in the southern portion of the site, and the observed direction of groundwater flow across the site, indicated the possible presence of VOCs at depths from fourteen feet below the ground surface to the depth where a clay unit was encountered. To provide additional data regarding the presence of the clay unit, six Phase 2 monitoring wells were installed. These additional wells were screened across a deeper interval of the shallow aquifer than the Phase 1 monitoring wells, and were located as follows:

- MW-2D, MW-3D, and MW-4D were installed as "companion" wells to downgradient monitoring wells MW-2, MW-3, and MW-4, respectively.
- MW-11D was installed adjacent to boring B-3.
- MW-9D and MW-10D were installed within the City of Syracuse property immediately south of the site. In the east/west direction, the locations of MW-9D and MW-10D were selected to provide more complete data for soil and water quality along the downgradient (southern) site boundary.

Seven Phase 2 temporary monitoring wells were installed at locations ("SB" prefix) inside site structures during March 2005 to provide additional data characterizing conditions beneath the structures, to assist in delineating the chlorinated hydrocarbon plume identified immediately east of the structures, and to enhance the understanding of site groundwater flow patterns.

In the third phase of the RI (July 2005), four temporary deep "monitoring wells" ("DW" prefix) were installed to investigate groundwater quality within the sand unit(s) located directly above the glacial till in the south central portion of the site. After advancing a casing into a sand unit, groundwater was purged, the sampler inserted, and a sample collected utilizing a GeoProbeTM SP15 stainless steel groundwater sampling device. If more than one distinct sand unit was identified in the zone above the till, the process was repeated for each sand unit, resulting in multiple samples at some locations. The groundwater samples from this phase were analyzed for TCL VOCs. At the request of the NYSDEC, the samples were also analyzed for total chloride content to assist in establishing whether the overburden groundwater at the site, irrespective of VOC contamination, could potentially be an acceptable drinking water source.

Permanent deep monitoring wells (designated as "DAW" on Figure 3) were installed near the four temporary deep well locations (DW-1 through DW-4) as part of the Phase 3 work. These deep wells were installed by advancing an outer casing into the clay unit, and grouting in an inner casing through which the boring into the deeper aquifer was advanced. The monitoring wells were terminated at the top of the glacial till unit and screened to target the sand unit at the top of till. After installation, the deep wells were developed and sampled for VOCs and total chlorides.

During the latter stages of the RI, the following two additional monitoring wells were installed at the request of NYSDEC:

• MW-12D and MW-12DR, PVC and stainless steel monitoring wells, respectively, located in the "B-3" IRM treatment area and screened across the bottom of the peat/marl

unit (MW-12D was a replacement well for MW-11D and MW-12DR was a replacement well for MW-12); and

• MW-13D, located immediately south of the "MW-3D" IRM treatment area and screened across the bottom of the peat/marl unit.

In May 2006, concurrent with the sampling of the "DAW' series wells, another round of sampling was also conducted for the remaining shallow overburden wells: MW-1, MW-2, MW-2D, MW-3, MW-3D, MW-4, MW-4D, MW-6, MW-7, MW-8, MW-9D, MW-10D, MW-12D, and MW-13D.

In April and July 2007, samples for VOCs analysis were collected from monitoring well MW-13D and in August 2007 a final round of RI groundwater sampling was conducted for the eight remaining site wells: MW-2, MW-2D, MW-7, MW-8, MW-9D, MW-10D, MW-12D, and MW-13D.

2.2.6 Soil Vapor Sampling

At the request of NYSDEC and the New York State Department of Health (NYSDOH), a soil vapor sampling and analysis effort was added to the RI work plan in February 2006. The February 2006 *Soil Vapor Sampling Work Plan* was developed consistent with NYSDOH's February 2005 Public Comment Draft *Guidance for Evaluating Soil Vapor Intrusion in New York State*. The work plan specified installation of ten temporary soil vapor probes with associated subsequent sampling for VOCs. The soil vapor probe installations and sampling were conducted on April 19-20, 2006. Soil vapor sampling locations ("SV" prefix) are shown on Figure 3.

SECTION 3 - PHYSICAL CHARACTERISTICS OF THE STUDY AREA

This Section provides the results of the field activities that were conducted to determine the physical characteristics of the site.

3.1 Surface Features

Figure 2 shows the locations of the structures that were present at the site when the project began. Structures occupied most of the central portion of the site from the northern site boundary nearly to the southern site boundary. There were limited natural features at the site: a landscaped area with several mature trees were present in the western portion of the site (within the perimeter) fence. Outside the perimeter fence to the west was an open area (paved or soil covered) that had been used for parking by a local automobile dealer. East of the buildings, open areas, sparsely vegetated or unevenly surfaced, were present. These areas were apparently associated with storage of surplus or idle equipment and supplies and may have been utilized as "fill areas" over the years of facility operation.

Structural Integrity Assessment

Based on the redevelopment plans for the site, all existing structures were demolished. Therefore, a structural integrity assessment was not included in the scope of the RI.

3.2 Surface Water Hydrology

There were no surface water bodies at the site. Stormwater at the site apparently infiltrated permeable surfaces or was conveyed overland via low-permeability surfaces. Storm sewers west of the site structures appeared to convey stormwater towards Midler Avenue. South of the former buildings, a main trunk storm sewer runs east to west along the southern site boundary, receiving inflow from within the facility. Ground surface elevations prior to site work indicated that site storm sewers likely converge with regional storm water drainage along Midler Avenue where they would flow southward to Erie Boulevard.

3.3 Geology

Regional bedrock geologic mapping indicates that bedrock underlying the site consists of the Camillus and Syracuse formations of shale, dolostone, gypsum, or salts, generally present at depths of greater than 100 feet. These formations were not encountered at the terminal depth of site borings associated with the RI. Based on those depths, the affect of these deposits on the fate and transport of site constituents is assumed to be insignificant.

3.4 Hydrogeology

The unconsolidated deposits at the Midler site consist of surficial fill, peat/marl, clay, sand, and glacier till. The peat/marl unit and the deeper sand unit are the main water-bearing units at the Midler site.

3.4.1 Peat/Marl Unit

Figures 7 through 14 provide groundwater contours for the site for eight gauging events between December 2004 and August 2007. The well gauging data are provided in Table 13. The groundwater contours were developed from groundwater surface elevations (measured at RI monitoring wells) utilizing a kriging routine within the proprietary modeling software *Surfer8*TM. Assessment of the contours indicates:

- A generally southward flow of overburden groundwater at the site, with minor eastward and westward variations noted for the separate gauging events.
- No significant changes as additional monitoring wells, screened across deeper intervals within the subsurface, were installed and added to the data base.
- No significant changes if data from monitoring wells screened only across similar depth intervals were utilized to infer contours.

The preceding assessment indicates the presence of a relatively shallow, locally heterogeneous, hydrologic unit beneath the site, exhibiting an interpreted overburden groundwater surface that gently slopes to the south at a gradient of between 0.006 ft./ft. (as calculated between Phase 1

monitoring wells MW-8 and MW-3) and 0.0122 ft/ft (calculated average gradient for the four wells investigated by GeoLogic of Homer, NY [Appendix A]). The orientation of the groundwater surface is consistent with a slow southerly groundwater flow toward the location of the former Erie Canal, currently Eire Boulevard, a highly developed corridor which includes commercial, retail, light industrial, and other contaminated sites.

3.4.2 Sand Unit

The Phase 3 GeoProbe[™] explorations ("DW" prefix on Figure 3) and permanent monitoring well installations ("DAW" prefix) were installed to assess conditions within generally more granular strata (just above the top of the glacial till unit – refer to boring logs), at depths ranging from 35.8 feet to 56.5 feet below the ground surface.

Groundwater samples from the DW series of temporary wells were collected from discreet intervals within each borehole casing utilizing a GeoProbe[™] SP15 stainless steel groundwater sampling device. After sampling the groundwater from the terminal depth, the sampling device was removed from the casing and groundwater recovery at each location was tracked over time, utilizing measurements obtained by an electronic water level indicator. With the exception of temporary monitoring well DW-3, those measurements indicated recovery to levels similar to the static groundwater levels present in the shallower site wells. At DW-3, an "overpressure" condition was identified.

After installation, the permanent deep wells (DAW-1 through DAW -4) were purged by pumping with a peristaltic pump to establish natural groundwater conditions within the deeper strata. The permanent deep wells were developed and sampled consistent with the methods set forth in the work plan for those installations. Groundwater elevation data for these monitoring wells corroborated the data observed within the DW series wells, including the "overpressure" condition observed at DAW-3, which was estimated via measurement within a temporarily extended riser to be approximately 1.8 ft. As indicated on Figure IRM-2 in the Geologic NY, Inc. July 3, 2006 hydrogeology report (see Appendix B of this report), the groundwater

elevations taken in the sand unit wells "suggest radial flow towards a trough in the center of the site with groundwater discharging to the east."

3.4.3 Hydraulic Conductivity Testing

In October 2005, C&S conducted hydraulic conductivity testing at four site monitoring wells. The hydraulic conductivity testing was conducted to provide permeability information for specific locations and to allow estimation of groundwater flow rates within the overburden at the site. Rising head slug tests were conducted at monitoring wells MW-3D, MW-9D, MW-10D, and MW-11D. Well recovery data were logged utilizing a *Hermit*TM *Data Logger* and analyzed using the Bouwer-Rice method in the software program *Aquifer Test for Windows*", version 2.57. The raw data and graphs resulting from the reduction of that data are provided in Appendix B. The resulting hydraulic conductivities for the four wells are provided below.

Monitoring Well ID	Hydraulic Conductivity (cm/sec)
MW-3D	2.01 x 10 ⁻⁵
MW-9D	3.28×10^{-5}
MW-10D	3.74 x 10 ⁻⁵
MW-11D	4.78 x 10 ⁻⁶

Calculated from the above four tests, the average hydraulic conductivity for the site would be 2.38×10^{-5} cm/sec (4.69 x 10^{-5} ft/min).

In May 2006, GeoLogic conducted an independent investigation of the hydrogeological characteristics of the site, including rising and falling head hydraulic conductivity testing at four monitoring wells (MW-3D, MW-9D, MW-10D, and MW-12D). The GeoLogic report, provided in Appendix A, calculated an average hydraulic conductivity of 1.4×10^{-4} cm/sec for the locations investigated, along with a north to south direction of flow along a horizontal hydraulic gradient of 0.0122 ft/ft. The Geologic assessment estimated a groundwater velocity of 4.4 feet per year, and the following CVOC velocities:

- 3.1×10^{-2} feet per year for PCE;
- $1.0 \ge 10^{-1}$ feet per year for TCE;

- 1.0×10^{-1} feet per year for dichloroethenes (undifferentiated isomers); and
- 4.4×10^{-1} feet per year for vinyl chloride.

C&S performed a similar evaluation utilizing a range of Total Organic Carbon (TOC) values instead of an average value. Twelve subsurface soil samples were analyzed for TOC. The range of data for these twelve samples was 3.6% to 49.8% TOC, with an average of 10.80. Consistent with the Geologic report, and because of the high standard deviation, the low and high values were dropped resulting in a new range of 3.5% to 19.6% with an average of 8.0. The table below shows CVOC velocities for the different (minimum, mean, maximum) TOC concentrations.

Parameter	CVOC velocity in feet/year			
	Low (TOC = 3.5%)	Mean (TOC = 8.0%)	High (TOC = 19.6%)	
PCE	0.07	0.03	0.01	
TCE	0.23	0.10	0.04	
DCEs	0.24	0.11	0.04	
VC	0.86	0.44	0.18	

3.5 Demography and Land Use

Based on available documentation, land use near the site has been primarily industrial and commercial in nature since the late nineteenth century. Although industrial activity in the area has declined in recent years, the area is likely to maintain a commercial character due to the proximity of Interstate Route 690 and Erie Boulevard. Urban residential areas to the north and south of the site (both of which are at higher elevations than the site), and access via I-690 from suburban areas would appear to indicate a continued strong commercial viability for the area.

SECTION 4 - NATURE AND EXTENT OF CONTAMINATION

This section discusses the results of the RI sampling with respect to the nature and extent of contamination of environmental media.

4.1 Surface and Subsurface Soils

More than 300 environmental borings, geotechnical borings, probes, test pits, and surface soil samplings were conducted at the site including, as follows:

- Soil samples from more than 200 environmental borings and 5 geotechnical borings were submitted for laboratory analysis.
- Soil descriptions and field PID measurements from the all of the above soil boring and test pit locations.
- Six soil grab samples from test pits.
- Three surface soil grab samples analyzed for PCBs and pesticides. Due to the assumption that the site would be covered with buildings₂, pavement, and soil during development, only three samples were deemed necessary by the State.

The following general lithology for the site was compiled from the investigation boring logs (Appendix A), and is depicted via generalized geologic cross sections in Figure 16 (see Figure 15 for cross section locations):

- The top three to eight feet is predominantly fill material, consisting of a foundry sand matrix with organic and inorganic debris.
- A peat or peat/marl layer underlies the fill to a depth of 14 to 30 feet. The depth of this layer generally increases in the southern part of the site, except along the western boundary.
- A soft clay layer underlies the peat or peat/marl layer. The clay layer is of variable thickness, sometimes observed for thirty or more feet uninterrupted, and sometimes only present mixed with silt or peat. Data portraying the depth to, and thickness of, the clay unit are presented on Figure 16.

• Mixed sand, gravel, and silt layers of varying thicknesses were observed below the clay layer at most locations, underlain by a glacial till. The depth to the till generally increases to the south, ranging from as shallow as 15 feet along the northern site boundary to more than 51 feet along the southern boundary. At most locations, a discernible sand unit is present just above the glacial till.

Tables 1 through 8B provide summaries of the analytical data resulting from the subsurface soil sampling. These data indicate that VOCs were detected at concentrations exceeding NYSDEC TAGM 4046 RSCOs at the following soil boring locations and depths:

Phase 1 Subsurface Soil Sample Locations

- B-1 (4-6 ft. depth)
- B-3 (14-16 ft. depth)
- B-5 (6-8 ft. depth)
- B-10 (3-6 ft. depth)

Phase 2 Subsurface Soil Sample Locations

- MW-11D (20-22 ft. depth)
- GP-2 (12-16 ft. depth)
- GP-3 (16-19 ft. depth and 19-19.5 ft. depth)
- GP-4 (3-8 ft. depth)
- GP-9 (8-10.5 ft. depth)
- GP-14 (18.5-19.5 ft. depth)
- GP-15 (24-25 ft. depth)
- SB 12-1 (16-18 ft. depth)
- SB 13-2 (12-14 ft. depth and 20-22 ft. depth)

Phase 3 Subsurface Soil Sample Locations

- GPD-2 (15.8-17.5 ft. depth)
- GPD-3 (4-8 ft. depth, 15-17 ft. depth, 17-20 ft. depth, and 23-26 ft. depth)
- GPD-5 (14-15.2 ft. depth and 16-18 ft. depth)

- GPD-6 (4-8 ft. depth, 12-13 ft. depth, and 13-15 ft. depth)
- GPD-10 (4-7.6 ft. depth)
- GPD-14 (7-9.8 ft. depth)
- GPD-19 (3-4 ft. depth and 7-11 ft. depth)
- GPD-21 (15-18.2 ft. depth)
- GPD 26 (4-7 ft. depth and 11-15 ft. depth)
- GPD-27 (7-11 ft. depth)
- GPD-32 (11-15 ft. depth)
- GPD-33 (15-18 ft. depth)
- GPD-34 (7-11 ft. depth and 15-17 ft. depth)
- GPD-36 (11-15 ft.depth)
- GPD-37 (7-11 ft. depth and 15-18.3 ft. depth)
- GPD-38 (17-19 ft.depth)
- GPD-41 (7-11 ft. depth)
- GPD-42 (11-15 ft. depth)
- GPD 43 (11-15 ft. depth)
- GPD-44 (4-7 ft. depth)
- GPD-47 (11-15 ft. depth)
- GPD-49 (11-15 ft. depth and 15-17 ft. depth)
- GPD-51 (15-18.2 ft. depth)
- GPD-52 (15-17.5 ft. depth)
- GPD-57 (0.5-4 ft. depth)
- GPD-59 (11-14.3 ft. depth and 14.3-15 ft. depth)
- GPD-61 (15-17.8 ft. depth)
- GPD-64 (11-15 ft. depth)
- GPD-66 (11-15 ft. depth)
- GPD-67 (11-15 ft. depth)
- DW-4 (6-8 ft. depth and 16-18.5 ft. depth)

The analytical sample from Phase 1 test pit TP-14 (4-5 ft depth) also indicated the presence of VOCs at concentrations exceeding RSCOs.

Figure 4 presents the locations and VOC concentrations for the Phase 1 and Phase 2 soil samples that exceed RSCOs for VOCs. Figure 5 presents the locations and VOC concentrations for Phase 3 soil samples that exceed RSCOs for VOCs. At most of the locations where VOCs were detected at concentrations exceeding RSCOs, the compounds detected were predominantly chlorinated hydrocarbons (e.g., trichloroethene [TCE], tetrachloroethene [PCE], and several degradation products of TCE and PCE). Chlorinated VOC concentrations exceeding RSCOs were identified as deep as twenty-five feet below the ground surface in an area defined by borings B-3, GP-3, MW-11D, GP-15, and GPD-3, GPD-4, GPD-6, GPD-51, and GPD-52. Samples exhibiting the highest levels of VOCs were GPD-3-4-8 (PCE concentration of 1,000,000,000 µg/kg), GPD-3-17-20 (PCE concentration of 23,000,000 µg/kg), and GP-3-16-19 (PCE concentration of 13,000,000 µg/kg). Borings GP-3 and GPD-3 are located along the eastern end of Building 7 (former Paint House) and appear to be the centroid of the site's largest and most significantly impacted source area for chlorinated VOCs, hereafter referred to as the "B-3 Area".

Two additional potential chlorinated VOC source areas were identified by Phase 1 soil borings and delineated during subsequent investigative activities. Brief descriptions of these secondary source areas, each identified by its Phase 1 sample location, follow:

"B-1 Area": Located along the northern edge of Building 13, and extending under the building, this area is defined by the analytical data for borings B-1, DW-4, GPD-19, GPD-26, and GPD-28 and by test pit TP-14. The PCE/TCE impacts in these areas are relatively shallow (<19 ft. below the ground surface). Samples exhibiting the most significant impacts were GPD-26-11-15 (PCE concentration of 2,500,000 μ g/kg), DW-4-16-18.5 (PCE concentration of 600,000 μ g/kg), GPD-26-4-7 (PCE concentration of 210,000 μ g/kg), and TP-14-4-5 (PCE concentration of 83,000 μ g/kg). South of the B-1 area, a relatively large area is characterized by widespread detections of PCE/TCE degradation compounds (primarily vinyl chloride), with concentrations less than 5,000 μ g/kg.

"B-5 Area": Located east of Building 12, this area is defined by borings B-5, GPD-14, GPD-49, and GPD-66. Maximum depth of observed PCE/TCE impacts in this area is 17 feet. The magnitude of the maximum PCE/TCE concentrations in this area are approximately three orders of magnitude less than the maximum concentrations within the other two source areas, ranging from 7,100 μ g/kg PCE and 5,800 μ g/kg TCE for sample GPD-14-7-9.8 to 1,200 μ g/kg PCE and 2,600 ug/kg TCE for GPD-66-11-15.

"MW-3D Area": The initial RI soil sample from this boring did not exhibit significant CVOC impact, but the groundwater sample from this location exceeded Class GA standards for several parameters. During October 2005, a dense non-aqueous phase liquid (DNAPL) exhibiting the olfactory characteristics of PCE was observed in this MW-3D. Subsequent laboratory analysis confirmed that the DNAPL was PCE. Additional borings in this area confirmed the presence of elevated levels of CVOCs in a small area around MW-3D.

Approximately 125 feet to the south of the B-3 area, VOC data from Phase 2 boring SB 12-1 indicate reduced PCE and TCE concentrations at the 16-18 foot depth interval, although the concentrations remain greater than RSCOs (5,000 µg/kg PCE and 1,800 ug/kg TCE). Further south, soils VOC data and PID measurements for MW-3, MW-3D, SB 13-4, AND MW-10D soils data indicate detectable levels of the degradation products of the predominant site chlorinated hydrocarbons (TCE and PCE), with concentrations generally less than RSCOs.

At Phase 1 soil boring location B-10, the VOCs detected at concentrations exceeding RSCOs were xylenes, acetone, 2-butanone, and 4-methyl-2-pentanone. These compounds are associated with petroleum or ketones, and have different environmental characteristics from the chlorinated hydrocarbons. Due to auger refusal, boring B-10 was terminated at a depth of six feet. Boring B-10 is located at the northern edge of the "B-3 area" described above

Semivolatile organic compounds were detected at concentrations exceeding RSCOs in many of the Phase 1 subsurface soil samples. The semivolatile compounds detected are generally

polycyclic aromatic hydrocarbons (PAHs), a class of compounds associated with incomplete combustion of fossil fuels. These compounds bind tightly to soils and have limited solubility and low volatility, factors that limit their exposure pathways. At the Midler Avenue site, PAH concentrations exhibit a general pattern of declining with depth. Although Phase 3 sampling focused on VOCs, two Phase 3 borings investigated areas where analyses from Phase 1 geotechnical borings indicated several PAH compounds exceeded RSCOs; the results from boring SVGP-1-7-10 (see Table 8) indicated one PAH compound exceeded the applicable RSCO (Benzo(a)pyrene detected at 380 μ g/kg versus the RSCO of 61 μ g/kg).

Three pesticide compounds were detected at concentrations exceeding RSCOs in the Phase 1 soil sample from the 2-4 foot depth interval at soil boring PB-7 (maximum concentration of 160 ug/kg for endosulfan vs. RSCO of 100 ug/kg. Dieldrin was detected at a concentration of 73 ug/kg in the sample collected from the 2-4 foot depth interval at soil boring MW-4. Otherwise, pesticides/PCBs were not detected at concentrations exceeding RSCOs in subsurface soil samples.

Inorganic parameters were not detected at concentrations significantly exceeding RSCOs or site background in subsurface soil samples.

Wet chemistry results indicate slightly basic soil pH at the site with soils at B-2 exhibiting a more extreme basic pH of 11.1 Standard Units. Cyanide was not-detected in subsurface soils at a 4 ppm detection limit, except at MW-1 where it was detected 6.03 ppm. There is no RSCO in TAGM 4046 for cyanide in soils.

Table 9 provides the PCBs/Pesticides data for the three surface soil samples collected during the Phase 1 investigation. These data indicate that one pesticide compound (heptachlor epoxide) was detected at a concentration of 35 ug/kg (RSCO of 20 ug/kg) at sample location P-1, collected to the east of Building 1, and one pesticide compound (dieldrin) was detected at a concentration of 90 ug/kg (RSCO of 44 ug/kg) at sample location P-2, located north of Building 2.

Between September 2005 and March 2006, 123 additional borings with associated sampling for VOCs were conducted to delineate the final treatment areas to be addressed in the IRM. Figure 3 includes these supplemental sampling locations, which are designated with the prefixes "GPD" (2005) and "GP" followed by the source area (3, B1, B3, or 5), followed by the sequential boring number within that area. Table 10 provides the CVOCs data for all these borings.

IRM Soil Verification Samples

Section 5 discusses the IRM for the site, during which three of the four delineated source areas (the "B-1", "B-3",and "MW-3D" Areas) were treated via application of In-Situ Thermal Desorption. The fourth source area ("B-5" Area) was excavated and the soils placed within the "B-1" and "B-3" Areas for treatment. The May 2006 *Interim Remedial Measures Work Plan* documented the development of site specific clean-up objectives (SSCOs) and set forth the requirements for post-treatment verification sampling, which was conducted between March 2007 and September 2007. The October 2007 *Interim Remedial Measures Report* provides the full documentation of that portion of the project, including the verification sample locations and results.

For purposes of further discussion regarding the nature and extent of CVOC soil contamination within the four treatment areas, the IRM soil verification sampling results provide the relevant data. Table 2 from the October 2007 *Interim Remedial Measures Report* provides the summary verification sampling data. Figure 17 of this report provides all of the soil data points (IRM verification samples from within IRM treatment areas and RI sample results from outside the treatment areas) where the concentration of one or more CVOC parameters exceeds the respective SSCO for that parameter.

4.2 Potential Sources of Contamination (Site Utility Sediments and Liquids)

Consistent with the work plan for the site, C&S collected eight liquid and ten sediment samples from subsurface utility sumps, pits, manholes and trenches. Assessment of these data is useful in determining potential source areas for site contaminants and to facilitate determinations as to

whether the wastes may be classified as hazardous wastes (solid materials) for purposes of disposal. For liquids, the degree of impact affects the type and extent of treatment that may be required prior to discharge. An additional use for these data is in incorporating appropriate worker health and safety requirements into the remedial program for the site.

Tables 10 and 11 provide summaries of the analytical data resulting from the site utility sampling for sediments and liquids, respectively. These data indicate that volatile organic compounds in sediments were detected at levels that may meet hazardous waste criteria for TCE and PCE for the samples S-5 and S-10. Sample S-5 was associated with dry sediments collected from an extensive system of trenches in Building 13; there is no liquid sample associated with these trenches. Sample S-10 was collected from the sump in Building 9; liquid sample IL-10, which also exhibits chlorinated hydrocarbon impacts, is also associated with this sump.

Semivolatile organic compounds were not detected in sediment samples at concentrations indicative of potential hazardous waste materials. Likewise, liquid samples exhibit only trace detections of semivolatile compounds. Pesticides were not detected at concentrations indicative of potential hazardous waste materials. PCBs were detected in four sediment samples, but the concentrations do not indicate potential hazardous waste materials. Liquid samples exhibited only trace detections of pesticides and no detectable PCBs. Inorganic parameters in sediments were detected at levels that may meet "hazardous waste" criteria for cadmium for the samples S-5 and S-9. Locations S-5, S-10, and S-12 also exhibit potential "hazardous waste" characteristics with respect to lead and chromium. Wet chemistry results do not indicate potential hazardous waste levels for any of the sediment samples.

4.3 Groundwater

A total of 32 groundwater monitoring wells (including temporary wells and replacement wells) were installed and sampled during the RI. Figure 3 provides the locations of all monitoring wells and Table 13 provides the depths of borings and well screen intervals for monitoring wells utilized for gauging events. Groundwater elevations were measured by C&S personnel on eight

occasions between December 2004 and on August 2007 to aid in the creation of groundwater contour maps (see Figures 7 through 14). Section 3.4 provides a detailed discussion of site hydrogeology.

Overburden Monitoring Wells – Phase 1 Groundwater Analytical Data

Table 14 provides a summary of the analytical data resulting from the Phase 1 groundwater sampling. Figure 6 presents groundwater analytical data that exceeds NYSDEC's Class GA Groundwater Standards.

For the eight Phase 1 monitoring wells, VOCs were detected at concentrations exceeding NYSDEC Class GA Groundwater Standards or Guidance in the groundwater sample obtained from monitoring well MW-3. The compounds detected at levels exceeding Class GA Groundwater Standards were cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride. These are degradation products of TCE and PCE. Since MW-3 is downgradient of the area where chlorinated hydrocarbons were detected in soil, the compounds and levels detected appear be indicative of natural attenuation/degradation of those compounds.

Semivolatile Organic Compounds were detected at concentrations slightly exceeding NYSDEC Class GA Groundwater Standards or Guidance (based on estimated "J" values) in the groundwater samples obtained from monitoring wells MW-3, MW-4, MW-7, and MW-8. Pesticides/PCBs were not detected at concentrations exceeding NYSDEC Class GA Groundwater Standards or Guidance in the groundwater samples. Inorganic parameters were not detected at concentrations Significantly exceeding NYSDEC Class GA Groundwater Standards or Guidance in the groundwater samples.

Overburden Monitoring Wells – Phase 2 Groundwater Analytical Data

Table 14 provides a summary of the analytical data resulting from the Phase 2 sampling of exterior monitoring wells. The Phase 2 exterior monitoring well locations were selected to provide data associated with groundwater quality at the top of the clay unit in the area where chlorinated VOCs had been detected in soil during Phase 1 sampling (B-3) and in areas

downgradient of that area. For the six Phase 2 monitoring wells, volatile organic compounds were detected at concentrations exceeding NYSDEC Class GA Groundwater Standards or Guidance in the groundwater samples obtained from monitoring wells:

• MW-3D • MW-9D • MW-10D • MW-11D

The groundwater VOCs data indicate that at monitoring wells MW-9D and MW-10D the VOCs detected were low concentrations of TCE/PCE degradation products. VOC detections in samples collected from MW-3D and MW-11D indicate the presence of TCE and PCE, as well as degradation products, at concentrations exceeding Class GA Groundwater Standards.

Table 16 provides a summary of the analytical data resulting from the Phase 2 groundwater samples collected from the temporary wells installed within the site buildings. These data indicate concentrations of TCE/PCE and/or associated degradation products exceeding Class GA Groundwater Standards at the following locations:

• SB 12-1 • SB 13-2 • SB 13-4

Each of the above locations lies between the suspected source area (MW-11D) and exterior downgradient monitoring well locations. The chlorinated VOCs detected were predominantly degradation products (vinyl chloride and cis-1,2-dichloroethene), again apparently indicative of natural attenuation/degradation of TCE and PCE, which are present at significantly reduced concentrations compared to the upgradient locations.

Overburden Monitoring Wells – Phase 3 Phase Groundwater Analytical Data

Table 17 provides a summary of the analytical data resulting from the Phase 3 groundwater samples collected from the temporary deep monitoring wells ("DW" prefix); Table 18 provides the analytical data from the Phase 3 permanent deep monitoring wells ("DAW" prefix). At one of the four Phase 3 temporary monitoring wells (DW-2), several chlorinated VOCs were detected at concentrations exceeding their respective Class GA Groundwater Standards or Guidance Values. In the groundwater sample from DW-2, PCE was detected at a concentration of 11 ug/l (Class GA Groundwater Standard of 5 ug/l), cis-1,2-dichloroethene was detected at a

concentration of 36 ug/l (Class GA Groundwater Standard of 5 ug/l), and 1,2-dibromo-3chloropropane was detected at a concentration of 1.1 ug/l (Class GA Groundwater Standard of 0.04 ug/l).

To assist in establishing whether the overburden groundwater at the site, irrespective of VOC contamination, could potentially be an acceptable drinking water source, the Phase 3 groundwater samples were also analyzed for total chloride content. Those data, included in Table 16, indicate that in three of the four temporary deep wells, total chloride content exceeded the NYSDEC's Class GA Groundwater Standard of 250 mg/l.

To confirm deep groundwater quality, the three permanent monitoring wells (DAW-1, DAW-2, and DAW-3) were installed in September 2005, at the approximate locations of temporary monitoring wells DW-1, DW-2, and DW-3, respectively. The analytical results for VOCs and total chlorides for the groundwater samples collected from these monitoring wells are presented in Table 18. The VOC detections and concentrations are consistent with the data from the earlier temporary deep sand unit wells. A fourth deep monitoring well (DAW-4) was installed in April 2006 in the north-central portion of the site (Figure 3); May 2006 sampling of that well indicated that no VOCs were present at concentrations exceeding Class GA Standards (Table 20).

Overburden Monitoring Wells – August 2007 Groundwater Analytical Data

In August 2007, at the conclusion of the IRM, another round of groundwater samples was collected from the eight remaining monitoring wells, including upgradient wells, wells from within or near the IRM thermal treatment areas, and wells near the downgradient site boundary. Table 20 includes the data for this final RI groundwater sampling event, which indicate that, with respect to CVOCs, both the upgradient wells and the downgradient wells near the site boundary exhibited similar conditions to the previous (RI) results. The monitoring well from within a thermal treatment area (MW-12D) exhibited dramatically reduced levels (compared to pre-IRM conditions) of both highly chlorinated CVOCs and degradation compounds. A monitoring well

from immediately outside a thermal treatment area (MW-13D) exhibited increased levels of one degradation compound (vinyl chloride).

In or near the IRM treatment areas, concentrations of several ketones (principally acetone and 2butanone) in soil and groundwater were observed to increase during the IRM. The synthesis of these compounds during thermal treatment of soils has been documented and is apparently principally the result of physical/chemical reactions associated with humic acids present in the soils and the applied heat from the remedial system. The concentrations of these compounds are expected to decline relatively quickly as the subsurface cools.

4.4 Soil Vapor Sampling Results

Table 20 provides the VOCs data generated from the April 2006 soil vapor sampling effort and the associated Data Usability Summary Report (DUSR) is included in Appendix C. The soil vapor probe installations and sampling were conducted by Centek Laboratories of Syracuse, New York. The soil vapor data were submitted to NYSDEC and NYSDOH in May 2006, following receipt from the laboratory. The data did not indicate the presence of significant CVOC concentrations within site soil vapors, although the detectable presence of chemical compounds usually associated with ambient air (e.g., Freon) indicated the technical difficulties of sampling soil vapors at the shallow depths required at this site because of the high water table beneath the site

SECTION 5 - INTERIM REMEDIAL MEASURES

The July 2006 *IRM Work Plan* established site-specific clean-up objectives (SSCOs) for four CVOC parameters which were the focus of the IRM. The SSCOs, shown in the table below, were calculated using NYSDEC's methodology from the Technical and Guidance Memorandum (TAGM) #4046, utilizing site groundwater characteristics and Total Organic Carbon (TOC) data.

CVOC Parameter	Midler SSCO
РСЕ	5,600
TCE	2,800
Vinyl chloride	800
trans-1,2-Dichloroethene	1,200
All units in µg/kg	•

To establish practical IRM thermal treatment areas, a range of areas characterized by total CVOC concentration were considered. That analysis indicated that the vast majority of CVOC mass was associated with PCE within limited source areas that would be removed under any scenario targeting 100,000 µg/kg total CVOCs or less. Therefore, the adopted target concentration of 31,200 ug/kg total CVOCs represented an extremely conservative approach with respect to mass CVOC removals within the identified source areas. The IRM goal was to achieve, within each of the four identified treatment areas, an average concentration for each individual CVOC parameter that was less than its respective SSCO. The IRM verification data (Table 3, IRM Report) indicate that the remedial goal was achieved.

Table 4 from the October 2007 IRM Report provides an analysis of pre-IRM and post-IRM data for total CVOCs in the four treatment areas, and calculated the following:

Area	Pre-IRM Average Post-IRM Aver	
	Concentration (ug/kg)	Concentration (ug/kg)
"В-3"	18,927,326	9,430

"B-1"	4,481,576	8,002
"MW-3D"	1,306,250	4,951
"B-5"	57,745	3,513

Those data indicated that 99.95 % of the CVOCs in the "B-3" Area, 99.82 % of the CVOCs in the "B-1" Area, 99.62 % of the CVOCs in the "3-D" Area, and 93.92% of the CVOCs in the "B-5" Area were destroyed during the IRM. For the combined treatment areas (using a weighted average), 99.92% of CVOCs were destroyed during the IRM.

SECTION 6 - POST-IRM CONDITIONS

The extent of CVOC impacts at the site was significantly altered by the year-long IRM. The thermal destruction of more than 99.9% of CVOCs from within the source areas has left a site characterized by dispersed locations where CVOC impacts are present at concentrations orders of magnitude less than those present before the IRM. In addition to those documented reductions within the source areas, the IRM created dynamic conditions within the subsurface, likely associated with enhanced biodegradation of CVOCs, which will persist for months into the "cool-down" period.

Within the IRM treatment areas, there were 21 verification sampling locations where one or more individual CVOC parameters were detected at concentrations exceeding the respective SSCO (out of a total of 59 verification sampling locations). Likewise, there were approximately 36 RI sample locations (out of the hundreds of locations sampled) from outside of the delineated treatment areas where one or more individual CVOC parameters were present at levels exceeding respective SSCOs. VOCs data for these IRM and RI locations are presented in Tables 1 through 8 (RI) and Table 19 (IRM) and the locations are shown on Figures 3B and 17. Although these data represent a conservative estimate of present conditions, they are the relevant data for further discussion regarding the nature and extent of CVOC soil contamination, human health implications, and further remedial alternatives.

SECTION 7 - QUALITATIVE HUMAN HEALTH EXPOSURE ASSESSMENT

Completion of a Qualitative Human Health Exposure Assessment (Qualitative HHEA) following NYSDOH guidance is a requirement of the Brownfield Site Investigation / Remedial Alternatives Assessment process, as set forth in Appendix 3B of the NYSDEC's Draft *DER-10, Technical Guidance for Site Investigations and Remediation*. For the Pioneer Midler Avenue project, it is appropriate that the Qualitative HHEA be completed following the IRM, so that the assessment considers the effectiveness of the IRM at mitigating exposure risks at the site. Summary data generated during the Brownfield RI, the IRM, and during site redevelopment activities, are all considered in this assessment. The following subsections identify and assess:

- Contaminant sources within soil and groundwater at the site:
- Contaminant release and transport mechanisms;
- Potential points and routes of exposure;
- Human receptor populations; and
- Conclusions regarding exposure pathways.

7.1 Contaminant Sources in Soil

Subsurface Soils

As indicated above, the IRM data indicate that the IRM remedial objectives were achieved and that the average concentration of each CVOC within each of the source areas is less than the respective SSCO. RI/IRM data indicate that soils with individual CVOC concentrations exceeding the respective SSCO may exist both within the source areas and within areas that were not addressed during the IRM. The soil sampling locations where concentrations of one or more individual CVOCs may exceed the respective SSCO are shown on Figure 17.

Surface Soils

The urban fill surface soils originally at the site surface are presently almost completely covered by the site development (e.g., buildings, pavement, soil). Upon the completion of development,

the site's urban fill surface soils are expected to be completely covered. These types of urban fill soils are commonly contaminated with a class of compounds known as polycyclic (or polynuclear) aromatic hydrocarbons (PAHs). PAHs are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat.

7.2 Contaminant Sources in Groundwater

At the conclusion of the IRM, groundwater samples were collected from the eight remaining monitoring wells, including upgradient wells, from within or near the IRM thermal treatment areas, and wells near the downgradient site boundary. The data indicated that, with respect to CVOCs, both the upgradient wells and the downgradient wells near the site boundary exhibited similar conditions to the pre-IRM results. A monitoring well from within a thermal treatment area (MW-12D) exhibited dramatically reduced levels (compared to pre-IRM conditions) of both highly chlorinated CVOCs and degradation compounds. A monitoring well from immediately outside a thermal treatment area (MW-13D) exhibited increased levels of one degradation compound (vinyl chloride). The level of vinyl chloride is expected to decrease significantly from microbial degradation.

In or near the IRM treatment areas, concentrations of several ketones (principally acetone and 2butanone) in soil and groundwater were observed to increase during the IRM. The synthesis of these compounds during thermal treatment of soils has been documented at other sites and is apparently principally the result of physical/chemical reactions associated with humic acids present in the soils and the applied heat from the remedial system. The concentrations of these compounds would be expected to decline relatively quickly as the subsurface cools. For the purpose of this qualitative HHEA, these volatile organic compounds will be considered to be associated with the same potential migration pathways and receptors as the CVOCs discussed.

The table below lists the fate and transport parameters for acetone, 2-butanone, and MIBK. These data indicate that these compounds are volatile, very soluble in water, and readily

degradable in the subsurface. Once formed, they will be quickly removed via the following pathways:

- Volatilization from water to air and/or steam,
- Biodegradation in the cooler areas surrounding the actively heated treatment zone, and
- Advective flux with the groundwater and dilution due to mixing and dispersion.

	Acetone	2-Butanone	MIBK
Henry's Law Constant (atm-m ³ /mole)	3.8 x 10 ⁻⁵	1.1 x 10 ⁻⁵	1.4 x 10 ⁻⁴
Aqueous solubility (mg/L)	Miscible	259,000	20,000
Soil half-life	High: 168 hrs Low: 24 hrs Avg.: 96 hrs	High: 168 hrs Low: 24 hrs Avg.: 96 hrs	High: 168 hrs Low: 24 hrs Avg.: 96 hrs
Groundwater half-life	High: 336 hrs Low: 48 hrs Avg.: 192 hrs	High: 336 hrs Low: 48 hrs Avg.: 192 hrs	High: 336 hrs Low: 48 hrs Avg.: 192 hrs

Selected Fate and Transport Parameters for Acetone, 2-Butanone, and MIBK.

Source: Howard P.H. 1991, Handbook of Environmental Degradation Rates; and Howard P.H. 1997, Handbook of Environmental Fate and Exposure Data for Organic Chemicals.

As the treatment zone cools, the rate of formation of acetone, MEK, and MIBK will decrease while the removal rates remain relatively constant (i.e., volatilization, biodegradation, and advective flux). This will result in a reduction in the concentrations measured in soil and groundwater over time as the site cools to ambient temperatures.

7.3 Release and Transport Mechanisms (Soil and Groundwater)

Groundwater surface elevations at the Pioneer Midler Avenue site are within several feet, with some seasonal variation, of the ground surface. Above the groundwater table, vadose zone materials, whether native or imported fill materials, have not been found to be significantly

impacted by CVOCs. The discussion of release and transport mechanisms is therefore associated with the saturated overburden. The potential transport mechanisms for site CVOC contaminants would be:

- Partitioning between soil and groundwater; and
- Subsurface migration of the contaminant plume;

The potential release mechanism would be as soil vapor or atmospheric vapor, the occurrence of which would be most likely in the case of impacted soil disturbance or via use of extracted groundwater. It should be noted that, based on the destruction of more than 99.9% of CVOCs within the soil in source areas during the IRM, the degree of partitioning and the likelihood of significant vapor release are significantly reduced compared to pre-IRM conditions.

For PAHs in soils, the compounds are most likely to stick tightly to soil particles and not partition to groundwater or soil vapor.

Groundwater at the site, or in the vicinity of the site, is not used as a drinking water source. Downgradient of the site, properties are commercial in nature and served by the public water system. Since the area is a fully developed urban area with long-established public drinking water sources from remote surface waters, future withdrawal and use of the groundwater from beneath the site is not necessary. Furthermore, it is assumed that institutional controls would be available to restrict use of site groundwater. Therefore, the only feasible transport mechanism for groundwater is via migration to off-site receptors. RI hydrogeologic investigations (Appendix B) indicate an average groundwater velocity of approximately 4.4 feet/year at the site, and associated CVOC transport velocities 5 to 330 times slower than groundwater velocity. The RI site characterization of multiple CVOC release points and CVOC distribution within the subsurface appears to be consistent with those velocities and with the historical time-frame over which the contaminants were likely to have been released. These summary groundwater characteristics for the site, and all observations to date, indicate that CVOCs from the site would not migrate an appreciable distance downgradient before significant natural attenuation, principally via reductive dechlorination, would be likely to occur.

7.4 Potential Points and Routes of Exposure

The most likely point of direct human exposure to CVOCs in soils would be in the case where impacted soils were disturbed. In that case exposure would be possible via dermal absorption, inhalation of dust, or inhalation of soil vapors. Barring soil disturbance, migration of soil vapors to an ambient indoor environment constitutes another potential route of exposure.

The most likely point of direct human exposure to PAHs in soils would be in the case where impacted soils were disturbed. In that case exposure would be possible via inhalation of dust.

With respect to groundwater, a possible point or route of exposure could occur if impacted groundwater were withdrawn from the subsurface for use. In that unlikely case, the route of exposure could be ingestion, inhalation of vapors, or dermal absorption.

7.5 Potential Receptor Populations

The redeveloped use of the Pioneer Midler Avenue Site will be as a retail shopping facility. Public patrons of the redeveloped facility or workers performing typical occupational procedures would not contact contaminated soils or groundwater and would not be potential direct receptor populations. Therefore, the only feasible receptors with respect to soils or groundwater would be:

- Workers involved with installing or repairing facilities which might extend into PAH or CVOC-impacted soils or groundwater;
- Patrons or workers at the site who could be exposed to CVOC vapors within the indoor environment at the site.

This analysis concludes that there is no likely exposure scenario associated with withdrawal and use of groundwater at with the site. However, it is appropriate for a site remedy to include measures to assure that site groundwater will not be withdrawn and used for any purpose, as well

as measures to monitor groundwater conditions at the downgradient site boundary to confirm that conditions over time do not change to the extent that additional potential receptor populations could be identified.

7.6 Conclusions Regarding Exposure Pathways

The preceding exposure assessment indicates that the plausible exposure pathways identified are:

- The future on-site worker who may contact impacted soils or groundwater; and
- The future on-site patron or worker who could be exposed to CVOC vapors within an interior environment.

With regard to future construction workers contacting deep soils or groundwater after the redevelopment of the site, it is assumed that the Site Management Plan will be adopted that will bind the owner to inform future site workers as to the potential presence of CVOCs within site media and require their employers to provide adequate health and safety monitoring and, if required, personal protective equipment.

With regard to the potential exposure to CVOC vapors, the NYSDEC and NYSDOH require that structures at the Site be equipped with a sub-slab depressurization system (SSDS) designed consistent with NYSDOH guidelines that will actively route soil vapors from beneath the structure to the ambient outdoor environment and provide the ability to monitor vapor quality below the building slab.

This exposure assessment indicates that further assessment of remedial alternatives for the site should consider the potential human exposure pathways identified. Any adopted remedy must include adequate measures to mitigate the identified threats to the health of future site patrons, workers, and the general public. Furthermore, the adopted remedy should, to the extent feasible, provide measures to assure that significantly contaminated site groundwater will not migrate off-site or be withdrawn and used for any purpose. There should also be measures to monitor

groundwater conditions at the downgradient site boundary to confirm that conditions over time do not change to the extent that additional potential receptor populations could be identified.

SECTION 8 - REMEDIAL ALTERNATIVES ANALYSIS

8.1 Introduction

This section identifies remedial technologies that are available to address soil and groundwater impacted by CVOCs, and discusses the feasibility of incorporating one or more of these technologies as part of the final remedy at the Pioneer Midler Avenue site. This alternatives analysis follows the methodology set forth in Section 4 of the NYSDEC's Draft *DER-10 Technical Guidance for Site Investigation and Remediation* and is based on post-IRM site conditions and identified risks to human health or the environment, as identified and discussed in previous sections of this report. Alternatives were evaluated relative to the following criteria (with descriptions as provided in DER-10):

- 1. *Overall Protection of Public Health and the Environment*. This criterion is an evaluation of the remedy's ability to protect public health and the environment, assessing how risks posed through each existing or potential pathway of exposure are eliminated, reduced or controlled through removal, treatment, engineering controls or institutional controls.
- 2. *Compliance with Standards, Criteria, and Guidance (SCGs)*. Compliance with SCGs addresses whether or not a remedy will meet applicable environmental laws, regulations, standards, and guidance.
- 3. *Long-term Effectiveness and Permanence*. This criterion evaluates the long-term effectiveness of the remedy after implementation.
- 4. *Reduction of Toxicity, Mobility or Volume with Treatment*. The remedy's ability to reduce the toxicity, mobility or volume of site contamination is evaluated.
- 5. *Short-term Effectiveness*. The potential short-term adverse impacts and risks of the remedy upon the community, the workers, and the environment during the construction and/or implementation are evaluated.
- 6. *Implementability*. The technical and administrative feasibility of implementing the remedy is evaluated. Technical feasibility includes the difficulties associated with the construction and the ability to monitor the effectiveness of the remedy. For administrative

feasibility, the availability of the necessary personnel and material is evaluated along with potential difficulties in obtaining specific operating approvals, access for construction, etc.

- 7. Cost. Capital, operation, maintenance and monitoring costs are evaluated for the remedy.
- 8. *Community Acceptance*. The public's comments, concerns, and overall perception of the remedy, if any, are evaluated in a format that responds to all questions that are raised (i.e., responsiveness summary).
- 9. Land Use. Since the inception of the Pioneer Midler Avenue Project, it has been the stated intention that redevelopment of this former industrial and commercial site would be as a retail commercial facility. Remedial alternatives should be compared as to the ability to attain remedial goals given that intended use.

8.2 Remedial Goal

The overall remedial goal for the pioneer Midler Avenue site is to eliminate or mitigate significant threats to public health and the environment, given the intended use of the site.

8.3 Remedial Action Objectives for Soil

As indicated earlier in this report, the IRM verification data (Table 3 of the IRM Report) indicate that the IRM remedial goal was achieved and that, for the combined treatment areas, 99.92% of CVOCs were destroyed during the IRM. Within the IRM treatment areas, there were 21 final verification sampling locations where one or more individual CVOC parameters were detected at concentrations exceeding the respective IRM SSCO (out of a total of 59 verification sampling locations). Figure 17 shows the distribution of those samples, and includes all RI soil sample locations where one or more individual CVOC parameters were detected at levels exceeding the IRM SSCOs and that were outside the delineated treatment areas.

The HHEA identified the following feasible exposure scenarios with respect to soils at the site:

• A future on-site worker who might contact impacted soils; and

• The future on-site patron or worker who could be exposed to volatile vapors within site structures.

Given the above, the Remedial Action Objective (RAO) with respect to site soils would be to protect future on-site workers or patrons from contact with impacted soils or vapors.

8.4 Remedial Action Objectives for Groundwater

As discussed previously, the analytical results from the final RI groundwater sampling event (Table 20) indicated:

- No appreciable change in groundwater flow direction or in groundwater quality at site upgradient, side-gradient, or downgradient locations;
- Significant reductions in CVOC concentrations within the groundwater (as well as in the soil) in the "B-3" area at the conclusion of the thermal treatment regime;
- An increase in the concentration of one CVOC compound (vinyl chloride) immediately outside the "3-D" thermal treatment area (MW-13D sample);
- An increase in the concentrations of several ketone compounds (acetone, 2-butanone, and 4-methyl-2-pentanone) in and near the thermal treatment areas.

The final two conditions discussed above are apparently related to the dynamic effects of the thermal increase within and near the thermal treatment areas. Within the thermal treatment areas, the temperature conditions that destroyed CVOC compounds also favored increased production of ketones. In areas outside and proximate to the treatment areas, increased temperatures apparently enhanced biological degradation (dechlorination) of CVOCs. These effects, and the associated concentrations of the volatile chemical constituents of interest (both CVOCs and ketones), would be expected to decline as the subsurface temperatures decline to ambient conditions in the months following cessation of heating. The decrease in CVOC and ketone concentrations would occur from the degradation of these materials from naturally occurring bacteria.

The lithology and hydrogeology for the site are discussed in Report Sections 3 and 4. These assessments indicate a low hydraulic gradient and very slow-moving shallow overburden groundwater above a clay confining unit (aquitard) of varying thickness. This characterization was consistent with the sizes and configurations of the CVOC source areas identified and treated via the IRM, as well as the time–frame over which those impacted areas evolved. The presence of conditions amenable to reductive dechlorination of PCE (the compound that is assumed to be the original source of CVOC contamination at the site) is empirically evidenced by the predominance of degradation compounds (vinyl chloride, dichloroethenes) outside the identified source areas and the trend of declining concentrations of those degradation compounds with distance from the source areas.

The potential affects to the groundwater regime in and near the treatment areas caused by the dynamic temperature conditions associated with the IRM could temporarily alter groundwater physical/chemical characteristics, including water surface elevations, viscosity, kinematic viscosity, dissolved oxygen, pH, and microbiological activity. Those effects to the subsurface physical/chemical environment would be expected to create subsurface transport and biological activity characteristics different from static conditions that would slowly return to the steady state characteristics identified during the RI.

Due to the long-established utilization of public drinking water supplies in areas surrounding the site, the HHEA concludes that, although groundwater at the site contains volatile organic compounds at concentrations exceeding Class GA Groundwater Standards, the only feasible exposure scenarios were associated with:

- The future on-site worker who might contact impacted groundwater.
- The future on-site patron or worker who could be exposed to volatile vapors within site structures.

Therefore, one RAO with respect to site groundwater would be to protect future on-site workers or patrons from contact with groundwater or vapors.

Although, in our opinion, the HHEA concluded that there was no likely exposure scenario associated with withdrawal and use of groundwater at the site, that assessment did conclude that it would be appropriate for a site remedy to include measures to assure that site groundwater will not be withdrawn and used for any purpose, as well as measures to monitor groundwater conditions at the downgradient site boundary to confirm conditions over time. Therefore, additional RAOs for groundwater would be:

- To assure that site groundwater will not be withdrawn and used for any reason.
- To mitigate potential off-site CVOC migration via site groundwater.

8.5 Remedial Alternatives for Soil

Given the summary site characteristics and conditions, the following remedial technologies have been identified as potentially applicable to soils impacted by volatile organic contaminants:

- Excavation and Off-Site Disposal
- In-Situ Thermal Treatment
- Institutional and/or Engineering Controls

The following subsections describe the above remedial technologies and assess the feasibility of each in addressing the remaining CVOC-impacted materials at the Pioneer Midler Avenue site.

8.5.1 Excavation and Off-Site Disposal

Technology Description

This technology consists of excavating impacted materials, transporting them off-site for disposal or treatment, and replacing the excavated materials with clean imported fill. Excavation was successfully implemented within the shallow, overburden soils within the "B-5" treatment area during the IRM, as documented in preceding sections of this report. Due to the shallow site groundwater table and the depths of the CVOC impacts, each area to be excavated would need to be sheet-piled and braced to limit groundwater intrusion. Non-impacted upper soils would be

characterized, removed and stockpiled. Impacted soils would be characterized using a photoionization detector and segregated for disposal. A confirmation sampling program would be incorporated to confirm that remedial goals were achieved; excavations would need to be kept open and dewatered pending receipt of sample results in case additional excavation would be needed to achieve clean-up goals. Affected areas would need to be restored.

Feasibility Assessment

Excavation was utilized in the "B-5" area during the IRM based on relatively shallow depths of impacts in that area and because the impacted soils could be moved to a thermal treatment area for treatment (avoiding the costs for transport and disposal). The IRM soil verification data confirmed that the IRM goal (average concentration of each CVOC less than SSCO) was achieved at the limits of the "B-5" excavation. The further application of this technology to soils where one or more CVOC parameters exceed cleanup goals, would extend this technology to deeper overburden soils within an area approximately double the size of the combined IRM treatment areas, resulting in unit costs far exceeding those of the IRM (and far beyond feasibility for a private investor), and associated CVOC removals two to three orders of magnitude less than were achieved during the IRM.

This technology could be successfully implemented: all known soils with impacts exceeding cleanup goals could be excavated and transported from the site for disposal, until verification samples from the limits of excavations met the cleanup goals. However, even after that inordinate effort and expense, institutional and/or engineering controls would remain appropriate to meet the site RAOs. Therefore, given the prohibitive efforts and costs of implementing this technology, and the fact that successful implementation would not obviate the need for institutional and/or engineering controls, this technology is deemed not feasible for addressing remaining impacts to soils at the site.

8.5.2 In-Situ Thermal Treatment

Technology Description

This technology consists of heating the subsurface to thermally destroy volatile organic contaminants. Two specific variants of in-situ thermal treatment differ in the manner in which the soils are heated; one technology induces an electrical current between pairs of electrodes placed in the subsurface and another technology installs electrical resistance heating elements within vertical wells. Application of either of these technologies at the site would include a vapor extraction and treatment system and associated collection and treatment/destruction of withdrawn vapors and condensed liquids.

In-situ thermal treatment was selected as the preferred technology for the IRM source areas based on the shallow depth to groundwater, the generally deeper occurrences of CVOC impacts, and the higher CVOC concentrations (particularly the highly chlorinated isomers, PCE and TCE) in the treatment areas. For the purpose of the IRM, in-situ thermal treatment was judged to be more cost-effective than excavation and disposal because of the depth of the CVOC-impacted soils, the extremely elevated CVOC concentrations exhibited (pre-IRM concentration of 18,927,326 ug/kg average "Total CVOCs" in the "B-3" area), and because a large fraction of excavated soils would likely have needed to be disposed as hazardous waste.

Feasibility Assessment

Figure 17 shows the known sample points where RI and IRM data identify one or more individual CVOC concentrations that may exceed the respective SSCO. The distribution of these sample points indicates that an area roughly twice the size of the IRM treatment areas, with average CVOC concentrations three orders of magnitude less than those addressed during the IRM, would need to be treated to remediate soils exhibiting individual CVOCs that presently may exceed IRM SSCOs. The resulting cost per mass unit of CVOCs removed would be thousands of times greater than that achieved during the IRM. However, even after that substantial effort and expense, institutional and/or engineering controls would remain appropriate to meet the site RAOs. Therefore, based on the prohibitive costs of implementing this technology (far beyond feasible costs for a private investor), and on the fact that successful implementation would not obviate the need for institutional and/or engineering controls, in our opinion, this technology is not feasible for addressing remaining impacts to soils at the site.

8.5.3 Institutional and Engineering Controls

Technology Description

An *institutional control* is a non-physical means of enforcing a restriction on the use of real property that is used in situations where conditions make the property suitable for some, but not all, potential uses of the property. The purpose of an institutional control, such as an environmental easement, may be to limit human or environmental exposure, restrict use, or provide notice of such restriction.

Engineering controls consist of physical barriers or methods employed to actively or passively contain, stabilize, or monitor contamination; restrict the movement of contamination to ensure the long-term effectiveness of a remedial program; or eliminate potential exposure pathways to contamination. Examples potentially applicable to the Pioneer Midler Avenue site would be low-permeability membranes or sub-slab depressurization systems applied below the concrete building slabs or a positively pressured interior atmospheric system within a structure.

Feasibility Assessment

The analyses provided in the RI, the Qualitative HHEA and in this RAA indicate that the present condition of the Pioneer Midler Avenue site, with safeguards to mitigate identified exposure scenarios, is compatible with the intended use of the site as a retail commercial establishment. After completion of the IRM and redevelopment of the site, there is a possibility of a future change in the use of the site that might require significant additional construction. Therefore, it would be feasible and appropriate to:

• Incorporate institutional controls to limit the types of activities that might take place at the site in the future, and to notify future site workers as to the site's limitations and to the nature of potential exposures; and

• Incorporate engineering controls, such as sub-slab depressurization systems for site structures to mitigate potential for site workers and patrons to be exposed to CVOC vapors from the subsurface.

8.6 Potential Remedial Actions for Groundwater

The remedial goal with respect to groundwater would be to mitigate human or environmental exposure to contaminants in the groundwater. The Qualitative HHEA evaluated use of the groundwater from the site as a potential human exposure pathway, and concluded that, given the availability of public drinking water, such use is unlikely. Technologies available for mitigating exposure to contaminated groundwater are:

- In-Situ or Ex-Situ Groundwater Treatment;
- Monitored Natural Attenuation; and
- Institutional and/or Engineering Controls.

The following subsections describe the above technologies and assess the feasibility of each in addressing groundwater at the Pioneer Midler Avenue site.

8.6.1 In-Situ or Ex-Situ Groundwater Treatment

Technology Description

This technology could consist of one of a large variety of treatment systems that are capable of treating groundwater either in place (e.g., reaction walls, injection of microbes or nutrients, air sparge) or after extraction of the groundwater (e.g., air stripping, granular activated carbon adsorption). In general, these technologies are applicable to sites where a distinct area of impacted groundwater (contaminant plume) is present. For in-situ technologies to be effective the hydrogeological characteristics and contaminant distribution data for the site should indicate that the contaminant plume coincides with the treatment area to an extent necessary for adequate treatment to occur; otherwise, a hydraulic control technology would need to be included to achieve that condition. For ex-situ technologies to be effective, the groundwater extraction field

would need to assert an area of influence sufficient to remove and treat impacted groundwater from the entire plume. In-situ technologies tend to be capital intensive, but may be less expensive to operate and maintain compared to ex-situ technologies. Achieving remediation to stringent standards (such as Class GA groundwater Standards) is often problematic for all of these technologies due to ongoing soil/groundwater contaminant partitioning and to practical difficulties and costs involved with addressing large areas of low-level groundwater contamination.

Feasibility Assessment

The summary site groundwater data do not identify a CVOC contaminant plume that would appear to be compatible with ex-situ or in-situ treatment technologies. Of the fourteen monitoring wells installed in the peat/marl unit, only those within IRM treatment areas (MW-3D, MW-11D, MW-12D) exhibited significant concentrations of the highly chlorinated CVOCs (PCE or TCE) in groundwater prior to implementation of the IRM. Based on the post-IRM (August 2007) sample from the "B-3" treatment area monitoring well (MW-12D), the thermal treatment effectively removed those highly chlorinated compounds from groundwater in the source areas. Outside the thermal treatment areas, the distribution of CVOCs in groundwater appears to be dispersed, low-level concentrations, and composed primarily of the lower-chlorinated degradation compounds (VC, cis-DCE). As previously discussed, two situations have been identified that warrant consideration of ex-situ or in-situ remedial technologies:

- In MW-13D, an increase in vinyl chloride was detected in the post-IRM groundwater sample; and
- Within all thermal treatment areas, several ketones (acetone, 2-butanone, and 4-methyl-2-pentanone) were detected in IRM soil verification samples and in post-IRM groundwater samples.

Both of the above conditions appear to be associated with the dynamic thermal conditions within and near the thermal treatment areas. As such, the observed effects upon the subsurface physical/chemical environment are assumed to be temporal, and would not warrant mitigation actions of the scope associated with ex-situ or in-situ treatment technologies. Concentration of

ketones and vinyl chloride are expected to continue decreasing through natural attenuation after the subsurface has cooled. Therefore, these in-situ and ex-situ technologies are concluded to be not appropriate for the site given current conditions.

8.6.2 Monitored Natural Attenuation

Technology Description

Natural attenuation processes (biodegradation, dispersion, sorption, and volatilization) are active to some degree within any CVOC-impacted groundwater system. In a situation where natural attenuation processes, compared with other remedial alternatives, can be expected to attain site remedial objectives within a reasonable time period, reliance on and monitoring of these processes can constitute an appropriate site remedy. In most cases, adoption of monitored natural attenuation as the site remedy follows a period of active remediation, such as the source area thermal treatment implemented as an IRM at the Midler site, or one of the ex-situ treatment technologies discussed previously. Determining the appropriateness of monitored natural attenuation of CVOCs for a site requires, at a minimum:

- That the contaminant flow field be known to an acceptable degree of certainty;
- That a source of electron donors is present;
- That inorganic electron acceptors are not present in quantities that would interfere with biodegradation pathways;
- That the affects and interactions of attenuation processes have been considered and can be assessed periodically via monitoring; and
- That the potential for downgradient receptors to be exposed to contaminants can be assessed.

In most cases, site characterization data are used as a basis for determining whether monitored natural attenuation may be appropriate for a site. Performance monitoring will then be used to demonstrate the progress of natural attenuation of CVOCs, as well as to confirm that, among other things:

• No impacts to downgradient receptors are occurring;

- No additional releases of contaminants have occurred;
- No potentially toxic transformation products have resulted from biodegradation; and
- No environmental conditions (hydrogeologic, geochemical, microbiological) have changed to the extent that the efficacy of the attenuation processes may be compromised.

Performance monitoring typically continues for a specified period (e.g., two years) after clean-up objectives have been achieved. Institutional mechanisms for maintaining the monitoring program should be established in the remedy decision or in other binding site documents.

Feasibility Assessment

Although a large body of site data was generated during the RI, the IRM and associated removal of more than 99.9% of CVOCs from within the treatment areas has rendered much of those data obsolete. Existing soil conditions within and surrounding the thermal treatment areas, where one or more CVOCs may remain present at concentrations exceeding the IRM SSCOs are presented on Figure 17. Furthermore, during the last year of the three-year RI period, the IRM was being successfully implemented, resulting in dynamic conditions within and surrounding the thermal treatment areas. During the cool-down period, it is assumed that static conditions will slowly return to the treatment area environs, first to areas more distant from the thermal treatment zones, and finally inward to the centers of the treatment zones. Therefore, the following analysis of the appropriateness of monitored natural attenuation as the site remedy is based on

- The general site hydrogeologic characteristics developed during the RI;
- The results of the IRM, which successfully removed more than 99.9% of CVOCs from the treatment areas;
- One additional round of groundwater sampling conducted at the end of the IRM; and
- Supplemental (non-RI) investigations undertaken independently by Pioneer Midler Avenue, LLC.

The summary hydrogeologic investigations at this site have not identified any characteristics that would contraindicate the feasibility of natural attenuation. The presence of high concentrations of total organic carbon within the saturated overburden indicates that the peat/marl unit

constitutes an abundant electron donor source. The existence of degradation compounds at declining concentrations in downgradient locations indicates that, if present, inorganic electron acceptors are not inhibiting some level of reductive dechlorination from occurring.

To gain an understanding of the presence of populations of dechlorinating microbes in the site groundwater regime, Pioneer Midler Avenue, LLC collected one sample from each of three site monitoring wells (MW-3D, MW-11D, and SB-7-1) in October 2005, using sample kits provided by Microbial Insights of Rockford, Tennessee. This limited investigation was not a formal part of the RI. The samples were analyzed by Microbial Insights for the presence of Dehalococcoides (dechlorinating bacteria) and for functional genes and phylogenetic groups associated with dechlorinating conditions. The data generated indicated the presence of Dehalococcoides and functional genes at each of the wells.

To augment the Microbial Insights data, and to define post-IRM geochemical and microbiological conditions downgradient of one of the thermal treatment areas, Pioneer Midler Avenue, LLC collected additional groundwater samples from monitoring well MW-13D in October 2007. Field parameters (ORP, DO, temperature) were measured and groundwater samples were submitted to STL Inc. and SiREM for analysis of a list of MNA indicators, including: dissolved inorganic carbon, dissolved organic carbon, VOCs, Dehalococcoides, Vinyl Chloride Reductase, Iron [total, Fe (II) and Fe (III)], nitrate, nitrite, sulfate, sulfide, methane, ethene, and ethane.

Table 22 presents the data generated from the October 2007 groundwater sampling and provides limited interpretation of the data. Table 22 also provides calculation of a site score using the USEPAs methodology from the 1998 *Technical Protocol for Evaluating Attenuation of Chlorinated Solvents in Ground Water*. According to the USEPA's scoring criteria, a site score exceeding 20 indicates that there is strong evidence for reductive dechlorination at the site; the score for the Pioneer Midler Avenue site from the October groundwater sampling at MW-13D is 22. In addition to the physical and geochemical parameters the USEPA uses in their site scoring methodology, the biological data generated from the October 2007 sampling indicate the

abundant presence of microbes associated with reductive dechlorination, particularly the specific microbes Vinyl Chloride Reductase (vcrA) capable of reducing vinyl chloride to ethene and carbon dioxide.

Of the four main components of natural attenuation (biodegradation, dispersion, sorption, and volatilization), in our opinion, biodegradation would be the dominant parameter at this site due to the slow-moving groundwater environment. Dispersion, sorption, and volatilization would all have more affect in a groundwater regime with higher rates of flux than are present at this site. This same relatively static environment would offer the ability to periodically assess conditions with ample opportunity to identify and assess a change that might indicate a threat to potential downgradient receptors.

The preceding analyses indicate that, with adequate institutional controls to prohibit use of site groundwater and with adequate engineering controls to protect identified potential on-site receptors, monitored natural attenuation constitutes a feasible remedy for the residual groundwater CVOC contamination that remains at this site following the IRM.

8.6.3 Institutional and Engineering Controls

Technology Description

Engineering controls to mitigate groundwater impacts include physical barriers to contain groundwater, such as slurry walls or sheet piling barriers. Other types of engineering controls include access controls, provision of alternative water supplies via connection to public water supply, adding treatment technologies to existing public water supplies, or installing filtration devices on private water supplies.

An *institutional control* is a non-physical means of enforcing a restriction on the use of real property that is used in situations where conditions make the property suitable for some, but not all, potential uses of the property. The purpose of an institutional control, such as an

environmental easement, may be to limit human or environmental exposure, restrict use, or provide notice of such restriction.

Feasibility Assessment

Barrier type engineering controls would not appear to be applicable to this site as no distinct plume or area of particularly elevated contaminant levels ("hot spot") appear to be present. With respect to the other types of controls, the encompassing availability and use of public water in the vicinity of the site renders these technologies unnecessary. To assure that withdrawal and use of groundwater from beneath the site does not occur, institution of site controls restricting such use is appropriate.

8.7 The "No Action" Alternative

Technology Description

Guidance for assessing remedial alternatives requires that the "No Action" alternative be included in the assessment. Under this alternative, the consequences of doing nothing to address identified or potential risks posed by the presence of contamination at a site are assessed. This alternative may be the appropriate one if the risks present are not of sufficient significance, or if the effectiveness of other potential remedies can not be established. For the Pioneer Midler Avenue site, this alternative assumes that following completion of the IRM and establishment of the site's redevelopment, no further actions would be undertaken by Pioneer Midler Avenue, LLC with respect to mitigating potential risks posed by CVOC contaminants that remain at the site.

Feasibility Assessment

Summary site data indicate that, following the IRM, CVOC impacts at the site are dramatically reduced compared to pre-IRM conditions. However, those residual CVOC impacts, and the identified potential exposure pathways, are significant enough that the "No-Action" alternative would not be appropriate.

8.8 Comparative Analyses

Tables 23 and 24 provide summaries of the comparative analyses of remedial alternatives for soil and groundwater, respectively. These tables assess each of the remedial technologies developed in the previous sections (including the "No Action" alternative) with respect to the nine criteria set forth in Section 8.1. The analyses in Tables 23 and 24 extend the comparison of alternatives to assess each with respect to both the intended use of the site as a commercial retail facility (Track 4 development) and a hypothetical Unrestricted Use (Track 1) development.

The technology assessments summarized in Tables 23 and 24 indicate that, for the intended use of the site (Track 4 development), and with the exception of the "No Action" alternative, each of the remedial technologies is potentially capable of achieving the remedial action objectives for the Pioneer Midler site. The technologies differ in the difficulty and high cost associated with the more aggressive potential remedies in addressing widespread but comparatively low levels of contaminated soils and groundwater present at the site following the source removal actions of the IRM. For the hypothetical Unrestricted Use (Track 1) development scenario, extensive application of those more aggressive and intrusive technologies would be required to attempt to attain site conditions appropriate for unrestricted use. However, it would remain likely that inclusion of the less physically aggressive technologies (Institutional and Engineering Controls, Monitored Natural Attenuation) would be appropriate following implementation of aggressive remedial actions, irrespective of the redevelopment track pursued.

8.9 Conclusions

The preceding discussions regarding potential exposure scenarios associated with CVOCs in the site soils and groundwater regimes indicate, in our opinion, that the identified risks posed by those constituents do not pose an immediate threat to a receptor population, such that the adoption of additional aggressive remedial actions is appropriate. We conclude that, based on the effectiveness of the IRM and the site's hydrogeological characteristics, risks associated with the site have been reduced to the extent that Monitored Natural Attenuation of groundwater conditions, accompanied by Institutional and Engineering Controls to protect the identified onsite receptor populations, constitute a remedy that provides:

- Overall protection of public health and the environment;
- A path to long-term attainment of cleanup goals for soil and Class GA Groundwater Standards for groundwater; and
- A commitment to monitoring long-term effectiveness and the flexibility to add elements of additional technologies, if appropriate in the future.

The selected technologies (Monitored Natural Attenuation, Institutional Controls, and Engineering Controls) provide a cost-effective means to return this site to a productive capacity for the surrounding community, with no technical restraints or short-term adverse impacts. Although the time needed to achieve cleanup goals for soil and Class GA Groundwater Standards for water will be on the order of decades, this time constraint could not likely be shortened appreciably by any of the other much more aggressive and expensive remedial technologies available.

F:\Project\C81 - Pioneer Development\C81.002 BCP\Close out and COC\October 2007\RI Report\Draft number 2\RI Report 121007.doc

Ren	nedio	al Invest	igation	Report
RI	Site	Sample	Locatio	n Map

Figure 3

LEGEND:

0

-£2

÷

÷

MW-10 MW-10D

TP-14

8-5

GPD-44

QP-12

98-13-4

D₩-1

DAW-1

PB-18

SVGP-1

18-1

	GP-4 3-8FT		ug/kg
500	VINYL CHLORIDE		80,000
	TETRACHLOROETH	ENE	4,400
	-		
<u>SB-12-1</u>	16-18FT	ug/kg	
TRICHLORC	ETHENE	1,800	
TETRACHLC	ROETHENE	5,000	
B-5 6-8FT	L	ig/kg	
VINYL CHLORI	DE	3,700	
TETRACHLORO	THENE	2,300	
TRANS- 1,2-	DICHLOROETHENE	3,800	
/			

Ţ		\overline{m}
	1 sty brick Bualding	
	<u></u>	

ጬ–13

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 4 Phase I and Phase II-Soils VOC Data Exceeding RSCO'S

J	

VINYL CHLORIDE 5,000 TRICHLOROETHENE 5,800 TETRACHLOROETHENE 7,100 TRANS- 1,2-DICHLOROETHENE 12,000	<u>GPD-14 7-9.8FT</u>	ug/kg
TRICHLOROETHENE 5,800 TETRACHLOROETHENE 7,100 TRANS - 1,2-DICHLOROETHENE 12,000	VINYL CHLORIDE	5,000
TETRACHLOROETHENE 7,100	TRICHLOROETHENE	5,800
TRANS- 1.2-DICHLOROETHENE 12.000	TETRACHLOROETHENE	7,100
	TRANS- 1,2-DICHLOROETHENE	12,000

ug/kg
1,500D
1,800D
810DJ
5,100D

GPD-66 11-15FT	ug/kg
TRICHLOROETHENE	2,600E
TETRACHLOROETHENE	1,200E

GPD-67 11-15FT	ug/kg_
TRICHLOROETHENE	5,800D
TETRACHLOROETHENE	1,600D

Pioneer Midler Avenue LLC Remedial Investigation Report Phase 3 - Soil Sample Results Exceeding RSCO'S

2007 t\C81

15, Ceiec

ug/1 140 200 5,900 THENE 170 ROETHENE 24	SB-12-1 (3-21-05) ug/l	
	1,1-DICHOROETHENE 7 TRICHLOROETHENE 7 TRICHLOROETHENE 14 TRAS-1,2-DICHLOROETHENE 15 CIS-1,2-DICHLOROETHENE 2,100 WW-5 WW-5	
DW-2 AND DAW-2	1,2-DIBROMO-3-CHLOROPROPANE 1.1 CIS-1,2-DICHLOROETHENE 36. DAW-2 (8-30-05) ' TETRACHLOROETHENE 10 CIS-1,2-DICHLOROETHENE 24 DAW-2 (5-3-06) ug/l CIS-1,2-DICHLOROETHENE 43	
ww−s ⊘	1.1TT BROCK RULING	
	М₩- 4 ₩₩- 4D Ф	
-10D (1-31-05) ^{/L} CHLORIDE NS-1,2-DICHLOROETHENE -1,2-DICHLOROETHENE	ug/l MW-10D (5-3-06) ug/l 32 VINYL CHLORIDE 58 46 TRANS-1,2-DICHLOROETHENE 22 700 CIS-1,2-DICHLOROETHENE 420	
Pioneer Mi Remedial Inves Pre-IRM Groun Exceeding Class	idler Avenue LLC tigation Report dgwater VOC's Data s GA Standards	6

_____ ₩₩-7

	_		
MW-10D (8-23-07)	ug/I		
VINYL CHLORIDE	78		
TRANS-1,2-DICHLOROETHENE	25		
CIS-1,2-DICHLOROETHENE	220		
1,1-DICHLOROETHENE	28		
Pioneer Mic Remedial Investi IRM And Post-I Exceeding Class	dler / gation RM Gro GA St	Avenue LLC Report undwater VOC's Data andards	Figure

M₩-4 M₩-40

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
i STY Block	QUANSAT HUT
	yan

	-	-
		-
_		
$\Delta \Delta$		

MW-13D	ug/I	ug/I	ug/l
VINYL CHLORIDE	2,000	7,200	16,000
TRANS-1,2-DICHLOROETHENE	95	93	93
CIS-1,2-DICHLÖROETHENE	980	3,200	1,700
TETRACHLOROETHENE	ND	160	ND
ACETONE	5,000	130	ND
MEK (2-BUTANONE)	1,300	ND	ND
METHYLENE CHLORIDE	32	ND	14
1,1-DICHLOROETHENE	ND	110	ND
TRICHLOROETHENE	ND	98	ND
BENZENE	37	15	ND
MIBK (4-METHYL-2-PENTANONE)	170	ND	44
TOLUENE	40	16	17

4-11-07 7-20-07 8-23-07

-07)	ug/I
	2,100
NE)	920
ROETHENE	61

_____ ₩₩-7

© ™-6

re 6B

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 7 Groundwater Contours for December 2004

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 8 Groundwater Contours for February 2005 Ŵ

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 9 Groundwater Contours for April 2005

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 10 Groundwater Contours for May 2005

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 11 Groundwater Contours for July 2005 ₩ N

Pioneer Midler Avenue LLC Remedial Investigation Report Figure12 Groundwater Contours for October 2005

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 13 Groundwater Contours for May 2006

Pioneer Midler Avenue LLC Remedial Investigation Report Figure 14 Groundwater Contours for August 2007 ∧ N

(10) - Letters (10) - Letters Development's adde for Beer and Agains 1.3 -

THERMAL TRI	EATMENT AREA	1
TER	POST-IRM AVERAGE CONCENTRATION (ug/I)	
	766	
OROETHENE	810	B_8
	1,156	1
NE	5,365	
DETHENE	1,333	
	9,430	

	1 -7
"8-5" EXCAVA	TION AREA
C PARAMETER	POST-IRM AVERAGE CONCENTRATION (ug/I)
HLORIDE	315
1,2-DICHLOROETHENE	379
ROETHENE	59
-DICHLOROETHENE	3,513
LOROETHENE	56
WOCs	4.322
70-18	/

TABLES

1.

2.1

STL

DATA QUALIFIER PAGE

These definitions are provided in the event the data in this report requires the use of one or more of the qualifiers. Not all qualifiers defined below are necessarily used in the accompanying data package.

ORGANIC DATA QUALIFIERS

ND or U Indicates compound was analyzed for, but not detected.

- J Indicates an estimated value. This flag is used either when estimating a concentration for tentatively identified compounds where a 1:1 response is assumed, or when the data indicates the presence of a compound that meets the identification criteria but the result is less than the sample quantitation limit but greater than zero.
- C This flag applies to pesticide results where the identification has been confirmed by GC/MS.
- B This flag is used when the analyte is found in the associated blank, as well as in the sample.
- E This flag identifies compounds whose concentrations exceed the calibration range of the instrument for that specific analysis.
- D This flag identifies all compounds identified in an analysis at the secondary dilution factor.
- N Indicates presumptive evidence of a compound. This flag is used only for tentatively identified compounds, where the identification is based on the Mass Spectral library search. It is applied to all TIC results.
- P This flag is used for CLP methodology only. For Pesticide/Aroclor target analytes, when a difference for detected concentrations between the two GC columns is greater than 25%, the lower of the two values is reported on the data page and flagged with a "P".
- A This flag indicates that a TIC is a suspected aidol-condensation product.
- Indicates coelution.
- Indicates analysis is not within the quality control limits.

INORGANIC DATA QUALIFIERS

.

- ND or U Indicates element was analyzed for, but not detected. Report with the detection limit value.
- J or B Indicates a value greater than or equal to the instrument detection limit, but less than the quantitation limit.
- N Indicates spike sample recovery is not within the quality control limits.
- S Indicates value determined by the Method of Standard Addition.
- E Indicates a value estimated or not reported due to the presence of interferences.
- H Indicates analytical holding time exceedance. The value obtained should be considered an estimate.
- Indicates the spike or duplicate analysis is not within the quality control limits.
- Indicates the correlation coefficient for the Method of Standard Addition is less than 0.995.

+ 1

Samplo ID	Inits	TAGN	1 4046	B-1	B-2	B-3	B-3	B-4	B-5	B-5 DL
		PSCO .	Eastern USA	4-6	5-7	14 - 16	2 - 4	2 - 4	6-8	6-8
Date Sampled ->			Background	11/12/2004	11/12/2004	11/11/2004	11/11/2004	11/11/2004	11/12/2004	11/12/2004
VOLATILES	ng/kg									
Chloromethane	ug/kg			1,800 UJ	16 U	16,000 UJ	11 U	12 U	660 J	5,800 U
Bromomethane	ug/kg			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Vinvl chloride	ug/kg	200		8.100	11 J	16,000 U	11 U	12 U	3,800	3,700 DJ
Chloroethane	ug/kg	1,900		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Methylene chloride	ug/kg	100		1,800 U	16 U	16,000 U	16 0	14 U	1,500,0	0,00,0
Acetone	ug/kg	200		1,800 U	62	16,000 U	7 1	0 21	1,000 L	2,800 0
Carbon disulfide	ng/kg	2,700		1,800 U	16 U	16,000 U	1110	12 U	1,500 U	5,800 U
1.1-Dichtoroethene	ng/kg	400		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
1.1-Dichloroethane	ng/kg	200		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Chloroform	ug/kg	300		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
1.2-Dichloroethane	ng/kg	100		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
2-Butanone	ug/kg	300		1,800 U	<u>Р</u> 6	16,000 U	11 U	12 U	1,500 U	5,800 U
1,1,1-Trichloroethane	ug/kg	800		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Carbon tetrachloride	ng/kg	600		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Bromodichloromethane	ug/kg			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
1.2-Dichloropropane	ug/kg			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
cis-1 3-Dichloroprozene	ua/ka			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Trichloroethene	ua/ka	700		5,800	5 J	68,000	2 J	3 J	490 J	5,800 U
Dibromochloromethane	ua/ka			1,800 U	16 U	16,000 U	11 0	12 U	1,500 U	5,800 U
1 1 2. Trichloroethane	ua/ka			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Renzene	ua/ka 6	30 or MDL		1,800 U	2 J	16,000 U	11 U	12 U	1,500 U	5,800 U
trans-1 3-Dichloronronene	ua/ka			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Bromoform	ua/ka			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
4-Methyl-2-pentanone	uq/kg	1,000		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
2-Hexanone	ug/kg			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Tetrachloroethene	ug/kg	1,400		14,000	21	310,000	20	8 J	1,200 J	2,300,04
Toluene	ug/kg	1,500		2,100	16 U	16,000 U	2 J	12 U	1,500 U	5,800 U
1.1.2.2-Tetrachloroethane	ug/kg	600		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Chlorobenzene	ug/kg	1,700		1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	5,800 U
Ethylbenzene	l ug/kg	5,500		2,400	16 U	16,000 U	11 C	12 U	1,500 U	5,800 U
Styrene	ng/kg			1,800 U	16 U	16,000 U	11 U	12 U	1,500 U	0.008,6
Total xylenes	ug/kg	1,200		7,000	16 U	16,000 U	110	12 U	1,500 U	5,800 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ng/kg	1,000		1,800 U	16 U	16,000 U	11 0	12 U	1,500 U	0,008,c
cis-1,2-Dichloroethene	ug/kg			11,000	18	30,000	11 0	12 U	54,000	54,UUU U
trans-1,2-Dichloroethene	ug/kg	300		1,800 U	16 U	16,000 U	110	12 0	3,100.	3,800 JU
Dichlorodiftuoromethane	ug/kg			1,800 U	16 UJ	16,000 U	11 M	12 01	1,500 U	5,800 U
Trichlorofluoromethane	ug/kg			1,800 U	16 UJ	16,000 U	11 m	12 00	1,500 1	0,000,0
Methyl acetate	ug/kg			1,800 U	100	10,000 01	⊃ = = ₹			
Methyl tert butyl ether	ng/kg	120	· · · · · · · · · · · · · · · · · · ·	1,800 U			> = = ;	2	1 500 1	C 2000 C
Cyclohexane	ug/kg			620 J		0 000 07			1 20011	
Methylcyclohexane	ug/kg			17,000	16 U	10,000 0				3,000 0
1,2-Dibromoethane	ug/kg			1,800 U		10,000 0		2 4		
lsopropylbenzene	ug/kg			750 J		10,000,01			1 200 1	
1,3-Dichlorobenzene	ug/kg	1,600		1,800 U	16.0	10,000,01	- - - -	0 21	1,000 1	
1,4-Dichlorobenzene	ug/kg	8,500		1,800 U	16 0	10,000 0		11 97	1 200 0	0,000 0 800 11
1,2-Dichlorobenzene	ug/kg	7,900				16,000 0		1011	1 500 U	5.800 []
1,2-Dibromo-3-chloropropane	ug/kg	0 400			11195	16 000 0	11111	12 12	1.500[1,1	5,800 U
1,2,4-1 richlorobenzene	ng/kg	3,400			3		3	2		
SEMIVOLATILES	110/100			4 900 []	1.100 U	1.900 U	3,600 U	790 U	4,100 U	,
Benzaidenyde	I fiv/fin			212221	212221					

Samule ID ->	Units	TAGN	4046	₽-1	B-2	<u>в</u> .3	B-3	B-4	B-5	B-5 DL
Depth - >	T	RSCO	Eastern USA	4-6	5-7	14 - 16	2 - 4	2 - 4	6-8	6-8
Date Sampled ->			Background	11/12/2004	11/12/2004	11/11/2004	11/11/2004	11/11/2004	11/12/2004	11/12/2004
Phenol	ug/kg	30 or MDL		2,400 U	24 J	150 J	1,800 U	400 U	2,000 U	-
Bis(2-chloroethvl) ether	ua/ka			2,400 U	530 U	0066	1,800 U	400 U	2,000 U	•
2-Chlorophenol	uq/ka	800		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	1
2-Methylphenol	ua/ka	100 or MDL		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	•
2.2'-Oxvbis(1-Chloropropane)	ug/kg			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	-
Acetophenone	ug/kg			4,900 U	1,100 U	1,900 U	3,600 U	790 U	4,100 U	•
4-Methytahenol	uq/kg	006		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	1
N-Nitroso-Di-n-propylamine	ua/ka			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	
Hexachloroethane	ua/ka			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	•
Nitrobenzene	ua/ka	200 or MDL		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	1
soborone	ua/ka	4400		2,400 U	530 U	000 N	1,800 U	400 U	2,000 U	
2-Nitrophenol	ua/ka	330 or MDL		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	-
2.4-Dimethylphenol	ua/ka			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	<u>,</u>
Bis(2-chloroethoxv) methane	uq/kg			2,400 U	530 U	030 U	1,800 U	400 U	2,000 U	,
2.4-Dichlorophenol	ua/ka	400		2,400 U	530 U	020 N	1,800 U	400 U	2,000 U	•
Naphthalene	ua/ka	1.300		540 J	530 U	930 U	1,800 U	400 U	2,000 U	•
4-Chloroaniline	ua/ka	220 or MDL		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	-
Havachtorobutadiana	in/ka			2.400 U	530 U	020 N	1,800 U	400 U	2,000 U	-
Canrolactam	no/ka			4,900 U	1,100 U	1,900 U	3,600 U	790 U	4,100 U	1
4. Chloro-3. mathvlinhanol		240 or MDI		2.400 U	53010	930 U	1,800 U	400 U	2,000 U	•
9-Methylnenhthalene		36.400		1.500 J	530 U	020	1,800 U	400 U	2,000 U	
E-montymatruments Havechlorocyclonentadiane		22: 622		2.4001U	530 U	030 U	1,800 U	400 U	2,000 U	1
o A 6. Trichloronhand				2.40011	530 U	930 U	1.800 U	400 U	2,000 U	
a, t. Trichlorophenol	rio/ka	100		5,90011	1.300 U	2.300 U	4,400 U	960 U	5,000 U	•
Bishond		22.		4.900 U	1.100 U	1.900 U	3,600 U	790 U	4,100 U	1
olprietry: 7 Chlorosochthalann				2 400 II	530 11	930 U	1.800 U	400 U	2,000 U	1
2-VIIIUUIIIQUIIQUIIIQUII 0.Nitrosnitine		430 or MDI		5,900 []	1.300 U	2.300 U	4.400 U	0096	5,000 U	1
ctyludarmine Diaethyd abtholato	5,00	10000		0 00010	53011	03011	1,800 []	400 U	2.000 U	
Ulmetnyi prinalate	ng/kg	2,000		0 100 0	2000		1 800 11	11007	0000	
2,6-Dinitrotoluene	ng/Kg	1,000		2,400 0	0.000	0 000			2 000 0	
Acenaphthylene	ug/kg	41,000		2,400 U	14 N	830.0	1,000,1	400 0		
3-Nitroaniline	ng/kg	500 or MDL		5,900 U	1,300 U	2,300 U	4,400 0	300 0	n nnn'e	
Acenaphthene	ng/kg	50,000		290 J	530 U	930 0	1,800 0	400 0	2,000,2	
2,4-Dinitrophenol	ng/kg	200 or MDL		5,900 U	1,300 U	2,300 U	4,400 U	200	0,000,0	,
4-Nitrophenol	ug/kg	100 or MDL		5,900 U	1'300 U	5,300 U	4,400 0	200 0	n nnn'e	,
Dibenzofuran	ug/kg	6,200		370 J	53U U	930 0	1,800 0	400 0	2000 0	
2,4-Dinitrotoluene	ng/kg	1,000		2,400 U	530 U	930 U	1,800 U	400 0	5,000 0	
Diethyl phthalate	ug/kg	7,100		2,400 U	530 U	930 U	1,800 U	4000	D 000'Z	
Fluorene	ng/kg	50,000		800 J	51 J	930 U	160 J	<u>۲ ۹۲</u>	5,000 U	-
4-Chlorophenyl phenyl ether	ug/kg			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	•
4-Nitroaniline	ug/kg			5,900 U	1,300 U	2,300 U	4,400 U	960 U	5,000 U	,
4,6-Dinitro-2-methylphenol	ug/kg		*.	5,900 U	1,300 U	2,300 U	4,400 U	960 U	5,000 U	-
N-nitrosodiphenylamine	ug/kg			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	-
4-Bromophenyi phenyl ether	ug/kg			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	,
Hexachlorobenzene	ug/kg	410		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	,
Atrazine	ug/kg			4,900 U	1,100 U	1,900 U	3,600 U	0 06Z	4,100 U	,
Pentachlorophenol	ug/kg	1000 or MDL		5,900 U	1,300 U	2,300 U	4,400 U	960 U	000'q	-
Phenanthrene	ug/kg	50,000		1,400 J	690	180 J	2,300	300 1	28.0	
Anthracene	ug/kg	50,000		270 J	120 J	40 7	450 J	- 53 - 52	5,000 0	
Carbazole	ng/kg			92 J	67 J	27 J	2220 1	30 0	2,000 0	,
Di-n-butyl phthalate	ug/kg	8,100		2,400 U	530 U	930 0	1,800 0	400 0		
Fluoranthene	ug/kg	50,000		1,300 J	860	400 J	4,600	pun	וחסו	-

FilprojectIC81 - Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007HI ReportITablesITable1 validated xis / Table 1

Page 2 of 8

+-	Data
Jepoi	oring
ation	Soil B
restig	ise 1 9
ial In	- Ph
Remed	Table 1

(//

Same D.	1 Inite	TACM	ADAG	P1	R7	B-3	B-3	B-4	B-5	B-5 DL
	5	UDSA UDSA	Factorn ISA	4-6-4	5-7	14 - 16	2-4	2-4	6-8	6-8
Date Samoled ->	1)	Background	11/12/2004	11/12/2004	11/11/2004	11/11/2004	11/11/2004	11/12/2004	11/12/2004
Pyrene	ua/ka	50,000		1,200 J	410 J	240 J	2,600	300 J	92 J	•
Butvi henzvi ohthalate	ua/ka	50,000		2,400 U	21 J	930 U	1,800 U	400 U	2,000 U	•
3 3'-Dichlorobenzidine	ua/ka			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	•
Renzo(a)anthracene	1ro/kg	224 or MDL		610.J	340 J	250 J	2,500	220 J	97 J	<u>,</u>
Christene	ua/ka	400		L 017	400 J	290 J	2,700	250 J	110 J	-
Ris(2-ethylhexyl) phthalate	ua/ka			2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	•
Di-n-octvl ohthalate	ua/ka	50,000		2,400 U	530 U	930 U	1,800 U	400 U	2,000 U	•
Benzo(b)fluoranthene	ua/ka	1.100		L 067	350 J	290 J	2,200	250 J	85 J	•
Benzo(k)fluoranthene	ua/ka	1,100		C 089	210 J	140 J	1,800	100 J	2,000 U	•
Renzo(a)nvrane	ua/ka	61 or MDL		800 J	130,J	92 J	040 J	63.J	2,000 U	-
bolizo(u/p) circo		3.200		510 J	87 J	63 J	L 067	80 J	2,000 U	-
Dihonzofa h)anthracene	na/kn	14 or MDI		210 J	66.J	52.J	P1029	57.J	2,000 U	•
Diverizo(a,ri)anniacene Renzo/chilnenvlene		50,000		680 J	530 U	930 U	1,800 U	400 U	2,000 U	•
DESTICIDES/AROCI ORS	8, h1									
alaba_BHC	ric/kn	110		13IU	2.7 U	4.9 U	9.2 U	20	2.1 U	<u>۲</u>
	no/ka	000		1310	2.7 U	4.9 U	9.2 U	2 U	2.1 U	
	Suga Note	300		1311	2.7 U	4.9 U	9,2,0	20	2.1 U	1
uellarono commo BUC /l (ndena)	54/01	60		13 []	2.7 U	4.9 U	9.2 U	210	2.1 U	1
	22/01	90 <u>1</u>		1311	9711	4.911	9.2 U	20	2.1 U	
Teptacilioi Alada	2/01	41		1311	2710	4,910	9.2 U	0.65 JP	2.1 U	,
Autoritation analysis	Purpo	100		1911	11.IDN	4911	9.2 U	20	2.1 U	,
	5y/Sn	22			9711	4 9 11	1166	000	2.1 U	,
	Ry/Sn	202			5.10	0 0.1	1811	110 g	4 1 11	•
	ngvg	##		0 + 2		1190			4111	
4,4UUE	ng/kg	2,100		2410		1190	2 q	3011	35.1	
Endrin	ng/kg	001		0 42	0.00		2 9	100	1111	
Endosultan II	ng/kg	006		24 U	0.5.0	0	<u> </u>	0.000		
4,4'-DDD	ng/kg	2,900		24 U	0.3.0	30.0		0.000		
Endosulfan Sulfate	ug/kg	100		24 U	5.3 U	9.6 U		3.810	4	
4,4'-DDT	ug/kg	2,100		24 U	5.3 U	4r [.7	181	3.9 0		•
Methoxychior	ug/kg			110 U	27 U	49 U	1810	10 9.7	017	-
Endrin ketone	ug/kg			24 U	5.3 U	9.6 U	1810	3.90		-
Endrin aldehyde	ug/kg			24 U	5.3 U	9.6 U	1810	3.9 U	4.1 U	1
alpha-Chlordane	ug/kg	540		13 U	2.7 U	4.9 U	2.4 J		n : 	
gamma-Chlordane	ug/kg	540		13 U	2.7 U	4,9 U	9.2 U	N 2	n 1.2	
Toxaphene	ug/kg			1,300 U	270 U	490 U	920 U	200 U	0 012	
Aroclor 1016	ug/kg			240 U	53 U	096 0	180 U	39 0	41 U	
Aroclor 1221	ng/kg	1 000 - europa		490 U	110 U	190 U	360 U	79 U	84 U	-
Arocior 1232	ug/kg	collo to 000		240 U	53 U	96 U	180 U	39 0	41 U	
Arocior 1242	ng/kg	sulls, tu,uuu -		240 U	53 U	96 U	180 U	39 U	41 U	,
Arocior 1248	ng/kg	aurou lace	:	240 U	53 U	<u> 96 U</u>	180 U	39 U	41 U	
Aroclor 1254	ng/kg	SIUS	•	240 U	53 U	96 U	180 U	39 U	41 U	,
Aroctor 1260	ug/kg			240 U	53 U	U 96	180 U	39 U	41 U	-
INORGANICS										
Aluminum	mg/kg	SB	33000	3,230 J	1,480 J	1,020 J	3,760 J	5,540 J	4,910 J	
Antimony	mg/kg	SB		L*UN 66.0	C*UN 29.0	1.3 NU*J	0.5 NU*J	0.52 NU ⁺ J	0.56 NU*J	,
Arsenic	mg/ka	7.5 or SB	3 - 12	9.2 N*J	L*N8 2.1	0.96 BN*J	17.9 N*J	3 N*J	7,4 N*J	,
Barium	mg/kg	300 or SB	15 - 600	38.3 N*J	59.3 N*J	26.3 BN*J	86.7 N*J	56.8 N*J	42.4 N*J	
Beryllium	mg/kg	0.16 or SB	0 - 1.75	0.24 BN*J	0.18 BN*J	0.14 BN*J	0.25 BN*J	0.26 BN*J	0.24 BN*J	1
Cadmium	mg/kg	1 or SB	0.1 - 1	0.04 NU*J	0.04 NU*J	0.07 NU*J	0.03 NU ⁺ J	0.03 NU*J	0.03 NU*J	,
Calcium	mg/kg	SB	130 - 35,000	65,300 EJ	484,000 EJ	157,000 EJ	12,300 EJ	19000EJ	67800 EJ	1
Chromium	mg/kg	10 or SB	1.5 - 40	15,3 N*J	14.2 N*J	2.2 BN*J	22.1 N*J	0.8 N*J	8.4 N*J	-
	2									

Domaio ID -	1 Inite	TAGN	1 4046	Ð-1	B-2	с П	e e e	В-4	с, Ш	B-5 DL
Sample IU ->								× c	a 4	6.8
Depth - >		RSCO	Eastern USA	4-6	2 - 7	14 - 10	2 - 4	ν. 4	0-0	0
Date Samiled ->	 [Background	11/12/2004	11/12/2004	11/11/2004	11/11/2004	11/11/2004	11/12/2004	11/12/2004
Cohalt	ma/ka	30 or SB	2.5 - 60	4 BN*J	1.2 BN*J	0.82 BN*J	11.2 N*J	3.3 BN*J	3.1 BN*J	•
Conner	ma/ka	25 or SB	1 - 50	38.1 N*J	10.7 N*J	14.2 N*J	57.3 N*J	15 N*J	10.7 N*J	1
lion	ma/ka	2,000 or SB	2,000 - 550,000	50,000 J	4,000 J	4,140 J	126,000 J	19,400 J	22,600 J	<u>г</u>
lead	ma/ka	SB	200 - 500	28 NJ	4.9 NJ	LN 9.1	35.5 NJ	14.2 NJ	17.3 NJ	•
Magnesium	mg/kg	SB	100 - 5,000	1,420 J	12,400 J	1490 J	1,360 J	2,760 J	2,530 J	1
Mandanese	ma/ka	SB	50 - 5,000	266 N*J	L*N 901	76.9 N*J	882 N*J	418 N*J	221 N*J	-
Mercury	ma/ka	0.1	0.001 - 0.2	0.042 BN*J	0.035 NU*	0.059 U	0.115	0.026 U	0.028 NU*	-
Nickel	ma/ka	13 or SB	0.5 - 25	73.3 N*J	4.4 BN*J	16.8 N*J	16.2 N*J	6.2 N*J	6.4 N*J	1
Potaccium	ma/ka	SB	8,500 - 43,000	445 BEJ	568 BEJ	291 BEJ	485 BEJ	1,040 EJ	718 EJ	1
Salani Im	ma/ka	2 or SR	0.1 - 3.9	C*N8 E	L*N8 E7.0	4 BN+J	3.3 BN*J	1 BN*J	0.76 BN*J	1
Silvar	ma/ka	SB		0.15 NU*J	0,14 NU*J	0.27 NU*J	0.39 BN*J	0.11 NU [*] J	0.12 NU ⁺ J	1 1
Sodium	mo/ka	SB	6.000 - 8.000	115 BJ	151 BJ	339 BJ	91.4 BJ	147 BJ	271 BJ	1
Thallium	ma/ka	SB		10.1 N*J	0.57 BN*J	1.6 BN*J	23.5 N*J	3.7 N*J	4.6 N*J	•
Vanadium	ma/ka	150 or SB	1 - 300	23.1 N*J	4.9 BN*J	2.7 BN*J	30.3 N*J	16.3 N*J	15.6 N*J	1
Zinc	mg/kg	20 or SB	9 - 50	67.8 N*J	14.2 N*J	40.9 N*J	80.5 N*J	36.8 N*J	63.2 N*J	1
WET CHEMISTRY ANALYSIS										
Cvanide - Total	ug/kg			4,000 U	4,000 U	4,000 U	4,000 U	4,000 U	4,000 U	
Leachable pt-	s.u.			7.23	11.1	7.47	7.79	8.21	7.86	

T T

+ 1

	1 Inite	TAGA	1 4046	В-6	B-7	B-8	6-8	B-10
	2	RSCO.	Fastern USA	2-4	2-4	2 - 4	2-4	3-6
Date Samoled ->			Background	11/11/2004	11/12/2004	11/11/2004	11/11/2004	11/12/2004
VOLATILES	ua/ka		2					
Chloromethane	ua/ka			10 U	11 U	11 U	11 U	910 J
Bromomethane	ua/ka			10 U	11 U	11 U	11 U	1,700 U
Vinvi chtoride	ug/kg	200		10 U	11 U	11 U	11 U	1,700 U
Chloroethane	ug/kg	1,900		10 U	11 U	11 U	11 U	1,700 U
Methylene chloride	ug/kg	100		21 U	25 U	21 U	16 U	1,700 U
Acetone	ua/ka	200		10 1	11 U	11 U	16	2,100
Carbon disulfide	ua/ka	2,700		10 U	11 U	11 U	11 C	1,700 U
1.1-Dichloroethene	uq/ka	400		10 U	11 U	11 U	11 N	1,700 U
t 1-Dichloroethane	ua/ka	200		10 U	11 U	11 U	11 U	1,700 U
Chloroform	ua/ka	300		10 U	11 U	11 U	11 U	1,700 U
1 2-Dichloroethane	ua/ka	100		10 U	11 U	11 U	11 U	1,700 U
2-Butanone	ua/ka	300		10 U	11 U	11 U	4 J	680 J
1.1.1.Trichloroethane	ua/ka	800		10 U	11 U	11 U	11 U	1,700 U
Carbon tetrachtoride	ua/ka	600		10 U	11 U	11 U	110	1,700 U
Bromodichloromethane	ua/ka			10 U	11 U	11 U	11 U	1,700 U
1 2-Dichlorononane	ua/ka			10 U	11 U	11 U	11 U	1,700 U
ris-1 3-Dichloronronene	ua/ka			10 U	11 U	11 U	11 U	1,700 U
Trichloroethene	ua/ka	200		10 U	11 U	11 U	11 U	1,700 U
Dihromochloromethane	11/kn			10 U	11 U	11 U	11 U	1,700 U
t 1 0-Trichloroethane	110/kg			10 U	11 U	11 U	11 U	1,700 U
r, r,ar i italio occitario Bonzana		60 or MDI		10 U	11 U	11 U	110	1,700 U
trans-1 3-Dichloropronene	nn/ka			10 0	11 U	11 U	110	1,700 U
Romoform	ug/yo			10 0	11 U	11 U	1110	1,700 U
d.Mathul.2-nentanone	Ind/ka	1.000		10 U	11 U	11 U	11 U	1,800
0-Hexanone	ua/ka			10 U	11 U	11 U	11 U	1,700 U
Tetrachloroethene	ua/ka	1.400		10 U	11 U	11 U	17	1,700 U
Toltione	ua/ka	1.500		10 U	2 J	11 U	11 U	810 J
1 1 2 2-Tetrachloroethane	ua/ka	600		10 U	11 U	11 U	11 U	1,700 U
	un/ka	1.700		10 U	11 U	11 U	11 U	1,700 U
Fihulhanzana	ua/ka	5,500		10 U	11 U	11 U	11 U	500 J
Styrene	ua/ka			10 U	11 U	11 U	110	1,700 U
Total xvienes	ua/ka	1.200		10 U	11 U	11 U	11 0	4,100
1 1 2-Trichlorn-1 2 2-triftuoroethane	ua/ka	1.000		10:01	11 U	11 U	11 U	1,700 U
cis-1 2-Dichloroethene	ua/ka			10 0	11 U	11 U	11 U	1,700 U
trans-1.2-Dichloroethene	uq/ka	300		10 U	11 U	11 U	11 U	1,700 U
Dichlorodifluoromethane	ug/kg			10 UJ	11 W	л З Л	11 U	1,700 U
Trichlorofluoromethane	ng/kg			10 UJ	11 UJ	11 UU	11 O	1,700 U
Methyl acetate	ug/kg			10 U	11 U	11 U	110	850 J
Methyl tert butyl ether	ng/kg	120		10 U	11 U	11 0		1,700 U
Cyclohexane	ug/kg	÷		10 U	11 U	11 0	110	1,700 U
Methylcyclohexane	ng/kg			10 U	110	11 0	110	n 00/1
1,2-Dibromoethane	ug/kg			10 U	11 0	n LL		
Isopropylbenzene	ug/kg			10 U	11 U	n []		330 J
1,3-Dichlorobenzene	ug/kg	1,600		10 U	11 U	110	110	1/00/1
1,4-Dichlorobenzene	ug/kg	8,500		10 U	11 U	110	110	1,/00 U
1,2-Dichlorobenzene	ug/kg	7,900		10 U	11 U	11 0		1,/00 U
1,2-Dibromo-3-chloropropane	ug/kg			10 U	11 U	11 0	110	1,/00 U
1,2,4-Trichlorobenzene	ug/kg	3,400		10 01	11 W	N 11		nn/,1
SEMIVOLATILES					11 000 0	0 20011		11 VU 11
Benzaldehvde	uq/ka			72010	3,8000	3,00010	1400	1,000,4

Sample ID ->	Units	TAGN	A 4046	ъ	B-7	B-8	6-8	B-10
Depth - >	T	RSCO	Eastern USA	2-4	2 - 4	2-4	2 - 4	3-6
Date Sampled ->	1		Background	11/11/2004	11/12/2004	11/11/2004	11/11/2004	11/12/2004
Phenol	ng/kg	30 or MDL		360 U	1,900 U	1,800 U	15 J	67.J
Bis(2-chloroethvl) ether	uq/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
2-Chlorophenol	ng/kg	800		360 U	1,900 U	1,800 U	370 U	2,300 U
2-Methylphenol	ng/kg	100 or MDL		360 U	1,900 U	1,800 U	370 U	2,300 U
2,2'-Oxybis(1-Chloropropane)	ug/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
Acetophenone	ug/kg			720 U	3,800 U	3,600 U	740 U	4,600 U
4-Methylphenol	ng/kg	006		360 U	1,900 U	1,800 U	370 U	440 J
N-Nitroso-Di-n-propylamine	ug/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
Hexachloroethane	ng/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
Nitrobenzene	ua/ka	200 or MDL		360 U	1,900 U	1,800 U	370 U	2,300 U
Isophorone	ua/ka	4400		360 U	1,900 U	1,800 U	370 U	2,300 U
2-Nitronhenol	ua/ka	330 or MDL		360 U	1,900 U	1,800 U	370 U	2,300 U
2.4-Dimethylphenol	uq/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
Bis(2-chloroethoxv) methane	ug/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
2,4-Dichlorophenol	ug/kg	400		360 U	1,900 U	1,800 U	370 U	2,300 U
Naphthalene	ug/kg	1,300		360 U	1,900 U	1,800 U	370 U	1,000 J
4-Chtoroaniline	uq/ka	220 or MDL		360 U	1,900 U	1,800 U	370 U	2,300 U
Hexachtorobutadiene	ua/ka			360 U	1,900 U	1,800 U	370 U	2,300 U
Canrolaciam	ua/ka			720 U	3,800 U	3,600 U	740 U	4,600 U
4-Chlorn-3-methylnhenol	tro/ku	240 or MDL		360 U	1,900 U	1,800 U	370 U	2,300 U
2-Methylnanhthalene	in/ko	36.400		360 U	1,900 U	1,800 U	370 U	300 J
E wouldnapradiate		221 122		360 U	1.900 U	1,800 U	370 U	2,300 U
9 4 6-Trichtoronhand	1:0/kg			360 U	1,900 U	1,800 U	370 U	2.300 U
2,4,5,1 Itoliiolopiicitoi 2,4,5,Trichlorophenol		100		87010	4.600 U	4,400 U	∩ 006	5.500 U
Rinhanut	nu/ku			720 U	3.800 U	3.600 U	740 U	4,600 U
2.Chloronanhthalene	110/kg			360 U	1.900 U	1,800 U	370 U	2,300 U
D-Mitmanitine		430 or MDI		870 U	4.600 U	4,400 U	N 006	5.500 U
Cimethyl nhthalate	110/kg	2.000		360 U	1,900 U	1,800 U	370 U	2,300 U
Dimenty primatic	24/01	1 000		360 LI	1.90011	1.800 [J	370 U	2,300 U
2,0-Dittiti UQUUDETE		41 000		360 11	1 900 [1	46.1	370 U	150 J
	By/Sn			87011	A 600 11	4 400 [1]		5 500 11
	6u/Rn			36011	1 000 1	1 80011	37011	2002
Acertaprintere	Ru/Rn	200 or MDI		870 11	4 600 11	4 400 []	0006	5.500 U
Z,4-UIIIRIUDIIBIJUI A Niteashanai	By/An			87011	4 600 11	4 400 11		5,500 []
A-Nittoptieritoi Dihanzofuran	Pulka Ind/kg	6 200		36010	1,900 U	1.800 U	370 U	220 J
0 4 Dinitrotalizano	Dy/Un			36011	1,900 []	1,800 U	370 U	2.300 U
Diethvl nhthalate	na/ka	7.100		360 U	1,900 U	1,800 U	370 U	2,300 U
Eltiorene	ua/ka	50.000		26 J	1,900 U	1,800 U	370 U	460 J
4-Chlorophenvi phenvi ether	ua/ka			360 U	1,900 U	1,800 U	370 U	2,300 U
4-Nitroaniline	ug/kg			870 U	4,600 U	4,400 U	006 N	5,500 U
4,6-Dinitro-2-methylphenol	ng/kg	*:		870 U	4,600 U	4,400 U	006	5,500 U
N-nitrosodiphenylamine	ng/kg			360 U	1,900 U	1,800 U	370 U	76 J
4-Bromophenyi phenyi ether	ug/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
Hexachlorobenzene	ug/kg	410		360 U	1,900 U	1,800 U	370 U	2,300 U
Atrazine	ug/kg			720 U	3,800 U	3,600 U	740 U	4,600 U
Pentachlorophenol	ug/kg	1000 or MDL		870 U	4,600 U	4,400 U	900 N	5,500 U
Phenanthrene	ug/kg	50,000		280 J	680 J	300 J	68 J	3,200
Anthracene	ug/kg	50,000		64 J	88 J	1001	10 7	430 J
Carbazole	ng/kg			29 J	1,900 U	1,800 U	370 U	340 J
Di-n-butyl phthalate	ug/kg	8,100		360 U	1,900 U	1,800 U	3/0/0	2,300 U
Fluoranthene	ua/ka	50.000		330 J	1,200 J	1,000 J	97 1	5,200

Samia ID	Inite	TAGN	4046	9-8	B-7	B-8	6-8	B-10
Denth - >	}	RSCO	Eastern USA	2-4	2-4	2-4	2-4	3-6
Date Sampled ->			Background	11/11/2004	11/12/2004	11/11/2004	11/11/2004	11/12/2004
Pyrene	ug/kg	50,000		180 J	690 J	710 J	51 J	2,300
Butvl benzvl phthalate	uq/kg	50,000		360 U	1,900 U	1,800 U	370 U	2,300 U
3.3'-Dichlorobenzidine	ua/ka			360 U	1,900 U	1,800 U	370 U	2,300 U
Benzo(a)anthracene	uq/kg	224 or MDL		160 J	590 J	590.J	39 J	1,001,1
Chrysene	ug/kg	400		180 J	680 J	650 J	54 J	1,400 J
Bis(2-ethylhexyl) phthalate	ug/kg			360 U	1,900 U	1,800 U	370 U	2,300 U
Di-n-octvl phthalate	ua/ka	50,000		360 U	1,900 U	1,800 U	370 U	2,300 U
Benzo(b)(tuoranthene	ua/ka	1.100		160 J	420 J	730 J	49 J	2,400
Benzo(k)tuoranthene	ua/ka	1.100		81 J	450 J	330 J	35 J	2,200,J
Benzo(a)nvrene	ua/ka	61 or MDL		52 J	220 J	250 J	18 J	1,001,1
Indeno(1,2,3-cd)nvrene	ua/ka	3.200		44 J	120 J	150 J	13.J	250 J
Dihanzo(a h)anthracana		14 or MDI		39.J	110.1	120 J	10.1	100.
Benzolahi)annuazariz	uo/ko	50.000		360 U	1.900 U	1.800 U	370 U	300 J
PESTICIDES/AROCLORS	0							
aluha-BHC	ua/ka	110		1.9 U	9.6 U	9.3 U	1.9 U	23 U
heta-RHC	110/kg	006		1.9 U	9'9'	9.3 U	1.9 U	23 U
delta_RHC	110/kn	300		1.911	0.611	9.3 U	1.9 U	23 U
domma_RHC (1 indana)	nn/kn	60		1.910	9.6 U	9.3 U	1.9 U	23 U
	21/01	20F		1011	0 6 H	0311	101	23 11
Alden	Bu/bn	2		101	afil	0311	101	23 11
	Bu/fin			1101	190		101	22 22
	ng/kg	500		0.8.1		0000	2 1 0 7	2 2 2
Endosultan I	ug/Kg	906		1.9 U	202	9.00	<u>ימ</u> ר סייר	3
Dieldrin	ug/kg	4		3.6 U	1910	18/U	3./ U	45
4,4'-DDE	ug/kg	2,100		3.6 U	19 0	18 U	3.7 U	45
Endrin	ug/kg	100		3.6 U	19 U	18 U	3.7 U	45 U
Endosulfan II	ug/kg	800		3.6 U	19 U	18/0	3.7 U	45 U
4,4'-DDD	ug/kg	2,900		3.6 U	19 U	18 U	3.7 U	45 U
Endosulfan Sulfate	ug/kg	100		3.6 U	19 U	18 U	3.7 U	45 U
4,4'-DDT	ug/kg	2,100		3.6 U	19 U	18 U	3.7 U	45 U
Methoxychlor	ug/kg			19 U	0 96 ∩	93 U	19 U	230 U
Endrin ketone	ug/kg			3.6 U	19 U	18 U	3.7 U	45 U
Endrin aldehyde	ug/kg			3.6 U	19 U	18 U	3.7 U	45 U
alpha-Chlordane	ug/kg	540		1.9 U	9.6 U	9.3 U	1.9 U	23 U
gamma-Chlordane	ug/kg	540		1.9 U	9.6 U	9.3 U	1.9 0	23 U
Toxaphene	ug/kg			190 U	960 U	930 U	190 U	2,300 U
Aroctor 1016	ug/kg			36 U	190 U	180 U	37 U	450 U
Arocior 1221	ng/kg	1 000 5114000		73 U	380 U	370 U	76 U	920 U
Araciar 1232	ug/kg			36 U	190 U	180 U	37 U	450 U
Araciar 1242	ng/kg	suils, 10,000 -		36 U	190 U	180 U	37 U	450 U
Aroclor 1248	ng/kg			36 U	190 U	180 U	37 U	450 U
Aroclor 1254	ug/kg	SIDS 1		36 U	190 U	180 U	37 U	3,000
Araclar 1260	ng/kg			36 U	190 U	180 U	37 U	450 U
INORGANICS								
Aluminum	mg/kg	SB	33000	4,770 J	4,560 J	5,130 J	2,790 J	5,850 J
Antimony	mg/kg	SB		0.48 NU*J	1.1 BN*J	0.49 NU*J	0.49 NU*	3.9 BN
Arsenic	mg/kg	7.5 or SB	3 - 12	3.3 N*J	2.2 N*J	2.4 N*J	18.5 N*J	C*N 6.7
Barium	mg/kg	300 or SB	15 - 600	35.5 N*J	35.1 N*J	57.4 N*J	406 N*J	102 N*J
Beryllium	mg/kg	0.16 or SB	0 - 1.75	0.28 BN*J	0.31 BN*J	0.3 BN*J	0.22 BN*	0.29 BN
Cadmium	mg/kg	1 or SB	0.1 - 1	0.03 NU*J	0.03 NU*J	0.03 NU*J	0.03 NUT	U-N 8.1
Catcium	mg/kg	SB	130 - 35,000	13,000 EJ	24,900 EJ	53,700 EJ	8,370 EJ	15,600 EJ
Chromium	mg/kg	10 or SB	1.5 - 40	8.5 N*J	7.5 N*J	7.3 N*J	21.8 N [*] J	40.9 N ⁻ J

Page 7 of B

Sample ID ->	Units	TAGI	M 4046	ę	B-7	е Н	6-H	њ 0
Depth - >		RSCO	Eastern USA	2-4	2-4	2 - 4	2-4	ອ - ຍ
Date Sampled ->			Background	11/11/2004	11/12/2004	11/11/2004	11/11/2004	11/12/2004
Cobalt	mg/kg	30 or SB	2.5 - 60	2.9 BN*J	2.7 BN*J	3 BN*J	0.3 N*J	L*N 2.7
Copper	ma/ka	25 or SB	1-50	17.6 N*J	16.5 N*J	12.8 N*J	27.6 N*J	C*N 496
Iron	mg/kg	2,000 or SB	2,000 - 550,000	18,100 J	17,900 J	11,600 J	153,000 J	60,500 J
Lead	mg/kg	SB	200-500	LN 5.7	33.8 NJ	16.9 NJ	32.3 NJ	494 NJ
Magnesium	mg/kg	SB	100 - 5,000	1,470 J	3,360 J	9,680 J	1,310 J	2,450 J
Manganese	mg/kg	SB	50 - 5,000	383 N*J	628 N*J	221 N*J	L*N 568	804 N*J
Mercury	mg/kg	0.1	0.001 - 0.2	0.029 U	0.028 U	0.023 U	0.025 U	0.31 N*J
Nickel	ma/ka	13 or SB	0.5 - 25	5.4 N*J	4.5 N*J	L*N 9.7	19.6 N*J	79.2 N*J
Potassium	mg/kg	SB	8,500 - 43,000	825 E.J	721 EJ	1,050 EJ	439 BEJ	1,100 EJ
Selenium	mg/kg	2 or SR	0.1 - 3.9	1.2 BN*J	0.98 BN*J	0.55 BN*J	3.4 BN*	2.1 BN*.
Silver	ma/ka	SB		0.1 NU*J	0.11 NU [*] J	0.11 NU*J	0.14 BN*	0.71 BN*
Sodium	mg/kg	SB	6,000 - 8,000	103 BJ	130 BJ	131 BJ	134 BJ	1,850 J
Thallium	mg/kg	SB		3.7 N*J	3.5 N*J	2.3 N°J	27.7 N*J	L*N 1.11
Vanadium	mg/kg	150 or SB	1 - 300	15.2 N*J	16.9 N*J	22 N*J	44.6 N*J	23.2 N*J
Zinc	mg/kg	20 or SB	9 - 50	24.5 N*J	53.3 N*J	38.4 N*J	C*N 966	348 N*J
WET CHEMISTRY ANALYSIS								
Cyanide - Total	ug/kg			4,000 U	4,000 U	4,000 U	4,000 U	4,000 U
Leachable pH	S.U.			8.28	8.15	9.68	7.73	9.12

RSCO = Recommended Soil Cleanup Objectives 1,000 - indicates detected value for organics.

.

1

* I

ŝ
Ö
÷
X
<u> </u>
ш
_
С.
e
12
-
듰
Ŋ.
8
75
~
ž
Ċ,

Sample ID ->	Units	TAGN	1 4046	LB-8	PB-3	PB-3 DL	PB-4	PB-7	PB-7 DL
Depth - >	<u> </u>	RSCO	Eastern USA	4-6	2 - 4	2 - 4	2 - 4	2-4	2-4
Date Sampled ->			Background	11/9/2004	11/22/2004	11/22/2004	11/18/2004	11/19/2004	38310
VOLATILES	ug/kg								
Chloromethane	ug/kg			15 U	12 UJ		12 UJ	12 UU	
Bromomethane	ug/kg			15 U	12 U	-	12 U	12 U	
Vinyl chloride	ng/kg	200		15 U	12 UJ		12 U	12 UJ	
Chloroethane	ug/kg	1,900		15 U	12 U		12 U	12 U	
Methylene chloride	ug/kg	100		15 U	12 U		12 U	20 C	
Acetone	ug/kg	200		48	14		10 J	12 U	
Carbon disulfide	ug/kg	2,700		15 U	12 U		12 U	12 U	
1,1-Dichloroethene	ng/kg	400		15 U	12 U		12 U	12 U	
1,1-Dichloroethane	ug/kg	200		15 U	12 U		12 U	12 U	
Chloroform	ug/kg	300		15 U	12 U		12 U	12 U	
1,2-Dichloroethane	ug/kg	100		15 U	12 W		12 U	12 UJ	
2-Butanone	ug/kg	300		13 J	12 U		12 U	12 U	
1,1,1-Trichloroethane	ug/kg	800		15 U	12 U		12 U	12 U	
Carbon tetrachloride	ng/kg	600		15 U	12 U		12 U	12 U	
Bromodichloromethane	ng/kg			15 U	12 U		12 U	12 U	
1,2-Dichloropropane	ug/kg			15 U	12 U		12 U	12 U	
cis-1,3-Dichloropropene	ug/kg			15 U	12 U		12 U	12 U	
Trichloroethene	ug/kg	700		15 U	12 U		12 U	12 U	
Dibromochloromethane	ug/kg			15 U	12 U		12 U	12 U	
1,1,2-Trichloroethane	ug/kg			15 U	12 U		12 U	12 U	
Benzene	ng/kg	60 or MDL		2 J	12 U		12 U	12 U	
trans-1.3-Dichloropropene	ug/kg			15 U	12 U		12 U	12 U	
Bromoform	ug/kg			15 U	12 U		12 U	12 U	
4-Methyl-2-pentanone	ug/kg	1,000		15 U	12 U		12 U	12 U	
2-Hexanone	ug/kg			15 U	12 U		12 U	12 U	
Tetrachloroethene	ug/kg	1,400		15 U	12 U		12 U	12 U	
Toluene	ng/kg	1,500		15 U	12 U		12 U	12 U	
1,1,2,2-Tetrachloroethane	ug/kg	600		15 U	12 U		12 U	12 U	
Chlorobenzene	ng/kg	1,700		15 U	12 U		12 U	12 U	
Ethylbenzene	ug/kg	5,500		16	12 U		12 U	12 U	
Styrene	ug/kg			15 U	12 U		12 U	12 U	
Total xylenes	ug/kg	1,200		15 U	12 U		12 U	12 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000		15 U	12 U		12 U	12 U	
cis-1,2-Dichloroethene	ug/kg			15 U	12 U		12 U	12 U	
trans-1,2-Dichloroethene	ug/kg	300		15 U	12 U		12 U	12 U	
Dichlorodifluoromethane	ug/kg			15 U	12 UJ		12 U	12 UU	
Trichlorofluoromethane	ng/kg			15 U	12 UU		120		
Methyl acetate	ug/kg			15 U	12 U		12 0	12 0	
Methyl tert butyl ether	ug/kg	• 120		15 U	12 U		12 U	12 U	
Cyclohexane	ng/kg			101	12 U		1210		
Methylcyclohexane	ng/kg			31	12 U				
1,2-Dibromoethane	Dy/6n			15 U	12 U				
lsopropylbenzene	ng/kg			35	12 U				
1,3-Dichlorobenzene	ng/kg	1,600		15 U	12 U				
1,4-Dichlorobenzene	ug/kg	8,500		15 U	12 U		120		
1,2-Dichlorobenzene	ug/kg	7,900		1510	12 U				
1,2-Dibromo-3-chloropropane	ug/kg			15 U	12 U		120		
1,2,4-Trichlorobenzene	ng/kg	3,400		15 UJ	12 W				
SEMIVOLATILES				11000	1 000 2		76011	7 000 [1	11000
Benzaldehyde	l ug/kg			anna	1,500,0	1 21000	2022	1 212221	2021202

<u>.</u>
0
5
Ξ.
0
m
CC .
ö
-
5
_
$\overline{\mathbf{u}}$
<u>ت</u>
n.
Ċ.

				-					21
Sample ID ->			1 4045		2-07	10-3 UL	402		-0-
Uepth - >		0000		4 - 0	4 - 2	+ - 7	11/18/2004	11/10/2004	38310
Date Sampleu ->	24/21	30 or MDI	המראותמוזע	1.1202/01	11011		38011	1401.1	20 00011
Pnenol	ĥy/ĥn			11 017	0 010	0 000 01			200000
Bis(2-chloroethyl) ether	Dy/6n			450 U	4,000 U	40,000 U	D DRS	3,900 U	50,000 U
2-Chlorophenol	ug/kg	800		450 U	4,000 U	40,000 U	380 0	3,900 U	20,000 U
2-Methylphenol	ug/kg	100 or MDL		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2,2'-Oxybis(1-Chloropropane)	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Acetophenone	ng/kg			000 N	7,900 U	79,000 U	760 U	7,900 U	39,000 U
4-Methylphenol	ug/kg	006		450 U	4,000 U	40,000 U	380 U	160 J	20,000 U
N-Nitroso-Di-n-propylamine	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Hexachloroethane	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Nitrobenzene	ug/kg	200 or MDL		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Isophorone	ug/kg	4400		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2-Nitrophenol	ug/kg	330 or MDL		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2,4-Dimethytphenof	110/kg			450 U	140 J	40,000 U	380 U	120 J	20,000 U
Bis(2-chloroethoxy) methane	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2,4-Dichlorophenol	ug/kg	400		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Naphthalene	ug/kg	1,300		48 JN	13,000	13,000 DJ	21 J	1,200 J	1.400 DJ
4-Chloroaniline	ng/kg	220 or MDL		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Hexachlorobutadiene	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Caprolactam	ug/kg			006 U	7,900 U	79,000 U	760 U	7,900 U	39,000 U
4-Chloro-3-methylphenol	ug/kg	240 or MDL		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2-Methylnaphthalene	ug/kg	36,400		220 J	12,000	12,000 DJ	16 J	1,500 J	1,600 DJ
Hexachlorocyclopentadiene	ua/ka			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2.4.6-Trichlorophenol	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2.4.5-Trichlorophenol	ua/ka	100		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
Biphenvl	ug/kg			900 U	7,900 U	79,000 U	760 U	7,900 U	39,000 U
2-Chloronaphthalene	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2-Nitroaniline	ug/kg	430 or MDL		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
Dimethyl phthalate	ug/kg	2,000		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
2,6-Dinitrotoluene	ng/kg	1,000		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Acenaphthylene	ug/kg	41,000		450 U	2,400 J	3,500 J	35 J	4,600	4,500 DJ
3-Nitroaniline	ug/kg	500 or MDL		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
Acenaphthene	ug/kg	50,000		110 J	11,000	11,000 DJ	24 J	2,800 J	3,400 DJ
2,4-Dinitrophenol	ug/kg	200 or MDL		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
4-Nitrophenot	ng/kg	100 or MDL		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
Dibenzofuran	ug/kg	6,200		74 J	17,000	16,000 DJ	22)	4,600	5,000 DJ
2,4-Dinitrotoluene	ug/kg	1,000		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Diethyt phthalate	ug/kg	7,100		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Fluorene	ug/kg	50,000		240 J	28,000	26,000 DJ	25 J	5,800	5,600 DJ
4-Chlorophenyl phenyl ether	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
4-Nitroaniline	ug/kg	¥.		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
4,6-Dinitro-2-methylphenol	ug/kg	•		1,100 U	9,600 U	96,000 U	920 U	9,500 U	48,000 U
N-nitrosodiphenylamine	ug/kg			190 J	4,000 U	40,000 U	380 U	3,900 U	20,000 U
4-Bromophenyl phenyl ether	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Hexachlorobenzene	ug/kg	410		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Atrazine	ug/kg			000 U	7,900 U	79,000 U	760 U	7,900 U	39,000 U
Pentachlorophenol	ug/kg	1000 or MDL		1,100 U	4,000 U	40,000 U	920 U	9,500 U	48,000 U
Phenanthrene	ug/kg	50,000		360 J	130,000	130,000 BD	470	68,000	68,000 D
Anthracene	ug/kg	50,000		35 J	30,000 J	3,000 DJ	102	7,100	7,500 00
Carbazole	ug/kg			450 U	6,000	6,500 DJ	45 J	3,400 J	3,600 DJ
Di-n-butyl phthalate	ug/kg	8,100		23 J	4,000 U	40,000 U	11 1	3,900 U	700 121
Fluoranthene	ug/kg	50,000		91 J	110,000	110,000,011	650	71,000	71,00015

				0	< 00		1 00	7 do	10 4 20
Sample ID ->			4040	0-0-					0.1
Depth - >		HSCU HSCU	Eastern USA	4 - 0	+ - 7	11/00/07	11/10/00/	11/10/00/1	1-7
Date Sampled ->			Background	11/3/2004	11/22/2004		11/10/2/014	11/13/2004	20210
Pyrene	ug/kg	50,000		87 J	41,000	41,000	016	000,50	
Butyl benzyl phthalate	ug/kg	50,000		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
3,3'-Dichlorobenzidine	ug/kg			450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Benzo(a)anthracene	ug/kg	224 or MDL		34 J	40,000	40,000 DJ	260 J	20,000	19.000 DJ
Chrysene	ug/kg	400		42 J	32,000.J	33,000 DJ	300 J	23,000	23,000 D
Bis(2-ethylhexyl) phthalate	ug/kg			450 U	4,000 U	40,000 U	830 U	3,900 U	740 BDJ
Di-n-octvl phthalate	ug/kg	50,000		450 U	4,000 U	40,000 U	380 U	3,900 U	20,000 U
Benzo(b)fluoranthene	ug/kg	1,100		28 J	19,000,51	19,000 DJ	260 J	14,000 J	14.000 DJ
Benzo(k)tiuoranthene	ua/ka	1.100		25 J	20,000 J	28,000 DJ	200 J	14,000 J	14,000 DJ
Benzofalovrene	ua/ka	61 or MDL		30 J	15,000	13,000 DJ	250 J	21,000 J	18.000 DJ
Indeno(1 2 3cd)nvrene	un/ka	3 200		17 J	4.800	5,700 DJ	94 J	5,500 J	9,600 DJ
Dihanzo(a h)anthracana		14 or MDI		450 U	3,600 J	3,600 DJ	33.J	2,400 J	4,400 DJ
Boototototototo		50,000		22.1	210 J	40.000 U	1001	5,800 J	12,000 DJ
PESTICIDES/AROCI.ORS	D:: D:: D::					•			
aluha-BHC	ua/ka	110		2.3 U	20 U		1.9 U	41 U	410 U
heta-RHC	na/ka	200		2.3 U	20 U		1.9 U	41 U	410 U
		300		2311	20 0		1.9 U	41 U	410 U
uella-Ul IO comma BHC /l indene)		en e		2.311	20 U		1.9 U	41 U	410 U
galilita-bito (clinderic) Lantachiar	Bu Ro	g u		0311	8.0 JPN		1.9 U	10 JP	410 U
	51,01	11		2311	2011		191	41 U	410 U
	200	Ŧ		100				41 11	41011
	ng/Kg	22						2011	41011
Endosultan I	ng/kg	202		2.20					11002
Dieldrin	ng/Kg	44		0 4.4 U	0 200				0 06/
4,4'-DDE	ug/kg	2,100		4.4 U	0.65		0 0		1 200
Endrin	ng/kg	90		4.4 U	39 U		3.8 0	130 1	1 2001
Endosultan II	ug/kg	006		4,4 U	35 JP		3.8 U	ч 1 8	1901
4,4'-DDD	ng/kg	2,900		4.4 U	39 U		3.8 U	л 88 1	
Endosultan Sulfate	ug/kg	100		4.4 U	39 U		3.8 U	160	240 JP
4,4'-DDT	ug/kg	2,100		4.4 U	39 U		3.8 U	47 JP	790 U
Methoxychior	ng/kg			23 U	200 U		7.4 J	110 JP	4100 U
Endrin ketone	ng/kg			4.4 U	39 U		9.5	380	790 U
Endrin aldehyde	ug/kg			4.4 U	39 U		3.8 U	0 6Z	1062
alpha-Chlordane	ug/kg	540		2.3 U	25		1.9 U	41 U	410 U
gamma-Chlordane	ug/kg	540		2.3 U	28 U		1.9 U	41 U	410 U
Toxaphene	ug/kg			230 U	2,000 U		190 U	0 06Z	41000 U
Arocior 1016	ug/kg			44 U	390 U		38 U	1,600 U	7900 U
Aroclor 1221	ug/kg	1 000 - curface		0 68	800 U		77 U	790 U	16000 U
Aroclor 1232	ug/kg	eoile 10 000 -		44 U	390 U		38 U	790 U	0 006Z
Arocior 1242	ng/kg	eubeurface		44 U	390 U		38 N	790 U	10062
Aroclor 1248	ug/kg	subsurace		44 U	390 U		38 U	790 U	0062
Aroclor 1254	ug/kg	C.00		44 U	390 U		38 U	790 U	7900 U
Aroclor 1260	ug/kg			44 U	390 U		38 38	D 062	0062
INORGANICS									
Aluminum	mg/kg	SB	33000	2,960 J	6,110		2,990 E	3,530	
Antimony	mg/kg	SB		0.63 NU*J	2.1 BN*J		8.1 NJ	2.5 BNJ	
Arsenic	mg/kg	7.5 or SB	3 - 12	2.5 N*J	7.8 N*J		55.5	6.4 N	
Barium	mg/kg	300 or SB	15 - 600	58.6 N*J	77.7		68.2 E	38.6	
Beryllium	mg/kg	0.16 or SB	0 - 1.75	0.18 BN*J	0.62		0.72	0.52 B	
Cadmium	mg/kg	1 or SB	0.1 - 1	0.03 NU*J	0.24 BN*		0.03 U	0.04 U	
Calcium	mg/kg	SB	130 - 35,000	141,000 EJ	112,000		42,900 E	97,500	
Chromium	mg/kg	10 or SB	1.5 - 40	4.6 N ^r J	13.6 N ⁻		43.7 F	18.0	

Pioneer Midler Avenue LLC

Remedial Investigation Report Table 2 - Phase 1 Soil Data for Monitoring Wells and Geotechnical Borings

Sample ID ->	Units	TAG	M 4046	LB-8	PB-3	PB-3 DL	PB-4	PB-7	PB-7 DL
Depth - >		RSCO	Eastern USA	4-6	2 - 4	2-4	2-4	2-4	2-4
Date Sampled ->			Background	11/9/2004	11/22/2004	11/22/2004	11/18/2004	11/19/2004	38310
Cobalt	mg/kg	30 or SB	2.5 - 60	1.8 BN*J	5.0 B*		11,2	4.7 B	
Copper	mg/kg	25 or SB	1-50	4.3 N*J	62.8 N*		91.7 EN	21.7 N	
lron	mg/kg	2,000 or SB	2,000 - 550,000	10,400 J	24,000		188,000 E	82,000	
Lead	mg/kg	SB	200-500	6.3 NJ	141		110 E	29.6	
Magnesium	mg/kg	SB	100 - 5,000	2,240 J	16,900		1,460 E	4,060	
Manganese	mg/kg	SB	50 - 5,000	122 N*J	523 N*J		735 EJ	083 NJ	
Mercury	mg/kg	0.1	0.001 - 0.2	0.026 U	0.203 J		0.026 U	0.078 N*	
Nickel	mg/kg	13 or SB	0.5 - 25	4.1 BN*J	22.0		22.3 E	9.6	
Potassium	mg/kg	SB	8,500 - 43,000	642 BEJ	1,360		565	452 B	
Selenium	mg/kg	2 or SR	0.1 - 3.9	0.71 BN*J	0.55 U		0.48 U	0.58 U	
Silver	mg/kg	SB		0.14 NU*J	0.14 BN*J		0.27 B	0.08 U	
Sodium	mg/kg	SB	6,000 - 8,000	96.4 BJ	384 B		114 B	154 B	
Thallium	mg/kg	SB		2.1 N*J	0.56 U		0.49 U	0.59 U	
Vanadium	mg/kg	150 or SB	1-300	9.1 N*J	16.5		82.0 E	35.6	
Zinc	mg/kg	20 or SB	9-50	21.8 N*J	140		52.4 E	62.7	
WET CHEMISTRY ANALYSIS				-					
Cyanide - Total	ug/kg			4,000 U	4,000 UJ		4000 U	4000 U	
Leachable pH	s.U			7.77	8.21	_	7.15	7.38	

f.

. .

Sample ID ->	Units	TAGN	A 4046	PB-12	1-WM	MW-2	6-WM	MW-4
Depth - >		RSCO	Eastern USA	18 - 20	4 - 6	2 - 4	2 - 4	2 - 4
Date Sampled ->			Background	11/24/2004	11/17/2004	11/18/2004	11/18/2004	11/17/2004
VOLATILES	6x/6n	_						
Chloromethane	ug/kg			17 UJ	11 UJ	12 U	14 0.1	14 WJ
Bromomethane	ng/kg			17 UJ	11 U	12 U	14 U	14 U
Vinyl chloride	ng/kg	200		17 UJ	11 U	12 U	14 U	14 U
Chloroethane	D3/kg	1,900		17 UJ	11 U	12 U	14 U	14 U
Methylene chloride	ng/kg	100		13 J	11 U	12 U	14 U	14 U
Acetone	ug/kg	200		۲ <u>8</u>	10 J	12 U	14 U	40
Carbon disulfide	ng/kg	2,700		17 WJ	11 U	12 U	14 U	14 U
1.1-Dichtoroethene	ug/kg	400		17 UJ	11 U	12 U	14 U	14 U
1,1-Dichloroethane	ug/kg	200		17 W	11 U	12 U	14 U	14 U
Chloroform	ug/ka	300		17 UJ	11 U	12 U	14 U	14 U
1.2-Dichloroethane	ug/kg	100		17 UJ	11 U	12 U	14 U	14 U
2-Butanone	ug/kg	300		17 UJ	11 U	12 U	14 U	8 J
1,1,1-Trichloroethane	ug/kg	800		17 W	11 U	12 U	14 U	14 U
Carbon tetrachtoride	ug/kg	600		17 W	11 U	12 U	14 U	14 U
Bromodichloromethane	ng/kg			17 W	11 N	12 U	14 U	14 U
1.2-Dichloropropane	ng/kg			17 W	11 U	12 U	14 U	14 U
cis-1.3-Dichloropropene	uq/ka			17 UJ	11 U	12 U	14 U	14 U
Trichloroethene	ua/ka	700		17 UJ	11 U	12 U	14 U	14 U
Dibromochloromethane	ua/ka			17 W	110	12 U	14 U	14 U
1.1.2-Trichloroethane	uq/kg			17 UJ	11 U	12 U	14 U	14 U
Benzene	ug/kg	60 or MDL		17 UJ	11 U	12 U	14 U	14 U
trans-1.3-Dichloropropene	na/kg			17 UJ	11 U	12 U	14 U	14 U
Bromoform	ug/kg			17 UJ	11 U	12 U	14 U	14 U
4-Methyl-2-pentanone	ug/kg	1,000		17 UJ	11 U	12 U	14 U	14 U
2-Hexanone	ug/kg			17 UU	11 U	12 U	14 U	14 U
Tetrachloroethene	ng/kg	1,400		17 UU	11 U	12 U	46	14 U
Toluene	ng/kg	1,500		17 UJ	11 U	12 U	14	14 U
1,1,2,2-Tetrachloroethane	ug/kg	600		17 UJ	11 U	12 U	14 U	14 U
Chlorobenzene	ng/kg	1,700		17 UJ	11 U	12 U	14 U	14 U
Ethylbenzene	ug/kg	5,500		17 UJ	11 U	12 U	ا 6	14 U
Styrene	ug/kg			17 UU	11 U	12 U	14 U	14 U
Totat xylenes	ug/kg	1,200		17 UJ	11 U	12 U	48	14 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000		17 W	11 U	12 U	14 U	14 U
cis-1,2-Dichloroethene	ug/kg			17 W	11 0	12 U	14 U	14 U
trans-1,2-Dichloroethene	ug/kg	300		17 UJ	11 U	12 U	14 U	14 U
Dichlorodifluoromethane	ug/kg			17 UJ	11 C	12 U	14 U	14 U
Trichlorofluoromethane	ug/kg			17 W	11 U	12 U	14 U	14 U
Methyl acetate	ug/kg			17 UJ	11 U	12 UJ	14 U	14 U
Methyl tert butyl ether	ug/kg	120		17 UJ	0 : I	12 0	14 U	14 U
Cyclohexane	ug/kg			17 UJ	110	12 0	14 U	14 U
Methylcyclohexane	ug/kg			17 UJ	D II	12 U	9	14 U
1,2-Dibromoethane	ug/kg			17 UJ	11 U	12 U	14 U	14 U
Isopropylbenzene	ug/kg			17 UJ	11 U	12 0	14 U	14 U
1,3-Dichlorobenzene	ug/kg	1,600		17 UJ	110	12 U	14 U	14 U
1,4-Dichlorobenzene	ug/kg	8,500		17 UJ	11 U	12 U	14 U	14 U
1,2-Dichlorobenzene	ng/kg	7,900		17 UJ	110	12 U	14 U	14 U
1,2-Dibromo-3-chloropropane	ug/kg			17 UJ	11 0	12 U	14 0	14 U
1,2,4-Trichlorobenzene	ng/kg	3,400		12 M	11 m	12 M	14 01	14 UJ
SEMIVOLATILES				11007 +	11000 0	760 11	11002 1	
Benzaldenyde	D3/KG			1,100,00	20000	nine/	+, 'vu'u	0,30010

Ċ۵.
- * *
- 📿
2
-
~
0
0
_
0
v.
-=
<u> </u>
2
0
- 75
2
õ
×.
<u>.</u>
ശ

Sample ID ->	Units	TAGN	A 4046	PB-12	1-WW	MW-2	E-WM	MW-4
Depth - >		RSCO	Eastern USA	18 - 20	4-6	2 - 4	2 - 4	2-4
Date Sampled ->			Background	11/24/2004	11/17/2004	11/18/2004	11/18/2004	11/17/2004
Phenol	ug/kg	30 or MDL		550 UJ	1,900 U	380 U	2,300 U	4,500 U
Bis(2-chloroethyl) ether	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
2-Chlorophenol	ug/kg	800		550 UJ	1,900 U	380 U	2,300 U	4,500 U
2-Methylphenol	ug/kg	100 or MDL		550 UJ	1,900 U	380 U	2,300 U	4,500 U
2,2'-Oxybis(1-Chloropropane)	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
Acetophenone	ug/kg			1,100 UJ	3,800 U	750 U	4,700 U	8,900 U
4-Methylphenol	ug/kg	006		550 UU	1,900 U	380 U	2,300 U	4,500 U
N-Nitroso-Di-n-propylamine	uq/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
Hexachloroethane	ua/ka			550 UJ	1,900 U	380 U	2,300 U	4,500 U
Nitrobenzene	ua/ka	200 or MDL		550 UJ	1,900 U	380 U	2,300 U	4,500 U
Isonhorone	io/ko	4400		550 UJ	1,900 U	380 U	2,300 U	4,500 U
2-Nitronhanol	110/kg	330 or MDI		550 UJ	1.900 U	380 U	2.300 U	4,500 U
2 A.Dimethylohand	10/kg			550 UJ	1.900 U	380 U	2,300 U	4,500 U
Bic/2.chloroathow/ methane	10/kg			550 UJ	1.900 U	380 U	2.300 U	4.500 U
2 4-Dichlorophenol	nn/ka	400		550 UJ	1.900 U	380 U	2,300 U	4,500 U
Lat Distriction	ind/kn	1 300		550 UJ	1,900 U	380 U	260 J	490 J
A Phononilino	By Br	220 or MDI		550 111	1 900 11	380 11	2 300 U	4.500 [1]
H-Willotvalulitie	Rufford			550 11.1	1 900 11	380 []	2,300 U	4.500 U
				11001 1		75011	4 700 11	
Caprolactarn	Fy/Fn							A 500 11
4-Chioro-3-methylphenol	ng/Kg			00000	000			
2-Methylnaphthalene	ng/kg	36,400		550 UJ	1,900 1	380 0	83 0	200 3
Hexachlorocyclopentadiene	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
2,4,6-Trichlorophenol	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
2,4,5-Trichlorophenol	ug/kg	100		1,300 UJ	4,500 U	910 U	5,700 U	11,000 U
Biphenyl	ug/kg			1,100 UJ	3,800 U	750 U	4,700 U	8,900 U
2-Chloronaphthalene	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
2-Nitroaniline	ug/kg	430 or MDL		1,300 UJ	4,500 U	910 U	5,700 U	11,000 U
Dimethyl phthalate	ug/kg	2,000		550 UJ	1,900 U	380 U	2,300 U	4,500 U
2.6-Dinitrotoluene	ng/kg	1,000		550 UJ	1,900 U	380 U	2,300 U	4,500 U
Acenaphthylene	ug/kg	41,000		550 UJ	1,900 U	380 U	95 J	1,500 J
3-Nitroaniline	ug/kg	500 or MDL		1,300 UJ	4,500 U	910 U	5,700 U	11,000 U
Acenaphthene	ug/kg	50,000		550 UJ	1,900 U	380 U	160 J	510 J
2,4-Dinitrophenol	ug/kg	200 or MDL		1,300 UJ	4,500 U	910 U	5,700 U	4,500 U
4-Nitrophenol	ng/kg	100 or MDL		1,300 UJ	4,500 U	910 U	5,700 U	4,500 U
Dibenzofuran	ng/kg	6,200		550 UJ	1,900 U	380 U	120 J	400 J
2,4-Dinitrototuene	ng/kg	1,000		550 UJ	1,900 U	380 U	2,300 U	4,500 U
Diethyl phthalate	ug/kg	7,100		550 UJ	1,900 U	380 U	2,300 U	4,500 U
Fluorene	ng/kg	50,000		550 UJ	1,900 U	380 U	190 J	1,000 J
4-Chlorophenyl phenyl ether	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
4-Nitroaniline	ng/kg			1,300 UJ	4,500 U	910 U	5,700 U	11,000 U
4,6-Dinitro-2-methylphenol	ug/kg			1,300 UJ	4,500 U	910 U	5,700 U	11,000 U
N-nitrosodiphenylamine	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
4-Bromophenyl phenyl ether	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
Hexachlorobenzene	ug/kg	410		550 UJ	1,900 U	380 U	2,300 U	4,500 U
Atrazine	ug/kg			1,100 UJ	3,800 U	750 U	4,700 U	8,900 U
Pentachlorophenol	ug/kg	1000 or MDL		1,300 UJ	4,500 U	910 U	5,700 U	11,000 U
Phenanthrene	ug/kg	50,000		550 UJ	300 J	22 J	2,100 J	9,700
Anthracene	ug/kg	50,000		550 UJ	60 J	380 U	320 J	2,300 J
Carbazole	ug/kg			550 UJ	1,900 U	380 U	240 J	B0 ا
Di-n-butyl phthalate	ug/kg	8,100		65 J	1,900 U	380 U	2,300 U	20.000
Elinranthene	110/Kg	50.000		550 UJ	400 J	44 J	2,200 J	13,000

Sample (D ->	Units	TAGN	1 4046	PB-12	I-WM	MW-2	MW-3
Depth - >		RSCO	Eastern USA	18 - 20	4-6	2-4	2-4
Date Sampled ->	[Background	11/24/2004	11/17/2004	11/18/2004	11/18/2004
Pyrene	ua/ka	50,000		550 UJ	280 J	37 J	2,300 U
Butvl benzvl phthalate	ng/kg	50,000		550 UJ	1,900 U	380 U	2,300 U
3.3'-Dichlorobenzidine	ug/kg			550 UJ	1,900 U	380 U	2,300 U
Benzo(a)anthracene	ug/kg	224 or MDL		550 UJ	160 J	26 J	1,300 J
Chrysene	uq/kg	400		550 UJ	170 J	30 J	1,400 J
Bis(2-ethvlhexvl) phthalate	uq/kg			550 UJ	1,900 U	380 U	2,300 U
Di-n-octvl phthalate	ng/kg	50,000		550 UJ	1,900 U	12 J	2,300 U
Benzo(b)fluoranthene	ug/kg	1,100		550 UJ	140 J	23 J	1,400 J
Benzo(k)fluoranthene	ng/kg	1,100		550 UJ	150 J	23 J	940J
Benzo(a)pyrene	ug/kg	61 or MDL		550 UJ	150 J	24 J	1,200 J
Indeno(1,2,3-cd)pyrene	ng/kg	3,200		550 UJ	52 J	10 J	400 J
Dibenzo(a,h)anthracene	ug/kg	14 or MDL		550 UJ	1,900 U	380 U	220 J
Benzo(ghi)perylene	ng/kg	50,000		550 UJ	66 J	12 J	420 J
PESTICIDES/AROCLORS							
alpha-BHC	03/bn	110		2:9 UJ	19 U	1.9 U	24 U
beta-BHC	Dy/bn	200		2.9 UJ	19 U	1.9 U	24 U
delta-BHC	ug/kg	300		2.9 W	19 U	1,9 U	24 U
gamma-BHC (Lindane)	ng/kg	80		2.9 UJ	19 U	1.9 U	24 U
Heptachlor	ng/kg	100		2.9 UJ	19 N	1.9 U	24 U
Aldin	ug/kg	41		2.9 UJ	19 U	1.9 U	24 U
		00		11100	1.01		I VC

Samnle ID ->	Units	TAGN	A 4046	PB-12	1-WM	MW-2	MW-3	MW-4
Depth - >		RSCO	Eastern USA	18 - 20	4-6	2-4	2-4	2-4
Date Sampled ->			Background	11/24/2004	11/17/2004	11/18/2004	11/18/2004	11/17/2004
Pyrene	ug/kg	50,000		550 UJ	280 J	37 J	2,300 U	4,500 U
Butyl benzyl phthalate	ng/kg	50,000		550 UJ	1,900 U	380 U	2,300 U	4,500 U
3,3'-Dichlorobenzidine	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
Benzo(a)anthracene	ug/kg	224 or MDL		550 UJ	160 J	26 J	1,300 J	8,300
Chrysene	ug/kg	400		550 UJ	170 J	30 J	1,400.J	370 BJ
Bis(2-ethylhexyl) phthalate	ug/kg			550 UJ	1,900 U	380 U	2,300 U	4,500 U
Di-n-octyl phthalate	ug/kg	50,000		550 UJ	1,900 U	12.J	2,300 U	4,500 U
Benzo(b)fluoranthene	ug/kg	1,100		550 UJ	140 J	23 J	1,400 J	17.000 J
Benzo(k)fluoranthene	ug/kg	1,100		550 UJ	150 J	23 J	940 J	9,100,J
Benzo(a)pyrene	ug/kg	61 or MDL		550 UJ	150 J	24 J	1,200,J	7,100
Indeno(1,2,3-cd)pyrene	ug/kg	3,200		550 UJ	52 J	10 J	400 J	2,800 J
Dibenzo(a,h)anthracene	ug/kg	14 or MDL		550 UJ	1,900 U	380 U	220 J	1,500 J
Benzo(ghi)perylene	ug/kg	50,000		550 UJ	66 J	12 J	420 J	2,900 J
PESTICIDES/AROCLORS								
alpha-BHC	ug/kg	110		2.9 UJ	19 U	1.9 U	24 U	23 U
beta-BHC	ng/kg	200		2.9 UJ	19 U	1.9 U	24 U	23 U
delta-BHC	ng/kg	300		2.9 UJ	19 U	1,9 U	24 U	23 U
gamma-BHC (Lindane)	ug/kg	60		2.9 UJ	19 0	1.9 U	24 U	23 U
Heptachlor	ug/kg	100		2.9 UJ	19 N	1.9 U	24 U	23 U
Aldin	ug/kg	41		2.9 UJ	19 U	1.9 U	24 U	23 U
Heptachlor epoxide	ug/kg	20		2.9 UJ	19 U	1.9 U	24 U	23 U
Endosultan I	ng/kg	006		5.6 UJ	19 U	1.9 U	24 U	23 U
Dieldrin	ng/kg	44		5.6 UJ	38 U	3.8 U	47 U	73 U
4,4'-DDE	ug/kg	2,100		5.6 UJ	38 U	3.8 U	47 U	46 U
Endrin	ug/kg	100		5.6 UJ	38 U	3.8 U	47 U	46 U
Endosulfan II	ng/kg	006		5.6 UJ	38 U	3.8 U	47 U	46 U
4,4'-DDD	ug/kg	2,900		5.6 UJ	38 0	3.8 U	47 U	46 U
Endosulfan Sultate	ng/kg	100		5.6 UJ	38 0	3.8 U	47 U	38 J
4,4'-DDT	ug/kg	2,100		5.6 UJ	38 0	3.8 U	47 U	46 U
Methoxychlor	ug/kg			29 UU	190 U	3.8 U	240 U	230 U
Endrin ketone	ug/kg			5.6 UJ	38 0	3.8 U	47 U	86
Endrin aldehyde	ug/kg			5.6 UJ	38 0	3.8 U	47 U	46 U
alpha-Chlordane	ug/kg	540		2.9 UJ	19 U	1.9 U	24 U	23 U
gamma-Chlordane	ug/kg	540		2.9 UJ	19 U	1.9 U	24 U	23 U
Toxaphene	ug/kg			290 UJ	1,900 U	190 U	2,400 U	2,300 U
Aroclor 1016	ug/kg			56 UJ	380 U	38 U	470 U	460 U
Aroclor 1221	ug/kg	1 000 - surface		110 UJ	380 U	38 U	470 U	460 U
Aroclor 1232	ug/kg	soils. 10.000 -		56 UJ	380 U	38 0	470 U	460 U
Aroclor 1242	ug/kg	subsurfare		56 UJ	380 U	38 U	470 U	460 U
Aroclor 1248	ug/kg	ourourave		56 UJ	380 U	38 U	470 U	460 U
Aroclor 1254	ug/kg			56 UJ	380 U	38 U	470 U	460 U
Aroclor 1260	ng/kg	,		56 UJ	380 U	38 U	470 U	460 U
INORGANICS								
Aluminum	mg/kg	SB	33000	50.1	6580 EJ	4670	5310 EJ	4840 EJ
Antimony	mg/kg	SB		0.62 N*J	1.7 BNJ	0.51 NJ	2.4 BNJ	1.0 BNJ
Arsenic	mg/kg	7.5 or SB	3 - 12	0.45 N*J	3.3	1.4 N	5.1	3.3
Barium	mg/kg	300 or SB	15 - 600	27.1	64.0 EJ	21.1	32.0 EJ	37.8 BEJ
Beryllium	mg/kg	0.16 or SB	0 - 1.75	0.14	0.70	0.21 BJ	0.50 B	0.36 B
Cadmium	mg/kg	1 or SB	0.1 - 1	0.03 ND	0.04 U	0.03 U	0.04 U	0.06 U
Calcium	mg/kg	BS	130 - 35,000	339,000	106000 EJ	14600	72700 EJ	15200 EJ
Chromium	mg/kg	10 or SB	1.5 - 40	0.11 BN"J	14.2 EJ	5.5	12.3 EU	14.8 151

Sample ID ->	Units	TAGN	A 4046	PB-12	MW-1	MW-2	MW-3	MW-4
Depth - >		RSCO	Eastern USA	18 - 20	4-6	2-4	2-4	2-4
Date Sampled ->			Background	11/24/2004	11/17/2004	11/18/2004	11/18/2004	11/17/2004
Cobalt	ma/ka	30 or SB	2.5 - 60	0.07 N	3.1 B	2.1 BJ	5.0 B	1.9 B
Copper	mg/kg	25 or SB	1 - 50	0.38 B*	17.1 ENJ	3.8 N	373 ENJ	38.3 ENJ
lion	ma/ka	2,000 or SB	2,000 - 550,000	194	27300 EJ	7350	31600 EJ	14900 EJ
Lead	mg/kg	SB	200 - 500	0.16 NJ	90.4 EJ	0.08	109 EJ	39.8 EJ
Magnesium	mg/kg	SB	100 - 5,000	1,800	5600 EJ	2550	11400 EJ	1540 EJ
Manganese	ma/ka	SB	50 - 5,000	38.5	1040 E*J	157 NJ	364 E*J	456 E*J
Mercury	ma/ka	0.1	0.001 - 0,2	0.036 N	0.092 N*	0.026 N*	0.055 BN*	0.104 N*
Nickel	ma/ka	13 or SB	0.5 - 25	2.2	7.8 EJ	4.2	13.8 EJ	9.7 EJ
Potassium	ma/ka	SB	8,500 - 43,000	54.6	1060	979	943	693 B
Selenium	mg/kg	2 or SR	0.1 - 3.9	0.4 N	0.66 U	0.61 BJ	0.54 U	0.96 U
Silver	ma/ka	SB		0.13 N	U 60.0	0.07 U	0.14 B	0.13 U
Sodium	ma/ka	SB	6,000 - 8,000	153	215 B	153 BJ	289 B	102 B
Thallium	ma/ka	SB		0.37 N	0.67 UJ	0.52 U	0.56 UU	0.98 UJ
Vanadium	ma/ka	150 or SB	1-300	0.10 BN*J	21.4 EJ	10.3	17.3 EJ	18.7 EJ
Zinc	mg/kg	20 or SB	9 - 50	2.8	27.2 E*J	19.1	180 E*J	70.3 E*J
WET CHEMISTRY ANALYSIS								
Cvanide - Total	ng/kg			4000 UJ	4000 U	4000 U	4000 U	4000 U
Leachable pH	S.U.			7.08 J	7.50	8.30	7.66	7.45

1 .

ا م

Sample ID ->	Units	TAGN	A 4046	MW-5	MW-6	MW-7	MW-7 RI	MW-8
Depth - >	L	RSCO	Eastern USA	2-4	4 - 7	4 - 6	4-6	2-5
Date Sampled ->			Background	11/17/2004	11/16/2004	11/16/2004	11/16/2004	11/18/2004
VOLATILES	ug/kg							
Chloromethane	ug/kg			12 UU	13 UJ	11 UJ		18 W
Bromomethane	ug/kg			12 U	13 U	⊐		18 U
Vinyl chloride	ug/kg	200		12 U	13 U	11 U		18 U
Chloroethane	ug/kg	1,900		12 U	13 U	11 U		-18 U
Methylene chloride	ug/kg	100		12 U	13 U	11 C		18 U
Acetone	ug/kg	200		8 J	13	23		18 U
Carbon disulfide	ug/kg	2,700		12 U	13 U	11 U		18 U
1,1-Dichloroethene	ug/kg	400		12 U	13 U	11 U		18 U
1,1-Dichloroethane	ug/kg	200		12 U	13 U	11 U		18 U
Chloroform	ug/ka	300		12 U	13 U	11 U		18 U
1.2-Dichloroethane	ua/ka	100		12 U	13 U	11 U		18 U
2-Butanone	ng/kg	300		12 U	13 U	11 U		18 U
1.1.1-Trichloroethane	ug/kg	800		12 U	13 U	11 U		18 U
Carbon tetrachloride	ug/kg	600		12 U	13 U	11 U		18 U
Bromodichloromethane	ug/kg			12 U	13 U	11 U		18 U
1.2-Dichloropropane	ug/kg			12 U	13 U	11 U		18 U
cis-1,3-Dichloropropene	ug/kg			12 U	13 U	11 U		18 U
Trichloroethene	ug/kg	700		12 U	13 U	11 UJ		18 U
Dibromochloromethane	ug/kg			12 U	13 U	11 U		18 U
1,1,2-Trichloroethane	ug/kg			12 U	13 U	11 U		18 U
Benzene	ug/kg	60 or MDL		12 U	13 U	11 U		18 U
trans-1,3-Dichloropropene	ug/kg			12 U	13 U	11 0		18 0
Bromoform	ug/kg			12 U	13 U	11 U		18 U
4-Methyl-2-pentanone	ug/kg	1,000		12 U	13 U	11 0		1810
2-Hexanone	ng/kg			12 U	13 U	11 0		18 0
Tetrachloroethene	ug/kg	1,400		101	13 U	11 0		181
Toluene	ng/kg	1,500		120	13.0			
1,1,2,2-Tetrachloroethane	ng/kg	600			0.51			
Chlorobenzene	ng/kg	1,700		12 U	13 U			
Ethylbenzene	ng/kg	5,500		1210	130			
Styrene	ng/kg							
Total xylenes	ug/kg	1,200			130			
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000		120				
cis-1,2-Dichloroethene	ug/kg							
trans-1,2-Dichloroethene	ng/kg	300			2 2	-	-	
Dichlorodifluoromethane	by/6n							
Trichlorofluoromethane	6X/6n				2 9			
Methyl acetate	6y/6n	001						191
Methyl tert butyl ether	Dy/cn	120		1210	2 2 2			2 4
Uycionexane	6y/6n			101	2 4			181
Meinyicycionexane	ng/kg			101	131			18 []
1,2-DIOMOUNCINARIE	6y/on			101	13 1	11		18 U
	Ru/An	1 600		191	1311	110		18 U
1,3-Dichlouentene	Ru/on	0 500		1 2 2	13 11) = ; ; ;		1810
1,4-DICINOTOBRIZERIE	Ru/An	4 000		101	13 [1	110		18 U
1,2-UICIIIUUUUBIKEIIE 1 0-Dibromo-2-chloronronane	10/kg	202 1 •		1210	13 U	11 U		18 U
1, 2.4. Trichlorchenzene	nn/kn	3 400		12 UJ	13 UJ	11 UU		18 UJ
	מלו	22.5						
Benzaldehvde	uq/ka			750 U	970 U	3,700 U	3,700 U	1,100 U
	The second se							
Pioneer Midler Avenue LLC Remedial Investigation Report Table 2 - Phase 1 Soil Data for Monitoring Wells and Geotechnical Borings

	1 Inite	TAGA	A ANAG	NAVALE	MW-6	MW-7	MW-7 RI	MW-8
Janth - >		RSCO RSCO	Fastern USA	2-4	4-7	4 - 6	4-6	2-5
Date Sampled ->	1		Background	11/17/2004	11/16/2004	11/16/2004	11/16/2004	11/18/2004
henol	ug/kg	30 or MDL		370 U	480 U	1,800 U	1,800 U	560 U
3is(2-chloroethyl) ether	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
2-Chlorophenol	ug/kg	800		370 U	480 U	1,800 U	1,800 U	560 U
2-Methylphenol	ug/kg	100 or MDL		370 U	480 U	1,800 U	1,800 U	560 U
2,2'-Oxybis(1-Chloropropane)	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
Acetophenone	ug/kg			750 U	970 U	3,700 U	3,700 U	1,100 U
t-Methylphenol	ug/kg	900		370 U	480 U	1,800 U	1,800 U	560 U
V-Nitroso-Di-n-propylamine	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
Hexachioroethane	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
Vitrobenzene	ng/kg	200 or MDL		370 U	480 U	1,800 U	1,800 U	560 U
sophorone	ng/kg	4400		370 U	480 U	1,800 U	1,800 U	560 U
2-Nitrophenol	ug/kg	330 or MDL		370 U	480 U	1,800 U	1,800 U	560 U
2,4-Dimethylphenol	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
3is(2-chloroethoxy) methane	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
2.4-Dichlorophenol	ug/kg	400		370 U	480 U	1,800 U	1,800 U	560 U
Vaphthalene	ug/kg	1,300		28 J	480 U	1,800 U	1,800 U	560 U
4-Chtoroanitine	ng/kg	220 or MDL		370 U	480 U	1,800 U	1,800 U	560 U
Hexachtorobutadiene	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
Caprolactam	ng/kg			750 U	970 U	3,700 U	3,700 U	1,100 U
4-Chloro-3-methylphenol	uq/kg	240 or MDL		370 U	480 U	1,800 U	1,800 U	560 U
2-Methylnaphthalene	ng/kg	36,400		12 J	480 U	1,800 U	1,800 U	560 U
Hexachlorocvclopentadiene	ua/ka			370 U	480 U	1,800 U	1,800 U	560 U
2.4.6-Trichlorophenol	ua/ka			370 U	480 U	1,800 U	1,800 U	560 U
2.4.5-Trichlorophenol	uq/kg	100		910 U	1,200 U	4,500 U	4,500 U	1,400 U
Siphenyl	ug/kg			750 U	970 U	3,700 U	3,700 U	1,100 U
2-Chloronaphthalene	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
2-Nitroaniline	ng/kg	430 or MDL		910 U	1,200 U	4,500 U	4,500 U	1,400 U
Dimethyl phthalate	ug/kg	2,000		370 U	480 U	1,800 U	1,800 U	560 U
2,6-Dinitrotoluene	ug/kg	1,000		370 U	480 U	1,800 U	1,800 U	560 U
Acenaphthylene	ug/kg	41,000		12 J	480 U	1,800 U	1,800 U	560 U
3-Nitroaniline	ug/kg	500 or MDL		910 U	1,200 U	4,500 U	4,500 U	1,400 U
Acenaphthene	ng/kg	50,000		37 J	480 U	1,800 U	1,800 U	560 U
2,4-Dinitrophenol	ng/kg	200 or MDL		910 U	1,200 U	4,500 U	4,500 U	1,400 U
4-Nitrophenol	ug/kg	100 or MDL		910 U	1,200 U	4,500 U	4,500 U	1,400 U
Dibenzofuran	ng/kg	6,200		370 U	480 U	1,800 U	1,800 U	560 U
2,4-Dinitrotoluene	ug/kg	1,000		22 J	480 U	1,800 U	1,800 U	560 U
Diethyl phthalate	ug/kg	7,100		370 U	480 U	1,800 U	1,800 U	560 U
Fluorene	ug/kg	50,000		35 J	480 U	1,800 U	1,800 U	560 U
4-Chlorophenyl phenyl ether	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
4-Nitroaniline	ug/kg			910 U	1,200 U	4,500 U	4,500 U	1,400 U
4,6-Dinitro-2-methyiphenol	ug/kg			910 U	1,200 U	4,500 U	4,500 U	1,400 U
N-nitrosodiphenylamine	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
4-Bromophenyl phenyl ether	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
Hexachlorobenzene	ug/kg	410		370 U	480 U	1,800 U	1,800 U	560 U
Atrazine	ug/kg			750 U	970 U	3,700 U	3,700 U	1,100 U
Pentachlorophenol	ug/kg	1000 or MDL		910 U	1,200 U	4,500 U	4,500 U	1,400 U
Phenanthrene	ug/kg	50,000		64 J	38 J	150 J	150 J	130 J
Anthracene	ug/kg	50,000		53 J	480 U	1,800 U	1,800 U	23 J
Carbazole	ug/kg		-	13 J	480 U	1,800 U	1,800 U	16 J
Di-n-butyl phthalate	ug/kg	8,100		560	480 U	1,800 U	1,800 0	100 r
Flinranthene	110/kg	50.000		470	611	2401	2801	16010

Pioneer Midler Avenue LLC Remedial Investigation Report Table 2 - Phase 1 Soil Data for Monitoring Wells and

	-
5	
5	
	n
5	ö
	č
5	·문.
	ā
2	m.
1	3
)	ö
)	1
	<u></u>
2	- X
2	÷.
2	Ö.
	Ψ
•	G
1	
5	
-	
2	

Sample ID ->	Units	TAGM	4046	MW-5	MW-6	7-WM	MW-7 RI	MW-8
Depth - >	1,, p	RSCO	Eastern USA	2-4	4-7	4-6	4-6	2 - 5
Date Sampled ->			Background	11/17/2004	11/16/2004	11/16/2004	11/16/2004	11/18/2004
Pyrene	ug/kg	50,000		370 U	58 J	180 J	150 J	140 J
Butyl benzyl phthalate	ug/kg	50,000		370 U	480 U	1,800 U	1,800 U	560 U
3,3'-Dichlorobenzidine	ug/kg			370 U	480 U	1,800 U	1,800 U	560 U
Benzo(a)anthracene	ng/kg	224 or MDL		220 J	36 J	120 J	120 J	71 J
Chrysene	ng/kg	400		240 J	41 J	140 J	140 J	ר 62
Bis(2-ethylhexyl) phthalate	ug/kg			370 U	480 U	1,800 U	49 BJ	560 U
Di-n-octyl phthalate	ug/kg	50,000		101	15 J	1,800 U	1,800 U	560 U
Benzo(b)fluoranthene	ug/kg	1,100		240 J	32 J	130 J	110 J	58 J
Benzo(k)fluoranthene	ug/kg	1,100		140 J	31 J	91 J	110 J	53 J
Benzo(a)pvrene	ua/ka	61 or MDL		210.J	34 J	120.J	L'011	57 J
Indeno(1,2,3-cd)pvrene	uq/ka	3,200		120 J	21 J	51 J	1,800 U	35 J
Dibenzo(a.h)anthracene	uq/ka	14 or MDL		58 J	480 U	1,800 U	1,800 U	19 J
Benzo(ghi)pervlene	uq/ka	50,000		140 J	26 J	72 J	48 J	43 J
PESTICIDES/AROCLORS	>							
alpha-BHC	ua/ka	110		1.9 U	2,5 U	19 U		2.9 U
heta-BHC	ua/ka	200		1.9 U	2.5 U	19 U		2.9 U
delta-BHC	ua/ka	300		1.9 U	2.5 U	19 U		2.9 U
namma-BHC (I indane)	un/ka	60		1.9 U	0.76 JP	19 U		2.9 U
Hentachlor	un/ko	100		1.9 U	2.5 U	19 U		2.9 U
Aldrin		41		190	2.5 U	19 U		2.9 U
Hantachlor annvida		20		1911	2511	1910		2.910
Endoerition (1 90 11	2511	1911		2.9 U
Dialdrin		44		3711	4811	3711		5.611
	Fu/fin			1 4 0		1 20		200
4,4-DUE Easter	6y/n	2,100		11/2		3711		2 2 2 2
	Ry/fin	8		0 1 4 0		3711		2.00
	By/bn	2000		0 - C	0 - C - C	0 10		
4,4'-DDD	ng/kg	2,900		3.7 U	0 10	0 10		0.00
Endosultan Sulfate	ng/kg	100		3.7 U	4.8 U	3/ U		0.0.7
4,4'-DDT	ng/kg	2,100		3./ U	4.8 U	37 U		
Methoxychlor	ug/kg			3.7 U	25 U	190 U		8.4 JP
Endrin ketone	ug/kg			3.7 U	4.8 U	37 U		6.5 PJ
Endrin aldehyde	ug/kg			3.7 U	4,8 U	37 U		5.6 U
alpha-Chtordane	ug/kg	540		1.9 U	2.5 U	19 U		2.9 U
gamma-Chlordane	ug/kg	540		1.9 U	2.5 U	19 U		2.9 U
Toxaphene	ug/kg			190 U	250 U	1,900 U		290 U
Aroclor 1016	ug/kg			37 U	48 U	370 U		56 U
Aroclor 1221	ug/kg	1 000 - curface		37 U	48 U	370 U		56 U
Aroclor 1232	ug/kg	nour suitate		37 U	48 U	370 U		56 U
Aroclor 1242	ug/kg			37 U	48 U	370 U		56 U
Aroclor 1248	ug/kg	enile		37 U	48 U	370 U		56 U
Aroclor 1254	ug/kg	SIDE		37 U	48 U	370 U		56 U
Aroclor 1260	ug/kg			37 U	48 U	370 U		56 U
INORGANICS								
Aluminum	mg/kg	SB	33000	5550 EJ	6140 EJ	4540 E		33400 E
Antimony	mg/kg	SB		0.6 BN	1.5 BNJ	1.7 BNJ		1.5 BNJ
Arsenic	mg/kg	7.5 or SB	3 - 12	2.2	4.5	5.4		7.0
Barium	mg/kg	300 or SB	15 - 600	21.1 EJ	45.8 BEJ	49.3 E		273 E
Beryllium	mg/kg	0.16 or SB	0 - 1.75	0.29 B	0.47 B	0.49 B		0.71 B
Cadmium	mg/kg	1 or SB	0.1 - 1	0.03 U	0.08 U	0.04 U		0.07 U
Calcium	mg/kg	SB	130 - 35,000	8170 EJ	43200.0 EJ	36000 E		185000 E
Chromium	mg/kg	10 or SB	1.5 - 40	6.4 EJ	12 EJ	11.1 E		14.8 E

Remedial Investigation Report Table 2 - Phase 1 Soil Data for Monitoring Wells and Geotechnical Borings **Pioneer Midler Avenue LLC**

Sample ID ->	Units	TAGN	M 4046	MW-5	MW-6	MW-7	MW-7 RI	MW-8
Depth - >	r	RSCO	Eastern USA	2-4	4 - 7	4 - 6	4-6	2-5
Date Sampled ->	ſ		Background	11/17/2004	11/16/2004	11/16/2004	11/16/2004	11/18/2004
Cobalt	mg/kg	30 or SB	2.5 - 60	2.8 B	4.2 B	3.5 B		15.9
Copper	mg/kg	25 or SB	1 - 50	8.0 EN	10.7 ENJ	26.7 EN		59.0 EN
lron	mg/kg	2,000 or SB	2,000 - 550,000	13900 EJ	34200.0 EJ	31400 E		29300 E
Lead	mg/kg	SB	200 - 500	11.3 EJ	55 EJ	36.6 E		19.5 E
Magnesium	mg/kg	ß	100 - 5,000	1450 EJ	2150 EJ	4030 E		4500 E
Manganese	mg/kg	SB	50 - 5,000	178 E*J	420 E*J	486 E*J		722 E*J
Mercury	mg/kg	0.1	0.001 - 0.2	0.029 U	0.038 U	0.024 U		0.073 BN*
Nickel	mg/kg	13 or SB	0.5 - 25	6.1 EJ	8.7 BEJ	7.9 E		29.9 E
Potassium	mg/kg	SB	8,500 - 43,000	629	954 B	653		626 B
Selenium	mg/kg	2 or SR	0.1 - 3.9	0.43 U	1.2 U	0.55 U		1.3 BN*
Silver	mg/kg	SB		0.06 U	0.17 B	0.09 B		0.18 B
Sodium	mg/kg	SB	6,000 - 8,000	62.9 B	353 B	143 B		180 B
Thallium	mg/kg	SB		0.44 UJ	1.2 UJ	0.57 U		1.1 U
Vanadium	mg/kg	150 or SB	1-300	12.1 EJ	20.2 EJ	21.5 E		16.1 E
Zinc	mg/kg	20 or SB	9 - 50	24.8 E*J	37.8 E*J	308 E*		140 E*
WET CHEMISTRY ANALYSIS								
Cyanide - Total	ug/kg			4000 U	4000 U	4000 U		4000 U
Leachable pH	S.U.			8.08	7.91	7.49		7.78

 RSCO = Recommended Soil Cleanup Objectives

 1,000
 - indicates detected value for organics.

 - indicates value exceeds TAGM 4046 RSCO

1 •

+ 1

Pioneer Midler Avenue LLC Remedial Investigation Report Table 3 - Phase 1 Test Pit Data

Sample ID -	1 Inite	TAGM	Ande	TP-4	1 TP-5	TP-7	TP-12	TP-13	TP-14	TP-14 DL
Janth . \		BSCO	Fastern USA	35-4.2	4.6-5.2	4-7	3.1-5.1	3.5-5.3	4-5	4-5
Date Sampled ->			Background	12/03/04	12/07/05	12/03/04	12/07/05	12/07/05	12/03/04	12/03/04
VOLATILES	ug/kg									
Chloromethane	uo/ka			14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
Gromomethane				14 [1]	15 U	15 U	12 U	12 U	16 U	7,200 U
diodonations faul ablanda	D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-D-	000		14	1511	13.1	12 [1	37	300	1.800 DJ
	Ru An	- 200		2 2 2	-	1511	1911	10 11	16/1	110002
cnioroeurane	fly/6n	M2'			2 2			100	10 21	7 200 11
Methylene chloride	n0.kg	31		1410	0 01	0 00	2 -	2 -	2 2	110001
Acetone	ug/kg	200		76 J	18	3	20	מר	5	1 202 -
Carbon disulfide	ug/kg	2,700		14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
1.1-Dichloroethene	uq/kg	004		14 U	15 U	15 U	12 U	12 U	2]	7,200 U
t 1. Dichloroethane	100kg	200		14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
	2000	200		1411	1511	15 11	12/11	12 U	161	7.20010
	Rufin	300		<u>,</u>	222		1 4	101	18/11	110002
1,2-Dichloroethane	ng/kg	18		1410		D C!	2	2		1,200 0
2-Butanone	ug/kg	300		29JJ	6.J	5 J	12 U	12 U	16 U	7,200 U
1.1.1-Trichtoroethane	ua/ka	800		14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
Carton tatrachtorida	10/ku	600		14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
	0.000	200		1411	121	15.11	1911	1911	1610	7.200 U
DIONIOGICINOLOGICIERIALIE	Ry.fin				222		212	1011	181	7 20011
1,2-UIChloropropane	ng kg			2 : * ;			2 2 2	19		11000-2
cis-1,3-Dichloropropene	ngkg			14 C	00	0 61	212	2 2		
Trichloroethene	ng/kg	700		14 U	15IU	15IU	12 U	36	310	0,000 UN
Dibromochloromethane	uo/ka			14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
1 1 O. Trichloroethane	100/kg			14IU	15 U	15 U	12 U	12 U	16 U	7,200 U
	- And	60 or MDI		14	1510	1510	12 U	12 U	1610	7.200 U
	Suñn -				35 1	15.11	1911	1011	1611	7,200 U
	Ry fin					111	100	1101	11.31	11006.2
Bromotorm	ugrkg			14 (5		121	220		
4-Methyl-2-pentanone	ug/kg	1,000		14 U	15 U	15.U	12 U	0 ZL	16 U	/'z00 U
2-Hexanone	uq/ka			14 U	15 U	15 U	12 U	12 U	16 U	7,200JU
Tetrachloroethene		1.400		14 U	15 U	15 U	12 U	67	83,000	63,000 D
Telicoo	C UNIT	1 EDD		0.10	15.11	15	12 []	12 U	P6	7.200 U
	fy/in	Ano ¹			2 2 2	100	515	2 = 1 \$	1611	11006 4
1,1,2,2-1 etrachloroethane	ng/kg	200		- + C	0 0 0		2 4	2 2 2		7 000 1
Chlorobenzene	ng/kg	1,700		14 U		0.01				1 000
Ethylbenzene	ng/kg	5,500		14 U	15 U	15 U	1210	120	41	1,200 0
Styrene	ng/kg			14 U	15 U	15 U	12IU	12 U	16 U	7,200 U
Total xvienes	uq/ka	1,200		14 U	15 U	15 U	12 U	12 U	180	2,500 DJ
t 1 9-Trichtoro-1 2 9-triftioroethane		1.000		14IU	1510	15 U	12 U	12 U	1610	7,200 U
ain 1.0. Dicklaracthana	10/00			14	15 1	2.1	12 U	23	7.400	7,400 D
	Bu An	000			15	1515	1911	36	1611	7,20011
trans+1,2+Ulchioroemene	fly/n	30		2			1107	11 57	24	2 20011
Dichlorodifluoromethane	ug/kg			D 51	0 61	201		121		1,000
Trichloroftuoromethane	ug/kg			14 U	150	15 U	12.0	חצו		n mz'
Methyl acetate	ug/kg			14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
Methyl tert butyl ether	ug/kg	120		14 U	15 U	15 U	12 U	12 U	16 U	7,200 U
Cvclohezane	un/ko			52 J	15 U	15 U	12 U	12 U	150	7,200 U
Mathutanahasana	110/km			160 J	15/U	15 U	12 U	12 U	31,000	31,000 D
1 9. Ditromoditione	1 to Act			14[1]	1510	15IU	12 U	12 U	1610	7,200 U
transmillanzasa	Notice 1			200	15[]	15 U	1210	12 U	55	7.200 U
t o Dichlorchenzano	10/01	1 600		14	15 []	15 U	12IU	12 U	16 U	7.200 U
1,3-Diulijujudenterite 4.4 Diastarskonseno	Bullan Bullan	8 500		14	151	15/11	12 [1]	12 U	16 U	7.200 U
1,4-010/jiv/oucriterie	Part of	000		1411	15	1511	1211	12 U	1610	7.200 U
1,2-Diciliotobelizerie	Ruffo	2021			16	1511	1911	101	16 []	7.200 U
1,2-Ulprono-3-Cinoroproparie	fw/fin				11124	1127	11101	10 11 12 10 11	1111	11000 4
1,2,4-i nchlorobenzene	ng/kg	3,400		3	300	300	2	2012	3	, , , ,
SEMIVOLATILES				- 11 000	1 200	c +0/12	11 727	11000		
Benzaldehyde	Bx/6n			200	0,000,0	n n i c	0.007	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Phenol	ng/kg	30 of MUL		450 UJ	2,800 U	2,200 0	1000	4100		
Bis(2-chloroethyl) ether	ng/kg			450 UJ	2,800 U	2,500 0	0 000	4100		
2-Chlorophenol	ng/kg	800		450 UJ	2,800 U	n nns'z	380 U	0 014		
2-Methylphenol	ug/kg	100 or MDL		450 UJ	2,800 U	2,500 U	380 U	410 U	0,000,0	
2,2'-Oxybis(1-Chloropropane)	ug/kg			450 UJ	2,800 U	2,500 U	380 U	410 U	0 002'9	
Acetophenone	ug/kg			600 U.J	5,600 U	5,100 U	/60 0	830 0	10,000,01	
4-Methylphenot	ug/kg	86		450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
N-Nilroso-Di-n-propylamine	ug/kg			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Hexachloroethane	ug/kg			450 UJ	2,800 U	2,500 U	380 0	410 U	0,300 0	
Nitrobenzene	ua/ka	200 or MDL		450 UJ	2,800 U	2,500 U	380JU	410 U	5,300 U	

Pioneer Midler Avenue LLC Remedial Investigation Report Table 3 - Phase 1 Test Pit Data

Samue ID ->	Units	TAGN	1 4046	TP-4	7P-5	TP-7	TP-12	TP-13	TP-14	TP-14 DL
Death - >	T	RSCO	Eastern USA	3.5-4.2	4.6-5.2	4-7	3.1-5.1	3.5-5.3	4-5	4-5
Date Sampled ->			Background	12/03/04	12/07/05	12/03/04	12/07/05	12/07/05	12/03/04	12/03/04
Isophorone	ug/kg	4400		450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
2-Nitrophenol	ua/ka	330 or MDL		450 UJ	2,600 U	2,500 U	380 U	410 U	5,300 U	
2.4-Dimethylohenol	ua/ka			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Bis(2-chloroethoxy) methane	uq/ka			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
2.4-Dichlorophenol	rg/kg	400		450 UJ	2,800 U	2,500 U	360 U	410 U	5,300 U	
Naphthalene	ug/kg	1,300		3,400 J	2,800 U	2,500 U	380 U	410 U	610 J	
4-Chtoroanline	ug/kg	220 or MDL		450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Hexachlorobutadiene	ng/kg			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Caprolactam	ng/kg			FU 006	5,600 U	5,100 U	920 U	830 U	10,000 U	
4-Chtoro-3-methylphenol	ng/kg	240 or MDL		450 UJ	2,800 U	2,500 U	760 U	410 U	5,300 U	
2-Methvinaphthalene	ng/kg	36,400		5,200	2,800 U	2,500 U	380 U	410 U	1,300 J	
Hevachlningvolonentadiene	uo/ka			450 UU	2,800 U	2,500 U	380 U	410 U	5,300 U	
2 4 6. Trichlorothenol	uc/ka			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
2 4 5-Trichlorochenol	uo/ka	100		1,100 UJ	6,800 U	6,200 U	920 U	1,000 U	13,000 U	
Rinhanut	norka			500 LU	5.600 U	5,100 U	760 U	830 U	10,000 U	
9. Chlorosophthalene	Linko			450 UJ	2,800 U	2.500 U	380 U	410 U	5,300 U	
2-Vitionaline	Colors	430 or MDI		1.100[1.1	6.800 U	6.200 U	920 U	1.000 U	13,000 U	
Z-LINU CENTRIE	242	2000		AEDITI	2 800 11	2 500 LT	38011	41010	5.300 U	
Danieuryi pilulaade	Rufin	1 200		AED III	2 800 11	2 500 11	38011	41011	5.300 U	
2,0-Uinirololuerie	hynn	2000			2 000 11	0 500 11		11011	ERO I	
Acenaphthylene	uo/kg	41,000		C 07/	2,000 0		000	1 444	1 000 01	
3-Nitroantine	ng/kg	500 or MUL		2010/11	6 800 U		920 0	n m''	0 000'01	
Acenaphthene	ug/kg	50,000		3,500 J	2,800 U	Г 66	380 U	410 U	800 J	
2,4-Dinitrophenol	ug/kg	200 or MDL		1,100 UJ	6,800 UJ	6,200 UJ	920 UJ	1,000 UJ	13,000 UJ	
4-Nitrophenol	ua/ka	100 or MDL		1,100 UJ	6,800 U	6,200 U	920 U	1,000 U	13,000 U	
Dibenzofuran	uc/ka	6.200		2,200 J	2,800 U	2,500 U	380 U	410 U	710 J	
2 4-Dinitrotokiene	uc/kg	1.000		450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Diethvl ohthalate	ua/ka	7.100		450 UJ	2,800 U	2,500 U	14 J	410 U	5,300 U	
Fluorana	uo/ka	50.000		6.100	١	120 J	380 U	410 U	1,400 J	
4-Chlorohanui nhanui athar	10/kg			450 UJ	2.800 U	2.500 U	380 U	410 U	5,300 U	
	Bu An			110011	S ROOLI	6 200 11	92011	1,000 U	13.0001U	
4-Mirrodrinitie	Ry An			1100	6 800 II	6.20011	92011	1 00011	13,000 U	
	RyAn I				0 000 0	9 500 11	3BO LI	41011	5 300 11	
	Ry An			110 00	0 000 11	5 200 U		11017	5 300 11	-
4-Bromophenyl phenyl ether	ugrkg							41011	2000	
Hexachlorobenzene	ngykg	410		10,004	2,000,0	21000		11/050	10000	
Atrazine	ngkg			6006	5,600 U	0,001,6	0.007	0000	0 000 01	
Pentachlorophenol	цgkg	1000 or MUL			0'800 N	0.200	320 0	n nn 1		
Phenanthrene	ug/kg	50,000		12,000	830.5	r mr. 2	D DRC			
Anthracene	by/6n	20,000		1,700 J	140 J	340 J	900	01	1,100 J	
Carbazole	ug/kg			450 UJ	2,800 U	130 1	29 J	410 U	570 J	
Di-n-butyt phthalate	ug/kg	8,100		450 UJ	2,800 U	2,500 U	18.J	15 J	170.1	
Fluoranthene	ug/kg	50,000		3,800 J	1,000 J	2,100 J	36 J	180 J	14,000	
Pyrene	ug/kg	50,000		2,000	920 J	2,200 J	31 J	160.J	14,000	
Butyl benzyl phthalate	ng/kg	50,000		450 UJ	2,800 U	2,500 U	12 J	410 U	5,300 U	
3,3'-Dichlorobenzidine	ug/kg			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Benzo(a)anthracene	ng/kg	224 or MDL		1500	430 J	820 J	16 J	86 J	8.100	
Chrysene	ug/kg	400		1,500	E10.J	D40.1	21 J	95 J	8.900	
Bis(2-ethylhexyl) phthalate	ug/kg			450 UJ	2,800 U	2,500 U	380 U	410 U	5,300 U	
Di-n-octyl phthalate	ug/kg	50,000.		450 UJ	110 J	2,500 U	380 U	410 U	5,300 U	
Benzo(b)fluoranthene	ug/kg	1,100		1,300	380 J	560J	12 J	77	8,400	
Benzo(k)fluoranthene	ug/kg	1,100		940	360 J	480 J	12 J	76 J	9,200	-
Benzo(a)pyrene	ug/kg	61 or MDL		1,200	370 J	F 083	12 J	57.J	8,400	
Indeno(1,2,3-cd)pyrene	ug/kg	3,200		560	140J	430.J	380 U	55 J	5,600	
Dibenzo(a,h)anthracene	ug/kg	14 of MDL		300,1	F 82	190.J	380 U	25.J	3.000.J	
Benzo(ghi)perylene	ug/kg	50,000		340 J	1001	310.J	380 U	35 J	3,600 J	
PESTICIDES/AROCLORS				_	-	_			_	-

Pioneer Midler Avenue LLC Remedial Investigation Report Table 3 - Phase 1 Test Pit Data

Samole ID ->	Units	TAGN	14046	TP-4	TP-5	2-d1	TP-12	TP-13	TP-14	TP-14 DL
Depth - >	·	BSCO	Eastern USA	3.5-4.2	4.6-5.2	4-7	3.1-5.1	3.5-5.3	4-5	4-5
Date Sampled ->	_		Background	12/03/04	12/07/05	12/03/04	12/07/05	12/07/05	12/03/04	12/03/04
alpha-BHC	ng/kg	110	-	5.3 JP	13 U	5.4 U	2.0 U	2:0 U	35 U	
beta-BHC	ug/kg	200		7.6 JP	13 U	5.4 U	2.0 U	2.0 U	27 U	
delta-BHC	ug/kg	300		12 U	13 U	5.4 U	2.0 U	2.0 U	27 U	
gamma-BHC (Lindane)	ug/kg	8		12 U	13 U	5.4 U	2.0 U	2.0 U	27 U	
Heptachtor	ug/kg	100		12 U	13 U	5.4 U	2.0 U	2.0 U	27 U	
Aldrin	ng/kg	41		1210	13 U	5.4 U	2.0 U	2.0 U	27U	
Heptachfor epoxide	пд/кд	20		12 U	13 U	5.4 U	2.0 U	2.0 U	28 U	
Endosultan I	ug/kg	006		12 U	13 U	5.4 U	2.0 U	2.0 U	27U	
Dieldrin	ug/kg	44		23 U	25 U	10 U	3.9 U	3.8 U	52 U	
4,4'-DDE	ug/kg	2,100		23 U	25 U	10 U	3.9 U	3.8 U	52 U	
Endrin	ug/kg	1 00		23 U	25 U	10 U	3.9 U	3.8 U	140 J	
Endosulfan I	ng/kg	006		23.0	25 U	10 U	3.9 U	3.8 U	5210	
4.4-DDD	ng/kg	2,900		23 U	25 U	10 U	3,9 U	3.8 U	52 U	
Endosulfan Sulfate	ug/kg	100		23 U	25 U	10 U	3.9 U	3.8 U	52 U	
4,4'-DDT	ug/kg	2,100		23 U	25 U	10 U	3.9 U	3.8 U	250 PJ	
Methoxychlor	ug/kg			120 U	130 U	54 U	20 U	20 U	270 U	
Endrin ketone	ug/kg			23 U	25 U	10 U	3.9 U	3.8 U	120 U	
Endrin aldehyde	uq/kg			23U	25 U	10 U	3.9 U	3.8 U	150 PJ	
atoha-Chtordane	ua/ka	540		12 U	13 U	5.4 U	2.0 U	2.0 U	27 U	
oamma-Chlordane	uq/ka	540		12 U	13 U	5.4 U	2.0 U	2.0 U	27 U	
Toxanhene	ua/ka			1,200 U	1,300 U	540 U	200 U	200 U	2700 U	
Arocior 1016	ua/ka			230 U	250 U	100 U	39 0	38 U	520 U	
Aroclor 1221	ua/ka			470 U	510 U	2210 U	80 U	77 U	1000 N	
Aroclor 1232	ua/ka	1,000 - surrace		230 U	250 U	100 U	0 68	38 U	520 U	
Aroclor 1242	uc/ka	Soils, 10,000 -		230 U	250 U	100 U	39 0	38 U	520 U	
Aroclos 1248	ug/kg	subsultace		230 U	250 U	100 U	39 U	38 U	520 U	
Aroclor 1254	uq/kg	SIDS		230 U	250 U	1001	39 U	38 U	520 U	
Aroclor 1260	un/kg			230 U	250 U	100 U	39 U	38 U	520 U	
INORGANICS										
Auminum	mg/kg	SB	33000	4930	7950	3940	3070	15200	7340	
Antimony	mg/kg	SB		0.64 U N J	0.96 BN*J	0.53 UN*J	0.55 U N*J	0.50 U N [*] J	2.0 N°J	
Arsenic	mg/kg	7.5 or SB	3-12	3.0 N°J	5.1 N°J	5.5 N*J	1.6 N°J	4.6 N*J	9.8 N.1	
Barlum	mg/kg	300 or SB	15 - 600	35.9	82.3	41.0	16	82.0	61.5	
Berdlium	ma/kg	0.16 or SB	0 - 1.75	0.25	0.35	0.44	0.18	0.81	0.38	
Cadmium	mg/kg	1 or SB	0.1 - 1	0.14	0.25	0.22	0.03 U	0.03 U	5.7	
Calcium	mg/kg	SB	130 - 35,000	33200	44700	69500	25700	41500	61500	
Chromium	mg/kg	10 or SB	1.5 - 40	6.5 N*J	10.2 N*J	6.5 N°J	3.1 N ⁺ J	22.8 N [•] J	F-N 672	
Cobalt	mg/kg	30 or SB	2.5 - 60	3.2	3.8	4.2	1.6	5.3	7.5	
Copper	mg/kg	25 or SB	1-50	15.7 *	14.7	17.1 *	2.3 .	11.8	187	
Iron	mg/kg	2,000 or SB	2,000 - 550,000	11900	20300	37500	6350	25900	48500	
Lead	mg/kg	SB	200 - 500	22.8 NJ	25.4 N ⁻ J	16.6 NJ	G.N 9.5	P.N.Z.GL	C-N /01	
Magnesium	mg/kg	SB SB	100 - 5,000	1930	3680	1947	- 96F	2450	2140	
Manganese	шука	80	00,000	14	0.036 11	0.02511	0.025	0.027	0.064 B	
Mercury	BA/Gm	13 or CD	20 - 1000	4 150	0 1 0		2 8 6	10.0	327 •	
Nickel	mo/kg	SR SR	8 500 - 43 000	773	1590	586	464	2010	637	
Pulassiulti Salaation	CALCON IN	02.20	01-30	- 1	10R*	11 19.	0.36.01	168	2.4 B*	
Selenium	64/011		00-10	0 14 11	0 18 []	0.1218	0.12 U	0.54 B	0.61 B	
Codium Codium	GAN DU	n d	6 000 - 8 000	142	368	60.3	124	573	195	-
Thalling		9 8		0.38 U*	0.54 B*	0.49 B*	0.33 U *	1.1*	1.0 B*	
Vanadkim	ma/ka	150 or SB	1-300	12.3 N°J	L.N 0.71	12.4 N ⁻ J	7.2 N ⁻ J	53.6 N°J	56.7 N [•] J	
Zinc	mg/kg	20 or SB	9-50	49.1	290	24.8	15.8	22.2	364	
WET CHEMISTRY ANAL YSIS										
Cyanide - Total				4000 UJ	4000 UJ	4000 UJ	4000 UJ	4000 UJ	4000 UJ	
Leachable pH			-	7.08	7.33	7.17	8.12	7.73	/18	

RSCO = Recommended Soli Clearup Objectives 1,000 - initiates detected value for organics. - initiates value exceeds TACM 4046 RSCO

Comolo 10 -	Inite	TAGM ADAR	UC-WM	MW-3D	MW.3D DI	MW-3D	MW-4D	De-WM	MS-9D	MW-10D	MW-11D	MW-11D DL
Satiple ID -2		CCC28	16-18	20-22	20-22	24-26	14-16	16-18	18-20	16-18	20-22	20-22
Date Sampled ->)	1/27/2005	1/25/2005	1/25/2005	1/25/2005	1/26/2005	1/27/2005	1/27/2005	1/26/2005	1/24/2005	1/24/2005
VOLATIES	na/ka											
Chloromethane	ua/ka		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Bromomethane	na/ka		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	110	1,300 U
Vinvl chloride	uq/ka	200	18 U	160	4,300 U	14 U	13 U	16 U	15 U	<u>۲</u>	11 U	1,300 U
Chloroethane	uq/kg	1,900	18 U	18/U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Methylene chloride	uq/kg	100	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Acetone	ng/kg	200	10.1	10.1	4,300 U	5 J	11 J	16	Г 6	15 J	6 J	1,300 U
Carbon disulfide	uq/kg	2,700	3 J	2 1	4,300 U	14 U	3 J	57	3 J	81	4 1	1,300 U
1.1-Dichloroethene	noka	400	18 U	18U	4,300 U	14 U	13 U	16 U	15 U	18 U	2 J	1,300 U
1.1-Dichloroethane	uq/ka	200	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Chloroform	ua/ka	300	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
1.2-Dichloroethane	ua/ka	100	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
2-Butanone	ua/ka	88	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	110	1,300 U
1.1.1-Trichloroethane	na/kg	800	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Carbon tetrachloride	ua/ka	600	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	110	1,300 U
Bromodichloromethane	na/ka		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
1 9-Dichloronmane	in/ka		1810	18 U	4.300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
loie-1 3-Dichloronronane	in/ka		1810	18 U	4.300 U	14 U	13 U	16 U	15 U	18U	110	1,300 U
Trichloroathana		200	1810	3.1	4.300 U	14 U	13 U	16 U	15 U	18 U	550 E	650 DJ
Dibromochloromathane		2	181	181	4 300 11	14 U	13 U	16 U	1510	1810	11 U	1.300 U
1 1 2. Trichloroethane	Ru/ku		1810	181	4.300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Renzene	n/kn	60 or MDI	1811	181	4.30010	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
trace.1 3. Dichloronronene		1011 10 00	18.U	181	4.300 U	1410	13 U	16 U	15 U	18 U	110	1,300 U
Bromoform	ua/ka		1810	18 U	4.300 U	14 U	13 U	16 U	15 U	1810	11 U	1,300 U
4-Methvl-2-pentanone	na/ka	1.000	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	110	1,300 U
2-Hexanone	ug/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Tetrachloroethene	uo/kg	1,400	1810	12 J	4,300 U	2 J	13 U	16 U	15 U	18 U	13,000	13,000 D
Toluene	D3/kg	1,500	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
1.1.2.2-Tetrachloroethane	ug/kg	600	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	1 I I	1,300 U
Chlorobenzene	ug/kg	1,700	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Ethylbenzene	ug/kg	5,500	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Styrene	ug/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Total xylenes	ug/kg	1,200	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 0	110	1,300 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 0	D FF	1,300 U
cis-1,2-Dichloroethene	ug/kg		18 U	2,000 J	2,000 DJ	14 U	13 U	16 U	15 U	42	36	1,300 U
trans-1,2-Dichioroethene	ug/kg	300	18 U	140	4,300 U	14 U	13 U	16 U	15 U	27	2 1	1,300 U
Dichlorodifluoromethane	ug/kg		18 U	1810	4,300 U	14 U	13 0	16 U	15 U	D BL	011	1,300 U
Trichlorofluoromethane	ug/kg		18 U	18 U	4,300 U	14 IU	13 U	16 U	15 U	18 U	11 0	1,300 U
Methyl acetate	ug/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Methyl tert butyl ether	ug/kg	120	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
Cyclohexane	lg/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	110	1,300 U
Methylcyclohexane	ug/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	181	110	1,300 U
1,2-Dibromoethane	ug/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	1110	1,300 U
Isopropyibenzene	ug/kg		18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 0	1,300 U
1,3-Dichlorobenzene	ug/kg	1,600	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	11 U	1,300 U
1,4-Dichlorobenzene	ug/kg	8,500	- 18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	18 U	D E	1,300 U
1,2-Dichlorobenzene	ug/kg	7,900	18 U	18 U	4,300 U	14 U	13 U	16 U	15 U	180	11 U	1,300 U
1,2-Dibromo-3-chloropropane	ug/kg		1810	18 U	4,300 U	14 U	13 U	16 U	15 U	181		1,300 0
1,2,4-Trichlorobenzene	l ug/kg	3,400	18 U	18 U	4,300 U	14IU	13 U	16 U	15 0	18/0	1110	1,300,0

HSCO = Recommended Soil Cleanup Objectives 1,000 - Indicates detected value for organics.

Sample ID ->	Units	TAGM 4046	GP-2	GP-2 DL	GP-2	GP-2 DL	GP-3	GP-3
Depth - >	·	RSCO	12 - 16	12 - 16	16 - 19	16 - 19	16 - 19	19 - 19.5
- Date Sampled ->			03/17/05	03/17/05	03/17/05	03/17/05	03/17/05	03/17/05
VOLATILES	ug/kg							
Chloromethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Bromomethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Vinyl chloride	ug/kg	200	820 J	500 DJ	24 J	3,500 U	980,000 UJ	360,000 U
Chloroethane	ug/kg	1,900	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 UJ
Methylene chloride	ug/kg	100	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Acetone	ug/kg	200	۲ J	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Carbon disulfide	ng/kg	2,700	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,1-Dichloroethene	ng/kg	400	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,1-Dichloroethane	ug/kg	200	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Chloroform	ug/kg	300	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,2-Dichloroethane	ug/kg	100	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
2-Butanone	ug/kg	300	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,1,1-Trichloroethane	ug/kg	800	17 U	2,000 U	24 J	3,500 U	980,000 UJ	360,000 U
Carbon tetrachloride	ug/kg	600	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Bromodichloromethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,2-Dichloropropane	ng/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
cis-1,3-Dichloropropene	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UU	360,000 U
Trichloroethene	ug/kg	700	12 J	2,000 U	92	3,500 U	250,000 J	240,000 J
Dibromochloromethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,1,2-Trichloroethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Benzene	ug/kg	60 or MDL	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
trans-1,3-Dichloropropene	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Bromoform	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
4-Methyl-2-pentanone	ug/kg	1,000	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
2-Hexanone	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UU	360,000 U
Tetrachloroethene	ug/kg	1,400	80	360 DJ	82	710 DJ	13,000,000 J	5,900,000
Toluene	ug/kg	1,500.	17 U	2,000 U	30 U	3,500 U	000'086	360,000 U
1,1,2,2-Tetrachloroethane	ug/kg	e00 ^{- 1}	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Chlorobenzene	ug/kg	1,700	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Ethylbenzene	ug/kg	5,500	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Styrene	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Total xylenes	ug/kg	1,200	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
cis-1,2-Dichloroethene	ug/kg		1,700 J	1,700 DJ	1600 J	1,600 DJ	980,000 UJ	360,000 U

Page 1 of 8

F-IProjectIC81 - Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007/RI ReportITablesITable5VALIDATED.xis / B-3 Area

Sample ID ->	 Units 	TAGM 4046	GP-2	GP-2 DL	GP-2	GP-2 DL	GP-3	GP-3
Depth - >		RSCO	12 - 16	12 - 16	16 - 19	16 - 19	16 - 19	19 - 19.5
Date Sampled ->		L	03/17/05	03/17/05	03/17/05	03/17/05	03/17/05	03/17/05
trans-1,2-Dichloroethene	ug/kg	300	240	2,000 U	39	3,500 U	980,000 UJ	360,000 U
Dichlorodifluoromethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Trichlorofluoromethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Methyl acetate	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Methyl tert butyl ether	ug/kg	120	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Cvctohexane	ug/kg		17 U	2,000 U	<u>30 U</u>	3,500 U	000,089 UU 000,089	360,000 U
Methvlcvclohexane	ug/kg		17 U	2,000 U	<u>30 U</u>	3,500 U	000'086	360,000 U
1,2-Dibromoethane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
Isopropylbenzene	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,3-Dichlorobenzene	ug/kg	1,600	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,4-Dichlorobenzene	ug/kg	8,500	17 U	2,000 U	30 U	3,500 U	000'086 nn	360,000 U
1,2-Dichlorobenzene	ug/kg	7,900	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,2-Dibromo-3-chloropropane	ug/kg		17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U
1,2,4-Trichlorobenzene	ug/kg	3,400	17 U	2,000 U	30 U	3,500 U	980,000 UJ	360,000 U

;

و بر

er Midler Avenue LLC	dial Investigation Report	5 - Phase 2 GeoProbe Boring Data
Pioneer N	Remedial	Table 5 - I

Sample ID ->	 Units 	TAGM 4046	GP-4	GP-7	GP-7	GP-9	GP-9 DL	GP-9
Depth - >	•	RSCO	Ъ	8 - 12	16 - 18.9	8 - 10.5	8 - 10.5	16 - 18.5
Date Sampled ->	_		03/17/05	03/18/05	03/18/05	03/18/05	03/18/05	03/18/05
VOLATILES	ug/kg							
Chloromethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Bromomethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Vinyl chloride	ug/kg	200	80,000	5 J	3 J	2,700 J	2,700 DJ	<u>ل</u>
Chloroethane	ug/kg	1,900	16,000 UJ	20 UJ	29 UJ	33 NJ	3,900 U	20 UJ
Methylene chloride	ug/kg	100	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Acetone	ug/kg	200	16,000 U	20 U	29 U	240 B	3,900 U	25 U
Carbon disulfide	ug/kg	2,700	16,000 U	20 U	29 U	33 U	3,900 U	2 J
1,1-Dichloroethene	ug/kg	400	16,000 U	20 U	29 U	33 U	3,900 U	20 U
1,1-Dichloroethane	ug/kg	200	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Chloroform	ug/kg	300	16,000 U	20 U	29 U	33 U	3,900 U	20 U
1,2-Dichloroethane	ug/kg	100	16,000 U	20 U	29 U	33 U	3,900 U	20 U
2-Butanone	ug/kg	300	16,000 U	20 U	29 U	33 U	3,900 U	20 U
1,1,1-Trichloroethane	ug/kg	800	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Carbon tetrachloride	ug/kg	600	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Bromodichloromethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
1,2-Dichloropropane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
cis-1,3-Dichloropropene	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Trichloroethene	ug/kg	700	16,000 U	20 U	3 J	33 U	3,900 U	14 J
Dibromochloromethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
1,1,2-Trichloroethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Benzene	ug/kg	60 or MDL	16,000 U	20 U	29 U	33 U	3,900 U	20 U
trans-1,3-Dichloropropene	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Bromoform	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
4-Methyl-2-pentanone	ug/kg	1,000	16,000 U	20 U	29 U	33 U	3,900 U	20 U
2-Hexanone	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Tetrachloroethene	ug/kg	1,400	4,400 J	20 U	29 U	33 U	3,900 U	20 U
Toluene	ug/kg	1,500	16,000 U	20 U	29 U	<mark>ر</mark> 8	3,900 U	20 U
1,1,2,2-Tetrachloroethane -	ug/kg	600	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Chlorobenzene	ug/kg	1,700	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Ethylbenzene	ug/kg	5,500	16,000 U	20 U	29 U	33 U	3,900 U	20 U
Styrene	ug/kg		16,000 U	20 U	29 U	33 N	3,900 U	20 U
Total xylenes	ug/kg	1,200	16,000 U	20 U	29 U	33 U	3,900 U	20 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	16,000 U	20 U	29 U	33 N	3,900 U	20 U
cis-1,2-Dichloroethene	ug/kg		170,000	37	89	530	2,200 DJ	69

FiProjectIC81 - Pioneer DevelopmentIC81.002 BCPICtose out and COCIOctober 2007/RI ReportITables/Table5VALIDATED.xis / B-3 Area

Page 3 of 8

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample ID ->	Units	TAGM 4046	GP-4	GP-7	GP-7	GP-9	GP-9 DL	GP-9
Date Sampled -> 03/17/05 03/18/05 03/18/05 2-Dichloroethene ug/kg 300 16,000 U 56 offuoromethane ug/kg 300 16,000 U 20 offuoromethane ug/kg 300 16,000 U 20 offuoromethane ug/kg 16,000 U 20 1 acetate ug/kg 120 16,000 U 20 1 acomoethane ug/kg 16,000	< - Depth - >		RSCO	ሲ	8 - 12	16 - 18.9	8 - 10.5	8 - 10.5	16 - 18.5
2-Dichloroethene ug/kg 300 16,000 U 5 odifluoromethane ug/kg 16,000 U 20 1 odifluoromethane ug/kg 16,000 U 20 1 odifluoromethane ug/kg 120 16,000 U 20 1 acetate ug/kg 120 16,000 U 20 1 acetate ug/kg 120 16,000 U 20 1 acetate ug/kg 120 16,000 U 20 1 exane ug/kg 120 16,000 U 20 1 vomoethane ug/kg 120 16,000 U 20 1 vomoethane ug/kg 1,600 U 20 1 20 1 vomoethane ug/kg 1,600 U 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 </td <td>Date Sampled -></td> <td></td> <td>I</td> <td>03/17/05</td> <td>03/18/05</td> <td>03/18/05</td> <td>03/18/05</td> <td>03/18/05</td> <td>03/18/05</td>	Date Sampled ->		I	03/17/05	03/18/05	03/18/05	03/18/05	03/18/05	03/18/05
odiffuoromethane ug/kg 16,000 U 201 rofluoromethane ug/kg 16,000 U 201 acetate ug/kg 16,000 U 201 acetate ug/kg 120 16,000 U 201 acetate ug/kg 120 16,000 U 201 tert butyl ether ug/kg 120 16,000 U 201 exane ug/kg 120 16,000 U 201 exane ug/kg 120 16,000 U 201 ovaloberzene ug/kg 1,600 U 201 ovaloberzene ug/kg 1,600 U 201 hloroberzene ug/kg 7,900 16,000 U 201 ovaloberzene ug/kg 7,900 16,000 U 201 ovaloberzene ug/kg 1,6000 U 201 201 ovaloberzene ug/kg 7,900 16,000 U </td <td>ichloroethene</td> <td>ug/kg</td> <td>300</td> <td>16,000 U</td> <td>5 J</td> <td>10 J</td> <td>68</td> <td>3,900 U</td> <td>13 J</td>	ichloroethene	ug/kg	300	16,000 U	5 J	10 J	68	3,900 U	13 J
rofluoromethane ug/kg 16,000 U 20 acetate ug/kg 120 16,000 U 20 tert butyl ether ug/kg 120 16,000 U 20 tert butyl ether ug/kg 120 16,000 U 20 exane ug/kg 120 16,000 U 20 cyclohexane ug/kg 16,000 U 20 vyclohexane ug/kg 16,000 U 20 vionoethane ug/kg 1,600 U 20 vionobenzene ug/kg 7,900 U 20 vionobenzene ug/kg 7,900 U 20 viono-3-chloropropane ug/kg 7,900 U 20	uoromethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
acetate ug/kg 120 16,000 U 20 tert butyl ether ug/kg 120 16,000 U 20 exane ug/kg 120 16,000 U 20 exane ug/kg 120 16,000 U 20 cyclohexane ug/kg 16,000 U 20 cyclohexane ug/kg 16,000 U 20 oylbenzene ug/kg 1,600 U 20 oylbenzene ug/kg 1,600 U 20 ihlorobenzene ug/kg 7,900 16,000 U 20 inlorobenzene ug/kg 7,900 16,000 U 20 inlorobenzene ug/kg 7,900 16,000 U 20 oromo-3-chloropropane ug/kg 7,900 16,000 U 20	oromethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
tert butyl ether ug/kg 120 16,000 U 20 exane ug/kg 120 16,000 U 20 exane ug/kg 16,000 U 20 cyclohexane ug/kg 16,000 U 20 cyclohexane ug/kg 16,000 U 20 ovomoethane ug/kg 16,000 U 20 ovlobenzene ug/kg 1,600 16,000 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 oromo-3-chloropropane ug/kg 7,900 16,000 U 20	tate	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
exame ug/kg 16,000 U 20 cyclohexane ug/kg 16,000 U 20 romoethane ug/kg 16,000 U 20 vomoethane ug/kg 16,000 U 20 vhorbenzene ug/kg 1,600 U 20 hlorobenzene ug/kg 1,600 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 noroof-archonzene ug/kg 7,900 16,000 U 20 noroof-archonzene ug/kg 7,900 16,000 U 20	butyl ether	ug/kg	120	16,000 U	20 U	29 U	33 U	3,900 U	20 U
cyclohexane ug/kg 16,000 U 20 romoethane ug/kg 16,000 U 20 vylbenzene ug/kg 16,000 U 20 hlorobenzene ug/kg 1,600 U 20 hlorobenzene ug/kg 1,600 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 nlorobenzene ug/kg 7,900 16,000 U 20 nlorobenzene ug/kg 7,900 16,000 U 20 nono-3-chloropropane ug/kg 7,900 16,000 U 20	le	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
romoethane ug/kg 16,000 U 20 v/benzene ug/kg 1,600 U 20 hlorobenzene ug/kg 1,600 U 20 hlorobenzene ug/kg 1,600 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 nlorobenzene ug/kg 7,900 16,000 U 20 noro-3-chloropropane ug/kg 7,900 16,000 U 20	phexane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
ylbenzene ug/kg 16,000 U 20 hlorobenzene ug/kg 1,600 16,000 U 20 hlorobenzene ug/kg 8,500 16,000 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 hlorobenzene ug/kg 7,900 16,000 U 20 romo-3-chloropropane ug/kg 7,900 16,000 U 20	oethane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
Ínlorobenzene ug/kg 1,600 16,000 U 20 Ínlorobenzene ug/kg 8,500 16,000 U 20 Ínlorobenzene ug/kg 7,900 16,000 U 20 Ínlorobenzene ug/kg 7,900 16,000 U 20 Ínlorobenzene ug/kg 7,900 16,000 U 20	enzene	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
hlorobenzene ug/kg 8,500 16,000 U 201 hlorobenzene ug/kg 7,900 16,000 U 201 romo-3-chloropropane ug/kg 2,000 U 201	obenzene	ug/kg	1,600	16,000 U	20 U	29 U	33 U	3,900 U	20 U
hlorobenzene ug/kg 7,900 16,000 U 20 romo-3-chloropropane ug/kg 2.00 1 20 20	obenzene	ug/kg	8,500	16,000 U	20 U	29 U	33 U	3,900 U	20 U
romo-3-chloropropane ug/kg 16,000 U 201	obenzene	ug/kg	7,900	16,000 U	20 U	29 U	33 U	3,900 U	20 U
	o-3-chloropropane	ug/kg		16,000 U	20 U	29 U	33 U	3,900 U	20 U
richlorobenzene ug/Kg 3,400 10,000 0 20	lorobenzene	ug/kg	3,400	16,000 U	20 U	29 U	33 U	3,900 U	20 U

; ;

x 1

Sample ID ->	Units	TAGM 4046	GP-10	GP-10	GP-11	GP-11
Depth - >		RSCO	9 - 10	14 - 16	15 - 16	16 - 18
Date Sampled ->			03/18/05	03/21/05	03/21/05	03/21/05
VOLATILES	ug/kg					
Chloromethane	ug/kg		29 U	34 U	28 U	29 U
Bromomethane	ug/kg		29 U	34 U	28 U	29 U
Vinyl chloride	ug/kg	200	101	34 U	28 U	29 U
Chloroethane	ug/kg	1,900	29 UJ	34 UJ	28 UJ	29 UJ
Methylene chloride	ug/kg	100	29 U	34 U	28 U	29 U
Acetone	ng/kg	200	68 U	31 J	22 J	60
Carbon disulfide	ug/kg	2,700	29 U	۲ ک	4 J	15 J
1,1-Dichloroethene	ug/kg	400	29 U	34 U	28 U	29 U
1,1-Dichloroethane	ug/kg	200	29 U	34 U	28 U	29 U
Chloroform	ug/kg	300	29 U	34 U	28 U	29 U
1,2-Dichloroethane	ug/kg	100	29 U	34 U	28 U	29 U
2-Butanone	ug/kg	300	29 U	34 U	28 U	29 U
1,1,1-Trichloroethane	ug/kg	800	29 U	34 U	28 U	29 U
Carbon tetrachloride	ug/kg	600	29 U	34 U	28 U	29 U
Bromodichloromethane	ug/kg		29 U	34 U	28 U	29 U
1,2-Dichloropropane	ug/kg		29 U	34 U	28 U	29 U
cis-1,3-Dichloropropene	ug/kg		29 U	34 U	28 U	29 U
Trichloroethene	ug/kg	700	29 U	34 U	28 U	29 U
Dibromochloromethane	ug/kg		29 U	34 U	28 U	29 U
1,1,2-Trichloroethane	ug/kg		29 U	34 U	28 U	29 U
Benzene	ug/kg	60 or MDL	29 U	34 U	28 U	29 U
trans-1,3-Dichloropropene	ug/kg		29 U	34 U	28 U	29 U
Bromoform	ug/kg		29 U	34 U	28 U	29 U
4-Methyl-2-pentanone	ug/kg	1,000	29 U	34 U	28 U	29 U
2-Hexanone	ug/kg		29 U	34 U	28 U	29 U
Tetrachloroethene	ug/kg	1,400	29 U	22 J	14 J	4 J
Toluene	ug/kg	1,500	29 U	34 U	28 U	29 U
1,1,2,2-Tetrachloroethane	ng/kg	600	29 U	34 U	28 U	29 U
Chlorobenzene	ug/kg	1,700	29 U	4 J	28 U	29 U
Ethylbenzene	ug/kg	5,500	29 U	34 U	28 U	29 U
Styrene	ug/kg		29 U	34 U	28 U	29 U
Total xylenes	ug/kg	1,200	29 U	34 U	28 U	29 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	29 U	34 U	28 U	29 U
cis-1,2-Dichloroethene	ug/kg		32	32 J	20 J	20 J

Page 5 of 8

F:\Project\C81 - Pioneer Development\C81.002 BCP\Close out and COC\October 2007\R\ Report\Tables\Tables\Table5VALIDATED.xls / B-3 Area

Sample ID ->	Units	TAGM 4046	GP-10	GP-10	GP-11	GP-11
Depth - >	1	RSCO	9 - 10	14 - 16	15 - 16	16 - 18
Date Sampled ->			03/18/05	03/21/05	03/21/05	03/21/05
trans-1,2-Dichloroethene	ug/kg	300	11 J	۲ <u>۲</u>	28 U	۲J
Dichlorodifiuoromethane	ug/kg		29 U	34 UJ	28 UJ	29 UJ
Trichlorofluoromethane	ug/kg		29 U	34 U	28 U	29 U
Methyl acetate	ug/kg		29 U	34 U	28 U	29 U
Methyl tert butyl ether	ug/kg	120	29 U	34 U	28 U	29 U
Cvclohexane	ug/kg		29 U	34 U	28 U	29 U
Methylcyclohexane	ug/kg		29 U	34 U	28 U	29 U
1,2-Dibromoethane	ug/kg		29 U	34 U	28 U	29 U
Isopropylbenzene	ug/kg		29 U	34 U	28 U	29 U
1,3-Dichlorobenzene	ug/kg	1,600	29 U	34 U	28 U	29 U
1,4-Dichlorobenzene	ug/kg	8,500	29 U	34 U	28 U	29 U
1,2-Dichlorobenzene	ug/kg	7,900	29 U	34 U	28 U	29 U
1,2-Dibromo-3-chloropropane	ug/kg		29 U	34 U	28 U	29 U
1,2,4-Trichlorobenzene	ug/kg	3,400	29 U	34 U	28 U	29 U

Page 6 of 8

F:\ProjectlC81 - Pioneer Development\C81.002 BCP\Close out and COC\October 2007\R\ Report\Tables\Tables\AblesVALIDATED.x\s/B-3 Area

: :

<u>ا</u> م

Sample ID ->	Units	TAGM 4046	GP-12	GP-14	GP-14 DL	GP-15
Depth - >		RSCO	8 - 12	18.5 - 19.5	18.5 - 19.5	24 - 25
Date Sampled ->			03/21/05	03/21/05	03/21/05	03/21/05
VOLATILES	ug/kg					
Chloromethane	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Bromomethane	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Vinyl chloride	ug/kg	200	1,300 J	6 J	2,700 U	38,000 U
Chloroethane	ug/kg	1,900	1,900 UJ	23 U	2,700 U	38,000 UJ
Methylene chloride	ug/kg	100	1,900 U	23 U	2,700 U	38,000 U
Acetone	ug/kg	200	1,900 U	24	2,700 U	38,000 U
Carbon disulfide	ug/kg	2,700	1,900 U	10 J	2,700 U	38,000 U
1,1-Dichloroethene	ug/kg	400	1,900 U	23 U	2,700 U	38,000 U
1,1-Dichloroethane	ug/kg	200	1,900 U	23 U	2,700 U	38,000 U
Chloroform	ug/kg	300	1,900 U	23 U	2,700 U	38,000 U
1,2-Dichloroethane	ug/kg	100	1,900 U	23 U	2,700 U	38,000 U
2-Butanone	ug/kg	300	1,900 U	23 U	2,700 U	38,000 U
1,1,1-Trichloroethane	ug/kg	800	1,900 U	23 U	2,700 U	38,000 U
Carbon tetrachloride	ug/kg	600	1,900 U	23 U	2,700 U	38,000 U
Bromodichloromethane	ug/kg		1,900 U	23 U	2,700 U	38,000 U
1,2-Dichloropropane	ug/kg		1,900 U	23 U	2,700 U	38,000 U
cis-1,3-Dichloropropene	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Trichloroethene	ug/kg	200	1,900 U	L 017	710 DJ	13,000 J
Dibromochloromethane	ug/kg		1,900 U	23 U	2,700 U	38,000 U
1,1,2-Trichloroethane	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Benzene	ug/kg	60 or MDL	1,900 U	23 U	2,700 U	38,000 U
trans-1,3-Dichloropropene	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Bromoform	ug/kg		1,900 U	23 U	2,700 U	38,000 U
4-Methyl-2-pentanone	ug/kg	1,000	1,900 U	23 U	2,700 U	38,000 U
2-Hexanone	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Tetrachioroethene	ug/kg	1,400	1,900 U	660 J	660 DJ	510,000
Toluene	ug/kg	1,500	1,900 U	23 U	2,700 U	38,000 U
1,1,2,2-Tetrachloroethane	ug/kg	600	1,900 U	23 U	2,700 U	38,000 U
Chlorobenzene	ug/kg	1,700	1,900 U	23 U	2,700 U	38,000 U
Ethylbenzene	ug/kg	5,500	1,900 U	23 U	2,700 U	38,000 U
Styrene	ug/kg		1,900 U	23 U	2,700 U	38,000 U
Total xylenes	ug/kg	1,200	1,900 U	23 U	2,700 U	38,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	1,900 U	23 U	2,700 U	38,000 U
cis-1,2-Dichloroethene	ug/kg		2,800	L 067	2,700 U	38,000 U

Т

....

_

Т

-

																_	
GP-15	24 - 25	03/21/05	38,000 U	38,000 UJ	38,000 U	38,000 U	38,000 U	38,000 U	13,200 U	38,000 U	38,000 U	38,000 U	38,000 U	38,000 U	38,000 U	38,000 U	S
GP-14 DL	18.5 - 19.5	03/21/05	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	2,700 U	anup Objective
GP-14	18.5 - 19.5	03/21/05	230	23 U	23 U	23 UJ	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U	23 U	nended Soil Cle
GP-12	8 - 12	03/21/05	1,900 U	1,900 UJ	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	1,900 U	RSCO = Recomr
TAGM 4046	RSCO	L	300				120					1,600	8,500	7,900		3,400	
Units	L		ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	
Sample ID ->	Depth - >	Date Sampled ->	trans-1,2-Dichloroethene	Dichlorodifluoromethane	Trichlorofluoromethane	Methyl acetate	Methyl tert butyl ether	Cyclohexane	Methylcyclohexane	1,2-Dibromoethane	Isopropylbenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,2-Dibromo-3-chloropropane	1,2,4-Trichlorobenzene	

1,000 - indicates detected value for organics.

- indicates value exceeds TAGM 4046 RSCO

: - •

÷ 1

Samole	ID -> Units	TAGM 4046	SB 2-1	SB 2-1 RE	SB 2-1	SB 3-1	SB 3-1	SB 7-1	SB 7-1	SB 9-1	SB 9-1
Dep	 1	RSCO	5-7	5 - 7	8 - 10	2 - 4	12 - 14	2-4	16 - 18	4-6	16 - 18
Date Samp	ed ->		3/16/2005	3/16/2005	3/16/2005	3/16/2005	3/16/2005	3/17/2005	3/17/2005	3/17/2005	3/17/2005
VOLATILES	ng/kg										
Chloromethane	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Bromomethane	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Vinvl chloride	ng/kg	200	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Chloroethane	ng/kg	1,900	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Methylene chloride	ug/kg	100	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Acetone	ng/kg	200	<u>۱</u> ۲	Г 8	11 J	25 J	13 J	20 U	29 U	Р9	Р 8
Carbon disulfide	ng/kg	2,700	15U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1.1-Dichloroethene	ug/kg	400	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1,1-Dichloroethane	ug/kg	200	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Chloroform	ng/kg	300	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1.2-Dichloroethane	ng/kg	100	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
2-Butanone	ng/kg	300	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1.1.1-Trichloroethane	ug/kg	800	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Carbon tetrachloride	ug/kg	600	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Bromodichloromethane	ug/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1.2-Dichloropropane	ug/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
cis-1,3-Dichloropropene	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Trichloroethene	ng/kg	200	15 U	15 U	18 U	34 U	19 U	18 J	29 U	39	240
Dibromochloromethane	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1,1,2-Trichloroethane	ng/kg		15 0	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Benzene	ng/kg	60 or MDL	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
trans-1,3-Dichloropropene	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Bromoform	ug/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
4-Methyl-2-pentanone	ng/kg	1,000	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
2-Hexanone	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Tetrachloroethene	ng/kg	1,400	15 U	15 U	18 U	34 U	19 U	260	29 U	130	64
Toluene	ng/kg	1,500	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1,1,2,2-Tetrachloroethane	ng/kg	600	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Chlorobenzene	ng/kg	1,700	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Ethylbenzene	by/bn	5,500	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Styrene	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Total xylenes	ng/kg	1,200	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
1,1,2-Trichloro-1,2,2-trifluoroethar	ne lug/kg	1,000	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
cis-1,2-Dichloroethene	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	160
trans-1,2-Dichloroethene	ng/kg	300	15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	89
Dichlorodifluoromethane	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U
Trichlorofluoromethane	ng/kg		15 U	15 U	18 U	34 U	19 U	20 U	29 U	15 U	21 U

Pioneer Midler Avenue BCP Remedial Investigation Table 6 - Phase 2 Soil Data for Borings Within Structures

F:\Project\C81 - Pioneer Development\C81.002 BCP\Close out and COC\October 2007\H! Report\Tables\Tables\Table6VALIDATED.xis / Bldgs - VOAs

Page 1 of 5

M 4046 SCO 120 600 500 900 900	Sample ID -> Units TAG	Depth - >	Date Sampled ->	acetate ug/kg	tert butyl ether ug/kg	exane ug/kg	vclohexane ug/kg	romoethane ug/kg	wibenzene ug/kg	hlorobenzene ug/kg 1	hlorobenzene ug/kg 8	hlorobenzene ug/kg 7	romo-3-chloropropane ug/kg	richlorohanzana 110/kg 3
	M 4046	sco			120					,600	500	900		.400
	SB 2-1 RE	5 - 7	3/16/2005	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
SB 2-1 RE 5 - 7 3/16/2005 115 U 15 U 15 U 15 U 15 U 15 U	SB 2-1	8 - 10	3/16/2005	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U	18 U
SB2-1 RE SB2-1 5-7 8-10 3/16/2005 3/16/2005 15 U 18 U 15 U 18 U	SB 3-1	2-4	3/16/2005	34 U	34 U	34 U	34 U	34 U	34 U	34 U	34 U	34 U	34 U	34 U
SB2-1 RE SB2-1 SB3-1 5-7 8-10 2-4 3/16/2005 3/16/2005 3/16/2005 3/16/2005 3/16/2005 3/16/2005 15 U 18 U 34 U	SB 3-1	12 - 14	3/16/2005	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U
SB2-1 RE SB2-1 SB3-1 SB3-1 5-7 8-10 2-4 12-14 3/16/2005 3/16/2005 3/16/2005 3/16/2005 3/16/2005 3/16/2005 3/16/2005 3/16/2005 15 <u< td=""> 18<u< td=""> 34<u< td=""> 19<u< td=""> 15<u< td=""> 18<u< td=""> 34<u< td=""> 19<u< td=""></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<></u<>	SB 7-1	2 - 4	3/17/2005	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U
SB2-1 RESB2-1SB3-1SB3-1SB7-1 $5-7$ $8-10$ $2-4$ $12-14$ $2-4$ $3/16/2005$ $3/16/2005$ $3/16/2005$ $3/17/2005$ $3/17/2005$ $3/16/2005$ $3/16/2005$ $3/16/2005$ $3/17/2005$ $3/17/2005$ 15 18 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 34 19 20 0 15 18 34 34 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0	SB 7-1	16 - 18	3/17/2005	29 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U	29 U
SB2-1 RESB 2-1SB 3-1SB 7-1SB 7-1SB 7-1 $5-7$ $8-10$ $2-4$ $12-14$ $2-4$ $16-18$ $3/16/2005$ $3/16/2005$ $3/16/2005$ $3/17/2005$ $3/17/2005$ $3/16/2005$ $3/16/2005$ $3/16/2005$ $3/17/2005$ $3/17/2005$ 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 18 34 19 19 20 0 15 19 20 0 20 0 29 10 20 20	SB 9-1	4-6	3/17/2005	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U	15 U
SB2-1 RESB2-1SB3-1SB3-1SB3-1SB7-1SB7-1SB7-1 $5-7$ $8-10$ 2.4 $12 \cdot 14$ 2.4 $16 \cdot 18$ $4-6$ $3/16/2005$ $3/16/2005$ $3/16/2005$ $3/17/2005$ $3/17/2005$ $3/17/2005$ $3/16/2005$ $3/16/2005$ $3/16/2005$ $3/17/2005$ $3/17/2005$ $3/17/2005$ 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 20 29 15 15 18 34 19 19 <	SB 9-1	16 - 18	3/17/2005	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U	21 U

Table 6 - Phase 2 Soil Data for Borings Within Structures **Remedial Investigation**

Pioneer Midler Avenue BCP

- indicates value exceeds TAGM 4046 RSCO RSCO = Recommended Soil Cleanup Objectives

 1,000
 - indicates detected value for organics.

: •

x 1

Sample ID ->	Units	TAGM 4046	SB 12-1	SB 12-1	SB 13-2	SB 13-2 DL	SB 13-2	SB 13-4	SB 13-4
Depth - >		RSCO	0-2	16 - 18	12 - 14	12 - 14	20 - 22	4 - 6	20 - 22
Date Sampled ->			03/18/05	03/18/05	3/21/2005	03/21/05	03/21/05	03/18/05	03/18/05
VOLATILES	ug/kg								
Chloromethane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Bromomethane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Vinyl chloride	ug/kg	200	12 U	1,600 U	3,200	3,200 D	2,700	120	1 J
Chloroethane	ug/kg	1,900	12 UJ	1,600 U	18 U	2,100 U	2,100 UJ	14 UJ	13 UJ
Methylene chloride	ug/kg	100	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Acetone	ug/kg	200	54 U	1,600 U	18 U	2,100 U	2,100 U	23 U	15 U
Carbon disulfide	ug/kg	2,700	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
1,1-Dichloroethene	ug/kg	400	12 U	1,600 U	21	2,100 U	2,100 U	14 U	13 U
1,1-Dichloroethane	ug/kg	200	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Chloroform	ng/kg	300	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
1,2-Dichloroethane	ug/kg	100	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
2-Butanone	ug/kg	300	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
1,1,1-Trichloroethane	ug/kg	800	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Carbon tetrachloride	ug/kg	600	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Bromodichloromethane	ng/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
1,2-Dichloropropane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
cis-1,3-Dichloropropene	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Trichloroethene	ug/kg	700	220	1,800	18 U	2,100 U	2,100 U	14	13 U
Dibromochloromethane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
1,1,2-Trichloroethane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Benzene	ug/kg	60 or MDL	4 J	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
trans-1,3-Dichloropropene	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Bromoform	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
4-Methyl-2-pentanone	ug/kg	1,000	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
2-Hexanone	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Tetrachloroethene	ug/kg	1,400	12 U	5,000	18 U	2,100 U	2,100 U	14 U	13 U
Toluene	ug/kg	1,500	6 J	1,600 U	4 J	2,100 U	2,100 U	14 U	13 U
1,1,2,2-Tetrachloroethane	ng/kg	600	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Chlorobenzene	ug/kg	1,700	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Ethylbenzene	ug/kg	5,500	<u>з</u> Ј	1,600 U	Э Ј	2,100 U	2,100 U	14 U	13 U
Styrene	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
Total xylenes	ug/kg	1,200	۲ J	1,600 U	ر 8	2,100 U	2,100 U	14 U	13 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U
cis-1,2-Dichloroethene	ug/kg		4 J	2,700	20,000	20,000 D	14,000	45	13 U
trans-1,2-Dichloroethene	ug/kg	300	12 U	1,600 U	60	2,100 U	2,100 U	2 J	13 U
Dichlorodifluoromethane	ug/kg		2 J	1,600 U	18 U	2,100 U	2,100 UJ	14 U	13 U
Trichlorofluoromethane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13 U

Pioneer Midler Avenue BCP Remedial Investigation Table 6 - Phase 2 Soil Data for Borings Within Stru F:\Project\C81 - Pioneer Development\C81.002 BCP\Close out and COC\October 2007\Pt Report\Tables\Table6VALIDATED.xis / Bldgs - VOAs

Page 3 of 5

Sample ID ->	< Units	TAGM 4046	SB 12-1	SB 12-1	SB 13-2	SB 13-2 DL	SB 13-2	SB 13-4	SB 13-
Depth - >		RSCO	0-2	16 - 18	12 - 14	12 - 14	20 - 22	4-6	20 - 22
Date Sampled ->			03/18/05	03/18/05	3/21/2005	03/21/05	03/21/05	03/18/05	03/18/(
Methyl acetate	ng/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
Methyl tert butyl ether	ug/kg	120	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
Cvctohexane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
Methylcyclohexane	ug/kg		12 U	1,600 U	۲ <u>6</u>	2,100 U	2,100 U	14 U	13
1.2-Dibromoethane	uq/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
Isopropylbenzene	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
1,3-Dichlorobenzene	ug/kg	1,600	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
1,4-Dichlorobenzene	ug/kg	8,500	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	<u>1</u> 3
1,2-Dichlorobenzene	ug/kg	7,900	12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	13
1,2-Dibromo-3-chloropropane	ug/kg		12 U	1,600 U	18 U	2,100 U	2,100 U	14 U	<u>က</u>

13 U 13 U

13 U

13 U 13 U 13 U

13 U 13 U

14 U 14 U

2,100 U 2,100 U 2,100 U

2,100 U 2,100 U 2,100 U

1,600 U

12 U

3,400

ug/kg ug/kg

1,2,4-Trichlorobenzene

13 U 13 U 13 U

03/18/05

SB 13-4

Table 6 - Phase 2 Soil Data for Borings Within Stru **Remedial Investigation**

Pioneer Midler Avenue BCP

RSCO = Recommended Soil Cleanup Objectives

- indicates value exceeds TAG 1,000 - indicates detected value for c

F:|Project|C81 - Pioneer Development|C81.002 BCP|Close out and COC|October 2007|HI Report|Tables\Tables\Table6VALIDATED.xls / Bldgs - VOAs

:

× 1

Pioneer Midler Avenue BCP Remedial Investigation Report Table 6 - Phase 2 Soil Data for Borings Within Structures

| U 150
U 150
U 150 |
 | U C C C C C C C C C C C C C C C C C C C

 | B B C 150 C 130 C 1 150 C 1 131 C 1 1 1 | B B 150 U C U 150 U C U 150 U C 150 U 150 U C 130 U 100 U
 | U
150
150
150
150
150
150
150
150
 | U 10 150 U 150 U 150 U 150 U 150 U 150 U 1550 U 15500 U 15500 U 1550 U 1550 U 1
 | U 150 U 150 U 150 U 150 U 155 U 150 U 155 U 150 U 155 U 150 U 155 U 150 U 150 U 150 U | U 150 U 150 U 150 U 150 U 150 U 1550 U 15500 U 15500 U 1550 U 1550 U 1550 U 155
 | U 150 U 1550 U 15500 U 15500 U 1550 U | U 150 U U 150 U U 150 U U 155 U U 101 U 101 U 0.13 B U 0.13 B M 0.13 B 0.13 B 0.13 B 0.3 U 0.3 U | U 150 U U 150 U U 150 U U 155 U U 101 U 101 U 0.54 U N 0.58 B 0.58 B 0.58 B 0.58 B 0.58 B 0.58 B 0.58 B 0.518 B 0.55 B 0.517 B 0.55 B 0.518 B 0.55 B 0.517 B 0.55 B 0.518 B 0.55 B 0.510 B 0.55 B 0.510 B 0.55 B 0.510 B 0.55 B
 | U 150 U U 150 U U 150 U U 155 U U 0.62 U N 0.54 UN 0.54 UN 0.54 UN 0.55 B 0.56 B 0.56 B 0.56 U 0.54 U 0.56 U 0.54 U 0.56 U 0.54 U 0.56 U 0.56 U 0.56 U 0.57 U 0.56 U 0.57 U 0.56 U 0.57 U 0.56 U 0.57 U 0.56 U <t< th=""><th>U 150 U U 0.04 U U 0.04 U U 0.04 U D 0.05 B D 0.06 B D 0.05 B V 0.05 B O 0.05 B D 0.06 B D 0.05 B </th><th>U 150 U 150 U U 150 U 101 U 150 U 101 U 150 U 101 U 0.62 U 101 U 0.06 B 31.3 B U 0.06 B 1.12 B U 0.06 B 1.12 B N 0.31 B 0.06 B N 0.31 B 0.05 B U 0.06 B 1.12 B N 0.31 B 0.05 B U 0.02 B 0.02 B U 0.02 B 0.01 U 0.13 B 0.02 B 0.01 U 0.13 B 0.02 U 0.01 U 0.11 U 0.02 U 0.01 U 0.12 U 0.02 U 0.01 U 0.13 U 0.02 U 0.01 U 0.12 U 0.02 U 0.02 U 0.13 U 0.12 U 0.0</th><th>U 150 U U 0.04 U U 0.06 B U 0.06 H U 0.06 H U 0.06 H U 0.06 H U 0.03 H U 0.023 U U 0.023 U U 0.032 U U 0.032 U U 0.032 U U 0.032 U U 0.126 U</th></t<> | U 150 U U 0.04 U U 0.04 U U 0.04 U D 0.05 B D 0.06 B D 0.05 B V 0.05 B O 0.05 B D 0.06 B D 0.05 B | U 150 U 150 U U 150 U 101 U 150 U 101 U 150 U 101 U 0.62 U 101 U 0.06 B 31.3 B U 0.06 B 1.12 B U 0.06 B 1.12 B N 0.31 B 0.06 B N 0.31 B 0.05 B U 0.06 B 1.12 B N 0.31 B 0.05 B U 0.02 B 0.02 B U 0.02 B 0.01 U 0.13 B 0.02 B 0.01 U 0.13 B 0.02 U 0.01 U 0.11 U 0.02 U 0.01 U 0.12 U 0.02 U 0.01 U 0.13 U 0.02 U 0.01 U 0.12 U 0.02 U 0.02 U 0.13 U 0.12 U 0.0 | U 150 U U 0.04 U U 0.06 B U 0.06 H U 0.06 H U 0.06 H U 0.06 H U 0.03 H U 0.023 U U 0.023 U U 0.032 U U 0.032 U U 0.032 U U 0.032 U U 0.126 U |
--
--
--
--|--
--
--
--
--|--
--
---|--
---	--	---
<u>0 89 00 U</u> 0 99 00 U 0 U 0 U	U U 097U U 0 97U U 0 97U U 0 97U 040 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
 | U 97 U BN 0.41 UN

 | U 97 U 10 10 10 10 10 10 10 10 10 10 10 10 10 | U 97 U BN 0.41 UN BN 0.10 B
 | U 97 U U 0.41 UN U 0.030 U
 | U 97 U 0.41 U 0.10 U 0.03 U 0.03
 | U 97 U 0.41 U 0.34 U 0.34 U 0.34 U 0.33 U 0.36 U 0.36
 | U 97 L 11 BN 0.41 0.10 1.1 BN 0.10 U 0.030 U 0.030 1.9 56 1.9 56 | U 97 U 1340 BN 0.41 U 0.03 U 0.03 U 0.03 U 0.03 S.6 1.0 BE 3.1 BE 3.1 BE 3.1 BE 3.1
 | U 97 BN 0.41 U 0.41 U 0.3440 BN 0.410 U 0.030 U 0.030 M 0.033 0.10 1.08 S.1 0.108 N 7.3 | U 97 U EL 3,440 E BN 0.41 U U 0.3440 E L 1.1 B 1.1 B L 1.1 B 3.6 EL 3.6 U N 7.3 N Z<280 | U 97 U EL 3,440 E BN 0,41 U 0.10 B 0.10 EL 1,1 B EL 1,1 B M 0.030 U N 7.30 N 156 N 1.9 | U 97 U EJ 3,440 EJ H 1,1 B 1,1,3 1,13 B U 0.03 U M 0.033 U N 6,410 J N 7.3 3.6 1.3 B 2.2200 N 1.15 N N 0.016 U
 | U 97 U EL 3,440 E. L 1,1 B L 1,3 C. L 1,3 C. L 1,3 C. M 7,3 C. N 7,3 C. N 7,3 C. S 3,6 L. S 3,3 B O. 0,0 C. N 1,3 C. N 1,3 C. S 3,3 B S 3,3 C. S S S S S S | U 97 U EL 3,440 E L 13 B 0.41 U 0.03 U 0 EL 1.1 B 1.1 M 7.3 3.6 L M 7.3 1.9 |
| U
100
100
100
100
100
100
100
100
100
10 | U U U 1000 U 100
 | U 100 (U J 1.6 (B) (E
 | U 100 U U 16 B UNJ 1.6 B SI 9.8 ENJ 117
 | U 100 (U U 110 (U ENJ 0.54 (B
 | U 100 (U U 1.100 (U ENJ 1.17 BNJ 0.03 (U UNJ 0.03 (U
 | U 100 [0 J 100 [0 U 100 [0 U 100 [0 U 100 [0 U 16 [0 U 1.6 [0 UNJ 1.6 [17] BNJ 0.03 [0 UNJ 0.37 [70] | U
100 [U J 100 [U U 100 [U U 100 [U U 100 [U U 1.10 [U U 0.54 [E U 0.03 [U J 0.03 [U J 37 700 [U MJ 444 [E | U 100 [0 J 1.6 [0 U 1.6 [0 U 1.6 [0 U 1.6 [0 U 1.16 [0 BNJ 0.03 [0 J 1.17 [0 BNJ 0.03 [1 J 37,700 NJ 4.4 1 [E NJ
 1.0 [0 | U 100 [U U 1.6 [B UNJ 1.6 [B UNJ 0.03 [U J 37700 [U NJ 44.1 [E NJ 44.5 [E NJ 1.05 [E NJ 1.05 [E NJ 1.05 [E | U 100
100 | U 100 100 U 100 100 U 100 100 U 100 1 J 1000 1 U 1000 1 U 1100 1 U 1.6 1 U 0.03 1 U 0.03 1 UNJ 0.54 1 UNJ 0.3700 1 NJ 44.1 10 NJ 44.3 1 NJ 1.67 1 NJ 1.87 1 NJ 2,300 1 | U 100 100 U 100 100 U 100 100 U 100 1 U 1000 1 U 1000 1 U 1000 1 U 1.6 1 U 1.6 1 U 1.6 1 U 1.6 1 U 1.17 1 BNJ 0.54 1 UNJ 44.1 1 N.J 44.1 1 N.J 44.1 1 N.J 1.0.9 1 M.J 1.17 1 M.J 1.187 1 M.J 1.15 1 M.J 1.15 1 M.J 1.15 1 M.J 1.17 1 M.J 1.17 1 M.J 1.17 1 M.J 1 | U 100
 | U 100 100 U 100 100 U 100 100 U 100 1 U 100 1 U 100 1 U 1.6 1 U 0.03 1 U 0.03 1 U 0.03 1 U 0.03 1 U 1.3 0.3 U 1.3 1.4 Nu 1.3 1.3 Nu 1.3 1.3 Nu 1.37 0.05 Nu 1.37 1.37 Nu 1.37 1.37 Nu 1.37 1.37 Nu 1.37 | U 100 100 U 100 100 U 100 100 U 100 1 U 100 1 U 1.6 1 U 1.6 1 U 1.6 1 U 0.03 1 U 1.87 1 U 0.04 1.87 U 0.05 1 U 0.06 1 U 0.06 1.87 U 0.06 1.87 <tr tblood<="" tr=""> <tr tblood<="" tr=""> <tr tblood<="" tr=""></tr></tr></tr> |
| |
 |

 | |
 |

 | |
 | |
 | | |
 | | |
 |
| |
 |

 | |
 |

 | |
 | |
 | | |
 | | |
 |
| |
 |

 | |
 |

 | |
 | |
 | | |
 | | |
 |
| |
 |

 | U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | U 95
 | U 0 95 U 95 U 0
 | U 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 | U U 95 U
 | U U 95 U | U 0 95 U 9
 | U 95 | U 955 U U 951 U U 952 U U 0.333 U U 0.333 U BNU 0.15 BI BNU 10.4 M BNU 10.4 M BNU 10.4 M UN-1 50.042 J BNU 10.4 M BNU 10.4 M BNU 10.4 M BNU 10.4 M BNU 2.250 K | U 955 U BNJ 0.333 U D 0.025 U BNJ 0.025 U UN-J 13.1 N UN-J 13.1 N UN-J 13.1 N UN-J 2.256 E E-J 2.256 E EN-J 2.256 E | U 950 U BBNJ 0.15 BBNJ J 56,002 J J 10.4 N BNJ 10.4 N BNJ 56,002 J J 56,002 J J 56,002 J BNJ 56,002 J BNJ 56,002 J J 3338 E BNJ 0.022 B BNJ 0.022 B
 | U 950 U U 951 U BNJ 0.15 B BNJ 0.15 B BNJ 10.4 N BNJ 51.4 N BNJ 51.4 N BNJ 51.4 N BNJ 51.4 N BNJ 91.4 N BNJ 91.4 N BNJ 91.4 N U 10.4 N U 11.4 N U 11.4 N U 11.4 N U 11.4 N U 11.1 N < | U 950 U U 0 960 U U 0 960 U U 0 960 U U 0 970 U U 0 0.15 B BNJ 0.015 B 0.015 B BNJ 0.022 B 0.014 N BNJ 55.6 N 0.012 B BNJ 0.022 B 0.014 N BNJ 0.022 B 0.014 N UN1 0.022 B 0.014 N BNJ 0.022 B 0.014 N UN1 0.015 B 0.010 N 0.010 N 0.014 N |
| <u> </u> |
 | U U U U U U U U U U U 0 0 0 0 0 0 0 0 0

 | 1000 000 000 000 000 000 000 000 000 00 | U
 | UUUUU14000
UUUU14000
UUUU14000
UU14000
UU14400
UU14400
U014400
U016BN
U016BN
016BN

 | U U U 140U U 140U U 044U U 044U U 044U U 0044U U 0016 BN U 0000 U 00000 U 0000 U 00000 U 00000 U 00000 U 00000 U 00000 U 0000 U 000 | UUUUU14000
UUUU1400
UU1400
UU1400
U0440
U0440
016 BR
B 016 BR
016 BR
0 016 BR
0 016 BR
 | UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU | UUUUU14000
UUUU1400
UUU1400
UU1400
UU1400
UU1400
U01400
BB 0.16 BN
BB 0.16 BN
BB 0.16 BN
BB 0.16 BN
C011 BN
C011 BN
C011 BN
C011 BN
C010 BN
C0 | U U U U U U U U U U U U U U U U U U U
 | U U 140U U 140U U 140U U 0 140U U 0 140U U 0 0.16 BN 0.16 | U U U U U U U U U U U U U U U U U U U | U U U 140U
U U 140U
U U 140U
U U 140U
U U 140U
U 0.550U
B 15.7 BE
B 15.7 BE
B 0.23BA
B 0.23BA
C 10B
B 0.23BA
C 10B
B 0.23BA
C 10B
B 0.23BA
C 10B
C 10 | U U U U 140U U 140U U U U U 140U U U U U U 140U U U 140U U U 140U U U 140U U 0.50UN U 0.66DN B B 15.7 BE B 15.000 J B 10.000 J B 10.0000 J B 10.000 J B 10.0000 J B 10.0000 J B 10.0000 J B 10.0000 J B | U U U U U U U U U U U U U U U U U U U |
| 30 U 200 U 200 U | C C C C C C C C C C C C C C C C C C C
 | 000 2000 2000 2000 000 000 000 000 000

 | 200 U | 200 U
 | 300 200 200
 | 30 U 200 U 200 U 200 U | 00000000000000000000000000000000000000
 | 30 0 200 200 0 200 200 0 <
 | 000 0 200 0 200 0 200 0 200 0 200 0 200 0 200 0 200 | 300 200 200
 | 300 200 200 200 0 200 1410 0 | 90 U 200 U 200 U 91 U 0.33 U 103 U 12 B 0.30 B 0.07 U 14 B 0.37 U 0.37 U 14 B 0.37 U 0.33 U 11.4 B 0.33 U 1.4 B 11.9 0.34 U 0.33 U | 90 U 200 U 200 U 7 0.30 B 0.30 B 114 B 0.07 U 0.07 U 8 0.17 U 0.33 B 0.11 B 0.33 B 0.17 U 1.1 A 0.17 U 0.33 B 1.1 B 0.37 U 0.37 U 1.1 B 0.37 U 0.37 U 1.1 B 0.33 U 0.33 U
 | 90 U 200 U 200 U 7 0.30 B 103 7 0.30 B 0.30 B 7 0.07 U 0.07 U 8 0.17 U 0.07 U 11.9 0.17 U 0.33 U 11.9 0.17 U 0.33 U 11.9 0.17 U 0.33 U 11.9 0.33 U 1.1.9 11.19 0.33 U 0.33 U 11.19 0.31 B 3.1 B 11.19 0.31 U 1.1.9 11.19 0.31 U 1.1.1 U 11.1 0.31 U 1.1.1 U | 30 0 200 200 00 0 200 0 00 0 200 0 00 0 200 0 01 200 0 200 01 200 0 200 01 200 0 200 01 200 0 200 01 0 200 0 01 0 0 0 01 0 0 0 01 0 0 0 01 0 0 0 01 0 0 0 01 0 0 0 01 1 0 0 01 1 0 0 01 0 0 0 01 0 0 0 01 0 0 0 01 0 0 0 |
| 130 | 130
130
130
130
130
130
130
130
130
 | 33000 1,810
33000 1,810
0.59
0.59

 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 15.600 23.2 | 130 130 130 130 130 130 130 130 130 130 130 33000 1,810 3.12 15.600 23.2 0.517 0.517 0.517 0.517 0.517
 | 130 130 130 130 130 130 130 130 130 130 130 130 130 33000 1,810 35,12 1,810 3,12 1,5,600 3,12 1,75 0,1,75 0,1,1,75 0,1,-1 0,1,-1

 | 130 130 130 130 130 130 130 130 130 130 130 130 130 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 15 15 0.1 15 0.1 15 0.1 15 15 15 15 15 15 15 15 15 15
 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 121 131 131 131 131 131 131 131 131 131 131 131 131 131 131 132 131 132 131 132 133 133 133 134 135 135 131 132 133 133 134 135 136 137 130 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 140 130 140 15 600 15 0.1 15 0.21 0.1 1.75 0.1 1.60 1.5 0.04 1.5 0.14 0.1 1.00 1.5 0.14 1.5 0.14 1.5 0.14 1.5 0.14 1.5 0.01 1.5 0.01 1.5 0.01 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00 1.5 0.00
 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 148 130 16 15 600 15 0.21 0.1 1.75 0.1 1.75 0.1 1.6 0.1 1.0 1.5 600 1.5 0.14 0.1 1.0 1.5 0.14 1.5 0.14 1.5 1.30 2.5.5 60 1.50 1.30 2.00 5.00 2.00 5.00 2.00 5.00 1.50 1.37 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 15 600 0.59 3-12 1.7 0.65 3-12 1.7 0.21 15 600 23.2 0.1 - 1 0.04 3.0 1.5 60 3.0 2.5 60 6.8 1.5 0.04 3.0 2.55 60 4.10 100<-5.000 | 130 130 33000 130 130 130 33000 1,81 130 130 33000 1,81 130 0.59 3-12 1,70 15-600 23.27 0.1-1 0.04 15-60 23.27 0.1-1 0.04 1.5-60 8.16 1.5-60 9.16 1.5-60 9.16 1.5-60 4.10 1.0-5,000 1,170 200-5,000 1,170 50-5,000 1,170
 | 130 33000 1,80 130 130 33000 1,810 33000 1,810 332000 1,810 33000 1,810 33000 1,810 33000 1,810 33000 1,810 33000 1,810 33000 1,810 33000 1,810 33000 2,510 300 1,15 11.5 40 300 25,000 21.5 60 21.5 60 21.5 60 30 2,55 30 5,000 1 10 200 55,000 300 5,000 300 5,000 300 5,000 300 5,000 300 1,170 300 5,000 300 1,170 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 140 1810 15 0.59 3 - 12 1.7 15 - 600 23.2 0.1 - 1 0.041 0.1 - 1 0.041 1.5 - 600 101 1.5 - 600 101 2.5 - 60 6.8 1.5 - 500 1.1,17 0.00 - 550,000 101 0.00 - 550,000 101 0.00 - 50,000 101 0.00 - 5.000 101 0.001 - 0.2 0.046 0.1 - 3.9 0.430 0.1 - 3.9 0.440 0.1 - 3.9 0.440 0.1 - 3.9 0.440 0.1 - 3.9 0.440 0.1 - 3.9 0.440 0.1 - 3.9 0.440 0.1 - 3.9 0.440 | 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 131 130 141 141 0.55 15.600 23.2 0.1.1 0.14 10.1.1 0.04 0.1.1 0.04 15.600 101 15.600 101 15.600 101 200.5500 4,800 200.5500 115 0.001.5000 101 0.001.50.000 101 0.001.50.000 101 0.01.3.3 0.046 0.1.3.9 0.046 0.1.3.9 0.046 0.1.3.9 0.42 0.1.3.9 0.42 0.1.3.9 0.42 0.1.3.9 0.42 0.1.3.9 0.42
 |
| 200001 2000 | sultace
subsurface
soils
Soils
Soils
 | solis, uçucu
subsurface
solis
SB
SB

 | solis, roycoc
subsurface
solis
SB
SB
7.5 or SB
7.5 or SB | solis, roycoc
subsurface
solis
SB
SB
7.5 or SB
1
300 or SB
0.16 or SB
0
 | solis, roycoc
subsurface
solis
SB
SB
7.5 or SB
300 or SB
1 or SB
1 or SB

 | solis, royocc
subsurface
solis
SB
SB
7.5 or SB
1 0.16 or SB
1 or SB
1 or SB
1 300 or SB
1 or SB
1 300 | subsurface
subsurface
sols
SB
SB
7.5 or SB
1.0 | subsurface
subsurface
sols
SB
SB
SB
7.5 or SB
1 0.06 or SB
1 0 or SB
2 0 or | subsurface
subsurface
solis
solis
SB
SB
SB
7.5 or SB
1 or SB
1 or SB
1 or SB
1 or SB
2
 | subsurface
subsurface
solis
solis
SB
SB
7.5 of SB
10 of SB
10 of SB
13
0.16 of SB
13
10 of SB
13
25 of SB
25 of SB
25 of SB
200 of SB
20 | subsurface
subsurface
SB
SB
SB
SB
7.5 or SB
1.6 or SB
1.0 or SB
1.0 or SB
1.0 or SB
1.0 or SB
1.0 or SB
2.000 or S | subsurface
subsurface
SB
SB
SB
7.5 or SB
10 or SB
10 or SB
10 or SB
13
25 or SB
25 or SB
26 or SB
26 or SB
27 or SB
26 or SB
27 or SB
27 or SB
20 o | subsurface subsurface subsurface subsurface subsurface subsurface subsurface subsurface SB SB SB SB 7.5 or SB 1 300 or SB 1 0.16 or SB 0 30 or SB 1 25 or SB 1 26 or SB 2 28 1 30 or SB 2 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 28 1 0.1 0.1 | Solution Solution subsurface subsurface subsurface subsurface SB SB SB SB SB SB 7.5 or SB 1 300 or SB 1 10 or SB 1 25 or SB 1 20 or SB 2 20 or SB 2 20 or SB 2 28 12 28 12 29 20 28 12 29 20 28 10 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 28 50 | Solution Solution subsurface subsurface subsurface subsurface SB SB SB SB 7.5 or SB 1 300 or SB 1 300 or SB 1 300 or SB 1 25 or SB
 2 200 or SB 2 200 or SB 2 200 or SB 2 28 12 28 10 28 10 28 10 28 10 28 10 28 10 28 10 28 10 28 50 28 50 28 50 28 50 28 50 28 50 58 60 58 60 58 50 58 50 58 50 <t< td=""></t<> |
| | 0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,140
0,
 | 2 ug/kg
3 ug/kg
5 ng/kg
5 mg/kg
mg/kg

 | ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ngrky
ng | 00000000000000000000000000000000000000
 | CS Ug/kg CS CS CS Ug/kg CS

 | лугу
идуку
с подко
с | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | муку
подко
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видука
видоо
видо
видо
видоо
видоо
видо
видо
в
 | лугуд
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
подка
п | мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу | мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу
мулу | 6
6
6
6
6
6
6
6
6
6
6
6
6
6
 | | Буубл Буубл< |
| | roclor 1248
roclor 1254
NORGANIC:
 | vroclor 1248
vroclor 1254
vroclor 1260
NORGANICS
Numinum
vntimony

 | vroclor 1248
vroclor 1254
vroclor 1260
NORGANICS
Nutminum
vritimony
vrsenic | vroclor 1248
vroclor 1254
vroclor 1260
NORGANICs
Nutminum
vntimony
vrsenic
Barlum
 | voclor 1248
voclor 1254
voclor 1260
NORGANICS
Nutminum
Nutminum
Sartum
Sartum
Sartum

 | voclor 1248
voclor 1254
voclor 1256
volor 1260
volor 1260
voluminum
volumory
volumory
volumory
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service
service | voclor 1248
voclor 1254
voclor 1256
voclor 1260
vorlen 1260
vorlen
kluminum
vollimony
vollium
altium
admium
adclum
 | vocior 1248
vocior 1254
vocior 1254
Nordon 1260
Vorimum
Nutritium
Vatienic
antium
alcium
alcium
Cobalt | vocior 1248
vocior 1254
vocior 1256
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1248
vocior 1260
vocior 1248
vocior 1260
vocior
 | vocior 1248
vocior 1254
vocior 1256
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1260
vocior 1248
vocior 1260
vocior 1248
vocior 1260
vocior | vocilor 1248
vocilor 1254
vocilor 1256
vocilor 1260
vocilor 1260
vocilor 1260
vocilor 1260
vocilor 1260
vocilor 260
vocilor 200
vocilor 20 | vicoclor 1248
vicoclor 1254
vicoclor 1254
Vorden 1250
Vorden 1260
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vicenic
vice | viccilor 1248
viccilor 1254
viccilor 1254
viccilor 1256
viccilor 1260
viccilor
viccilor
Santium
Sardmium
Sinchium
Sinchium
Sinchium
Sinchium
Sinchium
Sinchium
Sinchium
Sinchium
Sinchium
Sinchium
Aanganeseium
Aanganeseium | vocior 1248
vocior 1254
vocior 1254
vocior 1254
vocior 1260
vocior 1260
vocior 1260
landium
landium
hornium
hornium
hornium
coper
ead
Aerouy
vickel
Aerouy
vickel
herouy
balenium
balenium
hallium
 | vocior 1248
vocior 1254
vocior 1254
vocior 1250
vorgenice
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
landium
land |
| minimun minys 550 UN-1 0.33 UN-1 0.41 UN 0.41 UN 0.41 UN 0.41 UN 0.65 UN 0.650 UN-1 0.33 UN-1 0.41 UN 0.65 UN 0.66 UN 0.66 UN 0.66 UN 0.66 UN 0.66 UN 0.66 UN 0.66 <thun< th=""> UN UN</thun<> | rsenic mg/kg 7.5 or SB 3 - 12 1.7 0.76 U 0.44 U [*] 8.81 9.8 1.1 B 0.37 JU arium mg/kg 300 or SB 15 - 600 232 B 26.0 B 15.7 BENJ 32.1 ENJ 11.7 B 13.7 B 31.8 B eryllium mg/kg 0.0 or SB 01.75 0.0.7 U 0.01 BNJ 0.0.31 BNJ <td>letyllium mgkg 0.16 or SB 0 - 1.75 0.21 B 0.30 B 0.16 BNJ 0.54 B 0.10 B 0.010 B 0.013 B admium mg/kg 1 or SB 0.1 - 1 0.04 U 0.07 U 0.01 BNJ 0.54 B 0.10 B 0.04 U baltium mg/kg 1 or SB 0.1 - 1 0.04 U 0.07 U 0.1 BNJ 0.03 U 0.03 U 0.03 U 0.04 U 0.04 U Calcium mg/kg SB 130 - 35,000 91,56 U 228,000 E 1.89,00 J 37,700 18,200 121,171 Choint mg/kg 30 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 441 EJ 36 EJ 0.5 B Choper mg/kg 20 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.05 B Choper mg/kg 20 or SB 1 - 50 13.7 12.8 NJ 10.9 NJ 10.8 NJ 1.2 BZJ 0.5 B Choper mg/kg 25 or SB 1 - 5</td> <td>admium mg/kg 1 or SB 0.1 - 1 0.04 U 0.07 U 0.1 BNU 0.02 UN 0.03 U 0.04 U 0.04</td> <td>Date mg/kg SB 130 - 35,000 91,168 J 228,000 E/J 183,000 J 37,700 18,200 421,171 Zhomium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.223 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.5 B Zhomium mg/kg 20 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.05 B Zopper mg/kg 25 or SB 1 - 50 13.7 14 1.1 BNJ 55.6 NJ 1.0 B 18.1 1 3.6 EJ 0.05 B Zopper mg/kg 25 or SB 1 - 50 1.3 J 1.0 B 18.1 1 1.2 B 0.06 B Zopper mg/kg 28 or S000 or SB 2,000 - 5500 4.1 D 0.34 U 0.201 N'J 56,400 N'J 73 N' 73 N' 0.31 U Angresium mg/kg SB 100 or S00 11.1 O 1.040 E'J 2.300 S 2.7 S0 2.1 S0</td> <td>Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.3 B Obalit mg/kg 30 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 B Doper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 1.9 BEJ 1.06 B Doper mg/kg 25 or SB 2,000 - 550,000 4,800 134 U 0.20 UN'J 51,10'J 187 N 7.3 N 0.31 U Dring mg/kg SB 2,000 - 550,000 4,110 0.34 U 0.20 UN'J 131 N'J 187 N 7.3 N 0.31 U Agensium mg/kg SB 500 - 5,000 11,10 1,040 E'J 2.300 2.280 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.15</td> <td>mg/kg 200 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 48.1 0.45 B 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 64.10 3.1 1.2 B con mg/kg 2000 or SB 2,000 - 5500 4,800 139 0.20 UN'J 13.0 N'J 187 N 7.3 N 0.3 U dagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E'J 2.300 2.280 2.150 Aggresium mg/kg SB 50 - 5,000 1,170 1,600 1,040 E'J 2.300 2.280 2.150 Aggresium mg/kg SB 50 - 5,000 101 11.9 5.308 2.300 2.280 2.150 Aggresium mg/kg SB 50 - 5,000 10.1 11.9 5.308</td> <td>Copper mg/kg 2.50 CSB 1 - 50 13.1 1.41B 1.01B 18.1 9.44.3 0.1 1.41B 0.31U 1.31D 1.37D 1.31N 1.31N 1.31N 1.31N 1.31N 1.31N 0.31U 0.31U Ragnesium mg/kg SB 1.000 1.170 1.500 1.170 1.600 1.040 2.300 2.280 2.150</td> <td>Old mg/kg Environment Total Total</td> <td>Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E-3 2,250 E-3 2,300 2,280 2,150<!--</td--><td>Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 E.9 N.1 1,870 N 115 N 9.4 Aercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 0.016 U 0.023 UN Aercury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B</td><td>Aercury mg/kg 0.1 0.001-0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.063 0.016 U 0.023 UN
vickel mg/kg 13 or SB 0.5-25 11.5 3.1,B 1.3 BNJ 8.7 NJ 31.8 3.1,B 3.9 B</td><td>vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B</td><td></td><td>belenium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN J 0.35 UN J 0.47 U 0.43 U 0.66 U 0.65 U 0.62 U 0.62 U 0.62 U 0.62 U 0.65 U 0.65 U 0.65 U 0.65 U 0.65 U 0.62 U 0.62 B 0.62 U 0.62 U 0.62 U 0.65 U 0.62 U 0.65 U <</td><td>belenium mg/kg 2 or SR 0.1 - 3.9 0.99 U 1.6 U 0.53 UN J 0.35 UN J 0.47 U 0.43 U 0.65 U 0.12 U 0.13 U 0.13 U 0.12 U 0.13 U 0.12 U <</td></td>
 | letyllium mgkg 0.16 or SB 0 - 1.75 0.21 B 0.30 B 0.16 BNJ 0.54 B 0.10 B 0.010 B 0.013 B admium mg/kg 1 or SB 0.1 - 1 0.04 U 0.07 U 0.01 BNJ 0.54 B 0.10 B 0.04 U baltium mg/kg 1 or SB 0.1 - 1 0.04 U 0.07 U 0.1 BNJ 0.03 U 0.03 U 0.03 U 0.04 U 0.04 U Calcium mg/kg SB 130 - 35,000 91,56 U 228,000 E 1.89,00 J 37,700 18,200 121,171 Choint mg/kg 30 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 441 EJ 36 EJ 0.5 B Choper mg/kg 20 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.05 B Choper mg/kg 20 or SB 1 - 50 13.7 12.8 NJ 10.9 NJ 10.8 NJ 1.2 BZJ 0.5 B Choper mg/kg 25 or SB 1 - 5
 | admium mg/kg 1 or SB 0.1 - 1 0.04 U 0.07 U 0.1 BNU 0.02 UN 0.03 U 0.04 | Date mg/kg SB 130 - 35,000 91,168 J 228,000 E/J 183,000 J 37,700 18,200 421,171 Zhomium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.223 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.5 B Zhomium mg/kg 20 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.05 B Zopper mg/kg 25 or SB 1 - 50 13.7 14 1.1 BNJ 55.6 NJ 1.0 B 18.1 1 3.6 EJ 0.05 B Zopper mg/kg 25 or SB 1 - 50 1.3 J 1.0 B 18.1 1 1.2 B 0.06 B Zopper mg/kg 28 or S000 or SB 2,000 - 5500 4.1 D 0.34 U 0.201 N'J 56,400 N'J 73 N' 73 N' 0.31 U Angresium mg/kg SB 100 or S00 11.1 O 1.040 E'J 2.300 S 2.7 S0 2.1 S0

 | Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.3 B Obalit mg/kg 30 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 B Doper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 1.9 BEJ 1.06 B Doper mg/kg 25 or SB 2,000 - 550,000 4,800 134 U 0.20 UN'J 51,10'J 187 N 7.3 N 0.31 U Dring mg/kg SB 2,000 - 550,000 4,110 0.34 U 0.20 UN'J 131 N'J 187 N 7.3 N 0.31 U Agensium mg/kg SB 500 - 5,000 11,10 1,040 E'J 2.300 2.280 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.150 2.15
 | mg/kg 200 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 48.1 0.45 B 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 64.10 3.1 1.2 B con mg/kg 2000 or SB 2,000 - 5500 4,800 139 0.20 UN'J 13.0 N'J 187 N 7.3 N 0.3 U dagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E'J 2.300 2.280 2.150 Aggresium mg/kg SB 50 - 5,000 1,170 1,600 1,040 E'J 2.300 2.280 2.150 Aggresium mg/kg SB 50 - 5,000 101 11.9 5.308 2.300 2.280 2.150 Aggresium mg/kg SB 50 - 5,000 10.1 11.9 5.308 | Copper mg/kg 2.50 CSB 1 - 50 13.1 1.41B 1.01B 18.1 9.44.3 0.1 1.41B 0.31U 1.31D 1.37D 1.31N 1.31N 1.31N 1.31N 1.31N 1.31N 0.31U 0.31U Ragnesium mg/kg SB 1.000 1.170 1.500 1.170 1.600 1.040 2.300 2.280 2.150
 | Old mg/kg Environment Total | Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E-3 2,250 E-3 2,300 2,280 2,150 </td <td>Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 E.9 N.1 1,870 N 115 N 9.4 Aercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 0.016 U 0.023 UN Aercury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B</td> <td>Aercury mg/kg 0.1 0.001-0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.063 0.016 U 0.023 UN
vickel mg/kg 13 or SB 0.5-25 11.5 3.1,B 1.3 BNJ 8.7 NJ 31.8 3.1,B 3.9 B</td> <td>vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B</td> <td></td> <td>belenium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN J 0.35 UN J 0.47 U 0.43 U 0.66 U 0.65 U 0.62 U 0.62 U 0.62 U 0.62 U 0.65 U 0.65 U 0.65 U 0.65 U 0.65 U 0.62 U 0.62 B 0.62 U 0.62 U 0.62 U 0.65 U 0.62 U 0.65 U <</td> <td>belenium mg/kg 2 or SR 0.1 - 3.9 0.99 U 1.6 U 0.53 UN J 0.35 UN J 0.47 U 0.43 U 0.65 U 0.12 U 0.13 U 0.13 U 0.12 U 0.13 U 0.12 U <</td>
 | Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 E.9 N.1 1,870 N 115 N 9.4 Aercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 0.016 U 0.023 UN Aercury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B | Aercury mg/kg 0.1 0.001-0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.063 0.016 U 0.023 UN
vickel mg/kg 13 or SB 0.5-25 11.5 3.1,B 1.3 BNJ 8.7 NJ 31.8 3.1,B 3.9 B | vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B
 | | belenium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN J 0.35 UN J 0.47 U 0.43 U 0.66 U 0.65 U 0.62 U 0.62 U 0.62 U 0.62 U 0.65 U 0.65 U 0.65 U 0.65 U 0.65 U 0.62 U 0.62 B 0.62 U 0.62 U 0.62 U 0.65 U 0.62 U 0.65 U < | belenium mg/kg 2 or SR 0.1 - 3.9 0.99 U 1.6 U 0.53 UN J 0.35 UN J 0.47 U 0.43 U 0.65 U 0.12 U 0.13 U 0.13 U 0.12 U 0.13 U 0.12 U < |
| minimun minrory mg/kg SB $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $ $ | reenic mg/kg 7.5 or SB 3 - 12 1.7 0.76 U 0.44 U [*] 8.81 9.8 1.1 B 0.37 B arium mg/kg 300 or SB 15 - 600 232 B 26.0 B 15.7 BENJ 32.1 ENJ 117 11.7 B 0.37 B 31.8 B erylium mg/kg 0.16 or SB 01.75 0.02 B 0.01 BNJ 0.03 U 0.03 U 0.03 U 0.019 B 0.11 B admium mg/kg 10 or SB 1.5 -60 3.0 Or N 0.03 B 0.03 U 0.03 U 0.03 U 0.019 B 0.19 B 0.10 B 0.19 B 0.19 B 0.19 B 0.19 B 0.10 B 0.11 B 0.05 B 0.01 B <td>Jeryllium mg/kg 0.16 orSB 0 - 1.75 0.21 B 0.016 BNJ 0.54 B 0.10 B 0.019 B 0.019 D 0.011 D <thd< th=""> D D</thd<></td> <td>zadmium mg/kg 1 or SB 0.1-1 0.04 U 0.07 U 0.1 BNJ 0.02 UN 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.04 U 0.04 U 0.04 U 0.07 U 0.01 BNJ 0.02 UN 0.03 U 0.03 U 0.04 U 0.03 U 0.03 U 0.03 U 0.04 U 0.</td> <td>Date mg/kg SB 130 - 35,000 91,168 J 228,000 E-1 183,000 J 50,042 J 37,700 18,200 421,171 Zhomium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.22 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.5 B Zhomium mg/kg 30 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.06 B Zopper mg/kg 26 or SB 1 - 50 13.7 14 B 1.0 B 18.1 9.4 S 3.1 1.2 BEJ 0.06 B Zopper mg/kg 2.000 or SB 2.000 - 550,000 4,10 0.24 NJ 56,400 N'J 58,100 6,410 1.2 B Con mg/kg SB 10.0 - 500 1,170 1,600 1,040 E'J 2.300 2.280 2,150 2,150 Aggnesium mg/kg SB 0.0 22 BNJ 0.022 BNJ 0.052 BNJ 0.066 2,150 Aggnesium mg/kg SB 0.0 5000 <t< td=""><td>Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.35 B 0.35 B 0.35 B 0.35 B 0.35 B 0.36 B 0.37 B 3.6 EJ 0.35 B 0.35 B 0.05 B 0.35 B 0.35 B 0.36 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.06 B 0.06 B 0.06 B 0.05 B 0.06 B 0.07 I B 13.1 N'J 13 N'J</td><td>xobalt mg/kg 300 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 94.5 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 94.5 3.1 1.2 B con mg/kg 280 2,000 - 550,000 4,800 139 0.20 UN'J 13.1 N'J 56,400 6,410 191 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 E'J 2,300 2,200 0.3 U fagnesium mg/kg SB 500 - 5,000 101 11.90 5.6 BNJ 2,330 2,280 2,150 fagnesium mg/kg SB 50.0 - 5,000 101 11.91 5.9 BNJ 2,300 2,280 2,150 fagnesium mg/kg SB 5.0 - 5,000 101 11.91 <</td><td>Copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B cin mg/kg 2,000 or SB 2,000 - 550,000 4,800 1.34 D 0.31 U 56,400 N*J 63,100 6,410 1.4 D 0.3 U cad mg/kg SB 2,000 - 550,000 4,800 0.34 U 0.200 UN*J 56,400 N*J 63,100 6,410 191 adgnesium mg/kg SB 100 - 5,000 1,170 1,600 2,260 E*J 2,300 2,280 2,150 Aanganesium mg/kg SB 500 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9,4 Aanganesium mg/kg SB 0.1 0.001 6 U 0.022 BNJ 0.052 BNJ 0.065 3 0.016 U 0.023 UN Aanganesium mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.1 B 0.016 U 0.023 UN Aarsium mg/kg</td><td>Old mg/kg Environment Team Team</td><td>Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E·J 2,250 E·J 2,300 2,280 2,150<!--</td--><td>Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 115 N 9.4 Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B Actury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 J 1,220 563 B 63.5 B
 63.5 B 63.5 B 63.5 B 53.5 B 53.5</td><td>iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B - 3.4 B - 0.5 - 43,000 385 B 35.7 B 28.4 B[*]J 514 J 1,220 563 B 63.5 B 63.5 B</td><td>otassium mg/kg SB 8,500 385 8 35.7 8 28.4 8⁺J 514 *¹ 1,220 563 B 63.5 B 63.5 B</td><td>Bilver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.82 B 310 B</td><td>Biltver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.01 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UN 1.2 NJ 0.32 U 0.32 B 310 B fandlum mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td></td></t<></td> | Jeryllium mg/kg 0.16 orSB 0 - 1.75 0.21 B 0.016 BNJ 0.54 B 0.10 B 0.019 B 0.019 D 0.011 D <thd< th=""> D D</thd<>
 | zadmium mg/kg 1 or SB 0.1-1 0.04 U 0.07 U 0.1 BNJ 0.02 UN 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.04 U 0.04 U 0.04 U 0.07 U 0.01 BNJ 0.02 UN 0.03 U 0.03 U 0.04 U 0.03 U 0.03 U 0.03 U 0.04 U 0. | Date mg/kg SB 130 - 35,000 91,168 J 228,000 E-1 183,000 J 50,042 J 37,700 18,200 421,171 Zhomium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.22 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.5 B Zhomium mg/kg 30 or SB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.06 B Zopper mg/kg 26 or SB 1 - 50 13.7 14 B 1.0 B 18.1 9.4 S 3.1 1.2 BEJ 0.06 B Zopper mg/kg 2.000 or SB 2.000 - 550,000 4,10 0.24 NJ 56,400 N'J 58,100 6,410 1.2 B Con mg/kg SB 10.0 - 500 1,170 1,600 1,040 E'J 2.300 2.280 2,150 2,150 Aggnesium mg/kg SB 0.0 22 BNJ 0.022 BNJ 0.052 BNJ 0.066 2,150 Aggnesium mg/kg SB 0.0 5000 <t< td=""><td>Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.35 B
 0.35 B 0.35 B 0.35 B 0.35 B 0.36 B 0.37 B 3.6 EJ 0.35 B 0.35 B 0.05 B 0.35 B 0.35 B 0.36 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.06 B 0.06 B 0.06 B 0.05 B 0.06 B 0.07 I B 13.1 N'J 13 N'J</td><td>xobalt mg/kg 300 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 94.5 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 94.5 3.1 1.2 B con mg/kg 280 2,000 - 550,000 4,800 139 0.20 UN'J 13.1 N'J 56,400 6,410 191 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 E'J 2,300 2,200 0.3 U fagnesium mg/kg SB 500 - 5,000 101 11.90 5.6 BNJ 2,330 2,280 2,150 fagnesium mg/kg SB 50.0 - 5,000 101 11.91 5.9 BNJ 2,300 2,280 2,150 fagnesium mg/kg SB 5.0 - 5,000 101 11.91 <</td><td>Copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B cin mg/kg 2,000 or SB 2,000 - 550,000 4,800 1.34 D 0.31 U 56,400 N*J 63,100 6,410 1.4 D 0.3 U cad mg/kg SB 2,000 - 550,000 4,800 0.34 U 0.200 UN*J 56,400 N*J 63,100 6,410 191 adgnesium mg/kg SB 100 - 5,000 1,170 1,600 2,260 E*J 2,300 2,280 2,150 Aanganesium mg/kg SB 500 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9,4 Aanganesium mg/kg SB 0.1 0.001 6 U 0.022 BNJ 0.052 BNJ 0.065 3 0.016 U 0.023 UN Aanganesium mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.1 B 0.016 U 0.023 UN Aarsium mg/kg</td><td>Old mg/kg Environment Team Team</td><td>Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E·J 2,250 E·J 2,300 2,280 2,150<!--</td--><td>Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 115 N 9.4 Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B Actury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 J 1,220 563 B 63.5 B 63.5 B 63.5 B 63.5 B 53.5 B 53.5</td><td>iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B - 3.4 B - 0.5 - 43,000 385 B 35.7 B 28.4 B[*]J 514 J 1,220 563 B 63.5 B 63.5 B</td><td>otassium mg/kg SB 8,500 385 8 35.7 8 28.4 8⁺J 514 *¹ 1,220 563 B 63.5 B 63.5 B</td><td>Bilver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.82 B 310 B</td><td>Biltver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.01 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UN 1.2 NJ 0.32 U 0.32 B 310 B fandlum mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td></td></t<> | Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.35 B 0.35 B 0.35 B 0.35 B 0.35 B 0.36 B 0.37 B 3.6 EJ 0.35 B 0.35 B 0.05 B 0.35 B 0.35 B 0.36 B 0.17 U 0.11 BNJ 52.6 NJ 1.9 BEJ 0.06 B 0.06 B 0.06 B 0.05 B 0.06 B 0.07 I B 13.1 N'J 13 N'J

 | xobalt mg/kg 300 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 94.5 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 94.5 3.1 1.2 B con mg/kg 280 2,000 - 550,000 4,800 139 0.20 UN'J 13.1 N'J 56,400 6,410 191 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 E'J 2,300 2,200 0.3 U fagnesium mg/kg SB 500 - 5,000 101 11.90 5.6 BNJ 2,330 2,280 2,150 fagnesium mg/kg SB 50.0 - 5,000 101 11.91 5.9 BNJ 2,300 2,280 2,150 fagnesium mg/kg SB 5.0 - 5,000 101 11.91 < | Copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B cin mg/kg 2,000 or SB 2,000 - 550,000 4,800 1.34 D 0.31 U 56,400 N*J 63,100 6,410 1.4 D 0.3 U cad mg/kg SB 2,000 - 550,000 4,800 0.34 U 0.200 UN*J 56,400 N*J 63,100 6,410 191 adgnesium mg/kg SB 100 - 5,000 1,170 1,600 2,260 E*J 2,300 2,280 2,150 Aanganesium mg/kg SB 500 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9,4 Aanganesium mg/kg SB 0.1 0.001 6 U 0.022 BNJ 0.052 BNJ 0.065 3 0.016 U 0.023 UN Aanganesium mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.1 B 0.016 U 0.023 UN Aarsium mg/kg
 | Old mg/kg Environment Team | Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E·J 2,250 E·J 2,300 2,280 2,150 </td <td>Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 115 N 9.4 Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B Actury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B</td> <td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 J 1,220 563 B 63.5 B 63.5 B 63.5 B 63.5 B 53.5 B 53.5</td> <td>iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B - 3.4 B - 0.5 - 43,000 385 B 35.7 B 28.4 B[*]J 514 J 1,220 563 B 63.5 B 63.5 B</td> <td>otassium mg/kg SB 8,500 385 8 35.7 8 28.4 8⁺J 514 *¹ 1,220 563 B 63.5 B 63.5 B</td> <td>Bilver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.82 B 310 B</td> <td>Biltver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.01 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UN 1.2 NJ 0.32 U 0.32 B 310 B fandlum mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td>
 | Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 115 N 9.4 Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B Actury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B | Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 J 1,220 563 B 63.5 B 63.5 B 63.5 B 63.5 B 53.5 | iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.9 B - 3.4 B - 0.5 - 43,000 385 B 35.7 B 28.4 B [*] J 514 J 1,220 563 B 63.5 B 63.5 B | otassium mg/kg SB 8,500 385 8 35.7 8 28.4 8 ⁺ J 514 * ¹ 1,220 563 B 63.5 B 63.5 B
 | Bilver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.82 B 310 B | Biltver mg/kg SB 0.44 B 0.30 U 0.10 U 1.1 0.29 B 0.08 U 0.01 U 0.12 U Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UN 1.2 NJ 0.32 U 0.32 B 310 B fandlum mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U |
| Informutu Migky
mittor SB Word SS Word SS | restric mg/kg 7.5 or SB 3 - 12 1.7 0.76 U 0.44 U [*] 8.81 9.8 1.1 B 0.13 B atium mg/kg 300 or SB 15 - 600 232 B 26.0 B 15.7 BENJ 32.1 ENJ 117 11.7 B 0.13 B atmium mg/kg 0.16 or SB 0-1.75 0.03 U 0.01 BNJ 0.03 U 0.03 U 0.03 U 0.01 B atdmium mg/kg 0.16 or SB 0.1-1 0.04 U 0.01 BNJ 0.02 UNJ 0.03 U 0.03 U 0.03 U 0.01 B atdmium mg/kg 100 rSB 1.5-40 3.0 0.35 B 0.02 UNJ 10.4 NJ 4.4 EJ 3.6 EJ 0.05 B Antonim mg/kg 30 or SB 1.5-60 8.3 B 0.34 U 0.01 BNJ 52.6 NJ 10.9 BEJ 0.12 B 0.05 B Antonim mg/kg 250 or SB 1.2 BNJ 10.4 NJ 4.4 EJ 3.6 EJ 0.05 B Antonim mg/kg 250 or SB 1.0 AB 1.0 NJ
 | Jeryllium mgkg 0.16 orSB 0 - 1.75 0.21 B 0.016 BNJ 0.54 B 0.10 B 0.019 D 0.011 D <thd< td=""><td>zadmium mg/kg 1 or SB 0.1-1 0.04 U 0.07 U 0.1 BNJ 0.02 UN 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.04 U Zalcium mg/kg SB 130-35,000 91,68 J 228,000 E-J 189,000 J 50,022 J 37,700 18,200 231 T 0.04 U Zhomium mg/kg S0 or SB 1.5 -40 3.0 0.35 B 0.23 BNJ 10.4 NJ 441 EJ 1.9 BL 0.05 B 200 5 B 0.05 B 200 5 B 0.05 B</td><td>Talcium mg/kg SB 130 - 35,000 91,168 J 228,000 E*J 188,000 J 37,700 18,200 421,171 Chromium mg/kg 100 rSB 1.5 - 40 3.0 0.17 U 0.228 BNJ 10.4 NJ 44,1 EJ 3.6 EJ 0.05 B 0.05 B 0.06 B 0.017 U 0.017 U 10.4 NJ 44,1 EJ 1.9 BL 0.06 B 0.06 B 0.017 U 0.017 NJ 56,400 NJ 53,100 6,410 191 1.2 B Copper mg/kg 200 rSB 1.00 - 550,000 4,800 11,10 1.04 NJ 56,400 NJ 63,100 6,410 191 1.2 B Copper mg/kg 28B 100 - 5,000 1,170 1,1600 1,040 E-J 2.300 NJ 7.3 N 0.3 U 0.3 U Angresum mg/kg SB 100 - 5,000 1,170 1,1600 1,040 E-J 2.300 NJ 187 N 7.3 N 0.3 U 0.3 E 0.3 E 0.3 E 0.</td><td>Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.25 B/M v 10.4 Nv 44.5 E v 3.6 E v 0.35 B 0.25 B/M v 10.4 Nv 44.5 E v 3.6 E v 0.35 B 0.37 V 0.31 B/V 52.6 Nv 10.9 E v 13 BE v 0.06 B 0.03 B 0.17 V 0.11 B/V 55.400 Nv 13 BE v 0.19 BL v 0.03 B 0.01 B 0.03 V 0.03 V 0.03 B 0.03 V <t< td=""><td>x00alt mg/kg 300 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 045.5 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 045.5 3.1 1.2 B cont mg/kg 280 200 - 550,00 4,800 139 0.20 131 N'J 56,400 N'J 56,400 N'J 66,100 191 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 B'J 2,236 B'J 2,730 2,150 Aggresium mg/kg SB 100 - 5,000 1,170 11.60 5,38 BNJ 2,300 2,280 2,150 Aggresium mg/kg SB 0.1 0.022 BNJ 0.022 BNJ 0.065 N 3,3 B 2,300 2,450 2,150 Aggresium mg/kg 13 or SB 0.5 -</td><td>Copper mg/kg Z5 or SB 1 - 50 13.1 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B cin mg/kg 2000 or SB 2,000 - 550,000 4,800 139 70.1 N*J 56,400 N*J 56,400
 6,410 141 0.3 U ead mg/kg SB 2,000 - 550,000 4,800 1,170 0.34 U 0.200 N*J 187/N 57,31N 0.31 0.31 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 E*J 2,300 2,280 2,150 Angnesium mg/kg SB 500 - 6,000 1,170 1,600 5,160 2,300 2,280 2,150 Angnesium mg/kg SB 50.01 10.1 11.90 5,500 2,500 2,150 3,1 3,4 Angnesium mg/kg SB 0.022 0.046 B 0.022 BNJ 0.052 0.016 U 0.023 UN 3,3 3 3 3 3 3 3 3<</td><td>Old Markage SB Concentration And to the factor A</td><td>Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E·J 2,250 E·J 2,300 2,280 2,150 9.4 Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9.4 Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9.4 Aercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.063 0.016 U 0.023 UN Aercury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 0.063 B 3.3 B 0.023 UN otassium mg/kg SB 8.500 - 43,000 385 B 35.7 B 28.4 B*J 514 *J 1, 1, 220 563 B 63.5 B otassium mg/kg 2.0 SH 0.1.3 O.S3 UN*J 0.35 UN*J 0.43 U 0.43 U 0.63 U</td><td>Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 0.016 U 0.023 BN 0.016 U 0.023 BN 0.016 U 0.023 UN 0.016 U 0.023 BN 0.016 U 0.016 U 0.016 U</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B selenium mg/kg 2.0 SR 0.53 UN'J 0.35 UNJ 0.47 U 0.43 U 0.651 U</td><td>iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B 3.9 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.4 Style 1.</td><td>otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B 63.5 B 6</td><td>odium mg/kg SB 6,000 6,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B
Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.82 B</td><td>Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.32 U 0.82 B faallium mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td></t<></td></thd<> | zadmium mg/kg 1 or SB 0.1-1 0.04 U 0.07 U 0.1 BNJ 0.02 UN 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.04 U Zalcium mg/kg SB 130-35,000 91,68 J 228,000 E-J 189,000 J 50,022 J 37,700 18,200 231 T 0.04 U Zhomium mg/kg S0 or SB 1.5 -40 3.0 0.35 B 0.23 BNJ 10.4 NJ 441 EJ 1.9 BL 0.05 B 200 5 B 0.05 B 200 5 B 0.05 B | Talcium mg/kg SB 130 - 35,000 91,168 J 228,000 E*J 188,000 J 37,700 18,200 421,171 Chromium mg/kg 100 rSB 1.5 - 40 3.0 0.17 U 0.228 BNJ 10.4 NJ 44,1 EJ 3.6 EJ 0.05 B 0.05 B 0.06 B 0.017 U 0.017 U 10.4 NJ 44,1 EJ 1.9 BL 0.06 B 0.06 B 0.017 U 0.017 NJ 56,400 NJ 53,100 6,410 191 1.2 B Copper mg/kg 200 rSB 1.00 - 550,000 4,800 11,10 1.04 NJ 56,400 NJ 63,100 6,410 191 1.2 B Copper mg/kg 28B 100 - 5,000 1,170 1,1600 1,040 E-J 2.300 NJ 7.3 N 0.3 U 0.3 U Angresum mg/kg SB 100 - 5,000 1,170 1,1600 1,040 E-J 2.300 NJ 187 N 7.3 N 0.3 U 0.3 E 0.3 E 0.3 E 0.
 | Thromium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.25 B/M v 10.4 Nv 44.5 E v 3.6 E v 0.35 B 0.25 B/M v 10.4 Nv 44.5 E v 3.6 E v
 0.35 B 0.37 V 0.31 B/V 52.6 Nv 10.9 E v 13 BE v 0.06 B 0.03 B 0.17 V 0.11 B/V 55.400 Nv 13 BE v 0.19 BL v 0.03 B 0.01 B 0.03 V 0.03 V 0.03 B 0.03 V 0.03 V <t< td=""><td>x00alt mg/kg 300 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 045.5 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 045.5 3.1 1.2 B cont mg/kg 280 200 - 550,00 4,800 139 0.20 131 N'J 56,400 N'J 56,400 N'J 66,100 191 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 B'J 2,236 B'J 2,730 2,150 Aggresium mg/kg SB 100 - 5,000 1,170 11.60 5,38 BNJ 2,300 2,280 2,150 Aggresium mg/kg SB 0.1 0.022 BNJ 0.022 BNJ 0.065 N 3,3 B 2,300 2,450 2,150 Aggresium mg/kg 13 or SB 0.5 -</td><td>Copper mg/kg Z5 or SB 1 - 50 13.1 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B cin mg/kg 2000 or SB 2,000 - 550,000 4,800 139 70.1 N*J 56,400 N*J 56,400 6,410 141 0.3 U ead mg/kg SB 2,000 - 550,000 4,800 1,170 0.34 U 0.200 N*J 187/N 57,31N 0.31 0.31 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 E*J 2,300 2,280 2,150 Angnesium mg/kg SB 500 - 6,000 1,170 1,600 5,160 2,300 2,280 2,150 Angnesium mg/kg SB 50.01 10.1 11.90 5,500 2,500 2,150 3,1 3,4 Angnesium mg/kg SB 0.022 0.046 B 0.022 BNJ 0.052 0.016 U 0.023 UN 3,3 3 3 3 3 3 3 3<</td><td>Old Markage SB Concentration And to the factor A</td><td>Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E·J 2,250 E·J 2,300 2,280 2,150 9.4 Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9.4 Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9.4 Aercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.063 0.016 U 0.023 UN Aercury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 0.063 B 3.3 B 0.023 UN otassium mg/kg SB 8.500 - 43,000 385 B 35.7 B 28.4 B*J 514 *J 1, 1, 220 563 B 63.5 B otassium mg/kg 2.0 SH 0.1.3 O.S3 UN*J 0.35 UN*J 0.43 U 0.43 U 0.63 U</td><td>Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 0.016 U 0.023 BN 0.016 U 0.023 BN 0.016 U 0.023 UN 0.016 U 0.023 BN 0.016 U 0.016 U 0.016 U</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B selenium mg/kg 2.0 SR 0.53 UN'J 0.35 UNJ 0.47 U 0.43 U 0.651 U</td><td>iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B 3.9 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.4 Style 1.</td><td>otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B 63.5 B 6</td><td>odium mg/kg SB 6,000 6,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B
Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.82 B</td><td>Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.32 U 0.82 B faallium mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td></t<> | x00alt mg/kg 300 rSB 2.5 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.06 BJ copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 045.5 3.1 1.2 B copper mg/kg 25 or SB 1 - 50 13.7 1.4 B 1.0 B 18.1 045.5 3.1 1.2 B cont mg/kg 280 200 - 550,00 4,800 139 0.20 131 N'J 56,400 N'J 56,400 N'J 66,100 191 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 B'J 2,236 B'J 2,730 2,150 Aggresium mg/kg SB 100 - 5,000 1,170 11.60 5,38 BNJ 2,300 2,280 2,150 Aggresium mg/kg SB 0.1 0.022 BNJ 0.022 BNJ 0.065 N 3,3 B 2,300 2,450 2,150 Aggresium mg/kg 13 or SB 0.5 - | Copper mg/kg Z5 or SB 1 - 50 13.1 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B cin mg/kg 2000 or SB 2,000 - 550,000 4,800 139 70.1 N*J 56,400 N*J 56,400 6,410 141 0.3 U ead mg/kg SB 2,000 - 550,000 4,800 1,170 0.34 U 0.200 N*J 187/N 57,31N 0.31 0.31 ead mg/kg SB 100 - 5,000 1,170 1,600 1,040 E*J 2,300 2,280 2,150 Angnesium mg/kg SB 500 - 6,000 1,170 1,600 5,160 2,300
 2,280 2,150 Angnesium mg/kg SB 50.01 10.1 11.90 5,500 2,500 2,150 3,1 3,4 Angnesium mg/kg SB 0.022 0.046 B 0.022 BNJ 0.052 0.016 U 0.023 UN 3,3 3 3 3 3 3 3 3< | Old Markage SB Concentration And to the factor A
 | Aagnesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 E·J 2,250 E·J 2,300 2,280 2,150 9.4 Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9.4 Aanganese mg/kg SB 50 - 5,000 101 11.9 6.9 EN*J 338 EN*J 1,870 N 115 N 9.4 Aercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.063 0.016 U 0.023 UN Aercury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 0.063 B 3.3 B 0.023 UN otassium mg/kg SB 8.500 - 43,000 385 B 35.7 B 28.4 B*J 514 *J 1, 1, 220 563 B 63.5 B otassium mg/kg 2.0 SH 0.1.3 O.S3 UN*J 0.35 UN*J 0.43 U 0.43 U 0.63 U | Angenese mg/kg SB 50 - 5,000 101 11.9 6.9 N*1 1,870 N 115 N 9.4 Angenese mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.066 U 0.023 UN 0.016 U 0.023 BN 0.016 U 0.023 BN 0.016 U 0.023 UN 0.016 U 0.023 BN 0.016 U 0.016 U 0.016 U | Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.029 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J
1,220 563 B 63.5 B selenium mg/kg 2.0 SR 0.53 UN'J 0.35 UNJ 0.47 U 0.43 U 0.651 U | iickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B 3.9 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.2 C 563 B 63.5 B - 0.14 style 1.4 Style 1. | otassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B 63.5 B 6 | odium mg/kg SB 6,000 6,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B
Tailium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.82 B | Sodium mg/kg SB 6,000 - 8,000 374 B 448 B 78.0 BJ 172 B 292 B 125 B 310 B hallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.32 U 0.32 U 0.82 B faallium mg/kg 150 or SB 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U
 |
| Internation Impose Constraint Constraint <thconstraint< th=""> Constraint Constan</thconstraint<> | rsenic mg/kg 7.5 or SB 3 - 12 1.7 0.76 U 0.44 U [*] 8.8 9.8 1.1 IB 0.34 UI admium mg/kg 300 or SB 15 · 600 23.2 B 26.0 B 15 · 16 NJ 17 / 7 1.1 IB 0.34 IJ admium mg/kg 300 or SB 15 · 600 23.2 B 0.07 U 0.1 BNJ 0.05 INJ 0.03 U 0.04 U admium mg/kg 5B 0.1 - 17 0.07 U 0.01 BNJ 0.03 U 0.03 U 0.04 U admium mg/kg 5B 0.1 - 17 0.074 U 0.07 IJ 0.01 BNJ 0.03 UN 0.03 UN 0.03 UN 0.04 U 0.04 U admium mg/kg 5B 1.0 or SB 0.17 U 0.11 BNJ 0.02 LNJ 4.41 EJ 3.6 EJ 0.05 B bind mg/kg 2B 10 or SB 0.17 U 0.11 BNJ 5.6 NJ 1.9 BEJ 1.9 BEJ 0.06 B bind mg/kg 2B or SB 2.000 SE 0.00 4.10 0.30 UN 5.6 NJ
 | Jeryllium mg/kg 0.16 or SB 0 - 1.75 0.21 B 0.016 BNJ 0.54 B 0.10 B 0.01 B D <thd< th=""> D</thd<>

 | zadmium mg/kg 1 or SB $0.1 - 1$ 0.04 U 0.07 U 0.01 BU 0.02 UN 0.03 U 0.03 U 0.03 U 0.04 UZalcium mg/kg SB $130 - 35,000$ $91,68$ J $228,000$ E-1 $189,000$ J $37,700$ $18,200$ 230 EJ 0.04 UZhomium mg/kg SB $15 - 40$ 3.0 0.35 B 0.17 U 0.22 BNJ 10.4 NJ 441 EJ 3.0 EJ 0.06 BZhomium mg/kg 250 or SB $1.5 - 60$ 8.8 B 0.17 U 0.01 BNJ 52.6 NJ 10.9 EJ 3.0 ES 3.1 DZhomium mg/kg 250 or SB $1.5 - 60$ 8.8 B 1.7 I 1.4 B 10.4 NJ 441 EJ 1.9 BEJ 0.06 BZhomo mg/kg 250 or SB 1.77 I 1.4 B 1.04 NJ $56,400$ NJ 6410 T 1.2 BZhomo mg/kg 2500 cr SB $2.00 - 550,00$ 1.170 1.1600 1.040 E'J 2.250 E'J 2.30 S 2.36 SAngrasu mg/kg SB $100 - 5,000$ 1.170 1.1600 1.040 E'J 2.250 E'J 2.30 S 2.150 SAngrasu mg/kg SB $100 - 5,000$ 1.1170 1.1600 1.040 E'J 2.250 E'J 2.300 S 2.150 SAngrasu mg/kg SB $100 - 5,000$ 1.1170 1.1600 1.040 E'J 2.250 E'J 2.300 S 2.280 S 2.150 SAngrasu mg/kg SB $100 - 5,000$ 1.01 | Talcium mg/kg SB 130 - 35,000 91,68 J 228,000 E^{-1} 188,000 J 37,700 18,200 421,171 Zhomium mg/kg 100 rSB $1.5 - 40$ 3.0 0.17 U 0.221 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.05 B 2.5 eV 0.6 B 0.17 U 0.221 BNJ 10.9 EJ 3.0 EJ 3.0 EJ 0.05 B 2.5 eV 3.1 E 1.9 BEJ 0.06 B 3.1 E 1.2 BEJ 0.01 BNJ 5.5 G/NJ 1.0 BNJ 5.6 EJ 3.1 E 1.2 BEJ 0.05 B 2.00 e 550,000 4.1 EJ 0.220 UN'J 56,400 N'J 53,100 6,410 191 1.2 B Deper mg/kg 286 200 e 50,000 4.1 D 0.221 N'J 56,400 N'J 53,100 6,410 191 1.2 B Deper mg/kg SB 200 e 50,000 1,170 1,1600 1,040 E'J 2,300 N'J 56,100 2,150 6,410 191 Magnesium mg/kg SB 50 e 5,000 1,170 1,1600 1,040
 | Thomium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.25 B/U 10.4 NJ 44.5 EU 3.6 EJ 0.35 B 0.35 B 0.25 B/U 10.4 NJ 44.5 EU 3.6 EJ 0.35 B 0.35 B 0.35 B 0.35 B 0.37 U 0.31 J 0.35 B 0.35 B 0.37 U 0.35 B/U 0.36 B/U 0.35 B/U 0.36 B/U 0.31 B/U 0.36 B/U 0.31 B/U 0.36 B/U 0.36 B/U 0.31 B/U 0.32 B/U 0.31 B/U 0.32 B/U 0.32 B/U 0.32 B/U 0.31 B/U 0.32 B/U 0.31 B/U 0.32 B/U 0.31 B/U 0.32 B/U 0.32 B/U 0.32 B/U 0.32 B/U 0.32 B/U 0.32 B/U </td <td>xobalt mg/kg 300 rSB 25-60 6.8 B 0.17 U 0.11 B/J 52.6 NJ 10.9 LJ 1.1 B/LJ 0.00 B/J copper mg/kg 25 or SB 1 - 500 13.7 1 + 4 B 1.0 B 1.81 0.45 B 31 1.1 B/LJ 1.0 B con mg/kg 2000 - 550,000 4.01 0.34 U 0.20 UN'J 13.1 N'J 187 N 7.3 N 0.31 U con mg/kg SB 200 - 550,000 4.17 0.34 U 0.20 UN'J 13.1 N'J 187 N 7.3 N 0.31 U Angenesium mg/kg SB 200 - 5,000 1,170 1.600 1,040 E'J 2.250 E'J 2.300 2.780 2.150 Anganese mg/kg SB 50 - 5,000 101 11.9 0.028 BNJ 0.023 DN 0.65 DN 0.416 N 0.31 U Anganese mg/kg SB 50.1 N'J 13.1 N'J 187 N 115 N 0.31 D Anganese mg/kg SB 0.1 B B'J 1.36</td> <td>Copper mg/kg Z5 or SB 1 - 50 13.1 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B con mg/kg 2000 or SB 2,000 - 550,000 4,800 139 0.201 NrJ 56,400 NrJ 66,100 6,410 191 ead mg/kg SB 2,000 - 550,000 4,800 1,170 0.34 U 0.200 NrJ 53,100 5,730 0.31 U Angaresium mg/kg SB 100 - 5,000 1,170 1,600 5,900 2,80 0.31 U Angaresium mg/kg SB 500 - 5,000 101 11.9 6.9 EN'J 2,300 NrJ 2,300 NrJ 9.4 Angaresium mg/kg SB 0.01 11.1 0.029 BNJ 0.022 BNJ 0.016 U 0.023 UN Angaresium mg/kg SB 0.022 BNJ 0.022 BNJ 0.023 UN 0.023 UN Angaresium mg/kg SB 0.022 BNJ 0.022 BNJ 0.016 U 0.023 UN Angustium mg/kg <td< td=""><td>ead mg/g constraint <thconstraint< th=""> mg/g con</thconstraint<></td><td>Algenesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 CJ 2,250 CJ 2,300 2,280 2,150 2,150 Anaganese mg/kg SB 50 - 5,000 101 119 6.9 N 2,250 2,130 2,280 2,150 2,150 Anaganese
 mg/kg SB 50 - 5,000 101 11.9 0.025 11.8 0.063 0.016 0 0.023 UN 0.016 U 0.028 UN 0.016 U 0.028 UN <td< td=""><td>Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N*J 338 N*J 1,870 N 115 N 9.4 Anganese mg/kg 0.1 0.001 - 0.2 0.046 0 0.022 N 0.023 N 0.023</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B olassium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN'J 0.47 U 0.43 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U olassium mg/kg 2 or SR 0.1 - 3.9 0.30 U 0.61 U 0.651 U</td><td>Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B</td><td>Datassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B 63.5 B</td><td>Trailium mg/kg SB 0.73/U 1.1/U 0.39/U/J 1.2/NJ 0.35/U 0.32/U 0.82/B</td><td>Thallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.32 U 0.82 B 0.82 B 1.4 mg/kg 150 or SB 1.3 mg/kg 150 or SB 1.4 mg/kg 0.31 LJ 0.32 U 0.31 U</td></td<></td></td<></td> | xobalt mg/kg 300 rSB 25-60 6.8 B 0.17 U 0.11 B/J 52.6 NJ 10.9 LJ 1.1 B/LJ 0.00 B/J copper mg/kg 25 or SB 1 - 500 13.7 1 + 4 B 1.0 B 1.81 0.45 B 31 1.1 B/LJ 1.0 B con mg/kg 2000 - 550,000 4.01 0.34 U 0.20 UN'J 13.1 N'J 187 N 7.3 N 0.31 U con mg/kg SB 200 - 550,000 4.17 0.34 U 0.20 UN'J 13.1 N'J 187 N 7.3 N 0.31 U Angenesium mg/kg SB 200 - 5,000 1,170 1.600 1,040 E'J 2.250 E'J 2.300 2.780 2.150 Anganese mg/kg SB 50 - 5,000 101 11.9 0.028 BNJ 0.023 DN 0.65 DN 0.416 N 0.31 U Anganese mg/kg SB 50.1 N'J 13.1 N'J 187 N 115 N 0.31 D Anganese mg/kg SB 0.1 B B'J 1.36 | Copper mg/kg Z5 or SB 1 - 50 13.1 1.4 B 1.0 B 18.1 wt+3 0.1 1.4 B con mg/kg 2000 or SB 2,000 - 550,000 4,800 139 0.201 NrJ 56,400 NrJ 66,100 6,410 191 ead mg/kg SB 2,000 - 550,000 4,800 1,170 0.34 U 0.200 NrJ 53,100 5,730 0.31 U Angaresium mg/kg SB 100 - 5,000 1,170 1,600 5,900 2,80 0.31 U Angaresium mg/kg SB 500 - 5,000 101 11.9 6.9 EN'J 2,300 NrJ 2,300 NrJ 9.4 Angaresium mg/kg SB 0.01 11.1 0.029 BNJ 0.022 BNJ 0.016 U 0.023 UN Angaresium mg/kg SB 0.022 BNJ 0.022 BNJ 0.023 UN 0.023 UN Angaresium mg/kg SB 0.022 BNJ 0.022 BNJ 0.016 U 0.023 UN Angustium mg/kg <td< td=""><td>ead mg/g constraint <thconstraint< th=""> mg/g con</thconstraint<></td><td>Algenesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 CJ 2,250 CJ 2,300 2,280 2,150 2,150 Anaganese mg/kg SB 50 - 5,000 101 119 6.9 N 2,250 2,130 2,280 2,150 2,150 Anaganese mg/kg SB 50 - 5,000 101 11.9 0.025 11.8 0.063 0.016 0 0.023 UN 0.016 U 0.028 UN 0.016 U 0.028 UN <td< td=""><td>Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N*J 338 N*J 1,870 N 115 N 9.4 Anganese mg/kg 0.1 0.001 - 0.2 0.046 0 0.022 N 0.023 N 0.023</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B olassium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN'J 0.47 U 0.43 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U olassium mg/kg 2 or SR 0.1 - 3.9 0.30 U 0.61 U 0.651 U</td><td>Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B</td><td>Datassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B 63.5 B</td><td>Trailium mg/kg SB 0.73/U 1.1/U 0.39/U/J 1.2/NJ 0.35/U 0.32/U 0.82/B</td><td>Thallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.32 U 0.82 B 0.82 B 1.4 mg/kg 150 or SB 1.3 mg/kg 150 or SB 1.4 mg/kg 0.31 LJ 0.32 U 0.31 U</td></td<></td></td<> | ead mg/g constraint mg/g constraint <thconstraint< th=""> mg/g con</thconstraint<>
 | Algenesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 CJ 2,250 CJ 2,300 2,280 2,150 2,150 Anaganese mg/kg SB 50 - 5,000 101 119 6.9 N 2,250 2,130 2,280 2,150 2,150 Anaganese mg/kg SB 50 - 5,000 101 11.9 0.025 11.8 0.063 0.016 0 0.023 UN 0.016 U 0.028 UN 0.016 U 0.028 UN <td< td=""><td>Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N*J 338 N*J 1,870 N 115 N 9.4 Anganese mg/kg 0.1 0.001 - 0.2 0.046 0 0.022 N 0.023 N 0.023</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B olassium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN'J 0.47 U 0.43 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U olassium mg/kg 2 or SR 0.1 - 3.9 0.30 U 0.61 U 0.651 U</td><td>Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B</td><td>Datassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B 63.5 B</td><td>Trailium mg/kg SB 0.73/U 1.1/U 0.39/U/J 1.2/NJ 0.35/U 0.32/U 0.82/B</td><td>Thallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.32 U 0.82 B 0.82 B 1.4 mg/kg 150 or SB 1.3 mg/kg 150 or SB 1.4 mg/kg 0.31 LJ 0.32 U 0.31 U</td></td<> | Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N*J 338 N*J 1,870 N 115 N 9.4 Anganese mg/kg 0.1 0.001 - 0.2 0.046 0 0.022 N 0.023 | Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.022 BNJ 0.065 0.016 U 0.023 UN vickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 31.8 3.3 B 3.9 B olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B olassium mg/kg 2 or SR 0.1 - 3.9 0.39 U 1.6 U 0.53 UN'J 0.47 U 0.43 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U 0.651 U olassium mg/kg 2 or SR 0.1 - 3.9 0.30 U 0.61 U 0.651 U | Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B | Datassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'.1 514 '.1 1,220 563 B
 63.5 B | Trailium mg/kg SB 0.73/U 1.1/U 0.39/U/J 1.2/NJ 0.35/U 0.32/U 0.82/B | Thallium mg/kg SB 0.73 U 1.1 U 0.39 UNJ 1.2 NJ 0.35 U 0.32 U 0.32 U 0.82 B 0.82 B 1.4 mg/kg 150 or SB 1.3 mg/kg 150 or SB 1.4 mg/kg 0.31 LJ 0.32 U 0.31 U |
| Infinition mg/g Sec rSB 3-12 1/7 0.56 / U 0.56 / UV 0.53 / UV 0.53 / UN 0.56 / UN | reent: mg/kg 7.5 or SB 3 - 12 1.7 0.76 U 0.44 U 8.81 9.38 1.1 B 0.36 U atium mg/kg 300 or SB 15 - 600 2.32 B 0.157 BENU 0.17 C 0.37 ID 0.36 B 0.17 B 0.36 B 0.16 B 0.37 ID 8.37 ID 8.36 ID 8.31 IS 8.31 IS 9.36 ID
 | Jeryllium mg/kg 0.16 or SB 0 - 1.75 0.21 B 0.30 B 0.16 BNJ 0.15 BNJ 0.54 B 0.10 B 0.19 B admium mg/kg 1 or SB 0.1 - 1 0.004 U 0.07 U 0.01 BNJ 0.03 U 0.03 U 0.04 U 0.03 U 0.04 U 0.03 B 0.17 U 0.01 HNJ 0.01 HNJ 0.03 H 0.03 B 0.011 BNJ 0.01 HNJ 0.01 HNJ 0.03 H 0.05 B 0.011 BNJ 0.01 HNJ 0.01 H 1.12 BUJ 0.01 B 0.01 HNJ 0.01 HNJ 0.01 H 1.12 BUJ 0.01 B 0.01 HNJ
 | admium mg/kg 1 or SB 0.1-1 0.04 U 0.07 U 0.1 BNJ 0.02 UNJ 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.03 U 0.04 U alcium mg/kg SB 130-35,000 91,68 J 228,000 E*U 189,000 J 37,00 18,200 30 C3 50,42 J 36 EJ 0.04 U 0.04 U
Zhomium mg/kg SB 15-40 3.0 0.17 U 0.23 BNJ 10.4 NJ 44,1 EJ 3.6 EJ 0.05 B 2.6 C3 3.1 E 0.64 U 1.7 D 1.4 B 1.0 BAS 3.6 EJ 3.1 E 0.5 B 3.1 E 1.2 BZ 0.6 B 3.1 D 1.6 D 1.6 D 1.6 D 1.1 E 1.2 BZ 0.1 BZ 0.5 E 0.1 T 1.1 E 1.2 BZ 0.1 | Talcium mg/kg SB 130 - 35,000 91,68 J 228,000 E' J 188,000 J 37,700 18,200 421,171 Zhomium mg/kg 10 or SB 1.5 - 40 3.0 0.35 B 0.22 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.05 B Zhomium mg/kg 200 or SB 1.5 - 40 3.0 0.35 B 0.23 BNJ 10.4 NJ 44.1 EJ 3.6 EJ 0.05 B Zobat mg/kg 256 or SB 1.5 - 60 8.8 B 10.1 BNJ 55.6 NJ 10.9 EJ 3.1 BL 11.2 B Zopper mg/kg 256 or SD 4.1 B 0.23 UN'J 56,400 N'J 53,100 64,10 191 Zomo mg/kg SB 200 - 5,000 4.1 D 0.24 BNJ 10.4 NJ 56,400 N'J 53,100 64,10 191 Angenesium mg/kg SB 200 - 5,000 11.1 O 0.23 BNJ 13.1 N'J 187 N 7.3 N 0.3 BJ Angenesium mg/kg SB 50 - 5,000 11.1 O <td< td=""><td>Thomium mg/kg 10 or SB $1.5 \cdot 40$ 3.0 0.35/SH 0.23/SHU 10.4 NU 44.4 NL 3.6/SU 0.03/SH 0.03/SH Sobalt mg/kg 20 or SB $1.5 \cdot 40$ 3.3 0.17/U 0.11/SU 52.6 NU 1.9/SE 3.6/SU $3.$</td><td>xobalt mg/kg 300 r SB 25 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.00 BJ copper mg/kg 25 or SB 1 - 50 13.7 1 + 4 B 1.0 B 1.81 0.45 A 31 1.2 B copper mg/kg 250 or SB 2,000 - 550,000 4.800 1.0 B 7.01 N 510 N 5.410 1.12 B cond mg/kg 28B 2,000 - 550,000 4.170 1.1600 1.040 E'J 2.250 E'J 2.300 2.280 2.150 dagnesum mg/kg SB 100 - 5,000 1,170 11.90 0.20 UN'J 13.1 N'J 187/N 7.3 N 0.3 U Angenese mg/kg SB 100 - 5,000 1,170 11.90 2.250 E'J 2.300 2.280 2.150 Angenese mg/kg SB 0.11 - 0.023 BNJ 0.022 BNJ 0.053 B 0.016 U 0.023 BNJ Angenese mg/kg 13 or SB 0.1.5 B 1.3 BNJ 2.200</td></td<> <td>Opper mg/kg ZB or SB 1 - 50 13.1 1 - 41<td>end mg/rg concentration wind wind concentration wind wind</td><td>Algenesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 2,1 2,250 2,1 2,280 2,150 3,150 3,150 3,150 3,150 3,150 3,150 3,150 3,150 3,160 3,170 3,170 3,150 3,218 3,219 3,216 3,216 3,216 3,216 3,216 3,216 1,216 3,216</td><td>Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N' 1.870 N 115 N 9.4 Aniganese mg/kg 0.1 0.001 - 0.2 0.046 B 0.022 U 0.025 BNJ 0.023 BNJ 0.063 0.016 U 0.023 UN Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.7 B 3.3 B 3.4 B 3.7 NJ 3.7 B 3.3 B 3.4 B 3.7 NJ 3.7 NJ 3.7 B 3.3 B 3.3 B 3.3 B 3.3 B 3.3 B 3.6 B 5.6 B 3.6 B 5.6 B</td><td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.023 ENJ 0.063 O 0.016 U 0.023 UV dickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.7 B 3.3 B</td><td>Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B</td><td>olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B 63.</td><td></td><td>/anadium mg/kg 150 or SB 1 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td></td> | Thomium mg/kg 10 or SB $1.5 \cdot 40$ 3.0 0.35 /SH 0.23 /SHU 10.4 NU 44.4 NL 3.6 /SU 0.03 /SH 0.03 /SH Sobalt mg/kg 20 or SB $1.5 \cdot 40$ 3.3 0.17 /U 0.11 /SU 52.6 NU 1.9 /SE 3.6 /SU $3.$

 | xobalt mg/kg 300 r SB 25 - 60 6.8 B 0.17 U 0.11 BNJ 52.6 NJ 10.9 EJ 1.9 BEJ 0.00 BJ copper mg/kg 25 or SB 1 - 50 13.7 1 + 4 B 1.0 B 1.81 0.45 A 31 1.2 B copper mg/kg 250 or SB 2,000 - 550,000 4.800 1.0 B 7.01 N 510 N 5.410 1.12 B cond mg/kg 28B 2,000 - 550,000 4.170 1.1600 1.040 E'J 2.250 E'J 2.300 2.280 2.150 dagnesum mg/kg SB 100 - 5,000 1,170 11.90 0.20 UN'J 13.1 N'J 187/N 7.3 N 0.3 U Angenese mg/kg SB 100 - 5,000 1,170 11.90 2.250 E'J 2.300 2.280 2.150 Angenese mg/kg SB 0.11 - 0.023 BNJ 0.022 BNJ 0.053 B 0.016 U 0.023 BNJ Angenese mg/kg 13 or SB 0.1.5 B 1.3 BNJ 2.200 | Opper mg/kg ZB or SB 1 - 50 13.1 1 - 41 <td>end mg/rg concentration wind wind concentration wind wind</td> <td>Algenesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 2,1 2,250 2,1 2,280 2,150 3,150 3,150 3,150 3,150 3,150 3,150 3,150 3,150 3,160 3,170 3,170 3,150 3,218 3,219 3,216 3,216 3,216 3,216 3,216 3,216 1,216 3,216</td> <td>Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N' 1.870 N 115 N 9.4 Aniganese mg/kg 0.1 0.001 - 0.2 0.046 B 0.022 U 0.025 BNJ 0.023 BNJ 0.063 0.016 U 0.023 UN Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.7 B 3.3 B 3.4 B 3.7 NJ 3.7 B 3.3 B 3.4 B 3.7 NJ 3.7 NJ 3.7 B 3.3 B 3.3 B 3.3 B 3.3 B 3.3 B 3.6 B 5.6 B 3.6 B 5.6 B</td> <td>Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.023 ENJ 0.063 O 0.016 U 0.023 UV dickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.7 B 3.3 B</td> <td>Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B 3.3 B</td> <td>olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B 63.</td> <td></td> <td>/anadium mg/kg 150 or SB 1 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U</td> | end mg/rg concentration wind wind concentration wind
 | Algenesium mg/kg SB 100 - 5,000 1,170 1,600 1,040 2,1 2,250 2,1 2,280 2,150 3,150 3,150 3,150 3,150 3,150 3,150 3,150 3,150 3,160 3,170 3,170 3,150 3,218 3,219 3,216 3,216 3,216 3,216 3,216 3,216 1,216 3,216 | Aniganese mg/kg SB 50 - 5,000 101 11.9 6.9 N' 1.870 N 115 N 9.4 Aniganese mg/kg 0.1 0.001 - 0.2 0.046 B 0.022 U 0.025 BNJ 0.023 BNJ 0.063 0.016 U 0.023 UN Ancury mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.7 B 3.3 B 3.4 B 3.7 NJ 3.7 B 3.3 B 3.4 B 3.7 NJ 3.7 NJ 3.7 B 3.3 B 3.3 B 3.3 B 3.3 B 3.3 B 3.6 B 5.6 B 3.6 B 5.6 B | Mercury mg/kg 0.1 0.001 - 0.2 0.046 B 0.032 U 0.022 BNJ 0.023 ENJ 0.063 O 0.016 U 0.023 UV dickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 3.7 B 3.3 B
 | Wickel mg/kg 13 or SB 0.5 - 25 11.5 3.1 B 1.3 BNJ 8.7 NJ 318 3.3 B | olassium mg/kg SB 8,500 - 43,000 385 B 35.7 B 28.4 B'J 514 'J 1,220 563 B 63.5 B 63. | | /anadium mg/kg 150 or SB 1 1 - 300 4.2 B 0.29 B 0.13 BNJ 20.9 NJ 33.1 EJ 6.3 EJ 0.1 U
 |

HSCO = Recommended Soil Cleanup Objectives **1,000** - Indicates detected value for organics. - Indicates value exceeds TAGM 4046 RSCO

Sample ID ->	 Units 	TAGM 4046	DW-1	DW-1	DW-2	DW-2	DW-2R	DW-2	DW-2R	DW-3	DW-4
Depth - >	Λ	RSCO	16-18	20-24	20-22	24-26	24-26	40-43	40-43	16-18.5	6-8
Date Sampled ->	~		7/27/2005	7/27/2005	7/26/2005	7/26/2005	7/26/2005	7/26/2005	7/26/2005	7/27/2005	7/28/2005
VOLATILES via EPA Method 8260											
Chloromethane	ng/kg		12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Bromomethane	ng/kg		12 U	12 U	14 UJ	12 W	12 U	12 UJ	12 U	19 U	52 U
Vinvl chloride	ug/kg	200	12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	210 J
Chloroethane	ug/kg	1,900	12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Methviene chloride	ug/kg	100	12 U	12 U	14 UU	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Acetone	ug/kg	200	12	10 J	14 UJ	12 W	12	12 UJ	12 U	32 U	48 J
Carbon disulfide	ug/kg	2,700	1 Z J	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	4.7 J	52 U
1.1-Dichloroethene	ua/ka	400	12 U	12 U	14 UU	12 UJ	12 U	12 UJ	12 U	19 U	52 U
11.1-Dichloroethane	ua/ka	200	12 U	12 U	14 UJ	12 UJ	12 U	12 01	12 U	19 U	52 U
Chloroform	ug/ka	300	12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
1.2-Dichloroethane	ng/kg	100	12 U	12 U	14 UU	12 UJ	12 U	12 UJ	12 U	19 U	52 U
2-Butanone	ug/kg	300	12 U	12 U	14 UJ	12 W	12 U	12 UJ	12 U	19 U	52 U
1,1,1-Trichloroethane	ug/kg	800	12 U	12 U	14 UJ	12 UJ	12 U	12 UU	12 U	19 U	52 U
Carbon tetrachloride	ug/kg	600	12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Bromodichloromethane	ug/kg		12 U	12 U	14 UJ	12 UU	12 U	12 UJ	12 U	19 U	52 U
1.2-Dichloropropane	ng/kg		12 U	12 U	14 UJ	12 W	12 U	12 UU	12 U	19 U	52 U
cis-1,3-Dichloropropene	ug/kg		12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Trichloroethene	ug/kg	200	12 U	12 U	14 UJ	12 W	12 U	17 J	25	19 U	52 U
Dibromochtoromethane	ug/kg		12 U	12 U	14 UU	12 UJ	12 U	12 UJ	12 U	19 U	52 U
1,1,2-Trichloroethane	ng/kg		12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Benzene	ng/kg	60 or MDL	12 U	12 U	14 UU	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Itrans-1.3-Dichloropropene	ng/kg		12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Bromoform	ug/kg		12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
4-Methyl-2-pentanone	ug/kg	1,000	12 U	12 U	14 UJ	12 UJ	12 U	12 UJ	12 U	19 U	52 U
2-Hexanone	ug/kg		12 U	12 U	14 UU	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Tetrachloroethene	ng/kg	1,400	12 U	12 U	14 UJ	12 UJ	12 U	86 J	150	19 U	52 U
Toluene	ng/kg	1,500	12 U	12 U	1.5 J	12 UJ	12 U	12 W	12 U	19 U	<u>г</u> 8
1,1,2,2-Tetrachloroethane	ng/kg	600	12 U	12 U	14 UU	12 UJ	12 J	12 UJ	12 U	19 U	52 U
Chlorobenzene	ng/kg	1,700	12 U	12 U	3.1 J	12 UJ	12 U	12 UJ	12 U	19 U	52 U
Ethylbenzene	ug/kg	5,500	12 U	12 U	14 UJ	12 UJ	12 U	12 UU	12 U	19 U	6 J
Styrene	ug/kg		12 U	12 U	14 W	12 UJ	12 U	12 W	12 U	19 U	52 U
Total xylenes	ug/kg	1,200	12 U	12 U	3.7 J	12 UJ	12 U	12 W	12 U	19 U	34 J
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	12 U	12 U	14 UJ	12 UJ	12 U	12 W	11 J	19 U	52 U
cis-1,2-Dichtoroethene	ng/kg		12 U	12 U	14 UJ	12 UJ	12 U	12 W	12 U	19 U	P 066
trans-1,2-Dichloroethene	, ug/kg	300	12 U	12 U	14 UJ	12 W	12 U	12 UJ	12 U	19 0	14 J

Pioneer Midler Avenue LLC Remedial Investigation Report Table 7 - Phase 3 Soil Boring Data for Sand Unit Wells to Till FilProject(C81 - Pioneer Development(C81.002 BCPtCrose out and COCIOctober 2007HI ReportTableSTable7validated.xis / Table 7

ł

Page 1 of 4

ioneer Midler Avenue LLC	emedial Investigation Report	able 7 - Phase 3 Soli Boring Data for Sand Unit Wells to Till
Pioneer Midler Av	Remedial Investig	Table 7 - Phase 3

		[]]													_
DW-4	6-8	7/28/2005	52 U	52 U	52 U	52 U	52 U	5 J	52 U	7 7	52 U	52 U	52 U	52 U	52 U
DW-3	16-18.5	7/27/2005	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 U	19 0
DW-2R	40-43	7/26/2005	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U
DW-2	40-43	7/26/2005	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ	12 UJ
DW-2R	24-26	7/26/2005	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	1210
DW-2	24-26	7/26/2005	12 UJ	12 W	12 W	12 W	12 UJ	12 W	12 UJ	12 W	12 W	12 W	12 UJ	12 UJ	12 UJ
DW-2	20-22	7/26/2005	14 UU	14 UU	14 0.0	14 UJ	14 UJ	14 UJ	14 UJ	14 UJ	5.6 J	6.2 J	5.1 J	14 UU	5.2 J
I-MO	20-24	7/27/2005	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	10 61
1-MO	16-18	7/27/2005	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U	12 U
TAGM 4046	RSCO					120					1,600	8,500	7,900		3.400
Units			ng/kg	ug/kg	uq/ka	ng/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ng/kg	ug/kg	ug/kg	un/ka
Sample ID ->	Depth - >	Date Sampled ->	Dichlorodifluoromethane	Tichlorofluoromethane	Aethvl acetate	Aethyl tert butyl ether	Vclohexane	Aethylcyclohexane	.2-Dibromoethane	sopropylbenzene	, 3-Dichlorobenzene	, 4-Dichlorobenzene	,2-Dichlorobenzene	, 2-Dibromo-3-chloropropane	2 4-Trichlorobenzene

: .

x 1

Pioneer Midler Avenue LLC Remedial Investigation Report Table 7 - Phase 3 Soil Boring Data for Sand Unit Wells to Till

Sample ID ->	Units	TAGM 4046	DW-4	DW-4	DW-4	DW-4
Cepth - >		RSCO	6-8 RI	16-18.5	16-18.5DL	24-28.5
Date Sampled ->			7/28/2005	7/28/2005	7/28/2005	7/28/2005
VOLATILES via EPA Method 8260						
Chloromethane	ng/kg		51 U	1500 U	60000 U	12 U
Sromomethane	ng/kg		51 U	1500 U	60000 U	12 U
/inyl chloride	ng/kg	200	190 J	F 016	60000 U	12 U
Chloroethane	ug/kg	1,900	51 U	1500 U	60000 U	12 U
Methylene chloride	ng/kg	100	51 U	1500 U	60000 U	12 U
Acetone	ug/kg	200	65	1500 U	60000 U	5 J
Carbon disulfide	ng/kg	2,700	51 U	1500 U	60000 U	12 U
1.1-Dichloroethene	ng/kg	400	51 U	1500 U	60000 U	12 U
I,1-Dichloroethane	ng/kg	200	51 U	1500 U	60000 U	12 U
Chloroform	ng/kg	300	51 U	1500 U	60000 U	12 U
1,2-Dichloroethane	ng/kg	100	51 U	1500 U	60000 U	12 U
?-Butanone	ug/kg	300	51 U	1500 U	60000 U	12 U
1,1,1-Trichloroethane	ug/kg	800	51 U	1500 U	60000 U	12 U
Carbon tetrachloride	ug/kg	600	51 U	1500 U	60000 U	12 U
3romodichloromethane	ug/kg		51 U	1500 U	60000 U	12 U
1,2-Dichloropropane	ug/kg		51 U	1500 U	60000 U	12 U
sis-1,3-Dichloropropene	ng/kg		51 U	1500 U	60000 U	12 U
Trichloroethene	ng/kg	700	51 U	26000	26000 DJ	12 U
Dibromochloromethane	ug/kg		51 U	1500 U	60000 U	12 U
1,1,2-Trichloroethane	ug/kg		51 U	1500 U	60000 U	12 U
3enzene	ug/kg	60 or MDL	51 U	1500 U	60000 U	12 U
rans-1,3-Dichioropropene	ug/kg		51 U	1500 U	60000 U	12 U
Bromoform	ug/kg		51 U	1500 U	60000 U	12 U
4-Methyl-2-pentanone	ug/kg	1,000	51 U	1500 U	60000 U	12 U
2-Hexanone	ng/kg		51 U	1500 U	60000 U	12 U
Tetrachloroethene	ng/kg	1,400	51 U	60000	60000 D	2 J
[oluene	ng/kg	1,500	Г 8	1500 U	60000 U	12 U
1,1,2,2-Tetrachloroethane	ng/kg	600	51 U	1500 U	60000 U	12 U
Chiorobenzene	ng/kg	1,700	51 U	1500 U	60000 U	12 U
≣thylbenzene	ng/kg	5,500	2 J	1500 U	60000 U	12 U
Styrene	ug/kg		51 U	1500 U	60000 U	12 U
Fotal xylenes	ug/kg	1,200	35 J	1500 U	60000 U	12 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	51 U	1500 U	60000 U	12 U
cis-1,2-Dichloroethene	ug/kg		1000	20000 J	20000 DJ	2 J
rans-1,2-Dichloroethene	ug/kg	300	12 J	300 J	60000 U	12 U

t

Pioneer Midler Avenue LLC Remedial Investigation Report Table 7 - Phase 3 Soil Boring Data for Sand Unit Wells to Till

Sample ID ->	Units	TAGM 4046	DW-4	DW-4	DW-4	DW-4
Depth - >		RSCO	6-8 Fil	16-18.5	16-18.5DL	24-28.5
Date Sampled ->			7/28/2005	7/28/2005	7/28/2005	7/28/2005
Dichlorodifluoromethane	ug/kg		51 U	1500 U	60000 U	12 U
Trichlorofluoromethane	ug/kg		51 U	1500 U	60000 U	12 U
Methyl acetate	ug/kg		51 U	1500 U	60000 U	12 U
Methyl tert butyl ether	ug/kg	120	51 U	1500 U	60000 U	12 U
Cvctohexane	ug/kg		51 U	1500 U	60000 U	12 U
Methylcyclohexane	ug/kg		5 J	1500 U	60000 U	12 U
1,2-Dibromoethane	ug/kg		51 U	1500 U	60000 U	12 U
Isopropylbenzene	ug/kg		۲ J	1500 U	60000 U	12 U
1,3-Dichlorobenzene	ug/kg	1,600	51 U	1500 U	60000 U	12 U
1,4-Dichtorobenzene	ug/kg	8,500	51 U	1500 U	60000 U	12 U
1,2-Dichlorobenzene	ug/kg	7,900	51U	1500 U	60000 U	12 U
1,2-Dibromo-3-chloropropane	ug/kg		51 U	1500 U	60000 U	12 U
1,2,4-Trichlorobenzene	ug/kg	3,400	51 U	1500 U	60000 U	12 U
			RSCO = Recomme	ended Soil Cleanu	o Objectives	

1,000 - indicates detected value for organics.

1. • ł

~ !

Sample ID ->	Units	TAGM	GPD-1	GPD-1	GPD-1	GPD-1	GPU-2	GPD-2	GMU-3	Gru-3	GPU-S	5-1-5-
Depth - >		4046	7-9	7-9 DL	11 - 14	11 - 14 DL	15.8 - 17.5	15.8 - 17.5 DL	4-8	4 - 8 UL	11-01	15 - 1/ UL 0/6/00/2
Date Sampled ->		RSCO	9/6/2005	9/6/2005	9/6/2005	9/6/2005	9/07/2/9/6	3/6/2002	CUUZIDIE	C007/0/S	CMANA	2002/0/2
VOLATILES	ug/kg											
Chloromethane	ug/kg		14 UJ	∩ 69	13 UU	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Bromomethane	ng/kg		14 UJ	069	13 WJ	64 U	60 U	1,500 U	1,600 U	1.600,000,000 U	1,4001U	1,400,000 U
Vinvl chloride	uq/ka	200	4J	0 69	13 UJ	64 U	60 U	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Chloroethane	ua/ka	1,900	14 UJ	0 69	13 UJ	64 U	60 U	1,500 U	1'600 U	1,600,000,000 U	170 J	1,400,000 U
Methylene chloride	ua/ka	8	14 W	79 D	13 UU	41 DU	40 J	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Acetone	uo/ka	200	14 UU	41 DV	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Carbon disulfide	uo/ka	2.700	14 UJ	069	13 UJ	64 U	19.1	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 1-Dichloroethene	uo/ka	400	14 W	0 69	13 UV	64 U	8.1	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 1. Dichlomethane		200	14 UJ	6910	13100	64 U	60 U	1,500 U	1.600 U	1,600,000,000 U	1,400 U	1,400,000 U
Chloroform		300	14 UJ	69 U	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
15 9-Dichloroethane	no/ko	100	14 UJ	069	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
2.Rutanona	ua/ka	300	14 100	0.69	13 UJ	64 U	00	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 1 1-Trichloroethane	naka	800	14 W	69 U	13/UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Carhon tetrachloride	uo/ka	600	14 UU	U 69	13 UJ	0 49	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1.400,000 U
Bronodichloromethane			14 UU	0 69	13 UU	64 U		1,500 U	1.600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 2-Dichlorononana	Lin/kg		14 UU	0 69	13 UU	64 U	60 U	1,500 U	1,600 U	1.600,000,000 U	1,400 U	1,400,000 U
kie.1 3. Dichloronnoana	In Ma		14 11.1	069	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Trichlorothene	- 22 - 22	200	1411.1	6911	13 UU	64 U	2.200	2,200 D	110,000 J	1,600,000,000 U	2,700	310,000 DJ
Dihomochlorumathana			14 1.1	0.69	13 UJ	64 U	6010	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 1 9. Trichlocothane			14 11.1	69 U	13 UJ	0 15	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Rentene	na ka	60 or MDL	14 UJ	0 69	13 UU	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
trans-1 3-Dichlorontonana	- Andrew		14 [1]	69 U	13100	64 U	009	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Bromoform	in Ko		14 [1.]	69 11	13 UU	64 U	009	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
4 Mathul-2-pertange		900	14111	1109	13 U.I	64 U	60 U	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
P-Wollyr-Peladions		2221	14 11	6911	13 01	64 U	60 U	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Z-trocklossothese		1 400	11111	109	7.1	11179	2.100 - 2X	2.100 D	1.000.000.000	1.000.000.000 DJ	12.000.000	12,000,000 BD
Telraco	Ru An	1500	14111	69[1]	13 [11]	64 U	000	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 Uluerte 1 1 1 0 Totrachtaroathana	na/kn	500	14116	6911	13 111	64 U	60 U	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1,1,2,2715macmovourane	no/ku	1 700	14 14	0 69	13 UJ	64 U	108	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Citutions i Leite Fittuthanzana		5.500	14 UJ	0169	13 UU	0 19	<u>∩</u> 09	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Styrada	uo/ko		14 UJ	U 69	13 W	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400.000 U
Total vulenes	uaka	1.200	14 UJ	6910	13 UJ	64 U	60 U	1,500 U	F 008	1,600,000,000 U	1,400 U	1,400,000 U
1.1.2-Trichloro-1.2.2-Influoroethane	uo/ka	1.000	14 UU	69 U	13 W	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
cis-1.2-Dichloroethene	ua/ka		5.1	69 U	13 UJ	64 U	340	230 DJ	30,000	1,600,000,000 U	1,400 U	1,400,000 U
trans-1,2-Dichloroethene	ng/kg	300	2 J	0 69	13 UJ	64 U	38 J	1,500 U	1000 (000 N/) 330 N S	1,600,000,000 U	1,400 U	1,400,000 U
Dichtorodilluoromethane	ug/kg		14 U	069	13 UJ	64 U	00 00	1,500 U	1,600 U	1,600,000.000 U	1,400 U	1,400,000 U
Trichlorofluoromethane	ug/kg		14 U	N 69	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400.000 U
Methył acetate	ug/kg		14 U	69 U	13 [12]	64 U	60 U	1,500 U	1.600 U	1,600,000,000 U	1,400 U	1,400,000 U
Methyl tert butyl ether	ug/kg	120	14 U	69 0	13 UU	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,40010	1,400,000 0
Cvctohexane	ng/kg		14 U	69	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Methylcyclohexane	ng/kg		14 U	69 0	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1.2-Dibromoethane	ua/ka		14 U	69 U	13 UU	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
Isonrowlbenzene	ua/ka		14 U	69 U	13 UU	64 0	00 N	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1.3-Dichlorobenzene	ua/ka	1.600.	14 U	69 U	13 UJ	64 U	∩ 80 ∩	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1 4-Dichlorohenzene	uo/ko	8,500	14 U	- N 69	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1.2-Dichlorobenzene	ug/kg	7,900	14 U	69 U	13 UJ	64 U	60 U	1.500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1.2-Dibromo-3-chloropropane	ng/kg		14 U	69 U	13 UJ	64 U	080	1,500 U	1,600 U	1,600,000,000 U	1,400 U	1,400,000 U
1,2,4-Trichlorobenzene	ug/kg	3,400	14 U	0 89	13 UJ	64 U	60 U	1,500 U	1,600 U	1,600,000,00010	1,400)U	1,400,00010

Sample ID ->	Units	TAGM	GPD-3	GPD-3	GPD-3	GPD-5	GPD-5	GPD-5	GPD-6	3-0-15	GPU-6	GPU-6
Depth - >		4046	17 - 20	17 - 20 DL	23 - 26	14 - 15.2	16 - 18	16 - 18 DL	4-8	12 - 13	12 - 13 DL	13 - 15
Date Sampled ->		RSCO	9/6/2005	9/6/2005	9/6/2005	9/7/2005	9/7/2005	9/7/2005	9/7/2005	9/7/2005	9/7/2005	9/7/2005
VOLATILES	ug/kg					-						
Chloromethane	unka		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1.500 U	59 U	1,500 U	1.600 U
Bromomethane	ua/ka		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1.500 U	1,600 U
Vinvi chloride	ua/ka	200	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1.500 U	1,600 U
Chloroethane	uq/ka	1,900	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Methviene chloride	ua/ka	100	1,300 U	2,600,000 U	1,400 U	1,500 U	41 J	1,500 U	1,500 U	41 J	1,500 U	1,600 U
	ua/ka	200	1.300 U	2.600.000 U	1,400 U	1.500 U	20 J	1,500 U	1,500 U	35 J	1,500 U	1,600 U
Carhon disultida	uo/ka	2.700	1.300 U	2.600,000 U	1,400 U	1,500 U	100	1,500 U	1,500 U	10 J	1,500 U	1,600 U
1 1-Dichloroethene	ua/ka	400	1.300 U	2.600.000 U	1,400 U	1,500 U	57 U	1.500 U	1,500 U	59 U	1,500 U	1,600 U
1 1-Dichloroethane	ua/ka	200	1.300 U	2.600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Chloroform	uaka	300	1.300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1 2-Dichloroathane		100	1.300 U	2.600.000 U	1.400 U	1.500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1,2-Dictinotocinario	10 kg	300	1.300 U	2.600.000 U	1.40010	1.500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
t 1 1-Trichloroothane	ino/ka	800	1.300 U	2.600.000 U	1.400 U	1.500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Carbon tetrachloride	110/kg	600	1.300 U	2.600.000 U	1.40010	1.500 U	57 U	1,500 U	1,500 U	0.65	1,500 U	1,600 U
Bromodichloromethane	ua/ka		1.300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	N 69	1,500 U	1,600 U
1.2-Dichloropropane	ua/ka		1.300 U	2.600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
cis-1.3-Dichloropropene	ua/ka		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Trichloroethene	uo/ka	700	4,100	370,000 DJ	1,500	1,500	2,400	2,800 D	1,500 U	260	260 DJ	3,400
Dihromochtoromethane	ua/ka		1.300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1.1.2-Trichloroethane	ua/ka		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	0 69 N	1,500 U	1,600 U
Benzene	ua/ka	60 or MDL	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1.500 U	1,500 U	59 U	1,500 U	1.600 U
trans-1,3-Dichioropropene	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500U	57 U	1,500 U	1,500 U	1 65	1,500 U	1,600 U
Bromoform	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1.600 U
4-Methyl-2-pentanone	ug/kg	1,000	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
2-Hexanone	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Tetrachloroethene	ug/kg	1,400 202	23,000,000	23,000,000 BD	6,700 B	4,500	L 11	2,400 D	1,900	L 8	1,600 D	2,800
Toluene	ng/kg	1,500	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1,1,2,2-Tetrachloroethane	03/kg	600	1,300 U	2,600,000 U	1,400 U	1.500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Chlorobenzene	ng/kg	1,700	1,300 U	2,600,000 U	1,400[U	1.500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Ethylbenzene	ug/kg	5,500	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Styrene	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	29 0	1.500 U	1,600 U
Total xylenes	ug/kg	1,200	1,300 U	2,600,000 U	1,400 U	1.500 U	57 U	1,500 U	1,500 U	0 65	1,500 U	1,600 U
1,1,2-Trichioro-1,2,2-trifluoroethane	ug/kg	1,000	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	29 0	1,500 U	1,600 U
cis-1,2-Dichloroethene	ug/kg		1,300 U	2,600,000 U	1,400 U	550 J	410	340 D.1	1.500 U	760 J	760 DJ	1,600
trans-1,2-Dichloroethene	ug/kg	300	1,300 U	2,600,000 U	1,400 U	1,500 U	62	1,500 U	1,500 U	78	1,500 U	1,600 U
Dichlorodilluoromethane	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	29 0	1,500 U	1,600 U
Trichlorofiuoromethane	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	2010	1,500 U	1,600 U
Methyl acetate	ug/kg		1.300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Methyl tert butyl ether	ug/kg	120	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1.500 U	1,500 U	59 U	1,500 U	1,600 U
Cyclohexane	ng/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1.500 U	1,500 U	59 U	1,500 U	1,600 U
Methylcyclohexane	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1.600 U
1,2-Dibromoethane	ng/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
Isopropylbenzene	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1.500 U	1,500 U	59 U	1,500 U	1,600 U
1, 3-Dichlorobenzene	ug/kg	1,600,	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1,4-Dichlorobenzene	ug/kg	8,500	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1,2-Dichlorobenzene	ug/kg	7,900	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1,2-Dibromo-3-chloropropane	ug/kg		1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500 U	59 U	1,500 U	1,600 U
1,2,4-Trichlorobenzene	ug/kg	3,400	1,300 U	2,600,000 U	1,400 U	1,500 U	57 U	1,500 U	1,500[U	59 U	1.500JU	1.60010

Comple ID	1 I Inits	TAGM	GPD-7	GPD-8	R-CPD-R	GPD-10	GPD-10	GPD-10	GPD-12	6PD-12	GPD-12	GPD-12
Saupte 10-2	5	4046	4-8 4-8	4 - 7.6	11.5-15	4 - 7.6	4 - 7.6 DL	17 - 19	4-7	4-7 DL	15 - 16	16 - 19
Date Sampled ->		BSCO	9/7/2005	9/8/2005	9/19/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005	9/8/2005
VOLATILES	ug/kg	1										
Chloromethane	uq/kg		110	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Bromomethane	ug/kg		n H	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Vinyl chloride	ng/kg	1 200	7 J	1	18 U	02	1.400 U	14 U	180 U	180 DJ	4 J	2]
Chloroethane	ug/kg	1,900	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Methylene chioride	ug/kg	100	۲٦	<u>۲</u>	6	۲ ۲	1,400 U	۲۷	<mark>۲</mark>	1,400 U	5 1	2
Acetone	ng/kg	200	1 EI	4	ך ד	17	1,400 U	101	<u>۲</u> ۲	1,400 U	<u>۲</u> ۷	7 6
Carbon disulfide	ug/kg	3 2,700	11 U	11 U	4 J	2 J	1,400 U	14 U	12 U	1,400 U	5 J	12 U
1.1-Dichtoroethene	uq/kg	400	1110	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.1-Dichtoroethane	palau	200	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Chloraform	uo/ka	300	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.2-Dichloroethane	naka	100	1110	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
2-Butanone	No.	300	1110	11U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.1.1-Trichloroethane	ua/ka	800	11 U	110	-18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Carbon tetrachtoride	na/ka	009	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Bromodichtoromethane	uo/ka		11 U	1110	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1,2-Dichloropropane	na/ka		11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
cis-1.3-Dichleropropene	narka	E	<u>1110</u>	110	18 U	12 U	1.400 U	14 U	12 U	1,400 U	12 U	12 U
Trichloroethene	ua/ka	200	11 U	1110	14 J	2 J	1,400 U	14 U	12 U	1,400 U	20	12 U
Dihromochtoromethane	na/ka		11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.1.2-Trichloroethane	ua/ka		11 N	11 U	U 81	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Benzene	ua/ka	1 60 or MDL	110	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
trans-1.3-Dichloroorooene	uc/ko		N 11	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 0
Bromeform	uo/ko		11 0	110	<u>18</u>	120	1,400 U	14 U	12 U	1,400 U	12 U	12 U
4-Methyl-2-pentanone	ua/ka	1.000	11 U	1110	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
2-Hexanone	uo/ka		1110	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Tetrachloroethene	ua/ka	1.400	11 U	1110	ل 2	12 U	180 DJ	14 U	12 U	1,400 U	26	12 U
Toluene	ug/kg	1 1,500	N H	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.1.2.2-Tetrachioroethane	ua/ka	1 600	11 U	<u>11 U</u>	-18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Chlorobenzene	ng/kg	1,700	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Ethylbenzene	uo/ka	1 5,500	11 U	110	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Styrene	ug/kg	-	11 U	110	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Total xytenes	ng/kg	1,200	11 U	11 U	18 U	12 U	1,400 U	14 U	1210	1,400 U	12 U	12 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ng/kg	1,000	110	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
cis-1,2-Dichloroethene	ug/kg	-	U 11	11 U	44	3,200	3,200 D	14 U	2,000	2,000 D	82	37
trans-1,2-Dichloroethene	ug/kg	300	11 U	11 U	10 J	180	1,000 DJ	14 U	24	1.400 U	<u>с 8</u>	12 0
Dichlorodifluoromethane	ug/kg		11 U	1110	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Trichtorofluoromethane	ug/kg	6	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Methyl acetate	ng/kg		11 0	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Methyl tert butyl ether	ng/kg	120	1110	110	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Cvctohexane	ng/kg		11 U	11 U	18 U	12 U	1,400 U	14 U	12 0	1,400 U	12 U	12 U
Methylcyclohexane	ua/ko		11 U	11 10	-18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1,2-Dibromoethane	ug/kg	E	11 U	1110	N 81	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
Isopropylbenzene	ug/kg		111	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.3-Dichlorobenzene	no/ko	1,600,	1110	110	18 U	12 U	1,400 U	14 U	12 U	1.400 U	12 U	12 U
1,4-Dichlorobenzene	ng/kg	3 8,500	11 U	- <u>11</u> .1	· 18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1,2-Dichlorobenzene	ug/kg	3 7,900	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1.2-Dibromo-3-chioropropane	ng/kg	6	11 U	11 U	18 U	12 U	1,400 U	14 U	12 U	1,400 U	12 U	12 U
1,2,4-Trichtorobenzene	ug/kg	3,400	11 U	110	18	12 U	1,400 U	14 0	1210	1.400 U	12IU	1210

Camela ID	1 Inite	TACAA	CDD-12	GPD-14	CPD-14	GPD.14	GPD-16	GPD-16	GPD-17	GPD-18	GPD-18	GPD-18
		NDVI	CL-7-10		1447 24	10 12 12	2 - 7 - N	1 1 1 1 1 1 1		4.7	1.7.1	11.15
Ueptin - >		0404	4 - 1	0.6 - 7	1000000		200000	2000/0/0	200000	2000/0/0		ammone
Date Sampled ->		DUCH	CUOZVANS	CUUZAIR	cnn7/8/P	CUU2/29/2	CONZIEIS	conzicio	C007方防	007/2/2	0007/000	3/2/2/00
VOLATILES	ug/kg										.,	
Chloromethane	ug/kg		13 U	2,000 U	11 N	1,300 U	2	12 U	19 0	110	1,300 U	14 U
Bromomethane	ng/kg		13 U	2,000 U	11 1	1,300 U	12 U	12 U	19 U	D EE	1,300 U	14 U
Vinyl chloride	ug/kg	200	120	5,000	14	1,300 U	27	-	19 U	200	1,300 U	100
Chloroethane	ug/kg	1,900	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	110	1,300 U	14 U
Methylene chloride	ug/kg	ĝ	8.1	2,000 U	6 J	1,300 U	8	۲ J	11	5 J	1,300 U	14 U
Acetone	ng/kg	200	13 0	2,000U	7 J	1,300 U	17	8	7 6	4 J	1,300 U	14 U
Carbon disulfide	ng/kg	2,700	13 U	2,000 U	4 J	1,300 U	12 U	12 U	19 U	11 U	1,300 U	2 J
1.1-Dichloroethene	ua/ka	400	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
1.1-Dichioroethane	uq/ka	200	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	110	1,300 U	14 U
Chloroform	ua/ka	300	13 U	2.000 U	1 I N	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
1.2-Dichioroethane	uq/ka	9	13 U	2,000 U	110	1,300 U	12 U	1210	1910	110	1,300 U	14 U
2-Butanone	ua/ka	300	13 U	2.000 U	1110	1,300 U	4)	12 U	1910	1110	1,300 U	14 U
1.1.1-Trichloroethane	uaka	800	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	110	1,300 U	14 U
Carbon tetrachloride	ua/ka	609	13 U	2,000(U	11 U	1,300 U	12 U	12 U	19 0	110	1,300 U	14 U
Bromodichloromethane	ua/ka		13 U	2,000 U	1110	1,300 U	12 U	1210	19 U	1110	1,300 U	14 U
1.2-Dichloropropane	uq/ka		13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
cis-1.3-Dichloropronene	ua/ka		13 U	2.000 U	110	1,300 U	12 U	1210	19 U	11 U	1,300 U	14 0
Trichloroethene	na/ka	200	4 J	Sec. 5,800 No	84	480 DJ	12 U	12 U	19 U	11 U	1,300 U	120
Dibromochloromethane	uo/ka		1310	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
11.1.2-Trichtoroethane	ua/ka		13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Benzene	u@/kg	60 or MDL	13 U	2.000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Itrans-1.3-Dichloropropene	uo/ka		130	2,000 U	<u>11 U</u>	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Bromotorm	ng/kg		13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
4-Methyl-2-pentanone	uq/ka	1 000	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	110	1,300 U	14 U
2-Hexanone	ug/kg		13 U	2,000 U	110	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Tetrachloroethene	ug/kg	1,400	13 U	30.00 July 100	110	740 DJ	12 U	12 U	19 U	111 U	1,300[U	5 J
Toluene	uq/kg	1,500	13 U	2,000 U	<u>л</u> н	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
1,1,2,2-Tetrachloroethane	ng/kg	600	13 U	2,000 U	11 L	1,300 U	12 U	12 U	N 61	11 U	1,300 U	14 U
Chlorobenzene	ug/kg	1,700	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14)U
Ethylbenzene	by/6n	5,500	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Styrene	ug/kg		13 U	2,000 U	1110	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Total xylenes	ug/kg	1,200	13 U	2,000 U	11 C	1,300 U	12 U	12 U	19 U	11 0	1,300 U	14 U
1,1,2-Trichloro-1,2,2-trilluoroethane	ug/kg	1,000	13 U	2,000 U	110	1,300 U	12 U	12 U	19 U	11 [1	1,300 U	14 U
cis-1,2-Dichlaroethene	ug/kg		100	33,000	790	790 DJ	19	10 J	19 U	1,300	1,300 D	2,100
trans-1,2-Dichloroethene	ug/kg	300	2 J	12,000	21	1,300 U	12 U	2 J	19 U	15	1,300 U	56
Dichlorodifluoromethane	ug/kg		1 <u>3</u> U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	110	1,300 U	14 U
Trichlorofluoromethane	ug/kg		13 U	2.000 U	11 C	1,300 U	1210	12 U	19 U	11 0	1,300 U	14 U
Methyl acetate	ug/kg		13 U	2,000 U	11 0	1.300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Methyf tert butyl ether	ug/kg	120	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
Cyclohexane	ug/kg		13 U	2,000 U	11 U	1.300 U	12 U	12 U	19 0	11 U	1,300 U	14 U
Methytcyclohexane	uq/kg		13 U	2,000 U	11 U	1.300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
1,2-Dibromoethane	ug/kg		13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 0	0 11	1,300 U	14 U
Isopropylbenzene	ua/ka		13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 0	11 0	1,300 U	14 U
1.3-Dichlorobenzene	ug/kg	1,600,	13 U	2,000 U	11 U	1,300 U	1210	12 U	19 0	11 U	1,300 U	14 U
1,4-Dichlorobenzene	ng/kg	8,500	13 U	2,000 U ··	11 U	1,300 U	12 U	12 U	19 U	11 0	1,300 U	14 U
1,2-Dichlarobenzene	ug/kg	7,900	13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1.300 U	14 U
1,2-Dibromo-3-chloropropane	ug/kg		13 U	2,000 U	11 U	1,300 U	12 U	12 U	19 U	11 U	1,300 U	14 U
1,2,4-Trichlorobenzene	ug/kg	3,400	13 0	2.000 U	1110	1,300U	12 U	12 U	1910	11/0	1.300 U	14 U

Samote ID ->	Units	TAGM	GPD-18	GPD-19	GPD-19	GPD-20	GPD-20	GPD-20	GPD-21	GPD-21	GPD-21	GPD-24
Denth - >		4046	11 - 15 DL	3-4	7 - 11	2-4	15 - 17.7	17.7 - 19	3.3 - 4	15 - 18.2	19-21	2-4
Date Sampled ->		RSCO	9/9/2005	9/9/2005	9/9/2005	9/9/2005	9/9/2005	9/9/2005	9/9/2005	9/9/2005	9/9/2005	9/12/2005
VOLATILES	ua/ka											
Chloromethane	uo/ka		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Bromomethane	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Vinyl chloride	ug/kg	200	1,700 U	1,600 U	9,100	12 U	11 U	14 U	1,300 U	660 J	14 U	110
Chioroethane	ng/kg	1,900	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Methylene chloride	ug/kg	8	1,700 U	1,600 U	1,300 U	12 U	0 H	14 U	1,300 U	1,300 U	14 U	11 0
Acetone	ng/kg	200	1,700 U	1,600 U	1,300 U	46 U	11 U	17 U	1,300 U	1,300 U	14 U	45 U
Carbon disulfide	no/ka	2,700	1,700 U	1,600 U	1,300 UJ	12 U	Р 6	6 J	1,300 UJ	1,300 UJ	14 U	11 U
1.1-Dichloroethene	ua/ka	400	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
1.1-Dichtoroethane	ua/ka	200	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Chleroform	ua/ka	300	1.700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	110
1.2-Dichloroethane	uarka	90	1,700 U	1.600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 0	11 U
2-Butanone	uarka	300	1.700 U	1.60010	1,300 U	12	11 U	14 U	1,300 U	1,300 U	14 U	۲ <u>8</u>
1 1 1-Trichloroethane	ua/ka	800	1.700 U	1.600 U	1.300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Carbon tetrachloride	ua/ka	600	1.700 U	1.600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	110
Bromodichloromethane	ua/ka		1.700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
1.2-Dichloropropane	no/ka		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
cis-1.3-Dichlorooropene	ua/ka		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Trichloroethene	ua/ka	200	480 DJ	440 J	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Dihromochloromethane	10/ko		1 7001	1 600 U	1 300 U	12 U	11 U	14 U	1.300 U	1,300 U	14 U	11 U
1 1 2-Trichloroethane	ua/ka		1.700 U	1.600 U	1.300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Renzene	cia/ko	60 or MDL	1.700 U	1.600 U	1.300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
trans-1.3-Dichlorononene	uo/ko		1.700 U	1.600 U	1.300 U	12 U	110	14 U	1,300 U	1,300 U	14 U	11 U
Bromoform	ualka		1.700 U	1.600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
4-Methyl-2-pentanone	ua/ka	1.000	1.700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
2-Hexanone	ua/ka		1.700 U	1.600 U	1,300 U	12 U	11 U	14 U	1'300 U	1,300 U	14 U	11 U
Tetrachloroethene	ua/ka	1,400	1,700 U	4,500	1,300 U	11	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Toluene	ua/ka	1.500	1,700 U	1,600 U	1,300 U	1210	11 U	14 U	1,300 U	1,300 U	14 U	11 U
1.1.2.2-Tetrachloroethane	uo/ka	600	1,700 U	1,600 U	1,300 U	12 U	110	14 U	1,300 U	1,300 U	14 U	11 U
Chlorobenzene	ua/kg	1,700	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 0	11 U
Ethylbenzene	uq/ka	5,500	1,700 U	1,600 U	1.300 U	12 U	110	14 U	1,300 U	1,300 U	14 0	11 U
Styrene	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Total xylenes	ug/kg	1,200	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	580 J	1,300 U	14 U	11 U
1,1,2-Trichioro-1,2,2-trifluoroethane	ng/kg	1,000	1,700 U	1,600 U	1.300 U	12 0	11 U	14 U	1,300 U	1,300 U	14 U	11 U
cis-1,2-Dichloroethene	ug/kg		2,100D	850 J	11,000	12 U	2 J	14 U	1,300 U	5,000	14 U	11 U
trans-1,2-Dichloroethene	Da/kg	300	1,700 U	1,600 U	200 J	12 U	⊃ F	14 U	1,300 U	1,300 U	14 U	11 U
Dichlorodifluoromethane	ug/kg		1.700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Trichlorofluoromethane	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Methyl acetate	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	490 J	1,300 U	14 U	11 U
Methyl tert butyl ether	ug/kg	120	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
Cyclohexane	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	360 J	1,300 U	14 U	11 U
Methylcyclohexane	ug/kg		1,700 U	190 J	1,300 U	12 U	11 U	14 U	3,000	1,300 U	14 U	11 U
1,2-Dibromoethane	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 0	14 U	1,300 U	1,300 U	14 U	11 U
Isopropylbenzene	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	620 J	1,300 U	14 U	11 U
1,3-Dichlorobenzene	ug/kg	1,600	1,700 U	1,600[U	1,300 U	12 U	110	14 U	1,300 U	1,300 U	14 0	11 U
1,4-Dichlorobenzene	ug/kg	8,500	1,700 U	1,600 U	1 300 U	12 U	110	14 U	1,300 U	1,300 U	14 U	11 U
1.2-Dichlorobenzene	ug/kg	7,900	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
1.2-Dibromo-3-chloropropane	ug/kg		1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300 U	14 U	11 U
1,2,4-Trichlorobenzene	ug/kg	3,400	1,700 U	1,600 U	1,300 U	12 U	11 U	14 U	1,300 U	1,300JU	14jU	110

Sample ID ->	Units	TAGM	GPD-24	GPD-24	GPD-25	GPD-25	GPD-26	GPD-26	GPD-26	GP-D-26	GPU-26	GPU-27
Depth - >		4046	11 - 15	16 - 17	3 - 3,4	11 - 15	4 - 7	4 -7 DL	11 - 15	11 - 15 DL	17.5 - 19	0-4
Date Sampled ->		HSCO	9/12/2005	8/12/2009	SU12/2005	CONZ/ZL/R	SUUS/21/S	CONZIZINE	CUU2/21/8	CUUZ/21 /S		CM07/71/25
VOLATILES	ug/kg											
Chloromethane	ug/kg		11 U	12 U	12 U	110	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Bromomethane	ug/kg		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Vinyl chioride	ng/kg	200	110	12 U	12 U	11 U	3.200 N	2,200 DJ	1,400 U	1.400,000 U	1,700 U	51 U
Chloroethane	ug/kg	1,900	1110	12 U	1210	110	1,700	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Methylene chioride	ng/kg	<u>8</u>	11 U	12 U	12 U	110	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Acetone	ng/kg	200	12 U	12 U	13 U	110	1,500 U	15,000 U	1,400 U	1.400,000 U	1,700 U	51 U
Carbon disulfide	uq/ka	2,700	11 U	14	12 U	11 U	1,500 UJ	15,000 U	1,400 UJ	1,400,000 U	1,700 U	51 U
1.1-Dichtoroethene	uq/ka	400	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1.700 U	51 U
1.1-Dichloroethane	ua/ka	200	11 U	12 U	12 U	1110	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Chloroform	ua/ka	300	110	12 U	12 U	110	1,500 U	15,000 U	1,400 U	1,400,000 U	1.700 U	51 U
1.2-Dichloroethane	no/ka	100	1110	12 U	12 U	1110	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
2-Butanone	uo/ka	300	110	12 U	4 J	11 U	1.500 U	15,000 U	1.400 U	1,400,000 U	1,700 U	51 U
11.1.1-Trichtoroethane	no/ka	800	1110	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Carbon tetrachtoride	ua/ka	009	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000[U	1'200 U	51 U
Bromodichloromethane	ua/ka		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1/200	51 U
1.2-Dichioropropane	uq/ko		11 U	12 U	1210	111	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
cis-1.3-Dichloropropene	ua/ka		1110	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Trichloroethene	uq/ka	200	11 U	12 U	12 U	110	29,000	29,000 D	32,000 EJ	1,400,000 U	1,700 U	23 J
Dibromochtoromethane	uq/ka		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
1.1.2-Trichloroethane	uq/kg		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Benzene	na/ka	60 or MDL	1110	12 U	12 U	1110	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
trans-1.3-Dichtoropropene	ua/ka		11 U	12 U	12 U	<u>111</u>	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Bromotorm	na/ka		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
4-Methyl-2-pentanone	uq/ka	1,000	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
2-Hexanone	ua/ka		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Tetrachloroethene	ua/ka	1.400	11 U	12 U	12 U	11 U	210,000	210,000 D	2,500,000	2,500,000 D	500 J	39 J
Totuene	naka	1,500	1110	12 U	12 U	110	300 J	15,000 U	610 J	1,400,000 U	1,700 U	51 U
1.1.2.2-Tetrachloroethane	ua/ka	600	110	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Chlorobenzene	na/ka	1,700	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Ethylbenzene	uq/ka	5,500	1110	12 U	12 U	11 U	230 J	15,000 U	290 J	1,400,000 U	1,700 U	51 U
Styrene	ng/kg		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Total xylenes	ng/kg	1,200	11 U	12 U	12 U	1110	1,200 J	15,000 U	1,000 J	1,400,000 U	1,700 U	51 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ng/kg	1,000	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
cis-1,2-Dichloroethene	ug/kg		11 U	12 U	12 U	11 U	28,000	28,000 D	11,000	1,400,000 U	1,700 U	51 U
trans-1,2-Dichloroethene	ug/kg	300	11 U	12 U	12 U	11 U	400 J	15,000 U	1,400 U	1,400,000 U	1.700 U	51 U
Dichlorodifluoromethane	ug/kg	:	11 U	12 ⁻ U	12 U	n H	1,500 U	15,000 U	1,400 U	1,400.000 U	1,700 U	51 U
Trichtorofluoromethane	ug/kg		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	510
Methyl acetate	ng/kg		11 U	12 U	12 U	11 0	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Methyl tert butyl ether	by/bn	120	1110	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Cyclohexane	ng/kg		110	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Methylcyclohexane	ng/kg		11 U	12 U	12 U	11 U	440 J	15,000 U	F 099	1,400,000 U	1,700 U	51 U
1,2-Dibromoethane	ug/kg		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
Isopropyibenzene	ng/kg		110	12 U	12 U	11 U	1,500	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
1.3-Dichlorobenzene	ug/kg	1,600,	1110	12 U	12 U	110	1.500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
1,4-Dichlorobenzene	ng/kg	8,500	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1.400 U	1,400,000 U	1,700 U	51 U
1,2-Dichlorobenzene	ng/kg	7,900	11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
1,2-Dibromo-3-chloropropane	ug/kg		11 U	12 U	12 U	11 U	1,500 U	15,000 U	1,400 U	1,400,000 U	1,700 U	51 U
1,2,4-Trichlorobenzene	ug/kg	3,400	110	12 U	12 U	1110	1,500 U	15,000 U	1,400 U	1,400,0001U	1,700 U	51[U

Sample ID -> 10	Units	TAGM	GPD-27	GPD-28	GPD-28	GPD-29	GPD-29	GPD-30	GPD-30	GPD-32	GPD-33	GPD-34
Depth - >	L	4046	7-11	0.5-4	11-15	0.5 - 4	12 - 16	0.3 - 4	11 - 15	11-15	15 - 18	7 - 11
Date Sampled ->		RSCO	9/12/2005	9/13/2005	9/13/2005	9/13/2005	9/13/2005	9/13/2005	9/13/2005	9/14/2005	9/14/2005	9/14/2005
VOLATILES	ug/kg											
Chloromethane	6y/6n		110 U	16 U	22 U	84 0	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Bromomethane	ng/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Vinyl chloride	ug/kg	200	1,400	2 J	22 U	840	23 U	13 U	41	3,700	930 J 🗧	2,000 J
Chloroethane	ug/kg	1,900	110 U	16 U	22 U	8410	23 U	13 U	210	2,800 U	3,000 U	2,100 U
Methylene chloride	ug/kg	100	110 U	16 U	22 U	84 U	23 U	13 U	101	2,800 U	3,000 U	2,100 U
Acetone	03/kg	200	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Carbon disulfide	ug/kg	2,700	110 U	16 U	22 U	84 U	23 U	13 U	210	2,800 U	3,000 U	2,100 U
1,1-Dichloroethene	iq/kg	400	110 U	16 U	22 U	84 U	23 U	13 U	210	2,800 U	3,000 U	2,100 U
1,1-Dichloroethane	ug/kg	200	110 U	16 0	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2.100 U
Chtoroform	ng/kg	300	110 U	16 U	22 U	84 0	23 U	13.U	1 21 U	2,800 U	3,000 U	2,100 U
1.2-Dichloroethane	uo/ka	100	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
2-Butanone	uo/kg	300	11010	161	22 U	2	23U	13 U	210	2,800 U	3,000 U	2,100 U
1,1,1-Trichloroethane	ug/kg	800	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Carbon tetrachloride	uo/ka	600	110 U	16 U	2210	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Bromodichloromethane	ug/kg		110 U	16 0	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
1.2-Dichloropropane	uq/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
cis-1,3-Dichloropropene	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100U
Trichtoroethene	uq/kg	700	110 U	P 6	22 U	24 J	35	7 6	21 U	2,800 U	L 600, J	2,100 U
Dibromochloromethane	uq/ka		110 U	16 U	22 U	84 U	23 U	13 U	210	2,800 U	3,000 U	2,100 U
1,1,2-Trichtoroethane	ug/kg		110 U	16 U	22 U	84 ∪	23 U	13 U	21U	2,800 U	3,000 U	2,100 U
Benzene	ug/kg	60 or MDL	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2.100 U
trans-1,3-Dichloropropene	uq/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2.800 U	3,000 U	2,100 U
Bromoform	ug/kg		110 U	16 U	22 U	0 #8	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
4-Methyl-2-pentanone	ng/kg	1,000	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 ^{(U}
2-Hexanone	ug/kg		110 U	16 U	22 0	84 N	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Tetrachloroethene	ug/kg	1,400	110 U	58	22 U	280	4)	28	2.1	2,800 U	3,000 U	350 J
Toluene	ug/kg	1,500	38 J	16U	22 U	84 U	23 0	13 U	21 U	2,800 U	3,000 U	2,100 U
1,1,2,2-Tetrachloroethane	ug/kg	600	110 U	16 U	22 U	0 148	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Chlorobenzene	ug/kg	1,700	110 U	16 U	22 U	84 0	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Ethylbenzene	ug/kg	5,500	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Styrene	ug/kg		110 U	16 U	22 U	∩ 88	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Total xylenes	ug/kg	1,200	0011	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
1,1,2-Trichloro-1,2,2-trifluoroethane u	ug/kg	1,000	110 U	16 U	2210	84 U	23 U	13 0	21 U	2,800 U	3,000 U	2,100 U
cis-1,2-Dichloroethene	ug/kg		1,500	20	22 0	23 J	۲ <mark>8</mark>	24	15 J	24,000	17,000	1,000 J
trans-1,2-Dichloroethene u	ug/kg	300	95 J	4 J	22 U	84 U	<u>7</u> 8	۲	40	2,800.U	1,000,1	2,100 U
Dichlorodifiuoromethane u	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Trichlorofluoromethane	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Methyl acetate	ng/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Methyl tert butyl ether	ug/kg	120	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Cyclohexane	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	21U	2.800U	3,000 U	2,100 U
Methylcyclohexane	uo/kg		110 U	16 U	22 U	84 C	23 U	13 U	210	2,800 U	3,000 U	2,100 U
1,2-Dibromoethane	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
Isopropyibenzene	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	210	2,800 U	3,000 U	2,100 U
1,3-Dichlorobenzene	ng/kg	1,600,	110 U	16 U	22 U	84 U	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
1,4-Dichlorobenzene u	ug/kg	8,500	110 U	16 U	22 U	84 U	23 U	13 U	21U	2,800 U	3,000 U	2,100 U
1,2-Dichlorobenzene	ug/kg	7,900	110 U	16 U	<u>า</u> ส	⊂ 87	23 U	13 U	21 U	2,800 U	3,000 U	2,100 U
1,2-Dibromo-3-chloropropane	ug/kg		110 U	16 U	22 U	84 U	23 U	13 U	210	2,800 U	3,000 U	2,100 U
1.2.4-Trichlorobenzene	ug/kg	3,400	110 U	16 0	22 U	84 0	23 U	13 U	1 21U	2,800 U	3,000 U	2,100 U
	ĺ											

	1911	555	Gru-00	GPU-36	Gru-3/	GPD-37	GPD-38	GPD-38	GPD-38	GPD-38	GPD-41
	4046	15-17	4-7	11-15	7 - 11	15-18.3	4 - 7	4 - 7DL	15 -17	17 -19	7 - 11
	HSCO	9/14/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/15/2005	9/16/2005
1/6n	6		_		_						-
ng/k	0	2,200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
3/6n	0	2.200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
y/6n	g 200	2,700	11 U	1200 J	2800	1.600 U	œ	27 J	170 J	1700 U	4400
yôn	1,900	2,200 U	11 U	1400 U	1400 U	1.600 U	13 U	67 U	1600 U	1700 U	2200 U
te ug/k	g 100	2,200 U	⊐ ₽	1400 U	1400 U	1,600 U	<u>۲</u>	44 BJ	1600 U	1700 U	2200 U
1/6n	g 200	2,200 U	11 U	1400 U	1400 U	1,600 U	20	53 J	1600 U	1700 U	2200 U
y/ön	g 2,700	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ne Vg/k	400 400	2,200 U	1110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
19 UG/K	g 200	2,200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
A/on	a 300	2,200 U	11 U	1400 U	1400 U	1,600 U	13 0	67 U	1600 U	1700 U	2200 U
16 UQ/K	100	2.200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
na/k	300	2.200 U	11 U	1400 U	1400 U	1,600 U	5 1	67 U	1600 U	1700 U	2200 U
nane luo/k	800	2,200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ride Lock	600	2.200 U	<u>11 U</u>	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
sthane ug/k	2	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ane uo/k	9	2,200 U	1110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700/1	2200 U
rooene ua/k	29	2,200 U	U H	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
na/k	700	2,200 U	11 U	1400 U	1400 U	C 016	13 U	67 U	230 J	1700 U	2200 U
ethane uo/k		2,20010	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
hane uo/k	g	2,200 U	1110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
קקא	a 60 or MDL	2,200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1/00/1	2200 U
opropene uq/k	20	2,200 U	1110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
()on		2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
none uq/k	1,000	2,200 U	11 U	1400U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
y/on	9	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
le la	1,400	310 J	1110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	22000	2200 U
1/6n	g 1,500	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
vroethane ug/k	009	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
y/bn	1,700	2,200 U	11 U	1400U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
¥0n	G 5,500	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
y/6n	ŋ	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1200 U	2200 U
¥/őn	g 1,200	2,200 U	11 U	1400 0	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
2,2-trifluoroethane ug/k	1,000	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
thene ug/k	6	1,900 J	11 U	7100	7800	7,400	æ	330	7200	1700 U	13000
oethene ug/k	300	430 J	11 U	540 J	260 J	1,600 U	13 UJ	67 U	280 J	1700 U	2200 U
hethane ug/k	5	2,200 U	11 U	1400 U	1400 U	1,600 U	13 0	L 01	1600 U	1700 U	2200 U
athane ug/k	g	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
4/6n	g	2,200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ether	120	2,200 U	110	1400 U	1400 U	1 600 U	13 U	67 U	1600 U	1700 U	2200 U
4/6n	0	2,200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ne uq/k	g	2,200 U	11 U	1400 U	1400 U	1,600 U	13 0	0/29	1600 U	1700 U	2200 U
ne ug/	5	2,200 U	n 11	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
e ng/k	5	2,200 U	1110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1200 U	2200 U
tene ug/k	1,600,	2,200 U	11 0	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ene ug/r	g 8,500_	2,200 U	11U-1	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
ene ug/k	006'2 60	2.200 U	11 U	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
Iloropropane ug/k	6	2,200 U	110	1400 U	1400 U	1,600 U	13 U	67 U	1600 U	1700 U	2200 U
inzene ug/k	g 3,400	2.200 U	1110	1400 U	1400 U	1,600 U	13 0	67 U	1600 U	1700/U	220010
incroproparie ug/k	g 3,400	2,200 U			1 <u>U 1400U</u>	1 <u>U</u> 1400U 1400U	1 <u>U</u> 1400U 1400U 1.600U	1 <u>U</u> 1400U 1400U 1400U 1.000U 13U	10 1400U 1400U 1400U 13U 67U	10 1400U 1400U 1.600U 13U 67U 1600U	

Sample ID ->	Units	TAGM	GPD-42	GPD-43	GPD-44	GPD-44	GPD-45	GPD-45	GPD-45	GPD-47	GPD-47	GPD-47
Depth - >		4046	11 - 15	11 - 15	4-7	15 -17.9	2-4	15-18.3	19-22	4-7	4 - 7 DL	11 - 15
Date Sampled ->		BSCO	9/16/2005	9/16/2005	9/16/2005	9/16/2005	9/19/2005	9/19/2005	9/19/2005	9/19/2005	g/19/2005	9/19/2005
VOLATILES	ug/kg											
Chloromethane	ng/kg		2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	60 U	1100 U
Bromomethane	no/kg		2000 U	1400 U	1,500 U	1600 U	11 10	13 U	14 U	15 U	60 U	1100 U
Vinyl chloride	no/kg	200	2200	1700	1,800	1600 U	33	16	14 U	170	97 D	1300
Chtoroethane	ng/kg	1,900	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	60 U	1100 U
Aethylene chloride	ug/kg	100	2000 U	1400 U	1,500 U	1600 U	110	7 8.1	14 U	15 0	35 DJ	1100 U
Acetone	na/ka	200	2000 U	1400 U	1,500 U	1600 U	110	4 1	140	28 U	59 D.J	1100 U
Carbon disulfide	ua/ka	2.700	2000 U	1400 U	1,500 U	1600 U	1110	13 U	81	15 U	60 U	1100 U
I 1-Dichloroetheae	uo'ka	400	2000 U	1400 U	1.500IU	1600 U	1110	13 U	14 U	15 U	60 U	1100 U
1 -Dichlomethane	uo/ka	200	2000 U	1400 U	1.500 U	1600 U	11 U	13 U	14 U	15 0	60 U	1100 U
Chloroform	uo/ka	300	2000 U	1400 U	1.500 U	1600 U	110	13 U	14 U	15 U	60 U	1100 U
2. Pichioroathana	un/ka	100	200010	1400 U	1.500 U	1600 U	0 H	13 U	14 U	15 U	009	1100 U
		300	2000 U	1400 U	1.500 U	1600 U	1110	1310	14 U	15 U	60 U	1100 U
1 1 - Trichloroethane	cio/ko	800	2000 U	1400 U	1.500 U	1600 U	11 U	13 U	14 U	15 U	60 U	1100 U
arthon tetrachloride	ua/ka	600	2000 U	1400 U	1.500 U	1600 U	11 U	13 U	14 U	15 U	60 U	1100 U
dromodichloromethane		222	2000 U	1400 U	1.500 U	1600 U	11 U	13 U	14 U	15 U	09 N	1100 U
1 2. Dichlammane	na/kn		2000 [1]	1400 U	1.500 U	1600 U		13 U	14 U	1510	60 U	1100 U
ie-1 3-Dicklorooroooa	D AN		2000	140011	1 500 11	16001	1111	13 U	14 U	1510	6010	1100 U
richloroethene	Rugo	200	200011	140011	1 500 11	16001		1310	14 U	15 U	60 U	1100 U
Dihamochicomethane	1 Puller		2000	140011	150011	160011	11111	13(1)	14 []	15 U	60 U	1100:U
1 1 2. Trichtoroethane			20001	140013	1.500 U	16001	1110	13 U	14 U	15 U	60 U	1100 U
	Colori	60 or MDI	5000	140011	1 50011	180011		1311	14 []	1511	60 U	110010
ociteite	201				1 500 1	180011	1	1151	11171	15 1	E011	110011
	Part Part		20001		1 500 11		1111	121	11171	15 1	En la	110011
Sromoloration	By An	000 -						101		24	39	110011
+-Memyi-z-pentanone	by/fin	1,000			00001	0 0001					2 102	
2-Hexanone	novkg			400.0			<u> </u>	22			33	
retrachloroethene	ng/kg	1,400	2000 U	1400 U	1,500 U	1600 U		130	14 0			
Toluene	ug/kg	1,500	2000 U	1400 U	1,500 U	1600 U	5	13 0	14 U		660 C	
I, 1, 2, 2-Tetrachloroethane	ug/kg	600	2000 U	1400 U	1,500 U	1600 U	<u>11</u>	13.0	14 U	15 U	0	D 0011
Chlorobenzene	ng/kg	1,700	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15.0	D Gg	1100 U
Ethylbenzene	ug/kg	5,500	2000 U	1400 U	1,500 U	1600 U	11 U	13U	14 U	15 U	60 U	1100 U
Styrene	ug/kg		2000	1400 U	1,500 U	1600 U	11 C	1310	14 U	15 U	000	1100 C
rotal xylenes	ug/kg	1,200	2000 U	1400 U	1,500 U	1600 U	110	13 U	14 U	15 U	ח 80	1100 C
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	00 00	1100 U
cis-1,2-Dichloroethene	uq/kg		0096	6800	9,800	3700	27	12 J	14 U	430	430 D	5400
rans-1,2-Dichloroethene	ug/kg	300	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	5.1	10 DJ	1100 U
Dichlorodifluoromethane	ug/kg		2000 U	1400 U	1,500 U	1600[U	11 U	13 U	14 U	15 U	∩ 89	1100 U
Trichtorofluoromethane	uq/kg		2000 U	1400 U	1,500 U	1600 U	11 U	13 0	14 U	15 U	09	11001
Methyl acetate	uq/ka		2000 U	1400 U	1,500 U	1600 U	11 C	13 U	14 0	15 U	60 U	1100 U
Methyl tert butyl ether	uc/kg	120	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	60 0	1100 U
Ovciohexane	ua/ka		2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	60 U	1100 U
Vethylcyctohexane	ua/kg		2000 U	1400 U	1,500 U	1600 U	U 11	13 U	14 U	15 U	60 U	1100 U
1.2-Dibromoethane	ug/ka		2000 U	1400 U	1,500 U	1600 U	110	13 U	14 U	15 0	60 0	110010
soroovlbenzene	ua/ka		2000 U	1400 U	1,500 U	1600 U	1110	13 U	14 U	15 0	60 U	1100 U
1.3-Dichlorobenzene	no/kg	1,600,	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	60 0	1100 U
.4-Dichlorobenzene	ua/ka	8,500	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	eo u	1100 U
(,2-Dichlorobenzene	ug/kg	7,900	2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	09 09	1100 U
1,2-Dibromo-3-chloropropane	ug/kg		2000 U	1400 U	1,500 U	1600 U	11 U	13 U	14 U	15 U	60 U	1100 Г
1.2.4-Trichtorobenzene	ua/ka	3.400	2000 U	1400 U	1.500 U	1600 U	110	13 U	1410	1510	000	110010

RSCO = Recommended Soil Cleanup Objectives 1,000 - Indicates detected value for organics.

Campto ID	1 Inite	TAGM	GPD-47	GPD-48	GPD-48	GPD-49	GPD-49	GPD-49	GPD-49	GPD-49	GPD-49	Γ
	5	MIDU		P	1111	24	14 - 45	15.17	46.47 DI	7 - 11	17.10	Τ
Deptn - >		4040	18-19	11-1	571 - CI	21 - 11	010/0/05	0/12/01	0/10/2005	artarons		1
Uale Sampled ->	04/011	0000	2012/2012	2000	21 216,000	SI ISIEND	2007/2		~ ~			Ţ
VULAILLES	Ru An		1101		1111	1101	140011	13 []	160011	1911	141	Τ_
Uniumentaria Armomethana	Ru An		191	181	1111	12 U	1400 U	13 U	1600 U	19 U	14 [_
View chlorida	in ko	200	1.6	63	21	5	1400 U	13 U	1600 U	19 U	141	Б
Viriyi Girona Chioroethane	Ru An	1 900	13.0	1810	110	12 U	1400 U	13 U	1600U	19 0	141	5
Mathulana chlorida	130.KG	100	1310	12.J	5	<u>7</u> 8	1400 U	13 U	1600 U	13.J	7.	5
Acetone	ua/ka	200	13 U	٢ ٥	7.0	12 U	1400 U	6 J	1600 U	Р6	16	Π
Carbon disulfide	uc/ko	2.700	13 U	18 U	6.1	12 U	1400 U	61	1600 U	19 U	4.	
1 1-Dichlornethene	uo/ko	400	13 U	18IU	11 U	14	1400 U	2 J	1600 U	19 U	141	_
1 1-Dichloroethane	uo/ka	200	13 U	18 U	1110	12 U	1400 U	13 U	1600 U	19 U	141	5
Chloroform	uo/ka	300	13 U	18 U	0 H	12 U	1400 U	13 U	1600 U	19 U	141	_
1.2-Dichtoroethane	ua/ka	8	13 U	18 U	1110	12 U	1400 U	13 U	1600 U	19 U	14 (_
2-Butanone	ua/ka	800	1310	18 U	111	12 U	1400 U	13 U	1600 U	19 U	14 (-
1.1.1.Trichloroethane	uo/ka	800	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	14 1	_
Carbon tetrachloride	ua/ka	89	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 N	141	5
Bromodichloromethane	ua/ka		13 U	1810	110	1210	1400 U	13 U	1600 U	19.0	14 [5
1.2-Dichloroorobane	ua/ka		13 U	1810	1110	12 U	1400 U	13 U	1600 U	19 U	141	5
cis-1.3-Dichioronooene	uo/ka		13 U	181	1110	12 U	1400 U	13 U	1600 U	19 0	14 1	5
Trichlorethene	uo/ko	700	32	18 U	11 U	1500	1500 D	810.3	810 DU	19 U	141	5
Dibromochloromethane	uo/ka		2 J	1810	11 U	12 U	1400 U	13 U	1600 U	19 0	141	
1.1.2-Trichloroethane	ua/ko		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 0	14 (5
Benzene	ua/ka	60 or MDL	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 0	14 1	-
trans-1.3-Dichloropropene	ua/ka		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	14 (_
Bromoform	ug/kg		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	_
4-Methvi-2-pentanone	uq/ka	1,000	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	_
2-Hexanone	ug/kg		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	_
Tetrachioroethene	ug/kg	1,400	2 J	18 U	11 U	1800	1800 D	5100	5100 D	19 U	141	_
Toluene	ug/kg	1,500	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	_
1,1,2,2-Tetrachloroethane	ug/kg	600	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	5
Chlorobenzene	ug/kg	1,700	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	5
Ethyibenzene	ug/kg	5,500	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	5
Styrene	ug/kg		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	_
Total xylenes	ug/kg	1,200	13 U	18 U	11 N	12 U	1400 U	13 U	1600 U	19 U	141	<u>_</u>
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	1,000	13 U	1810	11 U	12 U	1400 U	13 U	1600 U	19 U	14	5
cis-1,2-Dichloroethene	ug/kg		140	190	6 9	58	1400 U	12.1	1600 U	21	141	5
trans-1.2-Dichtoroethene	uq/kg	සි	30	11 J	<u> </u>	100	1400 U	130	1600 U	חאו	141	5
Dichlorodifluoromethane	ug/kg		13 U	18 U	11	12 U	1400 U	13.0	1600 U	19 0	14	5
Trichlorolluoromethane	ug/kg		13 U	18 U	11 C	12IU	1400 U	130	1600 U	1910	141	
Methyl acetate	ug/kg		13 U	1810	11 N	12 U	1400 U	13 U	1600 U	19 0	141	5
Methyl tert butyl ether	ug/kg	120	13 U	18 U	11 0	12 U	1400 U	13 U	1600 U	1910	141	5
Cyclohexane	ng/kg		13 U	18 U	110	12 U	1400 U	13 U	1600 U	19 U	141	_
Methylcyclohexane	ng/kg		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	141	5
1.2-Dibromoethane	ng/kg		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	14	_
Isopropylbenzene	by/6n		13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 ⁻ U	14	∍
1,3-Dichlorobenzene	ug/kg	1,600,	13 U	18 U	11 U	12 U	1400 U	13 U	1600 U	19 U	14	J
1.4-Dichlorobenzene	ug/kg	8,500	13 U	18 U.	11 C	12 U	1400 U	13 U	1600 U	19 U	14	5
1,2-Dichlorobenzene	ng/kg	7,900	13 U	18 U	110	12 U	1400 U	13 U	1600 U	16L	14	5
1,2-Dibromo-3-chloropropane	ug/kg		13 U	18 U	Ð	12 U	1400 U	130	1600 U	19 U	141	5
1.2.4-Trichtorobenzene	ug/kg	3,400	13 U	1810	1110	12 U	1400 U	13 U	160010	1910	141	3

	1 - 1 - 1 - 1	+1011	000 50	00 000	02 000 1	000-000	000 E1	000.61	GDD.E9	GPD.55	GPD.55	GPD.55	GPD-57	GPD-67	GPD-58
Sample IU ->		MON	1-10	11.25	14 15	15.10	15-18.0	19.23	15-17.5	4 - 7	15-18	15-18I DL	D.5-4	11-14.5	15-18.5
Cato Samulad			9/19/2005	9/19/2005	9/19/2005	9/19/2005	9/20/2005	9/20/2005	9/20/2005	9/21/2005	9/21/2005	9/21/2005	9/21/2005	9/21/2005	9/22/2005
VOLATILES	ua/ka					_									
Chioromethane	ua/ka		12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 0	2,400 U	12 U	11 U
Bromomethane	ua/ka		12 U	12 U	12 U	110	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	11 C
Vinyl chloride	ug/kg	200	36	12 U	7	11 U	3,200,000 U	4 J	1,600 UJ	12 U	32	58 U	2,400 U	12 U	11 0
Chloroethane	ug/kg	1,900	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12.U	11 U
Methylene chloride	ug/kg	100	6 J	ר 9	<u>г</u> 8	Г 8	3,200,000 U	12 U	1,600 UJ	12 U		5810	2,400 U	12 0	0 L1
Acelone	ug/kg	200	9	7	11 1	5 J	3,200,000 U	1210	1,600 UJ	12 U	0 11 	280	2,400.U	<u>171</u>	
Carbon disulfide	ug/kg	2,700	12 U	2 1	5.1	2 9	3,200,000 U	12 U	1,600 UJ	12 U	011	280	2,400 U	2.1	
11.1-Dichloroelhene	ug/kg	400	12 U	12 U	12 U	11 U	3,200,000 U	51	1,600 UJ	12 U	11 U	58 U	2,400 U	12.0	0
1.1-Dichloroethane	ug/kg	200	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UU	12 U	11 U	58 U	2,400 U	12 U	110
Chloroform	uq/kg	300	12 U	12 U	12 U	110	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	1210	011
1.2-Dichtoroethane	nc/kg	160	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UU	12 U	11 U	58 U	2,400 U	12 U	11 C
2-Bitanone	uc/ka	300	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	1210	11 U
1.1.Trichlomethane	ua/ka	800	12 U	12 U	12 U	11 17	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	11 U
Carbon tetrachloride	ua/ka	600	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	11 U
Bromodichloromethane	ua/ka		12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UU	12 U	11 [U	58 U	2,400 U	12 U	11 U
1 2-Dichlorononane	ua/ka		12 U	12 U	1210	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	11 U
icite-1 3-Dichlorontonene	ua/ka		12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	11 U
Trichlomethane	ua/ka	200	12 U	7 8	4 J	75	000,000 J %	6 J	4,800 J	12 U	32	53 DJ	2,400 U	2 J	11 U
Dihomochloromethane	1 storko		12 U	12 U	12 U	11 N	3,200,000 U	12IU	1,600 UJ	12 U	25	58 U	2,400 U	12 U	110
1 1 2-Trichloroethane	uc/ko		12 U	12 U	12 U	110	3,200,000 U	12 U	1,600 UU	12 U	11 U	58 U	2,400 U	12 U	11 U
Renzene	ua/ka	60 or MDL	12 U	12 U	12 U	1110	3,200,000 U	12 U	1,600 UJ	12 U	11 0	58 U	2,400 U	12 U	11 U
trans-1.3-Dichloropropene	uc/ka		12 U	12 U	12 U	110	3,200,000 U	12 U	1,600 UJ	12 U	110	58 U	2,400 U	12 U	11 U
Bromotorm	no/ka		1210	12 U	12 U	<u>∩</u> !‡	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	1 F
4-Methyl-2-pentanone	uo/ka	1,000	12 U	12 U	12 U	110	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	11 U
2-Hexanone	ua/ka		12JU	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UU	12 U	11 U	58 U	2,400 U	12 U	11 U
Tetrachloroethene	ug/kg	1,400	12 U	2 J	12 U	54	42,000,000	180	29,000 J	7 6	25	90	14,000	2 1	110
Toluene	ng/kg	1,500	12 U	12 U	12 U	ן וו 11 ונ	3,200,000 U	12 C	1,600 LU	12 U	11 U	58 U	2.400 U	1210	110
1,1,2,2-Tetrachioroelhane	ug/kg	600	12 U	1210	12 U	110	3,200,000 U	12 U	1,600 LU	12 U	11 U	58 U	2,400 U	12 U	1110
Chlorobenzene	ug/kg	1,700	12 U	12 U	12 U	11 C	3,200,000 U	12:U	1,600 UJ	12 U	11 U	58 U	2,400 U	12 U	110
Ethylbenzene	ug/kg	5,500	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UU	12 U		58 U	2,400 U	121	n 11
Styrene	ug/kg		12 U	12 U	12 U	11 0	3,200,000 U	12 U	1,600 UV	12 U	1110	58 U	2,400 U	120	
Total xylenes	ug/kg	1,200	12 U	1210	12 U	1	3,200,000 U	12 U	1,600 00	021		080	2,400 0	0 71	
1,1,2-Trichioro-1,2,2-trifluoroethane	ug/kg	1,000	12 U	12 U	12 U	11 U	3,200,0001U	12 U	1,600 UJ			220	2,400 U	12.0	
cis-1,2-Dichloroethene	ug/kg		6	21	20		3,200,000 U	L c	13,000 J	200	202		2,400 0	2 -	
trans-1.2-Dichtoroethene	ug/kg	30	10 /	47	30		3,200,000 U	021	1,500 UU		170	20 27	2,400 0	2	
Dichlorodilluoromethane	ug/kg		12:U	12 U	12 U	110	3.200,000 U	1210	1,600 UU	021		20107	2,400 0	22.2	
Trichlorofluoromethane	ug/kg		12 U	12 U	12 U	11 U	3.200,000 U	1210	1,600 UJ	12 U			2,400 U	120	
Methyl acetate	ug/kg		12 U	12 U	12 U	11 0	3,200,000 U	12 0	430 7	0.21	5	0 26	2,400 U		
Methyl tert butyl ether	ug/kg	120	12 U	12 U	12 U	11	3,200,000 U	12 0	1,600 UJ	0 21			2,40010		
Cyclohexane	ug/kg		12 U	12 U	12 0	11 0	3,200,000 U		1,500 00	<u>ח 21</u>		200	2,400 0	121	
Methylcyclohexane	ug/kg		12 U	12 U	12 U	11 C	3,200,000 U	12 U	1,600 UJ	21	0:11	58 U	2,400 U	121	217
1,2-Dibromoethane	ug/kg		12 U	12 U	12 U	11 C	3,200,000 U	12 U	1,600 UJ	12 U	11 0	58 0	2,400 U	12 U	n 11
Isopropylbenzene	ug/kg		12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UU	12 U	Ē	58 U	2,400 U	12 0	11 0
1,3-Dichlorobenzene	ug/kg	1,600	12 U	12 U	12 U	110	3,200,000 U	12 U	1,600 UJ	12 U	11 U	58 U	2,400 U	12.0	5 1
1,4-Dichlorobenzene	ng/kg	8,500	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11 U	5810	2,400 U	12 U	0
1,2-Dichlorobenzene	ug/kg	7,900	12 U	12 U	12 U	11 U	3,200,000 U	12 U	1,600 UJ	12 U	11.0	58IU	2,400 U	12.0	0
1,2-Dibromo-3-chiaropropane	ug/kg		12 U	12 U	12 U	11 U	3,200,000 U	1210	1,600 UU	12 0	<u>א</u> ור 11	0 83	2,40010	721	
1,2,4-Trichlorobenzene	ug/kg	3.400 1	12 U	1210	12 U	11 U	3,200,0001U	1210	1,600 UU	1210			2,40010	1210	

ł

ISamote ID ->	Units	TAGM	GPD-59	GPD-59	GPD-59	GPD-59	GPD-59	GPD-59	GPD-60	GPD-61	GPD-62	GPD-62	GPD-62	GPD-63	GPD-63
Depth - >		4046	7 - 11	2-11 DL	11-14.3	11-14.3 DL	14.3-15	14.3-15 DL	4 - 7	15-17.8	11-15	15-16.5	16.5-19	1-4	15-16.6
Date Sampled ->		RSCO	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/22/2005	9/23/2005	9/23/2005
VOLATILES	ug/kg				_		-	_							
Chloromethane	ug/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Bromomelhane	ug/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Vinyl chloride	ug/kg	200	12 U	52 U	2 3	1,400 U	920J	1,400 U	46	250	10.1	12 U	35	14 U	12 U
Chloroethane	ug/kg	1,900	12 U	52 U	12 U	1.400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Methylene chloride	ug/kg	100	12 U	30 BDJ	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Acelone	ug/kg	200	12 U	52 U	5 J	1,400 U	4 ر ا	1,400 U	11 U	13 U	6.J	12 U	15 U	14 U	12 U
Carbon disulfide	ug/kg	2,700	١L	52 U	5.1	1,400 U	12 U	1,400 U	Ĵ	27	6 J	5 1	۲ 6	2.1	12-U
1,1-Dichloroethene	ug/kg	400	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
1,1-Dichloroethane	ug/kg	200	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Chloroform	ug/kg	300	12 U	52 U	12 U	1.400[U	12 U	1,400 U	110	13 U	14 U	12 U	1510	14 U	12 U
1,2-Dichloroelhane	ug/kg	100	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
2-Butanone	ng/kg	300	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
1,1,1,1-Trichloroethane	ng/kg	800	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Carbon tetrachloride	ng/kg	600	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Bromodichloromethane	ug/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
1,2-Dichloropropane	ng/kg		12 U	52 U	12 U	1,400 U	12 U	1.400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
cis-1.3-Dichloropropene	ng/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13U	14 U	12 U	15 U	14 U	12 U
Trichloroethene	ng/kg	002	240 J	45 DJ	r 098	880 DJ	2 3	5,300 D	6 J	51	14 U	12 U	15 U	14 U	12 U
Dibromochloromethane	ug/kg		12 U	52 U	130	1,400 U	2 J	1,400 U	11 U	13 U	14 U	12IU	15 U	14 U	12 U
1,1,2-Trichtoroethane	ug/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Benzene	ug/kg	60 or MDL	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
trans-1,3-Dichtoropropene	ng/kg		12 0	52 U	12]U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Bromoform	ug/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 じ	11 U	13 U	14 U	12 U	15 U	14 U	12 U
4-Methyl-2-pentanone	ng/kg	1,000	12 U	52 U	12 U	1,400 U	15 G	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
2-Hexanone	ng/kg		12 U	52 U	12 U	1.400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Tetrachloroelhene	ng/kg	1,400	6 J	52 U	120	780 DJ	2 J	2,400 D	11 U	13U	14 U	12 U	15 U	14 U	20
Toluene	lug/kg	1,500	12 U	52 U	12 U	1,400 U	12 0	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
1,1,2,2-Tetrachloroethane	- By/6n	600	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 10	12 U	15 U	14 U	12 U
Chlorobenzene	п9/Хд	1,700	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Ethylbenzene	ng/kg	5,500	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	1210
Styrene	ug/kg		12 C	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Total xylenes	ug/kg	1,200	12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	140	12 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ng/kg	1,000	12 U	52 U	12 U	1,400 U	12 U	1,400 U	011	13 0	14 U		150	14 U	1210
cis-1,2-Dichloroethene	ng/kg		210	150 D	130	420 DV	r 00/L		007		41		0	- -	
Irans-1,2-Dichloroethene	ng/kg	BUB	99	N 92	49	1,400 0	7 10		707	00	4	2 2 2			21 21
Uctionodiluoromethane	Ug/Kg		2	22	11 01	1 400 1	12	1 40011		100		1911	1510	1	101
Mathul scatate			10 11	2010	10 61	1 400 13	12 12	1.40011	1111	13 U	14 U	12 U	15.0	14 U	12 U
Mathy test high ather	uo/ka	120	1210	52 U	1210	1.400 U	12 U	1.400 U	110	13 U	14 U	12 U	15 U	14 U	12.U
Cvclohexane	ua/ka		12 0	52 U	12.0	1,400 U	12 U	1,400 U	110	13 U	14 U	12 U	15 U	14 U	12 U
Methyscyclohexane	uq/ka		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
1,2-Dibromoethane	ug/kg		12 U	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
Isopropylbenzene	ug/kg		12 0	52 U	12 U	1,400 U	12 U	1,400 U	11 U	13JU	14 U	12 U	15 U	14 U	12 U
1,3-Dichlorobenzene	ug/kg	1,600	12 U	52 U	12 10	1.400 U	12 U	1,400 U	11 U	13 U	14 U	12 U	15 U	14 U	12 U
1,4-Dichlorobenzene	ug/kg	8,500	12 U	52 U	12 U	1.400 U	12 U	1,400 U	1110	13 U	14 U	12 U	15 U	14 U	120
1,2-Dichlorobenzene	ug/kg	7,900	1210	52 U	12 U	1,400 U	12 U	1,400 U	11 0	130	14 U	121	15 U	14 0	120
1,2-Dibromo-3-chioropropane	ug/kg		12 U	52 U	1210	1,400 U	12 0	1,400 U		1310	140	ביי בי			
11,2,4-Trichlorobenzene	ug/kg	3,400 %	12 U	1 52 U	12IU	1.40010	12/0	1,400,0	2112	13[0	1410	1210	151	1410	ו טוצו

RSCD = Recommended Sol Clearup Objectives RSCD = Recommended Sol Clearup Objectives 1,000 - Instans detected whus for organis.

ł
Pioneer Midier Avenue LLC Remedial Investigation Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - GPD Series

Sample ID ->	Units	TAGM	GPD-64	GPD-64	GPU-65	GPD-65	GPD-66	GPU-66	GPD-67	GPD-67
Depth - >	·	4046	11-15	11 - 15 DL	11 - 15	17.2-19	11-15	11-15 DL	11 - 15	11 - 15 DL
Date Sampled ->		RSCO	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005	9/23/2005
VOLATILES	uq/kg								_	
Chtoromethane	ug/kg		12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
Bromomethane	ug/kg		12 U	1,500 U	11 U	14 U	11 U	1.300 U	11 U	1,300 U
Vinyl chloride	ug/kg	200	550 J	1,500 U	2 J	14 U	11 U	1,300 U	11 U	1,300 U
Chioroethane	ug/kg	1,900	12 U	1,500 U	11 U	14 U	11 U	1,300 U	110	1,300 U
Methylene chloride	ug/kg	100	12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
Acetone	ug/kg	200	12 U	1,500 U	16 U	14 U	11 U	1,300 U	11 U	1,300 U
Carbon disulfide	ug/kg	2,700	12 U	1,500 U	210	14 U	11 U	1,300 U	11 10	1,300 U
1.1-Dichloroethene	uq/kg	400	12 U	1,500 U	11 U	14 U	11 U	1,300 U	68	1,300 U
1.1.Dichloroethane	ua/ko	200	12IU	1,500 U	1110	14 U	11 U	1,300 U	11 U	1,300 U
Chloroform	uo/ka	300	12 U	1.500 U	11 U	14 U	11 U	1,300 U	1110	1,300 U
1 2-Dichloroathane	ua/ka	100	12 0	1.500 U	11 U	14 U	11 U	1,300 U	1110	1,300 U
2+Butanone	uo/ka	300	12 U	1.500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
1 1 1-Trichlomethane	io/ka	800	1210	1.500 U	11 U	14 U	11 U	1.300 U	11 U	1,300 U
Carbon tetrachioride	ua/ko	600	12 U	1.500 U	11 U	14 U	11 U	1,300 U	1110	1,300 U
Bromodichloromethane	ua/ka		12 U	1.500 U	11 U	14 U	5 H G	1,300 U	110	1,300 U
1.2-Dichloropropane	ua/ka		12 U	1.500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
cis-1.3-Dichloropropene	ua/ka		12 U	1,500 U	1110	14 U	11 U	1,300 U	11 U	1,300 U
Trichloroethene	ug/kg	700	2 J	1,500 U	11 U	14 U	2600 J	1,300 U	5,800	5,800 D
Dibromochloromethane	ua/ka		12 U	1,500 U	1110	14 U	11 U	1,300 U	110	1,300 U
11.1.2-Trichloroethane	uq/ka		12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
Benzene	ua/ka	60 or MDL	12 U	1,500 U	11 U	14 U	11 U	1,300 U	54	1,300 U
Irans-1.3-Dichloropropene	uq/kg		12 U	1,500 U	11 U	14 U	11 U	1,300 U	1110	1,300 U
Bromoform	Ug/kg		12 U	1,500 U	11 0	14 U	11 U	1,300 U	11 U	1,300 U
4-Melhyi-2-pentanone	ug/kg	1,000	12 U	1,500 U	11 C	14 0	11 U	1,300 U	11 U	1,300 U
2-Hexanone	ng/kg		12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
Tetrachioroethene	ug/kg	1,400	4 J	600 DJ	11 U	14 U	11 U	370 DJ	11 U	340 DJ
Toluene	ng/kg	1,500	12 U	1,500 U	11 U	14 U	11 U	1,300 U	55	1,300 U
1,1,2,2-Tetrachloroethane	ug/kg	600	12 U	1,500 U	11 0	14 U	±1 U	1,300 U	11 C	1,300 U
Chlorobenzene	ug/kg	1,700	12 U	1,500 U	11 U	14 U	11 U	1,300 U	50	1,300 U
Ethylbenzene	ug/kg	5,500	12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
Styrene	ug/kg		12 U	1,500 U	11 C	14 U	11 C	1,300 U	11 C	1,300 U
Total xylenes	ug/kg	1,200	12 U	1.500 U	11 U	14 ()	n ₽	1,300 U	<u>11 U</u>	1,300 U
t,t,2-Trichloro-1,2,2-trifluoroethane	ng/kg	1,000	12 U	1,50010	11 U	14 U	11 U	1,300 U	110	1,300 U
cis-1,2-Dichloroethene	ug/kg		F 066	1,500 U	٦	14 U	510 J	1,300 U	600 J	600 DJ
trans-1,2-Dichloroethene	ug/kg	30	73	1,500 U	110	14 0	1200 J	1,300 U	1,600	1,600 D
Dichlorodifuoromethane	ug/kg		12 U	1,500 U		14 U		1,300 1		0.002,1
Trichtorofluoromethane	ug/kg		12 U	1,500 U	11 U	14 U	11 U	1,300 U	1110	1,300 U
Methy! acetate	ug/kg		12 U	1,500 U	11 U	14 U	11 U	1.300 U	110	1,300 U
Methyl tert butyl ether	ug/kg	120	12 U	1,500 U	11 U	14 U	11 U	1,300 U	11U	1,300 U
Cyclohexane	ug/kg		12 U	1,500 U	∩ ₽	14 U	11 U	1,300 U	11 U	1,300 U
Methylcyclohexane	ug/kg		12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
1,2-Dibromoethane	ug/kg		12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
Isopropylbenzene	fay/6n		12 0	1.500 U	11 U	14 U	11 U	1,300 U	11U	1.300 U
1.3-Dichlorobenzene	ng/kg	1,600	12 U	1,500 U	n 11	14 U	11 U	1,300 U	11 U	1,300 U
1.4-Dichtorobenzene	6y/6n	8,500	12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
1,2-Dichlorobenzene	ng/kg	7,900	12 U	1,500 U	11 U	14 U	11 U	1,300 U	11 U	1,300 U
1.2-Dibromo-3-chloropropane	ug/kg		12 U	1,500 U	11 0	14 U	11 U	1,300 U	11 U	1,300 U
1 2.4-Trichlornhenzene	03/kg	3,400 1	12 0	1,500 U	11 U	14 U	11 U	1,300 U	110	1,300 U

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - MW-3D Area

		11/11	1000	20100	0001	0034 01	0000	6.602	C02-0 01	002.0	CD3.3 DI	CD3.3	GP3.3 DI	GP3.4	GP3-4 DI
Sample IU ->	2	MON						47.07	11 11 11	1 1 1	11 00 0	1 1 1 1	11.17	11	10.14
Deptn - >		4045	10-14	+	14 - 10	14 - 10	10-14	0.11-11	2751 - 41	100000			00140100	00100100	00/00/00
Date Sampled ->		RSCO	02/27/06	02/27/06	02/27/06	02/21/06	90//2/20	07/2/20	90//2/20	00//2/20	90/12/20	07/2/2/00	00//7/20	00/02/20	01/2/20
VOLATILES													11 000 0		
Chloromelhane	LIG/kg		17 U	73 U	19 U	91 U	18 U	20 0	00 N	18.0	2,100 U	19 U	2,300 U		84 0
Bromomethane	pg/kg		17,U	73 U	19 U	91 U	18 U	20 U	30 U	1810	2,100 U	19 U	2,300 U	1710	84 U
Vinyl chloride	Dy/Srl	500	C 009	600 D	340 J	340 D	260	140	240 D	2,200 EJ	2,100 U	210	2,300 U	C 068	0 068
Chioroethane	ра/ка	1,900	17 U	73 U	19 U	91 U	18 U	20 0	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84 U
Methylene chloride	ug/kg	8	17/1	73 U	19 U	91 U	18 U	20 U	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84 U
Acetone	LIQ/Kg	200	6.1	73 U	<u>า</u> 61	91 U	18 U	20 U	90 U	18 U	2,100 U	19 U	2,300 U	17 U	0 ¥8
Carbon disulfide	uo/ka	2,700	17 U	73 U	19 U	91 U	18 U	2 J	U 06	18 U	2,100 U	6 J	2.300 U	17 U	84 U
1.1-Dichloroethene	uc/kg	400	17 U	73 U	19 U	91 U	18 U	20 U	∩ 06	18 U	2,100 U	19 U	2,300 U	17 U	84 U
1.1-Dichlomethane	ua/ka	200	17 U	73 U	19 U	91 U	18 U	20 U	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84 U
Chloroform	uo/ka	000	1210	73 U	19 0	0116	18 U	20 U	90 U	18 U	2,100 U	19 0	2,300 U	17 U	84 U
1.2-Dichlomethane	uoko	8	17 U	73 U	1910	91 U	18 U	20 U	005	1810	2,100 U	19 U	2,300 U	17 U	84 U
2-Butacone	uc/ko	88	17 U	7310	19 U	91 U	1810	20 U	U 06	18 U	2,100 U	19 U	5,300 U	17 U	84 U
1 1 1-Trichtoroethane		800	17 U	7310	1910	91 U	1810	20 0	0 O O	18 U	2,100 U	19 0	2,300 U	17 U	84 U
Carbon tetrachloride	tro/kg	600	17 U	73 U	1910	91 U	18U	20 U	D 06	18 U	2,100 U	19 U	2,300 U	17 U	84 U
Bromodichlomethane	no/ko		17 U	73 U	19 U	91.10	18 U	2010	<u>) 06</u>	18 U	2,100 U	19 U	2,300 U	17 U	84 U
1.9.Ochhorocroane			12 11	73 U	1910	91 U	18 U	2010	006	18 U	2,100 U	1910	2,300 U	17 U	84 U
cie-1 3.Dichtomonona			12 11	1162	N 61	91.10	18 U	2010	006	1810	2.100 U	19 fl	2,300 U	17 U	84 U
Trichlomathena	in/ko	200	17 11	73.0	43.J	43 DJ	18 U	270	550 D	18 U	2,100 U	48	2,300 U	1710	84 U
Dihomobilaromothaso	r de la		121	73 11	101	91 11	11.83	2011	0106	18.0	2,100 U	19 U	2.300 U	1710	84 U
UNUM Tradication			17 11	1182	101	11 16	1810	2010	006	18 U	2.100 U	19(2.300 U	1710	84 U
Berrond	0/10	RD or MD)	11/11	11182	(16)	91 10	18 U	20 U	0 D	18 U	2.100 U	19 0	2.300 U	17 U	84 U
bourgine twee 1.0 Diskloweeeee	AU AU	1000	11/11	2 2 2	101	5 6	181	2011	1106	18 U	2,100 U	161	2.300 U	17 U	B4 U
Browelow	64/01		114	73 U	1161	0 16	18 U	2010	90 U	18 U	2.100 U	1910	2.300 U	17 U	84 U
A Mathul 2, nontanano	D4/01	1 000	121	1184	1911	91110	18[1]	2011	106	1810	2.100 U	1910	2.300 U	1710	84 IU
	Callon Callon	2000'1	1710	1182	1161	1 16	1810	20 0	00 D	18 U	2.10010	1910	2.300 U	17 IU	84 U
Tates beset with a set of the set	54/0	1 400	124	1182	1101	01116	18.81	2011	1106	1811	2,100 U	76	2.300 U	17 U	84 U
Telraco	By/61	1 500	121	731		5	181	2011	9011	1810	2.100 U	1910	2.300 U	1710	8410
1 totuette	Rugar Notes	- COL	1212	1021	101	9 2 6	181	5011	1106	1811	2,100 (1)	1911	2.300 U	17 10	84 U
Chlorobenzene	10/kg	1 700	17 [1]	7310	161	9110	1810	2010	006	1810	2,100 U	19 U	2.300 U	17 U	84 U
Ethulhenzene		5 50D	12 11	73 U	1910	91 10	1810	2010	00 O	18 U	2.10010	1910	2,300 U	17 10	84 U
Styrene	uc/kg	200012	<u>1110</u>	73 U	19 U	9110	18.0	20 0	0106	18 U	2,100 U	19 U	2,300 U	17 0	84 U
Total Xvienes	uc/ka	1.200	17 U	73U	19 U	91 U	18 U	20 U	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84 U
1.1.2-Trichloro-1,2,2-trilluoroethane	Da/kg	1,000	17 U	73 U	19 U	91 U	18 U	20 0	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84 U
cis-1,2-Dichloroethene	ра/ка		r 006	0006	1,300 J	1,300 D	300	1,400	1,400 D	2,500	2,500 D	2,700	2,700 D	180 J	180 D
trans-1,2-Dichioroethene	lug/kg	300	130 J	130 D	260 J	260 D	95	260	450 D	140	2,100 U	120	2,300 U	14 J	26 DJ
Dichlorodifluoromethane	pg/kg l		17 UJ	73 U	19 UJ	91 U	18 UJ	20 UJ	005	18 UJ	2,100 U	19 UU	2,300 U	17 U	84 U
Trichlorofluoromethane	pg/kg		17 U	73 U	19 U	91 LC	18 U	20 U	<u>л 06</u>	18 U	2,100 U	19 U	2,300 U	17 U	84 U
Methyl acetate	pg/kg		17 U	73 U	19 U	91 U	18 U	20 N	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84 U
Methyl tert butyl elher	5x/6rt	120	17 U	73 U	19 U	91 U	18 U	2010	ก 06	18 U	2,100U	19 0	2,300 U	17 U	84 U
Cyclohexane	pg/kg		17 U	73 U	19 0	91 U	181	2010	0 06	18 U	2,100 U	180	2,300 U	17 U	84 U
Methylcyclohexane	19/Kg		17 U	73 U	19 U	91 U	18 U	2010	90 U	18 U	2,100 U	1910	2,300 U	17 U	84 0
1.2-Dibromoethane	ug/kg		17 U	73 U	1910	91 U	18 U	2010	0 06	18 U	2,100 U	0.61	2,300 U	17 U	64 C
Isopropylbenzene	ug/kg		17 U	73 U	1910	91 U	18 U	20 U	06	18 1	2,100 U	061	2,300 U	1710	84 U
1,3-Dichlorobenzene	µg/kg	1,600	17 U	73 U	19 U	91 U	18 U	20 U	90 0	18 U	2,100 U	19 U	2,300 U	17 U	84 0
1.4-Dichlorobenzene	µg/kg	8,500	17 U	73 U	19 U	91 U	18 U	20 U	90 U	18 U	2,100 U	1910	2,300 U	1710	84 0
1,2-Dichlorobenzene	ug/kg	7,900	17 U	73 U	19 U	91 U	18 U	20 0	90 U	18 U	2,100 U	19 U	2,300 U	17 U	84.0
1,2-Dibromo-3-chloropropane	ру/вц		17 U	73 U	19:0	91 U	18 U	20 U	0 0 O	18 U	2,100 U	19.0	2,300 U	0 21	84 0
1,2,4-Trichlorobenzene	19/kg	3,400 1	1710	73 U	1910	91 U	1810	2010 1	006	18 U	2,100\U	19/0	2.30010		8410

ŧ

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - MW-3D Area

Sample ID ->	Units	TAGM	GP3-4	GP3-4 D	L GP3-5	GP3-5 DL	GP3-5	GP3-6	GP3-6	GP3-7	GP3-8	GP3-8 DL	GP3-8	GP3-8 DL
Deoth - >		4046	14 - 17.7	14-17.7	7 10-14	10-14	14 - 17.7	10-14	14 -17	14 - 16.7	10-14	10-14	14 -18	14 -18
Date Samoled ->		HSCO	02/28/06	02/28/0(5 02/28/06	02/28/06	02/28/06	02/28/06	02/28/06	03/02/06	02/28/06	02/28/06	02/28/06	02/28/06
VOLATILES			-		_					_				
Chloromethane	Lig/kg		17 U	B2 U	18 0	80 U	21 U	18 U	20 0	18 U	18 U	11.000 U	20 U	12,000 U
Bromomethane	µ0/kg		17 U	82 0	18/0	80 U	21 U	181	20 U	18 U	18 U	11,000 U	20 U	12,000 U
Vinvi chioride	ug/kg	200	220 J	220 D	1,000,1	1,000 D	42	260	28	4 J	1,200 EJ	11,000 U	27	12,000 U
Chloroethane	р9/kg	1,900	17 U	82	18 U	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 U	12,000 U
Methylene chloride	Lig/kg	100	17 U	82 U	18 0	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 U	12,000 U
Acetone	ua/ka	200	17 U	1 82 U	1810	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	7 1	12,000 U
Carbon disultide	uo/ko	2.700	6 3	16 D	J 18 U	0 08	21 U	18 U	4	2 J	2 J	11,000 U	6 J	12,000 U
1 1-Dichloroethene	uo/ko	400	1710	1 82 U	1810	80 U	21 U	18 U	20 U	18 U	49 J	11,000 U	101	12,000 U
1 1-Dichlomethane	uo/ka	200	17 U	82 Ú	1810	80 U	21IU	18 U	20 U	18 U	18 U	11,000 U	20 U	12,000 U
Chlomform		300	17 U	U 82	1810	80 U	21 U	1810	2010	1810	18 U	11,000 U	20 0	12,000 U
1 2-Dichloroethane	uo/ko	100	17 U	82 U	1810	90 U	21 U	1810	20 U	18 U	18 U	11,000 U	20 U	12,000 U
2.Butanne		300	1710	82 0	1810	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20(U	12.000 U
1 1 1. Trichtoroelhane		800	17 U	82	1810	8010	21 U	18 U	2010	18.U	18 U	11,000 U	20 U	12,000 U
Carthon tatrachlorida	uo/ko	600	17 U	82 U	1810	80 U	21 U	18 U	2010	18 U	181	11,000 U	20 0	12,000 U
Romodichteromethane	DY/OI1	222	17 10	82	18 U	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 U	12,000 U
1 9. Dichloroconana	101/04		17 []	82	18(1)	801	21 U	18 U	2010	18 U	18 U	11,000 U	20 U	12,000 U
rie 1 9 Dickloroprocess	04/01		1711	68	1841	BOIL	25 11	181	2011	1810	1810	11.0001U	2010	12.000 U
US-1, J-Datitutupioperie T-schorzathona	5 AL	002	1 022	L US	150.1	150 D	20.1	16.1	2.1	181	10.000.1	10.000 DJ	3.200 J	3.200 DJ
Plicingloguigate	Parks 1	3		3	1811	1 U8	0111	1811	2011	1811	1181	11 00011	2011	12 000 11
Diblomicormologitemente	Ru/Rr						212	1911	2011	181	181	11 000 11	50116	12,000 [J
	Ru/Ari	CLASS OF	14				24	12 81	5011	181		11 000 11	2011	12 000 11
aliaztiao	Ru/Rr			300			2 5	2 9	2000			11 000 11	100	19 000 11
Irens-1,3-Dicenoropropene	6y/6r			200			212		2011	181	181	11 000 11	000	12 000 11
	Ru/An	000					2	2 9	200		181	11 000 11	1100	12 000 11
4-Metryl-2-pentanone	Pare 1	ND.1		200			2 12	100	100			11 000 11	2011	12 000 11
Z-riexanone	6y/6n			26			1	2 4	2 22		1 000 041	000011		100 000 0
Tetrachloroethene	ng/kg	1,400	<u> </u>	32	1810	202	012	181	20.02	1810	100,001	1000'061	- Inninal -	130,000 11
Toluene	р9/кд	1,500	17 U	82	18.0	80 0	210	181	20 0	n ai	1 40	n 000'tL	30	12,00010
1,1,2,2-Tetrachioroelhane	µg/kg	89	17 U	82	18 U	80 U	21 U	18 U	20 0	18 U	181	11,000 U	20 0	12,000 U
Chlorobenzene	pg/kg	1,700	17 U	82	18 U	80 U	21 U	18 U	20 U	181	1810	0000'11	202	12,000 U
Ethylbenzene	µg/kg	5,500	17 U	82 0	18 U	80 U	21 U	18 U	20 U	18 U	68	11,000 U	2]	12,000 U
Styrene	µg/kg		17 U	0 82	18 U	80 0	21 C	18 U	20 U	18 U	1810	11,000 U	20 0	12,000 U
Total Xylenes	µg/kg	1,200	17 U	82 10	18 U	80 U	21 U	18 U	20 U	18 U	68 J	11,000 U	21	12,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane	µg/kg	1,000	17 <u>U</u>	82 ()	18 U	80 0	21 U	18 U	20 U	18 U	18 U	11,000 U	2010	12,000 U
cis-1,2-Dichloroethene	µg/kg		860 J	860 D	920 J	920 D	91	240	75	۲ <u>8</u>	21,000 J	21,000 D	320	12,000 U
trans-1,2-Dichloroethene	hG/kg	900	360 J	360 D	390 J	390 D	54	170	53	3.1	150	11,000 U	121	12,000 U
Dichlorodifluoromethane	pg/kg		17 U	J 82 U	18 U	80 U	21 UJ	18 UJ	20 UJ	18 U	18 UJ	11,000 U	20100	12.000 U
Trichlorolluoromethane	pg/kg		17 0	82 U	18 U	80 U	21 U	18 U	20 U	18 U	1810	11.000 U	20 U	12,000 U
Methyl acetate	h9/kg		17 U	82 U	18/U	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	2010	12,000 U
Methyl tert butyf elher	ba/kg1	120	17 U	82 U	18 0	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 U	12,000 U
Cyclohexane	hg/kg		17 U	82 U	18 0	80 U	21 U	18 U	20 U	18 0	18 U	11,000 U	20 U	12,000 U
Methylcyclohexane	pg/kg		17 U	82 U	18 U	80 0	21 U	18 U	20 U	18 U	517	11,000 U	20 0	12,000 U
1,2-Dibromoethane	pg/kg		17 U	82 0	18 U	80 U	21 U	18 U	2010	18 U	18 U	11,000 U	20 0	12,000 U
Isopropylbenzene	uq/kg		17 U	0 82	18 0	008	21 U	18 U	20 0	18 U	18 U	11,000 U	20 0	12,000 U
1,3-Dichlorobenzene	по/ка	1,600	17 U	82	18 U	80 U	레미	18 U	20 U	18 U	18 U	11,000 U	20 U	12,000 U
1,4-Dichlorobenzene	pg/kg	8,500	17 U	- 62 U	18 U	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 U	12.000 U
1,2-Dichlorobenzene	pg/kg	7,900	17 U	0 82	18 U	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 0	12,000 U
1,2-Dibromo-3-chloropropane	D3/61		17 U	1 82 U	18JU	80 U	21 U	18 U	20 U	18 U	18 U	11,000 U	20 20	12.000 U
1,2,4-Trichlorobenzene	µg/kg	3,400 1	1710	1 82	1810	8010	210	18 0	2010	18 U	18 0	11,000JU	2010	12,000 U

,

Pioneer Midler Avenue LLC Remedial investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - MW-3D Area

Sample ID ->	Units	TAGM	GP3-9	GP3-9 DL	GP3-9	GP3-9 DL	GP3-10	GP3-10 DL	GP3-11	GP3-11 DL	GP3-12	GP3-12 DL	GP3-13	GP3-13 DL	GP3-13
Depth - >		4046	10 -14	10 -14	14 -18	14-18	14 - 18	14 - 18	14 - 17.5	14 - 17.5	14 - 17.5	14 - 17.5	10-14	10 - 14	14 - 17
Date Sampled ->		RSCO	02/28/06	02/28/06	02/28/06	02/28/06	03/01/06	03/01/06	03/01/06	03/01/05	03/01/06	03/01/06	03/01/06	03/01/06	90/10/20
VOLATILES							_			_					
Chloromethane	l µg/kg		2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	1001	19 U	0196	19 U	85 U	18 U
Bromomethane	µ9/k9		2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	180	19 U	36 U	1910	85 U	1810
Vinvi chloride	hg/kg	200	2,200 U	44,000 U	2,500 U	620,000 U	240	2,400 U	1,100 J	1,100 D	660 J	650 D	530	530 D	50
Chloroethane	Dg/kg	1,900	2,200 U	44,000 U	2,500 U	620.000 U	20 U	2,400 U	21 U	100 U	19 U	96 U	19 U	85 U	18 U
Methylene chloride	10/kg	100	2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100	19 U	96 U	1910	85 U	18IU
Acetone	ua/ka	200	2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	19 C	96 U	19 U	85 U	18IU
Carbon disutfide	ua/ka	2.700	2,200 U	44,000 U	2,500 U	620,000 U	٩ ۲	2,400 U	4	1000	4 J	12 DJ	19 U	85 U	21
1 1-Dichloroethene	ua/ka	400	2.20010	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 0	19 U	96 U	19 0	85 U	18 U
t 1-Dichloroethane	ua/ka	200	2.20010	44.000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	19 U	96 U	19 0	85 U	18 U
Chloroform	un/ka	300	2.20010	44,000 U	2.500 U	620.000 U	20 U	2,400 U	21 U	100 U	19 U	0 96	19 0	85 U	18 U
1 2-Dichlomethane	uo/ko	100	2.200 U	44.000 U	2.500 U	620,000 U	2010	2,400 U	21 U	1001	19 U	96 U	19 0	85 U	18 U
2-Butanone	uc/ka	300	2.200 U	44,000 U	2.500 U	620,000 U	20 0	2,400 U	21 U	100 U	19 U	36 U	19 U	85 U	18 U
1 1 1-Trichloroelhane	ucka	800	2.200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	1001	19 U	n 96	19 U	85 U	18 U
Carbon talrachloride	uc/ka	600	2.200 U	44.000 U	2,500 U	620,000 U	20 0	2,400 U	21 U	1001	19 U	96 N	19 U	85 U	18 U
Bromodichteromethane	ua/ka		2.200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	19 U	96 U	19 0	85 U	18 U
1 2-Dichlononooane	uo/ka		2.20010	44.000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	19 U	0 96 U	19 U	85 U	1810
rie-1 3. Dichlomoronene	10/kg		2,200 U	44 000 U	2.500 U	620,000 U	20 U	2,400 U	21 U	1 00F	19 U	9610	19 U	85 U	18 U
Trichlonothane	10/kg	200	3.400	44.000 U	2.200 J	620.000 U	6 3	2,400 U	2 J	100 U	063	96 U	19 U	85 U	18 U
Dihomochinomethane	un/ka	-	2.20010	44.000 U	2,500.U	620.000 U	20 U	2.400 U	21 U	100 U	19 U	0 96	19 0	85 U	18 U
t 1 2. Trichlomethane	un/ko		2,200 U	44,000 U	2.500 U	620,000 U	20 U	2,400 U	21 U	1001	19 U	96 U	19 U	85 U	18 U
Rentende	In /kg	60 or MDI	2,20011	44.000 U	2.500 U	620.000 U	2010	2.400 U	21 U	100 U	1910	36 U	1910	85 U	18 U
trans-1.3-Dickloropropene	u a/ka		2.200 U	44 000 U	2.500 U	620,000 U	2010	2,400 U	21 U	100 U	19 U	36 U	19 0	85 U	18 U
Bromoform	uo/ka		2.200 U	44.000 U	2.500 U	620.000 U	20 U	2,400 U	21 U	1001	19 U	36 U	D 61	85 U	18 U
4.Mathul-2-nantanone	110/kg	1 000	2 200 11	44,000 U	2.50010	620.000 U	2010	2.400 U	21 U	1001	1910	96 U	19 U	85 U	1810
	uo/ko	2021	2.200 U	44.000 U	2.500 U	620,000 U	20 0	2,400 U	21 U	1001	1910	0 96	19 U	85 U	18 U
Totrochlaraothana	olko -	1 400	830,000	R30.000 BD	4.200.000	4.200.000 D	42 U	2.400 U	21 U	1001	19 U	0 96	1910	85 U	18 U
Tetractivoluceuserie Totucone		1 500	2 200 11	44.000 []	540.1	620.000 U	2010	2.400 U	21 0	1001	19 U	96 U	19 U	85 U	18 U
1 1 0 0.Tetrachteroalhane	10/01	600	0 2021	44 000 81	250010	620.000 U	20 U	2,400 U	21 U	1001	1910	36 U	19 U	8510	18 U
Chlorohenzene		1.700	2 200 11	44,000 U	2.500 U	620.000 U	20 0	2,400 U	21 U	1001	1910	U 36	19 U	85 U	18 U
Ethulhenzene	n n ko	5 500	2,200 []	44.000 U	2.500 U	620.000 U	20 U	2.400 U	21 U	100 U	19 U	96 U	19 0	85 U	18 U
Styrene	uo/ka		2.200 U	44.000 U	2.500 U	620,000 U	20 U	2.400 U	21 U	100 U	19 0	96 U	19 U	85 U	18 U
Total Xvienes	uc/ko	1.200	2.200 U	44.000 U	1.400 J	620,000 U	20 U	2,400 U	21 U	100 U	19 U	96 U	19 U	85 U	18 U
1.1.2-Trichloro-1.2.2-trifluoroethane	Da/kg	1,000	2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	19 U	96 U	19 U	85 U	18 U
icis-1.2-Dichloroethene	uo/kg		2,200	44.000 U	2,500 U	620,000 U	2,100	2,100 DJ	860 J	860 D	910 D	910 D	130	170 D	30
Itrans-1.2-Dichtoroethene	pa/kg	300	2,200 U	44,000 U	2,500 U	620,000 U	180	510 DJ	L 021	120 D	Г 98	86 DJ	20	26 DJ	18 U
Dichtorodifluoromethane	pg/kg		2,200 W	44,000 U	2,500 UJ	620,000 U	20 W	2,400 U	21 12	100 (19 11	96 U	19 UU	85 U	18 U
Trichlorofluoromethane	by/6n		2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	10 1	19 0	96 U	1910	85 U	18U
Methyl acetate	By/6rt		2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	19(U	96 U	1910	85 U	18 U
Methyl tert butyl ether	110/kg	120	2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	51 N	100 U	19 C	96 U	19 U	85 U	181
Cyclohexane	uq/kg		2,200 U	44,000 U	2,500 U	620,000 U	20 0	2,400 U	21 N	100 U	19 U	96 U	19 U	85 U	18 U
Methylcyclohexane	ug/kg		2,200 U	44,000 U	1,400 J	620.000 U	20 U	2,400 U	21 U	1001	19 U	96 U	19 U	85 U	18 U
1,2-Dibromoethane	ид/Ка		2,200 U	44,000 U	2,500 U	620,000 U	20 0	2,400 U	21 U	100 C	19 U	96 0	19 U	85 U	18 U
Isopropylbenzene	Lig/kg		2,200 U	44,000 U	370 J	620,000 U	20 0	2,400 U	21 U	1001	19 U	96 U	19 U	85 U	18IU
1.3-Dichlorobenzene	ug/kg	1,600	2,200 U	44,000 U	2,500 U	620,000 U	20 1	2,400 U	21 U	1001	19 U	96 U	19 U	85 U	18 U
1,4-Dichlorobenzene	pg/kg	8,500	2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	1001	19 U	0 96	19 U	85 U	18 U
1,2-Dichlorobenzene	µg/kg	2,900	2,200 U	44,000 U	2,500 U	620,000 U	20 U	2,400 U	21 U	100 U	1910	96 U	19 U	85 U	1810
1,2-Dibromo-3-chloropropane	µg/kg		2,200 U	44,000 U	2,500 U	620,000 U	2010	2,400 U	n 12	1001	1910	3610	0.82		180
1,2,4-Trichlorobenzene	µg/kg	3,400	2,2001U	44,000 U	2,500)U	620,000 U	2010	2,400 U	חונצ	1001	18IU	2010	1910	200	

RSCO = Recommended Soil Cleanup Objectives 1,000 - indcates detected value for organics.

1

Page 16 of 26

		Data for	
	ort	e Boring	it Area
nue LLC	tion Rep	eoProbe	vation - B
dler Ave	nvestiga	hase 3 G	a Deline
meer Mi	mediai li	ble 8 - P	urce Are
ă	æ	Ë,	õ

Samola ID ->	IInits TAG	M GPB1-1	GPB1-1 DL	GPB1-2	GPB1-2 DL	GPB1-3	GPB1-3 DL	GPB1-4	GPB1-5	GPB1-6	GPB1-7	GPB1-8	GPB1-9	GPB1-9 DL	GPB1-10
Depth - >	4 4	16 14-17	14 - 17	14 - 18	14 - 18	10 - 11.8	10 - 11.8	14 - 17.6	14 - 17	14 - 17.7	14 - 18	14 - 18	14-17.4	14 - 17.4	14 • 16.8
Date Samoled ->	RSC	20 03/02/06	03/02/06	03/02/06	03/02/06	03/03/06	03/03/06	03/03/06	03/03/06	03/03/06	03/06/06	03/06/06	03/09/06	03/09/06	90/60/20
VOLATILES									_						
Chloromethane	03/Kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800,000 U
Bromomelhane	ba/kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800.000 U
Vinyl chlorida	ug/kg 20.	0 2,600 U	52,000 U	SSS 630 J S	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,300 J	260.000 U	510 E	610,000 U	1,800,000 U
Chloroethane	ug/kg 1,9t	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800,000 U
Methylene chloride	ug/kg 10.	0 2,600 U	52,000 U	2,700 U	550,000 U	310.000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260.000 U	20 U	610,000 U	1,800,000 U
Acetone	ug/kg 20	0 2,600 U	52,000 U	2,700 U	550,000 U	310.000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260.000 U	L 8	610,000 U	1,800,000 U
Carbon disulfide	ug/kg 2,7(20 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	L L E	610,000 U	1,800.000 U
1,1-Dichloroethene	ug/kg 40	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260.000 U	25	610,000 U	1,800,000 U
1,1-Dichloroethane	ug/kg 20	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	24 N	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800,000 U
Chioroform	ug/kg 30	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2.500 U	260,000 U	20 U	610,000 U	1.800.000 U
1,2-Dichloroethane	ug/kg 10	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2.500 U	260,000 U	20 U	610,000 U	1,800,000 U
2-Butanone	ug/kg 30.	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2.500 U	260,000 U	20 U	610,000 U	1,800,000 U
1,1,1-Trichloroethane	ug/kg 80.	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 0	610,000 U	1,800,000 U
Carbon tetrachioride	03/kg 60	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	210	260.000 U	2,500 U	260,000 U	20 U	610,000 U	1,800,000 U
Bromodichtoromethane	ug/kg	2,600 U	52,000 U	2,700 U	550.000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	2010	610,000 U	1,800,000 U
1,2-Dichloropropane	µg/kg	2.600 U	52,000 U	2,700 U	550,000 U	310,000 U	620.000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	2010	610,000 U	1,800,000 U
cis-1,3-Dichloropropene	µg/kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	2010	610,000 U	1,800,000 U
Trichloroethene	µg/kg 70	0 28,000	27,000 DJ	21,000	550,000 U	310,000 U	620,000 U	290,000 U	25	110,000 J	2,500 U	260.000 U	8,100 E	140,000 DJ	440,000 J
Dibromochloromelhane	pg/kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1.800.000 U
1,1,2-Trichloroethane	pg/kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800.000 U
Benzene	hg/kg 60 or	MDL 2,600 U	52,000 U	2,700 U	550,000 U	310.000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800,000 U
trans-1,3-Dichloropropene	ng/kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610.000 U	1,800,000 U
Bromoform	6x/6rt	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	24 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1.800,000 U
4-Methyl-2-pentanone	10/kg 1.0	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260.000 U	20 U	610,000 U	1.800.000 U
2-Hexanone	D3/kg	2,600 U	52.000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2.500 U	260,000 U	2010	610.000 U	1.800.000 U
Tetrachloroethene	µg/kg 1,4	00 290,000 J	290,000 D	6.300,000	6,300,000 BD	6,900,000	6,900,000 BD	4,400,000	42	4,700,000 B	2,500 U	2,800,000	58,000 E	9,800,000 D	67,000,000
Toluene	ug/kg 1,5,	00 2,600 U	52,000 U	930 J	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	96	610,000 U	1,800,000 U
1,1,2,2-Tetrachioroethane	hg/kg 60	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610.000 U	1.800,000 U
Chlorobenzene	ug/kg 1.7	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	230,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1.800.000 U
Ethylbenzene	LIG/Kg 5.5	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21U	260,000 U	2,500 U	260.000 U	L 8	610.000 U	1,800,000 U
Styrene	и9/кд	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 0	610,000 U	1,800,000 U
Total Xylenes	ug/kg 1.2	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	6	610.000 U	1,800,000 U
1,1,2-Trichloro-1,2,2-tritluoroethane	µg/kg 1.0	00 2,600 U	52,000 U	2,700 U	550.000 U	310,000 U	620,000 U	290,000 U	0 H2	260,000 U	2.500 U	260,000 U	2010	610,000 U	1,800,000 U
cis-1,2-Dichloroethene	µg/kg	9,400	7,900 DJ	36,000	550,000 U	310.000 U	620,000 U	L 000/67	200	260,000 U	17,000	58,000 J	4,300 E	610.000 U	1,800,000 U
trans-1.2-Dichloroethene	119/kg 30	0 2.600 U	52,000 U	230J	550.000 U	310,000 U	620,000 U	290,000 U	13.1	260,000 U	2,500 U	260.000 U	260	610,000 U	1,800,000 U
Dichtorodifluoromethane	µg/kg	2.600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290.000 U	210	260,000 U	0.00612	260,000 1		0,000,010	1,800,000 U
Trichlorofluoromethane	µg/kg	2,600 U	52.000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	7,500 U	7.000,002	20102	610,000 U	1,800,000 U
Methyl acetate	µg/kg	2,600 U	52,000 U	2.700 U	550,000 U	310,000 U	620,000 U	290.000 U	21 U	260,000 U	2,500 U	260.000 U	2010	610,000 U	1,800,000 U
Methys tert butys ether	12 12 12	0 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260.000 U	2,500 U	260,000 U	2010	610.000 U	1,800,000 U
Cyclohexane	54/6d	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500U	260,000 U	200	610,000 U	1,800,000 U
Mathylcyclohexane	10/kg	2,600 U	52,000 U	630 J	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260.000 U	2,500 U	260,000 U	69	610,000 U	1,800,000 U
1.2-Dibromoethane	Day 61	2,600 U	52,000 U	2,700 U	550,000 U	310.000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,600,000 U
Isopropylbenzana	hQ/kg	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	20 U	610,000 U	1,800,000 U
1,3-Dichlorobenzene	1,6 1,6 1,6	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2,500 U	260,000 U	201	610,000 U	1.800,000 U
1,4-Dichlorobenzene	µg/kg 8,5	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	310	260.000 U	2.500 U	260,000 U	20 0	610,000 U	1,800,000U
1,2-Dichlorobenzene	µg/kg 7,9	00 2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	21 U	260,000 U	2.500 U	260,000 U	20 1	610.000 U	1.800.000 U
1,2-Dibromo-3-chloropropane	ру/ец	2,600 U	52,000 U	2,700 U	550,000 U	310,000 U	620,000 U	290,000 U	210	260,000 U	2,500 U	260,00010	2010	610,000 U	1,500,000
1,2,4-Trichlorobenzene	µg/kg 3,4	00 1 72,600 U	52,0001U	2,700 U	550,000 lu	310,000 U	620,000 U	290,00010	1 112	260,00010	2,000ju	- 710001002	zuluz	proving	1.800,000

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - B1 Area

	10-01		2001 10 Di	11 1000	CDD+ 11 DI	01 1007	CDR1.10	GDR1.19	GPR1-10 DI	GPR1-13	GPR1-13	GPB1-14	GPB1-15	GPB1-16	GPB1-16
Sample ID ->	Curs	WOW .	GLOI-10 DL	Grbi-II		05.4	10-01	11 10	44 - 40	6 - 10	14.17.9	6-10	14.17	15.5-17	17-18
Depth - >		0505	14 - 10.0	1 - 61	1.41	+ - C-7	1 - 01	0 - +	000000	2010100	2010100	2010100	02/12/06	04140106	Da/HO/DE
Date Sampled ->		HSCO	03/03/06	03/061/06	90/20/20	90,50,50	00/60/50	901/201/20	- onisinen	001100		000100	200170	205120	
VOLATILES									.,			100	1100	110000	14.64
Chloromethane	µg/kg		3,700,000 U	2010	1.900 U	1,800 U	2,100 U	20 U	1001	л ооц	2410		0.02	Z,000 U	1 1 1
Bromomethane	LIQ/Kg		3,700,000 U	20 U	1.900 U	1,800 U	2,100 U	20 U	100 U	1001	24 U	22 0	2012	2,600 00	14 0.1
Vinyl chloride	119/kg	200	3,700,000 U	Sec 1.500 J.S.	1,500 DJ	360 J	L 900,1	130	130 D	1,200	1 CE	31	2010	680.0	0/1
Chloroethane	10/kg	1,900	3,700,000 U	20 U	1.900[U	1,800 U	2,100 U	20 U	1000	ח 100	24IU	22 []	2010	2,600 U	14 0
Methylene chloride	D3/01	8	3,700,000 U	20 0	1.900 U	1,800 U	2,100 U	20 U	100 U	54 J	24 U	22 U	20 0	2,600 U	14 U
Acelone	D3/Rd	200	3,700,000 U	71	1,900 U	1,800 U	2,100 U	16	1001	39 J	11 J	22 U	20 U	2,600 U	10.1
Carbon disulfide	10/kg	2,700	3,700,000 U	61	1,900 U	1,800 U	2,100 U	L 21	1001	100 U	3 J	22 U	20 U	2,600 U	6.1
1.1-Dichloroethene	noka	400	3.700,000 U	14.1	1,900 U	1,800 U	2,100 U	20 U	100 U	100 U	24 U	22 U	20 1	2.600 U	14 U
1 1-Dichloroethane	no%o	200	3.700.00010	2010	1,900 U	1,800 U	2,100U	20 U	1001	100 U	24 U	22 U	20 U	2,600 U	14 U
Chloroform	10 An	900	3 700 000 11	11 06	1 900 L	1,80010	2.100 U	2010	1001	100 U	24 U	22 U	20 U	2,600 U	14 U
Vited Unite	n alla	90	3 700 000 U	2011	1.900	1.80010	2.100 U	20 U	1001	100 U	24 U	22 U	20 13	2,600 U	14 U
D-Butanono	no/ku	300	3.700.000 11	2010	1.900 U	1.800 U	2.100 U	20 U	1001	1001	24 U	22 U	20 U	2,600 U	14 U
4 1 1. Trichlocothana	10/kg	808	3.700.000 U	2010	1.900 U	1.800 U	2.100 U	2010	100 L	1001	24 U	22 U	20 0	2,600 U	14 U
Corbon Introduction	D I D	en o	3 200 000 11	2UI1	1.900 U	1,800 []	2.100 U	2010	1001	1001	24 U	22 U	20 U	2,600 U	14 U
Carlown reuckulturine	Bunn	3	3 700 000 1		1 900 1	1 800 11	2.1001	2010	100 U	1001	24 U	2210	20 U	2.600 U	14 U
	2010	T	11000002.5	1100	1 900 1	1,80011	2.100 U	20 U	1001	1001	24 U	22 U	20 0	2.600 U	14 U
	L L L L L L L L L L L L L L L L L L L	ſ	3 700 000 11	2011	1 900 1	1.80010	2.100 U	201	1001	100 L	24 U	22 U	2010	2,600 U	14 U
	Rugar	200	0,200,000 11	5 600 1	E SMID	730.1	2 100 LI	2011	100 U	1001	24 U	22 U	2010	2,600 U	14 U
	RUAR		11 000 004 0	1100	1 0101	1 800 11	0 10011	2013	10001	1001	24 U	22 U	2010	2.600 U	14 U
DIDORIUMINI OLIGUIAURIA	Bu An		1000000		1 200011	1.80011	2.100 U	2010	100 U	1001	24 U	22.0	20 U	2,600 U	14 U
1,1,2,1,110,110,000,000,000	Ruff	turi se os	1000000-0				0 10011	100	13001	1001	2410	22 U	2010	2,600 U	14 U
Benzene	By/6r		100000000		11000	1 800 11	0 10011	2011	1001	10001	24 (1	22 U	2010	2.600 U	14 U
	Hu St		1100000000	201	1 0001	1 BOOLE	2 10011	1106	1001	1001	24 11	2210	20 U	2.600 U	14 U
	Sub-		11000 002 0			1 800 11	2 10011	2011	1001	1001	24 U	22 U	2010	2.600 U	14 U
4-Maunyt-2-pantarione	Rufin	-		1 100	10001		11001 0	1100	10011		24 11	22 U	2010	2.600 U	14 U
Z-Hexanone	fly/6r	007.5	0 000 000 to				0 1001	100	52 B.D.	11005	54 11	2011	2013	2.60010	14 U
Tetrachloroethene	6x6r	2	1 000'000'1		1 1000	1 00011	1001		10011	1001	11 40	2011	5011	2 600 U	14 U
Toluene	hg/kg	NXC.	3,/101,001 0		n nos'1	0000	0.001.0		2007		5170	18	1100	9 600 1	1411
1,1,2,2-Tetrachloroelhane	пд/кд	800	3,700,000 U	2010	1,900	1,500 U	0 001'Z	1 100	000	0.001	5	2 1		0 600 1	1 24
Chlorobenzene	ng/kg	1,700	3,700,000 U	2010	1,900U	1,800 U	2,100 U	<u>102</u>	0.001			2 2			5
Ethylbenzene	µg/kg	5,500	3,700,000 U	20 0	1,900U	1.800 U	2,100 U	200	1000	D DOL	240			20000	
Styrene	11g/kg		3.700.000 U	2010	1,900 U	1,800 U	2,100 U	500	0.001		N 42	7	200		
Total Xylenes	µg/kg	1,200	3,700,000 U	20 0	1,900 U	1,800 U	2,100 U	2010	1001	100	∩ ₩7	0 22		2,000 0	*
1,1,2-Trichloro-1,2,2-trifluoroethane	pg/kg	1,000	3,700,000 U	20 U	1,900 U	1,800 U	2,100 U	20 U	1001	1001	0 57	<u> 1</u>		z,000 U	
cis-1, 2-Dichloroethene	19/kg		3,700,000 U	18,000 J	18,000 D	5,200	8,200	830	0 066	0094'1	48		202	0,000	1 1
trans-1.2-Dichtoroethene	D3/61	8	3,700,000 U	260 J	430 DJ	1,800 U	2,100U	49	25 DJ	26 J		-	7102	2,600 0	<u>+</u>
Dichlorodilluoromethane	16y/6rl		3,700.000 U	2010	1,900 U	1,800 U	2.100 U	20 0	1001		240	7	11 02	2,000	5 I I
Trichtorofluoromethane	pg/kg		3,700,000 U	20 П	1,900 U	1,800 U	2,100 U	2010	1001	D M	0 47		20.02	7,000 0	
Methyl acetate	51g/kg		3,700,000 U	200	1,900 U	1,800 U	2,100 U	20 U	100	1001	24 0	22 U	2010	2,600 U	1410
Methyl tert butyl ather	pa/gu	120	3,700,000 U	20 0	1,900 0	1,800 U	2,100 U	20 U	100 U	100	24 U	22 U	20 U	2,600 U	14 U
Cvctohexane	pa/kg		3,700,000 U	2010	1,900 U	1,800 U	2,100 U	20 0	100 U	100 U	24 U	22 U	20 U	2,600 U	14 U
Methylovofothexane	uo/ko		3,700,000 U	2010	1,900 U	320 J	2,100 U	20 U	100	1001	24 U	22 U	20 U	2,600 U	14 U
1 2-Dibromnethane	ua/ka		3,700,000 U	2010	1,900 U	1,800 U	2,100 U	20 U	100 U	1001	24 U	22 U	20.0	2,600 U	14 U
fsorrowlbanzana	noko		3.700.000 U	2010	1,900,1	1,800 U	2,100U	20 U	1001	1001	24 U	22 U	20 17	2,600 U	14 U
1 3-Dichloroboozene	10/40	1.600	3.700.000U	20IU	1,900 U	1,800 U	2,100U	20 U	100 U	100t	24 U	22 U	20 0	2,600 U	14 U
1 4-Dichlornhenzene	Inc/kg	8.500	3.700.000 U	20 U	1,900 U	1,800 U	2,100 U	20 U	100 U	100 U	24 U	22 U	20 03	2,600 U	14 U
1 2-Dichlorobanzane	LIC/K0	2,900	3.700.000 U	20 U	1,900 U	1,800 U	2,100 U	20 U	100 U	100 U	24 U	22 U	20 U	2,600 U	14 U
1.2-Dibromo-3-chloropropane	uo/ka		3,700,000 U	20 0	1,900 U	1,800 U	2,100 U	20 U	100 U	100 U	24 U	22 U	20 U	2,600 U	14 U
1.2.4.Trichlorobenzene	ua/ka	3.400	3,700,000 U	1 20 U	1'800 U	1,800 U	2,100 U	20 U	1001	100 U	24 U	22 U	2010	2,600 U	14 U

RSCO = Recommended Soli Claanup Objectives 1,000 - Indcates denoted value for opprict. - Indcates value occodes TAGM 406 RSCO

,

Pioneer Midier Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - B-3 Area

				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0 0000					0000	0,000		10001	1000
Sample ID ->	Units	1 AGM	GPB3-1	GP83-2	GFB3-2 UL	GF83-3	Gr83-3 UL	6-00-5	01043	Gros-a	0.5019	0-00-0	110-00-0		
Depth - >		4046	14 • 18	14 - 18	14 - 18	14 - 17,5	G.11-41	14 - 1 / 9	6 - 10	14 - 10.7	4.0.0	10 - 14	- 14 - N	0 - 10	11 - 41
Date Sampled ->		RSCO	03/06/06	03/06/06	03/06/06	90/90/00	03/06/06	03/06/06	03/06/06	03/05/06	03/06/06	90,00,50	90,90,90	90//0/20	90//080
VOLATILES										_	-			-	
Chloromethane	pg/kg		22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 0	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Bromomethane	By/6rl		22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1.300 U	75 U	1,900 U	9,500 U	2.800 U
Vinyt chloride	p3/gu	200	13.J	23,000 U	47,000 U	12,000 U	30,000 U	22 U	ି 1 , 400 J ି	3,600 U	1.300 U	31.1	1,900 U	5,900 J	2,800 U
Chloroethane	6y/0rt	1,900	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1.300 U	76 U	1,900 U	9,500 U	2,800 U
Methylene chloride	By/Brl	8	22 U	23,000 U	47,000/U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1.300 U	75U	1,900 U	9,500 U	2.800 U
Acetone	DX/DIT	200	220	23,000 U	47,000 U	12,000 U	30,000 U	55 N	2,700 U	3,600 U	1.300 U	75 U	1,900 U	9,500 U	2,800 U
Carbon disulfide	D3/DI1	2,700	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1.300 U	75 U	1,900 U	9,500 U	2,800 U
11 1-Dichloroathene	ua/ka	400	2210	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
1 1-Dichloroethane	ua/ko	200	22 U	23.000U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300.U	75 U	1,900U	9.500 U	2,800 U
Chloroform	uo/ku	900	22 U	23.000U	47.000U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900U	9,500 U	2,800 U
1 2. Tichloroethana	uo/kn	001	22 U	23.000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
2. Birtanma		908	22 U	23.000 U	47.000 U	12.000 U	30,000 U	22.0	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,600 U
1 1 1-Trichloroethage	no/ka	800	22 U	23.000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,600 U
Carbon tetrachiorida		009	22 []	23.000 U	47,000 U	12.000 U	30.000 U	22 U	2,700 U	3,600 U	1,300 U	75U	1,900 U	9,500 U	2,800 U
Bromodichloromethane	naka		22 U	23.000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,600 U
1.2-Dichteroromana	in/ko		22 U	23.000 U	47.000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
cis-1 3-Dichlorococata	na/ka		22 U	23.000U	47 000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	U 006,1	9,500 U	2,800 U
Trichlocothene	na/ka	700	64	000.69	73.000 D	100,000	93,000 D	4 J	18,000	12,000	640 J	350	1006E	160,000	3,800
Dibromochloromethane	uoľka		22 U	23.000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
1.1.2-Trichloroethane	ua/ka		22 U	23.000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Renzena	IIC/K0	60 or MDL	22 Ц	23,000 U	47.000 U	12.000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Irans-1.3-Dichloronrooene	un/ka		22 U	23.000 U	47.000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,600 U
Bromotorm	na/ka		22 U	23,000 U	47,000 U	12,000 U	30.000 U	220	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
4.Methvi-2-Dentanone	un/ka	1.000	22 U	23.000 U	47.000 U	12.0001U	30.000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
2-Hexanone	uaka		0 22	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Tetrachloroethene	no/ko	1.400	31	600.000	600,000 D	230,000	230,000 D	22 U	31,000	1,900 J	1,800	1,500	1,900 D	38,000	27,000
Toluene	by/bri	1,500	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1.300 U	75 U	1,900 U	9.500 U	2,800 U
1.1.2.2-Tetrachloroethane	D3/Kg	800	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Chlorobenzene	D3/61	1,700	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Ethylberzene	10%G1	5,500	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
Styrene	р9/кд		22U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3.600 U	1,300 U	75 U	1,900 U	0.500 U	2,800 U
Total Xylenes	ид/ка	1.200	2210	23,000 U	47,000 U	12,000 U	30,000 U	220	2,700 U	3,600 U	1,300 U	75 U	1,900 U	3,500 U	2,800 U
1,1,2-Trichloro-1,2,2-trifluoroethane	119/Kg	1,00	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	D 005'E	D 009'B	2,800 U
cis-1,2-Dichloroethene	19/kg		310	14,000 J	13,000 DJ	28,000	24,000 DJ	52	48,000	1,400 J	1,300 U	1.002.1	1,0001	1,000,0	3,700
trans-1,2-Dichloroethene	Бубп	8	35	23.000 U	47.000 U	12,000 U	000'00	7.5	2,700 U	3,000 U	1,300 U	174	1 000	1 000 0	0000
Dichlorodilluoromethane	pg/gu		22 0	23,000 U	47,000 U	12,000 U	30,000 U	022	2,700 U	1009.5	0 005't		1 202	8,500 0	2,000 0
Trichlorofluoromethane	hg/kg		22 10	23,000 U	47,000 U	12.000 U	30,000 U	D 22	2,700 U	3,600 U	1,300 U			0.000	2,000 0
Methyl acetate	10 kg		22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600U	1,300 U	N 9/	0.0061	n nng's	2,800 U
Methyl tert butyl ether	бувп	120	22 U	23,000 U	47,000 U	12,000 U	30,000 U	0 22 ∩	2,700 U	3,600 U	1,300 U	75 U	∩ 006'	9.500 U	2,800 U
Cyclohexane	бубг		22 U	23,000 U	47,000 U	12,000 U	30,000 U	n R	2,700 U	3,600 U	1,300 U	197 75 U	1,900 U	9,500 U	2,800 U
Methylcyclohexane	D3/6rl		22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 (1	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
1,2-Dibromoethane	полка		22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3.600 U	1,300 U	75 U	1,900 U	9,500 U	2,800U
Isopropylbenzene	полка		22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
1,3-Dichlorobenzene	Будп	1,600	⊓ ਲ	23,000 U	47,000 U	\$2,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
1,4-Dichlorobenzene	D3/61	8,500	22 U	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600/U	1,300 U	75 U	1,900 U	9,500 U	2,800 U
1,2-Dichlorobenzene	р9/6ц	7,900		23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75 U	0006-1	9,500 U	2,800 U
1,2-Dibromo-3-chloropropane	µg/kg		∩ 27 ↓	23,000 U	47,000 U	12,000 U	30,000 U	22 U	2,700 U	3,600 U	1,300 U	75U	1,900 U	9,500 U	2,800 U
1.2.4-Trichlorobenzene	рожа	3,400	· 22U	23,000 U	47,000 U	12,000 U	30,000 U	22IU	2,700 U	3,600 U	1,300 U	75JU	1.900 U	9,500 U	2,800[U

er Midler Avenue LLC	dial Investigation Report	8 - Phase 3 GeoProbe Boring Data for	e Area Delineation - B-3 Area
Pioneer Mic	Remedial In	Table 8 - Ph	Source Area

·····						- 1	- 1	_	_			_		_		- 1	_		_				· · · ·									• • •	· · · ·	- 1	·		····		÷						·	,,	· · · · · ·				
GPB3-16 DL	14 - 17	03/08/06		3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3.200 U	6,000 D	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	6,100 D	3,200 U	3,200 U	3,200 U	3.200 U	3,200 U	3,200 U	3,200 U	N 022	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3,200 U	3.200 U	3,200 U	3,200 U
GPB3-16	14 - 17	03/08/06		26 U	26 U	26 U	26 U	26 U	26 U	۲Þ	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	6,000	26 U	26U	26 U	26 U	26 U	26 U	26 U	6,100	26 U	26 U	26U	26U	26 U	26 U	26 U	8	3	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U	26 U
GPB3-16 DL	6-10	03/08/06		2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	690 DJ	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	6,400 D	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	4,600 D	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U
GPB3-16	6 - 10	03/08/06		20 0	20 U	۲ Q2	20 U	20 U	20 U	2010	21	20 U	20 0	2010	20 0	20 U	2010	20 U	20 U	2010	690 J	20 U	20 U	20 U	20 0	20 U	20 U	20 U	6,400 J	20 U	20 U	2010	20 U	20 0	2010	20 U	4,600 J	38.9	20 U	20 U	20 0	20 0	20 0	20 0	20 U	2010	20 0	20 0	20 U	20 13	2010
GPB3-14	14 - 17	03/08/06		2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2.800 U	2,800 U	2,800 U	2,200 J	2,600 U	2,600 U	2,800 U	2,800 U	2,800U	2,800 U	2,800 U	008'6	2,800 U	2.800 U	2.800 U	2.800U	2,800 U	2.800 U	2.800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U	2,800 U
GPB3-13	6 - 10	03/08/06		3,100 U	3,100 U	3,200	3,100 U	3,100 U	3,500 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100U	3,100U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	20,000	- 1,800 J	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100[U
GPB3-12	14 - 17.5	03/08/06		3,100 U	3,100 U	3,100 U	3,100 U	3,100U	3,100(U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	2,100 J	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	19,000	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	8,000	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100 U	3,100U
GPB3-11	14 - 18	03/08/06		2,400 U	2.400 U	2,400 U	2,400 U	2,400U	2,400U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400U	2,400 U	2,400 U	2,400 U	530 J	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	570 J	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	9,300	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2,400 U	2.400 U
GPB3-10	14 - 17.5	03/07/06		2,200 U	2,200 U	2,200 U	2,200 U	2,200U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200U	2,200 U	2.200 U	3,400	2.200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	8,600	2,200 U	2,200 U	2.200 U	2.200 U	2.200 U	2,200 U	2,200 U	4,000	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2,200 U	2.200 U	2,200 U	2.200 U
GPB3-9 DL	14 - 17,5	03/07/06		600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000[U	110.000 DJ	600,000 U	600,000 U	600.000 U	600,000 U	600.000 U	600,000 U	600,000 U	7,300,000 D	600,000 U	1000'009	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600,000 U	600.000 U	600.000 U	600,000 U	600,000 U	600,000 U	600,000 U	000'009	600,000 U	600,000 U	000'009	600,000 U	600,000 U	600.000 U
GPB3-9	14 - 17.5	90/20/60		30,000,06	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	See 150,000	30,000 U	30,000 U	30,000 U	30,000 U	30.000 U	30,000 U	30,000 U	7,300,000	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30'000 N	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000 U	30,000[U
GP83-8 DL	14 - 17	03/07/06		110,000 U	110,000 U	110,000 U	110.000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110.000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	53,000 DJ	110,000 U	110,000 U	110,000 U	110,000 U	110.000 U	110,000 U	110,000 U	C 620,000 D 0	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110.000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U	110,000 U .	110,000 U	110,000 U
GPB3-8	14 - 17	03/07/06		2,300 U	2,300 U	2.300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	23,000 J	2,300 U	2,300 U	2,300 U	2.300 U	2,300 U	2,300 U	2,300 U	620,000	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	3,700	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	2,300 U	* 2,300 U	- 2,300 U
TAGM	4046	RSCO				200	1,900	8	500	2,700	4 8	200	800	8	800	908 800	600				200			60 or MDL			1,000		1,400	1,500	600	1,700	5,500		1,200	1,000		300				120					1,600	8,500	2,900		3,400
Units				6x/6r	5y/6rt	ug/kg	µg/kg	pgykg	DAVOU	parkq	pa/kg	ng/kg	DA/Ru	Dave u	pg/kg	pg/kg	p4/64	DH/GI	By/Bri	6y/6rt	pg/kg	6x/6r	5y/6r	6x/6rt	pg/kg	By/Brl	By/brl	6x/6r1	6x/6rl	Бу/бп	бх/бл	p:g/kg	рууди	6 %6rt	pg/kg	tig/kg	6y/6rt	By/6rt	6x/6r	pg/kg	6y/6rl	By/6rt	6y/6rl	By/Bri	By/Bri	Byon	6y/6r	бу/бл	pg/kg	pg/kg	ug/kg
Sample ID ->	Depth - >	Date Sampled ->	VOLATILES	Chloromethane	Bromomethane	Vinyl chloride	Chioroethane	Methylene chloride	Acetone	Carbon disulfide	1.1-Dichloroethene	1.1-Dichloroethane	Chioroform	1.2-Dichloroethane	2-Bularone	1,1,1-Trichloroethane	Carbon tetrachloride	Bromodichloromethane	1,2-Dichloropropane	cis-1,3-Dichloropropene	Trichtoroethene	Dibromochloromethane	1,1,2-Trichtoroethane	Benzene	trans-1,3-Dichloropropene	Bromoform	4-Methyl-2-pentanone	2-Hexanone	Tetrachloroethene	Toluene	1,1,2,2-Tetrachloroethane	Chlorobenzene	Elhylberzene	Styrene	Total Xylenes	1,1,2-Trichtoro-1,2,2-trifluoroethane	cis-1,2-Dichtoroelhene	trans-1,2-Dichloroethene	Dichtoroditiuoromethane	Trichlorofluoromethane	Methyl acetate	Melhyl tert butyl ether	Cyclohexane	Methylcyclohexane	1,2-Dibromoethane	Isopropylbenzene	1,3-Dichlorobenzene	1,4-Dichtorobenzene	1,2-Dichtorobenzene	1,2-Dibromo-3-chloropropane	1.2.4-Trichlorobenzene

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - B-3 Area

Sample ID ->	Units	TAGM	GPB3-17	GP83-17 DL	GPB3-18	GPB3-18	GPB3-19	GPB3-21	GPB3-21	GPB3-22	GPB3-22 DL	GPB3-24	GPB3-24
Depth - >		4046	14 - 18	14 - 18	14 - 16.9	6 • 10	14 - 18	14 - 16	6 - 10	6 - 10	6 - 10	15.5 - 17	6 - 10
Date Sampled ->		RSCO	03/08/06	03/08/06	04/18/06	04/18/06	04/18/06	04/18/06	04/18/06	04/18/06	04/18/06	04/19/06	04/18/06
VOLATHES					_				_	_		-	
Chloromethane	µg/kg		24 U	110,000 U	1 000'L1	150,000 U	230	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Bromomethane	µ9/kg		24 U	110,000 U	17,000 UJ	150,000 UJ	23 UJ	35 UJ	22 UU	58,000 UJ	120,000 U	28 GJ	21 UJ
Vinyl chloride	pg/kg	200	340	110,000 U	17,000 U	150,000 U	23 U	19.1	410	58,000 U	120,000 U	28 U	21 U
Chloroethane	Bx/6rl	1,900	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	<u>8</u>	58,000 U	120,000 U	28 U	21 U
Methylene chloride	19/kg	õ	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	280	21 U
Acetone	prg/kg	200	24 U	110,000 U	17,000 U	150,000 U	23 U	30 J	22 U	58,000 U	120,000 U	12 J	21U
Carbon disulfide	pg/gu	2,700	24 U	110,000 U	17,000 U	150,000 U	23 U	L 7 J	22 U	58,000 U	120,000 U	3 J	21 U
1,1-Dichtoroethene	pg/kg	400 4	4	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
1,1-Dichtoroelhane	pg/kg	200	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Chioroform	19/kg	80	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	280	21 U
1.2-Dichtoroethane	tig/kg	8	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
2-Butanone	6y/6rl	300	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
1,1,1-Trichtoroethane	By/Grl	900 900	24 U	110,000 U	17.000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Carbon tetrachloride	pg/kg	600	24 U	110.000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Bromodichicxomethane	µg∕kg		24 U	110,000 U	1/000/11	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 C
1,2-Dichloropropane	руурц		24 U	110,000 U	17,000 U	150,000 U	23U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
cis-1,3-Dichloropropene	µg/kg		24 U	110,000 U	17,000 U	150,000 U	23 ⊔	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Trichloroethene	bg∕kg l	700	53,000 J	53,000 DJ	45,000	160,000	23 U	23 J	22 (1	58,000 U	120,000 U	28 U	21 U
Dibromochloromethane	р9/кд		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
1,1,2-Trichloroethane	ps/gu		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21U
Benzene	D3/61	60 or MDL	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58.000 U	120,000 U	28U	21 U
trans-1,3-Dichtoropropene	ыр/ка		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Bromotorm	ру/бц		24 U	110,000 U	12,000 U	150,000 U	23(1	35 U	22 U	58,000 U	120,000 U	28 U	21 U
4-Methyl-2-pentanone	ug/kg	1,000	24 U	110,000 U	12,000 U	150,000 U	23 (35 U	22 U	58,000 U	120,000 U	28 U	21 U
2-Hexanone	ug/kg		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21U
Tetrachloroethene	ug/kg	1,400	1,300,000	1,300,000 D	260,000	1,900,000	23 U	6 J	22 U	1,400,000	120,000 U	28 U	21 U
Toluene	ng/kg	1,500	r 6	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
1,1,2,2-Tetrachloroethane	ug/kg	600	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21U
Chlorobenzene	pg/kg	1,700	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	200	58,000 U	120,000 U	28 U	21 U
Ethylbenzene	pg/kg	5,500	28	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Styrene	pg/kg		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Tolal Xylenes	pg/kg	1,200	130	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
1,1,2-Trichloro-1,2,2-trilluoroethane	рунд	1,000	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28U	21 U
cis-1,2-Dichloroethene	pg/kg		23,000 J	23,000 DJ	85,000	66,000 J	23 U	360	<u>8</u>	30,000 J	29,000 D	52	21 U
Irans-1,2-Dichtoroelhene	µg/kg	80	340	110,000 U	17,000 U	150,000 U	23 C	72	15 J	58,000 U	120,000 U	10 J	21 U
Dichlorodifluoromethane	pg/kg		24 U	110,000 U	17,000 U	150,000 U	23 (1	35 U	22 U	58,000 U	120,000 U	26 U	21 U
Trichtorofluoromethane	p:g/kg		24 U	110,000 U	17,000 U	150,000 U	23 (35 U	22 0	58,000 U	120,000 U	28 U	21 U
Methyi acetate	p:0/kg		24 U	110,000 U	17,000 U	150,000 U	5 <u>3</u> G	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Methys tert butyl ether	63/6 d	120	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	220	58,000 U	120,000 U	28 U	21 U
Cyclohexane	6xy6r1		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
Methylcyctohexane	бу/бл		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 U	58,000 U	120,000 U	28 U	21 U
1,2-Dibromoethane	DQ/Kg		24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	22 (58,000 U	120,000 U	28 U	21 U
Isopropylbenzene	6у/6п		24 U	110,000 U	17,000 U	150,000 U	23U	35 U	22 U	58,000 U	120,000 U	28U	21 U
1,3-Dichtorobenzene	By/6r	1.60	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	<u>∩</u> ≋	58,000 U	120,000 U	28 U	21 U
1,4-Dichlorobenzene	by/6rl	8,500	24 U	110,000 U	17,000 U	150,000 U	23 U	35 U	52 U	58,000 U	120,000 U	28 U	21 U
1,2-Dichtorobenzene	By/6r	7,900	24 U	110,000 U	12,000 U	150,000 U	23 U	35 U	220	58,000 U	120,000 U	28 U	21 U
1,2-Dibromo-3-chloropropane	130,kg		24 U	110,000 U	17,000 U	150,000 U	23 0	35 U	220	58,000 U	120,000 U	280	210
1,2,4-Trichtorobenzene	Dy/Din	3,400	- 24U	110,000 U	12,000 U	150,000 U	23 0	3510	220	58,000 U	120,000 U	28 U	2110

HSCO = Recommended Soil Cleanup Objectives 1,000 - Indeates detorted value for organica.

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - B-5 Area

Samola ID	1 Inite	TAGM	GPB5-1	GPB5-1 DL	GPB5-2	GPB5-2 DL	GPB5-3	GPB5-3	GPB5-3	GPB5-3 DL
	5	4046	14-18	14 - 18	14 - 17.5	14 - 17.5	6 - 10	10-14	14 - 17	14 - 17
Data Samiad ->		HSCO	03/09/06	03/09/06	03/09/06	03/09/06	90/60/00	03/09/06	90/60/20	90/60/60
VOLATILES		-								
Chloromethane	ua/ka		20 U	2,400 U	21 U	2.600 U	83 U	17 U	19 U	88 U
Bromomethane	руди		20 U	2,400 U	21 U	2,600 U	83 U	17 U	7) (1	88 U
Vinvi chlaride	uq/kg	200	330 J	2,400 U	480 E	2,600 U	140 N	170	54	88 U
Chloroethane	narka	1,900	2010	2,400 U	21 U	2,600 U	83 U	17 U	19 U	8810
Methylene chloride	uo'ka	00 1	20 U	2,400 U	21 U	2,600 U	83 U	17 U	<u>19</u> 10	88 U
Acetone	uo/ko	200	2010	2,400 U	21 U	2,600 U	83 U	17 U	<u>р</u> 8	88 U
Carbon disulfida	a/bi	2.700	20 0	2.400 U	5 J	2,600 U	83 U	17 U	ר <u>9</u>	88 U
1 1-Dichloroethene	na/ko	400	20 U	2.400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
1 1-Dichloroethane	uo/ka	200	20 0	2.400 U	21 U	2,600 U	83 U	17 U	1910	88 U
Chloroform	un/ka	300	2010	2.400 U	21 U	2,600 U	83 U	17 U	19 0	88 U
1 2-Dichloroethane	no/ka	8	20 U	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
2-Butanone		800	2010	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
1.1.1-Trichloroethane	Па/ка	800	20 0	2,400 U	21 U	2,600 U	83 U	17 U	19 N	88 U
Carbon tetrachloride	Lio/ka	009	20 U	2,400 U	21 U	2,600 U	83 U	17 U	19 01	88 U
Bromodichloromethane	Loka		2010	2,400 U	210	2,600 U	83 U	17 U	19 U	88 U
1 2-Dichloropropane	uo/ko		20 U	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
cis-1 3-Dichlorononene			2010	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Trichlornathana	10/40	700	1.300 J	1.300 DJ	330	620 DJ	83 U	17 U	170	230 D
Dihomochloromathana	uo/ka		2010	2.400 U	21 U	2,600 U	83 U	17 U	U 61	88 U
1.t.2-Trichlonethane	uc/ka		20 U	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Renzena		60 or MDL	2010	2.400 U	21 U	2,600 U	83 U	17 U	1910	88 U
trans-1 3-Dichlorononana			2010	2.400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Bromoform			2010	2.400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
4.Mathul-2.nantanona		1 000	2010	2.400 U	21 U	2.600 U	0.68	17 U	1910	88 U
9-Hevenche	LO/KG		2010	2.400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Tatrachlorodhone	In Ako	1400	1 066	P0 065	54	2.600 U	83 U	17 U	670	670 BD
Totrana	in/ka	1 500	2010	2.400 U	210	2,600 U	83 U	17 U	19 U	88 U
1 1 2 2-Tatrachloroathana		600	2010	2.400 U	21 U	2.600 U	83 U	17 U	19 U	88 U
Chlorohanzana	100kg	1.700	20 U	2.400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Ethvihanzana	na/ka	5,500	20 U	2,400 U	210	2,600 U	8310	17 U	19 U	88 U
Swrene	Lia/ka		2010	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Total Xvienes	navka	1,200	20 U	2,400 U	210	2,600 U	83 U	17 U	19 U	88 U
1,1,2-Trichloro-1,2,2-trifluoroethane	pg/kg	1,000	20 U	2,400 U	21 U	2,600 U	83 U	17 U	U 61	88 U
cis-1,2-Dichtoroethene	pg/kg		3,700 J	3,700 D	3,600	3,600 D	1,000	260	690	690 D
trans-1,2-Dichloroethene	µg/kg	300	64 J	2,400 U	170	2,600 U	18.1	2	24	18 DJ
Dichtorodilluoromethane	P9/kg		20 U	2,400 U	21 U	2,600 U	83 U	17 U	061	88 0
Trichlorofluoromethane	Бу/бп		20 0	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Methyl acetate	бу/бл		20 0	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Methyl tert butyl ether	па/ка	120	20 0	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
Cyclohexane	hg/kg		20 0	2,400 U	21 U	2,600 U	83 U	17 U	19 U	∩ 88
Methylcyclohexane	pg/kg		20 0	2,400 U	210	2,600 U	83 U	17 U	19 U	88 U
1.2-Dibromoethane	Pro/kg		20 0	2,400 U	210	2,600 U	83 U	17 U	<u>16</u>	88 U
Isopropylbenzene	hg/kg		200	2,400 U	21 U	2,600 U	83 U	17 U	19 U	88 U
1,3-Dichlorobenzene	µ9/kg	1,600	20 U	2,400 U	21 U	2,600 U	83 U	17 U	<u>19 C</u>	88 U
1,4-Dichlorobenzene	µg/kg	8,500 1	200	2,400 U	21 U	2,600 U	3 0 0	17 U	<u>16</u>	88 0
1,2-Dichlorobenzene	µg/kg.	2'906'2	20 U	2,400 U	21U	2,600 U	83 U	ח 14	1910	88 0
1,2-Dibromo-3-chloropropane	1:9/kg		20 U	2,400 U	21 U	2,600 U	83 U	1710	1910	0.88
11.2.4-Trichlarobenzene	раурл	3,400	20 0	2,400 U	21 U	2,600 U	83 U	17 U	19/01	88 U

RSCO = Recommended Soil Clearup Objectives 1,000 - Indicates detected value for organics.

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - Conveyor Sump

Comola 10 -	1 Inite	TAGM	GPCS-1	GPCS-1	GPCS-1	GPSC-2	GPCS-2	GPCS-3	GPCS-4	GPCS-5	GPCS-6
Denth - >	2	4046	2 - 4	4.8 - 10	14 - 18	1.3 - 4	14 - 18	14 - 18	14 - 18	2-4	4-6
Date Sampled ->		RSCO	90/13/09	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06
VOLATILES											
Chloromethane	pg/kg		15 U	19 U	21 U	U II	19 U	18 U	28 ∩	12 U	24 U
Bromomethane	D3/61		15 U	19 U	21 U	11 U	19 U	18 U	22 C	12 U	210
Vinyl chloride	bg/gu	200	15 U	31	10 J	11 N	5	Г 8	4 J	12 U	21 U
Chioroethane	вя/бп	1,900	15 U	19 U	21 U	11 U	19 U	18 U	∩ 82	12 U	21 U
Methylene chloride	Бу/бл	100	15 U	19 U	21 U	11 N	19 U	18 U	រា	12 U	21 U
Acetone	19/kg	200	25 U	19 U	21 U	11 U	19 U	18 U	22 U	8 8	170
Carbon disulfide	LIQ/KG	2,700	15 U	19 U	2 J	11 U	19 U	18 U	22 U	12 U	21 U
1 1-Dichloroethene	ua/ka	400	15 U	19 U	21 U	11	19:U	18 U	22 U	12 U	21 U
1 t-Dichloroethane	ua/ka	500	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Chlaroform	ла/ка	88	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
1.2-Dichloroethane	ua/ka	8	15 U	19 U	21 U	<u>ח 11</u>	19 U	18 U	22 U	12 U	21 U
2-Butanone	pa/kg	300	6 J	U 61	21 U	11 0	19 0	18 U	22 U	12 0	55
1.1.1-Trichloroethane	uq/kg	80	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Carbon tetrachforide	uq/kq	009	15 U	19-01	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Bromodichloromethane	na/ka		15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
1 2-Dichloropropane	Lio/ko		15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
cis-1.3-Dichlorononene	ua/ko		1510	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Trichloroothone	na/ko	200	1510	1 <u>9</u> U	21 U	1110	1910	1810	22 U	L H	21 U
Dihromochicromathana	10/kg	2	1511	1911	2113	1110	1910	1810	22 U	12 U	21 U
1 1 2-Trichloroethane			15 11	1911	21 U	11 1	19 U	18 U	22 U	12 U	21 U
	Part of	SO or MDI	1511	1911	211	11 []	1161	18 U	22 U	12 U	21 U
beitzeite troce-1 3. Nichterenschane	RUAL D		15 1	1161	2112	11 11	1910	18 U	22 U	1210	21 U
Bomolorm	E STOR		131	1911	3111	1111	1911	181	2211	12 []	21 U
A Mothurd Contractor	Bullet.	500) 		2413	1113	191	1811	22 11	1210	21 U
P-Weillyrz-Petiterione	Ruffa	2221	121	101	2111	11 11	1161	1811	22 U	12 U	24 N
Z-riekaiusio Tetrachloroethene	Ruffer Ind/kon	1.400	15 U	191	21 U	11 0	1910	18 U	∩ 8	65	21 U
Toliana	10/kg	1.500	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
1 1 2 2-Tetrachloroethane	un/ka	009	15 U	19 U	21 U	11 U	19 U	1 <u>8</u> U	22 U	12 U	21 U
Chinrohenzene	uc/ka	1.700	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Ethvibenzene	uc/kg	5,500	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Styrene	uq/ka		15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Total Xvienes	uq/kg	1,200	15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
1,1,2-Trichloro-1,2,2-trifiuoroethane	130/kg	1,000	15 UJ	19 UJ	21 W	11 UJ	19 UJ	18 UJ	22 UL	12 U	21 WJ
cis-1,2-Dichloroethene	hg/kg		15 U	20	22	1110	13 J	10 J	5 J	3	31
trans-1,2-Dichloroethene	hg/kg	300	15 UJ	19 U	21 U	11 U	19 U	18 U	22 U	2 7	21 U
Dichlorodifiuoromethane	pg/kg		15 UJ	19 UJ	21 U	11 03	19 W	18 UJ	22	12 U	21 W
Trichlorofluoromethane	р9/кд		15 U	19 UJ	21 U	11 W	19 WJ	18 UJ	22 W	12 U	21 W
Methyl acetate	pg/kg		15 U	19 U	21 U	11 U	19 U	18 U	22 0	12 U	21 U
Methyl tert butyl ether	µg/kg	120	15 U	19 U	21 U	-1 I L	19 U	18 U	0 8	12 U	21 U
Cyclohexane	µg/kg		3 J	2	21 U	11 U	19 U	18 U	22 U	12 U	27
Methylcyclohexane	µg/kg		15	2 J	21 U	11 U	19 U	18 U	22 U	12 U	130
1.2-Dibromoethane	р9/kg		15 U	19 U	21 U	11 U	19 U	18 U	22 U	12 U	21 U
Isopropylbenzene	pg/kg		5 J	19 U	21 U	11 U	19 U	18 U	22 N	3 J	28
1,3-Dichlorobenzene	pg/kg	4,600	15 U	1 <u>9</u> U	21 U	11 C	19 U	18 U	<u>2</u> 22	12 U	21 U
1,4-Dichlorobenzene	р9/кд	8,500	15 U	19 U	21 U	11 U	19 U	18 U	22 N	12 U	210
1,2-Dichlorobenzene	µg/kg	006'∠	15 U	19 U	21 U	111	19 U	18 U	22.0	12 U	21 U
1.2-Dibromo-3-chloropropane	р9/кд		15 U	19 U	21 U	11 U	19 U	18.0	2	12 U	21 12
1 2 4_Tichlorohanzana	130/Ka	3 400	1510	19 U	21 U	Ē	1910	1810	220	12 U	210

RSCO = Recommended Soil Cleanup Objectives 1,000 - Indicates detected value for organics. indicates value exceeds TAGM 4046 RSCO

Pioneer Midler Avenue 1.LC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - Conveyor Sump

Sample ID ->	Units	TAGM	4046	GPCS-1	GPCS-1	GPCS-2	GPCS-G	GPCS-4	6-00-19	פרנטים ער	6-02-0		61-00-0
Depth - >		RSCO	Eastern USA	2-4	4.8 - 10	1.3 - 4	3.4 - 6	2.2 - 4	2-4	2.4	4-6	4-6	6-8
Date Sampled ->			Background	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	90/21/20
SEMIVOLATILES													
Benzaldehvde	ua/ka			1,000 U	1,200 U	3,700 U			840 U	4,200 U	1,900 U	19,000 U	1100 U
Phone		30 or MDL		57 J	P [8]	1,800 U			25 J	2,100 U	970 U	9.700UU	20 J
Ris(2,chloroothul) ather				510 U	630 U	1,800 U			420 U	2,100 U	010	9,700 U	560 U
2.Chloronhand		800		510 U	630 U	1,800 U			420 U	2,100 U	970 U	002'6	560 U
2-Mathvinhand		100 or MDL		510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
2 2 Owhield-Chloronooane)	uo/ka			510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
Acetochenone	ua/ka			1,000 U	1,200 U	3,700 U			840 U	4,200 U	1,900 U	19,000 U	1100U
4-Mathvinhanof		006		510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
N.Nitrosc.Di.n.oronvlamine	110/KG			510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
Herochloroethane				510 U	630 U	1.800 U			420 U	2,100U	020 U	002'6	560 U
Nitrobortono		200 or MDI		51011	63011	1.800 U			420 U	2,100 U	970 U	9,700 U	560 U
leophrone	LID/KO	4400		510 U	630 U	1,800 U			420 U	2,100 U	020 U	9,700 U	560 U
9-Mitroheod		330 or MD1		51011	630 U	1.800 U			420 U	2,100 U	970 U	n 002'6	560 U
2 4-Dimethylichood		2011 10 000		51010	630 U	1.800 U			420 U	2,100 U	970 U	9,700 U	560 U
2,4-UIIIGUIYIDUIGUO Dicf9-chicroathowii methana	10/61			51011	63010	1.800 U			420 U	2,100 U	970 U	9,700 U	560 U
10.4 Diskloresharel		w.v		51011	63011	1.80013			420 U	2,100 U	970 U	9,700 U	560 U
	20100	1 200		350.1	1029	220.1			440	460 DJ	1.800	2,100 DJ	560 U
	Ru An	1011 1000		11011	11/05/3				42011	2 10011	97011	9.70010	560 U
	Nu fin				11053				42011	2,10011	026	9.700 U	56010
Hexacinoroouaguere	Fw An			1012	1000				42011	0 100 II	11026	002.6	560 U
Caprolactam	ngrkg			0.010	0,000	1,0001				2 2 2	0020	0 700 11	EE011
4-Chioro-3-methylphenol	hg/kg	240 or MUL		0 010	0.000	1,000,1			1 000			0000	
2-Methylnaphthalene	119 ¹ Kg	36,400		950	63U U	r nes			1 007' 4	1 201 0	10,020	1 202.0	2000
Hexachlorocyclopentadiene	LIQ/KG			510 U	630 U	1,800 U			420 U	U U01,2	0.0/6	a,700 U	
2,4,6-Trichlorophenol	pg/kg			510 U	630 U	1,800 U			420 U	2,100 U	0.0/6	8,/00/0	560 U
2.4.5-Trichtorophenol	D3/61	<u>8</u>	-	1,200 U	1,500 U	4,400 U			∩ 000 -	5,100 U	2,300 U	23,000 U	1400 U
Biohenvl	na/ka			1.000 U	630 U	1,800 U	-		420 U	2,100 U	970 U	9,700 U	560 U
2-Chloronaphthalene	Lo Ka			510 U	630 U	1,800 U			420 U	2,100 U	070 U	9,700 U	560 U
2-Nitroaniine	naka	430 or MDL		1,200 U	1,500 U	4,400 U			1,000 U	5,100 U	2,300 U	23,000 U	1400 U
Dimathyl nhthalate	ua/ka	2,000		510 U	630 U	1,800 U			420 0	2,100 U	970 U	9,700 U	560 U
9 6-Dinitrotoluona		1.000		510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
Aconschibulana		41 000		51010	630 U	130 J			120 J	120 DJ	250 J	9,700 U	560 U
Automiline 3-Nitmaniline		500 or MDL		1.200 U	1.500 U	4.400 U			1,000 U	5,100 U	2,300 U	23,000 U	1400 U
Arenanhthana	Inn/ka	50.000		720	630 U	L 008			370 J	390 DJ	920 J	1,300 DJ	560 U
2 4-Dinitronhend	ua/ka	200 or MDL		1.200 U	1,500 U	4,400 U			1,000 U	5,100U	2,300 U	23,000 U	1400 U
4-Nitronhenol	ua/ka	100 or MDL		1,200 U	1,500 U	4,400 U			1,000 U	5,100 U	2,300 U	23,000 U	1400 U
Dibenzofuran	ua/ka	6.200	-	510 U	630 U	360 J			196 J	94 DJ	350 J	500 DJ	560 U
2.4-Dinitrotoluene	La/ka	1.000	-	510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
Diethyl phthalate	ua/ka	7.100		510 U	630 U	1,800 U		-	420 U	68 DJ	970 U	460 DJ	560 U
Flintene	uo/ko	50.000		1,000	1,200 U	520 J			370 J	400 DJ	1,100 U	1,400 DJ	1100 U
4. Chloronhanvi nhanvi ather	10/kg			510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
4-Nitroaniline				1.200 U	1.500 U	4,400 U			1,000 U	5,100 U	2,300 U	23,000 U	1400 U
A & Dinitro-0-mathulnhanoi	1 mileo			1,20010	1.500 U	4.400 U			1,000 U	5,100 U	2,300 U	23,000 U	1400 U
	E			51011	63011	1,800 U			420 U	2.100U	970 U	0'00'10	560 U
4 Demochand shard other	Ru Au			. 510[]	63011	1.8001			420 U	2,100 U	970 U	9,700 U	560 U
Tourshiseburger	Ru An	410		51011	630 1 L	1 80011			420 U	2.100 U	970 U	9,700IU	560 U
Hexaciiloroverizere	5v/6r	51#			1 200	1 UUL 8			84011	4.200 U	1.900 U	19.0001	1100 U
Alfazine	54/61	1000 or MDI			1 500 11	4 400 II			1.0001	5.100 U	2.300 U	23.000 U	1400 U
Phonoditroco	Ruffi			2 400	63011	1.800			1.400	1.500 DJ	2,500	3,200 DJ	560 U
Pristantineue	RUKU	50.000		510	630 U	600 J			190 J	200 DJ	400 J	440 DJ	560 U
Alguided ic	DAI/OI			510 U	63010	200 J			130 J	140 DJ	230 J	9,700 U	560JU
Juaruazoic	RUA1				1 21222								

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - Conveyor Sump

Sample ID ->	Units	TAGN	1 4046	GPCS-1	GPCS-1	GPCS-2	GPCS-3	GPCS-4	GPCS-5	GPCS-5 DL	8-SC49	GPCS-6 PL	GPCS-0
Depth - >		RSCO	Eastern USA	2-4	4.8 - 10	1.3 - 4	3.4 - 6	2.2 - 4	2-4	2-4	4-6	4-6	6-8
Date Sampled ->			Background	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06	03/13/06
Di-n-butyt phthalate	р9/кд	8,100		510 U	630 U	1,800 U			420 U	430 DJ	310	1,400 DV	26010
Firoranthene	by/61	50,000		760	630 U	2,500			1,500	1,800 DJ	810 J	1,000 DJ	560 U
Pviene	ра/ка	50.000		650	630 U	2,000			1,300	1,600 DJ	660 J	FQ 026	560 U
Butvi benzvi ohthalate	uo/ka	50,000		510 U	23 J	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
3.3'-Dichlorobenzidine	na/ka			510 U	630 U	1,800 U			420 U	2,100 U	970 U	9,700 U	560 U
Benzylalantherene		224 or MDI		300 J	630 U	1.000 J			690	740 DJ	350 J	460 DJ	560 U
Christian	Dallon	400		340.1	630 U	1.000 J			1012 (Sec. 710) Sec.	750 DJ	370.J	430 DJ	560 U
CitrySeries	D.U.C.			510 BJ	63011	1.800 U			420 U	84 BD.	070 U	9,700 U	560 U
	R N	50,000		51011 51011	17.1	1 80011			42010	2.100 U	970IU	9.700 U	560 U
Dr-rr-octyl printalate	Fulfr	100		360.1	63011	1.100.1			500 J	880 DJ	450 J	560 DJ	560 U
	6y/6r	84		1 1 1 1	1000	I UGV			1.022	340 D.I	130.1	9.700 U	560 U
Benzo(K)IIUOraninene	Ry 6r	31.1			200				E40 1	E STOLD IN	1 1000	320 0.1	EED 11
Benzo(a)pyrene	By/6r	PI OL MUL		1 047	2000						1001	270 D.1	C RO II
Indeno(1,2,3-cd)pyrene	1 JU2/10	3,200		1012	0.000	- noc			1 405				2000
Dibenzo(a,h)anthracene	рубл	14 or MDL			630 0	1000 1000 1000						0 002 0	
Benzo(ghi)perytene	ру/ка	50,000		30 J	630 U	1 35 1			202	20.02	200	3,100	0.000
AROCLORS				_									
Arocior 1016	6y/6r1			120 U	150 U	910	_ 0.06	<u>) (8</u>	100		230 U		130 U
Aroctor 1221	Da/kg			120 U	150 U	910	90 U	006	100 U		230 U		130 U
Aroclor 1232	uaka	I non - suilace		120 U	150 U	91U	00 0	00 0	1001		230 U		130 U
Arcelor 1949		solis, TU,UUU -		120 U	150 U	91 U	D 08	N 06	1001		230 U		130 U
Arcolor 1248		subsurface		120 U	150 U	91 U	006	00 N	100 U		230 U		130 U
Arodor 1954		soils		12011	150(U	9110	106	0 06	1001		230 U		130 U
Arolar 1980	5 CA 20	_		12011	150.11	1116	006	106	1001		230 U		130 U
	Runna			2 2 2 2	2								
INCHGANICS		90		0142 0	0.70	030	3 150	e non	5 080		1 730		
Aluminum	By du	00	2000	0+10	0,10	0000					0 7		
Antimony	mg/kg	SB		0.46 B	0,50 8	0.8615	U.48 B	0.88 5	a 0.30				
Arsenic	mg/kg	7.5 or SB	3 - 12	2.8	0.36 U	5.9	3.4	3.4	2.2 S		а () С /)		
Banum	mg/kg	300 or SB	15 - 600	39.2	28.4 B	85.1	71.9	26.4	60.0		55.3 B		
Bervilum	mg/kg	0.16 or SB	0 - 1.75	0.23 B	0.16B	0.41B	0.24 B	0.31B	0.35B		0.10 B		
Cadmium	mq/ko	1 or SB	0.1-1	0.04 U	0.04 U	0.03 U	0.03 B	0.03 U	0.03		0.18 B		
Calcium	mg/kg	SB	130 - 35,000	49,000	389,000	82,800	153,000	43,000	54,900		51,500		
Chromium	mg/kg	10 or SB	1.5 - 40	6.2	0.3 B	0.00 Sec. 11.9 Sec.	5.6	10.4	9.0		3.4		
Cobalt	mg/kg	30 or SB	2.5 - 60	2.7 B	0.12 B	4.8 B	3.8 B	5.5 B	4.5 B		1.3 B		
Copper	mg/kg	25 or SB	1-50	10.5	0.16 8	24.6	16.2	14.0	19.8		11.0		
Iron	mg/kg	2,000 or SB	2,000 - 550,000	10,800	85 *	31,200	7,870	15,100 *	57,600*	_	9,940		
Lead	mg/kg	SB	200 - 500	10.9	0.32 U	43.2	4.7	19.5	18.2		8.1		
Magnesium	mg/kg	SB	100 - 5,000	3,600	2,340	12,100	12,100	14,500	3,870		2,910		
Manganese	mg/kg	ß	50 - 5,000	171	7.3	682	293	269	1,680		238		
Mercury	ma/kg	0.1	0.001 - 0.2	0.073	0.004 U	0.039	0.010 B	0.021	0.040		0.074		
Nicket	mg/kg	13 or SB	0.5 - 25	6.5	1.6B	10.5	14	12.4	8.6	_	8.7 B		
Potassium	ma/kg	SB	8,500 - 43,000	538 B	34.3 B	821	826	971	597 B		312 B		
Selenium	ma/ka	2 or SR	0.1 - 3.9	0.86 B	0.46 U	0.37 B	0.31 U	0.53 B	1.18	_	4.6 B		
Silver	ШQ.Kg	SB		0.14B	0.05 B	0.14 B	0.10 B	0.08 B	0.15 B		0.18 B		
Sodium	ma/ka	SB	6.000 - 8.000	206 B	188 B	2268	138 B	103 B	197 B		5568		
Thailinm	mo/ka	SB		0.68 U	0.72 U	0.49 U	0.76B	0.48 U	1.28		1.3		
Vanadiim	ma/ka	150 or SB	1-300	. 10.3	0.09 8	21.2	7.2	12.2	18.4		4.6 B		
Zinc	marka	20 or SB	9-50	22.7	1.4 B	90.2	23.0	34.8	32.7		33.8		
	6												
Leachable oH	S.U.			7.33	7.62	7.55	7.84	9.35	7.52		7.24		7.85

HSCO = Recommended Soil Cleanup Objectives 1,000 - indicates detected value for organics. Indicates value exceeds TAGM 4046 RSCO

٠

F. IProjectiC81 • Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007HH ReportITables Table Braikdted.xis / ConSump SV

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - Sump

Sample ID ->	Units	TAGM	GPS 1-1	GPS 14
Depth - >		4046	10 - 14	10 - 14
Date Sampled ->	_	RSCO	03/02/06	03/02/06
VOLATAES	-			
Chloromethane	пока		201	∩ 97 50 C
Bromomethane	ng/kg		20102	797 C
Vinyl chionde	10Kg	2007	0.02	
Chloroetnane	10xd	007		
Meunylerie Grioride	Part of the second seco	38	0 02	0.07
	Runn	310	0.02	1 20
Variori asullue 1.1. Dichlorecthere	Dalla I	304	1106	2611
1.1-Dichloroethane		200	2010	26 U
Chloroform	na/ka	300	2010	26 U
1,2-Dichloroethane	LIQ/KG	100	20 U	26 U
2-Butanone	µg/kg	300	20 U	26 U
1.1.1-Trichloroethane	tug/kg	800	20 U	26 U
Carbon tetrachtoride	i µg/kg	60	20 U	26 U
Bromodichtoromethane	µg/kg		20 U	26 U
1,2-Dichtoropropane	µg/kg		20 U	26 U
cis-1,3-Dichloropropene	pg/kg	-	20 U	26 U
Trichloroethene	110/kg	700	3.1	7 6
Dibromochloromethane	pg/kg		20 U	26 U
1,1,2-Trichloroelhane	120'kg		2010	26 U
Benzene	pg/kg	60 or MDL	20 G	2 2
trans-1,3-Dichloropropene	pg/kg		20 U	26 U
Bromoform	pg/kg		20 U	26U
4-Methyl-2-pentanone	hg/kg	1,000	20 U	26 U
2-Hexanone	р9/кд		20 U	26 U
Tetrachloroethene	hg/kg	1,400	20 U	5 J
Toluene	pg/kg	1,500	20 U	26 U
1,1,2,2-Tetrachioroethane	19%G	89	20 U	26 U
Chtorobenzene	1:0/kg	1,700	20 U	26 U
Ethylbenzene	63/61	5,500	20 U	260
Styrene	10/kg		20 U	28 U
Total Xylenes	10/kg	1,200	2010	26 U
1,1,2-Trichloro-1,2,2-trilluoroethane	руурц	1,000	2010	26 U
cis-1,2-Dichloroethene	10/kg		7 J	7 7
trans-1,2-Dichloroethene	54/61	80	2010	26 U
Dichlorodifluoromethane	5,67		20 U	26 U
Trichlorofluoromethane	p3/kg		20 U	26 U
Methyl acetate	pg/kg		20 U	26 U
Methyl tert butyl ether	10/kg	120	20 U	26 U
Cyclohexane	pg/kg		20 U	26 U
Methylcyclohexane	hg/kg		20 U	26U
1,2-Dibromoethane	19%g		20 U	26 U
Isopropylbenzene	hg/kg		200	26 U
1,3-Dichlorobenzene	pg/kg	1,600	20 U	26 U
1,4-Dichlorobenzene	pg/kg	8,500	20 0	26 U
1,2-Dichlorobenzene	µg/kg	7,900	20 U	26 U
1.2-Dibromo-3-chloropropane	D3/61		20 U	2610
1,2,4-Trichlorobenzene	µ9/kg	3,400	2010	26IU

RSCO = Recommended Soil Cleanup Objectives 1000 | Macates decered value for opping. Macates value exceeds TAGM 4046 RSCO

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8B - Phase 3 GeoProbe Boring Data for Additional Locations

Sample ID ->	Units	TAGM	SVGP-1	SVGP-2	GPD-19	GPD-29	GPD-55	GPD-60
Depth - >		4046	7-10 ft.	7-10 ft.	3-4 ft.	0.5-4 ft.	4-7 ft.	4-7 ft.
Date Sampled ->		RSCO	9/27/2005	9/27/2005	9/9/2005	9/13/2005	9/21/2005	9/22/2005
SEMIVOLATILES								
Benzaldehyde	ug/kg		2100 U	1200 U	NS	NS	NS	NS
Phenol	ug/kg	30 or MDL	1000 U	600 U	NS	NS	NS	NS
Bis(2-chloroethyl) ether	ug/kg		1000 U	600 U	NS	NS	NS	NS
2-Chlorophenol	ug/kg	800	1000 U	600 U	NS	NS	NS	NS
2-Methylphenol	ug/kg	100 or MDL	1000 U	600 U	NS	NS	NS	NS
2,2'-Oxybis(1-Chloropropane)	ug/kg		1000 U	600 U	NS	NS	NS	NS
Acetophenone	ug/kg		2100 U	1200 U	NS	NS	NS	NS
4-Methylphenol	ug/kg	900	1000 U	600 U	NS	NS	NS	NS
N-Nitroso-Di-n-propylamine	ug/kg		1000 U	600 U	NS	NS	NS	NS
Hexachloroethane	ug/kg		1000 U	600 U	NS	NS	NS	NS
Nitrobenzene	ug/kg	200 or MDL	1000 U	600 U	NS	NS	NS	NS
Isophorone	ug/kg	4400	1000 U	600 U	NS	NS	NS	NS
2-Nitrophenol	ug/kg	330 or MDL	1000 U	600 U	NS	NS	NS	NS
2,4-Dimethylphenol	ug/kg		1000 U	600 U	NS	NS	NS	NS
Bis(2-chloroethoxy) methane	ug/kg		1000 U	600 U	NS	NS	NS	NS
2.4-Dichlorophenol	ug/kg	400	1000 U	600 U	NS	NS	NS	NS
Naphthalene	ug/kg	1,300	1000 U	600 U	NS	NS	NS	NS
4-Chloroaniline	ug/kg	220 or MDL	1000 U	600 U	NS	NS	NS	NS
Hexachlorobutadiene	ug/kg		1000 U	600 U	NS	NS	NS	NS
Caprolactam	ug/kg		2100 U	1200 U	NS	NS	NS	NS
4-Chloro-3-methylphenol	ug/kg	240 or MDL	1000 U	600 U	NS	NS	NS	NS
2-Methylnaphthalene	ug/kg	36,400	1000 U	600 U	NS	NS	NS	NS
Hexachlorocyclopentadiene	ug/kg		1000 U	600 U	NS	NS	NS	NS
2,4,6-Trichlorophenol	ug/kg		1000 U	600 U	NS	NS	NS	NS
2,4,5-Trichlorophenol	ug/kg	100	2500 U	1400 U	NS	NS	NS	NS
Biphenyl	ug/kg		2100 U	1200 U	NS	NS	NS	NS
2-Chloronaphthalene	ug/kg		1000 U	600 U	NS	NS	NS	NS
2-Nitroaniline	ug/kg	430 or MDL	2500 U	1400 U	NS	NS	NS	NS
Dimethyl phthalate	ug/kg	2,000	1000 U	600 U	NS	NS	NS	NS ·
2,6-Dinitrotoluene	ug/kg	1,000	1000 U	600 U	NS	NS	NS	NS
Acenaphthylene	ug/kg	41,000	1000 U	600 U	NS	NS	NS	NS
3-Nitroaniline	ug/kg	500 or MDL	2500 U	1400 U	NS	NS	NS	NS
Acenaphthene	ug/kg	50,000	1000 U	600 U	NS	NS	NS	NS
2,4-Dinitrophenol	ug/kg	200 or MDL	2500 U	1400 U	NS	NS	NS	NS
4-Nitrophenol	ug/kg	100 or MDL	2500 U	1400 U	NS	NS	NS	NS
Dibenzofuran	ug/kg	6,200	1000 U	600 U	NS	NS	NS	NS
2,4-Dinitrotoluene	ug/kg	1,000	1000 U	600 U	NS	NS	NS	NS
Diethyl phthalate	ug/kg	7,100	1000 U	600 U	NS	NS	NS	NS
Fluorene	ug/kg	50,000	1000 U	600 U	NS	NS	NS	NS
4-Chlorophenyl phenyl ether	ug/kg		1000 U	600 U	NS	NS	NS	NS
4-Nitroaniline	ug/kg		2500 U	1400 U	NS	NS	NS	NS
4,6-Dinitro-2-methylphenol	ug/kg		2500 U	1400 U	NS	NS	NS	NS
N-nitrosodiphenylamine	ug/kg		1000 U	600 U	NS	NS	NS	NS
4-Bromophenyl phenyl ether	ug/kg		1000 U	600 U	NS	NS	NS	NS
Hexachlorobenzene	ug/kg	410	1000 U	000U	NS	NS	NS	NS
Atrazine	ug/kg		210010	1200 U	NS	NS	* 'NS	NS
Pentachlorophenol	ug/kg	1000 or MDL	250010	1400 0	NS	NS	NS	NS
Phenanthrene	ug/kg	50,000	1000 U	600 U	NS	NS	NS	NS
Anthracene	ug/kg	50,000	1000 U	600 U	NS	NS	NS	NS
Carbazole	ug/kg		1000 U	600 0	NS	NS	NS	NS
Di-n-butyl phthalate	ug/kg	8,100	1000 U	600 U	NS	NS	NS	NS
Fluoranthene	ug/kg	50,000		600 U	NS NS	NS	NS NO	NS
Pyrene	ug/kg	50,000	U 0001	600 U	NS	NS	NS	NS
Butyl benzyl phthalate	ug/kg	50,000	1000 U	600 U	NS	NS	NS	NS
3.3-Dichlorobenzidine	ug/kg		1000 U	600 U	NS	NS	NS	NS NS
Benzo(a)anthracene	ug/kg	224 or MDL	100010	600 U	NS	NS	NS	NS
Chrysene	ug/kg	400	1000 U	600 U	NS	NS	NS	NS
Bis(2-ethylhexyl) phthalate	ug/kg		81 BJ	48 BJ	NS	NS	NS	NS
Di-n-octyl phthalate	ug/kg	50,000	35 J	600 U	NS	NS	NS	NS
Benzo(b)fluoranthene	ug/kg	1,100	<u> 1000 U</u>	600 U		NS	I NS	NS

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8B - Phase 3 GeoProbe Boring Data for Additional Locations

Sample ID ->	Units	TAGM	SVGP-1	SVGP-2	GPD-19	GPD-29	GPD-55	GPD-60
Depth - >	0.1100	4046	7-10 ft.	7-10 ft.	3-4 ft.	0.5-4 ft.	4-7 ft.	4-7 ft.
Date Sampled ->		RSCO	9/27/2005	9/27/2005	9/9/2005	9/13/2005	9/21/2005	9/22/2005
SEMIVOLATILES							•••••••••••••••••••••••••••••••••••••••	
Benzo(k)fluoranthene	ug/kg	1,100	1000 U	600 U	NS	NS	NS	NS
Benzo(a)pyrene	ug/kg	61 or MDL	380 J	600 U	NS	NS	NS	NS
Indeno(1,2,3-cd)pyrene	ug/kg	3,200	1000 U	600 U	NS	NS	NS	NS
Dibenzo(a,h)anthracene	ug/kg	14 or MDL	1000 U	600 U	NS	NS	NS	NS
Benzo(ghi)perylene	ug/kg	50,000	1000 U	600 U	NS	NS	NS	NS
PETROLEUM PRODUCTS by USEPA	Method 310.	.3						
Kerosene	mg/kg	NA	NS	NS	20 U	19 U	17 U	NS
Gasoline	mg/kg	NA	NS	NS	20 U	19 U	17 U	NS
Motor Oil	mg/kg	NA	NS	NS	20 U	6000	1700	NS
Fuel Oil#2	mg/kg	NA	NS	NS	310	19 U	17 U	NS
Fuel Oil #4	mg/kg	NA	NS	NS	20 U	19 U	17 U	NS
Fuel Oil #6	mg/kg	NA	NS	NS	20 U	19 U	17 U	NS
Other	mg/kg	NA	NS	NS	200 U	190 U	170 U	NS
POLYCHLORINATED BIPHENYLS by	USEPA Met	hod 8082						
Arocior 1016	mg/kg		NS	NS	NS	NS	NS	87 U
Arocior 1221	mg/kg	1 000 - curfaco	NS	NS	NS	NS	NS	87 U
Aroclor 1232	mg/kg	soils 10.000	NS	NS	NS	NS	NS	87 U
Aroclor 1242	mg/kg	- 0005, 10,000 *	NS	NS	NS	NS	NS	87 U
Aroclor 1248	mg/kg	subsulidue	NS	NS	NS	NS	NS	87 U
Aroclor 1254	mg/kg	30113	NS	NS	NS	NS	NS	87 U
Aroclor 1260	mg/kg		NS	NS	NS	NS	NS	87 U

Notes:

Data is preliminary pending data validation

NS = location was not sampled for the identified constituent

 NA = not applicable

 BOLD
 indicates constituent was detected

 SHADED
 detected level exceedsTAGM 4046 recommended site cleanup objective (RSCO)

1. ÷ •

a 1

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8B - Phase 3 GeoProbe Boring Data for Additional Locations

Sample ID ->	Units	TAGM	DAW-4	DAW-4	DAW-4	MW-13D
Depth - >		4046	13.5 - 14.5	16 - 18	22 - 24	14 - 16
Date Sampled ->		RSCO	04/20/06	04/24/06	04/24/06	04/24/06
VOLATILES						
Vinyl chloride	µg/kg	200	12 J	11 U	11 U	21 J
Trichloroethene	µg/kg	700	12 J	11 U	11 U	22 U
Tetrachloroethene	µg/kg	1,400	12 J	11 U	11 U	28
trans-1,2-Dichloroethene	µg/kg	300	2 J	11 U	11 U	16 J
Dichlorodifluoromethane	µg/kg		12 J	11 U	11 U	22 U

:

x 1

Pioneer Midler Avenue LLC Remedial Investigation Report Table 8 - Phase 3 GeoProbe Boring Data for Source Area Delineation - Sump

trans-1,2-Dichloroethene	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl chlorida	VOLATILES	Date Sampled ->	Depth - >	Sample ID ->
pg/kg	pg/kg	µg/kg	µg/kg	µg∕kg				Units
300		1,400	700	200		RSCO	4046	TAGM
20 U	נ 7	20 U	<u>r</u> [5	20 U		03/02/06	10 - 14	GPS 1-1
260	71	5J	5 6	26 U		03/02/06	10-14	GPS 1-4

4. + 1

ж. I

RSCO == Recommended Soil Cleanup Objectives 1,003 - Indicates detected value for organics. - Indicates value exceeds TAGM 4046 RSCO

Pioneer Midler Avenue LLC Remedial Investigation Report Table 9 - Phase 1 Surface Soil Data for PCBs/Pesticides

Sample ID ->	Units	TAGM 4	1046	P-1 0-6-C	P-2 0-6-C	P-3 0-6-C
Depth - >		RSCO	Eastern		0-6 inches	
Date Sampled ->			NSA		11/18/2004	
PESTICIDES/AROCLOF	<u>3S</u>					
alpha-BHC	ug/kg	110		19 U	21 U	19 U
beta-BHC	ng/kg	200		19 U	21 U	19 U
delta-BHC	ng/kg	300		19 U	21 U	19 U
gamma-BHC (Lindane)	ng/kg	60		19 U	21 U	19 U
Heptachlor	ug/kg	100		4.7 J	21 U	19 U
Aldrin	ug/kg	41		19 U	21 U	19 U
Heptachlor epoxide	ng/kg	20		35 U	21 U	19 U
Endosulfan I	ng/kg	006		19 U	21 U	19 U
Dieldrin	ng/kg	44		37 U	0 O	38 U
4,4'-DDE	ug/kg	2,100		30 JP	40 U	38 U
Endrin	ng/kg	100		37 U	40 U	38 U
Endosulfan II	ng/kg	800		37 U	40 U	38 U
4,4'-DDD	ug/kg	2,900		71	40 U	38 U
Endosulfan Sulfate	ng/kg	100		76 PJ	24 JP	38 U
4,4'-DDT	ng/kg	2,100		140 PJ	40 P	38 U
Methoxychlor	ug/kg			190 U	44 JPN	190 U
Endrin ketone	ug/kg			190 U	40 U	38 U
Endrin aldehyde	ug/kg			37 U	40 U	38 U
alpha-Chlordane	ng/kg	540		19 U	21 U	19 U
gamma-Chlordane	ug/kg	540		19 U	21 U	19 U
Toxaphene	ug/kg			1,900 U	2,100 U	1900 U
Aroclor 1016	ug/kg	1		370 U	400 U	380 U
Aroclor 1221	ng/kg	1,000 -		760 U	810 U	770 U
Aroclor 1232	ug/kg	surface		370 U	400 U	380 U
Arocior 1242	ug/kg	soils, 10,000		370 U	400 U	380 U
Aroclor 1248	ug/kg	- subsurface		370 U	400 U	380 U
Aroclor 1254	ug/kg	soils		370 U	400 U	380 U
Arocior 1260	ug/kg			370 U	400 U	380 U

Notes:

BOLD indicates constituent was detected **SHADED** indicates detected level exceeding applicable TAGM 4046 recommended site cleanup objective (RSCO)

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis		trans	
	TAGM 40	046 RSCOs ->	CVOCs	200		700		1,400		NA		300	
	Propos	sed SSCOs ->		800		2,800		5, 6 00		NA		1,200	
B-1	4 - 6	11/12/04	38,900	8,100		5,800		14,000		11,000		1,800	U
B-2	5 - 7	11/12/04	55	11	J	5	J	21		18		16	U
B-3	14 - 16	11/11/04	408,000	16,000	U	68,000	1	310,000		30,000		16,000	U
B-3	2 - 4	11/11/04	22	11	U	2	J	20		11	U	11	U
B-4	2 - 4	11/11/04	11	12	U	3	J	8	J	12	υI	12	U
B-5	6 - 8	11/12/04	62,590	3,800		490	J	1,200	J	54,000		3,100	
B-5 DL	6 - 8	11/12/04	63,800	3,700	DJ	5,800	U	2,300	DJ	54,000	D	3,800	Dy
B-6	2 - 4	11/11/04	0	10	U	10	U	10	U	10	U	10	U
B-7	2 - 4	11/12/04	0	11	U	11	U	11	U	11	U	11	U
B-8	2 - 4	11/11/04	0	11	U	11	U	11	U	11	U	11	U
B-9	2 - 4	11/11/04	17	11	U	11	Ų	17		11	U	11	U
B-10	3 - 6	11/12/04	0	1,700	U	1,700	U	1,700	Ų	1,700	U	1,700	U
LB-8	4 - 6	11/09/04	0	15	U	15	U	15	U	15	U	15	U
PB-3	2 - 4	11/22/04	0	12	U	12	U	12	U	12	U	12	U
PB-4	2 - 4	11/18/04	0	12	U	12	U	12	U	12	U	12	<u>U</u>
PB-7	2 - 4	11/19/04	12	12	UJ	12	U	12	U	12	U	12	U
PB-12	18 - 20	11/24/04	85	17	UJ	17	IUJ	17	UJ	17	UJ	17	UJ
MW-1	4 - 6	11/17/04	0	11	U	11	U	11	U	11	U	11	U
MW-2	2 - 4	11/18/04	0	12	U	12	U	12	U	12	U	12	U
MW-3	2 - 4	11/18/04	46	14	U	14	U	46		14	U	14	, U
MW-4	2 - 4	11/17/04	0	14	U	14	U	14	υ	14	υ	14	U
MW-5	2 - 4	11/17/04	10	12	U	12	U	10	J	12	U	12	U
MW-6	4 - 7	11/16/04	0	13	U	13	U	13	U	13	U	13	U
MW-7	4 - 6	11/16/04	11	11	υ	11	UJ	11	U	11	U	11	U
MW-8	2 - 5	11/18/04	0	18	U	18	U	18	U	18	U	18	U
MW-2D	16-18	01/27/05	0	18	U	18	U	18	U	18	U	18	U
MW-3D	20-22	01/25/05	2,315	160		3	J	12	J	2,000	J	140	/
MW-3D DL	20-22	01/25/05	2,000	4,300	U	4,300	U	4,300	U	2,000	DJ	4,300	U U
MW-3D	24-26	01/25/05	2	14	U	14	U	2	J	14	U	14	, U
MW-4D	14-16	01/26/05	0	13	U	13	U	13	U	13	U	13	i U
MW-9D	16-18	01/27/05	0	16	U	16	U	16	U	16	U	16	i U_
MW-9D	18-20	01/27/05	0	15	U	15	U	15	U	15	υ	15	U
MW-10D	16-18	01/26/05	54	7	J	18	U	18	U	45		2	J
MW-11D	20-22	01/24/05	13,648	11	U	550	E	13,000	-	£ 96		2	؛J
MW-11D DL	20-22	01/24/05	13,650	1,300	U	650	DJ	13,000	D	1,300	υ	1,300	IU
GP-2	12 - 16	03/17/05	2,852	820	9	12	J	80		1,700	J	240)
GP-2 DL	12 - 16	03/17/05	2,560	500	DJ	2,000	U	360	DJ	1,700	DJ	2,000	<u>IU</u>
GP-2	16 - 19	03/17/05	1,837	24	J	92		82		1,600	J	39)
GP-2 DL	16 - 19	03/17/05	2,310	3,500	U	3,500	U	710	DJ	1,600	DJ	3,500	۱U .
GP-3	16 - 19	03/17/05	13,250,000	980,000	U	250,000	7	13,000,000	d;	980,000	U	980,000	<u>10</u>
GP-3	19 - 19.5	03/17/05	6,140,000	360,000	U	240,000	J	5,900,000	-	360,000	υ	360,000	기U 기U
GP-4	10-12	03/17/05	254,400	80,000		16,000	U	4,400	5	170,000		16,000	וו
GP-7	8 - 12	03/18/05	47	5	J	20	U	20	U	37		5	j J
GP-7	16 - 18.9	03/18/05	105	3	J	3	J	29	U	89		10	J
GP-9	8 - 10.5	03/18/05	3,298	2,700	EJ	33	U	33	U	530		68	3
GP-9 DL	8 - 10.5	03/18/05	4,900	2,700	DJ	3,900	UU_	3,900	U	2,200	DJ	3,900	<u>10</u>
GP-9	16 - 18.5	03/18/05	100	4	J	14	J	20	U	69		13	3 J
GP-10	9 - 10	03/18/05	53	10	J	29	U	29	U	32		11	IJ
GP-10	14 - 16	03/21/05	61	34	U	34	U	22	J	32	J	7	′ J
GP-11	15 - 16	03/21/05	34	28	U	28	U	14	J	20	J	- 28	3 U_
GP-11	16 - 18	03/21/05	31	29	U	29	U	4	J	20	J	7	′ <u>J</u>
GP-12	8 - 12	03/21/05	4,100	1,300	J	1,900	U	1,900	U	2,800		1,900	າມ
GP-14	18.5 - 19.5	03/21/05	2,396	6	J	710	J	660	J	790	J	230	<u>)</u>

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis		trans	
	TAGM 40	46 RSCOs ->	CVOCs	200		700		1,400		NA		300	
	Propos	sed SSCOs ->		800		2,800		5,600		NA		1,200	
GP-14 DL	18.5 - 19.5	03/21/05	1,370	2,700	U	710	DJ	660	DJ	2,700	U	2,700	U
GP-15	24 - 25	03/21/05	523,000	38,000	U	13,000	J	510,000		38,000	U	38,000	U
SB 2-1	5 - 7	03/16/05	0	15	U	15	υ	15	U	15	U	15	U
SB 2-1 RE	5-7	03/16/05	0	15	υ	15	U	15	U	15	U	15	U
SB 2-1	8 - 10	03/16/05	0	18	υ	18	υ	18	U	18	U	18	U
SE 3-1	2 - 4	03/16/05	0	34	υ	34	υ	34	U	34	υ	34	υ
SB 3-1	12 - 14	03/16/05	0	19	U	19	U	19	U	19	U	19	Ũ
\$3.7-1	2 - 4	03/17/05	278	20	U	18	J	260		20	U	20	υ
SB 7-1	16 - 18	03/17/05	0	29	Ū	29	Ū	29	U	29	U	29	U
SB 9-1	4 - 6	03/17/05	169	15	Ú	39		130		15	υ	15	U
SB 9-1	16 - 18	03/17/05	553	21	U	240		64		160		89	
98-12-1	0-2	03/18/05	224	12	Ŭ	220		12	υ	4	J	12	U
SB 12-1	16 - 18	03/18/05	6.800	1.600	Ū	1.800		5.000		2,700	U	1,600	U
SB 13-2	12 - 14	03/21/05	23,260	3.200	-	18	U	18	U	20.000		60	
SB 13-2 DI	12 - 14	03/21/05	23,200	3.200	D	2.100	U	2.100	υ	20,000	D	2.100	U
SB 13-2	20 - 22	03/21/05	16,700	2,700		2,100	Ū	2,100	U	14.000		2,100	U
SB 13-4	4 - 6	03/18/05	181	120		14		14	U	45		2	J
SB 13-4	20 - 22	03/18/05	1	1	IJ	13	U	13	Ū	13	U	13	Ū
DAV-1	16-18	07/27/05	0	12	Ŭ	12	Ŭ	12	U	12	Ū	12	Ū
DW-1	20-24	07/27/05	0	12	Ŭ	12	Ū	12	Ŭ	12	U	12	U
1146.0	20-22	07/26/05	70	14	U.I	14	UJ.	14	ŪJ	14	ŪJ	14	ŪJ
DW-2	24-26	07/26/05	60	12	Ū.I	12	<u>u</u> j	12	UJ.	12	ŪJ	12	UJ
DW-2B	24-26	07/26/05	0	12	Ū.	12	U	12	U	12	U	12	Ū
DW-2	40-43	07/26/05	139	12	Ū.I	17	Ĵ	86	J	12	ŬJ	12	ŪJ
DW-28	40-43	07/26/05	175	12	U	25	-	150	-	12	U	12	Ū
DW-3	16-18.5	07/27/05	0	19	U	19	U	19	U	19	Ū	19	U
DW-4	6-8	07/28/05	1,214	210	J	52	U	52	Ū	990	J	14	J
DW-4 BI	6-8	07/28/05	1,202	190	J	51	Ŭ	51	Ū	1.000		12	J .
DW-4	16-18.5	07/28/05	647,210	910	J	26.000		600,000		20.000	J	300	J
DW-4 DI	16-18.5	07/28/05	646,000	60,000	Ū.	26,000	DJ	600,000	D	20.000	DJ	60.000	Ū
DW-4	24-28.5	07/28/05	4	12	Ū.	12	lu l	2	IJ	2	J	12	Ū
C20.1	7 - 9	09/06/05	39	4	J	14	U.I	14	IJ	5	J	2	J
GPD-1 DI	7 - 9	09/06/05	0	69	Ŭ	69	U.	69	Ū.	69	Ū	69	Ū
GPD-1	11 - 14	09/06/05	59	13	UJ	13	U.	7	J	13	ŪJ	13	ŪJ
GPD-1 DI	11 - 14	09/06/05	0	64	U	64	U	64	U	64	Ū	64	U
GPD-2	158-175	09/06/05	4 678	60	Ŭ	2,200		2.100	-	340	-	38	J
GPD-2 DI	15.8 - 17.5	09/06/05	4 530	1 500	Ŭ	2 200	D	2,100	D	230	DJ	1,500	Ū
GPD-3	4 - 8	09/06/05	1 000 140 330	1,000	ц ПП	110.000	J	1.E+09	-	30,000		330	J
GPD-3 DI	4-8	09/06/05	1,000,000,000	2 E+09		2 E+09	iii	1.E+09	DJ	2 E+09	U	2 F+09	Ū
GPD-3	15.17	09/06/05	12 002 700	1.400	<u>u</u>	2 700	ľ	12 000 000		1.400	Ū	1,400	ίυ.
GPD-3 DI	15 - 17	09/06/05	12,310,000	1 400 000	ŭ	310,000	DJ	12,000,000	BD	1.400.000	Ŭ	1,400,000	Ū
GPD-3	17 - 20	09/06/05	23 004 100	1,100,000	ŭ	4 100		23,000,000		1,100,000	U	1,300	Ŭ
GPD-3 DI	17 - 20	09/06/05	23 370 000	2 600 000	Ŭ.	370,000	D.I	23 000 000	BD	2 600 000	ій П	2 600 000	Ŭ
GPD 3	23-26	09/06/05	8 200	1 400	ŭ	1 500	00	6 700	R	1 400		1 400	ŭ
CPD-5	14 . 15.2	09/07/05	6,200	1,400		1,500	-	4 500	0	550	10	1,100	ŭ
GPD 5	16 - 18	09/07/05	3 283	1,000	U U	2 800		4,000		410		62	
	16-18	09/07/05	5,205	1 500	U U	2,000	n	2 400	n	340	n.i	1 500	11
	10-10	00/07/05	1 000	1,500	ы	1 500		1 000	5	1 500	10	1,000	ы
	12 12	00/07/05	1,500	1,000 E0	lu -	260	<u> </u>	1,300	1	760	U.	79	۲-
	10 10	00/07/05	0,00	1 500		200	n	1 600	1 n	760	in.i	1 500	11
GPD.6	12-13	09/07/05	2,020	1,000	1 II	3 100		2 800	<u>۲</u>	1 600		1,000	ŭ
CPD.7	10 10	00/07/05	7,000	1,000		<u>छ</u> ,क00 11		11		11		1,000	ŭ
CPD 8	4-0	09/07/09	7			11	H H H			11	<u> </u>	11	H
GPU-0	4 - 7.0	03/08/02	1	<u> </u>	1.0		<u> </u>	 	<u> </u>	<u> </u>	<u>10</u>	L	10

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis		trans	
	TAGM 4	046 RSCOs ->	CVOCs	200		700		1,400		NA		300	
	Propo	sed SSCOs ->		800		2,800		5,600		NA		1,200	
GPD-8	11.5-15	09/19/05	70	18	υ	14	J	2	J	44		10	J
GPD-10	4 - 7.6	09/08/05	3,452	70		2	J	12	U	3,200		180	
GPD-10 DL	4 - 7.6	09/08/05	4,380	1,400	U	1,400	U	180	DJ	3,200	D	1,000	DJ
GPD-10	<u> 17 - 19</u>	09/08/05	0	14	U	14	U	14	U	14	U	14	U
GP0-12	4 - 7	09/08/05	2,024	180	U	12	U	12	Ų	2,000		24	
GPD-12 DL	4 - 7	09/08/05	2,180	180	DJ	1,400	U	1,400	U	2,000	D	1,400	U
GPD-12	15 - 16	09/08/05	148	4	J	20		26		92		6	J
GPD-12	16 - 19	09/08/05	5	2	J	12	U	12	U	3	J	12	U
GPD-13	4 - 7	09/08/05	226	120		4	J	13	U	100		2	J
GPD-14	7 - 9.8	09/08/05	62,900	5,000		5,800	Ĭ	7,100	-	33,000		12,000	
GPD-14	15 - 17.5	09/08/05	1,019	14		84		110		790		21	
GPD-14 DL	15 - 17.5	09/08/05	2,010	1,300	U	480	DJ	740	DJ	790	DJ	1,300	U
GPD-16	4 - 7	09/09/05	46	27		12	U	12	U	19		12	U
GPD-16	11 - 15	09/09/05	13	1	J	12	U	12	U	10	J	2	J
GPD-17	7 - 11	09/09/05	0	19	U	19	U	19	U	19	U	19	U
GPD-18	4 - 7	09/09/05	1,515	200		11	U	11	U	1,300		15	
GPD-18 DL	4 - 7	09/09/05	1,300	1,300	U	1,300	U	1,300	U	1,300	D	1,300	υ
GPD-18	11 - 15	09/09/05	2,381	100		120		5	J	2,100		56	
GPD-18 DL	11 - 15	09/09/05	2,580	1,700	U	480	DJ	1,700	U	2,100	D	1,700	U
GPD-19	3 - 4	09/09/05	5,790	1,600	υ	440	J_	4,500		850	J	1,600	U
GPD-19	7 - 11	09/09/05	20,300	9,100		1,300	U	1,300	U	11,000		200	J
GPD-20	2 - 4	09/09/05	1	12	U	12	U	1	J	12	U	12	U
GPD-20	15 - 17.7	09/09/05	2	11	U	11	U	11	U	2	J	11	U
GPD-20	17.7 - 19	09/09/05	0	14	U	14	U	14	U	14	U	14	U
GPD-21	3.3 - 4	09/09/05	0	1,300	U	1,300	U	1,300	U	1,300	U	1,300	U
GPD-21	15 - 18.2	09/09/05	5,660	660	J	1,300	U	1,300	U	5,000		1,300	U
GPD-21	19 - 21	09/09/05	0	14	U	14	U	14	U	14	U	14	U
GP0-24	2 - 4	09/12/05	0	11	U	11	U	11	U	11	U	11	U
GPD-24	11 - 15	09/12/05	0	11	U	11	Ŭ	11	U	11	U	11	U
GPD-24	<u> 16 - 17</u>	09/12/05	0	12	U	12	U	12	U	12	U	12	U
GPD-25	3 - 3.4	09/12/05	0	12	U	12	U	12	U	12	U	12	U
GPD-25	11 - 15	09/12/05	0	11	U	11	U	11	U	11	U	11	U
GPD-26	4 - 7	09/12/05	270,600	3,200		29,000		210,000		28,000		400	J
GPD-26 DL	4 -7	09/12/05	269,200	2,200	DJ	29,000	D	210,000	D	28,000	D	15,000	U
GPD-26	11 - 15	09/12/05	2,543,000	1,400	U	32,000	E	2,500,000		11,000		1,400	U
GPD-26 DL	11 - 15	09/12/05	2,500,000	1,400,000	U	1,400,000	U	2,500.000	D	1,400,000	U	1,400,000	U
GPD-26	17.5 - 19	09/12/05	500	1,700	U	1,700	U	500	J	1,700	U	1,700	U
GPD-27	0 - 4	09/12/05	62	51	U	23	J	39	J	51	U	51	U
GPD-27	7 - 11	09/12/05	2,995	1,400	1	110	U	110	U	1,500	_	95	J
GPD-28	0.5-4	09/13/05	93	2	J	9	J	58	<u> </u>	20		4	J
GPD-28	11 - 15	09/13/05	0	22	U	22	U	22	U	22	U	22	U
GPD-29	0.5 - 4	09/13/05	327	84	U	24	J	280		23	J	84	U
GPD-29	12 - 16	09/13/05	23	23	U	3	J	4	J	8	J	8	J
GPD-30	0.3 - 4	09/13/05	68	13	U	9	J	28		24		7	J
GPD-30	11 - 15	09/13/05	25	4	J	21	U	2	J	15	J	4	J
GPD-32	11-15	09/14/05	27,700	3,700	-	2,800	U	2,800	U	24,000		2,800	U
GPD-33	15 - 18	09/14/05	20,530	930	3	1,600	J	3,000	U	17,000		1,000	J
GPD-34	7 - 11	09/14/05	3,350	2,000	0	2,100	U	350	J	1,000	J	2,100	U
GPD-34	15-17	09/14/05	5,340	2,700		2,200	U	310	J	1,900	J	430	J
GPD-36	4 - 7	09/15/05	0	11	U	11	U	11	U	11	U	11	<u> U</u> _
GPD-36	11 - 15	09/15/05	8,840	1,200	3	1,400	U	1,400	U	7,100		540	J
GPD-37	7 - 11	09/15/05	10,860	2,800		1,400	U	1,400	U	7,800		260	J_
GPD-37	15-18.3	09/15/05	8,310	1,600	U	910	J	1,600	U	7,400		1,600	U

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis		trans	
	TAGM 4	046 RSCOs ->	CVOCs	200		700		1,400		NA		300	
	Propo	sed SSCOs ->		800		2,800		5,600		NA		1,200	
GPD-38	4 - 7	09/15/05	13		R	13	U	13	U		R	13	UJ
GPD-38 DL	4 - 7	09/15/05	357	27	J	67	U	67	U	330		67	U
GPD-38	15 -17	09/15/05	7,880	170	J	230	J	1,600	U	7,200		280	J
GPD-38	17 -19	09/15/05	22,000	1,700	U	1,700	U	22,000		1,700	U	1,700	U
GPD-41	7 - 11	09/16/05	17,400	4,400		2,200	U	2,200	U	13,000		2,200	U
GPD-42	11 - 15	09/16/05	11,800	2,200		2,000	U	2,000	U	9,600		2,000	U
GPD-43	11 - 15	09/16/05	8,500	1,700		1,400	U	1,400	U	6,800		1,400	U
GPD-44	4 - 7	09/16/05	11,600	1,800		1,500	U	1,500	U	9,800		1,500	U
GPD-44	15 -17.9	09/16/05	3,700	1,600	U	1,600	U	1,600	U	3,700		1,600	U
GPU-45	2 - 4	09/19/05	61	33		11	U	1	J	27		11	U
GPD-45	15-18.3	09/19/05	21	9	J	13	U	13	U	12	J	13	U
GPD-45	19-22	09/19/05	0	14	U	14	U	14	U	14	U	14	U
GPD-47	4 - 7	09/19/05	605	170		15	U	15	U	430		5	J
GPD-47	4 - 7	09/19/05	537	97	D	60	Ü	60	U	430	D	10	DJ
GPD-47	11 - 15	09/19/05	6,700	1.300		1,100	U	1,100	U	5,400		1,100	U
GPD-47	18 -19	09/19/05	206	2	J	32		2	J	140		30	
GPD-48	7 - 11	09/19/05	264	63		18	U	18	U	190		11	J
GPD-48	15 - 17.3	09/19/05	8	2	J	11	U	11	U	6	J	11	U
GPD-49	11 - 15	09/19/05	3,490	5	J	1,500		1,800		85		100	
GPD-48 DL	11 - 15	09/19/05	3,300	1,400	U	1,500	D	1,800	D	1,400	U	1,400	U
GPD-49 DL	15 -17	09/19/05	5,922	13	U	810	J	5,100		12	J	13	U
GPD-49 DL	15 -17	09/19/05	5,910	1,600	U	810	DJ	5,100	D	1,600	U	1,600	U
GPD-49	7 - 11	09/19/05	2	19	U	19	U	19	U	2	J	19	U
GPD-49	17 - 19	09/19/05	0	14	U	14	Ü	14	U	14	U	14	U
GPD-50	4 - 7	09/19/05	115	96		12	U	12	U	9	J	10	J
GPD-50	11 - 14	09/19/05	35	12	U	8	J	2	J	21		4	J
GPD-50	14 - 15	09/19/05	95	1	J	4	J	12	U	60		. 30	
GPD-50	15 -19	09/19/05	130	11	U	75		54		1	J	11	U
GPD-51	15-18.2	09/20/05	43,000,000	3,200,000	U	1,000,000	J	42,000,000	-	3,200,000	U	3,200,000	U
GPD-51	19-23	09/20/05	195	4	J	6	J	180	-	5	J	12	U
GPD-52	15-17.5	09/20/05	46,800	1,600	U	4,800		29,000	1	13,000		1,600	U
GPD-55	4 - 7	09/21/05	12	12	U	12	U	9	J	3	J	12	U
GPD-55	15-18	09/21/05	409	32		32		25		200		120	
GPD-55 DL	15-18	09/21/05	290	58	U	53	DJ	9	DJ	£ 200	D	28	DJ
GPD-57	0.5-4	09/21/05	14,000	2,400	U	2,400	U	14,000		2,400	U	2,400	U
GPD-57	11-14.5	09/21/05	17	12	U	2	J	2	J	7	J	6	J
GPD-88	15-18.5	09/22/05	0	11	U	11	U	11	U	11	U	11	U
GPD-59	7 - 11	09/22/05	522	12	U	240	J	6	J	210		66	
GPD-59 DL	7 - 11	09/22/05	220	52	U	45	DJ	52	U	150	D	25	DJ
GPD-59	11-14.3	09/22/05	1,181	2	J	880	J	120		130		49	
GPD-59 DL	11-14.3	09/22/05	2,080	1,400	U	880	DJ	780	DJ	420	DJ	1,400	U_
GPD-59	14.3-15	09/22/05	2,685	920	J.	2	J	2	J	1,700	J	61	J
GPD-59 DL	14.3-15	09/22/05	7,880	1,400	U	5,300	D	2,400	D	180	DJ	1,400	U
GPD-60	4 - 7	09/22/05	311	46		6	J	11	U	200		59	
GPD-61	15-17.8	09/22/05	491	250		5	J	13	U	180		56	
GPD-62	11 - 15	09/22/05	14	10	J	14	U	14	U	4	J	14	U
GPD-62	15-16.5	09/22/05	0	12	U	12	U	12	U	12	υ	12	U
GPD-62	16.5-19	09/22/05	51	35		15	U	15	U	16		15	U
GPD-60	1 - 4	09/23/05	0	14	U	14	U	14	U	14	U	14	U
GPD-63	15-16.6	09/23/05	20	12	U	12	U	20		12	U	12	U
GPD-84	11 - 15	09/23/05	1,619	550	J	2	J	4	J	990	J	73	
GPD-64 DL	11 - 15	09/23/05	600	1,500	U	1,500	U	600	DJ	1,500	U	1,500	U
GPD-85	11 - 15	09/23/05	3	2	J	11	U	11	U	1	J	11	U

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis		trans	
	TAGM 4	046 RSCOs ->	CVOCs	200		700		1,400		NA		300	
	Propo	sed SSCOs ->		800		2,800		5,600		NA		1,200	
GPD-65	17.2-19	09/23/05	0	14	U	14	U	14	U	14	U	14	U
GPD-68	11 - 15	09/23/05	4,310	11	U	2,600	J	11	U	510	J	1,200	J
GPD-66 DL	11 - 15	09/23/05	370	1,300	U	1,300	U	370	DJ	1,300	U	1,300	U
GPD-67	11 - 15	09/23/05	8,000	11	υÍ	5,800		11	U	600	J	1,600	
GPD-67 DL	11 - 15	09/23/05	8,340	1.300	U	5,800	D	340	DJ	600	DJ	1,600	D
GP3-1	10 - 14	02/27/06	1.630	600	J	17	U	17	U	900	J	130	J
GP3-1 DL	10 - 14	02/27/06	1.630	600	D	73	U	73	U	900	D	130	D
GP 3-1	14 - 18	02/27/06	1.943	340	J	43	J	19	U	1.300	J	260	J
GP 3-1 DL	14 - 18	02/27/06	1,943	340	D	43	DJ	91	Ú	1.300	D	260	D
GP 3-2	10 - 14	02/27/06	655	260		18	U	18	U	300		95	
GP 3-2	14 - 17.3	02/27/06	2.070			270		20	U	1.400		260	
GP 3-2 DL	14 - 17.3	02/27/06	2.640	240	D	550	D	90	U	1,400	D	450	D
GP 3-3	10 -14	02/27/06	4.840	2,200	EJ	18	U	18	U	2.500		140	
GP 3-3 DL	10 -14	02/27/06	2.500	2.100	U	2.100	Ŭ	2.100	U	2.500	D	2.100	U
GP 3-3	14 - 17.5	02/27/06	3.087	210		48		9	J	2.700		120	
GP 3-3 DL	14 - 17.5	02/27/06	2.700	2.300	U	2.300	U	2.300	Ũ	2.700	D	2.300	U
GP 3-4	10 -14	02/28/06	1.084	890	U .	17	U	17	U	180	J	14	J
GP 3-4	10 -14	02/28/06	1.096	890	D	84	U	84	U	180	D	26	DJ
GP 3-4	14 - 17.7	02/28/06	2.011	220	J	560	J	11	J	860	J	360	J
GP 3-4 DL	14 -17.7	02/28/06	2,035	220	D	560	D	35	DJ	860	D	360	D
GP 3-5	10 -14	02/28/06	2,460	1,000	J	150	J	18	U	920	J	390	J
GP 3-5 DL	10 -1 4	02/28/06	2,460	1.000	D	150	D	80	U	920	D	390	D
GP 3-5	14 - 17.7	02/28/06	207	42		20	J	21	U	91		54	
GP 3-6	10 -1 4	02/28/06	705	280		15	J	18	U	240		170	
GP 3-6	14 -17	02/28/06	138	28		2	J	20	U	75		33	
GP 3-7	14 - 16.7	03/02/06	15	4	J	18	U	18	Ų	8	J	3	J
GP 3-8	10 -14	02/28/06	182,350	1,200	EJ	10,000	J	150,000	J	21,000	J	150	
GP 3-8	10- 14	02/28/06	181,000	11,000	U	10,000	DJ	150,000	D	21,000	D	11,000	U
GP 3-8	14 -18	02/28/06	193,559	27	-	3,200	J	190,000		320		12	J
GP 3-8 DL	14 -18	02/28/06	193,200	12,000	U	3,200	DJ	190,000	D	12,000	U	12,000	U
GP 3-9	10 -14	02/28/06	835,600	2,200	U	3,400		830,000		2,200		2,200	υ
GP 3-9 DL	10 -14	02/28/06	830,000	44,000	U	44,000	U	830,000	BD	44,000	U	44,000	U
GP 3-9	14 -18	02/28/06	4,202,200	2,500	U.	2,200	J_	4,200,000	10000	2,500	U	2,500	U
GP 3-9	14-18	02/28/06	4,200,000	620,000	U	620,000	U	4,200,000	D	620,000	U	620,000	U
GP 2-10	14 - 18	03/01/06	2,526	240		6	J	42	U	2,100		180	
GP 3-10 DL	14 18	03/01/06	2,610	2,400	U	2,400	U	2,400	υ	2,100	DJ	510	DJ
GP 3-11	14 - 17.5	03/01/06	2,082	1,100	J -	2	J	21	U	860	J	120	J
GP 3-11 DE	14 - 17.5	03/01/06	2,080	1,100	D	100	U	100	U	860	D	120	D
GP 3-12	14 - 17.5	03/01/06	1,656	660	J	19	U	19	U	910	D	86	J
GP 3-12 DL	14 - 17.5	03/01/06	1,656	660	D	96	U	96	U	910	D	86	DJ
GP 3-13	10 - 14	03/01/06	680	530		19	U	19	U	130		20	
GP 3-13 DL	10 - 14	03/01/06	725	530	D	85	U	85	U	170	D	25	DJ
GP 3-13	14 - 17	03/01/06	80	50	_	18	Ų	18	U	30		18	U
GPB 1-1	14 - 17	03/02/06	327,400	2,600	U	28,000		290,000	J	9,400		2,600	U
GPB 1-1 DL	14 - 17	03/02/06	324,900	52,000	U	27,000	DJ	290,000	D	7,900	DJ	52,000	U
GPB 1-2	14 - 18	03/02/06	6,358,360	630	J	21,000		6,300,000	l	36,000		730	J
GPB 1-2 DL	14 - 18	03/02/06	6,300,000	550,000	U	550,000	U	6,300,000	BD	550,000	U	550,000	U
GPB 1-3	10 - 11.8	03/03/06	6,900,000	310,000	U	310,000	U	6,900,000		310,000	U	310,000	U
GPB 1-3 DL	10 - 11.8	03/03/06	6,900,000	620,000	U	620,000	U	6,900,000	BD	620,000	U	620,000	U
GPB 1-4	14 - 17.6	03/03/06	4,479,000	290,000	U	290,000	U	4,400,000	_	79,000	J	290,000	U
GPB 1-5	14 - 17	03/03/06	280	21	U	25		42	-	200		13	J
GPB 1-6	14 - 17.7	03/03/06	4,810,000	260,000	U	110,000	J	4,700,000	В	260,000	U	260,000	U
GPB 1-7	14 - 18	03/06/06	19,300	2,300	5	2,500	U	2,500	U	17,000		2,500	υ

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis		trans	
	TAGM 4	046 RSCOs ->	CVOCs	200		700		1,400		NA		300	
	Propo	sed SSCOs ->		800		2,800		5,600		NA		1,200	
GPB 1-8	14 - 18	03/06/06	2,858,000	260,000	U	260,000	U	2,800,000		58,000	J	260,000	U
GPB 1-9	14 - 17.4	03/09/06	71,170	510	E	8,100	E	58.000	E	4,300	E	260	
GPB 1-9 DL	14 - 17.4	03/09/06	9,940,000	610,000	U	140,000	DJ	9,800,000	D	610,000	U	610,000	U
GPB 1-10	14 - 16.8	03/09/06	67,440,000	1,800,000	U	440,000	J	67,000,000		1,800,000	U	1,800,000	U
GPB 1-10 DL	14 - 16.8	03/09/06	67,000,000	3,700,000	U	3,700,000	U	67,000,000	D	3,700,000	υİ	3,700,000	υ
GPB 1-11	14 - 17	03/09/06	27,860	1,500	J	5,900	J	2,200	J	18,000	J	260	J
GPB 1-11 DL	14 - 17	03/09/06	28,030	1,500	DJ	5,900	D	2,200	D	18,000	D	430	DJ
GPB 1-12	2.5 - 4	03/09/06	9.690	960	J.	730	J	2,800		5,200		1,800	U
GPB 1-12	10 - 14	03/09/06	10,100	1,900	J.	2.100	U	2,100	υ	8,200		2,100	U
GPB 1-12	14 - 18	03/09/06	1,183	130		20	U	14	BJ	990		49	
GPB 1-12 DL	14 - 18	03/09/06	1,197	130	D	100	U	- 52	BD.	990	D	25	DJ
GPB 1-13	6 - 10	03/10/06	2,726	1,200		100	υİ	100	υ	1.500		26	J
GPB 1-13	14 - 17.2	03/10/06	62	3	J	24	U	24	Ü	48		11	J
GPB 1-14	6 - 10	03/10/06	40	31		22	Ū	22	U	6	J	3	J
GPB 1-15	14 - 17	03/13/06	0	20	U	20	Ū	20	υ	20	Ŭ	20	U
GPB 3-1	14 - 18	03/06/06	410	13	J	49	-	3	J	310		35	<u> </u>
GPB 3-2	14 - 18	03/06/06	683,000	23.000	U	69.000		600.000		14.000	Jİ	23.000	ĺυ
GPB 3-2 DI	14 - 18	03/06/06	686,000	47,000	Ŭ	73.000	D	600.000	D	13.000	DJ	47.000	Ū
GPB 3-3	14 - 17.5	03/06/06	358,000	12,000	Ũ	100.000	7	230,000	-	28.000		12.000	Ū
GPB 3-3 DI	14 - 17.5	03/06/06	347.000	30,000	ũ.	93,000	D	230,000	D	24.000	DJ	30.000	Ū
GPB 3-4	14 - 17 6	03/06/06	37	22	ũ	4		22	U	24		9	J
GPB 3-5	6 - 10	03/06/06	98 400	1 400	J.	18.000	-	31:000		48.000		2,700	U
GPB 3-5	14 - 16 7	03/06/06	15 300	3,600	Ū I	12,000		1,900	J	1,400	J	3.600	U
GPB 3-6	0.5 - 4	03/06/06	2 440	1,300	Ŭ	640	IJ	1.800		1.300	U	1,300	Ŭ
GPB 3-6	10 - 14	03/06/06	4 123	31	.l	350	Ŭ	1,900		1,800	<u> </u>	42	J
GPB 3-6 DI	10 - 14	03/06/06	4 090	1.900	Ū	390	DJ	1,900	D	1.800	DJ	1.900	Ū
GPB 3-7	6 - 10	03/07/06	278,900	5,900	J	160.000		38.000		75.000		9,500	U
GPB 3-7	14 - 17	03/07/06	34 500	2,800	Ũ	3,800		27.000	1	3,700		2,800	Ū
GPB 3-8	14 - 17	03/07/06	676,700	2 300	ŭ	53,000	J	620,000		3,700		2,300	Ū
GPB 3-8 DI	14 - 17	03/07/06	673,000	110,000	Ū	53,000	DJ	620,000	D	110.000	U	110,000	U.
GPB 3-9	14 - 17.5	03/07/06	7 450 000	30,000	Ŭ	150.000		7.300.000	-	30.000	Ū	30.000	U
GPB 3-9 DI	14 - 17 5	03/07/06	7 410 000	600,000	ũ	110.000	DJ	7,300,000	D	600,000	Ŭ	600.000	Ū
GPB 3-10	14 - 17.5	03/07/06	16 200	2 200	ŭ	3.400	-	8.800	-	4.000	•	2,200	Ū
GPB 3-11	14 - 18	03/08/06	10,200	2 400	Ŭ	530		570	J	:9.300		2,400	Ū
GPB 3-12	14 - 17 5	03/08/06	29,100	3,100	Ü	2 100	J	19.000	-	8,000	_	3 100	Ū
GPB 3-13	6 - 10	03/08/06	25,000	3 200	Ŭ	3 100	li i	3,100	ILI.	20,000		1,800	t.
GPB 3-14	14 - 17	03/08/06	12 000	2 800	σ	2,800	Ш.	2 200	1.1	9 800	_	2 800	ň
GPB 3-16	6 - 10	03/08/06	11 798	70	J	690	Ŭ	6,400	J.	4 600	.1	38	i.
GPB 3 16 DI	6 - 10	03/08/06	11,790	2 400	ŭ	690	D.I	6,400	D	4 600	D	2 400	ľu
GPB 3-16	14 - 17	03/08/06	12 500	26	U I	6 000		6 100	No.	340		60	
GPB 3-16 DI	14 - 17	03/08/06	12,000	3 200	11	6,000	D	6,100	D	720	D.I	3 200	iu i
GPB 3-17	14 - 18	03/08/06	1.376.680	340	U	53,000	1	1 300 000	-	23 000	.1	340	
GPB 3-17 DI	14 - 18	03/08/06	1 376 000	110,000	11	53,000	DI	1 300 000	D	23,000	ות	110 000	iu-
GPB 5-1	14 - 18	03/09/06	6 384	330	U I	1 300		990	L.	3 700	.1	64	i.
GPR 5.1 DI	14 - 18	03/09/06	5 990	2 400		1 300	DI	900	D.I	3 700	n	2 400	ال ا
GPD 5-7 DE	14-175	03/09/00	3,990	480	F	1,000	100	54		3 600	<u> </u>	170	, i
GPB 5-2 DI	14 - 17 5	03/09/00	4,034	2 600		620		2 600	11	3 600	D	2 600	
CERS O	6,10	03/09/00	4,220	2,000		020		2,000	ЫŬ	1 000	<u> </u>	2,000	
CPB 5.2	10-14	03/00/06	1,010	170	0	17	Hi-	17	Ш	000,1		5	1
CPR 5 2	14 17	03/00/06	1 200	E/		170	<u>ال</u>	670	۲×	200 600	·····	24	
	14 17	03/09/00	1,000	04	11	170		670	BD	080		19	
CPS 1.1	10.14	03/03/08	1,008	00	0	230	1	070		- 090	1	20	
CPS 14	10 - 14		10	20		3		- 20		7	u 1	20	10
GPS 1-4	10-14	03/02/06	21	20	ιu –	9	J	<u>⊃</u>	- U	/	ل ا	20	<u>40 </u>

Sample ID	Depth	Date	Total	VC		TCE		PCE		cis	trans
	TAGM 4	046 RSCOs ->	CVOCs	200		700		1,400		NA	300
	Propo	sed SSCOs ->		800		2,800		5,600		NA	1,200
GPCS-1	2 - 4	03/13/06	15	15	υ	15	U	15	U	15 U	15 UJ
GPCS-1	4.8 - 10	03/13/06	51	31		19	U	19	υ	20	19 U
GPCS-1	14 - 18	03/13/06	32	10	J	21	U	21	U	22	21 U
GPCS-2	1.3 - 4	03/13/06	0	11	U	11	U	11	U	11 U	11 U
GPCS-2	14 - 18	03/13/06	18	5	J	19	U	19	υ	13 J	19 U
GPCS-3	14 - 18	03/13/06	18	8	J	18	U	18	U	10 J	18 U
GPCS-4	14 - 18	03/13/06	9	4	J	22	Ũ	22	υ	5 J	22 U
GPCS-5	2 - 4	03/13/06	99	12	U	11	J	65		21	2 J
GPCS-6	4 - 6	03/13/06	17	21	U	21	U	14	BJ	3 J	21 U
TP-4	3.5-4.2	12/03/04	0	14	U	14	U	14	υ	14 U	14 U
TP-5	4.6-5.2	12/07/04	0	15	U	15	U	15	U	15 U	15 U
TP-7	4-7	12/03/04	15	13	J	15	U	15	U	2 J	15 U
TP-12	3.1-5.1	12/07/04	0	12	U	12	U	12	U	12 U	12 U
TP-13	3.5-5.3	12/07/04	189	37		36		67		23	26
TP-14	4-5	12/03/04	91,010	300		310		83,000		7400	16 U
TP-14 DL	4-5	12/03/04	98,200	1,800	DJ	6,000	DJ	83,000	D	7,400 D	7.200 U
GPB1-16	15.5 - 17	04/19/06	7,280	680	J	2,600	U_	2,600	U	6,600	2,600 U
GPB1-16	17 - 18	04/19/06	290	170		14	U	14	U	120	14 U
GPB3-18	14 - 16.9	04/18/06	391,000	17,000	U	46,000		260,000	1	85,000	17,000 U
GPB3-18	6 - 10	04/18/06	2,126,000	150,000	U	160,000		1,900,000	-	66,000 J	150,000 U
GPB3-19	14 - 18	04/18/06	0	23	U	23	U	23	U	23 U	23 U
GPB3-21	14 - 16	04/18/06	480	19	J	23	J	6	J	360	72
GPB3-21	6 - 10	04/18/06	605	410		22	U	22	U	180	15 J
GPB3-22	6 - 10	04/18/06	1,459,000	58,000	U	29,000	J.	1,400,000	<u></u>	30,000 J	58,000 U
GPB3-22	6 - 10 DL	04/18/06	1,460,000	120,000	U	31,000	DJ	1,400,000	D	29,000 DJ	120,000 U
GPB3-24	15.5 - 17	04/19/06	62	28	U	28	U	28	U	52	10 J
GPB3-24	6 - 10	04/18/06	0	21	U	21	U	21	U	21 U	21 U

Total CVOCs >31,000 ug/kg

One or more CVOC parameters > Site specific cleanup objective

All CVOC parameters < site specific cleanup objective)

ž.,

.

× 1

Sample ID ->	Units	S-1	S-1 DL	S-2	S-4	S-5	S-6	S-7	S-7 DL
Date Sampled ->	I		-		11/23/2004				
VOLATILES									
Chloromethane	ug/kg	15 W	· ·	16 UJ	2900 U	8,200 U	20 UJ	25 UJ	3,000 U
Bromomethane	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Vinyf chloride	ng/kg	15 W		16 U	2900 U	8,200 U	8 J	25 UJ	3,000 U
Chioroethane	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Methylene chloride	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	29 U	3,000 U
Acetone	ng/kg	15 U		16 W	2900 U	8,200 U	15 J	78	3,000 U
Carbon disulfide	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1,1-Dichloroethene	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1,1-Dichloroethane	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Chloroform	ng/kg	15 U		16 U	2900 U	8,200 U	20 0	25 U	3,000 U
1,2-Dichloroethane	ng/kg	15 UJ		16 U	2900 U	8,200 U	20 W	25 UJ	3,000 U
2-Butanone	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	33	3,000 U
1,1,1-Trichloroethane	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Carbon tetrachioride	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Bromodichloromethane	by/tön	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1.2-Dichloropropane	ug/kg	15 U		16 UJ	2900 U	8,200 U	20 U	25 U	3,000 U
cis-1,3-Dichloropropene	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Trichloroethene	ug/kg	15 U		16 U	2900 U	24,000	5 1	<u>г</u> 6	3,000 U
Dibromochloromethane	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1,1,2-Trichloroethane	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Benzene	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
trans-1,3-Dichloropropene	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Bromoform	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 W	3,000 U
4-Methyl-2-pentanone	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	9 J	3,000 U
2-Hexanone	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 UJ	3,000 U
Tetrachloroethene	ug/kg	15 U		16 U	1000 J	140,000	20 U	25 UJ	3,000 U
Toluene	ng/kg	15 U		16 U	1600 U	8,200 U	20 U	5,200	5,200 D
1,1,2,2-Tetrachloroethane	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Chlorobenzene	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 W	3,000 U
Ethylbenzene	ug/kg	15 U		16 U	1600 J	8,200 U	20 U	11	3,000 U
Styrene	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 W	3,000 U
Total xylenes	64/6n	15 U		16 U	0064	8,200 U	20 U	45 J	3,000 U
1,1,2-Trichloro-1,2,2-triftuoroethane	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
cis-1,2-Dichloroethene	ug/kg	15 U		16 U	2900 U	40,000	12 J	Г 6	3,000 U
trans-1,2-Dichloroethene	ug/kg	15 U		16 U	2900 U	8,200 U	20 N	25 U	3,000 U
Dichlorodifluoromethane	ug/kg	15 UJ		16 U	2900 U	8,200 U	20 W	25 UU	3,000 U
Trichloroftuoromethane	ug/kg	15 W		16 U	2900 U	8,200 U	20 UU	25 W	3,000 U
Methyl acetate	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Methyl tert butyl ether	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
Cyclohexane	ng/kg	15 U		16 UJ	2900 U	8,200 U	20 U	25 U	3,000 U
Methylcyclohexane	ng/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1,2-Dibromoethane	ug/kg	15 U		16 U	2900 U	8,200 U	20 C	25 W	3,000 U
Isopropylbenzene	ug/kg	15 U		16 U	2900 U	8,200 U	20 C	25 U	3,000 U
1,3-Dichlorobenzene	ug/kg	15 U	•	16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1,4-Dichlorobenzene	ug/kg	15 U		16 U	2900 U	8,200 U	20 U	25 U	3,000 U
1,2-Dichlorobenzene	ug/kg	15 U		16 U	2900 U	8,200 U	20 0	25 U	3,000 U

Table 11 - Phase 1 Site Utility Sediment Data

Pioneer Midler Avenue LLC Remedial Investigation Report Filproject(C81 - Pioneer Development(C81.002 BCPIClose out and COCIOctober 2007/RI Report Tables Table 11validated xis / A04B320

Page 1 of 8

	- 11-14-		2.0	0		U U	20	C 7	
Sample IU ->		'n	0-1 N	0-Z	11/23/2004	00	00	50	9-1 VL
		4511		101		0 000 1	1100	2511	3 000
1,2-Dibromo-3-chloropropane	ug/kg	0			0 0067	0,200 0		2 2 2	0,000 0
1,2,4-Trichlorobenzene	ug/kg	15 UJ		16 W	2900 U	8,200 U	20 M	22 M	3,000 U
SEMIVOLATILES									
Benzaldehyde	ng/kg	10000 U	51,000 U	4800 U	10000 U	13,000 U	11,000 U	140,000 U	
Phenol	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69,000 U	
Bis(2-chioroethvl) ether	uq/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69,000 U	
2-Chlorophenol	ug/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	000'69	
2-Methvibhenol	uq/ka	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69,000 U	
2 2'-Oxvhis/1-Chloropropane)	na/ka	5100 U	25.000 U	2400 U	5200 U	6,600 U	5,400 U	000'69	
Acetonhenone	na/ka	10000 U	51.000 U	4800 U	10000 U	13,000 U	11,000 U	140,000 U	
4-Mathvinhanol	10/k0	5100 U	25.000 U	2400 U	5200 U	6.600 U	5,400 U	69.000 U	
A Nitroon Di a-montamine		510011	25,00011	240013	5200 U	6 600 11	5.400 U	69.000 U	
H-HillUsO-Urtit-propylatilitie Hoverbloroethene	By An	510011	25,000 11	240011	5200 U	6.600 U	5.400 U	69.000 U	
	6.1.65	5100 II	25,000 11	240011	520011	6 600 11	5 400 11	69,000 U	
Nill Obel Izerie	Ru An	5100 1	25,000 U	2400 11	520011	6,600 U	5.400 U	69.000 U	
isupi lui ui is 0. Nitronhanoi	64/60	510011	25,000 [1	240011	5200 U	6.600 U	5.400 U	69.000 U	
2.1 Nimothulahana)	na/ko	510011	25,000 11	240011	520011	6 600 U	5.400 U	69.000 U	
Z,T-Dilleuiyipilei.ol Bic/2_chloroethow/) methene		510011	25,000 [1	240011	5200 11	6.600 U	5.400.U	69.000 U	
Dis(z-Uliuloetioxy) Illetriarie 0.4 Dishloronhend	by bri	510011	25,000 11	2400 11	520011	6 600 []	5,400 U	69.000 U	
	hyfin					6 600 U		60 000 11	
	ngkg	2000 1	2,000 LU	1 000		0,000	Z,000 U	0 000 00	
4-Chloroaniline	ng/kg	5100 U	25,000 U	2400 U	0 0029	0,000 U	5,400 U	00000	
Hexachlorobutadiene	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69 ⁰⁰⁰ U	
Caprolactam	ug/kg	10000 U	51,000 U	4800 U	10000 U	13,000 U	11,000 U	140,000 U	
4-Chloro-3-methylphenol	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69,000 U	
2-Methylnaphthalene	ng/kg	1400 J	1,400 DJ	230 J	5400	6,600 U	200 J	69,000 U	
Hexachlorocyclopentadiene	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69,000 U	
2.4.6-Trichlorophenol	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	69,000 U	
2,4,5-Trichlorophenol	ng/kg	12000 U	61,000 U	5800 U	13000 U	16,000 U	13,000 U	170,000 U	
Biphenyl	ng/kg	10000 U	51,000 U	4800 U	U 00001	13,000 U	11,000 U	140,000 U	
2-Chloronaphthalene	ng/kg	5100 U	25,000 U	5800 U	5200 U	6,600 U	5,400 U	69,000 U	
2-Nitroaniline	ng/kg	12000 U	61,000 U	2400 U	13000 U	16,000 U	13,000 U	170,000 U	
Dimethyl phthalate	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	
2.6-Dinitrotoluene	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	
Acenaphthylene	ng/kg	Г 006	1,100 DJ	260 J	510 J	460 J	670 J	2,600 J	
3-Nitroaniline	ng/kg	12000 U	61,000 U	5800 U	13000 U	16,000 ND	13,000 U	170,000 U	-
Acenaphthene	ng/kg	3300 J	3,600 DJ	840 J	620 J	6,600 ND	260	69,000 U	
2.4-Dinitrophenol	ug/kg	12000 U	61,000 U	5800 U	13000 U	16,000 ND	13,000 U	170,000 U	
4-Nitrophenol	ng/kg	12000 U	61,000 U	5800 U	13000 U	16,000 ND	13,000 U	170,000 U	
Dibenzofuran	ng/kg	2800 J	2,800 DJ	520 J	360 J	6,600 ND	230	69,000 U	
2,4-Dinitrotoluene	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	
Diethyl phthalate	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	
Fluorene	ug/kg	4300 J	4,500 DJ	۲ 068	1300 J	190 J J	530 J	000'69	
4-Chlorophenyl phenyl ether	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	
4-Nitroaniline	ng/kg	12000 U	61,000 U	5800 U	13000 U	16,000 ND	13,000 U	170,000 U	
4.6-Dinitro-2-methylphenol	ng/kg	12000 U	61,000 U	5800 U	13000 U	16,000 ND	13,000 U	170,000 U	
N-nitrosodiphenylamine	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	
4-Bromophenyl phenyl ether	ng/kg	5100 U	25,000 U	2400 U	5200 U	6,600 ND	5,400 U	69,000 U	

Remedial Investigation Report Table 11 - Phase 1 Site Utility Sediment Data

Pioneer Midler Avenue LLC

FilprojectIC81 - Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007/RI ReportTables/Table11validated.xls / A04B320

Page 2 of 8

		•	2 4 0	0.0	V	и V	S.B	<u>2.7</u>	
Sample IU ->	2 5	5	3 -1 C	2-0	11/23/2004	5	5	5	
	ייט	510011	25 00011	240011	520010	190.1	5.400 U	0000.69	
		100001	25,000 1	4800 11	100001	13 000 ND	11 000 11	140.000 U	-
	ĥy/ĥn		20,000			16 000 11	13 000 0	170,000 U	-
Pentachiorophenol	By/gn					10,000	0 000 0		
Phenanthrene	ng/kg	47000	47,000 BU	14000 15	9 0070	1,800 0	4,400 0	09,000	
Anthracene	ug/kg	7300	7,000 DJ	1700 J	1200 J	460 J	r 00/	2,100 J	
Carbazole	ug/kg	3800 J	3,800 DJ	880 J	640 J	220 J	320 J	69,000 U	
Di-n-butyl phthalate	ng/kg	5100 U	25,000 U	2400 U	24000 B	6,600 U	5,400 U	69,000 U	
Fluoranthene	ng/kg	46600	46,000 DJ	16000	15000	3,500 J	7,400	28,000 J	
Pvrene	uq/ka	20000 B	20,000 BDJ	5500 B	2600 U	6,600 U	5,400 U	69,000 U	
Butvi benzvi ohthalate	no/ka	5100 U	25,000 U	2400 U	C 066	6,600 U	200 J	000'69	
3.3'-Dichlorobenzidine	na/ka	5100 U	25,000 U	2400 U	5200 U	6,600 U	5,400 U	000'69	
Benzo(a)anthracene	uq/kg	22000	19,000 DJ	5400	4400 J	1,200 J	2,200 J	8,700 J	
Chrysene	ua/ka	22000	20,000 DJ	5900	4400 J	1,300 J	2,600 J	Г 006'6	
Bis(2-athylhexvl) phthalate	na/ka	5100	25,000 U	2400 U	33000 U	6,600 U	5,400 U	69,000 U	
Di-n-orthi nhthalate	na/ka	140 J	25.000 U	2400 U	C 0065	590 J	180 J	69,000 U	
Benzo(h)flinianthene	na/ka	24000 J	12.000 DJ	5000 J	8100 J	3,000 J	3,500 J	15,000 J	
Benzo(k)filioranthene	un/ka	16000 J	15.000 DJ	4400 J	10000 J	2,900 J	2,400 J	7,200 J	
Benzo(a)nvrene	ua/ka	5300	4,900 DJ	1400 J	Г 006	460 J	820 J	2,500 J	
Indenv(1 9 3-vd)nvrane	un/kn	2300 J	2.700 DJ	680 J	480 J	250 J	460 J	U 000,69	
Dihapito(1,4-)0 Vujpjicito	ind/kn	1800.1	2,100 DJ	520 J	430 J	210 J	280.J	69.000 ND	
Benzolahihandene	na/kn	510011	25,000 [1	2400 11	5200 U	6.600 U	5.400 U	69.000 U	-
	2	2							-
ainha-RHC	ud/ka	26 U		25 U	110 U	170 U	27 U	180 U	
hota BHC	ug/kn	291		25 U	110 U	170 U	27 U	180 U	-
	Bu/Sn	281		25	11011	170 U	27 U	180 U	
uella-DI IV commo PHC /I indeno)	Bulko	281		221	110 U	170 U	27 U	180 U	
garrirra-brio (Lindare) Lootochior	Ryfin	2007		25 11	11011	170 U	27 U	180 U	
A Idrin	By/on	2611		25 U	110 U	170 U	27 U	180 U	
Diatochlor enovide	Bullon	2611		25 11	63 JPN	170 U	27 U	180 U	
Fredreition cooxide Fredreitifan I	ug/ka	26 []		25 U	110 UU	170 U	27 U	180 U	
Dialdrin	na/ka	50 U		48 U	210 U	330 U	53 U	340 U	
4 4'-DDF	ua/ka	50 U		48 U	210 U	330 U	53 U	340 U	
Endrin	ug/kg	50 U		48 U	210 U	330 U	53 U	340 U	
Endosultan II	ug/kg	50 U		48 U	210 U	330 U	53 U	340 U	
4,4'-DDD	ng/kg	20 ∩		48 U	210 U	330 U	53 U	73 JP	
Endosultan Suitate	ng/kg	50 U		48 U	210 U	330 U	53 U	340 U	
4,4'-DDT	ng/kg	50 U		48 U	460 PJ	330 U	53 U	1800 U	
Methoxychlor	ng/kg	260 U		100 J	170 J	1700 U	53 U	1800 U	
Endrin ketone	ng/kg	09		48 U	210 U	330 U	54	340 U	
Endrin aldehyde	ng/kg	50 U		48 U	210 U	330 U	53 U	340 U	
alpha-Chlordane	ng/kg	26 U		25 U	Æ	170 U	27 U	180 U	
gamma-Chlordane	ng/kg	26 U		25 U	В	170 U	27 U	180 U	
Toxaphene	ng/kg	2,600 U		2500 U	11000 U	17000 U	2700 U	18000 U	
Aroclor 1016	ng/kg	500 U		480 U	2100 U	3300 U	530 U	3400 U	
Aroclor 1221	ng/kg	1000 U		970 U	4200 U	6700 U	1100 U	0 0069	
Arocior 1232	ng/kg	500 U		480 U	2100 U	3300 U	530 U	3400 U	
Arocior 1242	ng/kg	500 U		480 U	2100 U	3300 U	530 U	3400 U	

Remedial Investigation Report Table 11 - Phase 1 Site Utility Sediment Data

Pioneer Midler Avenue LLC

F: ProjectIC81 - Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007IAI ReportTablesITable11validated xls / A04B320

Page 3 of 8

Sample ID ->	Units		S-1 DL	S-2	S-4	S-5	S-6	S-7	S-7 DL
Date Sampled ->			-		1/23/2004				
Aroclor 1248	ng/kg	500 U		480 U	2100 U	3300 U	530 U	3400 U	
Aroclor 1254	ug/kg	500 U		480 U	2100 U	8700	530 U	3400 U	
Aroclor 1260	ug/kg	500 U		480 U	2100 U	3300 U	530 U	3400 U	
INORGANICS									
Aluminum	mg/kg	6,800		5,500	6060	11,900	4,190	22,100	
Antimony	mg/kg	2.4 BN*J		2.1 BN*J	4 BN*J	2.7 N* N*J	1.3 BN*J	3.3 BN*J	
Arsenic	mg/kg	13.8 N*J		10.4 N*J	14.2 N*J	17.0 N NJ	6.8 N*J	10.8 N*J	
Barium	mg/kg	99.1 8		107 *	824 *	333 N* N*	59.9 *	226 *	
Beryllium	mg/kg	0.8		0.66 *	0.6 B*	0.56* *	1.1 *	0.79 B*	
Cadmium	mg/kg	2.5 N*		1.7 N*	11.8 N*	24.9 N* N*	1.8 N*	2 N*	
Calcium	mg/kg	99,400		117,000	49900	77,700	168,000	112,000	
Chromium	mg/kg	26.7 N*		15 N*	54.5 N*	167 N N	37.4 N*	35 N*	
Cobalt	mg/kg	7.6 8		5.5 B*	9 8	23.0* *	5.3 B*	87.1 *	
Copper	mg/kg	283 N*		104 N*	415 N*	680* *	290 N*	115 N*	
Iron	mg/kg	49,800		40,400	42000	50,400	13,200	16,300	
Lead	mg/kg	208 8		101 *	420 *	1440	285 *	129 *	
Magnesium	mg/kg	12,200		7,220	7010	10,500	35700	26,900	
Manganese	mg/kg	676 N*J		1070 N*J	271 N*J	456 NJ	208 N*J	246 N*J	
Mercury	mg/kg	0.698 *J		0.309 *J	0.444 *J	0.459 *J	0.042 U*J	0.055 U*J	-
Nickel	mg/kg	35.9 *		22.7	63.5 *	81.7	36 *	52.1 *	
Potassium	mg/kg	1300		1,030	814 B	1120	867	783 B	
Selenium	mg/kg	0.72 UN*		0.6 UN*	1.7 UN*	2.1B*	0.61 UN*	1.1 UN*	
Silver	mg/kg	0.89 BN*J		0.49 BN*J	2.1 BN*J	66.3 NJ	0.16 *J	0.29 BN*J	
Sodium	mg/kg	357 B		498 B	577 B	069	283 B	254 B	
Thallium	mg/kg	0.73 U		0.62 UN*	1.7 UN*	9.1 N*	0.63 UN*	1.1 UN*	
Vanadium	mg/kg	38.8 *		22.2 *	21.3 *	52.3	29.9 *	30.9 *	
Zinc	mg/kg	659.*		583 *	5460 *	3480 *	376 *	445 *	-
WET CHEMISTRY ANAL YSIS									
Cyanide - Total	ng/kg	4,000 W		4,000 UJ	4,000 UJ	4,000 UJ	4,000 UJ	4,000 UJ	
Leachable pH	S.U.	7.89		7.83	7.03	7.68	8.11	7.16	

FiProjectIC81 - Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007IRI Report/Tables/Table11validated.xls / A04B320

-

÷ 1

Page 4 of 8

			-	17.0		0
Sample ID ->	Cutts	6-2	S-10	<u>د-11</u>	S-11 UL	<u>х</u> -12
Date Sampled ->		-	1 1/23/2004			
VOLATILES	-					
Chloromethane	ng/kg	14 W	110,000 U	3:		
Bromomethane	ug/kg	14 U	110,000 U	17 U		12 U
Vinyl chloride	ug/kg	14 W	110,000 U	16 J		12 W
Chloroethane	ug/kg	14 U	110,000 U	17 U		12 U
Methylene chloride	ug/kg	14 U	110,000 U	17 U		12 U
Acetone	ug/kg	14 U	110,000 U	17 W		12 U
Carbon disulfide	ng/kg	14 U	110,000 U	17 U		12 U
1.1-Dichloroethene	ng/kg	14 U	110,000 U	17 U		12 U
1,1-Dichloroethane	ng/kg	14 U	110,000 U	17 U		12 U
Chloroform	ng/kg	14 U	110,000 U	17 U		12 U
1.2-Dichloroethane	ng/kg	14 UU	110,000 U	17 U		12 W
2-Butanone	ng/kg	14 U	110,000 U	17 U		12 U
1,1,1-Trichloroethane	ng/kg	14 U	110,000 U	17 U		12 U
Carbon tetrachloride	ug/kg	14 U	110,000 U	17 U		12 U
Bromodichloromethane	ug/kg	14 U	110,000 U	17 U		12 U
1.2-Dichloropropane	ug/kg	14 U	110,000 U	17 W		12 U
cis-1.3-Dichloropropene	ug/kg	14 U	110,000 U	17 U		12 U
Trichloroethene	ug/kg	14 U	1,600,000	17 U		12 N
Dibromochloromethane	ug/kg	14 U	110,000 U	17 U		12 U
1.1.2-Trichloroethane	ng/kg	14 U	110,000 U	17 U		12 U
Benzene	ua/ka	14 U	110,000 U	17 U		12 U
Itrans-1.3-Dichloropropene	ug/kg	14 U	110,000 U	17 U		12 U
Bromoform	uq/kg	14 U	110,000 U	17 U		12 U
4-Methyl-2-pentanone	ug/kg	14 U	110,000 U	17 U		12 U
2-Hexanone	ug/kg	14 U	110,000 U	17 U		12 U
Tetrachloroethene	ug/kg	14 U	1,700,000	17 U		12 U
Toluene	ug/kg	14 U	140,000	17 U		12 U
1,1,2,2-Tetrachloroethane	ng/kg	14 U	110,000 U	17 U		12 U
Chiorobenzene	ng/kg	14 U	110,000 U	17 U		12 U
Ethylbenzene	ug/kg	14 U	110,000 U	<u>з</u> Ј		12 U
Styrene	ug/kg	14 U	110,000 U	17 U		12 U
Total xylenes	ng/kg	14 U	250,000	17 U		12 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	14 U	110,000 U	17 U		12 U
cis-1,2-Dichloroethene	ug/kg	14	110,000 U	24		12 0
Itrans-1,2-Dichloroethene	- Dy/Dn	- 1		2		
Dichlorodifluoromethane	ng/kg	14 UN	110,000 U	<u>n / </u>		
Trichlorofluoromethahe	ng/kg	14 U	U 000,011	<u>n</u> : 2	-	
Methyl acetate	ug/kg	14 U	110,000 U	17 U		12 0
Methyi tert butyl ether	ug/kg	14 U	110,000 U	17 U		12 U
Cyclohexane	ug/kg	14 U	110,000 U	17 UJ		12 U
Methylcyclohexane	ug/kg	14 U	180,000	٢ 6		12 U
1,2-Dibromoethane	ug/kg	14 U	110,000 U	17 U		12 U
Isopropylbenzene	ug/kg	14 U	110,000 U	ل 7		12 U
1,3-Dichlorobenzene	ng/kg	14 U	110,000 U	17 U		12 U
1,4-Dichlorobenzene	ug/kg	14 U	110,000 U	12 U		1210
1,2-Dichlorobenzene	ug/kg	14 U	110,000 U	17 U		1210

Sample ID ->	Units	6-S	S-10	S-11	S-11 DL	S-12
Date Sampled ->			11/23/2004			
1,2-Dibromo-3-chloropropane	ug/kg	14 U	110,000 U	12 U		12 U
1,2,4-Trichlorobenzene	ug/kg	14 W	110,000 U	17 UJ		12 W
SEMIVOLATILES						
Benzaldehyde	ug/kg	3,800 U	6,200 U	5,200 U	52,000 U	4,400 U
Phenol	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Bis(2-chloroethyl) ether	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2-Chlorophenol	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2-Methylphenol	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2.2'-Oxybis(1-Chloropropane)	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Acetophenone	ug/kg	3,800 U	6,200 U	5,200 U	52,000 U	4,400 U
4-Methviphenol	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
N-Nitroso-Di-n-propylamine	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Hexachloroethane	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Nitrobenzene	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Isophorone	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2-Nitrophenol	ua/ka	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2.4-Dimethylphenol	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Bis(2-chloroethoxy) methane	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2.4-Dichtorophenol	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Naphthalene	ug/kg	100 J	500 J	2,600 U	26,000 U	360 J
4-Chloroaniline	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Hexachlorobutadiene	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Caprolactam	ug/kg	3,800 U	6,200 U	5,200 U	52,000 U	4,400 U
4-Chloro-3-methylphenol	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2-Methylnaphthalene	ug/kg	74 J	280 J	780 J	770 DJ	120 J
Hexachlorocyclopentadiene	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2,4,6-Trichlorophenol	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2.4.5-Trichlorophenol	ug/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
Biphenyl	ng/kg	3,800 U	6,200 U	5,200 U	52,000 U	4,400 U
2-Chloronaphthalene	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2-Nitroaniline	ng/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
Dimethyl phthalate	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
2,6-Dinitrotoluene	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Acenaphthylene	ug/kg	65 J	170 J J	2,600 U	26,000 U	330 1
3-Nitroaniline	ug/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
Acenaphthene	ug/kg	370 J	260 J	1,200 J	1,400 DJ	210 J
2,4-Dinitrophenol	ug/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
4-Nitrophenol	ug/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
Dibenzofuran	ng/kg	120 J	140 J	750 J	830 DV	200 J
2,4-Dinitrotoluene	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Diethyl phthalate	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Fluorene	ng/kg	250 J	280 J	2,200 J	1,800 DJ	360 J
4-Chlorophenyl phenyl ether	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
4-Nitroaniline	ug/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
4,6-Dinitro-2-methylphenol	ug/kg	. 4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
N-nitrosodiphenylamine	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
4-Bromophenyl phenyl ether	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U

Sample ID ->	Units	6-S	S-10	S-11	S-11 DL	S-12
Date Sampled ->			11/23/2004			
Hexachlorobenzene	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Atrazine	ng/kg	3,800 U	6,200 U	5,200 U	52,000 U	4,400 U
Pentachlorophenol	ng/kg	4,600 U	7,500 U	6,400 U	64,000 U	5,300 U
Phenanthrene	ug/kg	2,200 B	3,900 B	18,000 B	14,000 BDJ	3,500 B
Anthracene	ng/kg	520 J	F 006	3,000	3,000 DJ	630 J
Carbazole	ug/kg	260 J	280 J	1,300 J	1,300 DJ	350 J
Di-n-butyl phthalate	ug/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Fluoranthene	ug/kg	5,000	16,000	17,000 J	17,000 DJ	5,300
Pyrene	ug/kg	1,700 BJ	2,300 BJ	6,000 B	7,700 BDJ	1,300 BJ
Butyl benzyl phthalate	ng/kg	1,200 J	1,000 J	2,600 U	26,000 U	2,200 U
3,3'-Dichlorobenzidine	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Benzo(a)anthracene	ug/kg	1,400 J	4,200	6,500 J	6,500 DJ	1,600 J
Chrysene	ng/kg	1,500 J	5,000	6,600 J	7,100 DJ	1,800 J
Bis(2-ethylhexyl) phthalate	ng/kg	3,000 U	4,800 U	2,600 U	1,600 BDJ	2,200 U
Di-n-octyl phthalate	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
Benzo(b)fluoranthene	ug/kg	3,100 J	5,700 J	7,400 J	4,000 DJ	1,800 J
Benzo(k)fluoranthene	ug/kg	2,900 J	3,900 J	4,900 J	3,500 DJ	1,800 J
Benzo(a)pyrene	ng/kg	200 J	1,300 J	1,400 J	1,400 DJ	610 J
Indeno(1,2,3-cd)pyrene	ug/kg	240 J	470 J	560 J	1,200 DJ	280 J
Dibenzo(a,h)anthracene	ng/kg	190 J	360 J	570 J	1,200 DJ	210 J
Benzo(ghi)perylene	ng/kg	1,900 U	3,100 U	2,600 U	26,000 U	2,200 U
PESTICIDES/AROCLORS						
alpha-BHC	ug/kg	98 U	65 U	28 U		45 U
beta-BHC	ug/kg	08 U	65 U	28 U		45 U
delta-BHC	ng/kg	98 U	65 U	28 U		45 U
(gamma-BHC (Lindane)	ug/kg	98 U	65 U	28 U		45 U
Heptachlor	ng/kg	98 U	65 U	28 U		45 U
Aldrin	ug/kg	98 U	65 U	28 U		45 U
Heptachlor epoxide	ug/kg	98 U	65 U	28 U		45 U
Endosulfan I	ug/kg	98 U	65 U	28 U		45 U
Dieldrin	ug/kg	190 U	130 U	53 U		88 U
4,4'-DDE	ug/kg	190 U	130 U	53 U		88 U
Endrin	ug/kg	190 U	130 U	53 U		88 U
Endosulfan il	ug/kg	190 U	130 U	53 U		88 U
4,4'-DDD	ug/kg	190 U	130 U	53 U		88 U
Endosulfan Sulfate	ug/kg	190 U	130 U	53 U		88 U
4,4'-DDT	ug/kg	180 J	130 U	53 U		88 U
Methoxychlor	ug/kg	980 U	650 U	53 U		450 U
Endrin ketone	ng/kg	190 U	130 U	53 U	-	88 U
Endrin aldehyde	ug/kg	190 U	130 U	53 U		88 U
alpha-Chlordane	ng/kg	N 86	65 U	28 U		45 U
gamma-Chlordane	ng/kg	N 86	65 U	28 U		45 U
Toxaphene	ug/kg	0086 U	6500 U	2800 U		4500 U
Aroclor 1016	ug/kg	1 0061	1300 U	530 U		880 U
Aroclor 1221	ug/kg	. 3800 U	2600 U	1100 U		1800 U
Arocior 1232	ug/kg	1900 U	1300 U	530 U		880 U
Aroclor 1242	ug/kg	1900 U	1300 U	530 U		880 U

						2
Sample ID ->	Units	S-9	S-10	S-11	S-11 DL	S-12
Date Sampled ->			11/23/2004			
Aroclor 1248	ng/kg	1900 U	1300 U	530 U		880 U
Arocior 1254	ng/kg	F 088	6300	530 U		3500
Aroclor 1260	by/bn	1900 U	1300 U	530 U		880 U
INORGANICS						
Aluminum	mg/kg	4,650 J	4,620	8940		3470 J
Antimony	by/6w	3.0 BN*J	2.7 BN*J	0.75 UN*J		54.7 N*J
Arsenic	mg/kg	5.9 N*J	8.2 N*J	7.3 N*J		32.7 N*J
Barium	mg/kg	140 * J	490 *	156 *		1000 *J
Beryllium	mg/kg	0.69 *J	0.54 B*	* 66.0		1.2 *J
Cadmium	mg/kg	77.5 N*J	18.1 N*	0.16 BN*		6.9 N*J
Calcium	mg/kg	65200 J	112000	210000		59000 J
Chromium	mg/kg	68.2 N*J	296 N*	85.3 N*		153 N*J
Cobalt	mg/kg	10.1 "J	25.5 *	6.8 B*		23.5 *J
Copper	mg/kg	265 N*J	\$06 N*	28.7 N*		1230.0 N*J
Iron	mg/kg	74,700 J	47,000	18300		220000 J
Lead	mg/kg	331 *J	1100 *	20.9 *		2940 *J
Magnesium	mg/kg	9,740 J	9,040	30000		2690 J
Manganese	mg/kg	627 N*J	392 N*J	477 N*J		L*N 778
Mercury	mg/kg	0.218 *J	0.358 *J	0.033 U*J		3.3 *J
Nickel	by/bu	42.7 *J	51.4 *	22.8 *		223 *J
Potassium	mg/kg	1,150 J	972	2440		506 BJ
Selenium	mg/kg	0.57 UN*J	0.81 UN*	0.76 UN*		0.59 UN*
Silver	mg/kg	0.4 *J	1.7 N*J	0.1 UN*J		4 N*J
Sodium	mg/kg	2510 J	2340	381 B		691 J
Thallium	mg/kg	0.58 UN*J	0.83 UN*	0.77 U		0.6 UN*
Vanadium	mg/kg	23.8 *J	14.1 *	161 *		24.6 *J
Zinc	mg/kg	332 *J	2800 *	61.7 *		1330 *J
WET CHEMISTRY ANAL YSIS						
Cyanide - Total	ug/kg	4,000 UJ	4,000 UJ	4,000 UJ		4,000 UJ
Leachable pH	S.U.	8.47	10.2	7.57		8.45

Notes:

--

+ 1

BOLD indicates constituent was detected

							1		=		
Parameter	Units	IL-1	IF-1 DF	I-3	HL-4	11/00/00/		₩ -	IL-10	IL-10 DL	
Sample Uale					11 000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 000	
Chloromethane	/ðn	10 U	Ą	10 U	200 N	0.01		0.01	0 00		2
Bromomethane	ng/l	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Vinvl chloride	l/bn	10 U	AN	10 U	500 U	10 N	10 U	10 U	50 U	200 U	10 U
Chloroethane	Vui	10.11	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Mathulana chlorida		10 11	A	101	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Acetono		1011	NA	10 []	360 J	10 U	10 U	10 U	50 U	200 U	10 U
Protocial Protoco disulfido			AN	101	500 11	10 11	10 11	10 11	50 U	200 U	10 U
	1		5			2 9		1 9			101
1,1-Dichloroethene	1/6n	10 0	AN	0.01	0 009	0 0	2	2	000		2
1,1-Dichloroethane	l/gu	10 U	NA	10 U	500 U	10 U	10 U	-0 U	50 U	200 U	10 U
Chloroform	ngu	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
1 2-Dichloroethane	, nov	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
MEK(9-Bitanona)	Vul	10 U	AN	10 U	1400 NJ	10 U	10 U	10 U	50 U	200 U	10 U
1 1 1 Trichloroothane	101	101	NA	101	500 11	101	10 U	10 U	50 U	200 U	10 U
1,1,1-1 Indiration taria			NA		500 1	101	101	10 11	50 U	200 U	10 U
Calbuit (etactionation) Desmodiablecomethene	1/21		VIN		500 11	101	101	1011	50 11	200	10 []
	100						101	1011	5011		t ct
	100			2 4				2	50 11		1 CT
cis-1,3-Dichloropropene	ingu		×	2			24				
Trichloroethene	l/ĝn	10 U	AN	10 U	0.009	0.01	0.01	002	Z,4UU	2,400 U	0 0
Dibromochloromethane	µôn	10 U	NA	10 U	500 U	10 U	±0 U	10 U	50 U	200 ∪	10 U
1.1.2-Trichloroethane	l/6n	∩ 0‡	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Benzene	na/	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
trans-1.3-Dichloropropene	na/	10 U	¥	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Romotorm	1/011		AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
MiRK/4-Methyl-2-nentanone)		1011	AN	101	500 U	10 U	10 U	10 U	50 U	200 U	10 U
2 Hevenone		1011	AN	101	500 11	10 []	10 U	10 U	50 U	200 U	10 U
					5001	101		101	730	720 D	10 11
l etracmoroemerte		2			2000				150		10 11
loluene	- ngu		¥.	2							
1,1,2,2-Tetrachloroethane	ng/	10 N	¥	10 U	200 N	10 0	10 [500 0	
Chlorobenzene	ng/l	-10 U	A	10 U	200 U	10 U	10 0	10 U	50 U	200 U	0.01
Ethylbenzene	l/ðn	10 U	NA	10 U	500 U	10 U	10 U	10 U	L 01	200 C	10 U
Styrene	J/ ôn	10 U	NA	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Total Xylenes	µ 6n	10 U	NA	10 U	500 U	10 U	10 U	10 U	120	200 U	10 U
Dichlorodifluoromethane	l/ôn	10 U	NA	10 U	500 UJ	10 U	10 U	10.U	50 U	200 U	10 U
Trichlorofluoromethane	ng/l	10 U	M	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
1,1,2-Tricloro-1,2,2,-triflouroethane	/ðn	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
trans-1.2-Dichloroethene	l/bn	10 U	Ą	10 U	500 U	10 U	10 U	10 U	43 J	200 U	10 U
Methyl tert butyl ether	* /ðn	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
cis-1.2-Dichloroethene	- 1/011	10 U	AN -	10 U	500 U	10 U	л Ч	10 U	22 J	200 U	10 U
Cvclohexane	ng/	10 U	AN	10 N	500 U	10 N	10 U	10 U	50 U	200 U	10 U
Methylcyciohexane	/ðn	10 U	Ą	10 U	500 U	10 U	10 U	10 U	14 J	200 U	10 U
1,2-Dibromoethane	l/ôn	10 U	Ą	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
Isopropylbenzene	l/ôn	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
1.3-Dichlorobenzene	/ðn	10 U	¥	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
1,4-Dichlorobenzene	ng/l	10 U	AN	10 U	500 U	10 U	10 U	10 U	50 U	200 U	10 U
1.2-Dichlorobenzene	/ðn	10 U	AN	-10 Ú	500 U	10 U	10 U	10 U	50 U	200 U	10 U

Parameter	Units	IL-1	IL-1 DL	IL-3	L4	11/20/20/	lL-7	IL-8	IL-10	IL-10 DL	IL -11
Janipie Vale 1 9 Dibromo - Prohomonone	- Indi	101	NA	1011	2001	1011	1011	10.11	50.11	200 11	1011
								2 9	8		
11,2,4-1 richlorobenzene	i/ɓn	10 0	A	0.01		0.01	0	2	2		0 0
Methyl acetate	l∕gu	10 U	A	10 U	200 U	10 U	-10 U	10 U	50 U	200 U	10 N
Semivolatiles											
Benzaldehyde	l/gu	9 U	19 U	9 U	950 UJ	U e	380 UJ	0 0	4 JN		90
Phenol	ng/l	0 f	19 U	06	64 J	N 6	380 UJ	9 U	14		9 U
Bis (2-chloroethyl) ether	ng/l	U 6	19 U	∩ 6	950 UJ	n 6	380 UJ	∩6	06		0.6
2-Chiorophenol	/ôn	О 6	19 U	л 6	950 UJ	n 6	380 UJ	∩ 6	n 6		0 G
2-Methytohenol	l/bin	<u>п 6</u>	19 U	Л 6	950 UJ	∩ 6	380 UJ	∩ 6	7-		∩ 6
2.2'- Oxvbis (1-Chloropropane)	na/l	Л б	19 (<u>л</u> 6	950 UJ	<u> Л 6</u>	380 UJ	N 6	0 f		Л 6
Acetophenone	na/l	D 6	19 U	<u>0</u> 6	950 UJ	n 6	380 UJ	л 6	4 ل		л 6
4-Methylphenol	no/	∩ 6	19 U	0.6	2200 J	n 6	380 UJ	0.6	۲ <u>۲</u>		0.6
N-Nitroso-Di-n-propylamine	l/bin	Л 6	19 U	9 U	950 UJ	0.6	380 UJ	0 6	Л6		0 G
Hexachloroethane	ug/I	Л б	19 U	90	950 UJ	0 G	380 UJ	Л б	N 6		Л 6
Nitrobenzene	Νđη	∩ 6	19 U	90	950 UJ	0 6	380 UJ	0 6	n 6		П6
Isophorone	ng/	06	19 U	0.6	950 UJ	Л6	380 UJ	л 6	n6		л 6
2-Nitrophenol	/bn	D 6	19 (1	0 G	950 UJ	П 6	380 UJ	0.6	Л6		л 6
2.4-Dimethvtohenol	na/	D 6	19 U	06	950 UJ	Л 6	380 UJ	N 6	06		<u>п 6</u>
Bis(2-chloroethoxy) methane	l/6n	D 6	19 U	0.6	950 UJ	Л б	380 UJ	л 6	∩6		∩ 6
2,4-Dichlorophenol	l/bn	П б	19 U	0.6	950 UJ	лe	380 UJ	90	0.6		0 G
Naphthalene	l/ôn	Лб	19 U) e	950 UJ	0.6	380 UJ	9 U	0.6 J		9 U
4-Chloroaniline	l/ôn	0.6	19 U	0 G	950 UJ	0.6	380 UJ	06	9 U		9 U
Hexachlorobutadiene	l/ôn	0.6	19 U	N 6	950 UJ	0.6	380 UJ	9 U	9 U		9 U
Caprolactam	l/bn	Л 6	19 U	9 U	950 UJ	0 f	380 UJ	Пб	0 6		0 G
4-Chloro-3-methylphenol	l/bn	N 6	19 U	9 U 📃	950 UJ	0 G	380 UJ	П6	90		Лб
2-Methylnaphthalene	l/gu	0 G	19 U	90	950 UJ	П 6	380 UJ	Л6	0 G		<u> </u>
Hexachlorocyclopentadiene	l/bn	N 6	19 U	9 U	950 UJ	∩ 6	380 UJ	Лб	90		<u>л 6</u>
2,4,6-Trichlorophenol	l/Bn	D 6	19 U	9 U	950 UJ	06	380 UJ	9 U	0 6		0 G
2,4,5-Trichlorophenol	l/ĝn	24 U	47 U	24 U	2400 UJ	24 U	950 UJ	24 U	24 U		24 U
Biphenyl	l/bn	n 6	19 U	9 U	950 UJ	9 U	380 UJ	9 U	Л 6		0 G
2-Chioronaphthalene	l/Bn	0 6	19 U	9 U	950 UJ	0 G	380 UJ	9 U	0 G		0 G
2-Nitroaniline	l/Bn	24 U	47 U	24 U	2400 UJ	24 U	950 UJ	24 U	24 U		24 U
Dimethyl phthalate	l/bn	0.6	19 U	9 U	950 UJ	90	380 UJ	90	∩ 6		0 G
2,6-Dinitrotoluene	l/gu	0.6	19 U	9 U	950 UJ	0 G	380 UJ	Л ө	0 G		0 6
Acenaphthylene	l/bn	∩ 6	19 U	9 U	950 UJ	6 J	380 UJ	0 e	90	:	∩6
3-Nitroaniline	γðn	24 U	47 U	24 U	2400 UJ	24 U	950 UJ	24 U	24 U		24 U
Acenaphthene	+ l/gu	N6	19 U	9 U	950 UJ	9 U	380 UJ	9 0	л ө		9 U
2,4-Dinitrophenol	- i/ɓn	24 U	47 U	24 U	2400 UJ	24 U	950 UJ	24 U	24 U		24 U
4-Nitrophenoi	l/bn	24 U	47 U	24 U	2400 UJ	7 J	950 UJ	24 U	24 U		24 U
Dibenzofuran	ng/l	06	U 61-	9 U	950 UJ	0 G	380 UJ	06	0 G		U e
2,4-Dinitrotoluene	ng/l	0 G	19 U	9 U	950 UJ	9 U	380 UJ	06	90		U e
Diethyl phthalate	l/6n	0.6	19 U	9 U	950 UJ	0 G	380 UJ	9 U	06		06
Fluorene	l/bn	9 U	19 U	9 U	950 UJ	0 G	380 UJ	Лe	<u>л</u> е		9 U
4-Chlorophenyl phenyl ether	l/gu	0 G	19 U	9 U	950 UJ	N 6	380 UJ	U e	06		Пб
4-Nitroaniine	na/i	24 U	47 U	24 Ú	2400 UJ	24 U	950 UJ	24 U	24 U		24 U
		-		-		4	~ =	0 =	4	=	
---	----------------	------------	-------	------------	----------	-------------	------------	------------	------------	-------------	
Parameter	Units			2		11/29/200	17-1 17	1-0	- IS		
Janipre Vate 1 6 Dinitro 9 methylohonol	/01	11 70	47 11	11 76	2400 111	24 []	950 UJ	24 U	24 U	 24 U	
4,0-Difficio-2-fileuryphrenoi M attoocodiaboordemino	201				950 11	10	380 111	0.6	16	0.6	
	/on	5			920 00	n o o	380 111	911	10	16	
4-bromoprientyi prilanyi eurei	n n n	0			920 00		380 111	911	116	0.0	
hexacriloroperizerie	1/20	5			950 00	0 0 0	380 111	91		0.6	
Dontechtorohanol	- Por	11 70	47	24 11	950 UJ	24 U	380 UJ	24 U	24 U	24 U	
Dhenanthrana	/01	16	19 U	0.0	170 J	3 J	30 J	90	0.5 J	0.6	
Anthracana	no/	0.6	19 0	Л ө	950 UJ	0.6 J	380 UJ	90	0.6 J	 ∩ 6	
Carbazole	no/	N 6	19 U	n e	950 UJ	0.5 J	380 UJ	90	0.4 J	 90	
Di-n-butvi ohthalate	navi	n 6	10 01	Л 6	950 UJ	л 6	380 UJ	0 G	n 6	90	
Fluoranthene	na/	N 6	19 U	0.6	280 J	6 J	73 J	N 6	л 6	0.7 J	
Pvrene	/an	<u>п</u> 6	19 U	<u>0</u> 6	220 J	7 J	60 J	9 U	0.4 J	0.9 J	
Butvi benzvi phthalate	na/l	0.6	19 U	<u> 16</u>	L 87	∩ 6	380 UJ	N 6	N 6	90	
3.3'-Dichlorobenzidine	na/	D 6	19 U	л 6	950 UJ	Л 6	380 UJ	N 6	Π6	 9 U	
Benzo(a)anthracene	na/	N 6	19 U	0.6	100 J	л З Ј	26 J	0 G	N 6	9 U	
Chrysene	na/l	Л 6	19 U	<u> </u>	120 J	л З Ј	33 J	0.6	N 6	0.5 J	
Bis(2-ethylhexyl) ohthalate	l/on	99	66 BD	N 6	950 UJ	19 B	380 UJ	D 6	Л6	 15 B	
Di-n-octvl ohthalate	ηαΛ	N 6	19 U	Л б	950 UJ	0.6	380 UJ	Л6	n 6	0.6	
Benzo(b)fluoranthene	na/	n 6	19 U	0.6	L 071	6 J	32 J	∩ 6	N 6	0.6 J	
Benzo(k)fluoranthene	na/	Л 6	19 U	0.6	110 J	5 1	24 J	N 6	06	0.6 J	
Benzo(a)pvrene	/ðn	0 6	19 U	0.6	93 J	л З Ј	30 J	0.6	9 U	 0.6 J	
Indeno(1.2.3-cd)pyrene	/ốn	0 6	19 U	<u>л</u> 6	56 J	L F	20 J	9 U	90	9 U	
Dibenzo(a.h)anthracene	/bn	n 6	19 U	∩ 6	950 UJ	0.4 J	380 UJ	9 U	9 U	0 6	
Benzo(g,h,i)perylene	l/Dn	- N 6	19 U	0.6	67 J	2 J	25 J	9 U	9 U	0 G	
Pesticides / PCBs											
aloha-BHC	l/ôn	0.047 U	Ą	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	0.047 U	
beta-BHC	l/bn	0.047 U	A	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	 0.047 U	
delta-BHC	ng/l	0.047 U	Ą	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	0.047 U	
Lindane (camma-BHC)	1/Bn	0.047 U	A	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	0.047 U	
Heotachlor	l/Bn	0.047 U	Ą	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	 0.047 U	
Aldrin	l/Bn	0.047 U	Ą	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	0.047 U	
Hentachtor epoxide	l/gu	0.047 U	Ą	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	0.047 U	
Endosultan I	l/6n	0.047 U	Ą	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	 0.047 U	
Dieldrin	l/gu	0.094 U	AN	0.094 U	0.13 JPN	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
4,4'-DDE	l/gu	0.094 U	AN	0.094 U	0.47 U	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
Endrin	l/ôn	0.094 U	AN	0.094 U	0.2 J	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
Endosulfan li	+ i/gu	0.094 U	Ą	0.094 U	0.47 U	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
4.4'-DDD	- 1/0 n	0.094 U	AN .	0.094 U	0.47 U	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
Endosulfan sulfate	l/bn	0.094 UJ	A	0.094 UJ	0.47 UJ	0.47 U	0.47 UJ	0.094 UJ	0.094 UJ	0.094 UJ	
4.4'-DDT	l/ön	0.094 U	A	0.094 U	0.51 PJ	0.47 UJ	0.47 UJ	0.094 U	0.094 UJ	0.2 PNJ	
Methoxychlor	l/đn	0.47 U	AN	0.47 U	2.4 U	2.4 U	2.4 UJ	0.47 U	0.47 UJ	0.47 U	
Fndrin ketone	l/bn	0.094 U	AN	0.094 U	0.47 U	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
Endrin aldehvde	l/bin	0.094 U	AN	0.094 U	0.47 U	0.47 U	0.47 UJ	0.094 U	0.094 UJ	0.094 U	
alpha-Chlordane	l/gu	0.047 U	A	0.047 U	0.12 J	0.24 U	0.24 UJ	0.047 U	0.047 UJ	0.047 U	
gamma-Chlordane	l/ôn	0.047 U	AN	0.047 U	0.24 U	0.24 U	0.24 UJ	0.047 U	0.047 UJ	 0.047 U	

edial Investigation Report	e 12 - Phase 1 Site Utility Liquids Data
Remedi	Table 1
	Remedial Investigation Report

Parameter	Units	[-1	17-1 DF	IL-3	4	1F-9	IL-7	IL-8	IF-10 IF-1	DL IL-11	
Sample Date						11/29/200	4			•	
Toxaphene	l/gu	4.7 U	NA	4.7 U	24 U	24 U	24 UJ	4.7 U	4.7 UJ	4.7 U	
Arochlor 1016	l/6n	0.94 U	NA	0.94 U	4.7 U	4.7 U	4.7 UJ	0.94 U	0.94 UJ	0.94 U	_
Arochlor 1221	1/6n	1.9 U	AN	1.9 U	9.4 U	9.4 U	9.4 UJ	1.9 U	1.9 UJ	1.9 U	-
Arochlor 1232	l/gu	0.94 U	NA	0.94 U	4.7 U	4.7 U	4.7 UJ	0.94 U	0.94 UJ	0.94 U	_
Arochlor 1242	l/gu	0.94 U	NA	0.94 U	4.7 U	4.7 U	4.7 UJ	0.94 U	0.94 UJ	0.94 U	_
Arochior 1248	l/gu	0.94 U	AN	0.94 U	4.7 U	4.7 U	4.7 UJ	0.94 U	0.94 UU	0.94 U	_
Arochlor 1254	l'gu	0.94 U	AN	0.94 U	4.7 U	4.7 U	4.7 UJ	0.94 U	0.94 LU	0.94 U	_
Arochlor 1260	ug/I	0.94 U	NA	0.94 U	4.7 U	4.7 U	4.7 UJ	0.94 U	0.94 UJ	0.94 U	_
Inorganics											
Aluminum	l/6n	18.4 U ENJ	NA	18.4 U ENJ	907 ENJ	187 ENJ	1200 ENJ	55.6 BENJ	348 ENJ	108 B	Ĩ
Antimony	l/Bn	5.0 U	AN	5.0	60.2	5.0 U	5.0 U	5.0 U	5.0 ND	5.0 U	
Arsenic	l/Bn	2.6 U	NA	2.6	2.6 U	2.6 U	5.7 B	2.6 U	2.6 U	2.6 U	_
Barium	l/bn	44.4 B	AN	67.9 B	3350	15 B	50.2 B	36.3 B	38.8 B	29.9 B	_
Beryllium	l/bn	0.19 U	AN	0.2 B	4.2 B	0.19 U	0.19 U	0.37 B	0.19 U	0.20 B	
Cadmium	l/gu	0.34 U	AN	0.34 U	38.7	0.34 U	2.1 B B	0.34 U	0.34 U	0.34 U	_
Calcium	γðn	37700	AN	136000	136000.00	12200	28700	101000	60400	74800	
Chromium	l/ôn	0.65 U	AN	0.65 U	58.4	0.65 U	6.6 B	0.65 U	8	0.65 U	_
Cobalt	l/gu	0.86 U	AN	0.86 U	76.1	0.9 U	2.1 B	0.96 B	ß	0.86 U	_
Copper	1/0n	2.6 BE	NA	3.5 BE	311 E	5.6 BE	5.5 BE	4.4 BE	229 E	4.5 B	щ
Iron	l/ôn	179	NA	249	996000	165	5280	148	555	693	
Lead	l/ôn	1.3 U NJ	NA	44 NJ	924.0 NJ	5.2 NJ	00.8 NJ	2.0 BNJ	13.2 NJ	N 0.4	2
Magnesium	1/Bn	2030 B	NA	17700	86100	1260 B	6730	21900	587 B	15600	
Manganese	l/Bn	1.5 B	AN	33.2	6360	12.2 B	87	9.7 B	8.6 B	13 B	
Mercury	l/đn	0.087 U	٩N	0.087 U	7.2	0.087 U	0.213	0.087 U	B 60.0	0.087 U	_
Nickel	∕bn	2.1 B	AN	2.3 B	336	3.5 B	19.8 B	4.5 B	81.6	3.3 B	~
Potassium	l/Bn	10800	AN	4620 B	241000 B	852 B	1340 B	1840 B	47100	1620 B	
Selenium	l/Bn	5.0 U N	AN	6.9 BN	5.0 U N	5.0 U N	5.0 U N	5.0 U N	5.0 U N	5.0 U	z
Silver	l/gu	0.69 U	AN	0.69 U	1.5 B	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	
Sodium	l/gu	33900	AN	90700	417000	547 B	4200 B	186000	142000	00206	
Thallium	l/6n	5.1 U	AN	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	_
Vanadium	l∕6⊓	0.58 U	NA	0.58 U	13.3 B	1.4 B	8.80 B	0.87 B	9.4 B	0.58 U	_
Zinc	l/6n	2.8 B	AN	11.9 B	706000	38.6	450	31.8	56.6	131	
Cyanide	l/gu	40.0 U	¥	40.0 U	40.0 U	40.0 U	40.0 U	40.0 U	82.7 J	40.0 U	
На	SU										
Total Hardness	l/bm										
Conductivity	umhos/cm	;							_		

. ÷ 1

Notes: U = undetected, J or E = estimated value, RE = re-extraction, D= diluted sample result NA = sample not analyzed for identified constituent 4200 BOLD font indicates analytical parameter was detected in sample

.

	Depth : Water ()	10/17/0
	Groundwater Elevation (ft.)	07/26/05
	Depth to Water (ft.)	07/26/05
	Groundwater Elevation (ft.)	02/11/05
	Depth to Water (ft.)	05/11/05
	Groundwater Elevation (ft.)	04/12/05
	Depth to Water (h.)	04/12/05
	Groundwater Elevation (ft.)	20/16/10
	Depth to Water (ft.)	01/31/0S
ata	Groandwater Elevation (ft.)	12/09/04
l Gauging I	Depth to Water (ft.)	12/09/04
tervals, and	Approximate Screezed	Interval (ft.)
Screened Int	Top of Casing Elevation (ft.)	July 2007 Survey
LLC Report Vell Depths,	Top of Casing Elevation (ft.)	May 2006 Survey
dler Avenue nvestigation Monitoring V	Top of Casing Elevation (A.)	Historical Survey
Pioneer Mi Remedial I. Table 13 -]	Monitoring	Ġ

Monitoring	Top of Casing Elevation (ft.)	Top of Casing Elevation (ft.)	Top of Casing Elevation (ft.)	Approximate Screened	Depth to Water (ft.)	Groundwater Elevation (ft.)	Depth to (Water (ft.)	Froundwater Elevation (ft.)	Depth to (Water (h.)	Groundwater Elevation (f).)	Depth to Water (h.)	Gronndwater Elevation (ft.)	Depth to Water (ft.)	Groundwater Elevation (ft.)	Depth to Water (1.)	Groundwater Elevation (ft.)	Depth to Water (ft.)	Groundwater Elevation (ft.)	Depth to Water (ft.)	Froundwater Elevation (ft.)
Ēġ	Historical Sarvey	May 2006 Survey	July 2007 Survey	(n.)	12/09/04	12/09/04	01/31/05	91/31/05	04/12/05	04/12/05	20/11/90	05/11/05	07/26/05	07/26/05	10/17/05	10/17/05	05/16/06	90/91/50	06/23/07	70%23W07
I-WM	422.92	422.95	1	4 to 14	3.54	419.38	4.00	418.92	3,40	419.52	3.69	419.23	4.07	418.85	33	419.62	2.55	420.40	:	:
MW-2	418.73	418.72	;	4 to 14	4.60	414.13	4.82	413.91	4.40	414.33	4.65	414.08	4.91	413.82	4.6	414.13	4.82	413.90	4.93	413.79
MW-2D	418.74	422.21	:	10 to 20			4.86	413.88			4.69	414.05	4.95	413.79	4.64	414.10	83	413.91	8.51	413.70
MW-3	417.94		:	4 to 14	1.61	416.33	2.15	415.79	;	;	2.12	415.82	2.14	415.80	2.18	415.76	2.66	415.28	:	:
QE-WM	417.95	417.94	:	15 to 25	:	:	2.10	415.85	1.98	415.97	2.02	415.93	2.15	415.80	1.8	416.15	2.63	415.31	:	:
MW-4	416.00	416.06	:	41014	2.65	413.35	2.86	413.14	2.32	413.68	2.60	413.40	3.98	412.02	2.66	413.34	2.58	413.48	:	;
MW-4D	416.22	416.33	:	13 to 18	:	:	3.01	413.21			2.70	413.52	3.00	413.22	2.81	413.41	2.75	413.58	:	:
8-WM	418.33	;	:	4 to 14	2.62	415.71	3.74	414.59	2.16	416.17	2.60	415.73	;		2.12	416.21	:	:	:	:
9-MW	420.22	420.29	1	4 to 14	2.06	418.16	2.78	417.44	1.74	418,48	2.27	417.95	2.92	417.30	1.71	418.51	1.58	418.71	:	
<i>1-W</i> M	429.16	429.21	:	5 to 15	8.28	420.88	9.40	419.76	7.92	421.24	8.37	420.79	9.15	420.01	8.34	420.82	8.19	421.02	19:6	419.54
MW-8	422.37	422.41	:	4 to 14	2.36	420.01	3.60	418.77	3.11	419.26	3.39	418.98	3.73	418.64	3.07	419.30	1.12	421.29	5.14	417.27
Q6-MM	420.64	420.67		8 to 18			6.86	413.78	6.55	414.09			6.78	413.86	6.4	414.24	<i>19</i> '9	414.00	7.41	413.26
MW-10D	419.75	419.76	:	8 to 18	:	:	6.86	412.89	6.71	413.04	-	:	6.91	412.84	6.65	413.10	6.8	412.96	7.16	412.60
dii-ww	420.97	1	;	6 to 22	:	:	3.25	417.72	2.54	418.43	2.80	418.18	3.12	417.85	2.41	418.56	:	:	:	
MW-12D	;	424.62	1	8.5 to 18.5	:	:		:		•				:		:	4.59	420.03		;
MW-12D-R	1	;	424.54	8.5 to 18.5	:	:	;	:		;	:		:		 	:	:	:	7.29	417.25
MW-13D	:	420.91	:	8 to 18	:	:	1	:	:	:	:		:	-	:	:	6.27	414.64	7.75	413.16
SB-2-1	423.16	:	:	16011	:	;	:		3.89	419.27	4.18	418.98	4.55	418.61	3.83	419.33	:		;	:
SB-7-1	421.55	:	:	8 to 18	:	;	:	1	2.93	418.62	3.15	418.40	3.51	418.04	2.77	418.78		:	;	
I-6-81S	421.94	:	:	8.5 to 18.5	:	;	:	:	3.48	418.46	3.75	418.19	4.10	417.84	3.04	418.90	:	:	;	:
SB-12-1	419.52		:	12 to 22	:		:	:	1.41	418.11	1.73	417.79	2.01	417.51	1.29	418.23	;	;		;
SB-13-2	418.96			12 to 22	:		;	:	1.38	417.58	1.65	417.31	2.94	416.02	1.18	417.78	;		;	:
SB-13-4	421.86	:	:	14 to 24	:	;	:	:	5.38	416.48	5.84	416.02	6.01	415.85	5.46	416.40	!	:	;	:
DAW-1	421.11	421.16	:	32.5 to 37.5	:	;	:	:				:	:	;	3.38	417.73	3.12	418.04	:	
DAW-2	419.82	422.59	:	46 to 51			;	:			:	:	:	:	2.42	417.40	4.76	417.83	;	:
DAW-3	418.32	418.31	;;	51.5 to 56.5	:		:	:	:	:	;	:	:	;	-1.8*	420.12	-1.17*	419.48	:	:
DAW-4		424.45	:	19 to 29	;	4	:	;	;	-		:	-		-1.8*	420.12	628	418.17	:	;

---- Data noi avaliable * = Estimated value meanned within a temporary extended rise: Notes: MW-2D and DAW 2 converted to stick-up wells just prior to May 2006 survey

f.

F-Invien/C&1 - Promer Development/C&1.002 BCP/Cose out and COC/Cender 200791 Report/Tables/Table/Late

		er Data	
oneer Midler Avenue LLC	smedial Investigation Report	ble 14 - Phase 1 Groundwate	

Pioneer Midler Avenue LLC												
Hemedial Investigation Heport Table 14 - Phase 1 Groundwate	er Data											
Parameter	Units	NYSDEC (Class GA	MW-1	MW-2	WW-3	MW-3 Dupe	MW-4	MW-5	9-WM	Z-WM	MW-8
Sample Date		Standard	Guidance				11/	29/2004				
Chloromethane	i/ôn			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromomethane	1/6n			10 U	10 U	10 U	10 U	10 U	10 U	<u>5</u>	10 U	10 U
Vinyi chloride	į/ôn	2		10 U	10 U	22	28	10 U	10 U	10 U	10 U	10 U
Chloroethane	Į/ôn	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 L	10 U
Methylene chloride	l/6n	ഹ		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	ίδη		50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon disulfide	l/6n	99		10 U	10 U	10 U	10 U	10 U	10 U	10 01	10 U	10 U
1,1-Dichloroethene	l/ôn	ы		10 U	10 U	10 U	10 U	10 U	10 U	10 [1	10 U	10 U
1,1-Dichloroethane	l/6n	ۍ ا		10 U	10 U	10 U	0 9	10 U	10 U	10 N	10 U	10 U
Chloroform	l/gu	7		10 U	10 U	10 U	0 0	10 U	10 U	10 U	10 U	10 U
1,2-Dichloroethane	l/gu	0.6		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MEK(2-Butanone)	l/ôn		50	10 U	10 U	10 U	16 U	10 U	10 U	10 U	10 U	10 U
1,1,1-Trichloroethane	l/on	ſ		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Carbon tetrachioride	l/ôn	'n		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromodichloromethane	l/6n		50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichloropropane	j/ôn			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
cis-1,3-Dichloropropene	l/gu	0.4		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Trichloroethene	l/gu	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dibromochloromethane	l/ôn	5		10 N	10 U	10 U	10 U	-0 -	10 U	10 U	10 U	10 U
1,1,2-Trichloroethane	l/ĝn	5		10 U	10 U	10 U	∩ ₽	10 U	10 U	10 U	10 U	10 U
Benzene	l/gu	-		-10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	∕ôn	0.4		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Bromoform	∕ôn		50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
MIBK(4-Methyl-2-pentanone)	l/ôn			10 U	10 U	10 U	10 1	10 U	10 U	10 U	10 U	10 U
2-Hexanone	l⁄ôn		ß	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Tetrachloroethene	l⁄ôn	ۍ		10 U	10 U	10 U	3 J	10 U	10 U	10 U	10 U	10 U
Toluene	/ðn	ى م		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	jōn	ഹ		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Chlorobenzene	-lon	ß		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Ethylbenzene	lôn	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Styrene	l/ôn	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Total Xylenes	l/ôn	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Dichlorodifluoromethane	∕ðn	5		10 U	10 U	10 U	10 U	-0 -	10 U	10 U	10 U	10 U
Trichlorofluoromethane	∫ôn	5	* .	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,1,2-Trickoro-1,2,2,-triflouroethane	l/ôn	- 5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	l/ôn	5		10 U	10 U	113	- P/2	10 U	10 U	10 U	10 U	10 U
Methyl tert butyl ether	l/gu	10		10 U	10 U	10 U.	10 U	10 U	10 U	10 U	10 U	<u>₽</u>
cis-1,2-Dichloroethene	l/ôn	ъ		10 U	10 U	430	180	2 J	3 J	10 U	3 J	10 U
Cyclohexane	l/ôn			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methylcyclohexane	l/ôn			10 U	10 U	10 U	10 U	10 C	10 U	10 U	10 U	10 U
1,2-Dibromoethane	l/gu			10 0	10 U	0 0	10 U	10 0	10 0	10 0	10 0	10 U

idler Avenue LLC	Investigation Report	Phase 1 Groundwater Data
Pioneer Midler Ave	Remedial Investigs	Table 14 - Phase 1

Parameter	Units	NYSDEC (Class GA	hw-1	MW-2	MW-3	MW-3 Dupe	MW-4	MW-5	9-WW	7-WM	MW-8
Sample Date		Standard	Guidance				11	/29/2004				
Isopropylbenzene	1/0n	ŝ		10 0	10 U	10 0	10 U	10 1	10 U	10 U	10 U	10 U
1,3-Dichlorobenzene	l/ôn	e		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,4-Dichtorobenzene	i/ôn	3		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dichlorobenzene	¦∕6n	e		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2-Dibromo-3-chloropropane	/6n	0.04		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
1,2,4-Trichlorobenzene	∕ôn	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Methyl acetate	l/ôn			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U
Semivolatiles												
Benzaldehyde	∕ôn			10 U	л6	10 U	10 U	20 U	10 U	10 U	10 U	0.6
Phenol	∕6n	-		10 U	n 6	10 U	10 U	20 U	10 U	0.9 J	10 U	9 U
Bis (2-chloroethyl) ether	l/đn	-		10 U	л 6	10 U	10 U	20 U	10 U	10 U	10 U	9 U
2-Chlorophenol	l/gn			10 U	<u>п</u> 6	10 U	10 U	20 U	10 U	10 U	10 U	9 0
2-Methyiphenol	l/ôn	-		10 U	<u>п</u> 6	10 N	10 U	20 U	10 U	10 U	10 U	90
2.2'- Oxybis (1-Chloropropane)	/ðn			10 U	n 6	10 U	10 U	20 U	10 U	10 U	10 U	9 U
Acetophenone)ôn			10 U	<u>п</u> 6	10 U	10 U	20 0	10 U	10 U	10 U	9 U
4-Methylphenol	l/ôn	-		10 U	0 6	10 U	0.4 J	20 U	10 U	10 U	10 U	9 U
N-Nitroso-Di-n-propylamine	l/ôn			10 U	n 6	10 U	10 U	20 U	10 U	10 U	10 U	9 0
Hexachloroethane	jőn	5		10 U	∩ 6	10 U	10 U	20 U	10 U	10 U	10 U	9 U
Nitrobenzene	/ðn	0.4		10 U	л 6	10 U	10 U	20 U	10 U	10 U	10 U	9 U
Isophorone	,/ôn		50	10 U	<u>ח</u> 6	10 U	- 10 U	20 U	10 U	10 U	10 U	9 U
2-Nitrophenol	l/ôn	-		10 U	0 6	10 U	10 U	20 U	10 U	10 U	10 U	9 0
2,4-Dimethyphenol	l/On			10 U	0 6	10 U	10 U	20 U	10 U	10 U	10 U	9 U
Bis(2-chloroethoxy) methane	l/ôn	ഹ		10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 U	9 0
2,4-Dichlorophenol				10 U	9 0	10 U	10 U	20 U	10 U	10 U	10 U	06
Naphthalene	l/ôn		10	10 U	N 6	0.5 J	10 U	0.7 J	10 U	10 U	10 U	9 0
4-Chloroaniline	l/ôn	S		10 U	- N 6	10 U	10 U	20 U	10 U	10 U	10 U	9 U
Hexachlorobutadiene	l/ôn	0.5		10 U	0 6	10 U	10 U	20 U	10 U	10 U	10 U	9 0
Caprolactam	γôn			10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 U	N 6
4-Chloro-3-methylphenol	l/6n	-		10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 L	06
2-Methylnaphthalene	ļ⁄6n			10 U	90	10 U	10 U	20 U	10 U	10 U	10 L	06
Hexachtorocyclopentadiene	i/6n	5		10 U	9 U	10 U	0 10	20 U	10 U	10 U	10 U	9 U
2,4,6-Trichlorophenol	l/gu	*		10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 U	9 0
2,4,5-Trichlorophenol	l/gu	-		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
Bipheny	1/6n	ی ما	f.,	10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 U	9 0
2-Chloronaphthaiene	∕ðn	,	10	10 N	9 U	10 U	10 U	20 U	10 U	10 U	10 U	0 6
2-Nitroaniline	l/ôn	ъ		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
Dimethyl phthalate	/ðn		50	10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 U	9 0
2,6-Dinitrotoluene	∕6n	5		10 U	9 U	10 U	10 U	20 U	10 U	10 U	10 U	9 U
Acenaphthylene	l/ôn			10 U	9 <mark>0</mark>	10 U	10 U	٦L	10 U	10 U	10 U	06
3-Nitroaniline	ļ6n	ۍ		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
Acenaphthene	ļ/ðn			10 U	<u>U</u> 6	10 U	10 U	20 U	10 U	10 U	10 U	06

· Avenue LLC	stigation Report	se 1 Groundwater Data
oneer Midler Avenue	emedial Investigation	able 14 - Phase 1 Grou

Parameter	Units	NYSDEC	Class GA	MW-1	MW-2	MW-3	MW-3 Dupe	MW-4	MW-5	9-WM	7-WM	8-WM
Sample Date		Standard	Guidance				11	/29/2004				
2,4-Dinitrophenol	i/ôn	-		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
4-Nitrophenol	l/6n	-		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
Dibenzofuran	l/ôn			10 U	n 6	10 U	10 U	20 U	10 U	10 N	10 U	N 6
2,4-Dinitrotoluene	l/gu	ъ		10 U	Лб	10 U	10 U	20 U	10 U	10 U	10 U	U 6
Diethyl phthalate	/ôn		50	10 U	n 6	10 U	10 U	20 U	10 U	10 U	10 U	90
Fluorene	∕ôn		50	10 U	D 6	10 U	10 U	0.8 J	10 U	10 U	10 U	0 6
4-Chlorophenył phenyl ether	l/ôn			10 U	0 G	10 U	10 U	20 U	10 U	10 U	10 U	06
4-Nitroaniline	l/ôn	S		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
4,6-Dinitro-2-methylphenol	Ŋ	-		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
N-nitrosodiphenylamine	l/gu		50	10 U	9 0	10 U	10 N	20 U	10 U	10 U	10 U	90
4-Bromophenyl phenyl ether	l/ôn			10 U	N 6	10 U	10 U	20 U	10 U	10 U	10 U	0 6
Hexachlorobenzene	l/6n	0.04		10 U	- N 6	10 U	10 U	20 U	10 U	10 U	10 U	0.6
Atrazine	l/gu	7.5		10.U	л 6	10 U	10 U	20 U	10 U	10 I	10 U	9 U
Pentachiorophenol	ng/l	-		24 U	24 U	25 U	25 U	49 U	24 U	24 U	24 U	24 U
Phenanthrene	l/gu		50	0.4 J	3 J	J.C.	2 J	۲9	0.6.J	10 U	0.7 J	U e
Anthracene	l/gu		50	10 U	Л 6	10 U	10 U	L L	10 U	10 U	10 U	0 6
Carbazole	l/gu			10 U	N 6	10 U	10 U	0.8 J	10 U	10 U	10 U	0 G
Di-n-butyl phthalate	l/ôn	20		10 U	л б	10 U	10 U	20 U	10 U	10 U	10 U	Лб
Fluoranthene	l/ôn		20	10 U	2 J	л Ю	л С	۲6	10 U	10 N	10 U	9 U
Pyrene	l/ôn		20	10 U	0.6 J	2 J	L F	۲8	10 U	10 U	10 U	0 6
Butyl benzyl phthalate	J∕0n		20	10 U	N 6	10 U	10 U	20 U	10 U	10 U	10 U	0 6
3,3'-Dichlorobenzidine	l/ôn	5		10 U	9 U E	10 U	10 U	20 U	10 U	10 U	10 U	0 6
Benzo(a)anthracene	l/ôn		0.002	10 U	06	0.9 4	0.8.0	4.0	10 U	10 U	10 U	<u>л</u> 6
Chrysene	l/ôn		0.002	10 U	0 G	3.4	L 8.0	74	10 U	10 U	10 U	06
Bis(2-ethylhexyl) phthalate	l/ôn	S		10 U	n e	10 0	10 U	20 U	10 U	10 U	160	15 B
Di-n-octyl phthalate	l/ôn		20	10 U	n 6	10 U	10 N	20 U	10 U	10 U	10 11	Л б
Benzo(b)fluoranthene	l/gu		0.002	10 U	0 G	1 50	0.8.0	3.4	10 U	10 U	10 U	n 6
Benzo(k)fluoranthene	l/gu		0.002	10 U	9 0	0.8.1	P:2:0	PIE -	10 U	10 U	10 U	n 6
Benzo(a)pyrene	l/đn	Q		10 U	9 0	0.9 J	0.7 J	4 J	10 U	10 U	10 U) 6
Indeno(1,2,3-cd)pyrene	l/gu		0.002	10 U	9 0	10 U	10 U	2,0	10 U	10 U	10 U	06
Dibenzo(a,h)anthracene	l/gu			10 U	9 0	10 U	10 L	1	10 U	10 U	10 U	06
Benzo(g,h,i)perylene	l/gu			10 U	0 6	10 U	10 U	3 J	10 U	10 U	10 U	06
Pesticides / PCBs												
alpha-BHC	∕ôn	•	Ŧ.	0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
beta-BHC	∕ôn	*		0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
delta-BHC	l\gu			0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
Lindane (gamma-BHC)	ng/l			0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
Heptachlor	l/gu	0.04		0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
Aldrin	l/ĝn	2		0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
Heptachlor epoxide	l/gu	0.03		0.047 U	0.047 UJ	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
Endosulfan	l/Bn			0.047 U	0.047 U	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ

		Dat
	÷	ter
o	ğ	W a
Ξ	Ř	ň
nue	tion	20
Ve	iga	Ť
er J	vest	lasi
Nidl	Ē	Ē
er P	dial	14
one	e E	ble
ā	B	Та

Darameter	Units	NYSDEC	Class GA	MW-1	MW-2	MW-3	MW-3 Dupe	MW-4	MW-5	9-WW	7-WM	MW-8
Samole Date		Standard	Guidance				11	/29/2004				
Dieldrin	/ôn	0.004		0.094 U	0.094 U	0.20 U	0.10 U	0:50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
4.4'-DDE	l/gu	0.2		0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
Endrin	l/gu	Q		0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
Endosultan II	l/gu			0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
4,4-DDD	l/gu	0.3		0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
Endosultan sulfate	l/gu			0.094 UJ	0.094 UJ	0.20 UJ	0.10 UJ	0.50 UJ	0.094 UJ	0.094 UJ	0.094 UJ	0.095 UJ
4.4'-DDT	lĝn	0.2		0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
Methoxychior	l/gu	35		0.047 U	0.047 U	1.0 U	0.50 U	2.5 U	0.047 U	0.047 U	0.047 UJ	0.48 UJ
Endrin ketone	l/ôn			0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
Endrin aldehvde	/ôn	5		0.094 U	0.094 U	0.20 U	0.10 U	0.50 U	0.094 U	0.094 U	0.094 UJ	0.095 UJ
aloha-Chlordane	/ôn	0.05		0.047 U	0.047 U	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
gamma-Chlordane	l/ôn	0.05		0.047 U	0.047 U	0.10 U	0.050 U	0.25 U	0.047 U	0.047 U	0.047 UJ	0.048 UJ
Toxabhene)ôn	0.06		4.7 U	4.7 U	10 U	5.0 U	25 U	4.7 U	4.7 U	4.7 UJ	4.8 UJ
Arochlor 1016	l/6n	0.09		0.94 U	0.94 U	2.0 U	1.0 U	5.0 U	0.94 U	0.94 U	0.94 UJ	0.95 UJ
Arochlor 1221	l/ôn	0.09		1.9 U	1.9.U	4.0 U	2.0 U	10 U	1.9 U	1.9 U	1.9 UJ	1.9 UJ
Arrochlor 1232	l/bn	0.09		0.94 U	0.94 U	2.0 U	1.0 U	5.0 U	0.94 U	0.94 U	0.94 UJ	0.95 UJ
Arochior 1242	/ðn	0.09		0.94 U	0.94 U	2.0 U	1.0 U	5.0 U	0.94 U	0.94 U	0.94 UJ	0.95 UJ
Arrchior 1248	lon	0.09		0.94 U	0.94 U	2.0 U	1.0 U	5.0 U	0.94 U	0.94 U	0.94 UJ	0.95 UJ
Arrochior 1254	lan	0.09		0.94 U	0.94 U	2.0 U	1.0 U	5.0 U	0.94 U	0.94 U	0.94 UJ	0.95 UJ
Arochlor 1260	ĥ	0.09		0.94 U	0.94 U	2.0 U	1.0 U	5.0 U	0.94 U	0.94 U	0.94 UJ	0.95 UJ
Inoraanics												
Aluminum	l/on			93.9 BENJ	133 BENJ	2160 ENJ	1560 NEJ	218 ENJ	301 ENJ	544 ENJ	277 ENJ	388 ENJ
Antimony	l/ôn	e		5.0 U	5.0 U	5.0 U	5 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Arsenic	l/on	25		2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U	2.6 U
Barium	l/bin	1000		40.9 B	34.8 B	96.6 B	102 B	139 B	57.2 B	109 BJ	156 B	153 B
Bendlium	no,		e	0.30 B	0.26 B	0.91 B	0.94 B	0.59 B	0.65 B	0.39 BJ	0.87 B	0.92 B
Cadmium	Į2	5		0.34 U	0.34 U	0.37 B	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U	0.34 U
Calcium	/on			158000	164000	349000	386000	451000	347000	178000	457000	531000
Chromium	/õn	50		0.65 U	0.65 U	3.1 B	1.9 B	0.65 U	0.65 U	0.65 U	0.65 ND	0.69 B
Cobalt	l/ôn			0.86 U	0.86 U	2.8 B	3.1B	1.0 B	0.86 U	0.86 U	1.3 B	5.1 B
Copper	l/gu	200		1.3 U E	1.3 U E	109 EN	102 E	1.3 U E	1.3 U E	1.3 U E	1.3 U E	3.5 BE
Iron	ng/	300		4040	294	7540	5120	12000	847	6400	2500	854
Lead	ng/	25		1.3 U NJ	1.3 U NJ	44.0 N.J	40,8,NJ	1.3 U NJ	1.3 BNJ	3.0 BNJ	1.3 U NJ	1.3 U NJ
Magnesium	l/gu	-	35000	11500	13300	44900	100851	14000	37300	24500	46800	001.21
Manganese	ng/	300		158	15.1	229	290	476	112	192	1453	871
Mercury				0.087 U	0.087 U	0.087 U	0.087 U	0.087 U	0.087 U	0.087 U	0.087 U	0.180 B
Nickel	/ðn	100		2.9 B	2.3 B	9.3 B	8.2 B	4.2.8	3.2 B	2.8 B	4.8 B	13.9 8
Potassium	l/gu			4660 B	3430 B	4570 B	2900 B	8420	5380 B	13100 B	3840 B	3120 B
Selenium	l/6n	10		5.0 U N	5.0 U N	5.0 U N	5 UN	5.0 U N	5.0 UN	5.0 U N	5.0 U N	5.0 U N
Silver	l/ôn	50		0.69 U	0.69 U	U 69'0	0.69 U	0.69 U	0.69 U	0.69 U	0.69 U	0.691U
Sodium	l/ôn	2000		000826	40300	1416000	338000	60360	143000	307000	383200	340000

•

Parameter	Units	NYSDEC (class GA	MW-1	MW-2	MW-3	MW-3 Dupe	MW-4	MW-5	9-WW	7-WM	MW-8
Sample Date		Standard	Guidance				11	/29/2004				
Thallium	i/ôn		0.5	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	5.1 U	
Vanadium	l∕6n			0.58 U	0.58 U	7.1 B	6.1 B	0.75 B	0.80 B	1.5 B	0.58 U	1.2 B
Zinc	∥ôn		2000	7.1 B	2.6 B	63.4	61.4	17.5 B	9.0 B	13.7 B	17.0 B	59.8
Cyanide				40.0 U	40.0 U	40.0 U	40.0 U	40.0 U	40.0 U	40.0 U	40.0 U	40.0 U
Hq	SU											
Total Hardness	l/gm											
Conductivity	umhos/cm					-						

Notes: **1000** - indicates detected value for organic - indicates value exceeds Class GA Standard or Guidance level. ND = not detected, U = undetected, J or E = estimated value, RE = re-extraction

۴.

÷ 1

с С	anort
venue L	nation F
lidler A	Investi
neer N	madial

Pioneer Midler Avenue LLC Remedial Investigation Repo	ы											
Table 15 - Phase 2 Groundw Monitoring Wells	/ater Data	for Clay U	Init									
Parameter Date Samoled	Units	NYSDEC	Class GA Guidance	MW-2D	MW-3D	MW-3D DL	MW-4D	MW-9D 1/31/2005	MW-10D	MW-10D DL	MW-11D	MW-11D DL
Chloromethane	l/ôn			10 U	20 U	800 U	10 U	10 U	του	80 U	10 U	500 U
Bromomethane	l/6n			10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Vinyl chloride	l/6n	2		10 U	170	800 U	10 U	6.0	32 J	32 DV	830	830 D
Chloroethane	l/6n	22		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Methylene chloride	l/ôn	ى ا		10 U	20 N	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Acetone	l/bn		50	10 U	20 U	800 U	10 U	10 U	Р 8	80 U	10 U	500 U
Carbon disulfide	l/ôn	80		10 U	20 0	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,1-Dichloroethene	l/bn	2		10 U	101	800 U	10 U	10 U	10 U	80 U	28	500 U
1,1-Dichloroethane	l/bn	5		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Chloroform	l/bn	7		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,2-Dichloroethane	l/ôn	0.6		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
MEK(2-Butanone)	l/ôn		20	15	20 U	∩ 800 ∩	13	10 U	10 U	80 U	10 U	500 U
1,1,1.Trichloroethane	l/ôn	ß		10 U	20 N	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Carbon tetrachloride	i/6n	ъ		10 U	50 C	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Bromodichloromethane	¦∕6n		50	10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,2-Dichloropropane	l/bn	-		10 N	∩ \$2	800 U	10 U	10 U	10 U	80 U	10 U	500 U
cis-1,3-Dichloropropene	l/gu	0.4		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Trichloroethene	l/ôn	2		10 U	6J	800 U	10 U	10 U	10 U	80 U	2.200	2,200 D.
Dibromochloromethane	l/gu	ю		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,1,2-Trichloroethane	l/ôn	ъ		10 U	20 U	800 U	10 U	10 U	10 U	D 08	2 J	500 U
Benzene	l/ĝn			10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
trans-1,3-Dichloropropene	l/ôn	0.4	:	10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Bromoform	i/ɓn		50	10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
MiBK(4-Methyl-2-pentanone)	l/ôn			10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
2-Hexanone	l/ôn		50	10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Tetrachloroethene	l/ôn	ß		10 U	8,800	B,800 D	10 U	3 J	4 1	80 U	6,800	6,800 D
Toluene	l/ôn	5			20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,1,2,2-Tetrachloroethane	/ôn	ß		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Chlorobenzene	l/gu	2		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Ethylbenzene	l/ôn	5		10 U	20 U	800 U	10 U	10 L	10 U	80 U	10 U	200 L
Styrene	l/bn	3		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Total Xylenes	l/ôn	ъ		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U

F: Project/C81 - Pioneer Development/C81.002 BCPIClose out and COCIOctober 2007/RI Report/Tables/Table15validated.xis / GW

Dinneer Midler Avenue LLC		
Remedial Investigation Repo	Ĕ	
Table 15 - Phase 2 Groundw	ater Data	for Clay Unit
Monitoring Wells		
Parameter	Units	NYSDEC Class
7 		

Parameter	Units	NYSDEC (Class GA	MW-2D	MW-3D	MW-3D DL	MW-4D	De-WM	MW-10D	MW-10D DL	MW-11D	MW-11D DL
Date Sampled		Standard	Guidance		100	57 187		1/31/2005		8	3	
Dichlorodifluoromethane	l/ôn	പ		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Trichiorofluoromethane	l/ôn	ю		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,1,2-Tricloro-1,2,2,-triflouroethane	l/ôn	ۍ ۱		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
trans-1,2-Dichloroethene	l/ôn	ъ		10 U	1/2	800 U	10 U	10 U	26	46 DV	130	150 0
Methyl tert butyl ether	l/6n	9		10 UU	20 U	800 U	10 UJ	10 UJ	10 UJ	80 U	10 UU	500 U
cis-1,2-Dichloroethene	l/6n	ъ		10 U	3,700	3,700 D	10 U	7	700	200 D	8,700	6,700 D
Cyclohexane	l/Bn			10 U	20 U	800 U	10 U	10 U	10 U	80 N	-10 U	500 U
Methylcyclohexane	l/bn			10 U	20 C	800 U	10 U	10 U	10 U	∩ 80	-10 U	500 U
1,2-Dibromoethane	l/bn			10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
Isopropylbenzene	l/ôn	2		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,3-Dichlorobenzene	l/gu	e		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,4-Dichlorobenzene	l/6n	e		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,2-Dichlorobenzene	l/Bn	e		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U
1,2-Dibromo-3-chloropropane	l/6n	0.04		10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	200 U
1,2,4-Trichlorobenzene	l/bn	5		10 UU	20 UJ	800 U	10 UJ	10 LU	10 UU	80 U	10 U	500 U
Methyl acetate	ng/l			10 U	20 U	800 U	10 U	10 U	10 U	80 U	10 U	500 U

Notes: 1,000 - indicates detected value for organics.

indicates value exceeds Class GA Standard or Guidance level.

U = undetected, J or E = estimated value, RE = re-extraction, D = result on diluted samples

÷. ÷.,

+ 1

Pioneer Midler Avenue LLC Demodial Investigation Benort

Remedial Investigation Report Table 16 - Phase 2 Groundwater Data for Temporary Interior Monitoring Wells

arameter	Units	NYSDE	C Class GA	SB 2-1	SB 3-1	SB 7-1	SB 9-1	SB 12-1	SB 12-1 DL	SB 13-2	SB 13-2 DL	
		Standard	Guidance	03/21/05	03/21/05	03/21/05	03/21/05	03/21/05	03/21/05	03/22/05	03/22/05	
volatiles												
Chloromethane	l/ôn			101	10 U	10 U	10 U	10 U	200 U	10 U	250 U	
Bromomethane	l/ĝn			10 U	200 U	10 U	250 U					
/inyl chloride	l/gu	~		10 U	10 U	10 U	10 U	820	820 D	3300	3,300 U	
Chloroethane	l/ĝn	ى م		10 UJ	10 UJ	M 01	10 UJ	10 01	200 U	10 U	250 U	
Aethylene chloride	l/ôn	2		10 U	200 U	10 U	250 U					
Acetone	\Øn		20	10 U	200 U	10 U	250 U					
Carbon disulfide	l/ôn	8		10 0	10 U	10 U	10 U	10 U	200 U	10 01	250 U	
1,1-Dichloroethene	l/gu	ъ		10 U	10 U	10 U	10 U	22	200 U	70	250 U	
,1-Dichloroethane	l/ôn	2		10 U	200 U	10 U	250 U					
Chloroform	l/ôn	7		10 U	200 U	10 U	250 U					
1,2-Dichloroethane	l/ôn	0.6		10 U	200 U	10 U	250 U					
MEK(2-Butanone)	l/ôn		50	10 U	200 U	10 U	250 U					
1,1,1-Trichloroethane	l/ôn	S		10 U	200 U	10 U	250 U					
Carbon tetrachloride	l/ôn	Ω		10 U	200 U	10 U	250 U					
3romodichloromethane	l/ôn		50	10 U	200 U	10 U	250 U					
1,2-Dichloropropane	l/ôn			10 U	200 U	10 U	250 U					
is-1,3-Dichloropropene	l⁄on	0.4		10 U	200 U	10 U	250 U					
Trichloroethene	l/ôn	2		10 U	10 U	10 U	10 U	22	200 U	280	280 D	
Dibromochloromethane	l/6n	2 2		10 U	200 U	10 U	250 U					
1,1,2-Trichloroethane	l/ôn	2 L		10 U	200 U	10 U	250 U					
3enzene	l/ôn	-		10 U	200 U	10 01	250 U					
rans-1,3-Dichloropropene	l/ôn	0.4		10 U	200 U	10 U	250 U					
Jromoform	l⁄ôn		50	10 U	200 U	10 U	250 U					
VIBK(4-Methyl-2-pentanone)	l/6n			10 U	200 U	10 U	250 U					
2-Hexanone	l/ôn		50	10 U	10 U	10 U	10 N	10 U	200 U	10 U	250 U	
Tetrachloroethene	Vpn	۵		10 U	10 U	10 U	10 U	14	200 U	340	340 D	
Toluene	l/ôn	ۍ ا		10 U	200 U	4 J	250 U					
1,1,2,2-Tetrachloroethane	l/6n	5		10 U	200 U	10 U	250 U					
Chlorobenzene	l/ôn	5		10 U	200 U	10 U	250 U					
Ethylbenzene	l/ôn	5		10 U	200 U	2 J	250 U					
Styrene	l/ôn	2		, 10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	
Total Xylenes	l/6n	ß		10 U	200 U	10 U	250 U					

F:|ProjectIC81 - Pioneer DevelopmenthC81.002 BCPIClose out and COCIOctober 2007/HI ReportTables1Table16VALIDATED.xls / GW

Page 1 of 4

Pioneer Midler Avenue LLC Remedial Investigation Report

 Table 16 - Phase 2 Groundwater Data for Temporary

 Interior Monitoring Wells

Parameter	Units	INSDE	EC Class GA	SB 2-1	SB 3-1	SB 7-1	SB 9-1	SB 12-1	SB 12-1 DL	SB 13-2	SB 13-2 DL
		Standard	Guidance	03/21/05	03/21/05	03/21/05	03/21/05	03/21/05	03/21/05	03/22/05	03/22/05
Dichiorodifluoromethane	l/ôn	ъ.		10 U	200 U	10 U	250 U				
Trichlorofluoromethane	l/ôn	2 2	-	10 U	200 U	10 U	250 U				
1,1,2-Tricloro-1,2,2,-triftouroethane	l/ôn	ۍ		10 U	200 U	10 U	250 U				
trans-1,2-Dichloroethene	l/ôn	ъ		10 U	10 U	10 U	10 U	26	200 U	190	200 D
Methyl tert butyl ether	l/ôn	10		10 U	10 U	10 U	10 U	10 0	200 U	10 U	250 U
cis-1,2-Dichloroethene	l/ôn	5		10 U	10 U	10 U	3 J	2,100	2,100 D	24,000	14,000 D
Cyclohexane	l/ôn			10 U	200 U	10 U	250 U				
Methylcyclohexane	l/ôn			10 U	200 U	3 J	250 U				
1,2-Dibromoethane	∥ ôn			10 U	200 U	10 U	250 U				
Isopropylbenzene	l/ôn	Ω		10 U	200 U	10 U	250 U				
1,3-Dichlorobenzene	l/Bn	ო		10 U	200 U	10 U	250 U				
1,4-Dichlorobenzene	l/Bn	e		10 U	200 U	10 N	250 U				
1,2-Dichlorobenzene	l/ôn	e		10 U	200 U	10 U	250 U				
1,2-Dibromo-3-chloropropane	∥ôn	0.04		10 U	200 U	10 U	250 U				
1,2,4-Trichlorobenzene	l/ôn	5		10 U	200 U	10 U	250 U				
Methyl acetate	l/gu			10 U	200 U	10 U	250 U				
Notes:											

a renoting veryor sumprise Class GA Sancard of Galacingo large.

U = undetected, J or E = estimated value, RE = re-extraction, D = result on diluted samples BOLD font indicates detected value for organics. F:IProjectIC81 - Pioneer DevelopmentIC81.002 BCPIClose out and COCIOctober 2007RI ReportTables/Table16VALIDATED.xls / GW

+ 1

÷,

Remedial Investigation Report Table 16 - Phase 2 Groundwater Data for Temporary Interior Monitoring Wells **Pioneer Midler Avenue LLC**

Parameter	Units	NYSDE	EC Class GA	SB 13-2 DL2	SB 13-4	SB 13-4 DL
		Standard	Guidance	03/22/05	03/22/05	03/22/05
Volatiles						
Chloromethane	- l/ôn			2,000 U	10 U	200 U
Bromomethane	_ ∕ôn			2,000 U	10 U	200 U
Vinyl chloride	l/ôn	N		3,900 D	1,500	1,500 0
Chioroethane	l/ôn	5		2,000 U	10 U	200 U
Methylene chloride	l/ôn	S		2,000 U	10 U	200 U
Acetone	l/ôn		20	2,000 U	10 U	200 U
Carbon disulfide	l/ôn	8		2,000 U	10 U	200 U
1,1-Dichloroethene	l/ôn	ю		2,000 U	10 U	200 U
1,1-Dichloroethane	l/6n	ĸ		2,000 U	10 U	200 U
Chloroform	l/ôn	7		2,000 U	10 U	200 U
1,2-Dichloroethane	- l/ôn	0.6		2,000 U	10 U	200 U
MEK(2-Butanone)	l/ôn		50	2,000 U	10 U	200 U
1,1,1-Trichloroethane	l/6n	5		2,000 U	10 U	200 U
Carbon tetrachloride	l/6n	5		2,000 U	10 U	200 U
Bromodichloromethane	Vôn		50	= 2,000 U	10 U	200 U
1,2-Dichloropropane	l/6n	+-		2,000 U	10 U	200 U
cis-1,3-Dichloropropene	l/6n	0.4		2,000 U	10 U	200 U
Trichloroethene	l/6n	5		2,000 U	P.9	200 U
Dibromochloromethane	l/ôn	5		2,000 U	10 U	200 U
1,1,2-Trichloroethane	∥⁄ðn	5		2,000 U	10 U	200 U
Benzene	∕ôn	+		2,000 U	10 U	200 U
trans-1,3-Dichloropropene	l/6n	0.4		2,000 U	10 U	200 U
Bromoform	l/ôn		50	2,000 U	10 U	200 U
MIBK(4-Methyl-2-pentanone)	l/gu			2,000 U	10 U	200 U
2-Hexanone	t/6n		50	2,000 U	10 U	200 U
Tetrachloroethene	l/6n	5		2,000 U	10 U	200 U
Toluene	y6n	ۍ		2,000 U	10 U	200 U
1,1,2,2-Tetrachioroethane	1/6n	5		2,000 U	10 U	200 U
Chlorobenzene	l/6n	5		2,000 U	10 U	200 U
Ethylbenzene	1/6n	5		2,000 U	10 U	200 U
Styrene	ł/6n	5	•	2,000 U	10 U	200 U
Total Xvienes	1/on	5		2,000 U	10 U	200 U

Pioneer Midler Avenue LLC Remedial Investigation Report Table 16 - Phase 2 Groundwater Data for Temporary

Parameter	Units	NVSDE	C Class GA	SB 13-2 DL2	SB 13-4	SB 13-4 DL
		Standard	Guidance	03/22/05	03/22/05	03/22/05
Dichlorodifluoromethane	l/ôn	5		2,000 U	10 U	200 U
Trichlorofluoromethane	l/6n	5		2,000 U	10 U	200 U
1,1,2-Tricloro-1,2,2,-triflouroethane	l/gu	S		2,000 U	10 U	200 U
trans-1,2-Dichloroethene	1/6n	5		2,000 U	16	200 U
Methyi tert butyl ether	l/gu	10		2,000 U	10 U	200 U
cis-1,2-Dichloroethene	l/6n	ß		24,000 D	1,000,1	1,000 80
Cyclohexane	l/6n			2,000 U	10 U	200 U
Methylcyclohexane	l/6n			2,000 U	10 U	200 U
1,2-Dibromoethane	l/ôn			2,000 U	10 U	200 U
Isopropylbenzene	l/6n	ß		2,000 U	10 U	200 U
1,3-Dichlorobenzene	l/gu	n		2,000 U	10 U	200 U
1,4-Dichlorobenzene	l/6n	n		2,000 U	10 U	200 U
1,2-Dichlorobenzene	l/6n	e		2,000 U	10 U	200 U
1,2-Dibromo-3-chloropropane	l/Bn	0.04		2,000 U	10 U	200 U
1,2,4-Trichlorobenzene	l/Bn	5		2,000 U	10 U	200 U
Methyl acetate	l/6n		1	2,000 U	10 U	200 U

- rolicinus vilue anceota Class GA Standard pr Guidance land

U = undetected, J or E = estimated value, RE = re-extraction, D = result on diluted samples

BOLD font indicates detected value for organics.

+ 1

Pioneer Midier Avenue LLC Remedial Investigation Report Table 17 - Phase 3 Groundwater Data for Temporary Sand Unit Wells to Till

VLLTLES Standard $0/2/10.5$ $0/2/205$ <th< th=""><th>ance 07/27/05 07/28/05 07/28/05 07/28/05 07/28/05 07/28/05 07/28/05</th><th>8 07/27/05 07/27/05</th><th>kuidance 07/27/05</th><th></th><th></th></th<>	ance 07/27/05 07/28/05 07/28/05 07/28/05 07/28/05 07/28/05 07/28/05	8 07/27/05 07/27/05	kuidance 07/27/05		
WOLTINES NO TOUL TOU T				Standard Guidant	
Chloromethane Up/ Ministret Up/ Location Up/ Location <thup location<<="" td=""><td></td><td></td><td>-</td><td></td><td>OLATILES</td></thup>			-		OLATILES
Biomethane ug/ z 101 10	10U 10U 10U 10U 10U 10U 10U	10 U 10 U	10 0	1/6n	Nioromethane
Montheres up/ 2 10U	10U 10U 10U 10U 10U 10U 1	10 U 10 U	10 U	ng/l	romomethane
Methodentene up/ 5 101	10U 10U 10U 10U 10U 10U	10 U 10 U	-10 U	ug/i 2	finyi chloride
Methode up/ 5 50 101 <td>10U 10U 10U 10U 10U 10U</td> <td>10 U 10 U</td> <td>10 U</td> <td>ug/1 5</td> <td>hloroethane</td>	10U 10U 10U 10U 10U 10U	10 U 10 U	10 U	ug/1 5	hloroethane
Carbon ug/ 50 10U 10U<	5U 5U 20U 10U 5U	5U 5U	£ 0	ug/1 5	lethylene chloride
(1.1.beh)toordisation vg1 60 61 51 61<	0 10U 10U 10U 10U 10U	10 U 10 U	50 10 U	ug/i 50	cetone
1.1. Definitionation ugi 5 610 510 701	5 U 5 U 10 U 5 U	5U 5U	50	1g/1 60	arbon disulfide
1,1-Definitionentane ug/l 5 15/l 10/l 10/l <td>5U 5U 10U 5U</td> <td>5U 5U</td> <td>5 U</td> <td>ug/1 5</td> <td>,1-Dichloroethene</td>	5U 5U 10U 5U	5U 5U	5 U	ug/1 5	,1-Dichloroethene
Chilocontanie Light of the second of the secon	5U 5U 00U 10U 5U	5U 5U	50	ng/ S	,1-Dichloroethane
(1) (1) <td>5 0 5 U 10 U 10 U 5 U</td> <td>5U 5U</td> <td>50</td> <td>ug/1 7</td> <td>hloroform</td>	5 0 5 U 10 U 10 U 5 U	5U 5U	50	ug/1 7	hloroform
Mick(Z: Blaunose) ug/ 50 101	5U 5U 20U 10U 5U	5U 5U	50	ug/1 0.6	2-Dichloroethane
1.1.1-Trichlocentane ug/l 5 5/0 5/0 6/0 10/0	0 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U	50 10 U	ug/1 50	IEK(2-Butanone)
And for the free bloridie up/l 5 5 5 1 10	5 U 5 U 10 U 10 U 5 U	50 50	5 U	ug/1 5	,1,1-Trichloroethane
Binnockehormethane ug/ 1 50 51 51 101 <	5 U 5 U 10 U 10 U 5 U	50 50	50	ug/1 5	arbon tetrachloride
3.2.Dechlocoroname ug/ 1 5/L	0 5 0 5 0 10 0 10 0 5 <u> 0 </u>	5 U 5 U	50 50	ng/1 50	Iromodichioromethane
(iii) (iii) (iii) (iii) (iii) (iii) (i)	5 U 5 U 10 U 10 U 5 U	5 0 5 0	5 U	ug/i 1	.2-Dichloropropane
Trichlocoethere up 5 5 5 5 4 6 4 5 1 0 0 1	5U 5U 10U 10U 5U	50 50	5 U	ug/1 0.4	is-1, 3-Dichloropropene
Difference/Incomentane up1 5 1 10 </td <td>5U 5U 4.6J 10U 5U</td> <td>5 U 5 U</td> <td>5 U</td> <td>ugli 5</td> <td>richloroethene</td>	5U 5U 4.6J 10U 5U	5 U 5 U	5 U	ugli 5	richloroethene
1,1.2. Trichloroethane ug/ 5 ug/ 1 6 10 </td <td>5 U 10 U 5 U 5 U </td> <td>50 50</td> <td>50</td> <td>ugh 5</td> <td>ibromochloromethane</td>	5 U 10 U 5 U 5 U	50 50	50	ugh 5	ibromochloromethane
Barcane ug/ 1 s/U 5/U 10/U 10	1 5U 5U 10U 10U 5U	5 U 5 U	5 U	UQ1 5	1.2-Trichloroethane
trans-13-Dichloropropene ug/ 0.4 50 5(1) 10(1) 16(1) 16(1) Bromolomn ug/ 50 10(1 10(510 510	510	ugh 1	lenzene
Bornoform ug/ 50 51/0 61/0 10	5U 5U 10U 10U 5U	5U 5U	5U	ug/ 0.4	ans-1,3-Dichloropropene
MBK(4+Methy/2-pentanone) ugh 50 10/U	0 5 U 5 U 10 U 5 U	50 50	50 5U	101 20	tomotorm
2-Hozanore ug/ 5 10	10U 10U 10U 10U 10U 10U	10U 10U	101	l du	IIBK(4-Mathyl-2-pentanone)
Tetrachloroetitere ug/l 5 ug/l 5 ug/l 6 ug/l 10 ug/l 6 10lume ug/l 5 5U 5U 5U 10U 10U <td< td=""><td>50 10 U 10 U 10 U 10 U 10 U 10 U 10 U</td><td>10 U 10 U</td><td>50 10 U</td><td>ug/1 50</td><td>Hexanone</td></td<>	50 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U	50 10 U	ug/1 50	Hexanone
Toluene ug/ 5 5 5 5 6 7 10 7 10 7 10 <td>5U 5U 70U 5U</td> <td>5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0</td> <td>5U</td> <td>ug/ 5</td> <td>etrachioroethene</td>	5U 5U 70U 5U	5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	5U	ug/ 5	etrachioroethene
1.1.2.2-Tertrachtoroethane ug/l 5 U 10U	5U 5U 10U 10U 5U	5U 5U	50	ug/1 5	oluene
Chlorobentzene ug/l 5 5/U 5/U 5/U 10/U	5U 5U 5U 20U 10U 5U	50 50	50	ug/1 5	,1,2,2-Tetrachloroethane
Ethylbenzene ug/l 5 5/U 5/U 10/U	5U 5U 20U 10U 5U	5U 5U	50	ug/1 5	Chlorobenzene
Syreme by matrix 5 5 5 10	5U 5U 5U 10U 5U	50 50	50	ug/1 5	thylbenzene
Total Xylenes ug/l 5 5 (U 5 (U 10 (U <t< td=""><td>5U 5U 10U 5U</td><td>5<u>U</u>5U</td><td>5 U</td><td>ug/1 5</td><td>ityrene</td></t<>	5U 5U 10U 5U	5 <u>U</u> 5U	5 U	ug/1 5	ityrene
Dehloconflueromethane ug/l 5 10/l 10/l <td>5 U 5 U 10 U 5 U</td> <td>50 50</td> <td>5 U</td> <td>ug/1 = 5</td> <td>otal Xylenes</td>	5 U 5 U 10 U 5 U	50 50	5 U	ug/1 = 5	otal Xylenes
Trichlocontentance ug/l 5 5 10 10/L 10 11.2-Trichlocontentane ug/l 5 5 10 10/L 10 10/L 10 11.2-Trichlocontentane ug/l 5 5 10 10/L 10/L <td>10 U 10 U 10 U 10 U 10 U</td> <td>10 U 10 U</td> <td><u>10</u></td> <td>ug/1 5</td> <td>ichlorodifluoromethane</td>	10 U 10 U 10 U 10 U 10 U	10 U 10 U	<u>10</u>	ug/1 5	ichlorodifluoromethane
1.12Triction:-12.2triftourcettrane ug/ 5 5 0 10U 10U <th< td=""><td>5 U 5 U 50 U 50 U 50 U 50 U 50 U 50 U 5</td><td>50</td><td>50</td><td>ug/ 5</td><td>richlorofluoromethane</td></th<>	5 U 5 U 50 U 50 U 50 U 50 U 50 U 50 U 5	50	50	ug/ 5	richlorofluoromethane
trans-12-Dichtoroetheree ug/l 5 5 0 10	5 U 5 U 20 U 20 U 5 U	50	50	nane ug/i 5	,1,2-Tricloro-1,2,2,-triflouroethan
Methyl fart butyl ether ug/l 10 10/L	5 U 5 U 50 U 10 U 5 U	5U 5U	£ 10	ug/i 5	"ans-1,2-Dichloroethene
Cise 12-Dichtoreatree ug/l 5 5/U 5/U 10/U	5U 5U 10U 5U	50	5 (ug/1 10	Methyl tert butyl ether
Occloherane ug/l 10/u	5U 5U 5U 200 10U 5U	5U 5U	50	ug/i 5	is-1,2-Dichloroethene
Methylcyclohexane ug/l 5/U 5/U 10/U	10 U 10 U 10 U 10 U 10 U	10 U 10 U	10 U	1/0n	yclohexane
12-Difformentane ug/l 5 U 5 U 10 U	5 U 5 U 5 U	5U 5U	5 U	ngň	Aethylcyclohexane
Isoprocyclemate ug/l 5 5U 5U 5U 10U 10U <th< td=""><td>5 U 55 U 55 U 55 U 55 U 55 U 55 U 55 U</td><td>5 U</td><td>5 U</td><td>ligu</td><td>.2-Dibromoethane</td></th<>	5 U 55 U 55 U 55 U 55 U 55 U 55 U 55 U	5 U	5 U	ligu	.2-Dibromoethane
13-Dichlorobenzene ug/l 3 5/U 5/U 10/U	5U 00C 100C	5 U 5 U	5 U	ug/i 5	sapropylbenzene
1.4.Dichlorobenzene ug/l 3 5/U 5/U 10.U 10/U	5 U 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.U 5.U	5 U	ug/ 3	.3-Dichlorobenzene
1.2-Dichlocchemane ug/l 3 5/U 5/U 10/U	<u>2000</u> 2000 2000 2000	5 U 5 U	50	ug/ 3	,4-Dichlorobenzene
1,2-Dibromo-3-chloropropane ug/ 0.04 10/U 10/U 10/U 10/U 10/U 10/U 12/Enchlorobenzene ug/ 5 5/U 5/U 12/Enchlorobenzene ug/ 5 10/U 5/U 5/U 5/U 10/U 5/U 10/U 5/U 10/U 10/U 5/U 10/U 10/U 10/U 10/U 10/U 10/U 10/U 10	5 U 55 U	5IU 5U	5 U	e Mon	,2-Dichlorobenzene
12.4-Trichforobenzene ug/ 5 50 50 50 50 70 700 10 5 Methyl acetate 00 50 50 50 50 50 60 60 6	1010 1000 1000	10 U	10 U	ug/ 0.04	2-Dibromo-3-chloropropane
Methyl acetate 1 00/1 1 5/0 5/0 1 10/0 10/0		50	5 U	ug/1 5	,2,4-Trichlorobenzene
		1 5U 5U	1 50	1000	Aethyi acetate
and and a strain and a strain and a strain a st					

.

Pioneer Midler Avenue LLC Remedial Investigation Report Table 18 - Phase 3 Groundwater Data for Permanent Sand Unit Wells to Till

/OLATILES Thioromethane		Standard	Guidance	SUNCAN	concean	annean
thoromethane					-	
	- The second sec			10 U	1010	10 U
				1011	1011	101
	100	•		100	1011	
		J 14			101	1011
		2		100		1011
ieuryreire Giwinde		>	50	1011	1010	101
trations trations	100	8	3	1011	1010	10 U
4 Dichtorothene		3 40		10[1]	101	10
+ Picklewothane				1011	1010	101
, I-withiur centaire		> ~		1011	101	1011
Alliviousi		0.6		1011	1010	10 U
r-Uninotestialie		2	50	10 U	101	101
1 1.Trichlomethane		L.C.		1010	101	101
arbon tetrachloride		- un		1010	101	10 U
romodichloromethane	nov.		20	10 U	10 U	10 U
2-Dichloropropane		+		10 U	101	101
s-1.3-Dichloropropene	100	0.4		10 U	101	10 U
richloroethene	1 ²	Q		10 U	94	10 U
ibromochloromethane	100	ŝ		10 U	10 0	10 U
.1.2-Trichloroethane	[ðn	so.		10 U	10 U	10 U
enzene	/ðn	-		10 01	10 0	10 U
ans-1,3-Dichloropropene	1/on	0.4		10 U	10 U	10 U
romoform	Mon		50	10 U	10 0	10 U
IIBK(4-Methyl-2-pentanone)	1/0n			10 U	10 U	10 U
-Hexanone	j/ôn		50	10 U	10 U	10 U
etrachtoroethene	1/6n	5		10 U	10	10 U
duene	Vôn	ъ		10 U	10 U	<u>10 U</u>
1,2,2-Tetrachloroethane	- 1/On	ц р		10 U	10 U	10IU
hlorobenzene	10n	υ		10 U	101	101
thylbenzene	- Vôn	5		10 U	10 U	D 0F
tyrene	√ôn	с,		10 U	10 U	10.0
otal Xylenes	= l/ôn	÷		10 U	10 U	10 U
ichlorodifiuoromethane	- Mgu	£		10 U	10 U	00
richlorofluoromethane	- fon	ŝ		10 U	10 U	101
,1,2-Trickoro-1,2,2,-triffouroethane	- 1/gu	ŝ		10 U	10 U	10 U
ans-1, 2-Dichlorcethene	ng/j	ഫ		10 U	10 U	10 U
lethyl tert butyl ether	l/on	10		10 U	10 U	10 U
is-1,2-Dichloroethene	ngvi	5		10 U	24	10 U
yclohexane	l/ôn			10 U	10 U	10 U
lethylcyclohexane	ôn			10 U	10 U	10 U
2-Dibromoethane	/ôn			10 U	10 U	10 U
opropylbenzene	l'Qu	5		10 U	10 U	10 U
,3-Dichlorobenzene	1/0/1	3		10 U	10 U	10 L
,4-Dichlorobenzene	lygu	æ		10 U	10 U	10 U
2-Dichlorobenzene	lvou	e		10 U	10 U	10 U
2-Dibromo-3-chloropropane	l⁄on	0.04		-0 0	10U	10 U
,2,4-Trichlorobenzene	l/g/l	9		10 U	10 ()	10 U
tethyl acetate	- 1/on -			10 U	10 U	10 U
						1000

Notes: **BOLD** - Indicates detected value for organics exceeds Standard or Guidance value. U = undetected, J or E = estimated value * = as performed by test method SM18 4500Cl

Midler Avenue LLC	al Investigation Report	9 - Data for Post-IRM	ons - B3 Area
oneer Midl	emedial Inv	able 19 - Da	onditions -

Pioneer Midler Avenue LLC Remedial Investigation Report Table 19 - Data for Post-IRM Conditions - B3 Area													
Samia ID -	Midler	VB3 - 1	VB3 - 1	VB3 - 1 DL	VB3 - 2	VB3 - 3	VB3 - 4 DL	VB3 - 5	VB3 - 6	VB3-7	VB3 - 7	VB3 - 8	VB3 - 9
Depth - >	ssco	5.9 - 9.9	5.9 - 9.9	5.9 - 9.9	16.1 - 20.1	18.1 - 22.1	8 - 12	7 - 11	7 - 11	7 - 9	9 - 11.6	7.3 - 11.3	8.75 - 12.75
Date Sampled ->		03/08/07	08/03/07	08/03/07	05/07/07	03/08/07	03/08/07	05/07/07	05/07/07	06/06/07	06/06/07	05/07/07	03/07/07
Chloromethane		18 UJ	200 U	4900 U	1,500 U	12 UU	2,400 U	0.86	3,500 U	2,800 U	2,400 U	3,100 U	20 M
Vinyl chloride	800	65 J	200 C	4900 U	1,500 U	12 UJ 19 II	2,400 U	0 86 11 86	3,500 U	2,800 U	2,400 U	3,100 U	50 11
Chloroethane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	0 86	3,500 U	2,800 U	2,400 U	3,100 U	20 0
1.1-Dichloroethene	-	18 U	200 U	4900 U	1,500 U	12 U	2,400 U	98 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
Carbon disulfide		6 J	200 U	4900 U	1,500 U	2 J	2,400 U	19 J	3,500 U	2,800 U	2,400 U	3,100 U	۲ <u>۲</u>
Acetone		580	5700 EJ	4700 J	2,000	130 B	5,600 D	12,000 BEJ	14,000	38,000 J	15,000	28,000	2,900 BE
Methylene chloride		18 U	100 0	4900 U	1,500 U	12 U	2.400 U	0 00	3,500 U	2,800 U	2,400 U	000 rc	20 U
2-Butanone		202	1200 U	4900 U	820 J	31	1,700 DJ	2,600 EJ	3,500	7,200 J	3,200	8,300	2,200 J
Chloroform		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	08 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
1,1,1-Trichloroethane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	98 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
Carbon tetrachloride		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	0 86	3,500 U	2,800 U	2,400 U	3,100 U	20
Benzene 1. 3. Dichlomothane		⊃ ¤	200 0	4900 0	1 200 1	12 U	2,400 U	0 80	3,500 U	2.800 U	2.400 U	3,100 U	200
Trichloroethene	2,800	140	850	f 002	C 092	1 7 7	2,400 U	18 J	3,500 U	1,200 J	2,400 U	3,100 U	150
1,2-Dichloropropane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	98 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
Bromodichloromethane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	∩ 86	3,500 U	2,800 U	2,400 U	3,100 U	20 C
cis-1,3-Dichloropropene		180	200 U	4900 U	1,500 U	12 U 13 II	2,400 U	- = 86 86	3,500 U	2,800 U	2,400 U	3,100 U	
4-Metriyi-z-peritariorie			16 U	4900 U	1.500 U	12 U	2,400 U	13 J	3,500 U	2,800 U	2,400 U	3,100 U	48
trans-1,3-Dichloropropene		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	08 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
1,1,2-Trichloroethane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	98 U	3,500 U	2,800 U	2,400 U	3,100 U	20 C
Tetrachloroethene	5,600	150	43000 EJ	57000	4,400	Г 6	2,400 U	130	1,100 J	11,000	860 J	10,000	280
2-Hexanone		18 0	200 0	4900 U	1,500 U	22	2,400 U	0.86	3,500 U	2,800 U	2,400 U		8
Dibromochioromethane			200 0	4900 U	1,500 U	15 U	2,400 U	n 96	3,500 U	2,800 U	2,400 U	3,100 U	20 N
Ethylbenzene		18 U	13 J	4900 J	1,500 U	12 U	2,400 U	98 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
Styrene		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	086	3,500 U	2,800 U	2,400 U	3,100 U	20 N
Bromoform		18 0	200 U	4900 U	1,500 U	- 12 7 7	2,400 U	∩ 86 86	3,500 U	2,800 U	2,400 U	3,100 U	
1,1,2,2-l etrachloroethane	Ì		80.1	4900 U	1.500 U	12 0	2.400 U	∩ 86	3,500 U	2,800 U	2,400 U	3,100 U	130
cis-1,2-Dichloroethene		170	660	C 080	240 J	5 J	4,700 D	26 J	3,500 U	760 J	2,400 U	3,100 U	1,800 J
trans-1,2-Dichloroethene	1,200	4	11 J	4900 J	1,500 U	12 U	650 JD	086	3,500 U	2,800 U	2,400 U	3,100 U	14 J
Dichlorodifluoromethane		18 U	200 0	4900 U	1,500 U	12 0	2,400 U		3,500 U	2,800 U	2,400 U	3, 100 U	
1 1 2-Trichloro-1 2 2-trifficoroethane			200 U	4900 U	1.500 U	12 U	2,400 U	∩ 86	3.500 U	2.800 U	2,400 U	3,100 U	20 U
Methyl-t-butyl ether (MTBE)		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	08 U	3,500 U	2,800 U	2,400 U	3,100 U	20 U
1,2-Dibromoethane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	98 U	3,500 U	2,800 U	2,400 U	3,100 U	20 0
Isopropytbenzene		18 U	8.3 J	4900 J	1,500 U	12 U	2,400 U	∩ = 86	3,500 U	2,800 U	2,400 U	3,100 U	20 0
1.4-Dichlorobenzene			13 J	L 4900 J	1,500 U	12 U	2,400 U	0.86	3,500 U	2,800 U	2,400 U	3,100 U	20 U
1,2-Dichlorobenzene		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	∩ 86	3,500 U	2,800 U	2,400 U	3,100 U	20 U
1,2-Dibromo-3-chloropropane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	0.86	3,500 U	2,800 U	2,400 U	3,100 U	20 0
1,2,4-Trichlorobenzene		18 U 18 U	200 U	4900 U 4900 U	1,500 U	12 U 12 U	2,400 U 2,400 U	⊃⊃ ೫8	3,500 U	2,800 U	2,400 U	3,100 U	500
Coclohexane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	0.86	3,500 U	2,800 U	2,400 U	3,100 U	20 U
Methylcyclohexane		18 U	200 U	4900 U	1,500 U	12 U	2,400 U	<u>∩ 86</u>	3,500 U	2,800 U	2,400 U	3,100 U	20 U

neer Midler Avenue LLC	nedial Investigation Report	ie 19 - Data for Post-IRM	ditions - B3 Area
ionee	Remed	able 1	Conditi

.

Sample ID ->	Midler	VB3 - 10	VB3 - 11	VB3 - 12	VB3 - 13	VB3 - 14	VB3 - 15	VB3 - 16 DL	VB3 - 17	VB3 - 18	VB3 - 19	VB3 - 20
Depth - >	SSCO	14.5 - 18.5	10.5 - 14.5	14.8 - 18.8	7.25 - 11.25	15.1 - 19.1	17.1 - 21.1	14.4 - 18.4	14.9 - 18.9	14.9 - 18.9	15.6 - 19.6	16.9 - 20.9
Date Sampled ->		05/21/07	05/07/07	06/06/07	03/08/07	06/06/07	05/08/07	03/09/07	05/07/07	05/08/07	06/06/07	05/08/07
Chloromethane		1,900 U	33 U	2,200 U	∩96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Vinyl chloride	800	1,900 U	33 U	2,200 U	96 U	240 J	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Bromomethane		1,900 U	33 U	2,200 U	096 U	2300 U	1,700 U	290 DJ	2,200 U	1,700 U	2,200 U	2,000 U
Chloroethane		1,900 U	33 U	2,200 U	<u>0</u> 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,1-Dichloroethene		1,900 U	33 U	2,200 U	n 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Carbon disulfide		1,900 U	11 J	2,200 U	096	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Acetone		10,000 U	3200 J	15,000 J	5600	8700 J	7,600	870 DJ	7,600	5,500	17,000 J	11,000
Methylene chloride		35 U	34 B	2,200 U	140 U	2300 U	1,700 U	240 DJ	2,200 U	1,700 U	2,200 U	2,000 U
1 1-Dichloroethane		1.900 U	33 U	2,200 U	∩ 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
2-Butanone		2,200	660	4,100 J	2000 E	2500 J	3,000	420 DJ	2,200	2,400	4,700 J	4,400
Chloroform		1,900 U	33 U	2,200 U	∩ 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1.1.1-Trichloroethane		1,900 U	33 U	2,200 U	∩ %	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Carbon tetrachloride		1,900 U	n S	2,200 U	0 96 0	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Benzene		1,900 U	33 U	2,200 U	L 71	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,2-Dichloroethane		1,900 U	0 80	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Tricthloroethene	2,800	1,900 U	33 U	6,700	220	3400	1 700 U	1,800 U	2,200 U	720 J	1,600 J	2,000 U
1.2-Dichloropropane		1,900 U	33 U	2,200 U	∩ 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Bromodichloromethane		1,900 U	33 U	2,200 U	∩ 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
cis-1.3-Dichloropropene	-	1,900 U	33 (2,200 U	∩ 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
4-Methyl-2-pentanone		1.900 U	∩ 8	2.200 U	∩ 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Tolliana		1.900 U	30	2,200 U	48 J	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
trans-1 3-Dichlorononane		1 900 11	33.0	2,200 U	n 96	2300 U	1.700 U	1.800 U	2.200 U	1.700 U	2,200 U	2,000 U
1 1 2. Trichloroethane		1 900 1	33.0	2.200 U	∩ 96	2300 U	1 700 U	1.800 U	2,200 U	1,700 U	2,200 U	2,000 U
Tatrachloroathana	5 600	4 100	160	31,000	320	19000	2,600	2.000 D	17.000	7,400	5,700	4,900
1 Ettact itorocaticate	2225	1 900 11	33 11	2 200 11	196	2300 U	1 700 U	1.800 U	2.200 U	1.700 U	2,200 U	2,000 U
Ditromochloromethane	-	1 000 1	33 11	002 6	1 96	2300 U	1 700 U	1.800 U	2.200 U	1.700 U	2.200 U	2.000 U
Chlorohanzana		1 000 11	8	2 200 11	36	2300 U	1.700 U	1.800 U	2,200 U	1.700 U	2,200 U	2,000 U
Clinitudeiteite		1 000 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 200 11	130	11 0022	1.700 U	1,800 U	2.200 U	1.700 U	2.200 U	2.000 U
Christians			88	2 200 11	196	2300 U	1.700 U	1.800 U	2.200 U	1.700 U	2,200 U	2,000 U
Bromoform		1 000 1	28	2 200 1	196	2300 U	1.700 U	1.800 U	2.200 U	1,700 U	2,200 U	2,000 U
1 1 2 2-Tetrachloroethane	1-	1 900 1	33 U	2.200 U	∩ 96	2300 U	1.700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Total Xvianas		1 900 U	33.U	2.200 U	100	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
cis-1 2-Dichloroethene		1.900 U	33 U	5,700	3100	1800 J	1,700 U	1,800 U	2,200 U	L 068	2,300	2,000 U
trans-1.2-Dichloroethene	1.200	1,900 U	33 U	2,200 U	31 J	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	1,900 J	2,000 U
Dichlorodifluoromethane		1,900 U	33 U	2,200 U	0 96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Trichlorofluoromethane		1,900 U	0 EE	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,1,2-Trichloro-1,2,2-trifluoroethane		1,900 U	33 U	2,200 U	096 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Methyl-t-butyl ether (MTBE)		1,900 U	33 U	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,2-Dibromoethane		1,900 U	∩ SS	2,200 U	0 96 N	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Isopropylbenzene		1,900 U	0.65	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,3-Dichlorobenzene		1,900 U	33 U	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,4-Dichlorobenzene		1,900 U	33 U	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1'700 U	2,200 U	2,000 U
1,2-Dichlorobenzene		1,900 U	33 U	2,200 U	0 96 N	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,2-Dibromo-3-chloropropane		U 000 U	33.0	2,200 U	96 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
1,2,4-Trichlorobenzene		1,900 U	33 U	2,200 U	096 U	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Methyl acetate		1,900 U	33 U	2,200 U	∩96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Cyclohexane		1,900 U	33 U	2,200 U	∩ %	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U
Methylcvclohexane		1,900 U	∩ 83 0	2,200 U	∩96	2300 U	1,700 U	1,800 U	2,200 U	1,700 U	2,200 U	2,000 U

Pioneer Midler Avenue LLC Remedial Investigation Report Table 19 - Data for Post-IRM Conditions - B3 Area

Commits ID -	Midlor	10.01	VB2_20	VB2_02	VR3 - 24	VR2 - 25	VR3 - 25 DI	VR3 - 25	VR3 - 25 DI	VB3 - 26 Di
		18.0-20.0	16 - 20	16.6 - 20.6	16.9 - 20.9	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.8 - 19.8	15.4 - 19.4
Date Sampled ->	8	05/08/07	05/08/07	05/21/07	05/08/07	08/03/07	08/03/07	08/28/07	08/28/07	03/07/07
Chloromethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	0.06
Vinvl chloride	800	71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 06
Bromomethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	90 U
Chloroethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	N 06
1,1-Dichloroethene		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 06
Carbon disulfide		14 J	2,200 U	2,600 U	2,200 U	22 JJ	1,800 U	170 U	2,000 U	12 DJ
Acetone		13,000 BEJ	13,000	23,000 B	7,200	2,300 J	2,300 J	5,600 BEJ	5,900 J	1,200 BD
Methylene chloride		66 U	2,200 U	79 U	2,200 U	77 UJ	26 U	4 ∪	48 U	62 BDJ
1,1-Dichloroethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 66
2-Butanone		3,200 EJ	4,400	7,400	3,000	750 J	1,800 JB	2,400	2,000 JB	360 D
Chloroform		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	06 U
1,1,1-Trichloroethane		D 12	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	0 06
Carbon tetrachloride		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	90 U
Benzene		71 U	2,200 U	2,600 U	2,200 U	3 UJ	1,800 U	5.6 J	2,000 U	0 06
1.2-Dichloroethane		U FT	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	90 N
Trichloroethene	2,800	71 U	2,200 U	2,900	f 0/1	3,000 J	3,200	590 U	740 J	360 D
1,2-Dichloropropane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	л 06
Bromodichloromethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	0 OG
cis-1,3-Dichloropropene		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	00 U
4-Methyl-2-pentanone		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	00 N
Toluene		71 U	2,200 U	62 J	2,200 U	15 W	1,800 U	14 U	2,000 U	000
trans-1,3-Dichloropropene		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	00 U
1,1,2-Trichloroethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 06
Tetrachioroethene	5,600	40 J	1,600 J	3,700	8,000	21,000 EJ	31,000	6,100 EJ	8,200 B	∩ 06
2-Hexanone		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	26 J	2,000 U	∩ 06
Dibromochloromethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	0 OG
Chlorobenzene		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 66
Ethylbenzene		- 71 U	2,200 U	2,600 U	2,200 U	4 UJ	1,800 U	170 U	2,000 U	90 N
Styrene		ЧU	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	n 06
Bromoform		- 71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 6
1,1,2,2-Tetrachioroethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	06
Total Xylenes		71 U	2,200 U	190 J	2,200 U	64	36 J	35 J	47 J	0.06
cis-1,2-Dichloroethene		7 0	2,200 U	3,300	430 J	r 0/2	r 012	DRZ	210 3	280 1
trans-1,2-Dichloroethene	1,200	710	2,200 U	2,600 U	2,200 U	2 JMU	1,800 U	170 U	2,000 U	110 U
Dichloroditiuoromethane			- 007'Z	2,000 U	5,200 U		1,000 1		2,000 0	5 = 8 8
I richlorofluoromethane			2,200 U	2,600 U	2,200 U	100 M	1,000 1	0 0/1		5 5 8 6
1, 1, 2- Trichloro-1, 2, 2-trifluoroethane		D F	2,200 U	2,600 U	2,200 U		1,800 U	0 0/1		
Methyl-t-butyl ether (MTBE)		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U		2,000 U	3
1,2-Dibromoethane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	n 06
Isopropylbenzene	-	71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	120 U	2,000 U	0 06
1, 3-Dichlorobenzene		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	0 O
1,4-Dichlorobenzene		7 0	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 06
1,2-Dichlorobenzene		D 12	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 06
1,2-Dibromo-3-chloropropane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 6
1,2,4-Trichlorobenzene		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	-) 06
Methyl acetate		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	∩ 8
Cyclohexane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	120 U	2,000 U	
Methylcyclohexane		71 U	2,200 U	2,600 U	2,200 U	150 UJ	1,800 U	170 U	2,000 U	90 U

Pioneer Midler Avenue LLC Remedial Investigation Report Table 19 - Data for Post-IRM Conditions - MW-3D Area

						-
Sample ID ->	Midler	V3D - 1 DL	V3D-2.DL	V3D - 3	V3D - 4	V3D - 5
Depth - >	ssco	15.1 - 19.1	10.5 - 14.5	14.3 - 18.3	10.75 - 14.75	14.4 - 18.4
Date Sampled ->		7/2/2007	3/5/2007	06/07/07	05/08/07	06/07/07
Chloromethane	-	170 U	81 U	2,200 U	90 N	2,200 U
Vinyl chloride	800	170 U	640 D	2,200 U	L 6	2,200 U
Bromomethane		170 U	81 U	2,200 U	80 U	2,200 U
Chloroethane		170 U	81 U	2,200 U	80 U	2,200 U
1,1-Dichloroethene		170 U	81 U	2,200 U	80 U	2,200 U
Carbon disulfide		170 U	13 DJ	2,200 U	15 J	2,200 U
Acetone		2,800 B	170 BD	9,400 J	8,200 BEJ	13,000 J
Methylene chloride		120 U	140 BD	420 U	25 J	410 U
1,1-Dichloroethane		170 U	81 U	2,200 U	80 U	2,200 U
2-Butanone		860	33 D.J	2,000 J	3,100 EJ	4,000 J
Chloroform		170 U	81 U	2,200 U	90 U	2,200 U
1.1.1-Trichloroethane		170 U	81 U	2,200 U	80 U	2,200 U
Carbon tetrachloride		170 U	81 U	2,200 U	N 08	2,200 U
Benzene		2.9 J	81 U	2,200 U	∩ 08	2,200 U
1.2-Dichloroethane		170 U	81 U	2,200 U	080 U	2,200 U
Trichloroethene	2,800	55 J	14 DJ	2,200 U	0 80 ∪	2,200 U
1,2-Dichloropropane		170 U	81 U	2,200 U	0 08	2,200 U
Bromodichioromethane		170 U	81 U	2,200 U	108 108	2,200 U
cis-1,3-Dichloropropene		170 U	81 U	2,200 U	80 U	2,200 U
4-Methyl-2-pentanone		170 U	81 U	2,200 U	16 J	2,200 U
Toluene		18 J	81 U	2,200 U	46 J	2,200 U
trans-1.3-Dichtoropropene		170 U	81 U	2,200 U	90 U	2,200 U
1,1,2-Trichloroethane		170 U	81 U	2,200 U	90 U	2,200 U
Tetrachioroethene	5,600	2,200	81 U	6,100	14 J	5,900
2-Hexanone		20 J	81 U	2,200 U	28 J	2,200 U
Dibromochloromethane		170 U	81 U	2,200 U	0 08	2,200 U
Chlorobenzene		170 U	81 U	2,200 U	80 U	2,200 U
Ethylbenzene		170 U	81 U	2,200 U	080 U	2,200 U
Styrene		170 U	81 U	2,200 U	80 U	2,200 U
Bromoform		170 U	81 U	2,200 U	80 U	2,200 U
1,1,2,2-Tetrachloroethane		170 U	81 U	2,200 U	80 U	2,200 U
Total Xylenes		37 J	81 U	2,200 U	٢L	2,200 U
cis-1,2-Dichloroethene	_	170 U	190 D	2,200 U	470	2,200 U
trans-1,2-Dichloroethene	1,200	170 U	28 DJ	2,200 U	36 J	2,200 U
Dichlorodifluoromethane		170 U	81 U	2,200 U	80 U	2,200 U
Trichlorofluoromethane		170 U	81 U	2,200 U	80 U	2,200 U
1,1,2-Trichloro-1,2,2-trifluoroethane		170 U	81 U	2,200 U	90 C	2,200 U
Methyl-t-butyl ether (MTBE)		170 U	81 U	2,200 U	80 U	2,200 U
1,2-Dibromoethane		170 U	81 U	2,200 U	90 U	2,200 U
Isopropylbenzene		170 U	81 U	2,200 U	∩ 08	2,200 U
1,3-Dichlorobenzene		170 U	81 U	2,200 U	80 U	2,200 U
1,4-Dichlorobenzene		N 0/11	B1 U	2,200 U	80 U	2,200 U
1,2-Dichlorobenzene		170 U	81 U	2,200 U	80 U	2,200 U
1,2-Dibromo-3-chloropropane		170 U	81 U	2,200 U	80 U	2,200 U
1,2,4-Trichlorobenzene		170 U	81 U	2,200 U	080	2,200 U
Methyl acetate		170 U	81 U	2,200 U	08	2,200 U
Cyclohexane		170 U	81 U	2,200 U	8	2,200 U
Methylcyclohexane		170 U	81 U	2,200 U	50 CR	2,200 U

<u>بر</u>

Pioneer Midler Avenue LLC Remedial Investigation Report Table 19 - Data for Post-IRM Conditions - B-1 Area

ample ID ~	Midler	VB1-1	VB1-2	281-3	YD1 - 0 LL	100 101	101-102		2	1 - 7 - 1							
soth - >	SSCO	16.0 - 20.0	12.9 - 16.9	5.5 - 9.5	5.5 - 9.5	5.5 - 9.5	16.8 - 20.8	16.0 - 20.0	3.9 - 7.9	15.8 - 19.8	15.4 - 19.4	11.6 - 15.6	12.7 - 16.7	12.7 - 16.7	16.4 - 20.4	16.4 - 20.4	ž
ate Sampled ->		03/16/07	03/16/07	08/03/07	08/03/07	09/04/07	03/16/07	03/16/07	05/10/07	20/20/90	06/20/07	20/20/90	08/03/07	08/03/07	08/03/07	08/03/07	
noromethane		<u>∩</u> 06	181	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
nyl chloride	800	∩ 06	6	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
omomethane		006	18 U	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
nioroethane		∩ 06	18 U	200 U	4,900 U	2,800 U	120 U	23 U	1001	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
1-Dichloroethene		006	18 U	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
arbon disulfide		28.J	4 J	200 U	4,900 U	2,800 U	U 021	5 J	17 J	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
setone		1.300 U	41 U	5,700 EJ	4,700 5	7,400	01/8 #8	140 8	14,000 BEJ	36,000 J	15,000 U	10,000 J	4,100 EJ	3,700	22,000 EJ	‡6,000	
etholane chinricle		2001	42 U	1001	120 U	300 U	260 BD	28 U	130	920 U	86 U	D 040 U	⊃ 8	40 U	79 U	2,200 U	
1-Dichloroethane		006	18 U	200 U	4,900 U	2,800 U	120 U	23 U	1001	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
Butanone		580	18 U	1.200	4,900 U	2.800 U	28 DJ	50	3,000 EJ	12,000 J	5,600	2,400 J	1,200 J	2,100 U	8,100 EJ	5,100	
	Í	11/06	181	200 U	4 900 U	2.800 U	120 U	23 U	100 L	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
4 + Trichteensthead			181	2001	4 900 U	2,800 U	120 U	23 U	1001	2.100 U	2.100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
1, 2*11 RURACOULIANC	T	25		2001	4 900 1	2 2001	120 13	23 13	100 U	2,100 U	2.100 U	1.800 U	170 U	2.100 U	180 U	2,200 U	┣
		88		2001	4 900 1	2 800 11	120 U	162	1000	2.100 U	2.100 U	1,800 U	2 1	2,100 U	٢٢	2,200 U	Ļ
o Nicklandthaad		38		11006	1 000 1	008 6	12011	0.82	1001	2.100 U	2.100 U	1.800 U	170 U	2.100 U	180 U	2,200 U	_
2-bici iloi vetuaria Veticino ottorio	on o	85	22	850	2002	7 200	450 D	Ş	۲ <i>۵</i> ۲	1.800 5	130 J	1.800 U	32 J	2,100 U	73 J	2.200 U	
	2001	38	1916	2001	4 000 1	2 800 1	12011	53 []	1001	2,100 U	2.100 U	1.800 U	170 Ú	2100 U	180 U	2,200 U	<u> </u>
z-uraliologyaphile		88	a a	200 11	4 900 1	2 800 1	120 11	23.U	100 U	2.100 U	2.100 U	1,800 U	170 U	2,100 U	180 U	2.200 U	
		88	2 9	2007			19/11	331	19001	2 100 I	2,500 U	1.800 U	170 U	2.100 U	180 U	2.200 U	+
-1,3-Lichioroproperie		38	181	2002	1000	2 800 1	1201	38	F 02	2,100 U	2.100 U	1,800 U	170 U	2.100 U	180 U	2,200 U	+
		88	e e	16 1	4 010 11	2,800 1	1201	3	20.1	2.100 U	2.100 U	1.800 U	∩6	2,100 U	45 U	2.200 U	-
AUMITE		88	2 Q	11006		2 BOD 1	12011	n a	1001	2,100 U	2.100 U	1,800 U	170 U	2.100 U	180 U	2.200 U	+
inters, or District Not Opticipation		88		1006	4 900 1	2,800 1	12015		1001	2,100 U	2.100 U	1,800 U	170 U	2.100 U	180 U	2,200 U	<u>+</u>
1, Z-1 INCRUCKOBUTALIE	200		e e	13 000 51	57 000	18,000	170 D	172	240	6100	6.500	5.000 L	4.200 E.I	3,300	4.000 EJ	4.900	+-
trachioroeusene	nna'o	200	19 0	1000		00010	12011	11 62	1 61	2.100 U	2.100 U	1.800 U	1 0 Z S	2.100 U	180 U	2.200 U	+
		88					100+		1001	11 WH 6	210011	1 800 1	1701	210019	180.1	2,200 U	⊢
bromocnioromemane		3	200		4,800 0	2,000 0		38		1001 0	2 100 1	1 BOOL	170.1	2,10011	18011	2,200 11	+
liorobenzene		3	180		4,900.0	7,000 0		3	3	3 2 2	1 007 0		12021	1 001 6	1001	2 200 11	-
hylbenzene		906	18.0	L ET	1 000 1	1000		ន	1001				11021	21000		1 000 0	+
rene		⊐ 8	181	2001	4,900 U	5,800 U			0.001	2,100 U	2,100 12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 997 9			+
Smoform		⊃ 06	18 U	200 U	4,900 U	2,800 U	120 U	C 23 C	0.00	Z,100 U	2,100 12	0.008/1	200	7 1001 2	0.081	0.002.2	-
,2,2-Tetrachioroethane		<u>∩</u> 06	18 U	200 U	4,900 U	2,800 U	120 U	23 0	1001	D 001'Z		1, 200 1	0.21			1 12	-
tal Xylenes		⊐ 8	18 U	Г 08	4,900 J	2,800 U	120 U	23 0	1001	2,100 U	2,100 U	D 008'L	192		8	1 000 0	+
-1,2-Dichloroethene		450	88	660	380 J	2	1,100 D	200	13 J	z,200	2,100 U	1 009'1	121	2,100 U	41.0	0.002.2	+
ns-1,2-Dichloroethene	1,200	54 7	141	11 J	4,900 J	2,800 U	23 DI	27	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U		2,200 U	+
chlorodifluoromethane		<u>ר 06</u>	181	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 0	2,200 U	-
chlorofluoromethane		<u>∩</u> 06	18 ∪	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	-
.2-Trichloro-1.2.2-trifluoroethane		<u>0</u> 6	18 U	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	120 U	2,100 U	180 U	2,200 U	-+
thvi-t-butvi ether (MTBE)		<u>∩</u> 06	18 U	200 U	4,900 U	2,800 U	120 U	0 EZ	100 U	2,100 U	2,100 U	1,800 U	120 U	2,100 U	180 U	2,200 U	-
2-Dibromoethane		<u>ח</u> 06	18 U	200 U	1 006,4	2,800 U	120 U	23 U	100 I	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	-
orrowlyseptene		106	18 U	8	4,900 5	2,800 U	120 U	∩ ജ	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
2-Dichlorobanzana		06	0.81	200 U	4,900 U	2,800 U	120 U	⊓ छ	100 U	2,100 U	2,100 U	1,800 U	120 U	2,100 U	180 U	2,200 U	• ••
t-Dichtorcherizene	Γ	⊃ 8	18 U	l 51	4,900 J	2,800 U	120 U	23 0	1001	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	_
2.Dichtombanzene		106	18 U	200 U	4,900 U	2,800 U	120 U	0 83 ∩	100 U	2,100 U	2,100 U	1,800 U	120 U	2,100 U	180 U	2,200 U	
2-Dibmmo-3-chloroorooane		06	18 U	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
2.4-Trichlorobenzene		⊃ 8	18 U	200 U	4,900 U	2,800 U	120 U	23 U	100 U	2,100 U	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
ethyl acetate		<u>⊓</u> 06	18.U	200 U	4,900 U	2,800 U	120 U	23 U	100 U	460 J	2,100 U	1,800 U	170 U	2,100 U	180 U	2,200 U	
volnharane		10	9	1006		1 0000	11007		100*	110010			12011				_
					2 2004	2,800 0	120 0	230	3			0 000 1	221		280		4

F./Project/C81 - Pioneer Development/C81.002 BCPIClose out and COC/October 2007RI Report/Data Tables for RitTable19 VALIDATED xis / B-1

•

-

+ 1

Page 5 of 7

Pioneer Midler Avenue LLC Remedial Investigation Report Table 19 - Data for Post-IRM Conditions - B-1 Area

	VB1 - 13	VB1 - 14	VB1 - 14 DL	VB1 - 14 DL2	VB1 - 14	CI - 19A	41 - 10A	VDI - 17 UL	01 - 10A	VB1 - 19	VB1 - 2U
SSCO	16.1 - 20.1	18.1 - 22.1	18.1 - 22.1	18.1 - 22.1	18.1 - 22.1	10.2 - 14.2	8.8 - 12.8	15.5 - 19.5	15.9 - 19.9	8.8 - 12.8	13 - 17
	08/10/07	09/13/07	06/13/07	09/13/07	09/26/07	06/11/07	20/91/20	09/04/07	05/10/07	05/10/07	06/11/07
	2,100 U	160 U	1,900 U	9,400 U	n 44	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
800	2,100 U	160 U	1,900 U	9,400 U	0 44	2,300 U	110 U	2,100 U	2,000 U	12 J	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	n 22	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	n 42	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
_	2,100 U	160 U	1,900 U	9,400 U	77 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	710	2,300 U	110 U	2,100 U	2,000 U	17 J	2,200 U
	5,200	5,200 EB.	12,000	12,000	1,100 B	13,000 J	9,000 EJ	15,000	1,900 J	17,000 BEJ	19.000 J
	2,100 U	∩ 66	240 U	069	20 JB	380 U	U 6≱	240 U	2,000 U	110	2,200 U
	2,100 U	1081	1.900 U	9,400 U	140	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,300	2,000	4,400	9,400 U	410	2,400 J	2,000	5,200	L 037	4,100 EJ	5,000 J
	2.100 U	160 U	1.900 U	9,400 U	n 42	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2.100 U	160 U	1,900 U	9,400 U	0,44	2.300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2.100 U	1091	1,900 L	9.400 U	0 42 O	2.300 U	110 U	2,100 U	2,000 U	110 U	2.200 U
	2,100 U	3.1	1.900 U	9.400 U	10.12	2,300 U	3 J	2,100 U	2,000 U	17 3	2,200 U
	2.100 U	160 U	1 900 1	9.400 U	N 11	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
2,800	2.100 U	260	1,200 J	1.200 J	Ω 44	2,300 U	36 J	930 J	2,800	210	2,200 U
	2.100 U	160 U	1.900 U	9.400 U	n 44	2,300 U	U 011	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1.900 U	9,400 U	04	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2.100 U	160 U	1.900 U	9,400 U	0 44 N	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2.100 U	160 U	1,900 U	9,400 U	04	2,300 U	110 U	2,100 U	2,000 U	54 J	2,200 U
	2.100 U	18 U	8	9,400 JB	1.6 JB	2,300 U	6.9	45 J	2,000 U	48.J	2,200 U
	2.100 U	160 U	1.900 U	9,400 U	∩ <i>4</i>	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2.100 U	160 U	1.900 U	9.400 U	N 44	2,300 U	110 U	2,100 U	2,000 U	1 0 FF	2,200 U
5,600	450 J	10,000 EJ	100,000 EV	100,000	150	2,600	750	17,000	640 J	580	1,400 J
	2,100 U	160 U	1,900 U	9,400 U	N 44 N	2,300 U	110 U	2,100 U	2,000 U	38.1	2.200 U
	2,100 U	160 U	1,900 U	9,400 U	77 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	n 42	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	∩ <i>1</i> 4	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	1001	1,900 L	9,400 U	77 0	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	77 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	77 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	29 J	300 1	240 J	0 4	2,300 U	L 01	120]	2,000 U	38	2,200 U
	8,600	5	7 0FF	9,400 U	0 44	2,300 U	280	870.5	23,000	740	1,100 1
1,200	2,100 U	160 U	1,900 U	9,400 U	ה היו	2,300 U	5 1	2,100 U	310 J	16 J	2,200 U
	2,100 U	160	1,900 U	9,400 U	<u>0</u>	2,300 U		0.001/2	Z,000 U	0.011	
	2,100 ∪	- 160 1	1,900 U	9,400 U	n 42	2,300 U	110 0	2,100 U	2,000 U	1001	2,200 U
	2,100 U	- 160 0	1,900 U	9,400 U	n 11	2,300 U	110 U	Z,100 U	2,000 U	0.012	
	2,100 U	160 U	1,900 U	9,400 U	7 U	2,300 U	100	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	199 C	1,900 U	9,400 U	14	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	199	1,900 U	9,400 U	77 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	7 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	17 U	2,300 U	110 U	2,100 U	2,000 U	110 Ú	2,200 U
	2,100 U	1091	1,900 U	9,400 U	n 44	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	1091	1,900 U	9,400 U	N 44	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	77 U	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	160 U	1,900 U	9,400 U	л 24 С	2,300 U	110 U	2,100 U	2,000 U	110 U	2.200 U
	2,100 U	160 U	1,900 U	9,400 U	≂ ₽	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
	2,100 U	⊃ 99	006'1	9,400 U	71	2,300 U	110 U	2,100 U	2,000 U	110 U	2,200 U
		80 2,100 U 2,100 U	800 2,100 U 180 U 2,100 U 180 U 180 U 2,100 U 180 U 180 U 2,100 U 180 U 180 U 2,100 U 180 U 180 U 2,100 U 180 U 180 U 2,200 U 2,200 U 160 U 2,200 U 2,200 U 160 U 2,200 U 2,200 U 160 U 2,200 U 2,200 U 160 U 2,200 U 2,200 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U 160 U 2,100 U 160 U	900 2,100 U 160 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 169 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U 2,100 U 166 U 1,900 U	800 2,100 U 160 U 1,000 U 9,400 U 2,100 U	800 7,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 9,400 770 2,100 160 1,300 <th>600 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U<th>960 7,100 U 160 U 1,900 U 9,400 U 77 U 2,000 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U</th><th>web 2100U 1990U 9400U 77U 2300U 119U 2100U 2100U 169U 1990U 9400U 77U 2300U 119U 2100U 2100U 169U 1900U 160U 190U 110U 210U 2100U 160U 160U</th><th>800 2100 1 1600 1 5400 1 77 u 2500 1 160 u 2100 u 200 u <</th><th>600 2:000 1:000 3:000 7:00 2:000 2:</th></th>	600 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U 1,900 U 9,400 U 77 U 2,300 U 2,100 U 160 U <th>960 7,100 U 160 U 1,900 U 9,400 U 77 U 2,000 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U</th> <th>web 2100U 1990U 9400U 77U 2300U 119U 2100U 2100U 169U 1990U 9400U 77U 2300U 119U 2100U 2100U 169U 1900U 160U 190U 110U 210U 2100U 160U 160U</th> <th>800 2100 1 1600 1 5400 1 77 u 2500 1 160 u 2100 u 200 u <</th> <th>600 2:000 1:000 3:000 7:00 2:000 2:</th>	960 7,100 U 160 U 1,900 U 9,400 U 77 U 2,000 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U 150 U 160 U	web 2100U 1990U 9400U 77U 2300U 119U 2100U 2100U 169U 1990U 9400U 77U 2300U 119U 2100U 2100U 169U 1900U 160U 190U 110U 210U 2100U 160U 160U	800 2100 1 1600 1 5400 1 77 u 2500 1 160 u 2100 u 200 u <	600 2:000 1:000 3:000 7:00 2:000 2:

ية 1 (

21

neer Midler Avenue LLC	nedial Investigation Report	ile 19 - Data for Post-IRM	nditions - B-5 Area
Pionee	Remed	Table 1	Condit

Sample ID ->	Units	Bottom North	Sottom North DL	Bottom South	Bottom South DI	East Wall	North Wall	Slab North	Slab North UL	Statt South	west wall	West Wall UL
Depth - >	_	12 feet	12 feet	14 feet	14 feet	6-10 feet	6 - 8 teet	6 - 8 teet	6-8 teet	8 teet	6-10 teet	6-10 teet
Date Sampled ->		7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006	7/18/2006
Old		0.7	0.7	4.5	4.5	13.2	0.3	7.1	7.1	3.8	9.7	9.7
VOLATILES	ug/kg	107	-	1711	76.11	100	1	17[1]	06.11	1611	14	1 800 1
Chioromethane	ngrkg		0 10	2	0 IZ	2 2		2	000			
Bromomethane	ng/kg	0 910				2 0	 -	160			12 0	
Vinyi crioriae	6y/6m	240	2 20	141		101		11/11/1	0011	2	15 15	1 800 1
Chioroethane	0k0n	1 2 1	81.0	12 12	100/	0 0	0 1 0 0	1311	000 0	10101		1 800 0
metrytene critoride	βy/ĥn	2	0.00	2 2		2 2 2	2 4	2 -	2 20		2	
Acetone	ng/kg	0.0		0 /	9 8	- ور	101		000	ר בי קיים דיים		
Carbon disultide	ng/kg	D 21	n 18	20	0 8			<u>-</u> v			 0 (
1,1-Dichloroethene	ng/kg	180	810	0 / L	0 9 9	0:1	10	<u>ין מ</u>			ייי	0001
1,1-Dichloroethane	ug/kg	18 U	81 U	17 U	75 U	130		17 0	86 U	16 U	<u>19 1</u>	1,800 U
Chloroform	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	n : 98	16 U	15 U	1,800 U
1,2-Dichloroethane	ug/kg	18 U	81 U	17 U	75 U	13.0	16 U	17 U	-) 98	16 U	15 U	1,800 U
2-Butanone	ug/kg	18 U	81 U	17 U	75 U	8	16,0	17 U	86 U	16 U	15.0	1,800 U
1,1,1-Trichloroethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	1210	86 U	191	15 U	1,800 U
Carbon tetrachloride	ng/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	96 U	16 U	15 U	1,800 U
Bromodichloromethane	ng/kg	18 U	81 U	12 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
1.2-Dichloropropane	uq/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
cis-1,3-Dichloropropene	uq/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Trichloroethene	ug/kg	18	81 U	12 J	12 DJ	13 U	16 U	17 U	86 U	16 U	5 J	350 DJ
Dibromochloromethane	uq/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
1 1 2-Trichloroethane	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Renzene	ua/ka	1810	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
trans-1.3-Dichloropropene	ua/ka	181	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Bromoform	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U	96 U	16 U	15 U	1,800 U
4-Methyl-2-pentanone	ua/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
2-Hexanone	uq/ka	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Tetrachloroethene	uq/ka	18	81 U	7 J	15 DJ	13 U	16 U	17 U	96 U	16 U	2 1	330 DJ
Toluene	ug/kg	18	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
1,1,2,2-Tetrachloroethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	191 1	15 U	1,800 U
Chlorobenzene	ng/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Ethylbenzene	ug/kg	18	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Styrene	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
Total xylenes	ng/kg	18	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/kg	18 U	81 U	17 U	75 U	13 U	16 U	17 U	86 U	16 U	15 U	1,800 U
cis-1,2-Dichloroethene	ug/kg	390 EJ	360 D	850 EJ	850 D	25	24	1,100 EJ	1,200 D	140	1,300 EJ	22,000 D
trans-1,2-Dichloroethene	ug/kg	19	13 DJ	8 J	76 U	6)	16 U		86 U	16 U	140	2,600 D
Dichlorodifluoromethane	ug/kg	±8 U	81 U	17 U	75 U	13 U	16 U	12 0	86 U	16 U	21	1,800 U
Trichtorofluoromethane	ug/kg	6 9	17 U	5 U	12 U	50	5 U	9	15 U	2 2	2 C	1,800 U
Methyl acetate	ug/kg	18 U	81 U	17 U	75 U	13 U	16:U	17 U	886 U	16 U	15 U	1,800 U
Methyl tert butyl ether	ng/kg	18 0	81 U	17 U	2	13 0	191					1,000 1
Cyclohexane	ug/kg	18 U	81 U	17 U	75 U	130	191	n :	198			1,800 0
Methylcyclohexane	ug/kg	18 U	81 U	17 U	75 U	2	16 U	17 U	B66 U	16 U	15 U	1,800 0
1,2-Dibromoethane	ug/kg	18 U	81 U	17 U	75 U	130	16 U	17 U	866 U	16 U		1,008,1
Isopropylbenzene	ng/kg	18 U	81 U	17 U	75 U	130	16 U	17 U	86 U	16 U	1210	1,800 U
1,3-Dichlorobenzene	1 ug/kg	18 U	81 0	17 U	<u>) 8/</u>	130						0.000+
1,4-Dichlorobenzene	ng/kg	180	1 10	0/1	0 8/							
1,2-Dichlorobenzene	ng/kg				10 0/	29				0 1 2 4	2 4	1 800 1
1,2-Dibromo-3-chloropropane	ug ky	2 9	⊃ = ō ō	2	75 1	2 7	24	14		181	151	1 800 1
[1,2,4-Trichlorobenzene	Dy Ch		a n	2 2	0 0/	200	20	2	200	2 2	2	> vvv,1

		VOCs Data
e LLC	n Report	iroundwater
idler Avenu	Investigatio	Summary G
Pioneer Mi	Remedial	Table 20 -

ſ		10001		1.11.1	ARA! O	AMA.2	AAM_A	MME	MM.G	MMM-7	MW-R	UC-WW	UN-MM	MW-3D DI	MW-4D	MW-9D	WW-10D W	W-10D D1
Parameter Sample Date				11/29/04	11/29/04	11/29/04	11/29/04	11/29/04	11/29/04	11/29/04	11/29/04	01/31/05	01/31/05	01/31/05	01/31/05	01/31/05	01/31/05	01/31/05
Chloromethane	ja N			_ ∩ 0	10 F	10 U	10 L	10 L	10 U	10 L	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
Bromomethane					10	10 N	10 U	10	10 [10 Г	10 [10 U	20 U	800 U	10 U	10 U	10 U	80 U
Vind chloride		~				100 BG 201	10 0	10 U	10 U	10 [10 U	10 U	170	800 U	10 U	1.9 A.	10 U	NG SS DI
Chlorothane		c,		D 01	10 U	10 U	10 U	10 U	10 C	10 €	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
Methylene chloride	3	G		∩ 0₽	10 U	∩ 0‡	10 U	10 U	10 L	10 Ū	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
Acetone	, ja		ନ୍ତ	-10 L	10 U	10 N	10 C	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	8 ا	80 U
Carbon disulfide	, ja	8	+	∩ 0	10 U	∩ 01	10 Ú	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 J
1.1-Dichloroethene		ۍ ۲		10 U	-10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U	101	800 U	10 U	10 U	10 U	80 J
1.1-Dichloroethane	ja ja	2		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
Chloroform	3	2		10 U	-10 U	10 U	10 U	10 U	10 N	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 J
1.2-Dichloroethane	3	0.6	-	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
MEK(2-Butanone)	5		50	10 U	-1 O	10 U	10 U	10 U	10 U	10 U	10 U	15	20 U	800 U	13	10 U	10 U	80 U
1.1.1.Trichloroethane	, ja	5		10 C	10 U	10 U	10 N	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 L	80 U
Carbon tetrachloride	, ja	5		∩ 0₽	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
Bromodichloromethane	1/010		20	10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10	800 U	10 U	D 0	10 U	ر 80
1.2-Dichloropropane	1/051	-		10 U	-10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	80 U
cis-1.3-Dichloropene	20	0.4		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	- O C	10 U	80 U
Trichloroethene	N	S		10 U	10 N	10 U	10 U	10 U	10 U	10 U	10 U	10 U	5.1	800 U	10 U	-0 C	10 U	80 U
Dibromochloromethane	/ôn	ß	-	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	∩ 80 ∩
1,1,2-Trichloroethane	/ôn	2		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	008	10 U	10 U	∩ ₽	80 U
Benzene	/ôn	-		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	008 U	10 U	10 U	10 U	л 08
trans-1,3-Dichloropropene	/ôn	0.4		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 U	90 U
Bromoform	/ðn		20	10 1	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	900 U	10 U	10 C	10 U	90 N
MIBK(4-Methyl-2-pentanone)) 09			10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	900 ∪	10 U	10 U	10 U	∩ 80 ∩
2-Hexanone	l/ôn		50	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	008	⊃ 0	10 U	10 C	90 80
Tetrachloroethene	6	2		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	7 200 E	8, 900;0 ,5	10 U	3 J	4	2 80 0
Toluene	/ 0 m	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 0	800 U	10 ∪	10 (10 C	80 N
1,1,2,2-Tetrachloroethane	1/05	S		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 C	800 U	10 U	10 U	⊃ ₽	20 C
Chlorobenzene	ja Pa	S		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	⊃ ₽	80 U
Ethylbenzene	1/0n	ß		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 (80 U
Styrene	Ŋ	ß		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 0	800 U	∩ ¢	10 U	10 U	80 N
Total Xylenes	l/ðn	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 C	10 (0 C	90 F
Dichlorodifluoromethane	Ngu	5		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	20 G	800 U	10 U	10 U	10 U	0 0
Trichlorofluoromethane	l/bn	S		10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	200	n 008	0 0	10 0	10 0	08
1,1,2-Tricloro-1,2,2,-triflouroethane)ĝ	2		10 U	10 U	10 U	10 U	10 U	10 U	ф С	10 U	10 U	200	800 U		9 C	0 01	∩13 08
trans-1,2-Dichloroethene	i/b'n	2		10 U	0 0 U	13.61	10 U	10 U	10 U	10 U	10 U	10 (1	008 800 C	0 0	10 [8	40 12
Methyl tert butyl ether	ŝ	e		10 1	10 C	10 U	10 C	10 L	⊃ : 9 :	- C	101	10 1	20.02	800 U	0	0.01	10.01	1000
cis-1,2-Dichloroethene	ŝ	s l		2				n :		2 2						11.01	101	11.00
Cyclohexane	3				10 1								202				0.9	R OS
Methykyckohexane	ŝ,			2	2	2		2 9	2				100			2 4	11.01	11.00
1,2-Dibromoethane	<u>8</u>	-									100		20 1	008	10 L	10 0	10 01	0 08
		5						2	10	101	10.11	101	20 U	800 U	10 U	10 (1	10.01	80 U
1,3-UICIIUUUUUIIZERIA		5 6				101	10 1	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 [10.01	0 08
	3	•	Ţ			101	101	101	101	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10 01	90 U
1,2-DICRIOCODELIZERIE		20							10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10:01	30 U
1,2-DIDIOIIIO-3-GIMIUV/VARIA		5 6		, ⊒ ₽	, n , t	10 U	100	10 0) O	10 U	10 U	10 U	20 U	800 U	10 U	10 U	10.01	0 08
1,2,4-1,1%ittoriounditeore Mathvil acetate	3	,		10 U	100	10 0	1 O O	10 U	10 U	10 U	10 U	10 U	20 U	800 U	10 U	10 L	10.0	80 U
	þ		1															

Notes: Activity - Indicates value exceeds Class, GA Standard of Guidance level. ND = not detected, U = undetected, J or E = estimated value, RE = re-extraction

	t	vater VOCs Data
LC	1 Repo	round
Avenue	tigatior	nary G
Aidler ,	Inves	- Sum
neer N	nedial	le 20.
<u>Pio</u>	Ren	Tab

Parameter	Units	NYSDE	EC GA	MW-11D	MW-11D DI	SB 2-1	SB 3-1	SB 7-1	SB 9-1	SB 12-1	SB 12-1 DL	SB 13-2	SB 13-2 DL	SB 13-2 DL2	SB 13-4	SB 13-4 DL	DAW-1	DAW-2	DAW-3
Sample Date		Std	Guid	01/31/05	01/31/05	03/21/05	03/21/05	03/21/05	03/21/05	03/21/05	03/21/05	03/22/05	03/22/05	03/22/05	03/22/05	03/22/05	08/30/05	08/30/05	98/30/05
Chloromethane	∕ôn			10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Bromomethane	- 100			10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 U	200 U	⊃ 9	⊐ 0 C	10 U
Vinyl chloride	-0n	ณ		1.000 E-1	830 D.	10 U	10 U	10 U	10 U	A BIOLET	1.800Da	2,400 E	-3 300 D	S, 900 Div	13:00 E	1.500.0.5	∩Q	-0 C	10 U
Chloroethane	1 00	ŝ		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 U	200 U	⊃ 9	10 U	10 U
Methylene chloride	l/bn	S		10 U	500 U	10 U	10 U	10 U	10 U	10 C	200 U	10 U	250 U	2,000 ∪	10.0	200 U	⊃ 0	10 U	10 U
Acetone	l/Bn		20	10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 ∪	10 0	∩ 800 ∩	∩ 9	10 C	10 U
Carbon disulfide	/Bin	8		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10.0	⊐ 002	10 U	10 C	10 U
1,1-Dichloroethene	⁄651	5	800	1	500 U	10 U	10 U	10 U	10 U	構成の	200 U	0.242	250 U	2,000 U	10 U	200 U	⊃ 9	-0 10 ⊂	10 U
1,1-Dichloroethane	6	ъ		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 1	250 U	2,000 U	10 U	200 U	∩ ₽	⊃ ₽	10 U
Chloroform	l/ĝn	~		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10.0	250 U	2,000 U	10 U	200 N	10 U	10 U	10 U
1.2-Dichloroethane	l/ôn	0.6		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 N	250 U	2,000 U	10.01	200 U	10 U	10 U	10 U
MEK(2-Butanone)	l/ôn		50	10 U	500 U	10 U	10 U	10 U	10 N	10 U	200 U	10 0	250 U	2,000 U	10 U	200 U	-0 10	10 ⊂	10 U
1,1,1-Trichtoroethane	l/ôn	2		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 N	250 U	2,000 U	10 U	200 U	∩ 0	1 0 ⊂	10 U
Carbon tetrachloride	/ðn	2		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	0.01	250 U	2,000 U	10 U	200 U	10 U	10 C	10 U
Bromodichloromethane	l/ôn		50	10 N	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 11	250 U	2,000 U	10 U	200 U	10 C	⊃ ₽	10 U
1,2-Dichloropropane	ļ/ðn	-		10 U	500 U	10 U	10 N	10 U	10 U	10 U	200 U	10.0	250 U	2,000 U	10 U	200 U	10 U	0 0	10 U
cis-1,3-Dichloropropene	i)ôn	0.4		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10.01	250 U	2,000 U	10 U	200 U	10 Ù	∩ ₽	10 U
Trichloroethene	l/ôn	ß		2,400,6	2,200 0/	10 U	10 U	10 U	10 U	22	200 U	300 E	2.280 D	2,000 U	× 8.9 ×	200 U	10 U	ЗJ	10 U
Dibromochioromethane	1/001	ω		10 U	500 U	10 U	10 U	10 U	10 U	10 N	200 U	10 U	250 U	2,000 U	10 U	200 U	10 U	∩ o⊑	∩o
1,1,2-Trichioroethane	l/bn	6		2.]	500 U	10 U	10 U	10 U	10 U	10 0	200 U	10.01	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Benzene	l/ôn	-		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	l/bn	0.4		10 U	500 LI	10 U	10 U	10 U	10 U	10.01	200 U	10 01	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Bromoform	i/ôn		50	10 U	500 U	10 U	10 U	10 U	10 U	10.0	200 U	10.01	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
MIBK(4-Methyl-2-pentanone)	l/ôn			10 U	500 U	10 U	10 U	10 U	10 U	10.0	200 U	10.0	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
2-Hexanone	l/ôn		50	10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10.01	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Tetrachloroethene	ļ/đn	S	81536	5000E	6,500 D	10 U	10 U	10 U	10 U	14	200 U	340 6	340.0	2,000 U	10 U	200 U	10 U	- 10° -	10 U
Toluene	l/đn	s		10 U	500 U	10 U	10 U	10 U	10 U	10 0	200 U	4 J	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
1,1,2,2-Tetrachloroethane	l/bn	S		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Chlorobenzene	l/bu	S		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10.0	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Ethylbenzene	l/bn	S		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	2.3	250 U	2,000 U	10 U	200 U	10 U	10 U	∩ ₽
Styrene	l/bri	5		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 U	200 U	10 U	10 U	10 U
Total Xylenes	1/Ch	S		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	0 0	200 N	10 U	10 U	∩ ₽
Dichlorodiftuoromethane	l∕₿n	S		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 L	250 U	2,000 U	10 U	200 U	10 U	10 U	10 N
Trichlorofluoromethane	l∕₿n	5		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	10 C	200 U	10 1	П 0-	⊐ ₽
1,1,2-Trickoro-1,2,2,-triflouroethane	l/bn	S		10 U	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 1	250 U	2,000 U	∩ 0	200 U	р Р	10 U	∩ ₽
trans-1,2-Dichloroethene	∕ōn	S		130	POPOS.	10 U	10 U	10 U	10 U	13	200 U	192, 751	200 04	2,000 U	16	200 U	10 U	10 U	-0 10
Methyl tert butyl ether	l/Bn	10		10 U	500 U	10 U	10 U	10 U	10 U	10.01	200 U	10 U	250 U	2,000 U	10.0	200 ∪	-1 0	10 U	10 C
cis-1,2-Dichloroethene	l/bn	S		2,600 E	6.730 DX	10 U	10 U	10 U	3 J	3 .400 E	2,100 D	2.eooE	14,000 BDE	C454,000 D	890 E	1,000 BD2	10 U		10 C
Cyclohexane	l/Bn		-	10 U	500 U	10 U	10 U	10 Ú	10 U	10 U	200 U	10 U	250 U	2 000 U	10 U	200 U	10 U	10 U	9 9
Methylcyclohexane	l/bn			10 U	500 U	10 U	10 U	10 U	10 U	101	200 U	3.	250 U	2,000 U	0.01	200 U	10 U	10 U	10 U
1,2-Dibromoethane	/Bn			10.01	500 U	10 U	10 U	10 U	10 U	10.01	200 U	10 U	250.1	2,000 U	N 01	2001	10 U	10 U	10 U
Isopropylbenzene	l/Bri	5		10 U	500 U	10 U	10 U	10 U	10 U	10.0	200 U	10 U	250 U	2,000 U	n 01	200 U	10 U	10 U	10 U
1,3-Dichlorobenzene	/ôn	e		10.01	500 U	10 U	10 U	10 U	10 U	10 U	200 U	10 U	250 U	2,000 U	0.0	200.0	10 U	10 U	10 U
1,4-Dichlorobenzene	l/đn	3		10 U	500 U	10 U	10 U	10 U	∩ ₽0	10 U	200 1	10 U	250 U	2,000 U	0.01	2001	10 U	10 U	0 0 9
1,2-Dichlorobenzene	l/gu	ຄ		10 U	500 U	10 U	10 U	10 U	10 U	10.0	200 1	10 U	250 U	2,000 U	10 11	200 1	⊃ ₽	-0 19	9 9
1,2-Dibromo-3-chloropropane	l/ôn	0.04		10.0	500 U	10 U	10 U	10 U	10 U	10 U	200 N	10 U	250 U	2,000 U	101	200 f	9 9	10 C	⊐ ₽
1,2,4-Trichlorobenzene	l/ôn	ŝ		10.0	D 009	1 0 C	10 L	₽ ₽	10 U	10 1	200 A	101	250 U	2,000 U	19	200	ר בי 19	∩ 2 ;	⊃ : ₽ ;
Methyl acetate	l∕g⊔			10 U	500 L	10U	10 U	10 U	10 U	10.0	200 U	р Р	250 U	2,000 U	20	2001	-10 C		2

Notes: [관련] - Indicates value exceeds Class GA Standard or Guidance level. ND = not detected, U = undetected, J or E = estimated value, RE = re-extraction

		ter VOCs Data
Vioneer Midler Avenue LLC	Remedial Investigation Report	able 20 - Summary Groundwa

Parameter	Units	NSDEC	GA DW	1 DW	1 DW-2	DW-3	DW-4	DW-4	DW4	DAW-1	DAW-2	DAW-3	DAW-4	I-WM	MW-2	MW-2D	MW-3	MW-3 DE	MW-3D
Sample Date		Std	auid 07/27,	05 07/27/	05 07/25/0	5 07/26/05	07/28/05	07/28/05	07/28/05	05/03/06	05/03/06	05/03/06	05/03/06	05/03/06	05/02/06	5/2/2006	5/3/2006	5/3/2006	5/3/2006
Chloromethane	j/ðn		10	0 ₽	U 10 U	- 10 U	∩ 0	-0 C	10 U	50 U	10 U	10 U	10 U						
Bromomethane	l/gu		9	₽ ₽	U 10 U	⊇ ₽ -	⊃ ₽	₽ ₽	10 U	10 U	10 U	10 U	-10 U	10 U	10 U	50 U	10 U	10 U	10 U
Vinyl chloride	l/Bn	N	9	ē ⊃	∩ ₽ ∩	- ₽	⊃ 9	10 U	50 U	THOP IN	1,100 D	- 100							
Chloroethane	l/Bn	5	10	ē ₽	U 10 U	10 0	.0 ⊡	⊐ 0	10 U	10 U	10 U	0 Ŭ	10 U	10 ⊂	10 U	50 U	10 U	10 U	10 U
Methylene chloride	1/60	5	2	0 S	⊐ ₽ ₽	- 10 ∩	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Acetone	l/ôn		50 10	0₽ D	162 N	6.2 J	0 0	-0 C	10 U	50 U	10 U	10 U	10 U						
Carbon disulfide	/ôn	60	2	U 5.1	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
1,1-Dichloroethene	ļ/đin	5	2	U 5.1	U 01 U	10 U	5 U	5 U	5 U	10 N	10 U	0 0 ∪	10 U	10 U	10 U	50 U	10 U	007 0 0	1
1,1-Dichloroethane	l/ĝu	5	5	U 5 I	U 10 U	10 U	5 0	5 U	5 U	D 01	10 U	50 U	10 N	10 L	10. U.				
Chloroform	Į0n	7	5	U 5 I	<u>0 10 0</u>	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	-∩ 0₽	10 U
1,2-Dichtoroethane	1/000	0.6	9	U 5 1	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
MEK(2-Butanone)	Į0'n		50 10	П 101	U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
1,1,1-Trichloroethane)ôn	5	2	U 5 1	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	20 N	10 U	10 U	10 U
Carbon tetrachloride	l/ôn	5	5	U 5 I	U 01 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Bromodichloromethane	l/ðn		50 5	U 51	10 I	10 0	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
1.2-Dichloropropane	l/bn	-	5	U 51	U 10 U	10 0	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10.0
cis-1,3-Dichloropropene	l/bn	0.4	5	U 51	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Trichloroethene	ng/l	ю	5	U 51	J 4.6 J	10 U	5 U	5 U	5 U	10 U	2 J	10 U	10 U	10 U	10 U	50 U	10 U	10 U	L.007,1
Dibromochloromethane	1/Bn	2 C	£	U 51	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
1,1,2-Trichloroethane	i/bn	ß	2 2	0 5	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Benzene	i/đn	-	ъ С	U 5 I	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
trans-1,3-Dichloropropene	l/ôn	0.4	5	U 5	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Bromoform	l/on		50 5	0 5	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
MIBK(4-Methyl-2-pentanone)	µô∩		10	U 10 I	U 01 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
2-Hexanone	µôn		50 10	U 10	U 11 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Tetrachloroethene	l/đn	ۍ ۲	5 C	U 51	U BARRE	10 U	5 U	5 U	5 U	10 U	5 J	10 U	10 U	10 U	10 U	50 U	10 U	- 18 BDI	8.000
Toluene	i∕6n	5	5	U 5.	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	37
1,1,2,2-Tetrachloroethane	l/ôn	S	5	U 5 I	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Chlorobenzene	ļ6n	ۍ ا	ъ.	U 5.	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Ethylbenzene	∕6'n	ŝ	5	0 5	U 10 U	10 U	5 U	5 U_	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	2 J
Styrene	l/ôn	ŝ	со I	U 5	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
Total Xytenes	l/gu	ŝ	5 S	U 5.	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	19
Dichlorodifluoromethane	l/gu	S	10	U 10	U 10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	50 C	10 U	10 U	10 0
Trichlorofluoromethane	/ôn	ß	5	U 5.	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 C
1,1,2-Tricloro-1,2,2,-triflouroethane	l/6n	ю	S	U 5.	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10 U	10 U	10 U
trans-1,2-Dichloroethene	l/ôn	5	5	U 5	U 10 U	1 0 1	5 U	5 U	5 ∪	10 U	50 U	2	N B D	30					
Methyl tert buryl ether	ļ⁄6n	9	2	ر و	U 10 U	10 U	5 U	5 U	5 C	10 U	10 U	10 U	-10 U	10 U	10 U	50 U	10 11	10 U	10 U
cis-1,2-Dichloroethene	l/ĝu	2	2	U 5	36	10 U	5 U	50	5 U	10 U	49	10 U	10 U	10 U	10 U	50 U	440	0.044	1,300
Cyclohexane	l/gu	_	10	U 10	U 10 L	10 U	10 U	10 U	10 ∪	10 U	50 U	10 13	10 U	10 U					
Methylcyclohexane	l/ĝu		5	0 2	U 01	∩ ₽	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10.01	10 U	٢J
1,2-Dibromoethane	∕6n		5	U 5	U 10 U	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	10.01	10 C	10 U
Isopropylbenzene	l/Gri	S	1 5	u 5	U 10 U	∩ ₽	5 U	5 U	5 U	10 U	10 U	D 0₽	10 U	10 U	10 U	50 U	10.01	10 U	10 U
1,3-Dichlorobenzene	l/đn	3	- 5	0 2	U 10 U	⊃ ₽	5 U	5 U	5 U	10 U	10 U	⊃ ₽	10 U	10 U	10 U	50 U	10 U	-0 C	10 U
1,4-Dichlorobenzene	l/ôn	3	5	U 5	U 10 L	0 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 C	10 11	10 U	10 U
1,2-Dichlorobenzene	ng/i	3	5	U 5	U 10 U	₽ Q	5 U	5 U	5 U	10 U	10 U	10 U	10 U	∩ 0₽	10 U	50 U	10.01	10 U	10 U
1,2-Dibromo-3-chloropropane	l/ôn	0.04	9	₽ ∩	U 1.1 J	₽ ₽	∩ ₽	10 U	10 U	10 U	10 U	⊃ ₽	10 U	10 U	⊃ ₽	50 U	10 11	10 U	₽Q
1,2,4-Trichlorobenzene	ĥ	ŝ	2	0	U 10 L	∩ ₽	2 ∩	5 U	5 C	₽ Q	10 U	10 U	10 U	10 U	₽	20 N	0	10 U	₽ P
Methyl acetate	/ôn		5	0 5	10.0	10 U	5 U	5 U	5 U	10 U	10 U	10 U	10 U	10 U	10 U	50 U	0	10 U	10 U

		r VOCs Data
ioneer Midler Avenue LLC	emedial Investigation Report	able 20 - Summary Groundwate

Parameter	Units	NYSDE	EC GA	MW-3D DL	MW-4	MW-4D	9-WW	NW-7	MW-8	MW-9D	MW-10D	MW-10D DL	MW-12D	MW-12D DL	MW-13D N	W-13D DF	AW-13D RE	MW-13D
Sample Date		Ъ С	Guid	5/3/2006	5/2/2006	5/2/2006	5/3/2006	5/3/2006	5/3/2006	5/3/2006	05/02/06	05/02/06	05/03/06	05/03/06	05/03/06	05/03/06	05/03/06	04/11/07
Chloromethane	ğ			2,000 U	10 U	Ð	₽Q	10 U	₽	20 (∩ ₽	40 ∪	10 U	200 N	10 U	100 U	20 L	40 U
Bromomethane	i/đn			2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	ກ ເ	40 U
/inyl chloride	i/ôn	N	9. 39 0		2 J	10 U	10 U	10 U	10 U	SC 91-3	1, 1, 00 J	0.85	× 120 J ×	21+00 D4	00.35	0.000	720.0	2401
Chloroethane	l/Bn	5		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	0 0	40 U	10 U	500 U	10 U	100 U	50 U	A0 U
vlethylene chloride	ηĝη	ß		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	32 BJ
Acetone	i/ôn		50	2,000 U	10 U	10 U	10 U	10 U	10 €	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	6,000
Carbon disulfide	1/ôn	80		2,000 U	10 U	Ŀ	10 U	10 U	∩₽	20 U	10 U	40 U	10 U	500 U	10 U	100	20 N	40 U
1,1-Dichloroethene	j∕ôn	5		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 C	40 U	L S	500 U	۲ م ۲	100	50 U	6 ∪
1,1-Dichloroethane	l/ðn	S		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	40 U
Chloroform	jān	2		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	40 U
, 2-Dichloroethane	ļĵ	0.6		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 C	50 U	4 U (
MEK(2-Butanone)	j,ĵon		20	2,000 U	10 U	0 0	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	1,300
.1.1-Trichloroethane	l/ön	ъ		2,000 U	10 U	0 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	10.01
Carbon tetrachloride	, ja	5	ľ	2.000 U	10 U	10 U	10 U	10 U	10 U	20 N	10 U	40 U	10 U	500 U	10 U	100 U	50 U	40 U
Bromodichloromethane	nov I		3	2.000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	40 U
2-Dichloropropane	hon	-	1.	2.000 U	10 U	10 U	10 U	10 U	10 U	20 0	10 U	40 U	10 U	500 U	10 U	100 L	50 U	0.01
sis-1,3-Dichloropropene	l jūn	0.4		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	10.11
Lichloroethene) Din	5		700 DV	10 U	10 U	10 U	10 U	10 U	20 U	2 J	40 U	200 %	SS-BOOKU	5.9	100 U	50 U	20
Dibromochloromethane	ĥ	2		2,000 U	10 U	10 U	10 U	10 U	10 U	20 Q	10 U	40 U	10 U	500 U	10 U	100 U	50 U	10.0
1.1.2-Trichloroethane	25	5	F	2.000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	10 11
Senzene	00			2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 0	10 U	500 U	10.0	100 U	50 U	37.J
rans-1.3-Dichloropropene	jõn	0.4		2,000 U	10 U	10 U	10 U	10 U	10 U	20 ∩	10 U	40 U	10 U	500 U	10 U	100 U	50 U	40.0
Bromoform)ôn		50	2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	40 U
MIBK(4-Methyl-2-pentanone)	Ŋ			2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10.0	100 U	50 U	170 J
2-Hexanone	Ŋ		20	2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	10 U	500 U	10 U	100 U	50 U	200 U
Tetrachioroethene	Ъ́о́п	ŝ		38,000 80	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	00	5900 BD	24	36 BDJ	50 U	40 U
Toluene	lĝ.	S		2 000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	20	500 U	10 U	100 U	50 U	4
1,1,2,2-Tetrachloroethane	jôn	s		2,000 U	10 U	10 U	10 U	10 U	10 U	20 C	10 U	40 U	10 0	500 U	10 U	100 U	50 U	40 U
Chlorobenzene	∕₿'n	5		2,000 U	10 U	10 U	10 U	10 U	10 U	20 (10 U	40 U	10 U	500 U	10 U	100 U	50 U	40 U
Ethylbenzene	уðл	5		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40∪	10	500 U	10 U	100 U	50 U	40 U
Styrene	Ŋ.	S		2,000 U	10 U	10 U	10 U	10 U	10 U	20 U	10 U	40 U	9 9	200 C	10 U	100 U	50 U	40 U
Total Xylenes	Ŋ	S		2,000 U	10 U	10 U	10 U	10 U	10 U	20 C	10 U	40 U	n of	200 N	10 U	100 U	50 U	120 U
Dichlorodifluoromethane	l/gu	ŝ		2,000 U	10 U	10 U	10 U	10 U	10 U	20 N	10 U	40 ∪	10 U	500 U	10 U	100 U	20 N	40 U
Frichlorofluoromethane	λĝη	2		2,000 U	10 U	10 U	10 U	10 F	10 U	20 C	10 L	49 ⊃	10 C	200 П	10 1	9	20 N	4
1,1,2-Tricloro-1,2,2,-trifiouroethane	l/gu	2		2,000 U	10 U	10 U	10 U	10 C	100	200	10 0	40 0		000	2:		200	4
rans-1,2-Dichloroethene	- 100 -	ŝ		2,000 U	10 C	⊃ 9	1 0 1	р: 9	⊃ ₽	20 0	52.52	22.01	47	200 N	13	13 00	13.4	8
Methyl tert butyl ether	3	2		2,000 U		D 2	0		0.01					0.000	0.00	0.001	0.00	
cis-1,2-Dichloroethene	ġ,	ß		1.600104	10 C	10 U	10 U	5	0.01	5	420	N OLOS	2	3/0.02	190	1000	050	200
Cyclohexane	/ôn			2,000 U	10 U	10 U	10 U	10 U	0.01	20 0	10 U	90	0 9	500 U	10.0	100 C	D 09	40∪
Vethylcyclohexane	l/đn			2,000 U	10 U	10 U	10 U	10 U	10.01	20 0	10 U	4 ∪	-10 C	500 U	10 U	100 U	20 M	4
1,2-Dibromoethane	l/Din			2,000 U	10 U	10 U	10 U	10 U	7 OF	20 U	10 U	40 U	10 C	500 U	00	8	7 20 C	9
sopropylbenzene	ng/l	5		2,000 U	10 U	10 U	10 U	10 U	10 C	20 0	10 U	40 ∪	0 Q	500 U	10 U	8	20 N	₽
1,3-Dichlorobenzene	l/Bn	6,		2,000 U	10 U	10 U	10 U	10 U	to U	20 U	10 U	40 U	9 9	500 U	10 U	18	20 N	9
1,4-Dichlorobenzene	ģ	e		2,000 U	10 U	10 U	10 U	10 U	20	20 N	10 U	40∪	2 9	500 U	201	8	20 N	40 ∪
1,2-Dichlorobenzene	λĝ	e		2,000 U	10 U	10 U	10 U	10 U	201	20 U	₽ ₽	4 ∪	10 U	500 U	0	18	20 C	40 U
1,2-Dibromo-3-chloropropane		50		2,000 U	10 C	10 L	10 U	10 1		20 C	⊃ : ₽ ;	49 9 7	2	200 1	0	181	20 1	- 14 1 1
1,2,4-Trichlorobenzene	3	2		2,000 U	10 C	19 C	10 1	10 C) []	9 5 5	2 9	38	2	3	202	2 2
Viethyl acetate	100			5,000 U	0.01	- N 01	101		2	20 0	2	€ C	2	2000	2	3	200	2

Pioneer Midler Avenue LLC Remedial Investigation Report Table 20 - Summary Groundwater VOCs Data

Parameter	Units	NYSD	EC GA	MW-13D	MW-13D DL	MW-2	MW-2D	Z-WM	8-WW	De-WM	MW-10D	MW-12D	MW-13D	MW-13D DL
Sample Date		Std	Giếd	07/20/07	07/20/07	08/23/07	06/23/07	08/23/07	08/23/07	08/23/07	08/23/07	08/23/07	08/23/07	08/23/07
Chloromethane	/ôn		-	50 U	800 U	10 U	10 U	-10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Bromomethane)ĝn			50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Vinyl chloride	ôn	8	and.	9,500 E	17.200 L	10 U	10 U	10 U	10 U	5 2 B J. 1	78	500 U	19,000 E	16,000 D
Chloroethane	l/ðn	5		50 U	800 U	10 U	10 N	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Viethylene chloride	l/ôn	5		2.6 JB	800 U	10 U	10 U	10 U	10 U	10 U	2.3	500 U	14.1	1,000 U
Acetone	l/đn		20	24 J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 U	10 U	10 U	10 U	10 U	20 U	2,100	20.1	1,000 U
Carbon disulfide	, l/ôn	8		14 J	800 U	10 U	10 U	10 U	10 N	10 U	20 U	500 U	100 U	1,000 U
1,1-Dichloroethene	l/ôn	5	and a	20 A.	L CHON	10 U	38	500 U	100 U	1,000 U				
1,1-Dichloroethane	-Vôn	5		50 ∪	800 ∪	10 U	20 U	500 U	100 U	1,000 U				
Chloroform	ĥ	7		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 0	500 U	100 U	1,000 U
1,2-Dichloroethane	ĥ	0.6		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20.0	500 U	100 U	1,000 U
VEK(2-Butanone)	ĥ		ទ	50 U	008 U	10 U	10 U	10 U	10 U	10 U	20 0	920	100 U	1,000 U
1,1,1-Trichloroethane	Vôn	5		50 U	008 00	10 U	20 0	500 U	100 U	1,000 U				
Carbon tetrachloride	l/ôn	5	1	50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Sromodichloromethane	/ôn		8	50 U	800 U	10 U	10 U	10 U	10 U	101	20 0	500 U	100 U	1,000 U
1,2-Dichloropropane	Ŋ	-		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Xis-1,3-Dichloropropane	μ <mark>0</mark> η	0.4		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Trichloroethene	1/Ôn	9		10 A 10	6.98	10 U	20 U	500 U	100.00	1,000 U				
Dibromochloromethane	V6n	s		50 U	800 U	10 Ú	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
1,1,2-Trichloroethane	∕ðn	ъ		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Senzene	/ð	÷	(here)	16.11 %	15.3	10 U	20 02	500 U	100 U	1,000 U				
trans-1,3-Dichloropropene	∕ôn	0.4		50 U	000 N	10 U	20 U	500 U	100 U	1,000 U				
Bromoform	l/ôn		50	50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
VIBK(4-Methyl-2-pentanone)	l/ôn			23 J	800 U	10 U	10 U	10 U	10 U	10 U	20 C	500 U	(**	1,000 U
2-Hexanone	∕ôn		ß	50 U	008	10 U	20 U	500 U	100 U	1,000 U				
Tetrachloroethene	l/ôn	5		160	160.J	10 U	20 U	500 U	100 U	1,000 U				
Foltene	ng/l	S	ver.	18.7	16.J	10 U	20 U	500 U	r,21	1,000 U				
1,1,2,2-Tetrachioroethane)ôn	S		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Chlorobenzene	ðn	ß		50 U	000 N	10 U	20 U	500 U	100 U	1,000 U				
Ethylbenzene	/Bin	ю		0.86 J	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Styrene	l/gu	S	Ì	50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Fotal Xylenes	1/0n	5	Ì	4.8 J	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Dichlorodifluoromethane	/ôn	5		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
Trichloroftuoromethane	λĝη	5		50 U	800 U	10 U	10 U	10 U	10 U	⊃ 0	20 U	200 N	100 U	1,000 U
1,1,2-Tricloro-1,2,2,-triflouroethane	Ŋ	5		∩ 20 ∩	800 U	10 U	10 U	10 U	10 U	10 U	∩ R	500 U	100 U	1,000 U
trans-1,2-Dichloroethene	j/ôn	5		8	93 J	10 U	26	500 U	93 J.	1,000 U				
Methyl tert butyl ether	ð,	₽		20 (008	10 U	D 02	200 U	100 0	1,000 U				
cis-1,2-Dichloroethene	l⁄ôn	S	9 38-1	3 100 E	3,200	-	2 J	3J	10 U	1.5.1	2320	61.1	1,600	1,700 D
Oyclohexane	l/ôn			50 U	800 U	10 U	10 U	10 U	10 U	10 U	20.0	500 U	100 0	1,000 U
Methykryckohexane	Ŋ		-	D 03	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
1,2-Dibromoethane	ôn			50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
sopropylbenzene	l/ôn	5		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 C	1,000 U
1,3-Dichlorobenzene	l/gu	З.	•	50 U	000 U	10 U	10 U	10 U	10 U	10 U	20 0	500 U	100 U	1,000 U
1,4-Dichlorobenzene	'n	e		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 U	500 U	100 U	1,000 U
1,2-Dichlorobenzene	βġ	e		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 N	500 U	100 U	1,000 U
1,2-Dibromo-3-chloropropane	∫ĝn	<u>9</u> .0		50 U	800 U	10 U	10 U	10 U	10 U	10 U	20 0	500 U	100 U	1,000 U
1,2,4-Trichlorobenzene	/ôn	ы		50 U	800 U	10 N	10 U	10 U	10 U	10 U	20 N	500 U	100 U	1,000 U
Methyl acetate	/ðn			50 U	800 U	₽	10 U	10 U	10 U	10 U	20.0	500 U	100 U	1,000 U

Notes: [[]]] - Indicates value exceeds Class GA Standard or Guidence level. ND = not detected, U = undetected, J or E = estimated value, RE = re-extraction

ND ND ND ND ND ND ND ND ND ND ND ND ND N
ND ND ND ND ND ND ND ND ND ND ND ND ND N
130 ND ND 81 3 2 17 17

Pioneer Midler Avenue LLC Remedial Investigation Report Table 21 - Soil Vapor Sampling Data F:|Project\C81 - Pioneer Development\C81.002 BCP\Close out and COC\October 2007\HI Report\Tables\Table21.xis / Main

Page 1 of 2

)ata
ų	eport	pling [
nue LL	tion Re	or Sam
er Avel	'estiga	il Vapo
er Midle	lial Inv	21 - So
Pionee	Remec	Table :

Analyte	SV-22	SV-23	SV-24	SV-25	SV-26	SV-27	SV-28	SV-29	SV-30	Trip	Ambient
										Blank	
Freon 11	5.9	QN	38	3.8	11	1.8	QN	1.8	2.5	QN	1.7
Freon 113	0.1 J	Q	0.1 J	QZ	QN	QN	Q	a	0.1 J	QZ	Q
Freon 114	QN	Q	Q	QZ	QN	QN	QN	Q	QN	Q	Q
Freon 12	3.2	QN	8.6	Q	5.0	2.8	QN	2.6	3.0	QN	QN
Heptane	25	57	10	13	2 J	3J	420 E	35	150 E	g	QN
Hexachloro-1,3-butadiene	QN	QN	Q	DN	DN	ΩN	QN	QN	QN	QN	DN
Hexane	94 Е	220 E	10	16	12	21	1400 E	440 E	1200 E	Q	0.54
Isopropyl alcohol	Q	Q	Q	QN	QN	QN	Q	Q	az	Q	QN
m&p-Xylene	35	41	34	61	69	36	37	17	25	QN	0.2 J
Methyl Butyl Ketone	Q	Q	Q	QN	Q	QN	ŊD	DN	DN	Q	Q
Methyl Ethyl Ketone	QN	QN	QN	QN	QN	QN	Q	Q	Q	Q	QN
Methyl Isobutyl Ketone	QN	QN	QN	Q	Q	QN	QN	QN	QN	QN	QN
Methyl tert-butyl ether	QN	DN	0.1 J	QN	DN	ND	DN	ND	ND	ND	DN
Methylene chloride	5.5	ND	6.6	3.6	6.0	4.0	QN	7.6	17	QN	0.53
o-Xylene	23	27	20	40	43	24	24	6.8	8.8	Q	0.1 J
Propylene	g	QN	Q	Q	QN	Q	Q	a	Q	QN	Q
Styrene	QN	13	Q	23	27	ЗJ	13	5.2	9.7	QN	QN
Tetrachloroethylene	19	3.0	2.7	2.5	3.7	2.2	2.8	QN	QN	DN	QN
Tetrahydrofuran	ŊD	ND	DN	ŊŊ	DN	QN	DN	DN	DN	DN	Q
Toluene	33	41	34	61	66	34	37	15	32	Q	1.7
trans-1,2-Dichloroethene	QN	QN	DN	Q	QN	QN	Q	DN	QN	ŊŊ	Q
trans-1,3-Dichloropropene	Q	QN	DN	QN	QN	DN	DN	ND	ND	DN	QN
Trichloroethene	2.6	3.0	2.7	2.0	3.4	2.0	QN	2.5	11	DN	DN
Vinyl acetate	DN	DN	QN	QN	ND	QN	QN	ND	DN	QN	QN
Vinyl Bromide	QN	DN	DN	DN	Q	Q	QN	QN	Q	Q	Q
Vinyl chloride	DN	DN	DN	ND	ND	DN	ND	ND	2.3	DN	0.1 J

ND = non-detect

All samples collected on 04/20/06. All data in $\mu g/m^3$

1. | 1.

÷ 1

7

venue, LLC	gation Report	ndicators Data	
ioneer Midler A	emedial Investi	able 22 - MNA Ir	

		October 200	7 MNA Indicator Sampling	
Parameter	Result	Units	Interpretation	USEPA Site Criteria Score
Field Parameters				
Oxidation/Reduction Potential (ORP)	-324	٨m	Concentration <-100 mg/L indicate reductive pathway is likely	N
Dissolved Oxygen	0	mg/L	Concentration <0.5 mg/L indicates reductive pathways are not repressed	ø
Laboratory Analytical Parameters				
Dissolved Inorganic Carbon	110	mg/L	Levels > background indicate microbial metabolism of organic carbon	N
Dissolved Organic Carbon	41	mg/L	Detections of DOC (or TOC) > 20 mg/L indicates that a non- depleted substrate (electron donor) is abundant	5
Vinyl Chloride	8.9 (SiREM) 21 (TA)	mg/L mg/L	Indicates presence of reductive dechlorination of higher isomers	2
cis-1,2-dichloroethene	0.56	mg/L	Indicates presence of reductive dechlorination of higher isomers	2
Dehalococcoides Enumeration	2 X 10 ⁸ (gene copies)	per liter	Values > 10 ⁷ /L indicate high concentration of Dehalococcoides (Dhc)	NL
Vinyl Chloride Reductase (vcrA)	6 X 10 ⁷ (gene copies)	per liter	Indicates that 93% of total Dhc are vcrA gene copies	NL
Iron (total)	1.15	l/gm		
Ferric Iron	1.2	mg/L	Ferric Iron (Fe III) is an electron acceptor that competes with dehalorespiration	
Ferrous Iron	ND at 0.050	mg/L	Ferrous Iron (Fe II) >1 mg/L indicates reduced conditions and that anaerobic degradation of organic carbon is likely	0
Nitrite/Nitrate	ND at 0.050 (both)	mg/L	Absence of nitrate indicates is prerequisite for iron or sulfate reduction to occur	2
Sulfate	ND at 25	mg/L	Indicates sulfate is being reduced to sulfide and reductive	
Sulfide	8.0	mg/L	dechlorination is likely to be efficient	Э
Methane	13 (SiREM) 6 (TA)	mg/L mg/L	Indicates strong reducing conditions are present and likely efficient dechlorination	ო
Ethene	4.6	mg/L	Indicates strong presence of reductive dechlorination end	
Ethane	0.27	mg/L	products	3
			Total USEPA Screening Score	52

NL = parameter not included in USEPA Site Screening Score TA = Test America Laboratories

Pioneer Midler Avenue LLC RI Report Table 23 - Comparative Summary of Remedial Alternatives for Soil

Technology	Land Use (Site			Technology Co	mparison Criteria (see S	ection 8.1 for descriptic	Technology Comparison Criteria (see Section 8.1 for descriptions of these criteria)									
	Redevelopment Track)	Overall Protection of Public Health and the Environment	Compliance with SCGs	Longterm Effectiveness and Permanence	Reduction of Toxicity, Mobility, or Volume	Short-term Effectiveness	Implementability	Cost	Community Acceptance	Land Use						
R Excavation and Off- Site Disposal (see Section 8.5.1 for description) Un	Restricted Use (Track 4)	Could successfully address CVOC impacts if combined with a groundwater remedy and I and EC*	Could achieve SSCOs for CVOCs	Soil removal constitutes a permanent remedy for site soil impacts	Impacted soils would be removed from the site - mobility reduced	Would be effective at removing CVOCs in the short term	Very difficult - deep excavation into soft ground below water table	Very high due to implementability issues	Would be acceptable to community	Could provide protection consistent with intended future use of property						
	Unrestricted Use (Track 1)	Could successfully impacts if combined with a groundwater remedy and I and EC*	Could achieve Unrestricted Use Soil Cleanup Objectives for all parameters	Soil removal constitutes a permanent remedy for site soil impacts	Impacted soils would be removed from the site - mobility reduced	Would be effective in the short term	Very difficult - deep excavation into soft ground below water table	Very high due to implementability issues	Would be acceptable to community	With gw remedy, could be effective- Track 1 use is not intended use						
In-Situ Thermal Treatment (see Section 8.5.2 for description)	Restricted Use (Track 4)	Could successfully address CVOC impacts if combined with a groundwater remedy and I and EC*	Could achieve SSCOs for CVOCs	CVOCs would be permanently removed	CVOCs would be permanently destroyed	Would be effective for CVOC impacts in the short term	Very difficult - Few technology providers, extremely resource and energy intensive	Very high due to implementability issues	Would be acceptable to community	Could provide protection consistent with intended future use of property						
	Unrestricted Use (Track 1)	Could only address volatile parameters- additional actions may be required for SVOCs/metals	Could achieve Unrestricted Use Soil Cleanup Objectives for volatile organic compounds	CVOCs would be permanently removed other parameters not affected	CVOCs would be permanently destroyed - other parameters not affected	Short-term effectiveness for VOC parameters - other parameters not affected	Very difficult - Few technology providers, extremely resource and energy intensive	Very high due to implementability issues	Would be acceptable to community	With gw remedy, could be effective- Track 1 is not intended use						
Institutional and/or Engineering Controls (I and EC) (see Section 8.5.3 for description)	Restricted Use (Track 4)	Could successfully address identified exposure scenarios if combined with a groundwater remedy	Would not affect ability to achieve SSCOs - addresses exposure scenarios	These controls are effective at mitigating exposure scenarios over the long term	Would not provide reductions - addresses exposure scenarios only	Would provide effective, short-term protection for identified exposure scenarios	Relatively straightforward to implement and enforce	Moderate, long term	Would be acceptable to community	Could provide protection consistent with intended future use of property						
	Unrestricted Use (Track 1)	Not an appropriate remedy for Track 1 Redevelopment	Would not achieve Unrestricted Use Soil Cleanup Objectives	These controls are not consistent with Track 1 redevelopments	Would not provide reductions - not consistent with Track 1	These controls are not consistent with Track 1 redevelopments	Easy to implement - not consistent with Track 1 redevelopments	Moderate, long term	May not be acceptable to community	These controls are not consistent with Track 1 redevelopments						
No Action (see Section 8.7 for description)	Restricted Use (Track 4)	This technology would not achieve required protection for this redevelopment track	Would not achieve SSCOs	Would not provide any long-term or permanent benefits	Would not provide any reductions	Would not provide short term effectiveness	Easy to implement - no actions	Low, no actions	Would likely not be acceptable to community	Not appropriate given intended use of property						
	Unrestricted Use (Track 1)	This technology would not achieve required protection for this redevelopment track	Would not achieve Unrestricted Use Soil Cleanup Objectives	Would not provide any long-term or permanent benefits	Would not provide any reductions	Would not provide short- term effectiveness	Easy to implement - no actions	Low, no actions	Would likely not be acceptable to community	Not appropriate for unrestricted use of property						

Note: * I and EC = Institutional and Engineering Controls

Pioneer Midler Avenue LLC RI Report Table 24 - Comparative Summary of Remedial Alternatives for Groundwater

	Land Use (Site Redevelopment Track)	Technology Comparison Criteria (see Section 8.1 for descriptions of these criteria)								
Technology		Overall Protection of Public Health and the Environment	Compliance with SCGs	Longterm Effectiveness and Permanence	Reduction of Toxicity, Mobility, or Volume	Short-term Effectiveness	Implementability	Cost	Community Acceptance	Land Use
In-Situ or Ex-Situ Groundwater Treatment (see Section 8.6.1 for description)	Restricted Use (Track 4)	Could successfully address CVOC impacts if combined with a soil remedy and/or I and EC*	Could eventually achieve Class GA Groundwater Standards for CVOCs	Once gw standards are achieved, the condition would be expected to be permanent	Technology would provide reduction of toxicity and volume	These technologies constitute a relatively long-term (a decade or more) remedy	Ex-situ technologies difficult to implement due to access and space requirements.	High costs due to implementability issues and length of treatment period	Would be acceptable to community	Would provide protection consistent with intended future use of property
	Unrestricted Use (Track 1)	Could successfully address CVOC impacts if combined with a soil remedy and/or I and EC*	Could eventually achieve Class GA Groundwater Standards for CVOCs	Once gw standards are achieved, the condition would be expected to be permanent	Technology would provide reduction of toxicity and volume	These technologies constitute a relatively long-term (a decade or more) remedy	In-situ (passive) technologies are generally simpler to implement.	High costs due to implementability issues and length of treatment period	Would be acceptable to community	With soil remedy, could be effective, however, Track 1 is not intended use
Monitored Natural Attenuation (see Section 8.6.2 for description)	Restricted Use (Track 4)	Could successfully address CVOC groundwater impacts if combined with I and EC*	Could eventually achieve Class GA Groundwater Standards for CVOCs	Once gw standards are achieved, the condition would be expected to be permanent	Technology would provide reduction of toxicity and volume	This technology constitutes a long-term (several decades or more) remedy	Easy to implement and assess effectiveness	Moderate, though long term	Would be acceptable to community	Would be effective, with institutional controls to limit use of gw during remediation
	Unrestricted Use (Track 1)	Could successfully address CVOC groundwater impacts if combined with I and EC*	Could eventually achieve Class GA Standards for CVOCs, Track 1 use (not intended) would require I and/or EC	Once gw standards are achieved, the condition would be expected to be permanent	Technology would provide reduction of toxicity and volume	This technology constitutes a long-term (several decades or more) remedy	Easy to implement and assess effectiveness	Moderate, though long term	Would be acceptable to community	With institutional controls to limit use of gw during remediation, could be effective- Track 1 use is not intended use
Institutional and/or Engineering Controls (I and EC) (see Section 8.6.3 for description)	Restricted Use (Track 4)	Could successfully address identified exposure scenarios for gw	Would not directly affect impacted gw - addresses exposure scenarios	These controls are effective at mitigating gw exposure scenarios over the long term	ECs can reduce mobility -otherwise, addresses exposure scenarios only	Effective mainly for mitigating identified exposure scenarios	Straightforward to implement and enforce	Capital and O&M could vary from low to high	Would be acceptable to community	Would provide protection consistent with intended future use of property
	Unrestricted Use (Track 1)	Could successfully address identified exposure scenarios for gw-may not be consistent with Track 1 redevelopment	Would not directly affect impacted gw - addresses exposure scenarios-may not be consistent with Track 1 redevelopment	Effective at mitigating gw exposure scenarios over the long term-may not be consistent with Track 1 redevelopment	ECs can reduce mobility -otherwise, addresses exposure scenarios only not consistent with Track 1 redevelopment	Effective mainly for mitigating identified exposure scenarios- may not be consistent with Track 1 redevelopment	Straightforward to implement and enforce	Capital and O&M could vary from low to high	May be acceptable to community	Could provide protection for gw exposure scenarios - may not be consistent with Track 1 redvelopment
No Action (see Section 8.7 for description)	Restricted Use (Track 4)	This technology would not achieve required protection for this redevelopment track	Would not provide a framework to determine if natural attenuation is occuring	Would not provide any long-term or permanent benefits	Would not provide any reductions or the ability to monitor the site	Would not be effective in the short-term	Easy to implement - no actions	Low, no actions	Would likely not be acceptable to community	Not appropriate given intended use of property
	Unrestricted Use (Track 1)	This technology would not achieve required protection for this redevelopment track	Would not be consistent with a Track 1 redevelopment	Would not provide any long-term or permanent benefits	Would not provide any reductions or the ability to monitor the site	Would not be effective in the short-term	Easy to implement - no actions	Low, no actions	Would likely not be acceptable to community	Not appropriate for unrestricted use of property

Note: * I and EC = Institutional and/or Engineering Controls

APPENDIX B

HISTORIC AND SUPPLEMENTAL INVESTIGATIONS (BOUND WITH VOLUME 1 OF 5)

HYDRAULIC CONDUCTIVITY TEST DATA

GeoLogic JULY 2006 GROUNDWATER AND CONTAMINANT FLOW REPORT

JULY 2004 PRELIMINARY SITE INVESTIGATION REPORT

INDEPENDENT GEOCHEMISTRY AND MICROBIOLOGY INVESTIGATIONS

+ 1

HYDRAULIC CONDUCTIVITY TEST DATA

€. + •

ж. I

C&S En	igineers	slug/bail test analysis	Date: 10/26/2005	Page 2		
499 Col. Eileen Collins Blvd.		BOUWER-RICE's method	Project: Pioneer M	Project: Pioneer Midler Avenue LLC		
ph.(315) 45	5-2000		Evaluated by: WN	: WNR		
Slua Test	t No. 1	Test		· · · · · · · · · · · · · · · · · · ·		
	٥ <u>٦</u>	14/-11/				
	-, sn	vveii (vivv-3D	· · · · · · · · · · · · · · · · · · ·		
Static wa	ter level: 2.18 ft below datum					
	Pumping test duration	Water level	Drawdown			
1	[min]	[1]	[(1]			
2	0.00	4.88	2.73			
3	0.02	4.86	2.68			
4	0.03	4.83	2.65			
5	0.04	4.83	2.65			
6	0.05	4.81	2.63			
7	0.06	4.80	2.62			
8	0.07	4.80	2.62			
9 10	80.0	4.80	2.62			
11	0.10	4.30	2.02	······································		
12	0.11	4.78	2.60			
13	0.12	4.76	2.58			
14	0.13	4.76	2.58			
15	0.14	4.76	2.58	······································		
16	0.15	4.76	2.58			
17	0.16	4.75	2.57			
18	0.17	4.75	2.57			
20	0.18	4.73	2.57			
21	0.20	4.73	2.55			
22	0.21	4.73	2.55	······		
23	0.22	4.73	2.55	·		
24	0.23	4.73	2.55			
25	0.24	4.72	2.54			
26	0.25	4.72	2.54			
27	0.26	4.72	2.54			
20	0.27	4.72	2.54			
30	0.29	4.70	2.52			
31	0.30	4.70	2.52			
32	0.31	4.70	2.52			
33	0.33	4.69	2.51			
34	0.35	4.69	2.51			
35	0.36	4.67	2.49			
37	0.38	4.07	2.49 ,			
38	0.40	4.07	2.49	······································		
39	0.43	4.65	2.47	······································		
40	0.45	4.65	2.47			
41	0.46	4.64	2.46			
42	0.48	4.64	2.46			
43	0.50	4.64	2.46			
44	0.51	4.64	2.46			
45	0.53	4.62	2.44			
40	06.U	4.62	2.44	· · ·		
48	0.58	4.02 4 R1	2.44			
49	0.60	4.61	2.43			
50	0.61	4.61	2.43			

C&S E	Engineers	slug/bail test analysis	Date: 10/26/20	005 Page 3	
499 Col, Eileen Collins Blvd.		BOUWER-RICE's method	Project: Pione	Project: Pioneer Midler Avenue LLC	
ph.(315)	455-2000	Evaluated by: WNR			
Slua Te	est No. 1	Test conducted on: 10/17/2005			
Moll M			MW/3D		
77CH 171				······································	
			· •····	·····	
Static v	water level: 2.18 ft below datum			· · · · · · · · · · · · · · · · · · ·	
	Pumping test duration	Water level	Drawdown		
	fminl	(ff1)	[ft]		
51	0.63	4.61	2.43	·······	
52	0.65	4.59	2.41		
53	0.66	4.59	2.41		
54	0.68	4.59	2.41		
56	0.70	4.55	2.41	······································	
57	0.73	4.58	2.40	99,999 999,000 - 004 000 904 00 404 00 405 00 405 0 406 0 406 0 406 0 406 0 406 0 406 0 406 0 406 0 406 0 406 0	
58	0.75	4.58	2.40		
59	0.76	4.58	2.40		
60	0.78	4.56	2.38	······································	
62	0.80	4.56	2.38		
63	0.83	4.56	2.38		
64	0.85	4.54	2.36		
65	0.86	4.54	2.36		
66	0.88	4.54	2.36		
67	0.90	4.54	2.36		
80 03	0.91	4.53	2.35		
70	0.95	4.53	2.35		
71	0.96	4.53	2.35		
72	1.16	4.48	2.30		
73	1.36	4.43	2.25		
74	1.56	4.40	2.22		
76	1.96	4.34	2.16		
77	2.16	4.31	2.13		
78	2.36	4.28	2.10		
79	2.56	4.25	2.07	<u>.</u>	
80	2.76	4.21	2.03 -	•	
82	3 16	4.10	1 97		
83	3.36	4.12	1.94		
84	3.56	4.10	1.92		
85	3.76	4.07	1.89		
86	3.96	4.04	1.86	,)	
87	4.16	4.02	1.84		
00 89	4.50	3.99	1.01		
90	4.76	3.94	1.76		
91	4.96	3.93	1.75		
92	5.16	3.90	1.72		
93	5.36	3.88	1.70	······································	
94	5.56	3.87	1.69		
- 95 	5./0 5.08	3.83	1.00		
97	6.16	3.79	1.61		
98	6.36	3.77	1.59		
99	6.56	3.76	1.58		
100	6.76	3.74	1.56	······································	

C&S Engineers		slug/bail test analysis		a: 10/26/2005	Page 4	
499 Col. Eileen Collins Blvd. Syracuse, NY 13212 ph (315) 455-2000		BOUWER-RICE's method	Proj	Project: Pioneer Midler Avenue LLC		
			Eva	luated by: WNR		
Slug Test No. 1		Test conducted on: 10/17		05		
	ח צ	10/			· · ··· · · · ··· · · · · · · · · · ·	
	עני ענייי איז איז איז איז איז איז איז איז איז	YV			<u>-</u>	
				·	· · · · · · · · · · · · · · · · · · ·	
Static wate	er level: 2.18 ft below datum					
	Pumping test duration	Water level	Drawdown			
	[min]	F#1	[[6]			
101	6.96	3.71	[E5]	1.53	••••••••••••••••••••••••••••••••••••••	
102	7.16	3.69	·····	1.51		
103	7.36	3.68		1.50		
104	7.56	3.65		1.47		
105	7.76	3.63		1.45		
100	8 16	3.01		1.43		
108	8.36	3.58		1.40	•••••••••••••••••••••••••••••••••••••••	
109	8.56	3.57		1.39		
110	8.76	3.55		1.37		
111	8.96	3.54		1.36		
112	9.16	3.52	······	1.34		
113	9.36	3.50		1.32		
114	9.50	3.49		1.31		
116	9.96	3.46		1.28		
117	11.96	3.31		1.13		
118	13.96	3.21		1.03		
119	15.96	3.09		0.91		
120	17.96	3.00		0.82		
121	19.96	2.92		0.74		
123	21.90	2.04	······	0.66		
124	25,96	2.73		0.55		
125	27.96	2.69		0.51		
126	29.96	2.65		0.47		
127	31.96	2.61		0.43		
128	33.96	2.59		0.41		
129	35.96	2.56		0.38		
131	39.90	2.34		0.35		
132	41.96	2.51		0.33		
133	43.96	2.50		0.32		
134	45.96	2.50		0.32		
135	47.96	2.50		0.32		
136	49.96	2.50	·····	0.32 ,		
137	51.96	2.50		0.32		
130	53.90	2.50		0.32	······································	
140	57.96	2.50		0.32		
141	59.96	2.50		0.32	······	
142	61.96	2.50		0.32		
143	63.96	2.50		0.32		
144	65.96	2.50		0.32		
		······	·····			
. 1						

C&S Engineers		slug/bail test analysis BOUWER-RICE's method		0/26/2005	Page 2	
499 Col. Eileen Collins Blvd.				Project: Pioneer Midler Avenue LLC		
ph.(315)	455-2000	Evaluated by: WNR				
Slug Te	est No. 3	Te	st conducted on: 10/17/2005	i on: 10/17/2005		
14144-95	, 	·····	51) 14144-5C			
	······································	·				
Static v	water level: 6.40 ft below datum					
	Pumping test duration	Water level	Drawdown			
	fminl	rff1	[[†]			
1	0.00	10.51	4	11		
2	0.01	10.35	3	.95		
3	0.02	10.37	3	.97		
4	0.03	10.35	3	.95	······································	
5	0.04	10.29	კკ	.89 .85		
7	0.05	10.23	3	84		
8	0.07	10.22	3	.82		
9	0.08	10.19	3	.79		
10	0.09	10.18	3	.78	ναματογραφία ματό στο το το το το το το πραθείο το το το το το το το το πολοτιστο ποι το το Μοι το το το το το Το προφορία ματό το το το το το το προφορία το το το το προφορία το το το πολοτιστο ποι το το Μοι το το το το το	
11	0.10	10.16	3	.76		
12	0.11	10.16	3	.76		
13	0.12	10.13	3	.73		
14	0.13	10.11	3	71		
16	0.15	10.10	3	.70		
17	0.16	10.08	3	.68	······································	
18	0.17	10.07	3	.67		
19	0.18	10.05	3	.65		
20	0.19	10.05	3	.65		
21	0.20	10.03	3	.63		
22	0.21	10.02	3	.60	······································	
24	0.23	10.00		.60	<i>,</i>	
25	0.24	9.99	2	.59		
26	0.25	9.97	3	.57		
27	0.26	9.96	3	.56		
28	0.27	9.96		.56		
29	0.28	9.94		52		
30	0.29	9.89		49		
32	0.33	9.88		.48		
33	0.34	9.86	:	.46		
34	0.36	9.85		.45		
35	0.38	9.83		.43		
36	0.39	9.81		.41 ,		
37	0.41	9.80		38		
39	0.44	9.78		.38		
40	0.46	9.77		1.37	·······	
41	0.48	9.75		3.35		
42	0.49	9.72		3.32	· · · · · · · · · · · · · · · · · · ·	
43	0.51	9.72		3.32	······································	
44	0.53	9.70		3.30		
45	0.54	9.69		27		
40	06.0	0.07 AA D		3 26		
48	0.59	9.66		3.26		
49	0.61	9.64		3.24		
50	0.63	9.62		3.22	· · · · · · · · · · · · · · · · · · ·	

C&S Er	ngineers	slug/bail test analysis		Date: 10/26/2005	Page 3	
499 Col.	Eileen Collins Blvd.	BOUWER-RICE's method		Project: Pioneer Midler Avenue LLC		
ph.(315) 48	55-2000			Evaluated by: WNR		
Slug Tes	st No. 3	- • · · · · · · · · · · · · · · · · · ·	Test conducted of	on: 10/17/2005		
 MW-9D			Well MW-9D		· ···· · · · · · · · · · · · · · · · ·	
	n an an ann an an an an an an an an an a		**************************************	·····	·····	
			······	· · ····· ···· ·· ··· ··· ··· ··· ···		
Static wa	ater level: 6.40 ft below datum				••	
	Pumping test duration	Water level	Dr	awdown		
	Imini	[61]		[#1]		
51	0.64	9.61	• • • • • • • • • • • • • • • • • • •	3.21	مهري الراهرية المسار المناكبين لالك متنافي	
52	0.66	9.59		3.19		
53	0.68	9.59		3.19		
54	0.69	9.58		3.18		
55	0.71	9.56		3.16		
56	0.73	9.55		3.15		
57	0.74	9.55		3.15	······· =··=·= =······	
58	U./6	9.53		3.13		
	U./O 	9.03 0 51		3.13		
61	0.75	9.50		3.10		
62	0.83	9.50		3.10		
63	0.84	9.48		3.08	а. Талтанан часалан на сели сели сели сели сели сели сели сели	
64	0.86	9.47		3.07		
65	0.88	9.47		3.07		
66	0.89	9.45		3.05		
67	0.91	9.43		3.03		
68	0.93	9.43		3.03		
70	0.94	9.42		3.02		
71	1 18	9.42 0.70		2.02		
72	1.36	9.20		2.80		
73	1.56	9.14		2.74		
74	1.76	9.07		2.67		
75	1.96	9.01		2.61		
76	2.16	8.96		2.56		
77	2.36	8.91		2.51		
78	2.56	8.87		2.47	· · · · · ·	
79	2.76	8.85		2.45		
80 84	2.90	8.80 77 0		2.40		
82	3.36	8.77 8.76		2.31		
83	3.56	8.73		2.33		
84	3.76	8.71		2.31		
85	3.96	8.70		2.30		
86	4.16	8.68		2.28 ,		
87	4.36	8.66		2.26		
88	4.56	8.65		2.25		
89	4.76	8.65	j [2.25		
90	4.96	8.63		2.23		
91	5.10	8.62		2.22		
92	0C 5.5R	00.0 Na s		2.20		
94	5.00	8.00 8.60		2.20		
95	5.96	8.58		2.18		
96	6.16	8.58		2.18		
97	6.36	8.57	,	2.17		
98	6.56	8.57	•	2.17		
99	6.76	8.57		2.17		
100	6.96	8.55	5	2.15		

C&S Engineers 499 Col. Eileen Collins Blvd.		slug/bail test analysis	Date: 10/26	/2005 Page 4
		BOUWER-RICE's method	Project: Pio	neer Midler Avenue LLC
ph (315) 455	9 13212 5-2000	Evaluated b		iy: WNR
Slua Test	No. 3	Tes	t conducted on: 10/17/2005	
	······	Wel	I MW-9D	
10100-90				
Static wat	ter level: 6.40 ft below datum		-	
An / , domain, ve	Pumping test duration	Water level	Drawdown	
	íminl	[[1]	[ft]	
101	7.16	8.55	2.15	
102	7.36	8.55	2.15	
103	7.56	8.55	2.15	
104	7.70	8.54	2.14	1979 No. 197
106	8.16	8.54	2.14	
107	8.36	8.54	2.14	
108	8.56	8.54	2.14	
109	8.76	8.54	2.14	
			······································	
			· · · · · · · · · · · · · · · · · · ·	······
				·
}				
		<u></u>	······································	· ·
 				
				· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·		

C&S Engineers		slug/bail test analysis	Date: 10/26/2	Date: 10/26/2005 Page 2	
499 Col. Eileen Collins Blvd.		BOUWER-RICE's method	Project: Pion	Project: Pioneer Midler Avenue LLC	
ph.(315)	455-2000		Evaluated by	: WNR	
Slug Te	est No. 4		Test conducted op: 10/17/2005		
34141 40					
WIW-10		We			
Static v	vater level: 6.65 ft below datum				
	Pumping test duration	Water level	Drawdown	· · · · · · · · · · · · · · · · · · ·	
<u>-</u>	[min]	[ft]0 10	[ft]		
2	0.01	9 17	2.04	· · · · · · · · · · · · · · · · · · ·	
3	0.02	9.17	2.52		
4	0.03	9.16	2.51		
5	0.04	9.19	2.54		
6	0.05	9.06	2.41		
7	0.06	9.03	2.38		
8	0.07	9.02	2.37		
40	0.08	8.98	2.33	·····	
11	0.09	8.05	2.32		
12	0.11	8.94	2.30		
13	0.12	8.92	2.27		
14	0.13	8.91	2.26		
15	0.14	8.89	2.24	······································	
16	0.15	8.87	2.22		
17	0.16	8.86	2.21		
18	0.17	8.84	2.19		
19	0.18	8.83	2.18		
20	0.19	8.81	2.18		
22	0.21	8.79	2.10		
23	0.22	8.78	2.13		
24	0.23	8.78	2.13		
25	0.24	8.76	2.11		
26	0.25	8.75	2.10		
27	0.26	8.75	2.10		
28	0.27	8.73	2.08	····	
30	0,28	8.72	2.07	<u> </u>	
31	0.30	8.70	2.07	·	
32	0.31	8.68	2.03	a a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a dan a	
33	0.33	8.67	2.02		
34	0.35	8.65	2.00		
35	0.36	8.64	1.99		
36	0.38	8.62	1.97	e	
37	0.40	8.61	1.96		
30 30	0.41	8.59	1.94		
40	0.45	8.56	1.92		
41	0.46	8.54	1.91		
42	0.48	8.54	1.89		
43	0.50	8.53	1.88	· · · · · · · · · · · · · · · · · · ·	
44	0.51	8.51	1.86		
45	0.53	8.51	1.86		
46	0.55	8.50	1.85		
47	0.56	8.48	1.83		
48	0.58	8.46	1.81		
49	0.00	0.40 0 / E	1.81		
	0.01	0.40	06.0		

C&S Engineers		slug/bail test analysis	Date: 10/26/2005	5 Page 3	
499 Col. Eileen Collins Blvd. Syracuse, NY 13212		BOUWER-RICE's method	Project: Pioneer	Midler Avenue LLC	
ph.(315) 4	55-2000	Evaluated by: WNR		NR	
Slug Tes	st No. 4	Tes	Test conducted on: 10/17/2005		
	· ····································	ام/۸/	Ι MW-10D	··· ····· ··· ··· ··· ··· ··· ··· ····	
	•				
·····	ter e for her de ser bene en denne er en delen som er er er er er en er som er er eger som er er er er er er e	· · · · · · · · · · · · · · · · · · ·			
Static wa	ater level: 6.65 ft below datum				
	Pumping test duration	Water level	Drawdown	e e e e e e e e e e e e e e e e e e e	
	[min]	(ff1	(f+1		
51	0.63	8.43	[it] 1.78	···· ····· · ·························	
52	0,65	8,43	1.78	·····	
53	0.66	8.42	1.77		
54	0.68	8.42	1.77		
55	0.70	8.40	1.75		
56	0.71	8.39	1.74		
57	0.73	8.39	1.74		
59	0.75	8.37	1.72		
60	0.78	8.35	1.70	··· ·····	
61	0.80	8.34	1.69		
62	0.81	8.34	1.69		
63	0.83	8.32	1.67		
64	0.85	8.32	1.67		
65	0.86	8.31	1.66		
66	0.88	8.29	1.64		
67	0.90	8.29	1.64		
00 60	0.93	8.27	1.62		
70	0.95	8.26	1.62		
71	0.96	8.26	1.61		
72	1.16	8.16	1.51		
73	1.36	8.09	1.44		
74	1.56	8.02	1.37		
75	1.76	7.98	1.33		
76	1.96	7.93	1.28		
70	2.16	7.88	1.23		
70	2.30	7.80	1.20		
80	2.76	7.30	1.13		
81	2.96	7.75	1.10		
82	3.16	7.72	1.07		
83	3.36	7.69	1.04		
84	3.56	7.68	1.03		
85	3.76	7.66	1.01		
86	3.96	7.64	0.99 ,		
<u>۲۵</u>	4.16	7.61	0.96		
89	4.30	7.00	0.95		
90	4.76	7.58	0.90 0.03		
91	4.96	7.57	0.92		
92	5.16	7.55	0.90		
93	5.36	7.54	0.89	· · · · · · · · · · · · · · · · · · ·	
94	5.56	7.52	0.87		
95	5.76	7.52	0.87		
96	5.96	7.50	0.85		
97	6.16	7.50	0.85		
98	6.36	7.49	0.84	· · · · · ·	
100	6.56	7.49	0.84	······································	
100	6.76	7.47	0.82		

C&S Engineers		slug/bail test analysis		e: 10/26/2005	Page 4
499 Col. Eileen Collins Blvd.		BOUWER-RICE's method		ject: Pioneer Mid	ller Avenue LLC
ph.(315)	455-2000	Evaluated by: WNR		· · · ·	
Slua Te	est No. 4		est conducted on: 10/17/20	005	
MM/-10	Ω	· · · · · · · · · · · · · · · · · · ·	/ell MW-10D		
14144-10		•••••••••••••••••••••••••••••••••••••••			···· · / · · · ·
					····· ··· ··· ··· ··· ··· ··· ··· ···
Static v	vater level: 6.65 ft below datum				
	Pumping test duration	Water level	Drawdown		
	[min]	[ft]	fft]		
101	6.96	7.46		0.81	
102	7.16	7.46		0.81	
103	7.36	7.46		0.81	
104	7.50	7.40	· · · · · · · · · · · · · · · · · · ·	0.79	антанталана организа, на маларатанаранаранара и организација и организација и тек на организација и тек на орга
106	7.96	7.44	·	0.79	· · · · · · · · · · · · · · · · · · ·
107	8.16	7.44		0.79	
108	8.36	7.42		0.77	
109	8.56	7.42		0.77	
110	8.76 8.08	7.42		0.77	nananananan alah karangan karangan karangan karangan karangan karangan karangan karangan karangan karangan kar
112	9.16	7.42	· · · · · · · · · · · · · · · · · · ·	0.77	
113	9.36	7.41		0.76	······································
114	9.56	7.41		0.76	······································
115	9.76	7.39	-	0.74	
110	9.95	7.39		0.74	
118	13.96	7,36		0.71	••••••••••••••••••••••••••••••••••••••
119	15.96	7.38		0.71	
120	17.96	7.38		0.71	
121	19.96	7.35		0.70	
122	21.90	7.33		0.68	******
124	25.96	7.33		0.68	
125	27.96	7.33		0.68	

					······································
			-		
					· · · · · · · · · · · · · · · · · · ·
		<u></u>			
				·	
 					
					,,

C&S Engineers		slug/bail test analysis	slug/bail test analysis		Date: 10/26/2005 Page 2	
499 Col. Eileen Collins Blvd.		BOUWER-RICE's method		Project: Pioneer Midler Avenue LLC		
oyracus ph.(315)	455-2000		Evaluated by: WNR			
Slua T	est No. 2	Test conducted on: 10/17/2005				
MIN 1	10			· · · · · · · · · · · · · · · · · · ·	.	
14144-1				· ·····	· · · · · · · · · · · · · · · · · · ·	
····						
Static	water level: 2.41 ft below datum			···· · · ···· · · · · · · · · · · · ·		
	Pumping test duration	Water level	Drawdov	vn		
	[min]	[ft]	(ft)			
1	0.00	15.40		12.99		
2	0.01	15.29		12.88		
3	0.02	15.11		12.70		
4	0.03	14.99		12.58	····	
5	0.04	14.88		12.47		
0 7	0.05	14.70		12.30		
י 8	0.00	14.61		12.20		
9	0.08	14.53		12.12		
10	0.09	14.46		12.05		
11	0.10	14.40		11.99		
12	0.11	14.35		11.94		
13	0.12	14.31		11.90		
14	0.13	14.26		11.85		
15	0.14	14,21		11.80	<u>,</u>	
17	0.15	14.17		11.70		
18	0.17	14.10		11.69		
19	0.18	14.07		11.66		
20	0.19	14.04		11.63		
21	0.20	14.02		11.61		
22	0.21	13.99		11.58		
23	0.22	13.98		11.57	·	
24	0.23	13.90		11.55		
20	0.25	13.91		11.52		
27	0.26	13.90		11.49		
28	0.27	13.88		11.47		
29	0.28	13.87		11.46		
30	0.29	13.85		11.44		
31	0.30	13.84		11.43		
32	0.32	13.82		11.41		
30	0.34	13.77		11.39		
35	0.37	13.77		11.36		
36	0.39	13.76		11.35		
37	0.40	13.74		11.33		
38	0.42	13.74		11.33		
39	0.44	13.73		11.32		
40	0.45	13.73		11.32		
41	0.47	13.71		11.30	······································	
42	0.49	13./1		11.30		
43	0.52	13.69		11.28		
45	0.54	13.69		11.28		
46	0.55	13.68		11.27		
47	0.57	13.68		11.27		
48	0.59	13.68		11.27		
49	0.60	13.68		11.27		
50	0.62	13.68		11.27		

C&S	Engineers	slug/bail test analysis	Date: 10/26/2	2005	Page 3
499 Co Svracus	ol. Eileen Collins Blvd.	BOUWER-RICE's method	Project: Pion	Project: Pioneer Midler Avenue LLC	
ph.(315)) 455-2000		Evaluated by; WNR		
Slug T	est No. 2	Tr	Test conducted on: 10/17/2005		
MW-1			/ell MW-11D		· · · · · · · · · · · · · · · · · · ·
47173 .	···· •• •• •• •• •• •• •• •• •• •• •• ••				·······
					· · · · · · · · · · · · · · · · · · ·
Static	water level: 2.41 ft below datum				
	Pumping test duration	Water level	Drawdown		
	[min]	<i>ff</i> 13	r (e 3		
51	<u>[min]</u> 0.64	13.66	(R) 11.25		
52	0.65	13.66	11.25		·····
53	0.67	13.66	11.25		
54	0.69	13.66	11.25	1	
55	0.70	13.66	11.25		
56	0.72	13.66	11.25		
57	0.74	13.66	11.25		
58	0.75	13.66	11.25		
59	0.77	13.66	11.25		
61	0.79	13.00	11.25	.	
62	0.00	13.65	11.24 11.24		
63	0.84	13.65	11.24		
64	0.85	13.65	11.24		· · · · · · · · · · · · · · · · · · ·
65	0.87	13.65	11.24	-	
66	0.89	13.65	11.24		
67	0.90	13.65	11.24	-	
68	0.92	13.65	11.24	-	
69	0.94	13.65	11.24		
70	0.95	13.65	11.24		
71	0.97	13.65	11.24		
73	1.1/	13.05	11.24		
74	1.57	13.63	11.24		·
75	1.77	13.63	11.22		
76	1.97	13.63	11.22		<u></u>
77	2.17	13.63	11.22		
78	2.37	13.65	11.24	+	
79	2.57	13.63	11.22	1.	
80	2.77	13.63	11.22 *		
81	2.97	13.63	11.22		
82	3.17	13.63	11.22		
84	3.3/	13,03	11.22		
85	3.57	13.00	11.22		
86	3.97	13.63	11.22	+	
87	4.17	13.63	11.22	1	
88	4.37	13.63	11.22		unsession
89	4.57	13.63	11.22		
90	4.77	13.63	11.22		
91	4.97	13.63	11.22		······································
92	5.17	13.63	11.22		
93	5.37	13.63	11.22		
94	5.57	13.63	11.22	1	
95	5.//	13.63	11.22		
90	5.97	13.03	11.22		<u></u>
97	0.17	13.63	11.22		
90	6.57	13.63	11.24		
100	6.77	13.65	11.22		
	0.11	10.00	11.24	1	

C&S	Engineers	slug/bail test analysis		Date: 10/26/2005	Page 4
499 C Svracu:	ol. Eileen Collins Blvd. se, NY 13212	BOUWER-RICE's meth	BOUWER-RICE's method		ler Avenue LLC
ph.(315) 455-2000			Evaluated by: WNR	
Slug 1	Fest No. 2		Test conducted on: 10	/17/2005	
MW-1	1D		Well MW-11D		····· · · · · · · · · · · · · · · · ·
• • • • • •			······································	••• • • • • • • • • • • • • • • • • •	
 Olatia					
Static	water level: 2.41 it below datum	14feber Level	. District	······	. <u>-</u> <u>-</u>
	Pumping test duration	water level	Urawdor	wn	
	[min]	[ft]	[ft]		
101	6.97	13,65		11.24	· · · · · · · · · · · · · · · · · · ·
102	7.17	13.65		11.24	
	1.57			11.24	
	······	·····			
		19 19 19 19 19 19 19 19 19 19 19 19 19 1			
·		· _ · · · · · · · · · · · · · · · · · ·			····· <u>-</u> ····· <u>-</u> ····· ··· ···
					· · · · · · · · · · · · · · · · · · ·
,					
			·····		
					-
		······			
			·····		
		······			
		· · · · · · · · · · · · · · · · · · ·			
				,	
	· · · · · · · · · · · · · · · · · · ·				
		·			
					······
	1				
					· · · · · · · · · · · · · · · · · · ·

GeoLogic JULY 2006 GROUNDWATER AND CONTAMINANT FLOW REPORT

: .

a 1

GeoLogic NY, Inc.

July 3, 2006

Mr. Steve Vinci C & S Engineers, Inc. 499 Colonel Eileen Collins Blvd. Syracuse, NY 13212

Reference: Site Hydrogeology Midler Avenue Brownfield Clean-Up NYSDEC Brownfield Site # C734103 Midler Avenue Syracuse, NY

Dear Mr. Vinci:

This report summarizes our analysis of the site-specific hydrogeologic characteristics of the Midler Avenue site. Our analysis is based on data obtained by C & S personnel and GeoLogic personnel; and addresses direction of groundwater flow in the upper peat/marl unit and the lower sand unit, hydraulic conductivity of the peat/marl unit, estimated rate of groundwater flow in the peat/marl unit and probable rates of contaminant migration in the peat/marl unit.

The unconsolidated deposits at the site can generally be described as a sequence of surficial fill, peat/marl, clay, sand and glacial till (C & S, Remedial Investigation Data Report, November 2005). The peat/marl unit and the deeper sand unit are the primary water bearing units at the site. The presence of the peat/marl unit is consistent with the mapping by Winkler (1989). Winkler describes the surficial soils as peat and marl formed in post-glacial wetlands.

Fifteen groundwater monitoring wells have been installed in the peat/marl unit. Groundwater elevations from depth to water measurements made on May 16, 2006 are presented on Drawing No. 1. The depth to water in the peat/marl unit is less than 5 feet across most of the site. Groundwater contours as interpolated from the May 16, 2006 data are also presented on Drawing No. 1. The data demonstrates a general north to south direction of groundwater flow. This is consistent with the local topography in the vicinity of the site. The average horizontal hydraulic gradient based on the data is 0.0122.

Artesian conditions (water level rising above the ground surface) have been observed in DAW-3. DAW-3 is screened in the deep sand unit. The presence of artesian conditions at DAW-3 indicates that the clay unit is acting as an aquitard limiting the movement of groundwater between the peat/marl unit and deeper sand unit.

Four groundwater monitoring wells have been completed at the top of the till unit in the deep sand unit. Groundwater elevations in the deep wells as indicated by May 16, 2006 water level measurements are presented on Drawing No. 2 along with the interpolated groundwater contours. The elevations suggest radial flow towards a "trough" in the center of the site with groundwater discharging to the east. An average horizontal hydraulic gradient of between 0.001 and 0.005 is suggested by the May 16, 2006 data from the deep wells.

Midler Avenue Brownfield Clean-Up July 2006 Page 2

In-situ hydraulic conductivity tests (slug tests) were conducted in wells MW-3D, MW-9D, MW-10D and MW-12D on April 13 and 27, 2006. NYSDEC personnel were on site on April 13, 2006 for the tests conducted in MW-3D, MW-9D and MW-10D. These four wells are completed in the peat/marl unit. Each test was conducted using different length slugs (2.5 feet and 5 feet at MW-3D, MW-9D and MW-10D and, 2.5 feet, 5 feet and 7 feet at MW-12D). The change in water level versus time was recorded after the slug was inserted (falling head test) and after the slug was withdrawn (rising head test). Water levels were allowed to return to within at least 95% of the initial water level between tests.

The slug test data was analyzed using an Excel spreadsheet program developed by the United States Geologic Survey (USGS). Spreadsheet analysis follows the Bouwer and Rice methodology. The results of the data analyses are attached. It should be noted that the program requires the selection of an "aquifer material". The choices offered by the program are limited. The classification of "silt, loess" was judged to be the closest to the peat/marl unit; therefore, it was selected. Because the selected aquifer material and the actual material are not the same, the comments on some of the results that K (hydraulic conductivity) is greater than the likely maximum for "silt, loess" should be ignored.

The results of the analyses are summarized on the attached table. The results from the tests in each individual well are consistent between tests (the data from the 5 ft. falling head test in MW-9D are very erratic and, therefore, not included). The average results from wells MW-3D, MW-9D and MW-10D are also similar.

The average hydraulic conductivity for the peat/marl unit using all of the results from wells MW-3D, MW-9D and MW-10D is 3.98×10^{-1} Feet/Day or 1.4×10^{-4} Cm/Sec.

The hydraulic conductivity indicated by the data from MW-12D is one to two orders of magnitude higher than the other wells and is consistent with a fine to medium sand. A review of the stratigraphy indicates the fill is 4 to 6 feet thick in the area of MW-12D. The filter pack at MW-12D extends up to a depth of about 6.5 feet. Given that the depth of the fill unit in the area of MW-12D and the depth to the top of the filter sand are similar, it is our opinion that the hydraulic conductivity test results from MW-12D are reflective of a connection between the fill unit and filter pack and are not indicative of the hydraulic conductivity in the peat/marl unit. Therefore, the results from MW-12D are not included in the peat/marl unit average.

Using the average hydraulic conductivity (K = 3.98×10^{-1} Feet/Day), the average horizontal hydraulic gradient (i = 0.0122) and an assumed porosity (n = 40%), an average linear velocity for groundwater flow in the peat/marl unit can be estimated:

avg. linear velocity (v) = (K/n) x i

= (3.98 x10⁻¹ Feet/Day/0.40) x 0.0122

v = 1.2 x 10⁻² Feet/Day

v = 4.4 Feet/Year

Midler Avenue Brownfield Clean-Up July 2006 Page 3

The contaminants of concern at the site are tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2 dichloroethene and vinyl chloride. The migration of environmental contaminants can vary from the rate of groundwater flow as a result of the site geology and the contaminant physical and chemical properties. In an effort to gauge whether or not the contaminants of concern would be expected to move slower than the estimated rate of groundwater flow, the retardation factor for each of the contaminants was estimated using the USEPA On-Line Tools Site Assessment.

The USEPA calculation requires an estimate of the porosity of the geologic unit and an estimate of the fraction of organic carbon present in the unit. The porosity used in the calculation was again 40%. The value used for fraction organic carbon was 8%. This value represents the mean percentage (minus the highest and lowest value) as reported for 12 samples from the site (C & S letter report, dated December 9, 2005). Print outs of the Retardation Factor calculations are attached and summarized below:

TCE, R = 42

Dichloroethene (undifferentiated isomers) R = 41

Vinyl Chloride, R = 10

Applying the retardation factors to the average linear velocity calculated above results in the following projected rates of migration for the contaminants of concern:

Groundwater, v = 4.4 Feet/Year PCE, $v = 3.1 \times 10^{-2}$ Feet/Year

TCE, $v = 1.0 \times 10^{-1}$ Feet/Year

Dichloroethene (undifferentiated isomers) $v = 1.0 \times 10^{-1}$ Feet/Year

Vinyl Chloride, v = 4.4 x10⁻¹ Feet/Year

Thus, it is anticipated that the average rate of migration for the contaminants of concern would be between 140 times slower (PCE) and 10 times slower (vinyl chloride) than the rate of groundwater flow.

A comparison of the contaminant distribution at the site and the predicted rates of contaminate migration calculated above indicate the actual migration rates are higher than predicted. This is due to several factors. The theoretical calculations are based on average hydraulic conductivities, hydraulic gradients, and organic content. In reality, the subsurface conditions at the site are heterogeneous, varying both vertically and horizontally, with zones where the rates of migration are either higher or lower than predicted. In addition, other processes such as diffusion and biological activity influence the rate of migration. The theoretical rates of migration

Midler Avenue Brownfield Clean-Up July 2006 Page 4

coupled with the actual contaminant distribution (the highest concentrations are centered around the suspected source areas) are indicative of a relatively low flow environment.

We trust we have addressed the issues required for the IRM. Please feel free to call should you have any questions or require any additional information.

Sincerely;

GeoLogic NY, Inc.

Forrest Earl

Principal Hydrogeologist/Vice President

- Reference: Winkler, Steven, 1989, The Hydrogeology of Onondaga County, New York, Department of Geology, Syracuse University, Syracuse, NY
- Enc.: (Drawing Nos. 1 & 2, Summary of Hydraulic Conductivity, Slug Analyses, Retardation Factor Calculations)

CC: File 205006B\Report\Hydro Report

Summary of In-Situ Hydraulic Conductivity Testing Midler City NYSDEC Brown Field Site # C734103 Midler Avenue Syracuse, NY April 2006

Test	MW-3D	D6-WM	MW-10D	MW-12D	Average w/ MW-12D	Average w/o MW-12D
	Feet/Day	Feet/Day	Feet/Day	Feet/Day	I	I
5 Ft. Slug Falling Head	1.60E-01	I	5.50E-01	1.40E+01		
5 Ft. Slug Rising Head	9.40E-02	5.80E-01	3.50E-01	1.40E+01		
2.5 Ft. Slug Falling Head	1.00E-01	8.80E-01	2.90E-01			
2.5 Ft. Slug Rising Head	1.10E-01	6.90E-01	2.50E-01			
7 Ft. Slug Falling Head 7 Ft. Slug Rising Head				1.10E+01 1.40E+01		
K = Feet/Day Average	1.16E-01	7.17E-01	3.60E-01	1.33E+01	3.61E+00	3.98E-01
K = Cm/Sec Average	4.09E-05	2.53E-04	1.27E-04	4.67E-03	1 27E-03	1 405-04
Screened Unit	Marl	Mari	Marl	?Marl? - dat	a is consistent with fine t	o medium sand and
				indicates cor well screen f	nmunication between litter pack and overlving t	ill unit
					Sinding to prim yourd inter	

1

1. .

e 1

Slug_Bouwer-Rice 3D Test 15

~ 1

WELL	ID: MW-3D		Reduced Data	1
	Local ID: 2.5 Ft Failing Manual		Time,	Water
INPUT	Date: 4/13/2006	Entry	Hr:Min:Sec	Level
Construction:	Time: 17:26	1	1:00:05.0	1.60
Casing dia. (d _c) 2 Inch		2	1:00:15.0	1.00
Annulus dia. (d.,,) 8.25 Inch	J, → K	3	1:00:25.0	1,79
Screen Length (L) 10 Feet		4	1:00:35.0	1.80
		5	1:00:45.0	1.81
Depths to:	TOS V	6	1:00:55.0	1.82
water level (DTW) 2.6 Feet		7	1:01:05.0	1.83
top of screen (TOS) 15 Feet		8	1:01:15.0	1.84
Base of Aquifer (DTB) 25 Feet		9	1:01:25.0	1.84
		10	1:01:35.0	1.85
Annular Fill:	Rase of Aquifer	11	1:01:45.0	1.86
across screen Medium Sand	Dase of Aquiter have the second	12	1:01:55.0	1.87
above screen Bentonite		13	1:02:05.0	1.89
	Adjust slope of line to estimate K	14	1:02:15.0	1.89
Aquifer Material Silt, Loess		15	1:02:25.0	1.90
		16	1:02:35.0	1.91
COMPUTED		17	1:02:45.0	1.91
Lwetted 10 Feet		18	1:02:55.0	1.93
D = 22.4 Feet		19	1:03:05.0	1.93
H = 22.4 Feet	p	20	1:03:15.0	1.94
L/r _w = 29.09	1020	21	1:03:25.0	1.95
Values accurate = 1.00 Feet	1.00	22	1:03:35.0	1.95
Vacuus = 1.19 Feet		23	1:03:45.0	1.96
From look-up table using 1/t		24	1:03:55.0	1.96
	——————————————————————————————————————	25	1:04:05.0	1.97
		26	1:04:15.0	1.98
Fully pepetrate C = 2.041		27	1:04:25.0	1.99
$\ln(\text{Re/rw}) = 2.998$	0.10 -	28	1:04:35.0	1,99
Re = 6.89 Feet		29	1:04:45.0	2.00
		30	1:05:00.0	2.00
Slope = 0.000506 log10/sec	r i	31	1:05:10.0	2.01
t _{90%} recovery = 1977 sec		32	1:05:20.0	2.02
Input is consistent.	*	33	1:05:30.0	2.03
•		34	1:05:40.0	2.03
K = 0.1 Feet/Day	0.01 D.01	35	1:05:50.0	2.04
	00:00 02:53 05:46 08:38 11:31 14:24	36	1:06:00.0	2.05
	TIME, Minute:Second	37	1:06:10.0	2.05
		38	1:06:20.0	, 2.06
		39	1:06:40.0	2.07
REMARKS:	Bouwer and Rice analysis of slug test, WRR 197	6 40	1:07:00.0	2.08
		41	1:07:20.0	2.09
1		42	1:07:40.0	2.10
·		43	1:08:00.0	2,11
		44	1:08:20.0	2.12
		40	1.00.40,0	2.12
1				
		•		

~ ·

Slug_Bouwer-Rice 9D Test 8 Revised

WELL ID: M	W-9D		Reduced Data	I			
	Local ID: 5 Ft Rising Manual		Time,	Water		Time,	Water
INPUT	Date: 4/13/2006	Entry	Hr:Min:Sec	Level	Entry	Hr:Min:Sec	Level
Construction	Time: 8:51	1	8:51:40.0	8.28	51	8:55:50.0	6.88
Casing dia. (d _e) 2 Inch		2	8:51:45.0	8.25	52	8:55:55.0	5.87
Annulus dia. (d _w) 8.25 Inch		3	8:51;50,0	8.07	53	8:56:00.0	6.86
Serena Length (I) 10 East		A	8-51-55.0	7 87	54	8-55-05.0	6.85
Screen Leigin (L) To reel		5	8:52:00.0	7.81	55	8:56:10.0	6.65
Depiles to:	το	6	8:52:05.0	7.96	56	8:56:15.0	6.84
water level (DTW) 6.58 Feet		7	8:52:10.0	7,70	57	8:56:20.0	6.83
top of coreon (TOS) 8 Engl		â	8-52-15.0	7.63	58	8-56-25 0	6 83
Base of Aquifer (DTB) 18 East		ä	8:52:20.0	7.60	59	8:56:30.0	6.82
Dase of Addier (DTO) 10 Teet	d.	10	8:52:25.0	7.55	60	8:56:35.0	6.82
Annular Fill		11	8:52:30.0	7.53	61	8:56:40.0	6.82
across screen Medium Sand	Base of Aquifer	12	8:52:35,0	7.48	62	8:56:45.0	6.80
above screen Bentonite		13	8:52:40.0	7.44	63	8:56:55.0	6,79
	Adjust slope of line to estimate K	14	8:52:45.0	7,41	64	8:57:05,0	6.79
Aquifer Material - Silt, Loess	1.00	15	8:52:50.0	7.39	65	8:57:15.0	6.78
	ĝ.	16	8:52:55.0	7.36	66	8:57:25.0	6.77
COMPUTED		17	8:53:00.0	7.34	67	8:57:35,0	6.77
Lund 10 Feet		18	8:53:05.0	7,31	68	8:57:45.0	6.76
D = 11.42 Feet		19	8:53:10.0	7.30	69	8:57:55.0	6.76
H = 11.42 Fee!		20	8:53:15.0	7.28	70	8:58:05.0	6.75
L/r _w = 29.09		21	8:53:20.0	7.26	71	8:58:15,0	6.75
		22	8:53:25.0	7.24	72	8:58:25.0	675
Variant 2 28 Feet		23	8:53:30.0	7 22	73	8-58-35.0	6 74
70-5106 - 2.00 Feet	Š I	24	B-62-25 0	7 40	74	B-EB-4E 0	674
From look-up table using Diw	0.10 -	76	8:62:40.0	7.15	75	0.50.45,0 B(EB)(EE A	6.79
		26	8-53-45.0	7.15	75	9-50-05-0	6,73
Eully constrate C = 2.041		27	8:53:50 0	7 14	77	8:59:15.0	672
ln(Re/ny) = 2.603		28	8:53:55.0	7.13	78	8:59:25.0	6.72
Re = 4.64 Feet		29	8:54:00.0	7.11	79	8:59:35.0	6.72
		30	8:54:05.0	7,10	80	8:59:45.0	6,71
Slope = 0.003213 log ₁₀ /sec		31	8:54:10.0	7.09	81	9:00:00.0	6.71
toou recovery = 311 sec		32	8:54:15.0	7,07	82	9:00:15.0	6.71
Input is consistent	0	33	8:54:20.0	7.06	83	9:00:30.0	6 70
		34	8:54:25.0	7.05	84	9:00:45.0	6.69
K ≃ 0.58 Feet/Day	0.01	35	8:54:30.0	7.04	85	9:01:00,0	6.69
	00:00 14:24 28:48 43:12 57:36 12:00 26:24	36	8:54:35.0	7.02	86	9:01:15,0	6.69
	TIME, Minute:Second	37	8:54:40.0	7.01	87	9:01:30.0	6,69
		38	8:54:45.0	7.00	88	9:01:45.0	6.69
K= 0.58 is greater than likely maximum of 0.1 f	or Silt, Loess	39	8:54:50.0	6.99	89	9:02:00.0	6.69
REMARKS:	Bouwer and Rice analysis of slug test, WRR 1976	40	8:54:55.0	6.98	90	9:02:30.0	6,69
		41	8:55:00.0	6.96	91	9:03:00.0	6.69
		42	8:55:05.0	6.96	92	9:03:30.0	6,69
		43	8:55:10.0	6.95	93	9:04:00.0	6.68
		44	8;55;15.0	6.95	94	9:05:00.0	6.68
		45	8:55:20.0	5.94	95	9:06:00.0	6.68
		40	6:55:25.U 9:55:20.0	0.94	95	9:07:00.0	6.68
		47	8-55-35.0	6 92	91	9:00:00.0	0,00
L		40	8:55:40.0	6.90	99	9:12:00.0	6.68
		50	8:55:45.0	6.89	100	9:15:00.0	6.67
			-				

₹. ₹

٠

2 1

Slug_Bouwer-Rice 9D Test 9 Revised

	WELL ID:	MW-9D				Reduced Data	
		Local ID	: 2.5 Ft Rising Manu	al		Time,	Water
INPUT	-	Date	: 4/13/2006		Entry	Hr:Min:Sec	Level
Construction:		Time	: 10:40		1	1:00:05.0	7.38
Casing dia. (d _c)	2 Inch				2	1:00:10.0	7.34
Annulus dia. (d _w) 8.	25 Inch		الاستعاد		3	1:00:15.0	7.30
Screen Length (L)	10 Feet	<u>*</u>			4	1:00:20.0	7 28
	10 1 001				5	1:00:25.0	7.24
Depths to:			TOS		6	1:00:30.0	7.22
water level (DTW) 6	6.7 Feet				7	1:00:35.0	7.21
top of screen (TOS)	8 Feet				8	1:00:40.0	7.20
Base of Aquifer (DTB)	18 Feet		<u> </u> t= <u> </u> <u>▼</u> <u>▼</u>		9	1:00:45.0	7.19
·····			{d _₩ {		10	1:00:50.0	7.17
Annular Fill:					11	1:00:55,0	7.15
across screen - Medium	Sand		Base of Aquiter		12	1:01:00.0	7.13
above screen - Bentonit	te	A diunt n	leve of line to estima	to K	13	1:01:05.0	7.12
		1.00 C	lope of line to estima		14	1:01:10.0	7.11
Aquifer Material Silt, Loe	SS	FBA.			15	1:01:15.0	7.10
01101					10	1:01:20.0	7.08
yet <u>OMPU</u>	IED	[😵			17	1:01:25.0	7.06
wetted	10 Feet				18	1:01:30.0	7.05
D = 11	1.3 Feet				19	1:01:35.0	7.03
H= 11	.3 Feet	l Sa			20	1:01:40.0	7.10
L/r _w = 29.0	09	<u> </u>			21	1:01:45.0	7.00
Yo-DISPLACEMENT . 0.1	68 Feet				22	1:01:50,0	6.99
Yo-slug = 1.	19 Feet	ž	8		23	1:01:55.0	6.96
From look-up table using L/rw		210	9		24	1:01:58.0	6.95
			G		25	1:02:00.0	6.94
		-	(#150)		26	1:02:03.0	6.92
Fully penetrate C = 2.04	41	ł	œ	-	27	1:02:05.0	6.92
ln(Re/rw) = 2.5	97		Ø		28	1:02:08.0	6.91
Re = 4.0	61 Feet				29	1:02:10.0	6.91
	00 laa /000	r	0000		21	1.02.10.0	0.03
Sibpe = 0.0038	39 10g10/sec				31	1.02.20.0	0.00
t _{90%} recovery = 26	61 sec	Ĩ			32	1:02:25.0	6.87
Input is consistent.			ത്താറ	0	33	1:02:30.0	6.87
					34	1.02.35.0	0.00
<u>κ = 0.6</u>	os reevuay	0.01	05:46 09:29	<u></u> ;	36	1.02.40.0	0.00
		00.00 02:53 T	IME. Minute:Second	11.01	37	1.02.40.0	6.85
					38	1:02:55.0	6.85
K= 0.69 is greater than likel	v maximum of 0.1	for Silt. Loess			39	1:03:00.0	6.84
REMARKS [,]	y	Bouwer and Ri	ce analysis of slug tes	t. WRR 1976	40	1:03:05.0	6.84
			,		41	1:03:10.0	6,83
				ļ	42	1:03:15.0	6.83
					43	1:03:20.0	6.81
					44	1.03:25.0	6.81
				2	45	1:03:30.0	6.81
<u>.</u>							
						1.	
						. ·	

	WELL I): MW-10[)		_	Reduced Data	
· · · · · · · · · · · · · · · · · · ·			Local ID: 5 Ft Fallin	ng Manual		Time,	Water
41	NPUT		Date: 4/13/2006		Entry	Hr:Min:Sec	Level
Construction:			Time: 11:37		1	1:00:10.0	4.80
Casing dia. (d _c)	2 Inch				2	1:00:35.0	5.60
Annulus dia. (d _w)	8.25 Inch		,, →) (3	1:00:45.0	5.67
Screen Longth (L)	10 Feet				4	1:00:55.0	5.78
Screen Length (L)	101000			<u></u>	5	1:01:05.0	5.89
Denths to:			TOS		6	1:01:15.0	5.96
water level (DTW)	6.77 Feet			F I I	7	1:01:25.0	6.03
top of screen (TOS)	8 Feet			L H D V V I	8	1:01:40.0	6.11
Base of Aquifer (DTB)	18 Feet			<u> </u>	9	1:01:50.0	6.16
Dubu er riganer (D (D)			d,,		10	1:02:00.0	6.21
Annular Fill:			Para of Aqui	for Bally Bally Bally	11	1:02:15.0	6.26
across screen M	edium Sand		Dase of Aqui		12	1:02:25.0	6.30
above screen Be	entonite		Addition to be and filling the	a actimata K	13	1:02:40.0	6.33
		100 0-	Adjust stope of line t		14	1:02:50.0	6.36
Aquifer Material Si	It, Loess				10	1:03:00.0	0.38
		L.			10	1.03.10.0	0.41
CO	MPUTED	- g			17	1:03:20.0	6.42
Lwetted	10 Feet				18	1:03:30.0	6.44
D =	11.23 Feet				19	1:03:40.0	6,46
H =	11.23 Feet	1			20	1:03:50.0	0.40
Ļ∕r _w =	29.09	1			21	1:04:00.0	0.49
YO-DISPLACEMENT =	1.97 Feet	[]			22	1:04:10.0	6.51
Yo-slug =	2.38 Feet	. ا			23	1:04:20,0	6.52
From look-up table using I	L/r _w	5			24	1:04:30.0	6.53
		- 0.10 F	A		25	1:04:40.0	6.54
		F	8		26	1:04:50.0	6.55
Fully penetrate C =	2.041	ŀ	18		27	1:05:00.0	6.56
In(Re/rw) =	2.593	Ĩ			28	1:05:10.0	6,56
Re =	4.60 Feet	[~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		29	1:05:20.0	6.58
		ŀ			31	1.05.40.0	6.59
Slope = 0	003047 log10/sec			,	32	1:05:50.0	6.59
t _{90%} recovery =	328 sec		0		33	1:06:00.0	6 60
Input is consistent.			,		34	1:06:10.0	6.60
<u>г и –</u>	0.55 Feet/Day				35	1:06:20.0	6.61
<u> </u>	0.00 1 0000049	0.01	07:12 14:24 21:36	28:48 36:00 43:12	36	1:06:30.0	6,61
			TIME, Minute:Sec	cond	37	1:06:50.0	6.62
					38	1:07:10.0	6.62
K= 0.55 is greater that	n likely maximum of	0.1 for Silt, L	oess		39	1:07:30.0	6.63
REMARKS:		Bouv	ver and Rice analysis o	f slug test, WRR 1976	40	1:07:50.0	6.64
· · · · · · · · · · · · · · · ·					41	1:08:10.0	6,64
				ł	42	1:08:30.0	6.65
				•	43	1:08:50.0	6.65
4				•	44	1:09:15.0	6.65
				ţ	40	1.09.45.0	0.07
1					ť.,		
				i	÷ 1,		

Slug_Bouwer-Rice 10D Test 10

W/F	=IIID·MW-1	0D		Reduced Data	
		Local ID: 5 Ft Rising Manual		Time.	Water
		Date: 4/13/2006	Entry	Hr Min Sec	Level
Construction:		Time: 12:21	1	1:00:05.0	8 71
Casing dia (d) 2 Inch			2	1.00.15 0	8 17
			2	1:00:25.0	0.17
Annulus dia. (d _w) 8.25 inch		↓ → ← d.	3	1:00:25.0	8,08
Screen Length (L) 10 Feet			4	1:00:35.0	7.99
			5	1:00:45.0	7.92
Depths to:			6	1:00:55.0	7.88
water level (DTW) 6.77 Feet			7	1:01:05.0	7.83
top of screen (TOS) 8 Feet			8	1:01:15.0	7.78
Base of Aguifer (DTB) 18 Feet			9	1:01:25.0	7.73
			10	1:01:35.0	7.68
Annular Fill:		Dans of Acuifor Development	11	1:01:45.0	7.65
across screen Medium Sand		Base of Aquiter	12	1:01:55.0	7.63
above screen Bentonite			13	1:02:05.0	7.60
	1.00.0	Adjust slope of line to estimate K	14	1:02:15.0	7.58
Aquifer Material Silt, Loess	1,00 0		15	1:02:25.0	7.56
	(16	1:02:35.0	7.52
COMPUTED			17	1:02:50.0	7.49
L _{wetted} 10 Feet			18	1:03:00.0	7.48
D = 11.23 Feet			19	1:03:10.0	7.46
H = 11.23 Feet			20	1:03:20.0	7.44
L/r _w = 29.09			21	1:03:30.0	7.42
Vo DISPLACEMENT = 1.94 Feet			22	1:03:40.0	7,40
Very = 2.38 Feet		Card Card Card Card Card Card Card Card	23	1.03.50.0	7.39
From look up toble using 1/r	Ń	The second secon	24	1:04:00 0	7 27
	0.10		25	1:04:10.0	7.51
			26	1.04.10.0	7.30
Fully papatrate C = 2.041		-	27	1:04:30.0	7.33
lo(Re/on) = 2.593			28	1:04:40.0	7.31
Re = 4.60 Feet	-	.]	29	1:04:50.0	7.30
			30	1:05:00.0	7.29
$Slope = 0.001959 \log_{10}/se$	ec 🛛		31	1:05:10.0	7.28
			32	1:05:20.0	7 27
Input is consistent	<u> </u>		33	1:05:30 0	7 26
nipar la constatent.			34	1:05:40.0	7.25
K = 0.35 Feet/D:	av 0.01		35	1:05:50.0	7.24
	00:0	00 02:53 05:46 08:38 11:31 14:24	36	1:06:00.0	7.23
		TIME, Minute:Second	37	1:06:10.0	7.22
			38	1:06:30.0	.7.21
K= 0.35 is greater than likely maxim	um of 0.1 for Silt,	Loess	39	1:06:40.0	7,20
REMARKS:	Bo	uwer and Rice analysis of slug test, WRR 1976	40	1:06:50.0	7.19
			41	1:07:00.0	7.18
i		1	42	1:07:20.0	7.16
			43	1:07:40.0	7.15
			44	1:08:00.0	7.13
		1	45	1:08:20.0	7.12
			t .		

Slug_Bouwer-Rice 10D Test 11

× 1

	WELL I	D: MW-1	0D		Reduced Data	1
			Local ID: 2.5 Ft Rising Manual	_	Time,	Water
	INPUT		Date: 4/13/2006	Entry	Hr:Min:Sec	Level
Construction:			Time: 13:33	1	1:00:05,0	7.74
Casing dia. (d _c)	2 Inch			2	1:00:15.0	7.44
Annulus dia. (d _w)	8.25 Inch			3	1:00:22.0	7.42
Screen Length (L)	10 Feet			4	1.00.30.0	7 27
	101000			5	1:00:00.0	7.36
Depths to:			TOS	6	1:00:50.0	7.34
water level (DTW)	6.77 Feet			7	1:01:00,0	7.31
top of screen (TOS)	8 Feet			8	1-01-10.0	7 31
Base of Aquifer (DTB)	18 Feet			9	1:01:20.0	7.27
	······	l	[[d_v]]	10	1:01:30.0	7.25
Annular Fill:			Resp of Aquifes	11	1:01:40.0	7.24
across screen - I	Medium Sand		Case of Adriler Media	12	1:01:55.0	7.22
above screen - f	Bentonite	_	Adjust slope of line to estimate K	13	1:02:05.0	7.21
1	0	1.00 0		14	1:02:15.0	7.20
Aquiter Material S	Silt, Loess			15 40	1:02:25.0	7.18
00		(À	10	1.02:35,0	7.17
				17	1:02:45.0	7.16
-wetted	10 Feet			18	1:02:55.0	7.15
D=	11.23 Feet			19	1:03:05.0	7.14
п~ 1/с ~	11.23 FEEL			20	1.03.15.0	7.13
	29.09			21	1.03.25.0	7.13
YD-DISPLACEMENT =	0.97 Feet		Constant of the second	22	1:03:35.0	7.12
Yo-slug [™]	1.19 Feet	Ŷ		23	1:03:45.0	7.11
From look-up table using	l L/r _w	0.10		24	1:03:55.0	7.10
		Ę		25	1:04:10.0	7.09
	~ ~ / /	ł		26	1:04:20.0	7.08
Fully penetrate C =	2.041	[27	1:04:30.0	7.07
Ro =	2.090 4.60 Feet	-		20	1.04.40.0	7.07
110 -	4,00 1 000	1		30	1:05:00.0	7.00
Slope =	0.001421 log10/sec	ſ		31	1:05:10.0	7.05
terre recoverv =	704 sec	ŀ		32	1:05:20.0	7.04
Input is consistent.		-		33	1:05:30.0	7.04
				34	1:05:40.0	7,03
K =	0.25 Feet/Day	0.01 L	and an alternative state of the strengt of the strength and the strength of the strength of the strength of the	35	1:05:50.0	7.02
		00:0	0 02:53 05:46 08:38 11:31	36	1:06:00.0	7.02
			TIME, Minute:Second	37	1:06:10.0	7.02
			_	38	1:06:20.0	7.01
K= 0.25 is greater tha	in likely maximum of	0.1 for Silt,	Loess	39	1:06:30.0	7.01
REMARKS:		Во	uwer and Rice analysis of slug test, WRR 1976	40	1:06:40.0	7.00
				47	1:05:50.0	7.00
				42	1.07:00.0	7,00 6 00
				44	1:07:20 0	6 99
			Ì	45	1:07:30.0	6.98
				<i>*</i>		
				· · ·		

Slug_Bouwer-Rice 10D Test 13

Slug_Bouwer-Rice 12D 7 In

٢.

2 1

Slug_Bouwer-Rice 12D 7 Out

Slug_Bouwer-Rice 12D 7 Out

1

~ I
Slug_Bouwer-Rice 12D 5 In

REMARKS:

Bouwer and Rice analysis of slug test, WRR 1976

۴.

× 1

Slug_Bouwer-Rice 12D 5 Out

REMARKS:

1.

21

المر

U.S. Environmental Protection Agency

EPA On-line Tools for Site Assessment Calculation

Recent Additions | Contact Us |

60

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Retardation Factor

Retardation Factor

Module Home Objectives Table of Contents Previous < Next >

Retardation Factor Calculator

Retardation Factor R = 1 + $\rho_b k_d^{} \, / \theta$

$$\begin{split} R &= \text{retardation factor} \\ \rho_b &= \text{bulk density} = \rho_s(1{\text{-}}\theta) \\ \rho_s &= \text{solids density} \\ \theta &= \text{porosity} \\ k_d &= (\text{soil}) \text{ distribution coefficient} = f_{oc} \ K_{oc} \\ f_{oc} &= \text{fraction organic carbon} \end{split}$$

 K_{oc} = organic carbon/water partition coefficient

Example Data	Calculate	Clear
Save Data	Recall Data	Go Back

Input Parameters

Site Name	Midler Avenue Brownfield		
Date	May 2006		Current Date
Porosity (θ)	0.40		(Try 0.25)
Fraction Organic Carbon (f _{oc})	0.08		(Try 0.0001)
Chemical Data Source	BIOSCREEN or BIOCHLOR user guides	andra Maria	
Note:	BIOSCREEN and BIOCHLOR user guides: BIOSCREEN Natural Attenuation Decisions Support System Version 1.3, EPA/600/R-96/087, August 1996.		

Data

revision date	August, 1996 and January, 2000
Chemical	(PCE) tetrachloroethene (perchloroethene)
De	fault Parameters
	Solids Density (ρ _s) 2.65 Default
	K _{oc} value 426 L/kg
Re	sults
	Bulk Density (ρ _b) 1.59 g/cm ³
	k _d 34.08 L/kg
	Retardation Factor (R) 140.
	Previous Top ^ Next
	Home Glossary Notation Links References Calculators
	Page author: Jim Weaver, of U.S. EPA, Office of Research and Development, Athens Georgia who last modified this content on: October 21, 2002
	EPA Home Privacy and Security Notice Contact Us
	This page was generated on Friday, May 26, 2006
١	/iew the graphical version of this page at: http://www.epa.gov/Athens/learn2model/part-two/onsite/retard.htm

Souther the BROTECTION

U.S. Environmental Protection Agency EPA On-line Tools for Site Assessment

Calculation

Recent Additions | Contact Us |

GO

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Retardation Factor

Retardation Factor

Module Home Objectives Table of Contents Previous < Next >

Retardation Factor Calculator

k_d

Retardation Factor R = 1 + $\rho_b k_d / \theta$

$$R = retardation factor$$

$$\rho_{b} = bulk \ density = \rho_{s}(1-\theta)$$

$$\rho_{s} = solids \ density$$

$$\theta = porosity$$

$$= (soil) \ distribution \ coefficient = f_{oc} \ K_{oc}$$

f_{oc} = fraction organic carbon

K_{oc} = organic carbon/water partition coefficient

Example Data	Calculate	Clear
Save Data	Recall Data	Go Back

Input Parameters

Site Name	Midler Avenue Brownfield		
Date	May 2006		Current Date
Porosity (θ)	0.40		(Try 0.25)
Fraction Organic Carbon (f _{oc})	0.08		(Try 0.0001)
Chemical Data Source	BIOSCREEN or BIOCHLOR user guides	18 ⁸	
Note:	BIOSCREEN and BIOCHLOR user guides: BIOSCREEN Natural Attenuation Decisions Support System Version 1.3, EPA/600/R-96/087, August 1996.		

Data

revision date	August, 199	6 and Jar	uary, 2000					
Chemical	(TCE) trichle	oroethene	:	,	1			
De	efault Parame	ters						
				Solids Density (p	» _s)	2.65	Default	
				K _{oc} val	le	130	L/kg	
Re	esults							
				Bulk Density	(ρ _b)	1.59	g/cm ³	
					k _d	10.40	L/kg	
			Re	etardation Factor	(R)	42.		
							Previous	Top ^ Next
		Home	Glossary	Notation	Lin	ks Refe	rences	Calculators
	-	Page auth Athe	nor: Jim Wea ns Georgia v	aver, of U.S. EPA who last modified	, Ol I this	ffice of Reso s content or	earch and h: October	Development, 21, 2002
			EPA	Home Privacy and S	Secu	rity Notice Co	ntact Us	f.
								e •
		1	This page was g	generated on Friday,	Мау	26, 2006		- 1

View the graphical version of this page at: http://www.epa.gov/Athens/learn2model/part-two/onsite/retard.htm

.

U.S. Environmental Protection Agency

EPA On-line Tools for Site Assessment Calculation

Recent Additions | Contact Us |

GØ.

....,1

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Retardation Factor

Retardation Factor

Module Home Objectives Table of Contents Previous < Next >

Retardation Factor Calculator

Retardation Factor R = 1 + $\rho_b k_d$ /0

$$\begin{aligned} \mathsf{R} &= \text{retardation factor} \\ \mathsf{p}_{\mathsf{b}} &= \mathsf{bulk density} = \mathsf{p}_{\mathsf{s}}(1\text{-}\theta) \\ \mathsf{p}_{\mathsf{s}} &= \mathsf{solids density} \end{aligned}$$

$$k_d = (soil) distribution coefficient = f_{oc} K_{oc}$$

 K_{oc} = organic carbon/water partition coefficient

Example Data	Calculate	Clear
Save Data	Recall Data	Go Back

Input Parameters

Site Name	Midler Avenue Brownfield		
Date	May 2006		Current Date
Porosity (θ)	0.40		(Try 0.25)
Fraction Organic Carbon (f _{oc})	0.08		(Try 0.0001)
Chemical Data Source	BIOSCREEN or BIOCHLOR user guides	¥ð.	
Note:	BIOSCREEN and BIOCHLOR user guides: BIOSCREEN Natural Attenuation Decisions Support System Version 1.3, EPA/600/R-96/087, August 1996.		

Data

revisior date	n August,	1996 and Ja	inuary, 2000)					
Chemic	al dichloro	ethene (und	ifferentiated	isomers)					
	Default Para	ameters							
				Solids Densil	y (ρ _s)	2.65	Default		
				K _{oc}	value	125	L/kg		
	Results								
				Bulk Dens	ity (ρ _b)	1.59	g/cm ³		
					k _d	10.00	L/kg		
			F	etardation Fac	tor (R)	41.			
							Previous	<u>Top ^ Nex</u>	<u>‹t</u>
		<u>Home</u>	<u>Glossar</u>	y <u>Notation</u>	Lin	<u>ks</u> <u>Refe</u>	erences <u>C</u>	alculators	
			the auto line Ma	aver of U.S. E		ffice of Dor	acrob and D	ovolonmon	
		Page au Ath	ens Georgia	who last modi	fied this	s content o	n: October 2	1, 2002	ι,
		Maria a Secondaria (Maria) a Maria		ann an 1949 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an 1940 an		ada nama anna a suite an an suite an anna an suite an anna an suite an suite an suite an suite an suite an sui	1911 5 de gament d'anne anna ann ann ann an 2011 1921		22
			<u>EP</u> 4	<u> Home Privacy a</u>	nd Secu	r <u>ity Notice</u> C	ontact Us	с 1	
			This page was	generated on Frid	lay, May	26, 2006			
					-				

View the graphical version of this page at: http://www.epa.gov/Athens/learn2model/part-two/onsite/retard.htm

Saure Der Starte

U.S. Environmental Protection Agency

EPA On-line Tools for Site Assessment

Recent Additions | Contact Us |

60

EPA Home > > Ecosystems Research > Modeling Subsurface Petroleum Hydrocarbon Transport > OnSite on-line calculators > Retardation Factor

Retardation Factor

Module Home Objectives Table of Contents Previous < Next >

Retardation Factor Calculator

Retardation Factor $R = 1 + \rho_h k_d / \theta$

$$\begin{split} R &= \text{retardation factor} \\ \rho_b &= \text{bulk density} = \rho_s(1{\text{-}}\theta) \\ \rho_s &= \text{solids density} \\ \theta &= \text{porosity} \\ k_d &= (\text{soil}) \text{ distribution coefficient} = f_{oc} \ K_{oc} \\ f_{oc} &= \text{fraction organic carbon} \\ K_{oc} &= \text{organic carbon/water partition coefficient} \end{split}$$

Example Data	Calculate	Clear
Save Data	Recall Data	Go Back

Input Parameters

Site Name	Midler Avenue Brownfield		
Date	May 2006		Current Date
Porosity (θ)	0.40		(Try 0.25)
Fraction Organic Carbon (f _{oc})	0.08		(Try 0.0001)
Chemical Data Source	BIOSCREEN or BIOCHLOR user guides	iju. At	÷ /
Note:	BIOSCREEN and BIOCHLOR user guides: BIOSCREEN Natural Attenuation Decisions Support System Version 1.3, EPA/600/R-96/087, August 1996.		

Data

revision date	August, 1996 and January, 2000
Chemical	(VC) vinyl chloride or chloroethene
De	fault Parameters
	Solids Density (ρ _s) 2.65 Default
	K _{oc} value 29.6 L/kg
Re	sults
	Bulk Density (ρ _b) 1.59 g/cm ³
	k _d 2.368 L/kg
	Retardation Factor (R) 10.
	<u>Previous Top ^ Next</u> Home Glossary Notation Links References Calculators
	Page author: Jim Weaver, of U.S. EPA, Office of Research and Development, Athens Georgia who last modified this content on: October 21, 2002
	EPA Home Privacy and Security Notice Contact Us
	This page was generated on Friday, May 26, 2006
v	ew the graphical version of this page at: http://www.epa.gov/Athens/learn2model/part-two/onsite/retard.htm

.

JULY 2004 PRELIMINARY SITE INVESTIGATION REPORT

• •

<u>بر</u>

ENGINEERS DESIGN BUILD TECHNICAL RESOURCES OPERATIONS C&S Engineers, Inc. 499 Col. Eileen Collins Boulevard Syracuse, NY 13212 phone 315-455-2000 fax 315-455-9667 www.cscos.com

July 30, 2004

Mr. Jed S. Schneider Senior Vice President of Construction Pioneer Midler Avenue, LLC 250 South Clinton Street Syracuse, New York 13202

Re: PRE-BCA REPORT

File: C81.001.001

Dear Mr. Schneider:

This letter summarizes the findings of pre-BCA activities conducted by C&S Engineers, Inc. at the Pioneer Midler LLC site in Syracuse, New York. The project was undertaken based on the C&S proposal dated June 24, 2004. The objective of this proposed scope of work was to conduct an assessment of specific potentially significant areas of concern as previously identified in reports and discussions. This assessment included excavation of test pits, visual observation, physical screening using field instrumentation, and laboratory analysis of select samples to identify the presence of residual contaminants. The intent of this effort was to provide you with information to assist in making decisions on moving forward with the project and the BCP process. Subsequent to the acceptance of the original scope of work, Pioneer requested the excavation of three additional test pits in the western portion of the property to provide information for the design of a retention basin.

The following sections describe the activities and findings for each area. Copies of the test pit logs are provided in Attachment A and a copy of the analytical report is provided in Attachment B. A figure depicting the site is also attached.

C&D fill area located in the northeastern quadrant of the subject parcel

Three test trenches were excavated in this area: T-1 north zone, T-2 central zone, and T-3 south zone. Each test trench was started as near to the east property boundary as practicable. T-1 was 100-ft long, T-2 was 130-ft, and T-3 was 100-ft. Each test trench was approximately five feet to six feet deep. Water was encountered in each trench at approximately five feet below grade. Material encountered in the trenches consisted of clean fill in the upper three feet; this was predominantly soil and gravel. Below this a variety of material was encountered including foundry sands, foundry slag and glass, scrap wood and metal, concrete, asphalt, and tar. At approximately six feet below grade, a white marl was identified. A six inch stratum of brown peat was found atop the marl in most places. Trenching did not extend more than one foot into the marl.

Mr. Jed S. Schneider July 30, 2004 Page 2

Volatile organic vapors were encountered in the first trench (T-1) approximately 70 feet from the east end of the trench. This material registered 275 ppm on the field photoionization detector during a head space evaluation. The material exhibited a black stain and a slight sheen developed on the surface of the water proximate to the material. A sample of the material was collected for laboratory analysis for volatile organic compounds (VOCs) via EPA method 8260 and PCBs via EPA method 8082.

Volatile organic vapors, stained soil, or sheens were encountered elsewhere in the former C&D area. A composite soil sample from T-2 and T-3 was collected for laboratory analysis for VOCs and PCBs.

Results of the analytical work showed that PCBs were not detected in either sample. The composite sample from trenches T-2 and T-3 also showed no detectable levels of VOCs (other that the laboratory contaminant acetone, which is a common laboratory solvent)). The sample from T-1 showed three detectable VOCs: acetone (a laboratory contaminant), 2-butanone (another probable laboratory contaminant), and tetrachloroethene. The level of tetrachloroethene detected (160 ug/kg) is lower than the State recommended soil cleanup objective of 1,400 ug/kg (TAGM 4046) for this compound.

Former pond area located between Building 1 and Building 3 Loading Dock

One test trench was excavated in the former pond area located between Buildings 1 and 3. The upper four feet of the trench consisted of fill which included scrap wood, bricks, asphalt, concrete, rocks, and miscellaneous refuse (cast iron sink, metal pail, metal cans). At approximately four feet below grade, a gray organic silty clay was encountered that was moist to wet and had a very plastic nature. It appeared to be the bottom of the former pond where silt, clay, and natural organic matter had settled over time. Groundwater was encountered above this silt/clay and varied from three feet below grade in the north end of the trench to as deep as seven feet below grade near the middle of the trench. Groundwater at the southern extent of the trench was four feet below grade.

Two composite soil samples were collected from the Pond trench; one from the southern extent and one from the more northerly extent where marl was encountered. The samples were submitted for laboratory analysis for VOCs and PCBs.

The analytical results did not show the presence of PCBs or VOCs. A reported detection of acetone in both samples is suspected to be laboratory contamination.

Area Q - Former petroleum storage tank location

Two trenches were made across the assumed location of the UST. Both trenches were approximately six feet deep. The northeasterly trench consisted mostly of foundry sand and slag. Water was found at five feet below grade. The southwesterly trench consisted of foundry sand and marble stone fragments with some occurrences of slag. Groundwater was also found at five feet below grade at this location.

No laboratory samples were collected from these trenches.

Mr. Jed S. Schneider July 30, 2004 Page 3

Area S - Former petroleum storage tanks location

The area was trenched in several places. No volatile organic vapors, stained soil, or sheens were encountered in any of the trenches. Foundry sands and slag were the predominant materials found in this area, and water was encountered at approximately four feet below the surface. There was no indication of imported fill material such as clean crushed stone. No samples were collected.

Former Powerhouse

Two wipe samples were collected from the former power house. Three active and one inactive transformers were present in the building. The first sample (Power Bldg Floor - grab) was collected from the floor in an area of oil staining in front of the left-most transformer in the building. The second sample (Power Bldg Transformer - Grab) was collected from an oil-stained area on the front of the middle transformer. Samples were submitted to the laboratory for PCB analysis.

The sample from the floor showed a level of 5.5 μ g/wipe of Aroclor 1260. The sample from the front of the transformer was reported as 1.3 μ g/wipe of Aroclor 1260.

West Area Extra Trenches

Three trenches were excavated for the purpose of determining groundwater levels in the area at the west end of the Property. No samples were collected in this area. The following describes the findings in that area.

South Trench (Midler T-1): Total depth of ten feet. 0-5 feet below the surface consisted of fill composed of slag, foundry sand, and sand/silt. 5-10 feet consisted of black to gray sand; wet at eight feet below grade. A white to pinkish marl was encountered at ten feet below grade. Groundwater entered the trench at eight feet below grade.

Middle Trench (Midler T-2): Total depth of six feet. 0-3 feet below the surface consisted of a brown, dry mixture of top soil and rocks. 4-6 ft consisted of black to gray sand and foundry sand mixed with rocks. Groundwater entered the trench at six feet below grade.

North Trench (Midler T-3): Total depth of three feet. 0-3 below the surface feet consisted of fill composed of slag, foundry sand, sand/silt. Wet marl was encountered at three feet below grade.

Summary

Investigations were conducted at several locations to evaluate potential significant environmental issues relative to future development qt the site. Tasks included excavation of test trenches, observation of excavated materials, analytical testing of soil, and sampling and analysis of oil-stained areas in the powerhouse.

Based on the results of this evaluation, we do not believe that there are environmental issues at the site that would be prohibitively costly to correct or that would prevent development.

Mr. Jed S. Schneider July 30, 2004 Page 4

.

÷ 1

Thank you for the opportunity to assist Pioneer Midler Avenue, LLC with this project. We are available to meet at your convenience to discuss these findings. Please call us if there are any questions.

Sincerely yours,

C&S ENGINEERS, INC.

A Bube

Thomas A. Barba Senior Project Scientist

TAB:cah Attachments

cc: Ken Kamlet, Esq. - Newman Development

m:\private\barba\pioneer midler\pre bca report 1.doc

ATTACHMENT A

Test Pit Logs

f.

÷ 1

499 Col Eileen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Engine	ers, Ind	с.		TEST PIT LOG	(315)	455-2000 Fax: (315) 455-9667
Test Pit No:	Pond Nor	th		Date: 7-22-04	Page:	1 of 1
Project:	Midler Aver	nue Pre-BC	A Investig	ation		
Client:	Pioneer Mi	dler Avenu	e, LLC		Start:	1300
Contractor:	CRAL Cont	tracting, Ind	C.		Finish:	1600
Equipment:	Kobelco SI	K160 LC		In	spector:	J. Holmquist
Scale	Strata	Sample	Sample			
in	Depth	No.	Depth	Description of Materials		Remarks
Feet	Change		Range			
	0.25			Brown to black sand and silt some		
	0-0.0			misc construction/demolition debris, moist		
	3.5 - 4.5			White marl, wet, groundwater at 3-ft		
	4.5 - 5.5			Brown peat, wet		
						· · ·
						1
						1 · ·
						* '
	<u> </u>		1		12 5 to 11) inches diameter):
	Groundwat	er Dooth	4	Cobbles	s (2.5 to 1t : 5%	o incries diameter):
Date				Boulder	s (greater	than 10 inches diameter):
	see above	e l		<pre></pre>	:1%	·
			7			

Engineers, Inc.

499 Col Eileen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Test Pit No:	Pond Sou	th		Date: 7-22-04	Page:	1 of 1
Proiect:	Midler Aven	ue Pre-BC	A Investiga	ation	-	
Client:	Pioneer Mic	ller Avenue		Start:	1300	
Contractor:	CRAL Cont	racting, Inc			Finish:	1600
Equipment:	Kobelco Sk	(160 LC			Inspector:	J. Holmquist
Scale	Strata	Sample	Sample			
in	Depth	No.	Depth	Description of Materials		Remarks
Feet	Change		Range			
	0-4			Foundry sand and slag, scrap wood a	nd wetal.	
	0-4		:	misc construction/demolition debris, m	noist	
	4			Black to gray, organic silt/clay, wet		
				Groundwater at 4-ft below grade		
				······································		
						1.
						· · ·
						a 1
	Groundwate	<u>i</u>	<u> </u>	l	bbles (2.5 to 10) inches diameter):
Date	Time	Depth	1		< 5%	
Juit]	Bo	ulders (greater	than 10 inches diameter):
	see above		-		< 1%	
		1	1			

Engineers, Inc.

499 Col Elleen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Test Pit No:	C&D Area	1 T-2		Date: 7-23-04	Page:	1 of 1
Project:	Midler Aver	ue Pre-BC	A Investig	ation		
Client:	Pioneer Mic	dler Avenu	e, LLC		Start:	0900
Contractor:	CRAL Cont	racting, In	с.		Finish:	1100
Equipment:	Kobelco Sk	(160 LC			Inspector:	J. Holmquist
Scale in Feet	Strata Depth Change	Sample No.	Sample Depth Range	Description of Materials		Remarks
	0 - 5			Foundry sand and slag, some constru demolition debris, scrap wood and m	uction/ letal, moist	Some VOVs in soil encountered approx 70-ft east of property boundary in trench 3-ft to 5-ft
	5.5			White marl, wet Wet at 5-ft. Groundwater 5-ft below g	grade	below grade. Black stain soil.
						~ !
D = +-	Groundwate	Pr.	4	Co	obbles (2.5 to 10	inches diameter):
		Deptn		Bo	vulders (areater 1	han 10 inches diameter):
······	see above		•		none	······································

Engineers, Inc.

499 Col Eileen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Test Pit No:	C&D Area	a T-3		Date: 7-23-04	Page:	1 of 1
Project:	Midler Ave	nue Pre-BC	A Investig	ation		
Client:	Pioneer Mi	dler Avenu	e, LLC		Start:	1100
Contractor:	CRAL Cont	tracting, In	с.		Finish:	1200
Equipment:	Kobelco Sl	K160 LC			Inspector:	J. Holmquist
Scale	Strata	Sample	Sample			
in	Depth	No.	Depth	Description of Materials		Remarks
Feet	Change		Range	-		
	0 - 3			Foundry sand and slag, some construct demolition debris, scrap wood and met root zone at 3-ft	ion/ al, moist,	
	3 - 5			Black to gray, medium sand, some four moist Wet at 4-ft. Groundwater 4-ft below gra	ndry sand	
	5-6			Brown peat, wet	• •••• •••• ••••	
	6			White marl, wet		
		:				۰ م ۱
	Groundwate				les (0 5 to 10	in ala an aliana atawa
Date	Time	Depth		Cobe	nes (2.5 to 10 < 5%	mones diameter):
				Bould	ders (greater t	han 10 inches diameter):
	see above				none	······································

Engineers, Inc.

499 Col Eileen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Test Pit No:	Area S (F	ormer AS	STs)	Date: 7-23-04	Page	1 of 1
Project:	Midler Aver	ue Pre-RC	A Investig	ation	i ugo.	
Client:	Pioneer Mi	dler Avenu	e. LIC		Start	1400
Contractor:	CRAL Cont	tracting. In	c.		Finish:	1500
Equipment:	Kobelco Sł	<160 LC			Inspector:	J. Holmauist
Scale	Strata	Sample	Sample			
in	Depth	No.	Depth	Description of Materials		Remarks
Feet	Change		Range			
	0 - 4			Foundry sand and slag, crushed stone, n Wet at 4-ft. Groundwater 4-ft below grad	noist e	
						~ '
	Groundwate	<u>الا</u>		Cobbl	es (2.5 to 10	inches diameter):
Date	Time	Depth			< 5%	
		<u> </u>	4	Bould	ers (greater t	han 10 inches diameter):
		I			HUILE	

499 Col Elleen Collins Blvd, Syracuse, New York 13212

Engineers, Inc. **TEST PIT LOG** (315) 455-2000 Fax: (315) 455-9667 Test Pit No: Midler Ave T-1 Date: 7-22-04 Page: 1 of 1 **Project: Midler Avenue Pre-BCA Investigation Client: Pioneer Midler Avenue, LLC** Start: 1100 Contractor: CRAL Contracting, Inc. Finish: 1130 Equipment: Kobelco SK160 LC Inspector: J. Holmquist Scale Strata Sample Sample Depth No. Depth **Description of Materials** in Remarks Feet Change Range

	0-5		Foundry sand and slag	
	5 - 10		Black to gray, medium sand	
	10		White marl	
			Water entering above marl at 8-ft below grade	
				÷ 1
	Groundwate	r	Cobbles (2.5 to 10) inches diameter):
Date	Time	Depth	< 5%	
	see above		Boulders (greater none	than 10 inches diameter):

Engineers, Inc.

499 Col Eileen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Test Pit No:	Midler Av	e T-2		Date: 7-22-04	Page:	1 of 1
Project:	Midler Aver	າ <mark>ue Pre-B</mark> C	A investig	ation		
Client:	Pioneer Mid	dler Avenu	e, LLC		Start:	1130
Contractor:	CRAL Cont	racting, In	с.		Finish:	1200
Equipment:	Kobelco Sł	(160 LC		r	Inspector:	J. Holmquist
Scale in Feet	Strata Depth Change	Sample No.	Sample Depth Range	Description of Materials		Remarks
	0 - 3			Brown, top soil and rock cobbles, dry		
	3 - 6			Black to gray, medium sand, foundry san and slag, some rock cobbles Groundwater at 6-ft below grade	đ	
						•
						۰ ۲
	Groundwate	<u>،</u> ۲		Cobble	es (2.5 to 10	inches diameter):
Date	Time	Depth			< 5%	
		<u> </u>		Boulde	ers (greater l	han 10 inches diameter):
1	See above					

499 Col Eileen Collins Blvd, Syracuse, New York 13212

TEST PIT LOG

Engine	ers, Inc	2.		TEST PIT LOG	(315)	455-2000 Fax: (315) 455-9667
Test Pit No:	Midler Av	e T-3		Date: 7-22-04	Page:	1 of 1
Project:	Midler Aven	ue Pre-BC	A Investiga	ation		
Client:	Pioneer Mic	iler Avenue	e, LLC		Start:	1200
Contractor:	CRAL Cont	racting, Inc	: .		Finish:	1215
Equipment:	Kobelco Sk	(160 LC			Inspector:	J. Holmquist
Scale	Strata	Sample	Sample			
in	Depth	No.	Depth	Description of Materials		Hemarks
Feet	Change		Range			
	0-3			Brown to black, medium sand, foundry	/ sand	
				and slag, moist		
	3			vvnite mari		
				Groundwater at 3-ft below grade		
						-
						1. • •
			*			
	Groundwat	ter	-	Co	obdies (2.5 to 1	u inches diameter):
Date	Time	Depth	-	Bo	ulders (greate	r than 10 inches diameter):
	see abov	e	-		none	

ATTACHMENT B

Analytical Report

1

÷ 1

Tom Barba C&S Engineers, Inc. 499 Col. Eileen Collins Blvd N. Syracuse, NY 13212 Phone: (315) 455-2000 FAX: (315) 455-9667

Laboratory Analysis Report For

C&S Engineers, Inc.

Client Project ID:

Pioneer Midler

LSL Project ID: 0412284 Receive Date/Time: 07/23/04 15:20

Project Received by: MW

Life Science Laboratories, Inc. warrants, to the best of its knowledge and belief, the accuracy of the analytical test results contained in this report, but makes no other warranty, expressed or implied, especially no warranties of merchantability or fitness for a particular purpose. By the Client's acceptance and/or use of this report, the Client agrees that LSL is hereby released from any and all liabilities, claims, damages or causes of action affecting or which may affect the Client as regards to the results contained in this report. The Client further agrees that the only remedy available to the Client in the event of proven non-conformity with the above warranty shall be for LSL to re-perform the analytical test(s) at no charge to the Client. The data contained in this report are for the exclusive use of the Client to whom it is addressed, and the release of these data to any other party, or the use of the name, trademark or service mark of Life Science Laboratories, Inc. especially for the use of advertising to the general public, is strictly prohibited without express prior written consent of Life Science Laboratories, Inc. This report may only be reproduced in its entirety. No partial duplication is allowed. The Chain of Custody document submitted with these samples is considered by LSL to be an appendix of this report and may contain specific information that pertains to the samples included in this report. The analytical result(s) in this report are only representative of the sample(s) submitted for analysis. LSL makes no claim of a sample's representativeness, or integrity, if sampling was not performed by LSL personnel.

Life Science Laboratories, Inc.

LSL Central Lab 5854 Butternut Drive East Syracuse, NY 13057 Tel. (315) 445-1105 Fax (315) 445-1301 NYS DOH ELAP #10248 PA DEP #68-2556 LSL North Lab 131 St. Lawrence Avenue Waddington, NY 13694 Tel. (315) 388-4476 Fax (315) 388-4061 NYS DOH ELAP #10900

LSL Finger Lakes Lab 16 N. Main St., PO Box 424 Wayland, NY 14572 Tel. (585) 728-3320 Fax (585) 728-2711 NYS DOH ELAP #11667 LSL Southern Tier Lab 30 East Main Street Cuba, NY 14727 Tel. (585) 968-2640 Fax (585) 968-0906 NYS DOH ELAP #10760

Date:

LSL MidLakes Lab 699 South Main Street Canandaigua, NY 14424 Tel. (585) 396-0270 Fax (585) 396-0377 NYS DOH ELAP #11369

This report was reviewed by:

<u>hinda Waters</u> QC

7/28/04

Page 1 of 11 Date Printed: 7/28/04

C&S Engineers, Inc. N. Syracuse, NY

Power Bldg Floor -GrabLSL Sample ID:0412284-001

Location: Pioneer Midler Sampled: 07/22/04 10:15

07/22/04 10:15 Sampled By: JH

Sample Matrix: Wipe

Sample ID:

Analytical Method	Result	Units	Prep Date	Analysis Date & Time	Analyst Initials
(1) NVSDOH 312 3M/EPA 8082 PCB's in Wines					
(1) NYSDOM 312-300 EI A 8082 I CD 3 m Wipes	<0.5	ug/wipe	7/26/04	7/27/04	AMW
Aroclor-1010	<0.5	ug/wipe	7/26/04	7/27/04	AMW
Al 0000-1221 A rodor-1237	<0.5	ug/wipe	7/26/04	7/27/04	AMW
Aroclor-1252	<0.5	ug/wipe	7/26/04	7/27/04	AMW
Arocior-1248	<0.5	ug/wipe	7/26/04	7/27/04	AMW
Aroclor-1254	<0.5	ug/wipe	7/26/04	7/27/04	AMW
Aroclor-1260	5.5	ug/wipe	7/26/04	7/27/04	AMW
This target analyte appears to be biologically (degraded and/or e	nvironmentally wea	thered.		
Surrogate (DCB)	91	%R	7/26/04	7/27/04	AMW

5. -

* 1

C&S Engineers, Inc. N. Syracuse, NY

	•		
Sample ID:	Power Bldg Transformer -Grab	LSL Sample ID:	0412284-002

Sampled By: JH

Location: Pioneer Midler Sampled: 07/22/04 10:16

Sample Matrix: Wipe

Analysis Analyst Prep Analytical Method Initials Date & Time Date Units Result Analyte (1) NYSDOH 312-3M/EPA 8082 PCB's in Wipes AMW 7/27/04 < 0.5 ug/wipe 7/26/04 Aroclor-1016 AMW 7/26/04 7/27/04 <0.5 ug/wipe Aroclor-1221 7/27/04 AMW 7/26/04 < 0.5 ug/wipe Arocior-1232 7/27/04 AMW 7/26/04 < 0.5 ug/wipe Aroclor-1242 AMW 7/27/04 7/26/04 < 0.5 ug/wipe Aroclor-1248 7/27/04 AMW 7/26/04 < 0.5 ug/wipe Aroclor-1254 AMW 7/26/04 7/27/04 1.3 ug/wipe Aroclor-1260 This target analyte appears to be biologically degraded and/or environmentally weathered. 7/27/04 AMW 7/26/04 %R 95 Surrogate (DCB)

5. .

+ 1

C&S Engineers, Inc. N. Syracuse, NY

LSL Sample ID:

0412284-003

Sample ID:Pond A 3'-4' - CompLocation:Pioneer MidlerSampled:07/22/04 15:00Sample Matrix:SHW Dry Wt

Sampled	By:	JH

Analytical Method			Prep	Analysis	Analyst
Analytical Method	Result	Units	Date	Date & Time	Initials
(1) EPA 8082 FCBS	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Arocior-1010	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1221	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1252	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor 1242	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor 1240	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Arociot-1269	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Surrogate (DCB)	90	%R	7/26/04	7/28/04	AMW
(I) EPA 8260B TCL volatiles	190	uo/ko drv		7/26/04	LEF
Acetone	<40	ug/kg dry		7/26/04	LEF
Benzene	<40	ug/kg dry		7/26/04	LEF
Bromodichloromethane	<40	ug/kg dry		7/26/04	LEF
Bromoform	<40	ug/kg dry		7/26/04	LEF
Bromomethane	<80	ug/kg dry		7/26/04	LEF
2-Butanone (MEK)	<40	ug/kg dry		7/26/04	LEF
Carbon disultide	<40	ug/kg dry		7/26/04	LEF
Carbon tetrachloride	<40	ug/kg drv		7/26/04	LEF
Chlorobenzene	<40	ug/kg dry		7/26/04	LEF
Chloroetnane	<40	ug/kg dry		7/26/04	LEF
	<40	ug/kg dry		7/26/04	LEF
Chioromethane Dilasana blanamathana	<40	ug/kg dry		7/26/04	LEF
Dipromocniorometinane	<40	ug/kg dry		7/26/04	` LEF
1,1-Dichloroethane	<40	ug/kg dry		7/26/04	LEF
1.1. Dichloroethane	<40	ug/kg dry		7/26/04	LEF
1,1-Dichloroethene Total	<40	ug/kg dry		7/26/04	LEF
1.2 Dichloropropage	<40	ug/kg dry		7/26/04	LEF
1,2-Dichloropropene	<40	ug/kg dry		7/26/04	LEF
trans_1_2_Dichloropropene	<40	ug/kg dry		7/26/04	LEF
Ethyl honzene	<40	ug/kg dry		7/26/04	LEF
2-Hevenone	<80	ug/kg dry		7/26/04	LEF
Methylene chloride	<80	ug/kg dry		7/26/04	LEF
4-Methyl-2-pentanone (MIBK)	<80	ug/kg dry		7/26/04	LEF
Styrene	<40	ug/kg dry		7/26/04	LEF
1.1.2.2-Tetrachloroethane	<40	ug/kg dry		7/26/04	LEF
Tetrachloroethene	<40	ug/kg dry		7/26/04	LEF
Toluene	<40	ug/kg dry		7/26/04	LEF
1.1.1-Trichloroethane	<40	ug/kg dry		7/26/04	LEF
1.1.2-Trichloroethane	<40	ug/kg dry		7/26/04	LEF
Trichloroethene	<40	ug/kg dry		7/26/04	LEF
Vinyl chloride	<40	ug/kg dry		7/26/04	LEF
Xylenes (Total)	<40	ug/kg dry		7/26/04	
Surrogate (1,2-DCA-d4)	99	%R		7/26/04	
Surrogate (Tol-d8)	106	6 %R		7/26/04	
Surrogate (4-BFB)	117	%R		//26/04	LEF
Elevated detection limit due to matrix interference.					

Life Science Laboratories, Inc.

Page 4 of 11 7/28/04

Date Printed:

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

C&S Engineers, Inc. N. Syracuse, NY

					TOT Completion	0412284-(103
Sample ID:	Pond A 3'-4' - Comp				LSL Sample ID:	0417204-0	105
Location:	Pioneer Midler						
Sampled:	07/22/04 15:00	Sampled By: JH					
Sample Matrix:	SHW Dry Wt					Anglucia	Analyst
Analytical Meth Analyte	od		Result	Units	Date	Date & Time	Initials
(1) Modified EP. Total Solid	A 160.3 Total Solids ds @ 103-105 C		57	%	7/28/04	7/28/04	LEF

1. .

<u>م</u> ا

C&S Engineers, Inc. N. Syracuse, NY

Sampled By: JH

LSL Sample ID:

0412284-004

Sample ID:Pond B 3'-5' - CompLocation:Pioneer MidlerSampled:07/22/04 16:00Sample Matrix:SHW Dry Wt

			Prep	Analysis	Analyst
Analytical Method	Result	Units	Date	Date & Time	Initials
Analyte					
(I) EPA 8082 PCB's	<0.4	malka div	7/26/04	7/28/04	AMW
Aroclor-1016	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1221	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1232	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1242	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1248	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1254	<0.4	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1260	-0.4	WENE OF	7/26/04	7/28/04	AMW
Surrogate (DCB)	104	7010			
(1) EPA 8260B TCL Volatiles				7/26/04	LEE
Acetone	160	ug/kg dry		7/20/04	LEF
Benzene	<40	ug/kg dry		7/20/04	LEF
Bromodichloromethane	<40	ug/kg dry		7/20/04	LEF
Bromoform	<40	ug/kg dry		7/20/04	LEF
Bromomethane	<40	ug/kg dry		7/20/04	LEI
2-Butanone (MEK)	<80	ug/kg dry		7/20/04	LEE
Carbon disulfide	<40	ug/kg dry		7/26/04	LEF
Carbon tetrachloride	<40	ug/kg dry		7/26/04	LEF
Chlorobenzene	<40	ug/kg dry		7/26/04	
Chloroethane	<40	ug/kg dry		7/26/04	LUT
Chloroform	<40	ug/kg dry		7/26/04	LEF
Chloromethane	<40	ug/kg dry		7/26/04	LEF
Dibromochloromethane	<40	ug/kg dry		7/26/04	LEF
1.1-Dichloroethane	<40	ug/kg dry		7/20/04	LEF
1.2-Dichloroethane	<40	ug/kg dry		7/26/04	LLI" I CC
1.1-Dichloroethene	<40	ug/kg dry		7/26/04	
1.2-Dichloroethene, Total	<40	ug/kg dry		7/26/04	LEI
1.2-Dichloropropane	<40	ug/kg dry		7/26/04	I DE
cis-1.3-Dichloropropene	<40	ug/kg dry		7/26/04	LET
trans-1.3-Dichloropropene	<40	ug/kg dry		7/26/04	LEI
Ethyl benzene	<40	ug/kg dry		7/26/04	
2-Hexanone	<80) ug/kg dry		7/26/04	
Methylene chloride	<80) ug/kg dry		7/26/04	LCI
4-Methyl-2-pentanone (MIBK)	<80) ug/kg dry		7/26/04	LCI
Styrene	<4() ug/kg dry		7/26/04	LCI
1.1.2.2-Tetrachloroethane	<4() ug/kg dry		7/26/04	LEI
Tetrachloroethene	<40) ug/kg dry		7/26/04	LEI
Toluene	<40) ug/kg dry		7/26/04	LEI
1 1.1-Trichloroethane	<4) ug/kg dry		7/26/04	LEI
1 1 2-Trichloroethane	<4) ug/kg dry		7/26/04	LE
Trichloroethene	<4) ug/kg dry		7/26/04	LE.
Vinvi chloride	<4	0 ug/kg dry		7/26/04	LE.
Xylenes (Total)	<4	0 ug/kg dry		7/26/04	LE
Surrogate (1.2-DCA-d4)	11	1 %R		7/26/04	LE
Surroyate (Tol-d8)	10	3 %R		7/26/04	LE
Surrogate (4-BFB)	11	1 %R		7/26/04	LE
Elevated detection limit due to matrix interference.					

Life Science Laboratories, Inc.

Page 6 of 11 7/28/04

Date Printed:

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

N. Syracuse, NY C&S Engineers, Inc.

		cus biigiinei				0412284-0	104
Sample ID:	Pond B 3'-5' - Comp				LSL Sample ID:	0412204-0	<i></i>
Location:	Pioneer Midler						
Sampled:	07/22/04 16:00	Sampled By: JH					
Sample Matrix:	SHW Dry Wt				Pren	Analysis	Analyst
Analytical Meth	od		Result	Units	Date	Date & Time	Initials
Anaiyte							
(1) Modified EP.	A 160.3 Total Solids		58	0/	7/28/04	7/28/04	LEF
Total Soli	ds @ 103-105 C		20	70			

1. . ·

÷ 1

٢

N. Syracuse, NY C&S Engineers, Inc.

LSL Sample ID:

0412284-005

Sample ID:	C+D T1 70' West 5	'-6' - Grab
Location:	Pioneer Midler	
Sampled:	07/23/04 9:00	Sample

Sampled By: JH

Sampled: 4......

Sample Matrix: SHW Dry Wt	<u></u>	W. W. W.	Prep	Analysis	Analyst
Analytical Method	Result	Units	Date	Date & Time	Initials
Analyte					
(1) EPA 8082 PCB's	<0.6	ma/ka dry	7/26/04	7/28/04	AMW
Aroclor-1016	<0.6	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1221	<0.6	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1232	<0.0	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1242	<0.6	mg/kg drv	7/26/04	7/28/04	AMW
Aroclor-1248	<0.0	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1254	<0.6	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1260	105	%R	7/26/04	7/28/04	AMW
Surrogate (DCB)	105	7010			
(1) EPA 8260B TCL Volatiles				7/26/04	IFF
Acetone	1500	ug/kg dry		7/20/04	LEF
Benzene	<70	ug/kg dry		7/20/04	LEI
Bromodichløromethane	<70	ug/kg dry		7/20/04	LEI
Bromotorm	<70	ug/kg dry		7/26/04	LET
Bromomethane	<70	ug/kg dry		7/20/04	LEI
2-Butanone (MEK)	370	ug/kg dry		7/20/04	LEI I FF
Carbon disulfide	<70	ug/kg dry		7/20/04	LEI
Carbon tetrachloride	<70	ug/kg dry		7/20/04	IFF
Chlorobenzene	<70	ug/kg dry		7/20/04	LEI
Chloroethane	<70	ug/kg dry		7/20/04	LEI
Chloreform	<70	ug/kg dry		7/20/04	LEI
Chloromethane	<70	ug/kg dry		7/20/04	I FI
Dibromochloromethane	<70	ug/kg dry		7/20/04	LEI
1.1-Dichloroethane	<70	ug/kg dry		7/20/04	- EE
1.2-Dichloroethane	<70	ug/kg dry		7/20/04	1 El
1.1-Dichloroethene	<70	ug/kg dry		7/20/04	LE
1.2-Dichloroethene, Total	<70	ug/kg dry		7/20/04	LE
1.2-Dichloropropane	<70	ug/kg dry		7/20/04	LE
cis-1.3-Dichloropropene	<70	ug/kg dry		7/20/04	LE
trans-1.3-Dichloropropene	<70) ug/kg dry		7/20/04	LE
Ethyl benzene	<70) ug/kg dry		7/20/04	LE
2-Hexanone	<100) ug/kg dry		7/20/04	LE
Methylene chloride	<100) ug/kg dry		7/20/04	IE
4-Methyl-2-pentanone (MIBK)	<100) ug/kg dry		7/20/04	11
Styrene	<70) ug/kg dry		7/20/04	LE I E
1.1.2.2-Tetrachloroethane	<70) ug/kg dry		7/26/04	LL 1 E
Tetrachloroethene	16) ug/kg dry		#20/04	LE
Toluene	<7	0 ug/kg dry		7/20/04	Г. Г. F.
1.1.1-Trichloroethane	<7	0 ug/kg dry		//20/04	LI I F
1.1.2-Trichloroethane	<7	0 ug/kg dry		7/20/04	LL TF
Trichloroethene	<7	0 ug/kg dry		7/20/04	1
Vinvl chloride	<7	0 ug/kg dry		1/20/04	11
Xvienes (Total)	17	0 ug/kg dry		7/20/04	
Surrogate (1,2-DCA-d4)	11	5 %R		7/26/04	1. I
Surrogate (Tol-d8)	11	0 %R		7/20/04	T.
Surrogate (4-BFB)	10	13 %R		//26/04	LI
Elevated detection limits due to the presence of a petroleu	m hydrocarbon pattern in	the sample.			

Life Science Laboratories, Inc.

Page 8 of 11 7/28/04 Date Printed:

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

		C&S Engineers, Inc	c. N. I	Syracus	e, NY		
Sample ID: C+D T1 70' West 5'		-6' - Grab		LSL Sample II		D: 0412284-005	
Location:	Pioneer Midler						
Sampled:	07/23/04 9:00	Sampled By: JH					
Sample Matrix:	SHW Dry Wt				D	Analusia	Analyst
Analytical Meth	od		Result	Units	Prep Date	Date & Time	Initials
(1) Modified EPA Total Solid	A 160.3 Total Solids ds @ 103-105 C		35	%	7/28/0)4 7/28/04	LEF

1. .

÷ 1

C&S Engineers, Inc. N. Syracuse, NY

LSL Sample ID:

0412284-006

Sample ID:C+D T2 and T3 2'-5' - CompLocation:Pioneer MidlerSampled:07/23/04 11:00Sampled By: JH

Oumprear	••••
Sample Matrix:	SHW Dry Wt

Analytical Method			Prep	Analysis	Analyst
Analyte	Result	Units	Date	Date & Time	Initials
(1) EPA 8082 PCB's					
(1) EFA 8082 1 CD 3	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Aroclar 1221	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor 1221	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1252	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor-1242	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Aroclor=1246	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Arocior-1254	<0.2	mg/kg dry	7/26/04	7/28/04	AMW
Argelor-1200	101	%R	7/26/04	7/28/04	AMW
Surrogate (DCB)					
(1) EPA 8260B TCL Volatiles	80	under der		7/26/04	LEF
Acetone	8U -20	ug/kg ury		7/26/04	LEF
Benzene	<30	ug/kg diy		7/26/04	LEF
Bromodichloromethane	<30	ug/kg dry		7/26/04	LEF
Bromoform	<30	ug/kg ory		7/26/04	LEF
Bromomethane	<30	ug/kg dry		7/26/04	LEF
2-Butanone (MEK)	<60	ug/kg ary		7/26/04	LEF
Carbon disulfide	<30	ug/kg ary		7/26/04	LEF
Carbon tetrachloride	<30	ug/kg ory		7/26/04	LEF
Chlorobenzene	<30	ug/kg ary		7/26/04	LEF
Chloroethane	<30	ug/kg dry		7/26/04	LEF
Chloroform	<30	ug/kg dry		7/20/04	LEF
Chloromethane	<30	ug/kg ary		7/26/04	LEF
Dibromochloromethane	<30	ug/kg dry		7/26/04	LEF
1,1-Dichloroethane	<30	ug/kg dry		7/26/04	LEF
1,2-Dichloroethane	<30	ug/kg ary		7/26/04	LEF
1,1-Dichloroethene	<30	ug/kg dry		7/26/04	LEF
1,2-Dichloroethene, Total	<30	ug/kg ary		7/26/04	LEF
1,2-Dichloropropane	<30	ug/kg dry		7/26/04	LEF
cis-1,3-Dichloropropene	<30	ug/kg ary		7/26/04	LEF
trans-1,3-Dichloropropene	<30	ug/kg dry		7/26/04	LEF
Ethyl benzene	<30	ug/kg dry		7/26/04	LEF
2-Hexanone	<60	ug/kg ory		7/26/04	LEF
Methylene chloride	<60	ug/kg ary		7/26/04	LEF
4-Methyl-2-pentanone (MIBK)	<60	ug/kg ory		7/26/04	LEF
Styrene	<30	ug/kg dry		7/26/04	LEF
1,1,2,2-Tetrachloroethane	<30	ug/kg ary		7726104	LEF
Tetrachloroethene	<30	ug/kg dry		7/26/04	LEF
Toluene	<30	ug/kg ury		7/26/04	LEF
1,1,1-Trichloroethane	<30	ug/kg ury		7/26/04	LEF
1,1,2-Trichloroethane	<30	ug/kg ury		7/26/04	LEF
Trichloroethene	U{>	ugrkg ury		7/26/04	LEF
Vinyl chloride	<30	ug/kg dry		7/26/04	LEF
Xylenes (Total)	<30	ugrkg ary		7/26/04	LEF
Surrogate (1,2-DCA-d4)	110	/ %/K		7/26/04	LEF
Surrogate (Tol-d8)	117	%K		7/26/04	LEF
Surrogate (4-BFB)	103	> %K		1120107	
Elevated detection limit due to matrix interference.					

Life Science Laboratories, Inc.

Page 10 of 11 Date Printed: 7/28/04

Analysis performed at: (1) LSL Central, (2) LSL North, (3) LSL Finger Lakes, (4) LSL Southern Tier, (5) LSL MidLakes

C&S Engineers, Inc. N. Syracuse, NY

and the second second second second second second second second second second second second second second second						0412294 (06
Sample ID:	ample ID: C+D T2 and T3 2'-5' - Comp				LSL Sample ID:	0412204-0	100
Location:	Pioneer Midler						
Sampled:	07/23/04 11:00	Sampled By: JH					
Sample Matrix:	SHW Dry Wt					• • • • •	Amalwat
Analytical Meth Analyte	od		Result	Units	Prep Date	Date & Time	Initials
(1) Modified EPA Total Solid	A 160.3 Total Solids Is @ 103-105 C		83	%	7/28/04	7/28/04	LEF

1. .

÷ 1

SURROGATE RECOVERY CONTROL LIMITS FOR ORGANIC METHODS

		Water	SHW
Mathod	Surrogate(s)	Limits, %R	Limits, %R
Method	<u>Duriogato(b)</u>	-	
	TCMX	80-120	NA
	DCB	70-130	NA
	DCAA	70-130	NA
EPA 594 9	1 2-DCA-d4, 4-BFB	80-120	NA
EPA 525.2	1 3-DM-2-NB, TPP, Per-d12	70-130	NA
EFA 525.2	1.3-DM-2-NB, TPP	70-130	NA.
EPA 528	2-CP-3.4.5.6-d4, 2.4.6-TBP	70-130	NA
EPA 520	Decafluorobiphenvi	80-120	NA
EPA 552 2	2 3-DBPA	80-120	NA
	2,0 -0.1.		
	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
	DCB	30-150	NA
EPA 694	1 2-DCA-d4, Tol-d8, 4-BFB	70-130	NA
	2-Fluorophenol	21-110	NA
EDA 625 AF	Phenol-d5	10-110	NA
	2 4.6-Tribromophenol	10-123	NA
EPA 625 RN	Nitrobenzene-d5	35-114	NA
EPA 625 BN	2-Fluorobiphenvi	43-116	NA
EPA 625, BN	Tempenvi-d14	33-141	NA
	terbuser).		
FPA 8010	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8020	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8021	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8081	TCMX. DCB	30-150	30-150
EPA 8082	DCB	30-150	. 30-150
EPA 8151	DCAA	30-130	30-120
EPA 8260	1.2-DCA-d4, Tol-d8, 4-BFB	70-130	70-130
EPA 8270 AF	2-Fiuorophenol	21-110	25-121
EPA 8270 AF	Phenol-d5	10-110	24-113
EPA 8270 AF	2.4.6-Tribromophenol	10-123	19-122
EPA 8270, BN	Nitrobenzene-d5	35-114	23-120
EPA 8270, BN	2-Fluorobiphenyl	43-116	30-115
EPA 8270 BN	Terphenvl-d14	33-141	18-137
DOH 310-13	Dodecane	40-110	40-110
DOH 310-14	Dodecane	40-110	40-110
DOH 310-15	Dodecane	40-110	40-110
DOH 310-34*	4-BFB	50-150	50-150
8015M GRO*	4-BFB	50-150	50-150
8015M_DRO	Terphenyl-d14	50-150	50-150

1.

÷ 1

~********

*Run by GC/MS.

Units Key:	ug/l = microgram per liter
	ug/kg = microgram per kilogram
	mg/l = milligram per iller
	mg/kg = milligram per kilogram
	%R = Percent Recovery

D D	LSL Finger 1 - '	30 East Main St.	C+SE-2 C+SE-2	Phone: (585)968-2640	Fax: (585)968-0906		Next Day* 3-Day * X *Additional Charges	2-Day * 7-Day* 🗂 may apply	eded or Special Instructions:		zation or P.O. #	lect Number:	Analyses	De Check LSL ID#	PCB Wipe	PCB Wipe	EPA 8260 Totals EPA 8082 Totals	Hao	- S 00	V (00)			s Date Time	id By:		
RECORD					ар — уулаг тараатаан алаасаан а Алаасаан алаасаан алаа	Turnaro			Date Need	[Authorizat	LSL Projec	ontainers	size/type	Wipe	Wide	8 02 5 1025	, — — — — — — — — — — — — — — — — — — —		→ —			y Transfers	Received		ne le le le le le le le le le le le le le
TODY		Ave.	13694	4476	4061						7		<u>∽</u>	q #	~	·	7	2	7	2			Custod		7	H.
- CUS	th Lab	awrence /	gton, N.Y.	(315)388-4	(315)388-					212	5-966		Preser	Addec	j	1	1	}	1	1				∕2u/s7		ture
	LSL Nor	131 St. L	Wadding	Phone:	Fax:					/ 3	45			Matrix	<u> </u>	1	soit	50,7	50%	50%				N-HOH		
	•		57		1					ud Zip	Fax	Midler	Type	grab/comp	grab	diab	COMP	COMP	grab	COMP				1 By: JO/4N		ISNED BY: Whit
	Lab	nut Drive	1, N.Y. 130	5)445-1105	15)445-130					N 54			Sample	Time	io:15	10:16	3 PM	4 PM	9AM	II AM				Sampled		Relinqu
	SL Central	854 Butten	. Syracuse	hone: (31	ax: (31	_		RBA	0.P.S	Calli		Ċ	Sample	Date	7-22	7-22	7-22	7-22	7-23	7-23				<u></u>		
	LUL		ш	e .	11.			eport Address: ame: MN TOM BAK	ompany: CIS Finaline	treet: 499 Col Ellen	hone: 4/55 - 2000	imail: ilient Project ID/Client Site ID	Client's Sample	Identifications	Power Blda Floor	Priner Blda Transformer	POND A 3'-4'	PONDB 3'-5'	240 TI 70 West 5'-6' 1	240 T2 and T3 2'-5'			SL use only:			

Life Science Laboratories. Inc.

070

APPENDIX C

Site Figure

1

INDEPENDENT GEOCHEMISTRY AND MICROBIOLOGY INVESTIGATIONS

1

+ 1

ENGINEERS DESIGN BUILD TECHNICAL RESOURCES OPERATIONS C&S Engineers, Inc. 499 Col. Eileen Collins Boulevard Syracuse, NY 13212 phone 315-455-2000 fax 315-455-9667 www.cscos.com

October 19, 2007

Ms. Karen Cahill, Project Manager New York State Department of Environmental Conservation 615 Erie Boulevard West Syracuse, New York 13204-2400

Re: Midler City Industrial Park Site Brownfield Cleanup NYSDEC Brownfield Site # C734103

File: C81.001.002.700

Dear Ms. Cahill:

C&S Engineers, Inc., on behalf of our client Pioneer Midler, LLC, submits this letter and accompanying laboratory data that has been gathered to assess whether the Midler Avenue Brownfield Site would be a viable candidate for monitored natural attenuation (MNA) relative to residual chlorinated volatile organic compound (CVOC) contamination that is present in groundwater beneath the site.

The summary hydrogeologic investigations at this site have yet to identify any characteristics that would contraindicate the feasibility of natural attenuation. The presence of high concentrations of Total Organic Carbon within the saturated overburden indicates that the peat/marl unit constitutes an abundant electron donor source. The existence of degradation compounds at declining concentrations in downgradient locations indicates that, if present, inorganic electron acceptors are not inhibiting some level of reductive dechlorination from occurring.

To gain an understanding of the presence of populations of dechlorinating microbes in the site groundwater regime, one sample was collected from each of three site monitoring wells (MW-3D, MW-11D, and SB-7-1) in October 2005, using sample kits provided by Microbial Insights of Rockford, Tennessee. This limited investigation was not a formal part of the RI. The samples were analyzed by Microbial Insights for the presence of Dehalococcoides (dechlorinating bacteria) and for functional genes and phylogenetic groups associated with dechlorinating conditions. The data generated (shown in Attachment A) indicated the presence of Dehalococcoides and functional genes at each of the wells.

To augment the Microbial Insights data, and to better assess post-IRM geochemical and microbiological conditions downgradient of one of the thermal treatment areas, additional groundwater samples were collected from monitoring well MW-13D on October 11, 2007. Field parameters (ORP, DO, temperature) were measured and groundwater samples were submitted to Test America, Inc (formerly STL Inc.) for analysis of a list of MNA indicators, including: dissolved inorganic carbon, dissolved organic carbon, VOCs, iron [total, Fe (II) and Fe (III)], nitrate, nitrite, sulfate, sulfide, and methane. Samples were also sent to SiREM Laboratories in Guelph, Ontario, Canada for other parameters including ethene, ethane, Dehalococcoides, and Vinyl Chloride Reductase (vcrA) gene analysis.

Ms. Karen Cahill October 19, 2007 Page 2

٢.

د م

Table 1 in Attachment B presents the field and laboratory data generated from the October 11, 2007 groundwater sampling. Attachments C and D contain the laboratory reports from Test America and SiREM respectively.

Table 1 summarizes and provides a brief interpretation of the data. The table also provides a calculation of the site screening score using the USEPA's methodology from the 1998 *Technical Protocol for Evaluating Attenuation of Chlorinated Solvents in Ground Water*. A copy of the scoring criteria follows Table 1 (USEPA Table 2.3 and 2.4). According to the USEPA's criteria, a score exceeding 20 indicates that there is strong evidence for reductive dechlorination at the site. The score for the Pioneer Midler Avenue site from the October groundwater sampling at MW-13D is 22. The microbial and gene analysis from the October 2007 sampling and included in Table 1 also indicates the abundant presence of Dehalococcoides which is associated with reductive dechlorination. Of more specific interest is the significant population of Dehalococcoides which possess the Vinyl Chloride Reductase (vcrA) gene capable of reducing vinyl chloride to ethene and carbon dioxide.

Of the four main components of natural attenuation (biodegradation, dispersion, sorption, and volatilization), in our opinion biodegradation would be the dominant parameter at the Midler Avenue site due to the slow-moving groundwater environment. Dispersion, sorption, and volatilization would all have more affect in a groundwater regime with higher rates of flux than are present at the site. This same relatively static environment would offer the ability to periodically assess conditions with ample opportunity to identify and assess a change that might indicate a threat to potential downgradient receptors if they were present.

We hope the Department finds the enclosed lines of evidence helpful in coming to the conclusion that monitored natural attenuation is a viable remedy for the Midler Avenue Site. Should you have any questions or would like to discuss further, please let me know.

Sincerely. S ENGINEERS, INC.

Steven M. Vinci, CPG Managing Geologist

SMV/TAB:cah Attachments

cc: Jed Schneider, Pioneer Midler Avenue, LLC Mary Jane Peachey, NYSDEC Greg Townsend, NYSDEC Chris Magee, NYSDEC

ATTACHMENT A

Microbial Insights Data Report

t. .

. .

2340 Stock Creek Blvd. Rockford TN 37853-3044 Phone: (865) 573-8188 Fax: (865) 573-8133 Email: info@microbe.com

Analysis Report

Client:	Steven M. Vinci C & S Engineers	, Inc.		Phone:	(315) 455-2000
	499 Col. Eileen (Syracuse, NY 13	Collins 212		Fax:	(315) 455-9667
MI Identifi	er: 036CJ	Date Rec:	10/19/2005	Rep	ort Date: 10/25/2005
Client Pro	ject #: C81.002.0	01	Client Proje	ct Name: Pic	oneer Midler LLC
Purchase	Order #:				
Analysis I	Requested:	CENSUS (final)			
Comment	is:				
All samples Control Act (in this data p	within this data package (40 CFR part 790). All : package meet the qualit	e were analyzed under samples were process ty assurance requirem	r U.S. EPA Good L ed according to st ents established b	_aboratory Practi andard operating y Microbial Insigl	ce Standards: Toxic Substances procedures. Test results submitted nts, Inc.
Reported	By:			Review	/ed By:

Liora M Cylis

Ang a Danies

× 1

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

2340 Stock Creek Blvd. Rockford, TN 37853-3044 Tel: (865) 573-8188; Fax: (865) 573-8133

CENSUS

٢. e 1

م ا

Client: Project:	C & S Engineers Pioneer Midler Ll	, Inc . _C			MI Project Number: Date Received:	036CJ 10/19/2005	
Sample Infor	mation						
Client Sample Units:	ample ID: Date:		MW-3D 10/17/2005 celis/bead	MW-11D 10/17/2005 cells/bead	SB-7-1 10/17/2005 cells/bead		
Dechlorinati	ng Bacteria				······		
Dehaloc	occoides spp (1)	DHC	4.13E+03	1.74E+03	9.69E+01		
Functional C	Senes						
BAV1 V TCE R-L	C R-Dase (1) Dase (1)	BVC TCE	2.9E+03 7.99E+02	1.98E+02 8.56E+02	1.42E+02 1.12E+02		
Phylogeneti	c Group				, Million		
Eubacte Methanc Sulfate I	ria ogens Reducing Bacteria	EBAC MGN DSR	2.76E+08 1.63E+06 9.43E+06	6.94E+07 2.37E+06 6.74E+06	6.16E+07 7.14E+05 6.04E+06		
Legend:							

l = Inhibited NA = Not Analyzed NS = Not Sampled J = Estimated gene copies below PQL but above LQL < = Result not detected

Notes:

1 Bio-Dechlor Census technology was developed by Dr. Loeffler and colleagues at Georgia Institute of Technology and was licensed for use through Regenesis.

ATTACHMENT B

Summary of October 11, 2007 MNA Indicators

> : - •

> > a 1

		october 2007	' MNA Indicator Sampling	
Parameter	Result	Units	Interpretation	JSEPA Site Criteria Score
Field Parameters				
Oxidation/Reduction Potential (ORP)	-324	٨٣	Concentration <-100 mg/L indicate reductive pathway is likely	7
Dissolved Oxygen	0	mg/L	Concentration <0.5 mg/L indicates reductive pathways are not repressed	m
Laboratory Analytical Parameters				
Dissolved Inorganic Carbon	110	mg/L	Levels > background indicate microbial metapolism of organic carbon	NL
Dissolved Organic Carbon	41	mg/L	Detections of DOC (or TOC) > 20 mg/L indicates that a non- depleted substrate (electron donor) is abundant	2
Vinyl Chloride	8.9 (SiREM) 21 (TA)	mg/L mg/L	Indicates presence of reductive dechlorination of higher isomers	7
cis-1,2-dichloroethene	0.56	mg/L	Indicates presence of reductive dechlorination of higher isomers	2
Dehalococcoides Enumeration	2 X 10 ⁸ (gene copies)	per liter	Values > 10 ⁷ /L indicate high concentration of Dehalococcoides (Dhc)	NL
Vinyl Chloride Reductase (vcrA)	6 X 10 ⁷ (gene copies)	per liter	Indicates that 93% of total Dhc are vcrA gene copies	NL
Iron (total)	1.15	l/gm		
Ferric Iron	1.2	mg/L	Ferric Iron (Fe III) is an electron acceptor that competes with dehalorespiration	
Ferrous Iron	ND at 0.050	mg/L	Ferrous Iron (Fe II) >1 mg/L indicates reduced conditions and that anaerobic degradation of organic carbon is likely	0
Nitrite/Nitrate	ND at 0.050 (both)	mg/L	Absence of nitrate indicates is prerequisite for iron or sulfate reduction to occur	2
Sulfate	ND at 25	mg/L	Indicates sulfate is being reduced to sulfide and reductive	
Sulfide	0.8	mg/L	dechlorination is likely to be efficient	S
Methane	13 (SiREM)	mg/L	Indicates strong reducing conditions are present and likely	n
Ethene	4.6	mg/L	Indicates strong presence of reductive dechlorination end	
Ethane	0.27	mg/L	products	8
			Total USEPA Screening Score	22

NL = parameter not included in USEPA Site Screening Score TA = Test America Laboratories F:\Project\C81 - Pioneer Development\C81.002 BCP\Close out and COC\MNA Workplan\MNA data 10-07 TomB.xls

	Concentration in		
Analysis	Wost Contaminated	Interpretation	Value
Oxvaen*	<0.5 mg/l.	Tolerated suppresses the reductive pathway at higher	value 2
	oto trigit	concentrations	
Oxygen*	>5 mg/L	Not tolerated; however, VC may be oxidized aerobically	-3
Nitrate*	<1 mg/L	At higher concentrations may compete with reductive pathway	2
Iron II*	>1 mg/L	Reductive pathway possible; VC may be oxidized under Fe(III)- reducing conditions	3
Sulfate*	<20 mg/L	At higher concentrations may compete with reductive pathway	2
Sulfide*	≥1 mg/L	Reductive pathway possible	3
Methane*	<0.5 mg/L	VC oxidizes	0
	>0.5 mg/L	Ultimate reductive daughter product, VC Accumulates	3
Oxidation Reduction	<50 millivolts (mV)	Reductive pathway possible	1
Potential* (ORP)	<-100mV	Reductive pathway likely	2
against Ag/AgCl			
electrode	-		
pH*	5 < pH < 9	Optimal range for reductive pathway	0
	<u>5 > pH >9</u>	Outside optimal range for reductive pathway	-2
100	> 20 mg/L	Carbon and energy source; drives dechlorination; can be	2
T		natural or anthropogenic	······
Temperature"	<u>> 20°C</u>	At T >20°C biochemical process is accelerated	1
Carbon Dioxide	>2x background	Ultimate oxidative daughter product	1
Alkalinity	>2x background	Results from interaction between CO ₂ and aquifer minerals	1
	>2x background	Daughter product of organic chlorine	2
riydrogen	<u>P1 nM</u>	Reductive pathway possible, VC may accumulate	
nyarogen	<1 nM	VC oxidized	0
Volatile Fatty Acids	> 0.1 mg/L	Intermediates resulting from biodegradation of more complex compounds; carbon and energy source	2
BTEX*	> 0.1 mg/L	Carbon and energy source; drives dechlorination	2
Tetrachloroethene		Material released	0
Trichloroethene*		Material released	0
		Daughter product of PCE	2ª/
UCE"		Material released	0
		Daughter product of TCE	2ª
		If cis is > 80% of total DCE it is likely a daughter product	
		1,1-DCE can be chemical reaction product of TCA	
vu		Material released	0
1 1 1. Trichtoroethonot		Daugnier product of DCE	
		Natenal released	
Carbon Totraphlorida		Daughter product of TCA under reducing conditions	2
Chloroethano*			
Shone/Ethane	50.04m=#	Daughter product of DCA or VC under reducing conditions	2
zuiene/Eurane	>0.0 Img/L >0.1 mg/L	Jaughter product of VC/ethene	2 3
Chioroform		Material released	0
	ļļ	Daughter product of Carbon Tetrachloride	2
Jichloromethane	P	Material released	0
	1 1	Daughter product of Chloroform	2

÷

÷

Table 2.3 Analytical Parameters and Weighting for Preliminary Screening for Anaerobic Biodegradation Processes^{a/}

* Required analysis. a/ Points awarded only if it can be shown that the compound is a daughter product (i.e., not a constituent of the source NAPL).

Score	Interpretation
0 to 5	Inadequate evidence for anaerobic biodegradation* of chlorinated organics
6 to 14	Limited evidence for anaerobic biodegradation* of chlorinated organics
15 to 20	Adequate evidence for anaerobic biodegradation* of chlorinated organics
> 20	Strong evidence for anaerobic biodegradation* of chlorinated organics
	*reductive dechlorination

:

~ I

Table 2.4 Interpretation of Points Awarded During Screening Step 1

ATTACHMENT C

Test America Data

t. F

ж. I

ANALYTICAL REPORT

Job Number: 220-3037-1 SDG Number: 220-3037 Job Description: STL Buffalo - Pioneer Midler

> For: TestAmerica Laboratories, Inc. 10 Hazelwood Drive Amherst, NY 14228-2298 Attention: Mr. Richard Lafond

Jill M Duhancik Project Manager I jill.duhancik@testamericainc.com 10/17/2007

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Project Manager.

TestAmerica Connecticut Certifications and Approvals: CTDOH PH-047, MADEP CT023, RIDOH A43, NYDOH 10602, NY NELAP 10602, NHDES 2528, NJDEP CT410, ME DOH CT023, UT DOH 2032614458

TestAmerica Laboratories, Inc.TestAmerica Connecticut128 Long Hill Cross Road, Shelton, CT 06484Tel (203) 929-8140Fax (203) 929-8142www.testamericainc.com

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC/MS VOA

Method(s) OLM04.2/Vol: The client requested lowest dilution possible. This sample has been run straight and at a 1:200 fold dilution. The straight analysis did have vinyl chloride present, but over-saturated. The diluted run has the correct concentration. The straight run also had a surrogate out of criteria due to the over-saturation. The compliant diluted analysis met all laboratory quality control criteria.

No other analytical or quality issues were noted.

ť. ÷ +

÷ 1

METHOD SUMMARY

Client: TestAmerica Laboratories, Inc.

Job Number: 220-3037-1 Sdg Number: 220-3037

> с. 1

> > ÷ 1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
CLP Volatile Organic Compounds Purge-and-Trap	TAL CT TAL CT	OLM04.2 OLN	/04.2/Vol SW846 5030B

Lab References:

TAL CT = TestAmerica Connecticut

Method References:

OLM04.2 = "Statement of Work for Organic Analysis", Multi-Media, Multi-Concentration September 1998

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: TestAmerica Laboratories, Inc.

Job Number: 220-3037-1 Sdg Number: 220-3037

Lah Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
220-3037-1	MW-13D	Water	10/11/2007 1420	10/12/2007 0935
220-3037-2TB	TRIP BLANK	Water	10/11/2007 0000	10/12/2007 0935

+ 1

TestAmerica Connecticut

SAMPLE RESULTS

t. • •

÷ 1

Analytical Data

Job Number: 220-3037-1 Sdg Number: 220-3037

10/11/2007 1420

10/12/2007 0935

HP 5890/5971A GC/MS

Date Sampled:

Date Received:

Instrument ID:

Client: TestAmerica Laboratories, Inc.

OLM04.2/Vol

Client Sample ID: MW-13D

Lab Sample ID: 220-3037-1 Client Matrix: Water

Method:

Preparation: 5	5030B		La	b File ID: 0140)4.D
Dilution: 1	.0		Ini	tial Weight/Volume:	5 mL
Date Analyzed: 1	0/12/2007 1341		Fir	nal Weight/Volume:	5 mL
Date Prepared: 1	0/12/2007 1341				
Analyte		Result (ug/L)	Qualifier	MDL	RL
Chloromethane	a ann an an an an Anna ann an Anna an Anna an an Anna an an an an an an an an an an an an	10	Ū	0.10	10
Vinyl chloride		650	Ē	0.10	10
Bromomethane		10	U	0.10	10
Chloroethane		10	Ū	0,10	10
1,1-Dichloroethene		10	U	0.10	10
Carbon disulfide		9.3	J	0.10	10
Acetone		9.6	J	0.10	10
Methylene Chloride		10	ũ	0.10	10
1.1-Dichloroethane		10	Ū	0.10	10
Methyl Ethyl Ketone		10	Ū	0.10	10
Chloroform		10	ū	0.10	10
1,1,1-Trichloroethane	9	10	Ŭ	0.10	10
Carbon tetrachloride		10	Ŭ	0.10	10
Benzene		8.3	J.	0.10	10
1.2-Dichloroethane		10	Ŭ,	0.10	10
Trichloroethene		10	Ŭ	0.10	10
1.2-Dichloropropane		10	Ű	0.10	10
Bromodichlorometha	ne	10	Ű	0.10	10
cis-1.3-Dichloroprope	ene	10	Ű	0.10	10
nethyl isobutyl keton	e	14	Q	0.10	10
Toluene	-	10		0.10	10
trans-1.3-Dichloropro	pene	10	11	0.10	10
1.1.2-Trichloroethane	; F .	10	11	0.10	5 10
Tetrachloroethene	-	10	1	0.10	· 10
2-Hexanone		10	1	0.10	10
Dibromochlorometha	ne	10	11	0.10	10
Chlorobenzene		10	11	0.10	10
Ethylbenzene		0.80	U I	0.10	10
Styrene		10	11	0.10	10
Bromoform		10	0	0.10	10
1 1 2 2-Tetrachloroet	hane	10	U	0.10	, 10 10
Xylenes Total	nunc	65	U I	0.10	10
ris-1.2-Dichloroether		310	5	0.10	10
trans-1 2-Dichlorooth	ene	510		0.10	10
Dichlorodifluorometh		10	14	0.10	10
Trichlorofluorometha		10	U	0.10	10
1 1 2-Trichloro, 1 2 2	trifluoroothono	10	U	0.10	10
Mathyl tort-bubl atha		10	U U	0.10	10
1 2-Dibromoethero	I	10	U H	0.10	10
eopropylbonzone		0.02	114	0.10	10
sopropyidenzene		0.23	JIVI	0.10	10
La-Dichlorobenzene		10	U	0.10	10
		10	U	0.10	10
1,2-Dichioropenzene		10	U	0.10	10
1,2-01010110-3-011010	phobaue	10	U	0.10	10
TestAmerica Conne	ecticut	Page 6 of 1	.3		10/1

OLM04.2/Vol CLP Volatile Organic Compounds

Analysis Batch: 220-10223

10/17/2007

Job Number: 220-3037-1

Sdg Number: 220-3037

Client: TestAmerica Laboratories, Inc.

220-3037-1

Water

Client Sample ID: MW-13D

Lab Sample ID:

Client Matrix:

Date Sampled: 10/11/2007 1420 Date Received: 10/12/2007 0935

OLM04.2/Vol CLP Volatile Organic Compounds

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	OLM04.2/Vol 5030B 1.0 10/12/2007 1341 10/12/2007 1341	Analysis Batch: 220-10223	Instr Lab Initia Fina	ument ID: File ID: al Weight/Vo Il Weight/Vol	HP 589 01404 lume: ume:	90/5971A GC/M .D 5 mL 5 mL	IS
Analyte		Result (ug/L)	Qualifier	MDL		RL	
1.2.4 Trichloroben	7000	10	Ŭ	0.10		10	
Mothyl contate	Zeno	10	U	0.10		10	
		10	U	0.10		10	
Methylcyclohexan	е	4.8	J	0.10		10	
Surrogate		%Rec		Ac	ceptance	e Limits	
1.2 Dichloroethan	e-d4 (Surr)	75	*	7	'6 - 114		
A Promofluoroben		104		8	36 - 115		
Toluene-d8 (Surr)		89		8	38 - 110		

б. 4 г

+ 1

Job Number: 220-3037-1

Sdg Number: 220-3037

Client: TestAmerica Laboratories, Inc.

Client Sample ID: MW-13D

 Lab Sample ID:
 220-3037-1
 Date Sampled:
 10/11/2007
 1420

 Client Matrix:
 Water
 Date Received:
 10/12/2007
 0935

OLM04.2/Vol CLP Volatile Organic Compounds Instrument ID: HP 5890/5971A GC/MS Analysis Batch: 220-10223 OLM04.2/Vol Method: O1407.D Lab File ID: Preparation: 5030B Initial Weight/Volume: 5 mL 200 Dilution: 5 mL Final Weight/Volume: Run Type: DL 10/12/2007 1520 Date Analyzed: 10/12/2007 1520 Date Prepared:

Analyte	Result (ug/L)	Qualifier	MDL	RL
Chloromethane	2000	Ų	20	2000
Vinvl chloride	21000		20	2000
Bromomethane	2000	U	20	2000
Chloroethane	2000	U	20	2000
1 1-Dichlomethene	2000	U	20	2000
Carbon disulfide	2000	U	20	2000
Acetone	2000	U	20	2000
Methylene Chloride	49	JB	20	2000
1 1-Dichloroethane	2000	U	20	2000
Mothyl Ethyl Ketone	2000	U	20	2000
Chloroform	2000	U	20	2000
1 1 1-Trichloroethane	2000	U	20	2000
Carbon totrachloride	2000	U	20	2000
Panzono	2000	U	20	2000
1 2-Dichloroethane	2000	U	20	2000
Trichloroethene	2000	U	20	2000
1.2 Diebloropropage	2000	Ū	20	2000
Remediableromethane	2000	Ū	20	2000
sis 1.2 Dichloropropene	2000	Ũ	20	2000
mothyl isobutyl ketope	2000	U	20	2000
Teluono	2000	Ú	20	2000
trong 1.2 Dichloropropene	2000	Ŭ	20	. 2000
1 1 2 Trichleroothana	2000	Ŭ	20	2000
	2000	Ū	20	2000
	2000	Ű	20	2000
2-Mexanone Diverse ableromethono	2000	Ŭ	20	2000
Olipromociliorometriane	2000	Ũ	20	2000
Chloropenzene	2000	ŭ	20	2000
Etnylbenzene	2000	Ű	20	2000
Styrene	2000	U U	20	2000
Bromotorn	2000	Ŭ	20	2000
1,1,2,2-1 etrachioroethane	2000	Ü Ü	20	2000
Xylenes, i otal	2000		20	2000
cis-1,2-Dichloroethene	2000	Ŭ	20	2000
trans-1,2-Dichloroethene	2000	U	20	2000
Dichlorodifiuoromethane	2000	U U	20	2000
I richlorofluoromethane	2000	U U	20	2000
1,1,2-Trichloro-1,2,2-trifluoroethane	2000	U U	20	2000
Methyl tert-butyl ether	2000	11	20	2000
1,2-Dibromoethane	2000	0	20	2000
lsopropylbenzene	2000	0	20	2000
1,3-Dichlorobenzene	2000	0	20	2000
1,4-Dichlorobenzene	2000	0	20	2000
1,2-Dichlorobenzene	2000	U	20	2000
1,2-Dibromo-3-Chloropropane	2000	U	20	2000

Analytical Data

Job Number: 220-3037-1

1. .

÷ 1

Sdg Number: 220-3037

Client: TestAmerica Laboratories, Inc.

Client Sample ID: MW-13D

Lab Sample ID:	220-3037-1	Date Sampled:	10/11/2007 1420
Client Matrix:	Water	Date Received:	10/12/2007 0935

OLM04.2/Vol CLP Volatile Organic Compounds

Method: OLM04.2/Vol Preparation: 5030B		Analysis Batch: 220-10223	Instri Lab I	iment ID: File ID:	O1407	7.D	
Dilution:	200		Initia	I Weight/Volu	ume:	5 mL	
Date Analyzed: Date Prepared:	10/12/2007 1520 10/12/2007 1520	Run Type: DL	Final	Weight/Volu	ıme:	5 mL	
Analyte		Result (ug/L)	Qualifier	MDL		RL	
1.2.4-Trichlorobenz	zene	2000	U	20		2000	
Methyl acetate		2000	U	20		2000	
Cyclohexane		2000	U	20		2000	
Methylcyclohexane	9	2000	U	20		2000	
Surrogate		%Rec		Acc	ceptance	e Limits	
1.2-Dichloroethane	ə-d4 (Surr)	97		76	5 - 114		
4-Bromofluoroben	zene	100		86	5 - 115		
Toluene-d8 (Surr)		93		88	3 - 110		

Analytical Data

Job Number: 220-3037-1

Sdg Number: 220-3037

Client: TestAmerica Laboratories, Inc.

Client Sample ID: TRIP BLANK

Leh Sample ID.	220-3037-2TB	Date Sampled:	10/11/2007	0000
Client Matrix	Water	Date Received:	10/12/2007	0935
Ollow Maana	• • • • • • • • • • • • • • • • • • • •			

OLM04.2/Vol CLP Volatile Organic Compounds

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	OLM04.2/Vol 5030B 1.0 10/12/2007 1317 10/12/2007 1317	Analysis Batch: 220-10223	Instrument ID: Lab File ID: Initial Weight/Vo Final Weight/Vol	HP 58 O1403 lume: lume:	390/5971A GC/MS 3.D 5 mL 5 mL
--	---	---------------------------	---	----------------------------------	--

Analyta	Result (ug/L)	Qualifier	MDL	RL.	
Analyte	10	U	0.10	10	
	10	Ū	0.10	10	
Vinyi chioride	10	Ŭ	0.10	10	
Bromometnane	10	Ū	0.10	10	
Chloroethane	10	ŭ	0.10	10	
1,1-Dichloroethene	10	11	0.10	10	
Carbon disulfide	10	11	0.10	10	
Acetone	10	IR	0.10	10	
Methylene Chloride	0.20	11	0.10	10	
1,1-Dichloroethane	10	1	0.10	10	
Methyl Ethyl Ketone	10	U U	0.10	10	
Chloroform	10	0	0.10	10	
1,1,1-Trichloroethane	10	U	0.10	10	
Carbon tetrachloride	10	0	0.10	10	
Benzene	10	U	0.10	10	
1,2-Dichloroethane	10	0	0.10	10	
Trichloroethene	10	U	0.10	10	
1,2-Dichloropropane	10	U	0.10	10	
Bromodichloromethane	10	U	0.10	10	
cis-1,3-Dichloropropene	10	U	0.10	10	
methyl isobutyl ketone	10	U	0.10	10	
Toluene	10	U	0.10	10	
trans-1,3-Dichloropropene	10	U	0.10	(IU 10	
1.1.2-Trichloroethane	10	U	0.10	10	
Tetrachloroethene	10	U	0.10	10	
2-Hexanone	10	U	0.10	10	
Dibromochloromethane	10	U	0.10	10	
Chlorobenzene	10	U	0.10	10	
Fthylbenzene	10	U	0.10	10	
Styrene	10	U	0.10	10	
Bromoform	10	U	0.10	+ · 10	
1 1 2 2-Tetrachloroethane	10	U	0.10	10	
Xvlenes Total	10	U	0.10	10	
cis-1 2-Dichloroethene	10	U	0.10	10	
trans-1 2-Dichloroethene	10	U	0.10	10	
Dichlorodifluoromethane	10	U	0.10	10	
Trichlorofluoromethane	10	U	0.10	10	
1 1 2 Trichloro 1 2 2-trifluoroethane	10	U	0.10	10	
Anthyl fort butyl other	10	U	0.10	10	
	10	U	0.10	10	
	10	U	0.10	10	
	10	Ű	0.10	10	
	10	U	0.10	10	
	10	Ū	0.10	10	
1,2-Dichlorobenzene	10	ũ	0.10	10	
1,2-Dibromo-3-Chioropropane	10	-			

Job Number: 220-3037-1

: •

÷ 1

Sdg Number: 220-3037

Client: TestAmerica Laboratories, Inc.

Client Sample ID: TRIP BLANK

 Lab Sample ID:
 220-3037-2TB
 Date Sampled:
 10/11/2007
 0000

 Client Matrix:
 Water
 Date Received:
 10/12/2007
 0935

OLM04.2/Vol CLP Volatile Organic Compounds

Method: Preparation: Dilution: Date Analyzed: Date Prepared:	OLM04.2/Vol 5030B 1.0 10/12/2007 1317 10/12/2007 1317	Analysis Batch: 220-10223	Ins Lat Init Fin	trument ID: o File ID: ial Weight/Volu al Weight/Volu	HP 5890/5971A GC/MS O1403.D ume: 5 mL ume: 5 mL	
Analyte		Result (ug/L)	Qualifier	MDL	RL	
1.2.4-Trichlorobenz	/ene	10	Ű	0.10	10	
Mothyl acetate		10	U	0.10	10	
Cyclobevane		10	U	0.10	10	
Methylcyclohexane	•	10	U	0.10	10	
Surrogate		%Rec		Acc	ceptance Limits	
1.2-Dichloroethane	-d4 (Surr)	96	and the second second second second second second second second second second second second second second second	76	6 - 114	
4.Bromofluorohen	zene	102		86	6 - 115	
Toluene-d8 (Surr)		95		88	8 - 110	

DATA REPORTING QUALIFIERS

Client: TestAmerica Laboratories, Inc.

Job Number: 220-3037-1 Sdg Number: 220-3037

> 1. - -

> > 21

Lab Section	Qualifier	Description
GC/MS VOA		
	U	Analyzed for but not detected.
	E	Compound concentration exceeds the upper level of the calibration range of the instrument for that specific analysis.
	J	Indicates an estimated value.
	Μ	Manual integrated compound.
	*	Surrogate exceeds the control limit
	В	The analyte was found in an associated blank, as well as in the sample.

Chain of Custody Record	TRENT SILL SOJ	
Client CT & May M. W. W. J. Project Manager J. M. M.	$\sqrt{N_{cc}}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{Date}{16}$ $\frac{1}{11}$ $\frac{1}{10}$ Chain of Oustody Number	
Address Niff Cal, Eyer Callin F. B.W. Direphone Number Area Code/Fax Nu	LOD / C/S/ D D C Lab Number Page _ of _	
OIV Sile Contact Sight Zip Code Sile Contact Lab Con		
Project Name and Location (State)	いた Special Instructio	
Contract/Purchase Order/Quote No.	Containers & トーゴ N W V Conditions of Hec	٥ť
Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date Time is a b b b b combined on one line)	HOPN HOPN HOPN HOPN HOPN HOPN HOPN HOPN	
1 1 22/1 a/11/21 <221-cm		
(MN1, 13 D 1, 9425		Vov
M. M. W 13D 1. 1920 1.		
11 11 11 11 11 11 11 11 11 11 11 11 11	D 4 SHOV	d'
WY Extris Quantities New Mitryin 1, 14 40	DIC	202
2 / 2 MM - 12 MM - 1445		
(1 - 13) = 13		
M.W -13 D 1, 1455		
(WW - 13 1) II ISWO	2. X X	
D TRIP NIK		1
Samila Distocal		
Possible Hazard Identification	Oisposal By Lab 🗌 Archive For Months for than 1 month)	-
Tum Around Time Required	Baptirements (Specify Ca). B ON APP 1201 Whe Amalysics	
T. Relinquished By ANALY NAME Date 11/07/1705 30 11	Asceived By 5 Parts of the Parts 5 Parts 1 Parts 5 Parts 5 Parts 1 Par	Â
2. Relinquished By Time 2:	Received By Mar I W and I W w 7 I W	
31 Geninquished BY - 5 5 / 5 / 15 / 10/11 / 07 / 19 3.	Account By Icol 12/02 W	6
Siments RUN BYISSOLVEC MR HAMAN & Strong	1- NONCHIMEd 0.6°C PASSED	-
DISTRIBUTION: WHITE - Returned to Client with Report: CANARY - Stays with the Sample; PINK - Freid Copy	NUILAD	3

C & S - Syracuse New York Office C & S - Midler MNA Testing

Sample ID: MW-13D Lab Sample ID: A7870701 Date Collected: 10/11/2007 Time Collected: 15:00 Date Received: 10/12/2007 Project No: NY4A9350 Client No: 428424 Site No:

1. - - -

÷ 1

Parameter	Result	<u>Flag</u>	Detection Limit	<u>Units</u>	Method	—Date/Time Analyzed	Analyst
Metals Analysis Iron - Total	1150		50.0	UG/L	6010	10/15/2007 13:37	
Wet Chemistry Analysis Ferric Iron Ferrous Iron Nitrate Nitrite Sulfate	1.2 ND ND ND ND		0.10 0.10 0.050 0.050 25.0	MG/L MG/L MG/L-N MG/L-N MG/L	3500FE-D 3500D 353.2 353.2 300.0	10/16/2007 10/12/2007 12:00 10/15/2007 10:29 10/15/2007 10:29 10/15/2007 15:49	MMB KD LRM LRM AEG

,

Date: 10/16/2007 Time: 17:01:16	C & S - Syracuse New York C & S - Midler MNA Test	Office ing			Rept: AN1178
Sample ID: MW-13D Lab Sample ID: A7B80801 Date Collected: 10/11/2007 Time Collected: 14:50				Date Pr (Received: 10/13/2007 oject No: NY4A9350 Client No: 428424 Site No:
Parameter	Result Flag)etection Limit	Units	Method	——Date/Time—— Analyzed Analyst
C&S - RSK 175 - METHANE - W	6000	110	UG/L	RSK175	10/15/2007 12:02 DJB

Methane

.

t. E t

÷ '

1

Page:

ANALYTICAL REPORT

Job Number: 560-6994-1 Job Description: Midler MNA Analysis

For: TestAmerica Laboratories, Inc. 10 Hazelwood Drive Amherst, NY 14228-2298 Attention: Mr. Richard Lafond

Erica # Padilla

Erica Padilla Project Manager I epadilla@stl-inc.com 10/16/2007

The test results entered in this report meet all NELAC requirements for accredited parameters. Any exceptions to NELAC requirements are noted in the report. Pursuant to NELAC, this report may not be reproduced except in full, and with written approval from the laboratory. TestAmerica Corpus Christi Certifications and Approvals: NELAC TX T104704210-06-TX, NELAC KS E-10362, Oklahoma 9968, USDA Soil Permit S-42935 Revised.

Job Narrative 560-J6994-1

General Chemistry

Sample 560-6994-1 was analyzed for dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) using EPA method 415.1. Insufficient sample volume was received to prep/analyze a matrix spike/matrix spike duplicate (MS/MSD) for this sample.

: - -

<u>بر</u>

EXECUTIVE SUMMARY - Detections

Client: TestAmerica Laboratories, Inc.

t.

ar t

Lab Sample ID Analyte	Client Sample ID	Result / C	ualifier	Reporting Limit	Units	Method	and the second second second second second second second second second second second second second second second
560-6994-1	MW-13D						
<i>Dissolved</i> Dissolved Organic Dissolved Inorgani	Carbon-D c Carbon-D	41 110	B B	1.0 1.0	mg/L mg/L	415.1 415.1	

METHOD SUMMARY

Client: TestAmerica Laboratories, Inc.			Job Number: 560-6994-1	
Description	Lab Location	Method	Preparation Method	
Matrix: Water	······			
Dissolved Organic Carbon, Combustion or Oxidation Sample Filtration performed in the Field	TAL CC TAL CC	MCAWW 415.1	FIELD_FLTRD	
Lab References:				
TAL CC = TestAmerica Corpus Christi				
Method References:				

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

1

<u>ا</u> م

METHOD / ANALYST SUMMARY

Client: TestAmerica Laboratories, Inc.

Method

MCAWW 415.1

Analyst Henny, April

AH

Analyst ID

Job Number: 560-6994-1

1. .

÷ 1

TestAmerica Corpus Christi

SAMPLE SUMMARY

Client: TestAmerica Laboratories, Inc.

Job Number: 560-6994-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
560-6994-1	MW-13D	Water	10/11/2007 1455	10/12/2007 0920

ہ ج

TestAmerica Corpus Christi
Job Number: 560-6994-1

1. + •

÷ 1

Mr. Richard Lafond TestAmerica Laboratories, Inc. 10 Hazelwood Drive Amherst, NY 14228-2298

Client Sample ID: Lab Sample ID:	MW-13D 560-6994-1			Date Date Clier	Sampled: 7 Received: 7 ht Matrix: 1	10/11/2007 1455 10/12/2007 0920 Water	
Analyte		Result/Q	ualifier	Unit	MDL	RL	Dilution
Method: Dissolved Dissolved Inorganic (-415.1 Carbon	110	В	Date Ar mg/L	nalyzed: 0.29	10/12/2007 1324 1.0	1.0
Method: Dissolved Dissolved Organic Ca	-415.1 arbon	41	В	Date Ar mg/L	nalyzed: 0.29	10/12/2007 1622 1.0	1.0

DATA REPORTING QUALIFIERS

Client: TestAmerica Laboratories, Inc.

Job Number: 560-6994-1

•

÷ 1

Lab Section	Qualifier	Description
General Chemistry		
	В	Compound was found in the blank and sample.
	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

QUALITY CONTROL RESULTS

TestAmerica Corpus Christi

10/16/2007

t. e •

÷ 1

Calculations are performed before rounding to avoid round-off errors in calculated results.

Quality Control Results

Job Number: 560-6994-1

Client: TestAmerica Laboratories, Inc.

Method Blank - Batch: 560-16288

Lab Sample ID: MB 560-16288/3

1.0

Date Analyzed: 10/12/2007 1324

Lab Sample ID: LCS 560-16288/4

Client Matrix: Water

Date Prepared: N/A

Dilution:

Method: 415.1 Preparation: N/A

Preparation: N/A

Instrument ID: TOC OI Analytical 1020A

Prep Batch: N/A Lab File ID: N/A Units: mg/L Initial Weight/Volume: Final Weight/Volume: 40 mL	Analysis Batch: Prep Batch: N/A Units: mg/L	560-16288	Instrument ID: TOC OI Analytical 1020A Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume: 40 mL
--	---	-----------	--

Analyte	Result	Qual	MDL	RL	
Dissolved Inorganic Carbon-D	0.31	J	0.29	1.0	
Lab Control Spike - Batch: 560-16288		1	Viethod: 415.1		

Lab Control Spike - Batch: 560-16288

Client Matrix: Dilution: Date Analyzed: Date Prepared:	Water 1.0 10/12/2007 1324 N/A	Prep Batch: N/A Units: mg/L		Lab Fil Initial \ Final V	le ID: N/A Weight/Volume: Veight/Volume: 40	mL
Analyte		Spike Amount	Result	% Rec.	Limit	Qual
Dissolved Inorg	anic Carbon-D	100	104	104	80 - 120	•

Analysis Batch: 560-16288

. .

÷ 1

1.

Quality Control Results

t. • •

÷ 1

Job Number: 560-6994-1

Client: TestAmerica Laboratories, Inc.

Method Blank - Batch: 560-16294

Method: 415.1 Preparation: N/A

Lab Sample ID: MB 560-16294/3 Client Matrix: Water Dilution: 1.0 Date Analyzed: 10/12/2007 1622 Date Prepared: N/A	Analysis Batch: 560-16294 Prep Batch: N/A Units: mg/L			Instrument ID: TOC OI Analytical 1020A Lab File ID: N/A Initial Weight/Volume: Final Weight/Volume: 40 mL		
Analyte	Result		Qual	MDL	RL	
Dissolved Organic Carbon-D	0.41		J	0.29	1.0	
Lab Control Spike - Batch: 560-16294				Method: 415.1 Preparation: N//	A	
Lab Sample ID:LCS 560-16294/4Client Matrix:WaterDilution:1.0Date Analyzed:10/12/2007 1622Date Prepared:N/A	Analysis Batch: Prep Batch: N/A Units: mg/L	560-16294		Instrument ID: TO Lab File ID: N/A Initial Weight/Volu Final Weight/Volu	C OI Analytical 1020A \ me: me: 40 mL	
Analyte	Spike Amount	Result	% Re	ec. Limit	Qual	
Dissolved Organic Carbon-D	100	104	104	80 - 1	20	

Calculations are performed before rounding to avoid round-off errors in calculated results.

LE C	Chain of Custory Number Page of Special Instructions/ Conditions of Receipt	WORLS TO CONDITION	и и и и и и и и и и и и и и и и и и и	C A WARES are ratained assessed if samples are ratained month) C A WARES Data
INTERNAL STL INTERNAL STL Vern Trent Laboratories, Inc.	Date Date			Ispacity Ed. B On Apricon 1 Spacity Cod. B On Apricon 1 Tan 1 Man 1
	Project Managet Telephone Number Telephone Number Sile Contact Sile Contact Cerner/Waybil Number Matrix Containers & Matrix Preservatives	HOWN HOWN ICH SCH EONH FOSZH FORT FOR FOS FOS FOS FOS FOS FOS FOS FOS FOS FOS	2 2 3 3 1 1 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 1 3 1 1 3 1 3 1 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 3 1 1 1 3 1 1 3 1 3 1 1 1 3 1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Chain of Custody Record	Cient 255 ENGINOUR Tal Cient 255 ENGINDERT Tal Adriness 499 Lat, Et le a Callin Bud City Structure Mill 17212 Project Namil and Location Sites and Tap Code Project Namil and Location Sites Mill 17212 Project Namil and Location Sites Mill 17212 Project Namil and Location Sites Mill 17212	Sample I.D. No. and Description (Containers for each sample may be combined on one line) Date (I) WW- (3 B (6/11/8) 1/1 MW- (3 B (1/2) 1/1 MW- 13 B (1/2) 1/1		Possible Hazard Identification Possible Hazard Identification Non-Hazard Efammable Skin Imfant Pouson B Tum Around Time Required 24 Hours 24 Hours 7 Days 14 Days 21 Day 1. Astinguished By 3. Relinquished By Comments CUN VLSSEUVEC

·----

Page 12 of 13

10/16/2007

Client: TestAmerica Laboratories, Inc.

Job Number: 560-6994-1

Login Number: 6994 Creator: Kellogg, Timothy L.	List Source: TestAmerica Corpus (
List Number: 1					
Question	T / F/ NA	Comment			
Radioactivity either was not measured or, if measured, is at or below	N/A				
background The cooler's custody seal, if present, is intact,	True				
The cooler or samples do not appear to have been compromised or tampered with	True				
Samples were received on ice.	True				
Cooler Temperature is acceptable.	True				
Cooler Temperature is recorded.	True	4.4 C			
COC is present.	True				
COC is filled out in ink and legible.	True				
COC is filled out with all pertinent information.	True				
There are no discrepancies between the sample IDs on the containers and the COC.	True				
Samples are received within Holding Time.	True				
Sample containers have legible labels.	True				
Containers are not broken or leaking.	True				
Sample collection date/times are provided.	True				
Appropriate sample containers are used.	True				
Sample bottles are completely filled.	True				
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True				
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	N/A	Not for VOC analysis.			
If necessary, staff have been informed of any short hold time or quick TAT needs	True				
Multiphasic samples are not present.	True				
Samples do not require splitting or compositing.	True				
		5. 2 4			

+ 1

ATTACHMENT D

SIREM Laboratory Data

•

+ 1

Interpretation of Quantitative Gene-Trac Dehalococcoides Test Results

1) Background:

Dehalococcoides group organisms (*Dhc*) are the only known microorganisms capable of complete dechlorination of chloroethenes (i.e., tetrachloroethene, trichloroethene, *cis*-dichloroethene, vinyl chloride to non-toxic ethene. The detection of the *Dhc* 16S ribosomal ribonucleic acid (rRNA) gene has been correlated with the complete biological dechlorination of chlorinated ethenes to ethene at contaminated sites (Hendrickson et. al., 2002, *Applied and Environmental Microbiology*, 68: 485-495). The Quantitative Gene-Trac *Dehalococcoides* test is a quantitative polymerase chain reaction (PCR) test used to determine the concentration of the *Dhc* 16S rRNA gene in soil and groundwater samples.

2) Interpretation of Test Results:

The Quantitative Gene-Trac test reports two types of results, *"Dehalococcoides* 16S rRNA Gene Copies" is a raw value whereas *"% Dehalococcoides* in Microbial Population" is the raw value expressed as percentage of total microbial population. A detailed explanation of the two types of results is provided below.

a) Dehalococcoides 16S rRNA Gene Copies

This value is the direct number of *Dhc* 16S rRNA gene copies detected in the sample. Results may be reported either per liter (for groundwater) or per gram (for soil). This number is generally interpreted as equivalent to the number of viable *Dhc* present in the sample when certain reasonable assumptions are made, including that the DNA quantified belongs to viable *Dhc* (i.e., not from dead *Dhc*) and that each *Dhc* cell contains only one 16S rRNA gene. Guidelines for relating this value to observable dechlorination impacts for groundwater samples are provided below.

- Values of 10³ gene copies per liter or lower, indicate the sample contains low concentrations of *Dhc* organisms which may indicate that site conditions are sub-optimal for high rates of dechlorination. Increases in *Dhc* concentrations at the site may be possible if conditions are modified (e.g., electron donor addition).
- Values of 10⁴-10⁶ gene copies per liter, indicates the sample contains moderate concentrations of *Dhc* which may, or may not, be associated with observable dechlorination impacts (i.e., ethene).
- Values at or above 10⁷ gene copies per liter, indicate the samples contains high concentrations of *Dhc* which is often associated with high rates of dechlorination and the production of ethene. Test results exceeding 10⁹ gene copies/liter are rarely observed.

Interpretation of Quantitative Gene-Trac Dehalococcoides Test Results

b) % Dehalococcoides in Microbial Population (% Dhc)

This value presents the percentage of *Dhc* (% *Dhc*) relative to other microorganisms in the sample based on the formulas below. % *Dhc* is a measure of the predominance of *Dhc and*, in general, the higher this percentage the better.

%
$$Dhc = \frac{Number Dhc}{Number Dhc + Number other Bacteria}$$

Where:

Number other Bacteria =
$$\frac{Total DNA in sample (ng) - DNA attributed to Dhc(ng)}{4.0 \times 10^{-6} ng DNA per bacterial cell}$$

The number of non-*Dhc* bacteria is estimated by assuming each non-*Dhc* bacterium contains 4.0×10^{-6} nanograms (ng) of DNA (Paul and Clark. 1996. Soil Microbiology and Biochemistry). Because the total mass of DNA in a sample is determined (by fluorometry) the total number of bacteria present can be estimated. For perspective, the % *Dhc* can range from very low fractions of percentages, in samples that have low numbers of *Dhc* and high numbers of other bacteria (incompletely colonized by *Dhc*), to greater than 50% in *Dhc* enriched cultures such as KB-1TM (fully colonized by *Dhc*).

In addition to determining the predominance of *Dhc*, this value is also used for interpretation of *Dhc* counts from different sampling locations or the same location over time, because it is normalized to total bacteria. In particular, the % *Dhc* value can be used to correct *Dhc* counts where samples are biased low due to non-representative sampling of biomass (bacteria). Example 1 below illustrates a scenario where the % *Dhc* value improves the interpretation of data where one sampling event was biased.

Example 1, use of % Dhc Value to interpret raw data

Example 1 presents results from monitoring well MW-1 sampled in April, May and June. Based on the raw *Dhc* counts alone (*Dehalococcoides* 16S rRNA Gene Copies) it might be assumed that the number of *Dhc* decreased 10-fold between April and May; however, based on the percentage of *Dhc* it is clear that the proportion of *Dhc* actually increased from April to May and that the low count is probably a case of sampling variability (biased low). The higher raw count and the higher percentage of *Dhc* in June confirms the trend of increasing *Dhc* concentrations over time.

Sample	Dehalococcoides 16S rRNA Gene Copies	% Dhc	Interpretation Based on % Dhc
MW-1-	1.0 x 10 ⁵ /Liter	0.1%	Dhc is a low proportion of total microbial population
MW-1– May	1.0 x 10 ⁴ /Liter	1%	<i>Dhc</i> predominance increased 10-fold from April, low count from low biomass sampled, non-biased sample would be $[(1 0/0 1) \times 1.0 \times 10^5] = 10^6$ /Liter
MW-1 June	1.0 x 10 ⁷ /Liter	10%	<i>Dhc</i> predominance moderate and has increased 100- fold from April

Leading Science. Lasting Solutions

Interpretation of Quantitative Gene-Trac Dehalococcoides Test Results

3) Explanation of Notes

Quantitation limit: The quantitation limit of Gene-Trac test is 2,150 *Dhc* 16S rRNA gene copies per liter. Note, the specific quantitation limit for each test varies depending on the volume of sample used in the DNA extraction process. For example, if only a ½ liter of water was used the quantitation limit would increase two-fold to 4300 gene copies per liter. The specific quantitation limit is provided only where *Dhc* is not detected.

Value is an estimated quantity between the quantitation limit and detection limit: This is applicable in situations where *Dhc* DNA is detected above the detection limit, but below the quantitation limit, of the standard curve. In such cases an estimated value is provided which is based on extrapolation of the standard curve.

Sample inhibited testing: Each Quantitative Gene-Trac test includes a quantification of the amount of DNA extracted from the sample and a second test to determine if the extracted DNA is suitable for *Dhc* testing (PCR with a universal Bacteria primer). If a sample is determined to contain DNA and PCR with universal primers is negative, it suggests that the extracted DNA inhibited the PCR. Inhibition may be caused by compounds present in the original groundwater sample (e.g., humic acids). Where inhibition occurs there is an increased likelihood of false negatives since *Dhc* DNA, if present, may not be detected.

DNA not extracted from the sample: If DNA is not detected in the sample then "DNA not extracted from the sample" is reported. This is commonly due to samples that contain little or no biomass (bacteria). In some cases sampling may not capture bacteria (e.g., when attached bacteria are not dislodged from the aquifer matrix).

4) Converting Standard Gene-Trac to Dhc 16S rRNA Gene Copies/Liter

Quantitative Gene-Trac provides quantitative results in *Dhc* 16S rRNA Gene Copies/Liter, whereas standard Gene-Trac provides semi-quantitative results using a plus scale. Based on parallel analysis of standard versus Quantitative Gene-Trac estimates of the number of *Dhc* gene copies for each + score in the standard test were determined. Note, the conversion factors do not apply in all cases and are meant to be used as a rule of thumb for relating standard Gene-Trac results to Quantitative-Gene-Trac.

tandard Gene-Trac Intensity Score + ++	Approximate Range of 16S rRNA Gene Copies/Liter				
*	10 ³ -10 ⁵				
++	10 ⁴ -10 ⁶				
+++	10 ⁵ -10 ⁷				
***	10 ⁶ -10 ⁸				

Estimated 16S rRNA Gene Copies/Liter for Standard Gene-Trac Intensity Scores

SEREN 6

130 Research Lane, Suite 2 Guelph, Ontario, N1G 5G3 Canada Tei: (519) 822-2265 Fax: (519) 822-3151

SIREM File Reference: S-1137

Analytical Results

Client Project Number: Client Project Number: Dals Samples Received: October 12, 2007 Dats Samples Analysed: October 15, 2007

		 		_	_			
	PCE		mg/L		2		001	
	1,1,2- TCA		mg/L	50,	5		0.01	
	TCE		mg/L	101	2		0.01	
	1,1,1- TCA		mg/L	* • • •	1.02		0.01	
	1,2- DCA		mg/L		177		60	
	Chloro- form		mg/L		5		0.01	
	cis-1,2- DCE		mg/L	-	0.32		0.01	
	1,1 DCA	 	ma/L		-0-		0.01	i
	trans-1,2- DCE		ma/L		<0.1		0.01	
~ _	1,1- DCE 1		malt		<u>60.1</u>		0.01	
	DCM		mail.		£0.1		0.01	
	Acetone		-line	*	ê.		0.01	
ĺ	Ethanol		() L		5		-	
	Chtoro- ethane	 	Į, m		<u>5</u>		0,01	
	Vinyt- hlorida		1		8.9		0.01	
	ethanol c				¢10		-	
	hloro- athang M						0.01	
	hane C		=	-1/50	10.77		0.01	
	E energy				3 6	2	100	-
				maß	54	2	1 1 1	5.5
		ampie	lution	actor		-		-
		(n 	÷	date f			-	
			Clier	a ample		2	ľ	5
				famme []	an an insidi	1079		
				COLUMN DA	SURGER NG	-10		
				-	umple ID	13D		
				*	Client St	-WW		
		 		-	-			

Comments:

Method: GC/FID headspace CL = Quantitation limit J = associated value is estimated; compound positively detected < = compound analysed for but not detected, associated value is QL. Sample QL is corrected for dilution. E = compound exceeded calibration limits

Kila Kempertek Analyst

R. Scholield, Laboratory Technician

A sirel Results approved:

16-Oct-07

£.

.

ł

÷ 1

Jeff Roberts Senior Laboratory Technictan

Date:

www.siremiab.com

430 Research Lane, Suite 2 Guelph, Ontario - M16 563 Phone 15491 832-2265 Fax 15191 832-3151

Certificate of Analysis: Quantitative Gene-Trac Dehalococcoides Assay

Customer: Tom Barba, C&S Engineers, Inc. Project: Midler Customer Reference: C81.002.001 SiREM Reference: S-1137 Report Issued: 17-Oct-07 Data Files: DHC-UP-0390/QPCR-0283

Table 1: Test Results

Customer Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent Dhc ^A	<i>Dehalococcoides</i> Ennumeration ^B
 MW-13D	DHC-3387	11-Oct-07	Groundwater	100%	2 x 10 ⁸ /liter

Notes:

Analyst:

^A Percent *Dehalococcoides* (Dhc) in microbial population. This value is calculated by dividing the number of Dhc 16S ribosomal ribonucleic acid (rRNA) gene copies by the total number of bacteria as estimated by the mass of DNA extracted from the sample. Range represents normal variation in Dhc enumeration.

^BBased on quantification of Dhc 16S rRNA gene copies. Dhc are generally reported to contain one 16S rRNA gene copy per cell; therefore, this number is often interpreted to represent the number of Dhc cells present in the sample.

(Wilkinson

Approved:

Vimena Druar

Ximena Druar, B.Sc. Molecular Biology Coordinator

Jennifer Wilkinson Biotechnology Technologist

www.sitemiab.com

130 Acres of Lone, Suite 2 Guelph, Ontario - N1G SG3 Phone 1519(-822-2265 #ax 1519) 822-3151

Certificate of Analysis: Gene-Trac-VC, Vinyl Chloride Reductase (vcrA) Assay

Customer: Tom Barba, C&S Engineers, Inc. Project: Midler Customer Reference: C81.002.001 SiREM Reference: S-1137 Report Issued: 17-Oct-07 Data Files: VC-QPCR-0100 VC-QPCR check-gel-0116

Table 1: Test Results

Customer Sample ID	SiREM Sample ID	Sample Collection Date	Sample Matrix	Percent <i>vcrA</i> ^A	Vinyl Chloride Reductase (<i>vcrA</i>) Gene Copies
 MW-13D	VCR-0637	11-Oct-07	Groundwater	>93%	6 x 10 ⁷ /liter

Notes:

^A Percent *vcrA* in microbial population. This value is calculated by dividing the number of vinyl chloride reductase A (*vcrA*) gene copies quantified by the total number of bacteria estimated to be in the sample based on the mass of DNA extracted from the sample. Range represents normal variation in enumeration of *vcrA*.

¹Defined as "greater than" as total DNA extracted is below the sample specific quantitation limit. This value represents the minimum % *Dehalococcoides* assuming DNA is at the quantitation threshold.

J Wilkinson

.

Jumena Druar

Ximena Druar, B.Sc. Molecular Biology Coordinator

Analyst:

Jennifer Wilkinson Biotechnology Technologist

Approved:

Table 2: Detailed Test Parameters, GeneTrac Test Reference S-1137

Customer Sample ID		MW-13D
SiREM Test ID		DHC-3387/VCR-0637
Date Received		12-Oct-07
Sample Temperature		4.1 °C
Volume Used for DNA Extraction		100 mL
DNA Extraction Date		15-Oct-07
DNA Concentration in Sample (extract:	able)	ND ⁽¹⁾
Extracted DNA Quality Test (universal F	PCR primers)	Passed
Secondary DNA Purification		NR
Dhc qPCR Analysis Date		16-Oct-07
vcrA qPCR Analysis Date		16-Oct-07
gPCR Controls (see Table 3)		Passed
Comments		
Notes: Refer to Table 3 for detailed results of controls. ¹ < detection limit of 1.2 ng/L. ND = not detected NR = not required	PCR = polymerase chain reaction qPCR = quantitative PCR Dhc = <i>Dehalococcoides</i> ng/L = nanograms per liter	°C = degrees Celsius mL = millitiers DNA = Deoxyribonucleic acid

1.

<u>ب</u> م

Table 3: Gene-Trac-Dhc Experimental Control Results, Gene-Trac Test Reference S-1137

Laboratory Control	Analysis Date	Control Description	Spiked Dhc 16S rRNA Gene Copies per Reaction	Recovered Dhc 16S rRNA Gene Copies per Reaction	Comments
Positive Control	16-Oct-07	qPCR with KB1 genomic DNA (1.2 x 10 ⁵ copies)	1.2 x 10 ⁵	1.0 × 10 ⁵	Normal ¹
DNA Extraction Blank	16-Oct-07	DNA extraction sterile water (DB-0657)	0	ŊŊ	Normal
Negative Control	16-Oct-07	Tris Reagent Blank	0	QN	Normal

Notes:

¹ Within defined limits of +/- 50% Dhc = *Dehalococcoides* DNA = Deoxyribonucleic acid ND = not detected qPCR = quantitative PCR 16S rRNA = 16S ribosomal ribonucleic acid

 4/5

Table 4: Gene-Trac-VC Experimental Control Results, Gene-Trac Test Reference S-1137

Laboratory Control	Analysis Date	Control Description	Spiked <i>vcrA</i> reductase Gene Copies per Reaction	Recovered <i>vcrA</i> reductase Gene Copies per Reaction	Comments
Positive Control Low Concentration	16-Oct-07	qPCR with cloned vinyl chloride dehalogenase gene (2.8 x 10 ⁵ copies)	2.8 x 10 ⁵	1.8 x 10 ⁵	Normal ¹
Positive Control High Concentration	16-Oct-07	qPCR with cloned vinyl chloride dehalogenase gene (2.8 x 10 ⁷ copies)	2.8 × 10 ⁷	1.6 x 10 ⁷	Normal ¹
DNA Extraction Blank	16-Oct-07	DNA extraction sterile water (DB-0657)	0	3.5 × 10 ³	Detected within acceptable limits ²
Negative Control	16-Oct-07	Tris Reagent Blank	0	DN	Normal

Notes:

ND = not detected

 1 Within defined limits of +/- 50%

²Acceptable where background is less than 2 orders of magnitude below sample result

qPCR = quantitative PCR

Dhc = Dehalococcoldes

DNA = Deoxyribonucleic acid vcrA = vinyl chloride reductase 5. . . 5/5

NO 1425 S 32 7/37 Page of 0			Preservative Key 6. None	7 1. HCL 2. Other	3. Other	6. Other	6. Other	Other Information							bute Only				ad By: Sionature	5	Printed Name	Firm	Date/func	
i1-1747 Fax (519) 822-3151	Analysis														1				Relinquishe	'n	Printed Name	Firm	Date/fime	
0dy Form 1519) 822-2265 or toll free 1-866-25 on		reservative (M) [1 2751	I WIN	2 C 20 20 -		1 J J M M				X								Received By:	- Adrenation	Printed Name	Firm	Date/Time	
Chain-Of-CuSử ph, Ontario, Canada N1G 5G3 / Phone www.siremlab.ce	COL MAL MAL	d			410 cuse, NY 13212	5-947	AMOR CLUNKEX	Ting Matrix containers	1 MM 1	1 (VOD NOW)	1400 WM 6				Invoice Information			D #	Relinquished By:	Signature .	Printed Name	Firm	Date/Time	
130 Research Lane, Suite 2 🤟 Gue	Project #	dAc		neers it nc.	in Collins Blud., S	A - 315- 45	Ume Sampler's Printed-TM	Lab ID Date	10/11/02	lah ka					pt P:0.#	2.7		Quotatio	Received By:	Signature	Printed K- it - MOINC	Fim SikEN	Date/fime	Lab Copy: Pink - Retained by Client
S REM Ste Recent & Management	Project Name M. I	Project Manager	Email Address	COMPANY CAS ENGI	Notress 499 Cal. E. A.	Phone # 315-455- 200	Sampler's Alennin CUW	Client Sample tD	MILLIZD		11111111111111111111111111111111111111				Cooler Condition:	Cooler lemperature:	Custody Seals: Yes		Relinquished By:	Signaryon Signaryon Chesher	Prince The second second		Date/Time 1. 1 ~ 1/12.0	Cistribunon, White - Rendra to Originator: Yellow

In the absence of an executed agreement, submission of samples to SIREM implies consent for performance of analyses specified on this Chain-of-Outrody form and agreement wate the terms and conditions of the SiREM (aborator/ Services Agreement. The enviry submitting samples shall be responsible for payment in full for said analyses.