

May 27, 2015

Mr. Albert M. Giannino Director of Leasing Pioneer Companies 333 West Washington Street, Suite 600 Syracuse, New York 13202

Re: Berm Sampling Report Pioneer Midler Avenue

File: 1537.005.001

Dear Mr. Giannino:

Barton & Loguidice D.P.C (B&L) has prepared this Sampling Report to describe observations and analytical results from the sampling conducted at the above referenced site. The sampling was conducted in accordance to B&L's proposal dated April 28, 2015. Representative soil/fill samples were collected from the berms at the northwest corner of the Midler Avenue property.

Background

Additional development may occur at the northwest corner of the site where two grass-covered berms are present with a combined estimated volume of 2,600 cubic yards (approximately 3,600 tons). This area and surrounding site (now occupied by a Lowes and SEFCU) were formerly known as the Midler Avenue Brownfield Project. Interim Remedial Measures (IRMs) were conducted on the site prior to 2007 under the Brownfield Cleanup Program (NYSDEC Site #C734103).

A Site Management Plan (SMP) and Environmental Easement were prepared in 2007 to describe procedures required to manage residual contamination at the site. The SMP includes a site cover system to be maintained to avoid direct contact with pre-existing urban fill and native soils. The berms apparently contain urban fill covered with site cover system materials. The SMP states that one composite and one duplicate sample will be collected for 2,000 cubic yards of stockpiled soil (assuming the material does not exhibit visual evidence of contamination). Further waste characterization of the berms was necessary to determine disposal options pursuant to the SMP.

Sampling Methodology

Sample Collection and Handling Procedures

B&L retained the services of NYEG Drilling, LLC of Brewerton, New York to provide drilling services. Sample recovery was conducted using a MacroCore® barrel sampler equipped with single-use, disposable acetate sleeves. The barrel sampler was decontaminated prior to each boring with an Alconox solution and potable water rinse.

1537.005.001 Berm Sampling Report-Midler Ave (ID 791429)

Mr. Albert M. Giannino Pioneer Companies May 27, 2015 Page 2

B&L supervised the advancement of eight borings using direct-push drilling equipment on May 6, 2015. Four borings were advanced in the western berm (WB-1 to WB-4) and four borings were advanced in the eastern berm (EB-1 to EB-4). The boring locations are shown on the sketch in Attachment A. Boring target depths were approximately 6 to 8 feet to penetrate the soil/fill to the approximate ground surface of the surrounding area. Soil/fill encountered in each boring was logged by a B&L environmental scientist and was field screened using a calibrated photo-ionization detector (PID).

B&L composited aliquots of the samples collected on the western berm to achieve a 4-point composite sample and a duplicate sample from that berm. Similar sampling was conducted from the eastern berm. Soil samples for laboratory analyses were placed into laboratory supplied bottle-ware, packed in a cooler with ice, and submitted with chain of custody documentation.

Analytical Parameters and Laboratory

The composite samples were analyzed for parameters typically required by non-hazardous waste landfills. Specifically:

- Toxicity characterization leaching procedure (TCLP) volatile organic compounds (VOCs)
- TCLP semi-volatile organic compounds (SVOCs)
- TCLP metals
- Total polychlorinated biphenyls (PCBs)
- Flashpoint
- Corrosivity as pH
- Ignitability
- Paint filter test
- Reactivity

Total VOC and SVOC samples were also collected (two samples and two duplicate samples). All analyses were completed by Spectrum Analytical, Inc., an appropriately accredited laboratory (ELAP Accreditation No. 11393).

Sampling Findings and Analytical Results

Soil Field Observations

The berms are mainly composed of mixed urban soil consisting of brown reworked soil (e.g., silt, sand, gravel, and clay) with grey cinders. In locations where the fill unit is generally thinner, a fine to coarsegrained sand unit of limited thickness is present beneath the fill. Water saturated soils were not observed.

In general, visual and/or olfactory impacted soil was not encountered. Petroleum staining, oily sheens or petroleum/chemical odors were not noted in the borings. PID readings were at non-detect or below 1 part per million by volume (ppmv) in each boring with the exception of borings WB-1 and WB-3. The 0 to 4 feet bgs interval in WB-1 contained peak PID readings of 2.4 ppmv. PID readings in this boring

Mr. Albert M. Giannino Pioneer Companies May 27, 2015 Page 3

decreased with depth. The 0 to 4 feet bgs interval in WB-3 contained peak PID readings of 2.3 ppmv. PID readings in this boring also decreased with depth.

Soil Quality Results

Summary tables with the analytical results are provided in Attachment B. Laboratory analytical reports prepared by Spectrum Analytical, Inc. and are provided in Attachment C. Reported concentrations were compared to regulatory thresholds for determining hazardous waste for purposes of land disposal. TCLP VOCs, TCLP SVOCs and TCLP Metals concentrations did not exceed maximum contaminant concentrations (40 CFR 261). Corrosivity, ignitability, and reactivity were also below limits that would result in the material being classified as hazardous waste.

Total organic compound concentrations were compared to NYSDEC Commissioner's Policy 51 Soil Cleanup Guidance (CP-51) Soil Cleanup Levels. Individual SVOCs were detected in each of the four samples and several SVOC concentrations exceeded CP-51 Soil Cleanup Levels in two of the four samples. The sum of individual SVOC concentrations ranged from 4350 to 65,195 micrograms per kilogram (ug/kg) in the samples. PCBs were detected at concentrations ranging from 36.4 to 262 ug/kg below the CP-51 Soil Cleanup Levels of 1,000 ug/kg for surface soils and 10,000 ug/kg for subsurface soils. Individual VOCs were not detected in the samples collected with the exception of a trace concentration of xylene at 19.8 ug/kg in the West Berm sample. The CP-51 Soil Cleanup Level for total xylene is 260 ug/kg. The organic compound concentrations detected appear to be typical of urban fill/soils and not from a point-source petroleum release.

Berm Soil Disposal and Reuse Options

The observations and analytical data demonstrate that the soil within the east and west berm areas do not have characteristics that would cause the material to be classified as hazardous waste. The berm material contains concentrations of organic compounds that exceed CP-51 Soil Cleanup Levels, and therefore the material would not meet the criteria for clean fill. Based on this sampling and consistent with the SMP, berm material that cannot be reused on the property must be disposed of at a facility permitted to receive non-hazardous industrial solid waste in accordance with Local, State and Federal regulations.

The SMP Section 3.4.5 allows for site soil that is excavated to be used as backfill provided it contains no visual or olfactory evidence of contamination and it is placed beneath a cover system component. Therefore, onsite re-use is an option for this material. If onsite re-use is chosen, site development plans should incorporate the use of this material and selecting a suitable cover. Site cover components in the SMP include the following:

- Clean Type 1 or 2 crushed gravel, or combination of clean crushed gravel fill and topsoil. Minimum of 12 inches.
- Asphalt roadways, sidewalks, or parking lots. Minimum of 4 inches.
- Concrete slab-on-grade structures, roads, sidewalks, and parking lots in lieu of asphalt. Minimum of 6 inches.

Mr. Albert M. Giannino Pioneer Companies May 27, 2015 Page 4

Other Considerations

The Contractor or owner representative should prepare a Health and Safety Plan and a Community Air Monitoring Plan prior to excavation of the berm or subsurface materials. The property is part of a Brownfield Cleanup Program project where an Environmental Easement restricts land use and if the lot containing the berm is divided or land use classification changes, then amending the Environmental Easement with the NYSDEC will be necessary.

If you have any questions or require further information, please contact me at (585) 325-7190.

Very truly yours,

BARTON & LOGUIDICE, D.P.C.

Greg V. Lesin

Greg V. Lesniak, P.G. Senior Project Hydrogeologist

GVL/akg Attachments Attachment A

Soil Boring Locations

Soil Boring Locations
 East Berm: EB-1 to EB-4
 West Berm: WB-1 to WB-4

Attachment B

Results Summary Table

Summary Table - Berm Samples Hazardous Characteristics

Project:	Midler	Avenue, Svracuse, N	ew York			
Project Number:	1537.00	5 001				
Client Sample ID:	1001.00	TCLP Maximum Contaminant	East Berm	East Berm - Duplicate	West Berm	West Berm- Duplicate
Lab Sample ID:		Concentrations	SCO7186-01	SCO7186-02	SCO7186-04	SCO7186-03
Date Sampled:		(40 CFR 261	5/6/2015	5/6/2015	5/6/2015	5/6/2015
Matrix:		6/96)	Soil	Soil	Soil	Soil
		,				
General Chemistry						
На		-	8 24	8.21	7.8	7 76
Flashpoint	Dea. F	-	>200	>200	>200	>200
Ignitability		_	Negative	Negative	Negative	Negative
Solids Percent	%	-	86	83.6	84.5	84.5
Eree Liquids	N/A	-	Absent	Absent	Absent	Absent
Cvanide Reactivity	ma/ka	_	<24.7	<24.7	<24.8	<25
Sulfide Reactivity	mg/kg	_	<49.4	<49.4	<49.6	<50
Guilde Reactivity	mg/kg		NH0.H	N43.4	<43.0	<50
TCLP VOCS (SW846 8260C)						
Devenue	···· • //	0.5	0.0000	0.0000	0.0000	0.0000
Benzene	mg/i	0.5	<0.0009	<0.0009	<0.0009	<0.0009
2-Butanone (MEK)	mg/i	200	<0.0062	<0.0062	<0.0062	<0.0062
	mg/i	0.5	<0.0011	<0.0011	<0.0011	<0.0011
Chlorobenzene	mg/i	100	<0.001	<0.001	<0.001	<0.001
Chloroform	mg/l	6	< 0.002	0.0024	<0.002	0.0026
1,4-Dichlorobenzene	mg/l	7.5	<0.0012	<0.0012	<0.0012	<0.0012
1,2-Dichloroethane	mg/l	0.5	<0.0008	<0.0008	<0.0008	<0.0008
1,1-Dichloroethene	mg/l	0.7	<0.0014	<0.0014	<0.0014	<0.0014
Hexachlorobutadiene	mg/l	0.5	<0.002	<0.002	<0.002	<0.002
Tetrachloroethene	mg/l	0.7	0.0099	0.0108	<0.0029	<0.0029
Trichloroethene	mg/l	0.5	<0.0019	<0.0019	<0.0019	<0.0019
Vinyl chloride	mg/l	0.2	<0.0017	<0.0017	<0.0017	<0.0017
TCLP SVOCs (SW846 8270D)						
						-
2-Methylphenol	mg/l	200	< 0.00214	< 0.00214	< 0.00214	< 0.00214
3&4-Methylphenol	mg/l	200	< 0.00222	< 0.00222	< 0.00222	< 0.00222
Pentachlorophenol	mg/l	100	< 0.00215	< 0.00215	< 0.00215	< 0.00215
2,4,5-Trichlorophenol	mg/l	400	< 0.00209	< 0.00209	< 0.00209	< 0.00209
2,4,6-Trichlorophenol	mg/l	2	< 0.00196	< 0.00196	< 0.00196	< 0.00196
1,4-Dichlorobenzene	mg/l	7.5	< 0.00202	< 0.00202	< 0.00202	< 0.00202
2,4-Dinitrotoluene	mg/l	0.13	< 0.00238	< 0.00238	< 0.00238	< 0.00238
Hexachlorobenzene	mg/l	0.13	< 0.00215	< 0.00215	< 0.00215	< 0.00215
Hexachlorobutadiene	mg/l	0.5	< 0.00203	< 0.00203	< 0.00203	< 0.00203
Hexachloroethane	mg/l	3	< 0.00215	< 0.00215	< 0.00215	< 0.00215
Nitrobenzene	mg/l	2	< 0.00212	< 0.00212	< 0.00212	< 0.00212
Pyridine	mg/l	5	< 0.00162	< 0.00162	< 0.00162	< 0.00162
TCLP Metals Analysis						
Arsenic	mg/l	5	< 0.0026	0.0028	0.0049	0.0054
Barium	ma/l	100	0.374	0.418	0.416	0.41
Cadmium	ma/l	1	0,0005	0.0007	0.0012	0.0012
Chromium	ma/l	5	0.0028	0.004	0.0036	0.0044
heal	ma/l	5	< 0.0020	0.0057	0.0214	0.0136
Mercury	ma/l	0.2		< 0.0001	< 0.0214	< 0.0100
Selenium	ma/l	1	< 0.00000	0.0057	0.0044	0.0072
Gilvor	ma/l	5	< 0.0043		< 0.0044	0.0072
Silver	iliy/i	5	< 0.0014	< 0.0014	< 0.0014	< 0.0014

Notes:

Refer to Laboratory Analytical Reports for full list of compounds analyzed, qualifiers and analytical notes.

Project:	Midler /	Avenue, Syracuse, New	fork			
Project Number:	1537.00	5.001				
		[[
Client Sample ID:		CB-51	East Berm	East Berm - Duplicate	West Berm	West Berm- Duplicate
Lab Sample ID:		Soil Cleanup Levels	SC07188-01	SC07188-02	SC07188-03	SC07188-04
Date Sampled:			5/6/2015	5/6/2015	5/6/2015	5/6/2015
Matrix:			Soil	Soil	Soil	Soil
NYSDEC STARS List Petroleum	n Constitue	ents VOCs (SW846 82600	;)			
Benzene	ug/kg	60	< 1.4	< 1.5	< 12.0	< 1.0
n-Butylbenzene	ug/kg	12000	< 2.1	< 2.3	< 18.9	< 1.6
sec-Butylbenzene	ug/kg	11000	< 5.8	< 6.3	< 51.7	< 4.4
tert-Butylbenzene	ug/kg	5900	< 4.9	< 5.3	< 43.4	< 3.7
Ethylbenzene	ug/kg	1000	< 1.3	< 1.4	< 11.6	< 1.0
Isopropylbenzene	ug/kg	100000	< 1.4	< 1.5	< 12.6	< 1.1
4-Isopropyltoluene	ug/kg	NS	< 7.0	< 7.6	< 62.0	< 5.3
Methyl tert-butyl ether	ug/kg	930	< 2.9	< 3.1	< 25.5	< 2.2
Naphthalene	ug/kg	12000	< 6.8	< 7.4	< 60.6	< 5.1
n-Propylbenzene	ug/kg	3900	< 7.2	< 7.8	< 64.0	< 5.4
Toluene	ug/kg	700	< 1.7	< 1.9	< 15.2	< 1.3
1,2,4-Trimethylbenzene	ug/kg	3600	< 1.9	< 2.0	< 16.6	< 1.4
1,3,5-Trimethylbenzene	ug/kg	8400	< 2.1	< 2.3	< 19.0	< 1.6
m,p-Xylene	ug/kg	260	< 1.5	< 1.6	19.8	< 1.1
o-Xylene	ug/kg	260	< 1.6	< 1.7	< 14.1	< 1.2
NYSDEC STARS List Petroleum	n Constitue	ents SVOCs (SW846 8270)D)			
Acenaphthene	ua/ka	2000	< 99.3	< 100	1300	390
Acenaphthylene	ug/kg	10000	< 90.3	< 91.2	213	185
Anthracene	ug/kg	100000	151	120	2720	851
Benzo (a) anthracene	ua/ka	1000	613	410	5450	3280
Benzo (a) pyrene	ua/ka	1000	598	395	4170	2850
Benzo (b) fluoranthene	ua/ka	1000	764	537	6010	4220
Benzo (g,h,i) pervlene	ug/kg	100000	311	219	2170	1640
Benzo (k) fluoranthene	ug/kg	800	292	163	1750	1200
Chrysene	uq/kq	1000	517	376	4280	2980
Dibenzo (a,h) anthracene	ug/kg	330	< 78.2	< 78.9	605	411
Fluoranthene	ug/kg	100000	1070	743	13100	7150
Fluorene	ug/kg	30000	< 102	< 103	1590	322
Indeno (1,2,3-cd) pyrene	ug/kg	500	387	253	2680	1890
1-Methylnaphthalene	ug/kg	NS	< 108	< 109	492	< 101
2-Methylnaphthalene	ug/kg	410	< 87.8	< 88.7	525	103
Naphthalene	ug/kg	12000	< 86.7	< 87.6	510	179
Phenanthrene	ug/kg	10000	474	479	9950	4140
Pyrene	ug/kg	10000	<u>898</u>	<u>655</u>	<u>7680</u>	<u>6190</u>
Total SVO	Cs ug/kg	500000	6075	4350	65195	37981
PCBs (SW846 8082)						
Araplar 1016		1 000	00.0	00.0	00.0	00.4
Aroclor 1221	ug/kg	1,000	< 20.9	< 20.9	< 20.6	< 20.1
Aroclor-1221	ug/kg	1,000	< 17.8	< 17.8	< 17.5	< 17.1
Aroclor-1242	ug/kg	1,000	< 20.8	< 20.8	< 20.5	< 20.0
Aroclor-1242	ug/kg	1,000	< 14.4	< 14.4	< 14.2	< 13.8
Aroclor-1248	ug/kg	1,000	< 14.5	< 14.5	< 14.3	< 14.0
Arodor 1260	ug/kg	1,000	< 16.0	< 16.0	< 15.7	< 15.4
Aroclor-1262	ug/kg	1,000	<u>∠U8</u>	202	- 00 4	30.4
Aroclor-1202	ug/kg	1,000	< 20.8	< 20.8	< 20.4	< 20.0
AIUGUI-1200	uy/kg	1,000	< 22.0	< 22.0	< 22.4	< 21.9

Summary Table - Berm Samples - Organic Compounds

Notes:

Refer to Laboratory Analytical Reports for full list of compounds analyzed, qualifiers and analytical notes. CP-51 Soil Cleanup Levels - NYSDEC Commissioners Policy Soil Cleanup Guidance

PCB CP-51 Soil Cleanup Level is 1,000 ug/kg for surface soils and 10,000 ug/kg for subsurface soils. Shaded results exceed CP-51 Soil Cleanup Levels

NS - no individual soil cleanup level

Attachment C

Laboratory Analytical Report

Report Date: 18-May-15 11:40

Final ReportRe-Issued ReportRevised Report

Barton & Loguidice, D.P.C. 11 Centre Park Suite 203 Rochester, NY 14614 Attn: Greg Lesniak

Project: Pioneer Midler Ave - Syracuse, NY Project #: 1537.005.001

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SC07188-01	East Berm	Soil	06-May-15 08:51	06-May-15 11:30
SC07188-02	East Berm - Dupe	Soil	06-May-15 08:51	06-May-15 11:30
SC07188-03	West Berm	Soil	06-May-15 09:45	06-May-15 11:30
SC07188-04	West Berm - Dupe	Soil	06-May-15 09:45	06-May-15 11:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435

Authorized by:

Aliole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 19 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 12.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Method SW846 5035A is designed to use on samples containing low levels of VOCs, ranging from 0.5 to 200 ug/Kg. Target analytes that are less responsive to purge and trap may be present at concentrations over 200ug/Kg but may not be reportable in the methanol preserved vial (SW846 5030). This is the result of the inherent dilution factor required for the methanol preservation.

All volatile soil/product/solid samples should be collected in accordance method SW846 5035/5035A. Any sample with a result below 200ug/Kg that has not been collected in accordance with method 5035/5035A must be evaluated as potentially biased low.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 8260C

Calibration:

1504013
Analyte quantified by quadratic equation type calibration.
Naphthalene
This affected the following samples:
S502844-ICV1
1504015
Analyte quantified by quadratic equation type calibration.
Analyte quantified by quadratic equation type calibration. Naphthalene
Analyte quantified by quadratic equation type calibration. Naphthalene This affected the following samples:
Analyte quantified by quadratic equation type calibration. Naphthalene This affected the following samples: 1509227-BLK1
Analyte quantified by quadratic equation type calibration. Naphthalene This affected the following samples: 1509227-BLK1 1509227-BS1

1509227-BSD1 East Berm East Berm - Dupe S503006-ICV1 S504458-CCV1 West Berm - Dupe

Samples:

SC07188-03 West Berm

Elevated Reporting Limits due to the presence of high levels of non-target analytes; sample may not meet client requested reporting limit for this reason.

SW846 8270D

Samples:

SC07188-01	East Berm							
The Reporting Limit has been raised to account for matrix interference.								
SC07188-02	East Berm - Dupe							
The Reporting Limit has	The Reporting Limit has been raised to account for matrix interference.							
SC07188-03	West Berm							
The Reporting Limit has	The Reporting Limit has been raised to account for matrix interference.							
SC07188-04	West Berm - Dupe							

The Reporting Limit has been raised to account for matrix interference.

Sample Acceptance Check Form

Client:	Barton & Loguidice, D.P.C Rochester, NY
Project:	Pioneer Midler Ave - Syracuse, NY / 1537.005.001
Work Order:	SC07188
Sample(s) received on:	5/6/2015

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>
Were custody seals present?		\checkmark
Were custody seals intact?		
Were samples received at a temperature of $\leq 6^{\circ}$ C?		\checkmark
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark	
Were sample containers received intact?	\checkmark	
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark	
Were samples accompanied by a Chain of Custody document?	\checkmark	
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		
Did sample container labels agree with Chain of Custody document?	\checkmark	
Were samples received within method-specific holding times?	\checkmark	

		\checkmark
	\checkmark	
\checkmark		
\checkmark		
\checkmark		

N/A

Sample Identification		Client P	Client Project #		Matrix	Coll	Received						
East Bern	n			1527.00	$10 \int c c t \frac{\pi}{m}$		Sail	Soil 06 May 15 08:5					
SC07188-	01			1557.00	5.001		5011	06	-May-15 08	5:51	06-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Lab		N/A			1	VOC Soil	08-May-1	08-May-1	DT	1509058	1
		extracted						Extraction	5	5			
Volatile Or	rganic Full Aromatics by S	SW846											
Prepared	by method SW846 5035	A Soil (low leve	el)			Init	ial weight:	5.32 q					
71-43-2	Benzene	< 1.4	UJL	µg/kg dry	7.5	1.4	1	SW846 8260C	12-May-1	12-May-1	SJB	1509227	Х
104-51-8	n-Butylbenzene	< 2 1	UJL	ua/ka drv	75	21	1		5	5	"	"	х
135-98-8	sec-Butylbenzene	< 5.8	UJL	ua/ka drv	7.5	5.8	1	"			"	"	x
98-06-6	tert-Butvlbenzene	< 4.9	UJL	ua/ka drv	7.5	4.9	1				"		x
100-41-4	Ethylbenzene	< 1.3	UJL	µg/kg dry	7.5	1.3	1				"		х
98-82-8	Isopropylbenzene	< 1.4	UJL	ua/ka drv	7.5	1.4	1				"		х
99-87-6	4-Isopropyltoluene	< 7.0	UJL	ua/ka drv	7.5	7.0	1				"		x
1634-04-4	Methyl tert-butyl ether	< 2.9	UJL	µg/kg dry	7.5	2.9	1				"		х
91-20-3	Naphthalene	< 6.8	UJL	µg/kg dry	7.5	6.8	1				"		х
103-65-1	n-Propylbenzene	< 7.2	UJL	µg/kg dry	7.5	7.2	1		"		"	"	х
108-88-3	Toluene	< 1.7	UJL	µg/kg dry	7.5	1.7	1		"		"	"	х
95-63-6	1,2,4-Trimethylbenzene	< 1.9	UJL	µg/kg dry	7.5	1.9	1				"		х
108-67-8	1,3,5-Trimethylbenzene	< 2.1	UJL	µg/kg dry	7.5	2.1	1						х
179601-23-1	m,p-Xylene	< 1.5	UJL	µg/kg dry	14.9	1.5	1						х
95-47-6	o-Xylene	< 1.6	UJL	µg/kg dry	7.5	1.6	1	"	"		"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	80 %							
2037-26-5	Toluene-d8	105			70-13	80 %					"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	80 %					"		
1868-53-7	Dibromofluoromethane	121			70-13	80 %					"		
Semivolati	le Organic Compounds by	GCMS											
PAHs by S	SW846 8270		R01										
Prepared	by method SW846 3545	<u>4</u>											
83-32-9	Acenaphthene	< 99.3	U, D	µg/kg dry	426	99.3	5	SW846 8270D	11-May-15	15-May-1 5	MSL	1509090	Х
208-96-8	Acenaphthylene	< 90.3	U, D	µg/kg dry	426	90.3	5	"			"	"	х
120-12-7	Anthracene	151	J, D	µg/kg dry	426	97.4	5		"	"	"	"	Х
56-55-3	Benzo (a) anthracene	613	D	µg/kg dry	426	88.2	5		"	"	"	"	Х
50-32-8	Benzo (a) pyrene	598	D	µg/kg dry	426	88.7	5		"	"	"	"	Х
205-99-2	Benzo (b) fluoranthene	764	D	µg/kg dry	426	97.0	5				"		Х
191-24-2	Benzo (g,h,i) perylene	311	J, D	µg/kg dry	426	92.2	5				"		Х
207-08-9	Benzo (k) fluoranthene	292	J, D	µg/kg dry	426	97.0	5				"		Х
218-01-9	Chrysene	517	D	µg/kg dry	426	104	5				"		Х
53-70-3	Dibenzo (a,h) anthracene	< 78.2	U, D	µg/kg dry	426	78.2	5				"		Х
206-44-0	Fluoranthene	1,070	D	µg/kg dry	426	107	5				"		Х
86-73-7	Fluorene	< 102	U, D	µg/kg dry	426	102	5		"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	387	J, D	µg/kg dry	426	87.1	5		"	"	"	"	Х
90-12-0	1-Methylnaphthalene	< 108	U, D	µg/kg dry	426	108	5	"	"		"	"	
91-57-6	2-Methylnaphthalene	< 87.8	U, D	µg/kg dry	426	87.8	5	"	"		"	"	х
91-20-3	Naphthalene	< 86.7	U, D	µg/kg dry	426	86.7	5	"	"		"	"	х
85-01-8	Phenanthrene	474	D	µg/kg dry	426	104	5	"	"		"	"	х
129-00-0	Pyrene	898	D	µg/kg dry	426	90.7	5		"		"	"	Х

Scor188-01			<u>Client Project #</u> 1537.005.001		<u>Matrix</u> Soil	<u>Colle</u> 06	ection Date/Time 5-May-15 08:51		<u>Received</u> 06-May-15				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	le Organic Compound	s by GCMS											
PAHs by S Prepared	<u>SW846 8270</u> by method SW846 35	545 <u>A</u>	R01										
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	69			30-13	0%		SW846 8270D	11-May-15	15-May-15	MSL	1509090	
1718-51-0	Terphenyl-dl4	66			30-13	0%			"	"	"		
4165-60-0	Nitrobenzene-d5	75			30-13	0 %		"	"		"	"	
General C	hemistry Parameters												
	% Solids	77.9		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	

Sample Id	entification			Client P	roject#		Matrix	Coll	ection Date	/Time	Re	ceived	
East Bern	n - Dupe			1537 005 001		<u>Iviaulix</u>		<u>Iection Date/Time</u>		06 May 15			
SC07188-	02			1557.00	5.001		5011	06	-way-15 08	5.51	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	ganic Compounds												
	VOC Extraction	Lab extracted		N/A			1	VOC Soil Extraction	08-May-1 5	08-May-1 5	DT	1509058	
Volatile O	rganic Full Aromatics by S	SW846											
8260													
Prepared	by method SW846 50354	A Soil (low leve	<u>el)</u>			<u>Init</u>	ial weight:	<u>4.99 g</u>					
71-43-2	Benzene	< 1.5	UJL	µg/kg dry	8.1	1.5	1	SW846 8260C	12-May-1 5	12-May-1 5	SJB	1509227	Х
104-51-8	n-Butylbenzene	< 2.3	UJL	µg/kg dry	8.1	2.3	1	"	"		"	"	х
135-98-8	sec-Butylbenzene	< 6.3	UJL	µg/kg dry	8.1	6.3	1		"		"		х
98-06-6	tert-Butylbenzene	< 5.3	UJL	µg/kg dry	8.1	5.3	1		"	"	"	"	х
100-41-4	Ethylbenzene	< 1.4	UJL	µg/kg dry	8.1	1.4	1		"		"	"	х
98-82-8	Isopropylbenzene	< 1.5	UJL	µg/kg dry	8.1	1.5	1		"		"	"	х
99-87-6	4-Isopropyltoluene	< 7.6	UJL	µg/kg dry	8.1	7.6	1		"	"	"	"	х
1634-04-4	Methyl tert-butyl ether	< 3.1	UJL	µg/kg dry	8.1	3.1	1		"		"	"	х
91-20-3	Naphthalene	< 7.4	UJL	µg/kg dry	8.1	7.4	1		"		"	"	х
103-65-1	n-Propylbenzene	< 7.8	UJL	µg/kg dry	8.1	7.8	1		"			"	х
108-88-3	Toluene	< 1.9	UJL	µg/kg dry	8.1	1.9	1		"			"	х
95-63-6	1,2,4-Trimethylbenzene	< 2.0	UJL	µg/kg dry	8.1	2.0	1		"			"	х
108-67-8	1,3,5-Trimethylbenzene	< 2.3	UJL	µg/kg dry	8.1	2.3	1		"		"	"	х
179601-23-1	m,p-Xylene	< 1.6	UJL	µg/kg dry	16.1	1.6	1		"		"	"	х
95-47-6	o-Xylene	< 1.7	UJL	µg/kg dry	8.1	1.7	1	"	"		"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0%			"				
2037-26-5	Toluene-d8	107			70-13	0%			"				
17060-07-0	1.2-Dichloroethane-d4	113			70-13	0%			"				
1868-53-7	Dibromofluoromethane	115			70-13	0%			"				
Semivolati	le Organic Compounds by	GCMS											
PAHs by S	SW846 8270	Genio	R01										
Prepared	by method SW846 35454	<u>4</u>											
83-32-9	Acenaphthene	< 100	U, D	µg/kg dry	430	100	5	SW846 8270D	11-May-15	15-May-1 5	MSL	1509090	х
208-96-8	Acenaphthylene	< 91.2	U, D	µg/kg dry	430	91.2	5		"	"	"	"	х
120-12-7	Anthracene	120	J, D	µg/kg dry	430	98.3	5		"		"	"	х
56-55-3	Benzo (a) anthracene	410	J, D	µg/kg dry	430	89.0	5		"			"	х
50-32-8	Benzo (a) pyrene	395	J, D	µg/kg dry	430	89.6	5		"		"	"	х
205-99-2	Benzo (b) fluoranthene	537	D	µg/kg dry	430	97.9	5		"		"	"	х
191-24-2	Benzo (g,h,i) perylene	219	J, D	µg/kg dry	430	93.1	5		"			"	х
207-08-9	Benzo (k) fluoranthene	163	J, D	µg/kg dry	430	97.9	5		"		"	"	Х
218-01-9	Chrysene	376	J, D	µg/kg dry	430	105	5		"		"	"	х
53-70-3	Dibenzo (a,h) anthracene	< 78.9	U, D	µg/kg dry	430	78.9	5		"		"	"	х
206-44-0	Fluoranthene	743	D	µg/kg dry	430	108	5		"		"	"	х
86-73-7	Fluorene	< 103	U, D	µg/kg dry	430	103	5		"		"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	253	D, J	µg/kg dry	430	87.9	5	"	"		"	"	х
90-12-0	1-Methylnaphthalene	< 109	U, D	µg/kg dry	430	109	5	"	"		"	"	
91-57-6	2-Methylnaphthalene	< 88.7	U, D	µg/kg dry	430	88.7	5	"	"		"	"	х
91-20-3	Naphthalene	< 87.6	U, D	µg/kg dry	430	87.6	5	"	"		"	"	х
85-01-8	Phenanthrene	479	D	µg/kg dry	430	105	5	"	"		"	"	х
129-00-0	Pyrene	655	D	µg/kg dry	430	91.6	5	"	"		"	"	х

Sample Identification East Berm - Dupe SC07188-02			<u>Client Project #</u> 1537.005.001		<u>Matrix</u> Soil	<u>Colle</u> 06-	ection Date/Time -May-15 08:51		<u>Received</u> 06-May-15				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds l	by GCMS											
PAHs by S Prepared	<u>SW846 8270</u> by method SW846 354	<u>5A</u>	R01										
Surrogate i	recoveries:												
321-60-8	2-Fluorobiphenyl	58			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	
1718-51-0	Terphenyl-dl4	56			30-13	0 %		"	"			"	
4165-60-0	Nitrobenzene-d5	66			30-13	0 %		"	"		"	"	
General C	hemistry Parameters												
	% Solids	76.6		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	

Sample Id	lentification			Client P	roiect #		Matrix	Coll	ection Date	/Time	Re	ceived	
West Ber	m			1537.00)5 001		Soil	<u>06</u>	-May-15.00)·15	06-1	May_15	
SC07188-	-03			1557.00	5.001		3011	00	-wiay-15 05	7.45	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile Or	rganic Compounds												
	VOC Extraction	Lab		N/A			1	VOC Soil	08-May-1	08-May-1	DT	1509058	'
Volatile O	rganic Full Aromatics by s	SW846	R05					LXII dolloii	5	5			
8260		011040											
Prepared	by method SW846 5035/	A Soil (high lev	<u>/el)</u>			<u>Init</u>	tial weight:	14.78 g					
71-43-2	Benzene	< 12.0	UJL, D	µg/kg dry	66.1	12.0	50	SW846 8260C	13-May-1 5	13-May-1 5	SJB	1509327	Х
104-51-8	n-Butylbenzene	< 18.9	UJL, D	µg/kg dry	66.1	18.9	50		"	"	"	"	х
135-98-8	sec-Butylbenzene	< 51.7	UJL, D	µg/kg dry	66.1	51.7	50	"	"		"	"	х
98-06-6	tert-Butylbenzene	< 43.4	UJL, D	µg/kg dry	66.1	43.4	50		"	"	"	"	х
100-41-4	Ethylbenzene	< 11.6	UJL, D	µg/kg dry	66.1	11.6	50			"	"	"	Х
98-82-8	Isopropylbenzene	< 12.6	UJL, D	µg/kg dry	66.1	12.6	50		"	"	"	"	Х
99-87-6	4-Isopropyltoluene	< 62.0	UJL, D	µg/kg dry	66.1	62.0	50				"	"	х
1634-04-4	Methyl tert-butyl ether	< 25.5	UJL, D	µg/kg dry	66.1	25.5	50				"	"	х
91-20-3	Naphthalene	< 60.6	UJL, D	µg/kg dry	66.1	60.6	50				"		х
103-65-1	n-Propylbenzene	< 64.0	UJL, D	µg/kg dry	66.1	64.0	50			"	"		х
108-88-3	Toluene	< 15.2	UJL, D	µg/kg dry	66.1	15.2	50			"			х
95-63-6	1,2,4-Trimethylbenzene	< 16.6	UJL, D	µg/kg dry	66.1	16.6	50			"	"		х
108-67-8	1,3,5-Trimethylbenzene	< 19.0	UJL, D	µg/kg dry	66.1	19.0	50		"	"	"	"	х
179601-23-1	m,p-Xylene	19.8	JL, D	µg/kg dry	132	13.0	50		"	"	"	"	х
95-47-6	o-Xylene	< 14.1	UJL, D	µg/kg dry	66.1	14.1	50	"	"		"	"	х
Surrogate r	ecoveries:												
460-00-4	4-Bromofluorobenzene	102			70-13	80 %							
2037-26-5	Toluene-d8	100			70-13	80 %			"	"	"	"	
17060-07-0	1.2-Dichloroethane-d4	89			70-13	80 %							
1868-53-7	Dibromofluoromethane	95			70-13	80 %		"			"	"	
Semivolati	le Organic Compounds by	GCMS											
PAHs by S	SW846 8270		R01										
Prepared	by method SW846 3545/	<u>A</u>											
83-32-9	Acenaphthene	1,300	D	µg/kg dry	383	89.4	5	SW846 8270D	11-May-15	15-May-1 5	MSL	1509090	Х
208-96-8	Acenaphthylene	213	D, J	µg/kg dry	383	81.3	5	"	"	"	"	"	х
120-12-7	Anthracene	2,720	D	µg/kg dry	383	87.7	5			"	"	"	х
56-55-3	Benzo (a) anthracene	5,450	D	µg/kg dry	383	79.4	5			"	"	"	х
50-32-8	Benzo (a) pyrene	4,170	D	µg/kg dry	383	79.9	5			"	"	"	х
205-99-2	Benzo (b) fluoranthene	6,010	D	µg/kg dry	383	87.4	5			"	"		х
191-24-2	Benzo (g,h,i) perylene	2,170	D	µg/kg dry	383	83.1	5			"	"		х
207-08-9	Benzo (k) fluoranthene	1,750	D	µg/kg dry	383	87.4	5		"	"	"	"	х
218-01-9	Chrysene	4,280	D	µg/kg dry	383	93.7	5				"	"	х
53-70-3	Dibenzo (a,h) anthracene	605	D	µg/kg dry	383	70.4	5			"			х
206-44-0	Fluoranthene	13,100	D	µg/kg dry	383	96.3	5			"			х
86-73-7	Fluorene	1,590	D	µg/kg dry	383	91.9	5					"	х
193-39-5	Indeno (1,2,3-cd) pyrene	2,680	D	µg/kg dry	383	78.4	5		"	"	"	"	х
90-12-0	1-Methylnaphthalene	492	D	µg/kg drv	383	97.0	5	"	"		"	"	
91-57-6	2-Methylnaphthalene	525	D	µg/kg drv	383	79.1	5	"	"		"	"	х
91-20-3	Naphthalene	510	D	µg/ka drv	383	78.1	5	"	"		"	"	х
85-01-8	Phenanthrene	9,950	D	µg/kg drv	383	93.6	5	"	"		"	"	х
129-00-0	Pyrene	7,680	D	µg/kg dry	383	81.7	5	"			"	"	х

Sample Ic	lentification			Climet T)		Matuin	Call		/T:	р.		
West Ber	m			<u>Client F</u>	<u>210ject #</u>		Matrix		ection Date	2/11me	<u>Ke</u>	cervea	
SC07188	-03			1537.0	05.001		Soil	06-	-May-15 09	9:45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS											
PAHs by	SW846 8270		R01										
Prepared	by method SW846 3545A												
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	56			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	
1718-51-0	Terphenyl-dl4	57			30-13	0 %				"		"	
4165-60-0	Nitrobenzene-d5	59			30-13	0 %		"	"		"	"	
General C	hemistry Parameters												
	% Solids	86.8		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	

Sample Id	lentification			Client P	roiect #		Matrix	Coll	ection Date	/Time	Re	ceived	
West Ber	m - Dupe			1537.00	05 001		Soil	<u>06</u>	May 15.00)·45	06.1	May 15	
SC07188-	-04			1557.00	55.001		5011	00	-wiay-15 05	7.45	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	VOC Extraction	Lab extracted		N/A			1	VOC Soil Extraction	08-May-1 5	08-May-1 5	DT	1509058	
Volatile O	rganic Full Aromatics by S	SW846_											
8260 Prepared	by method SW846 50354	A Soil (low leve	el)			Init	ial weight:	6 48 a					
71-43-2	Benzene	< 1.0	UJL	µg/kg dry	5.6	1.0	1	SW846 8260C	12-May-1	12-May-1	SJB	1509227	x
104-51-8	n-Butylbenzene	< 1.6	UJL	µg/kg dry	5.6	1.6	1		5	5	"	"	х
135-98-8	sec-Butylbenzene	< 4.4	UJL	µg/kg dry	5.6	4.4	1			"			х
98-06-6	tert-Butylbenzene	< 3.7	UJL	µg/kg dry	5.6	3.7	1		"	"	"	"	х
100-41-4	Ethylbenzene	< 1.0	UJL	µg/kg dry	5.6	1.0	1		"	"	"	"	х
98-82-8	Isopropylbenzene	< 1.1	UJL	ua/ka drv	5.6	1.1	1						х
99-87-6	4-Isopropyltoluene	< 5.3	UJL	ua/ka drv	5.6	5.3	1			"			х
1634-04-4	Methyl tert-butyl ether	<22	UJL	ua/ka dry	5.6	22	1			"			x
91-20-3	Nanhthalene	< 5.1	UJL	ua/ka dry	5.6	5 1	1						x
103-65-1		< 5.4	U.II	ua/ka dry	5.6	5.4	1						x
108-88-3	Toluene	< 1.3	1111	ug/kg dry	5.6	1.3	1						v
95 63 6	1.2.4 Trimethylbonzone	< 1.0		µg/kg diy	5.0	1.5	1						×
109 67 9	1,2,4-Trimethylbenzene	< 1.4 < 1.6		µy/ky ury	5.0	1.4	1						^ V
170601 22 1	1,3,5-Trimetnyibenzene	< 1.0		µg/kg ary	0.0	1.0	1						×
95_47_6	m,p-Xylene	< 1.1		µg/kg dry	5.6	1.1	1	"			"		×
		\$ 1.2	002	µg/kg ury	5.0	1.2	1						
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	93			70-13	0%			"	"	"		
2037-26-5	Toluene-d8	105			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	118			70-13	0 %			"	"	"		
1868-53-7	Dibromofluoromethane	127			70-13	0 %		"	"	"	"	"	
Semivolati	le Organic Compounds by	GCMS											
PAHs by S Prepared	<u>SW846 8270</u> by method SW846 35454	4	R01										
83-32-9	Acenaphthene	390	D, J	µg/kg dry	398	92.7	5	SW846 8270D	11-May-15	15-May-1	MSL	1509090	Х
208-96-8	Acenaphthylene	185	J, D	µg/kg dry	398	84.4	5	u	"	"	"	"	х
120-12-7	Anthracene	851	D	µg/kg dry	398	91.0	5						х
56-55-3	Benzo (a) anthracene	3,280	D	µg/kg dry	398	82.3	5			"	"		х
50-32-8	Benzo (a) pyrene	2,850	D	µg/kg dry	398	82.9	5			"	"		х
205-99-2	Benzo (b) fluoranthene	4,220	D	µg/kg dry	398	90.6	5		"	"	"	"	х
191-24-2	Benzo (g.h.i) pervlene	1.640	D	ua/ka drv	398	86.2	5			"			х
207-08-9	Benzo (k) fluoranthene	1,200	D	ua/ka drv	398	90.6	5						x
218-01-9	Chrysene	2 980	D	ua/ka dry	398	97.2	5						x
53-70-3	Dibenzo (a h) anthracene	411	D	ua/ka dry	398	73.0	5				"		x
206-44-0	Eluoranthene	7 150	D	ua/ka dry	398	99.9	5			"			x
86-73-7	Eluorene	222	JD	ug/kg dry	308	05.3	5						v
193-39-5	Indeno (1 2 3 cd) pyropo	1 800	с, р	µg/kg day	308	90.0 81 2	5						×
90-12.0	1 Methylpaphthalana	1,0 30		µy/ky uiy	300	101	5						^
91-57.6	2 Methylnaphthalana	102	ט, ט י ח	µy/ky uiy	300	101 92 0	5						v
91_20.3		103	5, 5 I D	µy/ky uiy	200	02.0	5				"		~
85-01 8	Department	1/3	э, D	µg/kg dry	200	01.0	5				"		~
120 00 0	Puropo	4,140	D	µg/kg dry	200	91.1	5				"		~
129-00-0	гујене	6,190	U	µy/kg ary	398	84.7	э						~

Sample Ic West Ber SC07188-	lentification m - Dupe -04			<u>Client F</u> 1537.0	<u>Project #</u> 005.001		<u>Matrix</u> Soil	<u>Colle</u> 06-	ection Date -May-15 09	/ <u>Time</u> 9:45	<u>Re</u> 06-1	<u>ceived</u> May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolati	le Organic Compounds by	GCMS											
PAHs by S Prepared	<u>SW846 8270</u> by method SW846 3545A	<u>.</u>	R01										
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	72			30-13	0 %		SW846 8270D	11-May-15	15-May-15	MSL	1509090	
1718-51-0	Terphenyl-dl4	73			30-13	0 %			"		"	"	
4165-60-0	Nitrobenzene-d5	76			30-130	0 %		"	"		"	"	
General C	hemistry Parameters												
	% Solids	83.4		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509145	

Namputs Kosuli Page Chins Ku. Level Kosuli Chins Ku. Level Kosuli Chins Ku. Lins Ku. <thlins< th=""> <thlins< th=""> <thlins< th="" th<=""><th>A</th><th>D14</th><th>El</th><th>T In ite</th><th>*001</th><th>Spike</th><th>Source</th><th>0/DEC</th><th>%REC</th><th>DDD</th><th>RPD</th></thlins<></thlins<></thlins<>	A	D14	El	T In ite	*001	Spike	Source	0/DEC	%REC	DDD	RPD
Dename i Anniversi '2 Mar. II Dename Anniversi '2 Mar. II Berker (19927'-SYM46 0048 04] Anniversi '2 Mar. II Berker (19927'-SYM46 0148 04] 14 <t< th=""><th>Analyte(s)</th><th>Kesuit</th><th>Flag</th><th>Units</th><th>*KDL</th><th>Level</th><th>Result</th><th>%KEC</th><th>Limits</th><th>KPD</th><th>Limit</th></t<>	Analyte(s)	Kesuit	Flag	Units	*KDL	Level	Result	%KEC	Limits	KPD	Limit
Immune Linketity is Animitation. Lense 1:2 Bearrane 0 jafkg wet 0.9 n-Butyliperazene 114 jafkg wet 0.9 ac-Butyliperazene 4.33 jafkg wet 0.9 fart-Butyliperazene 4.33 jafkg wet 0.3 liperport/benzene 4.30 jafkg wet 0.7 Maryl ter-butyliperazene 4.45 jafkg wet 1.0 Alterportylitatene 4.45 jafkg wet 1.2 Tolenei 1.1 jafkg wet 1.2	Batch 1509227 - SW846 5035A Soil (low level)					Dro	anarad 9 Ar	aluzadi 10	Mov 15		
Indextante C.0.3 piga est 3.9 relativibername 4.3.9 jafa vet 3.3 relativibername 4.3.9 jafa vet 3.3 Ethylkername 4.3.9 jafa vet 3.3 Ethylkername 4.0.9 jafa vet 3.3 Ethylkername 4.0.9 jafa vet 4.0.9 Hennyl terbulyvibername 4.4.7 jafa vet 4.0 Nuphthalten 4.4.6 jafa vet 4.0 Folgotherame 1.1.2 jafa vet 1.0 Nuphthalten 4.1.2 jafa vet 1.0 J.S. formstylkerame 4.1.3 jafa vet 1.0 Sumgers: Noncontonconcerame 4.7.3 jafa vet 1.0 Sumgers: Noncontonconcerame 4.7.3 jafa vet 1.0 Sumgers: Noncontonconcerame 4.7.3 jafa vet 1.0 Sumgers: Nonconconcerame 4.7.3 jafa vet 2.0.0 1.0 7.1.30 Sumgers: Nonconconcerame 4.7.3 jafa vet 2.0.0 <t< td=""><td>Blank (1509227-BLK1)</td><td></td><td></td><td></td><td>0.0</td><td><u> </u></td><td>epareu & Ar</td><td>Idiyzeu. 12-</td><td>iviay-15</td><td></td><td></td></t<>	Blank (1509227-BLK1)				0.0	<u> </u>	epareu & Ar	Idiyzeu. 12-	iviay-15		
Inclugional and escalary bername 1.4 pp/space 1.4 Sec Bulyberzene 3.3 jakg wet 3.3 Engipperzene 0.0 jakg wet 0.9 Happergyberzene 1.0 jakg wet 0.9 Happergyberzene 1.0 jakg wet 1.0 Happergyberzene 4.8 jakg wet 1.0 Namper Happergyberzene 4.8 jakg wet 1.0 J.2.4-Trinnethyberzene 4.8 jakg wet 1.0 j.2.4-Trinnethyberzene 4.1 jakg wet 1.0 j.2.4-Trinnethyberzene 4.2 jakg wet 5.0 96 70-10 Surngate: J.2.Dehroerbult 5.0 1.0 70-130	Benzene	< 0.9		µg/kg wet	0.9						
ac. 30. juping val 3.3 juping val 3.3 Erightpatzanen 3.3 Erightpatzenen 0.0 Jappa yet 0.9 Jappa yet 0.9 Jappa yet 0.9 Jappa yet 0.9 Happrophenzene 4.10 Happa yet 4.7 Happa yet 4.6 Propyberzene 4.6 Propyberzene 4.6 J.2.4 Trinnethyberzene 4.6 J.3.5 Trinnethyberzene 4.1 J.3.5 Trinnethyberzene 4.7 J.3.5 Trinnethyberzene 4.7.8 J.3.5 Trinnethyberzene 4.7.8 J.3.5 Trinnethyberzene 4.7.8 J.3.5 Trinnethyberzene 5.0 9.6 Volene 5.0 1.6 Surrogatz : Alzonnofluoroberzene 4.7.8 Jupikg vet 5.0 9.6 70-130 Surrogatz : Alzonnofluoroberzene 5.0 9.6 70-130 1.1 Surrogatz : Alzonnofluoroberzene 5.0 9.6 70-130 1.1 Sur		< 1.4		µg/kg wet	1.4						
abit phyloxicania 5.3 pipk givet 3.3 Bit phyloxicania 4.30 pipk givet 1.0 Happrophylomicania 4.10 pipk givet 1.0 Happrophylomicania 4.19 pipk givet 1.7 Methyl tarbinyl tarbinyl arbitration 4.18 pipk givet 1.8 Tokenia 4.12 pipk givet 1.3 1.3.5.Trinethylomizania 4.14 pipk givet 1.0 p.Xylania 4.11 pipk givet 1.0 Surrogatis 4.11 pipk givet 1.0 Surrogatis 7.0.10 7.0.10 7.0.10 Surrogatis 7.0.10 7.0.10 7.0.	sec-Butylbenzene	< 3.9		µg/kg wet	3.9						
Entrydetratine lisoprog/banzane -0.3 jp/g wet 0.3 4-lagropy/banzane 4.7 jp/g wet 4.7 4-lagropy/banzane 4.47 jp/g wet 4.7 Naphthalene 4.48 jp/g wet 4.6 Pr-Prop/banzane 4.48 jp/g wet 4.6 Toluene 4.12 jp/g wet 1.2 1.3.5. Trinatity/banzane 4.14 jp/g wet 1.1 Surrogate 4.76 up/g wet 1.0 Surrogate 4.76 up/g wet 50.0 96 70:130 Surrogate 4.60.0 108 70:130 V V Surrogate 4.60.0 107 70:130 V V Surrogate 4.60.0 107 70:130 V		< 3.3		µg/kg wet	3.3						
Adapta productionane	Ethyldenzene	< 0.9		µg/kg wet	0.9						
		< 1.0		µg/kg wet	1.0						
main in classify ettain 1.3 july geta 1.3 in Proprietizione 4.8 july geta 4.8 13.4 Trimethy benzene 4.8 july geta 1.3 13.5 Trimethy benzene 4.14 july geta 1.3 july geta 1.3 1.0 1.0 px/ytene 4.10 july geta 1.0 px/ytene 50.0 96 70.130 Surrogate : Abolikon duron benzene 54.2 july geta 50.0 168 70.130 Surrogate : Abolikon duron benzene 54.2 july geta 50.0 168 70.130 Surrogate : Abolikon duron benzene 56.2 july geta 50.0 168 70.130 Surrogate : Abolikon duron benzene 56.2 july geta 50.0 168 70.130 Ets Surrogate : Abolikon duron benzene 56.2 july geta 20.0 161 70.130 ref duron duron benzene 16.2 july geta 20.0 161 70.130 ref duron duron benzene 20.2 <td>4-isopropyiloidene</td> <td>< 4.7 < 1.0</td> <td></td> <td>µg/kg wet</td> <td>4.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4-isopropyiloidene	< 4.7 < 1.0		µg/kg wet	4.7						
Naphralamination 1-10 μg/kg wet 1-0 Infragritement <1.2	Nephthelene	< 1.9		µg/kg wet	1.9						
In-Projugination K-8.6 pagk get 1.2 Toluum <1.2		< 4.0		µg/kg wet	4.0						
jouene 1.2 jugkg vet 1.2 12.4-Trimetryberzene <1.3		< 4.0		µg/kg wei	4.0						
1,2-4. minutering biolerazine <1.4		< 1.2		µg/kg wet	1.2						
1.3.5-Trimetry bencame 1.1 μg/kg wet 1.0 o-Xylene <1.1	1,2,4- Time(hylbenzene	< 1.0		µg/kg wet	1.5						
Int_Projection 1.1 µg/kg wet 1.0 Surrogate: 41.1 µg/kg wet 50.0 96 70-130 Surrogate: Tolene-d8 54.2 µg/kg wet 50.0 108 70-130 Surrogate: Tolene-d8 54.5 µg/kg wet 50.0 109 70-130 Surrogate: Tolene-d8 54.5 µg/kg wet 50.0 116 70-130 LCS 1069227-851) Propared & Anityzet 12.May-15 Benzene 16.2 µg/kg wet 20.0 101 70-130 Left-Butybenzene 20.2 µg/kg wet 20.0 101 70-130 Eth?Butybenzene 19.6 µg/kg wet 20.0 101 70-130 Left-Butybenzene 19.8 µg/kg wet 20.0 101 70-130 Left-Butybenzene 19.8 µg/kg wet 20.0 101 70-130 Left-Butybenzene 19.8 µg/kg wet 20.0 106 70-130 Left-Butybenzen	n,3,5- i nimethyidenzene	< 1.4		µg/kg wet	1.4						
Darketter C 1.1 pigk vet 1.1 Surrogate: 4-formofluorobenzene 47.8 pigk vet 50.0 96 70-130 Surrogate: 7.2-Dichlorothune-d8 54.2 pigk vet 50.0 116 70-130 Surrogate: 7.2-Dichlorothune-d4 54.5 pigk vet 50.0 116 70-130 LCS (1599227-BS1) Prepared & Analyzet: 12-May-15 Perpared & Analyzet: 12-May-15 Perpared & Analyzet: 12-May-15 Benzene 20.2 µgk vet 20.0 101 70-130 see-Bulytibunzene 20.2 µgk vet 20.0 101 70-130 Isopropytibunzene 19.9 µgk vet 20.0 98 70-130 Isopropytibunzene 19.9 µgk vet 20.0 98 70-130 Herh Vist-Uuty (ether 23.3 µgk vet 20.0 116 70-130 Naphthalene 17.5 µgk vet 20.0 108 70-130 1.3.4-Timethytoenzene 23.5 µgk vet 20.0 108 70-130		< 1.0		µg/kg wet	1.0						
Surrogate: - Atomofuloroberazene 47.8 µpkg weit 50.0 96 70-130 Surrogate: - Dicknone-de 54.2 µpkg weit 50.0 109 70-130 Surrogate: - Dicknone-de 58.0 µpkg weit 50.0 107 70-130 LOS (1599227-BS1) Prepared & Analyzet: - 12-May-13 12-May 12-May </td <td></td> <td>× 1.1</td> <td></td> <td>µy/ky wei</td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		× 1.1		µy/ky wei	1.1						
Surrogate: Toluene-18 54.2 µgkg wet 50.0 108 70-130 Surrogate: Dibromofluoromethane 58.0 µgkg wet 50.0 116 70-130 Egnaren 21.3 µgkg wet 20.0 107 70-130 ee-bulybenzene 16.2 µgkg wet 20.0 101 70-130 ee-bulybenzene 20.2 µgkg wet 20.0 101 70-130 tert-Bulybenzene 19.9 µgkg wet 20.0 98 70-130 Ebrybenzene 19.9 µgkg wet 20.0 98 70-130 Isopropylotene 19.4 µgkg wet 20.0 98 70-130 Hethyl tertylbenzene 19.5 µgkg wet 20.0 166 70-130 Alsopropylotenzene 19.4 µgkg wet 20.0 168 70-130 I.2.4-Trimethylbenzene 21.6 µgkg wet 20.0 168 70-130 I.2.4-Trimethylbenzene 23.5 µgkg wet 20.0 104 7	Surrogate: 4-Bromofluorobenzene	47.8		µg/kg wet		50.0		96	70-130		
Surrogate: 1.2-Dichloredhane-d4 54.5 µg/kg wet 50.0 108 70-130 Surrogate: Diromofluoromethane 58.0 µg/kg wet 50.0 107 70-130 LGS (159927-B51) Prepared 8 Analyzed: 12-Marvis5 Benzene 21.3 µg/kg wet 20.0 107 70-130 Benzene 16.2 µg/kg wet 20.0 101 70-130 see-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 Ethylbenzene 19.6 µg/kg wet 20.0 98 70-130 Ethylbenzene 19.6 µg/kg wet 20.0 98 70-130 Hethylbenzene 19.6 µg/kg wet 20.0 116 70-130 Alsopropylobulene 19.4 µg/kg wet 20.0 101 70-130 Italy darkg wet 20.0 101 70-130 70-130 70-130 Italy darkg wet 20.0 1018 70-130 70-130 70-130 Italy darkg wet	Surrogate: Toluene-d8	54.2		µg/kg wet		50.0		108	70-130		
Surgate: Disconditionantishane 56.0 µg/kg weit 50.0 116 70-130 LCS (159227-BS1) Enarane & Analyzed: 12-May-15 Enarane & Analyzed: 12-May-15 Image: 12-M	Surrogate: 1,2-Dichloroethane-d4	54.5		µg/kg wet		50.0		109	70-130		
LG:099227-BS1) Drepared & Analyzed: 12-May-15 Benzene 21.3 µg/kg wet 20.0 10.7 70-130 n-Butylbenzene 20.2 µg/kg wet 20.0 10.1 70-130 tert-Butylbenzene 20.2 µg/kg wet 20.0 10.1 70-130 tert-Butylbenzene 20.2 µg/kg wet 20.0 99 70-130 Isopropylbenzene 19.9 µg/kg wet 20.0 92 70-130 Isopropylbenzene 18.4 µg/kg wet 20.0 92 70-130 Hethylbenzene 18.4 µg/kg wet 20.0 10.1 70-130 Naphthalene 17.5 µg/kg wet 20.0 10.1 70-130 12.4-Timethylbenzene 21.6 µg/kg wet 20.0 10.8 70-130 12.4-Timethylbenzene 19.8 µg/kg wet 20.0 10.8 70-130 12.4-Timethylbenzene 19.8 µg/kg wet 20.0 10.9 70-130 Surogate: Alloronofluorobenzene 53.6	Surrogate: Dibromofluoromethane	58.0		µg/kg wet		50.0		116	70-130		
Benzene 21.3 µg/kg wet 20.0 17 70-130 n-Butylbenzene 16.2 µg/kg wet 20.0 81 70-130 see-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 Ethylbenzene 19.6 µg/kg wet 20.0 98 70-130 Ethylbenzene 19.6 µg/kg wet 20.0 92 70-130 4-Isopropyltoluene 18.4 µg/kg wet 20.0 92 70-130 Naphthalene 17.6 µg/kg wet 20.0 16 70-130 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 1.2.4-Trimethylbenzene 23.5 µg/kg wet 20.0 108 70-130 1.2.4-Trimethylbenzene 23.5 µg/kg wet 20.0 108 70-130 1.2.4-Trimethylbenzene 23.5 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 23.5 µg/kg wet 20.0 107 70-130	LCS (1509227-BS1)					Pre	epared & Ar	nalyzed: 12-	<u>May-15</u>		
n-Butybenzene 16.2 μg/kg wet 20.0 81 70-130 sec-Butybenzene 20.2 μg/kg wet 20.0 101 70-130 Eth-Butybenzene 20.2 μg/kg wet 20.0 98 70-130 Ethylbenzene 19.6 μg/kg wet 20.0 98 70-130 4-Isopropylbenzene 19.9 μg/kg wet 20.0 92 70-130 4-Isopropylbenzene 23.3 μg/kg wet 20.0 87 70-130 Naphthalene 17.5 µg/kg wet 20.0 101 70-130 1.2.4-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 1.3.4-Trimethylbenzene 53.5 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 23.5 µg/kg wet 50.0 107 70-130 Surrogate: 1-Broonfluorobenzene 53.5 µg/kg wet 50.0 107 70-130	Benzene	21.3		µg/kg wet		20.0		107	70-130		
see-Bulyblenzene 20.2 μg/kg wet 20.0 101 70-130 tert-Bulyblenzene 19.6 μg/kg wet 20.0 98 70-130 Isopropylbenzene 19.9 µg/kg wet 20.0 98 70-130 4 isopropylbenzene 18.4 µg/kg wet 20.0 92 70-130 Methyl tert-bulyl ether 23.3 µg/kg wet 20.0 116 70-130 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 Toluene 21.6 µg/kg wet 20.0 108 70-130 1,2,4-Trimethylbenzene 21.5 µg/kg wet 20.0 108 70-130 1,3,5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 -Surgate: 4-Bronofluorobenzene 53.5 µg/kg wet 20.0 104 70-130 Surgate: Toluen-d8 52.7 µg/kg wet 50.0 107 70-130 Surgate: Toluen-d8 53.6 µg/kg wet 50.0 107 70-130 <td>n-Butylbenzene</td> <td>16.2</td> <td></td> <td>µg/kg wet</td> <td></td> <td>20.0</td> <td></td> <td>81</td> <td>70-130</td> <td></td> <td></td>	n-Butylbenzene	16.2		µg/kg wet		20.0		81	70-130		
tert-Bulyblenzene 20.2 µg/kg wet 20.0 101 70-130 Ethylbenzene 19.6 µg/kg wet 20.0 98 70-130 Isopropylbluene 18.4 µg/kg wet 20.0 92 70-130 4-Isopropylbluene 18.4 µg/kg wet 20.0 92 70-130 Naphthalene 17.5 µg/kg wet 20.0 87 70-130 n-Propylbenzene 20.2 µg/kg wet 20.0 108 70-130 1.4.4-frimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 23.5 µg/kg wet 20.0 108 70-130 o-Xylene 19.8 µg/kg wet 20.0 104 70-130 Surrogate: Toluene-dB 52.7 µg/kg wet 50.0 107 70-130 Surrogate: Toluene-dB 52.7 µg/kg wet 50.0 107 70-130 Surrogate: Dibromfluorobenzene 53.6 µg/kg wet 20.0 109 70-130 <td< td=""><td>sec-Butylbenzene</td><td>20.2</td><td></td><td>µg/kg wet</td><td></td><td>20.0</td><td></td><td>101</td><td>70-130</td><td></td><td></td></td<>	sec-Butylbenzene	20.2		µg/kg wet		20.0		101	70-130		
Ethylenzene 19.6 µg/kg wet 20.0 98 70-130 Isopropylbenzene 19.9 µg/kg wet 20.0 99 70-130 41sopropylbluene 18.4 µg/kg wet 20.0 16 70-130 Methyl terb-utyl ether 23.3 µg/kg wet 20.0 87 70-130 Naphthalene 17.5 µg/kg wet 20.0 116 70-130 I.2.4-Trimethylbenzene 20.2 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 23.5 µg/kg wet 20.0 108 70-130 i.3.5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 oxtylene 19.8 µg/kg wet 20.0 104 70-130 Surrogate: Tolene-d8 52.7 µg/kg wet 50.0 107 70-130 Surrogate: Tolene-d8 53.6 µg/kg wet 50.0 107 70-130 30 n-Butybenzene 53.6 µg/kg wet	tert-Butylbenzene	20.2		µg/kg wet		20.0		101	70-130		
Isopropylbenzene 19.9 µg/kg wet 20.0 99 70-130 4-Isopropylbunee 18.4 µg/kg wet 20.0 116 70-130 Mathyl terh-buly ether 23.3 µg/kg wet 20.0 116 70-130 Naphthalene 17.5 µg/kg wet 20.0 101 70-130 n-Propylbenzene 20.2 µg/kg wet 20.0 108 70-130 12.4-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 i.3.5-Trimethylbenzene 21.6 µg/kg wet 20.0 104 70-130 o-Xylene 20.7 µg/kg wet 20.0 104 70-130 Surrogate: 1.2-Dichloroethane-d4 53.5 µg/kg wet 50.0 107 70-130 Surrogate: 1.2-Dichloroethane-d4 53.6 µg/kg wet 50.0 107 70-130 Surrogate: 1.2-Dichloroethane-d4 53.6 µg/kg wet 20.0 109	Ethylbenzene	19.6		µg/kg wet		20.0		98	70-130		
4.lsopropylioluene 18.4 µg/kg wet 20.0 92 70-130 Methyl terl-butyl ether 23.3 µg/kg wet 20.0 116 70-130 Naphthalene 17.5 µg/kg wet 20.0 87 70-130 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 1.2.4-Trimethylbenzene 23.5 µg/kg wet 20.0 108 70-130 1.3.5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 o.Xylene 10.8 70-130 70-130	Isopropylbenzene	19.9		µg/kg wet		20.0		99	70-130		
Methyl terl-butyl ether 23.3 µg/k gwet 20.0 116 70-130 Naphthalene 17.5 µg/k gwet 20.0 87 70-130 n-Propylbenzene 20.2 µg/k gwet 20.0 101 70-130 1,2,4-Trimethylbenzene 21.6 µg/k gwet 20.0 108 70-130 1,3,5-Trimethylbenzene 21.6 µg/k gwet 20.0 198 70-130 n,p-Xylene 19.8 µg/k gwet 20.0 104 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/k gwet 20.0 104 70-130 Surrogate: 1-Dichloroethane-d4 53.6 µg/k gwet 50.0 107 70-130 Surrogate: 1-Dichloroethane-d4 53.6 µg/k gwet 50.0 107 70-130 Surrogate: 150vorofluoroethane 53.6 µg/k gwet 20.0 109 70-130 Surrogate: 12-Dichloroethane-d4 53.6 µg/k gwet 20.0 107 70-130 2 3	4-Isopropyltoluene	18.4		µg/kg wet		20.0		92	70-130		
Naphthalene 17.5 µg/kg wet 20.0 87 70-130 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 Toluene 21.6 µg/kg wet 20.0 108 70-130 1.2.4 -Timethylbenzene 23.5 µg/kg wet 20.0 108 70-130 1.3.5 -Timethylbenzene 21.6 µg/kg wet 20.0 104 70-130 m.p-Xylene 19.8 µg/kg wet 20.0 104 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/kg wet 50.0 107 70-130 Surrogate: Toluene-d8 52.7 µg/kg wet 50.0 105 70-130 Surrogate: Tolucorothane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: Tolucorothane-d4 53.6 µg/kg wet 50.0 107 70-130 Surrogate: Tolucorothane-d4 53.6 µg/kg wet 20.0 109 70-130 2 30 n-Benzene 21.8 µg/kg wet 20.0 </td <td>Methyl tert-butyl ether</td> <td>23.3</td> <td></td> <td>µg/kg wet</td> <td></td> <td>20.0</td> <td></td> <td>116</td> <td>70-130</td> <td></td> <td></td>	Methyl tert-butyl ether	23.3		µg/kg wet		20.0		116	70-130		
n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 Toluene 21.6 µg/kg wet 20.0 108 70-130 1.2.4-Trimethylbenzene 23.5 µg/kg wet 20.0 118 70-130 1.3.5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 m,p-Xylene 19.8 µg/kg wet 20.0 104 70-130 o-Xylene 20.7 µg/kg wet 50.0 107 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/kg wet 50.0 105 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 20.0 107 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet <t< td=""><td>Naphthalene</td><td>17.5</td><td></td><td>µg/kg wet</td><td></td><td>20.0</td><td></td><td>87</td><td>70-130</td><td></td><td></td></t<>	Naphthalene	17.5		µg/kg wet		20.0		87	70-130		
Toluene21.6µg/kg wet20.0108 $70-130$ 1,2,4-Trimethylbenzene23.5µg/kg wet20.0118 $70-130$ 1,3,5-Trimethylbenzene21.6µg/kg wet20.0108 $70-130$ m,p-Xylene19.8µg/kg wet20.0104 $70-130$ o-Xylene20.7µg/kg wet20.0104 $70-130$ Surrogate: 1.2-Dichloroethane-d452.7µg/kg wet50.0107 $70-130$ Surrogate: 1.2-Dichloroethane-d445.4µg/kg wet50.0107 $70-130$ Surrogate: Dibromofluoromethane53.6µg/kg wet50.0107 $70-130$ Surrogate: Dibromofluoromethane53.6µg/kg wet20.0109 $70-130$ Surrogate: Dibromofluoromethane53.6µg/kg wet20.0109 $70-130$ Surrogate: Dibromofluoromethane53.6µg/kg wet20.0109 $70-130$ Surrogate: Dibromofluoromethane53.6µg/kg wet20.0109 $70-130$ 230Surrogate: Dibromofluoromethane15.9µg/kg wet20.0109 $70-130$ 230n-Butylbenzene20.2µg/kg wet20.0101 $70-130$ 230tert-Butylbenzene20.2µg/kg wet20.0101 $70-130$ 230tert-Butylbenzene19.9µg/kg wet20.0101 $70-130$ 230tert-Butylbenzene19.9µg/kg wet20.0101 $70-130$ 2<	n-Propylbenzene	20.2		µg/kg wet		20.0		101	70-130		
1,2,4-Trimethylbenzene 23.5 µg/kg wet 20.0 118 70-130 1,3,5-Trimethylbenzene 21.6 µg/kg wet 20.0 99 70-130 m,p-Xylene 20.7 µg/kg wet 20.0 104 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/kg wet 50.0 107 70-130 Surrogate: 70/uene-d8 52.7 µg/kg wet 50.0 91 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 50.0 91 70-130 Surrogate: 1,2-Dichloroethane-d4 53.5 µg/kg wet 50.0 91 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 50.0 91 70-130 Surrogate: 1,2-Dichloroethane-d4 53.6 µg/kg wet 50.0 91 70-130 Surrogate: 1,2-Dichloroethane-d4 53.6 µg/kg wet 20.0 107 70-130 LCS Dup (1509227-BSD1) Prepared & Analyzed: 12-Way-15 10 70-130 2 30 n-Butylbenzene 15.9 µg/kg wet 20.0 101 70-130 2 30 </td <td>Toluene</td> <td>21.6</td> <td></td> <td>µg/kg wet</td> <td></td> <td>20.0</td> <td></td> <td>108</td> <td>70-130</td> <td></td> <td></td>	Toluene	21.6		µg/kg wet		20.0		108	70-130		
1,3,5-Trimethylbenzene 21.6 µg/kg wet 20.0 108 70-130 m,p-Xylene 19.8 µg/kg wet 20.0 104 70-130 o-Xylene 20.7 µg/kg wet 20.0 104 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/kg wet 50.0 107 70-130 Surrogate: 7.2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: 1.2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: 1.2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: Dibromofluoromethane 53.6 µg/kg wet 20.0 107 70-130 LCS Dup (1509227-BSD1) Prepared & Analyzed: 12-Mav-15 90 90 70-130 2 30 n-Butylbenzene 21.8 µg/kg wet 20.0 109 70-130 2 30 sec-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 30 tet	1,2,4-Trimethylbenzene	23.5		µg/kg wet		20.0		118	70-130		
m,p-Xylene 19.8 µg/kg wet 20.0 99 70-130 o-Xylene 20.7 µg/kg wet 20.0 104 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/kg wet 50.0 107 70-130 Surrogate: 7.0/uene-d8 52.7 µg/kg wet 50.0 105 70-130 Surrogate: 1.2-Dichloroethane-d4 45.4 µg/kg wet 50.0 107 70-130 Surrogate: Dibromofluoromethane 53.6 µg/kg wet 50.0 107 70-130 Surogate: Dibromofluoromethane 53.6 µg/kg wet 50.0 107 70-130 Surogate: Dibromofluoromethane 53.6 µg/kg wet 20.0 107 70-130 Surogate: Dibromofluoromethane 53.6 µg/kg wet 20.0 109 70-130 2 30 ICS Dup (1509227-BSD1 Prepared & Analyzer: 1-15 Prepared & Analyzer: 1-15 30 30 30 n-Butylbenzene 15.9 µg/kg wet 20.0 101 70-130 2 30	1,3,5-Trimethylbenzene	21.6		µg/kg wet		20.0		108	70-130		
o-Xylene 20.7 µg/kg wet 20.0 104 70-130 Surrogate: 4-Bromofluorobenzene 53.5 µg/kg wet 50.0 107 70-130 Surrogate: Toluene-d8 52.7 µg/kg wet 50.0 105 70-130 Surrogate: 1,2-Dichloroethane-d4 45.4 µg/kg wet 50.0 91 70-130 Surrogate: Dibromofluoromethane 53.6 µg/kg wet 50.0 107 70-130 LCS Dup (1509227-BSD1) Prepared & Analyzed: 12-May-15 Prepared & Analyzed: 12-May-15 30 Benzene 21.8 µg/kg wet 20.0 109 70-130 2 30 n-Butylbenzene 20.5 µg/kg wet 20.0 102 70-130 2 30 sec-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 tert-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130	m,p-Xylene	19.8		µg/kg wet		20.0		99	70-130		
Surrogate: 4-Bromofluorobenzene53.5µg/kg wet50.010770-130Surrogate: Toluene-d852.7µg/kg wet50.010570-130Surrogate: 1,2-Dichloroethane-d445.4µg/kg wet50.09170-130Surrogate: Dibromofluoromethane53.6µg/kg wet50.010770-130LCS Dup (1509227-BSD1)Prepared & Analyzec: 12-Mav-1510070-130230n-Butylbenzene15.9µg/kg wet20.010970-130230sec-Butylbenzene20.5µg/kg wet20.010270-130130tert-Butylbenzene19.9µg/kg wet20.010170-130230beroproylbenzene20.2µg/kg wet20.010170-130230tert-Butylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Methyl tert-butyl ether21.1µg/kg wet20.010170-130430Naphthalene18.0µg/kg wet20.010170-130330n-Propylbenzene20.2µg/kg wet20.010170-130330Isopropylbenzene21.1µg/kg wet20.010170-130330Isopropylbenzene22.1µg/kg we	o-Xylene	20.7		µg/kg wet		20.0		104	70-130		
Surrogate: Toluene-d852.7µg/kg wet50.010570-130Surrogate: 1,2-Dichloroethane-d445.4µg/kg wet50.09170-130Surrogate: Dibromofluoromethane53.6µg/kg wet50.010770-130LCS Dup (1509227-BSD1)Prepared & Analyzet: 12-Mary 15Perpared & Analyzet: 12-Mary 15Benzene21.8µg/kg wet20.010970-130230n-Butylbenzene20.5µg/kg wet20.010270-130130tert-Butylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130430Isopropylbenzene20.1µg/kg wet20.010170-130330Isopropylbenzene20.2µg/kg wet20.010170-130330Isopropylbenzene20.2µg/kg wet20.010170-130330Isopropylbenzene20.2µg/kg wet20	Surrogate: 4-Bromofluorobenzene	53.5		µg/kg wet		50.0		107	70-130		
Surrogate: 1,2-Dichloroethane-d445.4µg/kg wet50.09170-130Surrogate: Dibromofluoromethane53.6µg/kg wet50.010770-13070-130LCS Dup (1509227-BSD1)Prepared & Analyzet: 12-Way-15Benzene21.8µg/kg wet20.010970-130230n-Butylbenzene20.5µg/kg wet20.010270-130230sec-Butylbenzene20.2µg/kg wet20.010170-1300.330Ethylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Methyl tert-butyl ether20.2µg/kg wet20.010170-130230Naphthalene18.0µg/kg wet20.010170-130430Naphthalene18.0µg/kg wet20.010170-130330Naphthalene18.0µg/kg wet20.010170-130330Naphthalene18.0µg/kg wet20.010170-130330Naphthalene18.0µg/kg wet20.010170-130330Naphthalene20.2µg/kg wet20.010170-130330Naphthalene18.0µg/kg wet20.010170-130	Surrogate: Toluene-d8	52.7		µg/kg wet		50.0		105	70-130		
Surrogate: Dibromofluoromethane53.6µg/kg wet50.010770-130LCS Dup (1509227-BSD1)Prepared & Analyzed: 12-Way-15Benzene21.8µg/kg wet20.010970-130230n-Butylbenzene15.9µg/kg wet20.07970-130230sec-Butylbenzene20.5µg/kg wet20.010270-130130tert-Butylbenzene20.2µg/kg wet20.010170-1300.330Ethylbenzene19.9µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230Haylbenzene19.9µg/kg wet20.010170-130230Isopropylbenzene20.2µg/kg wet20.010170-130230A-lsopropylbenzene20.2µg/kg wet20.010170-130430Methyl tert-butyl ether24.1µg/kg wet20.012170-130430Naphthalene18.0µg/kg wet20.010170-130330In-Propylbenzene20.2µg/kg wet20.010170-130330In-Propylbenzene20.2µg/kg wet20.010170-130330In-Propylbenzene20.2µg/kg wet20.010170-130230In-Propylbenzene20.2µg/kg wet20.0101	Surrogate: 1,2-Dichloroethane-d4	45.4		µg/kg wet		50.0		91	70-130		
LCS Dup (1509227-BSD1) Prepared & J18 µg/kg wet 20.0 109 70-130 2 30 n-Butylbenzene 15.9 µg/kg wet 20.0 79 70-130 2 30 sec-Butylbenzene 20.5 µg/kg wet 20.0 102 70-130 1 30 tert-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 0.3 30 Ethylbenzene 19.9 µg/kg wet 20.0 101 70-130 2 30 Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 Isopropylbenzene 19.9 µg/kg wet 20.0 101 70-130 2 30 Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130 4 30 Methyl tert-butyl ether 24.1 µg/kg wet 20.0 121 70-130 4 30 Naphthalene 18.0 µg/kg wet 20.0 101 70-130	Surrogate: Dibromofluoromethane	53.6		µg/kg wet		50.0		107	70-130		
Benzene21.8µg/kg wet20.010970-130230n-Butylbenzene15.9µg/kg wet20.07970-130230sec-Butylbenzene20.5µg/kg wet20.010270-130130tert-Butylbenzene20.2µg/kg wet20.010170-1300.330Ethylbenzene19.9µg/kg wet20.010070-130230Isopropylbenzene20.2µg/kg wet20.010170-1302304-Isopropylboluene17.7µg/kg wet20.08970-130430Methyl tert-butyl ether24.1µg/kg wet20.012170-130430Naphthalene18.0µg/kg wet20.09070-130330n-Propylbenzene20.2µg/kg wet20.010170-130430In-Propylbenzene20.2µg/kg wet20.09070-130330570-13018.0µg/kg wet20.010170-130330670-13018.0µg/kg wet20.010170-1303030770-13018.0µg/kg wet20.010170-13030301070-13018.0µg/kg wet20.010170-13030301070-13018.0µg/kg wet20.010170-1302301070-130	LCS Dup (1509227-BSD1)					Pre	epared & Ar	nalyzed: 12-	<u>May-15</u>		
n-Butylbenzene 15.9 µg/kg wet 20.0 79 70-130 2 30 sec-Butylbenzene 20.5 µg/kg wet 20.0 102 70-130 1 30 tert-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 0.3 30 Ethylbenzene 19.9 µg/kg wet 20.0 100 70-130 2 30 Isopropylbenzene 20.2 µg/kg wet 20.0 100 70-130 2 30 4-Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 4-Isopropylboluene 17.7 µg/kg wet 20.0 89 70-130 4 30 Methyl tert-butyl ether 24.1 µg/kg wet 20.0 121 70-130 4 30 Naphthalene 18.0 µg/kg wet 20.0 90 70-130 3 30 r-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 30	Benzene	21.8		µg/kg wet		20.0		109	70-130	2	30
sec-Butylbenzene 20.5 µg/kg wet 20.0 102 70-130 1 30 tert-Butylbenzene 20.2 µg/kg wet 20.0 101 70-130 0.3 30 Ethylbenzene 19.9 µg/kg wet 20.0 100 70-130 2 30 Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 4-Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 4-Isopropylboluene 17.7 µg/kg wet 20.0 89 70-130 4 30 Methyl tert-butyl ether 24.1 µg/kg wet 20.0 121 70-130 4 30 Naphthalene 18.0 µg/kg wet 20.0 90 70-130 3 30 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 30 30 Toluene 22.1 µg/kg wet 20.0 101 70-130 2	n-Butylbenzene	15.9		µg/kg wet		20.0		79	70-130	2	30
tert-Butylbenzene20.2µg/kg wet20.010170-1300.330Ethylbenzene19.9µg/kg wet20.010070-130230Isopropylbenzene20.2µg/kg wet20.010170-1302304-Isopropyltoluene17.7µg/kg wet20.08970-130430Methyl tert-butyl ether24.1µg/kg wet20.012170-130430Naphthalene18.0µg/kg wet20.09070-130330n-Propylbenzene20.2µg/kg wet20.010170-1300.0530Toluene22.1µg/kg wet20.011070-130230	sec-Butylbenzene	20.5		µg/kg wet		20.0		102	70-130	1	30
Ethylbenzene19.9µg/kg wet20.010070-130230Isopropylbenzene20.2µg/kg wet20.010170-1302304-Isopropyltoluene17.7µg/kg wet20.08970-130430Methyl tert-butyl ether24.1µg/kg wet20.012170-130430Naphthalene18.0µg/kg wet20.09070-130330n-Propylbenzene20.2µg/kg wet20.010170-1300.0530Toluene22.1µg/kg wet20.011070-130230	tert-Butylbenzene	20.2		µg/kg wet		20.0		101	70-130	0.3	30
Isopropylbenzene 20.2 µg/kg wet 20.0 101 70-130 2 30 4-Isopropyltoluene 17.7 µg/kg wet 20.0 89 70-130 4 30 Methyl tert-butyl ether 24.1 µg/kg wet 20.0 121 70-130 4 30 Naphthalene 18.0 µg/kg wet 20.0 90 70-130 3 30 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 0.05 30 Toluene 22.1 µg/kg wet 20.0 110 70-130 2 30	Ethylbenzene	19.9		µg/kg wet		20.0		100	70-130	2	30
4-Isopropyltoluene17.7μg/kg wet20.08970-130430Methyl tert-butyl ether24.1μg/kg wet20.012170-130430Naphthalene18.0μg/kg wet20.09070-130330n-Propylbenzene20.2μg/kg wet20.010170-1300.0530Toluene22.1μg/kg wet20.011070-130230	Isopropylbenzene	20.2		µg/kg wet		20.0		101	70-130	2	30
Methyl tert-butyl ether 24.1 µg/kg wet 20.0 121 70-130 4 30 Naphthalene 18.0 µg/kg wet 20.0 90 70-130 3 30 n-Propylbenzene 20.2 µg/kg wet 20.0 101 70-130 0.05 30 Toluene 22.1 µg/kg wet 20.0 110 70-130 2 30	4-Isopropyltoluene	17.7		µg/kg wet		20.0		89	70-130	4	30
Naphthalene 18.0 μg/kg wet 20.0 90 70-130 3 30 n-Propylbenzene 20.2 μg/kg wet 20.0 101 70-130 0.05 30 Toluene 22.1 μg/kg wet 20.0 110 70-130 2 30	Methyl tert-butyl ether	24.1		µg/kg wet		20.0		121	70-130	4	30
n-Propylbenzene20.2μg/kg wet20.010170-1300.0530Toluene22.1μg/kg wet20.011070-130230	Naphthalene	18.0		µg/kg wet		20.0		90	70-130	3	30
Toluene 22.1 μg/kg wet 20.0 110 70-130 2 30	n-Propylbenzene	20.2		µg/kg wet		20.0		101	70-130	0.05	30
	Toluene	22.1		µg/kg wet		20.0		110	70-130	2	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509227 - SW846 5035A Soil (low level)										
LCS Dup (1509227-BSD1)					Pre	epared & An	alyzed: 12-	May-15		
1,2,4-Trimethylbenzene	22.2		µg/kg wet		20.0		111	70-130	6	30
1,3,5-Trimethylbenzene	20.8		µg/kg wet		20.0		104	70-130	4	30
m,p-Xylene	20.3		µg/kg wet		20.0		101	70-130	2	30
o-Xylene	20.9		µg/kg wet		20.0		104	70-130	0.7	30
Surrogate: 4-Bromofluorobenzene	54.5		µg/kg wet		50.0		109	70-130		
Surrogate: Toluene-d8	53.3		µg/kg wet		50.0		107	70-130		
Surrogate: 1,2-Dichloroethane-d4	45.8		µg/kg wet		50.0		92	70-130		
Surrogate: Dibromofluoromethane	54.2		µg/kg wet		50.0		108	70-130		
Batch 1509327 - SW846 5035A Soil (high level)										
Blank (1509327-BLK1)					Pre	epared & An	alyzed: 13-	May-15		
Benzene	< 9.1	D	µg/kg wet	9.1						
n-Butylbenzene	< 14.3	D	µg/kg wet	14.3						
sec-Butylbenzene	< 39.1	D	µg/kg wet	39.1						
tert-Butylbenzene	< 32.8	D	µg/kg wet	32.8						
Ethylbenzene	< 8.8	D	µg/kg wet	8.8						
Isopropylbenzene	< 9.5	D	µg/kg wet	9.5						
4-Isopropyltoluene	< 46.9	D	µg/kg wet	46.9						
Methyl tert-butyl ether	< 19.3	D	µg/kg wet	19.3						
Naphthalene	< 45.8	D	µg/kg wet	45.8						
n-Propylbenzene	< 48.4	D	µg/kg wet	48.4						
Toluene	< 11.5	D	µg/kg wet	11.5						
1,2,4-Trimethylbenzene	< 12.6	D	µg/kg wet	12.6						
1,3,5-Trimethylbenzene	< 14.4	D	µg/kg wet	14.4						
m,p-Xylene	< 9.8	D	µg/kg wet	9.8						
o-Xylene	< 10.6	D	µg/kg wet	10.6						
Surrogate: 4-Bromofluorobenzene	30.4		µg/kg wet		30.0		101	70-130		
Surrogate: Toluene-d8	30.1		µg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.3		µg/kg wet		30.0		91	70-130		
Surrogate: Dibromofluoromethane	29.1		µg/kg wet		30.0		97	70-130		
LCS (1509327-BS1)					Pre	epared & An	alyzed: 13-	<u>May-15</u>		
Benzene	18.7	D	µg/kg wet		20.0		93	70-130		
n-Butylbenzene	18.4	D	µg/kg wet		20.0		92	70-130		
sec-Butylbenzene	21.8	D	µg/kg wet		20.0		109	70-130		
tert-Butylbenzene	22.1	D	µg/kg wet		20.0		110	70-130		
Ethylbenzene	20.1	D	µg/kg wet		20.0		100	70-130		
Isopropylbenzene	21.0	D	µg/kg wet		20.0		105	70-130		
4-Isopropyltoluene	19.3	D	µg/kg wet		20.0		96	70-130		
Methyl tert-butyl ether	17.0	D	µg/kg wet		20.0		85	70-130		
Naphthalene	20.2	D	µg/kg wet		20.0		101	70-130		
n-Propylbenzene	20.5	D	µg/kg wet		20.0		102	70-130		
Toluene	19.4	D	µg/kg wet		20.0		97	70-130		
1,2,4-Trimethylbenzene	20.7	D	µg/kg wet		20.0		103	70-130		
1,3,5-Trimethylbenzene	20.8	D	µg/kg wet		20.0		104	70-130		
m,p-Xylene	20.9	D	µg/kg wet		20.0		105	70-130		
o-Xylene	20.8	D	µg/kg wet		20.0		104	70-130		
Surrogate: 4-Bromofluorobenzene	30.9		µg/kg wet		30.0		103	70-130		
Surrogate: Toluene-d8	30.0		µg/kg wet		30.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.2		µg/kg wet		30.0		91	70-130		
Surrogate: Dibromofluoromethane	30.1		µg/kg wet		30.0		100	70-130		
LCS Dup (1509327-BSD1)					Pre	epared & An	alyzed: 13-	<u>May-15</u>		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509327 - SW846 5035A Soil (high level)										
LCS Dup (1509327-BSD1)					Pre	epared & Ar	nalyzed: 13-	-May-15		
Benzene	18.6	D	µg/kg wet		20.0		93	70-130	0.6	30
n-Butylbenzene	18.7	D	µg/kg wet		20.0		94	70-130	2	30
sec-Butylbenzene	22.4	D	µg/kg wet		20.0		112	70-130	3	30
tert-Butylbenzene	22.6	D	µg/kg wet		20.0		113	70-130	2	30
Ethylbenzene	20.4	D	µg/kg wet		20.0		102	70-130	2	30
Isopropylbenzene	21.6	D	µg/kg wet		20.0		108	70-130	3	30
4-Isopropyltoluene	19.2	D	µg/kg wet		20.0		96	70-130	0.2	30
Methyl tert-butyl ether	16.7	D	µg/kg wet		20.0		84	70-130	2	30
Naphthalene	19.2	D	µg/kg wet		20.0		96	70-130	5	30
n-Propylbenzene	20.9	D	µg/kg wet		20.0		105	70-130	2	30
Toluene	19.5	D	µg/kg wet		20.0		98	70-130	0.6	30
1,2,4-Trimethylbenzene	21.1	D	µg/kg wet		20.0		106	70-130	2	30
1,3,5-Trimethylbenzene	21.2	D	µg/kg wet		20.0		106	70-130	2	30
m,p-Xylene	20.8	D	µg/kg wet		20.0		104	70-130	0.3	30
o-Xylene	21.4	D	µg/kg wet		20.0		107	70-130	3	30
Surrogate: 4-Bromofluorobenzene	31.1		µg/kg wet		30.0		104	70-130		
Surrogate: Toluene-d8	30.2		µg/kg wet		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.0		µg/kg wet		30.0		90	70-130		
Surrogate: Dibromofluoromethane	30.1		µg/kg wet		30.0		100	70-130		

Semivolatile (Organic Co	ompounds by	GCMS - Q	uality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509090 - SW846 3545A										
Blank (1509090-BLK1)					Pre	epared & Ar	nalyzed: 11-	May-15		
Acenaphthene	< 15.5	U	µg/kg wet	15.5			-			
Acenaphthylene	< 14.1	U	µg/kg wet	14.1						
Anthracene	< 15.2	U	µg/kg wet	15.2						
Benzo (a) anthracene	< 13.7	U	µg/kg wet	13.7						
Benzo (a) pyrene	< 13.8	U	µg/kg wet	13.8						
Benzo (b) fluoranthene	< 15.1	U	µg/kg wet	15.1						
Benzo (g,h,i) perylene	< 14.4	U	µg/kg wet	14.4						
Benzo (k) fluoranthene	< 15.1	U	µg/kg wet	15.1						
Chrysene	< 16.2	U	µg/kg wet	16.2						
Dibenzo (a,h) anthracene	< 12.2	U	µg/kg wet	12.2						
Fluoranthene	< 16.7	U	µg/kg wet	16.7						
Fluorene	< 15.9	U	µg/kg wet	15.9						
Indeno (1,2,3-cd) pyrene	< 13.6	U	µg/kg wet	13.6						
1-Methylnaphthalene	< 16.8	U	µg/kg wet	16.8						
2-Methylnaphthalene	< 13.7	U	µg/kg wet	13.7						
Naphthalene	< 13.5	U	µg/kg wet	13.5						
Phenanthrene	< 16.2	U	µg/kg wet	16.2						
Pyrene	< 14.1	U	µg/kg wet	14.1						
Surrogate: 2-Fluorobiphenyl	1230		µg/kg wet		1660		74	30-130		
Surrogate: Terphenyl-dl4	1290		µg/kg wet		1660		78	30-130		
Surrogate: Nitrobenzene-d5	1280		µg/kg wet		1660		77	30-130		
LCS (1509090-BS1)					Pre	epared: 11-I	May-15 An	alyzed: 12-N	<u>lay-15</u>	
Acenaphthene	1120		µg/kg wet	15.4	1650		68	40-140		
Acenaphthylene	1180		µg/kg wet	14.0	1650		71	40-140		
Anthracene	1290		µg/kg wet	15.1	1650		78	40-140		
Benzo (a) anthracene	1230		µg/kg wet	13.7	1650		75	40-140		
Benzo (a) pyrene	1350		µg/kg wet	13.8	1650		82	40-140		
Benzo (b) fluoranthene	1420		µg/kg wet	15.1	1650		86	40-140		
Benzo (g,h,i) perylene	1230		µg/kg wet	14.3	1650		75	40-140		
Benzo (k) fluoranthene	1260		µg/kg wet	15.1	1650		76	40-140		
Chrysene	1270		µg/kg wet	16.2	1650		77	40-140		
Dibenzo (a,h) anthracene	1260		µg/kg wet	12.1	1650		76	40-140		
Fluoranthene	1280		µg/kg wet	16.6	1650		78	40-140		
Fluorene	1210		µg/kg wet	15.8	1650		73	40-140		
Indeno (1,2,3-cd) pyrene	1390		µg/kg wet	13.5	1650		84	40-140		
1-Methylnaphthalene	1070		µg/kg wet	16.7	1650		65	40-140		
2-Methylnaphthalene	1110		µg/kg wet	13.6	1650		67	40-140		
Naphthalene	952		µg/kg wet	13.5	1650		58	40-140		
Phenanthrene	1230		µg/kg wet	16.1	1650		75	40-140		
Pyrene	1310		µg/kg wet	14.1	1650		79	40-140		
Surrogate: 2-Fluorobiphenyl	1140		µg/kg wet		1650		69	30-130		
Surrogate: Terphenyl-dl4	1340		µg/kg wet		1650		81	30-130		
Surrogate: Nitrobenzene-d5	1100		µg/kg wet		1650		66	30-130		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509145 - General Preparation										
Duplicate (1509145-DUP2)			Source: SO	<u> 207188-01</u>	Pro	epared & A	nalyzed: 11-	May-15		
% Solids	80.3		%			77.9			3	5

General Chemistry Parameters - Quality Control

The following list indicates the date and time low-level VOC soil/sediment samples were placed in the freezer at the lab:

SC07188-01	East Berm	5/8/2015 5:57 PM
SC07188-02	East Berm - Dupe	5/8/2015 5:57 PM
SC07188-03	West Berm	5/8/2015 5:57 PM
SC07188-04	West Berm - Dupe	5/8/2015 5:57 PM

Notes and Definitions

- D Data reported from a dilution
- J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- JL Estimated Concentration is potentially biased low (per NYSDEC).
- R01 The Reporting Limit has been raised to account for matrix interference.
- R05 Elevated Reporting Limits due to the presence of high levels of non-target analytes; sample may not meet client requested reporting limit for this reason.
- U Analyte included in the analysis, but not detected at or above the MDL.
- UJL Non-detect is potentially biased low (per NYSDEC).
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference

Laboratory Control Sample (LCS): A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: June O'Connor Rebecca Merz

Shidka Lattor and Loguidica. com	EDD format:	Temp °C Temp °C Observed Observed Corrected Corrected Corrected The Data State Corrected C	Time: Time: 7:05	-789-9018 ·	A 01001 - 413	e- Agawam, M	Received 1 my Cpurz	Part of the second seco	Relinquished	
		X X X X X			8888	1:45 1:45 0:51		ist Rem - Dye 1st Bern - Dye 1st Bern - Dye		
MA DEP MCP CAM Report? Ves CT DPH RCP Report? Ves Standard No QC DQA* ASP A* N Reduced* N Full* Ther IV* State-specific reporting standards:	Anavysis	X 827050065 57ARS	# of Clear Glass # of Plastic	J # of Amber Glass	Matrix	Time:	ice Water WW it Air SG=Soil X3=X3=X C=Compsite Date: K//L/IC	W=Groundwater SW=Surfa ,=Sludge A=Indoor/Ambien X2= Sample ID:	G=Grab	DW=Dinki O=Oil X1=
ATER Miller Ave, Miller Ave, My State: NY A S. Knowler QA/QC Reporting Notes: * additional charges may appply	Project No: 15 Site Name: 1/24 Location: 1/24 Sampler(s): 1/24 Jack Preservative Code below:	<u>n</u>		Quote/F	B the second sec	Invoice To:	4=HNO ₃ 5=	$\frac{100}{100} \frac{1000}{100} 10$	Ravten Ravten Fdd eered 1=Na _a 8=NaHSO4	Report To: Telephone # Project Mgr F=Field Fil 7=CH3OH
Special Handling: andard TAT - 7 to 10 business days 1sh TAT - Date Needed: 1TATs subject to laboratory approval n. 24-hr notification needed for rushes mples disposed after 60 days unless otherwise instructed		COR	DDY RI		Page	CHAIN		NOLOCY	ECTRUM ANALY Featuring	22

			CP DAY	115			(h			*
Refrigerated I DI VOA Erozen I Soil Jar Erozen	Ambient Kred	IR ID #	20-11		01				2	1
tody Seals: Present Intact Broken	Condition upon receipt: Cus	الم						2)	22/1200	Nony (
Lak (a) VI	mkid	Correction Factor	2:05	sis	5/2	C	Eliab hu	of Mar	X	ALL
inide tertor and legislater con f	E-mail to:	Diserved J	120	2/15	57	BA	X	1 Caller	D	X
	EDD format:	Temp °C	Time:	ate:		, si	Received b	y:	nquished b	Reli
- KIU INTR										
- 201 020 -									*	
									S v	
										4
- V Brsh		X		A	080	9:45	*	st Bern - Oupe	Wes	104
- notifica.		ax		AS .	8	9:45		t Bern	Wes	03
- Saine die		Q X		A	R	8:51		+ Rem - Dage	- Eris	1 02
- 1 Jan accenses per		a a		14	8	8:51 (5/6/15	st Bern	En	6718821
Chee Other: State-specific reporting standards:		82	# of # of	# of # of	T: Ma	Time:	Date:	Sample ID:		Lab ID:
	v 	270	Clear Plasti	VOA Ambe	ype atrix		C=Compsite		G= Grab	
ASP A*		500 55 100 57	Glass c	Vials er Glas			X3=	X2=		X1=
Standard No QC		LS TAR		5		fas	t Air SG=Soil (Sludge A=Indoor/Ambien	il SL=	0=0il S0=So
MA DEP MCP CAM Report? Yes N	Analysis	<u>S</u>	itainers	Cor		Waste Water	ce Water WW=	'=Groundwater SW=Surfa	er GW	DW=Dinking Wat
* additional charges may appply		11 n				Office				
QA/QC Reporting Notes:	ist Preservative Code below:	I			scorbic Acid 12=	VaOH 6=A	4=HNO ₃ 5=1	$2O_3$ 2=HCl 3=H ₂ SO ₄ =Deionized Water 10=H ₃ PO ₄	1=Na ₂ S2 aHSO ₄ 9=	F=Field Filtered 7=CH3OH 8=N
	Contraction (a)		RQN:	Quote/		P.O No.:		Junger have		Project Mgr:
Muse 109 State: NY	Location:					1	60	ther NY (4614	ten	Telephone #:
year Muller Here	Site Name: #101							e Ante Suite 20	ientre	1
5 7.002.001	Project No:			4	+d	Invoice To:		in Louidia	artin in	Report To:
 24-hr notification needed for rushes nples disposed after 60 days unless otherwise instructed. 	Min			of	Page _	2 		DLOGY	M ANALYTI Featuring AL TECHNO	SPECTRU HANIB
sh TAT - Date Needed: TATs subject to laboratory approval	All	ECCN		LOOT	Cr C				L	
Special Handling: ndard TAT - 7 to 10 business days	ASta			ALL COLOR					1 T	0
7	CO118 8	01								
)									

Report Date: 18-May-15 13:16

Final ReportRe-Issued ReportRevised Report

Barton & Loguidice, D.P.C. 11 Centre Park Suite 203 Rochester, NY 14614 Attn: Greg Lesniak

Project: Pioneer Midler Ave - Syracuse, NY Project #: 1537.005.001

Laboratory ID	<u>Client Sample ID</u>	Matrix	Date Sampled	Date Received
SC07186-01	East Berm	Soil	06-May-15 10:30	06-May-15 11:30
SC07186-02	East Berm - Dupe	Soil	06-May-15 10:30	06-May-15 11:30
SC07186-03	West Berm - Dupe	Soil	06-May-15 10:45	06-May-15 11:30
SC07186-04	West Berm	Soil	06-May-15 10:45	06-May-15 11:30

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received. All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00098 USDA # S-51435

Authorized by:

Aliole Leja

Nicole Leja Laboratory Director

Spectrum Analytical holds certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 32 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 12.5 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/-1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

All VOC soils samples submitted and analyzed in methanol will have a minimum dilution factor of 50. This is the minimum amount of solvent allowed on the instrumentation without causing interference. Soils are run on a manual load instrument. 100ug of sample (MEOH) is spiked into 5ml DI water along with the surrogate and added directly onto the instrument. Additional dilution factors may be required to keep analyte concentration within instrument calibration range.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Reactivity (40 CFR 261.23) Case Narrative:

These samples do not exhibit the characteristics of reactivity as defined in 40 CFR 261.23, sections (1), (2) and (4); however, Spectrum Analytical, Inc. does not test for detonation, explosive reaction or potential, or forbidden explosives as defined in 40 CFR 261.23, sections (3), (6), (7) and (8).

Reactive sulfide and cyanide are tested at a pH of 2 and not tested at all conditions between pH 2 and 12.5 as stated in 40 CFR 261.23, section (5); thus reactive cyanide and sulfide results as reported in this document can not be used to support the nonreactive properties of these samples.

The responsibility falls on the generator to use knowledge of the waste to determine if the waste meets or does not meet the descriptive, prose definition of reactivity.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

SW846 1030

Samples:

SC07186-01 East Berm

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SC07186-02 East Berm - Dupe

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SC07186-03 West Berm - Dupe

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SC07186-04 West Berm

SW846 1030

Samples:

SC07186-04 West Berm

A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.

Ignitability by Definition

SW846 1311/7470A

S504734-CRL2

Standard was rerun and passed within the method criteria

Mercury

SW846 1311/8270D

Calibration:

1505031

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol 4,6-Dinitro-2-methylphenol 4-Nitrophenol Benzoic acid

This affected the following samples:

1509444-BLK1 1509444-BSD1 East Berm East Berm - Dupe S504308-ICV1 S504640-CCV1 West Berm West Berm - Dupe

Laboratory Control Samples:

1509444 BS/BSD

4-Chloroaniline percent recoveries (34/30) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

East Berm East Berm - Dupe West Berm West Berm - Dupe

Aniline percent recoveries (29/32) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

East Berm - Dupe West Berm West Berm - Dupe

SW846 1311/8270D

Laboratory Control Samples:

1509444 BS/BSD

Benzidine percent recoveries (12/17) are outside individual acceptance criteria (40-140), but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

East Berm - Dupe West Berm West Berm - Dupe

1509444 BSD

3-Nitroaniline RPD 22% (20%) is outside individual acceptance criteria.

Benzidine RPD 30% (20%) is outside individual acceptance criteria.

Benzyl alcohol RPD 25% (20%) is outside individual acceptance criteria.

Samples:

S504640-CCV1

Analyte percent difference is outside individual acceptance criteria (20), but within overall method allowances.

Benzidine (-51.2%)

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

4-Nitrophenol (39.0%)

This affected the following samples:

1509444-BLK1 1509444-BS1 1509444-BSD1 East Berm East Berm - Dupe West Berm West Berm - Dupe

Sample Acceptance Check Form

Client:	Barton & Loguidice, D.P.C Rochester, NY
Project:	Pioneer Midler Ave - Syracuse, NY / 1537.005.001
Work Order:	SC07186
Sample(s) received on:	5/6/2015

The following outlines the condition of samples for the attached Chain of Custody upon receipt.

	Yes	<u>No</u>
Were custody seals present?		\checkmark
Were custody seals intact?		
Were samples received at a temperature of $\leq 6^{\circ}$ C?		\checkmark
Were samples cooled on ice upon transfer to laboratory representative?	\checkmark	
Were sample containers received intact?	\checkmark	
Were samples properly labeled (labels affixed to sample containers and include sample ID, site location, and/or project number and the collection date)?	\checkmark	
Were samples accompanied by a Chain of Custody document?	\checkmark	
Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name, preservation type, sample matrix and any special remarks concerning the sample?		
Did sample container labels agree with Chain of Custody document?	\checkmark	
Were samples received within method-specific holding times?	\checkmark	

N/A

 \square

Sample Id	lentification			Client F	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
East Berr SC07186-	Berm INO. Analyte(s) Result Result Is Organic Compounds TCLP Extraction Completed Ovolatile Organic Compounds ared by method SW846 5030 Water MS 2 Benzene < 0.9 3 2-Butanone (MEK) < 6.2			1537.005.001 ag Units *RDL MD.			Soil	06-May-15 10:30			06-N	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	Х
TCLP Vola	atile Organic Compounds	Vater MS				Init	ial weight: 4	5 ml					
71-43-2	Benzene	< 0.9	U, D	µg/l	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	Х
78-93-3	2-Butanone (MEK)	< 6.2	U, D	µg/l	50.0	6.2	5	"			"	"	х
56-23-5	Carbon tetrachloride	< 1.1	U, D	µg/l	5.0	1.1	5	"			"	"	х
108-90-7	Chlorobenzene	< 1.0	U, D	µg/l	5.0	1.0	5				"	"	х
67-66-3	Chloroform	< 2.0	U, D	µg/l	5.0	2.0	5				"	"	х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	µg/l	5.0	1.2	5				"	"	х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	µg/l	5.0	0.8	5				"	"	х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	µg/l	5.0	1.4	5				"	"	х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	µg/l	2.5	2.0	5	"	"		"	"	Х
127-18-4	Tetrachloroethene	9.9	D	µg/l	5.0	2.9	5		"		"	"	х
79-01-6	Trichloroethene	< 1.9	U, D	µg/l	5.0	1.9	5				"	"	х
75-01-4	Vinyl chloride	< 1.7	U, D	µg/l	5.0	1.7	5	"		"	"	"	х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	0%			"	"	"	"	
2037-26-5	Toluene-d8	95			70-13	0%			"		"	"	
17060-07-0	1,2-Dichloroethane-d4	111			70-13	0%					"	"	
1868-53-7	Dibromofluoromethane	97			70-13	0%		"			"	"	
Semivolati	le Organic Compounds by	GCMS											
TCLP Ext	raction for Semivolatiles by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509197	х
	Final pH of leachate	6.57		N/A			1	"			"	"	
TCLP Ser Prepared	<u>nivolatiles</u> by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	µg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
208-96-8	Acenaphthylene	< 2.16	U	µg/l	5.00	2.16	1		"	"	"	"	Х
62-53-3	Aniline	< 2.34	U	µg/l	5.00	2.34	1		"	"	"	"	Х
120-12-7	Anthracene	< 2.33	U	µg/l	5.00	2.33	1		"	"	"	"	Х
103-33-3	Azobenzene/Diphenyldiaz ene	< 2.46	U	µg/l	5.00	2.46	1	"	"	"	"	"	
92-87-5	Benzidine	< 2.68	U	µg/l	5.00	2.68	1		"	"	"	"	Х
56-55-3	Benzo (a) anthracene	< 2.26	U	µg/l	5.00	2.26	1		"		"	"	Х
50-32-8	Benzo (a) pyrene	< 2.40	U	µg/l	5.00	2.40	1				"	"	Х
205-99-2	Benzo (b) fluoranthene	< 2.08	U	µg/l	5.00	2.08	1				"	"	х
191-24-2	Benzo (g,h,i) perylene	< 2.40	U	µg/l	5.00	2.40	1	"			"	"	х
207-08-9	Benzo (k) fluoranthene	< 2.73	U	µg/l	5.00	2.73	1	"			"	"	х
65-85-0	Benzoic acid	< 1.98	U	µg/l	5.00	1.98	1	"			"	"	х
100-51-6	Benzyl alcohol	< 2.14	U	µg/l	5.00	2.14	1				"	"	х
111-91-1	Bis(2-chloroethoxy)metha ne	< 2.23	U	µg/l	5.00	2.23	1	"	"	"	"	"	Х
111-44-4	Bis(2-chloroethyl)ether	< 2.14	U	µg/l	5.00	2.14	1	"	"	"	"		Х

Sample Id East Ber	dentification m			<u>Client F</u>	Project #		<u>Matrix</u>	<u>Coll</u>	ection Date	/Time	Re	ceived	
SC07186	-01			1537.0	05.001		Soil	06	-May-15 10	0:30	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Se Prepared	mivolatiles by method SW846 3535A												
108-60-1	Bis(2-chloroisopropyl)ethe	< 2.22	U	µg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	×
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	µg/l	5.00	2.34	1	"	"	"	"	"	Х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	µg/l	5.00	2.26	1	u		"	u	"	х
85-68-7	Butyl benzyl phthalate	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	х
86-74-8	Carbazole	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	µg/l	5.00	2.43	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
91-58-7	2-Chloronaphthalene	< 2.00	U	µg/l	5.00	2.00	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	µg/l	5.00	2.03	1	"	"	"	"	"	х
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	µg/l	5.00	2.34	1	u		"	"	"	х
218-01-9	Chrysene	< 2.33	U	µg/l	5.00	2.33	1	"	"	"	"	"	х
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	µg/l	5.00	2.52	1	"	"	"	"	"	х
132-64-9	Dibenzofuran	< 2.15	U	µg/l	5.00	2.15	1	"	"	"	"	"	х
95-50-1	1,2-Dichlorobenzene	< 2.05	U	µg/l	5.00	2.05	1	"	"	"	"	"	х
541-73-1	1,3-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"	"	"	"	"	х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"	"	"	"	"	х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	µg/l	5.00	2.22	1	"	"	"	"	"	х
120-83-2	2,4-Dichlorophenol	< 1.84	U	µg/l	5.00	1.84	1	"	"	"	"	"	х
84-66-2	Diethyl phthalate	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 2.28	U	µg/l	5.00	2.28	1	"	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 2.12	U	µg/l	5.00	2.12	1	"	"	"	"	"	х
84-74-2	Di-n-butyl phthalate	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	х
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	µg/l	5.00	2.50	1	"	"	"	"	"	х
51-28-5	2,4-Dinitrophenol	< 1.87	U	µg/l	5.00	1.87	1	"	"	"	"	"	х
121-14-2	2,4-Dinitrotoluene	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	х
606-20-2	2,6-Dinitrotoluene	< 2.30	U	µg/l	5.00	2.30	1		"	"	"	"	х
117-84-0	Di-n-octyl phthalate	< 2.79	U	µg/l	5.00	2.79	1	"	"	"	"	"	х
206-44-0	Fluoranthene	< 2.32	U	µg/l	5.00	2.32	1	"	"	"	"	"	х
86-73-7	Fluorene	< 2.31	U	µg/l	5.00	2.31	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	µg/l	5.00	2.15	1	"	"	"	"	"	х
87-68-3	Hexachlorobutadiene	< 2.03	U	µg/l	5.00	2.03	1	"	"	"	"	"	х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	µg/l	5.00	1.55	1	u		"	"	"	х
67-72-1	Hexachloroethane	< 2.15	U	µg/l	5.00	2.15	1		"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	µg/l	5.00	2.30	1	"	"	"	"	"	х
78-59-1	Isophorone	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	х
91-57-6	2-Methylnaphthalene	< 2.19	U	µg/l	5.00	2.19	1	"	"	"	"	"	х
95-48-7	2-Methylphenol	< 2.14	U	µg/l	5.00	2.14	1	"		"	"	"	х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	µg/l	10.0	2.22	1	u	"	"	"	"	х
91-20-3	Naphthalene	< 2.04	U	µg/l	5.00	2.04	1	"	"	"	"	"	Х
88-74-4	2-Nitroaniline	< 2.34	U	µg/l	5.00	2.34	1	"	"	"	"	"	Х
99-09-2	3-Nitroaniline	< 2.72	U	µg/l	5.00	2.72	1	"	"	"	"	"	х
100-01-6	4-Nitroaniline	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	Х

Sample Io	<u>dentification</u>			Client P	roject#		Matrix	Coll	ection Date	/Time	Re	ceived	
East Ber	m			1537.00)5.001		Soil	<u>06</u>	-May-15 10):30	06-1	May-15	
SC07186	-01								2				
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Sei Prepared	<u>mivolatiles</u> by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	µg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
88-75-5	2-Nitrophenol	< 2.20	U	µg/l	5.00	2.20	1	"		"		"	х
100-02-7	4-Nitrophenol	< 1.91	U	µg/l	5.00	1.91	1		"	"	"	"	х
62-75-9	N-Nitrosodimethylamine	< 1.84	U	µg/l	5.00	1.84	1		"	"	"		х
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	µg/l	5.00	2.32	1		"	"	"		х
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	µg/l	5.00	2.58	1		"	"		"	х
87-86-5	Pentachlorophenol	< 2.15	U	µg/l	5.00	2.15	1		"	"	"	"	х
85-01-8	Phenanthrene	< 2.26	U	µg/l	5.00	2.26	1				"	"	х
108-95-2	Phenol	< 2.04	U	µg/l	5.00	2.04	1		"	"	"	"	х
129-00-0	Pyrene	< 2.42	U	µg/l	5.00	2.42	1		"	"		"	х
110-86-1	Pyridine	< 1.62	U	µg/l	5.00	1.62	1						х
120-82-1	1,2,4-Trichlorobenzene	< 1.99	U	µq/l	5.00	1.99	1		"	"		"	х
90-12-0	1-Methylnaphthalene	< 1.96	U	ua/l	5.00	1.96	1			"		"	
95-95-4	2.4.5-Trichlorophenol	< 2.09	U	ua/l	5.00	2.09	1						х
88-06-2	2 4 6-Trichlorophenol	< 1.96	U	µg/l	5.00	1.96	1						x
82-68-8	Pentachloronitrobenzene	< 2.22	U	µg/l	5.00	2 22	1						x
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1.97	U	µg/l	5.00	1.97	1	"	"	"	"	"	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	73			30-13	0%						"	
367-12-4	2-Fluorophenol	78			15-11	0%						"	
4165-60-0	Nitrobenzene-d5	79			30-13	0%			"	"		"	
4165-62-2	Phenol-d5	79			15-11	0%							
1718-51-0	Terphenvl-dl4	81			30-13	0%							
118-79-6	2 4 6-Tribromophenol	76			15-11	0%							
Semivolat	ile Organic Compounds by (GC				• /•							
Polychlor	inated Biphenyls	ac.											
Prepareo	by method SW846 3545A			line de la c	00.0	00.0		014/0400000	44 14-145	44 14-145		4500000	X
12074-11-2	Arocior-1016	< 20.9	0	µg/kg ary	23.2	20.9	1	SVV846 8082A	11-May-15	11-May-15		1509089	X
11104-28-2	Arocior-1221	< 17.8	U	µg/kg ary	23.2	17.8	1						X
11141-16-5	Aroclor-1232	< 20.8	0	µg/kg dry	23.2	20.8	1						Х
53469-21-9	Aroclor-1242	< 14.4	U	µg/kg dry	23.2	14.4	1						Х
12672-29-6	Aroclor-1248	< 14.5	U	µg/kg dry	23.2	14.5	1			"	"	"	Х
11097-69-1	Aroclor-1254	< 16.0	U	µg/kg dry	23.2	16.0	1		"	"	"	"	Х
11096-82-5	Aroclor-1260	208		µg/kg dry	23.2	16.2	1		"	"	"	"	Х
37324-23-5	Aroclor-1262	< 20.8	U	µg/kg dry	23.2	20.8	1		"	"	"	"	Х
11100-14-4	Aroclor-1268	< 22.8	U	µg/kg dry	23.2	22.8	1	u	"	"	"	"	Х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	80			30-15	0 %		"	"	"		"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	90			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0 %		"		"		"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	0 %		u	"	"		"	

Sample Ic	lentification			Client P	roject #		Matrix	Colle	ection Date	/Time	Re	ceived	
East Berr	m -01			1537.0	05.001		Soil	06	-May-15 10):30	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Me	tals by EPA 1311 & 6000/7()00 Series Meth	ods										
TCLP Ext Prepared	raction for Hg by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	х
	Final pH of leachate	6.65		N/A			1	"	"		"	"	
TCLP Ext Prepared	raction for Metals by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	"	"		"	"	х
	Final pH of leachate	6.65		N/A			1	"	"		"	"	
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	х
7440-38-2	Arsenic	< 0.0026	U	mg/l	0.0040	0.0026	1	"	"	15-May-1 5	"	1509548	х
7440-39-3	Barium	0.374		mg/l	0.0500	0.0004	1	"	"	15-May-1 5	"	1509320	х
7440-43-9	Cadmium	0.0005	J	mg/l	0.0025	0.0002	1		"		"	"	х
7440-47-3	Chromium	0.0028	J	mg/l	0.0050	0.0010	1	"	"		"		х
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	х
7439-92-1	Lead	< 0.0018	U	mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	х
7782-49-2	Selenium	< 0.0043	U	mg/l	0.0150	0.0043	1	u	"	15-May-1 5	"	1509320	х
General C	hemistry Parameters												
	% Solids	86.0		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	х
	Ignitability by Definition	Negative	IgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	х
	рН	8.24	рН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:27	BD	1509150	х
Reactivity Prepared	<u>v Cyanide/Sulfide</u> by method General Prepa	aration											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 24.7	U	mg/kg dry	24.7	24.7	1	"			"		
18496-25-8	Reactive Sulfide	< 49.4	U	mg/kg dry	49.4	49.4	1	"	"	"	"		

Sample Ic	lentification			Client F	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
East Berr	n - Dupe			1537.0	<u>10jeet #</u>		Soil	<u> </u>	May_15 10	0.30	06-1	May_15	
SC07186-	.02			1557.0	05.001		5011	00	-wiay-15 10	1.50	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	х
TCLP Vol	atile Organic Compounds												
Prepared	by method SW846 5030 V	Vater MS				<u>Init</u>	ial weight:	<u>5 ml</u>					
71-43-2	Benzene	< 0.9	U, D	µg/l	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	Х
78-93-3	2-Butanone (MEK)	< 6.2	U, D	µg/l	50.0	6.2	5		"	"	"		Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	µg/l	5.0	1.1	5				"		Х
108-90-7	Chlorobenzene	< 1.0	U, D	µg/l	5.0	1.0	5		"		"		Х
67-66-3	Chloroform	2.4	D, J	µg/l	5.0	2.0	5	"	"		"		Х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	µg/l	5.0	1.2	5		"		"		Х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	µg/l	5.0	0.8	5		"	"	"		Х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	µg/l	5.0	1.4	5		"		"		Х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	µg/l	2.5	2.0	5				"		х
127-18-4	Tetrachloroethene	10.8	D	µg/l	5.0	2.9	5		"		"		Х
79-01-6	Trichloroethene	< 1.9	U, D	µg/l	5.0	1.9	5		"	"	"		х
75-01-4	Vinyl chloride	< 1.7	U, D	µg/l	5.0	1.7	5	"	"		"		х
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	94			70-13	0%			"		"		
2037-26-5	Toluene-d8	95			70-13	0%			"	"	"		
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0%					"		
1868-53-7	Dibromofluoromethane	98			70-13	0%		"			"	"	
Semivolati	le Organic Compounds by	GCMS											
TCLP Ext	raction for Semivolatiles												
Prepared	TCLP Extraction	Completed		N/A			1	SW846 1311	11-Mav-15	12-Mav-1	BD	1509197	х
										5			
	Final pH of leachate	6.48		N/A			1	"	"		"	"	
TCLP Ser Prepared	<u>nivolatiles</u> by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	µg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
208-96-8	Acenaphthylene	< 2.16	U	µg/l	5.00	2.16	1				"		х
62-53-3	Aniline	< 2.34	U	µg/l	5.00	2.34	1				"		х
120-12-7	Anthracene	< 2.33	U	µg/l	5.00	2.33	1				"		х
103-33-3	Azobenzene/Diphenyldiaz ene	< 2.46	U	µg/l	5.00	2.46	1	"	"		"		
92-87-5	Benzidine	< 2.68	U	µg/l	5.00	2.68	1				"		х
56-55-3	Benzo (a) anthracene	< 2.26	U	µq/l	5.00	2.26	1				"		х
50-32-8	Benzo (a) pyrene	< 2.40	U	ua/l	5.00	2.40	1				"		х
205-99-2	Benzo (b) fluoranthene	< 2.08	U	ua/l	5.00	2.08	1						x
191-24-2	Benzo (g.h.i) pervlene	< 2.40	U	ua/l	5.00	2.40	1				"		X
207-08-9	Benzo (k) fluoranthene	< 2 73	U	μ <u>α</u> /Ι	5 00	2 73	1				"		x
65-85-0	Benzoic acid	< 1.98	U	v9′'	5.00	1.98	1				"		x
100-51-6	Benzyl alcohol	< 2 14	- U	P9/1	5.00	2 14	1				"		x
111-91-1	Bis(2-chloroethoxy)metha	< 2.23	U	µg/l	5.00	2.23	1	"	"		"		X
111 11 1	ne Dia(2 ablaraathul)athar	- 0.14			E 00	0.44	4				"		v
111-44-4	Dis(∠-chioroethyi)ether	< Z.14	U	μg/i	5.00	2.14	1		-				X

Sample Id East Ber	<u>dentification</u> m - Dupe			<u>Client F</u>	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
SC07186	-02			1537.0	005.001		Soil	06	-May-15 10	0:30	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Se	mivolatiles												
108-60-1	Bis(2-chloroisopropyl)ethe	< 2.22	U	µg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	X
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	μg/l	5.00	2.34	1	"		"	"	"	х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	µg/l	5.00	2.26	1	"	"	"	"	"	х
85-68-7	Butyl benzyl phthalate	< 2.63	U	µg/l	5.00	2.63	1	"		"	"	"	х
86-74-8	Carbazole	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	µg/l	5.00	2.43	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 2.63	U	µg/l	5.00	2.63	1	"		"	"	"	х
91-58-7	2-Chloronaphthalene	< 2.00	U	µg/l	5.00	2.00	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	µg/l	5.00	2.03	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	µg/l	5.00	2.34	1	"	"		"	"	х
218-01-9	Chrysene	< 2.33	U	µg/l	5.00	2.33	1	"	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	µg/l	5.00	2.52	1	"	"	"	"	"	Х
132-64-9	Dibenzofuran	< 2.15	U	µg/l	5.00	2.15	1	"		"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 2.05	U	µg/l	5.00	2.05	1	"		"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"		"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"	"	"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	µg/l	5.00	2.22	1	"		"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 1.84	U	µg/l	5.00	1.84	1	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 2.28	U	µg/l	5.00	2.28	1	"		"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 2.12	U	µg/l	5.00	2.12	1	"		"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	µg/l	5.00	2.50	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 1.87	U	µg/l	5.00	1.87	1	"	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 2.30	U	µg/l	5.00	2.30	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 2.79	U	µg/l	5.00	2.79	1	"	"	"	"	"	Х
206-44-0	Fluoranthene	< 2.32	U	µg/l	5.00	2.32	1	"	"	"	"	"	Х
86-73-7	Fluorene	< 2.31	U	µg/l	5.00	2.31	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	µg/l	5.00	2.15	1	"		"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.03	U	µg/l	5.00	2.03	1	"		"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	µg/l	5.00	1.55	1	"	"	"	"	"	х
67-72-1	Hexachloroethane	< 2.15	U	µg/l	5.00	2.15	1	"	"	"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	µg/l	5.00	2.30	1	"	"	"	"	"	Х
78-59-1	Isophorone	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 2.19	U	µg/l	5.00	2.19	1	"		"	"	"	Х
95-48-7	2-Methylphenol	< 2.14	U	µg/l	5.00	2.14	1	"		"	"	"	Х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	µg/l	10.0	2.22	1	"	"	"	"	"	х
91-20-3	Naphthalene	< 2.04	U	µg/l	5.00	2.04	1	"		"	"	"	Х
88-74-4	2-Nitroaniline	< 2.34	U	µg/l	5.00	2.34	1	"	"	"	"	"	х
99-09-2	3-Nitroaniline	< 2.72	U	µg/l	5.00	2.72	1	"	"	"	"	"	х
100-01-6	4-Nitroaniline	< 2.62	U	µg/l	5.00	2.62	1		"	"	"		Х

Sample Io	<u>dentification</u>			Client P	roject#		Matrix	Coll	ection Date	/Time	Re	ceived	
East Ber	m - Dupe			1527.00	0 <u>5 001</u>		<u>Iviauix</u>	<u>con</u>	Mars 15 10	<u>111110</u>		Mars 15	
SC07186	-02			1557.00	5.001		5011	00	-May-15 10	0.30	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
<u>TCLP Ser</u> Prepared	<u>mivolatiles</u> by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	µg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
88-75-5	2-Nitrophenol	< 2.20	U	µg/l	5.00	2.20	1	"		"		"	х
100-02-7	4-Nitrophenol	< 1.91	U	µg/l	5.00	1.91	1		"	"	"	"	х
62-75-9	N-Nitrosodimethylamine	< 1.84	U	µg/l	5.00	1.84	1		"	"	"		х
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	µg/l	5.00	2.32	1		"	"		"	х
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	µg/l	5.00	2.58	1		"	"		"	х
87-86-5	Pentachlorophenol	< 2.15	U	µg/l	5.00	2.15	1			"	"	"	х
85-01-8	Phenanthrene	< 2.26	U	µg/l	5.00	2.26	1		"	"	"	"	х
108-95-2	Phenol	< 2.04	U	µg/l	5.00	2.04	1		"	"			х
129-00-0	Pyrene	< 2.42	U	µg/l	5.00	2.42	1		"	"			х
110-86-1	Pyridine	< 1.62	U	µg/l	5.00	1.62	1						х
120-82-1	1,2,4-Trichlorobenzene	< 1.99	U	µq/l	5.00	1.99	1		"	"		"	х
90-12-0	1-Methylnaphthalene	< 1.96	U	ua/l	5.00	1.96	1			"		"	
95-95-4	2.4.5-Trichlorophenol	< 2.09	U	ua/l	5.00	2.09	1						х
88-06-2	2 4 6-Trichlorophenol	< 1.96	U	µg/l	5 00	1.96	1						x
82-68-8	Pentachloronitrobenzene	< 2.22	U	ua/l	5 00	2 22	1						x
95-94-3	1,2,4,5-Tetrachlorobenzen e	< 1.97	U	µg/l	5.00	1.97	1	"	"	"	"	"	Х
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	70			30-13	0%				"	"		
367-12-4	2-Fluorophenol	76			15-11	0%						"	
4165-60-0	Nitrobenzene-d5	76			30-13	0%			"	"		"	
4165-62-2	Phenol-d5	79			15-11	0%				"			
1718-51-0	Terphenvl-dl4	77			30-13	0%							
118-79-6	2 4 6-Tribromophenol	73			15-11	0%							
Semivolat	ile Organic Compounds by (GC C				• ,•							
Polychlor Proported	inated Biphenyls												
12674 11 2	Arcolor 1016	< 20.0	П	ua/ka day	<u></u>	20.0	1	S/M046 0002A	11 Mov 15	11 Mov 15	IMD	1500090	
11104 29 2	Aroclor-1016	< 17.9	0	µg/kg diy	23.2	20.9	1	50040 0002A "	"	"	IIVIR "	1509069	×
11104-20-2	Aroclor-1221	< 17.8	U	µg/kg ary	23.2	17.8	1						X
TTT41-10-5	Aroclor-1232	< 20.8	U	µg/kg dry	23.2	20.8	1						X
53469-21-9	Aroclor-1242	< 14.4	U	µg/kg dry	23.2	14.4	1						X
12672-29-6	Aroclor-1248	< 14.5	U	µg/kg dry	23.2	14.5	1			"	"	"	Х
11097-69-1	Aroclor-1254	< 16.0	U	µg/kg dry	23.2	16.0	1		"	"	"	"	Х
11096-82-5	Aroclor-1260	262		µg/kg dry	23.2	16.3	1		"	"	"	"	Х
37324-23-5	Aroclor-1262	< 20.8	U	µg/kg dry	23.2	20.8	1		"	"	"	"	Х
11100-14-4	Aroclor-1268	< 22.8	U	µg/kg dry	23.2	22.8	1	u	"	"	"	"	Х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr)	70			30-15	0 %		n	"	"		"	
10386-84-2	4,4-DB-Octafluorobiphenyl (Sr) [2C]	85			30-15	0 %		"	"	"	"	"	
2051-24-3	Decachlorobiphenyl (Sr)	95			30-15	0%		"			"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	105			30-15	0 %		H	"	"	"	"	

Sample Ic East Berr	<u>lentification</u> n - Dupe			Client F	Project #		<u>Matrix</u>	Colle	ection Date	/ <u>Time</u>	Re	ceived	
SC07186-	-02			1537.0	05.001		Soil	06	-May-15 10	0:30	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Me	tals by EPA 1311 & 6000/7(000 Series Meth	ods										
TCLP Ext	raction for Hg												
Prepared	by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	Х
	Final pH of leachate	6.57		N/A			1	"	"		"	"	
TCLP Ext Prepared	raction for Metals by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	"	"		"		х
	Final pH of leachate	6.57		N/A			1		"				
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	х
7440-38-2	Arsenic	0.0028	J	mg/l	0.0040	0.0026	1	"	"	15-May-1 5	"	1509548	х
7440-39-3	Barium	0.418		mg/l	0.0500	0.0004	1	n	"	15-May-1 5	"	1509320	х
7440-43-9	Cadmium	0.0007	J	mg/l	0.0025	0.0002	1		"		"		х
7440-47-3	Chromium	0.0040	J	mg/l	0.0050	0.0010	1		"				х
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	х
7439-92-1	Lead	0.0057	J	mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	х
7782-49-2	Selenium	0.0057	J	mg/l	0.0150	0.0043	1	n	"	15-May-1 5		1509320	х
General C	hemistry Parameters												
	% Solids	83.6		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	х
	Ignitability by Definition	Negative	IgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	х
	рН	8.21	рН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:28	BD	1509150	х
Reactivity Prepared	<u>Cyanide/Sulfide</u> by method General Prep	aration											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 24.7	U	mg/kg dry	24.7	24.7	1	"	"		"	"	
18496-25-8	Reactive Sulfide	< 49.4	U	mg/kg dry	49.4	49.4	1	"	"		"	"	

Sample Ic	mple Identification			Client F	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
West Ber	m - Dupe			1527.0	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -		Soil	<u></u> 06	May 15 10	0.45	06.1	Mov 15	
SC07186-	-03			1557.0	05.001		5011	00	-way-15 10	1.43	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
volatile O	TCI P Extraction	Completed		NI/A			1	SW/846 1311	13-Mav-1	14-May-1	BD	1509403	x
		Completed					•		5	5	22	1000100	~
TCLP Vola	atile Organic Compounds												
Prepared	by method SW846 5030 V	Vater MS				Init	tial weight:	<u>5 ml</u>					
71-43-2	Benzene	< 0.9	U, D	µg/l	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	Х
78-93-3	2-Butanone (MEK)	< 6.2	U, D	µg/l	50.0	6.2	5		"	"	"	"	Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	µg/l	5.0	1.1	5	"	"		"	"	Х
108-90-7	Chlorobenzene	< 1.0	U, D	µg/l	5.0	1.0	5	"	"		"	"	Х
67-66-3	Chloroform	2.6	D, J	µg/l	5.0	2.0	5				"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	µg/l	5.0	1.2	5		"		"	"	х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	µg/l	5.0	0.8	5	"	"		"	"	х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	µg/l	5.0	1.4	5				"	"	х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	ua/l	2.5	2.0	5		"		"	"	х
127-18-4	Tetrachloroethene	< 2 9	U, D	ua/l	50	29	5					"	х
79-01-6	Trichloroethene	< 1.9	U. D	μg/l 5.0 1.9		5				"		x	
75-01-4	Vinyl chloride	< 1.7	U D	µg/l	5.0	1.5	5				"		x
	Viriyi chionae	\$ 1.1	0, 5	µg/i 0.0 i.i		0							
Surrogate i	recoveries:												
460-00-4	00-4 4-Bromofluorobenzene 93				70-13	0 %		"	"		"	"	
2037-26-5	Toluene-d8	96			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	110			70-13	0 %			"	"	"	"	
1868-53-7	Dibromofluoromethane	97			70-13	0 %		"	"		"	"	
Semivolati	le Organic Compounds by	GCMS											
TCLP Ext Prepared	raction for Semivolatiles by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1	BD	1509197	х
	Final pH of leachate	6 42		N/A			1					"	
TCLP Ser	nivolatiles						·						
Prepared	by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	µg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
208-96-8	Acenaphthylene	< 2.16	U	µg/l	5.00	2.16	1	"			"	"	х
62-53-3	Aniline	< 2.34	U	µg/l	5.00	2.34	1				"	"	х
120-12-7	Anthracene	< 2.33	U	µg/l	5.00	2.33	1				"	"	х
103-33-3	Azobenzene/Diphenyldiaz	< 2.46	U	µg/l	5.00	2.46	1	"	"	"	"		
92-87-5	Benzidine	< 2.68	U	ua/l	5.00	2.68	1	"	"		"	"	х
56-55-3	Benzo (a) anthracene	< 2.26	U	ug/l	5 00	2 26	1					"	х
50-32-8	Benzo (a) pyrene	< 2.40	U	µg/l	5.00	2 40	1				"		x
205-99-2	Benzo (b) fluoranthene	< 2.40	U U	µg/l	5.00	2.40	1				"		x
191-24-2	Benzo (g h i) perdene	< 2.00	U U	P9/1	5.00	2.00	1				"		Y
207-08 0	Bonzo (k) fluoronthano	~ 2.40	U U	µg/i	5.00	2.4U	1						~ v
201-00-9	Denzo (K) fluorantnene	< 2.13	0	µg/i	5.00	2.13	1						X
U-00-0U	Benzoic acid	< 1.98	U 	µg/I	5.00	1.98	1		-				X
100-51-6	Benzyl alcohol	< 2.14	U	µg/l	5.00	2.14	1						X
111-91-1	Bis(2-chloroethoxy)metha ne	noxy)metha < 2.23 U		µg/l	5.00	2.23	1		"	"	u	u.	Х
111-44-4	Bis(2-chloroethyl)ether	< 2.14	U	µg/l	5.00	2.14	1	"	"		"	"	Х

Sample I West Ber	ample Identification Vest Berm - Dupe			<u>Client F</u>	Project #		<u>Matrix</u>	<u>Coll</u>	ection Date	/Time	Re	ceived	
SC07186	-03			1537.0	05.001		Soil	06	-May-15 10):45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Se Prepared	<u>mivolatiles</u> by method SW846 3535A												
108-60-1	Bis(2-chloroisopropyl)ethe	< 2.22	U	µg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	Х
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	µg/l	5.00	2.34	1	"		"	"	"	х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	µg/l	5.00	2.26	1	"	"	"	"	"	х
85-68-7	Butyl benzyl phthalate	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
86-74-8	Carbazole	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	µg/l	5.00	2.43	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 2.63	U	µg/l	5.00	2.63	1	"	"		"	"	х
91-58-7	2-Chloronaphthalene	< 2.00	U	µg/l	5.00	2.00	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	µg/l	5.00	2.03	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	µg/l	5.00	2.34	1	"	"		"	"	х
218-01-9	Chrysene	< 2.33	U	µg/l	5.00	2.33	1	"	"	"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	µg/l	5.00	2.52	1	"		"	"	"	Х
132-64-9	Dibenzofuran	< 2.15	U	µg/l	5.00	2.15	1	"	"	"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 2.05	U	µg/l	5.00	2.05	1	"	"	"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"	"	"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"		"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	µg/l	5.00	2.22	1	"	"	"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 1.84	U	µg/l	5.00	1.84	1	"	"	"	"	"	Х
84-66-2	Diethyl phthalate	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	Х
131-11-3	Dimethyl phthalate	< 2.28	U	µg/l	5.00	2.28	1	"	"	"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 2.12	U	µg/l	5.00	2.12	1	"	"	"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	µg/l	5.00	2.50	1	"	"	"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 1.87	U	µg/l	5.00	1.87	1	"	"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 2.30	U	µg/l	5.00	2.30	1	"		"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 2.79	U	µg/l	5.00	2.79	1	"	"	"	"	"	Х
206-44-0	Fluoranthene	< 2.32	U	µg/l	5.00	2.32	1	"		"	"	"	Х
86-73-7	Fluorene	< 2.31	U	µg/l	5.00	2.31	1	"	"	"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	µg/l	5.00	2.15	1	"		"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.03	U	µg/l	5.00	2.03	1	"		"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	µg/l	5.00	1.55	1	"	"	"	"	"	х
67-72-1	Hexachloroethane	< 2.15	U	µg/l	5.00	2.15	1		"	"	"	"	х
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	µg/l	5.00	2.30	1	"		"	"	"	Х
78-59-1	Isophorone	< 2.62	U	µg/l	5.00	2.62	1	"		"	"	"	Х
91-57-6	2-Methylnaphthalene	< 2.19	U	µg/l	5.00	2.19	1	"	"	"	"	"	Х
95-48-7	2-Methylphenol	< 2.14	U	µg/l	5.00	2.14	1	"	"		"	"	х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	µg/l	10.0	2.22	1	u	"	"	"	"	х
91-20-3	Naphthalene	< 2.04	U	µg/l	5.00	2.04	1	"		"	"	"	Х
88-74-4	2-Nitroaniline	< 2.34	U	µg/l	5.00	2.34	1	"	"	"	"	"	Х
99-09-2	3-Nitroaniline	< 2.72	U	µg/l	5.00	2.72	1	"	"	"	"	"	х
100-01-6	4-Nitroaniline	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	Х

Sample Ic	mple Identification		Client P	roject #		Matrix	Call	action Data	/Time	Pa	caivad		
West Ber	m - Dupe				<u>10ject #</u>					<u>111110</u>			
SC07186	-03			1537.00	05.001		Soil	06-	-May-15 10):45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Ser Prepared	<u>mivolatiles</u> by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	µg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
88-75-5	2-Nitrophenol	< 2.20	U	µg/l	5.00	2.20	1	"	"		"	"	х
100-02-7	4-Nitrophenol	< 1.91	U	µg/l	5.00	1.91	1	"	"	"	"		Х
62-75-9	N-Nitrosodimethylamine	< 1.84	U	µg/l	5.00	1.84	1	"	"		"	"	х
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	µg/l	5.00	2.32	1	"	"		"	"	х
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	µg/l	5.00	2.58	1	"	"		"	"	х
87-86-5	Pentachlorophenol	< 2.15	U	µg/l	5.00	2.15	1	"	"		"		х
85-01-8	Phenanthrene	< 2.26	U	µg/l	5.00	2.26	1		"		"	"	х
108-95-2	Phenol	< 2.04	U	µq/l	5.00	2.04	1		"		"	"	х
129-00-0	Pvrene	< 2.42	U	ua/l	5.00	2.42	1	"	"		"	"	х
110-86-1	Pvridine	< 1.62	U	ua/l	5.00	1.62	1	"			"		х
120-82-1	1 2 4-Trichlorobenzene	< 1.99	U	ug/l	5.00	1 99	1		"				x
90-12-0	1-Methylnanhthalene	< 1.96	- U	µg/l	5.00	1.00	1		"		"	"	~
95-95-4	2.4.5-Trichlorophenol	< 2.00	U U	µg/l	5.00	2.00	1						x
88-06-2	2,4,6 Trichlorophenol	< 1.06	U U	µg/1	5.00	1.06	1	"					v
00-00-2		< 0.00		µg/i	5.00	1.90	1						×
02-00-0		< 2.22	U	µg/l 5.00 2.22		1						X	
95-94-3	e	< 1.97	U	μg/l 5.00 1.97		1		ï				X	
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	70			30-13	0 %		"	"		"	"	
367-12-4	2-Fluorophenol	75			15-11	0%		"	"		"	"	
4165-60-0	Nitrobenzene-d5	73			30-13	0 %		"	"		"	"	
4165-62-2	Phenol-d5	75			15-11	0%		"	"		"	"	
1718-51-0	Terphenyl-dl4	75			30-13	0 %		"	"		"	"	
118-79-6	2,4,6-Tribromophenol	70			15-11	0%		"	"		"	"	
Semivolat	ile Organic Compounds by (GC											
Polychlor	inated Biphenyls												
Prepareo	Arealan 4040	- 00 1			00.0	00.4	4	C) 1/0 4 C 0000 A	11 May 15	10 May 1		4500000	v
12074-11-2	Arocior-1016	< 20.1	U	µg/kg ary	22.3	20.1	1	SVV846 8082A	11-May-15	12-May-1 5	IMR	1509089	X
11104-28-2	Aroclor-1221	< 17.1	U	µg/kg dry	22.3	17.1	1	"	"	"	"	"	Х
11141-16-5	Aroclor-1232	< 20.0	U	µg/kg dry	22.3	20.0	1	"	"		"	"	Х
53469-21-9	Aroclor-1242	< 13.8	U	µg/kg dry	22.3	13.8	1	"	"		"	"	Х
12672-29-6	Aroclor-1248	< 14.0	U	µg/kg dry	22.3	14.0	1	"	"		"	"	Х
11097-69-1	Aroclor-1254	< 15.4	U	µg/kg dry	22.3	15.4	1	"	"	"	"		Х
11096-82-5	Aroclor-1260 [2C]	36.4		µg/kg dry	22.3	13.9	1	"	"		"	"	Х
37324-23-5	Aroclor-1262	< 20.0	U	µg/kg dry	22.3	20.0	1		"		"	"	х
11100-14-4	Aroclor-1268	< 21.9	U	µg/kg dry	22.3	21.9	1	"	"		"	"	х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl	65		30-150 %				"	"	"			
10386-84-2	(Sr) 4,4-DB-Octafluorobiphenyl (Sr) [2C]	70			30-15	0 %		"	"	"		"	
2051-24-3	Decachlorobiphenvl (Sr)	95			30-15	0%		"			"	"	
2051-24-3	Decachlorobiphenyl (Sr) [2C]	110			30-15	0 %					"	"	

Sample Ic	mple Identification			Client P	Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
West Ber SC07186	m - Dupe -03			1537.0	05.001		Soil	06	-May-15 10):45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Me	tals by EPA 1311 & 6000/7	000 Series Meth	ods										
TCLP Ext	raction for Hg												
Prepared	by method SW846 1311												
	ICLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	Х
	Final pH of leachate	6.52		N/A			1	"	"		"	"	
TCLP Ext Prepared	raction for Metals by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	"	"	"	"		х
	Final pH of leachate	6.52		N/A			1	"	"	"	"		
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	х
7440-38-2	Arsenic	0.0054		mg/l	0.0040	0.0026	1	n	"	15-May-1 5		1509548	х
7440-39-3	Barium	0.410		mg/l	0.0500	0.0004	1	"	"	15-May-1 5	"	1509320	х
7440-43-9	Cadmium	0.0012	J	mg/l	0.0025	0.0002	1	"	"				х
7440-47-3	Chromium	0.0044	J	mg/l	0.0050	0.0010	1	"	"				х
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	х
7439-92-1	Lead	0.0136		mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	х
7782-49-2	Selenium	0.0072	J	mg/l	0.0150	0.0043	1	"	"	15-May-1 5	"	1509320	х
General C	hemistry Parameters												
	% Solids	84.5		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	Х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	х
	Ignitability by Definition	Negative	lgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	х
	рН	7.80	рН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:29	BD	1509150	х
Reactivity Prepared	<u>Cyanide/Sulfide</u> by method General Prep	aration											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 25.0	U	mg/kg dry	25.0	25.0	1	"	"		"	"	
18496-25-8	Reactive Sulfide	< 50.0	U	mg/kg dry	50.0	50.0	1	"	"		"		

Sample Ic	mple Identification				Project #		Matrix	Coll	ection Date	/Time	Re	ceived	
West Ber	m			1537.0	05 001		Soil	<u>06</u>	-May-15 1()·45	06-1	May-15	
SC07186-	-04			1007.0	001001		5011		11 u y 10 10		001		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	TCLP Extraction	Completed		N/A			1	SW846 1311	13-May-1 5	14-May-1 5	BD	1509403	х
TCLP Vol	atile Organic Compounds	Natas MC				l m il	iel						
Prepared		vater IVIS				Init		<u>5 mi</u>			~~~		
/1-43-2	Benzene	< 0.9	U, D	µg/I	5.0	0.9	5	SW846 1311/8260C	15-May-1 5	15-May-1 5	GMA	1509535	Х
78-93-3	2-Butanone (MEK)	< 6.2	U, D	µg/l	50.0	6.2	5	"	"		"	"	Х
56-23-5	Carbon tetrachloride	< 1.1	U, D	µg/l	5.0	1.1	5	"	"		"	"	Х
108-90-7	Chlorobenzene	< 1.0	U, D	µg/l	5.0	1.0	5	"	"		"	"	Х
67-66-3	Chloroform	< 2.0	U, D	µg/l	5.0	2.0	5	"	"		"	"	Х
106-46-7	1,4-Dichlorobenzene	< 1.2	U, D	µg/l	5.0	1.2	5		"	"	"	"	Х
107-06-2	1,2-Dichloroethane	< 0.8	U, D	µg/l	5.0	0.8	5		"	"	"	"	Х
75-35-4	1,1-Dichloroethene	< 1.4	U, D	µg/l	5.0	1.4	5	"	"		"	"	Х
87-68-3	Hexachlorobutadiene	< 2.0	U, D	µg/l	2.5	2.0	5	"	"		"	"	Х
127-18-4	Tetrachloroethene	< 2.9	U, D	µg/l 5.0 2.9 µa/l 5.0 1.9		5				"	"	Х	
79-01-6	Trichloroethene	< 1.9	U, D	μg/l 5.0 1.9		5				"	"	х	
75-01-4	Vinyl chloride	< 1.7	U, D	µg/l 5.0 1.7			5	"	"	"	"	"	Х
Surrogate I	irrogate recoveries:												
460-00-4	-00-4 4-Bromofluorobenzene 91				70-13	0%		"			"	"	
2037-26-5	Toluene-d8	95			70-13	0%		"	"		"	"	
17060-07-0	1,2-Dichloroethane-d4	113			70-13	0%		"	"		"	"	
1868-53-7	Dibromofluoromethane	94			70-13	0 %		"	"	"	"	"	
Semivolati	le Organic Compounds by	GCMS											
TCLP Ext	raction for Semivolatiles												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1	BD	1509197	х
	Final pH of leachate	6.54		N/A			1			5 "			
TCLP Ser	nivolatiles												
Prepared	by method SW846 3535A												
83-32-9	Acenaphthene	< 2.13	U	µg/l	5.00	2.13	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	Х
208-96-8	Acenaphthylene	< 2.16	U	µg/l	5.00	2.16	1		"	"	"	"	Х
62-53-3	Aniline	< 2.34	U	µg/l	5.00	2.34	1	"	"		"	"	Х
120-12-7	Anthracene	< 2.33	U	µg/l	5.00	2.33	1	"	"		"	"	Х
103-33-3	Azobenzene/Diphenyldiaz ene	< 2.46	U	µg/l	5.00	2.46	1	n	"				
92-87-5	Benzidine	< 2.68	U	µg/l	5.00	2.68	1	"	"	"	"	"	х
56-55-3	Benzo (a) anthracene	< 2.26	U	µg/l	5.00	2.26	1				"	"	х
50-32-8	Benzo (a) pyrene	< 2.40	U	µg/l	5.00	2.40	1	"			"	"	х
205-99-2	Benzo (b) fluoranthene	< 2.08	U	µg/l	5.00	2.08	1				"	"	х
191-24-2	Benzo (g,h,i) pervlene	< 2.40	U	µg/l	5.00	2.40	1	"			"	"	х
207-08-9	Benzo (k) fluoranthene	< 2.73	U	ца/I	5.00	2.73	1				"		х
65-85-0	Benzoic acid	< 1.98	U	ua/l	5.00	1.98	1	"			"	"	x
100-51-6	Benzyl alcohol	< 2.14	U	ua/l	5.00	2.14	1	"			"	"	x
111-91-1	Bis(2-chloroethoxy)metha	< 2.23	U	µg/l	5.00	2.23	1	"	"	"	"		x
111-44-4	ne ¹⁴⁻⁴ Bis(2-chloroethyl)ether < 2.14 U		U	µg/l	5.00	2.14	1	"	"				х

Sample Id West Ber	ample Identification Vest Berm				Project #		<u>Matrix</u>	Coll	ection Date	/Time	Re	ceived	
SC07186	-04			1537.0	05.001		Soil	06	-May-15 10):45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Se Prepared	mivolatiles by method SW846 3535A												
108-60-1	Bis(2-chloroisopropyl)ethe	< 2.22	U	µg/l	5.00	2.22	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	Х
117-81-7	Bis(2-ethylhexyl)phthalate	< 2.34	U	µg/l	5.00	2.34	1	"		"	"	"	х
101-55-3	4-Bromophenyl phenyl ether	< 2.26	U	µg/l	5.00	2.26	1	H	"	"	"	"	х
85-68-7	Butyl benzyl phthalate	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
86-74-8	Carbazole	< 2.63	U	µg/l	5.00	2.63	1	"	"	"	"	"	Х
59-50-7	4-Chloro-3-methylphenol	< 2.43	U	µg/l	5.00	2.43	1	"	"	"	"	"	Х
106-47-8	4-Chloroaniline	< 2.63	U	µg/l	5.00	2.63	1	"	"		"	"	Х
91-58-7	2-Chloronaphthalene	< 2.00	U	µg/l	5.00	2.00	1	"	"	"	"	"	Х
95-57-8	2-Chlorophenol	< 2.03	U	µg/l	5.00	2.03	1	"	"	"	"	"	Х
7005-72-3	4-Chlorophenyl phenyl ether	< 2.34	U	µg/l	5.00	2.34	1	"	"		"	"	х
218-01-9	Chrysene	< 2.33	U	µg/l	5.00	2.33	1	"		"	"	"	Х
53-70-3	Dibenzo (a,h) anthracene	< 2.52	U	µg/l	5.00	2.52	1	"		"	"	"	Х
132-64-9	Dibenzofuran	< 2.15	U	µg/l	5.00	2.15	1	"		"	"	"	Х
95-50-1	1,2-Dichlorobenzene	< 2.05	U	µg/l	5.00	2.05	1	"		"	"	"	Х
541-73-1	1,3-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"		"	"	"	Х
106-46-7	1,4-Dichlorobenzene	< 2.02	U	µg/l	5.00	2.02	1	"		"	"	"	Х
91-94-1	3,3'-Dichlorobenzidine	< 2.22	U	µg/l	5.00	2.22	1	"		"	"	"	Х
120-83-2	2,4-Dichlorophenol	< 1.84	U	µg/l	5.00	1.84	1	"		"	"	"	Х
84-66-2	Diethyl phthalate	< 2.38	U	µg/l	5.00	2.38	1	"		"	"	"	Х
131-11-3	Dimethyl phthalate	< 2.28	U	µg/l	5.00	2.28	1	"		"	"	"	Х
105-67-9	2,4-Dimethylphenol	< 2.12	U	µg/l	5.00	2.12	1	"		"	"	"	Х
84-74-2	Di-n-butyl phthalate	< 2.62	U	µg/l	5.00	2.62	1	"		"	"	"	Х
534-52-1	4,6-Dinitro-2-methylphenol	< 2.50	U	µg/l	5.00	2.50	1	"		"	"	"	Х
51-28-5	2,4-Dinitrophenol	< 1.87	U	µg/l	5.00	1.87	1		"	"	"	"	Х
121-14-2	2,4-Dinitrotoluene	< 2.38	U	µg/l	5.00	2.38	1	"	"	"	"	"	Х
606-20-2	2,6-Dinitrotoluene	< 2.30	U	µg/l	5.00	2.30	1	"	"	"	"	"	Х
117-84-0	Di-n-octyl phthalate	< 2.79	U	µg/l	5.00	2.79	1	"		"	"	"	Х
206-44-0	Fluoranthene	< 2.32	U	µg/l	5.00	2.32	1	"		"	"	"	Х
86-73-7	Fluorene	< 2.31	U	µg/l	5.00	2.31	1	"		"	"	"	Х
118-74-1	Hexachlorobenzene	< 2.15	U	µg/l	5.00	2.15	1	"		"	"	"	Х
87-68-3	Hexachlorobutadiene	< 2.03	U	µg/l	5.00	2.03	1	"		"	"	"	Х
77-47-4	Hexachlorocyclopentadien e	< 1.55	U	µg/l	5.00	1.55	1	"	"	"	"	"	х
67-72-1	Hexachloroethane	< 2.15	U	µg/l	5.00	2.15	1	"		"	"	"	Х
193-39-5	Indeno (1,2,3-cd) pyrene	< 2.30	U	µg/l	5.00	2.30	1	"	"	"	"	"	Х
78-59-1	Isophorone	< 2.62	U	µg/l	5.00	2.62	1	"	"	"	"	"	Х
91-57-6	2-Methylnaphthalene	< 2.19	U	µg/l	5.00	2.19	1	"			"	"	Х
95-48-7	2-Methylphenol	< 2.14	U	µg/l	5.00	2.14	1	"			"	"	х
108-39-4, 106-44-5	3 & 4-Methylphenol	< 2.22	U	µg/l	10.0	2.22	1	"	"	"	"	"	х
91-20-3	Naphthalene	< 2.04	U	µg/l	5.00	2.04	1	"		"	"	"	Х
88-74-4	2-Nitroaniline	< 2.34	U	µg/l	5.00	2.34	1	"	"	"	"	"	Х
99-09-2	3-Nitroaniline	< 2.72	U	µg/l	5.00	2.72	1	"			"	"	Х
100-01-6	4-Nitroaniline	< 2.62	U	µg/l	5.00	2.62	1		"	"	"	"	Х

Sample Io	imple Identification		Client P	roiect #		Matrix	Coll	ection Date	/Time	Re	ceived		
West Ber	m			1527.00	$10 \text{ JCCL } \pi$		<u>Iviauin</u>		Mars 15 10	. 45		Mars 15	
SC07186	-04			1557.00	5.001		5011	06	-May-15 10	1:45	00-1	viay-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by (GCMS											
TCLP Ser Prepared	<u>nivolatiles</u> by method SW846 3535A												
98-95-3	Nitrobenzene	< 2.12	U	µg/l	5.00	2.12	1	SW846 1311/8270D	14-May-1 5	14-May-1 5	MSL	1509444	х
88-75-5	2-Nitrophenol	< 2.20	U	µg/l	5.00	2.20	1	"	"		"	"	х
100-02-7	4-Nitrophenol	< 1.91	U	µg/l	5.00	1.91	1		"		"	"	х
62-75-9	N-Nitrosodimethylamine	< 1.84	U	µg/l	5.00	1.84	1		"		"		х
621-64-7	N-Nitrosodi-n-propylamine	< 2.32	U	µg/l	5.00	2.32	1		"		"		х
86-30-6	N-Nitrosodiphenylamine	< 2.58	U	µg/l	5.00	2.58	1	"	"		"	"	х
87-86-5	Pentachlorophenol	< 2.15	U	μg/l	5.00	2.15	1	"	"	"	"	"	х
85-01-8	Phenanthrene	< 2.26	U	µg/l	5.00	2.26	1		"				х
108-95-2	Phenol	< 2.04	U	μg/l	5.00	2.04	1				"		х
129-00-0	Pyrene	< 2.42	U	µq/l	5.00	2.42	1		"				х
110-86-1	Pvridine	< 1.62	U	ua/l	5.00	1.62	1	"	"				х
120-82-1	1 2 4-Trichlorobenzene	< 1.99	U	µ9/1	5.00	1 99	1	"					x
90-12-0	1-Methylnaphthalene	< 1.96	U	µ9/1	5.00	1.96	1						
95-95-4	2 4 5-Trichlorophenol	< 2.09	- U	µg/l	5.00	2.09	1		"				x
88-06-2	2,1,6 Trichlorophenol	< 1.96	- U	µg/l	5.00	1 96	1		"				x
82-68-8	2,4,0- meniorophenor	< 2.22	U U	μg/l 5.00 1.96 μq/l 5.00 2.22		1	"					×	
05 04 3		< 1.07		µg/i 5.00 2.22 µg/i 5.00 1.97		1	"					×	
90-94-0	e	< 1.97	0	µg/i 5.00 1.97		I						^	
Surrogate	recoveries:												
321-60-8	2-Fluorobiphenyl	75			30-13	0%		"	"		"	"	
367-12-4	2-Fluorophenol	78			15-11	0 %		"	"		"	"	
4165-60-0	Nitrobenzene-d5	77			30-13	0%		"	"		"		
4165-62-2	Phenol-d5	77			15-11	0%		"	"		"	"	
1718-51-0	Terphenyl-dl4	80			30-13	0%		"	"				
118-79-6	2,4,6-Tribromophenol	80			15-11	0%		"	"		"		
Semivolat	ile Organic Compounds by (GC											
Polychlor	nated Biphenyls												
Prepareo	by method Svv846 3545A				00.0	00.0		014/0 40 0000 4	44 14-145	10 14-14		4500000	V
12074-11-2	Arocior-1016	< 20.6	U	µg/kg ary	22.8	20.6	1	SVV846 8082A	11-May-15	12-May-1 5	IMR	1509089	X
11104-28-2	Aroclor-1221	< 17.5	U	µg/kg dry	22.8	17.5	1	"	"			"	Х
11141-16-5	Aroclor-1232	< 20.5	U	µg/kg dry	22.8	20.5	1	"	"	"	"	"	Х
53469-21-9	Aroclor-1242	< 14.2	U	µg/kg dry	22.8	14.2	1	"	"	"	"	"	Х
12672-29-6	Aroclor-1248	< 14.3	U	µg/kg dry	22.8	14.3	1	"	"			"	Х
11097-69-1	Aroclor-1254	< 15.7	U	µg/kg dry	22.8	15.7	1	"	"		"	"	Х
11096-82-5	Aroclor-1260	50.0		µg/kg dry	22.8	16.0	1	"	"		"	"	Х
37324-23-5	Aroclor-1262	< 20.4	U	µg/kg dry	22.8	20.4	1	"	"			"	Х
11100-14-4	Aroclor-1268	< 22.4	U	µg/kg dry	22.8	22.4	1	"	"		"		х
Surrogate	recoveries:												
10386-84-2	4,4-DB-Octafluorobiphenyl	75		30-150 %				"	"	"	"	"	
10386-84-2	(3) 4,4-DB-Octafluorobiphenyl (Sr) [2C]	90		30-150 %				"	"	"	"	"	
2051-24-3	Decachlorobiphenvl (Sr)	100			30-15	0%		"			"	"	
2051-24-3	Decachlorobiphenyl (Sr) I2Cl	110			30-15	0 %		"	"		"	"	

Sample Ic West Ber	ample Identification /est Berm			Client P	Project #		<u>Matrix</u>	Colle	ection Date	/Time	Re	ceived	
SC07186-	-04			1537.0	05.001		Soil	06	-May-15 10):45	06-1	May-15	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
TCLP Met	tals by EPA 1311 & 6000/70	00 Series Meth	ods										
TCLP Ext Prepared	raction for Hg by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	SW846 1311	11-May-15	12-May-1 5	BD	1509195	х
	Final pH of leachate	6.55		N/A			1	"	"		"	"	
TCLP Ext Prepared	raction for Metals by method SW846 1311												
	TCLP Extraction	Completed		N/A			1	"	"	"	"	"	х
	Final pH of leachate	6.55		N/A			1	"	"		"		
7440-22-4	Silver	< 0.0014	U	mg/l	0.0050	0.0014	1	SW846 1311/6010C	14-May-1 5	15-May-1 5	EDT	1509320	х
7440-38-2	Arsenic	0.0049		mg/l	0.0040	0.0026	1	"	"	15-May-1 5		1509548	х
7440-39-3	Barium	0.416		mg/l	0.0500	0.0004	1	n	"	15-May-1 5	"	1509320	х
7440-43-9	Cadmium	0.0012	J	mg/l	0.0025	0.0002	1	"	"	"	"	"	х
7440-47-3	Chromium	0.0036	J	mg/l	0.0050	0.0010	1	"	"		"		Х
7439-97-6	Mercury	< 0.00009	U	mg/l	0.00020	0.00009	1	SW846 1311/7470A	"	15-May-1 5	YR	1509321	х
7439-92-1	Lead	0.0214		mg/l	0.0075	0.0018	1	SW846 1311/6010C	"	15-May-1 5	bjw	1509548	х
7782-49-2	Selenium	0.0044	J	mg/l	0.0150	0.0043	1	n	"	15-May-1 5		1509320	х
General C	hemistry Parameters												
	% Solids	84.5		%			1	SM2540 G Mod.	11-May-15	11-May-15	DT	1509144	
Toxicity C	haracteristics												
	Flashpoint	>200		°F			1	SW846 1010A	12-May-1 5	12-May-1 5	BD	1509275	х
	Free Liquid	Absent		N/A			1	SW846 9095B	08-May-1 5	08-May-1 5	BD	1508979	х
	Ignitability by Definition	Negative	IgHT	N/A			1	SW846 1030	08-May-1 5 17:00	08-May-1 5 17:30	BD	1508980	х
	рН	7.76	рН	pH Units			1	SW846 9045D	11-May-15 10:59	11-May-15 16:32	BD	1509150	х
<u>Reactivity</u> Prepared	<u>Cyanide/Sulfide</u> by method General Prepa	aration											
	Reactivity	See Narrative		mg/kg dry			1	SW846 Ch. 7.3	11-May-15	11-May-15	TN	1509189	
57-12-5	Reactive Cyanide	< 24.8	U	mg/kg dry	24.8	24.8	1	"			"		
18496-25-8	Reactive Sulfide	< 49.6	U	mg/kg dry	49.6	49.6	1	"	"		"		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509535 - SW846 5030 Water MS										
Blank (1509535-BLK1)					Pre	epared & Ar	nalyzed: 15-	May-15		
Benzene	< 0.2	U	µq/l	0.2						
Carbon tetrachloride	< 0.2	U	ua/l	0.2						
Chlorobenzene	< 0.2	U	ua/l	0.2						
Chloroform	< 0.4	U	ua/l	0.4						
1.4-Dichlorobenzene	< 0.2	U	ua/l	0.2						
1.2-Dichloroethane	< 0.2	U	ua/l	0.2						
1.1-Dichloroethene	< 0.3	U	ua/l	0.3						
Hexachlorobutadiene	< 0.4	U	ua/l	0.4						
Tetrachloroethene	< 0.6	U	ua/l	0.6						
Trichloroethene	< 0.4	U	ua/l	0.4						
Vinvl chloride	< 0.3	U	ua/l	0.3						
Surragata: A Bramafluarahanzana	49.0				50.0		06	70 120		
Surrogate. 4-Bromonuorobenzene	40.2		µg/i		50.0		90	70-130		
Surrogate: Toluene-da	47.9		µg/i		50.0		90	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.8		µg/I		50.0		110	70-130		
Surrogate: Dibromotiuoromethane	48.8		µg/i		50.0		98	70-130		
<u>Blank (1509535-BLK2)</u>					Pre	epared & Ar	nalyzed: 15-	<u>May-15</u>		
Benzene	< 0.9	U, D	µg/l	0.9						
2-Butanone (MEK)	< 6.2	U, D	µg/l	6.2						
Carbon tetrachloride	< 1.1	U, D	µg/l	1.1						
Chlorobenzene	< 1.0	U, D	µg/l	1.0						
Chloroform	2.4	J, D	µg/l	2.0						
1,4-Dichlorobenzene	< 1.2	U, D	µg/l	1.2						
1,2-Dichloroethane	< 0.8	U, D	µg/l	0.8						
1,1-Dichloroethene	< 1.4	U, D	µg/l	1.4						
Hexachlorobutadiene	< 2.0	U, D	µg/l	2.0						
Tetrachloroethene	< 2.9	U, D	µg/l	2.9						
Trichloroethene	< 1.9	U, D	µg/l	1.9						
Vinyl chloride	< 1.7	U, D	µg/l	1.7						
Surrogate: 4-Bromofluorobenzene	46.8		µg/l		50.0		94	70-130		
Surrogate: Toluene-d8	47.3		µg/l		50.0		95	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.6		µg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	48.9		µg/l		50.0		98	70-130		
LCS (1509535-BS2)					Pre	epared & Ar	nalyzed: 15-	May-15		
Benzene	19.4	D	µg/l		20.0		97	70-130		
2-Butanone (MEK)	21.6	D	µg/l		20.0		108	70-130		
Carbon tetrachloride	23.2	D	µg/l		20.0		116	70-130		
Chlorobenzene	18.8	D	µg/l		20.0		94	70-130		
Chloroform	20.7	D	µg/l		20.0		103	70-130		
1,4-Dichlorobenzene	20.7	D	µg/l		20.0		103	70-130		
1,2-Dichloroethane	21.4	D	µg/l		20.0		107	70-130		
1,1-Dichloroethene	18.6	D	µg/l		20.0		93	70-130		
Hexachlorobutadiene	24.3	D	µg/l		20.0		121	70-130		
Tetrachloroethene	20.7	D	µg/l		20.0		104	70-130		
Trichloroethene	17.9	D	µg/l		20.0		90	70-130		
Vinyl chloride	17.5	D	µg/l		20.0		87	70-130		
Surrogate: 4-Bromofluorobenzene	49.3		µg/l		50.0		99	70-130		
Surrogate: Toluene-d8	48.3		µa/l		50.0		97	70-130		
Surrogate: 1,2-Dichloroethane-d4	55.4		µg/l		50.0		111	70-130		
Surrogate: Dibromofluoromethane	50.3		µa/l		50.0		101	70-130		
LCS Dup (1509535-BSD2)			F0 -		Pr	epared & Ar	nalvzed: 15.	May-15		
200 Dup (1003000-0002)					<u>- 16</u>	Sparca & Al	aryzeu. 10	may-10		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509535 - SW846 5030 Water MS										
LCS Dup (1509535-BSD2)					Pre	epared & Ar	nalyzed: 15-	May-15		
Benzene	18.3	D	µg/l		20.0		91	70-130	6	20
2-Butanone (MEK)	21.5	D	µg/l		20.0		108	70-130	0.7	20
Carbon tetrachloride	21.9	D	µg/l		20.0		109	70-130	6	20
Chlorobenzene	18.3	D	µg/l		20.0		92	70-130	2	20
Chloroform	19.9	D	µg/l		20.0		99	70-130	4	20
1,4-Dichlorobenzene	20.1	D	µg/l		20.0		100	70-130	3	20
1,2-Dichloroethane	20.8	D	µg/l		20.0		104	70-130	3	20
1,1-Dichloroethene	17.7	D	µg/l		20.0		88	70-130	5	20
Hexachlorobutadiene	23.8	D	µg/l		20.0		119	70-130	2	20
Tetrachloroethene	19.4	D	µg/l		20.0		97	70-130	6	20
Trichloroethene	16.8	D	µg/l		20.0		84	70-130	6	20
Vinyl chloride	17.0	D	µg/l		20.0		85	70-130	3	20
Surrogate: 4-Bromofluorobenzene	48.9		µg/l		50.0		98	70-130		
Surrogate: Toluene-d8	48.0		µg/l		50.0		96	70-130		
Surrogate: 1,2-Dichloroethane-d4	54.3		µg/l		50.0		109	70-130		
Surrogate: Dibromofluoromethane	49.4		µg/l		50.0		99	70-130		

Semivolatile Organ	ic Compounds	by GCMS -	Quality Control
			~ *

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509444 - SW846 3535A										
Blank (1509444-BLK1)					Pre	epared & Ar	nalvzed: 14-	Mav-15		
Acenaphthene	< 2.13	U	ua/l	2.13			,			
Acenaphthylene	< 2.16	U	µg/l	2.16						
Aniline	< 2.34	U	ua/l	2.34						
Anthracene	< 2.33	U	ua/l	2.33						
Azobenzene/Diphenvldiazene	< 2.46	U	ua/l	2.46						
Benzidine	< 2.68	U	ua/l	2.68						
Benzo (a) anthracene	< 2.26	U	ua/l	2.26						
Benzo (a) pyrene	< 2.40	U	µg/l	2.40						
Benzo (b) fluoranthene	< 2.08	U	μg/l	2.08						
Benzo (g,h,i) perylene	< 2.40	U	μg/l	2.40						
Benzo (k) fluoranthene	< 2.73	U	µg/l	2.73						
Benzoic acid	< 1.98	U	µg/l	1.98						
Benzyl alcohol	< 2.14	U	µg/l	2.14						
Bis(2-chloroethoxy)methane	< 2.23	U	µg/l	2.23						
Bis(2-chloroethyl)ether	< 2.14	U	µg/l	2.14						
Bis(2-chloroisopropyl)ether	< 2.22	U	µg/l	2.22						
Bis(2-ethylhexyl)phthalate	< 2.34	U	µg/l	2.34						
4-Bromophenyl phenyl ether	< 2.26	U	µg/l	2.26						
Butyl benzyl phthalate	< 2.63	U	µg/l	2.63						
Carbazole	< 2.63	U	µg/l	2.63						
4-Chloro-3-methylphenol	< 2.43	U	µg/l	2.43						
4-Chloroaniline	< 2.63	U	µg/l	2.63						
2-Chloronaphthalene	< 2.00	U	µg/l	2.00						
2-Chlorophenol	< 2.03	U	µg/l	2.03						
4-Chlorophenyl phenyl ether	< 2.34	U	µg/l	2.34						
Chrysene	< 2.33	U	µg/l	2.33						
Dibenzo (a,h) anthracene	< 2.52	U	µg/l	2.52						
Dibenzofuran	< 2.15	U	µg/l	2.15						
1,2-Dichlorobenzene	< 2.05	U	µg/l	2.05						
1,3-Dichlorobenzene	< 2.02	U	µg/l	2.02						
1,4-Dichlorobenzene	< 2.02	U	µg/l	2.02						
3,3'-Dichlorobenzidine	< 2.22	U	µg/l	2.22						
2,4-Dichlorophenol	< 1.84	U	µg/l	1.84						
Diethyl phthalate	< 2.38	U	µg/l	2.38						
Dimethyl phthalate	< 2.28	U	µg/l	2.28						
2,4-Dimethylphenol	< 2.12	U	µg/l	2.12						
Di-n-butyl phthalate	< 2.62	U	µg/l	2.62						
4,6-Dinitro-2-methylphenol	< 2.50	U	µg/l	2.50						
2,4-Dinitrophenol	< 1.87	U	µg/l	1.87						
2,4-Dinitrotoluene	< 2.38	U	µg/l	2.38						
2,6-Dinitrotoluene	< 2.30	U	µg/l	2.30						
Di-n-octyl phthalate	< 2.79	U	µg/l	2.79						
Fluoranthene	< 2.32	U	µg/l	2.32						
Fluorene	< 2.31	U	µg/l	2.31						
Hexachlorobenzene	< 2.15	U	µg/l	2.15						
Hexachlorobutadiene	< 2.03	U	µg/l	2.03						
Hexachlorocyclopentadiene	< 1.55	U	µg/l	1.55						
Hexachloroethane	< 2.15	U	µg/l	2.15						
Indeno (1,2,3-cd) pyrene	< 2.30	U	µg/l	2.30						
Isophorone	< 2.62	U	µg/l	2.62						
2-Methylnaphthalene	< 2.19	U	µg/l	2.19						
2-Methylphenol	< 2.14	U	µg/l	2.14						

Semivolatile Organ	ic Compounds	by GCMS -	Quality Control
			~ *

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509444 - SW846 3535A										
Blank (1509444 Bl K1)					Pro	anared & Au	nalvzod: 14	-May-15		
3 & 4-Methylphenol	< 2.22	U	ua/l	2 22	<u> </u>			Way to		
Nanhthalene	< 2.22	U	ug/l	2.22						
2-Nitroaniline	< 2.34	U	µ9/1	2.34						
3-Nitroaniline	< 2.72	U	ua/l	2 72						
4-Nitroaniline	< 2.62	U	ua/l	2.62						
Nitrobenzene	< 2.12	U	ua/l	2.02						
2-Nitrophenol	< 2.20	U	ua/l	2 20						
4-Nitrophenol	< 1.91	U	ua/l	1.91						
N-Nitrosodimethylamine	< 1.84	U	µ9/	1 84						
N-Nitrosodi-n-propylamine	< 2.32	U	ua/l	2 32						
N-Nitrosodinhenvlamine	< 2.52	U	µ9/1	2.58						
Pentachlorophenol	< 2.15	U	ua/l	2 15						
Phenanthrene	< 2.26	U	µ9/	2 26						
Phenol	< 2.04	U	µ9/1	2.20						
Pyrene	< 2.42	U	µ9/1	2.01						
Pyridine	< 1.62	U	µ9/1	1.62						
1 2 4-Trichlorobenzene	< 1.99	U	ua/l	1.99						
1-Methylpaphthalene	< 1.96	U	µ9/1	1.00						
2 4 5-Trichlorophenol	< 2.09	U	µ9/1	2.09						
2 4 6-Trichlorophenol	< 1.96	U	µ9/1	1.96						
Pentachloronitrobenzene	< 2.22	U	µ9/1	2 22						
1 2 4 5-Tetrachlorobenzene	< 1.97	U	ua/l	1 97						
Surragete: 2-Eluorobinhenvl	37.0		ug/l		52.6		70	30-130		
Surrogate: 2 Elucrophenol	37.0		µg/i		52.0		70	15 110		
Surrogate: Nitrobenzene-d5	38.5		µg/i		52.6		73	30-130		
Surrogate: Phenol-d5	38.4		µg/l		52.6		73	15_110		
Surrogate: Tembenyl-dl4	40.6		µg/i		52.6		73	30-130		
Surrogate: 2.4.6-Tribromonhenol	36.1		µg/l		52.6		69	15-110		
	50.7		μg/i		02.0 Dr/	anarad 8 Au	03 aaburadi 14	Nov 15		
<u>LCS (1509444-BS1)</u>	20.0			0.40	<u>PR</u>	epareu & Al	70	-iviay-15		
Acenaphthulana	39.3		µg/i	2.13	50.0		79	40-140		
Acenaphinylene	40.3	002	µg/i	2.10	50.0		01	40-140		
Aniline	14.6	QUZ	µg/i	2.34	50.0		29	40-140		
Anthracene	43.0		µg/i	2.33	50.0		80	40-140		
Azobenzene/Diphenyidiazene	42.7	002	µg/i	2.40	50.0		85	40-140		
	6.24	QUZ	µg/i	2.00	50.0		12	40-140		
Benzo (a) anthracene	42.6		µg/i	2.20	50.0		85	40-140		
Benzo (a) pyrene	45.9		µg/i	2.40	50.0		92	40-140		
Benzo (b) huorantnene	47.4		µg/i	2.08	50.0		95	40-140		
Benzo (g,n,i) perviene	42.1		µg/i	2.40	50.0		84	40-140		
Benzo (k) nuorantnene	40.0		µg/i	2.73	50.0		80	40-140		
Benzoic acid	49.3		µg/i	1.98	50.0		99	30-130		
Benzyl alconol	27.6		µg/i	2.14	50.0		55	40-140		
Bis(2-chloroethoxy)methane	38.8		µg/i	2.23	50.0		78	40-140		
	37.5		µg/i	2.14	50.0		70	40-140		
	39.0		µg/I	2.22	50.0		/ð	40-140		
	42.5		µg/I	2.34	0.00		85	40-140		
4-Bromophenyl phenyl ether	44.7		µg/I	2.26	50.0		89	40-140		
butyi benzyi pritnalate	42.0		µg/I	2.63	50.0		84	40-140		
	45.9		µg/I	2.63	50.0		92	40-140		
4-Onioro-3-methylphenol	45.9	000	µg/I	2.43	50.0		92	30-130		
4-Chloroaniline	17.2	QC2	µg/l	2.63	50.0		34	40-140		

Semiferative of game compounds by control Quanty control	Semivolatile	Organic Co	mpounds by	GCMS - C	Quality Control
--	--------------	-------------------	------------	----------	------------------------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509444 - SW846 3535A										
LCS (1509444-BS1)					Pre	epared & Ar	alyzed: 14-	May-15		
2-Chloronaphthalene	39.6		µg/l	2.00	50.0		79	40-140		
2-Chlorophenol	40.0		μg/l	2.03	50.0		80	30-130		
4-Chlorophenyl phenyl ether	42.5		µg/l	2.34	50.0		85	40-140		
Chrysene	41.2		μg/l	2.33	50.0		82	40-140		
Dibenzo (a,h) anthracene	44.5		μg/l	2.52	50.0		89	40-140		
Dibenzofuran	40.7		μg/l	2.15	50.0		81	40-140		
1,2-Dichlorobenzene	39.2		µg/l	2.05	50.0		78	40-140		
1,3-Dichlorobenzene	38.5		μg/l	2.02	50.0		77	40-140		
1,4-Dichlorobenzene	38.2		µg/l	2.02	50.0		76	40-140		
3,3'-Dichlorobenzidine	33.4		μg/l	2.22	50.0		67	40-140		
2,4-Dichlorophenol	43.8		µg/l	1.84	50.0		88	30-130		
Diethyl phthalate	41.0		μg/l	2.38	50.0		82	40-140		
Dimethyl phthalate	40.4		µg/l	2.28	50.0		81	40-140		
2,4-Dimethylphenol	43.2		μg/l	2.12	50.0		86	30-130		
Di-n-butyl phthalate	43.4		µg/l	2.62	50.0		87	40-140		
4.6-Dinitro-2-methylphenol	48.3		µg/l	2.50	50.0		97	30-130		
2,4-Dinitrophenol	46.8		μg/l	1.87	50.0		94	30-130		
2,4-Dinitrotoluene	47.1		μg/l	2.38	50.0		94	40-140		
2,6-Dinitrotoluene	45.7		μg/l	2.30	50.0		91	40-140		
Di-n-octyl phthalate	44.0		µg/l	2.79	50.0		88	40-140		
Fluoranthene	43.7		μg/l	2.32	50.0		87	40-140		
Fluorene	40.7		μg/l	2.31	50.0		81	40-140		
Hexachlorobenzene	46.8		μg/l	2.15	50.0		94	40-140		
Hexachlorobutadiene	37.6		μg/l	2.03	50.0		75	40-140		
Hexachlorocyclopentadiene	41.8		μg/l	1.55	50.0		84	40-140		
Hexachloroethane	35.8		μg/l	2.15	50.0		72	40-140		
Indeno (1,2,3-cd) pyrene	47.2		μg/l	2.30	50.0		94	40-140		
Isophorone	40.4		μg/l	2.62	50.0		81	40-140		
2-Methylnaphthalene	44.6		μg/l	2.19	50.0		89	40-140		
2-Methylphenol	41.4		μg/l	2.14	50.0		83	30-130		
3 & 4-Methylphenol	39.5		µg/l	2.22	50.0		79	30-130		
Naphthalene	39.6		µg/l	2.04	50.0		79	40-140		
2-Nitroaniline	47.0		µg/l	2.34	50.0		94	40-140		
3-Nitroaniline	25.7		µg/l	2.72	50.0		51	40-140		
4-Nitroaniline	44.2		µg/l	2.62	50.0		88	40-140		
Nitrobenzene	42.0		µg/l	2.12	50.0		84	40-140		
2-Nitrophenol	46.0		µg/l	2.20	50.0		92	30-130		
4-Nitrophenol	55.6		µg/l	1.91	50.0		111	30-130		
N-Nitrosodimethylamine	40.0		µg/l	1.84	50.0		80	40-140		
N-Nitrosodi-n-propylamine	41.3		µg/l	2.32	50.0		83	40-140		
N-Nitrosodiphenylamine	47.3		µg/l	2.58	50.0		95	40-140		
Pentachlorophenol	39.3		µg/l	2.15	50.0		79	30-130		
Phenanthrene	43.1		ua/l	2.26	50.0		86	40-140		
Phenol	37.7		µg/l	2.04	50.0		75	30-130		
Pvrene	41.5		ua/l	2.42	50.0		83	40-140		
Pyridine	32.7		μα/l	1.62	50.0		65	40-140		
- 1,2,4-Trichlorobenzene	40.2		µg/l	1.99	50.0		80	40-140		
1-Methylnaphthalene	39.8		μα/l	1.96	50.0		80	40-140		
2,4,5-Trichlorophenol	44.4		µg/l	2.09	50.0		89	30-130		
2,4,6-Trichlorophenol	39.4		μα/l	1.96	50.0		79	30-130		
Pentachloronitrobenzene	45.1		µg/l	2.22	50.0		90	40-140		
1,2,4,5-Tetrachlorobenzene	42.1		µg/l	1.97	50.0		84	40-140		

Semivolatile	Organic C	Compounds	by GCMS -	Quality Control
			•	~ *

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 1509444 - SW846 3535A										
LCS (1509444-BS1)					Pre	epared & Ar	alyzed: 14-	May-15		
Surrogate: 2-Fluorobiphenyl	42.0		µg/l		50.0		84	30-130		
Surrogate: 2-Fluorophenol	40.5		µg/l		50.0		81	15-110		
Surrogate: Nitrobenzene-d5	46.3		µg/l		50.0		93	30-130		
Surrogate: Phenol-d5	42.2		µg/l		50.0		84	15-110		
Surrogate: Terphenyl-dl4	45.0		µg/l		50.0		90	30-130		
Surrogate: 2,4,6-Tribromophenol	50.6		µg/l		50.0		101	15-110		
LCS Dup (1509444-BSD1)					Pre	epared & Ar	alyzed: 14-	May-15		
Acenaphthene	41.4		µg/l	2.13	50.0		83	40-140	5	20
Acenaphthylene	42.4		µg/l	2.16	50.0		85	40-140	5	20
Aniline	15.8	QC2	µg/l	2.34	50.0		32	40-140	8	20
Anthracene	44.6		µg/l	2.33	50.0		89	40-140	4	20
Azobenzene/Diphenyldiazene	45.1		µg/l	2.46	50.0		90	40-140	6	20
Benzidine	8.42	QC2, QR5	µg/l	2.68	50.0		17	40-140	30	20
Benzo (a) anthracene	46.2		µg/l	2.26	50.0		92	40-140	8	20
Benzo (a) pyrene	48.4		µg/l	2.40	50.0		97	40-140	5	20
Benzo (b) fluoranthene	49.5		µg/l	2.08	50.0		99	40-140	4	20
Benzo (g,h,i) perylene	46.1		µg/l	2.40	50.0		92	40-140	9	20
Benzo (k) fluoranthene	43.0		µg/l	2.73	50.0		86	40-140	7	20
Benzoic acid	55.2		µg/l	1.98	50.0		110	30-130	11	20
Benzyl alcohol	35.5	QR2	µg/l	2.14	50.0		71	40-140	25	20
Bis(2-chloroethoxy)methane	41.1		µg/l	2.23	50.0		82	40-140	6	20
Bis(2-chloroethyl)ether	40.3		µg/l	2.14	50.0		81	40-140	7	20
Bis(2-chloroisopropyl)ether	41.1		µg/l	2.22	50.0		82	40-140	5	20
Bis(2-ethylhexyl)phthalate	45.2		µg/l	2.34	50.0		90	40-140	6	20
4-Bromophenyl phenyl ether	47.1		µg/l	2.26	50.0		94	40-140	5	20
Butyl benzyl phthalate	44.3		µg/l	2.63	50.0		89	40-140	5	20
Carbazole	49.7		µg/l	2.63	50.0		99	40-140	8	20
4-Chloro-3-methylphenol	46.4		µg/l	2.43	50.0		93	30-130	1	20
4-Chloroaniline	15.2	QC2	µg/l	2.63	50.0		30	40-140	12	20
2-Chloronaphthalene	41.4		µg/l	2.00	50.0		83	40-140	4	20
2-Chlorophenol	43.0		µg/l	2.03	50.0		86	30-130	7	20
4-Chlorophenyl phenyl ether	44.9		µg/l	2.34	50.0		90	40-140	6	20
Chrysene	43.8		µg/l	2.33	50.0		88	40-140	6	20
Dibenzo (a,h) anthracene	47.2		µg/l	2.52	50.0		94	40-140	6	20
Dibenzofuran	43.7		µg/l	2.15	50.0		87	40-140	7	20
1,2-Dichlorobenzene	40.9		µg/l	2.05	50.0		82	40-140	4	20
1,3-Dichlorobenzene	40.8		µg/l	2.02	50.0		82	40-140	6	20
1,4-Dichlorobenzene	40.0		µg/l	2.02	50.0		80	40-140	5	20
3,3'-Dichlorobenzidine	37.9		µg/l	2.22	50.0		76	40-140	13	20
2,4-Dichlorophenol	46.2		µg/l	1.84	50.0		92	30-130	5	20
Diethyl phthalate	43.2		µg/l	2.38	50.0		86	40-140	5	20
Dimethyl phthalate	42.6		µg/l	2.28	50.0		85	40-140	5	20
2,4-Dimethylphenol	44.9		µg/l	2.12	50.0		90	30-130	4	20
Di-n-butyl phthalate	45.3		µg/l	2.62	50.0		91	40-140	4	20
4,6-Dinitro-2-methylphenol	52.9		µg/l	2.50	50.0		106	30-130	9	20
2,4-Dinitrophenol	53.1		µg/l	1.87	50.0		106	30-130	13	20
2,4-Dinitrotoluene	51.3		µg/l	2.38	50.0		103	40-140	9	20
2,6-Dinitrotoluene	50.2		µg/l	2.30	50.0		100	40-140	9	20
Di-n-octyl phthalate	45.7		µg/l	2.79	50.0		91	40-140	4	20
Fluoranthene	45.9		µg/l	2.32	50.0		92	40-140	5	20
Fluorene	43.2		µg/l	2.31	50.0		86	40-140	6	20

Semivolatile	Organic C	Compounds	by GCMS -	Quality Control
			•	~ ~

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509444 - SW846 3535A										
LCS Dup (1509444-BSD1)					Pre	epared & Ar	alyzed: 14-	May-15		
Hexachlorobenzene	49.1		µg/l	2.15	50.0		98	40-140	5	20
Hexachlorobutadiene	39.6		µg/l	2.03	50.0		79	40-140	5	20
Hexachlorocyclopentadiene	46.4		µg/l	1.55	50.0		93	40-140	10	20
Hexachloroethane	37.5		µg/l	2.15	50.0		75	40-140	5	20
Indeno (1,2,3-cd) pyrene	51.0		µg/l	2.30	50.0		102	40-140	8	20
Isophorone	42.9		µg/l	2.62	50.0		86	40-140	6	20
2-Methylnaphthalene	45.8		µg/l	2.19	50.0		92	40-140	2	20
2-Methylphenol	43.5		µg/l	2.14	50.0		87	30-130	5	20
3 & 4-Methylphenol	41.8		µg/l	2.22	50.0		84	30-130	6	20
Naphthalene	41.0		µg/l	2.04	50.0		82	40-140	3	20
2-Nitroaniline	49.6		µg/l	2.34	50.0		99	40-140	5	20
3-Nitroaniline	20.6	QR2	µg/l	2.72	50.0		41	40-140	22	20
4-Nitroaniline	48.6		µg/l	2.62	50.0		97	40-140	10	20
Nitrobenzene	43.9		µg/l	2.12	50.0		88	40-140	4	20
2-Nitrophenol	49.0		µg/l	2.20	50.0		98	30-130	6	20
4-Nitrophenol	62.7		µg/l	1.91	50.0		125	30-130	12	20
N-Nitrosodimethylamine	43.0		µg/l	1.84	50.0		86	40-140	7	20
N-Nitrosodi-n-propylamine	45.3		µg/l	2.32	50.0		91	40-140	9	20
N-Nitrosodiphenylamine	49.9		µg/l	2.58	50.0		100	40-140	5	20
Pentachlorophenol	46.6		µg/l	2.15	50.0		93	30-130	17	20
Phenanthrene	45.9		µg/l	2.26	50.0		92	40-140	6	20
Phenol	40.1		µg/l	2.04	50.0		80	30-130	6	20
Pyrene	45.1		µg/l	2.42	50.0		90	40-140	8	20
Pyridine	34.3		µg/l	1.62	50.0		69	40-140	5	20
1,2,4-Trichlorobenzene	41.7		µg/l	1.99	50.0		83	40-140	4	20
1-Methylnaphthalene	41.9		µg/l	1.96	50.0		84	40-140	5	20
2,4,5-Trichlorophenol	41.2		µg/l	2.09	50.0		82	30-130	8	20
2,4,6-Trichlorophenol	43.2		µg/l	1.96	50.0		86	30-130	9	20
Pentachloronitrobenzene	47.8		µg/l	2.22	50.0		96	40-140	6	20
1,2,4,5-Tetrachlorobenzene	44.1		µg/l	1.97	50.0		88	40-140	5	20
Surrogate: 2-Fluorobiphenyl	42.7		µg/l		50.0		85	30-130		
Surrogate: 2-Fluorophenol	41.7		µg/l		50.0		83	15-110		
Surrogate: Nitrobenzene-d5	46.9		µg/l		50.0		94	30-130		
Surrogate: Phenol-d5	43.6		µg/l		50.0		87	15-110		
Surrogate: Terphenyl-dl4	47.0		µg/l		50.0		94	30-130		
Surrogate: 2,4,6-Tribromophenol	51.6		µg/l		50.0		103	15-110		

	Semivolatile	Organic Cor	npounds by	GC - Qu	ality Control
--	--------------	--------------------	------------	---------	---------------

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509089 - SW846 3545A										
Blank (1509089-BLK1)					Pre	epared & A	nalyzed: 11	-May-15		
Aroclor-1016	< 17.8	U	µg/kg wet	17.8						
Aroclor-1016 [2C]	< 10.1	U	µg/kg wet	10.1						
Aroclor-1221	< 15.1	U	µg/kg wet	15.1						
Aroclor-1221 [2C]	< 16.9	U	µg/kg wet	16.9						
Aroclor-1232	< 17.8	U	µg/kg wet	17.8						
Aroclor-1232 [2C]	< 12.9	U	µg/kg wet	12.9						
Aroclor-1242	< 12.3	U	µg/kg wet	12.3						
Aroclor-1242 [2C]	< 11.9	U	µg/kg wet	11.9						
Aroclor-1248	< 12.4	U	µg/kg wet	12.4						
Aroclor-1248 [2C]	< 11.1	U	µg/kg wet	11.1						
Aroclor-1254	< 13.6	U	µg/kg wet	13.6						
Aroclor-1254 [2C]	< 11.1	U	µg/kg wet	11.1						
Aroclor-1260	< 13.9	U	µg/kg wet	13.9						
Aroclor-1260 [2C]	< 12.4	U	µg/kg wet	12.4						
Aroclor-1262	< 17.7	U	µg/kg wet	17.7						
Aroclor-1262 [2C]	< 10.7	U	µg/kg wet	10.7						
Aroclor-1268	< 19.4	U	µg/kg wet	19.4						
Aroclor-1268 [2C]	< 19.0	U	µg/kg wet	19.0						
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.8		µg/kg wet		19.8		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	18.8		µg/kg wet		19.8		95	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.8		µg/kg wet		19.8		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	20.8		µg/kg wet		19.8		105	30-150		
LCS (1509089-BS1)					Pre	epared & A	nalyzed: 11	- <u>May-15</u>		
Aroclor-1016	219		µg/kg wet	17.7	245		89	40-140		
Aroclor-1016 [2C]	219		µg/kg wet	9.97	245		89	40-140		
Aroclor-1260	187		µg/kg wet	13.7	245		76	40-140		
Aroclor-1260 [2C]	194		µg/kg wet	12.3	245		79	40-140		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.7		µg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.7		µg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	15.7		µg/kg wet		19.6		80	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		µg/kg wet		19.6		100	30-150		
LCS Dup (1509089-BSD1)					Pre	epared & A	nalyzed: 11	-May-15		
Aroclor-1016	220		µg/kg wet	17.7	245		90	40-140	0.9	30
Aroclor-1016 [2C]	226		µg/kg wet	9.96	245		92	40-140	4	30
Aroclor-1260	186		µg/kg wet	13.7	245		76	40-140	0.5	30
Aroclor-1260 [2C]	201		µg/kg wet	12.2	245		82	40-140	3	30
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr)	16.7		µg/kg wet		19.6		85	30-150		
Surrogate: 4,4-DB-Octafluorobiphenyl (Sr) [2C]	17.6		µg/kg wet		19.6		90	30-150		
Surrogate: Decachlorobiphenyl (Sr)	16.7		µg/kg wet		19.6		85	30-150		
Surrogate: Decachlorobiphenyl (Sr) [2C]	19.6		µg/kg wet		19.6		100	30-150		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1509320 - SW846 3010A										
Blank (1509320-BLK1)					Pre	epared: 14-	May-15	Analyzed: 15-N	<u>/lay-15</u>	
Chromium	0.0032	J	mg/l	0.0010						
Silver	< 0.0014	U	mg/l	0.0014						
Cadmium	< 0.0002	U	mg/l	0.0002						
Selenium	0.0076	J	mg/l	0.0043						
Barium	0.0008	J	mg/l	0.0004						
LCS (1509320-BS1)					Pre	epared: 14-	May-15	Analyzed: 15-N	<u>/lay-15</u>	
Silver	1.22		mg/l	0.0014	1.25		98	85-115		
Cadmium	1.09		mg/l	0.0002	1.25		87	85-115		
Chromium	1.15		mg/l	0.0010	1.25		92	85-115		
Selenium	1.33		mg/l	0.0043	1.25		107	85-115		
Barium	1.19		mg/l	0.0004	1.25		95	85-115		
LCS Dup (1509320-BSD1)					Pre	epared: 14-	May-15	Analyzed: 15-N	/lay-15	
Chromium	1.16		mg/l	0.0010	1.25		93	85-115	1	20
Cadmium	1.11		mg/l	0.0002	1.25		89	85-115	2	20
Silver	1.28		mg/l	0.0014	1.25		102	85-115	4	104
Selenium	1.41		mg/l	0.0043	1.25		113	85-115	5	20
Barium	1.22		mg/l	0.0004	1.25		97	85-115	3	20
Batch 1509321 - EPA200/SW7000 Series										
Blank (1509321-BLK1)					Pre	epared: 14-	May-15	Analyzed: 15-N	<u>/lay-15</u>	
Mercury	< 0.00009	U	mg/l	0.00009						
LCS (1509321-BS1)					Pre	epared: 14-	May-15	Analyzed: 15-M	/lay-15	
Mercury	0.00493		mg/l	0.00009	0.00500		99	85-115		
Batch 1509548 - SW846 3010A										
Blank (1509548-BLK1)					Pre	epared: 14-	May-15	Analyzed: 15-N	/lay-15	
Lead	< 0.0018	U	mg/l	0.0018						
Arsenic	0.0036	J	mg/l	0.0026						
LCS (1509548-BS1)					Pre	epared: 14-	May-15	Analyzed: 15-N	/lay-15	
Lead	1.16		mg/l	0.0018	1.25		92	85-115		
Arsenic	1.20		mg/l	0.0026	1.25		96	85-115		
LCS Dup (1509548-BSD1)					Pre	epared: 14-	May-15	Analyzed: 15-N	<u>/lav-15</u>	
Arsenic	1.14		mg/l	0.0026	1.25		91	85-115	5	20
Lead	1.11		mg/l	0.0018	1.25		89	85-115	4	20

TCLP Metals by EPA 1311 & 6000/7000 Series Methods - Quality Control

Toxicity Characteristics - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 1508980 - General Preparation										
Duplicate (1508980-DUP1)			Source: SC	07186-04	Pro	epared & Ai	nalyzed: 08	-May-15		
Ignitability by Definition	Negative		N/A			Negative				35
Batch 1509150 - General Preparation										
Duplicate (1509150-DUP1)			Source: SC	07186-01	Pre	epared & Ai	nalyzed: 11	-May-15		
pН	8.27		pH Units			8.24			0.4	5
Reference (1509150-SRM1)					Pro	epared & Ai	nalyzed: 11	-May-15		
рH	6.04		pH Units		6.00		101	97.5-102. 5		
Reference (1509150-SRM2)					Pro	epared & Ai	nalyzed: 11	-May-15		
рН	6.07		pH Units		6.00		101	97.5-102. 5		
Batch 1509189 - General Preparation										
<u>Blank (1509189-BLK1)</u>					Pre	epared & Ai	nalyzed: 11	-May-15		
Reactivity	See Narrative		mg/kg wet							
Reactive Cyanide	< 25.0	U	mg/kg wet	25.0						
Reactive Sulfide	< 50.0	U	mg/kg wet	50.0						
Duplicate (1509189-DUP1)			Source: SC	07186-01	Pro	epared & Ai	nalyzed: 11	-May-15		
Reactivity	See Narrative		mg/kg dry			ee Narrativ	1			200
Reactive Cyanide	< 25.0	U	mg/kg dry	25.0		BRL				35
Reactive Sulfide	< 50.0	U	mg/kg dry	50.0		BRL				35
Reference (1509189-SRM1)					Pro	epared & Ai	nalyzed: 11	-May-15		
Reactive Cyanide	< 25.0	U	mg/kg wet	25.0	600		0	0-200		
Reference (1509189-SRM2)					Pre	epared & Ai	nalyzed: 11	- <u>May-15</u>		
Reactive Sulfide	56.1		mg/kg wet	50.0	40200		0.1	0-200		
Batch 1509275 - General Preparation										
Reference (1509275-SRM1)					Pro	epared & Ai	nalyzed: 12	-May-15		
Flashpoint	80		°F		81.0		99	95-105		

Notes and Definitions

- D Data reported from a dilution
- IgHT A hold time of 24 hours has been set to expedite the analyses through the laboratory. However, the hold time for Ignitability is not specified within the method other than to state that the samples should be analyzed as soon as possible.
- J Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- QC2 Analyte out of acceptance range in QC spike but no reportable concentration present in sample.
- QR2 The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on percent recoveries and completeness of QC data.
- QR5 RPD out of acceptance range.
- U Analyte included in the analysis, but not detected at or above the MDL.
- Z-2 Standard was rerun and passed within the method criteria
- dry Sample results reported on a dry weight basis
- NR Not Reported
- RPD Relative Percent Difference
- pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt. All soil samples are analyzed as soon as possible after sample receipt.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

<u>Method Detection Limit (MDL)</u>: The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

<u>Reportable Detection Limit (RDL)</u>: The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification</u>: The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

Validated by: Rebecca Merz

	Jon (2561.330 1 1	at a worth Non los	AD JUNC ANT	Relinquished by:		65 % .		J or West Bern to	d3 Wast Born - Depe	1 of Eist Born - Que 1	COTIBED East Bern 5/6/15	Lab ID: Sample ID: Date:	G= Grab C=Com	X1= X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air SG	DW=Dinking Water GW=Groundwater SW=Surface Water	F=Field Filtered 1=Na ₂ SZO ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	Telephone #: 585 - 325 - 7140 Project Mgr: Grey Lesnigk	11 White horts Seite 203	Report To: MHC 1709 Lesiniak	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY		2	
th Shis (625)	Cor	1221 5/7/15 7:05 m	Xbott 5/6/15 1/30"	erved by: Date: . Time: 7				10:45 (2 50 3	10:45 C SO 3	10:30 C So 3	- 10:30 C So 3	Time: Tyy Ma # of V # of V # of C # of I	rpe trix VOA ¹ Plastic	Vials Glass	=Soil Gas	WW=Waste Water Containers	$5=\text{NaOH} 6=\text{Ascorbic Acid}$ $11= \frac{1}{2} \frac{1}{2}$	P.O No.: Quote/RQN:		Invoice To: B+K.	Page $\underline{/}$ of $\underline{/}$	CHAIN OF CUSTODY REC		2
Ambien Leed Refrigerated DI VOA Frozen Soil Jar Frozen	$\frac{1}{10^{10}}$	C MKgd IKC II II	2.3 SE-mail to: glasniak@ barton and locidice . un	Temp °C EDD format:				XXXXXXX	XXXXXX D	- 228888	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	Reference Conter:		Ditols, 11torina 10rina 10rina 1000A* 1000A*	ted Standard No QC	Analysis MA DEP MCP CAM Report?	List Preservative Code below: QA/QC Reporting Notes: 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/	Location: Why Ny State: NY Sampler(s): Ny Kndilak State: NY	Site Name: Noncer Midler Are.	Project No: 1537.005.001	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	CORD	Special Handling:	COTIBE RY

11 Almgren Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

Rev. Jan 2014

11 Almgrun Drive • Agawam, MA 01001 • 413-789-9018 • FAX 413-789-4076 • www.spectrum-analytical.com

	Von (252,130 /	The word Non	The all Call	Relinquished by:		*		y or West Bern	d3 West Barn - Dra	1 of Eist Born - ane	SCOTIBEN East Bern J	Lab ID: Sample ID:	G= Grab	X1=X2=	O=Oil SO=Soil SL=Sludge A=Indoor/Ambient Air	DW=Dinking Water GW=Groundwater SW=Surface Wi	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Project Mgr: Grey Lesnigh	Telephone #: 585 - 325 - 7140	11 Un 12 Porto Sette 203	Report To: MATTER Lesnick	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	1	2	
Jun Shis icas	, , , , , , , , , , , , , , , , , , ,	6021221 5/7/15 7:05	Clott 5/1/15 1/3	Received by: Date: - Time:				* 10:45 C So By	10:45 C SO 84	10.30 C So \$4	6/15- 10:30 C So 34	Date: Time: T M # of # of # of # of	Compsite Vype atrix VOA Clear Plastic	Vials er Glass Glass	SG=Soil Gas	ater WW=Waste Water Containers	HNO ₃ 5=NaOH 6=Ascorbic Acid $11=\frac{1}{2} \frac{1}{3} $	P.O No.: Quote/RQN:			Invoice To: B+4.	Page of	CHAIN OF CUSTODY R	2004	
IR ID# Ambient Leed Refrigerated DI VOA Frozen Soil Jar Frozen	Contended 22.2 Condition upon receipt: Custody Seals: Present Intact Broken	Mkadilyk@"	0123 & E-mail to: glaniaka barten and buildie in	Temp °C EDD format:				XXXXXXX - 1 Ens/11	XXXXXX - milited	XXXXXXXX - SUN AL	XXXXXXXX = 4 Tens neucived for	K K L Other K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K K	ck if c	Motals	ated Standard No QC	Analysis MA DEP MCP CAM Report? Yes No CT DPH RCP Report? Yes No	List Preservative Code below: QA/QC Reporting Notes:		Sampler(s): Math Skawlick State: NY	Site Name: Dioneer Midle Are.	Project No: 1537,005,00	All TAT's subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	ECORD Rush TAT - Date Needed:	Standard TAT - 7 to 10 business days	SCOTIBE RY

Rev. Jan 2014

CITY OF AUBURN DEPARTMENT OF MUNICIPAL UTILITIES PETROLEUM CONTAMINATED SOIL TESTING PROTOCOL

Physical Characteristics

<u>Corrosivity (pH)</u> = Greater than 2 Std. Units and Less Than 12.5 Std. Units <u>Ignitability</u> (Flashpoint) = 60°C or 140°F Maximum <u>% Solids</u> = 20% Minimum

• TCLP Laboratory Analysis (40 CFR 261)

Maximum Concentration of Contaminants for Toxicity Characteristic (mg/L)

	•	
Arsenic	5.0	
Barium	100.0	
Benzene	0.5	
Cadmium	1.0	
Carbon tetrachloride	0.5	
Chlordane	0.03	
Chlorobenzene	100.0	
Chloroform	6.0	
Chromium	5.0	
o-Cresol	200.0	
m-Cresol	200.0	
p-Cresol ·	200.0	
Cresol	200.0	
2,4-D	10.0	. **
1,4-Dichlorobenzene	7.5	
1,2-Dichloroethane	0.5	
1,1-Dichloroethylene	0.7	and in president statements
2,4-Dinitrotoluene	0.13	
Endrin	0.02	
Heptachlor (and its hydroxide)	0.008	

Hexachlorobenzene	0.13
Hexachlorobutadiene	0.5
Hexachloroethane	3.0
Lead	5.0 ,
Lindane	0.4 •
Mercury	0.2
Methoxychlor	10.0
Methyl ethyl ketone	200.0
Nitrobenzene	2.0
Pentachlorophenol	100.0
Pyridine	5.0
Selenium	1 0
Silver ·	5 0
Tetrachloroethylene	0.7
Toxaphene	0.5
Trichloroethylene	0.5
2,4,5-Trichlorophenol	400.0
2,4,6-Trichlorophenol	2.0
2,4,5-TP (Silvex)	1.0
Vinyl Chloride	0.2

Total PCB Analysis:

- PCB's should be analyzed as "total" per EPA Method 8082 or equivalent.
- Additional Testing Protocols (If Necessary):
 - Sampling and testing protocols may be modified or increased at any time by the City of Auburn depending on the origin or nature of the material.